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Abstract

Long-term, wearable EEG monitoring has the possibility to enable both new diag-
nostic tools as well as continuous, long-term BCI usage that could provide significant
quality-of-life improvements for their users. However, current state-of-the-art meth-
ods of recording EEG are still ill-suited for long-term, mobile use. Therefore a novel
approach was recently proposed that uses a wireless body area network of miniatur-
ized EEG sensor nodes, together with distributed signal processing algorithms that
efficiently use this novel architecture and which could be used in a BCI classification
pipeline as a replacement of traditional feature extraction algorithms.

In this thesis, the performance and feasibility of these distributed algorithms as part
of an end-to-end classification pipeline are evaluated for the application of motor
imagery classification. To this end, literature on recently proposed distributed signal
processing algorithms was combined to provide a complete set of feature algorithms
that were subsequently integrated into different classification pipelines. Next, the
performance of these pipelines was investigated based on the energy consumption,
latency and accuracy by using a combination of both modelling as well as emulation
of WESN architectures using previously recorded HD-EEG data.

As the optimal network size for this application was found to be relatively small,
the distributed approaches performed worse than the naive centralization approach.
Furthermore, re-use of a window of data for multiple iterations of the algorithm had
no impact on the accuracy but efficient re-use had both lower latency and energy
consumption as compared to non-efficient re-use. Increasing the number of channels
per node can improve the accuracy for distributed pipelines at no extra cost in
terms of energy consumption or latency. Furthermore, there is a maximum number
of electrodes per node, dictated by energy and latency constraints. By designing
for this maximum and with a constant battery size, a hardware implementation of
a node could be designed that, through virtual channel selection, allows a single
implementation to be tuned to individual subjects, without differences in performance
w.r.t. latency or energy consumption.

In conclusion, distributed signal processing algorithms do not improve the perfor-

mance of the BCI as the small network size reduces the amount of benefits gained
from these algorithm to below the overhead they incur.
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Chapter 1

Introduction

As a result of a spinal cord injury or neurological disease such as amyotrophic lateral
sclerosis (ALS), patients may end up completely paralysed or even locked-in: fully
awake but only able to move the eyes. Extensive research has been done on brain-
computer interfaces (BCI) which aim to provide an interface between the human
brain of a patient and a computer without using the normal neuromuscular outputs
of the brain. Therefore, a BCI might enable these patients to once again interact with
their surroundings, resulting in a substantial quality-of-life improvement. Indeed,
this connection could be used for control of a physical device (e.g. steering an electric
wheelchair or robotic arm) or communication device.

Also for able subjects, such an interface might provide a new way of interacting with
a computer: for entertainment purposes for example. In the medical realm again,
these subjects could potentially also benefit from a BCI as a diagnostic tool or for
neuro-rehabilitation.

Ideally for these real-world applications, such a BCI device is hence wearable over
longer periods of time such that the user is able to use the device at any time without
requiring setup each time, which is especially relevant if the user requires help with
this. In contrast to early research on BCI’s which was typically constrained to short
lab experiments, this text rather focusses on long-term, wearable neural monitoring.

1.1 Neurophysiological background

When designing brain-computer interfaces that pose to extract useful information
directly from the brain, it is instructive to first take a quick look at how the brain
works, how its activity can be measured, and what brain signals can be utilized. This
neurophysiological background will then lead to algorithms that exploit these brain
signals to extract useful information.



1.1. Neurophysiological background

Information processing in the brain

The human brain is a network of brain cells or neurons, connecting neurons to
one-another but also to the rest of the central nervous system [1]. While the
interconnection of neurons in the brain itself provides the capability to process
information, the connection to the rest central nervous system allows the brain to
take in information from outside the brain and control the various processes in the
body.

Communication between neurons happens in the form of action potentials [2].
Through either the release of a neurotransmitter, or through a current flow at
the synapse, ion channels eventually open allowing ions to flow through the chan-
nel, disturbing the charge separation across the cell membrane. This reduces the
membrane potential, termed depolarization. Indeed the influx of positively charged
ions causes the interior of the neuron to become more positive whilst leaving the
extracellular space more negative.

When the membrane is sufficiently depolarized and reaches a certain threshold,
then, and only then, voltage-gated channels rapidly open, allowing a further influx of
positively charged ions that further depolarize the neuron causing even more channels
to open. The resulting electrical current caused by the flow of charged ions is called
the action potential. Tt continues locally depolarizing the cell’s membrane down the
axon of the neuron towards the synapses, causing the action potential to run down
the axon. At the synapses, the action potential can then elicit an action potential
from a post-synaptic neuron. This is schematically illustrated in Fig. 1.1.

The threshold of the voltage-gated channels introduces a non-linearity in the neural
signalling. This in fact creates the intelligence in the network.

Electroencephalography (EEG)

As neural signalling is based on the movement of charges, it creates currents and
hence also a small electric fields. In electroencephalography (EEG), electrodes are
placed on the scalp to record these electric field potentials at the scalp, corresponding
to neural signalling. These electrodes are usually connected to a fabric cap that the
subject wears, that positions each electrode in a repeatable and known location. An
example of a subject wearing such a cap is shown in Figure 1.2.

These signals measured at the scalp however, consist of a superposition of the
individual signals from large groups of neurons located below an electrode owing
to volume conduction rather than measuring the signals from a single neuron: the
individual neurons’ electric fields are propagated through the brain mass and are
hence superimposed on top of one another.

Hence it should be noted that although brain signals originate from specific locations
in the brain that handle a specific task, the resulting spatial resolution in the scalp
EEG data is poor due to volume conduction [5]. The electrical fields created by
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FIGURE 1.1: Schematic representation
of connected neurons with the direction
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FIGURE 1.2: Example of a subject wear-
ing an EEG electrode cap. Photo by
Chris Hope, made available by Tim
Sheerman-Chase at [4] through a CC BY
2.0 license

available at [3] under a CC BY-SA 4.0
license

the neurons can propagate through the brain mass, resulting in a single spatially
localized source being picked up by various neighbouring electrodes at the scalp. The
electrode signals over a spread out area will be highly spatially correlated (under
the assumption that the propagation to the scalp electrodes can be modelled as an
instantaneous mixture).

In case a stronger signal originating from a different part of the brain is active in the
same frequency band as a weaker signal of interest, the EEG measurements will be
dominated by the first signal, making it impossible to obtain measurements of signals
of the second signal. Typically, the occipital a-rhythm originating from the visual
cortex, which is in the same band as the py-rhythm, dominates EEG measurements in
its band. In order to measure the py-rhythm, spatial filtering is necessary to remove
the interfering source, as will be described in Section 2.2. Note however that the
statistics of EEG recordings are not stationary but slowly varying over time, requiring
online adaptation to remain effective [6, 7, 8].

The low spatial resolution is a disadvantage of EEG. Much higher resolution signals
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could be obtained using invasive techniques such as ECoG and neural probes which
measure the electric fields respectively below the skull and from within the grey
matter. Hence the effect of volume conduction is relatively lower as the signals from
the targeted neuron group is much stronger now (propagated over a much smaller
distance) as compared to the propagated signals of other neuron groups. In the
same way this also allows to more locally measure the potentials and thus the spatial
resolution is indeed increased.

However, their invasive nature makes them challenging for long-term use even aside
from the inherent dangers of the required surgery. Although often experienced as
uncomfortable, an EEG cap is non-invasive which avoids these challenges albeit
at the cost of resolution. Moreover (and quite importantly for long-term neural
monitoring as each patient will need to have its own system), an EEG system is
relatively cheap compared to other clinical neurological research methods such as
functional magnetic resonance imaging and magneto-encephalography.

Sensorimotor rhythms and event-related desynchronization

The action potential created by neurons’ spiking is itself however too small to be
detected by surface electrodes. On the other hand, as the brain is performing tasks,
usually groups of thousands of neurons are involved. As their (de)polarization (cf.
supra) displays a significant amount of synchrony, the superposition due to volume
conduction (cf. supra) of the extracellular electrical fields — modulated by neural
signalling — becomes measurable using EEG.

Different such groups of brain cells or regions handle specific tasks. Their activity is
reflected in the EEG recordings in different ways [9], each leading to distinct brain
signals that can be exploited. In MI-based BCI’s, cortical oscillations produced by
the sensorimotor cortices are currently the most used brain signal [10].

In relaxed awake subjects, the primary sensorimotor cortical areas produce rhythmic
activity when they are not engaged in a task, generated by neurons in the respective
cortex synchronously firing due to pacemaker cells or excitator/inhibitor loops [2].
These are called cortical oscillations, sensorimotor rhythms (SMR), idle rhythms or
just rhythms [11, 5, 12]. The rhythms from different cortices can be distinguished
from one-another by frequency, location over a certain cortex and/or relationship
to concurrent sensory input or motor output since they are generated by different
cortical structures which determines their dynamics.

In most adults, the sensorimotor cortices produce rhythmic activity between 8-12 Hz
called the (Rolandic) p-rhythm. Usually these rhythms are associated with 18-26
Hz B-rhythms but while some beta rhythms are harmonics of py-rhythms, some are
separable from them by topography and/or timing, and thus are independent EEG
signals [13].

Upon movement or preparation of movement, a decrease of the p- and S-rhythms’
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(band)power can usually be seen, especially contralateral to the brain region corre-
sponding to the movement [11]. Since this occurs due to different neurons in the
respective region desynchronizing their firing, this phenomenon is called event-related
desynchronization (ERD). Most useful for BCI’s, this phenomenon is also seen for
imagined or intended movement, referred to as motor imagery (MI). This change in
SMR characteristics enables the construction of an independent BCI based on MI by
using the bandpower decrease due to ERD as a feature. Furthermore, it has been
shown that paralysed subjects can learn to control SMR ERD, possibly providing a
communication method for locked-in patients [9)].

These two aspects make the SMR’s ideal signals to serve as the basis for constructing
a BCI. Therefore the classification pipeline used throughout this work will use
SMR-based features that exploit the discriminative information provided by ERD.

1.2 Wireless EEG sensor networks

BCT’s based on ERD of SMR’s recorded using EEG have been extensively discussed
in literature [5]. However, there are several problems with using the typical method
of recording EEG for long-term neural monitoring, as is the focus of this work:

o Wearing an electrode cap for longer periods of time is uncomfortable;

e The wires connecting the electrodes to the processing system can lead to
artifacts (e.g. when tugging or rubbing on the wires);

e The processing system is often bulky.

Therefore this work considers a different approach as proposed by Bertrand [14].
Herein the electrode cap is replaced by small battery-powered sensor nodes attached
to the subject’s head. They also contain a small processor and a wireless stack that
lets them wirelessly interconnect to one another. A small amount of electrodes, in
close proximity to the node, are also connected to each node. In each node, there
is one electrode that acts as the (local) reference for the other electrodes of the
node. This allows for miniaturization which increases user comfort: compared to an
electrode cap, only small parts of the subject’s scalp are covered by the nodes.

In [14], some architectures that could potentially exploit this are shown as examples.
For example, a node could be realized as a small flexible system-on-chip that can
be stuck to the users head. Another example is to implant either a small ECoG
array or neural probes and having such a small node pick up and power the array
or probes directly below it, thus avoiding the need for a transdural interface and as
such increasing wearer comfort and safety.

Furthermore, as only specific regions of the brain are responsible for a certain task,
nodes could be placed only over top of the regions of the scalp corresponding to that
task!. This allows for even further miniaturization of the BCI, making the BCI more

!Due to volume conduction, the region at the scalp is always larger than the originating source
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comfortable to wear and easier to set up.

In fact, it has been shown that for a MI BCI, the number of electrodes can be
drastically lowered through optimal channel selection without decreasing performance
[15]. The optimal electrode locations as determined by the channel selection objective
are indeed extend over the brain regions that physiologically make sense for MI.
Furthermore, this property extends to other applications as well, such as auditory
attention detection [16, 17, 18].

In some cases, channel selection can even improve performance as task-irrelevant
and redundant information is removed and as such the channel selection acts as a
regularization method [17, 19]. The complexity of subsequent steps is also reduced.

1.3 Distributed signal processing

As discussed earlier, the spatial resolution of EEG is low due to the volume conduction
effect and hence spatial filtering is typically used to overcome this problem. In a
WESN, this will require centralizing the recordings from each of the nodes’ electrodes
in one of the nodes, or in a different device (that can also communicate wirelessly
with the nodes) referred to as the Fusion Center (FCe).

The energy consumption required for this centralization however becomes pro-
hibitively expensive as the capacity of the battery is shrunk due to miniaturization
[14]. Furthermore, this naive approach to implementing a MI BCI on a WESN also
doesn’t utilize all of the available processing power; rather it only uses a single nodes’.

To overcome this problem, previous works have proposed efficient distributed realiza-
tions of popular optimal (spatial) filter problems to work in a WESN [20, 14, 21].
For example, a popular feature extraction algorithm for MI BCI’s is common spatial
pattern (CSP) analysis (see Section 2.2) which equates to the calculation of the
GEVD of covariance matrices. A distributed realization for computing this GEVD
was proposed by Bertrand and Moonen [20].

1.4 Goal of this thesis

Although the distributed realizations suggested in the previous section were proven to
converge to the optimal solution of their central counterparts and their more efficient
communication bandwidth requirements w.r.t. a naive centralization approach have
been demonstrated, they have, to the best of the author’s knowledge, not been
evaluated in a complete acquisition-to-classification BCI implementation.

Compared to evaluating the distributed feature extraction in isolation, considering
the complete classification pipeline has several advantages:

region. Electrodes should thus cover an extended patch at the scalp over top of the source to capture
enough spatial information as to enable spatial filtering.
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o Integration possibilities between the different components can be incorporated.

e The impact of design changes can be measured in terms of the output accuracy
which is a more practically relevant metric than speed of convergence to
the optimal solution (as is commonly studied for the distributed algorithms
themselves, see for example [20, 14, 21]) as well as in more practical terms, e.g.
in terms of battery life.

e Measures of the complete system can directly be related to system constraints
(which are prohibitive for a naive approach [14]).

Hence such an evaluation would allow to more accurately assess the proposed
approach w.r.t both performance as well as feasibility (w.r.t. hardware constraints).
Further, it will allow for trade-offs in the parameter space to be discovered which
equates to different operating points which will require manual selection rather than
optimization w.r.t. the parameter. Therefore the goal of this thesis is to evaluate
the distributed algorithms as integrated in a complete BCI, or more completely: to
evaluate the use of distributed signal processing algorithms for online motor-imagery
classification in wireless EEG sensor networks.

The evaluation will be based on three objectives drawing from both the performance
and feasibility aspects: energy consumption, latency and decoding accuracy.

Energy consumption

As the nodes envisioned are to be small such that they can be comfortably worn on
the user’s head for longer periods of time, the maximal battery capacity is also limited
and the system is energy constrained. For ease of use however, the battery of a node
should last sufficiently long. As explained earlier, energy consumption prohibits fusing
all the signals in a single node and straightforwardly applying conventional feature
extraction algorithms. Therefore, an important goal in designing the envisioned BCI
with distributed algorithms, is to minimize energy consumption to increase battery
life.

I Objective 1. Minimal energy consumption

Latency

For the BCI to feel responsive or to be able to control a device with sufficient
time-fidelity, the input-output latency should be minimal.

I Objective 2. Minimal latency

In an asynchronous system, i.e., a system in which the user can choose when to give
or not give commands at his or her own pace, the input-output latency or also just
latency of the system is defined as follows:
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Definition 1.1. The (input-output) latency of an asynchronous system is the time
it takes for a command given to the system to have an effect on the decoded output.

As in this work the simplification is made towards a synchronous system, i.e., the
user controls the output by responding to cues given by the system at regular time
intervals, this definition must be altered:

Definition 1.2. The (input-output) latency in a synchronous system is the time it
takes from the first input sample after the cue has been presented to have an effect
on the decoded output.

Furthermore, the processing done after the output is given needs to be sufficiently
fast such that it is complete before the next inputs must be processed. Therefore,
minimal latency is not only an objective but also a requirement for feasibility: only
a certain maximum of total latency can be tolerated.

Decoding accuracy

Finally the BCI should be as accurate as possible in decoding the correct class. This
will make it more attractive to potential users since it increases the information
transfer rate (ITR) that can be achieved and avoids the frustration that comes along
with misinterpretation of commands.

I Objective 3. Maximal decoding accuracy

Although the accuracy will be included as a metric, this text’s focus is on the
distributed implementation and as such, achieving maximum accuracy will not be
the primary goal. Rather, the accuracy will be used to compare implementation to
each other.

1.5 Contents

The rest of this text proceeds in two parts.

Part I concerns the methods used for MI methods used for MI classification.

In Chapter 2, the architecture of a typical MI-based BCI and the details of the selected
algorithms are presented. This typical architecture will then serve as the framework
for adapting to run on a WESN in the next chapter. In Chapter 3, distributed
versions of a portion of the typical architecture will be derived for different WESN
topologies. This chapter then concludes with a description on how to integrate those
distributed algorithms within the classification framework of the previous chapter
in order to (efficiently) do distributed, online MI classification on a WESN. This
provides a complete description of the proposed distributed classification system.
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After describing the distributed BCI, Part II of this thesis focuses on evaluating the
performance and feasibility of the proposed approach w.r.t. the objectives defined in
Section 1.4. To do so, Chapter 4 first presents models for each of those objectives
for the distributed algorithms. Next, Chapter 5 presents the actual evaluation
of the distributed algorithms based on offline simulations on experimental data.
Furthermore, the feasibility is assessed w.r.t. the current state-of-the-art of the
various components.

Finally Chapter 6 gives some final conclusions on the text as well as some considera-
tions for future work.
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Algorithms
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Chapter 2

MI classification

Before presenting distributed MI classification within a WESN;, it is instructive to
look at a typical approach to the problem of classifying (imagined) left and right
hand movement to serve as a basis for distributed classification. The prototypical
pipeline from data acquisition to classifier output is schematically represented in
Figure 2.1.

Channel Feature

Selection ] Preprocessing |- Extraction 1 Classification

FIGURE 2.1: Prototypical motor-imagery classification pipeline

Typically the first step in the pipeline is a channel selection procedure to select the
channels that are most relevant to the classification. This has multiple advantages:
e It reduces the computational burden;
e It reduces overfitting;
e It removes the noise that is present in the channels that do not contribute to
the objective;
e It reduces acquisition setup time;
e It increases wearer comfort.

The fact that some channels will not contribute to the objective, is demonstrated
in Figure 2.2. Here the average power-spectral densities are shown for a subject
engaged in a MI task. Channels located over the locations in the sensorimotor cortex
responsible for processing of hand movements (e.g. C3 and C4) show a difference in
the p-band while channels further away are not discriminative (compare C3 and C4
with F1 and F2). In the former group of channels, a lateralization due to ERD is
also visible: the power in the p-band is decreased contralaterally.

These observations are in accordance with the neurophysiology as discussed in the

11



F5 F1 Fo F4  F6
Fc4 | FC6

FC5  FC3  Fcf FC2

[ [
cs  C3  Ci c2 c4  C6
Ty VS PESR PR AR
cps  CP3 | CP1 CP2  CP4  cPe
|/'\'\ |f\'\'\

FIGURE 2.2: Averaged power-spectral densities of the different channels for both
conditions(blue=1, orange=r)

previous chapter.

Channel selection can either be done before acquisition — only the relevant electrodes
are placed and recorded — or after.

In the former case, the selection is done from neuroanatomical insights or from an
earlier post-experiment channel selection (preferably from the same subject).

In the latter case, typically a measure for the performance of the resulting classifier
is used to select the optimal subset of channels [17, 16, 18].

As the channel selection method will need to be extended to a node selection method
in the next chapter, and no such technique exists that is immediately useable for the
application at hand!, channel selection methods will not be discussed further in this
work and the nodes will be selected manually, see Chapter 5.

Next, the remaining channels are preprocessed to remove the irrelevant parts. This
increases the quality of the extracted features in the next step: feature extraction.

'Roadblocks are the non-linear classifier and nodes should not overlap, hence a typical grouped
selection approach is insufficient

12



2.1. Preprocessing

The feature extraction poses to extract compact measures about the data. To be
useful for the task of classifying into two classes, these features must be discriminative
between the two classes. For a MI BCI, the features are typically determined per
window of data such that it would allow to have real-time control over an application
(e.g. an electric wheelchair).

In the final step, classification, the classifier then uses these features to classify into
one of two classes, which we will further denote as [ and r for respectively left and
right (imagined) hand movement.

The rest of this chapter details the motivation behind the selected method of each of
the steps of the classification pipeline as well as some of their specifics.

2.1 Preprocessing

As the SMR’s are the useful part of the EEG recordings for the proposed BCI (see
Section 1.1), the goal is to only extract these signals from the raw measured data.
By only keeping the information related to these signals, the quality of the extracted
features is improved since the noise from the non-useful part of the data is removed.

Since the p-band is known to be active between 8-12 Hz and the -band between
18-26 Hz [9], the other frequency info can be removed by bandpass filtering all the
EEG channels with a 8-26 Hz passband. As ERD and ERS are frequency domain
features — they are not phase-locked — the precise timing is not required. Since the
signal after filtering only has content up to 26 Hz, it can hence be downsampled
without losing information. This lowers the storage and computational requirements
in the rest of the pipeline.

Since the feature extraction algorithms to be described further on in Section 2.2 are
invariant to linear transformations, re-referencing the data is also not needed either
[22].

Furthermore, since those algorithms only rely on statistical information from the
signals that is useful in discriminating the output classes, artifacts are implicitly
suppressed and hence artifact removal is not necessary. Note that this is only the
case if artifacts are equally distributed in both output conditions [5, p. 50].

It should be noted that both frequency filtering and downsampling can efficiently be
implemented directly in hardware to run consecutively with the sampling. In this
way, the preprocessing incurs almost no additional latency and the system requires
less memory.

13



2.2. Feature extraction — Common Spatial Patterns

2.2 Feature extraction — Common Spatial Patterns

Due to volume conduction, the spatial resolution of a cortex’ signals across the scalp
is known to be poor (see Section 1.1). For example, electrodes placed in the region
of the sensorimotor cortex will pick up a.o. the much stronger occipital a-rhythm
and movement and muscle artifacts such that the useful p- and S-rhythms have a
low SNR in most of the electrodes on the scalp. Consequently, the modulation of the
power of those bands due to ERD and ERS extracted from only a single electrodes
would result in poor classification performance.

However, by combining signals from multiple electrodes, the spatial information can
be used and the useful signals’ SNR can be increased. This is commonly referred to as
spatial filtering (rather than spectral filtering which would filter w.r.t. time/frequency
of time).

