
Studying beam position measurements for the

luminosity calibration at CMS

Maarten De Coen

Academic year 2021–2022





Department of Physics and Astronomy
Experimental Particle Physics

Studying beam position measurements for the
luminosity calibration at CMS

Maarten De Coen

Promotor Prof. Dr. Didar Dobur
Department of Physics and Astronomy
Ghent University

Supervisor Dr. Joscha Knolle
Department of Physics and Astronomy
Ghent University

Master’s thesis submitted in partial fulfilment of the requirements for obtaining the
academic degree of Master of Physics and Astronomy

Academic year 2021–2022



Maarten De Coen

Studying beam position measurements for the luminosity calibration at CMS

Academic year 2021–2022

Promotor: Prof. Dr. Didar Dobur

Supervisor: Dr. Joscha Knolle

Ghent University

Experimental Particle Physics

Department of Physics and Astronomy

Sint-Pietersnieuwstraat 25

9000 Ghent



Abstract
Modern particle physics relies heavily on colliders to push the limits of our under-
standing ever further. The largest and most powerful one among them is the LHC,
run by CERN in Geneva (Switzerland). One crucial parameter expresses the power
of these colliders: luminosity. It tells us how many collisions we can generate and is
essential to determine cross-sections. Measuring luminosity is, however, complicated
in hadron colliders. The method of choice at LHC is the Van Der Meer method,
which has allowed for an unprecedented accuracy at the per cent level. The charac-
teristic of this method is that the colliding particle beams move away from a head-on
collision course. However, our imperfect knowledge of the beam positions is also
one of the main limitations on the accuracy today. In this thesis, I address this issue
by studying beam position measurements with an at CERN unprecedented level of
detail. I have modelled known phenomena affecting the beam positions and looked
for new ones in the data. Finally, I quantified the effects of these phenomena on the
luminosity measurement and the uncertainty they introduce.

Samenvatting
Moderne deeltjesfysica is sterk afhankelijk van colliders om de grenzen van onze
kennis steeds verder te verleggen. Op dit moment is de grootste en krachtigste onder
hen de LHC, gerund door CERN in Genéve (Zwitserland). Eén cruciale parameter
drukt de kracht uit van deze versnellers: luminositeit. Ze vertelt ons hoeveel botsin-
gen we kunnen opwekken, en is essentieel om werkzame doorsnedes te bepalen.
Een luminositeitsmeting is echter een ingewikkeld probleem in hadronversnellers.
De geprefereerde methode voor LHC is de Van Der Meer methode. Die heeft het
mogelijk gemaakt een onovertroffen nauwkeurigheid te bereiken op het percent
niveau. Typisch voor deze methode is dat de botsende deeltjesbundels weg bewegen
van de frontale botsingskoers. Echter, onze kennis van de bundelposities is niet
perfect, wat vandaag de dag een van de voornaamste beperkingen is op de precisie.
In dit proefstuk pak ik dit probleem aan door de positiemetingen van de bundel te
bestuderen met een tot nog toe in CERN ongeziene nauwkeurigheid. Ik heb de gek-
ende fenomenen gemodelleerd die de bundelposities beïnvloeden en gezocht naar
nieuwe in de data. Ten slotte heb ik de effectgrootte van die fenomenen becijferd
samen met de onzekerheid die ze introduceren in de luminositeitsmeting.
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Introduction

„It was the best of times, it was the worst of times,
it was the age of wisdom, it was the age of
foolishness, it was the epoch of belief, it was the
epoch of incredulity, it was the season of light, it
was the season of darkness, it was the spring of
hope, it was the winter of despair.

— Charles Dickens
English writer

Once upon a time, the study of the universe belonged to the realm of philosophy and
theology. From the sun shining in the sky and the violence of a stormy sea to the
beating of a human heart: humanity watched, pondered, and theorised, resulting in
a complicated web of ideas with often little bearing on actual reality. Until around
the seventeenth century, a different approach was born. This approach did not aim
for a theory that only describes what one passively observes. Instead, it sought a
theory predicting everything that should be observable. That imposed a new task on
the scientist: the experiment.

Together with the experiment came the science of physics. First, this meant studying
falling objects, flowing fluids and stretched strings. This oldest form of physics was
later complemented by other fields, like electromagnetism and thermodynamics.
As time progressed, knowledge grew, and technology improved, the experiments
became more and more involved, measuring Nature’s properties at ever smaller
or bigger scales and with higher accuracy. Eventually, they uncovered phenomena
unexplainable by the classical theories, which led to a complete overhaul of physics
early in the twentieth century. It was during this exciting time the field of particle
physics was born.

As the name suggests, particle physics concerns the study of “particles”: point-like
objects that make up the world around us. The idea of a particle universe is quite old.
In ancient Greek, there was an entire philosophical school championing this idea,
called “atomism” from the Greek word ἄτομος meaning “indivisible” [1]. According
to its members, the universe is a consequence of how these particles or atoms
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interact. They rejected all divine or teleological principles upheld by other schools.
In this respect, their reasoning was surprisingly similar to the modern scientific point
of view.

However, the atom turned out less indivisible than the name suggests. The famous
experiments by Ernest Rutherford showed that the atom is a tiny positively charged
nucleus orbited by a much larger cloud of negatively charged particles called elec-
trons [2]. That same Rutherford later showed that the nucleus itself was not a point
but contained positive particles, which he first interpreted as positively charged
hydrogen atoms but later came to be known as protons [3]. In the same period,
scientists discovered other particles in cosmic radiation: showers of particles that
arise when highly energetic particles coming out of space hit the Earth’s atmosphere.
Those particles include the positron [4], muon [5], and plenty of other particles.

The study of these particles constitutes the essence of particle physics. This scientific
discipline asks what kind of particles are out there, what properties they have,
and how they interact with each other. Ultimately, from the atomist point of view,
this amounts to questioning the very essence of Nature and pursuing the most
fundamental form of scientific knowledge. But studying particles has become
increasingly difficult over time. In the early days of particle physics, one could
attribute discoveries to just a handful of scientists. Moreover, one could use relatively
small-scale analogue detectors, such as cloud chambers and photographic plates.

Starting from the fifties, it became necessary to adopt digital methods due to an
increasing need for higher amounts of data. This decade also saw the introduc-
tion of the first large-scale accelerators like the cosmotron in Brookhaven (USA).
Those devices could accelerate particles to energies that are only naturally seen in
cosmic rays, but unlike those natural sources, they could provide a much larger
and controllable production rate. The growth in size and technological complexity
of experiments forced physicists to work together in ever greater numbers. As a
result, the study of the smallest entities in Nature has led to the most large-scale
experiments in size, technology, and human resources.

This marriage between the big and the small is nowadays best embodied by the
CERN institute in Switzerland. The name, an acronym for Conseil Européene pour
la Recherche Nucleaire, refers to its original goal when it was conceived in 1952:
a centre for the study of the atomic nucleus. But since then, its focus has shifted
to the study of fundamental particles. It operates the largest and most powerful
human-made particle accelerator to date, the Large Hadron Collider (LHC), which
speeds up protons up to an energy of 7 TeV or only 1 × 10−6 % less than the speed
of light [6, 7]. These protons typically move in bunches of about 1 × 1011 particles,
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which corresponds to the mass of a small bacterium. The energy of such a bunch
will be about 100 kJ which is comparable to a car driving on a highway. To achieve
that it needs a 27 km long ring inside a 6.5 T strong magnetic field (a thousand times
stronger than a typical fridge magnet).

At several points along the LHC’s ring, protons circulating in opposite directions
meet each other, resulting in a destructive collision. The debris flying outwards is
recorded in specialised detectors that are themselves of mind-boggling size. The
data analysis then tries to answer two central questions: what type of collisions
are there, and how often do they occur? Theoretical models can make predictions
for these questions by postulating the existence of certain particles and assuming
interactions between them of a certain form and strength. The experiment can then
test these theoretical predictions, showing us which theories work and which do
not.

There is, however, one decisive factor in answering the second “how often” question
that does not depend on fundamental physics. If we halve the number of protons
per bunch, the collision number will lower by about the same factor. If we squeeze
the protons in a bunch closer together, then collisions will happen more frequently.
In other words, the experimentalist has control over the collision rate through the
design of the accelerator, which means the absolute number of a given collision is
by itself not that meaningful. One would want to compare this to the number of
collisions that, hypothetically, would be maximally achievable. This hypothetical
number, called luminosity, is the central topic in this thesis. Luminosity tells us in a
way how intense the proton beams collision-wise are.

Measuring luminosity is thus of paramount importance to the success of any ac-
celerator experiment. Doing this is non-trivial as it requires knowing where the
protons are moving inside the accelerator. It is especially difficult to make a precise
measurement. At CERN, luminosity is determined through a specialised procedure
named after its inventor Simon Van Der Meer [8, 9]. In the past, this method has
already enabled luminosity measurements with unprecedented precision compared
to other LHC-like colliders [10–18]. However, the remaining uncertainty is still
too large and limits the measuring precision for some important physics-related
phenomena [19–21]. For this reason, CERN invests a lot of effort in improving the
Van Der Meer method.

One key feature of the Van Der Meer method is that the proton beams are moved
away from their head-on collision course. That makes the collision rate go down,
and how this happens tells us what the luminosity is. However, such manoeuvres
introduce uncertainty in the actual position of the beams. Several effects make our
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knowledge of the position imprecise if one does not account for them. However,
direct position measurements indicate there might be more happening than of which
we are aware. That makes the position uncertainty one of the dominant ones.

In this thesis, I present the results of a study of the beam positions. I have analysed
the data of direct position measurements based on the effects we know and searched
for a sign of yet unknown phenomena affecting the beam positions. All of this
I describe in chapter 5. In chapter 6, I use that knowledge to perform a VdM
scan analysis and apply concrete corrections to the beam positions. The preceding
chapters provide some background information concerning my analysis. Chapter 1
will sketch the broader scientific context of this thesis. It gives an overview of the
current status of the field of experimental particle physics and how CERN contributes
to it. In chapter 2, I discuss some details about the workings of LHC required to
understand the luminosity measurement. Chapter 3 provides a conceptual discussion
of luminosity itself and discusses methods to determine it experimentally. The
method used at LHC is explained in depth in chapter 4, which also discusses what
limits its precision.
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Particle Physics 1
„The world of the quark has everything to do with

a jaguar circling in the night.

— Arthur Sze
American poet

1.1 A particle zoo

To the human eye, almost all materials appear to be continuous. In reality, the
world is more like a lego structure in which the lego are tiny particles called atoms.
Sometimes those atoms are just by themselves, but usually, they are bound to other
atoms. Atoms can bind in small groups to form a so-called molecule or gather in
astronomical amounts in crystalline structures.

Atoms can bind this way because of their substructure. They are composite objects
containing a heavy nucleus orbited by a cloud of electrons. The force keeping the
electrons near the nucleus is electromagnetic: the nucleus is positively charged and
attracts the negatively charged electrons. When multiple atoms come together, they
can start sharing electrons, which results in an electromagnetic bond.

For electrons, there is still no indication that they are composite [22]. Most atomic
nuclei, on the contrary, consist of two smaller particles of almost equal mass but
with a different charge: the proton (positive) and the neutron (neutral). Like atoms
make molecules, neutrons and protons make nuclei. But the force holding them
together cannot be electromagnetic as neutrons have no charge. This new kind of
force is called the strong nuclear force.

One atom has a single proton for a nucleus: the hydrogen atom. Single neutrons can
occur too but will transform into a proton after about fifteen minutes. During this
transformation, called negative beta-decay, the neutron ejects an electron together
with another neutral particle with a nearly negligible mass: a neutrino. Beta-decay
arises because of a third force, different from the electrical and the strong. Since it
is much weaker than the other two forces, it goes by the name of the weak force.
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In some cases, protons bound in nuclei can also transform into neutrons. This
transformation is then positive beta-decay because it results in a neutrino and a
positron, a particle identical to the electron but for its positive charge. The existence
of the positron is the result of a more general principle in Nature: for any particle,
there exists a so-called anti-particle. A particle and its anti-particle are identical in
almost all aspects. Only their charges have opposite signs.

The particles introduced above fall into two classes: hadrons and leptons. Hadronic
particles like the proton and neutron are subject to the strong force, while leptonic
ones like the electron and neutrino are not. Their names come from the Greek ἁδρος
(thick) and λεπτός (thin), which refers to the observation that hadrons are generally
much heavier then leptons.

