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Abstract

We study renormalization group flows of three-dimensional superconformal Chern-Simons
field theories using holography. The gravity duals of the flow solutions are constructed
in four-dimensional maximally supersymmetric gauged supergravity theories which are
known to embed into string theory or M-theory. We work within a Z3

2-invariant trun-
cation which keeps 14 real scalar fields out of the 70 scalar fields of the maximal four-
dimensional supergravity. Our work brings forward new RG flows in the ABJM, SU(N)
Chern-Simons and J-fold CFTs which are dual to domain wall solutions interpolating
between supersymmetric vacua of, respectively, de Wit-Nicolai SO(8), dyonically gauged
ISO(7) and dyonically gauged [SO(6)×SO(1, 1)]⋉R12 supergravity. Moreover, our results
reveal that RG flows can break the continuous symmetry group along the flow within the
Z3

2-truncation. Our solutions are constructed from a novel numerical algorithm which is
designed, developed and tested in this work. As this algorithm is inspired by basic con-
cepts of machine learning, our positive results indicate that combining theoretical physics
with machine learning promises to be a fruitful direction of future research.
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Summary in layman’s terms

Imagine that we lived in a world much like our own, with many cultures and languages,
but lacking any means of translation. Different communities would be unable to exchange
any information when they encounter each other. We would never learn to be humble
from the story of Daedalus and Icarus, we would never get inspired to be as heroic as
Hercules and we would never grasp the profound life lessons of Dostoevsky. In some sense,
this artificial world portrays the landscape of theoretical physics established at the end
of the 20th century.

Physics of the 20th century is marked by two intellectual revolutions. On the one hand,
the famous theory of general relativity, formulated by Einstein, provided a new description
of space, time and gravity. Einstein’s theory allows us to understand phenomena on the
scale of large and heavy objects, such as planets, stars, and galaxies. On the other hand,
during the previous century, it was observed that a quantum nature of reality emerges
once we probe Nature at the smallest possible length scale, even smaller than the atom.
The subsequent development of particle physics required a new theoretical framework,
known to physicists as quantum field theory, in order to explain this behaviour. These
two theories, general relativity and quantum field theory, are both formulated in their own
language and, like the hypothetical world we fantasized above, lack any means to talk to
each other. This is a conceptual problem in theoretical physics, as some situations require
us to deal with large matter densities at small scales. For example, at the dawn of our
universe, an event known as the Big Bang, the entire observable universe was compressed
into a size comparable to that of an atom. Describing this ‘primeval atom’ is impossible
with general relativity or quantum field theory alone. Hence, we need a new theory, called
quantum gravity, to provide us with an accurate description of such phenomena.

Currently, the most viable candidate for quantum gravity is string theory. Out of
studies of string theory came a remarkable discovery, which plays the role of the deus ex
machina in our story. That is, string theory brought forward a dictionary that allows us
to translate expressions from the language of gravity theories to the language of quantum
field theory and vice versa. This link, known as the AdS/CFT correspondence, gives
physicists new computational tools that provide a window into the phenomena of so-
called strongly coupled quantum field theories. The term ‘strong coupling’ signifies that
it is hard or even impossible to do computations in the theory. An exciting feature of
the AdS/CFT dictionary is that it translates these ‘hard problems’ of a quantum field
theory into ‘easier problems’ formulated in a gravity theory, enabling us to compute and
solve these problems. In this thesis, we explore applications of this interesting aspect of
the AdS/CFT dictionary. In particular, we gain insight on the dependence of strongly
coupled quantum field theories on the energy scale with the help of calculations performed
in a gravity theory.
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Beknopte samenvatting

Stel je voor dat we in een wereld zouden leven gelijkend op de onze, met verschillende
culturen en talen, maar zonder enige manier om te vertalen. We zouden nooit leren om
nederig te zijn vanuit het verhaal van Daedalus en Icarus, we zouden nooit geïnspireerd
worden om zo heroïsch te zijn als Hercules, en we zouden nooit in staat zijn de diepe
levenslessen van Dostojevski te vatten. In zekere zin weerspiegelt deze fictieve wereld het
landschap van de theoretische fysica aan het einde van de 20ste eeuw.

De fysica van de 20ste eeuw is gekenmerkt door twee intellectuele revoluties. Aan de ene
kant gaf de befaamde algemene relativiteitstheorie van Einstein ons een nieuwe beschrijv-
ing van ruimte, tijd en gravitatie. Einstein’s theorie laat ons toe om fenomenen te vatten
op de schaal van erg grote en zware objecten zoals planeten, sterren en sterrenstelsels.
Aan de andere kant observeerde men in de vorige eeuw dat er een kwantum versie van de
realiteit naar voren treedt wanneer we de Natuur onderzoeken op de kleinste schaal, zelfs
kleiner dan een atoom. De daaropvolgende ontwikkeling van de deeltjesfysica had nood
aan een nieuw theoretisch kader, dat fysici kwantumveldentheorie noemen, om dit gedrag
te verklaren. Deze twee theoriën, de algemene relativeit en de kwantumveldentheorie, zijn
geformuleerd in hun eigen taal en, net als de fantasiewereld van hierboven, hebben geen
manier om met elkaar in conversatie te treden. Dit is een conceptueel probleem in de
theoretische fysica, aangezien we in bepaalde situaties geconfronteerd worden met grote
materiedichtheden op kleine schalen. Bij het ontstaan van ons universum, de oerknal,
bijvoorbeeld, was het hele heelal samengeperst in een volume vergelijkbaar met dat van
een atoom. Het beschrijven van dit ‘oeratoom’ is onmogelijk met alleen maar algemene
relativiteit of kwantumveldentheorie. Daarom hebben we nood aan een nieuwe theorie,
genaamd kwantumgravitatie, om zulke fenomenen accuraat te beschrijven.

Momenteel is de meest geschikte kandidaat voor een theorie van kwantumgravitatie
de snaartheorie. Uit onderzoek in de snaartheorie kwam een opmerkelijke ontdekking,
die de rol speelt van de deus ex machina in ons verhaal. Dat wilt zeggen, snaartheo-
rie heeft een woordenboek naar voren gebracht dat ons toelaat om vertalingen te maken
van de taal van de gravitatie naar de taal van een kwantumveldentheorie en omgekeerd.
Deze link, gekend als de AdS/CFT correspondentie, geeft fysici een nieuw rekenkundig
werktuig dat een blik werpt in zogenaamde sterk gekoppelde kwantumveldentheoriën. De
term ‘sterk gekoppeld’ wijst erop dat berekeningen moeilijk of zelfs onmogelijk zijn. Een
stimulerend aspect van het AdS/CFT woordenboek is dat het de ‘moeilijke problemen’
van een kwantumveldentheorie vertaalt naar ‘makkelijkere problemen’ in een gravitatie
theorie, zodat we deze problemen kunnen berekenen en oplossen. In deze thesis onder-
zoeken we toepassingen van dit interessante aspect van het AdS/CFT woordenboek. We
verwerven inzicht in de wijze waarop sterk gekoppelde kwantumveldentheoriën afhangen
van de energieschaal dankzij berekeningen in een gravitatie theorie.
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List of Abbreviations

ABJM Aharony-Bergman-Jafferis-Maldacena

BPS Bogomol’nyi–Prasad–Sommerfield

CFT conformal field theory

EH Einstein-Hilbert

FP fixed point

GR general relativity

IR infrared, used to denote low energy/large distance behaviour

KK Kaluza-Klein

ML machine learning

OPE operator product expansion

QCD quantum chromodynamics

QED quantum electrodynamics

RG renormalization group

SCA superconformal algebra

SCFT superconformal field theory

sugra supergravity

susy supersymmetry

SYM super Yang-Mills
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NOMENCLATURE ix

UV ultraviolet, used to denote high energy/short distance behaviour

List of Symbols

AdSd anti-de Sitter space-ti,e in d dimensions

α′ Regge slope, equal to ℓ2s

ℓs string length

ηµν Minkowski space-time metric in D dimensions with mostly plus convention, i.e.
ηµν = diag(−1, 1, 1, . . . , 1)

κ2 8πG, with G the gravitational constant

Λ cosmological constant, or cut-off scale in Sections 3.4 and 4.3

Dα Kähler covariant derivative

K Kähler potential

Kαβ Kähler metric

µ, ν, . . . coordinate indices

∇µ covariant derivative with respect to diffeomorphisms

a, b, . . . local frame indices

Dµ covariant derivative with respect to local Lorentz transformations

g gauge coupling

gµν space-time metric

gs string coupling

L length scale of AdS

Sn The n-sphere.