Actually for classification, more important than just increasing the ratio of the useful
rhythms’ power to the noise power for one of the classes, is spatially filtering the
channels in such a way that the classes to be classified {l,r} are best separable in
some sense.

A popular technique in MI BCI literature is Common Spatial Pattern (CSP) analysis
[23, 24]. CSP analysis looks for the linear spatial filter w* that optimizes the ratio of
the mean power of the two classes [5, 18]. Hence the modulation of the output power
of this filter (due to modulation of the SMR’s caused by ERD/ERS present in the
channels) will be maximally discriminative between the two classes. Furthermore, by
computing such a filter for each of the classes, the ratio of the filter output powers is
also maximally discriminative between the two classes, allowing classification based
on these output powers, as will be explained below.

For example if we want to extract class {l/,r} while suppressing {r, [}, the objective
is formulated as follows:

T 2
E [(w X{z,r}) B WTR{Z,’F}W
TR TR yw

Wi, = argmax (2.1)
w

E

(W 2]

where the subscripts must be chosen such that each variable’s subscript is in the
same position in the set given in that variable’s subscript in the equation above.
x{;,,} denotes observations from class {l,7}, Ry;,) denotes the covariance matrix of
the observations corresponding to class {l,7}. wj then gives the filter that optimally
increases the mean power of class [ w.r.t. the mean power of class r and vice versa
for w.

In the next subsection, it will be proven that the solution for both w; and w; can
be found by computing a single GEVD of (R{l,r}v R{r,l}) and setting w; = wy and
w, = Wy, where wi and w) are respectively the generalized eigenvectors with the
largest and smallest generalized eigenvalues.
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2.2. Feature extraction — Common Spatial Patterns

In practice however, the covariance matrices are not available. Therefore, they
have to be estimated based on labelled, pre-recorded data. For a window of Ny 4
observations of class {l, 7}, the corresponding covariance matrix can be estimated as

1
XX, (2.2)

Ry =
{l,r} N{l,r} xicllr}

where x; € {l,r} denotes running over all ny; ,; observations of class {I,7}.
Because of the need of labelled data, CSP analysis is a supervised method.

Adaptation

The filters extracted this way are however unsuitable for long-term use as is the
intent of the scheme proposed in this work. This is because the statistics used by
CSP, as captured by the covariance matrices, slowly change over time as e.g.; the
subject gets more fatigued or loses focus. These changes are noticeable within the
duration of 1 typical experiment (< 1 day) but degrade performance as the duration
increases — with long-term use even to virtually infinitely long [6, 7, 8]. Therefore,
to enable long-term use, the feature extraction should adapt to the slowly varying
statistics.

A simple solution to make CSP adaptive, would be to recompute the covariance
matrix for each class and recompute the filter matrix at the end of each window, using
a sliding window of previous windows of observations. However, as in the application
considered in this text, observations in a window are considered to be of only one
class, this window should be taken sufficiently large, expressed as the number of
included windows L, such that it can be assumed that both classes are included.
Another solution is to recompute the optimal filters after each window using a fixed
amount of previous windows of data, hence sliding a second, larger window over the
data such that there are a fixed amount of previous windows available to calculate
the covariance matrices, assuming both classes are included. However in a real-world
scenario, the label of that window is not available. Therefore, labelling of past
windows is based on for example the predicted class instead. As long as the classifier
is sufficiently accurate originally, the update procedure will then keep it that way as
the statistics change.

In this text however, the problem will be simplified by assuming the true label of the
window is available. In practice this assumption is of course not valid, but a classifier
with at least some degree of accuracy (i.e. > 50%) can approximate this assumption
arbitrarily well by having the user repeat the instruction multiple times, classifying
these trials and using a voting system, rather than doing single-trial classification.
Studying the impact of a non-perfect classification on the updating procedure is
outside the scope of this text.
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2.2. Feature extraction — Common Spatial Patterns

Features

Finally, the features are taken to be the average power of the filters’ outputs for both
classes (i.e., of wj and w) over a window of size N and next converting them into the
log-domain. These features capture the modulation of the SMR’s power due to ERD
and ERS, with optimal discrimination between the two classes for N — co. Indeed
the average filter output power is an unbiased estimator of the mean filter output
power which is precisely what the CSP method has made optimally discriminative.
Note that the window over which one feature vector is calculated can be taken to be
the same window as used for updating the covariance matrices.

In the next subsection, it will be shown that the solution to the optimization problem
central to the CSP method (2.1) is found by computing the GEVD of the covariance
matrices. This derivation will then straightforwardly allow to extend the method to:

« using multiple filters per class (Subsection 2.2.2),

o combined spatial and temporal filtering (Subsection 2.2.3),

e incorporating regularization (Subsection 2.2.4).

2.2.1 Solution to the (MISO) CSP optimization problem

In this subsection, the solution to the CSP optimization problem (2.1) is derived as
it will be instructive for generalizing and adapting the CSP method in respectively
the next subsections and next chapter. Further, it provides insight into the meaning
of the solution.

The solution of (2.1) is only unique up to scaling, as multiplying w with a scaling
factor in both numerator and denominator can easily be seen to cause it to cancel out
in the fraction, resulting in the same value for the objective. Therefore, the scaling
can be arbitrarily fixed, up to the sign, by adding the constraint WTR{,,J}W =1:

WTR{I’T}W
W' R pw (2.3)
s.t. WTR{M}W =1,

Wiy = arg max

= arg max WTR{l,T}W
w (2.4)
s.t. WTR{TJ}W =1.

Using the theory of Lagrange multipliers for convex problems, we can then solve the
constrained problem as follows. The Lagrangian is given by

Lym(w,\) = WTR{LT}W + A (wTR{T7Z}W — 1) (2.5)
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2.2. Feature extraction — Common Spatial Patterns

and the optimum is given by

V(W,A)[’{lm}(w*? )\*) =0 (2.6)

Ry, w* = MRy, pw?

o {tryW {r3W
W*TR{TJ}W* =1.

Note that equation (2.7) is a GEVD of the pair (R{lﬂ.}, R{T’l}). This form reveals
why this method is called CSP.
The GEVD computes a matrix W = { Wi W2 ... Wp } that jointly diagonalizes

the matrices Ry; ;) and Ry, ;y into the diagonal matrices (E{Z’T}, E{T’l}>:

T _
{ WR (W =S, 8
W R{T,Z}W = E{T,l}
where E{Z’T} = diag(A{lvr}rl’ )\{lvr}72’ cc )\{lvr}rM> (29)

Yo = diag( Ay, Ariy2 - Ay, i)

and where diag(-) denotes the diagonal matrix with the arguments as the diagonal
elements. Next, w.l.o.g. we can take

AMlryd Z My 20 2 AN - (2.10)

Furthermore, W is once again unique up to scaling. Indeed, scale w; with factor a;.
Then the matrix W is scaled as W - diag(ay, ..., an), such that (2.8) still holds but
with generalized eigenvalues that are scaled with factor a?.
Hence the generalized eigenvalues of Ry, ;3 can be set to 1 to adhere to the constraint
n (2.7):

Ay =1 Vie{l,2,...,M}. (2.11)

The original objective of (2.1) can then be rewritten i.f.o. this joint diagonalization
as follows: Take w; to be a generalized eigenvector as in (2.8), then

W;FR 1.rYWi A lrii
LA T ki (2.12)
w R nwi  Apn

This can then be interpreted as follows. Clearly from the above equation, by taking

{l »} = Wi, the objective is maximized (and minimized for w7 U = = wyr). This
equates to selecting the spatial filter or spatial pattern that decomposes the class
covariance matrices in the ’direction’ of maximal power ratio. In this case due to
the meaning of the elements of w;, the ’direction’ is to be interpreted as a spatial
pattern/spatial filter. Because it boosts one class’ characteristics and at the same
time attenuates the other class’ characteristics, the filter is 'common’ between the
two classes.

17



2.2. Feature extraction — Common Spatial Patterns

Further, note that by replacing the maximization with a minimization in (2.1),

’E 1} is found. This can be seen by inverting the problem for Wi{k e This puts the
covariance matrices in the same place as for wj vl and the maximization becomes a
minimization. Hence from a single GEVD, max1mally discriminative filters for both
classes are found.

Applying CSP analysis for feature extraction thus boils down to computing GEVD (R{lm}, R{T’l}>
and setting w; = w1 and w; = w)y.

It is now also easily proven that the ratio of the power of the output of the filters wy
and w; is maximal when given observations of one of the classes:

* 1 2
b le w) } - Wi Rgawr A
FE {(W:Tul)ﬂ WiTR{l,r}W:: )‘{l,r},M ‘

(2.13)

2.2.2 MIMO

So far, only a single filter /direction was extracted per class, i.e. each filters represents
a MISO system. It is however reasonable that the relevant subspace is multi-
dimensional.

To this end, the objective of eq. (2.1) can be generalized to extract multiple filters
per class, i.e. a MIMO system [25, 26, 27, 28]. To extract @/2 filters w1, wa, ..., Wq/,

of class {r,l}, define the filter matrix W = [ W1 W2 ... W } € RM*9/2 Then
the objective becomes

MWTX{Z r} 2} Tr (WTR{M}W)

W7, = argmax = arg max , (2.14)
VB |[Wkp } W T (WTRG) W)

where W?l,r} = { Wi Wy ... W, ] is a RM*92 matrix containing the Q/2

optimal spatial filters. Then, to fully constrain W, the constraint W' W = T is
added.

The optimization problem above is commonly referred to as the Trace Ratio Opti-
mization (TRO) problem. However, different from the MISO case, the TRO problem
does not have a closed-form solution. Therefore, the constraint is usually replaced
by WTR{N}W = I which is again a generalization of the MISO case. This leads to
the simpler, yet not equivalent problem:

W?l,r} = argwmax Tr (WTR{W}W)

(2.15)
s.t. WTR{TJ}W =1.
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2.2. Feature extraction — Common Spatial Patterns

The Lagrangian of this problem is given by
LW, A)=Tr (W Ry yW) —Tr ((W Ry W -T)A),  (2.16)
with A a RY2%%? (not necessarily diagonal) matrix of Lagrange multipliers.

The solution to this convex problem is given by the following equation according to
the theory of Lagrange multipliers [22]:

Vw0 L1y Wiy, Alisy) =0 (2.17)

Ry W7, v =R n W7, (AT,
(_){ {*}T{z,} *{ WALy ey (2.18)
W{l,r} R{nl}w{z,r} =1

Now multiplying the first equation with W?lm} and combining with the second

equation of (2.18) gives A* = Wi, T}TR{M}W*. This shows that A’El »} i symmetric
and thus an orthonormal diagonal decomposition A?l "= U{M}E?l T}U{Tl v} exists.

Thus the first equation of (2.18) can be rewritten as

* * * T
R{Z,T}W{l,r} = R{r,l} W{l,r}U{l,r} 2}{l,r}[I{l,r} (219)
—_—
évx{(lﬂr}
< R{l,r}V?{(Lr} = R{T,I}V?l,r}zil,r} . (2.20)

Note that as in the MISO case (eq. (2.7)), this leads to the GEVD of the pair

(R Rery) where Vi o = [ Viiga Viwe - Viiape | contains @2 gen-
eralized eigenvectors corresponding to the generalized eigenvalues v} (not necessarily
the largest) on the diagonal of E?l,r}’ ie. 2?[,74} = diag(v’flm}g, V?I’T}Q, e 7Vifl,r},Q/2)‘
Per definition of V?l b the spatial filters W’El -} are a unitary transformation of the
generalized eigenvectors contained in V?l,r} and thus lie in the subspace spanned by
the latter.

Now consider the joint diagonalization given by the GEVD as in egs. (2.8-2.10) with
V instead of W for notational clarity. Using the constraint W?M}TR{T’I}W?M} =1,
again fixes the scaling of the eigenvectors as in (2.11).

Similarly to the MISO case (eq. (2.12)) this joint diagonalization given by the GEVD
can then be used to rewrite the optimal value of the objective as given in eq. (2.15)
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2.2. Feature extraction — Common Spatial Patterns

i.f.0. the generalized eigenvalues:

* T *
Tr (W{l,r} R{Z,T}W{Lr}) (221)
~ Tr (U{M}V?l,r}TR{M}VE’T}U{TIW}) (2.22)
=Tr (V?z,r}TR{z,r}V?z,r}U{Tz,r}U{l,r}) (2.23)
=T (Viey Ry Vi) (2.24)
= Tr (2f,) (2.25)
Q/2
= > A (2.26)
i=1
Clearly the objective is maximized by choosing
N = Ao
rya 7 MR i 19, Q). (2.27)
Virye = Vilrki

Hence the @/2 optimal spatial filters lie in the subspace spanned by the @/2 generalized
eigenvectors corresponding to the @/2 directions with highest power ratio, i.e. with
the largest generalized eigenvalues. A straightforward choice for Uy, is Uy ,p =1
such that the optimal filters are simply these generalized eigenvectors.

The first direction is then the one with maximal power ratio. The second direction
is the one with maximal power ratio but where the output for the attenuated class
is uncorrelated to that of the first direction. Subsequent directions similarly look
for the maximal power ratio whilst having the output uncorrelated to all previous
filters’ outputs. Hence the algorithm finds subsequent directions that are in some
sense maximally different from one another.

Typically the number of filters per class is taken to be equal for the two classes. Hence
with Q/2 filters per class, there is a total of @ filters resulting in a @-dimensional
feature vector per window.

2.2.3 Spatio-temporal filtering

Aside from purely spatial filtering for filter extraction, spatial filtering can be
combined with temporal filtering (synonymous with spectral filtering) to more
selectively extract the relevant features — the SMR/’s — from each of the channels. Each
channel is first filtered in the temporal domain before combining the channels using
a spatial filter /pattern. This combined filtering is commonly and most accurately
referred to as spatio-temporal filtering or spatio-spectral filtering although some
authors refer to combined temporal and spatial domain filtering simply as spatial
filtering.
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2.2. Feature extraction — Common Spatial Patterns

Common Spatio-Spectral Patterns (CSSP)

To generalize spatial filtering methods, such as CSP analysis, to spatio-temporal
filtering, observe that a temporal FIR filter can also be interpreted as a multichannel
filter in which each subsequent input channel is a delayed version of the previous
channel. Hence in comparison to a purely spatial filter which can be seen as a
multichannel filter in which each channel comes from a different location, a spatio-
temporal filter has channels that are both from different locations as well as being
delayed versions of other channels.

Formally, define w; ; as the i-th L-tap temporal filter for channel j

T
L
Wi = { Wi 0 Wil .- WijL—1 } € R™. (2.28)

The i-th spatio-temporal filter is then defined by stacking the individual channels’
filters:

.
wiz[wh why . why | eRrME (2.29)

Similarly, define x;[k] to be the sample from channel j at time k. In order to filter with
an L-tap (temporal) FIR filter at time k, the samples z;[k], z;[k—1],...,x;[k—L+1]
are required. Define the stacking of these samples as

-
silk] = [ 2ilk] zilk =1 .. alk—L+1] ] (2.30)
and the stacking of all M channels and their delayed version as

xkl =[xk I8 .. xplk] ] (2.31)

The output of the spatial filter w; applied to these channels is then

M L—
ZZ wij - ik ZW’L]XJ =w, x[k], (2.32)
j=11=0

which is of the same form as spatial filtering. Hence by considering the delayed
versions as extra channels, all spatial filtering techniques can straightforwardly be
applied in the spatio-temporal domain — albeit with L times as many channels.

Generalizing CSP analysis to spatio-temporal filtering in this way is referred to as
common spatio-spectral pattern (CSSP) analysis [29]. The covariance matrices now
have size ML x ML instead of M x M as with purely spatial filtering.

Filterbank CSP (FBCSP)

A disadvantage of this approach is that L needs to be large in order to be sufficiently
frequency selective [30]. However the computational complexity is known to increase

21



2.2. Feature extraction — Common Spatial Patterns

rapidly with ~ L3. Furthermore, the increased number of parameters (filter weights)
makes the method more prone to overfitting.

Therefore Filterbank CSP (FBCSP) analysis first filters each channel into a series of
subbands using bandpass filters [30, 31, 32]. The outputs of these filters are then the
channels used in the CSP analysis. The resulting optimal filter will then optimally
weigh the contribution from each subband w.r.t. other subbands from that channel
and w.r.t. other channels’ subbands.

This approach allows to make the bandpass filters arbitrarily frequency specific — one
could even use IIR filters — without paying for this specificity with a larger parameter
space. Rather the size of the parameter space is now the product of the number of
channels M and the number of subbands.

Furthermore, because the feature extraction now contains the necessary bandpass
filtering for preprocessing (cf. Section 2.1), separate preprocessing filters are no longer
necessary. This essentially integrates the preprocessing into the feature extraction,
enabling optimal subject-specific pre-processing [31, 32].

Because the two extensions to spatio-temporal filtering discussed above result in a
problem of the same type (albeit larger due to the extra channels, which is no different
than adding duplicate electrodes), the remainder of this text will not specifically
consider the spatio-spectral in the derivations.

2.2.4 Regularization

To avoid overfitting, the objective function of the CSP method? can be regularized
by adding a penalty on the lo-norm of the filters [33, 34, 35]. By adding such a
penalty term to the denominator of the objective, small norms are favoured when
maximizing the objective which is known to reduce overfitting [36]. This technique
is commonly known as Ridge regression or Thikhonov reqularization.

The objective function (2.14) is then modified as follows:

Tr (W Ry, W)

Wi,y = arg max
’ W

7 , (2.33)
Tr((1—A) - WTRgy W) + - > [lwy]2
=1

Ry 1 +Ry,
where Ry, = w

%i.e., (2.1) for the MISO case or (2.14) for the MIMO case, as the former is a special case of the
latter, the latter will be used for the explanation
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2.3. Classification

Note that this modified problem can also be written as

.
W7, , = arg max o (W R{I’T}W) (2.34)
(1) = A ) W Ry W) F AT (WTW)

Tr (W Ry AW
= arg max ( thr} ) (2.35)

w Tr(WT[(1=X)Rayg +A-I]W)’

which, similarly to the derivation of Section 2.2.2, is equivalent to calculating the
GEVD of (R{lﬂq}, (1 - )\) Ravg. + A ]I):

Observe that whereas the non-regularized objective could be minimized instead to
obtain the optimal filter for the other class (cf. supra), the addition of the penalty
term prevents prohibits this. Therefore, two GEVD problems will need to be solved
to compare the ratios: the GEVD of (Ry,}, (1 —A) Ravg. + A - 1) and of (Ry,p,
(1= ) Rasg. + A- 1)

Further, note that the use of Rgyg. instead of Ry, ;y as in (2.14) does not change
the solution to the problem but rather makes the parameter A more interpretable
only. This can be seen as follows: the solution of (2.33) is given by the generalized
eigenvectors of (R{Lr}, (1—=X)Rgpg + X~ ]I) as was discussed in Section 2.2.2. If w
is such a generalized eigenvector with corresponding eigenvalue o, then by definition

Rynw=o (1 =N Rapg. + A [Jw=0c [ (R{l,r} + R{r,l}) +A- H} w (2.36)

2
N (1 ol ; A) Ry, w=0 (]L;ARW} + )\]I) w (2.37)
& Rypw = 5= 02(‘; my (1 5 ‘R + /\H> W= (2.38)
N P )
© Rynw =0 (Rpy + XT) w. (2.40)

It can thus be seen that the objective where Ry, ;3 is used in the denominator instead
of Ryyg. yields the same generalized eigenvectors w but with different but related
corresponding eigenvalues ¢’ and regularization parameter \.

2.3 Classification

The final step in the classification pipeline is the classification itself. While non-linear
classifiers can use more complex relation between the data to make a prediction
of the class, linear classifiers are commonly preferred for MI classification [23, 37].
Their simplicity is often exactly their advantage as simpler models are less prone to
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overfitting and more robust. They are also amenable to fast implementations and
are easy to further regularize.

Therefore, it was opted to use (Fisher’s) Linear Discriminant Analysis (LDA) which
is among the most popular linear classification techniques for MI BCI, next to support
vector machines [23].

Similar to CSP, LDA is also formulated as an optimization problem: LDA finds
a linear projection direction a of the data that projects the data to a 1D space®
that optimally separates the clusters of data corresponding to the classes. Optimal
separation is defined as minimal within-class scatter (i.e. the data points are tightly
grouped for each class, formally measured by the within-class covariance matrix
Yw) and maximal between-class scatter (i.e. the clusters get mapped to lie far away

from each other, formally measured by the between-class covariance matrix Xp)
[36, 38, 39]. 4

This results in the following optimization problem: Define m; and m,. as the average
of the observed features y; of resp. class [ and class r. Define the within-class
covariance matrix Xy as

Sw = Z(y —my)(y; —my) ' + Z - m,)(y; —m,)" (2.41)
yi€l yi€r

and the between-class covariance matrix X g as
Yp=(m—m)(m—m,) . (2.42)
Take the solution as the linear projection z = a'y that maximizes

a'Tya
max ————

2.43
X S a (2.43)

which can be seen to be an optimization problem of the same form as the CSP
objective (see (2.1)). Consequently it is similarly solved by taking a as the generalized
eigenvector corresponding to the largest generalized eigenvalue, as was shown for
CSP.

By next setting a threshold zg, for example based on the class conditional densities,
this yields a classifier.

Similar to CSP, this objective can also be regularized to avoid overfitting on the
training data. As the classification is not the main focus of this thesis however, the
reader is referred to [36, 39] for more details.

4LDA can be extended to higher dimensional projections similar to how CSP was extended to
multiple filters, yielding a method for dimensionality reduction.
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Chapter 3

Distributed feature extraction

As discussed in the introduction of this text, the typical MI classification system as
presented in the previous chapter is rather ill-suited for long term use. Therefore,
this text evaluates the use of a wireless EEG sensor network (WESN) as a more
suitable alternative for this use-case to conventional EEG acquisition. To make this
approach feasible however, the classification pipeline of the previous chapter will have
to be adapted using distributed signal processing techniques. Therefore, this adapted
pipeline that enables efficient (w.r.t. the goals set out in Section 1.4) MI classification
on a WESN will sometimes be referred to as the distributed (classification) pipeline
in this text.

This chapter presents the architecture of the distributed MI classification pipeline
to efficiently run on a WESN as envisioned. The central pipeline of the previous
chapter will be used as a starting point and framework for this distributed version.

In the first section of this chapter, more details will first be given on the WESN
as envisioned in this text. This section also includes an overview of the different
network topologies considered as well as the standard notation concerning WESN. In
the next section, a naive approach to running the complete MI classification pipeline
on a WESN (i.e. without distributed signal processing) will be discussed that serves
as a baseline for the more efficient approaches further on in the chapter.

