
Automated validation of
building models against legislation

using Linked Data
focussing on accessibility

Emma Nuyts
2021-2022

legislation using Linked Data
Automated validation of building models against

Academic year 2021-2022

Master of Science in de ingenieurswetenschappen: architectuur

Master's dissertation submitted in order to obtain the academic degree of

Counsellor: Ir.-arch. Jeroen Werbrouck
Supervisor: Prof. ir.-arch. Paulus Present

Student number: 01704320
Emma Nuyts

i

Acknowledgements
Before diving into the world of the Semantic Web and the creation of a more accessible built environment,
I want to thank some people.

Firstly, I want to thank my promotors, Paulus Present and Jeroen Werbrouck. Thank you for the discussions
on the difference between the industry and the academic world, and the feedback this past year. I also
want to thank you both for guiding me over the last couple of years, for teaching me the ins and outs of
BIM and JavaScript.

I also want to thank some people on the sideline, for supporting me this last year. Jolien, for all the feminist
literature as a break from the programming. Elin, for the daily support and much-needed breaks in the
library. Melvin, for the unconditional support. My grandparents, for the eternal support by letter. My dad,
for the constant guidance throughout these last years. Pieter, for everything. Without your postivity, this
year would not have been the same. I’m already looking forward to our third thesis together.

I really enjoyed writing this thesis, since the alternation of programming and literature on the importance of
an accessible (built) environment certainly broadened my understanding of both topics. I hope the few
people who will read this, enjoy it just as much.

ii

De auteur geeft de toelating deze masterproef voor consultatie beschikbaar te stellen en delen van de
masterproef te kopiëren voor persoonlijk gebruik. Elk ander gebruik valt onder de bepalingen van het
auteursrecht, in het bijzonder met betrekking tot de verplichting de bron uitdrukkelijk te vermelden bij het
aanhalen van resultaten uit deze masterproef.

The author gives permission to make this master dissertation available for consultation and to copy parts
of this master dissertation for personal use. In all cases of other use, the copyright terms have to be
respected, in particular with regard to the obligation to state explicitly the source when quoting results from
this master dissertation.

Emma Nuyts
3rd of June, 2022

Deze masterproef vormt een onderdeel van een examen. Eventuele opmerkingen die door de
beoordelingscommissie tijdens de mondelinge uiteenzetting van de masterproef werden geformuleerd,
werden niet verwerkt in deze tekst.

This master's dissertation is part of an exam. Any comments formulated by the assessment committee
during the oral presentation of the master's dissertation are not included in this text.

iii

Automated validation of building models against legislation
 using Linked Data

Emma Nuyts

Supervisor: Prof. ir.-arch. Paulus Present
Counsellor: Ir.-arch. Jeroen Werbrouck

Master’s dissertation submitted in order to obtain the academic degree of
Master of Science in de ingenieurswetenschappen: architectuur

Academic year 2021-2022

Abstract
Manually checking the compliance of a building project with the legislation is a time-consuming and error-
prone process. These drawbacks were confirmed by a study by Inter in 2019: out of the 147 reviewed
buildings, only 9 were designed following the Belgian legislation on accessibility.

A solution for this complex manual checking procedure is Automated Compliance Checking (ACC). Existing
commercial systems use either hard-coded requirements, which are almost as error-prone and time-
consuming as manually checking the compliance, or focus on one specific software package.

This research will focus on open Building Information Management (BIM), by using Linked Building Data
(LBD), relying on ontologies like Building Topology Ontology (BOT), PROPS, and OPM. To define the
requirements from the legislation, the Shapes Constraint Language (SHACL), a Semantic Web technology,
is used. This language allows defining constraints using the Resource Description Framework (RDF). One
set of rules is both human- and machine-readable since a syntax like the Terse RDF Triple Language
(Turtle) can be used. Another perk of this language is that the compliance checking can be combined with
a Model View Definition (MVD), ensuring that all the necessary data is present in the building project.

These objectives will be combined in a proof of concept application. A user can upload an LBD graph of a
building project, which is then evaluated against the SHACL rulebook. The output is an interface of the
validation report, where full transparency for the user is crucial.

Keywords: Automated Compliance Checking, Linked Data, SHACL

iv

Extended abstract

Current situation

Building Information Management (BIM) has been widely implemented in the Architecture Engineering and
Construction (AEC) industry in the last decade but is often not used to its full extent. While this model
contains both the geometry and extra information like non-physical objects or semantic information about
the building elements, compliance with the building code is still often manually calculated. This procedure
involves retrieving the needed data from the model and then separately calculating the compliance. This
process is not only time-consuming but also error-prone. That the latter is still a significant problem, is seen
in a Belgian study by Inter (2019); out of 147 reviewed building projects, only 9 were designed complying
with the building code on accessibility. Furthermore, the checking procedures in the urban planning
department appear inadequate due to time pressure or a lack of interest in accessibility.

Fortunately, there is increasingly more research on the topic of automating the compliance checking, by
combining a data set of the legislation with a dataset of the building project.

Research objectives

While existing commercial systems often focus on one specific software package, this research will
investigate the potential of open Web standards, applied to rule checking in the built environment. Moreover,
it will situate the conversion chain required to move from current BIM authoring tools, used in the industry
towards an open system for compliance checking. The research will use Linked Building Data (LBD) since
both Industry Foundation Classes (IFC) and ifcOWL have some weaknesses when used in the context of
the Semantic Web. This building graph will rely on ontologies like the Building Topology Ontology (BOT),
the Ontology for Property Management (OPM), and PROPS (Bonduel, Oraskari, Pauwels, Vergauwen, &
Klein, 2018).

Furthermore, the research will evaluate the suitability of sentence structures in governmental documents
for transformation into machine-readable rules, with as a use-case the regulation on accessibility. These
rules will be defined using the Shapes Constraint Language (SHACL). Ideally, this language also
incorporates some form of additional Model View Definition (MVD), to ensure the model is of enough
quality, and all the needed information is present in the building graph, thus preventing some form of ‘false
compliance’ due to missing building data (Oraskari, Senthilvel, & Beetz, 2021). Moreover, the language
should be able to handle inference statements (if…then…) and should be implementable in a web-based
tool, where the rules are easy to access and update. Additionally, the set of rules should be both human-
and machine-readable, meaning there is no discrepancy between what is checked, and what the user thinks
is being checked. In short, SHACL will be evaluated for use in compliance checking.

These objectives will be combined in a proof of concept application.i Here, a user can upload an LBD graph
of a building project, which is then evaluated against the defined SHACL constraints. The output is a user
interface of the validation report, of which the textual file can be downloaded. In this validation report, the
transparency for the user is a key point: the report contains exactly which building element does not comply
with which constraint. It also includes the identifier of the non-complying building element, meaning it is
easy to find and alter in the native modeling software.

While this specific thesis will focus on accessibility, due to the starting point with the evaluation of Inter, the
method should be applicable to more kinds of building code, and ideally all of them.

i The code can be found at https://github.com/NuytsE

https://github.com/NuytsE

v

Outline

In chapter 1, the current situation on compliance checking is discussed, mainly focussing on the inadequate
checking procedures at the urban planning department and the physically inaccessible design of buildings
by architects. This is followed by the scope of the thesis, its research objectives, and the structure of the
chapters.

Chapter 2 is an introduction to the concept of Automated Compliance Checking and the two data sources
it combines. On one hand, the legislative system in Belgium is reviewed, including the timing of compliance
checking in a traditional architectural workflow. On the other hand, a brief introduction to BIM and the role
of buildingSMART in the standardization of these processes is given.

Since this thesis uses Linked Data, an introduction to this topic is given in chapter 3. It provides an
explanation of the Resource Description Framework (RDF) and its semantic extensions RDF Schema
(RDFS) and the Web Ontology Language (OWL). Furthermore, the SPARQL Protocol and RDF Query
Language (SPARQL) and the Shapes Constraint Language (SHACL) are discussed. These languages are
respectively used for querying RDF graphs and defining constraints on the data graph. Lastly, the
implementation of Linked Data in the AEC industry is presented by discussing Linked Building Data (LBD)
and the different approaches for representing geometry.

Some background on the methodology is explained in chapter 4, again divided into a section on the
normative and the building data. Firstly, some methods for the processing of legislation are reviewed, after
which different strategies for the creation of machine-readable rules are discussed. Lastly, the rules will be
stored in a way that ensures full transparency to the user. For the building data, the focus lies on the
limitation of BIM authoring tools and defining what a sufficient quality of the BIM model is, to be able to
use the building data in compliance checking.

In chapter 5, the methodology of the research is discussed. The normative knowledge is first structured,
after which some additional properties on building elements are defined, to be able to define the constraints
for accessibility. A rulebook is created using the Shapes Constraint Language (SHACL). The rulebook first
defines a Model View Definition (MVD) to ensure all the necessary building data is present. The different
types of constraints are defined afterward, and the method for making a combination of those types is
explained, ensuring the different requirements can be defined in the rulebook.

A proof of concept application is proposed in chapter 6, which starts with explaining the conversion
workflow from IFC to LBD, with an intermediate step using ifcOWL. Furthermore, the interface of the tool
is shown by checking the compliance of a student project and the architecture of the application is explained
by describing the different steps of the compliance checking procedure and the used modules.

Lastly, chapter 7 starts with an evaluation of SHACL to define constraints on building data for compliance
checking. Furthermore, the proof of concept application is evaluated. Moreover, the developed methodology
is evaluated in the entirety of the building legislation, since this thesis focuses on accessibility. Lastly, the
scope of this particular research is passed, by discussing possible future work on this topic.

vi

Conclusion

The developed methodology consisted of three main decisions: using RASE to structure the normative data,
using LBD to create the building graph, and using SHACL to define the constraints. While the RASE markup
proved to be an effective way to manually structure the legislation, it is quite laborious and the efficiency is
highly dependent on sentence structures. Representing the building data in an LBD graph was successful
since this graph is easy to query and understand. Some extra properties had to be derived from the ifcOWL
graph to be able to check the compliance, but this does only prove the modular aspect of LBD. Furthermore,
SHACL constraints can easily be defined on the semantic data in an LBD graph, although further research
is needed to evaluate geometrical constraints. Moreover, the combination of an MVD to check if all the
necessary data is present in the graph and checking the compliance appears to be interesting in the context
of the Semantic Web. In short, the developed methodology can be used to check any type of prescriptive
building legislation, as long as the data is defined in the building graph.

References

Bonduel, M., Oraskari, J., Pauwels, P., Vergauwen, M., & Klein, R. (2018). The IFC to Linked Building Data
Converter - Current Status. LDAC 2018 Linked Data in Architecture and Construction: Proceedings
of the 6th Linked Data in Architecture and Construction Workshop, (pp. 34-43). London, United
Kingdom.

Inter. (2019). Evaluatieonderzoek Vlaamse toegankelijkheidsverordening.

Oraskari, J., Senthilvel, M., & Beetz, J. (2021). SHACL is for LBD what mvdXML is for IFC. Proceedings of
the Conference CIB W78, (pp. 693-702). Luxembourg.

vii

Uitgebreid abstract

Huidige situatie

Building Information Management (BIM) is in de afgelopen 10 jaar steeds meer geïmplementeerd in de
Architecture Engineering and Construction (AEC) industrie, maar wordt vaak niet ten volle benut. Hoewel
dit model zowel geometrie als extra informatie zoals niet-fysieke objecten of semantische informatie bevat
over de bouwelementen, wordt de toetsing aan de bouwnormen nog vaak manueel berekend. Deze
methode bestaat eruit om eerst de nodige data uit het model te halen, en dan apart de overeenstemming
met de wetgeving te berekenen. Dit proces kost niet enkel veel tijd, het is ook foutgevoelig. Dat dit laatste
nog steeds een aanzienlijk probleem is, is te zien in een Belgische studie door Inter (2019); van de 147
onderzochte gebouwprojecten, voldeden er slechts 9 aan de toegankelijkheidsverordening. Bovendien
blijken ook de controles door de stedenbouwkundige dienst ontoereikend, door een gebrek aan tijd of
interesse voor toegankelijkheid.

Gelukkig is er steeds meer onderzoek op het automatiseren van deze controle, door een data set van de
wetgeving te combineren met een data set van het gebouwproject.

Onderzoeksdoelen

Hoewel bestaande commerciële systemen vaak focussen op een specifiek softwarepakket, zal deze thesis
het potentieel van open Web standaarden onderzoeken, toegepast op regelcontrole in de gebouwde
omgeving. Bovendien zal het de conversieketen die nodig is om van BIM software in de industrie naar een
open systeem voor controle van wetgeving te gaan situeren. Het onderzoek zal gebruik maken van Linked
Building Data (LBD) aangezien zowel Industry Foundation Classes (IFC) als ifcOWL enkele nadelen kennen
wanneer ze gebruikt worden in de context van het Semantisch Web. De graaf van de gebouwdata zal
steunen op ontologieën als de Building Topology Ontology (BOT), de Ontology for Property Management
(OPM) en PROPS (Bonduel, Oraskari, Pauwels, Vergauwen, & Klein, 2018).

Bovendien zal dit onderzoek de bruikbaarheid van zinsstructuren in overheidsdocumenten voor de
omzetting naar machine-leesbare regels evalueren, meer specifiek de toegankelijkheidsverordening. De
regels zullen gedefinieerd worden met behulp van de Shapes Constraint Language (SHACL). Optimaal zou
deze taal ook een bijkomende Model View Definition (MVD) kunnen definiëren, om te verzekeren dat het
model van voldoende kwaliteit is en alle nodige informatie aanwezig is in de gebouwdata, waardoor ‘valse
conformiteit’ door ontbrekende data wordt voorkomen (Oraskari, Senthilvel, & Beetz, 2021). Daarnaast
moet de taal ook inference verklaringen (als…dan…) aankunnen en zou deze implementeerbaar moeten
zijn in een web-gebaseerde applicatie, waar de regels makkelijk toegankelijk en te updaten zijn. Bijkomend
zou eenzelfde set van regels zowel voor de mens als voor de machine leesbaar moeten zijn, zodat er geen
discrepantie is tussen wat er gecontroleerd wordt en wat de gebruiker denkt dat er gecontroleerd wordt.
Kortom zal SHACL geëvalueerd worden om de naleving op bouwnormen te verifiëren.

Deze onderzoeksdoelen zullen gecombineerd worden in een proof of concept applicatie.i Hierin kan een
gebruiker een LBD graaf van een bouwproject opladen, welke dan geëvalueerd wordt tegen de
gedefinieerde SHACL voorschriften. De output is een gebruikersinterface van het rapport, waarvan het
tekstuele bestand gedownload kan worden. In dit rapport is de transparantie voor de gebruiker cruciaal:
het bevat exact welk element niet voldoet aan welk voorschrift.

i De code is te vinden op https://github.com/NuytsE

https://github.com/NuytsE

viii

Bovendien bevat het ook het identificatienummer van het niet-conforme bouwelement, zodat het makkelijk
op te zoeken en te veranderen is in de modelleersoftware.

Hoewel deze thesis specifiek zal focussen op toegankelijkheid, door het uitgangspunt met de evaluatie van
Inter, zou de methode toepasbaar moeten zijn op meer soorten wetgeving, en idealiter op ze allemaal.

Overzicht

In hoofdstuk 1 wordt de huidige situatie van de naleving van bouwnormen besproken, waarin de focus
vooral ligt op de ontoereikende controles van de stedenbouwkundige dient en de fysiek ontoegankelijke
ontwerpen van architecten. Hierna wordt het onderzoeksveld van de thesis afgebakend, en de
onderzoeksdoelen en de structuur ervan besproken.

Hoofdstuk 2 is een introductie tot het concept van Automated Compliance Checking (ACC) en de twee
data sets die hierin gecombineerd worden. Aan de ene kant wordt het wetgevingsstelsel in België
beoordeeld, waaronder ook het tijdstip van de controle in een traditionele architecturale workflow. Aan de
andere kant wordt er een korte introductie tot BIM en de rol van buildingSMART in de standaardisatie van
deze processen gegeven.

Aangezien deze thesis gebruik maakt van Linked Data, wordt er een introductie tot dit onderwerp gegeven
in hoofdstuk 3. Het verstrekt een toelichting van het Resource Description Framework (RDF) en zijn
semantische uitbreidingen RDF Schema (RDFS) en de Web Ontology Language (OWL). Bovendien wordt
het SPARQL Protocol and RDF Query Language (SPARQL) en de Shapes Constraint Language (SHACL)
uitgelegd. Deze talen worden respectievelijk gebruikt voor het queryen van RDF grafen en voor het
opleggen van restricties op de graaf. Ten slotte wordt de implementatie van Linked Data in de AEC industrie
besproken, door het uitleggen van Linked Building Data (LBD) en de verschillende benaderingen om
geometrie te beschrijven.

Wat achtergrond over de methodologie wordt gegeven in hoofdstuk 4, opnieuw opgedeeld in een deel
over normatieve en gebouwdata. Eerst worden enkele methodes voor het verwerken van wetgeving
besproken, waarna verschillende strategieën voor het creëren van machine-leesbare regels worden
gegeven. Ten slotte moeten deze regels op een manier opgeslagen worden die volledige transparantie ten
opzichte van de gebruiker garandeert. Voor de gebouwdata ligt de focus op de limieten van BIM software
en het definiëren wat een voldoende kwaliteit van een BIM model is, om de gebouwdata te kunnen
gebruiken voor de controle.

In hoofdstuk 5 wordt de methodologie van het onderzoek besproken. De normatieve data wordt eerst
gestructureerd, waarna enkele aanvullende eigenschappen van bouwelementen worden gedefinieerd, om
de voorwaarden van de toegankelijkheidsverordening te kunnen definiëren. Er wordt een regelboek
gemaakt met behulp van de Shapes Constraint Language (SHACL). Dit regelboek bepaalt eerst een Model
View Definition (MVD) om er zeker van te zijn dat alle nodige gebouwdata aanwezig. De verschillende
types van regels worden hierna besproken, en ook de manier om combinaties van deze types te maken,
om alle voorschriften te kunnen bepalen.

Een proof of concept applicatie wordt voorgesteld in hoofdstuk 6, welke start met een verklaring van de
conversie van IFC naar LBD, met een tussenstap via ifcOWL. Bovendien wordt de interface van de tool
getoond door het controleren van een studentenproject en wordt de architectuur van de applicatie uitgelegd
door het beschrijven van de verschillende stappen van de procedure en de gebruikte modules.

ix

Ten slotte start hoofdstuk 7 met een evaluatie van SHACL om de voorschriften op de gebouwdata te
bepalen. Bovendien wordt de proof of concept applicatie beoordeeld. Verder wordt de ontwikkelde
methodologie geëvalueerd in het geheel van de bouwwetgeving, aangezien deze thesis focuste op
toegankelijkheid. Ten slotte wordt aan het onderzoeksveld van deze thesis voorbijgegaan, door mogelijk
verder onderzoek over dit onderwerp te bespreken.

Conclusie

De ontwikkelde methodologie bestond uit drie voorname beslissingen: het gebruik van RASE voor het
structureren van de normatieve data, het gebruik van LBD voor de gebouwdata en het gebruik van SHACL
om de voorschriften te bepalen. Hoewel de RASE markup een effectieve manier bleek om wetgeving
manueel te structureren, is het vrij arbeidsintensief en is de efficiëntie ervan sterk afhankelijk van de
zinsopbouw. Het gebruik van LBD om de gebouwdata te representeren was succesvol, aangezien deze
graaf makkelijk te queryen en te begrijpen is. Enkele extra eigenschappen werden uit ifcOWL afgeleid om
alle voorschriften te kunnen controleren, maar dit bewijst enkel het werkend modulair karakter van LBD.
Bovendien kunnen de SHACL-restricties makkelijk gedefinieerd worden op de semantische data in een LBD
graaf, hoewel verder onderzoek nodig is voor de evaluatie van geometrische eisen. Overigens is de
combinatie van een MVD om te controleren of alle nodige data aanwezig is en het controleren van de
voorschriften interessant in de context van het Semantisch Web. Kortom kan de ontwikkelde methodologie
gebruikt worden om ieder type van prescriptieve wetgeving te controleren, zolang de nodige informatie
gedefinieerd is in de gebouwdata.