Tµν energy-momentum tensor

V scalar potential

W superpotential

We use natural units (ℏ = c = 1) and the mostly plus convention for the metric.
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Chapter 1

Introduction

Imagine that we lived in a world much like our own, with many cultures and languages, but
lacking any means of translation. Different communities would be unable to exchange any
information when they encounter each other. We would never learn to be humble from the
story of Daedalus and Icarus, we would never get inspired to be as heroic as Hercules and
we would never grasp the profound life lessons of Dostoevsky. Clearly, having a method to
convey information between one another enriches our understanding of abstract subjects.
In some sense, this artificial world portrays the landscape of theoretical physics established
at the end of the 20th century.

1.1 The landscape of theoretical physics
Physics in the 20th century culminated in two new revolutionizing insights into our de-
scription of Nature. The first one is the famous theory of general relativity, formulated
by Albert Einstein. The term ‘relativity’ refers to the idea that the concepts of space and
time, originally thought to be merely the woodwork of the static stage of the universe, de-
pend on the relative motion of observers. That is, observers travelling at different speeds
with respect to each other will disagree on their notions of space and time. Moreover,
space and time are coordinates which should be treated on the same footing, and together,
they combine into what is known as space-time. Einstein took his groundbreaking idea
of space-time one step further and formulated an entirely new theory of gravity. Instead
of describing gravity as a Newtonian force, attracting apples and moons, Einstein stated
that space-time is not static, but rather something dynamical that can deform, stretch
and even curve. Gravity, Einstein said, is merely the manifestation of the fact that the
fabric of our space-time is curved. This curvature originates from all the sources of matter
and energy. When poured into a proper mathematical framework, this new description of
gravity turned out to be highly successful. It correctly explained why the planet Mercury
draws odd rosette shapes as it traces its orbit, predicted several phenomena which were
experimentally verified and even continues to triumph to this day while we are taking
the first-ever pictures of black holes. In short, general relativity is currently our most
accurate description of the universe on the largest of scales: planets, stars, galaxies and
even the birth of the universe, the Big Bang.

On the other hand, the 20th century is also the epoch in which the quantum revolution
took place. After failed attempts at a theoretical explanation of the spectrum of radiation
coming from a blackbody, Planck conceived the idea that the energy levels of atoms would

1
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not form a continuous spectrum, but rather constitute a set of discrete values. That is,
the energy spectrum would be quantised. Because of its success, this hypothesis was for-
malized and eventually led to the theory of quantum mechanics, where quantised energy
levels emerge from all physical systems studied at very small scales. However, quantum
mechanics is irreconcilable with the principles of relativity. Indeed, the Schrödinger equa-
tion, the evolution equation of quantum mechanics, involves an explicit time derivative
but no space derivatives, thereby violating the tenet of relativity that all space-time coor-
dinates should be treated on equal footing. By requiring that both the ideas of quantum
mechanics and the principles of relativity are valid, physicists developed quantum field
theory. In quantum field theory, the fundamental objects of the theory are not particles,
but fields that permeate all of space-time and of which the excitations are interpreted
as particles. The framework of quantum field theory turned out to provide a successful
description of particle physics: the three fundamental interactions besides gravity (the
electromagnetic, weak and strong interactions) join together in a quantum field theory
called the Standard Model. Moreover, the Standard Model incorporates all fundamental
particles that have been observed in Nature so far, such as electrons, the constituents of
protons and neutrons (quarks) and the mysterious neutrinos. The ultimate triumph of
the Standard Model was the successful prediction of the Higgs boson, the ‘God-particle’
that gives mass to all known, massive particles. The Higgs boson was conjectured to exist
merely based on principles of an abstract type of symmetry known as a gauge symmetry.
Its observation validated quantum field theory as the theoretical blueprint of the three
interactions of particle physics and provides an extremely accurate description of Nature
on the smallest of scales.

The established landscape of theoretical physics therefore has two completely distinct
theories that reign in different regimes. On the largest of scales, the theory of general
relativity describes the gravitational interaction and the motion of stars, galaxies and even
offers a model for cosmology. On the smallest of scales, the framework of quantum field
theory accounts for the three interactions of particle physics and the behaviour of Nature’s
fundamental constituents of matter. Both theories have their own language associated to
them. We certainly expect that these theories will meet each other in some exotic places
in the universe. In the vicinity of black holes, for example, quantum effects may produce
strange incidents. More importantly, at the origin of our universe, we have to deal with
enormous space-time curvatures and immense matter densities located essentially at a
single point. In these examples, we therefore expect that some hybrid theory, named
quantum gravity, must come into play as fundamental description of Nature, unifying all
known interactions.

Unfortunately, these two theories are very much like the dystopian world that opened
this introduction. They resemble two characters that lack any means of communicating
with each other. Indeed, if we attempt to describe gravity as a quantum field theory with
a spin-2 particle, known as the graviton, which mediates the gravitational interaction,
the theory is ill-defined and our calculations yield infinities. These infinities are a signal
that our equations to work with are simply wrong, and therefore, that we are missing an
essential piece of the puzzle.

A new approach has to be found to resolve this issue, and theoretical research in the
past decades has culminated in a viable candidate of quantum gravity known as string
theory. The way string theory attempts to resolve the above infinities is by ‘smearing out’,
an idea that turned out to be fruitful in the past. Indeed, the infinities that made the Fermi
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theory of weak interactions ill-defined were cured by introducing bosons which smeared
out the interactions. In string theory, on the other hand, all point-particles themselves
are smeared out into one-dimensional objects resembling strings. While string theory
harbors the potential of unifying all interactions, understanding its mathematics and the
implications for experiments turned out to be quite difficult. In a way, we have traded
incorrect answers for finite results, but paid the price of having to deal with a much more
complicated theory. Therefore, it remains to be seen whether experiments can confirm
that string theory is indeed our desired, unifying ‘theory of everything’. Unfortunately,
current prospects indicate that such a verification will likely not be realized in the near
future.

However, even without this confirmation, string theory is able to deliver new advance-
ments into our understanding of theories of gravity and quantum field theories. The
most exciting development in this regard is the AdS/CFT correspondence, also known as
gauge/gravity duality or holography. This correspondence plays the role of the deus ex
machina in our story. That is, AdS/CFT offers us a dictionary that allows us to translate
all terminology of a gravity theory to expressions in the completely different language of
quantum field theory. In this thesis, we will neglect phenomenological aspects of string
theory and its relation to quantum gravity. Instead, we take this AdS/CFT dictionary as
an independent tool with a life of its own and focus on the new insights into physics that
we can gain from it.

1.2 AdS/CFT and the holographic dictionary
To properly introduce AdS/CFT, we have to enter deeper into the domain of string theory.
As mentioned, the fundamental quantum objects in string theory are one-dimensional
spatially extended strings. They can be either closed or open, in the sense that they
either form a closed loop or have two free endpoints. The philosophy behind string theory
is that the vibrational modes of these strings incorporate the particles observed in Nature,
the three gauge interactions and even gravity, thereby (possibly) providing a description of
quantum gravity. In essence, string theory unifies all of Nature into one musical magnum
opus. The length of these strings is extremely small (on the order of the Planck length)
and as such, today’s experiments are unable to probe and verify this stringy-like nature
of particles. As a consequence of requiring mathematical consistency, string theories can
be interpreted as theories that are formulated in ten dimensions of space-time rather
than the usual four that we experience in our everyday lives. Like the string nature of
particles, these extra dimensions of space-time escaped detection in experiments so far as
they are ‘curled up’ into small spaces. The extra freedom gained by additional space-time
directions allows us to generalize the notion of the string. Indeed, we can consider higher-
dimensional extended objects that move through space-time, and due to this description
resembling that of a membrane, these objects are called branes. In some circumstances,
strings with free endpoints can ‘anchor’ on these branes, and the vibrations of the strings
give dynamics to the branes.

It is because of these branes that we are able to formulate a dictionary between gauge
and gravity theories. In 1997, the Argentinian cosmologist Juan Maldacena considered
a collection of coincident branes in string theory. By tuning gs, the coupling parameter
of string theory, he identified two different regimes which produced completely different
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pictures. On the one hand, at small coupling gs, gravity is essentially switched off and
strings can easily anchor to the branes. The vibrational modes of the branes then describe
a gauge quantum field theory. For the case that Maldacena studied, this quantum field
theory is invariant under scale transformations, such that the field theory is a conformal
field theory or CFT for short. On the other hand, at large gs, gravity becomes relevant.
The branes will curve the geometry of the space-time, resulting in a well-known solution
of general relativity: an anti-de Sitter, or AdS, space-time. Hence we have, at different
values of gs, completely different pictures emerging: a quantum field theory on the one
hand, and a gravity theory on the other. However, since nothing fundamentally changed
in the original set-up of the theory, there is no reason why we should consider these
pictures to be at odds with each other. Hence, Maldacena concludes, the two pictures
should in fact be completely equivalent to each other. Therefore, there must be an exact
correspondence between the CFT emerging at small gs and the AdS appearing at large
gs, which became known as the AdS/CFT correspondence.