There are only twelve leptons: the electron, the muon and the tau lepton, three
associated neutrinos, and their anti-particles. On the other hand, the hadrons
contain a rich spectrum of different particles, such as pions, sigma baryons, omega
baryons etc. The enormous variety of hadrons was difficult to digest for physicists
of the 20th century. Most physicists intuitively believe that Nature at its smallest,
most fundamental level should be elegant and simple. Such a “particle zoo”, as the
theoretical physicist Oppenheimer called it somewhat condescendingly, did not fit
that intuition [23].

And indeed, all hadrons are made of a handful of smaller particles called quarks.
Excluding the anti-particles, there are only six, but the two lightest ones, the up and
down quarks, dominate the matter around us. For instance, two up quarks and one
down quark make up a proton, while one up quark and two down quarks create a
neutron.

As far as we know today, quarks and leptons, or fermions collectively, are funda-
mental particles. I.e. no experiment shows any indication that they would have
any substructure [22, 24]. Together, the fermions make up all the matter around
us by interacting through the four basic forces or interactions: the electromagnetic,
the weak, the strong, and the gravitational interactions. These interactions work by
exchanging yet another type of particle called a boson. In some sense, these bosons
work as “messenger” particles mediating the “talking” between interacting particles.
Each interaction has its own set of bosons: the photon for the electromagnetic inter-
action, the Z and W bosons for the weak interaction, and the gluon for the strong
interaction. We don’t yet know whether such a boson exists for the gravitational
interaction.
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1.2 The physics of particles

The previous section has presented particles in an intuitive way, but their description
requires mathematical techniques that are difficult to understand based on day to
day experience. At these small scales and high energy, intuitive concepts like time
and place or the idea of a particle lose their usual meaning. To some physicists,
particles are purely mathematical, abstract notions, and only their influence on our
observations is what counts. Such physicists would colourfully express this idea with
the mantra “shut up and calculate!”. This “calculate” entails two central notions:
special relativity and quantum mechanics.

1.2.1 Special relativity

Essentially, special relativity is the mathematical theory of high speed. When objects
accelerate to speeds far beyond what humans are used to, they start defying common
human understanding. For instance, such an object will look contracted, and its
time will appear to run slower to someone at rest. These bizarre phenomena are
consequences of another unintuitive principle: light always moves at the same speed
c. I.e. a ray of light moving passed you will move at that same speed c, no matter
how fast you move.

Albert Einstein was the first who came up with the revolutionary theory from
above [25, 26]. The importance of his work is reflected in the fame his name
has acquired. And although outside of the physics community, only a few know
the exact content of special relativity, almost everyone knows the famous formula
E = mc2. This formula establishes the equivalence of mass m and energy E: mass
can transform into energy and vice versa according to E = mc2. That is, for instance,
why we can generate energy through nuclear fission: when some heavy nuclei split
into smaller ones, some mass will convert into energy.

The opposite conversion, energy to mass, is essential to understanding modern
particle physics experiments. For instance, if two light particles of mass m hit each
other at high speed, they can merge and form a new particle of mass M larger
than 2m. The excess mass comes from the kinetic energy of the original particles.
The newly formed particle might be unknown, or we may not yet understand its
properties. For this reason, particle physicists take great interest in these types of
collision processes.

1.2 The physics of particles 7



1.2.2 Quantum mechanics

The second ingredient needed to describe particles is quantum mechanics: the theory
of Nature at small scales. As humans, we are used to the deterministic behaviour
of simple objects. If you throw a ball, it will take a perfectly predictable orbit and
land back on the ground at a predictable time with a predictable speed. However,
at the scales of atoms, that isn’t true anymore. At such scales, particles behave in a
probabilistic way. If you would “throw” an atom like a ball, it could take any orbit,
even highly counterintuitive ones. However, every path will have some probability
associated with it. What quantum mechanics calculates, is not the path the atom
will follow but the probability it will follow a given path.

The consequences of the probabilistic nature of small particles become apparent
when two such particles collide. What comes out of one collision will be unpre-
dictable. The particles may come out of the collisions unscathed but kicked out
of their original course, may have lost energy converted to new particles, or dif-
ferent particles may come out. But for every scenario, one can calculate a kind of
“probability” that it will happen.

This probability is called a cross-section. One can understand the reason for this
name by comparing a collision with a game of archery. Imagine an archer shooting
an arrow at a target without aiming too much. He will hit the target with a certain
probability determined by the area or the cross-section of the target.

In the same way, if two particles hit each other, one can imagine that they behave
like spheres with a certain cross-section. However, contrary to intuition the size
of the cross-section depends on the outcome of the collision. For instance, if we
collide a positron and an electron, we might be interested in an “elastic” collision
(they deflect and go on their separate ways) or “annihilation” (they merge and
convert into photons). The cross-sections for both types of collisions will be different.
Furthermore, cross-sections in particle physics are rather small. That is why they are
usually expressed in so-called “barns” (b) with 1 b = 1 × 10−28 m2.

1.2.3 The standard model of particle physics

Using special relativity and quantum mechanics, one can construct a theory describ-
ing how our universe works. Experiment drives this construction, as any newly
observed particle needs to fit in. Successful theories also spark new experimen-
tal searches and measurements by predicting yet unseen phenomena. Over the
past decades, this interplay between experiment and theory has led to one of the
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most successful theories physics has ever conceived: the standard model of particle
physics, or SM.

According to this model, the world consists of the particles (and anti-particles) shown
in figure 1.1. On the left, there are the fermions, divided into two classes: quarks
above and leptons below. Each class has two subtypes (rows), whose electrical
charges differ by one time the electron charge e. Each fermion also falls into
one of three generations (the columns), with the left generation containing the
lightest and the right the heaviest fermions1 On the right of the picture, we have the
force-mediating bosons mentioned earlier.

One can write down the SM with only these bosons and the fermions, but that causes
a problem: to work, such a theory can only have massless particles. An elegant
solution to this problem is the Brout-Englert-Higgs mechanism, which the Belgians
Francois Englert and Robert Brout and independently the American Peter Higgs first
discovered [29, 30]. In short, this mechanism introduces a field, called the Higgs
field, that fills all of space. The massless standard model particles have to move
through this field which, in a way, “obstructs” their motion. As a consequence, they
acquire an effective mass. Massless particles like photons and gluons do not interact
with this field and can therefore move freely at the speed of light.

The introduction of the Higgs field comes with an associated particle, the Higgs
boson, which has a prominent place in the middle of figure 1.1. It is the only boson
not associated with a force. It was also the last particle of the SM discovered: at
the LHC in 2012 [31, 32]. Since then, scientists have been intensely studying its
properties, but there has been no deviation from the SM scenario yet. That is one of
the biggest reasons the SM is considered so successful.

The SM not only successfully predicted the Higgs but also many other processes with
unprecedented accuracy. Nevertheless, no physicist believes the SM is complete. It
does not explain some phenomena, such as gravity, dark matter and dark energy, and
neutrino masses. Furthermore, there is a growing amount of experimental “tension”:
observations deviating from SM predictions but are not enough to rule out the SM.
Only recently, a strong deviation appeared in the mass of the W boson [33]. For all
those reasons, there is still an urgent need for better experiments. Predictions need
to be tested in extremer situations and with higher precision. Only this way, there is
a chance we will find a theory that supersedes the SM.

1This assertion is actually not yet established for the neutrinos. Experiments still allow for the tau
neutrino to be the lightest neutrino, although they slightly favour a heavy tau neutrino [27, 28].
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Fig. 1.1.: The particles of the standard model. Figure from [34].

1.3 Accelerators

There is a large variety of experiments one can come up with to test our current
knowledge of particle physics. They can involve phenomena like radioactive decay
(e.g. KATRIN [35]), antimatter energy spectra (e.g. ALPHA [36]), or cosmic
gamma radiation (e.g. with the Fermi LAT [37]). Many experiments consider
particle collisions of some sort. In these experiments, accelerators are omnipresent
tools. These machines speed up charged particles using electrical fields up to some
energy, after which they are ready to collide with some target. Accelerators can be
categorised based on the kind of target, their shape, or what they accelerate.

1.3.1 The target

One possible target is a stationary object made of some dense material like lead.
Experiments using such a target are called fixed-target experiments. The famous
Rutherford experiment was such an experiment, although one that used a radioactive
source instead of an accelerator [2]. Fixed targets often crop up in neutrino experi-
ments, like the former OPERA experiment [38] or the future DUNE experiment [39].
The reason is that a fixed target can offer a very high collision rate because of the
high density of target particles. As neutrinos interact very weakly, that is a big asset.
However, the downside is that not all the energy of the incoming particle is available
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for the collision. The incoming particle and the stationary target particle together
have a net momentum, which must be conserved. Therefore, part of the total energy
is not available for the collision.

One can overcome this problem by colliding two beams of particles moving in
opposite directions. Such types of experiments are called collider experiments.
The former CDF and DØ experiments that discovered the top quark were of this
type [40–43]. If the beams move symmetrically, the net momentum is zero so that
the full energy of both beams is available for the collision. Hence, much higher
energies are attainable than in fixed-target experiments, but the collision rate will
generally be lower.

1.3.2 The shape

Accelerators come into two shapes: linear and circular. As the names suggest, a
linear accelerator accelerates charged particles on a straight path, while circular
accelerators move the particle in a circle. One can achieve a circular orbit using
magnetic fields, which bend the path of charged particles moving through them.

A linear design implies that the acceleration is a one-way trip: every particle can only
be accelerated one time and, therefore, can have only one opportunity to collide.
That is not the case for circular accelerators, where every particle can have many
more opportunities to collide.

However, the circular movement makes it more difficult to achieve higher energies
because a charged particle that accelerates will lose energy by radiating so-called
synchrotron radiation [44]. This effect grows with energy but much more so for
circular movement. Hence, it affects circular accelerators more than linear ones.

1.3.3 The particles

A final way to categorise accelerator experiments is according to the particles they
accelerate. Although any charged particle is usable, the easiest to work with are
either electrons or protons, as those are stable and abundantly available.

Leptonic accelerators use electrons, as well as positrons. The largest of this kind was
the former LEP at CERN in Geneva [45]. Such an experiment has the advantage it
collides fundamental particles that are simple in nature. The resulting collisions are,
therefore, easier to model. Electrons are also not subject to the strong interaction,
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which is usually hard to handle computationally. On the other hand, the small mass
of electrons makes them much more prone to synchrotron radiation, which goes as
m−4 [44]. Consequently, they cannot be accelerated as much.

Hadronic colliders make use of protons or sometimes heavy nuclei such as lead.
Thanks to their heavy mass, such particles emit much less synchrotron radiation and
can, therefore, attain higher energies. However, a proton consists of constituent
particles carrying a variable fraction of the proton’s energy. When colliding two
high-energy protons, we actually see collisions between their constituents at a lower
variable energy. That makes the situation a lot less clean and more challenging,
also because the strong interaction is now directly involved. At the same time, it
allows us to measure collisions at different energies simultaneously, as opposed to
one well-defined energy like in the leptonic case. That is why hadronic accelerators
are sometimes referred to as discovery machines. The most prominent examples
are the former Tevatron (used by the DØ and CDF experiments [40, 41]) and the
current LHC.

1.4 CERN and the Large Hadron Collider

The LHC, or Large Hadron Collider, is the most powerful hadronic collider built
to date. It is located at CERN, an international research centre near Geneva that
hosts a rich spectrum of particle physics experiments covering almost all of the
categories described earlier. Figure 1.2 shows a schematic overview of all accelerator
infrastructure and experiments at CERN.

The most eye-catching presence on the CERN domain are certainly the circular
accelerators. They form a sequence of machines accelerating particles in a stepwise
fashion. The first circular collider at CERN was the 628 m circumference Proton
Synchrotron (PS) [46]. Later, it became a pre-accelerator to the larger 7 km long
Super Proton Synchrotron (SPS) [47]. In 1989, CERN built an even larger ring of
27 km diameter to install a leptonic accelerator, the Large Electron Position collider
(LEP) [45]. In 2010, LEP was dismantled and replaced with the LHC.