The following three sections are then concerned with efficient distributed implemen-
tations of the feature extraction step of the classification pipeline.

The first of the three sections details the derivations for both considered topologies
for CSP without regularization nor re-use of the data (cf. infra). The next section
then extends the algorithms to include regularization. Finally the last of these three
section adds the efficient re-use of data to efficiently be able to increase the tracking
speed of the algorithm.

The final section of this chapter discusses how the complete classification pipeline
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3.1. Wireless sensor networks

can then be setup efficiently in a distributed fashion. It will turn out that this only
requires a modification to the feature extraction step for which then the algorithms
of the three previous sections will be used.

Remark: To be as general as possible without needlessly complicating the
notation, the feature extraction algorithms to be described in this chapter
are presented with multiple filters per class and eventually the addition of
Thikhonov regularization (see respectively Sections 2.2.2 and 2.2.4), but without
the extension to spatio-temporal filtering as this does not alter the algorithms
in any way except for the dimensions of the filters and covariance matrices (see
Section 2.2.3).

3.1 Wireless sensor networks

Before considering modifications to the central architecture of the previous chapter,
this section first defines the envisioned network in more detail and presents the
notation concerning such a network that will then be used throughout the remainder
of this text.

The system envisaged in this thesis uses a wireless EEG sensor network (WESN)
consisting of multiple low-power sensor nodes attached to the head of the wearer. Each
node is battery-powered and consists of an electrode array, a small DSP processor
and a wireless network stack used to form a network with the other nodes or with
a fusion centre (FC). Since every node is equipped with a processor, the system is
amenable to distributed processing which could help with per-node requirements.

The communication between the nodes requires the implementation of a network
protocol stack with protocols suited for the characteristics of the WESN. The
media layers of the protocol stack provide a.o. protocols for energy efficient radio
transmission (physical layer!), packet handling and addressing (data link layer),
maintaining the desired network topology even in case of the removal or addition of
nodes (network layer) and reliability (transport layer). These are however outside of
the scope of this text.

The algorithms which are discussed in this text are situated in the application layer
(or presentation layer if used, but more generally in one of the the host layers). Owing
to the layer model, the media layers can be abstracted and considered to provide a
reliable wireless network in which each node can readily receive and transmit high
level data to its neighbours in the desired topology. However by removing some of
the abstraction, link failures or creations can be handled more efficiently [40]. This
is however outside of the scope of this text.

While this text focusses on extracutaneous nodes and electrodes, a similar sensor

! As defined by the OSI network model
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3.1. Wireless sensor networks

network would for example also be useful for subdermal nodes which would reduce
(skin) movement artifacts, guarantee correct electrode positioning and reduce the
amount of visible equipment albeit at the cost of a.o. invasiveness and more difficult
power delivery. Potentially even intracranial electrodes, i.e. electrocorticography
(ECoG), could benefit from a sensor network to connect multiple electrode grids
to one-another to do the processing. Compared to EEG, the spatial and spectral
resolution of ECoG electrodes is significantly higher allowing for more powerful
methods concerning small areas of the brain. The main disadvantages of ECoG are
its invasiveness [41] — usually requiring a craniotomy — and biological issues affecting
the signal quality in the long term [42, 43].

Notation

The set of nodes in the WESN will be denoted to as K. The size K of the network
is defined as the number of nodes in the network and follows from the cardinality of
K, ie. K = |K|. The set of neighbours of a node k is denoted as N} and is defined
as the set of node to which node k has a direct communication link.

A node k € K has My, electrodes of which the observations at time j will be referred
to with the vector x;[i] € RMk. The total amount of electrodes in the network will
be denoted as M = "5 | M. The observations from all nodes are stacked in the
vector x[i] € RM,

With respect to the two classes, define x;, ;1 [i] as an observation x;, that belongs to
class {l,r} where the brace-notation of the previous chapter has been used to denote
the possible options for the subscript.

The index ¢ will often be dropped for notational brevity.

Network topology

The network formed by the sensor nodes can form different topologies based on how
the nodes interconnect. In this work, two topologies are considered: fully connected
and tree topologies.

In a fully connected topology, each nodes has a direct (wireless) link with every other
node in the network. As will be shown later, these direct connections allow data to
be shared with the other nodes quickly. Figure 3.1a gives a schematic example of a
fully connected topology.

The second topology considered is the tree topology as schematically illustrated
in Figure 3.1b. A tree topology has two main advantages as compared to a fully
connected topology. First, depending on the construction of the tree, link distances
can be kept short. Since, as will be explained in Section 4.4, transmission power
P relates to the distance d as P « d" with n = 5-6 this could mean a much lower
energy consumption. Second, as compared to other conceivable topologies, there are
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3.1. Wireless sensor networks

no loops. This makes it easy to distribute data in the network as loops can cause
convergence problems for the distributed algorithms to be described later in this

chapter [14].
() O
Y oo,
\/
On ol
(A) Fully Connected (B) Tree

FIGURE 3.1: Example of a WESN organized as either a fully connected (a) or
tree topology (b). The lines between the nodes, represented as circles, indicate the
internode connections.

The disadvantage is that data may need to traverse multiple in order to reach another
node in the network. The straightforward approach of having nodes relay data not
destined for them to nodes that connect to the destination however, is not scalable
as it requires extra energy, especially from nodes close to the root of the tree, to do
the relaying as well as increasing the latency from source to destination [44]. Thus,
the algorithm that operates on a tree topology that will be described later in this
chapter, will use a cooperative approach instead that lets a node incorporate data it
has been sent into its own.

Furthermore, because there is only a single path between any two nodes, a tree
topology is less resilient against link failures than other topologies

It should be noted that any topology can be pruned into a tree topology using for
example Dijkstra’s shortest path algorithm [45]. Therefore algorithms that work on
a tree topology can operate on all possible topologies after pruning. Hence such
algorithms are sometimes referred to as topology independent (TI) in the literature
[46].

Dijkstra’s shortest path algorithm guarantees that the distance to each node starting
from the root node is minimal, where the distance is more accurately described as a
cost which can be defined by any cost function. In the original algorithm, this was
taken to be the physical distance, but later in this text, the communication related
energy of each link will be used as a more relevant cost.

As this optimality is only guaranteed for paths starting from a root node (and paths
that so happen to be included in that tree due to Bellman’s principle of optimality), a
different pruned tree should be used depending on the destination of the transmissions
to be optimal. This approach will be referred to as a dynamic topology.

Although this approach is more efficient since it can exploit every possible connec-
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3.2. Centralized algorithm on a WESN

tion between nodes, it also increases the amount of overhead of the network layer.
Furthermore, as will be discussed in Section 3.5, the fact that the neighbours of the
nodes are continuously changing also eliminates properties the algorithm can use.
Therefore, another approach would be to prune the network down to a single tree
regardless of source/destination path optimality. This approach will be referred to
as a static topology.

3.2 Centralized algorithm on a WESN

A naive approach to MI classification within a WESN would be to centralize all
signals in one of the nodes, called the fusion center (FCe) or symbolically krce,
and run the central classification pipeline (as described in the previous chapter) on
that node. This approach will be the baseline for comparison with more efficient
approaches.

Algorithm 3.1 details all steps of the classification pipeline as presented in the
previous chapter, for this naive implementation. For notational clarity, we introduce
the notation x?[j] = x[iN + j] to denote the j-th sample from the i-th window.

In each window, observations from only one of the classes is available. Updating the
covariance matrices is hence done in the same way as discussed in Section 2.2 the
previous chapter.

Algorithm 3.1: Sliding-window adaptive CSP
Set ¢ <0

repeat
Collect a window of N observations from all M electrodes:

x'[j] = x[iN + j] € RM where j =1,...,N
Each node k € K\ {krce} transmits its observations to node kpc,

Filter signals: x'[j] = wi'xi ]
Calculate features as y* = log (117 > X [j]2>
i=1

Predict the output class

Update the covariance matrices (see section 2.2), corresponding to the
correct label '’ or 1’

Update the filters by solving the GEVD of the covariance matrices to
obtain the (/2 principal eigenvectors of (R} + o - I, R%) and of
(R% + a1, R}) to form Witl ¢ R@*xM

Resolve sign ambiguity;

14 1+1

end
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3.3. Distributed Common Spatial Patterns

3.3 Distributed Common Spatial Patterns

Central to the CSP method used for feature extraction in the classification pipeline, is
the GEVD of the network-wide covariance matrices corresponding to the two classes.
However as shown in [14] and as will be discussed in Chapter 5, the centralization
of the signals in a single node to be able to compute those covariance matrices is
prohibitively expensive in terms of energy usage.

To combat the prohibitively large communication-related energy consumed by central-
izing the observations, Bertrand and Moonen propose an iterative method called Dis-
tributed Adaptive Covariance-matriz Generalized Eigenvector Estimation (DACGEE)
that finds the generalized eigenvectors of a pair of covariance matrix via an iterative
procedure over consecutive windows of observations.

Since CSP boils down to a GEVD, in this context the algorithm optimizes the
(MIMO) CSP objective in (2.15) by iteratively updating a filter matrix W* without
requiring centralization of the observations to compute the network-wide covariance
matrices [20].

In [20] the authors prove that for ¢ — oo, the centralized optimum W* as computed
by the methods of Section 2.2 is reached. More formally,
W* = lim W',

1—00

In the paper the authors derive the method for the case of a fully connected network
topology. However, based on similar previous work, they also propose a generalization
towards tree topologies. The derivations for respectively fully connected and for the
generalization to tree topologies will be discussed in the next two subsections.

3.3.1 Fully connected topologies

The main idea behind the algorithm is that in each iteration/window, all nodes in
the network compress their observations of that window using the part of the filter
matrix iterate corresponding to the node. Next, these compressed observations are
then broadcasted to the rest of the network, rather than the raw observations as in
the naive algorithm (cf. supra). In each iteration, one of the nodes then computes
the compressed covariance matrix and updates the filter matrix. Therefore, this last
node will be referred to as the updating node, usually symbolically denoted as node q.

Derivation

The following derivation is taken from the original paper with slight notational
adaptations to be consistent with the rest of this text as well as some changes in the
ordering of the steps of the derivation.
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First consider the following partitioning of W2:

.
w=|[ Wl w] ... W], (3.1)

where W), € RMr*9/2 This partitions the filter matrix into smaller filter submatrices
W, corresponding to the M, channels of node k € K.

Recall the constrained MIMO objective from eq. (2.15) repeated here for convenience:
Wi,y = argmax Tr (WTRW}W)

st. W R yW=1.

This optimization problem is then transformed into an iterative procedure using an
alternate optimization (AO) procedure:

1. Set i+ 0, g+ 1 and W({)l,r} as a random M X @/2 matrix
2. Solve 4
Wf{ﬁ} :argvrélax Tr (WTR{M}W)

WTR{TJ}W =1 (32)

s.t. R(Wy) = R(Wz,{l,r}) Vk € K\ {q}

where Wy, is the k-th submatrix of W similarly defined as the partition given
in eq. (3.1) and R(-) denotes the range of its argument.

3. Set i<+ i+ 1and g+ (¢ mod K)+1

4. Return to step 2.

In each iteration of the AO procedure, W, is optimized subject to only the original
constraint while the other submatrices W), are also constrained to have the same
range.

Note that thus far, the AO procedure still requires centralizing all observations to
compute the covariance matrices.

The second constraint of the optimization problem in equation 3.2 can equivalently
written in terms of the matrices {Gk € RY2XC12 Yk € K\ {q}} as

Wi, = Wi .1 Gr, (3.3)

2Recall from Section 2.2.2 that we have defined Q as the total amount of filters and hence there
are Q/2 per class
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allowing to reparametrize the optimization variable as

[ Wi a6 ]

Wf]—l,{lm}Gq—l
L W, . (3.4)

qu+1,{l,r}G‘1+1

W%,{Z,T}GK

Now define the stacking of all optimization variables

. T

W,=|W, G ... G, Gl ... G| , (3.5)
and define the following matrix

0 Bl .., 0

Cipmy=|In 0 0 : (3.6)
0 0 Bz>k,{l,r}
where
B, 1,y = blkdiag (Wi s Wiy ) (3.7)
B, (1) = blkdiag (W;;H’W}, - ,W@QW}) , (3.8)

such that (3.4) can be compactly written as

W=C, W, (3.9)

Returning to the optimization problem in (3.2), the second constraint can now be
eliminated by reparametrizing the problem i.f.o. W, due to (3.3-3.5). For notational
clarity, define xj ¢ [7] = X} (L} [iN + j] to denqte the j-th sample of the window
corresponding to iteration ¢ and similarly define xfll r} a8 the stacking of such vectors.
The index j will often be dropped for notational brevity.

The objective is then rewritten as

witt = srg max Tr (W, Ch iy Ryl W) (3.10)
q
where
i T i i T i i T i T
Cofiry R{lvr}cq,{l,r}_E|:(Cq,{l,r} X{l,r}) (Cq,{l,r} x{l,r}) } (3.11)
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with

i T 4 _
Coliry Xy =
W

Wi 1

i
Xa.{Lr}

W?L{l,r} Xll,{l,r}

(2 ¥
Wq_la{l’r} Xq—l,{lﬂ"}

i %
q+1.{l,r} Tq+1,{l,r}

T i
XK ALry

7
Xg{lr}
gty 3
X1 {Lr}

S
X{I—L{lﬂ"}
Sl
Xg+1,{r}

St
L XK {1}

, (3.12)

where 5(}; Uy = W}C { T}sz (1} e the observations of the channels local to node

k, filtered with the corresponding part W}€ L) of the filter in iteration 7. Further

define the following notation:

—1 _
X—k’,{l,'l’} -

~1 o
Xk {1y =

S
X1}

=i
L XK
xk?{l7T}

ey 3

kav{lﬂn}

(3.13)

(3.14)

%t kL) is then the stacking of all compressed signals received by node k in iteration

i. Hence it is of length (K — 1)Q/2. i};,{m} stacks node k’s own M}, signals on top to

concatenate all signals available to node k in a vector of length M + (K — 1)Q/2.
For notational brevity later on in this text, the total number of available channels
(both from its own electrodes as well as compressed channels from others’) will be

denoted as My, £ My, + (K — 1)@/2, such that 5&};’{“} € RMx,

Using these definitions, it is clear that

i T ~i
Coiiry X = Xg i)

and hence

i T i _ [ i T] 2 Ri
Coun RunCoun=F [Xq,{z,r}(xq,{z,rﬂ } =Ry 49

The objective is then compactly written as

Tr (Vv;ﬁ;y{,vr}{qu) .

(3.15)

(3.16)

(3.17)
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Similarly, the constraint WTR{T,I}W = I can be rewritten i.f.o. VVq as

TS —~
Wq RZ,{N}W‘J — ]I, (318)

where f{fl (ry 18 similarly defined as in (3.16).

Hence the optimization problem (3.2) in each iteration is equivalently solved by
finding W;‘F{} -} 88 the solution of the following compressed optimization problem:

B . N
W:f{l’r} = argmax Tr (Wq R;’{“}Wq)
Wy (3.19)
B N

s.t. Wq Rq’{nl}Wq =1
and setting W?{i} = Cfl { T}Wff{} ) Note that this compressed problem has the
same form as the original problem (2.15) which was proven to be equivalent to a
GEVD problem (see section 2.2.2). Therefore, the compressed problem can be solved

by performing a GEVD of (ﬁ;{l b ﬁ; {7"5})'

To avoid the sign of the filters flipping between iterations — as the solution to the
GEVD is only unique up to the sign (the length was already fixed by adding a
constraint to the objective, as first discussed in Section 2.2.1) — the filter matrix
Wl;:{%,r} is taken such that the signs of the compressed filter matrix corresponding
to node ¢ match between iterations ¢ and ¢ + 1 [46]. This is achieved by
Wi = Waun D'
i+1

where D* = arg min |W D-W
g H a.{L.r} a.{Lr}

(3.20)

F

where D represents the class of @/2 x @/2 signature matrices, i.e. the class of Q/2 x Q/2
diagonal matrices for which all diagonal elements are elements of {—1,1}.

The covariance matrices in this compressed problem are those of the vector 5&;7 )
which is comprised of observations from the channels local to node g and of compressed
observations of the other nodes. Hence all observations need not be centralized in
node ¢ as they would need to be with the naive centralized algorithm to estimate the
network-wide covariance matrix. Rather each node compresses its observations and
sends only those to the updating node ¢. Estimation of the compressed covariance
matrices can be done similar to the central case:

i 1 ~i i T
Rf]»{lﬂ’} ~ Ni qu,{l,r}(xq,{l,r}) ) (321)

{ir}

with Ny 1 the amount of samples corresponding to class {l,7} in the current window.
Indeed, as the observations are compressed using W* which changes in each iteration,
the covariance matrices will need to be estimated in each iteration as well. Note that
this requires a window of new observations from both classes in each iteration.
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By parametrizing W such that the filters of the channels local to ¢ can be freely
chosen and that the filters of other nodes’ signals can only be transformed within
the same range using transformations Gy, the compressed signals of the latter set of
nodes are all that is required for one iteration. Indeed, the transformation Gj can
equivalently be applied to the compressed signals instead of to the filter matrix Wy
first.

For @ < My, this method reduces the communication-related energy usage of node k
w.r.t. the naive approach represented in the previous section, but requires multiple
iterations in order to converge towards the central optimum W*.

Furthermore, as new observations are used to calculate the (compressed) covariance
matrices in each iteration, the algorithm can also track slowly varying statistics — it
is an adaptive algorithm. However if this change is too fast w.r.t. the convergence
speed, the algorithm never converges to the optimum for the statistics at that point
in time [47].

In Section 3.5 the method of this section will be extended to efficiently run multiple
iterations on the same set of observations which will introduce a tunable trade-off
between tracking performance and communication-related energy consumption.

Note that if the nodes broadcast their compressed observations on the network rather
than solely transmitting them to node ¢ and if node ¢ also broadcasts its compressed
observations on the network, every node is able to construct the filtered output and
hence predict the class.

Putting all of these steps together results in the DACGEE algorithm as given in
Alg. 3.2.

3.3.2 Tree topologies

In the same DACGEE paper [20], the authors also mention the possibility of extending
the method to partially connected networks, such as tree networks, and refer to [48]
were a method was proposed for estimating the covariance matrix eigenvector in a
distributed way in both fully connected and partially connected topologies. DACGEE
can be seen as a generalization of the method in that work and hence the procedure
for extending the algorithm to partially connected network is indeed analogous to
the one described in that paper. This will be discussed in this subsection.

Data flow

As discussed in Section 3.1 a node in a tree network only communicates with its
neighbours. Consequently, the approach taken with fully connected networks in
which each node broadcasts the compressed observations is not applicable.

Instead, a node k sends a neighbouring node n € N}, the sum of its own compressed

signals and those received from its neighbours except for in (to avoid feedback loops,
see [48] for a detailed explanation) for both classes. Let z; , (r,s denote the signal

35



3.3. Distributed Common Spatial Patterns

Algorithm 3.2: DACGEE [20]
Set i <— 0, ¢ < 1 and initialize all Wg L} Vk € K as random matrices

repeat

Each node k£ € K compresses and broadcasts N new observations
i — Wi T i d % — Wi T i
ety = Whdlry Xedir} 20 Xy T Whriy Xerl}

At node ¢: N N

o Estimate R, ;1 and Ry ¢,y
e Solve

szﬁ{%,r} = argmax Tr (WTIZN{%{Z’T}W)
W

s.t. WTﬁq’{nl}W =1

e Resolve the sign ambiguity
i1 T {2 *
Woin = WounD
i+1

where D* = argmin ||W D-W!
:§E,D H qa{lzT} q,{l,r}

F

» Define P = (K — 1) and partition Wi}  as

WwWitl  — [ T, O }VNViH

‘L{l:r} - qz{lvr}
Gy=[0 Tr [Wii,

e Broadcast G_; to all other nodes
Each node k € K\ {¢q} updates

k{lr}
-
where G = | G] ... G/, GJ,; ... Gf |
Set i <~ 7+ 1 and g < (¢ mod K)+1
end

transmitted by node k to node n € N, in iteration i for class {r,1}. This signal is
then defined as

i i T i i
Zhn {1} = Wi{lr} Xk fir) T A;{ }Zm—>k,{l,r} . (3.22)
meNE\1n

Note that this definition gives rise to a fusion and a diffusion stage (to and from the
root node) in the transmission of the data.

Indeed, the leaf nodes (i.e. the nodes k for which |[Nj| = 1) start the flow by
transmitting their compressed local observations to their sole neighbour. Those
nodes combine the transmissions from their leaf node children and transmit to the

36



3.3. Distributed Common Spatial Patterns

node that connects them with the root. This continues in every layer, each time
combining the data further up the tree towards the root of the tree. The data is said
to fuse towards the root, hence this stage is called the fusion stage.

Once the data has reached the root on each of its neighbours, the root node can
combine and transmit the correct signal back down to its neighbours towards the
leaves of the tree. A downstream node receives this transmission and diffuses the
correctly combined signal to each of its neighbours except for the upstream node.
The data diffuses to the leaves and hence this stage is called the diffusion stage.

Similar to the fully connected case, by completing this flow (which does more
transmissions than is strictly necessary for the algorithm that follows) each node
has all compressed signals and hence every node is once again able to construct the
filtered output from these compressed observations only.

Figure 3.2 shows a schematic illustration of the two stages for the example network
of figure 3.1b.

o b @ °°9

(A) Fusion flow (B) Diffusion flow

FIGURE 3.2: Illustration of the natural data flow in a tree network. The tree network
is the same network as in figure 3.1b.

Now define the vector X* ko {Lr) (compare to (3.14)) which stacks all signals that node
k has available to it as

~i _ Xk {l,r}
X_kflrr = [ ng 0 ] > (323)

where i:k’{lm} is defined as the stacking of the signals {Zf_)h{l’r}ﬂ € Ni}. The latter
vector is now of length ||Np|@/2 while the former of length My + || Ny [/@/2 which
again will be denoted to as M} as in Section 3.3.1, generalizing the definition.

Next define Vy, as the set of nodes that gets disconnected from the network if the
connection between nodes k and o is cut. Observe that then

i i T i i T i
Z o tir) = Whirt Xan+ 20 Wiiin X (3.24)

meVio

Hence in igk (L} all observations are available either uncompressed if they are local
to node k or combined and compressed if they have been received via a neighbouring
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node.

Derivation

As a generalization of DACGEE, the derivation of the extension of the method to
tree topologies is based on transforming the CSP objective into the same alternate

optimization procedure of the previous section. This extension of the algorithm will
further be denoted as t-DACGEE.