Research flourished after Maldacena published his groundbreaking idea, and his ar-
gument was extended to other cases. It was quickly realized that the correspondence
would offer a dictionary between gauge quantum field theories and theories of gravity in
general. As such, it would provide an entirely new theoretical instrument. Moreover, two
additional features of AdS/CFT implied that this instrument could provide a window into
currently inaccessible physics, and uncover deep truths on the nature of quantum gravity.

The latter is related to the remarkable observation that in Maldacena’s AdS/CFT, the
quantum field theory is defined on a space-time which has one dimension less compared
to the gravity theory. It seems as if all phenomena occurring at the gravity side of
the correspondence can equally be formulated in a lower-dimensional space-time without
losing any information. In some sense, this resembles the mechanism behind a hologram,
where information is encoded on a two-dimensional surface and gets projected into a
three-dimensional volume. For this reason, Maldacena’s correspondence is also referred
to as holography and the dictionary offered by AdS/CFT is said to be ‘holographic’.

Both sides of the correspondence have their own coupling parameter which dictates the
regime where perturbative calculations (which is, unfortunately, the only way to perform
calculations in most cases) are valid and meaningful. The other appealing feature of
AdS/CFT is the fact that this correspondence is in particular a strong/weak duality.
This means that both sides of the correspondence are necessarily at a different regime of
coupling: whenever the quantum field theory is strongly coupled, the gravity theory is
weakly coupled and vice versa. Therefore, the AdS/CFT correspondence can offer us a
glimpse into the physics of strongly coupled field theories via computations performed in
a gravity theory. This is precisely our aim in this thesis.

1.3 Renormalization group flows and their holographic
translation

In this thesis, we explore how AdS/CFT offers us a window into strongly coupled phenom-
ena in physics. More specifically, we study the evolution of strongly coupled quantum field
theories through calculations in the appropriate dual gravity theories. This ‘evolution’
originates from the observation that physics depends on the energy scale, or equivalently,
on the magnification, under which we study systems. For example, when considering a
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free electron, its charge is not a fixed number in Nature, but rather depends on the scale
at which the electron is being probed. Indeed, the vacuum surrounding the electron is
not completely empty, as quantum field theory tells us. In vacuum, quantum fluctua-
tions imply that it is possible to create an electron-positron pair out of photons, which
will annihilate again at a later time. Due to these fluctuating pair creations, the vac-
uum surrounding an electron gets polarized and the charge of the electron gets partially
screened. If we get closer to the electron, we will ‘see’ less electron-positron pairs and
hence less screening due to vacuum polarization. Therefore, particles will feel a more
negative charge of the electron. For this reason, the electric charge of particles, seen as
the coupling constant of the underlying quantum field theory, is said to be a ‘running
coupling’, as its value depends on the energy scale.

The above hand-waving explanation can be made mathematically precise and is a
general phenomenon of quantum field theory, related to the concept of renormalization.
As such, the evolution of parameters of the theory is known as the renormalization group
evolution (or flow). While the effect of this evolution is not dramatic for quantum electro-
dynamics, the theory describing electrons, it is a crucial way of gaining insight into other
field theories such as quantum chromodynamics, the quantum field theory of the strong
interaction. Indeed, the renormalization group tells us that the coupling of quantum chro-
modynamics goes to zero at high energy (or equivalently, small distance separations). This
implies that the theory essentially becomes non-interacting, a feature known as asymp-
totic freedom. However, as we decrease the energy, or equivalently increase the distance
separation between particles, the interaction becomes much stronger. Understanding the
renormalization group evolution provides us key insights into the nature of the interaction
at all energy scales.

In some sense, the renormalization group shows that energy can be interpreted as an
extra dimension. This idea is also asserted by the AdS/CFT correspondence. Indeed,
as we will argue in more detail later on, the holographic nature of AdS/CFT manifests
itself in the identification of one of the space-time coordinates of the gravity theory with
the energy scale of the field theory. Moreover, AdS/CFT provides us a new device to
tackle the problem of finding these renormalization group flows by translating it into the
language of a gravity theory. This is precisely our goal in this thesis: to gain knowledge
on the evolution of quantum field theories by studying their gravity duals, known as
holographic renormalization group flows.

However, in order to make calculations feasible, we have to take a step back from
string theory in which AdS/CFT was originally formulated. That is, we have to consider
a low-energy limit of string theory known as supergravity, where we again approximate
strings by point-particles. In practice, we will deal with a supergravity theory that itself
is invariant under a gauge symmetry and is therefore called gauged supergravity. By
introducing this gauge group, we couple the vector fields of the supergravity theory to the
scalars of the theory. This will introduce a highly non-trivial potential for the scalar fields.
In fact, ‘highly non-trivial’ is a serious understatement, as this scalar potential will be a
complicated function of 70 real variables. However, we are able to perform calculations
by restricting our attention, in a mathematically well-defined sense, to a subsector of the
scalar fields, such that the potential depends on only 14 real variables. The extrema of
this scalar potential are solutions of the theory which correspond to empty AdS space-
times. As such, AdS/CFT dictates that these solutions are dual to conformal vacua of the
dual quantum field theory. Since the scalar potential has multiple extrema, we can look
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for a solution starting from a vacuum located “high” up on the mountain of this potential
landscape, and subsequently travels downwards, according to a gradient descent rule, until
it settles into another vacuum solution at a lower value of the scalar potential. As such, we
have an interpolating solution between two empty AdS space-times, and the holographic
dictionary allows us to interpret these solutions as dual to renormalization group flows in
the dual quantum field theory. Our work in this thesis is focused on constructing precisely
such interpolating solutions in various gauged supergravity theories.

1.4 Outline
Now that we have situated this thesis within the larger framework of theoretical physics,
we will give a detailed overview of the contents of this thesis and how we will arrive at
the goal established above. The thesis is divided into three parts.

In Part I, we provide the preliminary concepts required to follow the main content
of this thesis. Since this work is aimed at second-year master students, ‘preliminary’ in
this case refers to concepts that are covered in detail in the theoretical physics courses
of KU Leuven. In Chapter 2, we give the basics of general relativity, our most accurate
description of gravity so far. Section 2.4 also introduces anti-de Sitter space-times, the first
actor of AdS/CFT. In Chapter 3, we briefly discuss some basic ingredients of quantum field
theory which are relevant for the thesis, such as gauge symmetries and renormalization.
In this chapter, we also introduce conformal field theory, the second actor of AdS/CFT. In
Chapter 4, we spend more time on renormalization group flows of quantum field theories.
Moreover, we review basic concepts of dynamical systems in this chapter, as these will be
of central importance to our calculations presented at the very end of the thesis.

In Part II, we go beyond general relativity and quantum field theory and initiate
readers into string theory and, more importantly, supersymmetry and supergravity. The
aims of Chapter 5 are twofold. First of all, it provides a more technical motivation for
the development of an entirely new framework for quantum gravity. On the other hand,
it serves as a detailed introduction to string theory and supergravity, without burdening
readers with equations which may mystify the core concepts required to understand the
remainder of the thesis. As such, it is intended as a bridge between Part I and Part II.
From that point onward, we open Pandora’s box of mathematics and will no longer spare
the technical details of the story. Chapter 6 introduces a new symmetry of space-time,
supersymmetry, and subsequently discusses the main scene of our work, supergravity. We
consider gauged supergravity theories and introduce the notion of a consistent truncation,
which make it feasible for us to perform our calculations. Chapter 7 offers a more technical
introduction to the AdS/CFT correspondence, and formulates the holographic dictionary
we employ in the final part of the thesis.

In Part III, we present the main topic of the thesis, the holographic renormalization
group flows. By matter of introduction to the topic, Chapter 8 considers toy models which,
as a simplified version of the problem, allow us to highlight the most prominent features
based on analytic calculations. In Chapter 9, we take the holographic renormalization
group flows beyond these toy models and develop them in gauged supergravity theories in
four dimensions of space-time, which are the supergravity theories that are also studied
extensively in the literature. As such, we reiterate concepts and ingredients which are
introduced in detail in earlier chapters, such that this chapter can be read independently
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from all others by experts in the field. Our aim is to present this chapter on the level
of recent publications with respect to the topic of holographic RG flows and to include
‘state-of-the-art’ research on this matter. Hence, this final chapter also delivers our new
results which give new insights into the dual field theories. To conclude the thesis, we
reflect on our work and on possible continuations and extensions for the future.