Linear accelerators (LINACs) are used to inject particles into the accelerator chains.
For instance, LINAC4 provides protons to the booster from which they continue to
the PS [48]. LINAC3, on the other hand, is the starting point for heavy ions, from
which they enter the Low Energy Ion Ring (LEIR) that then passes them on to the
PS [49]. CERN also has a LINAC, called CLEAR (CERN Linear Electron Accelerator
for Research), meant for research on accelerator technology [50].
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Fig. 1.2.: A schematic overview of the CERN infrastructure and experiments (not to scale).
Figure from [57].

The main experiments operating on LHC are CMS (Compact Muon Solenoid) [51], AT-
LAS (A Toroidal LHC Apparatus) [52], ALICE (A Large Ion Collider Experiment) [53],
and LHCb (with the b for beauty) [54]. All four of them are collider experiments.
CMS and ATLAS are so-called general-purpose detectors, which do not target specific
types of collisions. These detectors are built to detect as much as possible of the
collision remnants by covering almost the entire space surrounding the collision
point. ALICE, on the other hand, specialises in heavy-ion collisions, while LHCb
studies mainly collisions in which the remnants are ejected almost parallel to the
beamline.

Besides the collider experiments, CERN also hosts smaller fixed-target experiments.
For instance, COMPASS (COmmon Muon Proton Apparatus for Structure and Spec-
troscopy) targets polarised protons and deuterons with muon and pion beams, which
are created by hitting a target with protons from the SPS [55]. FASER (ForwArd
Search ExpeRiment) has a tungsten target for studying the beams of neutrinos
escaping from the collisions at the CMS collision point [56].
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Large Hadron Collider 2
„The only way for Humanity to push back the

limit of knowledge and to make great progress is
through difficult, challenging, and brave
initiatives.

— Fabiola Gianotti
Director General at CERN

The topic of this thesis is inextricably linked with the Large Hadron Collider (LHC)
at CERN in Geneva. It is, therefore, useful to have a closer look at this particular
collider. Along the way, I will introduce the theory, instrumentation and jargon that
foster a better understanding of the chapters hereafter.

2.1 Overall structure

The LHC accelerates protons up to an energy of 7 TeV in two opposite directions
inside a ring of 27 km circumference [6]. As one can see in figure 2.1 this ring is
not a perfect circle but an alteration of eight straight sections and eight arcs. A
section between two consecutive arc centres is called an octant. The arcs contain
mainly dipole magnets that bend the particles on a circular orbit. Left and right to
the arcs, dispersion suppressors focus the beams using a combination of dipole and
quadrupole magnets. In the straight sections, the beams undergo various kinds of
manipulation, such as cleaning, dumping, or colliding [58]. The actual collisions of
the beams happen at four points called interaction points (IP). Here the two beams
switch between the outer and inner orbit of the ring such that each beam travels the
same overall distance. CMS is located at IP5, referring to the fifth straight section.
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Fig. 2.1.: Schematic layout of the LHC. The ring is made of Long Straight Sections (LSS)
and arcs with Dispersion Supressors (DSL and DSR) in between. Figure from [6].

2.2 Proton bunches

The beams are no continuous streams of protons but rather a sequence of bunches.
The LHC can produce a bunch every 25 n sec, which divides the ring into 3600 bunch
slots. However, for operational reasons, one can fill only a maximum of 2800. The
bunches themselves have a width in time of 2.5 n sec. This time interval divides every
bunch slot into ten subintervals, called Radio Frequency (RF) buckets, of which
ideally only one contains protons.

Although in principle, all charges circulating in the ring should be part of a bunch,
protons can end up detached from the rest by accident. If such protons move
inside nominally empty bunch slots, we refer to them as ghosts. On the other hand,
satellites are part of a filled slot but move inside a nominally empty RF bucket. Both
ghosts and satellites are detectable with the help of the Longitudinal Density Monitor
(LDM)[59]. This detector measures the longitudinal profile of the beams (i.e. the
relative proton populations along the beamline) at an even higher time resolution
(50 ps). The measurement uses the synchrotron radiation that the protons emit as
they move in a circular orbit.
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2.3 Beam currents

An essential parameter of the LHC is the number of protons per bunch or bunch
current, which is typically around 1 × 1011. Two basic techniques to measure it are
available [60], one of which uses the magnetic field induced by the beam current.
As the beams are a collection of separate bunches, these magnetic fields vary in time
and create currents in neighbouring conductors. A detector using this technique
is called a Fast Current Transformer (FCT). Its main advantage is its high time
resolution which allows it to measure the bunches separately. LHC uses FCTs with a
time resolution of 25 ns, corresponding to one bunch time slot [61]. These FCTs are
called FBCTs with the B for “bunch”.

An alternative is the DCCT or Direct Current Current Transformer, which figure 2.2
pictures diagrammatically. Such a detector consists of two parallel ring-shaped yokes
magnetised alternatingly up to saturation in a symmetric fashion. I.e. the net field
of both rings is zero. Around both rings, there is a coil in which the alternating
magnetic fields generate currents, but no net current will flow as the fields of both
rings cancel each other. If, however, a direct current flows through the ring centres,
they will be magnetised preferentially in one direction. Under such circumstances,
one of the rings saturates faster than the other, meaning the net field in both rings
starts alternating, and the third coil sees a current.

The DCCT system used at LHC is described in [62]. It can determine the overall
current (i.e. the sum of all bunches) with a precision of 0.2 %, which is much better
than FBCT, which has a 1 % precision per bunch. However, as the DCCT relies on
the average, direct current, it has a much worse time resolution (20 µs). Therefore,
one renormalises the FBCT measurements to the measured DCCT current.

Both DCCT and FBCT measurements require some care since ghosts and satellites
also contribute to the current. The FBCT cannot pick up ghosts because their charge
falls below the FBCT threshold current. However, its measurement will include
satellites since it measures the whole charge per bunch slot rather than per RF
bucket. The DCCT adds the integrated charge of both ghosts and satellites to its
measurement. Accounting for these facts, the current nj of the jth bunch in a series
of bunches is

nj = nj
FCT(1 − f j

sat)
NDCCT(1 − fg)∑

k nk
FCT

, (2.1)

where f j
sat is the fraction of satellites in the bunch, and fg is the ghost fraction of all

bunches together.
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Fig. 2.2.: DCCT measurement principle. The alternating fields in both tori cancel each
other, such that no current flows through a coil wrapped around both tori. A
direct current breaks the symmetry, such that a net filed arises and current starts
flowing. Figure from [60].

2.4 Beam positions

The bunch position is a second parameter characterising the bunch as a whole. It
is usually expressed in either µm or mm. Its measurement is crucial for the safe
operation of the LHC, and to measure other important parameters such as luminosity
and beam optics, as will be discussed later.

The basic principle of a beam position measurement is image current, which is the
current induced by the passing bunches in nearby conductors [60]. These nearby
conductors are the so-called pick-up plates, insulated metal plates incorporated in
the the beam pipe walls. The closer the bunch passes by the pick-up plate, the
stronger the resulting current. With two oppositely facing pick-up plates, one can
use the difference of the currents in both plates as a position measurement. With
a configuration like the one in figure 2.3, one can determine the two-dimensional
position in the transverse plane.

The LHC has over a thousand BPMs, most of which are in the arcs or the dispersion
suppressors [6]. The LHC also has a somewhat different type of BPM called DOROS
(Diode Orbit and Oscillation system) [63]. Those use the same technique but
process the signal differently from standard BPMs, using diodes to achieve a higher
resolution and be sensitive to small oscillations. The LHC has DOROS systems
located on its collimators and next to the interaction points at the experiments.
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Fig. 2.3.: Left: schematic drawing of a button BPM configuration. Right: parts of a button
BPM used at LHC. The left part is directed towards the inside of the beam tube.
Images from [60].

2.5 Beam optics

Making a proton move in a circular orbit requires a centripetal force, i.e. a force that
is always at right angles with the movement. Such a force is precisely what uniform
magnetic fields generate. Indeed, a particle of charge q moving at a speed v⃗ inside a
constant field B⃗ will be subject to the Lorentz force

F⃗ = qv⃗ × B⃗.

One can achieve a uniform magnetic field with two flat magnets with a south (S)
and north (N) pole by positioning the S pole of one magnet parallel to the N pole of
the other. Such a construction is called a dipole magnet.

In the LHC, not just one proton is in orbit, but a whole bunch. Inevitably, the
protons within such a bunch repel each other. Furthermore, in the straight section,
the protons do not feel the dipole field anymore, and tend to move away from the
central orbit anyway. There is, therefore, a need to focus the beams, which is a job
reserved for the quadrupole magnets. As the name suggests, such a magnet is made
of four poles arranged as on the left in figure 2.4. A particle moving away from
the reader inside the field of figure 2.4 will experience a vertical force towards and
a horizontal force away from the centre. With a construction like on the right in
figure 2.4, one can achieve the desired focussing.

The entire magnetic layout of the LHC is referred to as beam optics. Besides dipoles
and quadrupoles, it also contains higher-order multipole magnets with different
purposes. An exact calculation of the beam dynamics is impossible. However, for
the case of the LHC, the Hill’s equations provide a good approximation for small
perturbation around the stable orbit [66]:
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Fig. 2.4.: Left: Field lines of an ideal quadrupole magnet. The forces (blue) are shown
for a particle moving away from the reader. Figure from [64]. Right: Foccusing
combination of quadrupoles. Figure from [65].

x′′(s) +
( 1

ρ2
n(s) + Kn(s)

)
x(s) = 0 (2.2)

y′′(s) − Kn(s)y(s) = 0 (2.3)

where s is the coordinate along the beamline, x the coordinate along the orbit’s
radius, and y the coordinate perpendicular to the orbit’s plane. ρn is the radius of
the orbit determined by the dipolar magnets, while Kn is the quadrupole focussing
strength. Note that the quadrupole effect comes with a different sign in both
equation, indicating that a single quadrupole focussing in one plane will defocus in
the other.

Equations (2.2) and (2.3) are reminiscent of classical harmonic motion with force
constant Kx = 1/ρ2

n + Kn or Ky = −Kn. If the ρn(s) and Kn(s) vary slowly with s,
then that is locally true. Therefore, the solution is harmonic with an s-dependent
frequency and amplitude [67]:

u(s) =
√

ϵβ(s) cos(ϕ(s) − ϕ)

with u = x, y. Note that the functions and constants to the left are different for
u = x, y.

The emittance ϵ is a length scale describing the overall amplitude of the oscillation.
In principle, every particle has a different emittance, but one can take the root mean
square ϵu,rms, for instance, to define a bunch emittance.
The beta function β(s) only depends on the magnetic structure, as it obeys

1
2β′β − 1

4β′′ + β2Ku = 1
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which follows from resubstituting the solution into Hill’s equations. This function is,
therefore, the same for all particles. Together with the bunch emittance, it defines
the beam envelope

√
ϵβ(s).

Finally, the function ϕ(s) is called the phase advance. It is directly related to the beta
function via

ϕ(s) =
∫ s

0

ds

β(s)

which also follows from resubstitution. From the phase advance one can derive the
tune as the phase advance over one full orbit divided by 2π:

Q = 1
2π

∮
ds

β(s) .

It represents the number of oscillations the particle executed over the distance s.

An alternative form for the solution to Hill’s equations is the transfer matrix M .
Given the position u and angle u′ at s = 0, one can compute (u, u′) at any s via

√
β
β0

(cos ϕ + α0 cos ϕ)
√

ββ0 sin ϕ

α0−α√
ββ0

cos ϕ − 1+α0α√
ββ0

sin ϕ
√

β
β0

(cos ϕ − α0 cos ϕ)


s︸ ︷︷ ︸

M(s)

(
u

u′

)
0

(2.4)

where α = −β′/2 measures the slope of the beta function. When one wants to
compute the propagation of the protons from one collision at an IP to the next, one
can use a simplified formula because the beta function reaches a minimal value, β∗,
at the IPs. One wants, after all, to maximise collision rates, hence make the beam
size as small as possible. That means αIP = 0, so the transfer matrix of a full turn, in
this case, becomes (

u

u′

)
0

7→
(

cos 2πQ β∗ sin 2πQ

− 1
β∗ sin 2πQ cos 2πQ

)
︸ ︷︷ ︸

M∗

(
u

u′

)
0

(2.5)

The beam optics parameters strongly influence the performance of the LHC, so
their measurement is an important task. For the emittances, several methods are
available [68, 69]. The reference method at the LHC is the wire scanners. These
devices move a thin carbon wire across the beam and measure the radiation which
the interaction between the wire and the protons induces. Another method is based
on synchrotron radiation. This transverse analogon to the LDM is called the Beam
Synchrotron Radiation Telescope (BSRT). It is calibrated using the wire scanners.
The overall accuracy if the emittance measurements is in the range of 10 % to 20 %.
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Measuring the phase advance and tune amounts to counting the number of oscil-
lations after applying a kick to the beam away from the stable orbit [70]. The
BPM measurements are essential for this counting, especially those of DOROS. That
system can measure oscillations of smaller amplitude than normal BPMs can, such
that a smaller and safer kick suffices.

