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Abstract 

Inflammatory bowel disease (IBD), encompassing Crohn’s disease and ulcerative colitis, has as main 

characteristic inflammation of the intestinal tract. Some families have many family members affected 

with IBD, so-called multiplex families. The reason for this familial aggregation remains unresolved. 

Genetic and environmental factors are involved in the development and both are shared between 

relatives. I will study the genetic architecture of multiplex families to investigate if and to what extent 

genetics can be a reason behind their familial aggregation. For 55 multiplex families, 53 of European 

descent, with at least three affected first-degree relatives, I calculated polygenic risk scores (PRS) based 

on different p-value thresholds. I found that PRS including SNPs with a p-value higher than genome-

wide significant (5e-08) or suggestive (1e-05) better predicted the case-control status of sporadic cases 

and controls, and within multiplex families. Thus, both sporadic and familial IBD seem to be truly 

polygenic, and some real associations are present in the less strongly associated variants. Affected 

relatives have a PRS similar to sporadic cases, and unaffected relatives have a higher PRS than the 

population controls. Thus, many common genetic risk variants seem to be segregating in these 

families. Yet, the PRS of affected relatives is higher than their unaffected first-degree relatives, 

indicating a higher burden of common risk variants in affected relatives. Of note, when families were 

looked at individually, some families had a PRS lower than the mean PRS of healthy population 

controls, indicating a very low burden of common variants. These could be interesting to study for 

sequencing as they are good candidates to carry a rare variant. Furthermore, a family-based 

association analysis indicated novel specific risk variants associated with IBD in families. In conclusion, 

familial aggregation seems to be due to a high burden of common risk variants in many families, 

however some families have another reason for familial aggregation. 

 



 

 
 

1 Literature overview 

1.1 Inflammatory Bowel Disease 

Inflammatory Bowel Disease (IBD) is an overarching term which encompasses the main subtypes 

Crohn’s disease (CD) and ulcerative colitis (UC).(1) As the name implies, IBD is a disease with chronic 

inflammation of the intestinal tract. Onset of disease can happen at all life stages, but diagnosis during 

childhood is often paired with a more severe course of disease. (2) 

1.1.1 Incidence and prevalence 

The incidence and prevalence of IBD differs based on geographical region.(3) In Europe and North 

America, the prevalence is the highest and even raises above 0.3%. However, incidence in these 

regions is stabilizing or even decreasing. Interestingly, a gradient from high to low runs through Europe 

with the highest incidence rate in western Europe.(4) Even within countries differences are being 

spotted, probably due to the degree of urbanization.(5) In contrast to the western countries, an 

increasing incidence is observed in Asia, South America and Africa. The prevalence is not yet equal to 

the western countries, but is being expected to follow in the footsteps of Europe and North America. 

1.1.2 Clinical classification 

The most widely used clinical classification system for IBD is the Montreal classification (Table 1).(6) 

UC and CD have a separate classification based on different parameters. The three main guidelines in 

CD are age of onset (A), location (L) and behaviour (B). Age of onset divides into three categories: 

younger than sixteen years, between the age of seventeen and 40 years, and older than 40 years. 

These are, respectively, A1, A2 and A3. Ileal, colonic and ileocolonic are the subtypes of disease 

location depicted by L1, L2 or L3, respectively. An extra subtype L4 can be included if isolated upper 

gastrointestinal disease is present. Disease behaviour is also categorised into three groups. B1 stands 

for non-stricturing and non-penetrating, B2 means stricturing disease behaviour, while B3 points at 

penetrating behaviour. Perianal disease has a separate symbol, namely p, which can be added to the 

behaviour type. 

The subdivision of UC is only established by two characteristics, extent (E) and severity (S).(6) If only 

the rectum is affected, then it is classified as proctitis (E1). Left sided UC (E2) is spoken of when more 

of the colon is involved but inflammation goes no further than the splenic flexure. In extensive UC (E3), 

the inflammation goes beyond the splenic flexure. The other characteristic, severity, is not often used 

in practice. Severity is defined by the amount of stool passages per day, inflammatory markers and 

systemic toxicity. Rooted in these measurement arise four categories: clinical remission (S0), mild UC 

(S1), moderate UC (S2) and severe UC (S3).  

Sometimes a definitive diagnosis of CD or UC cannot be made on the basis of clinical examination and 

endoscopic biopsies.(6,7) If this is the case, then the diagnosis inflammatory bowel disease type 

unclassified (IBD-U) will be made. Some occasions are more difficult to obtain a differential diagnosis 

of CD or UC, for example initial onset of disease, paediatric patients, treatment interferences or very 

severe disease.(7) Often, biopsies taken on a later timepoint can be of interest to determine whether 

the patient has UC or CD. The diagnosis of IBD-U is based on the routine clinical tests for IBD. 

Sometimes a colectomy is necessary and a more elaborate testing can be performed. If these 

additional tests are also inconclusive, a certain differential diagnosis cannot be established and these 

patients are classified as having indeterminate colitis.(6) Thus, IBD-U is often a temporary diagnosis 
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which can change if tests are repeated or with additional research, while indeterminate colitis is a 

definite diagnosis that probably will not change anymore. 

Table 1: Clinical classification of Crohn’s disease and ulcerative colitis 

Crohn’s disease 

Categories Abbreviation Information 

Age of onset A1 < 17 years 

 A2 17 – 40 years 

 A3 > 40 years 

Location L1 Ileal inflammation 

 L2 Colonic inflammation 

 L3 Ileocolonic inflammation 

 L4* Isolated upper gastrointestinal disease 

Disease behaviour B1 Non-stricturing and non-penetrating 

 B2 Stricturing 

 B3 Penetrating 

 p* Perianal disease 

 

Ulcerative Colitis 

Categories Abbreviation Information 

Extent E1 Proctitis: only rectum involved 

 E2 Left-sided UC: inflammation until the splenic flexure 

 E3 Extensive UC: inflammation beyond the splenic flexure 

Severity S0 Clinical remission 

 S1 Mild UC 

 S2 Moderate UC 

 S3 Severe UC 

The characteristics are depicted in the left column. The short names of the categories are presented in 

the middle column and some extra information is shown in the right column. * an extra category which 

is additional to the other categories. 

1.1.3 Clinical presentation and diagnosis 

IBD is sometimes troublesome to diagnose because of the unclear nature of the symptoms (Figure 1). 

Patients are typically experiencing symptoms for weeks or months.(8,9). Chronic diarrhoea, abdominal 

pain and weight loss are mainly encountered and this diarrhoea can contain blood, especially in UC. 

Other stool problems are also frequently observed, including rectal bleeding, tenesmus, urgency and 

nocturnal defaecation. Fever, tachycardia, nausea, vomiting and weight loss point at systemic 

symptoms and are mainly associated with severe UC but might also be seen in CD patients. Symptoms 

can vary widely in presentation and severity between patients which makes it difficult to diagnose IBD 

and to differentiate between its two main subtypes. 

First, a comprehensive history of the patient is ascertained to exclude other causes, e.g. traveller’s 

diarrhoea.(8–10) Occurring symptoms need to be thoroughly discussed. Family history of IBD and 

colorectal cancer can provide insightful information because IBD is partly hereditary and therefore 

runs in families. The main goal is to gather as much information that can indicate a possible diagnosis 

of IBD. For example, a recent smoking cessation or the use of non-steroidal anti-inflammatory drugs 

are often seen previous to the onset of IBD. A general physical examination might seem normal in 

some cases, mainly patients with mild to moderate disease.  
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Blood tests are an important part of the diagnosis but are neither specific, nor consistently 

abnormal.(8,9,11) Patients with a mild or moderate form of IBD can have results within the established 

range. The assay contains a full blood count, C reactive protein, markers for renal and liver function, 

vitamin D, iron and electrolytes. A stool sample is taken as well for the determination of faecal 

calprotectin, a marker of colonic inflammation. Infectious diseases caused by bacteria, especially 

Clostridium Difficile, can also be excluded through this stool sample. None of these tests are specific 

but only indicate ongoing inflammation. Therefore, a differential diagnosis of UC or CD cannot be made 

based solely on the results of a blood and stool sample. Although, the laboratory tests can indicate 

whether or not a colonoscopy might be useful, especially a high faecal calprotectin level denotes 

potential IBD patients.(10)  

Endoscopic and histopathologic research are holding an important place in the differential diagnosis 

of CD and UC (Figure 1 and 2).(9–12) An overall view of the colon and ileum is performed with the 

Figure 1: Workflow to diagnose IBD 
The general workflow to determine whether a patient has IBD and which specific subtype. Extra 

information is written at the side. 
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taking of several biopsies, a minimal of two biopsies on five different places. Inflammation in UC is 

limited to the colon and starts at the rectum, where it is often more severely present.(1) Continuous 

and symmetric inflammation with a clear boundary between healthy and inflamed tissue is typical for 

UC. In contrast, any part of the gastrointestinal tract, from mouth to anus, can be compromised in CD. 

The appearance of inflammation is not continuous, as is the case in UC, but is patchy and irregular. 

Erythema, granularity, partial or complete loss of visible vasculature, bleeding and ulcers can be found 

with an endoscopic examination in patients with UC.(11,12) CD has a typical cobblestone look and 

longitudinal ulcers.(9) The differences in endoscopic appearance might already indicate the subtype of 

IBD. 

In UC, histological changes will only encompass the mucosal and submucosal layer (Figure 2).(1,11) The 

most distinguishing feature for UC is basal plasmacytosis.(12) This trait appears as one of the first in 

contrast with other aspects such as architectural damage and transmucosal inflammatory cell 

infiltrates. Inflammation in CD will extent deeper and might show granulomas.(1) Further, 

discontinuous chronic inflammation and crypt irregularities are also seen.(9) Typical features 

associated with one subtype of IBD, as diffuse crypt irregularity in UC or granulomas in CD, 

discriminates between the two and might make a differential diagnosis possible.   

1.1.4 Natural history 

CD is mostly a chronic intermittent disease, meaning most of the patients experience alternatively 

relapses and remissions.(13) Relapse rates increase each year after the diagnosis of a patient. A few 

patients, around 1%, endure a continuously active course over several years, but approximately half 

of them will go in remission within 3 years. At the other end of the spectrum, approximately 10% of 

patients remain in unremitting state for a longer period. This remission can be due to a surgical 

intervention. Surgery is often necessary.(5) One-third up to half of all CD patients require surgery 

Figure 2: The distinction between Crohn’s disease and ulcerative colitis 
Some typical characteristics for Crohn’s disease (left) and ulcerative colitis (right). Accolades indicate 

which part of the gastrointestinal system is involved. The Figure was partly generated using Servier 

Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license 
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within 10 years after diagnosis. Likewise, hospitalization is a common event with the highest rate taking 

place in the first year after diagnosis and declining afterwards. 

As described in the classification, CD is divided according to three parameters: age of onset (A), disease 

location (L) and disease behaviour (B). Age of onset is fixed but the other two might change over time. 

Disease location however is not very variable over time, most patients, 87%, remain in the same class 

(L1, L2 or L3) since the time of diagnosis.(5) A switch from disease behaviour is more likely to occur, 

from non-stricturing, non-penetrating disease (B1) to a stricturing or penetrating disease behaviour 

(B2 or B3).  

A chronic relapsing disease with flares is also the main disease course in UC.(14) The cumulative risk 

for going through a relapse in a period of ten years following diagnosis is approximately 70 to 80%.(15) 

As in CD, some patients have a chronic continuous disease activity. Although, the percentage is higher 

in patients with UC, around 5%. A hospitalization is necessary at the time of diagnosis in 10-15% of the 

patients. Moreover, half of the patients will need a hospital stay. Once a patient required a 

hospitalization, the chances of a rehospitalization are very high going from one quarter within one year 

to three quarters within ten years after the first time. Cumulative colectomy rate is, at the moment, 

approximately 15% after 10 years. Although, surgery is mostly needed early, within the first year after 

diagnosis.(14) 

Most UC patients present with left-sided colitis (E2) at the time of diagnosis.(16) Progression can only 

develop further proximally because it begins at the rectum. This means from proctitis to left-sided 

colitis or extensive colitis, or from left-sided colitis to extensive colitis. Extension is not very often seen, 

around 13% of patients have progression. This percentage is similar to the change of disease location 

in CD. At diagnosis, mild or moderate disease are mostly encountered.(14) Probably due to more 

effective treatments, the disease course switched from mostly moderate to a more mild course during 

the first five years after diagnosis.(15) 

1.1.5 Extra-intestinal manifestations 

IBD is not only restricted to the intestines but is also a systemic disease.(17) Approximately half of the 

patients will develop an extra-intestinal manifestation.(18) Sometimes, extra-intestinal manifestations 

are the first symptoms to occur and this makes it even harder to diagnose a patient with IBD. 

Interestingly, CD patients are more prone to extra-intestinal manifestations than UC patients. Although 

almost any organ can be involved in IBD, the organs which are mainly affected include the biliary tract, 

eyes, joints and the skin.(17) However, other organs are not entirely excluded, for example 

osteoporosis, pulmonary diseases and liver diseases are also frequently observed in patients.(18) Thus, 

a lot of heterogeneity exists in extra-intestinal manifestations and they all have their own optimal 

treatments.  

1.1.6 Mortality and morbidity 

An overall increased mortality is not observed in UC patients. However, an increased risk of mortality 

is associated with some extra-intestinal symptoms like liver diseases and pulmonary diseases. Although 

no elevated overall mortality is seen, a high rate of morbidities is encountered. Patients often complain 

about fatigue and might experience sleep difficulties. Patients report a lower quality of life, including 

due to fatigue. Furthermore, patients are often not able to work.(15) 

CD patients have an increased mortality but only after 25 years from diagnosis.(19) Many deaths of CD 

patients are due to CD-specific causes. Intestinal failure, intestinal cancer, severe diseases are 

observed as causes for an early death in CD patients. More CD patients than UC patients seem to have 
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disabilities.(20) A lower quality of life is also reported by CD patients. Especially, active disease for a 

long time and psychological distress are associated with a lower quality of life. A higher rate of 

unemployment is also found in CD patients. 

1.1.7 Treatment 

The European Crohn’s and Colitis Organisation (ECCO) on a regular basis publishes guidelines for the 

diagnosis and treatment of CD an UC.(9,21) These guidelines are made by experts based on clinical 

trials and meta-analyses. UC and CD have differing characteristics and therefore their treatment is not 

entirely the same. Although, medication currently available on the market is often given to both groups 

of patients. Treatments are chosen founded on several parameters including the specific disease 

characteristics, disease severity, benefit-risk ratio of the treatment, previous responses and individual 

factors. 

The aim of initial treatment of CD and UC is focused on inducing remission in patients.(10) If this is 

achieved, further therapy needs to maintain remission and prevent another flare. Therefore, a top-

down approach is applied and often biologicals and corticosteroids are prescribed first. However, some 

patients are not helped with medication and surgery is often necessary. For example, a colectomy is 

often performed in severe UC.(22) 

Medical treatment of UC and CD can be divided in a few groups. First, aminosalicylates is the first-line 

therapy to maintain remission in UC but has no or very few effects in CD and is therefore not 

recommended.(10,21–23) Another large group is formed by the corticosteroids. The form of 

administration ranges from local, over oral, to intravenous if necessary. These are preferably not given 

chronically but are well suited to induce remission or manage flares. Several immunomodulators also 

belong to the package of possible therapy choices in the case of CD and UC. Thiopurines, azathioprine 

and mercaptopurine, are well-known and often applied therapies for UC and CD. Methotrexate is still 

listed as a treatment but efficacy is becoming more and more a point of discussion.(23) Two others are 

also available for UC, namely cyclosporine and tacrolimus. Biologicals make up the largest cluster of 

treatments. Anti-TNF therapy, Adalimumab and Infliximab, belong to the biologicals and are the 

preferred option if previous therapies seem inadequate. Vedolizumab, a gut selective anti-

inflammatory, can be administered in both UC and CD. In patients with CD an alternative to 

vedolizumab is ustekinumab which binds the pro-inflammatory interleukins 12 and 23. Lastly, a janus 

kinase inhibitor, Tofacitinib, recently came on the market for UC. 

Diet as a treatment of IBD is an ongoing research. The gut microbiome which plays an important role 

in IBD, is influenced through nutrition.(24) Therefore, changing or restricting food intake might alter 

the disease course of IBD. Evidence for restriction diets is limited and a control group is often not 

included in the study. Sometimes, parenteral or enteral nutrition is given to let the bowels rest. Results 

for total parenteral nutrition are highly variable between studies. In contrast, exclusive enteral 

nutrition can induce remission. As a remark, exclusive enteral nutrition is for adults a very difficult 

lifestyle to maintain. Partial enteral nutrition is better manageable but is only able to prolong 

remission, not induce it. A diet that mimics exclusive enteral nutrition but with food can partially 

modify the microbiome to resemble exclusive enteral nutrition and might be easier to maintain. Diet 

is an important environmental factor that exerts an influence on IBD, and might be an interesting 

treatment option. 

General health should not be overlooked and is followed up regularly.(10) Patients are encouraged to 

stop smoking and adopt a healthy lifestyle. Deficiencies are common in patients with IBD, especially 

iron, folate, vitamin B12 and D. If a deficiency is detected, this will be treated with supplements. Some 
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therapies given to IBD patients have severe side effects. Adequate follow-up is recommended. For 

example, thiopurine therapy enhances the risk on skin cancer and corticosteroids lower bone density.  

1.2 Genetics of IBD 

First- and second-degree relatives of IBD patients have a higher prevalence and an increased risk of 

IBD than the general population.(25) This suggests a genetic component, but families also share their 

environments. One way to circumvent the problem of the shared environment in establishing the 

genetic component to disease is by using twin studies.(26) Twins typically also have a more shared 

environment than do regular siblings or related individuals. Dizygotic twins have approximately 50% 

of their genome the same, making them genetically first-degree relatives, while monozygotic twins are 

genetically identical. This difference can be used to calculate trait heritability. The results of twin 

studies pointed at a genetic component to IBD, and a heritability of CD estimated to be between 70 

and 80%, while UC is predicted at 60 to 70%.(27) The genetic component of UC is thus lower than of 

CD but both are still fairly large. 

1.2.1 Monogenic or polygenic 

Both CD and UC are partly caused by a genetic component. The underlying genetic architecture is 

important for insights into disease pathogenesis, treatment, risk prediction, ... The two extreme forms 

of the genetic architecture of IBD are a monogenic and polygenic architecture (Figure 3). Monogenic 

means that a mutation in one gene is sufficient to develop the disease. Mutations are not prevalent in 

the population, while single nucleotide polymorphisms (SNPs) are typically shared by many individuals. 