Part I

Preliminaries



Chapter 2

General relativity

The theory of general relativity (GR), first formulated by Albert Einstein in 1915, revolu-
tionized our view on space and time and provided a sophisticated description of gravity.
Einstein himself proposed three experimental tests of his theory of relativity [1]: the de-
flection of light rays, the precession of perihelia of planets and the gravitational redshift
of light, all of which validated Einstein’s theory. Afterwards, GR continued to withstand
even more astonishing tests. Gravitational waves originating from mergers of black holes
or neutron stars are consistent with GR [2–4]. In the past years, humankind was even
able to photograph the elusive black holes for the very first time, and recently, we even
got a view of the black hole ‘in our own backyard’ [5, 6]. Also here, the equations of GR
hold to an outstanding accuracy.

The essence of GR is neatly summarized by a famous quote by John Wheeler: “Space-
time tells matter how to move, matter tells space-time how to curve” [7]. Hence, if rela-
tivity were a play, its actors would be massive objects such as stars and galaxies, and its
stage a curved manifold, changing from scene to scene. To describe curved manifolds, we
will borrow concepts from the mathematical field of differential geometry. In this chapter,
we will summarize the most important mathematical tools and give a brief overview of
the theory of GR, based on [1, 8]. Moreover, this chapter serves as an introduction to the
more complicated theory of supergravity, which directly builds on the framework of GR.

2.1 Manifolds, vectors, tensors and forms
Since gravity is essentially the manifestation of curved geometry, we start by introducing
manifolds. A manifold , intuitively speaking, is a smooth space which locally looks like
a flat Euclidean space and on which our notion of coordinates still holds. Rigorously,
a coordinate system or chart on a subset U of a topological space M is a bijective map
ϕ : U → Rn such that the image ϕ(U) is an open set in Rn. A C∞ atlas is then a collection
of charts {(Ui, ϕi)} such that

1. The Ui cover M , that is, their union equals M ,

2. The charts are compatible: if Ui ∩ Uj ̸= ∅, then the map (ϕi ◦ ϕ−1
j ) : Rn → Rn is

infinitely times differentiable.

An atlas is said to be maximal if it contains every possible compatible chart. Given these
ingredients, a C∞ manifold M of dimension n is defined as a topological space M with a

8
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M

Rn

ϕ

U ϕ(U)

Figure 2.1: Visual representation of a chart ϕ on a manifold M , with domain U such that ϕ(U)
is an open set in Rn.

maximal atlas.
As physicists, we want to describe how particles, initially sitting at a point p ∈ M ,

move around on the manifold. One can imagine a (hyper)plane tangent to the manifold
at p, containing all possible velocity vectors, which can equivalently be seen as directional
derivatives of curves (paths) on the manifold. The set of all these tangent vectors at p,
or all directional derivative operators along curves through p, is called the tangent space,
denoted by TpM and visualized in Figure 2.2. One can show that TpM is a vector space
of equal dimension as M . There exists a natural basis for TpM : if we use a patch with
coordinates xµ to cover p, then curves that vary along only one of the coordinates are the
most simple to consider, e.g. the ‘north-south’ and ‘east-west’ directions on a two-sphere.
The directional derivatives are then ordinary partial derivatives, which indeed form a
basis of TpM called the coordinate basis . Partial derivatives will be written as

∂µ ≡ ∂

∂xµ
. (2.1)

Note that using the coordinate basis implies that any coordinate transformation neces-
sarily induces a basis transformation of TpM . While the coordinate basis is useful in GR,
supergravity requires the use of another basis of TpM , which we will introduce in Section
6.3.1. Since the partial derivatives form a basis, any vector V ∈ TpM can be written as a
linear combination of the n basis vectors ∂µ:

V = V µ∂µ ≡ V 0∂0 + · · ·+ V n−1∂n−1 , (2.2)

where we introduced the Einstein summation convention: a repeated index implies a
summation over all possible index values. For example, the chain rule in this notation
reads

∂µ′ =
∂xµ

∂xµ′ ∂µ , (2.3)

with µ′ labeling a different set of coordinates xµ′ . The abstract vector V does not depend
on the choice of basis, but its components V µ do. To guarantee consistency when changing
basis, i.e. V = V µ∂µ = V µ′

∂µ′ , the components of a vector obey

V µ′
=
∂xµ

′

∂xµ
V µ . (2.4)

With a slight abuse of terminology, we will often refer to V µ as vectors, even though they
are actually the components of a vector.



CHAPTER 2. GENERAL RELATIVITY 10

M

TpM

p

γ

Figure 2.2: Illustration of the tangent space TpM (grey) at a point p on the manifold. Also
shown is a curve γ on the manifold going through p, and its velocity vector at p is an element
of TpM .

It is a basic fact from algebra that every vector space V has a so-called dual vector space
V ⋆, which is the vector space of all linear maps from V to R and has the same dimension
as V . We can hence naturally define the dual vector space T ⋆

pM of the tangent space,
called the cotangent space. A natural basis of T ⋆

pM is the basis dual to the coordinate
basis of TpM , and its basis vectors are the differentials {dxν}. Their action on the basis
vector ∂µ is

dxν(∂µ) =
∂xν

∂xµ
= δνµ , (2.5)

where δνµ is the Kronecker delta symbol. Since the differentials dxν also depend explicitly
on the coordinate system, a change of basis will modify them as

dxν
′
=
∂xν

′

∂xν
dxν . (2.6)

We can expand dual vectors ω in the basis {dxν}:
ω = ων dx

ν , (2.7)

and similar to vectors, the components of dual vectors transform under coordinate trans-
formations non-trivially:

ων′ =
∂xν

∂xν′
ων . (2.8)

Introducing tensors is now simply an exercise in index gymnastics. A tensor of rank (k, l)
is a map T [8]

T : T ⋆
pM × · · · × T ⋆

pM × TpM · · · × TpM → R , (2.9)

where T ⋆
pM , respectively TpM , appears k, respectively l, times in the above product. The

components of a tensor are found from the expansion

T = T µ1...µk
ν1...νl

(∂µ1 ⊗ · · · ⊗ ∂µk
⊗ dxν1 ⊗ · · · ⊗ dxνl) . (2.10)

Again, we will abuse terminology and refer to the components T µ1...µk
ν1...νl

as a tensor.
The transformation law of the components of T under a change of basis is

T
µ′
1...µ

′
k

ν′1...ν
′
l
=
∂xµ

′
1

∂xµ1
· · · ∂x

µ′
k

∂xµk

∂xν1

∂xν
′
1
· · · ∂x

νl

∂xν
′
l

T µ1...µk
ν1...νl

(2.11)
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A useful operation on tensors is the contraction, which takes a (k, l) tensor and transforms
it into a (k − 1, l − 1) tensor by summing over one of its indices. For example, starting
from a tensor Rρ

µσν , we can create a tensor Rµν by summing over the ρ and σ indices:
Rµν = Rλ

µλν . A tensor is said to be symmetric in its indices µ and ν if it is invariant
under swapping µ with ν, while it is anti-symmetric if this produces a minus sign. From an
arbitrary tensor Tµ1···µn , one can construct a completely symmetric tensor (i.e., symmetric
in all its indices) by the symmetrization procedure:

T(µ1···µn) =
1

n!

∑
σ∈S(n)

Tσ(µ1)···σ(µn) , (2.12)

where the sum goes over all permutations σ of the indices. Similarly, we define the anti-
symmetrization procedure as:

T[µ1···µn] =
1

n!

∑
σ∈S(n)

sgn(σ)Tσ(µ1)···σ(µn) , (2.13)

where now each term carries the sign of its permutation. Theories in higher dimensions
of space-time often involve differential forms. A differential p-form is defined by

ω(p) =
1

p!
ωµ1···µp dx

µ1 ∧ dxµ2 ∧ · · · ∧ dxµp , (2.14)

where the wedge product ∧ is anti-symmetric. Hence, each p-form corresponds to an anti-
symmetric tensor ωµ1···µp . One can define the exterior derivative of a p-form, giving a
(p+ 1)-form, via

dω(p) = ω(p+1) =
1

p!
∂µωµ1···µp dx

µ ∧ dxµ1 ∧ dxµ2 ∧ · · · ∧ dxµp . (2.15)

For example, a p-form gauge field has its exterior derivative as field strength. Such higher-
dimensional field strengths will appear in our discussion of p-branes and the AdS/CFT
correspondence.