Two methods are available for a beta function measurement: the wire scanners
or K-modulation [71, 72]. In the latter method, one changes the strength of a
quadrupole by an amount ∆K, resulting in a shift ∆ϕ in the measured tune. Then if
he shift is small, one can show that βx,y = ±4π∆ϕ/∆K. The sign is different for the
x and y planes since a quadrupole magnet defocusses in one plane and focusses in
the other. A typical uncertainty for this method is 2 % to 5 %, which is much smaller
then the 10 % to 20 % uncertainty range of wire scanners.
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Luminosity 3
„And God said, Let there be light: and there was

light. And God saw the light, that it was good:
and God divided the light from the darkness.

— King James Bible, Gen. 1. 3-4

The name luminosity derives from the Latin word lumen, which means light. That
makes the name somewhat confusing, as we are not dealing with photons but with
accelerated protons or electrons. The fact that luminosity in astronomy already
denotes the total energy output per second of a star only adds insult to injury.
However, the following will show that, in some sense, the different meanings of
luminosity do not differ that much.

3.1 What is luminosity

In the head of a particle physicist, the luminosity of a collision experiment is the
number of times one tries to generate a collision every second. This intuition arises
because of the analogy with a game of dice throwing. As explained in chapter 1,
one collision represents a purely random process with an associated cross-section
depending on the outcome of the collision. One can think of a collision as one throw
with an unknown die, with every dice number representing a possible outcome of
the collision.

A scientist wants to investigate the die but cannot look at it directly. He can, however,
throw it as many times as he wants and know the numbers he threw. Then imagine
the scientist counts twelve fives. This fact alone is already a discovery in its own
right since our investigator now knows there is a five written on the dice. However,
the probability p of throwing a five could still be anywhere between 0 % and 100 %.
To get an idea of p, the investigator had to count the number of throws N , so he
would know the probability is approximately 12/N .

A collision experiment is essentially the same as the dice research of our investigator.
We take a hypothetical type of collision and count the average number of times dN
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we observe it per time interval dt. If we find a non-zero dN , we have discovered
that the collision exists. Then we want to compute the cross-section σ. To do so, we
use

dN

dt
= σL, (3.1)

where L is called the instantaneous luminosity. A typical unit is cm−2 s−1. As already
mentioned, it represents the number of attempts to create the given collision. Of
course, we cannot count collisions instantaneously (i.e. with δt infinitely small).
Usually, we count the number of collisions over an extended time, which amounts to
integrating equation (3.1). In that time, L can change, but σ is constant. Hence, the
following formula

N = σ

∫
L(t)dt (3.2)

We talk now about the integrated luminosity
∫

Ldt, which is unsually expressed in
fb−1. (Recall that 1 b = 1 × 10−28 m2.) Particle physicists usually report this number
when asked about the data amount their experiment has amassed.

Although one can liken luminosity to dice throwing, there is a crucial difference
which one can understand by looking at figure 3.1. It shows a collision of two
bunches counting N1 and N2 protons, respectively, which is repeated at a frequency
ν. Thinking about the luminosity as the number of collision attempts, one could
say that every pair of protons, N1N2 in total, represents one attempt. So we have
νN1N2 attempts every second, or L = νN1N2. However, this reasoning overlooks
one factor: the area over which the protons spread out. If that area is large, only a
few protons will collide, while if it is small, more collisions will happen. This area,
called the transverse luminous area, is under our control, so it must also be a part of
the number of collision attempts. Hence, one can calculate luminosity as

L = νN1N2
Alum

(3.3)

3.2 Why luminosity matters

When learning about luminosity, it is easy consider it only a minor issue compared
to “really” matters, i.e. the cross-sections. Indeed, knowledge of the luminosity
value does not tell you any secrets about the essence of Nature. It only quantifies
the power of the experiment at hand. Nevertheless, it is crucial knowledge.
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Fig. 3.1.: An illustration of luminosity for two colliding proton bunches. Figure from [73]
.

Equations (3.1) and (3.2) tell that calculating cross-sections amounts to counting
collisions and dividing the observed number through the luminosity. So, first of all,
without the luminosity, one cannot determine cross-sections directly. Moreover, any
uncertainty on L directly affects all cross-section measurements in the same way.
That is not a problem if the uncertainty on N dominates, but as we collect more
data and improve reconstruction techniques, N becomes ever more precise. For this
reason, the luminosity uncertainty has started to dominate the overall uncertainty in
some measurements.

For instance, luminosity alone accounts for 19 % of the total uncertainty on the
latest inclusive cross-section measurement for top quark-antiquark pair production
with emission of a photon [19]. For the CMS measurement of WZ production, the
luminosity contribution is even 28 % [20]. Even in differential cross-sections, the
luminosity uncertainty can dominate, which is the case in the latest CMS measure-
ment of Drell-Yan pair production (which is not published yet) [21]. Drell-Yan pairs
are lepton-antilepton pairs arising from a virtual photon. Figure 3.2 shows uncer-
tainty on the measured cross-section of this process as a function of the transverse
momentum of the Drell-Yan pair.

3.3 Theory of luminosity

Given the importance of luminosity, it is worthwhile to look more closely at it.
Equation (3.3) already gives us insight into what factors influence the luminosity
but does not tell us what Alum exactly represents. To know more, we will make use
of the archery analogy.

Imagine an archery game in which we have Nt targets of cross-section σ suspended
in a room, open one side with area A. The vision of an archer looking at the room
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Fig. 3.2.: Relative uncertainty on the Drell-Yan pair production cross-section with an in-
variant mass in the range 76 GeV to 106 GeV as a function of the transverse
momentum of the Drell-Yan pair. Luminosity accounts almost exclusively for the
error on the central bins. Figure from [21].

Fig. 3.3.: Vision of the archer on the targets. The total area A is covered by N targets of
cross-section σ. The hit probability is Nσ/A.

would look like the right side of figure 3.3. If he shoots an arrow at random within
the boundaries of the open wall, the chance of hitting a target will be p = Ntσ/A.

Now imagine the room extends infinitely far in the direction perpendicular to the
open wall, with a uniform target density nt throughout. Then the targets will cover
the entire vision of the archer so that always p = 1. That is not very interesting, so
instead, we look at the probability the arrow will hit a target within a time interval
∆t. If the arrow moves at a speed v, it will have covered a distance v∆t barring
the possibility it hits something. The number of targets it can potentially hit in
that time is thus within the volume Av∆t and equal to Nt = ntAv∆t. Now we are
back in the finite room situation so that the hit probability within the time ∆t is
p = Ntσ/A = ntvσ∆t.

As a next step, we consider the case where we have not just one archer shooting one
arrow but a whole group of archers shooting a cloud of arrows. Assume the cloud
extends uniformly with density na over a length d within the room and moves at a
speed v. Then we have Na = naAd arrows, each with a hit probability p = ntvσ∆t

26 Chapter 3 Luminosity



within the time ∆t. We expect, therefore, ∆N = Nap = naAdntvσ∆t events per
time ∆t. According to formula equation (3.1), the instantaneous luminosity is

L = 1
σ

lim
∆t→0

∆N

∆t
= naAdntv.

The archery situation described is the analogy for a cuboid uniform particle cloud
of length d and cross-section A moving through a rectangular tube of the same
cross-section uniformly filled with particles. And although real-life particles do not
have a target-like cross-section, the same formula still applies.

The above situation with a cuboid moving through a rectangular tube is somewhat
artificial. In reality, one has two particle clouds, C1 and C2, moving with speeds v⃗1

and v⃗2, whose densities n1(r⃗, t) and n2(r⃗, t) vary. Assume for a moment the clouds
move along the same line. Then we can simplify the situation by putting ourselves
in a reference frame fixed to C2 where C1 moves with speed |v1 − v2| along, say,
the z-axis. Then at a time t, we can consider a small cuboid of C1 centred on the
point r⃗ of length dz along the z-axis, cross-section dA, and volume dV = dzdA. If
the cuboid is very small, and the densities of C1 and C2 vary smoothly in space
and time, then both n1 and n2 can be considered locally constant. Hence, the local
instantaneous luminosity is

dL(r⃗, t) = |v1 − v2|n1(r⃗, t)n2(r⃗, t)dV.

Now we add all local contributions to the total instantaneous luminosity of all
possible cuboids:

L(t) = |v1 − v2|
∫

dV n1(r⃗, t)n2(r⃗, t).

At the LHC, this instantaneous luminosity is not that interesting. More interesting
is the luminosity per bunch crossing, which is the integrated luminosity for the time
over which two bunches cross each other. For the two bunches, C1 and C2, it would
equal

L = |v1 − v2|
∫ ∞

−∞
dt

∫
dV n1(r⃗, t)n2(r⃗, t).

Furthermore, the LHC accelerates bunches to high speed so that during the crossing,
the bunches don’t change their shape. That means ni(r⃗, t) = ni(x⃗, z −vit) for i = 1, 2
with x⃗ = (x, y) the position in the transverse plane. Then

L = |v1 − v2|
∫

dx⃗

∫ ∞

−∞
dt

∫ ∞

−∞
dzn1(x⃗, z − v1t)n2(x⃗, z − v2t).
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We can apply a change of variables (t, z) 7→ (u1 = z − v1t, u2 = z − v2t) with
du1du2 = |v1 − v2|dzdt and define the transverse densities ñi(x⃗) =

∫∞
−∞ duini(x⃗, ui)

for i = 1, 2. Then the per-bunch luminosity is

L =
∫

dx⃗ñ1(x⃗)ñ2(x⃗).

To retrieve formula equation (3.3), we rewrite the transverse densities as the particle
number times the density profile ñi(x⃗) = Nifi(x⃗). The density profile is normalised
to unity:

∫
dx⃗fi(x⃗) = 1. Furthermore, we assume we have ν crossings per unit of

time. Then the luminosity per unit of time is

L = νN1N2

∫
dx⃗f1(x⃗)f2(x⃗). (3.4)

From this we see that

Aluminous =
(∫

dx⃗f1(x⃗)f2(x⃗)
)−1

, (3.5)

which concludes the derivation.

3.4 Measurement

With the precise meaning of luminosity at our disposal, we can now discuss ways to
measure it. There are several possibilities, all of which have their advantages and
disadvantages.

3.4.1 From machine parameters

The most obvious method is applying equation (3.4) directly. As discussed in
section 2.3, one can make direct measurements to determine the currents N1 and N2

as in equation (2.1). Any device whose time resolution is small enough to discern
different bunches, like the FBCT, can measure the frequency. The luminous area is a
bit trickier, but by making reasonable assumptions on the bunch density profile, e.g.
that it is gaussian, the integral has an analytical solution. To calculate Alum, one only
needs to measure the beta function and bunch emittance at the interaction point.
However, as mentioned insection 2.5, the uncertainty of the emittance measurement
can be over 10 % and is at best a few per cent if measured using K-modulation.
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If we want a better precision for the luminosity, we need to resort to a different
approach.

3.4.2 From a known cross-section

As equation (3.4) did not yield a satisfactory precision, one can try using the other
defining relation of luminosity: equation (3.1). If one has a process available with a
cross-section known with sufficiently high accuracy, one can count how many times
one observes that process and divide by the cross-section.

LEP, the leptonic collider preceding LHC, used this procedure based on elastic
electron-positron scattering or Babbha scattering. Because this is an electromagnetic
process between two fundamental particles, one can make precise calculations.
Moreover, this process has a large cross-section so that one quickly achieves high
statistics with a correspondingly small statistical uncertainty. That is why LEP could
achieve an impressive uncertainty as small as 0.05 % [74].

At LHC, however, there is no process as ideal as Babbha scattering. Since it is a
hadronic collider, almost all calculations involve QCD calculations which are much
less tractable. Any computation must also account for the inner structure of the
proton, which we only know through experimental research. That alone already
induces an uncertainty of about 2 % to 3 %. (See e.g. [20, 75].) Moreover, if one
chooses a less QCD-prone process, one quickly finds oneself with with too low
statistics.