The effect of one SNP is not enough to cause disease but many SNPs in multiple genes together might 

be sufficient. If multiple genes (and thus risk variants) are necessary to cause the disease, it is referred 

to as a polygenic disease. At the moment, IBD is generally seen as a polygenic disease, with each gene 

having a small effect that contributes to disease risk.(28) 

Initially, IBD was believed to have a monogenic recessive mode of inheritance, however the first 

discovered susceptibility locus, IBD1 (NOD2), explained only a tiny fraction of the ten-fold increased 

risk seen in first-degree relatives of IBD patients.(29) Subsequently identified loci did not demonstrate 

higher effect sizes and therefore indicated a more polygenic or complex nature for IBD. Some 

monogenic disease forms of IBD with one causal gene exist but these are only encountered in a small 

group of paediatric patients. According to the study of Crowley et al (2020), 3% of paediatric patients 

have a monogenic cause of IBD.(30) Most early-onset IBD cases are polygenic and follow therefore the 

rules of common diseases. Thus, a small part of IBD patients indeed have a distinct genetic architecture 

with a monogenic cause, however the majority has a polygenic form (Figure 3).  

The ‘common disease, common variant’ hypothesis says that a disease common in the population, like 

IBD, is caused by many common variants with a small effect size. This hypothesis is supported by the 

many successful genome wide association studies (GWAS), where more than 240 loci associated with 

IBD are identified so far (Figure 4, also see below for more details).(31–33) Chen et al (2014) calculated 

how much of the heritability of IBD can be explained by GWAS based on Immunochip, a chip with a 

high density of SNPs in regions associated with immune diseases, and based on imputed data from a 

more general GWAS chip.(27) The percentage of heritability explained based on Immunochip was 27% 

for CD and 21% for UC, and with the GWAS chip it was 37% and 27%, respectively. The remaining part 

is unexplained and therefore is referred to as the ‘missing heritability’.  

On the other hand, rare variants with a moderate or high effect also contribute to disease risk.(34) This 

is the ‘common disease, rare variant’ model. This hypothesis predicts many risk variants with a larger 
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effect associated with a disease, like IBD, but with each variant having a very low population frequency. 

Unfortunately, these low frequency variants are difficult to pick up with standard GWAS. Very large 

sample sizes would be necessary to detect them, as only few individuals will carry them. Variants with 

a larger effect size will be a bit easier to find because then more cases will carry the risk variant. To 

find rare variants, targeted, whole-exome, or whole-genome sequencing studies are necessary.(35) In 

the study of Hunt et al (2013), the exome of 25 risk genes for six autoimmune disorders, including CD, 

were sequenced to determine the contribution of rare variants to the heritability of common 

diseases.(36) Eventually, they conclude from their results that the added value of rare variants to the 

heritability of these diseases is negligible. However, only protein-coding variants from those 25 genes 

were included and other rare variants were not considered. Recently, a very large study based on 

269,171 individuals of European ancestry and 11,933 individuals of African, East Asian and South Asian 

ethnicity, was published with opposite results: many associations between protein-coding variants and 

phenotypes, including IBD, originated from rare variants.(37) These rare variants have also significantly 

higher effect sizes than common variants detected in GWAS. Indicating the importance of the 

contribution of rare variants to common diseases. 

The exact genetic architecture of polygenic IBD is still debated. How much common and/or rare alleles 

contribute to disease risk is unknown. Agarwala et al (2013) simulated many simple models with 

differing parameters for the relationship between the variant’s effect on fitness and its effect on a 

particular disease, and the mutational target size.(38) These models were compared with data from 

type 2 diabetes studies to test the consistency. Only the extreme models in which almost everything 

is explained by rare variants, or by common variants, are excluded. All other models with a variable 

Figure 3: Overview of the main differences between monogenic and polygenic IBD and how they are 
studied 
IBD encompasses a spectrum of genetic variation. At one end of the spectrum, the monogenic form 

(left) is only seen in a small amount of paediatric patients.(30) The polygenic form (right) is localized at 

the other end but covers the middle part of the spectrum as well. The onset of disease can start at any 

age. The circles in the middle represent the number of genes or loci associated with the specific forms 

of IBD. A small part of genes are overlapping between the monogenic and polygenic form. Numbers 

and genes are derived from Jezernik et al (2020).(39) The different kind of studies applied to discover 

those genes or loci are depicted at the bottom. 



 

9 
 

contribution of rare variants, ranging from less than 25% to more than 80% of heritability, and common 

variants are possible. Importantly, they also discovered that cohort sizes need to be sufficiently large, 

e.g. hundreds of thousands of individuals, in GWAS as well as sequencing studies to elucidate the 

genetic architecture of common diseases. 

IBD thus encompasses a wide genetic spectrum going from polygenic forms with many common 

variants prevalent in the population and with a low effect size, to monogenic forms with rare variants 

having a causal effect (Figure 4). The question arises whether the involved genes are similar between 

the extremes of the spectrum. To date, 85 causal genes of monogenic paediatric IBD are 

discovered.(39) Only a very small overlap exists between the genes in or near the more than 240 risk 

loci of complex IBD and these 85 causal genes; the overlapping genes comprise CARD9, CD40, IL10, 

NCF4, SLC9A3, STAT1 and STAT3 (Figure 3). It should be noted that although the genes overlap, the 

specific variants involved are not the same: typically more common variants with low effect size for 

the polygenic form, and causal/pathogenic rare variants for monogenic IBD. While a large discrepancy 

exists between the two with regards to the specific genes involved, gene ontology analysis shows that 

59 out of 424 terms (13.9%) were enriched in both groups.(39) Overlapping terms include Th1 and Th2 

cell differentiation, Th17 cell differentiation and Jak/STAT signalling. Thus, although the genes are not 

the same between monogenic and polygenic IBD, the pathogeneses show some resemblance. 

Figure 4: Inflammatory bowel disease associated variants 
SNPs associated with IBD are plotted according to their odds ratio (y-axis) and minor allele frequency (x-

axis). Colours indicate the associated trait (CD, UC, or IBD) and the odds ratio of this particular trait is 

presented. Odds ratios are obtained from Huang et al (2017) (61) when loci could be fine mapped with 

a posterior probability >50%, and de Lange et al (2017) (31). SNPs with an odds ratio >1.5 are labelled.  
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1.2.2 Multiplex families 

IBD is often seen in families which points to a genetic component. Importantly, the relative risk for 

family members of an IBD patient is increased compared to the general population.(40) Predictably, 

first-degree relatives share approximately 50% of their DNA, and therefore have the highest relative 

risk in comparison with other family members, with the exception of monozygotic twins. Interestingly, 

the risk for a relative of a CD patient to develop IBD seems to be higher than for a relative of a patient 

with UC. This observation is in line with the higher heritability of CD compared with UC, 70-80% and 

60-70%, respectively.(27)  

Above I briefly discussed monogenic IBD forms with a Mendelian inheritance pattern - autosomal 

dominant, autosomal recessive, X-linked,… - are prevalent in families and often have a young age of 

onset. However, some families have a remarkably high prevalence of disease compared to the 

expected population prevalence without showing a clear Mendelian inheritance pattern or a 

particularly young age at onset.(41) These are termed multiplex families - families in which more 

members are affected by disease than would be expected based on prevalence in the general 

population. Why a high appearance of IBD is seen in these families is unclear.  

Linkage studies use the genetic similarity in families to pinpoint loci relevant to disease (Figure 5). 

Family members share parts of their genome but every related pair will have different overlapping 

pieces. By looking at segments of DNA shared more often between all or most affected individuals in 

a family, loci linked to the disease can be found. Several such loci were found for IBD using genome-

wide linkage screens, termed IBD1-IBD9.(42) IBD1 was the first susceptibility locus found for CD and 

was replicated through a large international collaboration.(43) Subsequent fine-mapping of IBD1 led 

to the identification of NOD2, still the most strongly CD-associated risk gene.(44) Unlike for monogenic 

diseases where this type of linkage studies were very successful in finding the pathogenic genes, failure 

to replicate findings from linkage studies however was an often encountered problem with complex 

diseases. It turned out penetrance of the variants was too low, and the pedigrees studied hence too 

small, to be really successful. Therefore, research moved its attention to the more powerful GWAS, 

partly encouraged by technological advances.(45) 

The scarce discovery of risk loci with early linkage studies does not mean that multiplex families are 

not relevant to study genetically. On the contrary, families with multiple affected members might  

provide valuable insights into IBD genetics.(41) They might carry an exceptionally high number of 

common risk loci, or a rare allele with a modest or high effect. One study on five multiplex IBD families 

by Stittrich et al (2016) found four families with a high genetic risk burden.(46) Interestingly, one family 

carried even less common risk variants than the general population. In this family, TRIM11 was 

proposed as a candidate risk gene because of its segregation with affected family members and its 

predicted function in the NF-κB signaling pathway, known to be associated with IBD.  

In contrast to the study of Stittrich et al (2016), a study on eight multiplex Korean families found only 

one family which had a high burden of common risk alleles.(47) Indicating that it is not the 

accumulation of many common alleles but mostly a few high effect variants which contribute to 

familial aggregation in these families. Of note, here the inclusion criteria required more than two 

affected first-degree relatives while Stittrich et al (2016) focused on very large families containing 

multiple generations and at least three affected family members which were not necessarily first-

degree relatives. Seventeen candidate genes which included potentially deleterious rare variants, were 

discovered, although further validation is necessary. Some multiplex families have a lot of common 

alleles which probably clarifies the high burden of IBD-affected members.(41,46) On the other hand, 
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discovering rare variants, presumably with a higher effect size, is also possible in some families as the 

previous example illustrates.(46,47) 

Also other studies identified rare variants in multiplex families. A recent study discovered a new variant 

in NOD2 in the leucine rich repeat domain (LRR domain) with possible deleterious effects in a family 

with multiple members affected by CD.(48) Here, four affected members and three familial controls 

were sequenced, and the NOD2 N1010K variant was found co-segregating with CD. NOD2 L1007fs was 

also present in the family, and individuals who had both NOD2 variants exhibited a more severe course 

and a younger age at diagnosis, adult vs paediatric age. Likewise, a FOXP3 mutation was identified in 

a family with an IBD affected mother and three affected sons.(49) Interestingly, this missense mutation 

is located on the X-chromosome. The three sons already showed symptoms and multiple extra-

intestinal manifestations at a paediatric age. 

1.2.3 Genome-wide association studies 

Genome wide association studies (GWAS, Figure 5) are frequently applied to diseases with a complex 

genetic architecture. A few hundreds of thousands of common variants (SNPs) throughout the genome 

are measured in individuals with a certain disease, the cases, and in healthy controls. The frequency 

of variants in both groups are compared to extract information about which variants are more or less 

prevalent in cases. Each variant is entrusted with an effect size based on the differences in frequencies 

between the cases and controls. GWAS were very successful in IBD, so a short overview cannot be 

missed. 

Many GWAS were carried out over the years with ever increasing sample sizes (Figure 6). At the 

beginning of the quest to discover genes associated with IBD relatively small studies specific for CD or 

UC were conducted. Duerr et al (2006) included 547 cases with CD and 548 controls, all of European 

ancestry.(50) The result of this GWAS were three SNPs significantly associated with CD. Two SNPs 

pointed at the NOD2 gene, already known from linkage studies, and the IL23R association was newly 

discovered. Interestingly, the identified IL23R variant is protective against CD. Some studies with 

similar cohort sizes were performed around the same time and identified only one new locus each (an 

intergenic region on 10q21.1, ATG16L1 and a region in a gene dessert on 5p13.1 ).(51–53) 

Figure 5: Methods applied to discover associated variants 
Many research has already been performed to detect loci associated with inflammatory bowel disease. 

Methods which have been used previously and currently are listed at the left side. More details about 

each method is provided according to the categories presented at the top. 
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Subsequent GWAS included more and more individuals and found more and more associated loci 

(Figure 6). One way to further increase the sample size without having to do a new GWAS is to perform 

a meta-analysis of existing GWAS.(54) A meta-analysis can be supplemented with new data but this is 

not a necessity. A UC meta-analysis built up of six previous GWAS and adding up to a sample size of 

6,687 UC cases and 19,718 controls established an association between UC and 29 newly identified 

loci.(55) This at that time more than doubled the known loci from 18 to 47 loci. A similar meta-analysis 

was performed for CD.(56) Data from six GWAS were pooled to retrieve 6,333 CD cases and 15,056 

controls, and leading to the detection of 30 new risk loci. A larger number of 41 associated loci were 

already known for CD. Of note, 21 of these 41 loci were derived from a previous smaller meta-analysis 

comprising data from three GWAS, which were also part of the meta-analysis with six GWAS.(57) A 

larger cohort of individuals gives more power to detect associations even if the data is not new but a 

combination of existing data sets. 

While these first GWAS studied either CD or UC, in later studies, CD and UC cases were combined as 

IBD. Importantly, it are still two separate diseases and effect sizes are calculated combined but also 

specifically for each type. Merging the two groups of patients increases the sample size and therefore 

enlarges the power to find associated loci. Combining CD and UC was applied by the International IBD 

Genetics Consortium (IIBDGC) in a landmark study including 33,867 cases and 37,479 controls.(33) A 

cost-effective custom genotyping chip designed for immunogenetics studies, Immunochip, was used 

to genotype individuals. This study increased the number of associated loci to 163, of which 30 were 

specific to CD, 23 to UC, and 110 showed an association to both. The most recent GWAS conducted for 

IBD on 59,957 persons from European descent was published in 2017 by de Lange et al (2017).(31) 

They further expanded the list of IBD-associated loci to a total of ca 240.  

Figure 6: Overview of genome-wide association studies and meta-analyses in IBD 
Genome-wide association studies are plotted according to the sample size (x-axis) used in the discovery 

phase and how many loci (y axis) were genome-wide significant in their study. Colours of the dots 

represent the focus of the GWAS. If multiple phenotypes are investigated in the same study, than each 

trait is displayed by a separate dot. Studies with >20 genome-wide significant loci are labelled. CD = 

Crohn’s disease, UC = ulcerative colitis and IBD = inflammatory bowel disease. 
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Previously mentioned studies mostly included individuals with a European ancestry. While the 

European population is overrepresented in GWAS, also in those for IBD, a few studies are done 

including other ethnicities. The first GWAS and meta-analysis with a mixture of ethnicities, genotyped 

on Immunochip and several other genotype chips, is performed by the IIBDGC.(32) The study included 

96,486 individuals of four ancestries, namely 86,640 European, 6,543 East Asian, 2,413 Indian and 890 

Iranian participants. The majority of participants was thus still of European descent. They identified 38 

new loci and increased the known associations to approximately 200 loci at the time. Another meta-

analysis was conducted with Immunochip data from 9,060 Asian, Korean and East-Asian, and the 

86,640 European individuals of the IIBDGC study.(58) Seven novel associations could be found of which 

three are located in previously undetected loci.  

These meta-analyses proved that new loci can be discovered through combining samples from 

different ethnicities. They also showed that some loci are specific to certain ancestries. Liu et al (2015) 

performed a trans-ancestry analysis and also examined heterogeneity in effect between ancestries. 

Although the effect of most loci is similar across populations, differences in allele frequency and/or 

effect sizes were observed for a few loci, including NOD2, IL23R and ATG16L1.(32) A small GWAS 

conducted in African Americans identified two African-specific UC loci, namely ZNF649 and LSAM, and 

one for IBD, USP25.(59) Remarkably, in the same study no significant SNPs were found for CD. This was 

a small study and larger studies will probably find more ethnicity-specific associations, also for CD. 

Unfortunately, GWAS typically pinpoint genomic regions where causal gene(s) are located, but not 

necessarily directly identify the causal genes.(60) The variant which causes the increased risk indeed is 

not necessarily directly identified, but could be in linkage disequilibrium (LD) with the associated SNP. 

Therefore, fine-mapping studies are necessary to identify the causal variants and genes, as was for 

example done in the study by Huang et al (2017) .(61) They fine-mapped 94 IBD loci and could define 

45 associations to a single variant with more than 50% certainty, 18 associations even had a certainty 

above 95%. This study used a very large cohort of 33,595 patients with IBD and 34,275 controls, 

contributing to its success. Nevertheless, many causal variants and genes are still unknown, and with 

them their function in pathogenesis. 

1.2.4 Sequencing studies 

Current GWAS are not well suited to detect rare variants. Rare variants are indeed not typically 

included on the SNP arrays used, although more recent arrays do include more low frequency variants, 

down to 1% minor allele frequency. Direct sequencing of DNA is the best way to discover rare variants 

associated with IBD (Figure 5). 

Large amounts of data are generated with sequencing, and these have to be adequately processed.(35) 

In the early days therefore, usually targeted sequencing of specific gene regions was done as less data 

is obtained. In one of the first targeted sequencing studies genes within loci known to be associated 

with CD through GWAS – 71 loci at that time – were resequenced.(62) They successfully sequenced 56 

genes present within loci associated with CD in 350 CD cases and 350 controls, pooled per 50 

individuals. Several new variants associated with IBD were discovered, including four additional risk 

variants in NOD2, two protective variants in IL23R, another protective variant in CARD9 and a few other 

variants. Interestingly, this means that common variants with low effect size and rare variants with a 

higher impact can reside in the same gene.  

A few years later, the research team of Prescott et al (2015) increased the number of sequenced genes 

to 531, with additional candidates predicted by pathway and protein network analyses.(63) This 

resulted in a novel rare association in a known gene, BTNL2, in which two common variant associations 
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were already known. Further, only three suggestively associated rare variants could be detected. 

Although they added many more sequenced genes to their analysis, a new gene associated with IBD 

could not be detected. 

With new algorithms being developed and technologies becoming even better, whole exome 

sequencing (WES) and whole genome sequencing (WGS) could be applied more easily. These 

technologies do not rely on previous knowledge. A small study, in today’s standards, collected 

sequence data of 42 CD patients and 5 controls.(64) Three missense variants were detected in this 

limited cohort. PRDM1 contained two of these three variants and was located in a locus previously 

uncovered by GWAS. Interestingly, while the variants pose a risk for CD, they are protective for UC. 

The other missense variant resides in NDP52, which was an entirely new CD association. 