2.2 Metrics and connections
Manifolds that appear in GR are special in the sense that their tangent spaces are endowed
with a positive-definite inner product. Any manifold in GR hence has a metric, which is
a symmetric (0, 2) tensor gµν and a crucial tool to describe the geometry of the manifold.
The inverse metric gµν is defined by gµνgνρ = δµρ . The metric and its inverse are used to
raise or lower indices of tensors, e.g. gµνV ν = Vµ. Importantly, the metric allows us to
define distances on the manifold via the line element , defined by

ds2 = gµν dx
µ dxν . (2.16)

For example, for the Euclidean space R3 with Cartesian coordinates (x, y, z), the line
element is

ds2 = dx2 + dy2 + dz2 , (2.17)
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where the metric is gµν = diag(1, 1, 1). However, we can make a change of variables to
spherical coordinates (r, θ, φ), such that the line element becomes:

ds2 = dr2 + r2(dθ2 + sin2 θ dφ2) ≡ dr2 + r2 dΩ2
2 , (2.18)

where gµν = diag(1, r2, r2 sin2 θ) is no longer constant. We also defined dΩ2
2, the line ele-

ment on the two-sphere S2. Generalizing this metric to an arbitrary number of dimensions,
one finds the n-sphere, which in this thesis will be denoted by Sn.

Every metric can be put in its canonical form, such the metric becomes a diagonal
matrix:

gµν = diag (−1,−1, . . . ,−1,+1,+1, . . . ,+1) . (2.19)

For example, performing this operation on the metric from the line element in equation
(2.18) would yield the metric from equation (2.17). The canonical form also determines
the signature (p, q) of the metric, where p, respectively q, is the amount of minus, respec-
tively plus, signs in the canonical form. In GR, all manifolds of interest have Lorentzian
signature1 (1, d− 1), and are called space-time manifolds. The simplest space-time is the
Minkowski space-time, which is a flat (zero curvature) space-time. Its 4d line element is

ds2 = − dt2 + dx2 + dy2 + dz2 , (2.20)

where t is the time coordinate. The metric of this space-time is often denoted by ηµν .
Besides distances on the manifold, we are interested in its curvature. For this, we first

have to introduce connections. From the transformation law of tensors, one can show that
partial derivatives are not appropriate tensor operators in the sense that e.g. ∂µV ν is not
a tensor. To remedy this, we define the covariant derivative which is denoted by ∇µ and
acts as

∇µV
ν = ∂µV

ν + Γν
µρV

ρ , (2.21)
∇µVν = ∂µVν − Γρ

µνVρ . (2.22)

The action of a covariant derivative on a (k, l) tensor is then generalized by including a
term similar to equation (2.21) for each of the k upper indices of the tensor, and including
a term similar to equation (2.22) for each of the l lower indices of the tensor. For simple
scalar functions, the covariant derivative of a scalar quantity reduces to the ordinary
partial derivative: ∇µf = ∂µf . The extra Γ terms are known as connection coefficients
and they specify a connection on a manifold. They are not tensors, which is why we
put their indices carelessly on top of each other. A connection generalizes the notion
of parallel transport of tensors to curved manifolds, but for our purpose, it suffices to
consider it a tool to construct covariant derivates. From the connection coefficients, one
can define the torsion tensor

T λ
µν ≡ Γλ

µν − Γλ
νµ (2.23)

It turns out that the connection is uniquely specified if we impose two additional con-
straints:

1. The connection is ‘torsion-free’, that is, the torsion tensor vanishes identically. This
is equivalent to requiring that the connection coefficients are symmetric in the lower
indices (Γλ

µν = Γλ
νµ),

1The signature can also be denoted as (− + ++) and is known as the ‘mostly plus’ convention. A
different convention takes the signature to be (+−−−), or ‘mostly minus’.
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2. The connection is metric compatible, meaning that ∇ρgµν = 0. This implies that
the inverse metric also has a vanishing covariant derivative: ∇ρg

µν = 0.

This unique connection is the one used in GR and is known as the Christoffel connection
or the Levi-Civita connection. For this reason, the connection coefficients are frequently
called the Christoffel symbols . They can be expressed in terms of derivatives of the metric:

Γσ
µν =

1

2
gρσ (∂µgνρ + ∂νgρµ − ∂ρgµν) . (2.24)

Note that the Christoffel symbols vanish for the Minkowski space-time as its metric is
constant. We will see later that curvature can be expressed in terms of the Christoffel
symbols, such that the label of ‘flat’ for this space-time is justified.

The connection allows us to define the equation of parallel transport of a tensor along
a path xµ(λ), which for a vector V µ reads:

dV µ

dλ
+ Γµ

σρ

dxσ

dλ
V ρ = 0 . (2.25)

The interesting application is, of course, parallel transport along trajectories xµ(λ) of
particles in space-time, also known as the world-line of a particle. Substituting the velocity
vector V µ = dxµ(λ)/ dλ in the above equation gives

d2xµ

dλ2
+ Γµ

σρ

dxρ

dλ

dxσ

dλ
= 0 , (2.26)

which is the geodesic equation. A geodesic is the path of shortest distance between two
points in a space-time, with distances measured by the line element ds2. As an extension
of the principle of least action from classical mechanics, particles are required to travel
on paths which minimize distance, i.e. on geodesics. Note that, for flat space-times, we
recover Newton’s first law of motion, stating that particles travel along straight lines.
The geodesic equation gives a precise meaning to the first part of John Wheeler’s quote:
“space-time tells matter how to move”.

2.3 Curvature and Einstein equation
Einstein’s theory states that gravity is not a Newtonian force. Rather, it is simply the
manifestation of space-time being curved. Let us therefore introduce the concept of cur-
vature of a manifold.

Intuitively speaking, curvature modifies a tensor as it is being moved along a closed
loop. We can quantify this change using the commutator of covariant derivatives, which
gives the Riemann tensor or curvature tensor :

[∇µ,∇ν ]V
ρ = Rρ

σµνV
σ . (2.27)

The Riemann tensor can be expressed in terms of the Christoffel symbols:

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ . (2.28)

From the Riemann tensor, we obtain the Ricci tensor by contracting a pair of indices:

Rµν = Rλ
µλν . (2.29)
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Taking the trace of this tensor gives the Ricci scalar :

R = Rµ
µ = gµνRµν . (2.30)

The John Wheeler quote hints that the source of this curvature is mass and energy present
in the space-time, which is stored mathematically in the energy-momentum tensor Tµν .
The interplay between curvature and energy is expressed by the famous Einstein equation:

Rµν −
1

2
Rgµν = 8πGTµν , (2.31)

where G is Newton’s gravitational constant. The Einstein equation is the mathematical
translation of the second part of John Wheeler’s quote: “matter tells space-time how to
curve”.

There exists a generalization of the above equation which accounts for space-times
with a cosmological constant Λ:

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (2.32)

This Λ-term is somewhat puzzling, as one could choose to write it on either side of the
above equation. That is, one can interpret Λ as an intrinsic quantity of the space-time
geometry, as its value determines whether the space-time is flat, open or closed. In
this regard, it seems natural to write Λ on the left hand side as above. However, one
could write the Λ-term on the right hand side and view it as another contribution to
the energy-momentum tensor, which is somehow present even when no ‘ordinary’ matter
or energy sources are present. The second interpretation calls this extra contribution a
vacuum energy . The cosmological constant is of utmost importance in cosmology, since
observations reveal that our universe has a very small but non-zero, positive value of Λ [9].
The generalized Einstein equation can be obtained by extremizing the Einstein-Hilbert
(EH) action:

SEH =
1

2κ2

∫
ddx

√−g(R− 2Λ) , (2.33)

where κ2 ≡ 8πG and
√−g ≡

√
− det gµν . For this thesis, an important solution of the

Einstein equation with a non-zero cosmological constant is the anti-de Sitter space-time.

2.4 Anti-de Sitter space-time
The anti-de Sitter (AdS) space-time is an example of a maximally symmetric space-time,
which are space-times for which the Riemann tensor with all indices down (i.e., Rρσµν =
gραR

α
σµν) and the Ricci tensor satisfy the non-trivial relations

Rρσµν = β (gρµgσν − gρνgσµ) , (2.34)
Rµν = β(d− 1)gµν . (2.35)

where d is the number of space-time dimensions and β is a constant to be specified later
on for AdS. Taking the trace, the second equation implies the Ricci scalar is constant
across the manifold for a maximally symmetric space-time and equal to

R = βd(d− 1) , (2.36)
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A metric for which equation (2.35) is satisfied is known as an Einstein metric, and the cor-
responding space-time is then called an Einstein space-time. Every maximally symmetric
space-time is hence an Einstein space-time.