Referenties

Bonduel, M., Oraskari, J., Pauwels, P., Vergauwen, M., & Klein, R. (2018). The IFC to Linked Building Data
Converter - Current Status. LDAC 2018 Linked Data in Architecture and Construction: Proceedings
of the 6th Linked Data in Architecture and Construction Workshop, (pp. 34-43). London, United
Kingdom.

Inter. (2019). Evaluatieonderzoek Vlaamse toegankelijkheidsverordening.

Oraskari, J., Senthilvel, M., & Beetz, J. (2021). SHACL is for LBD what mvdXML is for IFC. Proceedings of
the Conference CIB W78, (pp. 693-702). Luxembourg.

x

Contents

Acknowledgements i

Abstract iii

Extended abstract iv

Uitgebreid abstract vii

List of figures xii

List of abbreviations xiii

List of prefixes xiv

1 Introduction 1

1.1 CURRENT SITUATION 1

1.2 SCOPE OF THE THESIS 2

1.3 STRUCTURE OF THE THESIS 2

2 Automated Compliance Checking 4

2.1 DEFINITION 4

2.2 NORMATIVE KNOWLEDGE 4

2.3 BUILDING INFORMATION MANAGEMENT 6

2.4 EXISTING COMMERCIAL PROJECTS 7

2.5 CONCLUSION 7

3 Linked Data 8

3.1 INTRODUCTION TO LINKED DATA 8

3.1.1 Definition 8

3.1.2 Resource Description Framework 9

3.1.3 RDF Schema and Web Ontology Language 11

3.1.4 SPARQL Protocol and RDF Query Language 12

3.1.5 Shapes Constraints Language 13

3.2 LINKED DATA IN THE AEC INDUSTRY 14

3.2.1 Linked Building Data 14

3.2.2 Levels of modeling complexity 15

3.2.3 Representation of geometry 16

3.3 CONCLUSION 16

4 Preliminary research 17

4.1 INTRODUCTION 17

4.2 NORMATIVE KNOWLEDGE 17

4.2.1 Processing the normative data 17

4.2.2 Creating machine-readable rules 18

4.2.3 Storing the rules 19

4.3 BUILDING DATA 19

xi

4.3.1 Limitations of BIM authoring tools 19

4.3.2 Qualitative building model 19

4.4 CONCLUSION 20

5 Methodology 21

5.1 RASE MARK-UP ON THE LEGISLATION 21

5.2 DUMMYDATA 22

5.2.1 Dimensions of a space 22

5.2.2 Dimensions of a rampflight 23

5.2.3 Dimensions of a landing 24

5.2.4 Insertion of the data 25

5.3 RULEBOOK 26

5.3.1 Introduction 26

5.3.2 Model View Definition 27

5.3.3 Types of constraints 27

5.4 CONCLUSION 32

6 Proof of concept 33

6.1 INTRODUCTION 33

6.2 CONVERSION WORKFLOWS 33

6.3 IMPLEMENTATION 34

6.4 CONCLUSION 36

7 Evaluation and conclusion 37

7.1 EVALUATION OF SHACL FOR USE IN COMPLIANCE CHECKING 37

7.2 EVALUATION OF THE IMPLEMENTATION 37

7.3 EVALUATION IN THE ENTIRETY OF THE BUILDING LEGISLATION 38

7.4 FUTURE WORK 38

7.5 CONCLUSION 38

Bibliography 39

Appendix A: RASE mark-up on the regulation on accessibility 42

Appendix B: rulebook.ttl 49

xii

List of figures
Figure 1 - Only 44 out of 147 projects were classified correctly, and only 9 were designed complying to
the building code on accessibility (Inter, 2019) 1
Figure 2 - Concept of Automated Compliance Checking 4
Figure 3 - Positioning of turning circles in relation to a door, following article 24 4
Figure 4 - The MacLeamy curve describes the opposite course of the ability to make changes and their
respective cost (Pauwels & Petrova, 2020) 5
Figure 5 - The Bew-Richards maturity model defines four levels (Pauwels & Petrova, 2020) 6
Figure 6 - Five-star open data scheme (https://5stardata.info/en (last accessed 05/04/2022)) 8
Figure 7 - An Internationalized Resource Identifier (IRI) consists of a scheme, host, path, and fragment 9
Figure 8 - Triple defining that a 'door' has a 'width' property 9
Figure 9 - Turtle syntax defining a wall, a window, and a door 10
Figure 10 - RDF graph defining a wall, a window, and a door 10
Figure 11 - Use of rdfs:domain and rdfs:range 11
Figure 12 - ABOX instances are defined using TBOX concepts 12
Figure 13 - SPARQL query to retrieve all doors with their respective width and height 12
Figure 14 - Excerpt of the result of the SPARQL query 13
Figure 15 - Shapes graph defining that all doors should have exactly one value as a height 14
Figure 16 - Definition of instances and their relations in BOT (Rasmussen, et al., 2020) 15
Figure 17 - Three levels of modeling complexity 15
Figure 18 - Overview of approaches for representing building geometry (Wagner, et al., 2020) 16
Figure 19 - Manual RASE mark-up on building legislation (Hjelseth & Nisbet, 2011) 17
Figure 20 - Black- and White-Box storage (Preidel & Borrmann, 2015) 19
Figure 21 - Evaluating the data graph against the shapes graph leads to a validation report 20
Figure 22 - Table of requirements for a manually operated door 21
Figure 23 - Definition of the dimensions of a rectangular space in ifcOWL 22
Figure 24 - Definition of a rampflight in ifcOWL 23
Figure 25 - Graphical representation of a rampflight, as defined in ifcOWL 24
Figure 26 - Definition of a slab in ifcOWL 24
Figure 27 - SPARQL insert query to complete the slab data 25
Figure 28 - Example definition of a door using LBD 26
Figure 29 - Shape defining that each space should have exactly one height property 27
Figure 30 - Example of a value constraint 28
Figure 31 - The requirements based on value constraints 28
Figure 32 - Example of a relational constraint 29
Figure 33 - Example of a mathematical constraint 30
Figure 34 - Excerpt of the slope definition, defining that a ramp with a slope of less than 10% needs to
conform to the SlopeConstraint too 31
Figure 35 - Structure of logical constraint components 31
Figure 36 - The requirements based on a combination of constraints 32
Figure 37 - The conversion workflow from IFC to LBD, reworked from (Bonduel, et al., 2018) 33
Figure 38 - Render of the student project 34
Figure 39 - User Interface of the upload page 34
Figure 40 - User Interface of the non-conforming validation report 35
Figure 41 - User Interface of the conforming validation report 35

xiii

List of abbreviations
ACC Automated Compliance Checking
AEC Architecture, Engineering, and Construction
AI Artificial Intelligence
ASCII American Standard Code for Information Interchange
BBRI Belgian Building Research Institute
BCM Building Compliance Model
BEO Building Element Ontology
BIM Building Information Management
BOT Building Topology Ontology
CAD Computer-Aided Design
CG Community Group
CNL Controlled Natural Language
CSV Comma-Separated Values
CWA Closed World Assumption
DRL Drools Rule Language
ER Exchange Requirements
FOG File Ontology for Geometry
GUID Globally Unique Identifier
HTTP HyperText Transfer Protocol
IDM Information Delivery Manual
IFC Industry Foundation Classes
IRI Internationalized Resource Identifier
JSON JavaScript Object Notation
JSON-LD JavaScript Object Notation for Linked Data
LBD Linked Building Data
MVD Model View Definition
NLP Natural Language Processing
OMG Ontology for Managing Geometry
OPM Ontology for Property Management
OWA Open World Assumption
OWL Web Ontology Language
RASE Requirement Applicability Selection Exception
RDF Resource Description Framework
RDFa Resource Description Framework in Attributes
RDFS Resource Description Framework Schema
RIBA Royal Institute of British Architects
SHACL Shapes Constraint Language
ShEx Shape Expressions
SPARQL SPARQL Query Language for RDF
SWRL Semantic Web Rule Language
Turtle Terse RDF Triple Language
UD Universal Design
UI User Interface
UNA Unique Name Assumption
URI Universal Resource Identifier
URL Uniform Resource Locators
W3C World Wide Web Consortium
XML eXtensible Markup Language
XSD XML Schema Definition

xiv

List of prefixes
@prefix beo: < https://pi.pauwel.be/voc/buildingelement# > .
@prefix bot: < https://w3id.org/bot# > .
@prefix inst: < http://example.org/ > .
@prefix omg: < https://w3id.org/omg# > .
@prefix opm: < https://w3id.org/opm# > .
@prefix owl: < http://www.w3.org/2002/07/owl# > .
@prefix props: < https://w3id.org/props# > .
@prefix rdf: < http://www.w3.org/1999/02/22-rdf-syntax-ns# > .
@prefix rdfs: < http://www.w3.org/2000/01/rdf-schema# > .
@prefix schema: < http://schema.org/ > .
@prefix sh: < http://www.w3.org/ns/shacl#> .
@prefix xsd: < http://www.w3.org/2001/XMLSchema# > .

https://pi.pauwel.be/voc/buildingelement
https://w3id.org/bot
http://example.org/
https://w3id.org/omg
https://w3id.org/opm
http://www.w3.org/2002/07/owl
https://w3id.org/props
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://schema.org/
http://www.w3.org/ns/shacl
http://www.w3.org/2001/XMLSchema

1

1 Introduction

1.1 Current situation

Nowadays, both designers and people in the urban planning department spend a lot of time checking if
building projects comply with national standards. Automatization of this process will make sure that
architects can work more efficiently on their designs but will also decrease the risk of inadequate checking
procedures in the urban planning department.

A Belgian study from 2019 shows that the latter is still a point of improvement in Belgium: out of 147
reviewed building permits, only 44 were classified correctly regarding accessibility. However, only 9 of those
designs fully satisfied the requirements, meaning only 6% of the inspected public buildings would be
accessible in theory. Even more striking is that out of those 147 designs, none actually complied with the
building code on accessibility after the execution of the building (Inter, 2019).

Figure 1 - Only 44 out of 147 projects were classified correctly,
and only 9 were designed complying to the building code on accessibility (Inter, 2019)

The questioned architects indicate they do know the national standard on accessibility and only 1.02%
answer they find it unnecessary to design an accessible project. This does however not relate to the 147
inaccessible building projects. This may be because an inclusive design is often seen as a burden, since
hallways and doors need to be wider, and slopes can take up quite some space if not integrated properly.
Hence why incorporating immediate feedback into the design process would be an improvement.

These remarkable percentages are also noticed by Belgian politicians, who specify three strategies for
handling the problem: educating architects, educating officials in the urban planning department, and
incorporating mandatory advice from an independent organization like Inter (Vaes, Votquenne, Baert, &
Arnoudt, 2022). However, automating (a part) of the compliance checking process would also lead to
fewer mistakes and a better understanding of the regulation.

Creating an accessible built environment is not only crucial for people who make use of a wheelchair
permanently. Every one of us will come to a point in our lives where we make use of a wheelchair or rollator,
take a buggy with us, or have other mobility issues.

2

1.2 Scope of the thesis

Building Information Management1 (BIM) has widely been implemented in the Architecture Engineering
and Construction (AEC) industry in the last decade but is often not used to its full extent. While this model
contains both the geometry and extra information like non-physical objects or semantic information about
the building elements, compliance with the building code is still often manually calculated. This procedure
involves retrieving the needed information from the model and then separately calculating the compliance.
Not only the calculation is error-prone, but mistakes can even be made in the copying of the needed values.
This process can be made more efficient, with the aid of Automated Compliance Checking (ACC). While
existing commercial systems often focus on one specific software package, this research will investigate
the potential of open Web standards, applied to rule checking in the built environment. Moreover, it will
situate the conversion chain required to move from current BIM tools, used in the industry towards an open
system for compliance checking. The research will use the Linked Building Data (LBD) data model since
both Industry Foundation Classes (IFC) and ifcOWL have some weaknesses when used in the context of
the Semantic Web. Furthermore, the research will seek a Semantic Web technology that can check
compliance. Ideally, this language also incorporates some form of additional Model View Definition (MVD),
to ensure the model is of enough quality, and all the needed information is present in the building graph,
thus preventing some form of ‘false compliance’ due to missing building data. Moreover, the language
should be able to handle inference statements (if…then…) and should be implementable in a web-based
tool, where the rules are easy to access and update. Additionally, the set of rules should be both human-
and machine-readable, meaning there is no discrepancy between what is checked, and what the user thinks
is being checked.

While this specific thesis will focus on accessibility, due to the starting point with the evaluation of Inter, the
method should be applicable to more kinds of building code, and ideally all of them.

Apart from the defined objectives, the four key requirements of a language for automated code checking
as defined by Greenwood, Lockley, Malsane & Matthews (2010) can be used to evaluate the suitability:

- The computer programmed rules must be easily understood by the regulation authors;
- The lifecycle of the rule base must be independent of software and schema updates;
- All development must comply with Open Standards;
- Consideration must be given to the industry processes of model authoring.

1.3 Structure of the thesis

Chapter 2 is an introduction to the concept of ACC and the two data sources it combines. On one hand,
the legislative system in Belgium is reviewed, including the timing of compliance checking in a traditional
architectural workflow. On the other hand, a brief introduction to BIM is given, and the role of
buildingSMART in the standardization of these processes.

Since this thesis uses Linked Data, an introduction to this topic is given in chapter 3. Lastly, the
implementation of Linked Data in the AEC industry is presented.

Some background on the methodology is explained in chapter 4, again divided into a section on the
normative and the building data. Firstly, some methods for the processing of legislation are reviewed, after
which different strategies for the creation of machine-readable rules are discussed. Lastly, the rules will be
stored in a way that ensures full transparency to the user. For the building data, the focus lies on the
limitation of BIM authoring tools and defining what a sufficient quality of the BIM model is.

1 ‘BIM’ is an ambiguous term: some use it as Building Information Model (a product), while others define it as Building
Information Management (a process). In this thesis, the latter definition will be used, since the process of handling
information is more relevant in this context.

3

In chapter 5, the methodology of the research is discussed. The normative knowledge is first structured,
after which a rulebook using the Shapes Constraint Language (SHACL) is created, by defining different
types of constraints and explaining how a combination of those constraints can be made.

A proof of concept application is proposed in chapter 6, starting with the conversion workflow from IFC to
LBD. The architecture of the web-based tool is explained, along with a demonstration using a student
project.

Lastly, chapter 7 starts with an evaluation of SHACL to define constraints on building data for compliance
checking. Furthermore, the implementation and its positioning in the entirety of the building legislation are
discussed. Lastly, the scope of this particular thesis is passed, by discussing possible future work on this
topic.

4

2 Automated Compliance Checking

2.1 Definition

The AEC industry has gradually evolved from using 2D Computer-Aided Design (CAD) visualization
techniques to implementing BIM models. Even though this kind of model centrally stores all the available
building information, the checking of compliance against the national building code is still mostly done
manually by both architects and people of the urban planning department. This is an error-prone and time-
consuming process, which can be automated using ACC. To do this, a data set of the normative data
originating from the building legislation and the building data have to be linked.

Figure 2 - Concept of Automated Compliance Checking

2.2 Normative knowledge

Building legislation consists of many different parts, to ensure a safe and coherent built environment. There
are written regulations for energy efficiency, fire safety, accessibility… But all of them have one thing in
common: the legislation is written in a human-readable format, and seldom in a machine-readable way.

However, even in the legislation written for humans, there should be a differentiation between readable and
understandable. The ‘Evaluatieonderzoek Vlaamse Toegankelijkheidsverordening’ (Inter, 2019)
investigated the ease of understanding and implementation of the Belgian legislation on accessibility, with
a survey for architects and people in the urban planning department. This yielded some remarkable results:
60% of the urban planners declare that their knowledge about the legislation is mediocre to bad, and only
47% deem the norms on accessibility clear. Moreover, only 32% of the questioned architects think it is
(very) simple to design an accessible building.

This also leads to inadequate checking procedures in the urban planning department: 28% admits only
looking at specific files. And out of the files that were checked, 24% indicate they only check if a note on
accessibility was added (so not checking the contents) or skims over it rather quickly.

The difficulty to apply the legislation is not due to complex juridical
jargon since the building legislation is specifically written for architects
with minimal legal knowledge. This is however a problem in for
example tax law, as Curtotti & McCreath (2013) describes. The
problem with the building legislation on accessibility stems from
complex descriptions, which are never accompanied by a figure. An
excellent example can be found in (the translated) article 24 of the
regulation on accessibility:

For manually operated doors, the outer edge of the free and level
turning area on the pull side of the door must touch the door’s
turning plane, and the outer edge of the free and level turning area
on the push side of the door must touch the closed-door plane.

A simple figure would immediately improve the understanding of this complex sentence.

Figure 3 - Positioning of turning circles in
relation to a door, following article 24

5

There are ongoing projects to rewrite the Belgian legislation on accessibility, focussing on three key
principles: integral accessibility, the chain of accessibility, and Universal Design (UD). Integral accessibility
implies that the legislation should focus on more than just physical accessibility, a building should be easy
to navigate for all visitors. The chain of accessibility means that every building element should comply since
this chain is as strong as its weakest link. Lastly, Universal Design evaluates the specific needs of every
user, meaning no additional aids are needed for specific audiences. Moreover, accessibility goes further
than the built environment; also, websites, apps, and documents should be accessible, by including
psychosocial, informative, and communicative aspects (Vande Reyde, et al., 2020).

This concept of integral accessibility is not only important for the psychological well-being of users but also
for their safety since there is a discrepancy between the legislation on fire safety and accessibility in Belgium.
The minimal door width for evacuation is only 80 cm (Royal Decree of December 7, 2016), while the door
width should be at least 90 cm to ensure accessibility. Creating a non-integral accessible building could
thus mean that the designer only creates one entrance of 90 cm, but dozens of scenarios could be imagined
where that door cannot be used in case of an emergency.

Apart from some pre-checks, the building only gets thoroughly checked at the moment of the building
permit, a tool for compliance checking would thus mean fewer changes after most of the design is already
completed. The ability to check the compliance earlier on in the design process would mean a smaller cost
of the design changes, while the effect of the changes on the design is minimal, as shown in Figure 4. This
concept is easily illustrated with the proper integration of a ramp, which is quite easy when drawn early on
in the design process, but always takes up too much space in an almost-completed design.

Figure 4 - The MacLeamy curve describes the opposite course
of the ability to make changes and their respective cost (Pauwels & Petrova, 2020)

Furthermore, the building legislation often gets updated, due to new technological innovations or research.
For example, the mentioned Royal Decree on fire safety is revised every 3,5 years on average. This means
that it is difficult for architects to keep up with every update of every building code.

6

2.3 Building Information Management

The use of BIM models has drastically increased over the last decade since it not only provides a 3D
visualization of the architects’ vision but also includes all the building information. This approach ensures a
better collaboration through the coordination of information, an accurate simulation with accurate
information, and less reworking, remodeling, and manual data input.

buildingSMART differentiates between two kinds of BIM: open BIM and closed BIM. The latter means that
native file formats are exchanged, meaning the visibility of the building information is dependent on the
chosen software license of one of the stakeholders. When implementing open BIM, all the stakeholders can
view the building information, since open and neutral file formats like Industry Foundation Classes (IFC)
are used in the information exchange. buildingSMART thus defines open BIM as ‘a universal approach to
the collaborative design, realization, and operation of buildings based on open standards and workflows’.2

Apart from the IFC standard for data, buildingSMART also defines standards for processes, for which the
Information Delivery Manual (IDM) is used. It defines what information is required during collaboration and
when it needs to be exchanged, by defining Exchange Requirements (ER). To ensure these can be fulfilled,
the software requirements are specified in the Model View Definition (MVD) (Pauwels & Petrova, 2020).

The evolution of the implementation of BIM is shown in Figure 5, defining four levels numbered from zero
to three. Level 0 is seen as the mere beginning of BIM. Level 1 is already a big step further in terms of
digitalization; 3D software is used for visualizations and as a central storage point for information regarding
performance and materials. However, this level indicates a form of ‘Lonely BIM’, meaning the model is not
used collaboratively between stakeholders. Level 2 is often targeted, to ensure an efficient and thorough
information exchange between team members. Level 3 (the last level) is described by RIBA (Royal Institute
of British Architects) as ‘the holy grail’ since it uses a purely web-based and data-based approach (2012).