Distinguishing causal variants from neutral variants in sequencing is not always easy. Co-segregation 

of the variant with disease in families could indicate that the variant or one in linkage disequilibrium 

increases risk of the disease. The study of Onoufriadis et al (2018) is a nice example to illustrate 

this.(65) The most distantly related IBD-affected individuals in ten families with at least three affected 

first-degree relatives were whole-exome sequenced. A very stringent stepwise filtering approach was 

applied, including that two families had to carry a rare variant in the same gene. After this filtering, 34 

rare, protein-altering variants in 17 genes remained, and only one of them could be found in a known 

GWAS locus, namely NLRP7. 

GWAS used increasingly large study groups over time, and sequencing studies followed in these 

footsteps. Recently, a very large WES study included more than 30,000 CD cases and 80,000 controls 

coming from 35 centres to further identify rare variants associated with CD.(66) Only variants with a 

population frequency between 0.0001 and 0.1 were considered for further analyses. Association 

analyses found eleven newly associated variants, from which five are located in novel loci. In addition, 

one new gene, ATG4C, was implicated by the gene-based rare-variant burden tests. Thus, this study 

shows that adequately powered sample sizes can find rare variants associated with disease, and that 

these variants can reside in novel as well as in known loci. 

The possibility exists that some disease-associated rare variants are located outside of the exome in 

non-coding regions. WGS would be necessary to pick up these rare variants. To date, not many WGS 

studies are performed with IBD patients. The largest is a low coverage whole genome sequencing study 

on 7,932 individuals, including 2,513 CD patients, 1,767 UC patients and 3,652 controls.(67) They found 

a missense variant in ADCY7 that increases the risk of UC. Although this is already a large cohort, finding 

rare variants probably needs much larger sample sizes and a higher coverage. 

Another, very recent, WGS study is performed by Somineni et al (2021).(68) They sequenced 1,774 

individuals diagnosed with IBD and 1,644 healthy controls of African origin living in America. The main 

goal of the study was to compare the genetics of African-Americans with European data available. First, 

common variants were looked at, and 41 loci, previously found by GWAS with individuals from 

European descent, could be replicated in the African-American cohort. As seen in previous trans-

ancestry studies, the loci largely corresponded in effect sizes and allele frequencies but some 

differences were seen as well. For the rare variant analysis, variants were filtered on the criteria of 

being likely deleterious and aggregated in sets based on their location close to a gene. CALB2 is put 

forward as a possible association with UC. Although 35 variants contributed to the signal of CALB2 in 

African Americans, most variants were not seen in European individuals. The authors conclude that 

common variants are shared between populations from different ancestry but rare variants are 

probably population-specific. 
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1.2.5 Genetic overlap with other diseases 

Some diseases or traits have genetic overlap in variants and loci.(69). One variant can be associated 

with multiple diseases. Sometimes the associated variants are different but they point to the same 

gene or locus, which can include more than one gene. The differential effect on phenotype could be 

due to independent pathways. Another possibility is the gene causes one phenotype and this is in turn 

causal for another phenotype. Alternatively, two diseases could have a common pathway that 

influences disease risk. A large study compared available GWAS for 42 traits, including immune-related 

traits, and found 341 loci to have an association with different traits.(69) Immune-related diseases, 

including CD, have an elevated proportion of overlapping variants in GWAS. Although many genes are 

mutually causal between immune-related diseases, the effect sizes are different.  

With the existence of genetic overlap between immune-mediated diseases clearly established, 

Ellinghaus et al (2016) wanted to explore the relationship between five diseases, namely CD, UC, 

ankylosing spondylitis, primary sclerosing cholangitis and psoriasis.(70) Their meta-analysis detected 

three new shared loci. The genetic similarity can be used to perform larger meta-analyses with more 

individuals and therefore with more power. Moreover, some new associations for specific diseases 

with genome-wide significance were found, including six loci for CD. Importantly, while a clear genetic 

overlap between the five diseases exist, they each also have their own specific risk genes.  

Comorbidity of IBD and multiple sclerosis, a disease of the central nervous system, might seem less 

evident but it occurs.(71) The relationship is less far-fetched than it looks upon first glance because 

multiple sclerosis is an autoimmune disease with inflammation of myelin around neurons. Genetic 

correlation exists for multiple sclerosis with both CD and UC, but is clearly larger for UC than for CD. 

Another neurodegenerative disorder, amyotrophic lateral sclerosis (ALS), also has an association with 

dysregulated immunity.(72) In contrast with multiple sclerosis, a negative correlation has been 

established between ALS and IBD. One of the SNPs at NOD2, that has a strong effect size in IBD, is a 

shared risk factor between ALS and CD. Other common risk factors between ALS and IBD are G2E3 and 

SCFD1. 

Even less obvious diseases can also share some genes with IBD, like Parkinson’s Disease.(73) LRRK2 

carries the mutation G2019S that is the best known genetic cause of Parkinson’s Disease. IBD has been 

associated with the gene but not with that specific mutation. Another variant, N2081D, located in the 

same kinase domain as G2019S shows association with both CD as well as Parkinson’s Disease. 

Moreover, the effect sizes of variants, at least nominally associated with both diseases, share the same 

direction of effect and are significantly correlated. Both risk as well as protective variants are found in 

the LRRK2 gene. Due to the different location in the body of the two diseases, the mutated protein 

acts with various consequences. This genetic overlap might be of relevance for the development of 

new therapies which can be beneficial for Parkinson’s Disease as well as IBD patients. 

1.3 Polygenic risk scores 

1.3.1 What are polygenic risk scores 

As mentioned above, over 240 loci that have an association with IBD are discovered so far.(31–33) 

Looking at one such variant is not useful to estimate the risk for developing IBD because it typically 

only infers a very small risk. Even variants with a larger effect size, e.g. the NOD2 frameshift variant, 

do not give much information about someone’s risk for IBD.(60) On the other hand, combining the 

risks for all known loci in so-called polygenic risk scores (PRS) might provide better predictions. 
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Different ways from very simple to more complex models are available to compute a PRS.(60,74) The 

easiest model, which is not commonly used, is simply counting how many risk alleles a patient has in 

their genome. It does not consider the relative risks of these variants. More commonly applied models 

use a weighted PRS. Alleles are still summed but each allele has a certain weight allocated. Therefore, 

alleles with a larger effect size contribute more to the risk score than small effect alleles. The weights 

applied can be the effect sizes or the odds ratios of the SNPs measured in GWAS or they can be adjusted 

based on assumptions, like the number of causal SNPs or their potential function, to optimize the 

PRS.(74) Another difference is how data are shrinked to avoid poorly predicted PRS.(75) This can be 

done by effect size shrinkage which depending on statistics lowers the effect sizes of all SNPs, or some 

SNPs more than others depending on various parameters. Another option is only including SNPs that 

reach a specific p-value threshold of association with the disease. Some research indeed indicates the 

use of higher p-values than the genome wide significance level of 5x10-8.(76) That p-value is very strict 

and many associated SNPs will be missed. By using a higher p-value, SNPs not (yet) reaching genome-

wide significance in the discovery GWAS are also included and typically improve the performance of 

PRS, indicating that some of those SNPs are also important for IBD development. Which method is best 

to calculate PRS can differ between diseases and depends on the available data and therefore should 

be determined case by case by testing several models. 

As PRS are based on the effect size estimates from a GWAS, polygenic risk scores can be calculated for 

any phenotype for which a GWAS is performed. Larger GWAS detect more associations and give more 

accurate predictions for the effect size. Thus, the larger the discovery GWAS, the better the accuracy 

of the PRS. Mostly, these GWAS are carried out with individuals from European descent and other 

populations are underrepresented. Linkage disequilibrium and allele frequencies differ between 

populations and this can have consequences for the PRS. Therefore, the performance of PRS works 

best in a population which is closely related to the GWAS discovery population.(77) This is true for 

geographically different populations, e.g. Asians and Europeans, but also for other factors, e.g. a high-

risk population vs the general population.(74) 

1.3.2 Polygenic risk scores, and their added value 

The first study performed with PRS in IBD applies a simple PRS calculation based on the summation of 

five associated genes, NOD2, DLG5, ATG16L1, IL23R and IBD5 region.(78) Here was already shown that 

individuals with more risk alleles, and thus a higher PRS, had a higher risk on the development of CD 

and a more severe disease course. This was however a small study with 1,684 CD patients and 1,350 

controls based on only five associated genes.  

The first study in IBD which extensively utilizes PRS based on many loci was, a large international 

genotype-phenotype study, investigating the association between PRS including the 163 known 

associated loci at the time and clinical subphenotypes age of diagnosis, time to surgery, disease 

location and behaviour (CD), and disease extent (UC) in almost 30,000 patients diagnosed with IBD.(79) 

The CD-PRS and UC-PRS showed a strong association with the disease subphenotypes age at diagnosis 

and disease location. Interestingly, a PRS which explored the differences between CD and UC (CD vs 

UC PRS) showed the strongest associations with the clinical subphenotypes. The CD vs UC PRS also 

hinted to a different classification of IBD: not simply into CD and UC, but into UC, and colonic CD and 

ileal CD as different entities. The predictive accuracy however was too low to be used in the clinic to 

distinguish between subtypes (AUC = 0.60). However, patients with an extremely low or high CD vs UC 

PRS were more often found to be misdiagnosed as CD or UC respectively. Later studies also found 

associations between PRS and subphenotypes. Although the study of Chen et al (2017) was focused 

on testing which model had the best prediction performance, they also investigated the association 
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between PRS and some subphenotypes. (80) A younger age of onset, ileal instead of colonic CD and a 

higher need of bowel resections were significantly associated with an elevated PRS in patients with 

IBD, and confirm therefore the results of the previous study. Voskuil et al. (2021) studied the effects 

of PRS which, in contrast with Cleynen et al (2016) also included non-genome-wide significant SNPs, 

on IBD subphenotypes.(81) They replicated the results of Cleynen et al (2016) and further found an 

association between the UC-PRS and colonic disease localization in CD patients. They also observed a 

relation between a higher genetic risk for CD and the increased development of fibrostenotic disease 

and the frequency of ileocaecal resection. PRS thus seem useful to gain better insights into 

subphenotypes of disease and patient classification, and in differential diagnosis between CD and UC, 

both are interesting in context of treatment decisions.  

The question then follows if PRS would also be useful to diagnose patients or predict who will develop 

disease. Khera et al (2018) aimed to identify individuals at risk for five common diseases – atrial 

fibrillation, breast cancer, coronary artery disease, diabetes type 2 and IBD – by applying PRS.(82) The 

performance of the PRS was tested in 288,978 individuals. They found that the 3.2% highest PRS group 

had a greater than three-fold increased risk for IBD compared to the remainder of the studied 

population. So being in this high-risk category does not mean a certainty to develop the disease. IBD 

and other complex diseases are influenced by genetic risk variants but also by environmental factors. 

A large percentage of heritability is still unexplained and many more variants will probably be 

discovered in future research. Therefore, a lot of information, environmental as well as genetic factors, 

are missing in PRS calculation. Furthermore, a high overlap exists between the PRS of cases and 

Figure 7: Overlap of PRS between cases and controls 
Typical density plot to show the overlap of PRS between cases and controls. In general, cases have a 

higher PRS than controls. However, many cases and controls have an overlapping PRS. The plot is based 

on simulated data. 
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controls (Figure 7). Predicting or diagnosing IBD using PRS might thus not be possible, however 

individuals at an increased risk can be distinguished. (80,82,83) While a preventive therapy for IBD is 

not developed yet at the time, screening all persons to detect the ones with a higher genetic risk could 

be useful for enrichment of clinical trial populations and/or research studies to assess novel preventive 

strategies. 

Similarly, PRS could be helpful in prioritizing individuals for sequencing. It is hypothesized that 

individuals diagnosed with a disease but who have a low PRS for that disease have a higher prevalence 

of rare pathogenic disease variants.(84) This hypothesis was tested and found true for five common 

diseases, namely breast cancer, colon cancer, diabetes type 2, osteoporosis and short stature. The 

hypothesis held for five diseases all with slightly different underlying architecture and therefore is 

probably also applicable for IBD. Genotyping an individual using a SNP-array is much cheaper than 

sequencing. Thus, PRS calculation for IBD patients can indicate which persons improve the chance of 

finding a rare pathogenic variant in a cost-effective way. 

1.4 Pathogenesis 

IBD is a multifactorial or complex disease. This means that genetic as well as environmental factors 

have an influence on the development of IBD. The immune response, changes in gut microbiota, 

environmental factors and genetic variants play a role in the pathogenesis.(85,86) 

1.4.1 From genetic variants towards understanding IBD pathogenesis 

Discovering the underlying genetic architecture of IBD might improve insights into the pathogenesis. 

The genes associated with IBD indicate which pathways are involved. Through this method it was 

discovered that the innate and the adaptive immune system are both involved through several 

pathways, from a defective epithelial barrier to dysregulation of T- and B-cells. Moreover, discovering 

how a variant dysregulates the function of a gene provides invaluable information about the role of 

this gene or protein in the development of IBD. Many genes and their functions or dysfunctions in IBD 

are already clarified but the pathogenesis is still not entirely resolved. 

The first gene identified to be associated with CD, NOD2, immediately pointed to a link with the 

immune system.(44) The three identified variants were all located in the LRR domain. A domain which 

is known to interact with bacterial lipopolysaccharides (LPS), and to inhibit the NF-κB pathway. Thus, 

the first discovery of an associated gene indicated that a dysregulated response to bacteria might be 

part of the pathogenesis. 

The involvement of the immune system was further highlighted with the discovery of a protective 

variant in the IL23R gene.(50) IL23 is a proinflammatory cytokine which plays a role in the activation of 

effector T-cells. Furthermore, a proper response against mycobacterial infections might be mediated 

through IL23. Thus, here as well arises a link with the immune system and with bacteria. 

The discovery of ATG16L1 by Hampe et al (2007) pointed at a role for autophagy in IBD.(51) More 

precisely, ATG16L1 is involved in an autophagosome pathway which handles the processing of 

intracellular bacteria. This gene is transcribed in the intestines and suggests that the intestinal barrier 

fails in IBD. Autophagy was further implicated when IRGM was identified.(87,88) Decreased expression 

or reduced function of IRGM would have similar consequences as for ATG16LA, namely persistence of 

intracellular bacteria.  

While the first series of GWAS usually found non-synonymous coding variants as associated with 

disease (NOD2, IL23R, ATG16L1…), later GWAS mostly found associated SNPs located in non-coding 
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regions. The first time this occurred was when CD associated with a 250 kb region within a 1.25 Mb 

gene desert on chromosome 5.(52) Here, functional evidence supported the hypothesis that this 

region regulated the expression of nearest gene PTGER4. Many more associated non-coding risk 

variants have been detected since, and found to be causal for the association signal. The fine-mapping 

study of Huang et al (2017) indeed found that 21 of the 45 fine-mapped variants (i.e. causal with a 

>50% probability) were non-coding.(61) However, their exact function often remains unknown. Of the 

currently known 241 loci, 54 are situated in a non-coding region.  

Although CD and UC are at the moment often taken together as IBD, some variants and pathways seem 

to be specific for one of the two subtypes. Barret et al (2009) discovered three genes, HNF4A, CDH1 

and LAMB1, associated with UC.(89) These three genes implicate a defective epithelial barrier function 

in the intestines as an important pathway in UC pathogenesis. Interestingly, CD seems not to be 

associated with HNF4A and LAMB1, indicating that a defective barrier function might be more 

important in UC than in CD.(55) 

The first more systematic interrogation of pathways involved in IBD based on genetic findings was 

done in the landmark study by Jostins et al (2012).(33) Based on their genome-wide significant variants, 

they made a list of genes present in the associated loci prioritized based on functional annotation and 

gene network tools and looked for enrichment of these genes in Gene Ontology terms. Unsurprisingly, 

regulation of cytokine production, activation of T-cells, B-cells and Natural Killer cells, and response to 

molecules of bacterial origin were among the most significant results.  

The latest GWAS by De Lange et al (2017) combined their GWAS with a fine-mapping analysis. They 

tried to fine-map the 25 newly and 40 previously identified loci. This resulted into two loci, SLAMF8 

and RORC mapped to a single variant with >99% probability of being causal. In line with the previous 

studies, they are also key regulators of the immune system. SLAMF8 inhibits the migration of myeloid 

cells to the inflammation site and therefore downregulates inflammatory responses, and RORC 

regulates differentiation of T helper type 17 cells. Several integrin genes, that have a function in cell 

differentiation in inflammation, are also implicated by their location close to associated loci. Thus, 

more and more pathways involving the immune system are associated with IBD.  

The discovery of rare variants might likewise improve insight into the pathogenesis of IBD. A 

sequencing study of IBD individuals found rare variants in PRDM1 and NDP52.(64) An associated locus, 

discovered with previous GWAS, contained PRDM1 and therefore this gene was implicated as the 

causal gene of that locus. The detected rare variant led to an increase in T-cell proliferation at the site 

of inflammation and thus enhances inflammation. NDP52 has multiple functions in immunity. 

However, the loss of downregulation of the NF-κB pathways is probably the main mechanism of how 

this rare variant increases risk for IBD. The innate and the adaptive immune system are both involved 

through several pathways, from a defective epithelial barrier to dysregulation of T- and B-cells. 

1.4.2 Environmental factors 

Importantly, the underlying genetics might be interesting but the microbiome and other 

environmental factors, e.g. smoking and diet, should not be forgotten. Environmental factors also have 

an important influence. Piovani et al (2019) performed a large scale meta-analysis based on other 

meta-analyses of observational studies.(90) They divided their findings in several different categories 

which are associated with IBD: dietary intake and nutrients, exposure to drugs, lifestyle and hygiene, 

microorganisms and vaccinations, and surgeries. Not all categories have a strong association, for 

example only one vaccination increased the risk of IBD but this was only found in two very small 

studies.  
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Diet is currently considered the most important environmental factor. Especially, the westernized diet 

with its higher calorie intake, high in sugars and carbohydrates, high in saturated fats and animal 

proteins seems to be the culprit.(91) IBD incidence started to rise when the switch from a plant-based 

diet to a more animal-based diet was made. Diet mainly affects the microbiota and can increase the 

risk of IBD.(92) Many research is therefore focused on investigating which nutrients are emitting risk 

and which might be protective. Diets are also being studied as a possible treatment option. 