Besides flat Minkowski space-time, there exist two curved maximally symmetric space-
times of interest: positively curved (β > 0) de Sitter space-time and negatively curved
(β < 0) anti-de Sitter space. The former is the space-time analogue of a sphere, while the
latter is the space-time analogue of hyperbolic space. AdS space-times in d dimensions,
denoted by AdSd, can be constructed via an embedding into the (d+1)-dimensional space-
time R2,d−1 with signature (− + + · · · + −) and coordinates (X0, X1, . . . , Xd). That is,
AdS is identified with the hyperboloid determined by the equation

d−1∑
i=1

X2
i −X2

0 −X2
d = −L2 , (2.37)

where L is called the length scale of AdS. One can show that the AdS space-times indeed
obey equation (2.34) and one finds that β = −1/L2. The above embedding makes it
manifest that AdSd has a SO(2, d − 1) global symmetry group, a fact which is crucial
for the AdS/CFT correspondence. From the defining equation, one finds that the line
element on the hyperboloid yields

ds2 = − dX2
0 − dX2

d + dX2
1 + · · ·+ dX2

d−1 . (2.38)

As mentioned earlier, AdS space-times are solutions of the generalized Einstein equations
with a non-vanishing, negative cosmological constant, which can be written as

Λ = −(d− 1)(d− 2)

2L2
. (2.39)

Let us introduce new coordinate systems which illuminate important aspects of AdS spaces
[10]. First, we define coordinates

Xi = rx̄i X0 =
√
L2 + r2 sin(t/L) Xd =

√
L2 + r2 cos(t/L) , (2.40)

where x̄i are coordinates parametrizing Sd−1 and the range of the time coordinate t is
0 ≤ t ≤ 2πL. The metric becomes

ds2 = −
(
1 +

r2

L2

)
dt2 +

(
1 +

r2

L2

)−1

dr2 + r2 dΩ2
d−2 . (2.41)

By extending this solution to the range −∞ < t < +∞, we get the so-called covering space
of AdS, which, with abuse of terminology, we will still refer to as AdS. Other interesting
coordinate systems can be found by a change of radial variable. Going from r to y, defined
by cosh(y/L) =

√
1 + r2/L2, one finds

ds2 = − cosh2(y/L) dt2 + dy2 + L2 sinh2(y/L) dΩ2
d−2 . (2.42)

Important insights into the global structure of AdS can be found if we define ρ via
cosh(y/L) = 1/ cos ρ with range 0 ≤ ρ < π/2 and rescale time via t = Lτ . This re-
sults in

ds2 =
L2

cos2 ρ

[
− dτ 2 +

(
dρ2 + sin2 ρ dΩ2

d−2

)]
. (2.43)
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This metric is of the form gµν = e2ωg̃µν , where g̃µν in this case describes a higher-
dimensional cylinder R × Sd−1, with R being the time axis. Therefore, it is said that
the conformal boundary of an AdS space-time is R × Sd−1. Light rays, or any type of
information, coming from spatial infinity can reach the origin in finite time. Therefore,
we have to specify the relevant boundary conditions. It will turn out that these bound-
ary conditions are an important step towards the holographic dictionary of AdS/CFT in
Section 7.3.

Finally, we also introduce the coordinates on AdS in the Poincaré patch, which cover
a region of AdS that is conformal to half of Minkowski space-time. The coordinates are
defined via

X0 = Lrx0 , Xi = Lrxi , (2.44)

Xd−1 =
1

2r

(
−1 + r2(L2 − x2)

)
, Xd =

1

2r

(
1 + r2(L2 + x2)

)
, (2.45)

where x2 was defined as ηµνxµxν . The line element is

ds2 = L2

[
dr2

r2
+ r2ηµν dx

µ dxν
]
, (2.46)

By defining z = 1/r, the line element becomes

ds2 =
L2

z2
(
dz2 + ηµν dx

µ dxν
)
, (2.47)

where the boundary region is now located at z = 0. This coordinate system is especially
useful for the AdS/CFT correspondence. In these coordinates, AdS has a horizon, in
the same sense as an event horizon of a black hole, located at z = ∞ (r = 0). This
aspect will return in our discussion of Maldacena’s original derivation for the AdS/CFT
correspondence in Section 7.2.



Chapter 3

Quantum field theory

Quantum field theory (QFT) is one of the modern cornerstones of theoretical physics.
This framework dawned from the unification of the theory of special relativity with quan-
tum mechanics. Eventually, it became the blueprint for the Standard Model, the most
successful theoretical framework for the description of particles and their interactions to
date. In this chapter, we first introduce the necessary mathematical language to describe
symmetries and discuss the basic ingredients of QFT. Next, we explain a few specific as-
pects of QFT which are relevant for the thesis in more detail, such as gauge symmetries,
renormalization and conformal field theories. This chapter is largely inspired by [10–12].

3.1 Groups & symmetries
Symmetries are the beating heart of mathematics and physics. They simplify complicated
problems and allow us to uncover fundamental laws from experiments. More abstract
symmetries, known as gauge symmetries, play an important role in the formulation of the
Standard Model as well as new theories that go beyond the Standard Model discussed later
on in the thesis. Therefore, we provide readers with a thorough refresher on mathematical
concepts related to symmetries.

3.1.1 Lie algebras and Lie groups
Symmetries are intimately linked to transformations applied to physical systems. Indeed,
we can think of a symmetry as a mapping of the physical state of a system which leaves
its dynamics invariant. Hence, symmetries can be combined into a deeper underlying
structure. We will introduce the necessary mathematical tools to facilitate our description
of these structures. First, let us recall the following two basic definitions:

• A group (G, ∗) is a set endowed with a product ∗ : G×G→ G which is associative,
has a unit element e, and each element x has an inverse element x−1 such that their
product is the unit element.

• An algebra (A,+, ∗) is a vector space with an additional bilinear, binary operation
∗ : A × A → A. Bilinear means that for all x, y, z in A and all a, b in the field F

17
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over which the algebra is defined, we have:

(x+ y) ∗ z = x ∗ z + y ∗ z , x ∗ (y + z) = x ∗ y + x ∗ z , (3.1)
(ax) ∗ (by) = (ab)(x ∗ y) . (3.2)

An algebra is said to be abelian (or commutative) if its binary operation satisfies x ∗ y =
y∗x. We limit our discussion to algebras defined over F = C, and in a few cases which are
explicitly stated F = R. Of particular importance in theoretical physics are Lie algebras.
A Lie algebra g is an algebra for which the bilinear operation is a Lie bracket ∗ = [·, ·],
meaning it has the additional properties

1. Antisymmetry: [x, y] = −[y, x],

2. Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Well-known examples are the Poisson bracket in the Hamiltonian formulation of classical
mechanics and the commutator bracket in quantum mechanics. A textbook example of a
Lie algebra is gl(n), which as a set contains all n× n complex matrices. This set can be
turned into an algebra by endowing it with the ordinary matrix multiplication as product.
By introducing the bracket [M1,M2] = M1M2 −M2M1, one can turn this algebra into a
Lie algebra.

The dimension of a Lie algebra g is its dimension when considered as a vector space.
Hence, there exists a basis1 B = {T a | a = 1, . . . , d}, with d = dim g. The Lie bracket
is known once its action on a basis is identified. Therefore, each basis comes with their
defining relations

[T a, T b] = fab
cT

c , (3.3)

where again the Einstein summation convention is used. The expansion coefficients fab
c

are called the structure constants of the Lie algebra. For example, the algebra sl(2),
representing angular momentum, has generators L1, L2, L3 which satisfy

[Li, Lj] = i
∑
k

εijkLk , (3.4)

with εijk the completely anti-symmetric Levi-Civita symbol.
If a subspace h ⊂ g in itself satisfies the above properties, with Lie bracket induced by

g, then h is said to be a subalgebra of g. An important subalgebra, the Cartan subalgebra,
is constructed from the semisimple elements x of the algebra. These are elements for which
there exists a basis {T̃ a} of g such that [x, T̃ a] ∝ T̃ a for all a. The Cartan subalgebra is
the maximal abelian subalgebra consisting of such semisimple elements. The rank of a
Lie algebra g is defined as the dimension of its Cartan subalgebra.

From Lie algebras, one can construct corresponding Lie groups. A Lie group G is a
hybrid structure in the sense that it is both a group as well as a differentiable manifold,
as introduced in Chapter 2. As discussed there, we can define the tangent space TγG at
a point γ ∈ G. For any pair of vector fields A,B, a Lie bracket (or Lie derivative) can be
defined and in local coordinates ξa written as

([A,B])a = Bb∂bA
a − Ab∂bB

a . (3.5)
1We restrict our attention to finite-dimensional algebras and groups.
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G

g = TγG

γ = s(0)

v = ṡ(0)
s(t)

Exp(v) = s(1)

Figure 3.1: Visual representation of the exponential mapping from a Lie algebra g to a Lie group
G, with TγG represented as tangent space of the manifold G.

In short, TγG carries the structure of a Lie algebra. We define g ≡ TeG, with e the unit
element of G, as ‘the’ Lie algebra corresponding to the Lie group G.