First, define a bijection f; that pairs each node n, € N, with a number o €
{1,...,|Ng|}. More formally:

Jo: Ng—={1,...,[Ng|} :nop — 0. (3.25)

For the updating node ¢, the definition of i:q (L} induces a parametrization similar
to the previous section of the filter vector W of the CSP objective such that the
optimization problem of the AO procedure is equivalently written in terms of (compare

to (3.5)):

- T T T 17
w,=[W; G ... Gl ] . (3.26)
W then relates to Wq as
W - C;{Z’T}Wq, (327)
where (compare to eq. (3.6))
) 0 Bz<q,{l,r}
Cz,{l,r} = IMq OMQXQ/2|N‘I| (3'28)
B>q,{l,r}

The matrix Bi<q,{l,r} can be partitioned into block rows of heights My, ..., M,_; and
the matrix and Bi<q,{l,r} in block rows of heights My, 1, ..., Mg such that each block
row corresponds to a submatrix of the filter matrix W. Each block row can then be
further partitioned into |N;|, @/2-wide blocks. In each such block row, only one of
those blocks is different from 0. If the block row corresponds to Wy, and k € V4
with n, € NV and fy(n,) = o, then the o-th block matrix of the k-th block row of

Bi<q,{l,r} if k< or Bl<q,{l7r} if £ > ¢ is equal to Wi:,{l,r}'

Then indeed -

Coiry Xtrt = Xofiry - (3.29)
such that with these new definitions of the parametrization and of 5&2 (L the
compressed covariance matrices can be defined similar to the previous sections’ and

the optimization problem in each iteration can be rewritten as a problem of the same
form but in terms of the compressed and local signals only. The resulting algorithm
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is then analogous to that of the previous section but uses the new definitions of the
variables and a more elaborate data flow as presented in this section, and is given in
Algorithm 3.3.

Algorithm 3.3: t-DACGEE
Set 7 < 0, ¢ « 1 and initialize all Wg L} Vk € K as random matrices

repeat
Each node k € N transmits N compressed observations zZ;, S} and

ziﬁnl i} (as defined in eq. (3.22)) to node n;, Vn; € Nj
At node ¢: N N
o Estimate R, ;1 and Ry ;,.;) based on (3.23)
e Solve
Wil 5T D X7
Wi,y = argmax Tr (W] Ry (1,4 W, )
q

s.t. W;ﬁ%{r,l}wq =1

Resolve the sign ambiguity

wi+1 A7l *
W Wq,{l,T}D

a{lry =
where D* = argmin |[WiT! D - Wi
DgE,D H q,{lr} a.{l,r} F

Define P = |./\/'q|% and partition Wg&%’T} as

WwWitl [ Ty, O }VNViH

allry = !
Gy =[0 Ir Wi,
« Take G, =[G ... Gl ]

 Disseminate G; over the branch V,,, for which f,(n;) =1, Vn; € Nj. Each
node k € V,,4 updates
i+1 i
X = X G

Set i «<— ¢+ 1 and g < (¢ mod K) +1
end

Instead of constraining each filter submatrix’ span (except for Wff{} r}) to remain the

same by multiplying each filter submatrix W}C (i} with corresponding matrix Gy,
now all filter matrices corresponding to nodes within the same V), 4 are multiplied
with the same matrix G,. This reduces the degrees of freedom of the optimization
problem in each iteration. Hence it is expected that the convergence of t-DACGEE
will be slower than that of DACGEE.

Nevertheless, t-DACGEE preserves the advantageous properties of DACGEE: the
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3.4. Regularization

communication between neighbouring nodes is similarly reduces as long as QQ < Mj,
for node k. Furthermore, the compressed covariance matrices are recalculated in
each iteration based on new observations and hence it can adapt to slowly changing
statistics.

In Section 3.5, t-DACGEE will also be extended to re-use a same batch of observations
efficiently to increase the tracking performance.

3.4 Regularization

In Section 2.2.4 the (MIMO) CSP objective was regularized to avoid overfitting. To
this end, an ls-penalty on the norm of the filters was added. However, this requires
the complete filter matrix to be available in each iteration and in each node. Each
node thus needs to keep track of the complete matrix which in a tree topology
requires relaying which is known to be poorly scalable [44].

By using the same principle as was used in the derivations of DACGEE and t-
DACGEE, i.e. AO combined with a clever re-parametrization, each node only needs
to broadcast a Q/2 x @/2 matrix in each iteration, rather than an M}y x @/2 submatrix
of Wzﬁ . The method to efficiently incorporate an lo-norm of the filter matrix into
the distributed optimization was adapted from the solution to a resembling problem
proposed by Musluoglu et al. [46]. Here it serves to incorporate an orthonormality
constraint W' W = I into an efficient distributed realization of a different problem,
Trace Ratio Optimization, rather than simply the norm of the left-hand side of this
constraint.

For ease of exposition, the derivation of this approach will first be worked out for
fully connected topologies, i.e. regularizing DACGEE, in a first subsection. Next,
this will then be extended to tree topologies.

3.4.1 Fully Connected Topologies

Recall from Section 2.2.4 the formulation of the regularized MIMO CSP optimization
problem given in (2.34):

Tr (W Ry, W)
Tr((1—X) - WTRgg W)+ X-Tr (WTW)

Wi’fz,r} = arg max
W

Now analogous to Section 3.3.1, transform this problem into an AO procedure where
the optimization variable W is split into submatrices W, where the entries of these
submatrices correspond to a node k. In each iteration, only the submatrix of W
corresponding to node ¢ can be freely chosen to maximize the objective and the span
of the other submatrices must remain the same.

First observe that compared to the non-regularized version, the numerator is identical.
Second, the parametrization of (3.3-3.9) are used to rewrite the denominator in
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3.4. Regularization

iteration i:

Tr (1=2) - W Ry W) + - Tr (W'W) (3.30)

(1-2) GTei T P
= TI'( 5 W Cq,{l,r} R{l,T‘}Cq,{Lr}W)

(1-2) FTei T i
+ Tr ( 5 -W Cq’{lﬂﬁ} R{T7Z}Cq7{l7T}W>

(3.31)
+ )\ -Tr WT 027{Z7T}TCZ7{Z7T} W
—_—————
Koy
(0N TR
= Tr( 5 -W Rq7{l’T}W>
(1-N &TRi W 3.32
+ Tr <2 - W Rq,{T,l}W) ( )
+ )\ -Tr (W’TK;{ZW}W)
=T (1=2) WIR) o W) + 2 Tr (WKL W) (3.33)
=T (W (1= 0 Ri gy + 2Ky ) W) (3.34)
~,L' . ﬁ Al,r +ﬁ Ar,
where R}, = —&erg—rind {br} —a.drd}
The matrix K; (1} can be written as a block diagonal matrix:
i _ i T i
Kooy = Coun Coun (3.35)
(3.6) . i THi i T
=" blkdiag (HMw Bk sy Bariry Bonry B>k,{l,r}) (3.36)
(3.7-3.8)

= blkdlag (I[Mq, L?L,{lﬂ”}’ NN 7Lf]—17{l,7“}7 Lé-i—l,{l,r}’ PPN Li[(,{l,?“}) 5 (337)

where ' | o
Li,{l,r} - XZ,{z,r} Xi,{z,r} : (3.38)

Combining the numerator and denominator again, the compressed problem becomes

Wi g (W5
& (3.39)
st W (1= 2) Ry + A K, ) Wy =T,

q7avg'

Observe that this is of the same form as in the non-regularized MIMO case of Section
2.2.2. Consequently, as was proven in that section, the solution can be found as the @/2
largest generalized eigenvectors of the pair (Rq,{l,r}’ (1=A) Ry gpg + A~ KZ,{I,r})'
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3.4. Regularization

The extension of DACGEE to regularized CSP problems, hereafter referred to as
r-DACGEE, thus requires that in each iteration each node k € K\ {¢}, in addition
to the compressed observations, transmits the matrix L};’ .y to node q. The full
algorithm is given in Alg. 3.4.

Algorithm 3.4: -DACGEE

Set ¢ < 0, ¢ < 1 and initialize all Wg (L} Vk € K as random matrices

repeat
Each node k£ € K compresses and broadcasts N new observations

X 1} = W}};,{l,r}TXZ,{z,r} and X;. .y = Wi;,{r,l}Txi:,{r,l}
Each node k € K\ {q} sends L;;’{M} =
At node ¢:

o Estimate f{q,{lm} and f{q{r,l}
e Solve

. T .
Xty Xkqir

. o
With,, = argmax Tr (W, R, 1,y W,)
q
. . . _
st Wy (1= X) R g + A K 1,y ) Wy =1

e Resolve the sign ambiguity

R )
W, Wo.unD

af{lr} —
. - i+t — W
where D —al‘gel%lnHWq,{l,r}D qu{lﬂ“} F

o Define P = (K — 1)Q and partition VV;‘L{} r} 8S

witl [ Tp, O }Wi—&-l

a{lry — a{lr}
Gy=0 Ip |Witi,

e Broadcast G_; to all other nodes
Each node k € K\ {¢} updates

1+1 7
Wk—j_{l,r} =W 11 Gr

-
where Gy = | G[ ... G/, GJ, ... G|
Set i «<— ¢+ 1 and g < (¢ mod K) +1

end

3.4.2 'Tree topologies

As t-DACGEE is a generalizeation of DACGEE, the derivation of the previous
subsection remains valid for tree topologies up until (3.35), so long as the variable
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3.4. Regularization

definitions of Section 3.3.2 are used instead.

Using the new definition from (3.28) for Cf],{l,r}’ Kf;,{z,r} now equates to (compare
to (3.35)):

Kiun = Coun Cotn (3.40)
3.28) |Ing,
= ; Toi ; Toi (3.41)
L Bapny Barpn TBapn Birpn
L, | -
> L
_ . , (3.42)
o Lhun
L "Ng 4 i
with LZ,{M} defined as in (3.38).
Now define L};Hl {1r} 38 the matrix that node k£ sends to node [ to be
Lign =Yg+ O Lok (3.43)
mGNk\l
Observe that similar to (3.24), this is equivalent to
Liegiry = 2 L - (3.44)
meV
Hence (compare to (3.37)):
K} 1,y = blkdiag (Tar,, L, g iy L Sainy) - (3.45)
This derivation thus shows that by constructing the matrix KZ‘{, (L) with the Lf” gL}

rather than with the L};’ (L} B8 in the fully connected case, and by similarly con-
structing the compressed covariance matrices as explained in Section 3.3.2, the rest
of the derivation of r-DACGEE can be straightforwardly applied to t-DACGEE to
obtain regularized t-DACGEE, further referred to as rt-DACGEE.

The definition of L} ,, (1,3 In (3.43) also means that it can be calculated by the same

fusion and diffusion process as for z; ., (L} (compare to (3.22)). However only node
q has a use for these matrices and thus a fusion flow with ¢ as the root is sufficient.
For notational simplicity however, this is ignored in the text.

The resulting algorithm for rt-DACGEE is given in Alg. 3.5.
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3.5. Efficient data re-use

Algorithm 3.5: rt-DACGEE
Set i < 0, ¢ < 1 and initialize all Wg L) Vk € K as random matrices

repeat
Each node k£ € N transmits N compressed observations zZ;, e} and

ZZ—ml,{r,l} (as defined in eq. (3.22)) to node ny, Vn; € Nj
Each node k£ € N transmits L};_ml’{l’r} (as defined in eq. (3.43)) to node
ny, VYn; € Nk
At node ¢:
o Estimate f{q,{lm} and ﬁq,{r,l} based on (3.23)
e Solve

WZ;’F{%’T} = argmax Tr (W;f{%{l,r}wq)

q

st Wy (1=X) R g + A K 1,y ) Wy =1

q,avg.

Resolve the sign ambiguity

Wi+l \ATE *
W Wq,{l,r}D

q,{l,T} -
. - Ixrit1 _ W?
where D —ar]%é%lnHWq,{l,r}D Wa i F

Define P = |N’q% and partition Wf;{%,r} as

witl —[]IMq O]Vv”l

alir} = a.(Lr)
Gy =[0 1r [Wiii,
e Take G_,= [ G] ... Gf |

o Disseminate G; over the branch V,,, for which f,(n;) =, Vn; € N,;. Each
node k € V,,, updates
i+l i
Xty = Xk, 1.y G

Set i «— ¢+ 1 and g < (¢ mod K)+1
end

3.5 [Efficient data re-use

As touched upon at the end of Section 3.3.1, the DACGEE algorithm and its variants
are adaptive algorithms. Indeed, as they use a new window of observations in each
iteration and re-estimate the compressed covariance matrices from those windows,
the algorithm inherently tracks (slowly) varying statistics through the re-estimation
of the covariance matrices and consequently the step taken with the next iterate
tracks the updated optimum.
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3.5. Efficient data re-use

Improved tracking speed

Yet, the iterative nature of the algorithm also means that the optimum is not reached
in a single iteration. If the statistics vary too quickly, the convergence speed might be
such that the iterate is not able to come close to the optimum before that optimum
has already shifted away [47].

However for a fixed objective, it was proven that DACGEE converges to the optimum
as calculated by central algorithm (i.e. from the GEVD of the network-wide covariance
matrices). Therefore, if the number of iterations per window of data (which indeed
has a fixed objective as the covariance matrices are only re-estimated per window) is
increased, so is the speed of the tracking.

Figure 3.3 shows the impact on the convergence speed of DACGEE for the example
on artificially generated data as in the original paper [20] for both fully connected
and tree topologies. As R is increased, the x-axis is essentially compressed and the
time it takes to reach a certain error is inversely proportional with R. Observe the
difference in the scale of the x-axis between plots 3.3a and 3.3b: as hypothesized in
Section 3.1 the convergence is indeed slower due to the partial connections in the
tree topology.

Each iteration requires observations compressed with the most recent filter matrix.
Consequently, after an update of the filter matrix, the nodes need to update their
part of the matrix locally and then compress the same window of data again but
now with the new filters, and transmit them to the updating node.

Hence a single window of observations is compressed and subsequently transmitted
multiple times in order to be able to perform multiple iterations of the DACGEE
algorithm per window.

Observe that those multiple iterations must be done on different updating nodes q.
Indeed, for the same updating node there is no extra flexibility and if there exist
matrices Gy, that would further optimize the problem for the same updating node g,
then Wf],{m} was not optimal in the first update.

Scaling behaviour

Because of the retransmission, the energy consumption per window of data is a
multiple of that of the standard DACGEE algorithm. In fact, if there are R
transmissions of the same observations (albeit compressed using different filters in
each iteration), it is easy to see that the energy consumption will be R times higher
as simply multiple iterations of the complete DACGEE algorithm are performed per
window. The amount of iterations per window R will further be referred to in this
text as the re-use factor.

To mitigate this poor scaling behaviour in fully connected topologies, an efficient
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3.5. Efficient data re-use
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FI1GURE 3.3: Impact of re-use on the convergence speed in DACGEE and tDACGEE
on synthetic data as in the example in [20]. The upper plot shows the evolution of
the value of the CSP objective function, the lower plot the mean squared error on
the entries of the iterate w.r.t. the optimal solution. For both subplots, the same
random data was used on a 253-channel topology clustered into K = 40 nodes based
on their location. The number of filters was set to () = 2. In each iteration, the same

2000 observations were used from either class as generated by the procedure from
[20].
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3.5. Efficient data re-use

approach was proposed by Musluoglu et al. [47]. The derivation of this algorithm
is the topic of a first subsection. Next, continuing the approach taken in [47], the
method will be extended to tree topologies in a second subsection.

3.5.1 Fully Connected topologies

Rather than retransmit the same set of observations after compression with the
updated filters, the nodes update the already received compressed observations from
nodes Vk € K\ {¢q} instead. This can be done as follows:

%y = Wiy Xt (3.46)
T i

=Gy Wk,{l,r} Xk, {1,r} (3.47)

= Gy X1 (3.48)

where iterations ¢ and ¢ + 1 correspond to the same window of observations, i.e.
where it holds that ] )
{ i J V + 1J
—| = =m.
R R

Here, m denotes the index of the window.

For the updating node ¢, there is however no relation between Xf] (L} and Xf;fﬁ "}
and hence the updating node does need to retransmit these signals after compressing
: i+1

with Xq7{l7r}.

Hence rather than having each node re-transmit in every re-use of a window of data,
only the updating node ¢ incurs additional energy usage. As the updating node
changes with each iteration (cf. supra), this additional energy usage is spread over
time over all nodes, as will be discussed in the next chapter.

Similarly, if applicable, the Lk {r,} Matrices of rDACGEE (alg. 3.4) need not be
retransmitted either as they can similarly be updated:

Lty =G/ Ljy,,Gi. (3.49)

Note that this requires that every node (or at least the R — 1 next updating nodes)
has the matrices Lk ) available to it in order to be able to update them in case it
becomes an updatmg node.

The method described above then leads to algorithm 3.6, referred to as r-DACGEFE
with re-use. For completeness, re-use is demonstrated here as an extension to
r-DACGEE rather than DACGEE itself. However note that the efficient re-use
technique of this section can equally well be applied to DACGEE.

3.5.2 Tree topologies

The same idea can be applied to tree topologies with one caveat however due to the
cumulation in the data flow.
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3.5. Efficient data re-use

As in the fully connected case, the updated filter matrix of the updating node ¢
Wf;{}’r} again has no straightforward relation to W; (L} and therefore ¢ has to
recompress and retransmit its observations to its neighbours. However, as the signals

Zi;linm,{l,r}‘nl € NyAnm, € Ny, \ {¢}} depend on these signals {Z;:lnl,{l,r}ml e N}
the former set of signals needs to be transmitted to the child nodes of the neighbours
of ¢ as well. This pattern continues downward due to the fact that upstream signals
are accumulated into the signals sent downstream. Hence unlike in the fully connected
case, a retransmission is required at each level of the tree, creating a diffusion flow
starting from node g. Indeed, due to the absence of strict criteria of what defines a
tree, a tree can always be reinterpreted to have a different root and still comply to

our definition of a tree (i.e. only 1 unique path between two nodes).

In the other direction, i.e. from the leaves of the g-rooted tree towards ¢, the signals
are not dependant on those of ¢ and hence the same updating can be used in each
node k as in the fully connected case for those signals, albeit using the matrix Gy
corresponding to the sub-branch of node ¢ the node is in rather than the matrix Gy
corresponding to the node itself:

Zi:lik,{l,r} = G;—zfn_%’{“} Vm € Ni \ {nupiink } and Vk € NV, (3.50)

where it holds that k € V4, fq(n) = [ and the uplink node nypin; is defined as the
neighbouring node of k£ that is on the path that connects k to q.

The updated matrices L;j_im (1} can similarly be obtained from the matrices

7,’;, o {lr} in the same way: Matrices sent upstream towards ¢ can be updated

Algorithm 3.6: r-DACGEE with re-use
Set 7 < 0, ¢ < 1 and initialize all Wg ) Vk € K as random matrices

repeat
forr=1,...,R do
if r =1 then
Each node k € K compresses and broadcasts N new observations

Xty = Wi,{z,r}TXZ,{z,r} and X}, ¢, )y = WZ,L{T,Z}TXQ,W}
Each node k € K\ {¢q} broadcasts L};’{I’T} = X};’{M}TX?{M}
end
At node g¢:
o Estimate ﬁq,{l,r} and f{q,{r,l}
e Solve

W;:F{%’T} = argmax Tr (vaﬁqw}wq)

q

st Wy (1= X) Ry gy + A Ky ) Wy =T

q,avg.
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¢ Resolve the sign ambiguity

witl v *
Wq,{l,'l‘} - ;,{Z,T}D
. i+t _ W
where D™ = arger%m HWq,{z,r}D Wa it F

e Define P = (K - 1)Q and pal‘titiOI’l W;ﬁ{}m} as

Wity =] Tn, 0 ]Wi

q,{l,?“} - %{lvr}
G-y =[0 In [Wifi,

o Broadcast G_, to all other ‘nodes ‘
. if{r #R thén Bl"T()aqcast )‘(ZF{%’T} = W;ﬁvr}xg{m} and
L;c—j_{ll,r} = X;CT{:EJ} XZ“{:E’T} to all other nodes
Each node k € K\ {q} updates
i+1 i
Wl:{l,r} = Wk,{l,r}Gk’
T T T TI7

where Gy = | G[ ... G/, GJ,; ... G|

if » # R then
Each node k € N updates the previously received observations

X 1,y and L g 4 V€ K\ {q}:

—i+1 _ Toi
X ey = Gu Xy

. .
L%y =G/ L, G

end
i<i1+1,g+ (¢ mod K)+1
end

m<+m-—+1
end

from the previous iteration ¢ as:
i+1 o Tri
an—>q,{l,r} - Gl LGzﬁq,{l,r}Gl ) (351)

where fq(n;) = I. Matrices diffused from ¢ need to retransmitted.

Observe that as the updating node ¢ switches with each iteration, it is necessary that
every node (or at least the R — 1 next updating nodes) has all matrices L available
to it in order to be able to update them in case it becomes an updating node.

Furthermore, as the signals and matrices are combinations of those from sub-branches,
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3.5. Efficient data re-use

the interconnections in the network must stay the same in order to be able to update
the already received observations. Hence for tree topologies, only static networks can
be used and not dynamic networks. In practice this necessitates a network protocol
that uses a static topology and if a link were to fail, builds a new topology and alerts
the feature extraction algorithm that previous observations cannot be re-used in the
next iteration.

Although the L matrices can be updated in the way described above, it is less
efficient than performing a fusion flow to node ¢ only in each iteration. Indeed, in
a fusion flow, each node (except for ¢) does only 1 transmission to its uplink. In
a diffusion flow however — as indeed required for updating the matrices L — each
node (except for the leaves) must transmit to each of its children as well as requiring
extra computations afterwards to do the updating (although this will turn out to be
negligible, see Section 4.1).

Combining all of the above yields Algorithm 3.7, referred to as rtDACGEFE with re-use.
Again the same remark as in the previous section holds: re-use is demonstrated as an
extension to the regularized version of tDACGEE although re-use can equally well
be applied without regularization by skipping the steps in the algorithm involving
the L matrices.