One of the earliest known factors is smoking.(93) Current smoking has a contradictory influence on CD 

and UC. It increases the chance to develop CD, however it seems to be protective for UC. On the other 

hand, former smokers have an increased risk of UC and CD, and therefore the protective effect for UC 

seems to fade as someone stops smoking. The effects of smoking are probably exerted due to 

epigenetic alterations, immune suppression and changes in the gut microbiota.(90) 

While diet and smoking are the most well-known environmental factors associated with IBD, they are 

certainly not the only ones. Other important factors which increase risk include the use of antibiotics, 

a previous appendectomy and vitamin D deficiency.(90) However, some other factors seem to have a 

protective effect, like an infection with Helicobacter Pylorus, physical activity or breastfeeding. Not all 

environmental factors are known and further research to elucidate more factors will be necessary. 
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2 Objectives/aims 

Some families have many members which are affected by IBD, so-called multiplex families. 

Environmental as well as genetical factors are shared among (closely) related individuals. However, 

the reason behind this familial clustering is unknown. Therefore, I will study the genetics of 55 IBD 

multiplex families which have at least three affected first-degree relatives to find the cause of their 

familial aggregation. Unravelling the genetics of multiplex families might aid in risk prediction and in 

optimalisation of treatment for these families. However, this study has also a broader aim to further 

uncover the pathogenesis of IBD. Understanding the familial aggregation might provide a better insight 

into the overall pathogenesis of IBD. 

At the moment, over 240 loci are found to be significantly associated with IBD through genome-wide 

association studies (GWAS).(31–33) These common genetic risk variants could be segregating more in 

multiplex families. An increase in the number of common genetic risk variants indicates an increased 

likelihood of developing IBD, and would therefore provide a reason for familial aggregation. Polygenic 

risk scores (PRS) accumulate the common variants, significantly and not significantly associated, to 

one score which reflects the genetic risk of an individual for the disease. Thus, I will use PRS to look at 

the burden of common genetic risk variants in these families. I will calculate PRS based on the imputed 

genotypes measured with Immunochip and the SNP effect sizes for IBD, CD and UC separately. PRS will 

not only be determined on the genome-wide significant SNPs, but higher p-value thresholds will also 

be considered, as probably a lot of genetic risk factors are not discovered yet. I will compare groups of 

affected family members, unaffected family members, sporadic cases and healthy controls to 

investigate whether these multiplex families have a higher burden of known genetic risk variants. 

Another possibility of familial aggregation is the presence of rare risk variants with a higher effect. I 

would expect that families which have a low polygenic risk are more likely to carry such a rare variant. 

Thus, I will investigate the mean PRS per family to determine if some families have a lower value than 

might be expected. A mean PRS does not take into account the difference between affected and 

unaffected family members. One group could indeed influence the PRS and lead to distorted results. I 

will therefore also calculate separately the mean PRS of affected and unaffected relatives. A 

discrepancy between the PRS of affected and unaffected members can in addition point to (another) 

reason for familial aggregation. For example, if in a family the unaffected family members have a 

severely increased PRS in comparison with the affected family members, then the explanation for this 

familial aggregation is probably not a high burden of common risk variants. 

The more than 240 associated loci so far are found through GWAS that are mainly based on unrelated 

cases and in a case-control setting. In families, other risk variants might be also important. To 

investigate if families have other important risk variants, I will execute a family-based association 

analysis, and an association analysis based on sporadic cases and controls. The strongest associations 

in both analyses will indicate if the risk variants are similar to each other or if familial IBD has some 

other specific risk variants.  

In conclusion, I will investigate the reason behind familial aggregation by looking at the amount of 

common genetic risk variants through PRS. Rare variants might also be a possible explanation, 

especially in families which only carry few common risk variants. Thus, I will examine if some families 

have very few common risk variants. Furthermore, I will try to identify specific risk variants in families. 
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3 Materials and methods 

3.1 Dataset 

This study is based on two cohorts: a cohort of 55 multiplex IBD families and a sporadic case-control 

cohort containing 3,518 individuals. Both cohorts were recruited through the IBD unit of the University 

Hospital Leuven (Belgium) under the supervision of professor Séverine Vermeire, and in the framework 

of the IBD genetics study. Ethical approval is obtained by the Ethics Board University Hospital Leuven 

(study nr S53684). Multiplex families were defined here as having at least three affected first-degree 

relatives. The family cohort includes 337 individuals (164 CD, 32 UC, 141 Unaffected) divided over 36 

CD families (125 CD, 94 Unaffected), 1 UC family (3 UC, 0 Unaffected) and 18 mixed families (39 CD, 29 

UC, 47 Unaffected) (Table 2). Sporadic cases and controls have no affected relatives. The sporadic 

cohort includes 2,645 cases (1,705 CD, 917 UC, 23 IBD-U) and 873 healthy controls. In the analyses, the 

entire dataset will be divided into four groups: cases without affected relatives (sporadic cases), 

controls without affected relatives (healthy controls), cases within multiplex families (affected family 

members) and healthy first-degree relatives within multiplex families (unaffected family members) 

Table 2: Overview of the cohorts included in this study 

Family cohort 

 n families CD UC IBD-U Controls 

CD families 36 125   94 

UC families 1  3  0 

Mixed families 18 39 29  47 

Total 55 164 32  141 

Sporadic cohort 

Total  1,705 917 23 873 

The number of individuals subdivided according to which phenotypes are present in the family. CD 

families only have affected family members with Crohn’s diseases, UC families only have affected family 

members with ulcerative colitis and mixed families have both CD and UC affected family members. CD 

= Crohn’s disease, UC = ulcerative colitis, IBD-U = IBD unclassified. 

3.2 Genotyping 

Genotyping on both cohorts was performed previously using Immunochip (Illumina). Immunochip is a 

high-throughput genotyping chip based on the Illumina Infinium chip including approximately 240,000 

SNPs.(94) The chip is based on GWAS of 12 autoimmune and inflammatory diseases, including CD and 

UC. These GWAS contributed 196,524 SNPs and small indels to the chip while approximately 25,000 

SNPs from other diseases are included as control.  

A subset of the sporadic cases and controls were also genotyped using the GSA chip of Illumina. GSA 

refers to Infinium Global Screening Array-24 Kit. This chip includes 654,027 SNPs which cover the entire 

genome. The GSA chip data is solely used to compare the performance between Immunochip and GSA 

chip. 
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3.3 Genotyping quality control and imputation 

3.3.1 Unimputed data Immunochip 

Initial quality control on the genotype data was performed for the family and sporadic dataset 

separately according to Jostins et al (2012).(33) In short, missingness per person < 0.02, heterozygosity 

rate within 95% interval per batch (all samples genotyped at the same time), missingness per SNP < 

0.02 and Hardy-Weinberg equilibrium p-value (controls) > 1e-10. Further quality control was 

performed on both datasets combined before the unimputed data was analysed. Samples were not 

allowed to have > 0.05 missingness. Duplicate individuals were removed. Remaining SNPs after further 

quality control had missingness < 0.02; HWE p-value > 10e-6; MAF > 0.01. Duplicate and ambiguous 

SNPs were removed.  

3.3.2 Imputed data Immunochip 

Further cleaning of the dataset before imputation included the removal of insertions/deletions (indel) 

and ambiguous (A/T or C/G) SNPs. Imputation was done with the Michigan imputation server.(95) It 

should be noted that the major NOD2 variant (rs2066847) is an indel variant and was therefore 

removed before imputation. Because of its importance, this SNP was reintroduced after imputation 

and before further analysis. Quality control after imputation included filtering per chromosome on 

INFO score > 0.7 and MAF > 0.01. Missingness per person and missingness per SNP was checked and 

no outliers were found. Duplicate individuals were removed. SNPs were further filtered as follows: 

Hardy-Weinberg equilibrium (all) < 10e-6; MAF < 0.01 and duplicate SNPs were excluded.  

3.3.3 Unimputed data GSA chip 

Quality control on the GSA chip genotypes was performed by the IIBDGC and according to the IIBDGC 

pipeline. In short, indels, monomorphic and mitochondrial variants were removed. Y-Chromosome 

SNPs were removed after a sex check. Individuals were removed when: missingness per individual > 

0.05; sample is duplicated; heterozygosity is not within ± 4SD interval; or not of European descent. For 

SNPs the requirements for removal were missingness per SNP > 0.02, MAF> 0.01, Hardy-Weinberg 

equilibrium for controls < 1e-5, Hardy-Weinberg equilibrium for cases < 1e-12, and available in 

TOPMEd. Frequencies of SNPs are compared with Gnomad and TOPMEd. Only the variants of 

autosomal chromosomes were retained for the analyses in this study. 

3.3.4 Imputed data GSA chip 

Imputation of the GSA chip data was also performed by the IIBDGC. Duplicates, indels, monomorphic 

sites, data mismatching with TOPMEd and SNP call < 90% are excluded to prepare the dataset for 

imputation. Genotyped variants with EmpRsq < 0.5 were excluded. Imputation was performed with 

TOPMEd. After imputation SNPs with a Hardy-Weinberg equilibrium < 1e-5 for controls and < 1e-12 

for cases were excluded. Only the variants of autosomal chromosomes were retained for the analyses 

in this study. 

3.4 Principal component analysis 

The 1000 genomes (1000G) dataset was used as a reference to determine the ancestry of the 

individuals in our Immunochip dataset. This dataset includes 261 European, 177 Asian, 22 American 

and 169 African individuals. I applied quality control on 1000G (missingness per person < 0.02, 

missingness per SNP < 0.02 and MAF > 0.01) and then merged the data with our dataset. Principal 
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components were calculated using plink v1.9 and plotted.(96) Based on visual inspection of the PCA 

plot (Figure 8), individuals and families with a non-European ancestry were excluded, including 20 

individuals (20 cases) of the sporadic dataset and two families (family 1: 3 affected + 1 unaffected; 

family 2: 4 affected + 2 unaffected). After exclusion of non-European individuals, principal components 

were recalculated on our dataset to be included in the logistic regression analyses (see below).  

3.5 Polygenic risk score analysis 

3.5.1 PRS calculation 

Polygenic risk scores (PRS) were calculated using PRSice 2.3.3 for different p-value thresholds (pTs) and 

the phenotypes IBD, CD and UC (referred to as PRS IBD, PRS CD and PRS UC) on the imputed genotypes 

derived from Immunochip.(97) The predefined pTs include SNPs which are genome-wide significantly 

associated (pT = 5e-8), genome-wide suggestively associated (pT = 1e-5) or less significantly associated 

(pT = 0.01, 0.05, 0.1 and 0.5). The number of SNPs are shown in Table 3. The pT of the PRS with the 

best goodness-of-fit (best pT) is calculated with PRSice 2.3.3 with inclusion of the principal components 

as covariates. The effect sizes and p-values of SNPs for IBD, CD and UC are derived from the basefiles 

of de Lange et al. (2017).(31) SNP ids were updated to match our dataset. Ambiguous SNPs were 

removed. The European subset of the 1000G dataset (n = 503) was used as reference to calculate 

linkage disequilibrium. Clumping parameters were distance to both ends from the index SNP = 250 kb, 

r2 = 0.1 and p-value threshold = 1.  

The formula used to calculate the PRS is: (–score avg in PRSice) 

Figure 8: PCA plot of the imputed dataset 
Dots represent the individuals of the 1000G dataset and black crosses the individuals of the imputed sporadic and 
familial dataset genotyped on Immunochip. Every ancestry is shown by a different colour: red = European; blue = 
American; purple = Asian and green = African. The cut-off values of having a European ancestry are displayed by 
the dotted vertical (x= 0.0) and horizontal (y=-0.004) lines. 
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𝑃𝑅𝑆𝑗 =∑
𝑆𝑖 × 𝐺𝑖𝑗

𝑀𝑗
𝑖

 

Si is the effect size of the ith allele; Gij is the times that the ith allele is present in the jth individual; and 

Mj is the total number of alleles included in the PRS calculation of the jth individual. (98) 

Scores are z-score standardized for each phenotype per pT. The standardized PRS are further used for 

statistical analyses.  

 

Table 3: Number of SNPs per PRS based on Immunochip 

 PRS IBD PRS CD PRS UC 

pT Imputed  Unimputed Imputed Unimputed Imputed Unimputed 

5e-8 256 193 205 167 145 116 

1e-5 537 407 455 350 337 253 

0.01 3442 2,186 3,196 2,034 2,660 1,624 

0.05 7,072 4,345 6,705 4,146 6,151 3,631 

0.1 10,063 6,131 9,563 5,853 9,040 5,399 

0.5 23,612 15,189 23,282 15,000 23,176 14,755 

The number of SNPs for all different PRS (PRS IBD, PRS CD and PRS UC) based on imputed and unimputed 

Immunochip data are provided for the fixed p-value thresholds (pT). 

3.5.2 Statistical analysis 

3.5.2.1 Correlation analysis between different phenotypes 

Normality of all PRS per pT and phenotype was tested using QQ-plots, density plots and Shapiro tests. 

Not all data were normally distributed and therefore Spearman correlations were used. Spearman 

correlations were calculated between PRS based on IBD effect sizes vs PRS based on CD effect sizes, 

PRS UC vs PRS IBD, and PRS CD vs PRS UC. Normality tests and correlation calculation were performed 

with R3.5.1. Correlation was considered significant as p < 0.05/18 = 2.77e-3. 

3.5.2.2 Association analysis 

PRS of four groups (affected family members, unaffected family members, sporadic cases, and healthy 

controls) were compared with logistic regression using R3.5.1. The first five principal components 

based on the individuals included in the analysis were included as covariates to correct for population 

substructure. This analysis was repeated for all pTs and phenotypes. Groups were considered 

significantly different if p < 0.05/36 = 1.39e-3. Odds ratios and 95%-confidence intervals were 

calculated based on the output of the logistic regression. The pseudo-R2 for the PRS was used as the 

goodness-of-fit parameter and calculated according to following formula: 

Pseudo-R2 PRS = Pseudo-R2 (Nagelkerke) full model – pseudo-R2 (Nagelkerke) null model 

The R2 PRS of the best pT is calculated with PRSice 1.9 which uses the same formula. In the analyses of 

CD, only the CD cases – sporadic cases and affected family members – and the unaffected family 

members of families with at least one CD case were included. The same principle was applied for the 

UC PRS.  

To exclude a bias of my results due to dependence of family members, this association analysis was 

repeated using the mean PRS of unaffected and affected family members per family instead (see also 

below). This analysis was not done with individuals, thus principal components could not be included 

here. 
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3.5.2.3 Quantile analysis 

A quantile analysis was performed in R3.5.1. The entire dataset (familial + sporadic) and the specific 

datasets separately were divided into five equal quantiles based on the PRS. Each quantile is compared 

to the first quantile with logistic regression. The odds ratio and 95% confidence interval were 

calculated based on the output of the logistic regression, and this data was plotted. Quantiles are 

significantly different when p < 0.05/16 = 3.13e-3. 

3.5.2.4 Mean PRS per family 

R3.5.1 was used to calculate the mean PRS per family (family PRS), the mean PRS of all unaffected 

family members per family and all affected family members per family. A ‘low PRS family’ is considered 

as a family with a mean PRS below the mean of all unrelated healthy controls. If a family is above the 

threshold of the mean of all affected family members the family is labelled a ‘high PRS family’. 

3.5.2.5 Comparison Immunochip and GSA chip 

All analyses are executed on both the unimputed and imputed datasets of both genotyping chips. The 

number of SNPs included in PRS IBD, PRS CD and PRS UC are presented in Table 4. Normality of all PRS 

per pT and genotyping chip was tested using QQ-plots, density plots and Shapiro tests in R3.5.1. Some 

data was not normally distributed and therefore Spearman correlations were used. Correlations were 

calculated on PRS IBD, PRS CD or PRS UC for each pT between the two genotyping chips. Correlation 

was considered significant as p < 0.05/6 = 8.33e-3. The overlap of the 1% highest and lowest and the 

10% highest and lowest PRS is calculated with R3.5.1. 

A logistic regression analysis between cases and controls is performed on all individuals for which both 

Immunochip and GSA chip genotypes were available. Principal components, calculated with PRSice 1.9, 

are included to control for population substructure. The pseudo-R2 for PRS was calculated as 

mentioned above. The PRS of cases and controls were considered significantly different when p < 

0.05/6 = 8.33e-3. 

Table 4: Number of SNPs per PRS based on GSA data 

 PRS IBD PRS CD PRS UC 

pT Imputed  Unimputed Imputed Unimputed Imputed Unimputed 

5e-8 291 184 227 153 152 117 

1e-5 757 392 640 339 461 255 

0.01 23,332 6,907 21,302 6,219 20,197 5,700 

0.05 68,632 21,323 65,478 2,0243 63,217 19,279 

0.1 109,149 35,381 105,351 34,131 103,141 328,86 

0.5 291,460 111,204 289,479 110,223 288,703 109,417 

The number of SNPs for all different PRS (PRS IBD, PRS CD and PRS UC) based on imputed and unimputed 

GSA data are provided for the fixed p-value thresholds (pT). 

3.6 Family-based association analysis 

A generalized mixed model association was performed with SAIGE (Scalable and Accurate 

Implementation of Generalized mixed model) on the familial and sporadic dataset separately.(99) A 

genetic relationship matrix (GRM) was included as covariate. To calculate the GRM, only variants with 

MAF > 0.01 are included. The presence or absence of IBD was used as a binary trait to fit the model. 

Single variant association tests were performed on genotypes for each variant in the dataset with MAF 

> 0.0001 and minimal allele count (MAC) > 1. Results were visualized using Manhattan plots. In 

addition, the association analysis results were clumped with plink 1.9 with following parameters: 

distance to both sides of the index SNP = 250kb, r2 = 0.5, p-value (index SNPs) < 1e-4, p-value (clumped 
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SNPs) < 0.01. The top SNPs with a p < 1e-4 are presented and discussed. Top SNPs were annotated 

with Annovar.(100) 

3.7 Plots 

All plots except the Manhattan plots were made with the package ggpubr in R3.5.1. The Manhattan 

plots were made with the R-package qqman. 