3.4.3 The Van Der Meer Method

The previous two options are straightforward, but do not work for the LHC. Still,
it is possible to arrive at per cent level precision using equation (3.4) cleverly. The
idea is to displace one of the beams in the transverse plane over a vector δ⃗ = (δx, δy).
We can make this displacement apparent in equation (3.4) like this:

L(δ⃗) = νN1N2

∫
dx⃗f1(x⃗)f2(x⃗ + δ⃗).

The luminosity is now a function of δ⃗, which we can integrate:∫
L(δ⃗)dδ⃗ = νN1N2

∫
dδ⃗

∫
dx⃗f1(x⃗)f2(x⃗ + δ⃗).
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By the change of variable x⃗′ = x⃗ + δ⃗, the second integral factorises like∫
L(δ⃗)dδ⃗ = νN1N2

∫
dx⃗f1(x⃗)

∫
dx⃗′f2(x⃗′) = νN1N2,

where we used that the profile density functions are normalised to unity. One can
now choose a reference process with an unknown cross-section σvis, (referred to as
the visible cross-section). Applying equation (3.1) we find:

σvis = (νN1N2)−1
∫

dN

dt
(δ⃗)dδ⃗. (3.6)

The integral on the righthand side is measurable by counting the number of processes
at different δ⃗ and taking the sum. We already know how to measure the currents
and the frequency. Hence, with this equation, one can determine σvis without prior
knowledge of the luminosity. Moreover, we only have to do this entire procedure
once as the cross-section is, in principle, a constant, and from then on, proceed like
in section 3.4.2.

The Van De Meer method enabled the LHC experiments to reach a precision around
the 2 % level [13, 15]. Getting to such precision is far from trivial and requires an
extensive study of all the assumptions and corrections needed to compute equa-
tion (3.6) correctly. The next chapter will discuss this in more detail.
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The Van Der Meer Method 4
„Je moet open staan om warrige, rare ideeën uit

te werken. Als je denkt: dat is krankzinnig, dat
ziet iedere gek, dan moet je het juist niet aan de
kant schuiven.

— Simon Van Der Meer
Dutch accelerator physicist at CERN

Superficially, the Van Der Meer (VdM) method is simple. However, every step in
this procedure requires various assumptions to make the theory practicable. These
assumptions only hold to a certain extent, and their application introduces errors
in the final result. Therefore, one must apply corrections to get a high-precision
measurement. The following paragraphs will describe the VdM procedure, which
assumptions it makes, and how to mitigate the errors induced by those assumptions.
The discussion will be from the CMS viewpoint, as expounded at length in [15–
17].

4.1 Luminometers

The first step of the VdM procedures covers the choice of the process which will be
measured, as well as the detector that will perform the measurement. he chosen
detector is then a luminometer, while the process’s cross-section is the visible cross-
section σvis. The measurement of σvis takes place during a specialised time slot called
the the VdM calibration fill.

Apart from measurements of the currents equation (3.6) entirely relies on the
luminometers themselves. Consequently, σvis is not just the cross-section of an
abstract process: it is the cross-section for measuring the process with the given
luminometer. That means that σvis is dependent on the detector itself, which violates
two key assumptions of equation (3.1): stability and linearity.

Stability means that the cross-section does not change over time. For a physics
process, this assumption is almost trivial, provided the laws of physics do not change.

31



But a detector can degrade in performance over time because of radiation damage
inflicted by the intense collision rate of LHC. As the detector degrades, σvis will
change because, for instance, the chance of measuring the process becomes smaller
or the background increases.

Linearity means that σvis is independent of luminosity or that this equation is linear
in L. Again, this assumption is trivial for a physics process but not for a detector
process. Detectors will much more easily detect a given event if it has to deal with
only a few events simultaneously. The more is going on, the higher the chance
that two events create a coincident signal in time and place, which the detector
counts as one. For this reason, detectors will consistently undercount the total
number of events, and the higher the event rate, the more severe this undercounting
becomes.

A problem related to non-linearity is out-of-time pile-up, which occurs when bunch
crossings happen at a high frequency. In such circumstances, the detection of events
during one crossing can influence the detection during the next crossing because the
detector requires a non-zero time to record and recover from an event. That needs
to be accounted for when using a given luminometer.

4.2 The VdM integral

Once the luminometer and associated process are determined, one needs to calibrate
it, i.e. measure σvis. That involves the computation of equation (3.5), which requires
measurements over all possible displacements in the 2D plane. Such a series of
measurements is called a scan. Of course, a scan can only contain a finite amount of
measurements, so the integral has to be approximated as a discrete sum. But such
approximation leads to large statistical uncertainties.

A better approximation takes into account that beam profiles are smooth function so
that the observed event rate varies smoothly with the event rate. For instance, one
can use a Gaussian profile:

fi(x⃗) = 1
2π

√
det Vi

exp
(

−1
2 x⃗ · Vi · x⃗

)
,

with V the 2D covariance matrix. Using standard Gaussian integral identities, this
results in

dN

dt
(δ⃗) = σvisL(δ⃗) = σvisνN1N2

2π
√

det V
exp

(
−1

2 δ⃗ · V · δ⃗

)
,
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with V = V1 + V2 the convoluted covariance matrix. One can find V by fitting a
Gaussian function to the observed rates at different displacements from which we
calculate Alum = 2π

√
det V and, ultimately, σvis.

Another feature of the Gaussian approach is that one only needs two one-dimensional
scans to make the fit work. Indeed, we can align our frame of reference with the
eigenbasis of V , such that V = diag(Σ2

x, Σ2
y). Then

dN

dt
(δ⃗) = σvisνN1N2

2πΣxΣy
exp

(
− δ2

x

2Σ2
x

−
δ2

y

2Σ2
y

)
. (4.1)

Then the scans along the lines δx = 0 and δy = 0 yield Gaussian profiles with widths
Σy and Σx, respectively. One then fits a Gaussian to both scans independently and
computes Alum = 2πΣxΣy.

The problem is that the eigenbasis of V is not known a priori, so it is not clear
in which directions the scans have to be. However, to a good approximation, the
eigenbasis of V coincides with the LHC coordinate frame. So usually, it is assumed
that V is fully diagonal, and one performs the scans along the X- and Y -axis of the
LHC frame of reference. More generally, this assumption relies on factorizability: the
two-dimensional event rate factorizes into two one-dimensional functions of x and
y. In case V is not diagonal, one finds that the widths of the profiles in both scans
diminish by a factor

√
1 − ρ2 with ρ the correlation coefficient. Hence, assuming

factorizability results in a systematic underestimation of Alum, called factorization
bias.

Another problem is that the bunch widths encoded in V1 and V2 should a priori
depend to some extent on the displacement δ⃗. This dependency occurs because the
protons of both bunches repel each other, which causes a widening of the bunch
widths. We call this phenomenon incoherent beam-beam interaction because it
results from the interaction of individual protons rather than bunches as a coherent
whole. The effect on the luminosity is complex and, therefore, estimated numerically
using Monte Carlo simulation [76].

4.3 Displacing the beams

After deciding how to calculate the luminous area, one needs to figure out how to
displace the beams. The displacement of one beam in a fixed direction requires a
pair of corrector magnets: one kicks the bunch off course while the other relevels
the bunch. On the other side of the IP, two corrector magnets perform the same
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action in reverse. The goal is to create closed orbit bumps: the beams are displaced
inside the corrector magnet region, but their orbit outside that region should be
undisturbed. In total, for two beams and two directions, there are sixteen magnets
active in this manoeuvre located between 160 m and 230 m from the IP.

The corrected magnets get instructions to displace the beams to a so-called nominal
position, but the effective position after displacement will deviate slightly. Several
effects can or could result in such deviations.

4.3.1 Length scale and misalignment

First of all, the response of the magnets will generally not exactly correspond to the
nominally required response. In general, the response to a nominal displacement
(xnom, ynom) is given by (

x

y

)
=
(

αx βx

βy αy

)(
xnom

ynom

)
, (4.2)

where αx,y ≈ 1 are the length scale factors and βx,y ≈ 0 the misalignment factors.
Usually, one assumes a linear response, which means neither α nor β depends on
the displacement.
Non-unity length scale factors imply that the scale of the magnet response is not
exactly equal to the nominal scale. Non-zero misalignment factors tell us that the
frame of reference of the magnets is slightly tilted relative to the nominal frame.
Applying equation (4.2) to equation (4.1), we can see that a scan along the X-axis
(ynom = 0) yields a profile with width

Σ′
x = Σx

αx

(
1 +

β2
yΣ2

x

α2
xΣ2

y

)−1/2

.

So the measured width scales as α−1
x . Therefore, if there is any uncertainty on αx, it

will translate directly to an uncertainty Alum and σvis. The misalignment, on the other
hand, introduces a bias similar to the factorization bias with ρ = βyΣx/αxΣy.

4.3.2 Coherent beam-beam effects

We already encountered the incoherent beam-beam effects, which considered the
repulsion between the protons of different beams individually. But the bunches as a
whole also exert an electromagnetic force on each other, which results in a coherent
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beam-beam effect, also called beam-beam deflection [77, 78]. Due to this force, the
bunches will be deflected over an angle θ, called a kick. Assuming the bunches are
factorizable, spherically symmetric, and rigid, this kick looks like

θ1 =
√

πN2rp

γ∆

(
1 − exp

(
− ∆2

2Σ2

))
. (4.3)

Here, θ1 is the angle over which one bunch is deflected due to the force of the other
bunch. The bunches are at a distance ∆ from each other and have a convoluted
width given by Σ. Finally, N2 is the number of protons in the bunch exerting the
force, γ is the relativistic gamma factor, and rp is the proton radius.

We see that θ1 = 0 at ∆ = 0, as then the beams do not exert a net force onto
each other. θ1 also falls off again at larger ∆, as then the force gets smaller. In
between, it reaches a maximal deflection. (See figure 4.1). This behaviour remains
for non-symmetrical bunches, although the formulas are more complex in this
case [79].

One single deflection will not lead to a measurable displacement at the collision
point itself, as the collision happens too fast for that to occur. However, as LHC is
circular, the bunches will deflect each other repeatedly, eventually resulting in a net
displacement. To calculate it, we use the formalism from section 2.5. Suppose we
move the beams to a separation ∆ along the X-axis. A deviation u of beam 1 relative
to its stable orbit will be described by equation (2.5). Note that the derivative u′

relative to the coordinate s represents the orbit angle in the xs-plane along the
beamline. Hence, the beam-beam kick can be represented by(

u

u′

)
after,0

=
(

u

u′

)
before,0

+
(

0
θ

)
.

After the kick, the beam will perform betatron oscillations while travelling through
the LHC. Before colliding once more, the deviation u and angle u′ are(

u

u′

)
before,1

= M∗
(

u

u′

)
after,0

= M∗
(

u

u′

)
before,0

+ M∗
(

0
θ

)
.

So generally, the beam will enter the second collision at a different deviation and
angle. However, there is one stable solution for the above equation, for which the
deviation and angle before colliding are always the same. It is given by(

u∗

u′∗

)
before

= (1 − M∗)−1M∗
(

0
θ1

)
=
(

β∗ cot πQ

−1

)
θ

2 . (4.4)
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Fig. 4.1.: Displacement caused by coherent beam-beam interaction as a function of the
displacement along the X-axis. The bunches are assumed to be factorizable.

Unsurprisingly, the stable orbit is one in which the beam enters and leaves symmetri-
cally, at an angel θ/2. The stable orbit with kick is displaced relative to the stable
orbit without, by an amount

∆uBB = β∗ cot πQ

2

√
πN2rp

γ∆

(
1 − exp

(
− ∆2

2Σ2

))
(4.5)

Eventually, the beams will reach this new stable orbit because of friction-like effects
such as synchrotron radiation. Therefore, equation (4.5) is effectively gives the
effect of the beam-beam deflection on the beam position.

4.3.3 Unexplained deviations

After accounting for all the previous effects, there will still be some residual de-
viations left. These residuals are a consequence of random changes in the LHC
conditions to at least some degree. They are, therefore, not reproducible between
repeated scans. One can partially correct this random constituent called orbit drift
by comparing the (nominal) head-on positions of the beams before and after each
(sub)scan.