Algorithm 3.7: rt-DACGEE with re-use
Set 7 + 0, ¢ + 1 and initialize all Wg (1} Vk € K as random matrices

repeat
forr=1,...,Rdo
if r =1 then
Each node k € N transmits N compressed observations z, AL}

and Zi:—)m,{r,l} (as defined in eq. (3.22)) to node I, Vn; € Nj

end
Each node k € K\ {¢} transmits L (as defined in (3.43))

k*)nuplink’{lm}
to node nypiink, the node that links node £ to node ¢

At node ¢: B B
o Estimate R, (;,} and Ry ;,.;) based on (3.23)
e Solve

_ I
Wi,y = argmax Tr (W Ry 1, W,)
q

st Wy (1= 2) Ry gy + A K 1y) Wy =T

q,avg.
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¢ Resolve the sign ambiguity

wWitl  _ Wi *
w =W, unDP

a{lr}
* . Wi+l YW
where D™ = arger%ln Hqu{“}D W%{lﬂ"} .
e Define P = \/\/’|q% and partition Wf;fﬁ vy @8

With = Tn, 0 ]Wi]

a{lry — a.{l.;r}
G,=|0 Ip |[Wii,
. Take G_,= [ G] ... Gf, |

o Disseminate G; over the branch V,,, for which f,(n;) =1, Vn; € N,. Each
node k € V,,, updates

v
XZ,{l,r} =X} 1.1 Gl

e if r # R then Update the received compressed observations
Z }an € Nq:

;‘l_>q7{l77‘
i+1 _ T i
Zo—a{lry = Gl,{lﬂ"}znlﬁqv{lﬁ}
where fo(ny) =1. ;
e if r # R then Transmit zz:lm{l,r} to node ng;
if » # R then
Each node k € {n | n € Vy,q Ay € Ny} updates the received
compressed observations Zi—m (L} Vo € N \ {nk uptink }:
i+1 _ T j
Zo Lok {1y = Gl 2ok {Lr}
where fq(n;) =1 and ny ypiink is the node through which node &
connects to node gq. '
Diffuse to all nodes 0 € Ny \ {ng uptink }: Z;:jo,{l,’r‘}

end
Set i <— i+ 1 and g + (¢ mod K) +1
end

Set m+~m-+1
end

3.6 Integration into a classification pipeline

After deriving the distributed feature extraction algorithms in the previous sections,
this section now considers this distributed feature extraction as part of an efficient
MI classification pipeline for running on a WESN.
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3.6. Integration into a classification pipeline

Recall that the reason for developing such distributed feature extraction algorithms
was the extensive communication required between nodes to use the available spatial
information. In the proposed pipeline, it is only the feature extraction that (optimally)
extracts spatial information. If the distributed algorithms of the previous sections are
used, each node then has access to the filtered network-wide signals. Consequently,
each node is able to calculate the average log-power features and predict the class.

Hence, the only step in the proposed pipeline that needs a distributed version to
enable an efficient classification pipeline on a WESN is the feature extraction, for
which the efficient algorithms have already been discussed in the previous sections.
The windows used in for the iterative updating can then also be used as the windows
for calculating the features, i.e. the log average power of the filter outputs (see
Section 2.2).

Integrating DACGEE and its variants into the complete pipeline then yields the
algorithms given in overview Table 3.1. As was the case in the pipeline of Section 3.2,
in each window observations of only 1 class are available and hence the updating pro-
cedure of Section 2.2 has to be used here as well. Note however that re-transmitting
all observations from the past L — 1 windows included in the sliding window, com-
pressed with the most recent filters, would require a lot of communication. Rather,
they are buffered in each node (that needs to do updating) as they were originally
compressed. For the algorithms with re-use, the past observations are used as they
were compressed by the filters for cycle r = R.

Without re-use With re-use

Fully Connected Alg. 3.8 Alg. 3.10
Tree Alg. 3.9 Alg. 3.11

TABLE 3.1: Overview of the algorithms giving the different variants of the distributed
classification framework: with/without re-use for fully connected/tree topologies
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3.6. Integration into a classification pipeline

Algorithm 3.8: Distributed MI classification in a fully connected topology
without data re-use

Set 7 < 0, g « 1, and initialize all W%, Vk € K with random entries.

repeat

parfor node k € K do

if k # q then
‘ Compute and broadcast L = W}CTW}C

end

Acquire N new observations x}; and apply a 8 — 26 Hz bandpass filter

Broadcast N new compressed observations X¢ [j] = W,Zlc—rxﬁ'C

Calculate the features as y* = log (% Zé\[:l SR [j]2)

Update the covariance matrices (see Section 2.2), corresponding to the
correct label ’I” or 'r’

Update the filters

if Kk =g then

Solve the compressed GEVD problem to obtain the @/2 principal
eigenvectors of (R,i’l + oK), R,i”) and of (Ri,r + oK, R,iyl) to
form Wffl € R*Mq with
Kf] = blkdiag(Iy,, Li,..., Lfrl, Lfﬁl, .

Resolve the sign ambiguity

wi+1 A7l *
W W%{lﬂ“}D

a{lry =
where D* = arg min HW“@ T}D — \7\72 )
DeD A AR

Set Witl = [Iy, 0] Wit
Broadcast G_; = [0 I(K—1)Q} WEIH to all other nodes

else
Update the filter using the received matrix G_, as ijl = WGy
T
where Gy = [G] ... G/, G[, ... G
end
end
i< i+1,q+ (¢ mod K)+1

end
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3.6. Integration into a classification pipeline

Algorithm 3.9: Distributed MI classification in a tree topology without
data re-use

Set i - 0, ¢ < 1, and initialize all W?, Vk € K with random entries.

repeat

parfor node k € K do

if k # g then

Compute L = VV}CTVV}C

Take lypiink € N, to be the node through which node k connects
to node ¢

Compute and transmit to node lypink:

% T %
Lk_ﬂuplink: - Lk + Z L’nl—>k
nleNk\{luplink}

end

Acquire N new observations x§€ and apply a 8 — 26 Hz bandpass filter
Compute 5(2, = W};Tx};

foreach n; € NV}, do

Transmit N new compressed observations
~i _ i i
Xpym, = X T > Xy, sk 10 node ny
nm €N\ {ni}

end

2
Calculate the features as y* = log (]{[ ]ZV: < > if”_m[j] + x%[y]) )
=1 \mieN},

Update the covariance matrices (see Section 2.2), corresponding to the
correct label ’I’ or ’r’

Update the filters

if £k =¢q then

Solve the compressed GEVD problem to obtain the (/2 principal
eigenvectors of ( ,i,l + oK), ,?M) and of ( }:w" + oK, ,ch) to
form \TV@H € R&*Ma with

K, = blkdiag(Iyy,, L

ni—q’-

L )

NNg| =4
Resolve the sign ambiguity

o )
W, W0 D

a{lry =
* . wwrit+1 _ YATE
Where D = ar[g)er%lnHWq7{l,7‘}D Wq7{l,7“} F
Set Wit! = [y, 0] Wit!
wi+l 2 [T T
Take G—>q = |:O H|Nq|Q:| Wq+1 3 [Gl . Gqu|:| and

disseminate G, over the subtree V), for which it holds that
fq(nl) =1[,Vn; € ./\/q
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3.6. Integration into a classification pipeline

else
Update the filter using the received matrix G; for which it holds

that k € Vp,,q and fy(n;) =1, as ijl =W, G,
end
end
i< 1+1,g+ (¢ mod K)+1
end

Algorithm 3.10: Distributed MI classification in a fully connected topology
with data re-use

Set i < 0, m < 0, ¢ «+ 1, and initialize all Wg, Vk € K with random entries.
repeat
Each node k € K€\ {¢} acquires N new observations x}* and applies a
8 — 26 Hz bandpass filter
Each node k € K broadcasts N new compressed observations
i i Tom
X, = Wi x|
forr=1,...,Rdo
parfor node k € K do
if k # q then
‘ Compute and broadcast Lt = VV}CTW}C
end
Calculate the features as y* = log (% Z;V:l Z{il X! [j]2)
Update the covariance matrices (see Section 2.2), corresponding to
the correct label "I’ or r’
Update the filters
if £k = q then
Solve the compressed GEVD problem to obtain the Q)/2
principal eigenvectors of (R};,l + osz]), R};yr) and of
( i,r + O‘KprZ,l) to form VVf]‘H € R*Ma with
Kg = blkdiag(}IMq,L’i, . ,Léfl,Lle, oo, LY
Resolve the sign ambiguity
W:{E} r} fl {, T}D

where D* = arg min VVHrl D—Wi
§€D H qﬂ{l7r} F

Set With = |Ty, 0] Wit
Broadcast G_; = [0 Iik-10 } Wflﬂ to all other nodes

if » # R then
—itl (i+1) T .
Compute and broadcast x;" " [j] = W/ xi[mN + j] for
j=1....,N

55



3.6. Integration into a classification pipeline

end

end

else
Update the filter using the received matrix G_, as

Wi = Wi Gy, where

.
G_q:[(;lT . G, Gl o GH
end

if r ## R then
Update the received compressed observations as

%) = GIX{lj] for ¥j = {1,.... N} and ¥ € K\ {q}

end

end
i+ i+1,qg+ (¢ mod K)+1

m<+—m-+1
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3.6. Integration into a classification pipeline

Algorithm 3.11: Sliding-window adaptive dCSP in a tree topology with
data-reuse

Set 7 < 0, m < 0, ¢ + 1, and initialize all Wg, Vk € K with random entries.
repeat

parfor node k € K do
Acquire N new observations x}* and applies a 8 — 26 Hz bandpass

filter
Compute 5(2, = W};Txg‘
foreach [ € N}, do
Transmit N new compressed observations
i%c—ﬂ[j] = iﬂ]] + > i;l_m[j] to node n;, where
n €N \{1
j=1,...,N
end
end
forr=1,...,R do
parfor node k € K do
if k # q then
Compute L = W}CTW}€
Take lypiink € N to be the node through which node k
connects to node ¢
Compute and transmit to node lypping:

7 _ T %
Lk_ﬂuplink - k + Z LTL[—)]{)
ny ENk\{luplink}

end
Calculate the features as )
N
y' = log (ﬁ; 2 < > Xl +)_(§<:[.j]) )
J=1 \bi€Ng
Update the covariance matrices (see Section 2.2), corresponding to
the correct label "I’ or 'r’
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3.6. Integration into a classification pipeline

Update the filters

if £k =q then

Solve the compressed GEVD problem to obtain the Q)/2
principal eigenvectors of (R};,l + osz]), Ré,r) and of
( i;r + oK, }Cl) to form VV;H € R*Mq with
K}, = blkdiag(Tps,, Li_, ;- - ,LTNqu)

Resolve the sign ambiguity

o )
W, WounP

a{lry —
. - |Rxri+1 —_ W!
where D™ = aréer%m qu,{l,r}D W am o

Set With = [Ty, 0] Wit
i T T 17

Take G_,q = [0 JIWq‘Q} Wit 2 [Gl GWq‘] and
disseminate G over the subtree V,,, where f,(n;) =1, Vj € N,

if » # R then
‘ Compute X.1[j] = Xf]“—rxq[mN +jlforj=1,....N

Ise

Update the filter using the received matrix Gy; for which holds

that k € Vg, as Wit = WGy where f,(n;) =1

if » # R then
Update the own compressed observations with that same

matrix as X, [j] = G/ x}[j] for Vj = {1,..., N}

[¢]

end
f r # R then
foreach n; € Ny \ {p € Ni|p connects n; to q} do
Update the received compressed observations as
XL ] = G % ld] for Vi = {1,..., N} and with G,
such that n; € V,,,4 and fy(n;) =1
end
foreach n; € Nj. \ {p € Ni|p connects n; to q} do
Diffuse the observations updated by ¢ as
KL Ul =%+ ® L[], where
meN;\{ni}
j=1,...,N

end

[t

end

end
i+i+1,qg (¢ mod K)+1
end

m<+m-—+1
end
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Evaluation
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Chapter 4

Modelling of system
performance

As discussed in Section 1.4, the following objectives can be used to define the
performance and assess feasibility of the system as envisioned in this text:

e Minimal energy consumption
e Minimal latency
e Maximal decoding accuracy

As no physical implementation of the proposed system is available on which these
can be measured however, these objectives will have to be estimated. For the energy
consumption and latency, this can be done by means of modelling. For the decoding
accuracy, previously recorded experimental data will be used to emulate WESN’s
which are then processed by the proposed classification pipelines. This will need to
be done for systems with each of the proposed pipelines, i.e. each of the pipelines
specified in Section 3.6.

This chapter presents the modelling of the energy consumption and latency. To do
so, two key metrics of the proposed pipelines will need to be determined first: the
computational complexity and required communication bandwidth. The modelling
of these metrics are the subject of Sections 4.1 and 4.2 respectively. Based on the
models for these two metrics, the following sections will further develop models for
the latency and energy objectives (Sections 4.3 and 4.4 respectively).

In the next chapter, the models presented in this chapter will be evaluated on
experimental data, together with simulations of the pipelines themselves to assess
the accuracy of each pipeline and thus evaluate all three objectives. The results
will then be used to compare the performance of the different pipelines as well as
assessing the feasibility of the proposed approach altogether.
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4.1. Computational complexity

4.1 Computational complexity

For each of the pipelines presented in the previous chapter, the required amount of
computations Neomyp can be determined by determining the computational complexity
of each of the steps and summing. Since in a practical implementation, the data
is arbitrarily long, the complexity is determined per window, which has a finite
duration.

As an example of how to determine the computational complexity, consider the first
step of the centralized pipeline (Alg. 3.1) that requires computations: filtering the
received observations. The observations in the window corresponding to iteration i,
{x! 11} jeq1,.. ny» can be arranged into an M x N matrix U, while the filter matrix

X' is of size M x Q. The filtering operation can then be represented as the matrix

multiplication X" U which requires QM N multiplications and a similar amount of
summations. Therefore, the computational complexity of this step is QM N FLOPS.

In the same fashion, the complexity of the other steps in the pipeline can be
determined, which are given in Table A.1. The complexity result for the symmetric
GEVD was taken from [49] since the algorithm used to calculate this decomposition
is outside the scope of this text. Also shown in the table is the total complexity of
one iteration ¢ which is the sum of the complexities of the steps in the pipeline.

To improve insight in the complexity of the algorithms and to more easily make
comparisons, the total complexity can be simplified by considering typical network
parameters as given in Table 4.1. Compared to the calculation of the optimal filter
(~ 16.6 - 10° FLOPS), the updating of the covariance matrices (= 65.0 - 10 FLOPS)
and the filtering (=~ 1.0 - 105 FLOPS); the calculation of the features (= 4.0 - 103
FLOPS) and resolving the sign ambiguity (= 1.0 - 102> FLOPS) require more than 2
orders of magnitude less operations and can therefore be neglected. This simplifies
the complexity model to M3 + NM? + QM N FLOPS.

Parameter Typical value

N 2000
M 20
K 6
M, 3
ng 2
Q 4
R 5

TABLE 4.1: Typical network parameters

In a similar fashion the computational complexity can be modelled and then simplified
for the other proposed pipelines as well.
For the distributed pipelines however, the steps differ slightly for the node that
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4.1. Computational complexity

is solving the compressed problem in a certain iteration as compared to the other
nodes. Since in each iteration, a different node is the updating node and thus each
node will eventually have done both tasks during operation, the mean complexity
(over iterations and thus time) can be considered instead, without losing physical
interpretation of the result. To weigh the two possibles cases (updating or non-
updating), the relative frequency of each case is used. By using the mean complexity,
a single result is obtained which makes it easier to compare pipelines to one another.

Furthermore, the Pipelines 3.10 and 3.11 make an extra distinction w.r.t. how many
times the window of data corresponding to a certain iteration has already been
used in order to more efficiently re-use that window of data for another update (see
Section 3.5). Once again, using the relative frequency of a node to be in a particular
case, the mean complexity can be considered instead as in general all nodes will have
been in all possible cases during operation.

Since these pipelines re-use a unique data window R times, the mean complexity
should be calculated per unique window — which has a fixed duration for a set
sampling rate — rather than per iteration in order to fairly compare the pipelines to
one another for the same sampling rate and window length. Indeed, the sampling
rate and window length will limit how long the processing may take, and thus how
much processing, can be done per window before incurring extra latency (see Section
4.3).

The full derivation (per step of the pipeline), simplification and calculation of the
mean complexity are presented in detail in Appendix A.1 for all proposed pipelines.
For the sake of easy exposition, the models were simplified even further than was
done in the example above, by deriving simplified, approximate upper bounds. An
overview of the final results of the mean complexity estimations per unique data
window is given here in Table 4.2.

Pipeline Complexity
Centralized (Alg. 3.1) M3+ LM?N + QMN
FC no re-use (Alg. 3.8) LJTJ?N
Tree no re-use (Alg. 3.9) L]\ZZN + QN (M + |Nkl)

FC with re-use (Alg. 3.10) LRMVkQN + RKQ*N

—2
LRM; N + RQN (2Mk yYAL

Tree with re-use (Alg. 3.11)
Nl + Vel Q)

TABLE 4.2: Overview of the approximate upper bound on the mean computational
complexity of the different proposed pipelines per window and per node
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4.2. Communicational complexity

4.2 Communicational complexity

For each of the pipelines presented in the previous chapter, the communicational
complexity can be estimated by counting the amount of words of data Ny, that
need to be sent. That amount of words is equal to the sum of the number of entries
of each of the variables that needs to be sent. Due to the same reason as in the
previous section, this is done per window of data rather than per iteration for the
pipelines with re-use (Algs. 3.10 and 3.11).

As an example of how to estimate the communicational complexity, consider Pipeline
3.1 and in particular the very first step (after initialization): collecting all measure-
ments from the peripheral nodes in the central node.

Each node k € K\ {frce} acquires N observations for each of its M}, channel and
hence needs to transmit M N words to the fusion centre, node krpc.. Consequently,
the fusion centre receives ), cn MpN = MN words from the other nodes in the
network.

In the same fashion, the communicational complexity of the other steps in the pipeline
can be determined, which are given in Table A.6.

For the other algorithms, the communicational complexity can be determined in
the same fashion. Similar to the previous section, the mean required bandwidth is
used instead for these distributed pipelines, using the (same) relative frequency of
the specific cases to calculate the mean. This makes the results easier to compare
without losing the physical interpretation since each node will fulfil each role for a
portion of the time given by that relative frequency. Furthermore, the results are
similarly simplified even further by using simpler upper bounds to make the results
more clear. For the pipelines with re-use, the complexity is given per window due
to the same reason as was discussed in the previous section. The full derivations
are presented in Appendix A.2 and an overview of the final results is given here in
Table 4.3.
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4.3. Latency

Pipeline Transmission Reception

if k= M- MOIN ifk=
Centralized (Alg. 3.1) {O itk=c {( c) ifk=c

NM, ifk#c 0 if k # c
FC (Alg. 3.8) NQ KNQ
TI (Alg. 3.9) INLINQ IN&INQ

FC with data re-use (Alg. 3.10) (£ +1) NQ + 2RQ? (R+ K)NQ

TI with data re-use (Alg. 3.11) IN&| RNQ (R+ |Ne)NQ

TABLE 4.3: Overview of the approximate upper bounds on the mean communicational
complexity of the different proposed algorithms per window and per node

4.3 Latency

In Section 1.4, the latency was defined as the time it takes for an input sample to
have an effect on the (decoder) output.

The first subsection derives an estimate of that input-output latency for the algorithms
proposed in Chapter 3, based on the models of Sections 4.1 and 4.2 to quantify the
latency incurred by the algorithm between sample acquisition and output production.

Aside from producing an output, the algorithms proposed in Chapter 3 also adapt
the covariance matrices and filters. The processing delay this introduces, hereafter
called 'update processing delay’ decreases the allowable input-output latency if the
system is to complete its processing before a new window is completed. This is
discussed in Subsection 4.3.2.

4.3.1 Input-output latency

In the centralized pipeline, only the fusion centre has all the observations available to
it and hence is the only one that can decode the observations. Furthermore, as the
fusion centre must sequentially receive the observations from all the peripheral nodes
and can only then start its processing, it will have the largest latency of any node in
the network. Here the latency is thus only considered for the fusion centre kpce.

In the case of the proposed distributed algorithms, each node is capable of decoding
(see Chapter 3) and the latency hence needs be determined per node. However, these
algorithms are synchronous in that sampling is done using the same clock and that
windows of different nodes coincide. Thus, the maximum latency will determine
when the network can continue processing. To determine the latency Tjgsency for the
pipelines, consider the steps done between acquiring an input sample and producing
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4.3. Latency

an output for a window of data:

Step 1: Acquisition
Step 2: Filtering
Step 3: Transmission/Receiving
Step 3.1: Combination into neighbour specific signals
Step 4: Feature calculation

Before the window can be processed, all of the samples in that window need to be
acquired!. For a window length of N samples and a sample rate of f; = 1/7s Hz,
processing of the first sample will only start after Ti,indow = NTs seconds.

The time it takes to filter the data can be calculated as the division of the number
of operations that it requires Neomp, fittering by the instruction rate of the processor
(given in instructions/second = I PS). The former was already determined in the context
of the computational complexity models discussed in Section 4.1 and can be found
in Section A.1 for each of the pipelines. Similarly, the duration of Step 4 can be
calculated in the same way.

This results in the following equation to calculate the latency:

Tlatency = Lwindow + Tcomp + Teomm (41)
_ NTS n Ncomp,filteringlgévcomp,features + Tcomm ) (42)

The time it takes to do internode communication Teomm (Step 3) is dependant on
the amount of words that each node needs to transmit and receive (as given by the
models of Section 4.2) and the bandwidth of the communication channel, but also
on the time it takes to synchronize with other nodes so that both nodes are ready to
communicate. Indeed, a node can only transmit data to another node for which it
already has the required data from other nodes. This may require a node to wait on
another node.

Synchronization implies that some blocks of actions must be done sequentially. This
limits the available amount of parallelism that can be exploited by the distributed
nature of the system to reduce the latency. It is thus critical to schedule the
communication between nodes such that parallel running blocks of actions in-between
synchronization points are balanced in duration such that minimal time is spent
waiting on another node.

Furthermore, if the order is not carefully chosen, deadlock situations may occur.

!This assumes that filtering of the observations will be done on the complete window of data
at once, which is the case if the filtering is done on a DSP processor with SIMD instructions with
sufficient bandwidth. If the filtering were to be implemented in the acquisition hardware, it would
incur virtually no latency at all.

65
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Thus in order to determine the total time it will take to do all communication,
including both the time to do the transmission as well as the time spent waiting, the
ordering of all communications must be specified such that the waiting time can be
estimated as well as the time needed purely for transmission of the words. This can
be done by means of a communication schedule.

Note that it will further be assumed that a node can only transmit to or receive from
1 other node at once and that collision can completely be avoided (a.o. by protocol,
setting the transmission power as low as possible or using different channels).