We can define an exponential mapping from the tangent space TγG to the manifold
G, which gives us a link between the a Lie algebra and its Lie group. Any geodesic s(t)
in the manifold that passes through γ is uniquely characterized by its velocity v at γ,
which is an element of the tangent space. Conversely, to any vector v ∈ TγG, we can
associate a geodesic s(t) which satisfies s(0) = γ and ds

dt
|t=0 = v. Given this one-to-one

correspondence between geodesics and vectors, the exponential mapping is defined as

Exp : TγG→ G : v 7→ Exp(v) = s(1) ∈ G . (3.6)

In a way, the exponential map provides coordinates in the neighbourhood of γ from the
tangent space TγG. The idea behind the exponential map is shown in Figure 3.1. For
Lie algebras and groups involving matrices, the exponential map reduces to the usual
exponential power series.

3.1.2 Representations
For physical applications, one is interested in the representation theory of Lie algebras.
Let us consider as example the angular momentum algebra with generators L1, L2, L3.
We first introduce the step operators

L± = L1 ± iL2 , L0 = 2L3 , (3.7)

defined from L1,2,3 given in equation (3.4) and which satisfy the Lie brackets

[L+, L−] = L0 , [L0, L±] = ±2L± . (3.8)

Hence, L0 generates the Cartan subalgebra. We can now build a representation by starting
from some eigenvector (quantum state) vΛ with maximal eigenvalue (quantum number)
Λ with respect to the Cartan subalgebra generator L0:

L0vΛ = ΛvΛ . (3.9)
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One can think of this as a nuclear spin being fully aligned along the positive z-axis. If we
now apply the L− operator, we transition to another state with a lower eigenvalue of L0.
Indeed, we have

L0 (L−vΛ) = L− (L0vΛ) + [L0, L−]vΛ = (Λ− 2)vΛ , (3.10)

where we used equations (3.8) and (3.9). By repeatedly applying L−, we obtain a chain
of states until eventually the spin is fully aligned with the negative z-axis, and the rep-
resentation is complete (i.e., the final state is annihilated by L−). Such a representation
is called a highest-weight representation and is important for the representation theory
of (super)conformal algebras. These algebras (and corresponding groups) lie at the ba-
sis of (super)conformal field theories and are frequently encountered in applications of
AdS/CFT. Representations can be decomposed into smaller ones, and their ‘atomic build-
ing blocks’ are called irreducible representations. Often, physicists use the term multiplet
for an irreducible representation.

3.1.3 Simple Lie algebras and Lie groups
Mathematicians have classified the most common Lie algebras, and one class of interest to
physicists are the simple Lie algebras. These are Lie algebras without a proper ideal2 and
which are non-abelian3. Simple Lie algebras are divided into the classical and exceptional
algebras. The classical Lie algebras come in infinite sequences An, Bn, Cn and Dn, with
n denoting the rank of the algebra. They can be represented by matrices, which is why
they are also referred to as matrix Lie algebras.

For their construction, we can start from the Lie algebra gl(n) introduced above which,
however, is itself not a simple Lie algebra. Indeed, all matrices proportional to the unit
matrix form an (abelian) ideal of gl(n). We can get rid of this ideal by requiring the
matrices to be traceless. This gives the Lie algebra An−1 = sl(n). The other three
classical algebras are simple subalgebras of gl(n):

1. The symplectic Lie algebras Cn = sp(n) are 2n× 2n matrices M satisfying MT =
JMJ , where J ∈ gl(2n) is the matrix

J =

(
0n 1n

−1n 0n

)
. (3.11)

2. The orthogonal Lie algebras are divided into even and odd dimension. First of all,
Dn = so(2n) consists of matrices M which obey MTK+KM = 0, with K ∈ gl(2n)
the matrix

K =

(
0n 1n

1n 0n

)
. (3.12)

3. Similarly, the algebra Bn = so(2n+1) contains matricesM obeyingMTK ′+K ′M =
0, with K ′ ∈ gl(2n+ 1) the matrix

K ′ =

1 0 0
0 0n 1n

0 1n 0n

 . (3.13)

2An ideal h of a Lie algebra g is a Lie subalgebra such that for all x ∈ h and y ∈ g, we have [x, y] ∈ h.
The term ‘proper’ excludes the obvious ideals {0} and g.

3A d-dimensional abelian Lie algebra g is isomorphic to
⊕d

i=1 u(1).
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Equivalently, we can write the above asMT = −KMK, respectivelyMT = −K ′MK ′.

All of the aforementioned algebras have, via the exponential mapping introduced
above, corresponding Lie groups G = Exp(g) which are all denoted by ordinary, up-
percase letters and will likely be familiar to most readers. We mention that these groups
are easily generalized to other signatures. For instance, one can define the group SO(p, q)
as matrices M for which MT = −gMg, where g is a diagonal matrix with signature (p, q).

Besides the classical Lie algebras, there are five other ‘isolated’ simple Lie algebras
known as the exceptional Lie algebras : e6, e7, e8, f4 and g2, where the subscript again
denotes the rank of the Lie algebra. By exponentiating, we find corresponding Lie groups
E6, E7, E8, F4 and G2. They are harder to visualize compared to the classical Lie algebras,
and are best understood using Dynkin diagrams: see [12] for details. In this thesis, we will
encounter the E7 and G2 algebras. The dimensions of the simple algebras are provided
in Table 3.1.

We also briefly discuss real forms of algebras, which are obtained from the above
complex algebras by restricting the field to the real numbers. As a consequence, the
Cartan-Killing metric given by f D

AC f C
BD is well-defined. After diagonalizing this metric,

we have compact generators corresponding to a negative eigenvalue and non-compact
generators with a positive eigenvalue. The character of a real form is defined as the
difference between the number of non-compact and number of compact generators. For
example, sl(n,R) and su(n,R) are two distinct real forms of the An−1 complex algebra
and hence differ in number of (non-)compact generators. The algebra su(n,R), containing
the n × n traceless hermitian matrices, corresponds to the well-known Lie group SU(n).
This group is frequently encountered as the symmetry group of field theories: important
examples include the SU(3) of quantum chromodynamics and the N = 4 SYM of the
Maldacena AdS/CFT conjecture with gauge group SU(N) to be introduced in Section
6.2.1. Another real form we will encounter is e7,7, i.e. the real form of e7 with character
equal to 7. Indeed, it turns out that the group E7,7 is the isometry group of the scalar
manifold of 4d maximal supergravity.

g G d
An

∼= sl(n+ 1) SL(n+ 1) n2 + 2n
Bn

∼= so(2n+ 1) SO(2n+ 1) 2n2 + n
Cn

∼= sp(n) Sp(n) 2n2 + n
Dn

∼= so(2n) SO(2n) 2n2 − n
e6 E6 78
e7 E7 133
e8 E8 248
f4 F4 52
g2 G2 14

Table 3.1: Dimensions of the simple Lie algebras.
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3.1.4 The conformal group
Let us now introduce an important space-time symmetry group for the application of
AdS/CFT, the conformal group. As the name suggests, this will be the symmetry group
of conformal field theories. The conformal group extends the Poincaré group, which
consists of space-time translations, rotations and Lorentz boosts. Conformal symmetry
can be defined as the symmetries of space-time which leave the angles between vectors
invariant. That is, if we have two vectors xµ and yµ, then the quantity

x · y√
x · x y · y , (3.14)

with x·y ≡ xµyνgµν is left invariant by conformal transformations. Equivalently, conformal
symmetries map the space-time metric to itself up to a prefactor which can depend on
the space-time coordinates, i.e.

gµν → Ω2(x)gµν . (3.15)

The Lie algebra containing the infinitesimal transformations of the conformal group in d
dimensions of space-time is generated by

1. the translations, with d generators Pµ,

2. the Lorentz transformations, with d(d− 1)/2 generators Mµν ,

3. the scale transformations xµ → λxµ, with 1 generator D called the dilatation oper-
ator and

4. the special conformal transformations

xµ → xµ + aµx2

1 + 2xνaν + a2x2
, (3.16)

with d generators Kµ.