  



 

28 
 

4 Results 

4.1 The CD and UC PRS do not correlate well  

IBD encompasses CD and UC, thus it might be expected that the PRS of IBD and CD, and IBD and UC 

are correlated. I therefore calculated PRS for each (sub)type (PRS IBD, PRS CD, and PRS UC) with 

different p-value thresholds (pT), and performed a spearman correlation analysis. The number of SNPs 

for each PRS can be found in table 3. When only the genome-wide significant SNPs are considered, the 

correlation (R) between PRS IBD and PRS CD is 0.68 (Figure 9, pink line). The correlation increases with 

the inclusion of additional SNPs reaching the genome-wide suggestive threshold into the score (R = 

0.72, p < 2.2e-16 ), and also with the inclusion of less significant SNPs with a pT of 0.01 (R = 0.75, p < 

2.2e-16). A further elevation in the number of SNPs however does not improve the correlation, with 

the exception of the inclusion of all SNPs below the threshold of 0.5 (R = 0.78, p < 2.2e-16). A 

correlation between PRS IBD and PRS UC can also be seen (Figure 9, blue line). The correlation slightly 

increases between the PRS based on genome-wide significant (R = 0.61, p < 2.2e-16) and genome-wide 

suggestive SNPs (R = 0.63, p < 2.2e-16). A larger difference in correlation is observed when moving to 

the next pT of 0.01 (R = 0.69, p < 2.2e-16). PRS which contain more SNPs increase the correlation 

between IBD and UC only slightly (pT 0.05: R = 0.73, p < 2.2e-16; pT 0.1: R = 0.74, p < 2.2e-16; pT 0.5: 

R = 0.76, p < 2.2e-16). All correlations are highly significant, thus a high correlation between IBD and 

its two subtypes exists as was expected.  

While both PRS CD and PRS UC are highly correlated to PRS IBD, their correlation to each other is much 

lower. At a genome-wide significant p-value threshold the correlation is again lowest (R = 0.12, p = 

4.53e-13) (Figure 9, grey line), while the PRS based on genome-wide suggestive SNPs has a slightly 

Figure 9: Correlations of PRS for different phenotypes (CD, UC and IBD) 
The spearman correlation (y-axis) is depicted for each threshold (x-axis). Every colour represents the 

correlation between PRS of two phenotypes: pink = IBD vs CD, blue = IBD vs UC and grey = CD vs UC. PRS 

were calculated based IBD effect sizes (PRS IBD), CD effects sizes (PRS CD) or UC effect sizes (PRS UC) 

and on SNPs with MAF > 0.01. 
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better correlation (R = 0.16, p < 2.2e-16). Including the SNPs with a p-value below the 0.01 threshold 

highly improves the correlation (R = 0.26, p < 2.2e-16). However, the correlation does not increase 

much more with higher pTs (pT 0.05: R = 0.30, p < 2.2e-16; pT 0.1: R = 0.31, p < 2.2e-16; pT 0.5: R = 

0.33, p < 2.2e-16). All correlations are also here highly significant and thus PRS CD and PRS UC are 

correlated with each other, albeit to a lesser extent than their correlation to PRS IBD.  

Figure 10: Correlation plots for PRS IBD, PRS CD and PRS UC 
Each dot represents the PRS of phenotype 1 (x-axis) and phenotype 2 (y-axis). (A) PRS IBD vs PRS CD, 

(B) PRS IBD vs PRS UC and (C) PRS CD vs PRS UC. Dark and light blue depicts, respectively, the 1% and 

10% lowest PRS of IBD (A, B) or of CD (C). Dark and light pink depicts, respectively, the 1% and 10% 

highest PRS of IBD (A, B) or of CD (C). The spearman correlation is presented at the left upper corner of 

the plot. PRS were calculated based on pT = 0.01 and SNPs with MAF > 0.01 
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Looking at which individuals fall in the extreme tails of the different PRS can provide additional 

information on how the different PRS match. Therefore, I compared the individuals with the top 1% 

and 10% highest and lowest PRS IBD to the PRS CD and PRS UC of the same individuals. Visually, the 

extremely low and high PRS CD do not deviate much from the PRS IBD, which would indicate that even 

the extreme values are correlating well with each other (Figure 10A and B). Respectively, 12 (30.77%) 

and 209 (54.15%) individuals of the top lowest 1% and lowest 10% of PRS CD are also in the top lowest 

1% and 10% of PRS IBD. The number of overlapping individuals between PRS IBD and PRS CD in the top 

highest 1% and 10% are 13 (33.33%) and 195 (50.52%), respectively. The extreme scores seem on the 

plot to correspond a bit less between PRS IBD and PRS UC (Figure 10B). PRS UC has 11 (28.21%) and 

176 (45.60%) individuals in the lowest 1% and 10% which are also present in these categories of PRS 

IBD. The top highest 1% of PRS UC has 17 (43.59%) individuals which are overlapping with PRS IBD. 

However, 192 (49.47%) individuals are both found in the top highest 10% of PRS UC and PRS IBD.  

I also investigated how the extreme PRS individuals compared between PRS CD and PRS UC. The 

overlap here is much lower than for the comparison of PRS IBD vs PRS CD and PRS IBD vs PRS UC, which 

can also be seen in the more scattered display of the individuals with an extreme PRS value (Figure 

10C). Only one (2.56%) person can both be found in the lowest 1% of PRS CD and PRS UC. In the 1% 

highest PRS are more persons overlapping and 6 (15.38%) individuals belong to highest 1% of both PRS 

CD and PRS UC. 86 and 90 individuals of the top 10% lowest and highest, respectively, PRS CD are also 

present in the top 10% lowest and highest PRS UC. An individual which has an extremely high or low 

PRS CD has not necessarily a corresponding PRS UC or vice versa. 

Based on the previous results, any further analyses will be performed with PRS IBD. PRS IBD has a high 

correlation with both PRS CD and PRS UC. Furthermore, using the PRS IBD allows me to use the entire 

dataset instead of a subset. However, most analyses are also performed with PRS CD and PRS UC on 

the appropriate individuals and the results will be added as supplementary data. 

4.2 The variability of IBD is better explained by PRS which include non-genome-wide 

significant SNPs 

For each p-value threshold, I calculated how good the PRS IBD can distinguish (variance explained) 

between groups (sporadic cases, healthy population controls, familial cases and familial controls) as 

represented by the pseudo-R2  - specific for the PRS. I corrected for population substructure with 

principal components. I also determined which PRS (i.e. with which p-value threshold) could best 

separate between the groups compared. I performed the same analyses for PRS CD and PRS UC, and 

results are added to the supplementary data (Supplementary figure 1 and 2) 

First I checked how good sporadic cases can be separated from healthy population controls according 

to the PRS IBD. The PRS with the highest R2 is constructed from SNPs with p-value < 1.45e-3 in the 

original GWAS (p = 1.34e-66, Figure 11A). This PRS can explain 14% of the variance between having 

IBD or not. It should be noted that all PRS using different p-value thresholds give a similar R2 (pT 1e-5: 

R² = 0.12, p= 4.66e-59; pT 0.01: R² = 0.13, p= 2.11e-64; pT 0.05: R² = 0.13, p= 7.13e-63: pT 0.1: R² = 

0.12, p= 1.04e-59; pT 0.5: R² = 0.12, p= 3.69e-57), although the PRS with only the genome-wide 

significant SNPs performs the worst to differentiate between IBD patients and controls (R² = 0.11, p= 

8.58e-56).  

I next looked at the difference in PRS between familial cases and their healthy first-degree relatives. 

Overall, the R2 of these PRS is lower than in the sporadic dataset, indicating that the PRS explains less 

of the variance between these two groups (Figure 11B). However, the results are following largely the 

same trend as in the sporadic cases vs controls. All different p-value thresholds, except for the genome-
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wide significant threshold, have a similar goodness-of-fit (pT 1e-5: R² = 0.08, p= 1.23e-5; pT 0.01: R² = 

0.08, p = 1.36e-5; pT 0.05: R² = 0.08, p = 1.36e-5: pT 0.1: R² = 0.07, p = 4.19e-05; pT 0.5: R² = 0.08, p = 

2.18e-5).The genome-wide significant PRS is also here the model that performs worst (R² = 0.06, p= 

2.16e-4). On the other hand, the best model (pT = 5.50e-4) can explain 10% of the variance (p = 1.04e-

6). 

Differentiating between sporadic cases and cases with a familial IBD background is more difficult based 

on the PRS. The R2 are very low for all p-value thresholds (pT 5e-8: R² = 1.42e-3, p = 0.20; pT 1e-5: R² = 

Figure 11: Variance explained by each PRS 
Each plot represents a different comparison of the PRS between two groups: (A) Sporadic cases vs 

sporadic controls; (B) Affected vs unaffected family members; (C) Sporadic cases vs affected family 

members; (D) Sporadic controls vs unaffected family members. Each bar depicts a separate PRS 

including SNPs based on different p-value thresholds. The height of the bars indicates the R2 of the PRS 

in a logistic regression model. The p-value of the R2 is represented by the colour of the bars, a darker 

colour indicates a more significant p-value. PRS were calculated based on the effect sizes of IBD and 

SNPs with MAF > 0.01. p < 1.39e-3 is considered significant. 
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2.37e-3, p = 0.10; pT 0.01: R² = 2.78e-3, p = 7.79e-2; pT 0.05: R² = 3.23e-3, p = 5.79e-2: pT 0.1: R² = 

3.95e-3, p = 3.59e-2; pT 0.5: R² = 2.98e-3, p = 6.84e-2) ; even the best model (pT = 5.01e-5) only 

accounts for a R2 of 0.69% (Figure 11C). Moreover, no PRS has a significant p-value (p < 1.39e-3). While 

some pTs are significant before multiple testing correction, not even the best PRS (pT = 5.01e-5, p = 

5.31e-3) remains significant after correction.  

Lastly, I compared healthy population controls with the unaffected family members. Interestingly, all 

the different threshold PRS were significant (pT 5e-8: R² = 2.14e-2, p= 3.05e-4; pT 1e-5: R² = 1.61e-2, p 

= 1.73e-3; pT 0.01: R² = 2.28e-2, p = 2.07e-4; pT 0.05: R² = 2.25e-2, p= 2.21e-4: pT 0.1: R² = 2.66e-2, p 

= 5.98e-5; pT 0.5: R² = 1.86e-2, p = 17.34e-4), indicating that PRS of healthy individuals in a multiplex 

family are different from PRS of healthy population controls (Figure 11D). The R2 for all thresholds is 

around 2%, thus PRS do not explain a lot of variance. Here, the best model uses SNPs with a pT = 7.77e-

2 (R = 2.79e-2, p = 3.88e-5).  

Further analyses in this paper will be illustrated with pT = 0.01. This PRS had the best goodness-of-fit 

in the model which analysed sporadic cases vs controls, the largest dataset. In the familial cases vs 

first-degree relatives, this threshold is also one of the PRS which explains the most variance. Other 

thresholds will be mentioned if they provide additional information. 

4.3 Affected family members do not have a higher PRS than sporadic cases 

To further zoom in on how PRS differ between the four groups (sporadic cases, healthy controls, 

familial cases and familial controls), I compared all groups with logistic regression including principal 

components to correct for population stratification. For pT = 0.01, sporadic cases have significantly 

higher PRS than healthy population controls (p = 2.11e-64, OR = 0.44 [0.40, 0.48], Figure 12). This same 

observation of an increased PRS in cases is seen between affected and unaffected first-degree relatives 

(p = 1.36e-5, OR = 0.55 [0.41, 0.72]). Healthy controls overall have the lowest PRS. The PRS of the 

controls is significantly lower than those of familial cases (p = 8.04e-21, OR = 0.39 [0.32, 0.47]) as well 

as significantly lower than of familial controls (p = 2.07e-4, OR = 1.48 [1.21, 1.82]). However, the familial 

controls do not reach the high values of the PRS of the sporadic cases (p = 7.81e-5, OR = 0.66 [0.54, 

0.81]). The unaffected family members thus have a PRS in between sporadic cases and controls. 

Remarkably, the familial cases are not significantly different from the sporadic cases (p = 7.79e-2, OR 

= 0.86 [0.72, 1.02]) indicating a similar PRS independent of familial history. These comparisons hold 

true for other p-value thresholds (Supplementary table 1). The analysis with PRS CD for CD and mixed 

families indicates the same results, however the analysis with PRS UC for UC and mixed families has 

also no significance difference between affected and unaffected family members, and unaffected 

family members and healthy controls (Supplementary table 2 and 3). 

The multiplex families have for each family at least three affected first-degree relatives included and 

sometimes also multiple unaffected family members. These individuals are related and have therefore 

also more shared genetics. Thus, PRS might be more similar in related individuals and this in turn might 

influence the comparative analysis. I calculated the mean PRS of affected and unaffected family 

members per family and reanalysed the data (Figure 13A). No principal components are included in 

these logistic regression models because the PRS are not corresponding with one individual anymore, 

and this influences the p-values. For example, the data of sporadic cases and controls has not changed 

and is thus still highly significant, however the p-value is slightly different (p = 7.78e-64). The familial 

cases still have a significant higher PRS than their unaffected family members (p = 1.28e-3, OR = 0.33 

[0.16, 0.62]) and the unrelated controls (p = 8.80e-8, OR = 0.45 [0.33, 0.60]). The familial controls also 

still position themselves in between the sporadic cases (p = 2.29e-3, OR = 0.61 [0.45, 0.84]) and controls 

(p = 9.42e-2, OR = 1.31 [0.95, 1.78]), however they are after correction for multiple testing both not 
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significantly different anymore. The affected family members are also not significantly different from 

sporadic cases regardless of the p-value threshold (p = 0.61, OR = 0.92 [0.70, 1.24], Supplementary 

table 4). Thus, this sensitivity analysis still shows a significant difference between affected and 

unaffected family members, and between affected family members and population controls. The 

sensitivity analyses for PRS CD and PRS UC shows only a significant difference between the PRS CD of 

the affected members of CD and mixed families and heatlhy controls (Supplementary table 5 and 6).  

I also calculated PRS on the unimputed dataset based on the same effect sizes of the SNPs and for the 

same p-value thresholds to test if the imputation had an impact on the results. I performed logistic 

regression on the PRS of the four groups. Overall, the results are the same as the imputed dataset 

(Figure 13B). The healthy controls are still significantly lower than sporadic (p = 8.40e-66, OR = 1.39 

[1.13, 1.71]) and familial cases (p = 3.65e-19, OR = 0.41 [0.33, 0.50]). Familial controls remain in their 

position between the sporadic controls (p = 2.00e-3, OR = 1.38 [1.13, 1.71]) and the sporadic cases (p 

= 9.30e-6, OR = 0.64 [0.52, 0.78]) and have thus an intermediate PRS. Although the difference between 

familial and sporadic controls is not significant for pT = 0.01, higher p-value thresholds (pT = 0.05: OR 

= 1.41 [1.15, 1.73], p = 1.13e-3; pT = 0.1: OR = 1.48 [1.20, 1.82], p = 2.19e-4 and pT = 0.5, OR = 1.47 

[1.20, 1.81], p = 2.54e-4) are. Within families, the affected members still have a higher PRS than the 

unaffected members (p = 2.92e-5, OR = 0.57 [0.43, 0.73]). There is no indication of difference between 

sporadic and familial cases, for any of the pTs (pT = 0.01: p = 0.40, OR = 0.93 [0.79, 1.09], 

Supplementary table 7). PRS for specific and mixed families are provided in Supplementary tables 8 

and 9. 

Figure 12: Distribution plot of PRS of sporadic cases, healthy controls, affected and unaffected family 
members 
The distribution of the PRS is shown, broken down into four groups: sporadic cases, healthy controls, 

affected family members (Affected) and unaffected family members (Unaffected). The PRS of each 

individual is depicted by a dot. The boxplot indicates the median and the whiskers extend to 1.5 times 

the interquartile range. P-values indicated are the p-values of PRS in logistic regression. PRS were 

calculated based on the effect sizes of IBD, pT = 0.01 and MAF = 0.01. * indicates significant p-values 

(p < 1.39e-3). 
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4.4 Individuals with a higher PRS have a higher chance to develop IBD 

I first divided the sporadic and the family dataset separately into five quantiles. In the sporadic dataset 

(Figure 14A and B), the number of cases compared to controls increased in each higher quantile, as 

can also be seen in the increasing odds ratios (Q1vsQ2: OR = 2.12 [1.70, 2.64], p = 1.76e-11; Q1vsQ3: 

OR = 3.47 [2.75, 4.40], p = 2.54e-25; Q1vsQ4: OR = 4.89 [3.81, 6.30], p = 3.31e-35). Of note, more cases 

than controls are present in the dataset and this can be seen in the lowest quantile which also contains 

more cases than controls. The chances of developing the disease is 8.58 [6.45, 11.55] times higher 

when belonging to the highest quantile than when belonging to the lowest quantile (p = 1.44e-47). 

To test if this is also the case in families, I performed the same analysis in the family dataset (Figure 

14C and D). Although the dataset is approximately a tenth of the size of the sporadic dataset, the same 

trends can be seen. The lower quantiles include more unaffected individuals than the higher quantiles, 

and the reverse can be seen for affected family members. There is however no significant difference 

between the first quantile and Q2 or Q3 (Q1vsQ2; OR = 1.24 [0.62, 2.47] p = 0.64; Q1vsQ3: OR = 1.91 

[0.96, 3.86], p = 6.76e-2). All other quantiles are significantly different from quantile one (Q1vsQ4: OR 

= 3.29 [1.61, 6.88], p = 1.28e-3; Q1vsQ5: OR = 3.12 [1.54, 6.49], p = 1.86e-3), although the odds ratios 

seem not to be increasing with every quantile.  

Figure 13: Distribution plots of PRS: mean PRS per family and unimputed data 
The distribution of the PRS is shown, broken down into four groups: sporadic cases, healthy controls, 

affected family members (Affected) and unaffected family members (Unaffected). (A) the affected and 

unaffected family members are represented by one mean PRS. (B) PRS are calculated on the unimputed 

dataset. The PRS of each (representative) individual is depicted by a dot. The boxplot indicates the 

median and the whiskers extend to 1.5 times the interquartile range. P-values indicated are the p-

values of PRS in logistic regression. PRS were calculated based on the effect sizes of IBD, pT = 0.01 and 

MAF = 0.01. * indicates significant p-values (p < 1.39e-3). 
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Lastly, the two datasets combined were divided into five quantiles and then the family data was taken 

out for further analysis (Figure 14E and F). This allows to place the PRS of family members in the context 

of a larger set of sporadic cases and controls. Each quantile then does not necessarily contain exactly 

20% of familial individuals. Interestingly, the proportion of each group seemed to be distorted. The 

increase in number of cases with increasing quantile is still seen, however the higher quantiles seem 

to have more cases when compared to the quantile analysis based on family data only. The higher 

quantiles, especially Q3, have also more unaffected relatives in comparison with the family data only. 