For the centralized pipeline (Alg. 3.1), the following schedule is straightforward:
nodes 1,...,c—1,c+1,..., K € K take turns transmitting their (uncompressed)
data to the central node c. As the central node ¢ needs to receive data from all
peripheral nodes before it can start processing and is the only node that needs to do
processing, its latency will be the largest and will decide the latency for the whole
network. In Section 4.2 a method was proposed to determine the amount of words
each node needs to transmit and receive. In Table A.6b this method was used to
determine how many words the central node needs to receive. As all these words can
be received back-to-back, this number together with the speed of the communication
link BW [bits/s], can be used to determine the duration of the communication:

(M — Mc¢) N
Tcomm central — k , 4.
central B (4.3)

with k the word size [bits]. For this algorithm, (4.2) then becomes (taking Ncomp
from Table A.1):

QMN +QN (M~ Mc)N
IPS BW

Tlatency,eentral = NTS + (44)

For Pipelines 3.8 and 3.10, the following schedule can be used so that all nodes
are able to calculate the output afterwards: all nodes take turns broadcasting their
compressed observations to all other nodes while the other nodes are listening to the
broadcasts. This will incur the same communication latency in all nodes, i.e.:

(K-1)NQ+NQ _ kKNQ
BW " BW ’

Tcomm,FC =k (45)
where the information on the number of received and transmitted words was taken
once again from the communication models of Section 4.2 (derivations in Appendix
A, Tables A.7 and A.9). Note that with data re-use, only the first iteration per
window is used (hence using filters optimized on data previous to the current window
only) to keep the latency as short as possible.

The total latency (taking values for Neom,p from Tables A.2 and A.4) is then:

QNM; +QNK | KNQ

Tlatency,FC = NTs + IPS BW

(4.6)
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Finally for Pipelines 3.9 and 3.11 the schedule is more complex than the straightfor-
ward round-robin approach as used in the fully connected case if at least some of
the parallelism is to be exploited to lower the latency. Indeed, the communication
between nodes of a subbranch can happen simultaneous with the communication
between nodes in another subbranch. Following the fusion-diffusion flow of Section
3.3.2, the leaf nodes are the first to transmit their compressed data to their uplinks.
This can be done in round-robin fashion: the uplink node receives from each of its
leaves one after the other. Using the model developed in Section 4.2 to determine
how much words each leaf node needs to send (as given in Tables A.8 and A.10), the
time T, it takes for all leaf nodes m of their uplink node k to transmit their data
to node k is given by:

T = > Tk (4.7)
mENk\{nuplink}
1
= 7 > NQ (4.8)
meNk\{nupli'nk}
_ (n —HYNQ
= (4.9)

with nypiink the uplink of node k and T, the time it takes node m to transmit
to node k. Furthermore, all uplink nodes of leaves can communicate with their leaf
simultaneous with other uplink of leaves nodes as it was assumed that there are no
collisions.

After a (non-leaf) node m has received all compressed observations from its children,
it can combine these. From the complexity models it is known that this takes
QN (n,;, — 1) operations (Tables A.3 and A.5). Therefore the processing delay before
a non-leaf node m (different from the root) can transmit to its uplink is:

QN(ny, —1
Tcomp,combine,m = (IP?TS) . (410)

A similar transmission schedule can then be used on the next levels of the tree. Child
nodes of a node that are ready to transmit can be thought to enter a FIFO queue
specific to the node. For a child node m, this takes T ., + Teomp,combine,m seconds
where T_,,, is defined as the time it takes for node m to receive all required signals
from its children, counted from the beginning of the inter-node communication (i.e.
excluding Tyindow and Teomp). Note that this definition of T, is a generalization of
(4.7) to non-leaf nodes. The first child node in the FIFO queue is allowed to transmit
to the uplink node. Child nodes that are not in the first place of the queue need to
wait until the node in the first place has finished its transmission.

The advantage of this scheme as compared to the simpler round-robin scheme can
be understood by noting that the the duration from the end of the window (which
is the same for all nodes as the algorithms in this work are synchronous) to a node
being ready to transmit to its uplink is dependant on the number of children it has
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as well as on the latency of those children.

For example, a node with many leaf nodes as children may take longer before it is
ready to transmit than a node that has just one child which itself has a leaf node
as its child. This time difference can be used to hide the latency introduced by the
communication of the uplink of those two nodes with the second node. If the time
difference is big enough, the second node may even complete transmitting before the
first node has received all of its signals as is illustrated in Fig. 4.1. In a round-robin
scheme however, the first node would be selected (w.l.0.g.), blocking the uplink from
receiving until it has received from that first node, while it could have been receiving
from the second node while waiting instead.

node n;
A ,
Nauplink free ‘
to receive :
T—>n2 Tcomp. comb.,2 |« > Tng—mu Link
RR I I
T‘an | Tcomp‘,comb.J Tnlﬁnuvlink | H
>
. ' t
. time saved !
. >
node n; : !
A ' !
T—>n2 Ij_'comp.,comb.,2| Tnz—mummk | ,
FIFO '
T—>n1 | Tcomp.,comb.,l | Tn1—>nwlink |
: >
t

FIGURE 4.1: Example illustrating the differences between round-robin (RR) and
FIFO scheduling in the fusion flow communication in tree networks. Relative length
of blocks not to scale.

This schedule can then be used recursively on the next levels of the tree until reaching
the root node at which the fusion flow has ended and the diffusion flow can be started.

As this scheduling is heavily dependant on the specific structure of the tree topology
used, no analytical formula for the latency can be derived as was the case for the other
algorithms (cf. supra). The latency will thus have to be determined by simulating
the FIFO scheduling for a specific tree topology.
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An upper bound for T_,,, of a non-leaf node can be seen to be:

T,m < [ max (T*)Z + Tcomp,combine,i) + Z Tism (411)
ZGNm\{nuplink} ieNm\{nuplink}
(nm —1)NQ

- |\Z€Nm1\’?ii{plznk} (T_M " thCOWLP’co’rnbineﬂ:)‘| i %%W ’ (412)

which corresponds to simultaneous receival and combination in the child nodes
followed by round-robin transmission to node m once all nodes have finished processing
(see Fig. 4.2). By setting the maximum in the equation above to 0 for leaf nodes, it
is clear that (4.12) is indeed a generalization of (4.7).

node n;
A

T ony | Tcomp.,comb. ,3 ' Trs—m

Tﬂnz |Tcomp.,comb.,2 | ! Tng%m '

T"”l | Tcomp.,camb.,l ]Tnlﬁml
1

: ' ’t
FI1GURE 4.2: Tlustration of the schedule used to determine an upper bound on T_,,,
in a tree topology for a non-leaf node m

In the diffusion flow, the root node of the tree combines and sends those signals,
which are unique to each child, to each of its children, which then further diffuse
that signal to their children (see Section 3.1). For any non-root node k, the time it
takes until it has diffused to its children Tj_, is given by:

Ty = Tnuplmk% + (nk - 1)Tcomp7combine,k + Z Ti—i (413)
iENk\{nuplink}
NQ
= Tnuplinkﬁ + (nk - 1) <Tcomp700mbme7k + BVV) ) (414)

For a root node r this is

T =T, + nTTcomp,combine,r =+ Z Tii (415)
1EN;
NQ
=T, +n, (Tcomp,combine,r + BVV) . (416)

The total latency to do the communication to produce an output is then given by

rflatency,tree = ml?X {Tk—>} ) (417)
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i.e., using the path with the largest latency due to the diffusion flow, which necessarily
ends in a node that transmits to leaf nodes.

4.3.2 Update processing delay

After the output is produced, the feature extraction is updated to reflect the most
recent set of observations.
The updating consists of the following steps, which are taken right after the output
is produced:
Step 5: Compute and broadcast L matrices
Step 6: Update the covariance matrix of the current class
Step 7: Solve the compressed GEVD problem for both cases
Step 8: Resolve the sign ambiguity
Step 9: Broadcast G—¢q
Step 10: Compute and broadcast/diffuse x
Step 11: Update the filter matrix
Step 12: Update the received compressed observations (only with re-use)
Step 13: Diffuse the updated received compressed observations (only with re-use
in tree topologies)

+1 .
¢ (only with re-use)

The same procedure as in the previous subsection can now be used to determine the
delay due to each of these steps: the time to do computations is again the number
of operations (as given by the models in Section A.1l) divided by the processor’s
instruction rate and the time it takes to do the necessary communication over the
network is determined by the number of words needing to be communicated (as
given by the models in Section A.2), the bandwidth and the communication schedule.
The diffusion parts of the schedules from the previous subsection can be reused for
the updating as it requires diffusion flow to update (see also Section 3.3.2 for the
discussion of the updating data flow in tree topologies).

To operate according to the pipelines as described in Section 3.6 of the previous
chapter, the updating must be finished before the next set of observations is ready
for processing. Hence, a complete iteration of the pipeline must be completed in the
timespan of 1 window: starting from the end of a window when the observations are
all acquired in each node, until the observations of the next window are all acquired.
Hence, this upper bounds the allowable total latency, i.e. the sum of the input-output
latency and the update processing delay, to be smaller than T340 This is a hard
constraint for feasibility.

Observe that, as will be discussed in the following chapter, this upper bound is not
easily increased by enlarging Tiindow- Indeed, this would proportionally increase the
time needed for computation and communication hence proportionally increasing
the latency as well. A simple solution that is effective, is to only update periodically
rather than in each window. Hence the update processing delay can be amortized
over multiple windows. Note that this cannot be done for the steps producing the
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output or else the BCI would be essentially disabled during all windows except the
one after which the updating occurs.

4.4 Energy model

The energy consumption F of a node mainly consists of two components, which are
both influenced by the choice of algorithm: energy consumed for computation Eiomp
and energy consumed to send and receive data via the wireless transceiver E.omm.-
The latter can be split up further into energy consumed to transmit data E;, and
energy consumed to receive data E,.,:

E= Ecomp + Ecomm = comp + By + By (418)

It is assumed that each node is of the same design. Therefore, the node that needs
the most energy to run the pipeline will deplete its battery first and hence limits
the battery life of the system. Therefore, the energy consumption can equivalently
be studied by only studying that node (which still requires estimating the energy
consumption of all nodes to identify which node that is, but simplifies presentation
of the results).

Computation-related energy

The computation-related energy consumption Feymp can be estimated by combin-
ing the estimate for the number of operations Nc,mp given by the computational
complexity model, with an estimate of the computational efficiency of the processor
n [J/FLOPJ:

Ecomp =1 Neomp - (4.19)

Note that here indeed it makes sense to use the average number of operations, as
discussed in Section 4.1.

Communication-related energy

To estimate the communication-related energy consumption Fcopmm, the communi-
cation bandwidth models of the individual algorithm steps are combined with a
propagation model that specifies how much energy is needed to transmit data over a
certain distance.

As the sensor nodes are to be placed on the wearer’s head in some fashion, there is no
line of sight between sensor nodes. According to Zasowski et al. [50], the contribution
of the direct path between nodes is negligible due to the strong attenuation by
the head. Rather, the communication is established by creeping waves around the
contours of the head. As such the first order free space model wherein energy is
quadratically related to the distance, is not valid for non-line of sight communication
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(NLOS) around the human body. Instead the model needs to be generalized to use an
exponent n = 5 — 6 for NLOS communication (instead of n = 2 as for communication
in free space) [51, 44]:

Et:r = ETXelec k+ Eamp k-d? ) (420)
Em: = ERXelec : k’, (421)

with Frxeiee, ETxelec Tespectively the energy the wireless stack dissipates to run the
circuitry for the transmitter and receiver, Eg,y,, the energy for the transmit amplifier
and k the number of bits sent.

From the measurements in [52] can be deduced that this model also holds for
communication by nodes around the head, where d should be interpreted as the path
length along the contour of the head between two nodes, rather than the length of
the direct path.

For a wordsize of S bits, the model can be rewritten as

Et:t = (ETXelec ' +Eamp : dn) -5 Ncomm s (422)
Erm = ERXelec -5 Ncomm ’ (4'23)

with Neomm the number of words sent in that transmission.
Using Neomm as given for each communication by the communication bandwidth

models from Section 4.2 and d calculated from the nodes positions, the energy needed
to do each of the communications can now be estimated.
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Chapter 5

Evaluation

This chapter presents the evaluation of the pipelines that have been proposed in
Chapter 3. The goal is to investigate whether the proposed distributed signal
processing algorithms, integrated in a end-to-end classification pipeline, can make
a WESN a viable approach to implementing a wearable EEG-based BCI system,
suitable for long term use, and comparing the proposed approaches’ performance to
one another.

The evaluation will examine and compare the performance based on the three
objectives that were presented in Section 1.4 as well as look at feasibility w.r.t.
constraints of the WESN and hardware. To do so, the models for the latency and the
energy consumption presented in the previous section will be used, together with an
estimate of the decoding accuracy by emulating a WESN on experimentally recorded
data.

This experimental setup and the emulation of the WESN will be detailed in Section
5.1. Next follow four sections investigating the influence of respectively the network
size, (efficient) re-use as discussed in Section 3.5, the amount of electrodes per node
and finally the influence of technological parameters. This chapter than concludes
with a discussion of the results from these four experiments.

Note that the topic of this evaluation is to investigate the performance charac-
teristics of the distributed systems rather than achieving the highest possible
accuracy. Therefore, the accuracy can potentially be further increased by
per-subject hyperparameter tuning. This is however outside the scope of this
text and should be the topic of future work.

5.1 Experimental setup

As no physical realizations of the envisioned WESN (nodes) exist, high density EEG
(HD-EEG) recordings will be used to mimic recordings from a WESN as envisioned
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FIGURE 5.1: Experimental protocol timing

in this text.

The reason HD-EEG is a suitable platform for mimicking and consequently studying
WESNSs is twofold.

First, due to the high density of the electrodes, the distance between neighbouring
electrodes in HD-EEG is smaller than that of the envisioned nodes. While this
does restrict the flexibility to miniaturize the node (and thus electrode distances)
further, doing so would decrease the extra information due to spatial effects [53] and
is thus undesirable. The data from a node in a certain location on the scalp is hence
comparable between HD-EEG and an envisioned node.

Furthermore, as all channels are recorded without compression, HD-EEG recordings
also allow to simulate for example different topologies, algorithms and parameter
values post factum instead of requiring multiple experiments.

5.1.1 Experimental protocol

In [53], 255-channel HD-EEG data was collected for multiple tasks, including MI.
30 able, male subjects between 22 and 35 years old participated in the experiment.
The EEG was recorded using a SynAmps RT device (Compumedics, Australia) with
active Ag/Cl electrodes at a sampling rate of 1kHz. The electrodes were placed on
the head according to the international 10-5 (5%) system. The FCz electrode was
used as an active reference and AFz as the ground.

Each subject performed 50 trials with imagined movement. The experimental protocol
for each trial was as follows: At ¢ = 0 s, a visual cue was displayed on a display
in front of the subject with text that prompted the subject to perform (imagined)
movement with either their left or right hand. After 7 s, the subject was asked to
stop the (imagined) movement. Between the trials there was enough time as to not
influence each other. This is illustrated in Figure 5.1. Hence the recordings are the
result of a synchronous, reactive system.

5.1.2 WESN emulation

Next a WESN topology is emulated based on the EEG electrode locations. To do
so, the pre-processing as explained in Section 2.1 is first applied per-channel. Next,
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Model  Parameter Value Source
General S 32  bits -
n 0.1 nJ/flop [54]
ETXelec 16.7 nJ [44]
Energy
ERXelec 36.1 nJ [44]
Eamp 7.99nJ/m [44]
Latency IPS 1.0 Gflops/s  [54]
BW 1.0 Mbits/s [55]

TABLE 5.1: Hardware specifications used in simulations

nodes are constructed by first selecting for each node, a set of electrode locations from
those available in the HD-EEG electrode cap. From each node’s set, one electrode is
selected to be the local reference for that node. The recorded data of the channels
corresponding to each of the nodes’ satellite electrodes are then re-referenced to
the corresponding node’s reference electrode. It is assumed that the processing and
communication system of the node is located at the reference electrode. Further
note that as these nodes are envisioned to be stick-on patches or otherwise very flat
and close to the skin, the areas covered by the electrodes of different nodes cannot
overlap.

To also be able to evaluate the tree topology algorithms, Dijkstra’s shortest path
algorithm (see [45]) was used to prune the topology presented above into a tree
topology. The metric that was used as the cost of a link is the arc distance on a
least-squares fitted spherical model of the electrode locations raised to the power n
as this represents the part of the communication energy that is influenced by the
distance (see Section 4.4).

Finally the emulated WESN data is then fed to the distributed classification pipelines
of Section 3.6 in order to simulate the complete system’s behaviour and assess its
performance.

The models of the energy and latency will also be applied to the emulated topology
from this section. As there is no physical implementation of the envisioned nodes, the
hardware specifications needed for the following models are taken from the relevant
literature of each component. These specifications are summarized in Table 5.1.

5.1.3 Training and testing

In order to initialize a pipeline, the first 34 trials were concatenated and used as
to determine a long-term estimate of the covariance matrices, which were then
subsequently used to initialize the filters using the classic CSP method and finally,
the resulting outputs from those initial filters were used to train the classifier. This
initialization is done specific per subject.
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5.2. Experiment 1: Influence of network size and node placement

Next, the pipeline is emulated on those same 34 training trials in order to initialize
the compressed covariance matrices and filters. The emulation is then allowed to
continue running on the remaining 16 trials, on which the decoding accuracy is
measured’.

In practice, this initialization procedure could be accomplished by first having the
subject perform a cued recording session, similar to how the HD-EEG experiment was
performed. Afterwards, the system can then be programmed with the initialization
based on the results of that first session and continue to further adapt while in use.
Ideally, this recording session should be eliminated, e.g. using subject-independent
initialization or by having the procedure built into the final system.

5.2 Experiment 1: Influence of network size and node
placement

While this thesis does not focus on the aspects of miniaturization w.r.t. accuracy (as
for example in [53]), it is prudent to briefly investigate how the choice of topology
influences the performance. This will allow to study and compare other properties of
the different proposed pipelines to each other in a realistic setting. Note that scaling
behaviour w.r.t. certain parameters is not necessarily of interest for the current
evaluation: this behaviour is only valid at extremes whereas the optimum could
potentially be more moderate.

In this section, the size of the network as well as the rough placement of the nodes
will be studied together in a single experiment.

5.2.1 Methods

Using the experimental setup from Section 5.1, 8 WESNs with different topologies
were emulated. These are shown in Figure 5.2. They are numbered in order of
growing size except for topologies no. 3 and 4 which only differ in the placement
of the non-central nodes. Following the symmetry of the sensorimotor areas, all of
the topologies were chosen to be symmetrical. The electrodes of each node were
placed to give a combination of multiple directions to maximize performance [16].
When selecting the satellite electrodes, a distance to the reference electrode >3 cm
was aimed for to ensure performance is not degraded[17]. The amount of electrodes
was determined using manual exploration. For each of the topologies, all 3 of the
pipelines were then emulated and all other parameters were set according to Table
4.1 and the technical parameters for the models according to Table 5.1.

!Note that the pipelines are still given a label to correctly update its covariance matrices (see
Section 2.2), hence introducing bias.
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) 6 7 8

FiGURE 5.2: Topological maps of the scalp showing the topologies used for the
evaluation. The topology outlined with a rectangle will be used as the default
topology (see Section 5.2). The locations of the electrodes in the HD-EEG cap
are indicated with grey dots. The electrodes (dots) and connections (solid lines)
of each node are indicated with a different colour. A small(large) dot represents a
satellite(reference) electrode of the node with that colour. Dashed grey lines indicate
inter-node connections of the pruned tree, while a grey triangle indicates the tree’s
root.

5.2.2 Results

The results of this experiment are shown in Figure 5.3. The different pipelines
are grouped per topology. The centralized pipeline on the left, the fully connected
pipeline (with re-use) in the middle and finally the tree pipeline (with re-use) on the
right. In Figure 5.3b, the first bar of each group represents the energy consumption
by the node acting as the FCe. An extra bar has been inserted in the second position,
representing the mean energy consumed by the other nodes. As the FCe dominates
the latency, no such extra bar is needed there.

While the decoding accuracy varies significantly over the different subjects, due to
the fixed layout imposed by the electrode cap, the energy and latency are assumed
to be identical for each of the subjects. Subsequently, they can be visualized using a
stacked bar graph, allowing to visualize the individual components contributing to
the sum. These correspond to the components identified in Section 4.4 and 4.3 for
respectively the energy (Subfigure b) and latency (Subfigure c).

Looking at the accuracy of the centralized pipeline in Figure 5.3a, it is clear that the

accuracy first increases with the growing topology size, reaches a maximum and then
decreases. Choosing a small topology might thus be practical for the envisioned use
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FIGURE 5.3: Influence of network size and node placement on performance of each
of the pipelines. The groups are as described in Section 5.2.2.
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case, but it reduces the amount of information that can be extracted and as such,
reduces the decoding accuracy. On the other hand, choosing a too large topology
also decreases the decoding accuracy. Among others, this can potentially be caused
by the increasingly low amount of extra information adding extra channels adds
while it does add noise. Also, as the network size and thus the size of the GEVD
problem grow, the problem becomes more prone to overfitting. In this case, the
best performing topologies are no. 5 and 6 which perform similarly in terms of their
median decoding accuracy.

However, when looking at the other two metrics, energy and latency, it becomes clear
that the smallest topology that gives satisfactory decoding results is to be preferred.
Indeed, as the size of the WESN grows, both the necessary time for computations as
well as for communication increase. At the same time, the energy consumption of
both also increases.

The former follows from the increased size of the matrices involved in the calculations.
As shown in Section 4.1, this causes the necessary number of computations to increase
as well, increasing the required computation time and hence also energy.

The latter, in the centralized and fully connected pipelines and in accordance with
the models of Section 4.3, is caused by an increasing amount of channels that need
to be received from other nodes, increasing both the time and energy required to do.
As the amount of data that needs to be transmitted by each node is independent
from the amount of nodes, only the receiving is affected.

For the tree topology however, there are two mechanisms at work. First, each
neighbour gets transmitted a different signal and as with an increase in amount of
nodes, the average number of neighbours is expected to increase, both energy and
latency increase, now due to both received as well as transmitted signals?. The
reduced energy consumption due to the shorter distances in the tree network was
hence completely negated. Second, the depth of the tree increases as well. Therefore,
it takes longer for a signal to diffuse to the leaves and fuse back to the root, increasing
the latency even more. Note that topologies no. 3 and 4 have the same latency.
Looking at their construction in Figure 5.2, this is expected as they each have the
same number of nodes.

In this experiment, topology no. 5 would hence be preferred as this yields the same,
highest accuracy as topology no. 6 but with lower latency and energy consumption.
Looking at the node locations of topology no. 5, they can be seen to cover the
extended region (both anterior and posterior) around the sensorimotor areas, which
is in accordance with physiological theory.