Figure 5 - The Bew-Richards maturity model defines four levels (Pauwels & Petrova, 2020)

2 https://www.buildingsmart.org/about/openbim (last accessed 05/04/2022)

https://www.buildingsmart.org/about/openbim

7

2.4 Existing commercial projects

There is ongoing research on Automated Compliance Checking, but publicly available tools mostly have two
downsides: they either use some form of hard-coded requirements or they use native file formats, thus
enabling closed BIM (Dimyadi & Amor, 2013).

The use of hard-coded requirements is not desired since it takes a long time to manually code all the
different constraints. Experience in New Zealand has shown it takes an expert one full day of coding to
translate only one page of written building code, making this process time-consuming and not cost-efficient
(Amor & Dimyadi, 2021). Moreover, when the building legislation is updated, all those requirements have
to get updated manually. This process is almost as error-prone and time-consuming for the developer, as
it is to manually check the building code by the designer.

Secondly, the use of closed BIM means only people with the targeted software package can make use of
the tool. This method thus excludes designers based on their used software, also meaning that the
developers put a lot of time and effort into a tool that cannot be used globally.

Some examples of existing ACC tools that use either hard-coded requirements or focus on one specific
software package are Autodesk model checker, Xinaps, Upcodes AI, and SMART review (Beach, Hippolyte,
& Rezgui, 2020).

2.5 Conclusion

The aforementioned points confirm the need for a methodology for ACC, with the aim to give architects
feedback on their design in each phase of the building project. The methodology will focus on using open
BIM for the building information, meaning the proposed method can be used regardless of the software
package used by the designers. For the building legislation, some form of data structuring and storage will
be used. This way, the applied constraints can be easily updated to the most recent versions of the building
code.

8

3 Linked Data

3.1 Introduction to Linked Data

To be able to provide a vendor-neutral method for compliance checking, using a normative dataset, this
thesis will make use of Linked Data. This chapter will provide a brief introduction to key concepts like RDF
(3.1.2), RDFS and OWL (3.1.3), SPARQL (3.1.4), and SHACL (3.1.5).

This chapter will however not provide a complete overview of all concepts of Linked Data and the Semantic
Web. It will merely discuss and explain the concepts needed for application in compliance checking. The
main information comes from The Web of Data (Hogan, 2020) and the website of the World Wide Web
Consortium (W3C). When relevant, the web pages are included in a footnote.

3.1.1 Definition

In 1990, Tim Berners-Lee intended the use of the World Wide Web (from now on: the Web) as one central
data storage point for use in CERN. But the Web evolved from a static and informative Web 1.0 to an
interactive experience, denoted as Web 2.0. While this version of the Web mainly focussed on human user
experience, a new development has taken place with Web 3.0. This most recent version entails an
integrated web experience where machines can understand data in a similar way as humans (Rudman &
Bruwer, 2016). The scope of this web is to enable computers to efficiently do more useful work and to
develop systems that can support trusted interactions over the network.3

This Web 3.0 is often called the Semantic Web, of which the concept of Linked Data lies at the base. The
W3C defines Linked Data as ‘the collection of interrelated datasets on the Web’, which is used for large-
scale integration of, and reasoning on, data on the Web.4 This is achieved by using Uniform Resource
Identifiers (URI) to name data. By using Hypertext Transfer Protocol (HTTP) URIs, people can then look
up this data, and useful information about the data is provided using the W3C standards.5 A crucial concept
is that the data includes links to other URIs so that everything on the Web is linked, as described by Tim
Berner-Lee in the five-star open data scheme.

1★ make your stuff available on the Web (whatever
format) under an open license

2★ make it available as structured data (e.g. Excel
instead of an image scan of a table)

3★ make it available in a non-proprietary open
format (e.g. CSV instead of Excel)

4★ use URIs to denote things, so that people can
point at your stuff

5★ link your data to other data to provide context

Figure 6 - Five-star open data scheme (https://5stardata.info/en (last accessed 05/04/2022))

3 https://www.w3.org/standards/semanticweb/ (last accessed 05/04/2022)
4 https://www.w3.org/standards/semanticweb/data (last accessed 05/04/2022)
5 https://www.w3.org/DesignIssues/LinkedData.html (last accessed 05/04/2022)

https://5stardata.info/en
https://www.w3.org/standards/semanticweb/
https://www.w3.org/standards/semanticweb/data
https://www.w3.org/DesignIssues/LinkedData.html

9

3.1.2 Resource Description Framework

3.1.2.1 Definition

To achieve full interoperability, the machine-readable description is standardized in the Resource
Description Framework (RDF). The implementation of one standard data format has the benefit of not
having to convert heterogeneous file formats, like CSV, XML, or JSON. This graph-structured data model
was designed with the Semantic Web in mind, making it the foundation of the web.6

3.1.2.2 RDF terms

RDF terms are used to refer to the resources that RDFs describe, existing out of Internationalized Resource
Identifiers (IRIs), literals, and blank nodes.

IRIs are used to identify generic resources, whereas Uniform Resource Locators (URLs) can only be used
to identify and denote the location of documents. RDF terms were first based on URIs, but since these only
allow a subset of American Standard Code for Information Interchange (ASCII) characters, IRIs were
implemented.

Figure 7 - An Internationalized Resource Identifier (IRI) consists of a scheme, host, path, and fragment

It is important to note that RDF allows multiple IRIs to refer to the same source; it does not enforce a
Unique Name Assumption (UNA). However, if RDF only consisted of IRIs, it would not contain human-
readable information like titles, descriptions, dates, etc. For this reason, literals were implemented.

Since identifying a resource with globally unique IRIs or literals can be restrictive, unknown values can be
represented by blank nodes.

3.1.2.3 Triples

While RDF terms identify resources, RDF triples are used to describe resources; to make statements about
them. Triples are constructed in the same way as one of the simplest forms of sentence structure in the
natural language: subject-verb-object sentences. Moreover, the verb can be generalized as a predicate. A
triple is graphically represented with an arrow, from the subject to the object and is considered as the core
unit of RDF.

Figure 8 - Triple defining that a 'door' has a 'width' property

Each position in the triple is occupied with a single RDF term, where IRIs can appear in any position, literals
can only appear as objects, and blank nodes can only appear in the subject or object position.7

6 https://www.w3.org/TR/rdf11-concepts/ (last accessed 20/03/2022)
7 Since the Semantic Web focusses on internationally available data, using language tags is recommended. However,
for this thesis, they will be omitted since no other languages than English are used. After every literal, there thus
should be an ‘@en’ language tag for completeness.

https://www.w3.org/TR/rdf11-concepts/
https://pi.pauwel.be/voc/buildingelement#Door

10

3.1.2.4 RDF syntaxes

To be able to write down RDF in files for storage, parsing, and processing purposes, RDF graph syntaxes
are needed. Some examples of those syntaxes include RDF/XML, N-triples, Turtle, RDFa, and JSON-LD.

While The Terse RDF Triple Language (Turtle) is not the quickest to parse out of these syntaxes, it is the
most human-friendly and concise. It allows users to write down RDF graphs in a compact and natural text
form, with some abbreviations for common usage patterns.

Some examples of this more concise form of writing include that the IRI <http://www.w3.org/1999/02/22-
rdf-syntax-ns#type> is denoted with an ‘a’ in the predicate position, that predicate lists can be defined
by a separation with a semicolon, and that object lists can be defined by a separation with a comma.8

Another perk of this syntax is the introduction of prefixes, to be able to shorten a reoccurring part of an IRI.
The used prefixes in this thesis can be found in the List of prefixes, and will not be repeated in the figures.

inst:wall_1
 a beo:Wall , bot:Element ;
 bot:hostsElement inst:door_2, inst:window_1 .

inst:door_2
 a beo:Door , bot:Element ;
 props:width "0.90"^^xsd:double .
 props:height "2.10"^^xsd:double .

inst:window_1
 a beo:Window , bot:Element ;
 props:width "1.10"^^xsd:double .
 props:height "0.90"^^xsd:double .

Figure 9 - Turtle syntax defining a wall, a window, and a door

3.1.2.5 RDF Graphs

The core unit in RDF is a triple, where a set of triples is then defined as an RDF graph. An RDF graph is
thus by definition unordered and unindexed. The main perk is that the data is now displayed graph-
structured, meaning it is a generic and flexible data model. New edges can thus be defined from any node
to any other node with any edge.

Figure 10 - RDF graph defining a wall, a window, and a door

8 https://www.w3.org/TR/turtle/ (last accessed 20/03/2022)

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
https://www.w3.org/TR/turtle/

11

Properties (denoted with lowercase) are relationships that hold between pairs of resources, often used in
the predicate position. Classes (denoted with uppercase) on the other hand, are groups of resources with
some conceptual similarities; they group resources of the same type.

RDF makes it possible to merge multiple datasets in one, which is difficult to achieve with for example a
CSV file. The ability to merge is important for this context since therefore RDF is considered to be the
foundation of the Semantic Web.

3.1.3 RDF Schema and Web Ontology Language

Some semantic extensions for RDF were proposed, to define relations between terms in the vocabulary or
to define patterns that capture common-sense knowledge.

Two main standards for defining semantics over RDF data are the RDF Schema (RDFS) and the Web
Ontology Language (OWL).

3.1.3.1 RDF Schema

RDFS is a lightweight semantic extension of the RDF vocabulary, providing ways to describe groups of
related resources and the relationships between them.

The RDFS vocabulary defines dozens of relationships between resources, but the three key instances for
defining relationships between classes are rdfs:subClassOf, rdfs:domain, and rdfs:range.

For defining a relation between different classes, rdfs:subClassOf is used. For example, the Building
Element Ontology (BEO) defines a ‘Quarter Turn Stair’ as a subclass of the class ‘Stair’.9 These subclasses
allow a further specification of the superclass, making an instance of a subclass always an instance of the
corresponding superclass (but not the other way around).

To state that the values of a property are instances of a class, rdfs:range is used. While rdfs:domain is
used to state that a resource that has a property, is an instance of a class.10

Figure 11 - Use of rdfs:domain and rdfs:range

3.1.3.2 Web Ontology Language

While RDFS suffices for simple deductions, more complex definitions are supported by OWL. It aims to
extend the core of the RDFS vocabulary with a wide range of new and well-defined terms, allowing to
define more in a machine-readable way.11 OWL can be used to define cardinality or type restrictions, and
class expressions. RDF graphs constructed with OWL concepts are called OWL ontologies (Pauwels, Zhang,
& Lee, 2017).

9 https://pi.pauwel.be/voc/buildingelement/index-en.html (last accessed 07/04/2022)
10 https://www.w3.org/TR/rdf-schema/ (last accessed 05/04/2022)
11 https://www.w3.org/TR/owl-ref/ (last accessed 07/04/2022)

https://pi.pauwel.be/voc/buildingelement/index-en.html
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl-ref/

12

3.1.3.3 TBOX and ABOX

When talking about ontologies, a difference is made between the concepts and the instances. The concept
of the ontology layer is called TBOX (Terminological), while ABOX (Assertion) is used to define instances
of TBOX concepts. As shown in Figure 12, all the ABOX instances in this thesis will be denoted with an
underscore and a (random) instance number after the name of the instance.

Figure 12 - ABOX instances are defined using TBOX concepts

3.1.4 SPARQL Protocol and RDF Query Language

Since machines struggle to interpret complex questions posed in the natural language, queries allow users
to express questions in a machine-readable format. W3C recommends the SPARQL Protocol and RDF
Query Language (SPARQL) in the context of the Semantic Web.

SPARQL allows defining the subject, predicate, or object of a triple as a variable. SPARQL also supports the
use of prefixes, meaning the same notation as in the triples can be used. The result of a query is a solution
sequence, meaning that there may be zero, one, or multiple results.

SPARQL supports four query forms: SELECT, CONSTRUCT, ASK and DESCRIBE. A SELECT query returns the
variables and their bindings directly, while a CONSTRUCT query returns an RDF graph of the variables. An ASK
query is used to test whether a query pattern has a solution or not, and a DESCRIBE query will result in an
RDF graph containing RDF data about the resources. SPARQL also allows the use of a FILTER in a query
pattern, to indicate a constraint on the solutions.12

In Figure 13, an example of a SELECT query is shown. Due to the structure of the queried graph, which will
be explained in section 3.2.2, there are additional variables (like ?doorwidth and ?doorheight) needed.
However, these are not returned in the query result shown in Figure 14, since they are not among the
selected variables.

SELECT ?door ?overallWidthIfcDoor ?overallHeightIfcDoor
WHERE {
?door rdf:type beo:Door .
?door props:overallWidthIfcDoor ?doorwidth .
?doorwidth schema:value ?overallWidthIfcDoor .
?door props:overallHeightIfcDoor ?doorheight .
?doorheight schema:value ?overallHeightIfcDoor .
}

Figure 13 - SPARQL query to retrieve all doors with their respective width and height

12 https://www.w3.org/TR/sparql11-query/ (last accessed 21/03/2022)

https://www.w3.org/TR/sparql11-query/

13

The example query results in a table of the requested variables and their bindings since a SELECT query
form was used to retrieve all doors with their corresponding width and height property.

door overallWidthIfcDoor overallHeightIfcDoor
inst:door_76b 0.813 2.420
inst:door_b4f 0.762 2.032
inst:door_6b8 1.250 2.010
inst:door_761 0.813 2.420

Figure 14 - Excerpt of the result of the SPARQL query

Moreover, SPARQL cannot only retrieve defined data in the graph but can also update it. This can be done
by using an INSERT, DELETE, LOAD, or CLEAR query.13

3.1.5 Shapes Constraints Language

While the Semantic Web first started as a place where every resource could be linked to an optional number
of other resources, known as an Open World Assumption (OWA), the need for data validation quickly arose.
Especially when using Semantic Web standards in rule checking since a graph can never be considered
complete. Since RDFS and OWL cannot enforce ‘needed’ elements of a graph, the Shapes Constraints
Language (SHACL) was recommended by the W3C as of 2017. It is one of the few Semantic Web
technologies that actually involves a Closed World Assumption (CWA) (Knublauch, 2017).

SHACL is a language for validating RDF graphs against a set of conditions. SHACL has two dialects: SHACL-
Core and SHACL-SPARQL. The Core provides a vocabulary for defining constraints in a high-level declarative
manner, while SHACL-SPARQL extends this first dialect to allow the use of queries to specify additional
constraints.

The SHACL standard distinguishes two classes of an RDF graph: the data graph (the RDF graph to be
validated) and the shapes graph (the RDF graph describing the validation constraints). Two types of shapes
can be defined in a shapes graph: a sh:NodeShape and a sh:PropertyShape. The NodeShape targets nodes
in the data graph and defines constraints directly on the node at its targets, while a PropertyShape defines
constraints on each targeted node, reachable from it via a specified path.

SHACL allows declaring three types of severities when creating the shapes graph: sh:Info, sh:Warning,
and sh:Violation. For every shape, sh:Violation is the default if sh:severity is unspecified. Defining
the severities ensures a nuanced and fully human-readable validation report as the result of the validation
process.14

schema:DoorShape
 // apply the shape to a focus node
 a sh:NodeShape ;
 // target all nodes with class ‘Door’
 sh:targetClass beo:Door ;
 // target a property of each ‘Door’
 sh:property [
 // target the height predicate
 sh:path props:overallHeightIfcDoor ;
 // each ‘Door’ should have at least one height property
 sh:minCount 1 ;

13 https://www.w3.org/TR/sparql11-update/ (last accessed 10/05/2022)
14 https://www.w3.org/TR/shacl/ (last accessed 08/05/2022)

https://www.w3.org/TR/sparql11-update/
https://www.w3.org/TR/shacl/

14

 // each ‘Door’ should have at most one height property
 sh:maxCount 1 ;
 // if not, return the violation message
 sh:message “Each door should have exactly one height property.” ;
] .

Figure 15 - Shapes graph defining that all doors should have exactly one value as a height

The SHACL-SPARQL language, an extension of SHACL-Core, allows expressing restrictions, based on a
SELECT query. The language also allows defining constraint components, to declare high-level reusable
components.

SHACL also supports some Advanced Features to extend both SHACL-Core and SHACL-SPARQL. They
allow defining custom targets, annotation properties, SHACL functions, node expressions, expression
constraints, and SHACL rules.15

Another option for data validation besides SHACL is the Shape Expressions (ShEx) language. However, for
the purpose of compliance checking, SHACL is the more fitting option. Since SHACL allows Scopes, Filters,
and constraints, offers mechanisms for inference and is defined as an RDF vocabulary, of which the
importance will be explained in section 4.2.2 (Labra Gayo, Prud'hommeaux, Solbrig, & Boneva, 2016).
However, ShEx supports recursion, meaning it is possible to define and validate cyclic data structures. There
is ongoing research on this subject, creating ‘core constraint components’ on which recursive constraints
can be applied (Corman, Reutter, & Savkovic, 2018).

3.2 Linked Data in the AEC industry

3.2.1 Linked Building Data

The brief introduction to BIM in section 2.3 of this thesis, concluded with the open and neutral file-format
IFC as the ‘Holy Grail’ of file formats. However, this filetype has some downsides when used in the context
of the Semantic Web: (1) the used EXPRESS and XSD languages lack methods for defining formal
semantics, making it difficult for reasoning and querying purposes, (2) it is complex to link the building
data stored in an IFC file to related data on the web and (3) the IFC schema is large and rather complex,
making it a challenge to implement it correctly (Bonduel, Oraskari, Pauwels, Vergauwen, & Klein, 2018).

For this reason, some new methods were developed with the Semantic Web in mind, like ifcOWL and
Linked Building Data (LBD). ifcOWL was developed as an ontology lying close to the original IFC schema
but made available in OWL. However, since this ontology lies so close to the original schema and contains
so much information, it has some negative consequences: many of the EXPRESS-specific semantic
constructs are maintained and result in complex and counterintuitive constructs in OWL and RDF, and the
ABOX graphs are at least as complex and large as the original IFC model (Pauwels & Roxin, 2016). Since
the AEC industry needed a simplified method for handling IFC models, LBD was introduced. For this, the
IFC file is first converted to ifcOWL, after which the ifcOWL classes are mapped to the related Building
Topology Ontology (BOT) classes. By taking this intermediate conversion step, it becomes possible for the
convertor to query the RDF patterns directly. As a case study, the duplex house (distributed by
buildingSMART) was converted to both ifcOWL and LBD, to quantify the difference between the two graphs.
The comparison reveals that the LBD graph contains 83% fewer triples than the ifcOWL ABOX graph,
confirming that the latter is more difficult to query and less human-readable since it contains so much
information and provides less overview. Moreover, IFC attributes are defined by specific property paths in
LBD, making it easier to query and validate (Bonduel, et al., 2018).

15 https://www.w3.org/TR/shacl-af/ (last accessed 20/04/2022)

https://www.w3.org/TR/shacl-af/

15

The LBD Community Group (CG) of the W3C developed the lightweight and extensible BOT ontology,
providing a high-level description of buildings including stories and spaces, building elements, and a 3D
mesh geometry of these spaces and elements. The scope of BOT is to explicitly define necessary
relationships between the sub-components of a building (Rasmussen, Lefrançois, Schneider, & Pauwels,
2020).

Figure 16 - Definition of instances and their relations in BOT (Rasmussen, et al., 2020)

3.2.2 Levels of modeling complexity

The LBD CG proposes three levels of modeling complexity for properties, which are used in ontologies such
as PROPS and OPM (Rasmussen, Lefrançois, Bonduel, Hviid, & Karlshoj, 2018). The first is used for
assigning properties to building elements, while the second is used for the management of these properties.

An overview of these complexities is given in Figure 17. The first level uses one triple to link the building
element and the property value, while the second level defines a property, and then assigns the value in a
separate triple. The third level uses a property and an evaluation, after which the property value is assigned
(Bonduel, et al., 2018). The third level is often used for assigning metadata, or the change of properties
during the design process. Since this is less important for this implementation, this thesis will make use of
Level 2.