Thus, more family members are found in the higher quantiles when they are divided according to the 

entire dataset. The odds ratios calculated for Q2 and Q3 in comparison with Q1 are not significantly 

different (Q1vsQ2: p = 0.19; Q1vsQ3: p = 4.95e-2) The higher quantiles have significantly different odds 

ratios (Q1vsQ4: p = 1.11e-3; Q1vsQ5: p = 4.02e-4). The odds ratios are increasing per quantile, although 

they have very wide 95% confidence intervals (Q1vsQ2: OR = 1.65 [0.78, 3.55]; Q1vsQ3: OR = 2.01 

[1.01, 4.08]; Q1vsQ4: OR = 3.40 [1.65, 7.20]; Q1vsQ5: OR = 3.79 [1.83, 8.05]).  

4.5 Some families have an extremely low PRS 

A high burden of common variants, reflected by a high PRS, could be a cause of familial aggregation of 

IBD. However, a lot of heterogeneity between families might exist, as can also be expected from Figure 

12 where a lot of variability is visible. I therefore computed the mean PRS for each family, adding the 

PRS of all family members, affected and unaffected, and dividing by the number of individuals in that 

family. When plotting the mean PRS per family in an ascending order, a slight flattening of the curve 

can be observed in the middle (Figure 15A), meaning that many families have a similar PRS. However, 

some families are having an aberrantly high or low PRS. Many families, 24 out of 55 families have a 

very high family PRS, defined as having a PRS above the mean of sporadic cases. A very low family PRS 

is characterized here as a PRS lower than the mean PRS of unrelated healthy individuals. At a pT of 

0.01, seven families (13%) are below this threshold. Two families are even completely separated from 

this group due to an extremely low PRS.  

The results shown are for the PRS IBD, and thus based on IBD effect sizes. As some families are CD-

only or UC-only families, results might be different for PRS CD or PRS UC (also see part 4.2). The two 

families with the lowest PRS IBD, a CD-only and UC-only family respectively, continue to have the 

lowest scores for their particular subtype (Figure 15B and C). Moreover, the families which dive under 

the control threshold in the PRS CD and PRS UC also belonged to the group of very low PRS IBD, or 

were just slightly above the threshold.  

Figure 14 Proportion plots and odds ratios of the quantile analysis 
PRS are divided into five quantiles. (A, C, E) Bar plots which show the proportion of cases (darker colour) 

and controls (lighter colour) per quantile for the sporadic dataset (A), family dataset (C) and the family 

dataset based on quantiles of both datasets combined (E). The tables under the bar plots provide the 

actual number of individuals per group and quantile. (B, D, F) Plots which depict the odds ratios (y-axis) 

per quantile (x-axis) in comparison with the lowest quantile (Q1) for the sporadic dataset (B), family 

dataset (D) and family dataset based on quantiles of both datasets combined (F). Lines indicate the 

95%-confidence interval. P-values are calculated using logistic regression analysis. PRS were calculated 

based on the effect sizes of IBD, pT = 0.01 and MAF = 0.01. Significant p-values (p < 3.13e-3) are marked 

with *. 
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The mean family PRS takes together the affected and unaffected family members. However, each 

family has a different composition and the number of affected and unaffected individuals can have an 

influence on the mean family PRS. Per family, a separate mean PRS for the affected and unaffected 

members was calculated and compared. As might have been expected from the PRS comparison 

analysis above, the PRS of affected individuals in general is higher than the PRS of unaffected members 

of the same family (Figure 16). In some families this relationship however is reversed, with the familial 

controls having a higher PRS than the familial cases (Figure 16, pink). A few families show a similar PRS 

Figure 15: Distribution of the mean PRS per family 
The mean PRS (y-axis) per family are plotted in ascending order based on PRS IBD (A), PRS CD (B) and 

PRS UC (C). In (B) and (C) only CD (B) or UC (C) and mixed families are shown. Each dot represents a 

family, indicated by a unique family ID. The lines indicate the mean PRS of the healthy population 

controls (blue) and the mean PRS of the sporadic cases (pink). Families with a PRS lower than this 

threshold for healthy population controls are coloured blue. Families with a PRS higher than this 

threshold for sporadic cases are coloured pink. PRS were calculated based on pT = 0.01 and MAF = 0.01. 



 

38 
 

between the affected and unaffected members. Interestingly, the families which have a very low family 

PRS are all found to have a higher or similar PRS of the unaffected members in comparison with the 

affected members. The mean PRS CD and PRS UC of affected and unaffected relatives are slightly 

different (Supplementary figures 3 and 4). 

4.6 PRS is influenced by which genotyping chip is used 

PRS are influenced by the size of the GWAS on which the effect sizes and p-values are based, and also 

by which and how many SNPs are available for the dataset for which you want to calculate the PRS. 

Thus, a larger or different set of SNPs might provide a different PRS. Some of the sporadic case-control 

individuals are genotyped on Immunochip as well as on the GSA chip. Immunochip is focused on 

several regions which are important in inflammatory and autoimmune diseases. Thus, large regions of 

the genome are not covered on Immunochip. The GSA chip on the other hand is meant to have a broad 

coverage of the whole genome and is not focused on specific regions. I computed the PRS based on 

Immunochip and GSA chip for the different predefined thresholds (pT = 5e-8, 1e-5, 0.01, 0.05, 0.1, 0.5) 

and performed a Spearman correlation analysis.  

The directly genotyped SNPs, thus the unimputed data, showed a very good correlation for the PRS 

calculated with only genome-wide significant SNPs (R = 0.84, p < 2.2e-16). If the threshold is raised, 

the correlation between the two chips decreases (Figure 17A). While there is only a small drop in 

correlation for pT =1e-5 (R = 0.82, p < 2.2e-16), the correlation drops to 0.63 (p < 2.2e-16) for pT = 0.01, 

0.53 (p < 2.2e-16) for pT = 0.05, 0.50 (p < 2.2e-16) for pT = 0.1, and 0.47 (p < 2.2e-16) for pT = 0.5. 

Imputation of variants could increase the number of overlapping variants between the dataset of the 

two genotyping chips and thus also the correlation between PRS. Therefore, I also tested the 

correlation between scores based on imputed data of the two datasets. Correlation of PRS based on 

Figure 16: Mean PRS in affected vs unaffected family members 
The mean PRS of all affected members of a family (x-axis) is plotted against the mean PRS of all 

unaffected members of the same family (y-axis). The diagonal line is the x = y line. Every family with a 

higher mean PRS for the unaffected than the affected family members is coloured pink. PRS were 

calculated based on the effect sizes of IBD, pT = 0.01 and MAF = 0.01. 
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genome-wide significant (R = 0.94, p < 2.2e-16) and suggestive SNPs (R = 0.90, p < 2.2e-16) is very high 

(Figure 17A). However, if more SNPs which are less associated are included, a drop in correlation occurs 

(pT 0.01: R = 0.59, p < 2.2e-16). For higher pTs, the correlations are largely similar to the unimputed 

data (pT 0.05: R = 0.52, p < 2.2e-16; pT 0.1: R = 0.50, p < 2.2e-16; pT 0.5: R = 0.47, p < 2.2e-16). 

Figure 17: Correlation GSA chip and Immunochip 
(A) The spearman correlations (y-axis) between Immunochip and GSA chip is depicted for each 

threshold (x-axis). The colours indicate if the correlation is based on PRS calculated with unimputed 

(pink) or imputed (grey) data. (B, C) Correlation plots depicting the PRS based on Immunochip data (x-

axis) and GSA chip data (y-axis) for unimputed data(B) and imputed data (C). Dark and light blue 

depicts, respectively, the 1% and 10% lowest PRS based on Immunochip data. Dark and light pink 

depicts, respectively, the 1% and 10% highest PRS based on Immunochip data. The spearman 

correlation is presented at the left upper corner of the plot. PRS were calculated based on effect sizes 

of IBD, SNPs with MAF > 0.01 and pT =0.01 (B). 
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The individuals with an extreme PRS IBD based on SNPs genotyped on Immunochip seem visually to 

deviate a lot from the PRS of GSA data (Figure 17B and C). Seven (29.17%) and six (25%) individuals 

overlap between, respectively, the 1% lowest and highest PRS of the unimputed datasets of the two 

genotyping chips (Figure 17B). When the 10% lowest and highest PRS are investigated, the overlap is 

a bit higher with 104 (44.83%) and 97 (41.81%) individuals, respectively. The imputed datasets have a 

slightly lower amount of overlapping individuals. The overlap between the 1% lowest and highest PRS 

groups amounts to 5 (20,83%) and three (12.5%) individuals, respectively (Figure 17C). The larger group 

of 10% indicates the same with 93 (40.09%) individuals overlapping in the lowest 10% and 89 (38.36%) 

in the highest 10% of PRS. This indicates that individuals with an extreme PRS based on data of 

Immunochip do not necessarily also have an extreme PRS with GSA chip data. 

The correlation of the PRS only indicates how similar the results are and does not indicate which chip 

is the best. Therefore, I calculated the pseudo-R2 for each p-value threshold for both genotyping chips 

and compared them (Figure 18, Table 5). The PRS based on genome-wide association SNPs of the 

imputed data have almost the same goodness-of-fit with a slightly increased result for Immunochip 

(GSA: R2 = 0.12, p = 5.11e-37; Immunochip: R2 = 0.12, p = 1.78e-38). The GSA chip has a higher R2 for 

the higher p-value threshold which include also genome-wide suggestive SNPs (GSA: R2 = 0.14, p = 

2.30e-43; Immunochip: R2 = 0.14, p = 8.45e-42). However, when more SNPs are included, Immunochip 

achieves a better goodness-of-fit (Table 5). Moreover, PRS calculated with the preimputed datasets 

have even always a higher R2 when individuals are genotyped on Immunochip.  

 

 

 

 

 

Figure 18: Goodness-of-fit of the GSA chip and Immunochip 
The pseudo-R2 for each pT are presented for GSA chip (grey) and Immunochip (pink) for the unimputed 

data (A) and the imputed data (B). PRS were calculated based on effect sizes of IBD and SNPs with MAF 

> 0.01. p < 8.33e-3 is considered significant. 
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Table 5: Goodness-of-fit of PRS based on GSA chip and Immunochip 

 Imputed Unimputed 

 GSA Immunochip GSA Immunochip 

pT R2  p R2 p R2  p R2 p 

5e-8 0.12 5.11e-37 0.12 1.78e-38 0.12 3.36e-36 0.13 4.01e-41 

1e-5 0.14 2.30e-43 0.14 8.45e-42 0.13 1.54e-39 0.15 3.72e-44 

0.01 0.12 8.13e-37 0.16 3.34e-47 0.11 2.05e-34 0.15 1.28e-46 

0.05 0.10 5.69e-33 0.15 9.29e-46 0.10 5.31e-32 0.16 5.66e-48 

0.1 8.7e-2 1.24e-28 0.15 2.25e-44 8.84e-2 4.33e-29 0.16 3.38e-48 

0.5 8.01e-2 1.32e-26 0.14 4.12e-42 7.59e-2 2.33e-26 0.15 7.16e-46 

The pseudo-R2 and corresponding p-value for the PRS based on several pTs of the cases vs controls 

model is presented for the imputed and unimputed genotypes of both genotyping chips, GSA chip and 

Immunochip. 

4.7 Familial cases have other specific risk variants than sporadic cases 

I performed a family-based association analysis to detect variants associated with familial IBD. I 

compared the results with an association analysis solely executed with the sporadic dataset. 

The association analysis based on sporadic cases and controls pointed at NOD2 as the strongest 

association (Figure 19A, Table 6). Furthermore, the only two SNPs (chr 16 position 50763778 and 

position 50745926) that are genome-wide significant are both located in NOD2. Three more variants 

located in NOD2 were genome-wide suggestively significant (p < 1e-5). Two regions were genome-

wide suggestive on chromosome 1 with several independent variants: an intergenic region between 

CENPF and KCNK2 (2 variants), and the region around IL23R which also includes C1orf141 (4 variants). 

Lastly, one variant in FAM83E on chromosome 19 also reached the threshold of genome-wide 

suggestive significance. 

In the family-based association analysis, 327 individuals were included. Genome-wide significant and 

genome-wide suggestive results were not found (Figure 19B, Table 6). The strongest association did 

just not reach suggestive significance, however nine associations had a p-value < 1e-4. The associations 

seen were entirely different from the associations with p < 1e-4 in the sporadic dataset. While in the 

sporadic dataset NOD2 emerged as the strongest association, here IL1RL2 ranks first. An independent 

variant in the same region, more specifically in IL1RL1, is also present in the list. There are no 

overlapping associated genes between the sporadic and familial dataset, indicating that within families 

other specific variants also play a role in the development of IBD. 
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Figure 19: Manhattan plots depicting the results of the association analysis with the sporadic 
dataset (A) and the familial dataset (B). 
Each dot represents a variant with the strength of association (y-axis) presented as the negative log of 

the p-value and the chromosomal position (x-axis). The red line indicates the threshold for genome-

wide significance (5e-8) and the blue lines indicate the threshold for genome-wide suggestive 

significance (1e-5). In (A) the genes where the variants are located in are shown for genome-wide 

significant and suggestive variants. In (B) the genes where the variants are located in are shown for 

associations with p < 1e-4. 
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Table 6: Top hits of the association analysis 

Sporadic dataset 

SNP p-value Gene 

16:50,763,778 6.58e-9 NOD2 

16:50,745,926 1.76e-8 NOD2 

1:215,002,708 7.32e-8 Intergenic (CENPF, KCNK2) 

16:50,756,774 3.39e-7 NOD2 

1:67,752,088 5.41e-7 Intergenic (IL23R, IL12RB2) 

1:215,069,899 7.52e-7 Intergenic (CENPF, KCNK2) 

16:50,737,498 8.10e-7 NOD2 

1:67,705,958 1.29e-6 IL23R 

1:67,596,372 1.65e-6 C1orf141 

16:50,741,186 2.04e-6 NOD2 

1:67,756,095 7.15e-6 Intergenic (IL23R, IL12RB2) 

19:49,116,555 9.72e-6 FAM83E 

1:153,235,837 1.16e-5 Intergenic (LOR, PGLYRP3) 

6:32,397,662 1.24e-5 Intergenic (TSBP1-AS1, HLA-DRA) 

1:180,633,231 1.95e-5 XPR1 

11:2,223,850 1.95e-5 Intergenic (MIR4686, ASCL2) 

5:102,664,001 2.40e-5 Intergenic (C5orf30, LINC02115) 

16:50,769,262 2.49e-5 Intergenic (NOD2, CYLD) 

16:11,023,868 2.49e-5 CIITA 

10:101,290,301 3.64e-5 LINC01475 

10:64,578,982 3.95e-5 Intergenic (EGR2) 

16:50,661,273 4.86e-5 NKD1 

5:1,281,693 6.96e-5 TERT 

10:101,190,520 7.41e-5 Intergenic (GOT1) 

16:50,912,675 7.43e-5 Intergenic (LINC02168, LINC02127) 

2:172,368,120 7.46e-5 Intergenic (DCAF17, CYBRD1) 

18:42,857,319 7.72e-5 SLC14A2 

14:81,457,583 8.51e-5 TSHR 

5:150,602,723 9.50e-5 LOC105378230 

Familial dataset 

SNP p-value Gene 

2:102,835,706 1.19e-5 IL1RL2 

7:143,093,824 1.43e-5 EPHA1 

22:26,245,987 1.71e-5 MYO18B 

10:6,548,841 2.93e-5 PRKCQ 

8:11,708,355 5.98e-5 CTSB 

12:9,896,953 6.41e-5 Intergenic (CLECL1, CD69) 

2:102,945,121 8.23e-5 IL1RL1 

9:16,378,123 9.16e-5 Intergenic (C9orf92, BNC2) 

1:154,752,960 9.18e-5 KCNN3 

The variants with the strongest association in the sporadic and familial dataset. The variants are 

represented by chromosome:position of hg19. The strength of the association is defined by the p-value. 

Only associations with p < 1e-4 are presented. ). The red line indicates the threshold for genome-wide 

significance (5e-8) and the blue lines indicate the threshold for genome-wide suggestive significance 

(1e-5). Variants were annotated to genes or to the closest gene(s) if the variant was located intergenic.  
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5 Discussion 

To investigate the genetic architecture of multiplex families with IBD, I calculated polygenic risk scores 

(PRS) representing the genetic risk for IBD, and CD and UC separately. I did this for different p-value 

thresholds (pTs), indicating the certainty of the association, for each individual in the four groups: 

sporadic cases, healthy controls, affected family members and unaffected family members. I found 

that the PRS for each group was significantly different from each other, except the sporadic cases and 

affected family members. The healthy controls have the lowest PRS, followed by the unaffected family 

members. The PRS of sporadic and familial cases are similar to each other and the highest of all groups. 

However, a large part of mean PRS of families was above the mean of sporadic cases, indicating that 

the PRS of familial cases might be higher than their sporadic counterparts. Furthermore, I saw 

heterogeneity in PRS between the families, and in some families unaffected family members even had 

a higher PRS than their affected relatives. Lastly, I conducted a family-based association analysis and 

identified divergent associations with IBD within families. 

CD and UC are different subtypes of IBD. The low correlation between PRS CD and PRS UC underlines 

the distinct genetic nature of the two subtypes. The first meta-analysis that combined CD and UC 

patients showed that 110 of the 163 loci known at the time are shared between the two subtypes.(33) 

A large part of the shared loci has various effect sizes in the two subtypes. Most loci have the same 

direction of effect, however some loci have effect sizes in the opposite direction. NOD2, the first gene 

associated with IBD, has a large risk effect for CD and a smaller protective effect in UC. PRS summarizes 

all associated variants and their effect sizes. Thus, differences in associated loci and slight differences 

in effect sizes between the two subtypes can give large discrepancies between the two PRS. 

A previous genotype-phenotype association study found that IBD should be better divided into three 

subtypes, namely ileal CD, colonic CD and UC, instead of two subtypes, CD and UC.(79) Interestingly, 

this new classification was discovered with a PRS which uses the differences between CD and UC, and 

was based solely on loci which are genome-wide significantly associated with IBD. Thus, genome-wide 

significant loci can already make a distinction between CD and UC. The genetic relationship between 

five clinically related diseases, namely ankylosing spondylitis, Crohn’s disease, psoriasis, primary 

sclerosing cholangitis and ulcerative colitis, was investigated in another study.(70) These five diseases 

have a large degree of pleiotropy – sharing of risk variants – however the variants with the highest 

effect sizes are often disease specific. Thus, a PRS based on genome-wide significant SNPs would 

probably be the most specific to the trait, and would correlate the least with the PRS of another trait. 