Comparing the different pipelines to each other now, it can be seen that the median
accuracies of the distributed pipelines are lower that that of the centralized pipeline,

2There exists also a method where each node broadcast a single compressed set of signals to
its neighbours rather than a different set per neighbour [48]. As it is more complicated, it was not
considered here.
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5.2. Experiment 1: Influence of network size and node placement

except for the smallest topology. Furthermore, the standard deviations of the
distributed pipelines are, safe for the smallest topology, larger than that of the
centralized topology.

However, it is still unclear what causes this standard deviation to be enlarged: are
good performing subjects improving and vice versa for poor performing subjects, or
do they seemingly improve or degrade randomly? Figure 5.4 shows heatmaps of a
2D-histogram of the centralized pipeline’s decoding accuracy of each subject on the
x-axis vs. those of respectively the fully connected and tree pipelines on the y-axis.
Although subtle, the lower performing subjects in the centralized pipeline tend to
stay below the black line indicating the points with equal accuracy in both pipelines.
Their accuracy thus lowers going to the distributed pipelines. On the other hand,
the opposite can be seen for the subjects with a higher centralized accuracy.
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FIGURE 5.4: Heatmaps linking the per-subject accuracy for a centralized and a
distributed pipeline
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When comparing the energy and latency of the different pipelines to one another, the
centralized pipeline, surprisingly, outperforms the distributed pipelines. It is also the
only pipeline that remained feasible for all topology sizes. The reason for this is the
small topology sizes, both in terms of amount of nodes as well as electrodes. As the
distributed algorithms add overhead (a.o. transmitting filter updating information
back to the rest of the network and waiting for every node to have received all
necessary data, both clearly increasing the corresponding components in Figures
5.3b and 5.3c as well as re-use, which will be discussed in more detail in Section 5.3),
the benefits of using a distributed pipeline do not outweigh the disadvantage due to
the overhead for topologies of this size.

Indeed, when repeating the experiment to determine the energy and latency for a
large topology of a few hundred nodes?, the distributed pipelines’ energy and latency
are indeed lower, although it is unclear how this would affect convergence and thus
accuracy. Especially so for the tree pipeline, the energy and latency are significantly
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lower than those of the fully connected pipeline in such a large network due to a
divide-and-conquer-like mechanism avoiding a single node having to be connected to
every other node. This reduces both energy consumption and latency and justifies
the extra overhead. For the energy consumption, due to the low average number of
neighbours in the pruned tree networks, the energy already becomes lower for the
tree topology than for the fully connected one. However, again because of the low
average amount of neighbours, the diffusion-fusion flow increases the latency beyond
that of the fully connected pipeline.

5.2.3 Conclusions

In summary, to minimize energy and latency while maximizing decoding accuracy,
the smallest topology that gives satisfactory accuracy results is to be preferred.
Furthermore, increasing the topology size yields diminishing returns w.r.t. accuracy
or could even lower it. The best topology is hence no. 5 and will be used as the
basis for further experiments in this work. As the topology is of relatively small size,
the more lightweight centralized pipeline here outperforms the distributed ones. All
pipelines are however still feasible w.r.t. the latency for this topology.

The distributed pipelines lend themselves well to topologies with a high amount of
nodes. Depending on whether energy or latency is to be optimized, respectively the
tree or fully connected pipeline should be chosen.

5.3 Experiment 2: Impact of (efficient) re-use

In Section 3.5 it was discussed that it might be necessary to increase the convergence
rate of the distributed algorithms to keep up with the rate at which the statistics
change. Although more iterations per window can be performed by repeating the
steps on the same window of data to boost the convergence rate, it was explained that
this incurs a multiple amount of energy consumption as well as latency compared
to a single iteration per window. This led to the development of a more efficient
approach to re-using data in [47] for fully connected topologies, which was extended
to tree topologies and integrated in the pipeline in Section 3.5.

This section now evaluates whether the accuracy indeed improves when employing
re-use, and what the impact is of doing this efficiently or non-efficiently, on the
energy consumption and latency.

3As such large WESNs are not relevant for the application considered in this thesis, they will
not be discussed in depth but will rather be used to complement the results in order to demonstrate
interesting aspects of the evaluated approaches which only occur for larger networks and as such,
might be valuable to other applications where larger networks are used.
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5.3.1 Methods

To investigate this, the base topology from the previous section together with the
typical parameters given in Table 4.1 and the technological parameters given in Table
5.1 is simulated using the setup as described in Section 5.1 for various amounts of
re-use cycles R ranging from 1 (no-reuse) to 10.

5.3.2 Results

The results are shown in Figure 5.5. From Subfigure a it is clear that re-use does
not improve the median decoding accuracy for neither distributed topology for
this network (compare R = 1 with R > 1). The standard deviation is also lower
in the centralized pipeline than in the others. As was the case in the previous
section, repeating the experiment with a network with a few hundred nodes, did show
improvement when using the more elaborate technique. Hence, it is hypothesized
that because of the small size of the network, the problem can converge sufficiently
quick, even with just 1 iteration per window, whereas when the network and thus the
problem grows in size, also the number of variables that needs to be optimized grows
and hence a single iteration is no longer sufficient. For the application considered in
this text however, the useful topology sizes are too small to reap benefits from re-use.

In both the energy consumption and latency figures, the centralized pipeline outper-
forms the distributed ones due to the overhead as discussed in the previous section.
Again, as also discussed in the previous section, when repeating the experiment
with a network with a few hundred nodes, the distributed pipelines outperform the
centralized one for larger networks.

As applications that use such large topologies can still benefit from re-use, it is still
useful to investigate the impact of efficient re-use as compared to non-efficient re-use
for the current experiment. In Figures 5.5b and 5.5¢, the total energy respectively
total latency with non-efficient re-use is indicated with a solid line for both fully
connected and tree topologies. While both efficient and non-efficient linearly increase
with R, the increase is less steep for efficient re-use than for non-efficient re-use
showing that, although the energy consumption and latency will continue to increase
for both, efficient re-use will outperform non-efficient re-use for any value of R.

Observe that the energy consumption of the tree topology eventually becomes bigger
than that of the fully connected topology. Indeed, while E,; and E.omp increase at a
similar rate, Fy, increases slower for the fully connected topology than for the tree
topology. This can also be seen in the models of Table 4.3: N, scales only with %
for the fully connected topology while it scales with R for the tree topology. The
reason for this is that in the tree topology, every re-use cycle requires each node
to participate in a diffusion cycle with the updating node as the root (see Section
3.5.2), while in the fully connected network, the updating node need only broadcast
and all other nodes only need to receive (hence the same E,, scaling for both). As
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the communication-related energy is on average linear in the number of words, this
explains the observed effect.

Concerning the latency of the distributed pipelines, the latency due to updating-
related computations can be seen to increase at a similar rate in both pipelines. The
latency due to the updating-related communication however increases at a much
slower rate for the tree pipeline.

5.3.3 Conclusions

For the systems considered in this thesis, re-use does not improve the median accuracy.
The centralized pipeline is still more accurate in decoding the correct output. Also
w.r.t. energy consumption and latency, the centralized pipeline outperforms the
distributed pipeline.

However, for other applications with larger networks were distributed pipelines
outperform the centralized one (see Section 5.2), the advantage of efficient re-use
as compared to non-efficient re-use is significant and continues to increase with R.
Furthermore, although a tree topology becomes more efficient compared to a fully
connected topology as the network grows in size, its energy increases more rapidly
with R than that of the fully connected topology, since it has to participate in a
diffusion flow in every re-use cycle. For the latency, the opposite is true.

Note that for larger networks, it might also be possible that there exists a balance
between the size of the network and R. Indeed, a smaller network requires less
energy and incurs a lower latency per iteration which can then subsequently be used
to increase R (see Section 5.2). The maximum achievable accuracy decreases (i.e.
that of the centralized pipeline as the distributed algorithms converge to the same
solution), but as more iterations can be done towards convergence, the accuracy
might be better for the same energy consumption or latency. However, as this is only
applicable to larger networks where re-use affects the performance, investigating this
effect is outside the scope of this text.
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FIGURE 5.5: Influence of (efficient) re-use on performance of each of the pipelines.
The groups are as described in Section 5.2.2.
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5.4 Experiment 3: Influence of the per-node channel
count

For the design of a hardware implementation, it is useful to know what the impact
of the number of channels per node is on the performance of the pipelines. This has
several reasons:

e A smaller amount of channels makes the node inherently smaller and cheaper
to both design and manufacture.

e The number of channels might impact performance.

o If the energy consumption and latency are affected, there might be a maximum
number of nodes that can ever be used to have a certain battery life or to
remain feasible w.r.t. the time spent processing.

o While satellite electrodes can always be turned off, adding them afterwards
requires a redesign. Possibly the optimal amount of channels is also subject
specific. One could then design a single node with a channel count sufficiently
high enough such that electrodes can be selected afterwards, individually for
each subject.

5.4.1 Methods

To study the impact of the per-node channel count, the base topology (topology
no. 5 of Figure 5.2) is modified such that the reference electrode is kept and an
increasing amount of satellite electrodes is then added, as shown in Figure 5.6. The
setup of Section 5.1 was then used with otherwise the parameters of Tables 4.1 and
5.1.

5.4.2 Results

Figure 5.7 shows the results of this experiment. For the centralized topology, as the
number of channels in each node M}, is increased, also the number of channels that
need to be send to the FCe grows, incurring energy consumption per extra channel
that needs to be sent.

In the FCe itself, this translates to increasing amounts of energy being consumed
to receive the signals as well as increasing amounts of latency to receive all those
signals one after the other. From Figure 5.7 this can be seen to be a major factor in
the performance w.r.t. energy consumption and latency.

Furthermore, the centralized problem that subsequently needs to be solved grows
with the total number of channels in the network M. In this specific case, M = K M,
since M} was taken to be equal for all nodes £ € K. Hence with K = 6 the
dimensions of the problem grow 6 times as fast as the number of channels per node.
From the model of Table 4.2 however, it is known that the amount of operations
to solve the centralized problem increases with the second and third power of M.
Consequently, the computation time and required energy rise sharply with M} and
become non-negligible.
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5.4. Experiment 3: Influence of the per-node channel count

MkE4 MkEE)

FIGURE 5.6: Base topology modified to have an increasing amount of channels M},
in each node. The reference electrode locations of the base topology (topology no.
5 of Figure 5.2, see Section 5.2.3) are retained. The format of the topoplots is the
same as described in Figure 5.2.

On the other hand, as can be seen from the figure, both energy consumption as well
as latency increase only marginally. This is also clear from the models given in Tables
4.3 and 4.2: the signals that a node needs to send or receive is independent from the
channel count of its neighbours as due to the compression, each node need only send ()
signals to each neighbour (using broadcasting in the fully connected case). The biggest
factor lowering performance in the centralized pipeline, increased communication, is
thus not present here. The other factor, the number of computations, is present, but
with a different scaling behaviour. Indeed, from Table 4.2 it can be seen that the
necessary amount of computations increases only quadratically, rather than cubically.
Consequently the increase in latency and energy consumption is negligible.

Figure 5.7a, which shows the accuracy for each topology with a certain My, motivates
why to have multiple channels per node in the first place. Indeed, as M}, increases
from a single channel, the median performance increases as well. This trend drops
off after 3 channels but surprisingly, it continues for the distributed topologies with a
spread around the median than covers both descent as well as excellent performance.
This might also indicate that indeed electrode placement is subject specific.

5.4.3 Conclusions

From the results it is clear that there is a bifurcation point: for smaller nodes the
centralized pipeline outperforms the distributed pipelines for any of the metrics.
Once past a certain number of channels per node (the specific position depends on
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5.4. Experiment 3: Influence of the per-node channel count

which metric is considered for the boundary), the distributed pipelines however are
more performant and, at least for the latency and energy consumption, demonstrate
a more manageable decrease in performance as the number of channels is increased
even further.

Eventually however, either the battery life becomes unsatisfactory or the system is
no longer feasible due to the latency. There is thus a maximum number of channels
that can simultaneously be used. If more electrodes are placed on the node, channel
selection must be used to reduce the amount to this maximum number, providing
the possibility to virtually tune the electrode placement to each user.
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5.5. Experiment 4: Influence of technological parameters

5.5 Experiment 4: Influence of technological
parameters

Another important consideration when designing a hardware implementation, is how
the performance is influenced by changing the technological parameters concerning
the hardware for both processing and communication. For example, when designing
for a limited footprint, how should the sizes of the processing and communication
system compare if their area is related to their energy efficiency and/or speed? Or
can a cheaper component be used that is slower while still remaining feasible?

Until now, the parameters of Table 5.1 have been used. In this section, the influence
of these choices will be studied.

5.5.1 Methods

To investigate the influence each of the technological parameters has on the latency
and energy consumption, simple models will be fitted based on the more extensive
model of Chapter 4. As the technological parameters discussed here do not directly
affect the accuracy only the latency and energy consumption will be discussed. Note
however that they do influence the accuracy indirectly. For example, lowering the
latency for a set of network parameters may then allow to increase the latency again,
without becoming infeasible, by tuning the network parameters to have a higher
accuracy at the maximally allowable latency.

Energy consumption

For the energy consumption, because there are multiple parameters governing the
communication-related energy (see Section 4.4), a model was fitted that scales all
communication-related technical parameters with scalar A.omm and the computation-
related technical parameter 1 with the scalar Acomm. As can be seen from the more
detailed models of Section 4.4, all the scaled technical parameters relate to the energy
linearly. Therefore, the following linear model seems appropriate:

E~ a/ s )\comp + (b,TXelec : ETXelec (5 1)
+bgmp : Eamp -d" + b/RXelec : ERXelec) k- )\comm

=a- )\comp +b- Aeomm + €. (52)

Latency

For the latency, there are only two technical parameters: BW and IPS. They can
be seen in Section 4.3 to be inversely proportional to the latency. Hence the following
model seems appropriate:

a b
L Nt — . .
atency B + 7PS +c (5.3)
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5.5. Experiment 4: Influence of technological parameters

Observe that this model is still linear in its parameters a, b and c.

These simplified models for the energy consumption and the latency will be fitted
with a least-squares objective. To generate the data to fit to, the detailed models of
Chapter 4 are used with the other parameters set as in Tables 4.1 and 5.1 and for the
base topology as discussed in Section 5.2.3. The energy models were run with the
scaling parameters ranging logarithmically from 1 x 10™# in 100 steps to 1 x 10'. The
latency models were run with BW and IPS ranging logarithmically from 1 x 10°
to 1 x 10'° in 100 steps. The fitted parameters will then provide insight into the
influence a change in one of the technological parameters has on the performance.

5.5.2 Results

The fitted parameters are shown in Table 5.2 for the energy consumption and in
Table 5.3. Both tables also show the goodness-of-fit of each model, expressed in terms
of the RMSE. All of the models can be seen to indeed closely match the detailed
models’ results.

Energy consumption

Observe that for the energy consumption, the intercept c is almost zero. Indeed, if it
were free to both compute and communicate, the energy consumption would be zero
as well as these were the only two sources of energy consumption that were captured
in the detailed models and are both present in the simple models. Also note that the
computation-related energy has no impact on the energy usage on the nodes other
than the FCe in the centralized pipeline as a is close to zero. Indeed, as specified in
Algorithm 3.1, these nodes don’t have any computations to perform.

In each of the pipelines, a < b, indicating that changing the computation-related
energy has less of an impact on the total energy consumption than changing the
communication-related energy. Hence, the latter should be improved first rather
than the former if the systems needs to be made more energy efficient (without
changing other system parameters). If the system can use more energy (e.g. such
that cheaper components can be used), changing n will have the least impact on the
energy consumption for the same decrease of the parameter. Note however that the
computation- and communication related parameters might of course scale differently
from a hardware perspective; the results of this experiment hence are only half of
the technical parameter scaling problem.

Latency

Concerning the latency, the impact of BW and I PS is in the same order of magnitude
for each of the topologies. As illustrated in Figure 5.8, BW and IPS can be
exchanged, depending on which hardware component is easier to optimize. Notice
however that for both the centralized as well as the fully connected pipelines, a < b,
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5.5. Experiment 4: Influence of technological parameters

Coefficients
Pipeline a b c RMSE
Comtalred 1 067 x 1074 39277 x 1072 ~1.3211 x 107 0
Centralized ) 0156 0 10719 53032 x 103 24771 x 10-19 0
— others
Fully Connected 6.9636 x 1074 8518 x 1072 7.3671 x 1076  8.0813 x 107
Tree 2.0083 x 107%  7.8013 x 1072  3.4457 x 1076  2.9226 x 10~°

TABLE 5.2: Resulting coefficients and RMSE from fitting the model given by (5.2) to
the total energy consumption simulation results using the models derived in Section
4.4 for the various pipelines

Coefficients
Pipeline a b c RMSE
Centralized 1.47 x 105 1.82x 10° 2.00 1.511 x 1077
Fully Connected 2.57 x 105 7.22 x 106 2.00 0
Tree 3.60 x 105 2.29 x 105 2.00 4.69 x 10~*

TABLE 5.3: Resulting coefficients and RMSE from fitting the model given by (5.3)
to the total latency simulation results using the models derived in Section 4.3 for the
various pipelines

while for the tree pipeline a > b. Consequently, the former are (slightly) more
sensitive to changes in BW whereas the latter are more sensitive to IPS.

Observe that the intercept c¢ is exactly equal to the window length. This is expected
as this part of the latency cannot be reduced by faster processing and communication.

5.5.3 Conclusions

When minimizing the energy consumption, the biggest effect of a change in the
efficiency of the components is to be gained from the communication stack. Conse-
quently, if the efficiencies of both processor and communication stack scale equally
with e.g. the size or cost, resources should go towards improving the communication
stack. However, it is unlikely that both will scale equally and as such, the hardware
scaling should be combined with the scaling behaviour from this section to optimize
the implementation.

The impact of the bandwidth and processor speed on the latency is approximately

equal. Hence the hardware scaling will determine how to best optimize the hardware
for hitting the latency target.
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FiGURE 5.8: Contours of the latency i.f.o. the communication bandwidth and
processor speed for both the centralized and distributed pipelines. Also indicated
is the current state-of-the-art bandwidth and processor speed, as used with the
performance models, given in Table 5.1.

5.6 Discussion

At a sufficiently large scale both in terms of number of nodes as well as channels per
node, the distributed approaches improve the performance beyond that of the naive
centralized approach and with better scaling behaviour in terms of the number of
channels per node as well as network size. Indeed, when repeating the experiments
on topologies similar in size to those in [14], the distributed pipelines outperform the
centralized one.

However, the results of the first experiment show that for the application at hand,
the optimal size of the network as well as the average number of channels per node
is smaller than considered in [14]. Increasing these sizes to be similar was shown to
not yield increased accuracy while it does result in a higher energy consumption as
well as a higher latency and in making the system more complicated to use. At this
smaller scale, the added overhead of the distributed pipelines are not outweighed by
decreases in energy consumption and latency and as such, the distributed pipelines
are surpassed in performance by the centralized approach.

Furthermore, in [14] it was also stated that in order for a node to have a battery
life of 30 days, the power consumption should be <140pW. The base topology
has an energy consumption of approximately 40 mJ per 2 second window, resulting
in a continuous power consumption of 20mW. Hence aside from the distributed
approaches not being able to lower the energy consumption, the centralized pipeline’s
energy consumption still results in unsatisfactory battery life figures.
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5.6. Discussion

In applications where the network is larger, the experiments corroborate the perfor-
mance results of the distributed approaches found in literature and these approaches
can therefore be useful in such larger networks. For example in epileptic surgery,
source localization can be used to locate the part of the brain responsible for phar-
macoresistant seizures [41]. Here it makes sense to cover the entire scalp with nodes,
resulting in a larger network. Furthermore, whereas the interelectrode distance in
a BCI must be >3 cm, other applications could benefit from more dense record-

ings, resulting in either further miniaturized nodes or in a higher channel count per
electrode.

The last two experiments provides tools to design and optimize a hardware imple-
mentation for the envisioned nodes. The simplicity of the linear models allows to
quickly assess the impact of a design change.
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Chapter 6

Conclusion

Long-term neural monitoring has the potential to enable a range of diagnostic,
instrumental and rehabilitative applications. However, as the traditional EEG
recording setup is not suited to continuous, wearable and long term use, a novel
approach was recently proposed that uses a WESN instead, specifically designed
with these use cases in mind. To overcome the stringent energy requirements of
this architecture, distributed signal processing algorithms were also proposed that
replace typical algorithms that would require too much communication which would
yield an unacceptably short battery life. So far however, this approach has not yet
been applied as part of complete system for a specific application and as such, the
performance and feasibility of such a system is still unknown.

The goal of this thesis was therefore to evaluate the performance and feasibility of
such a complete system for use as a BCI based on the MI-paradigm, based on three
goals: maximum accuracy, minimal energy consumption and minimal latency.

To this end, the DACGEE algorithm was integrated into a MI classification pipeline
as an adaptation of the popular CSP feature extraction method. In order to also
be used in a tree topology, the algorithm was also extended based on previous work
by its authors. Furthermore, the algorithms were extended to efficiently perform
multiple iterations for a single window of data, to vary the convergence speed. Lastly,
as CSP is known to be prone to overfitting, the algorithms were re-derived to include
Thikhonov regularization.

To do the evaluation, two techniques were employed: modelling and emulation. For
the latency and energy consumption, models were created based on the classification
pipelines’ specifications. To estimate the decoding accuracy, data as it would be
recorded by a WESN was emulated based on previously recorded HD-EEG data.

The size of the WESN was found to be a balance between low energy consumption
and low latency with poor decoding accuracy for small networks, and higher accuracy
but with a higher energy consumption and latency for larger networks. Going beyond
8 nodes yielded no additional improvements in decoding accuracy.
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6.1. Future work

Due to the small size of the topologies applicable for the considered use case, the
naive, centralized pipeline outperformed the distributed pipelines for all three of the
considered metrics. Hence the centralized pipeline is preferred.

Important for designing a hardware implementation of a node, it was found that there
exists a maximum possible number of channels per node that can simultaneously be
used by the system. Also, the impact of the technological parameters was summarized
into a linear model for the influence on the latency and one for energy consumption.

There are 3 main contributions of this thesis: extensions of the distributed algorithms,
integration of the distributed algorithms in an actual application, and the evaluation.
Belonging to the former, is the extension of efficient re-use to tree topologies, as it was
only presented for fully connected topologies in [47]. A more substantial contribution
are the re-derivations of the algorithms to include Thikhonov regularization, based
on the compression of the filter matrix norm in [46]. This is potentially also useful
for including regularization in distributed algorithms based on the same principle
(see [21]).