Figure 17 - Three levels of modeling complexity

16

3.2.3 Representation of geometry

The exchange of modular building data instead of a file-based exchange would allow a more flexible
workflow. For this, geometric and non-geometric data sets would have to be linked. Wagner, Bonduel,
Pauwels & Rüppel (2020) define four approaches for representing building geometry in a Semantic Web
context. The approaches differentiate in three parts of the geometry description: how the geometry is
referred to (linking), how the geometry is stored (storage), and whether the content is structured using
Semantic Web specifications or not (content).

 linking storage content

Approach 1:
RDF-based geometry

descriptions
Semantic Web technologies

Approach 2:
JSON-LD for Web

Geometry

Semantic Web
technologies

Semantic Web & JSON technologies

Approach 3:
Non-RDF geometry as

RDF literals
Semantic Web technologies other technologies

Approach 4:
Linking to Non-RDF

geometry files

Semantic Web
technologies

other technologies

Figure 18 - Overview of approaches for representing building geometry (Wagner, et al., 2020)

The first approach is implemented the closest to the Semantic Web, by using its specifications for all three
parts and is the most relevant for this thesis. The geometry scheme has to be defined in RDF, for example
using OntoBREP, OntoSTEP, or GEOM. The link to the geometry description can be realized with the
Ontology for Managing Geometry (OMG). This ontology provides methods for linking geometric and non-
geometric descriptions. Furthermore, it provides properties to relate RDF and non-RDF geometry
descriptions to a node. To define sub-properties of the generic OMG properties, the Ontology for Geometry
File (FOG) can be used.

The second approach also uses Semantic Web standards for all three parts, but the last two are more
restricted since the storage and structure are both compliant with both RDF and JSON. Approach three
uses a Semantic Web approach for linking and storing the geometry but uses a different technology for the
content structure. The fourth approach only uses RDF to link the geometry descriptions and depends on
other technologies for the structure and storage of the content. This approach thus has the least accordance
with the Semantic Web.

3.3 Conclusion

Linked Data is used for integration of, and reasoning on the Web, where machine-readable descriptions are
made using RDF. The core unit of RDF are triples, which can consist of IRIs, literals, and blank nodes.
Multiple triples can be combined, leading to an RDF graph. However, to be able to write RDFs down in
files for storage, RDF graph syntaxes are needed. Out of those syntaxes, Turtle is the most human-friendly
and concise. Further semantic extensions of RDF are RDFS and OWL, which can define relations between
terms in the vocabulary or define patterns that capture common-sense knowledge. In these ontologies,
there is a differentiation between concepts (TBOX) and instances of those concepts (ABOX). In the context
of the Semantic Web, SPARQL is used for expressing machine-readable questions and SHACL is used to
define constraints on the data graph, resulting in a validation report. The chapter ended with a discussion
on the use of Linked Data in the AEC industry, elaborating on the differences between ifcOWL and LBD,
the different levels of modeling complexity, and approaches to represent geometry in building graphs.

17

4 Preliminary research

4.1 Introduction

The compliance checking will be done by combining the legislative and the building data. The normative
data first has to be processed, after which it can be transformed into machine-readable rules. For the
building data, some limitations of BIM authoring tools will be mentioned, after which different methods for
obtaining a qualitative model will be described.

For all these steps, different methods exist. This chapter will give an overview of these strategies, after
which a combination will be chosen and implemented.

4.2 Normative knowledge

4.2.1 Processing the normative data

The normative data first has to be processed, to be able to use it for compliance checking. For this, a few
methods exist: like using Natural Language Processing (NLP), using a manual mark-up language, or
proposing a new methodology or framework.

Natural Language Processing (NLP) is the science of making computers understand the human language.
This technique facilitates text analysis and processing, which can be used for extracting regulatory data
from the building legislation. However, the understanding of both simple and complex sentences is essential
to achieve full automation in the analysis of the normative knowledge (Zhang & El-Gohary, 2017). While
this process may seem the most efficient (after the Artificial Intelligence (AI) is developed), some form of
control mechanism will still be needed when using NLP based on AI with a learning component. Since the
results are not deterministic, the translations can change with time and increased learning of the AI (Amor
& Dimyadi, 2021).

The second option is using a mark-up language, like RASE of LegalRuleML.
A promising methodology for use in the AEC industry is the semantic mark-up Requirement Applicabilities
Selection and Exceptions (RASE). This concept was specifically developed to transform normative
documents into a set of well-defined rules which can be implemented in model checking software. It uses
four tags with corresponding colors16 to differentiate sentences in legislation, as shown in Figure 19. The
uppercase tags are used for clauses, while lowercase tags are used for phrases. The biggest limitation is
that the mark-up is done manually, meaning it is still laborious and error-prone (Hjelseth & Nisbet, 2011).

<R>Standard NS 11001-1, Clause: 5.2 Dimensioning an <a>access route to a building
<R> The <a>access route for <s>pedestrians</s> <s>wheelchair users</s> shall <r>not
be steeper than 1:20</r>. <E>For <a>distances of less than 3 metres, it may be steeper, but
<r>not more than 1:12</r>. </E> </R>
<R>The <a>access route shall have <r>clear width of a minimum of 1,8 m</r> and
<r>obstacles shall be placed so that they do not reduce that width </r>. <r>Maximum cross fall
shall be 2 %. </r> </R>
<R>The <a>access route shall have <r>a horizontal landing at the start and end of the in-
cline<r>, plus <r>a horizontal landing for every 0,6 m of incline </r>. <r>The landing shall be a
minimum of 1,6 m deep. </r> </R>
<R><r>Minimum clear height shall be 2,25 m </r>for the full width of the defined walking zone of
the entire <a>access route including crossing points. </R> </R>

Figure 19 - Manual RASE mark-up on building legislation (Hjelseth & Nisbet, 2011)

16 The original colors proposed by Hjelseth & Nisbeth were changed in this thesis, to ensure the visual accessibility.

18

Another mark-up language developed for normative knowledge is LegalRuleML, used to structure legal text
in a machine-readable format. It was developed to (1) close the gap between natural language text
description and semantic norm modeling, (2) provide an XML standard for modeling normative rules that
satisfy legal domain requirements, and (3) extend the Linked Open Data approach to modeling from raw
data to legal concepts and rules. However, LegalRuleML was not specifically developed for application in
the AEC industry. Research has shown it does have enough criteria for this kind of application, but a
methodology for mapping the mark-up to the existing representation in BIM models has yet to be found
(Dimyadi, Governatori, & Amor, 2017).

The last possibility is by proposing a new methodology or framework, meaning updates of the building
legislation can be written in a (more) machine-readable way, making the conversion process to an RDF
graph less time-consuming and error-prone. This can be done by the implementation of a Controlled Natural
Language (CNL), which uses a restricted set of grammar rules and vocabulary. These restrictions reduce
the ambiguity and complexity of natural language and improve human readability and machine-
processibility. However, a good balance between both is crucial, and more research has to be conducted
(Xue, Poteet, Kao, Mott, & Braines, 2013).

4.2.2 Creating machine-readable rules

After processing the normative knowledge, these requirements need to be converted into machine-readable
rules. To do so, Pauwels & Zhang (2015) define three strategies: using hard-coded requirements, rule-
checking by querying, or using a dedicated rule language.

Hard-coded requirements are not desired, as discussed in section 2.4.

The second option is rule-checking by querying. In this method, only the building model is represented in
RDF, and not the rule information. While already being more efficient than the first strategy, this still requires
a lot of implementation work, since the queries still need to be fired one by one. Examples of a SPARQL
implementation for compliance checking can be found in Xu & Cai (2020) and Guo, Onstein & La Rosa
(2017).

The third option is using a dedicated rule language, like Semantic Web Rule Language (SWRL), N3Logic,
Drools Rule Language (DRL), etc. An extensive overview of these languages can be found in Van Breedam
(2017).

However, another method could be applied, by using SHACL. As already depicted in the overview on Linked
Data, RDF allows a human- and machine-readable way of storing the normative data. Moreover, by directly
storing the legislation in SHACL, which is an RDF, it can be used directly to check the compliance of the
building data. SHACL was originally developed to check the completeness of Linked Data, like to be able
to define that a defined building should have at least one story (Werbrouck, Senthilvel, Beetz, & Pauwels,
2019).

The use of a Linked Data technique like SHACL is also useful for cross-domain implementations. For
example, to be able to check the energy performance, a link with data sources on the weather would be
useful (Hu, et al., 2021).

There is ongoing research on the automation of SHACL constraints, e.g., the Astrea-KG incentive (Cimmino,
Fernández-Izquierdo, & García-Castro, 2020). However, since there is little research on the use of SHACL
for compliance-checking in the AEC industry, this is done manually in this thesis to be able to review the
SHACL language for this purpose.

19

4.2.3 Storing the rules

The normative data should be stored in a white-box representation, meaning the user can access the
requirements, ensuring an overview of the data. The opposite, a black box, is not desired, since the
standards are not accessible to the end-user. Unfortunately, the latter is still the dominant mode of
development of ACC tools for commercial systems to date.

Figure 20 - Black- and White-Box storage (Preidel & Borrmann, 2015)

4.3 Building data

4.3.1 Limitations of BIM authoring tools

BIM modeling software typically does not support the modeling of directional aids (for people with limited
vision) or alarms with a strobe light (for people who are hard of hearing). While the LBD graph can be
extended, there is no ontology available to define these kinds of elements with enough detail to check the
compliance. The defined constraints in this thesis will thus focus on physical accessibility, but the
methodology can be used to check the compliance of each building element when defined in the data
graph.

4.3.2 Qualitative building model

In the context of this thesis, some assumptions about the quality of the building model are made, since
both on a national and an international level, the attention of designers is drawn to the perks of having a
qualitative BIM model. International standards include the Information Delivery Manual (IDM) of
buildingSMART,17 while one of the main national incentives is taken by the Belgian Building Research
Institute (BBRI)18 in the form of the Modeling Guidelines.19

The quality of BIM models is also discussed in literature: Zhang, Teizer, Lee, Eastman & Venugopal (2013)
state that every object needs to have a name, type, attributes and relations, an ID, a date, and an author.
To ensure the building model contains all the necessary information, Model View Definitions (MVDs) can
be defined. An MVD defined specifically for compliance checking results in a Building Compliance Model
(BCM). More detailed MVDs can be defined for specific compliance checks, like a Fire Compliance Model
(FCM) for example (Dimyadi, Pauwels, & Amor, 2016).

17 https://technical.buildingsmart.org/standards/information-delivery-manual (last accessed 05/04/2022)
18 In Dutch known as ‘Wetenschappelijk en Technisch Centrum voor het Bouwbedrijf’ (WTCB)
19 https://www.bimportal.be/nl/projecten/tc/publicaties-resultaten/bim-modelleerrichtlijnen (last accessed
21/05/2022)

https://technical.buildingsmart.org/standards/information-delivery-manual
https://www.bimportal.be/nl/projecten/tc/publicaties-resultaten/bim-modelleerrichtlijnen/

20

Since this thesis mainly focuses on the semantics captured in the building graph, the threshold for a
qualitative model is quite insignificant to be able to evaluate the accessibility of a building. The only
assumptions are that the semantics match the geometry (e.g., the door width in the semantics is identical
to the width as seen in the properties panel of the modeling software) and that all building elements are
used as intended. The latter means that for example doors with a big glass surface are not defined as
windows, although the error may not be apparent in the 3D viewer of the native software.

4.4 Conclusion

The methodology will make use of the RASE mark-up language to structure the normative data. Using this
normative data, the requirements will be defined using SHACL, since it can capture all the constraints on
the semantics needed for the compliance checking of accessibility. The SHACL constraints will validate the
data in the building graph. Applying the constraints on the building data will then generate a validation
report, creating feedback for the designer.

Figure 21 - Evaluating the data graph against the shapes graph leads to a validation report

21

5 Methodology

5.1 RASE mark-up on the legislation

While proposing a new framework to write (updates of) the legislation or using NLP would be the most
thorough solutions, both lie either beyond the scope of the thesis or beyond the author’s skillset. That’s
why the manual RASE markup language is used to structure the third chapter of the ‘Decision by the
Flemish Government to adopt a regional urban development regulation on accessibility’ of 05/06/2009.20
This particular chapter dictates requirements for specific building elements. The result of this method can
be found in Appendix A: RASE mark-up on the regulation on accessibility. Purely informational paragraphs,
like the definition of the riser height of a stair, are greyed-out.

While the RASE mark-up language is an easy way to structure normative data, it is quite complex to
consistently use the tags in the same manner. This is also due to sentence structures; the ideal scenario
would be that a building element is an Applicability, on which Requirements are defined. This would mean
that you could extract a list of defined requirements on the same building element.

For example:
<R> For <a> manually operated doors , <r> the outer edge of the free and level turning area on
the pull side of the door should touch the turning plane of the door </r>, and <r> the outer edge of
the free and level turning area on the push side of the door should touch the closed-door plane </r>.
</R>
<R> In the case of a <a> manually operated door , <r> a free and level wall and floor width of
at least 50 cm must be provided adjacent to the crank side after finishing </r>. </R>

These two clauses would lead to the table shown in Figure 22, where multiple requirements are defined
on one building element, which functions as the applicability.

Applicability Requirement
manually operated door the outer edge of the free and level turning area on the pull side of the door

should touch the turning plane of the door
 the outer edge of the free and level turning area on the push side of the door

should touch the closed-door plane
 a free and level wall and floor width of at least 50 cm must be provided

adjacent to the crank side after finishing
Figure 22 - Table of requirements for a manually operated door

However, the Applicability is often not this clearly distinct from the Requirement, as seen in the rewritten
version of the first article. This phrase would lead to a less comprehensible table of requirements.

<R> The <a> outer edge of the free and level turning area on the pull side of a manually operated
door should <r> touch the turning plane of the door </r>, and <r> the outer edge of the free
and level turning area on the push side of the door should touch the closed-door plane </r>. </R>

Another difficulty is the cross-reference to other articles in the regulation since the article then should be
incorporated in the table to be able to apply the cross-reference.

In the case of operations on changing rooms or changing cubicles accessible to the public, at least four
percent of the total number of changing rooms or cubicles after the operations must comply with the
provisions of article 12 and articles 22 to 26.

The RASE language is thus not ideal to extract data from normative knowledge, but it is a useful method
for manually structuring the regulation.

20 Original title: ‘Besluit van de Vlaamse Regering tot vaststelling van een gewestelijke stedenbouwkundige verordening
betreffende toegankelijkheid’. The full regulation can be found at https://www.toegankelijkgebouw.be/
Regelgeving/Downloads/tabid/328/Default.aspx (last accessed 24/05/2022)

https://www.toegankelijkgebouw.be/Regelgeving/Downloads/tabid/328/Default.aspx
https://www.toegankelijkgebouw.be/Regelgeving/Downloads/tabid/328/Default.aspx

22

5.2 Dummydata

As already described in section 3.2, the LBD graph is converted from ifcOWL. While ifcOWL does contain
all the geometric information of a building model, it is hard to query due to its extensivity. This is in contrast
with LBD, which is much easier to query. However, the conversion21 does typically not contain all the
necessary information to apply the requirements regarding accessibility.

Since LBD is a modular data type, this section will create some added properties on the building elements
and add them to the building graph. However, it is first investigated how these properties are defined in
ifcOWL, to conform their presence. For this, a simple BIM model is converted to an ifcOWL graph, on which
the shown figures are based.

5.2.1 Dimensions of a space

The definition of a space in an LBD graph does include some geometric information like the volume and
perimeter, apart from properties like name and identifiers. However, to be able to check the compliance of
a building project, the height and width of a space are needed.

A space is defined as an area, extruded over a certain depth, as shown in Figure 23. This figure does not
contain the full graph, only the direct path from the space to the dimensions is shown. The orientation of
the space, or in this case the difference between the x-dimension and the y-dimension, does not matter for
this implementation. The space will comply if they are both larger than the requirement for accessibility.

Figure 23 - Definition of the dimensions of a rectangular space in ifcOWL

The dummydata used in the SHACL rulebook has the predicates props:heightIfcSpace and
props:widthIfcSpace.

21 Using the IFCtoLBD converter at https://github.com/jyrkioraskari/IFCtoLBD (last accessed 31/05/2022)

https://github.com/jyrkioraskari/IFCtoLBD

23

5.2.2 Dimensions of a rampflight

A rampflight is defined without any measurements. The LBD graph only consists of identifiers and literals
representing the names given in the native modeling software.

In ifcOWL, a rampflight is defined as a polyline, extruded over a certain depth. The points of this polyline
are defined using cartesian coordinates, where the predicate hasContents denotes the x-coordinate, and
the predicate hasNext of the same CartesianPoint, points to the corresponding y-coordinate.

Figure 24 - Definition of a rampflight in ifcOWL

24

When plotting these points, we see that ifcOWL draws a volume on top of the actual rampflight, since the
drawn measurements were 400 by 4800. 22 This means that the length of the rampflight can be calculated
using the x-coordinates of a point on the left, and a point on the right. Similarly, the height of the rampflight
can be calculated using the y-coordinate of the two points at the top, or the two points at the bottom.

Figure 25 - Graphical representation of a rampflight, as defined in ifcOWL

The dummydata used in the SHACL rulebook has the predicates props:heightIfcRampFlight,
props:lengthIfcRampFlight, and props:widthIfcRampFlight.

5.2.3 Dimensions of a landing

A landing, a subclass of a slab, also has no measurements in the LBD graph. Similar to a rampflight, the
information only consists of identifiers and literals representing the names given in the native modeling
software.

In ifcOWL, a slab is also defined as an area, extruded over a certain depth. Since the cross-section is
rectangular most of the time, the derivation of the dimensions is the same as for a space.

Figure 26 - Definition of a slab in ifcOWL

The dummydata used in the SHACL rulebook has the predicate props:widthIfcLanding and
props:depthIfcLanding.

22 This corresponds with the definition of a rampflight by buildingSMART: https://standards.buildingsmart.org/IFC/
RELEASE/IFC4/ADD2_TC1/HTML/link/ifcrampflight.htm (last accessed 12/05/2022)

https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/link/ifcrampflight.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/link/ifcrampflight.htm

25

5.2.4 Insertion of the data

Different methods exist for combining the derived dummydata with the LBD data graph. The triples can be
inserted into the LBD data graph, or both graphs can be merged.

The first method uses a SPARQL INSERT query, as shown in Figure 27 to complete the definition of a slab
in LBD with a width and a depth, following the chosen Level 2 modeling complexity.

INSERT DATA
{

slab_4 props:widthIfcLanding inst:widthIfcLanding_4 ;
props:depthIfcLanding inst:depthIfcLanding_4 .

inst:widthIfcLanding_4 schema:value “12 800”^^xsd:double .
inst:depthIfcLanding_4 schema:value “13 800”^^xsd:double .

}
Figure 27 - SPARQL insert query to complete the slab data

A second method consists of the merging of the dummydata graph with the LBD graph. These can be
combined by taking the set union of the triples in both graphs, for example in an RDF triplestore (Hogan,
2020). The graphs can be aligned by either the IRIs in the subject position, or by the Globally Unique
Identifier (GUID) each IFC object has.23

23 https://technical.buildingsmart.org/resources/ifcimplementationguidance/ifc-guid/ (last accessed 24/05/2022)

https://technical.buildingsmart.org/resources/ifcimplementationguidance/ifc-guid/

26

5.3 Rulebook

5.3.1 Introduction

The normative data, structured using RASE, is now converted into machine-readable rules using SHACL.
The defined constraints are based on the converted building graph, which is complemented with derived
dummydata to define all the necessary properties of spaces, ramps, and landings. The rules will however
only be applied to the semantics contained in the data graph and do not incorporate the geometric
descriptions.

Due to the nature of the legislation on accessibility and the specific individual needs of users, the default
severity (sh:Violation) is used for every constraint, meaning nothing is classified as purely informational
or a warning. A ranking of the severity of the requirements would be arbitrary and irrelevant since a fully
accessible building should be the standard. Due to this objective, the field of application of the legislation
is omitted.24

To fully understand the constraints defined on the building data, it is crucial to understand the structure of
the graph first, using the example in Figure 28. A building element is defined with rdf:type (denoted as
‘a’ in Turtle) and several properties. Normally, the sequence of letters and numbers after the underscore
will be the same for the building element and its properties, but this implementation does not rely on the
sequence.

The chosen Level 2 structure (as explained in section 3.2.2) means that two paths will have to be defined
in the shapes graph: the first one to get the object of the ‘props’ predicate, and the second one to get the
object of the ‘schema:value’ predicate. This can be done using sequence paths, in the form of
(props:overallHeightIfcDoor schema:value).