This is in concordance with my results where the PRS CD and PRS UC have the lowest correlation when 

only genome-wide significantly associated SNPs are included. When more SNPs which are less 

associated with the subtypes are included, the correlation of the PRS UC and PRS CD increases. 

Moreover, the PRS with extremely high values have probably an accumulation of variants with high 

effect sizes of one subtype, and the extremely low PRS a depletion. The effect sizes of these variants 

will be entirely different for the other subtype, resulting in a less high or low PRS as was seen in the 

small overlap of individuals with the 1% and 10% highest and lowest PRS. This indeed might indicate 

that the stronger associated loci are more specific to a certain subtype, while less strongly associated 

loci are shared between the subtypes. 

Based on the above, I have suggested that the genetic nature of CD and UC is quite different. However, 

while the PRS of CD and UC indeed have a low correlation, the PRS IBD has a high correlation with both. 

Many loci are shared between CD and UC, and even have the same direction of effect.(33) Thus, the 

main difference is the magnitudes of the effect sizes. The very large meta-analyses with CD and UC 

patients together carried out in the past gave a combined effect size which will be located in between 
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the specific effect sizes of CD and UC. Therefore, the effect sizes and variants used will be more similar 

between IBD and CD, and IBD and UC, with a higher correlation as a consequence. Interestingly, also 

here an increase in correlation is visible when more SNPs are included in the PRS. Following the same 

reasoning as above, if a locus has a higher effect size and is highly specific to a disease, this locus will 

have a very different effect size between the two subtypes and even an intermediate value will be 

sizably different from the specific value, translating into various PRS for IBD and the subtypes. 

However, this effect will be less pronounced than between CD and UC PRS, as can be seen by the higher 

correlation between IBD and CD or UC, and a higher number of overlapping individuals with an extreme 

PRS. 

With a PRS based on the five strongest risk factors, Weersma et al (2008) showed that sporadic cases 

have a higher PRS than controls.(78) In the meantime, many more genome-wide significant associated 

SNPs are discovered. Moreover, more heritability is explained for polygenic diseases when not only 

genome-wide significant SNPs but also less strongly associated SNPs are used to calculate PRS.(76) My 

results also indicate that the PRS of sporadic cases is higher than controls. For each PRS, I determined 

a goodness-of-fit measurement, R2, to distinguish between the outcome groups. I saw approximately 

the same R2 for each PRS, irrespective of the number of SNPs included, when distinguishing between 

sporadic cases and controls. This indicates that IBD really is a polygenic disease. If it had been an 

oligogenic disease, the PRS with strongly associated SNPs only, e.g. the genome-wide significant SNPs, 

would have been much better in separating cases and controls. The PRS IBD with only genome-wide 

significant SNPs even had the worst goodness-of-fit. This points to the presence of true associated 

SNPs among the set of less strongly associated SNPs. Although already more than 240 loci are 

associated with IBD, probably many more are still waiting to be identified. 

A higher PRS is also seen in affected family members in comparison with their unaffected first-degree 

relatives. The results of Stittrich et al (2016) show the same trend but they do not specifically mention 

it.(101) This could indicate that even within families the amount of common genetic risk variants might 

be the reason that some family members are affected by IBD and others are not. The same conclusion 

can be drawn from the quantile analysis with the family dataset where the higher quantiles contain 

more cases than the lower quantiles. Thus, even within families, a higher PRS is connected with a 

higher chance to develop IBD. All PRS explain approximately the same amount of variance in the model 

which compares cases and controls within families. However, the best PRS seems to be towering a bit 

above the others, while this was not the case in the sporadic dataset. One possible explanation is that 

the genetic differences between affected and unaffected family members are divergent from the 

differences between sporadic cases and healthy controls. Sporadic cases have in general more 

common risk variants than the healthy controls, while affected family member might have a few 

common risk variants with higher effect sizes more than their unaffected relatives. If this was the case, 

then the best prediction PRS is the one which has more strongly associated variants. However, the 

genome-wide significant PRS performs the worst which could indicate that all or none of the family 

members have these risk variants. The best PRS has a pT slightly above the suggestively significant 

threshold. The less strongly associated variants might thus be the ones that determine whether or not 

a family member of a multiplex family develops IBD. These variants do not have a very large effect size 

like the genome-wide significant variants, however many of these variants might push an individual 

over the threshold. 

Borren et al (2018) included 2,136 CD patients of which approximately one-third had a first- or second-

degree relative with CD, the familial cases.(102) In their analysis, familial cases had a higher PRS than 

sporadic cases. These results are not in correspondence with my results where for all pTs the PRS of 

affected family members is similar to the PRS of sporadic cases. This could indicate that familial cases 
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are genetically similar to sporadic cases. They both could have many common variants and as a result 

develop IBD. However, this dataset was smaller than from Borren et al (2018) and a very strict 

correction was applied for multiple testing. Some PRS based on certain pTs are significantly higher in 

familial cases before correction for multiple testing and the best PRS is still almost significant after 

correction. This could indicate that their genetic burden of common risk variants is slightly higher than 

sporadic cases. Especially, the best PRS for familial IBD had a pT slightly above genome-wide suggestive 

significance. Cases, whether they are linked to a multiplex family or not, probably carry many genome-

wide significant associated risk variants. However, the familial cases might have extra less strongly 

associated variants that the sporadic cases might not have, increasing their PRS. All the PRS only 

explain very few of the variability and none are significant after correction. Therefore, the genetics 

between sporadic and familial cases cannot differ greatly. Thus, I would propose that sporadic and 

familial cases have a similar common genetic risk burden. Although, a considerable part of families 

have a PRS above average in sporadic cases.  

The unaffected family members have a significantly lower PRS than all cases, sporadic as well as 

familial, indicating that they carry less common risk variants. Moreover, the sensitivity analysis where 

the mean PRS of all unaffected relatives from one family is combined shows for some pTs a significantly 

different PRS between affected and unaffected relatives. Although they are part of a multiplex family, 

they have less genetic risk to develop IBD than their affected first-degree relatives. The difference in 

PRS could indicate that the affected family members have inherited many genetic risk factors while 

the unaffected relatives have not. Therefore, the familial cases were already more prone to develop 

IBD. However, unaffected family members still have a higher PRS than unrelated healthy controls. 

Thus, the healthy family members still have more common risk variants than population controls. This 

could indicate that in multiplex families more risk variants are segregating. Some family members 

inherit many common variants and in combination with a few environmental factors develop IBD, 

while others inherit less and do not reach the threshold to develop IBD. 

Previous research is uncertain on whether familial aggregation is mostly due to a high burden of 

common variants or due to high effect size rare variants within families. A study of five families found 

four families with many common risk variants for CD or UC and only one family where the familial 

aggregation could not be linked to common risk variants.(101) However, another study investigated 

eight families and declared only one family as having a high genetic burden.(47) These are both only 

small studies and coincidence could play a large role. According to my results, familial cases have a 

similar PRS than their sporadic counterparts. However, the unaffected family members have a higher 

PRS than unrelated controls. In general, this indicates that multiplex families indeed have a high burden 

of common risk variants. Furthermore, when the entire dataset, sporadic and families, are divided into 

quintiles, the unaffected and affected family members are found more in the higher quintiles. 

Therefore, all family members seem to have a quite high PRS in comparison with the rest of the 

population. The higher PRS of affected and unaffected family members indicates that in multiplex 

families many common risk variants circulate. Thus, familial aggregation seems, in general, to be due 

to a high burden of common variants. 

In both of the two papers that looked at PRS in IBD families, the families are a combination of families 

with a high burden of common risk variants and families without.(47,101) Thus, heterogeneity 

between families seems to exist. They also both found rare variants with a high effect size to clarify 

familial aggregation in some of the families, indicating another mechanism than many common 

variants. Another study also found some candidate rare variants in a cohort of multiplex Jewish 

families.(103) A large variability is also seen in the PRS of the families in my dataset. Moreover, seven 

families are having a lower family PRS than the mean PRS of healthy population controls, the group 
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with the lowest PRS. The familial aggregation in these families can probably not be attributed to 

common risk variants. The very low PRS indicates that only a few common risk variants are present in 

those families. Moreover, these low PRS families have also an unbalanced PRS between affected and 

unaffected family members. The affected relatives often have an equal or lower PRS than their 

unaffected family members, indicating that the PRS does not matter here. Of note, most families of all 

families still have cases with a higher PRS than their unaffected relatives, supporting the hypothesis 

that the affected family members have IBD due to a high burden of common risk variants. Thus, many 

families indeed have a high burden of common risk variants, while a few families have another reason 

for familial aggregation. 

All analyses were performed with imputed genotype data from Immunochip. Immunochip covers 

mainly known regions from autoimmune and inflammatory diseases and large portions of the genome 

are not covered at all. Therefore, associations can be missed. Chen et al (2014) found that more 

heritability is explained with a chip that covers more of the genome and therefore recommend a chip 

with a GWAS backbone.(27) I compared PRS IBD based on unimputed and imputed data genotyped on 

Immunochip and GSA chip. The high correlation between scores with only genome-wide significant 

associated SNPs included indicate that both have a good coverage of the strongly associated SNPs. 

However, when more SNPs are included, the correlation decreases, and also the number of variants 

included in the PRS start to differ. Immunochip has many SNPs in the known regions, while these 

regions are less covered with the GSA chip. On the other hand, GSA chip has variants in regions where 

Immunochip has none or only a few. Therefore, the PRS are based on other variants and correlate less. 

Interestingly, PRS based on Immunochip is better in explaining the variance of the case-control status 

of IBD. One possible explanation for this is the introduced noise with the inclusion of too many non-

associated SNPs with GSA chip. The GSA chip includes a broader region and therefore many more 

variants. In this abundance of variants some undiscovered associations might be present, however 

many more are probably not associated. The non-associated SNPs induce noise which overshadows 

the real associations in the PRS. To solve this problem, probably larger GWAS need to be performed 

with genome-wide chips. The most recent large meta-analyses from the IIBDGC are mainly conducted 

with data from Immunochip as this was financially more interesting at the time.(32,33) The most recent 

GWAS, the one also used in my analyses, used for most individuals the Human Core Exome Chip which 

has already a broader coverage.(31) However, larger GWAS with inclusion of the non-coding regions 

of the genome will probably be necessary to discover more common genetic risk variants. 

I have mentioned that the best PRS of affected vs unaffected family members have a higher goodness-

of-fit than the PRS based on my pre-defined pTs, while in the model of sporadic cases vs controls all 

PRS were more or less similar. The underlying genetics might differ within families and cause this slight 

aberration in results. To further investigate this, I performed an association analysis with the sporadic 

dataset, and a family-based association analysis in the family dataset. As expected, in the sporadic 

dataset, this analysis pointed to the genes with the strongest known effect sizes, e.g. NOD2 and IL23R, 

as having the strongest association. Interestingly, family-based association marked other genes as 

having a strong association. Of note, the family-based associations are based on a few hundred 

individuals and therefore even the strongest associations do not reach suggestive significance (1e-5). 

The absence of overlap between the associations with a p < 1e-4 indicates that within families other 

genes are additionally important for developing IBD. Thus, multiplex families might have other specific 

variants associated with IBD. 

In the family-based association the variant which emerged as the association with the lowest p-value 

is located in the gene IL1R2. Interestingly, IL1R2 belongs to one of the 240 loci, and the implicated gene 

of that locus is IL18RAP. These variant in IL1R2 might be in linkage disequilibrium with IL18RAP, 
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however this variant might also be independent. IL18RAP was discovered in 2018 by a candidate-gene 

study.(104) The gene translates into a part of the IL18 receptor complex which is also expressed in the 

intestinal epithelial cells. Another variant in the IL1R1 gene is also included in this locus, and also has 

a low p-value in the family-based association. The two variants are clumped separately, thus they 

indicate two independent signals. Thus, the IL18RAP locus seems to be important in familial IBD. 

A variant in PRKCQ, which resides in the locus of IL2RA, is also associated to familial IBD. IL2RA is a 

known associated locus of IBD and recently a duplication of the gene has been implicated as a cause 

of VEO-IBD.(105) The IL2-pathway is important in T-cell proliferation and to maintain intestinal 

homeostasis. The occurrence of IL2RA in VEO-IBD indicates that some variants might have a very high 

or even causal effect size. Other variants in the same gene, not causal on their own, might clarify the 

association with familial IBD.  

All other associations with p < 1e-4 are not located in loci which are genome-wide significantly 

associated with IBD at the moment. One of these associations is a variant which is located in the gene 

EPHA. Although the ephrin receptor EphA has not been associated to IBD, the other class of ephrin 

receptors, EphB, is involved in an autophagy pathway implicated in UC.(106) Moreover, EphA has a 

modulatory role in acute inflammatory responses.(107) An antagonist of ephrins has beneficial effects 

in a CD mouse model, however these are due to an inhibition of ephrin B signalling.(107) Another 

identified gene is CTSB, which translates to cathepsin B. Cathepsin B is upregulated in macrophages of 

IBD patients, and inhibition of cathepsin B and L in mice led to an amelioration of inflammation.(108) 

I could not find any involvement of the other identified genes in IBD. However, the variants can be in 

linkage disequilibrium with the causative variant which might be located in or near other genes, or 

have a long-distance regulatory effect. The identified loci might be new associations with IBD, however 

more research is necessary to validate these findings. 

A first limitation of this study is the use of Immunochip. Although I provide evidence that the 

Immunochip can better separate cases from controls, large regions are not covered and these might 

hold important information. Secondly, I take the effect sizes and strength of associations from the 

study of de Lange et al (2017).(31) This GWAS is conducted with most individuals genotyped with a 

chip covering the exome and thus few information about the non-coding regions is provided. However, 

this GWAS is the most recently published GWAS with individuals of European ancestry. The latest 

GWAS performed by the IIBDGC in 2015 is larger, however the sporadic dataset used in this thesis also 

was part of that GWAS and therefore my results would not be correct if I applied these effect sizes and 

p-values. I also report my analyses based on the IBD effect sizes and not separately for CD and UC. IBD 

had a high correlation with both of its subtypes and the combination of CD and UC patients increased 

the sample size. Therefore, I decided that I could draw my conclusions based on IBD. I performed most 

of my analyses also separately for CD and UC and these are added as supplementary data. 

The reason of familial aggregation of IBD in multiplex families is unknown. In many families, a lot of 

common genetic risk variants are segregating. However, the affected family members still have a 

higher burden of common risk variants than their unaffected relatives. Thus, the familial aggregation 

seems to be caused by a high burden of common variants present in these families. However, some 

families do not carry many common variants and therefore familial aggregation in these cases cannot 

be attributed to the same reason. Rare variants could be a possible explanation for familial aggregation 

in these multiplex families. Although in many families the rule that a higher burden of common variants 

increases the chance to develop IBD is followed, it seems that familial IBD also has some novel specific 

variants associated to it. 
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5.1 Future directions 

Although this study managed to put a step in the right direction, the genetic architecture of multiplex 

families is far from resolved. Many families seem to have a high burden of common variants present 

in the family. However, the family-based association marked other genes as having a strong association 

with familial IBD. Validation of these new variants or loci will be necessary. Further research is also 

necessary to see whether these variants or their associated genes also have an association with 

sporadic IBD, or if they are specific to familial IBD. Moreover, many different methods exist to perform 

family-based association analysis, e.g. PLINK, GEMMA, REGENIE.(96,109,110) It would be interesting 

to see if other methods point to the same loci. Some families do not have many common variants. 

These families must have another reason for familial aggregation and rare variants could be one of 

them. Families with a low polygenic risk thus probably have a higher chance to carry a rare variant with 

a moderate to high effect size, and make good candidates to further look for these rare variants with 

whole-exome or whole-genome sequencing.(111) As PRS do not clarify all heritability, the families with 

a moderate or high PRS might also be interesting to investigate for rare variants that could be 

important on top of the polygenic risk.  

IBD is a complex disease and its development is the result of genetic and environmental factors. Thus, 

environmental factors might not be forgotten, especially not in families, where many environmental 

factors are also shared among relatives. However, environmental factors are difficult to investigate, 

thus the use of proxies might be indicated. The microbiome is partly inherited from parents and 

siblings.(112) Moreover, a different composition between affected and unaffected family members 

has already been established.(113) Therefore, studying the composition of the microbiome within 

families might be interesting to discover the contribution of the microbiome to familial aggregation. 

Another proxy can be the epigenome, which is influenced by environmental factors, e.g. smoking.(114) 

Through comparing the epigenomic signature of sporadic and familial cases, we might get an indication 

how much environmental factors contribute to familial aggregation. Furthermore, variation in the 

epigenome between affected and unaffected relatives might also provide useful information to 

discover why some family members develop IBD while others do not. 
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Supplementary table 1: Group comparisons PRS based on IBD effect sizes of imputed Immunochip 

data 

pT = 5x10-8 
 Affected Unaffected Sporadic cases 
Unaffected  2.16e-4   
Sporadic cases 0.21 3.60e-4  
Healthy controls 3.71e-18 3.05e-4 8.59e-56 

pT = 1x10-5 
 Affected Unaffected Sporadic cases 
Unaffected  1.23e-5   
Sporadic cases 0.10 2.56e-5  
Healthy controls 4.48e-20 1.72e-3 4.66e-59 

pT = 0.01 
 Affected Unaffected Sporadic cases 
Unaffected  1.36e-5   
Sporadic cases 7.79e-2 7.81e-5  
Healthy controls 8.05e-21 2.06e-4 2.11e-64 

pT = 0.05 
 Affected Unaffected Sporadic cases 
Unaffected  1.36e-5   
Sporadic cases 5.79e-2 1.05e-4  
Healthy controls 1.09e-20 2.21e-4 7.13e-63 

pT = 0.1 
 Affected Unaffected Sporadic cases 
Unaffected  4.19e-5   
Sporadic cases 3.58e-2 6.97e-4  
Healthy controls 1.24e-20 5.98e-5 1.04e-59 

pT = 0.5 
 Affected Unaffected Sporadic cases 
Unaffected  2.17e-5   
Sporadic cases 6.85e-2 5.58e-5  
Healthy controls 1.25e-19 7.84e-4 3.69e-57 

The p-values here presented are of the PRS comparisons between the four groups: sporadic cases, 

healthy controls, affected family members (affected) and unaffected family members (unaffected). The 

imputed Immunochip data of cases (sporadic and affected), unaffected family members and healthy 

population controls were used to compute PRS. PRS were calculated based on the effect sizes of IBD 

and SNPs with MAF > 0.01. p < 1.39e-3 is considered significant. 