However, that still leaves some residual differences. It is at the moment not clear
what those represent. It could be fast orbit drift or a systematic effect that we have
not considered before. For instance, there are some indications that the magnets
suffer from hysteresis effects [80]. This phenomenon makes the magnetisation of a
magnet dependent on its history, which would mean that the current beam position
also would depend on the movement history of the beam.
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4.4 The VdM fill

With all the above approximations and caveats in mind, one can construct a program
to perform the σvis measurement. Such a program takes place every year during
one dedicated fill, which is a period over which there is a continuous circulation
of proton bunches in the LHC. From a general scientific point of view, the most
interesting fills are physics fills. Their main characteristics are concentrated bunches
colliding head-on at the highest possible frequency for maximal luminosity.

The VdM fill, on the other hand, uses only a limited amount of bunches coming in at
a much lower frequency. That makes the interaction between subsequent bunches
minimal and avoids out-of-time pile-up. The bunches are also wide to limit the
number of events per crossing so that linearity issues are irrelevant. Wide bunches
also make the number of events drop less fast when the beams move away from
each other in the VdM scans. That allows for larger displacements, which benefits
the analysis.

The defining characteristic of the VdM fill is, however, the intricate sequence of
displacements as illustrated in figure 4.2. It shows the nominal beam movement
during the VdM fill from 2017 at the CMS experiment. One can see several different
scan types serving various purposes. The following paragraphs will describe each of
them, explain their goals and how they reach them in the CMS experiment.
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Fig. 4.2.: The nominal beam position during VdM fill in 2017, or fill 6016. The transverse
horizontal (X) and transverse vertical (Y ) are shown for beam 1 and 2 separately.
Note the breaks in the time axis.
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4.4.1 Emittance scans
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The first scan appearing in figure 4.2 is an emittance
scan (ES). This type of scan is not typical to the VdM
fill but also appears in many physics fills. Essentially,
an ES is a very short VdM scan with shorter measure-
ments at fewer positions. From this, one can make a
rough measurement of σvis without losing too much
time for physics data taking. The ES estimates of σvis

are useful to monitor the stability and linearity of
the luminometers.

4.4.2 Van Der Meer scans
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Next in line is the VdM scan, which is a more elab-
orate version of an ES. They consist of two subscans
of 25 steps each 30 sec long. Between consecutive
steps, the beams are moved about 25 µm in opposite
directions so that the maximum separation reaches
about 600 µm. During the VdM scans, the actual mea-
surement of σvis takes place. The symmetric beam
movement has the advantage that it can achieve a

large separation, which benefits the precision of the VdM fits described earlier.

4.4.3 Off-set scan
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Off-set (OS) scans are similar to VdM scans but have
an additional offset in the plane perpendicular to the
scanning plane. In this way, one can probe a part of
the transverse plane different to the X- and Y -axis,
making it possible to evaluate the factorization bias.
However, the large separation in OS scans also means
much lower statistics, which might be background
dominated for some luminometers. In that case, OS
scans can still serve as a background measurement that can be subtracted from the
VdM scans.
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4.4.4 Beam Imaging scan
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In beam imaging (BI) scans, one of the beams re-
mains stationary while the other is moved over it.
The goal is to use the moving beam as a scanner to
make a profile image of the other beam. That works
as follows. When the moving beam moves by a vec-
tor δ⃗, the event count dN over a time ∆t in a small
area dA around x⃗ will be dN ∝ f1(x⃗)f2(x⃗ + δ⃗)dA.

Integrating over δ⃗ eliminates the the density f2 as it
is normalised to unity:

∫
(dN/dA)dδ⃗ ∝ f1. Therefore, the event density integrated

over the scan tells us the beam profile of the stationary beam.
BI scans require a detector that can localise the events in the transverse plane. At
CMS, such a detector is the silicon tracker: a cylindrical silicon detector installed
directly around the collision point. It measures the tracks of the particles created
in the collisions and traces those tracks back to points where a collision took place.
Such points are called vertices.
The BI scans can serve as a method for evaluating the factorization bias and correct-
ing it. One can even use them as an independent measurement of Alum, which only
depends on the profile functions. However, the vertex reconstruction precision also
limits the use of BI scans.

4.4.5 Length scale scans
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The goal of length scales (LS) scans is to determine
for both beams the length scale factors αx and αy

introduced in section 4.3.1. In a constant LS scan,
this is done by putting the beams at constant sep-
aration d and moving them in parallel. One then
uses the data from the CMS tracker, introduced in
section 4.4.4, to determine the so-called beam spot,
which is the point of highest collision rate. To a good
approximation, this is simply the average of both beam positions. If the beams
move with scale factors α1 and α2, then the beam spot will move with a scale factor
(α1 + α2)/2. If α1 = α2, then d will remain constant and so will the event rate.
Conversely, from the change in event rate, one can infer α1 − α2.
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X1 Y1 X2 Y2 An alternative method that the CMS collaboration only
recently implemented is the variable LS scan [16, 17]. In
such a scan, one “non-scanning” beam is moved to differ-
ent positions, while the other “scanning” beam performs
a three-step mini scan around each of those positions.
From the mini scans, one can estimate the position of
the beam spot when the beams would collide head-on,

which coincides with the position of the non-scanning beam. Hence, one can directly
extract the length scale factor for the non-scanning beam.

4.5 The CMS luminosity measurement from 2015-2016

The last publication on luminosity of the CMS collaboration reported the results for
2015 and 2016 [15]. The analysis of those two years achieved an uncertainty of
1.6 % and 1.2 % respectively. The analysis of 2017 and 2018 is still ongoing, although
preliminary results are already available [16, 17].

The contributions to the overall uncertainty in 2015 and 2016 are shown in table 4.1.
There is no clearly effect, but rather a lot of smaller uncertainties ranging from
0.1 % to 0.5 %. However, the uncertainties related to the beam positions contribute
substantially, through the length scale, (coherent) beam-beam effects, orbit drift,
and the residual differences. The study of the beam positions is, therefore, important
to achieve an even more precise luminosity measurement.
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Source 2015 [%] 2016 [%] Corr
Normalization uncertainty

Bunch population
Ghost and satellite charge 0.1 0.1 Yes
Beam current normalization 0.2 0.2 Yes

Beam position monitoring
Orbit drift 0.2 0.1 No
Residual differences 0.8 0.5 Yes

Beam overlap description
Beam-beam effects 0.5 0.5 Yes
Length scale calibration 0.2 0.3 Yes
Transverse factorizability 0.5 0.5 Yes

Result consistency
Other variations in σvis 0.6 0.3 No

Integration uncertainty
Out-of-time pileup corrections

Type 1 corrections 0.3 0.3 Yes
Type 2 corrections 0.1 0.3 Yes

Detector performance
Cross-detector stability 0.6 0.5 No
Linearity 0.5 0.3 Yes

Data acquisition
CMS deadtime 0.5 <0.1 No

Total normalization uncertainty 1.3 1.0 —
Total integration uncertainty 1.0 0.7 —
Total uncertainty 1.6 1.2 —

Tab. 4.1.: Contributions to the errors of the CMS luminosity measurement in 2015-2016.
The upper half (normalization) refers to the σvis measurement, while the lower
half (integration) shows all uncertainty that arises in using the luminometers
over an extended time period. Table from [15].
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Beam Position Monitor
Studies

5
„The distance between insanity and genius is

measured only by success.

— Bruce Feirstein
American screenwriter and humorist

The previous section introduced the problems arising as soon as one starts displacing
the beams. The uncertainties introduced through those problems make substantial
contributions to the total luminosity uncertainty. In this chapter, I will assess the
phenomena affecting the beam positions by looking at the data provided by the beam
position monitors (BPMs) during fills 6016 and 6868 in 2017 and 2018, respectively.
The goal is to subtract the effects we already understand and look into what remains
for new phenomena, like the hysteresis effect.

5.1 The data

The previous chapter showed the positions of the beams throughout the VdM fill.
Those positions are nominal and only roughly represent the real beam positions.
To get information about the true positions, the LHC provides two separate BPM
systems: the arc BPMs and the DOROS BPMs. Figure 5.1 gives a data fragment from
the fourth and fifth hours of the VdM fill in 2017. It shows two VdM scans, which
contain subscans in the X and Y planes. The data consists of X and Y coordinate
for both beams every second. I will refer to these four coordinates collectively as
beam coordinates. The full data for both VdM fills in both years can be found in
appendix A.

One can see that the arc and DOROS BPMs show very different pictures of the same
event. The reason is that both systems perform measurements at different places in
the ring. The DOROS BPMs are located right next to the collision point, at 21.6 m
on both sides. That is well within the range of the corrector magnets that move the
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Fig. 5.1.: DOROS (left) and arc (right) BPM measurements during the two first VdM scans
from fill 6016 in 2017.

beams during the VdM fill. That is why the full nominal movement appears in the
DOROS BPMs.

The arc BPM measurement works differently. It uses a set of arc BPMs in the interac-
tion point (IP) neighbourhood, but those are still outside the corrector magnets. An
LHC optics model takes in all these measurements and predicts the position at the
IP itself. However, this model does not take into account the corrector magnets. For
that reason, there is no movement visible in the arc data.

Note that the beam coordinates appear shifted relative to each other in both the arc
and DOROS BPMs. This offset is a measurement artefact that does not represent
a physical shift. I subtracted these offsets using optimisation scans: the wiggles
visible in figure 5.1 in the DOROS data on the extreme left. The LHC uses these
small wiggles to align the beams in a perfectly head-on configuration. After the
optimisation scans, the beams should be at x = y = 0, so any remaining shift in the
BPM data may be considered an unphysical offset.

5.2 Effects

The goal is to model the BPM data as a function of the nominal position taking into
account all the effects discussed in section 4.3. Figure 5.2 illustrates how each effect
manifests itself in the data.

We see that the DOROS data with the nominal positions subtracted still correlate
with the nominal positions, both in the plane of the nominal movement and in the
perpendicular plane. That could be due to length scale and misalignment effects.
It is important to note here, that these effects not only reflect the response of the
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Fig. 5.2.: Illustration of the different effects affecting the position: length scale factor (red
dashed), misalignment (purple dashed-dotted), linear orbit drift (green dotted),
beam-beam deflection (red ellipse), and unexplained movement (purple dashed
ellipse). The plots are only for illustrative purposes and have been selected
because they show pronounced effects. The upper figures show the DOROS
measurements with the nominal positions subtracted during a BI scan in the
Y plane from fill 6868 in 2018. The lower figures show the arc measurements
from a BI scan in the X plane from fill 6016 in 2017. Note that length scale and
misalignment in the case of the arc refer to leakage.
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corrector magnets, as explained in section 4.3.1. If the DOROS BPMs measure at
a different scale or are slightly tilted, the same effects will occur as those seen in
figure 5.2.

In figure 5.2, one can see that the arc data also show effects reminiscent of length
scale and misalignment, even though the arc BPM should be insensitive to the
movement during the VdM fill. This phenomenon, called leakage, is caused by the
imperfect balancing of the corrector magnets, because of which the beams are not
moved back to their original orbit when leaving the interaction area. I will also refer
to these leakage effects as length scale and misalignment, although one should keep
in mind that this length scale does not refer to the length scale of the actual beam
motion. Moreover, imperfections of the arc BPMs will also influence the arc length
scale and misalignment.

The second effect that catches the eye is the beam-beam deflection. It shows as
a sinusoidal shape in the moving plane in both DOROS and arc measurements,
although only clearly in one beam for the latter. The shape roughly matches the
prediction of formula equation (4.5) as shown in figure 4.1. However, the observed
deflection does not directly reflect the true deflection at the IP. Not all bunches in
the VdM fill collide, so the observed deflection is a potentially complicated average
of deflected and undeflected bunches. Furthermore, the DOROS BPMs measure at
21.6 m. As the beam-beam deflection also makes the bunches move at a slight angle,
DOROS will see a more pronounced displacement than predicted by equation (4.5).
Finally, some unexplained effects remain, including random orbit drift and unknown
systematics. For instance, the positions before and after each scan in figure 5.2
have changed. Sometimes, beam coordinates move, although they should not, in
principle. That happens, for instance, X2 above and Y 1 below in figure 5.2.