In an informal note,25 W3C discourages this use of sequence paths. However, due to the structure of LBD
(where the second path will always be schema:value) and the fact that this reduces the length of a simple
example from 13 to 8 lines in this implementation, they are used in the declaration of parameters of
functions for conciseness and readability.

inst:door_2
a beo:Door, bot:Element ;
props:batid inst:batid_2 ;
props:globalIdIfcRoot inst:globalIdIfcRoot_2 ;
props:nameIfcRoot inst:nameIfcRoot_2 ;
props:objectTypeIfcObject inst:objectTypeIfcObject_2 ;
props:overallHeightIfcDoor inst:overallHeightIfcDoor_2 ;
props:overallWidthIfcDoor inst:overallWidthIfcDoor_2 .

inst:batid_2 schema:value "159734" .
inst:globalIdIfcRoot_2 schema:value "2OBrcmyk58NupXoVOHUuXp" .
inst:nameIfcRoot_2 schema:value "M_Single-Flush:0864 x 2032mm:159734" .
inst:objectTypeIfcObject_2 schema:value "0864 x 2032mm" .
inst:overallHeightIfcDoor_2 schema:value "2032"^^xsd:double .
inst:overallWidthIfcDoor_2 schema:value "864"^^xsd:double .

Figure 28 - Example definition of a door using LBD

24 The field of application can be checked by using the quickscan at www.toegankelijkgebouw.be
25 https://www.w3.org/TR/shacl/#property-path-sequence (last accessed 08/05/2022)

http://www.toegankelijkgebouw.be/
https://www.w3.org/TR/shacl/#property-path-sequence

27

It is important to note that this implementation will not rely on the props:nameIfcRoot or the
props:objectTypeIfcObject to check the compliance. While these user-defined tags normally should
correspond to the properties of the building element, there is still a chance the model is less qualitative and
contains wrong information. Moreover, buildingSMART defines the additional ‘HandicapAccessible’
property on 158 building elements.26 However, since the value of this property is still user-defined, this
implementation will not rely on it.

The full rulebook can be found in Appendix B: rulebook.ttl.

5.3.2 Model View Definition

To ensure all the necessary data is available in the building graph and to prevent ‘false compliance’, it is
defined that every used path in the rulebook should just have one value, by setting the sh:minCount and
sh:maxCount both to one. This way, the SHACL rulebook functions simultaneously as an MVD. To be able
to differentiate between the legislation requirements and the MVD, this sh:message starts with ‘MVD’, while
the compliance constraints message starts with the article number from the legislation.

schema:DoorMVD
// apply the shape to a focus node
a sh:NodeShape ;
// target all nodes with class ‘Door’
sh:targetClass beo:Door ;
// target a property of each ‘Door’
sh:property [
 // target the height predicate
 sh:path props:overallHeightIfcDoor ;
 // each ‘Door’ should have at least one height property
 sh:minCount 1 ;
 // each ‘Door’ should have at most one height property
 sh:maxCount 1 ;
 // if not, return the violation message
 sh:message "MVD - each door should have exactly one 'overallHeightIfcDoor'." ;
] .

Figure 29 - Shape defining that each space should have exactly one height property

While the MVD could be checked in a separate shapes file, both are combined in this implementation.
However, the building constraints are defined in separate shapes, to keep both clear. The MVD is declared
first in Appendix B: rulebook.ttl, up until line 90.

5.3.3 Types of constraints

Different types of constraints are applied to the data graph to investigate accessibility. These constraints
can be categorized as value, relational and mathematical constraints. Furthermore, some inference rules
and logical constraint components will be applied to the constraints to be able to define all the different
requirements.

SHACL allows more types of constraints than these four, but for example string-based constraints are not
relevant for this thesis, since user-defined labels or names from the modeling software are omitted.

26 https://search.bsdd.buildingsmart.org/Property/Index/116507 (last accessed 15/05/2022)

https://search.bsdd.buildingsmart.org/Property/Index/116507

28

5.3.3.1 Value constraints

SHACL defines four value constraints, which allow checking if a value is smaller/bigger than (or equal to)
a defined limit value.

This method is used for constraints on values already defined in the building graph, meaning no additional
mathematical operations are needed to check the compliance of the building element. In Figure 30, an
example of a value constraint is given by defining that all doors must have a minimum height of 2090 mm.

schema:Door
 // apply the shape to a focus node
 a sh:NodeShape ;
 // target all nodes with class ‘Door’
 sh:targetClass beo:Door ;
 // target a property of each ‘Door’
 sh:property [
 // target the height predicate
 sh:path props:overallHeightIfcDoor ;
 // name the object of this height predicate path
 sh:property schema:DoorHeight ;
] .

// the named object is now a subject
schema:DoorHeight
 // target a property of the focus node
 a sh:PropertyShape ;
 // target the value predicate
 sh:path schema:value ;
 // the object should be more than 2090 mm
 sh:minInclusive “2090”^^xsd:double ;
 // if not, return the violation message
 sh:message "Art. 22 §1 - The door height must be at least 2090 mm." .

Figure 30 - Example of a value constraint

The following requirements are defined in the SHACL rulebook with only value constraints.

Legislation
Art. 12 §2 The clearance height (after finishing) must be at least 2300 mm.
Art. 14 The width of the walkway (after finishing) must be at least 1500 mm.
Art. 19 §2 The landing of a ramp must be at least 1200 by 1500 mm.
Art. 20 §1 The width of a staircase (after finishing) must be at least 1000 mm.
Art. 20 §2 A staircase must have an intermediate landing after at most 17 treads.
Art. 20 §3 The riser height must be at most 180 mm.
Art. 20 §3 The tread length must be at least 230 mm.
Art. 22 §1 The door height (after finishing) must be at least 2090 mm.
Art. 22 §2 The door width (after finishing) must be at least 900 mm.

Figure 31 - The requirements based on value constraints

29

The IFC4 ADD2 TC1 EXPRESS schema27 defines the dimensions of a space as the dimensions between
the finishing on opposite sides, hence why the requirement after finishing is used when defining the
constraints.28

Since a stairflight is defined as ‘an assembly of building components in a single “run” of stair steps (not
interrupted by a landing)’, the constraint can be defined that each stairflight can consist of at most 17
steps. Furthermore, buildingSMART states that all riser heights and tread lengths should be equal for all
steps of a stair flight. This requirement is also defined in the legislation on accessibility but is not considered
since the IFC schema already assumes this.29

For winders, the walking line is defined, and the tread length is then measured at the walking line. The
building graph only includes the minimal tread at this offset, meaning that the compliance of this smallest
tread is enough.30

For doors, the requirement for the width after finishing is used instead of the dimensions of the casing,
since the attribute definitions of buildingSMART state that the overall width is the door opening width, and
not the total width of the door lining. The corresponding definition is used for the door height.31

5.3.3.2 Relational constraints

Relational constraints are defined to check if a building element is present in relation to another building
element in the project. For this sh:qualifiedValueShape is used, to check that a specified number of nodes
conforms to the targeted shape. This specified number is defined with sh:qualifiedMinCount.

An example of a purely relational constraint is that all stairs should have a railing on both sides.

schema:Stair
 // apply the shape to a focus node

 a sh:NodeShape ;
 // target all nodes with class ‘Stair’
 sh:targetClass beo:Stair ;
 // target a property of each ‘Stair’
 sh:property [
 // target the subelement predicate
 sh:path bot:hasSubElement ;
 // in the object, target the class ‘Railing’
 sh:qualifiedValueShape [sh:class beo:Railing] ;
 // 2 elements of this class should be present
 sh:qualifiedMinCount 2 ;
 // if not, return the violation message
 sh:message "Art. 20 §4 - All stairs must have a railing on both sides." ;
] .

Figure 32 - Example of a relational constraint

27 This schema was published in October 2017 and is the official buildingSMART standard at the time of writing.
28 https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/link/ifcspace.htm
(last accessed 30/04/2022)
29 https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcsharedbldgelements/
lexical/ifcstairflight.htm (last accessed 30/04/2022)
30 https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/link/pset_stairflightcommon.htm
(last accessed 07/05/2022)
31 https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcsharedbldgelements/
lexical/ifcdoor.htm (last accessed 30/04/2022)

https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/link/ifcspace.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcsharedbldgelements/lexical/ifcstairflight.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcsharedbldgelements/lexical/ifcstairflight.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/link/pset_stairflightcommon.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcsharedbldgelements/lexical/ifcdoor.htm
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/schema/ifcsharedbldgelements/lexical/ifcdoor.htm

30

This requirement is the only one based on purely relational constraints. Since the assumption of a qualitative
building model is made, requiring two railings on one stairflight implies they are positioned on opposite
sides of the stairflight.

5.3.3.3 Mathematical constraints

Mathematical functions in SHACL can be defined using SPARQL queries, thus making use of the extensions
of the SHACL-Core, named SHACL-SPARQL. A SHACL function always consists of a declaration of the
parameters and a return type, as shown in Figure 33. The function can then be used in a Node- or
PropertyShape, using sh:expression. Since the function definitions in this rulebook use no optional values,
the MVD does not include the parameters of the function.

schema:stairFormula
 // define a function
 a sh:SPARQLFunction ;
 // name the function
 rdfs:comment “stair formula” ;
 // declare the first parameter
 sh:parameter [
 // first parameter is op1
 sh:path inst:op1 ;
 // op1 is a decimal
 sh:datatype xsd:double ;
 // op1 corresponds to the riser height
 sh:description “riser height” ;
] ;
 // declare the second parameter
 sh:parameter [
 // second parameter is op2
 sh:path inst:op2 ;
 // op2 is a decimal
 sh:datatype xsd:double ;
 // op2 corresponds to the tread length
 sh:description “tread length” ;
] ;
 // the returned value is a decimal
 sh:returnType xsd:double ;
 // start a SPARQL select query
 sh:select ‘’‘’‘’
 // calculate the stair formula and return the result
 SELECT ((2 * $op1 + $op2) AS ?result)
 WHERE {
 }
 ‘’‘’‘’ .

Figure 33 - Example of a mathematical constraint

The stair formula is the only requirement defined with only mathematical constraints.

31

5.3.3.4 Inference

To be able to combine the constraints, some inference statements, like ‘if…then…’ have to be created. In
SHACL, this can be mainly done using sh:node, which enables to define that each value node conforms to
a given node shape. To properly define the inference rules, some logical constraint components like sh:not,
sh:or, sh:and, sh:xone are also needed.

schema:Slopes
 // apply the shape to a focus node

 a sh:NodeShape ;
 // target all nodes with class ‘Rampflight’
 sh:targetClass beo:RampFlight ;
 // both constraints should be fulfilled
 sh:and (
 [
 // first constraint: the slope is less than 10%
 sh:expression [
 inst:lessThan (
 [inst:slope (
 [sh:path (props:heightIfcRampFlight schema:value)]
 [sh:path (props:lengthIfcRampFlight schema:value)])]
 10
) ;
]
]
 // if the slope is less than 10%, check the next constraint
 sh:node schema:SlopeConstraint
)
 // if not, return the violation message

 sh:message “Art. 19 §1 - The slope of a rampflight can be at most 10% when the
difference in height is less than 100 mm.”

] .
Figure 34 - Excerpt of the slope definition, defining that a ramp with a slope

of less than 10% needs to conform to the SlopeConstraint too

Important to note is that sh:or specifies that each targeted node conforms to at least one of the provided
shapes. This means that for constraints like Art 19 §5: ‘The width of a rampflight (after finishing) must be
at least 1200 mm, if the slope is more than 4%.’, the structure of the constraints is as follows:

// data should conform to at least one constraint
sh:or (
 // data should conform to both of the following shapes
 sh:and (
 // if the slope is more than 4%
 [slope is more than 4%]
 // the width constraint should be fulfilled
 [to additional constraint for width]
)
 // else, the slope should be less than 4% (and no additional constraint is defined)
 [slope is less than 4%]
)

Figure 35 - Structure of logical constraint components

32

5.3.3.5 Combination of constraints

Using these three types of constraints in combination with inference rules, and logical constraint
components, all the requirements on the semantics are defined in the SHACL rulebook.

Legislation
Art. 19 §1 The slope of a rampflight can be at most 10% when the difference in height is less than

100 mm.
Art. 19 §1 The slope of a rampflight can be at most 8.3% when the difference in height lies between

100 and 250 mm.
Art. 19 §1 The slope of a rampflight can be at most 6.25% when the difference in height lies between

250 and 500 mm.
Art. 19 §1 The slope of a rampflight can be at most 5% when the difference in height is more than

500 mm.
Art. 19 §4 A ramp must have an intermediate landing if the difference in height is more than 500 mm.
Art. 19 §5 The width of a rampflight (after finishing) must be at least 1200 mm, if the slope is more

than 4%.
Figure 36 - The requirements based on a combination of constraints

5.4 Conclusion

The first step of the methodology was to structure the normative data using the RASE markup language.
While this is a good way to manually decompose complex sentences, the sentence structures would have
to be more straightforward to be able to automate the extraction of the different components.

The second step was to add some properties to the definition of spaces, rampflights, and landings in the
building graph, needed to check the compliance with the regulation on accessibility.

The last step was to create a rulebook in Turtle format, using SHACL. This rulebook first defines an MVD
to ensure all the necessary data is present in the building graph. It then uses a combination of three types
of constraints (value, relational and mathematical), inference statements (if…then…), and logical
constraint components (and, or) to define different requirements for the accessibility of the building project.

33

6 Proof of concept

6.1 Introduction

Using the SHACL rulebook, or shapes graph, the building, or data graph, can be validated. To do so, a
proof of concept application is created, which is divided into a frontend and a backend, and both can be
found on https://github.com/NuytsE.

6.2 Conversion workflows

To be able to check the compliance of the building design, the IFC file should be converted to an RDF
graph. To accomplish this, different converters exist, like IFCtoLBD.32 This converter first transforms the file
to a (temporary) ifcOWL graph, which is then converted to an LBD ABOX graph. The converter follows the
graph traversal, using path templates. The newly created instances get the right LBD OWL classes by using
LBD modular ontologies like BOT, PRODUCT, and PROPS. If a higher modeling complexity is chosen by
the user, new instance nodes for the properties are created (Bonduel, et al., 2018).

Figure 37 - The conversion workflow from IFC to LBD, reworked from (Bonduel, et al., 2018)

32 https://github.com/jyrkioraskari/IFCtoLBD (last accessed 31/05/2022)

https://github.com/NuytsE
https://github.com/jyrkioraskari/IFCtoLBD

34

6.3 Implementation

For the demonstration of the tool, a student project of a library will be used. This model was however
changed for this demonstration since the original design was fully physically accessible. It was changed in
a way that each constraint is shown exactly once in the validation report.

Figure 38 - Render of the student project

The converted building graph can be uploaded on the User Interface (UI). The used graph is written in
Turtle syntax, explaining the .ttl filetype. The file is not stored in a public server, but in a separate folder in
the project directory of the backend. Since access control lies beyond the scope of this thesis, this choice
was made to ensure the details of the building project are not online available, maintaining the property
rights and safety. Hence why a (not-executed) student project was chosen for the demonstration since this
is publicly available on GitHub.33

Figure 39 - User Interface of the upload page

33 https://github.com/NuytsE/ACC-back/blob/main/files/LBDFile.ttl

https://github.com/NuytsE/ACC-back/blob/main/files/LBDFile.ttl

35

Then, this LBD graph is checked against the created SHACL rulebook, meaning both the completeness of
the data and the accessibility of the project are checked. Since there is no JavaScript implementation of
SHACL-SPARQL (needed for the mathematical constraints), at the time of writing, pySHACL34 is used. The
python command is executed in the application using the ‘child_process’ module. Since pySHACL returns
a purely textual report, there were some string methods needed to create a UI of the validation report. 35
This report can be downloaded locally. In the report, the transparency to the user is key: apart from the
message containing the building legislation, both the source shape and the focus node are returned,
meaning it is easily checked exactly which building element does not comply with said shape. Moreover,
the identifier of the element is returned, ensuring that the building element can be easily found and altered
in the native modeling software. This identifier is not incorporated in the validation report of pySHACL, but
is retrieved by querying for the non-conforming element in the building graph.

Figure 40 - User Interface of the non-conforming validation report

After altering the remarks in the BIM authoring tool, the model can be converted to an RDF and uploaded
again, leading to this conforming validation report.

Figure 41 - User Interface of the conforming validation report

34 https://github.com/RDFLib/pySHACL (last accessed 15/05/2022)
35 The full report can be found at https://github.com/NuytsE/ACC-back/blob/main/files/report

https://github.com/RDFLib/pySHACL
https://github.com/NuytsE/ACC-back/blob/main/files/report

36

6.4 Conclusion

Although this specific implementation focuses on accessibility, the rulebook can be easily extended for other
legislation, since it is stored in a separate file on the backend of the tool. This also means the rules can be
updated to the most recent version of the building code, the user can define some extra requirements or
alter existing requirements (for example for renovations, or to change the units of the checked legislation).
Of course, the created validation report is only feedback on the accessibility of the design, meaning the
designer will have to manually alter the project in the native modeling software. The tool can also be used
on as-built models, evaluating the design of already built projects. However, accessibility also requires effort
during the life cycle of the building. Creating a narrower space than the one checked in the tool due to
additional interior elements will certainly harm the accessibility since the checked model is only a digital
twin of the actual building.

37

7 Evaluation and conclusion

7.1 Evaluation of SHACL for use in compliance checking

To evaluate the suitability of SHACL for use in compliance checking, the four key requirements for
automated code checking as defined by Greenwood et al. (2010) can be used:

- The computer programmed rules must be easily understood by the regulation authors;
- The lifecycle of the rule base must be independent of software and schema updates;
- All development must comply with Open Standards;
- Consideration must be given to the industry processes of model authoring.

While the first requirement is quite subjective, the Turtle syntax is generally seen as the most human-
readable syntax for RDF (Hogan, 2020). However, the question arises if regulation authors without any
knowledge of programming could understand this. This relates to the differentiation between readable and
understandable, as explained in section 2.2. But in this case, there is a nuance: while the regulation is
specifically written to be understandable by architects (and is apparently not), this rulebook is mostly
written to automatically check compliance. The user will have some understanding of what is being checked,
but a full understanding of the underlying structures is less necessary. The RDF shapes can however be
converted into a human-friendly interface if needed. The second requirement is achieved by implementing
LBD, which is independent of software packages since it is derived from the open and neutral IFC schema.
The third requirement is fulfilled by using Semantic Web technology like SHACL, which is a W3C
recommendation. The last requirement is partially avoided by implementing an MVD in the constraints in
the rulebook. This does not improve the quality of the building model but does check if all the necessary
data is present before applying the constraints.

However, SHACL only allows the compliance checking of prescriptive legislation. While the regulation on
accessibility only consists of prescriptive requirements, other types of building legislation use performance-
based regulation, like fire safety or energy efficiency.

A disadvantage of SHACL is that the constraints are defined in one unit of measurement, and there is no
conversion possible in the language. This means that either the building data and the constraints need to
be modeled in the same unit, or some implementation work is needed to convert the units in one of the
graphs.

7.2 Evaluation of the implementation

Unfortunately, there is no implementation of SHACL-SPARQL in JavaScript at the time of writing. The module
‘rdf-validate-shacl’36 exists, but this only supports SHACL-Core constraints. The perk of this module is that
the validation report is a JavaScript Object, meaning some built-in methods like result.conforms or
result.focusNode can be used to extract the results separately and map them in a visual report on the
frontend.

While the python module pySHACL does implement SHACL-SPARQL, and the Command Line Use can be
run in JavaScript with an extra module, the resulting validation report is a purely textual file. This means that
some string methods were needed to transform them into a JavaScript Object and successfully create a UI
of the report.

An advantage of this react-application is that the rulebook is stored in a separate file. This means that when
updating or adding the constraints, the architecture of the application does not have to be changed, only
the contents of the rulebook.ttl change.

36 https://github.com/zazuko/rdf-validate-shacl (last accessed 17/05/2022)

https://github.com/zazuko/rdf-validate-shacl

38

7.3 Evaluation in the entirety of the building legislation

While this thesis focuses on the regulation of accessibility, the method can be used on each kind of
prescriptive building code, as long as the necessary data is (made) present in the building graph. For
example for fire safety, the fire resistance of building elements, the compartmentation area, the presence
of sprinklers or smoke- and heat extraction, the number of exits… can be checked. The method can also
be applied to acoustical codes, daylight regulation, or energy efficiency for example.