The integration of the distributed algorithms into an actual application posed
integration challenges such as how to perform the initialization and how to always
have data from both classes available. Other applications based on similar distributed
architectures are likely to face the same challenges.

6.1 Future work

Prime candidates for future consideration are the limitations of the analysis presented
in this thesis:

e As this thesis does not explicitly focus on achieving maximum accuracy, the
decoding accuracy can potentially be improved by looking at the following
aspects:

— Optimal design and placement of the nodes
— Subject-specific tuning of the parameters
— Use TRO instead of a GEVD

o As a simplification, the actual label was used to decide which covariance matrix
to update. This is however not realistic and hence the decoded label should
be used instead, potentially with some mechanism to repeat cue such that the
accuracy is increased (in exchange for a lower information transfer rate).

e The distributed algorithms are synchronous, requiring some sort of synchroniza-
tion between the nodes. Asynchronous algorithms would make this unnecessary,
with the potential to have different speeds in the same network.

e Use a hybrid BCI that exploits multiple paradigms simultaneously, e.g. MI +
BP

Bringing long-term neural monitoring systems into reality, poses new challenges,
different from those found in the lab environment.
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6.1. Future work

When the run time of the systems are extended far beyond the length of a typical
lab experiment, the non-perfect stationarity of the EEG statistics mandates the use
of an adaptive system. However, thus far there exists no way of measuring the rate
at which the statistics change, nor a consensus as to what method of adaptation is
best suited and how this interacts with feature extraction algorithms. A study into
this topic will not only be of use to WESNs, but to all paradigms that aim to break
BCTI’s out of the lab.

Currently the best performance is obtained from systems that are specifically tuned
to each user. However, tuning requires expert assistance. If a system can be made
that is independent of the characteristics of a specific user, or if the fitting to a
specific user is either automated (adaptive) or user-performable, it will be easier,
more cost effective and less time consuming to implement in clinical practice. Related
is the robust placement of the sensor nodes or more generally electrodes. A method of
selecting the correct placement, either physical or virtual placement trough electrode
selection, could further improve the ease of setting up the system.

The most obvious continuation is the development of a hardware implementation of
the nodes as envisioned in this thesis. Also, the design of a suitable wireless stack that
is both lightweight (as it needs to fit on low power nodes) but at the same time flexible,
robust and secure is crucial to creating systems that can be used independently by
lay users for longer periods of time. Together with a suitable wireless stack, the
system running on top of the hardware should be designed to efficiently work together
with the wireless stack for optimal performance. For example, algorithms can be
made aware of node outages or additions and use this information to more efficiently
use the underlying network. Furthermore, a protocol is needed that controls what
happens when a misclassification is detected.
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Appendix A

Derivation of performance
models

Sections 4.1 and 4.2 discussed methods to estimate respectively the computational
complexity and the communication bandwidth and applied them to all pipelines
given in chapter 3. However, the details of applying these methods to the pipelines
were omitted from the main text for the sake of conciseness and easy exposition in
the main text and are instead presented in this appendix

In the first section, the details of the derivation of the computational complexity
models are presented. The second section then covers those of the communication
bandwidth models.

A.1 Computational complexity models

In this section, the computational complexity of all the pipelines that are proposed
in this work is determined, per window and per node, using the method discussed in
section 4.1:

Step 1: Determine the complexity of each step and accumulate

Step 2: Simplify the sum using typical network parameters as given in Table 4.1

Step 3: For distributed pipelines: Determine the relative frequency of each case

Step 4: For distributed pipeline: Use the relative frequency to compute the mean
complexity

Step 5: Simply the result further by using upper bounds

A.1.1 Centralized algorithm on a WESN

Table A.1 then gives the computational complexity for each of the steps of Algorithm
3.1. If implemented on a WESN, only the central node krc. needs to do processing.
Hence the complexity model only holds for that central node.
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A.1. Computational complexity models

Step Complexity (if £ = krce)
Filtering QMN

Calculate features QN

Update covariance matrix (L —-1)M?N

Calculate optimal filter (GEVD) M3
Resolve sign ambiguity M@

M? + NM(Q + (L = 1)M) + (N + M)Q
Total ~ M3+ (L —1)NM?>
< M3+ LNM?

TABLE A.1: Computational complexity of the steps of 1 iteration of the centralized
distributed pipeline (Alg. 3.1)

A.1.2 Distributed pipelines without efficient re-use

For the proposed pipelines given in Alg. 3.8 and 3.9 the complexity is similarly
derived but now the distinction is made between the updating node ¢ (i.e. the node
that solves the compressed optimal filtering problem in that iteration) and the rest
of the nodes. The computational complexity models for the steps of these pipelines
are given in Table A.2 and A.3 respectively.

As each iteration the node that solves the compressed problem rotates between the
K nodes, the relative frequency p(k) for a node to be in one of the two cases can
easily be seen to be:

L if k=gq
_J)K
p(k) = {Kgl kst (A1)

Hence on average, the computational complexity for a single node and window is
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A.1. Computational complexity models

Step Complexity
Filtering QMyN
Calculate features NQK
Update covariance matrix (L — 1)ﬁq2 N
Calculate optimal filter (GEVD) Hq?’

Resolve sign ambiguity M,Q

—2

M, (Mg + (L= 1)N)

Total
+M,Q(1+ N)+ NQK
~ M, + (L—1)M,'N
(a) In node ¢ which updates the filters
Step Complexity
Calculate L?C M,Q?
Filtering QMpN
Calculate features NQK
Update covariance matrix (L — 1)]\//_[22 N
Update filter matrix M Q?

Total

—2
QN((L —1)My, + K) + Q*My, + M}, N
~ (L - )My N

(B) In non-updating node &

TABLE A.2: Computational complexity of the steps of 1 iteration ¢ of the distributed
pipeline in fully connected topologies without re-use (Alg. 3.8)

given by the following equations for Algs. 3.8 and 3.9 respectively:

B Weompal = 2 (M + (L= DIE'N) + = (35°N) (A2)
~ (L - )My N (A.3)
< LMi'N, (A.4)

E [Noompi] = % (ka?’ (L —1)My'N + QN (M + |Ni|? + |Nk\))
(- 03PN + Qv+ M) (A.5)
~ (L — 1)My N + QN (M + |Ni)) (A.6)

< LM'N + QN (M + [N ) - (A%



A.1. Computational complexity models

A.1.3 Distributed pipelines with efficient re-use

Finally, for Pipelines 3.10 and 3.11, another distinction is made, apart from the one
from the previous pipeline. Indeed, whereas in the previously discussed pipelines,
one iteration ¢ corresponded to one unique window of data, the last two pipelines
re-use one window for R iterations i,...,7 + R — 1. To re-use the window in an
efficient manner, the steps taken are different in the cases in which » =1, »r = R and
1 <r < R (see Section 3.5).

Table A.4 and A.5 then give the computational complexity per iteration 4 for Pipelines
3.10 and 3.11 respectively, where Subtable a and b give the complexity for an updating
node and non-updating node in that iteration respectively and it is also indicated
which steps need not be done for certain values of r, thereby accounting for all
possible cases.

Similarly to the previous two discussed pipelines, the mean complexity can be
determined by weighing each case with its relative frequency.

In general, the tuple (r, q) visits every element in the product set {1,..., R} x K. If
it does, the relative frequency of all of the elements in that set is the same and equal
to RLK. As the function i — (r, q) is indeed a function (in the sense that it maps i to
only one specific tuple (r,q)), the relative frequency of a subset of {1,..., R} x K is
equal to the cardinality of that subset multiplied with ﬁ.

For the different cases possible in an iteration of Algorithms 3.10 and 3.11, the
relative frequency p(k,r) can be summarized as follows:

r=1 1<r<R r=R

Rf
b=e| e AR (48)
K— R—2)(K—-1 K—
k#q RKl ( J%EK ) RKl
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A.1. Computational complexity models

The mean complexity is then given by

e (V4 (L~ DMEN + (K~ 1)Q*N)
+ };;K (MkS (L —1)M N + (K — 1)Q2N)
+ R% (Mk +(L— I)EQN)
et (L= DWESN + (5 - Q) (A9
(R—2)(K —
RK
+ %Kl (- DML’N)
— (L - 1)M,'N + %J\Zﬁ n %(K ~1)Q?N (A.10)

_ 1 —
< LM, N + ?ng + RKQ®N (A.11)

E [Ncomp,k]

D (L= )M + (K ~ D@2N)

~ LM, N + RKQ?N (A.12)

for Algorithm 3.10, and for Algorithm 3.11 by

1
E[ comp,k RiK(Mk _1 Mk N+QN(Mk+|Nk|2+|Nk|)+|Nk|Q2N)
+ RR - (Mk + (L= DMEN + QN (M + ING? + M) + INGIQPN)
(Mk + (L —1)M; N+QNMk) (A.13)
+ % ((L DILN + QN (M + NG + Wi + m@?N)
B2 (L - )NN + QN (M + NG + ING]) + INGIQ?N)
K -1 —2
v TK (L= 1M N + QN M)
= (L~ VMN + QN My +
R—-1
5 (@N M+ WG + Wi + [Nl Q)) (A.14)
< LVGN + QN My + 0 + QN(My + NG + NG+ NG [Q)
(A.15)
~ LM, N + QN (2M + Wi ? + NG| + NG Q) (A.16)
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A.1. Computational complexity models

From these equations, the mean complexity per window rather than per iteration
immediately follows. Since there are R iterations per window, equations (A.12) and
(A.16) need to be multiplied with R:

E [Nuomps] £ LRMy, N + KQ2N (A.17)
—2
E [Neompk] S LRMy, N + QN (2Mj, + |[Ni|* + [Ni| + IVk|Q) - (A.18)
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A.1. Computational complexity models

Step Complexity
Filtering QMyN

Calculate )Efl_ml, Vn; € Ny IV QN (INg| - 2)
Calculate features QN |N|

Update covariance matrix (L — 1)%2 N

—3

Calculate optimal filter (GEVD)  af,
Resolve sign ambiguity M,Q

—2

My (Mg + (L — 1)N) + M,Q(1+ N)

Total —i—]./\/q]QQN—i-Qqu
~ M, + (L 1)M, N
+ QN (Mg + N[> + [V))
(A) In node ¢ which updates the filters
Step Complexity
Calculate L¢ M.Q?
Filtering QM N
Calculate L};_ﬂup”nk Wkl Q% (IVk| = 2)
Calculate i};_ml, Vn; € Ny, Vel @N (INk| —2)
Calculate features QN |Ny|
Update covariance matrix (L — 1)%2 N
Update filter matrix M;,Q?
Total QN (M + INl) + Q2My + My N + [Ni[2Q?

—2
~ M N+ QN (M + |Ni|)

(B) In non-updating node k&

TABLE A.3: Computational complexity of the steps of 1 iteration ¢ of the distributed
pipeline in tree topologies without re-use (Alg. 3.9)
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A.1. Computational complexity models

Step Complexity
Filtering (if » = 1) QM,N
Calculate features NQK
Update covariance matrix (L— 1)qu2N
Calculate optimal filter (GEVD) Eg

Resolve sign ambiguity M,Q
Filtering (if r # R) QM,N

Update received compressed observations (if r # R) (K — 1)Q?N

(A) In node ¢ which updates the filters

Step Complexity
Calculate Li M,Q?
Filtering (if r = 1) QM N
Calculate features NQK
Update covariance matrix (L — 1)%2]\7
Update filter matrix M,Q?

Update received compressed observations (if 7 # R) (K — 1)Q?N

(B) In non-updating node k

TABLE A.4: Computational complexity of 1 iteration 4 of the distributed pipeline in
fully connected networks with data-reuse (Alg. 3.10)
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A.1. Computational complexity models

Step Complexity
Filtering (if r = 1) QM,N

Calculate X, ,,, , Vn; € Ny (if r = 1) INGIQN (|Ng] — 1)
Calculate features NQ|N|

Update covariance matrix (L — I)EQN
Calculate optimal filter (GEVD) ]Té[f

Resolve sign ambiguity M,Q

Filtering (if r # R) QMyN

Update received compressed observations (if 7 # R)  |N,|Q*N
Calculate Xt} | Vn; € Ny (if r # R) INGI2PQN

(A) In node ¢ which updates the filters

Step Complexity
Filtering (if r = 1) QM N
Calculate Xj,_,,, , Vg € Ny (if r = 1) (INE| QN (|INg| — 1)
Calculate Li M,Q?
Calculate Lﬁcﬁlupzmk Q*(|Nk| — 1)
Calculate features NQ(|Ng]
Update covariance matrix (L — 1)E2N
Update filter matrix M,Q?

Update own compressed observations (if r» # R) Q*N

Update received compressed observations (if r # R) ([N — 1)Q*N
Calculate i}f_im, Vn; € Ny, (if r # R) (JNe| — 1)2QN

(B) In non-updating node k

TABLE A.5: Computational complexity of 1 iteration 4 of the distributed pipeline in
tree networks with data-reuse (Alg. 3.11)
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A.2 Communication bandwidth models

In this section, the required communication bandwidth of all the pipelines that are
proposed in this work is determined, per window and per node, according to the
method discussed in Section 4.2:

Step 1: Determine the number of words in each of the variables that need to be
transmitted in one window, and sum

Step 2: Simplify the sum using typical network parameters as given in Table 4.1

Step 3: For distributed algorithms: Determine the relative frequency of each case

Step 4: For distributed algorithms: Use the relative frequency to compute the
mean

Step 5: Simply the result further by using upper bounds

A.2.1 Centralized algorithm on a WESN

Table A.6 then gives the number of words in each of the variables that need to be
transmitted (Subtable a) and received (Subtable b) in one iteration of the centralized
pipeline (Alg. 3.1).

Variable k#c¢ k=c Variable k # ¢ k=c

Xz N M;, - {X;}kGIC\c

(A) Transmission (B) Reception
TABLE A.6: Communicational complexity of 1 iteration of the centralized distributed
pipeline (Alg. 3.1)

Note that similarly to the computational complexity model, the required bandwidth
is very different for the central node (k = ¢) and the peripheral nodes (k # c).

A.2.2 Distributed algorithms

For Pipelines 3.8 and 3.9 the number of words for each of the transmitted and
received variables is similarly derived. The results are shown in Tables A.7 and A.8
where the distinction was made between an updating node (k = ¢) and non-updating
node (k # q), identical to how it was done in the previous section for the complexity
model.

The total amount of words per window, i.e. the sum of the columns in Table A.7,
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Variable k #q k=q Variable k #q k=q
i NQ NQ {ij}jelc\{k} (K-1)NQ (K —-1)NQ
Li Q(Q+1) B} i i} _ 1)Q@+D)
k 2 {LJ}jeIC\{k} (K =15
G4 - (K - 1)Q? Gy, Q° =
(A) Transmission (B) Reception

TABLE A.7: Communicational complexity of 1 iteration ¢ of the distributed pipeline
in fully connected topologies without re-use (Alg. 3.8)

Variable k#q k=gq

{izﬁnz }nzef\/'k NelNQ  [NiINQ

i QIQ+1
Lkg)luplink ( 2 )
{Gj}je/\fk - |Nk|Q2

(A) Transmission

Variable k#q k=q

Y S NEINQ NEINQ
i _1)QQ+1) Q(Q+1)
{anﬁk}mezc\{k} (Wil = 15 KI5

Gy, Q? -

(B) Reception

TABLE A.8: Communicational complexity of 1 iteration ¢ of the distributed pipeline
in tree topologies without re-use (Alg. 3.9)

can be simplified as follows for the fully connected case (Alg. 3.8):

CNQ+ (K -1)Q*<NQ+KQ* ifk=gq
Nm’k_{NQ—I—Q(Q;l)<NQ+Q2zNQ ifk+#q’ (4.19)
N (K-1)NQ+Q?> < KNQ+Q*>~ KNQ if k#q
TET K - 1) (NQ+ L) < K (NQ+ Q%) ~ KNQ ifk =g

(A.20)
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and similarly for the tree topology case (Table A.8) of Alg. 3.9:

NEINQ + L&D N INQ + Q2 = [NV} [NQ ifk#g
Nig i = ) Lo, (A21)
INEINQ + [N Q7 =~ [Nk NQ if k=gq
INEINQ + (NG| - DR L Q2 if ki # ¢
re,k = Q(Q+1) . (A.22)
|Nk\NQ+|Nk|T itk=gq
< INKINQ + [Nk Q* = [N INQ . (A.23)

The relative frequency of the two cases a node can be in, was already derived in
the previous section resulting in (A.1). The mean amount of words a node needs to
transmit and receive can then be calculated, weighed by that relative frequency. For
the fully connected case this gives:

K-1
K
K-1
K

E[Nixl £ NQ+ % (NQ + KQ2) = NQ+Q*~ NQ, (A.24)

E [ch,k} é

KNQ + %KNQ — KNQ, (A.25)

and for the tree topology case:

K-1
K
K-1
K

1
E[Nix) £ NeINQ + }\NHNQ = [NkINQ, (A.26)

1
E[Nwk] NLING + ZINLING = [N[NQ. (A.27)

A.2.3 Distributed algorithms with efficient re-use

Finally for Pipelines 3.10 and 3.11 the same method is applied. In these pipelines, a
distinction is not only made between updating and non-updating nodes, but also
w.r.t. to how many times a window of data has already been used. This is identical
to the approach taken with the complexity models for these pipelines (cf. supra).
The results are given in Tables A.9 and A.10 for respectively the fully connected and
tree topologies.

The total can then be calculated as the sum, and be further simplified as follows for
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Variable k#q k=gq
xi (ifr=1) NQ NQ
7 1
Lk Q(Q2+ ) _
a, - E-DQ?
% (if r # R) - NQ

(A) Transmission

Variable k#q k=gq

{@}jem ifr=1) (K-1)NQ (K-1)NQ

i Q(Q+1)

{Lj }jEIC\k: ) (K —1) 2+1
G, (K —1)Q? .
Xt (if r # R) NQ -

(B) Reception

TABLE A.9: Communicational complexity of 1 iteration ¢ of the distributed pipeline
in fully connected networks with data-reuse (Alg. 3.10)

fully connected topologies:

QQ+1) o

Niokrte = {g(gz:;) <2Q2 e i)ftflerwlise ’ (A.28)
2NQ + (K —1)Q? <2NQ + KQ? ifr=1

Niggheqg=4 (K -1DQ*+ NQ< NQ+KQ*> ifl<r<R, (A.29)
(K -1)Q* < KQ? ifr=R
KNQ+(K-1)Q*<KNQ+KQ@Q? ifr=1

Nyggtq =4 (K -1)Q*+ NQ < NQ + KQ? ifl<r<R, (A.30)
(K -1)Q* < KQ? ifr=R

Ny = {(K )(NQ+M) <KNQ+KQ? ifr=1 A

" (K —1)@er Q+1 < KQ? otherwise ~

109



A.2. Communication bandwidth models

Variable k#q k=gq
{Zhon}, o, G =1) MINQ  IMINQ
7 1
Lk%luplink Q(QQJ’_ ) -
{Gj}jej\/k - ’Nk|Q2
X}, o G #R) : NEINQ

i+l . . _
{Xk_ml }nleNk\luplink (fr#R) (Nl =DNQ

(A) Transmission

Variable k #q k=gq
Bk}, o GEr=1  INGINQ MINQ
i . Q+1) _

{Lnlak}meNk\lwlm (NG| — 1)
i . Q(Q+1)
{Lnl*}k}nleNk |Nk| 2
Gy Q? -
xit (if r # R) NQ -

l'u,plink%k

(B) Reception

TABLE A.10: Communication complexity of 1 iteration 4 of the distributed pipeline
in tree networks with data-reuse (Alg. 3.11)

and for tree topologies:

+1
NQ+ 22D (- v o
Niakzq = 5 WHING + @ ~ AN Q ’
’ Q(Q+1 + (INk] = 1D)NQ < IMUINQ + Q*> = |NxINQ ifl<r<R
Q(%—H < Q2 ifr=R
(A.32)
N INEINQ + [NVe|Q + [NLINQ = 2[N,INQ if r =1 (A.33)
tx,k=q |Nk‘Q2 + |N]€’NQ |./\/'k‘NQ otherwise ’ '
+1
NN+ (Wil - )P L g2 1 vg itr—1
New kg = <|Nk\ TONQ + [N|Q® ~ (Wil + DN ,
’ (NG| — (Q+1 +Q*+ NQ < [N:|Q*+ NQ ifl<r<R
(V& — <Q“ + Q% < MK Q? ifr=nR
(A
NEINQ + NG HGH ~ [N INQ if r =1
N — , A.35
k=q {|N ‘Q @+1) NG |Q2 otherwise ( )

(A.36)
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The relative frequency of each of these cases is given by eq. (A.8) from the previous
section. Hence the mean number of words a node transmit and receives per iteration
can straightforwardly be calculated as follows for the fully connected topology:

1 , K1
g KOt R NC (A.37)
rx 9T Rr ¢
_Rng—lNQ+(K_1)(iI—<1)+RK_Q2 e
R+ K ,
< pr MO+ (A.39)
- ([1( N ;) NQ+2Q%, (A.40)
1 R -2
E[er,k]éﬁ(KNQ+KQ2)+R7.KQ2
1 K1
t R K@+ T (KNQ+ KQ?) (A41)
(K — 1)(R - 2) N K—1
e (NQ+KQ) + e - KQ
(K +(R-2)(K —1) )
_< RK )NQH? (A.42)
K? + RK 5 K )
<RK>NQ+Q —(1+R)NQ+Q (A.43)
K
~(1+ ) ve. (A.44)
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and for tree topologies:

E[Nuwil & 55 Z\Nk|NQ+ - [NEINQ

K—-Wk\NQJr( R)I({R 2)-!Nk|NQ+I;K1-Q2 (A.45)
:2+R]§§_1)-!NkINQ+I§%_I(1'Q2 (A.46)
%E'W'MNQ-F%'QQ (A.47)
~ |Nk\NQ, (A.48)

B [News] § - WINQ + oL 0G24+ 2t <wk\ FDN
NiE it D et vy K Lviet (aag)
_ K(R+ |/\/k}\%;{1) R+1 NQ+ R(I};;l) O (A.50)
_ (B +}__LNk’) NOQ 4+ Q? (A.51)
~ (RJF}W "NQ. (A.52)

As there are R iterations per window, the means per window become:

E [Nz g (ﬁ + 1) NQ +2RQ?, (A.53)

for fully connected topologies. Similarly for tree topologies:

E[Nia k] & Nk RNQ, (A.55)
E[Nrok] £ (R + [Nk[)NQ. (A.56)
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