5.3 Orbit drift

I will now estimate the effects listed above from the data and subtract them for every
scan separately. The word “scan” in this context refers to a regular series of steps
between two longer periods in which the beam is nominally head-on. For example,
the VdM procedure takes two scans, one in the X-plane and one in the Y -plane.
The two rows in figure 5.2 also represent two scans.

In this section, I will discuss orbit drift. The estimation used linear interpolation
between two self-defined 30 s intervals right after and before each scan. Figure 5.3
shows an example of this procedure. This type of estimate models the orbit drift as
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Fig. 5.3.: Linear orbit drift obtained from linear interpolation between the nominally head-
on positions before and after each scan. The scans do not include emittance scans.
The dots represents the mean position along the X-axis of beam 1 during the
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a linear effect and is, therefore, referred to as a linear orbit drift correction. If the
orbit drift proceeds slowly, such a model should work well.

Two different BPM systems are available to determine the orbit drift, which allows
for a cross-check of the results. From figure 5.3, it looks like both systems agree
reasonably well, although, for some scans, there is a significant offset between them.
That is more clearly visible in figure 5.4. This figure compares the two systems in the
interpolated drift in the scan centre cLD on the left and the slope δLD on the right.
Overall, the arc and DOROS BPMs measure similar values for these parameters.
Individual scans can, however, disagree. Especially cLD seems to differ between the
two BPMs. That suggests that the offset subtraction (see section 5.1) does not work
perfectly. Figure 5.5 also supports this observation. It shows the difference between
the DOROS and arc BPMs as a function of the time since the last optimisation scan.
The more time elapses, the more the DOROS and arc BPMs tend to diverge. This
issue seems more outspoken in fill 6016 than in fill 6868.

5.4 Length scale

Once I had subtracted the linear orbit drift from the data, I removed all other effects
from the data simultaneously. More precisely, given a coordinate u of a beam (e.g.
X1), with perpendicular coordinate v (e.g. Y 1), I fitted the following model:

uBPM(t) = αunom(t) + βvnom(t) + γ∆uBB(t). (5.1)
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Here, α represents the length scale effect, β the misalignment, and ∆uBB the beam-
beam deflection. This fit has been performed for every BPM and beam coordinate
independently. Note that for most cases, this fit has only two free parameters at
most since only during OS scans unom and vnom can be simultaneously non-zero. In
some fits, β is the only free parameter. For instance, this is the case in a fit to the Y 1
coordinate in a VdM scan in the X plane.

Figure 5.6(a) shows the values of α for the DOROS data from fills 6016 and 6868.
Note that all values are close to unity, which expresses that the DOROS BPMs are
within the corrector magnets so that uDOROS ≈ unom to the lowest order. It is,
however, clear that the scale measured by the DOROS BPMs deviates consistently
from the nominal scale. Another observation is that the values of α are consistently
higher in fill 6868 than in fill 6016. This is not unexpected since both fills are in
different years, and the response of the corrector magnets could have changed in the
meantime. Note, however, that it could also have been the response of the DOROS
BPMs themselves that explains these observations.

In general, the values obtained from different scans are reasonably close to each
other. Nevertheless, individual fits are often inconsistent with each other based
on the fit uncertainties. That suggests that the value of α can fluctuate from scan
to scan. I computed a weighted average α = (

∑
i σ−2

i )−1∑
i αiσ

−2
i for every beam

coordinate, whose uncertainty I evaluated as

Var α = (
∑

i

σ−2
i )−2∑

i

σ−4
i Var αi = (

∑
i

σ−2
i )−1 + (

∑
i

σ−2
i )−2∑

i

σ−4
i σ̂2. (5.2)

σ̂2 represents the scan to scan variance of α, which I evaluated by calculating the
spread of all αi weighted by their fit uncertainty.

We can also look at the value of α when fitting equation (5.1) to arc data. Recall
that the arcs should to the lowest order not see any movement that correlates with
the nominal movement, as their location is outside the corrector magnets. In other
words, α ≈ 0, as one observes in figure 5.6(b). However, figure 5.6(b) also shows a
consistent deviation from zero in all beam coordinates, but X1. There is, therefore,
strong evidence that the movement in the region within the corrector magnets leaks
outside. Furthermore, the value of α does not significantly change between the two
fills, contrary to the DOROS measurements.
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Fig. 5.6.: Length scale factors for fill 6016 and fill 6868. The vertical bands represent a 1σ
confidence interval for average of all scans weighted the fit uncertainties. Note
that every displayed point for a given beam coordinate (say X1) corresponds to a
scan in which there was nominal movement along that coordinate.
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5.5 Misalignment

The second parameter in equation (5.1), β, expresses the misalignment of either the
corrector magnets or the BPMs. Its value should be zero to the lowest order, and
one can see in figure 5.7 that this is the case. Many scans show values of β that
differ significantly from zero, but there is only an outspoken overall deviation from
zero in the DOROS data of beam one. In this case, the average β is positive for both
coordinates, suggesting a more complicated effect than just a rotated coordinate
frame. In the case of a simple rotation, one would expect opposite signs.

5.6 Beam-beam deflection

Finally, we will discuss the γ parameter in equation (5.1). There are two reasons why
γ would differ from one, i.e., why the observed deflection differs from the prediction
of equation (4.5). First, not all bunches collide, which means some bunches deflect
while others remain unperturbed. It is not straightforward to predict the effect on
the deflection measured by the BPMs, but a reasonable guess is that the observed
deflection will be lower by a factor γD called the dilution factor. A reasonable value
for γD would be the fraction of the bunches that collide, which is 0.62 in fill 6016
and 0.89 in fill 6868.

Second, the beam-beam deflection makes the beams move at an angle θ/2 away
from each other with θ given by equation (4.3). When travelling a distance s after
the collision, one can see from simple trigonometry that displacement will grow
according to

∆uBB(s) = ∆uBB(0) + sθ/2 = (β∗ cot πQ + s)θ/2 =
(

1 + s

β∗ cot πQ

)
∆uBB(0),

where we used equation (4.4). Note that this formula becomes invalid on entering
the LHC magnet systems.

The effect of the angle should not affect the arc BPMs since those measurements
are extrapolations to the collision point itself. But the DOROS BPMs measure at a
distance of 21.6 m. That means DOROS measures a deflection that is a factor 2.65
larger in the X direction and a factor 2.78 in the Y direction using the beams optics
parameters at IP5. The usual name for this factor is the geometrical factor γG. It
carries some uncertainty on its value mainly because of the uncertainty on β∗, which
is about 15 % at IP5 for fills 6016 and 6868 [72].
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Fig. 5.7.: Misalignment factors for fill 6016 and fill 6868. The vertical bands represent a 1σ
confidence interval for average of all scans weighted the fit uncertainties. Note
that every displayed point for a given beam coordinate (say X1) corresponds
to a scan in which there was nominal movement along the beam coordinate
perpendicular to it (i.e. Y 1).
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Fig. 5.8.: Modifying factors of the beam-beam deflection for fill 6016 and fill 6868. The
vertical bands represent a 1σ confidence interval for the average of all scans
weighted by the fit uncertainties. The dashed ligns show the 1σ interval for the
expected value γDγG. Note that every displayed point for a given beam coordinate
(say X1) corresponds to a scan in which there was nominal movement and thus
deflection along that coordinate.
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Fig. 5.9.: Residuals from the arc data versus those of the DOROS data. The left plot shows
the residuals grouped by scan type, the right plot grouped by beam coordinate.
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line is shown for reference.

Figure 5.8 shows the results for γ. The overall image is rather chaotic, but the
(weighted) averages seem consistent with the value γDγG from the discussion
above.

5.7 Residuals

We have now considered all understood effects and subtracted them from the data.
We are now interested in the residuals. These will include random non-linear orbit
drift, unaccounted systematic effects, and BPM related noise. However, one should
be mindful that some of these latter effects might have mimicked the understood
effects. In that case, the fits will have subtracted them as well.

As we have two BPM systems, we can compare them to get an idea of how much of
the residuals represents BPM related noise rather than physical displacements of the
beam. Figure 5.9 shows such a comparison for fill 6016. The residuals are grouped
according to their type on the left and their beam coordinate on the right. The figure
reveals a strong correlation between the residuals from both BPM systems: they
strongly align with the diagonal dashed line, which corresponds to equal residuals.
This happens for all scan types and all beam coordinates, although some sytematic
deviation can be observed in the X-coordinate of beam 1. Figure 5.10 shows the 3σ

covariance ellipse for the ungrouped residuals in both fill 6016 and fill 6868. The
deviations away from the diagonal are up to a few exceptions at most 1.0 µm large,
which suggests that a significant part of the residuals represents a real effect in the
beam positions and not just detector noise.
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Fig. 5.10.: Residuals from the arc data versus those of the DOROS data and their 3σ
covariance ellipse. The left shows residuals from fill 6016, the right from fill
6868. The length of the ellipse half axes are displayed.

The question now is whether this real effect is systematic, random, or both. We
can get an idea from this by looking at the residuals themselves as a function
of time. One should only look at the beam coordinates for which there was also
nominal movement since the residuals are most likely only random in the other beam
coordinates. For instance, in a VdM scan in the X plane, only the residuals for the
X1 and X2 coordinates are of interest. Note that one cannot compare different types
of scans directly since the differences in movement may alter systematic effects.

Figure 5.11 shows the residuals for the VdM scans in fill 6016 with the average
over the available scans for every beam coordinate and step. The result reveals
some systematic symmetric shape of about a micrometre in size. Beam one shows
systematic deviation towards negative residuals, while beam two exhibits the oppo-
site. However, there is also scan-to-scan variation besides this systematic movement
which is often similar in size. That suggests a significant random non-linear orbit
drift knowing that the DOROS and arc residuals tend to agree rather well on the
residuals.
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A rudimentary Van Der Meer
analysis

6

„Science discovery is an irrational act. It’s an
intuition which turns out to be reality at the end
of it. I see no difference between a scientist
developing a marvellous discovery and an artist
making a painting.

— Carlo Rubbia
Italian particle phycisist at CERN

To conclude the analysis, I performed a VdM analysis and applied corrections to
the positions based on the discussion in chapter 5. The goal is to assess how such
corrections affect the luminous area and what uncertainty they introduce. I only
considered corrections to the moving beam coordinates, leaving the stationary beam
coordinates for future work. So this analysis does not cover misalignment and drift
of the non-moving beam coordinates. It neither discusses length scale because there
are separate ongoing efforts dedicated to this issue.

6.1 Vertex counts

As luminometer, I used the number of vertices counted by the CMS silicon tracker
(see sections 4.4.4 and 4.4.5) averaged per bunch crossing. Because of the specifics
of a VdM fill, this vertex number per bunch-crossing is on the low side. In fill
6016, it was around 0.2 during head-on collisions. CMS did not record vertices
for all pairs of colliding bunches but only for five selected ones in each fill. These
pairs are identified by their bcid number, which indicates the slot number in which
the colliding bunches are located. (See section 2.2.) In fill 6016, CMS performed
measurements bcids 41, 281, 872, 1783, and 2063. In fill 6868, the bcids are 265,
865, 1780, 2192, and 3380.
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Fig. 6.1.: VdM scans for fill 6016 with vertex counts recorded in one pair of colliding
bunches (BCID 41) by the CMS silicon tracker. The displayed VdM scans use
uncorrected nominal positions. The upper row are the VdM scans along the
X-axis, the lower row along the Y -axis. The points are the measured average
number of vertices per crossing normalised to the product of the proton numbers
in each bunch. The dashed lign is a Gaussian function fitted to this data. The
values for the width ΣX,Y of this Gaussian are shown for each scan.

6.2 Without corrections

I will first illustrate the VdM fit procedure using the uncorrected nominal data. The
model I used is a simple Gaussian model,

ln nvtx(u) = ln N0 − 1
2Σ2 (u − u0)2, (6.1)

with u = ∆x, ∆y and nvtx the average number of vertices per bunch crossing. This
model is linear with parameters a = ln N0 − u2

0/2Σ2, b = u0/2Σ2, and c = 1/2Σ2,
so ordinary least squares methods suffice to fit it. However, the error on nvtx

grows as the the displacement increases because of a drop in statistics. It makes,
therefore, sense to use a weighted least squares method instead. Using simple
error propagation, we can find A = 2πΣXΣY (see section 4.2) from the values of c

determined in the two scans of a VdM scan pair. From the luminous area, we can
determine σvis using equations (3.1) and (3.3) applied at the peak rate N0 derived
from the fit:

σvis = N0Alum

νN1N2
. (6.2)
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Before we can apply this formula, a few changes are needed. First, because we are
looking at the vertices per crossing, we can leave the frequency out of equation (6.2).
Second, it is better to renormalise the average number of vertices per bunch crossing
to the product of the proton numbers in each bunch, i.e., use nvtx/N1N2 This
accounts for the slight decrease in protons in the bunches due to the collision during
the crossings. If one does so, then N1N2 also disappears in equation (6.2). Finally,
because every bunch pair can have different values for Alum, N1, and N2, I performed
the VdM scans for every bcid separatedly.