  



 

III 
 

Supplementary table 2: Group comparisons PRS based on CD effect sizes of imputed Immunochip 

data 

pT = 5x10-8 
 Affected Unaffected Sporadic cases 
Unaffected  4.47e-6   
Sporadic cases 0.25 5.39e-7  
Healthy controls 7.56e-21 1.87e-3 4.13e-62 

pT = 1x10-5 
 Affected Unaffected Sporadic cases 
Unaffected  1.58e-06   
Sporadic cases 0.16 1.03e-06  
Healthy controls 7.12e-23 1.68e-4 3.50e-67 

pT = 0.01 
 Affected Unaffected Sporadic cases 
Unaffected  8.16e-07   
Sporadic cases 0.92 5.13e-10  
Healthy controls 2.59e-18 8.64e-3 5.62e-70 

pT = 0.05 
 Affected Unaffected Sporadic cases 
Unaffected  2.13e-5   
Sporadic cases 0.96 8.56e-8  
Healthy controls 5.21e-17 8.61e-4 2.62e-66 

pT = 0.1 
 Affected Unaffected Sporadic cases 
Unaffected  4.09e-5   
Sporadic cases 0.69 2.36e-7  
Healthy controls 5.13e-18 4.37e-4 3.13e-65 

pT = 0.5 
 Affected Unaffected Sporadic cases 
Unaffected  2.39e-05   
Sporadic cases 0.70 6.56e-8  
Healthy controls 4.42e-17 2.05e-3 5.57e-62 

The p-values here presented are of the PRS comparisons between the four groups: sporadic cases, 

healthy controls, affected family members (affected) and unaffected family members (unaffected). The 

imputed Immunochip data of CD cases (sporadic and affected), unaffected family members of CD and 

mixed families and all healthy population controls were used to compute PRS. PRS were calculated 

based on the effect sizes of CD and SNPs with MAF > 0.01. p < 1.39e-3 is considered significant. 
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Supplementary table 3: Group comparisons PRS based on UC effect sizes of imputed Immunochip 

data 

pT = 5x10-8 
 Affected Unaffected Sporadic cases 
Unaffected  6.42e-3   
Sporadic cases 0.16 1.42e-5  
Healthy controls 1.81e-6 0.82 7.36e-32 

pT = 1x10-5 
 Affected Unaffected Sporadic cases 
Unaffected  4.06-3   
Sporadic cases 0.28 2.71e-6  
Healthy controls 2.27e-6 0.95 1.56e-37 

pT = 0.01 
 Affected Unaffected Sporadic cases 
Unaffected  2.48e-2   
Sporadic cases 0.97 1.73e-05  
Healthy controls 1.07-4 0.61 3.13e-41 

pT = 0.05 
 Affected Unaffected Sporadic cases 
Unaffected  4.06e-2   
Sporadic cases 0.55 9.97e-4  
Healthy controls 4.08e-05 0.23 2.06e-36 

pT = 0.1 
 Affected Unaffected Sporadic cases 
Unaffected  4.65e-2   
Sporadic cases 0.88 1.40e-4  
Healthy controls 2.74e-4 0.51 1.77e-35 

pT = 0.5 
 Affected Unaffected Sporadic cases 
Unaffected  7.43e-2   
Sporadic cases 0.91 4.66e-4  
Healthy controls 7.99e-4 0.33 2.68e-35 

The p-values here presented are of the PRS comparisons between the four groups: sporadic cases, 

healthy controls, affected family members (affected) and unaffected family members (unaffected). The 

imputed Immunochip data of UC cases (sporadic and affected), unaffected family members of UC and 

mixed families and all healthy population controls were used to compute PRS. PRS were calculated 

based on the effect sizes of UC and SNPs with MAF > 0.01. p < 1.39e-3 is considered significant. 
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Supplementary table 4: Group comparisons PRS mean affected and unaffected PRS based on IBD 

effect sizes of imputed Immunochip data 

pT = 5x10-8 
 Affected Unaffected Sporadic cases 
Unaffected  1.30e-2   
Sporadic cases 0.54 2.46-2  
Healthy controls 9.05e-8 3.08-2 9.98e-57 

pT = 1x10-5 
 Affected Unaffected Sporadic cases 
Unaffected  7.63-3   
Sporadic cases 0.52 1.85e-2  
Healthy controls 4.30e-8 2.91e-2 1.34e-59 

pT = 0.01 
 Affected Unaffected Sporadic cases 
Unaffected  1.28e-3   
Sporadic cases 0.61 2.29e-3  
Healthy controls 8.80e-08 9.42e-2 7.78e-64 

pT = 0.05 
 Affected Unaffected Sporadic cases 
Unaffected  1.26-3   
Sporadic cases 0.568 3.39e-3  
Healthy controls 1.01e-07 0.0811-2 4.79e-63 

pT = 0.1 
 Affected Unaffected Sporadic cases 
Unaffected  2.20e-3   
Sporadic cases 0.50 7.66e-3  
Healthy controls 1.15e-07 6.27e-2 3.41e-60 

pT = 0.5 
 Affected Unaffected Sporadic cases 
Unaffected  1.17e-3   
Sporadic cases 0.58 2.48e-3  
Healthy controls 2.75e-7 0.15 6.12e-58 

The p-values here presented are of the PRS comparisons between the four groups: sporadic cases, 

healthy controls, affected family members (affected) and unaffected family members (unaffected). For 

the affected and unaffected family members, the mean PRS of all affected or unaffected family 

members was calculated and used in this analysis. The imputed Immunochip data of cases (sporadic 

and affected), unaffected family members and healthy population controls were used to compute PRS. 

The PRS were calculated based on the effect sizes of IBD and SNPs with MAF > 0.01. p < 1.39e-3 is 

considered significant. 
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Supplementary table 5: Group comparison mean affected and unaffected PRS based on CD effect 

sizes of imputed Immunochip data 

pT = 5x10-8 
 Affected Unaffected Sporadic cases 
Unaffected  1.91e-2   
Sporadic cases 3.51e-2 0.43  
Healthy controls 3.37e-10 1.82e-3 1.53e-44 

pT = 1x10-5 
 Affected Unaffected Sporadic cases 
Unaffected  8.45e-3   
Sporadic cases 4.37e-2 0.34  
Healthy controls 1.16e-10 1.31e-3 9.17e-50 

pT = 0.01 
 Affected Unaffected Sporadic cases 
Unaffected  3.14e-3   
Sporadic cases 0.16 5.39e-2  
Healthy controls 6.95e-09 2.42e-2 2.62e-52 

pT = 0.05 
 Affected Unaffected Sporadic cases 
Unaffected  1.04e-2   
Sporadic cases 0.13 0.16  
Healthy controls 1.09e-8 7.51e-3 3.72e-51 

pT = 0.1 
 Affected Unaffected Sporadic cases 
Unaffected  9.11e-3   
Sporadic cases 9.78e-2 0.16  
Healthy controls 5.95e-9 7.86e-3 4.07e-50 

pT = 0.5 
 Affected Unaffected Sporadic cases 
Unaffected  3.71e-3   
Sporadic cases 0.11 0.11  
Healthy controls 1.56e-08 1.98e-2 1.80e-47 

The p-values here presented are of the PRS comparisons between the four groups: sporadic cases, 

healthy controls, affected family members (affected) and unaffected family members (unaffected). For 

the affected and unaffected family members, the mean PRS of all affected or unaffected family 

members was calculated and used in this analysis. The imputed Immunochip data of CD cases (sporadic 

and affected), unaffected family members of CD and mixed families and healthy population controls 

were used to compute PRS. The PRS were calculated based on the effect sizes of CD and SNPs with MAF 

> 0.01. p < 1.39e-3 is considered significant. 
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Supplementary table 6: Group comparisons mean affected and unaffected PRS based on UC effect 

sizes of imputed Immunochip data 

pT = 5x10-8 
 Affected Unaffected Sporadic cases 
Unaffected  0.21   
Sporadic cases 0.51 0.38  
Healthy controls 2.03e-2 0.56 1.51e-19 

pT = 1x10-5 
 Affected Unaffected Sporadic cases 
Unaffected  8.31e-2   
Sporadic cases 0.33 0.31  
Healthy controls 4.83e-3 0.55 1.47e-23 

pT = 0.01 
 Affected Unaffected Sporadic cases 
Unaffected  8.39e-2   
Sporadic cases 0.61 0.20  
Healthy controls 9.60e-3 0.53 6.24e-32 

pT = 0.05 
 Affected Unaffected Sporadic cases 
Unaffected  5.93e-2   
Sporadic cases 0.40 0.23  
Healthy controls 4.98e-3 0.50 4.77e-31 

pT = 0.1 
 Affected Unaffected Sporadic cases 
Unaffected  4.69e-2   
Sporadic cases 0.52 0.13  
Healthy controls 8.58e-3 0.70 1.90e-31 

pT = 0.5 
 Affected Unaffected Sporadic cases 
Unaffected  6.02e-2   
Sporadic cases 0.49 0.21  
Healthy controls 7.35e-3 0.54 1.01e-30 

The p-values here presented are of the PRS comparisons between the four groups: sporadic cases, 

healthy controls, affected family members (affected) and unaffected family members (unaffected). For 

the affected and unaffected family members, the mean PRS of all affected or unaffected family 

members was calculated and used in this analysis. The imputed Immunochip data of UC cases (sporadic 

and affected), unaffected family members of UC and mixed families and healthy population controls 

were used to compute PRS. The PRS were calculated based on the effect sizes of UC and SNPs with MAF 

> 0.01. p < 1.39e-3 is considered significant. 
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Supplementary table 7: Group comparisons PRS based on IBD effect sizes of unimputed 

Immunochip data 

pT = 5x10-8 
 Affected Unaffected Sporadic cases 
Unaffected  6.52e-4   
Sporadic cases 0.73 1.27e-4  
Healthy controls 4.39e-15 3.21e-3 2.94e-54 

pT = 1x10-5 
 Affected Unaffected Sporadic cases 
Unaffected  1.77e-4   
Sporadic cases 0.81 2.09e-5  
Healthy controls 1.88e-16 3.90e-3 2.28e-59 

pT = 0.01 
 Affected Unaffected Sporadic cases 
Unaffected  2.92e-05   
Sporadic cases 0.40 9.30e-06  
Healthy controls 3.65e-19 2.00e-3 8.397e-66 

pT = 0.05 
 Affected Unaffected Sporadic cases 
Unaffected  4.06e-5   
Sporadic cases 0.45 1.16e-05  
Healthy controls 3.12e-19 1.13e-3 3.63e-68 

pT = 0.1 
 Affected Unaffected Sporadic cases 
Unaffected  7.98e-05   
Sporadic cases 0.26 1.01e-4  
Healthy controls 2.94e-20 2.19e-4 6.40e-67 

pT = 0.5 
 Affected Unaffected Sporadic cases 
Unaffected  6.74e-5   
Sporadic cases 0.15 1.54e-4  
Healthy controls 2.00e-20 2.54e-4 3.72e-65 

The p-values here presented are of the PRS comparisons between the four groups: sporadic cases, 

healthy controls, affected family members (affected) and unaffected family members (unaffected). The 

unimputed Immunochip data of cases (sporadic and affected), unaffected family members and healthy 

population controls were used to compute PRS. PRS were calculated based on the effect sizes of IBD 

and SNPs with MAF > 0.01. p < 1.39e-3 is considered significant. 
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Supplementary table 8: Group comparisons PRS based on CD effect sizes of unimputed Immunochip 

data 

pT = 5x10-8 
 Affected Unaffected Sporadic cases 
Unaffected  2.18e-5   
Sporadic cases 4.56e-2 1.70e-4  
Healthy controls 3.58e-20 3.05e-4 2.88e-57 

pT = 1x10-5 
 Affected Unaffected Sporadic cases 
Unaffected  3.53e-5   
Sporadic cases 6.67e-3 1.45e-3  
Healthy controls 1.73e-22 1.31e-5 4.90e-59 

pT = 0.01 
 Affected Unaffected Sporadic cases 
Unaffected  6.29e-6   
Sporadic cases 0.11 3.02e-6  
Healthy controls 6.26e-21 3.58e-4 2.53e-66 

pT = 0.05 
 Affected Unaffected Sporadic cases 
Unaffected  2.55e-5   
Sporadic cases 0.13 2.69e-5  
Healthy controls 1.94e-20 8.80e-5 3.08e-65 

pT = 0.1 
 Affected Unaffected Sporadic cases 
Unaffected  2.54e-5   
Sporadic cases 6.05e-2 5.17e-5  
Healthy controls 1.96e-21 4.15e-5 1.10e-65 

pT = 0.5 
 Affected Unaffected Sporadic cases 
Unaffected  6.05e-05   
Sporadic cases 7.80e-2 7.01e-5  
Healthy controls 1.16e-20 3.49e-5 1.49e-64 

The p-values here presented are of the PRS comparisons between the four groups: sporadic cases, 

healthy controls, affected family members (affected) and unaffected family members (unaffected). The 

unimputed Immunochip data of CD cases (sporadic and affected), unaffected family members of CD 

and mixed families and all healthy population controls were used to compute PRS. PRS were calculated 

based on the effect sizes of CD and SNPs with MAF > 0.01. p < 1.39e-3 is considered significant. 
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Supplementary table 9: Group comparisons PRS based on UC effect sizes of unimputed Immunochip 

data 

pT = 5x10-8 
 Affected Unaffected Sporadic cases 
Unaffected  2.94e-3   
Sporadic cases 0.63 9.73e-6  
Healthy controls 7.08e-4 0.40 2.00e-36 

pT = 1x10-5 
 Affected Unaffected Sporadic cases 
Unaffected  3.16e-3   
Sporadic cases 0.90 5.37e-6  
Healthy controls 1.04e-3 0.55 1.61e-41 

pT = 0.01 
 Affected Unaffected Sporadic cases 
Unaffected  3.51e-3   
Sporadic cases 0.51 2.12e-7  
Healthy controls 2.67e-3 0.43 1.14-49 

pT = 0.05 
 Affected Unaffected Sporadic cases 
Unaffected  6.70e-3   
Sporadic cases 0.56 9.30e-6  
Healthy controls 2.54e-3 0.91 1.21e-49 

pT = 0.1 
 Affected Unaffected Sporadic cases 
Unaffected  9.91e-3   
Sporadic cases 0.49 8.19e-6  
Healthy controls 5.16e-3 0.93 3.27e-47 

pT = 0.5 
 Affected Unaffected Sporadic cases 
Unaffected  1.50e-2   
Sporadic cases 0.44 4.47e-6  
Healthy controls 3.60e-3 0.97 2.12e-48 

The p-values here presented are of the PRS comparisons between the four groups: sporadic cases, 

healthy controls, affected family members (affected) and unaffected family members (unaffected). The 

unimputed Immunochip data of UC cases (sporadic and affected), unaffected family members of UC 

and mixed families and all healthy population controls were used to compute PRS. PRS were calculated 

based on the effect sizes of UC and SNPs with MAF > 0.01. p < 1.39e-3 is considered significant. 

  



 

XI 
 

Appendix II: supplementary figures 

Supplementary figure 1: Variance explained by each PRS (Crohn’s disease) 

Supplementary figure 2: Variance explained by each PRS (ulcerative colitis) 

Supplementary figure 3: Mean PRS CD affected vs unaffected family members of CD and mixed families 

Supplementary figure 4: Mean PRS UC affected vs unaffected family members of UC and mixed families 
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Supplementary figure 1: Variance explained by each PRS (Crohn’s disease) 
Each plot represents a different comparison of the PRS between two groups: (A) Sporadic cases vs 

sporadic controls; (B) Affected vs unaffected family members; (C) Sporadic cases vs affected family 

members; (D) Sporadic controls vs unaffected family members. Only CD cases,  affected and sporadic, 

and the unaffected family members of CD and mixed families are present in this analysis. All healthy 

controls are included. Each bar depicts a separate PRS including SNPs based on different p-value 

thresholds. The height of the bars indicates the R2 of the PRS in a logistic regression model. The p-value 

of the R2 is represented by the colour of the bars, a darker colour indicates a more significant p-value. 

PRS were calculated based on the effect sizes of CD and SNPs with MAF > 0.01. p < 1.39e-3 is considered 

significant. 
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Supplementary figure 2: Variance explained by each PRS (ulcerative colitis) 
Each plot represents a different comparison of the PRS between two groups: (A) Sporadic cases vs 

sporadic controls; (B) Affected vs unaffected family members; (C) Sporadic cases vs affected family 

members; (D) Sporadic controls vs unaffected family members. Only UC cases,  affected and sporadic, 

and the unaffected family members of UC and mixed families are present in this analysis. All healthy 

controls are included. Each bar depicts a separate PRS including SNPs based on different p-value 

thresholds. The height of the bars indicates the R2 of the PRS in a logistic regression model. The p-value 

of the R2 is represented by the colour of the bars, a darker colour indicates a more significant p-value. 

PRS were calculated based on the effect sizes of UC and SNPs with MAF > 0.01. p < 1.39e-3 is considered 

significant. 
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Supplementary figure 3: Mean PRS CD affected vs unaffected family members of CD and mixed 
families 
The mean PRS of all affected members of a CD or mixed family (x-axis) is plotted against the mean PRS 

of all unaffected members of the same family (y-axis). The diagonal line is the x = y line. Every family 

with a higher mean PRS for the unaffected than the affected family members is coloured pink. PRS were 

calculated based on the effect sizes of CD, pT = 0.01 and MAF = 0.01. 
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Supplementary figure 4: Mean PRS UC affected vs unaffected family members of UC and mixed 
families 
The mean PRS of all affected members of a UC or mixed family (x-axis) is plotted against the mean PRS 

of all unaffected members of the same family (y-axis). The diagonal line is the x = y line. Every family 

with a higher mean PRS for the unaffected than the affected family members is coloured pink. PRS were 

calculated based on the effect sizes of UC, pT = 0.01 and MAF = 0.01. 

 