This research studied the definition of constraints on semantic data in a building graph, although geometrical
constraints are also needed in terms of creating an accessible built environment. While the evaluation of
Inter (2019) does not name all the requirements that are overlooked by architects or people in the urban
planning department, the layout of sanitary blocks is one. Other named requirements like insufficient door
widths or slopes that are too steep are however checked with this methodology.

7.4 Future work

This research is certainly not the full solution for Automated Compliance Checking of every building code.
More work can be done on the geometrical requirements since this thesis focuses on the semantics defined
in the building graph. For example, the width of a walkway is purely defined on the dimensions of a space
and does not consider the presence of obstructing elements (like radiators or fire hose reels), also turning
circles cannot be checked using the proposed methodology. Furthermore, the derived dummydata would
ideally be incorporated into LBD automatically, where this research used manual SPARQL UPDATE queries.
Lastly, automation of the SHACL constraints would be a big improvement but is, unfortunately, beyond the
scope of this research due to the author's skillset.

7.5 Conclusion

The developed methodology consisted of three main decisions: using RASE to structure the normative data,
using LBD to create the building graph, and using SHACL to define the constraints. While the RASE markup
proved to be an effective way to manually structure the legislation, it is quite laborious and the efficiency is
highly dependent on sentence structures. Representing the building data in an LBD graph was successful
since this graph is easy to query and understand. Some extra data had to be derived from the ifcOWL graph
to be able to check the compliance, but this does only prove the modular aspect of LBD. Furthermore,
SHACL constraints can easily be defined on the semantic data in an LBD graph, although further research
is needed to evaluate geometrical constraints. Moreover, the combination of an MVD to check if all the
necessary data is present in the graph and checking the compliance appears to be interesting in the context
of the Semantic Web. In short, the developed methodology can be used to check any type of prescriptive
building legislation, as long as the data is defined in the building graph.

While the proposed methodology cannot (yet) incorporate all the requirements of the regulation on
accessibility, it is hopefully a starting point for the creation of a more accessible and inclusive environment.

39

Bibliography
Amor, R., & Dimyadi, J. (2021, March). The promise of automated compliance checking. Developments in

the Built Environment, 5. doi: https://doi.org/10.1016/j.dibe.2020.100039

Beach, T. H., Hippolyte, J.-L., & Rezgui, Y. (2020, October). Towards the adoption of automated regulatory
compliance checking in the built environment. Automation in Construction. doi: https://doi.org/10.
1016/j.autcon.2020.103285

Bonduel, M., Oraskari, J., Pauwels, P., Vergauwen, M., & Klein, R. (2018). The IFC to Linked Building Data
Converter - Current Status. Proceedings of the 6th Linked Data in Architecture and Construction
Workshop, (pp. 34-43). London, United Kingdom.

Cimmino, A., Fernández-Izquierdo, A., & García-Castro, R. (2020). Astrea: Automatic generation of SHACL
shapes from ontologies. European Semantic Web Conference (pp. 497-513). Heraklion, Greece:
Springer. doi: https://doi.org/10.1007/978-3-030-49461-2_29

Corman, J., Reutter, J. L., & Savkovic, O. (2018). Semantics and validation of recursive SHACL. International
Semantic Web Conference (pp. 318-336). Monterey: Springer. doi: https://doi.org/10.1007/
9783-030-00671-6_19

Curtotti, M., & McCreath, E. (2013). A right to access implies a right to know: an open online platform for
research on the readability of law. Open Access to Law, 1.

Dimyadi, J., & Amor, R. (2013, May). Automated building code compliance checking - where is it at? 19th
International CIB World Building Congress. doi: http://dx.doi.org/10.13140/2.1.4920.4161

Dimyadi, J., Governatori, G., & Amor, R. (2017). Evaluating LegalDocML and LegalRuleML as a Standard
for Sharing Normative Information in the AEC/FM Domain. Proceedings of the Joint Conference on
Computing in Construction (JC3), 1. Heraklion, Greece. doi: http://dx.doi.org/10.24928/
JC32017/0012

Dimyadi, J., Pauwels, P., & Amor, R. (2016, November). Modelling and accessing regulatory knowledge for
computer-assisted compliance audit. Journal of Information Technology in Construction, 317-336.
Retrieved from https://www.itcon.org/2016/21

Greenwood, D., Lockley, S., Malsane, S., & Matthews, J. (2010). Automated compliance checking using
Building Information Models. The construction, building and real estate research conference of the
Royal institution of Chartered Surveyors. Paris, France: RICS.

Guo, D., Onstein, E., & La Rosa, A. D. (2017, August). A semantic approach for automated rule compliance
checking in construction industry. IEEE Access. doi: http://dx.doi.org/10.1109/ACCESS.2021.
3108226

Hjelseth, E., & Nisbet, N. (2011). Capturing normative constraints by use of the semantic mark-up RASE
methodology. Proceedings of the CIB W78-W102. Sophia Antipolis, France.

Hogan, A. (2020). The Web of Data. Springer. doi: https://doi.org/10.1007/978-3-030-51580-5

Hu, S., Wang, J., Hoare, C., Li, Y., Pauwels, P., & O'Donnell, J. (2021, April). Building energy performance
assessment using Linked Data and cross-domain semantic reasoning. Automation in Construction,
124. doi: https://doi.org/10.1016/j.autcon.2021.103580

Inter. (2019). Evaluatieonderzoek Vlaamse toegankelijkheidsverordening.

Knublauch, H. (2017, August 17). SHACL and OWL compared. Retrieved from https://spinrdf.org/shacl-
and-owl.html

https://doi.org/10.1016/j.dibe.2020.100039
https://doi.org/10.1016/j.autcon.2020.103285
https://doi.org/10.1016/j.autcon.2020.103285
https://doi.org/10.1007/978-3-030-49461-2_29
https://doi.org/10.1007/9783-030-00671-6_19
https://doi.org/10.1007/9783-030-00671-6_19
http://dx.doi.org/10.13140/2.1.4920.4161
http://dx.doi.org/10.24928/JC32017/0012
http://dx.doi.org/10.24928/JC32017/0012
https://www.itcon.org/2016/21
http://dx.doi.org/10.1109/ACCESS.2021.3108226
http://dx.doi.org/10.1109/ACCESS.2021.3108226
https://doi.org/10.1007/978-3-030-51580-5
https://doi.org/10.1016/j.autcon.2021.103580
https://spinrdf.org/shacl-and-owl.html
https://spinrdf.org/shacl-and-owl.html

40

Labra Gayo, J. E., Prud'hommeaux, E., Solbrig, H., & Boneva, I. (2016). ShEx vs SHACL.

Oraskari, J., Senthilvel, M., & Beetz, J. (2021). SHACL is for LBD what mvdXML is for IFC. Proceedings of
the Conference CIB W78, (pp. 693-702). Esch-sur-Alzette, Luxembourg.

Pauwels, P., & Petrova, E. (2020). Information in Construction.

Pauwels, P., & Roxin, A. (2016). SimpleBIM: From full ifcOWL graphs to simplified building graphs.
European Conference on Product and Process Modelling. Limasol, Cyprus.

Pauwels, P., & Zhang, S. (2015). Semantic rule-checking for regulation compliance checking: an overview
of strategies and approaches. Proceedings of the 32nd CIB W78 Conference, (pp. 619-628).
Eindhoven, Netherlands.

Pauwels, P., Zhang, S., & Lee, Y.-C. (2017, January). Semantic web technologies in AEC industry: a
literature overview. Automation in Construction, 73, 145-165. doi: https://doi.org/10.1016/j.
autcon.2016.10.003

Preidel, C., & Borrmann, A. (2015). Automated code compliance checking based on a visual language and
Building Information Modeling. International Symposium on Automation and Robotics in
Construction and Mining. Oulu, Finland. doi: http://dx.doi.org/10.13140/RG.2.1.1542.2805

Rasmussen, M. H., Lefrançois, M., Bonduel, M., Hviid, C. A., & Karlshoj, J. (2018). OPM: an ontology for
describing properties that evolve over time. Proceedings of the 6th Linked Data in Architecture and
Construction Workshop. 2159, pp. 24-33. London, United Kingdom: CEUR Workshop Proceedings.

Rasmussen, M. H., Lefrançois, M., Schneider, G. F., & Pauwels, P. (2020, November). BOT: the Building
Topology Ontology of the W3C Linked Building Data Group. Semantic Web Journal. doi:
http://dx.doi.org/10.3233/SW-200385

RIBA. (2012). BIM Overlay to the RIBA Outline Plan of Work. London, United Kingdom: RIBA Publishing.

Royal Decree of December 7. (2016, December 7). 30.

Rudman, R., & Bruwer, R. (2016, February). Defining Web 3.0: opportunities and challenges. The Electronic
Library, 132-154. doi: http://dx.doi.org/10.1108/EL-08-2014-0140

Vaes, S., Votquenne, D., Baert, D., & Arnoudt, R. (2022, may 19). Hoe (on)toegankelijk is Vlaanderen?
"Terzake" rijdt mee met twee rolstoelgebruikers. Retrieved may 22, 2022, from VRT NWS:
https://www.vrt.be/vrtnws/nl/2022/05/19/toegankelijkheid-terzake/

Van Breedam, V. (2017). Onderzoek naar automatisering van de evaluatie van brandnormering in een BIM
model. Universiteit Gent.

Vande Reyde, M., Saeys, F., Van Cauter, C., De Vroe, G., Van Volcem, M., & Ongena, T. (2020).
Conceptnota voor nieuwe regelgeving.

Wagner, A., Bonduel, M., Pauwels, P., & Rüppel, U. (2020, July). Representing construction-related
geometry in a Semantic Web context: a review of approaches. Automation in Construction, 115.
doi: https://doi.org/10.1016/j.autcon.2020.103130

Werbrouck, J., Senthilvel, M., Beetz, J., & Pauwels, P. (2019). A checking approach for distributed building
data. Forum Bauinformatik, (pp. 173-181). Berlin, Germany. doi: https://doi.org/10.14279/
depositonce-8763

Xu, X., & Cai, H. (2020, January). Semantic approach to compliance checking of underground utilities.
Automation in Construction, 109. doi: https://doi.org/10.1016/j.autcon.2019.103006

https://doi.org/10.1016/j.autcon.2016.10.003
https://doi.org/10.1016/j.autcon.2016.10.003
http://dx.doi.org/10.13140/RG.2.1.1542.2805
http://dx.doi.org/10.3233/SW-200385
http://dx.doi.org/10.1108/EL-08-2014-0140
https://www.vrt.be/vrtnws/nl/2022/05/19/toegankelijkheid-terzake/
https://doi.org/10.1016/j.autcon.2020.103130
https://doi.org/10.14279/depositonce-8763
https://doi.org/10.14279/depositonce-8763
https://doi.org/10.1016/j.autcon.2019.103006

41

Xue, P., Poteet, S., Kao, A., Mott, D., & Braines, D. (2013). Constructing controlled English for both human
usage and machine processing. Proceedings of the 7th International Rule Challenge, the HLT and
the DC at RuleML2013, (pp. 175-189). Seattle, United States of America.

Zhang, J., & El-Gohary, N. M. (2017, January). Integrating semantic NLP and logic reasoning into a unified
system for fully-automated code checking. Automation in Construction, 73, 45-57. doi:
https://doi.org/10.1016/j.autcon.2016.08.027

Zhang, S., Teizer, J., Lee, J.-K., Eastman, C. M., & Venugopal, M. (2013, January). Building Information
Modeling (BIM) and safety: automatic safety checking of construction models and schedules.
Automation in Construction, 29, 183-195. doi: https://doi.org/10.1016/j.autcon.2012.05.006

https://doi.org/10.1016/j.autcon.2016.08.027
https://doi.org/10.1016/j.autcon.2012.05.006

42

Appendix A: RASE mark-up on the regulation on accessibility
Besluit van de Vlaamse Regering tot vaststelling van een gewestelijke stedenbouwkundige
verordening betreffende toegankelijkheid (5 juni 2009)
Dit is de gecoördineerde versie van de toegankelijkheidsverordening. Deze is volledig in werking sinds
september 2011.

Hoofdstuk III. Normbepalingen
Afdeling I. Algemene bepalingen
Art. 11.
<R> <a> Indien een aanvraag valt onder het toepassingsgebied van deze stedenbouwkundige verordening
, dan wordt in de stedenbouwkundige vergunning opgelegd dat de <r> normbepalingen van
hoofdstuk III dienen te worden nageleefd </r>. </R>

Art. 12.
§1. <R> In <a> alle delen van een constructie waarop dit besluit van toepassing is, moet voor een
<r> vrije en vlakke draairuimte </r> worden gezorgd. </R>
§2. <R> Met behoud van de toepassing van artikel 22, alinea 1, moet in <a> alle delen van een
constructie waarop dit besluit van toepassing is, <r> een vrije doorgangshoogte, na afwerking, van
minstens 2,30 meter </r> gegarandeerd worden. <E> Deze verplichting geldt niet als de realisatie ervan
tot een constructieprobleem leidt op bovenliggende verdiepingen waar geen werken aan gepland waren.
</E> </R>

Art. 13.
<R> Het <a> traject naar de delen van een constructie die de publiek toegankelijke functie vervullen ,
moet met <r> gids- of geleidelijnen </r> aangeduid worden. </R>
[Met een geleidelijn wordt een speciaal voor de geleiding van blinden of slechtzienden aangebracht
kunstmatig element bedoeld, dat voor blinden en slechtzienden bruikbaar is als oriëntatiepunt of als
ononderbroken geleiding bij het lopen. Met een gidslijn wordt een natuurlijk in de ruimte aanwezig element
bedoeld dat, hoewel het niet speciaal voor de geleiding van blinden of slechtzienden werd aangebracht,
voor blinden en slechtzienden bruikbaar is als oriëntatiepunt of als ononderbroken geleiding bij het lopen.]

Afdeling II. Bepalingen met betrekking tot looppaden naar constructies en naar de daarin gelegen
vertrekken
Art. 14.
<R> De <a> breedte van een looppad dat zich niet <e> tussen binnenmuren </e> bevindt en dat
niet valt onder de <e> bepalingen van het besluit van de Vlaamse Regering van 29 april 1997 houdende
vaststelling van een algemene bouwverordening inzake wegen voor voetgangersverkeer </e>, bedraagt
<r> minstens 150 cm </r>. </R>
<E>In afwijking van het eerste lid is een <a> versmalling van een dergelijk looppad toegestaan in
de volgende gevallen:
1. bij een versmalling die zich over <r> hoogstens 120 cm </r> uitstrekt: als ter hoogte van die versmalling
een <r> doorgang van minstens 90 cm </r> gegarandeerd wordt;

2. bij een versmalling die zich over <r> meer dan 120 cm uitstrekt </r>: als ter hoogte van die versmalling
een <r> doorgang van minstens 120 cm </r> gegarandeerd wordt en <a> minstens elke tien meter
, alsook aan het <a> begin en het einde van de versmalling voor een <r> vrije en vlakke
draairuimte </r> wordt gezorgd. </E>

Art. 15.
<R> De <a> breedte van een looppad, gemeten tussen onafgewerkte binnenmuren , bedraagt <r>
minstens 175 cm </r>, zodat na de afwerking van de wanden en met inbegrip van de ruimte voor plinten
en leuningen een <r> vrije en vlakke doorgangsbreedte van minstens 150 cm </r> gegarandeerd wordt.
</R>

43

<E> In de aanvraag kunnen afwijkingen op de ruwbouwmaten worden opgenomen als in het
aanvraagdossier gemotiveerd aangetoond wordt dat na de afwerking van de wanden een <a> vrije en
vlakke doorgangsbreedte, gemeten tussen de afgewerkte wanden met inbegrip van eventuele leuningen
en plinten , van <r> minstens 150 cm </r> gegarandeerd wordt. </E>
<E> In afwijking van lid 1 en 2 is een <a> versmalling van een dergelijk looppad toegestaan in de
volgende gevallen:
1. bij een versmalling die zich over <r> hoogstens 120 cm </r> uitstrekt: als de <a> breedte van het
looppad, gemeten tussen de onafgewerkte binnenmuren , <r> minstens 115 cm </r> bedraagt,
zodat na afwerking van de wanden en met inbegrip van de ruimte voor plinten steeds een <r> vrije en
vlakke doorgangsbreedte van minstens 90 cm </r> gegarandeerd wordt;

2. bij een versmalling die zich over <r> meer dan 120 cm </r> uitstrekt: als de <a> breedte van het
looppad, gemeten tussen de onafgewerkte binnenmuren , <r> minstens 145 cm </r> bedraagt,
zodat na afwerking van de wanden en met inbegrip van de ruimte voor plinten een <r> vrije en vlakke
doorgangsbreedte van minstens 120 cm </r> gegarandeerd wordt. In dit laatste geval moet <a> minstens
elke tien meter , alsook aan het <a> begin en het einde van de versmalling , voor een <r> vrije
en vlakke draairuimte </r> worden gezorgd. </E>

Art. 16.
<R> Een <a> looppad mag alleen <r> hellen in de richting dwars op de normale looprichting om
een normale afwatering te verzekeren </r>. </R>

Art. 17.
<R> Bij <a> handelingen waarbij brandhaspels, brandblusapparaten of andere uit de wand stekende
constructies geïnstalleerd worden, mogen die constructies het <r> ongestoord gebruik van het
looppad niet in het gedrang brengen </r>. </R>
[Hiertoe kunnen die apparaten in een nis ingewerkt worden zodat ze niet buiten het afgewerkte muurvlak
uitsteken.]