Figure 6.2 presents the results of the fits using the renormalised average vertex
numbers for bcid 41 in fill 6016. The Gaussian fits the data mostly well, although it
slightly underestimates nvtx at large displacements. That means that the calculated
Alum may be somewhat too low, although the effect cannot be large. Figure 6.1
shows the results for σvis for all bcids in all four VdM scan pairs. All values are
compatible with each other. The average value σvis is 29.77(15) mb, assuming that
all these estimates are uncorrelated. That is reasonable for different scan pairs,
but less so for different bcid within the same scan pair. This is also suggested by
figure 6.1 where a similar pattern repeats itself for every bcid. The error on σvis may,
therefore, be too low. However, the following will mostly focus on how the estimates
of σvis change because of to the positions. The absolute sizes matter less.
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6.3 Linear orbit drift

In the next step, we can evaluate the effect of correcting for linear orbit drift (LD).
We have two BPM systems that can provide this correction: the DOROS and the
arc BPMs. Comparing the two inputs provides a size estimate of the uncertainty
associated with this correction.

Figure 6.3 shows the results of the LD correction using the average of the DOROS
and arc systems. As seen in the middle panel, there is no large effect on the fit errors.
That is a consequence of the linearity of the correction, which for the most part only
rescales u and, therefore, the width Σ. The spread of the four scan pairs decreases
suggesting the correction brings us closer to the truth (right panel). The values of
σvis change by at most 0.4 % (left panel) and most of this change disappears when
taking the weighted average. Furthermore, the difference between using arc or
DOROS data, which is shown as an error bar in figure 6.3, is only about 0.05 %.
Therefore, the uncertainty of this correction can be assumed to be small.

6.4 Beam-beam deflection

The second correction is the beam-beam deflection (BB), shown in figure 6.3 to-
gether with the LD correction. The main uncertainty on this correction is from the
uncertainty on β∗. For all scan pairs, the effect is a 1 % increase of σvis if compared to
the value with only an LD correction. The fit errors drop significantly by up to 10 %,
suggesting again that this correction improves the situation. The spread remains
almost the same. That might be because the correction is nearly the same for all
scan pairs and bcids.

6.5 Residuals

Finally, we can use the residuals from the fits to the BPM measurements as an
additional correction on the positions. That assumes that the length scale and
the beam-beam deflection are the only effects whose size depends on whether we
measure with the DOROS or the arc BPMs. Doing this affects the VdM scans, as
shown in figure 6.4. The values of σvis decrease for some scan pairs and increase
for others, in different amounts for DOROS and arc residuals but not more than
0.1 %. The picture for the error on σvis is equally mixed, with changes up to 5 %.
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Fig. 6.3.: Effect on the values of σvis from fill 6016 when the positions are corrected for
linear orbit drift (+LD), and for beam-beam deflection (+BB). The left shows σvis
itself, the middle the error dσvis, and the right the spread S of σvis over the four
scan pairs. All three quantities are expressed a percentage change relative to their
value if no corrections (None) are applied. The full lines on the left two plots
show the four σvis estimates derived from bcid 41. The dashed starred lines shows
the average σvis over all scan pairs and bcids, with the error on σvis computed as
in equation (5.2).

The spread does up down sligtly by about 1 %. From this, I cannot conclude that
that this correction actually does any good. It is, however, clear that the effect on
σvis is nearly negligible.

One should account for the uncertainty on the residuals as well. Firstly, one can
calculate an uncertainty on the residuals from the uncertainty on the fit parameters in
equation (5.1). Secondly, some drift effects might mimic the beam-beam deflection,
which the fit of equation (5.1) to the BPM data subsequently subtracts. That might
explain the variation in the fitted values of γ. One can argue that the same can
happen with the length scale fits. However, this is a linear effect, so the linear orbit
drift correction has already removed drift mimicking the length scale effect before
fitting the model.

One can derive the fit covariance matrix on the residual vector ϵ⃗ (i.e. the vector
with the residuals as entries) from the covariance matrix of the parameters γ and
α. From this ellipse, one can derive a 1σ covariance ellipse in the space of possible
residual vectors, which is centred ϵ⃗. It is two dimensional since the fit contains
two parameters. I then selected a subset of the residual vectors on this ellipse and
recalculated figure 6.4 for this selection. The error bars in figure 6.4(a) show the
envelope of these calculations.

Finally, the uncertainty has to be derived that accounts for the beam-beam deflection-
like drift that the fit might have wrongly subtracted when fitting equation (5.1).
I did this by taking the spread σ̂ (weighted by the fit errors) of the parameter γ

over all scans during the fill. (See figure 5.8.) I did this separately for every fill and
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(a) Error bars from varying the residuals by one σ, given their covariance matrix from the fit.
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(b) Error bars from varying the amount of subtracted beam-beam deflection.

Fig. 6.4.: Effect on the values of σvis due to subsequent correction for residuals from DOROS
(+D), arc (+A), and their average residuals (+M). The left shows σvis itself, the
middle the error dσvis, and the right the spread S of σvis over the four scan pairs.
All three quantities are expressed a percentage change relative to their value if
only a LD and BB correction is applied (None). The dashed starred lines shows
the average σvis over all scan pairs and bcids, with the error σvis computed as in
equation (5.2).
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beam coordinate. I then varied the value of γ by an amount ±σ̂, which means I
changed the residuals of beam coordinate u by an amount σ̂∆BBu. The error bars in
figure 6.4(b) show the outcome of that calculation. The uncertainty on the change
in Alum is of the order of 0.75 %, making it dominate the errors from figure 6.4(a).

6.6 Fill 6868

The above discussed fill 6016 in detail. This last paragraph summarises the results for
fill 6868 in the year 2018. Figure 6.5 shows the derived visual cross-sections, which
are again all mutually consistent. The average value has significantly decreased,
which might reflect that the tracker has degraded over the year since the VdM scans
of fill 6016 in 2017. If it has become less efficient at reconstructing vertices, then a
decrease in σvis is not unexpected.

The effect off the position corrections are similar as in fill 6016, as figure 6.6 shows.
Here, I used the mean of the DOROS and arc residuals to apply the last correction
and added in quadrature the two types of errors shown in figure 6.4. The only
difference with fill 6016 is the spread of the σvis values, which now increases because
of the linear orbit drift correction. In fill 6016, I suggested that the observed decrease
of the spread justified this correction, but given that the opposite happens in fill
6868, this argument seems rather weak. However, one should note that the spread
is already small as it is, as figure 6.6 shows. An increase of a few per cent might,
therefore, not be that meaningful.
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Fig. 6.6.: Effect on the values of σvis from fill 6868 when the positions are corrected for
linear orbit drift (+LD), beam-beam deflection (+BB), and residuals (+Res). The
left shows σvis itself, the middle the error dσvis, and the right the spread S of σvis
over the four scan pairs. All three quantities are expressed a percentage change
relative to their value if no corrections (None) are applied. The full lines on the
left two plots show the four σvis estimates derived from bcid 265. The dashed
starred lines shows the average σvis over all scan pairs and bcids, with the error
on σvis computed as in equation (5.2).
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Conclusion and outlook

„We changed again, and yet again, and it was
now too late and too far to go back, and I went
on. And the mists had all solemnly risen now,
and the world lay spread before me.

— Charles Dickens
English writer

Physicists have always strived for a universal theory describing the essence of our
world. Luminosity is no part of that essence but no less essential. It is the key to
unlocking the information enclosed in the cross-sections, which ultimately are of
principal interest.

At the LHC, we use a clever method to determine its value with purely experimental
input: the Van Der Meer method. This procedure infers one single cross-section
from how our measurements change when the beams move around. With that
cross-section, we can determine the luminosity at any given time.

The application of the Van Der Meer method comes, however, with a heap of ‘ifs’ and
‘buts’. One of the main problems arises in the core characteristic of the Van Der Meer
procedure. How can we know precisely where the beams are? The nominal positions
we enter in the machine differ from the realised positions for many reasons, some of
which we do not understand. Beams deflect each other if they do not collide head-on.
Scale differences occur, or reference frames may not align. Random changes in the
LHC conditions can make the beams drift away.

In this thesis, I studied the data of two systems for beam position monitoring with
different characteristics: DOROS and arc. They provide us independent feedback on
the positions during the VdM fill. I modelled the established effects like linear orbit
drift, the length scale, and beam-beam deflection and added misalignment into the
equation.

This study led to several conclusions. I found that the DOROS and arc systems
measure similar values of the linear orbit drift, although at times shifted considerably.
DOROS is directly sensitive to the nominal positions, with a mostly consistent length
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scale over different scan types. But also arc consistently measures motion that
correlates with the nominal positions, telling us that the movement during the VdM
fill leaks outside the interaction region. Whether misalignment is present is unclear,
except for one beam in the DOROS measurement. The question remains whether
that reflects misalignment of the movement or DOROS itself. Finally, I observed
beam-beam deflection in the data with a magnitude mostly consistent with theory
on average. Significant deviations are, however, present.

Armed with the knowledge of the study above, I performed a VdM scan analysis
using the vertex counts of the silicon tracker of CMS. I applied corrections to the
moving beam coordinates for orbit drift, beam-beam corrections, and observed
residuals. Of all these corrections, the beam-beam deflection most strongly affected
the visual cross-section with about a one per cent change. The effect of the residuals
is small but suffers from large uncertainty. The beam-beam deflection significantly
improves the error on the visual cross-section derived from the VdM fit. The drift
correction does not affect the error, while the residuals yield improvement for some
scans and worse results for others. Finally, the spread between different VdM scans
improves with drift while it remains about the same with the other corrections.

This analysis has far from settled the question of the beam positions. I have, for
instance, not considered effects on the position of the non-moving beam. Further-
more, there is no clearly defined method to determine the uncertainty of the residual
correction, and the one I used here might still be open to debate. Given the large
uncertainties it delivers, one might ask whether this method is overly conservative.
However, if not, then the only way forward is to settle the question of how the
beam-beam deflection should appear in DOROS and arc systems. If we can do
that, one can subtract deflection without fitting it and recover deflection-like drift if
present. Finally, the conclusions about the effect on the VdM scans might still change
depending on the fit model used in the VdM scans. I noticed that the Gaussian model
has some trouble modelling the event rate at large displacements of the beams. A
better model could remedy this problem and alter the results of the beam position
corrections.

All of these considerations shortly need an answer. This summer, the LHC will
enter its third period of data taking, in which it will operate at an unprecedented
instantaneous luminosity and is expected to surpass the amount of integrated
luminosity collected so far. High instantaneous luminosity enhances several factors
limiting accuracy like non-linearity and non-stability, making it more crucial to
calibrate even more precisely. That will be even more acute after the third run when
the LHC receives an upgrade that should more than double the achievable luminosity.
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Fig. 6.7.: LHC luminosity forecasts until 2038. Note that the figure is not fully up-to-
date: CERN recently decided to extend the third run of LHC by a year and
move the third long shutdown (LS3) one year further. More information
on http://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm.
Figure from [81].

We will deal with these increased challenges through continued efforts like the one
presented in this thesis and new methods that are already under development. The
stakes are high, and the opportunities abound. But we will continue to give it our
all, make the mists rise ever more, and discover the world spread before us.
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Beam position monitors data A

A.1 Beam positions during fill 6016
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Fig. A.1.: Nominal positions in fill 6016.
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Fig. A.2.: Measurements of the DOROS BPM system in fill 6016.
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Fig. A.3.: Measurements of the arc BPM system in fill 6016.

A.2 Beam positions during fill 6868
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Fig. A.4.: Nominal positions in fill 6868.
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Fig. A.5.: Measurements of the DOROS BPM system in fill 6868.
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Fig. A.6.: Measurements of the arc BPM system in fill 6868.
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