Afdeling III. Bepalingen met betrekking tot niveauverschillen
Art. 18.
<R> <a> Niveauverschillen <r> tot en met 18 cm </r> moeten, zowel binnen als buiten, minstens
met een <r> helling </r> overbrugd worden, <e> met uitzondering van niveauverschillen <r> tot twee
cm </r> in <s> buitenruimtes </s> of niveauverschillen <r> tot twee cm </r> bij een <s> overgang
tussen binnen- en buitenruimtes </s> </e>. </R>
<R> <a> Niveauverschillen van <r> meer dan 18 cm </r> moeten overbrugd worden, ofwel met
een <r> trap in combinatie met een helling </r>, ofwel met <r> een trap in combinatie met een lift </r>,
ofwel met <r> een helling in combinatie met een lift </r>. </R>
<E> Ter uitvoering van artikel 33 en artikel 34, §1, kan in de aanvraag een afwijking van de verplichting
tot het plaatsen van een <a> lift worden opgenomen onder andere als in het <r> aanvraagdossier
gemotiveerd aangetoond wordt dat de aanvraag over een gebouw, bestemd voor industrie en ambacht,
gaat, dat een of meer ruimtes op de gelijkvloerse verdieping eenzelfde functie hebben als de ruimtes op
een andere verdieping die door het ontbreken van de lift ontoegankelijk zijn, en dat de totale oppervlakte
die door de afwijking ontoegankelijk blijft, beperkt is tot ten hoogste vijfentwintig procent van de totale
publiek toegankelijke oppervlakte </r>. </E>
<E> Ter uitvoering van artikel 33 en artikel 34, §1, kan in de aanvraag ook een afwijking op de verplichting
tot het plaatsen van een <a> lift worden opgenomen als in het <r> aanvraagdossier aangetoond
wordt dat de aanvraag over een gebouw bestemd voor toeristische verblijfsaccommodatie gaat en dat het
gebouw na de handelingen twee of minder dan twee bouwlagen omvat en na de handelingen maximaal
tien accommodaties beschikbaar zijn </r>. </E>

Art. 19.
§1. <R> Het <a> hellingspercentage bedraagt <r> hoogstens </r>:
1. <r> tien procent </r> bij <a> niveauverschillen tot 10 cm , <e> of in geval van <s> buitenruimtes
</s> bij <a> niveauverschillen van 2 tot en met 10 cm </e>;

44

2. <r> 8,3 procent </r> bij <a> niveauverschillen van 10 cm tot 25 cm ;

3. <r> 6,25 procent </r> bij <a> niveauverschillen van 25 cm tot 50 cm ;

4. <r> vijf procent </r> bij <a> niveauverschillen van 50 cm of groter . </R>

§2. <R> Een <a> combinatie van hellingen is toegestaan op voorwaarde dat gezorgd wordt voor
een <r> tussenbordes van 120 cm op 150 cm <r> ter hoogte van de overgang. <E> Als een combinatie
van hellingen gepaard gaat met een <s> verandering van richting </s>, is een <r> tussenbordes van 150
cm op 150 cm </r>, ter hoogte van de richtingsverandering, vereist. </E> </R>
§3. <R> Bij hellingen met een hellingspercentage van meer dan vier procent moet zowel bovenaan als
onderaan voor een vrije en vlakke draairuimte worden gezorgd. Die draairuimte mag maximaal twee procent
in één richting hellen met het oog op de afwatering. </R>
§4. <R> Bij een overbrugging van een <a> niveauverschil van meer dan 50 cm of <a> een helling
van meer dan 10 m met een hellingspercentage van meer dan vier procent , moet voor een <r>
tussenbordes van 120 cm op 150 cm </r> gezorgd worden. <E> Als de helling <s> verandert van
richting </s>, is een <r> tussenbordes van 150 cm op 150 cm </r>, ter hoogte van de
richtingsverandering, vereist. </E> </R>
§5. <R> De <a> breedte van een helling met een hellingspercentage van meer dan vier procent
bedraagt <r> minstens 145 cm </r>, zodat na de afwerking van de eventuele wanden en met inbegrip
van de ruimte voor eventuele plinten en leuningen een <r> vrije en vlakke doorgangsbreedte van minstens
120 cm </r> gegarandeerd wordt. </R>
§6. <E> In de aanvraag kunnen afwijkingen worden opgenomen als in het aanvraagdossier gemotiveerd
aangetoond wordt dat na de afwerking van de eventuele wanden een <r> vrije en vlakke doorgangsbreedte,
gemeten tussen de afgewerkte wanden en met inbegrip van eventuele leuningen en plinten, van minstens
120 cm </r> gegarandeerd wordt. </E>
§7. <R> Als een <a> helling een niveauverschil van meer dan 10 cm overbrugt , moet aan de <a>
open zijkanten van de helling en aan de eventuele <a> tussenbordessen over de volledige
lengte van de helling voor een <r> afrijdbeveiliging van minstens 5 cm </r> hoogte gezorgd worden.
</R>
§8. (…)
§9. <R> Aan de zijkanten van een <a> helling die een niveauverschil van meer dan 25 cm overbrugt
, moet <r> aan beide zijden een leuning </r> aangebracht worden, die doorloopt over eventuele
tussenbordessen. <a> Voor het begin en aan het einde van de helling moet de leuning <r> minstens
40 cm horizontaal verderlopen </r>. Als de leuning in het ijle stopt, moet ze worden <r> afgerond naar
de grond of naar de wand </r>. </R>

Art. 20.
§1. <R> Over de volledige lengte van de <a> trappen en ter hoogte van eventuele <a>
tussenbordessen moet voor een <r> breedte van minstens 125 cm </r> gezorgd worden, telkens
gemeten tussen de onafgewerkte binnenmuren, indien aanwezig, , zodat na afwerking van de eventuele
wanden en tussen de leuningen, een <r> breedte van minstens 100 cm </r>, vrij van obstakels,
gegarandeerd wordt, wat gebruikers toelaat zich zonder hinder langs de trap te verplaatsen. </R>
§2. <R> Na <r> ten hoogste 17 treden </r> moet voor een <r> tussenbordes van minstens 100 cm
</r> diep gezorgd worden. </R>
§3. <R> Alle <a> treden moeten over een zo <r> gelijkvormig mogelijke op- en aantrede </r>
beschikken. </R>
[De aantrede is de horizontale afstand tussen twee opeenvolgende trapneuzen, gelegen op de looplijn van
twee opeenvolgende traptreden. De optrede is de verticale afstand tussen de bovenzijde van twee
opeenvolgende treden.]
<R> De <a> optrede mag <r> hoogstens 18 cm </r> meten en de <a> aantrede moet
<r> minimaal 23 cm </r> meten. </R> <R> De <a> som van tweemaal de optrede en eenmaal de
aantrede van elke trede moet <r> tussen 57 cm en 63 cm bedragen of een veelvoud daarvan </r>.
</R>
§4. <R> Aan beide zijden van de <a> trap moet een <r> trapleuning </r> aangebracht worden,
die doorloopt ter hoogte van eventuele tussenbordessen. <a> Voor het begin en aan het einde van de

45

trap moet de trapleuning <r> minstens 40 cm horizontaal verderlopen </r>. Als de leuning in het
ijle stopt, moet ze worden <r> afgerond naar de grond of naar de wand </r>. </R>
§5. <E> Bij gebouwen als vermeld in artikel 5, eerste en tweede lid, moet niet voldaan worden aan de
bepalingen van dit artikel, als het gebouw over een lift beschikt, die voldoet aan de bepalingen van artikel
21. </E>

Art. 21.
§1. <R> Als een <a> lift geïnstalleerd wordt, moet die in een <r> afgesloten koker </r> zitten of
moet het om een <e> verticale plateaulift </e> gaan. <a> Liften in een afgesloten koker moeten
<r> minstens liften zijn van het type 2 </r> zoals omschreven in de EN 81-70. </R>
§2. <R> Voor een <a> lifttoegang moet een <r> vrije en vlakke draairuimte </r> zijn. </R>
§3. <R> <a> Liften die in een afgesloten koker geplaatst zijn, moeten <r> automatische deuren
</r> hebben. De <a> vrije en vlakke doorgangsbreedte van de liftdeur moet <r> minstens 90 cm
</r> bedragen. </R>
§4. <R> Bij <a> verticale plateauliften moet het <r> hefplateau minstens 100 cm breed en 140
cm diep </r> zijn. </R>
§5. <R> Over de volledige lengte van de <a> plateaulift , alsook ter hoogte van de doorgangen van
de deuren, moet een <r> vrije en vlakke doorgangsbreedte van minstens 90 cm </r> gegarandeerd
worden. </R>

Afdeling IV. Bepalingen met betrekking tot toegangen en deuropeningen
Art. 22.
§1. <R> Voor <a> toegangen of deuropeningen moet, na afwerking, een <r> vrije doorgangshoogte
van minstens 2,09 meter </r> gegarandeerd worden. </R>
§2. <R> De <a> ruwbouwmaten van toegangen of deuropeningen moeten <r> minstens 105 cm
</r> breed zijn, zodat na afwerking een <r> vrije en vlakke doorgangsbreedte van minstens 90 cm </r>
gegarandeerd wordt.
<E> Voor wat de <a> ruwbouwmaten betreft van toegangsdeuren als vermeld in artikel 5 alinea 1, 2 en
3 kan een <r> minimale breedte van 100 cm </r> volstaan, mits na afwerking een <r> vrije en
vlakke doorgangsbreedte van minstens 85 cm </r> gegarandeerd wordt. </E> </R>

Art. 23.
<R> Bij elke <a> draaideur , moet er gezorgd worden voor een <r> alternatieve toegang of deur,
die niet draait </r>. <E> Deze verplichting geldt niet bij <a> draaideuren die uitgerust zijn met
mechanismen die het gebruik door personen met een handicap garanderen . </E> </R>

Art. 24.
<R> <a> Vóór en achter elke toegang of deur waarop dit besluit van toepassing is, met uitsluiting
van <e> toegangen tot of deuren naar gesloten trappenhallen </e> , moet voor een <r> vrije en vlakke
draairuimte </r> worden gezorgd, die <r> maximaal twee procent in één richting mag hellen </r> met
het oog op de afwatering. </R>
[De vrije en vlakke draairuimtes van meerdere deuren mogen elkaar overlappen. Het draaivlak van een deur
moet vlak zijn.]
<R> Bij <a> manueel te bedienen deuren moet de <r> buitenste rand van de vrije en vlakke
draairuimte aan de trekzijde van de deur, het draaivlak van de deur raken </r> en moet de <r> buitenste
rand van de vrije en vlakke draairuimte aan de duwzijde van de deur, het gesloten deurvlak raken </r>.
</R>

Art. 25.
<R> Bij een <a> manueel te bedienen deur , met uitsluiting van <e> toegangen tot of deuren naar
gesloten trappenhallen </e>, moet <r> naast de krukzijde voor een vrije en vlakke wand- en vloerbreedte
</r> worden gezorgd, met een <r> ruwbouwmaat van minstens 45 cm </r>, zodat na de afwerking een
<r> vrije en vlakke wand- en vloerbreedte van minstens 50 cm </r> gegarandeerd wordt. </R>

46

Art. 26.
<R> <a>Deuren die toegang verlenen tot aangepaste sanitaire voorzieningen, kleedruimtes of pashokjes
, moeten <r> naar buiten opendraaien </r>. </R>

Afdeling V. Bepalingen met betrekking tot parkeerplaatsen
Art. 27.
<R> Als een <a> constructie beschikt over één tot en met honderd eigen parkeerplaatsen , moet
<r> minstens zes procent van het totale aantal parkeerplaatsen </r> , en <r> minstens één parkeerplaats,
een aangepaste parkeerplaats </r> zijn. Vanaf <a> vijf tot en met honderd eigen parkeerplaatsen ,
moeten de aangepaste parkeerplaatsen ook <r> voorbehouden parkeerplaatsen </r> zijn. </R>
<R> Als een <a> constructie beschikt over meer dan honderd eigen parkeerplaatsen , moet
bovendien <s> per extra schijf van vijftig parkeerplaatsen </s>, telkens <r> één parkeerplaats een
aangepaste en voorbehouden parkeerplaats </r> zijn. </R>
<E> Als het totale aantal nieuw aan te leggen parkeerplaatsen minder bedraagt dan zes procent van het
totale aantal parkeerplaatsen, beperkt de verplichting van het eerste en het tweede lid zich tot de nieuw
aan te leggen parkeerplaatsen. </E>
<R> Een <a> aangepaste parkeerplaats voldoet aan de volgende normen:
1. ze bevindt zich <r> zo dicht mogelijk bij de toegankelijke ingang van de constructie of bij de
voetgangersuitgang van de parkeervoorziening </r>;

2. bij <s> dwarsparkeren en schuinparkeren </s> bedraagt de <r> breedte van de aangepaste
parkeerplaats minstens 350 cm </r> en bij <a> langsparkeren bedraagt de <r> lengte van de
aangepaste parkeerplaats minstens 600 cm </r>;

3. <r> het oppervlak van de aangepaste parkeerplaats helt niet meer dan twee procent </r>. </R>
[Om als voorbehouden parkeerplaats in aanmerking te komen, moet een parkeerplaats aan de bepalingen
van de derde alinea voldoen en voorbehouden worden voor personen met een handicap conform het
koninklijk besluit houdende algemeen reglement op de politie van het wegverkeer en van het gebruik van
de openbare weg van 1 december 1975, en aangegeven volgens de bepalingen van het voormelde
koninklijk besluit en het ministerieel besluit van 11 oktober 1976 waarbij de minimumafmetingen en de
bijzondere plaatsingsvoorwaarden van de verkeerstekens worden bepaald.]

Afdeling VI. Bepalingen met betrekking tot vaste inrichtingselementen
Art. 28.
<R> Als een <a> vast inrichtingselement met het oog op het onthaal van het publiek of een daarmee
gelijkgestelde constructie wordt aangebracht, moet <r> vóór dat element voor een vrije en vlakke
draairuimte </r> worden gezorgd. </R>
<R> Aan <a> alle elementen als vermeld in het eerste lid moet een <r> verlaagd gedeelte </r>
aangebracht worden. De <r> hoogte tot de bovenzijde van het verlaagde gedeelte bedraagt hoogstens
80 cm </r>. <r> Onder het verlaagde gedeelte moet een opening zijn van minstens 70 cm hoog, minstens
90 cm breed en minstens 60 cm diep </r>. </R>

Art. 29.
<R> Bij <a> handelingen aan binnen- of buitenruimtes met vaste inrichtingselementen die dienst doen als
zitplaatsen voor toeschouwers of toehoorders , moeten <r> minstens twee vrije ruimtes gereserveerd
worden voor personen met een handicap <r> in <s> elke ruimte met minder dan vijftig zitplaatsen waar
een voorstelling wordt aangeboden </s>. Elk van die vrije ruimtes moet <r> minstens 90 cm breed en
minstens 140 cm diep </r> zijn en moet zich bevinden op een <r> vloer zonder niveauverschillen of
hellingen </r>. Op het toegangspad naar die vrije ruimtes en eraan grenzend moet in een <r> vrije en
vlakke draairuimte </r> voorzien worden. </R>
<R> <a>Vanaf vijftig zitplaatsen en voor elke extra groep van vijftig zitplaatsen moet bijkomend
voor <r> minstens één extra vrije ruimte </r> als vermeld in het eerste lid gezorgd worden. </R>
<E> Als het totale aantal nieuw te bouwen, te herbouwen, te verbouwen of uit te breiden zitplaatsen
minder bedraagt dan de te reserveren vrije ruimtes voor personen met een handicap als vermeld in het
eerste en tweede lid, beperkt die verplichting zich tot de nieuw te bouwen, te herbouwen, te verbouwen of
uit te breiden zitplaatsen. </E>

47

Afdeling VII. Bepalingen met betrekking tot het aangepast karakter van constructies of delen van
constructies
Art. 29/1.
<R> Bij <a> handelingen aan publiek toegankelijke kleedruimtes of pashokjes moet <r> minstens
vier procent van het totale aantal kleedruimtes of pashokjes na de handelingen aan de bepalingen van
artikel 12 en van artikel 22 tot en met 26 voldoen </r>. Ongeacht het totale aantal kleedruimtes of
pashokjes na de handelingen moet <r> minstens één kleedruimte of pashokje aan de bepalingen van
artikel 12 en van artikel 22 tot en met 26 voldoen </r>. </R>
<R> Bij <a> aparte kleedruimtes of pashokjes , die alleen voor vrouwen of alleen voor mannen
bestemd zijn, moet telkens <r> minstens één kleedruimte of pashokje in elke ruimte voldoen aan de
bepalingen van artikel 12 en artikel 22 tot en met 26 </r>, <e> tenzij de aangepaste kleedruimte of het
aangepaste pashokje, bestemd voor zowel vrouwen als mannen, zich in een zone bevindt die niet
gereserveerd is voor mannen dan wel vrouwen </e>. </R>
<E> Als het totale aantal nieuw te bouwen, te herbouwen, te verbouwen of uit te breiden kleedruimtes of
pashokjes minder bedraagt dan vier procent van het totale aantal kleedruimtes of pashokjes, beperkt de
verplichting van paragraaf 1 zich tot de nieuw te bouwen, te herbouwen, te verbouwen of uit te breiden
kleedruimtes of pashokjes. </E>

Art. 29/2.
<R> Bij <a> handelingen aan publiek toegankelijke toiletten moet <r> in elk sanitair blok minstens
één toilet voldoen aan de bepalingen van artikel 12, 30, eerste lid en artikel 31, inzonderheid 1° en 2°
</r>. </R>
<R> Bij <a> handelingen aan publiek toegankelijke doucheruimtes , moet <r> in elk sanitair blok
minstens één douche voldoen aan de bepalingen van artikel 12, 30, tweede en derde alinea, artikel 31,
inzonderheid 1° en 3° en artikel 31/1 </r>. </R>
<R> Bij <a> aparte toiletten of doucheruimtes , die alleen voor vrouwen of alleen voor mannen
bestemd zijn, moet telkens <r> minstens één toilet of doucheruimte in elke zone voldoen aan de
bepalingen van artikel 12 en artikel 30 tot en met 31/1 </r>, <e> tenzij het aangepast toilet of de
aangepaste doucheruimte, bestemd voor zowel vrouwen als mannen, zich in een zone bevindt die niet
gereserveerd is voor mannen dan wel vrouwen </e>. </R>

Art. 30.
<R> De <a> ruwbouwmaten van een aangepast toilet moeten <r> minstens 1,70 meter op 2,25
meter </r> zijn, zodat na de afwerking van de wanden en met inbegrip van de ruimte voor plinten een
<r> ruimte van minstens 1,65 meter op 2,20 meter </r> gegarandeerd wordt. Bij die minimale maten
moet de deur in de korte zijde aangebracht worden. </R>
<R> De <a> ruwbouwmaten van een aangepaste doucheruimte , al dan niet met wastafel, moeten
<r> minstens 2,20 meter op 2,40 meter </r> zijn, zodat na de afwerking van de wanden en met inbegrip
van de ruimte voor plinten een <r> ruimte van minstens 2,15 meter op 2,35 meter </r> gegarandeerd
wordt. Bij die minimale maten moet de deur in de korte zijde aangebracht worden. </R>
<R> De <a> ruwbouwmaten van een aangepaste sanitaire voorziening met douche en toilet , al dan
niet met wastafel, moeten <r> minstens 2,40 meter op 2,45 meter </r> zijn, zodat na de afwerking van
de wanden en met inbegrip van de ruimte voor plinten een <r> ruimte van minstens 2,35 meter op 2,40
meter </r> gegarandeerd wordt. Bij die minimale maten moet de deur in de korte zijde aangebracht
worden. </R>

Art. 31.
<E> In de aanvraag kunnen <a> afwijkingen van de ruwbouwmaten , vermeld in artikel 30, worden
opgenomen als in het aanvraagdossier gemotiveerd aangetoond wordt dat na de afwerking van de sanitaire
ruimte aan de volgende voorwaarden is voldaan:
1. <R> <a>ter hoogte van de wastafel, de toiletpot en de douchezone is een <r> vrije en vlakke
draairuimte </r>. De ruimte onder de aangepaste wastafel mag meegerekend worden voor de bepaling
van de vrije en vlakke draairuimte; </R>

2. <R> in een <a> aangepast toilet :

48

a. moet <a> voor de toiletpot en na de afwerking en inrichting van de ruimte een <r> vrije afstand
van minstens 120 cm </r> gegarandeerd zijn;

b. moet <a> minstens aan één zijde van de toiletpot een <r> vrije transferzone van minstens 90
cm </r> zijn;

c. moet de <a> vrije doorgang tussen de toiletpot en de wastafel <r> minstens 90 cm </r> breed
zijn;

d. moet <a> de afstand van de voorzijde van de toiletpot tot tegen de achterliggende wand <r>
minstens 70 cm </r> bedragen;

e. moet <a> een wastafel aangebracht zijn <r> waaronder een ruimte is van minstens 70 cm hoog,
minstens 90 cm breed en minstens 60 cm diep </r>. <e> Als de wastafel in een inwendige hoek is
geplaatst, moet <a> de afstand tussen de as van de wastafel en de inwendige hoek <r> minstens
50 cm </r> bedragen </e>; </R>

3. <R> in een <a> aangepaste doucheruimte :
a. moet <a> de vloer van de douchezone <r> drempelloos aansluiten op de vloer van de
doucheruimte </r> ;

b. mag <a> de vloer van de douchezone <r> hoogstens twee procent hellen </r>;

c. moet <a> het vloeroppervlak van de douchezone na de afwerking van de wanden <r> minstens
120 cm op 120 cm </r> bedragen;

d. moet <a> een douchezitje van <r> minstens 45 cm diep en 40 cm breed </r> aanwezig zijn.
<e> Als het douchezitje in een inwendige hoek is geplaatst, moet de <a> afstand tussen de as van het
douchezitje en de inwendige hoek <r> minstens 45 cm </r> bedragen </e>;
moet aan <a> minstens één zijde van het douchezitje een <r> vrije transferzone van minstens 90
cm </r> zijn;
e. moet aan <a> de voorzijde van het douchezitje een <r> vrije ruimte van minstens 120 cm </r>
zijn;

f. moet de <a> douchekraan aangebracht worden op een <r> afstand tussen 45 en 55 cm van de
wand waartegen het douchezitje geplaatst is </r>. </R> </E>

Art. 31/1.
<R> Een <a> doucheruimte is pas aangepast als het een <r> vlakke drempelloze ruimte </r> is
en voorzien is van een <r> vrije en vlakke draairuimte </r>. </R>
<R> De <a> douchezone moet bovendien een <r> slipvrij oppervlak </r> hebben, dat <r>
gelijkloopt met de vloer </r> en dat <r> maximaal twee procent helt </r>. </R>

Art. 32.
<R> Het <a> toilet, de wastafel en de doucheruimte die ter beschikking staan van de gebruiker van
een aangepaste accommodatie, als vermeld in artikel 4, moeten aan <r> de bepalingen van dit hoofdstuk
</r> voldoen. </R>
<R> Als de aangepaste accommodatie een <a> vakantiewoning betreft, moet vlak bij de ingang van
de vakantiewoning in een <r> aangepaste parkeerplaats </r> worden voorzien, overeenkomstig artikel
27. </R>

49

Appendix B: rulebook.ttl

@prefix bot: <https://w3id.org/bot#> . 1
@prefix inst: <http://example.org/> . 2
@prefix owl: <http://www.w3.org/2002/07/owl#> . 3
@prefix props: <https://w3id.org/props#> . 4
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 5
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 6
@prefix schema: <http://schema.org/> . 7
@prefix sh: <http://www.w3.org/ns/shacl#> . 8
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> . 9
 10
// Model View Definition to ensure all the necessary data is present 11
schema:SpaceMVD 12
 a sh:NodeShape ; 13
 sh:targetClass bot:Space ; 14
 sh:property [15
 sh:path props:heightIfcSpace ; 16
 sh:minCount 1 ; 17
 sh:maxCount 1 ; 18
 sh:message "MVD - each space should have exactly one 'heightIfcSpace'." ; 19
] ; 20
 sh:property [21
 sh:path props:widthIfcSpace ; 22
 sh:minCount 1 ; 23
 sh:maxCount 1 ; 24
 sh:message "MVD - each space should have exactly one 'widthIfcSpace'." ; 25
] . 26
 27
schema:RampFlightMVD 28
 a sh:NodeShape ; 29
 sh:targetClass <https://pi.pauwel.be/voc/buildingelement#RampFlight> ; 30
 sh:property [31
 sh:path props:widthIfcRampFlight ; 32
 sh:minCount 1 ; 33
 sh:maxCount 1 ; 34
 sh:message "MVD - each rampflight should have exactly one 'widthIfcRampFlight'." ; 35
] . 36
 37
schema:SlabMVD 38
 a sh:NodeShape ; 39
 sh:targetClass <https://pi.pauwel.be/voc/buildingelement#Slab-LANDING> ; 40
 sh:property [41
 sh:path props:widthIfcSlab ; 42
 sh:minCount 1 ; 43
 sh:maxCount 1 ; 44
 sh:message "MVD - each slab should have exactly one 'widthIfcSlab'." ; 45
] ; 46
 sh:property [47
 sh:path props:depthIfcSlab ; 48
 sh:minCount 1 ; 49
 sh:maxCount 1 ; 50
 sh:message "MVD - each slab should have exactly one 'depthIfcSlab'." ; 51
] . 52
 53
schema:StairFlightMVD 54
 a sh:NodeShape ; 55
 sh:targetClass <https://pi.pauwel.be/voc/buildingelement#StairFlight> ; 56

50

 sh:property [57
 sh:path props:numberOfRiserIfcStairFlight ; 58
 sh:minCount 1 ; 59
 sh:maxCount 1 ; 60
 sh:message "MVD - each stairflight should have exactly one 61
 'numberOfRiserIfcStairFlight'." ; 62
] . 63
 64
schema:StairMVD 65
 a sh:NodeShape ; 66
 sh:targetClass <https://pi.pauwel.be/voc/buildingelement#Stair> ; 67
 sh:property [68
 sh:path props:width ; 69
 sh:minCount 1 ; 70
 sh:maxCount 1 ; 71
 sh:message "MVD - each stair should have exactly one 'width'." ; 72
] . 73
 74
schema:DoorMVD 75
 a sh:NodeShape ; 76
 sh:targetClass <https://pi.pauwel.be/voc/buildingelement#Door> ; 77
 sh:property [78
 sh:path props:overallHeightIfcDoor ; 79
 sh:minCount 1 ; 80
 sh:maxCount 1 ; 81
 sh:message "MVD - each door should have exactly one 'overallHeightIfcDoor'." ; 82
] ; 83
 sh:property [84
 sh:path props:overallWidthIfcDoor ; 85
 sh:minCount 1 ; 86
 sh:maxCount 1 ; 87
 sh:message "MVD - each door should have exactly one 'overallWidthIfcDoor'." ; 88
] . 89
 90
//declaration of functions 91
inst:lessThan 92
 a sh:SPARQLFunction ; 93
 rdfs:comment "Returns True if op1 < op2." ; 94
 sh:parameter [95
 sh:path inst:op1 ; 96
 sh:datatype xsd:double ; 97
 sh:description "The first int" ; 98
] ; 99
 sh:parameter [100
 sh:path inst:op2 ; 101
 sh:datatype xsd:double ; 102
 sh:description "The second int" ; 103
] ; 104
 sh:returnType xsd:boolean ; 105
 sh:select """ 106
 SELECT ?result 107
 WHERE { 108
 BIND(IF(?op1 < ?op2, true, false) AS ?result) . 109
 } 110
 """ . 111
 112
inst:stairFormula 113
 a sh:SPARQLFunction ; 114
 rdfs:comment "stair formula" ; 115
 sh:parameter [116
 sh:path inst:op1 ; 117

51

 sh:datatype xsd:double ; 118
 sh:description "riserHeight" ; 119
] ; 120
 sh:parameter [121
 sh:path inst:op2 ; 122
 sh:datatype xsd:double ; 123
 sh:description "treadLength" ; 124
] ; 125
 sh:returnType xsd:double ; 126
 sh:select """ 127
 SELECT ((2 * $op1 + $op2) AS ?result) 128
 WHERE { 129
 } 130
 """ . 131
 132
inst:slope 133
 a sh:SPARQLFunction ; 134
 rdfs:comment "slope of a rampflight" ; 135
 sh:parameter [136
 sh:path inst:op1 ; 137
 sh:datatype xsd:double ; 138
 sh:description "height rampflight" ; 139
] ; 140
 sh:parameter [141
 sh:path inst:op2 ; 142
 sh:datatype xsd:double ; 143
 sh:description "length rampflight" ; 144
] ; 145
 sh:returnType xsd:double ; 146
 sh:select """ 147
 SELECT ((($op1 / $op2) * 100) AS ?result) 148
 WHERE { 149
 } 150
 """ . 151
 152
// constraint definitions 153
schema:Space 154
 a sh:NodeShape ; 155
 sh:targetClass bot:Space ; 156
 sh:property [157
 sh:path props:heightIfcSpace ; 158
 sh:property schema:SpaceHeight ; 159
] ; 160
 sh:property [161
 sh:path props:widthIfcSpace ; 162
 sh:property schema:SpaceWidth ; 163
] . 164
 165
schema:SpaceHeight 166
 a sh:PropertyShape ; 167
 sh:path schema:value ; 168
 sh:minInclusive "2300"^^xsd:double ; 169
 sh:message "Art. 12 - The clearance height must be at least 2300 mm." . 170
 171
schema:SpaceWidth 172
 a sh:PropertyShape ; 173
 sh:path schema:value ; 174
 sh:minInclusive "1500"^^xsd:double ; 175
 sh:message "Art. 14 - The width of the walkway must be at least 1500 mm." . 176
 177
schema:Slopes; 178

52

 a sh:NodeShape ; 179
 sh:targetClass <https://pi.pauwel.be/voc/buildingelement#RampFlight> ; 180
 sh:message "Art. 19 - The slope of a rampflight can be at most 10% when the difference in 181
 height is less than 100 mm. The slope of a rampflight can be at most 8.3% when the 182
 difference in height lies between 100 and 250 mm. The slope of a rampflight can be at 183
 most 6.25% when the difference in height lies between 250 and 500 mm. The slope of a 184
 rampflight can be at most 5% when the difference in height is more than 500 mm." ; 185
 sh:or (186
 [187
 sh:and (188
 [189
 sh:expression [190
 inst:lessThan (191
 [192
 inst:slope (193
 [sh:path (props:heightIfcRampFlight schema:value)] 194
 [sh:path (props:lengthIfcRampFlight schema:value)] 195
) 196
] 197
 10 198
) 199
] 200
] 201
 sh:node schema:SlopeConstraint10 202
) 203
] 204
 [205
 sh:and (206
 [207
 sh:expression [208
 inst:lessThan (209
 [210
 inst:slope (211
 [sh:path (props:heightIfcRampFlight schema:value)] 212
 [sh:path (props:lengthIfcRampFlight schema:value)] 213
) 214
] 215
 8.3 216
) 217
] 218
] 219
 sh:node schema:SlopeConstraint8 220
) 221
] 222
 [223
 sh:and (224
 [225
 sh:expression [226
 inst:lessThan (227
 [228
 inst:slope (229
 [sh:path (props:heightIfcRampFlight schema:value)] 230
 [sh:path (props:lengthIfcRampFlight schema:value)] 231
) 232
] 233
 6.25 234
) 235
] 236
] 237
 sh:node schema:SlopeConstraint6 238
) 239

53

] 240
 [241
 sh:and (242
 [243
 sh:expression [244
 inst:lessThan (245
 [246
 inst:slope (247
 [sh:path (props:heightIfcRampFlight schema:value)] 248
 [sh:path (props:lengthIfcRampFlight schema:value)] 249
) 250
] 251
 5 252
) 253
] 254
] 255
 sh:node schema:SlopeConstraint5 256
) 257
] 258
) . 259
 260
schema:SlopeConstraint10 261
 a sh:NodeShape ; 262
 sh:property [263
 sh:path (props:heightIfcRampFlight schema:value) ; 264
 sh:maxInclusive "100"^^xsd:double ; 265
] . 266
 267
schema:SlopeConstraint8 268
 a sh:NodeShape ; 269
 sh:property [270
 sh:path (props:heightIfcRampFlight schema:value) ; 271
 sh:minInclusive "100"^^xsd:double ; 272
 sh:maxInclusive "250"^^xsd:double ; 273
] . 274
 275
schema:SlopeConstraint6 276
 a sh:NodeShape ; 277
 sh:property [278
 sh:path (props:heightIfcRampFlight schema:value) ; 279
 sh:minInclusive "250"^^xsd:double ; 280
 sh:maxInclusive "500"^^xsd:double ; 281
] . 282
 283
schema:SlopeConstraint5 284
 a sh:NodeShape ; 285
 sh:property [286
 sh:path (props:heightIfcRampFlight schema:value) ; 287
 sh:minInclusive "500"^^xsd:double ; 288
] . 289
 290
schema:RampLanding 291
 a sh:NodeShape ; 292
 sh:targetClass <https://pi.pauwel.be/voc/buildingelement#Slab-LANDING> ; 293
 sh:property [294
 sh:path props:widthIfcSlab ; 295
 sh:property schema:RampLandingWidth ; 296
] ; 297
 sh:property [298
 sh:path props:depthIfcSlab ; 299
 sh:property schema:RampLandingDepth ; 300

54

] . 301
 302
schema:RampLandingWidth 303
 a sh:PropertyShape ; 304
 sh:path schema:value ; 305
 sh:minInclusive "1200"^^xsd:double ; 306
 sh:message "Art. 19 - The width of a landing of a ramp must be at least 1200 mm." . 307
 308
schema:RampLandingDepth 309
 a sh:PropertyShape ; 310
 sh:path schema:value ; 311
 sh:minInclusive "1500"^^xsd:double ; 312
 sh:message "Art. 19 - The depth of a landing of a ramp must be at least 1500 mm." . 313
 314
schema:RampFlight 315
 a sh:NodeShape ; 316
 sh:targetClass <https://pi.pauwel.be/voc/buildingelement#RampFlight> ; 317
 sh:property [318
 sh:path props:heightIfcRampFlight ; 319
 sh:property schema:RampFlightLanding ; 320
] . 321
 322
schema:RampFlightLanding 323
 a sh:PropertyShape ; 324
 sh:path schema:value ; 325
 sh:maxInclusive "500"^^xsd:double ; 326
 sh:message "Art. 19 - A ramp must have an intermediate landing if the difference in 327
 height is more than 500 mm." . 328
 329
schema:RampFlightWidth 330
 a sh:NodeShape ; 331
 sh:targetClass <https://pi.pauwel.be/voc/buildingelement#RampFlight> ; 332
 sh:message "Art. 19 - The width of a rampflight must be at least 1200 mm, if the slope is 333
 more than 4%." ; 334
 sh:or (335
 [336
 sh:and (337
 [338
 sh:expression [339
 inst:lessThan (340
 4 341
 [342
 inst:slope (343
 [sh:path (props:heightIfcRampFlight schema:value)] 344
 [sh:path (props:lengthIfcRampFlight schema:value)] 345
) 346
] 347
) 348
] 349
] 350
 [351
 sh:node schema:RampFlightWidthConstraint 352
] 353
) 354
] 355
 [356
 sh:expression [357
 inst:lessThan (358
 [359
 inst:slope (360
 [sh:path (props:heightIfcRampFlight schema:value)] 361

55

 [sh:path (props:lengthIfcRampFlight schema:value)] 362
) 363
] 364
 4 365
) 366
] 367
] 368
) . 369
 370
schema:RampFlightWidthConstraint 371
 a sh:NodeShape ; 372
 sh:property [373
 sh:path (props:widthIfcRampFlight schema:value) ; 374
 sh:minInclusive "1200"^^xsd:double ; 375
] . 376
 377
schema:StairFlight 378
 a sh:NodeShape ; 379
 sh:targetClass <https://pi.pauwel.be/voc/buildingelement#StairFlight> ; 380
 sh:property [381
 sh:path props:numberOfRiserIfcStairFlight ; 382
 sh:property schema:StairFlightLanding ; 383
] ; 384
 sh:property [385
 sh:path props:riserHeightIfcStairFlight ; 386
 sh:property schema:StairFlightRiser ; 387
] ; 388
 sh:property [389
 sh:path props:treadLengthIfcStairFlight ; 390
 sh:property schema:StairFlightTread ; 391
] . 392
 393
schema:StairFlightLanding 394
 a sh:PropertyShape ; 395
 sh:path schema:value ; 396
 sh:maxInclusive "17"^^xsd:double ; 397
 sh:message "Art. 20 - A staircase must have an intermediate landing after at most 17 398
 treads." . 399
 400
schema:StairFlightRiser 401
 a sh:PropertyShape ; 402
 sh:path schema:value ; 403
 sh:maxInclusive "180"^^xsd:double ; 404
 sh:message "Art. 20 - The riser height must be at most 180 mm." . 405
 406
schema:StairFlightTread 407
 a sh:PropertyShape ; 408
 sh:path schema:value ; 409
 sh:minInclusive "230"^^xsd:double ; 410
 sh:message "Art. 20 - The tread length must be at least 230 mm." . 411
 412
schema:TooEasy 413
 a sh:NodeShape ; 414
 sh:targetClass <https://pi.pauwel.be/voc/buildingelement#StairFlight> ; 415
 sh:expression [416
 sh:message "Art. 20 - This stair is too easy." ; 417
 inst:lessThan (418
 570 419
 [420
 inst:stairFormula (421
 [sh:path (props:riserHeightIfcStairFlight schema:value)] 422

56

 [sh:path (props:treadLengthIfcStairFlight schema:value)] 423
) 424
] 425
) 426
] . 427
 428
schema:TooSteep 429
 a sh:NodeShape ; 430
 sh:targetClass <https://pi.pauwel.be/voc/buildingelement#StairFlight> ; 431
 sh:expression [432
 sh:message "Art. 20 - This stair is too steep." ; 433
 inst:lessThan (434
 [435
 inst:stairFormula (436
 [sh:path (props:riserHeightIfcStairFlight schema:value)] 437
 [sh:path (props:treadLengthIfcStairFlight schema:value)] 438
) 439
] 440
 630 441
) 442
] . 443
 444
schema:Stair 445
 a sh:NodeShape ; 446
 sh:targetClass <https://pi.pauwel.be/voc/buildingelement#Stair> ; 447
 sh:property [448
 sh:path bot:hasSubElement ; 449
 sh:qualifiedValueShape [sh:class <https://pi.pauwel.be/voc/buildingelement#Railing>]; 450
 sh:qualifiedMinCount 2 ; 451
 sh:message "Art. 20 - All stairs must have a railing on both sides." ; 452
] ; 453
 sh:property [454
 sh:path props:width ; 455
 sh:property schema:StairWidth ; 456
]. 457
 458
schema:StairWidth 459
 a sh:PropertyShape ; 460
 sh:path schema:value ; 461
 sh:minInclusive "1000"^^xsd:double ; 462
 sh:message "Art. 20 - The width of a staircase must be at least 1000 mm." . 463
 464
schema:Door 465
 a sh:NodeShape ; 466
 sh:targetClass <https://pi.pauwel.be/voc/buildingelement#Door> ; 467
 sh:property [468
 sh:path props:overallHeightIfcDoor ; 469
 sh:property schema:DoorHeight ; 470
] ; 471
 sh:property [472
 sh:path props:overallWidthIfcDoor ; 473
 sh:property schema:DoorWidth ; 474
] . 475
 476
schema:DoorHeight 477
 a sh:PropertyShape ; 478
 sh:path schema:value ; 479
 sh:minInclusive "2090"^^xsd:double ; 480
 sh:message "Art. 22 - The door height must be at least 2090 mm." . 481
 482
schema:DoorWidth 483

57

 a sh:PropertyShape ; 484
 sh:path schema:value ; 485
 sh:minInclusive "900"^^xsd:double ; 486
 sh:message "Art. 22 - The door width must at least 900 mm." . 487

legislation using Linked Data
Automated validation of building models against

Academic year 2021-2022

Master of Science in de ingenieurswetenschappen: architectuur

Master's dissertation submitted in order to obtain the academic degree of

Counsellor: Ir.-arch. Jeroen Werbrouck
Supervisor: Prof. ir.-arch. Paulus Present

Student number: 01704320
Emma Nuyts

	Automated validation of

building models against legislation

using Linked Data
	Acknowledgements
	Abstract
	Extended abstract
	Uitgebreid abstract
	List of figures
	List of abbreviations
	List of prefixes
	1 Introduction
	1.1 Current situation
	1.2 Scope of the thesis
	1.3 Structure of the thesis

	2 Automated Compliance Checking
	2.1 Definition
	2.2 Normative knowledge
	2.3 Building Information Management
	2.4 Existing commercial projects
	2.5 Conclusion

	3 Linked Data
	3.1 Introduction to Linked Data
	3.1.1 Definition
	3.1.2 Resource Description Framework
	3.1.2.1 Definition
	3.1.2.2 RDF terms
	3.1.2.3 Triples
	3.1.2.4 RDF syntaxes
	3.1.2.5 RDF Graphs

	3.1.3 RDF Schema and Web Ontology Language
	3.1.3.1 RDF Schema
	3.1.3.2 Web Ontology Language
	3.1.3.3 TBOX and ABOX

	3.1.4 SPARQL Protocol and RDF Query Language
	3.1.5 Shapes Constraints Language

	3.2 Linked Data in the AEC industry
	3.2.1 Linked Building Data
	3.2.2 Levels of modeling complexity
	3.2.3 Representation of geometry

	3.3 Conclusion

	4 Preliminary research
	4.1 Introduction
	4.2 Normative knowledge
	4.2.1 Processing the normative data
	4.2.2 Creating machine-readable rules
	4.2.3 Storing the rules

	4.3 Building data
	4.3.1 Limitations of BIM authoring tools
	4.3.2 Qualitative building model

	4.4 Conclusion

	5 Methodology
	5.1 RASE mark-up on the legislation
	5.2 Dummydata
	5.2.1 Dimensions of a space
	5.2.2 Dimensions of a rampflight
	5.2.3 Dimensions of a landing
	5.2.4 Insertion of the data

	5.3 Rulebook
	5.3.1 Introduction
	5.3.2 Model View Definition
	5.3.3 Types of constraints
	5.3.3.1 Value constraints
	5.3.3.2 Relational constraints
	5.3.3.3 Mathematical constraints
	5.3.3.4 Inference
	5.3.3.5 Combination of constraints

	5.4 Conclusion

	6 Proof of concept
	6.1 Introduction
	6.2 Conversion workflows
	6.3 Implementation
	6.4 Conclusion

	7 Evaluation and conclusion
	7.1 Evaluation of SHACL for use in compliance checking
	7.2 Evaluation of the implementation
	7.3 Evaluation in the entirety of the building legislation
	7.4 Future work
	7.5 Conclusion

	Bibliography
	Appendix A: RASE mark-up on the regulation on accessibility
	Appendix B: rulebook.ttl