The non-zero commutation relations between the generators of the conformal algebra read

[Mµν ,Mρσ] = 4η[µ[ρMσ]ν] , (3.17)
[Pµ,Mνρ] = 2ηµ[νPρ] , [Kµ,Mνρ] = 2ηµ[νKρ] , (3.18)
[Pµ, Kν ] = 2(ηµνD +Mµν) , (3.19)
[D,Pµ] = Pµ , [D,Kµ] = −Kµ . (3.20)

In fact, one can show that the algebra of equations (3.17) – (3.20) is isomorphic to so(2, d)
[10]. Therefore, the conformal group is isomorphic to SO(2, d). Note that, because of our
discussion of Section 2.4, this is precisely the isometry group of an AdS space-time in
d + 1 dimensions. This simple yet remarkable observation is our first hint towards the
AdS/CFT correspondence and its holographic nature.
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3.2 Fields and Lagrangians
Now that the relevant terminology of symmetries is discussed, we recapitulate concepts
of (quantum) field theory, where symmetries turn out to be of vital importance. We
restrict our attention to theories that admit a Lagrangian. One starts with defining the
fundamental fields in the theory, of which, when quantized, the excitations are interpreted
as particles. Their interactions are encoded in an action obtained from a Lagrangian
density (or simply Lagrangian) L :

S =

∫
ddxL (ϕr, ∂µϕr) , (3.21)

where ϕr represents a collection of fields. The field equations (equations of motion) are
derived from employing Hamilton’s principle of least action. Extremizing the action yields
the relativistic Euler-Lagrange equations

∂L

∂ϕr

− ∂

∂xµ

(
∂L

∂(∂µϕr)

)
= 0 . (3.22)

Interaction terms in the Lagrangian can be visualised as interaction vertices from which
Feynman diagrams are built. Each Feynman diagram represents a contribution to the
perturbative Dyson series expansion of the scattering S-matrix.

For field theories involving fermions, fermionic fields are required to anti-commute,
i.e. their anti-commutator , defined as

{A,B} = AB +BA (3.23)

has to vanish. Another indispensable tool for theories involving fermions are the gamma
matrices γµ. These are d × d matrices that are solutions of the Clifford algebra, which
means they satisfy the anti-commutation relations

{γµ, γν} = 2ηµν1 . (3.24)

Fermionic fields are often called spinor fields and are generically multi-component vectors.
As such, spinor fields and gamma matrices carry additional indices, spinor indices , which
are often suppressed in equations. We delay the subtle technicalities involving spinors in
higher dimensions and in curved backgrounds to Chapter 6.

3.3 Gauge symmetries
Given the Lagrangian of a theory, one can look for symmetry transformations acting on
the fields that leave the action invariant. Depending on whether the parameters of these
transformations depend on the space-time coordinates or not, these transformations are
said to be global or local. The latter is also frequently called a gauge symmetry and will
be of vital importance to supergravity. By means of introducing gauge symmetries in this
regard, we shall briefly review the main highlights of quantum electrodynamics (QED),
as it is the simplest example of a gauge theory.

One way of obtaining a gauge symmetry in QED is by promoting a global symmetry
to a local one. For this, first consider the free Dirac Lagrangian

L = Ψ(x)(iγµ∂µ −m)Ψ(x) , (3.25)
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where Ψ is a spinor field and overlines denote the Dirac conjugate. We remark that the
Lagrangian is invariant under global phase transformations on the fermion fields, i.e.

Ψ(x) → eiqfΨ(x) , (3.26)

where q represents the electric charge and f is the parameter of the transformation. This
symmetry is violated if we allow the argument of the phase to depend on the space-time
coordinates, as the partial derivative will introduce an additional term. Therefore, if we
want to promote this symmetry to a local one, we have to introduce a gauge field Aµ(x),
which transforms as

Aµ(x) → A′
µ(x) = Aµ(x) + ∂µf(x) , (3.27)

which will cancel the offending extra term. We can introduce interaction terms between
the matter and gauge fields via the principle of minimal substitution: all partial derivatives
in the Lagrangian density are replaced by covariant derivatives Dµ, defined by

Dµ(·) = ∂µ(·) + (iqAµ)(·) . (3.28)

QED is said to be an abelian gauge theory, since two consecutive phase transformations
commute as they are ordinary numbers. Indeed, the transformations generate a U(1)
gauge group. On the other hand, quantum chromodynamics (QCD), the QFT describing
the strong interaction, is the most famous example of a non-abelian gauge theory , also
frequently called Yang-Mills (YM) theory. In QCD, fermion fields carry either a red,
green or blue color charge and are organized in a single vector Ψ =

(
ψR ψG ψB

)
. The

free fermion Lagrangian density is then invariant under the global transformations

Ψ(x) → Ψ′(x) = U(α)Ψ(x) = ei
∑

k αkλkΨ(x) , (3.29)

where αk are numbers and λk are eight matrices (see Table 3.1) that generate the su(3) al-
gebra. Hence, we have a global SU(3) symmetry group, which can be promoted to a gauge
symmetry by invoking the principle of minimal substitution with covariant derivative

DµΨ(x) =

(
∂µ + ig

8∑
k=1

λkA
(k)
µ (x)

)
Ψ(x) . (3.30)

This introduces eight gauge fields A(k)
µ (x), the gluon fields, which transform along with

the matter fields when a gauge transformation is performed. The parameter g is called
the gauge coupling . Beyond QCD, gauge invariance is crucial in the formulation of the
Standard Model of particle physics, which is based on a SU(3) × SU(2) × U(1) gauge
group.

From a set of gauge fields, we can construct a field strength which is essentially similar
to the curvature tensor from GR, as one can find its expression by taking the commutator
of two covariant derivatives. Using form notation from Section 2.1, a field strength can
schematically be written as F = dA + A ∧ A. In string theory, which is a theory in
ten dimensions of space-time, one encounters p-form gauge fields with (p + 1)-form field
strengths, where p can easily be larger than one. An example is the five-form field strength
of type IIB string theory which appears in the Maldacena AdS/CFT conjecture.

Finally, we remark that GR can be seen as a gauge theory as well. Indeed, GR should
be independent of the coordinate system and hence is manifestly invariant under the
general coordinate transformations (also called diffeomorphisms), which can be seen as a
gauged version of translations.
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3.4 Renormalization
Above, we have briefly mentioned the perturbative expansion of QFT with Feynman
diagrams. However, in some theories such as QED and QCD, evaluating loop integrals
coming from higher-order terms can yield infinite answers, which is clearly undesirable
in a theory of physics. To solve this issue, we can regularize and renormalize the theory.
While this may merely seem a way of sweeping the infinities under the rug at first sight,
it turns out that renormalization reveals a deep fact on QFTs.

First of all, the theory is modified via regularization, such that it remains finite in
all orders of perturbation theory. For example, if the divergences originate from the
behaviour of loop integrals at high energies, one can introduce a cut-off energy scale Λ
(not to be confused with the cosmological constant) and only integrate over the momentum
k running in the loop up until Λ. One can then multiply the integrand with a convergence
factor f(k,Λ) which causes the integral to be well-defined and convergent for large k. If
this convergence factor tends to unity as Λ tends to infinity, we can restore the original
theory by taking the limit Λ → ∞.

Secondly, when adding the modified integral to the tree-level diagram of the pertur-
bative expansion, one notices that these modifications can be absorbed into the coupling
constants and masses of the particles of the theory. This admits the following interpre-
tation. When writing down the Lagrangian density, one essentially treats all particles
as ‘bare’ or free particles with masses m0 and, for example, electric charge q0. However,
in Nature, we observe ‘physical’ particles with masses m and charges q, which can be
related to the bare quantities through the absorption of the counterterms we obtained
from the regularization procedure. The result is that the originally divergent integrals
now remain finite even in the limit Λ → ∞, whereas the divergences now appear in the
relation between the bare and physical quantities. However, this is no longer an issue, as
these relations are unobservable through experiments. This process of absorbing infinities
through redefining parameters of the Lagrangian is called renormalization. A field theory
is said to be renormalizable if its predictions, expressed via a finite set of parameters,
remain finite after we remove all cut-offs introduced in the regularization procedure.

The concept of renormalization eventually leads us to the consideration that all QFTs
depend on the energy scale at which our theories are defined. Computing this behaviour
as a function of the energy scale leads us to renormalization group flows and the idea of
running coupling constants. As this is an important part of the thesis, we will dedicate
more time on this topic in the next chapter.

3.5 Conformal field theory
We will now introduce the second important player in the AdS/CFT correspondence,
namely conformal field theory (CFT), which is a QFT that has the conformal group,
introduced in Section 3.1.4, as symmetry group. Perhaps the most well-known example
of a CFT is the critical Ising model. In fact, this is only an example of the more general
fact that the fixed points of the renormalization group flow are CFTs, as we will discuss
in more detail in the next chapter.

While it is not proven in general yet, it is believed that a scale-invariant, unitary and
interacting field theory is automatically invariant under the complete conformal group
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[13]. However, only the case d = 2 is proven, which is a special case since the conformal
algebra is infinite-dimensional for d = 2. For the thesis, however, we are interested in
CFTs in d > 2.

A CFT has no asymptotic states or S-matrix, as there are no scales in the theory, and
the natural objects to consider are operators. The observables of interest to us are the
correlation functions (n-point functions) of operators, with the expectation value taken
with respect to the conformal vacuum. The interesting representations consist of operators
O∆ which are eigenstates of the dilatation operator with eigenvalue ∆, i.e.

[D,O∆] = ∆O∆ . (3.31)

The eigenvalue ∆ is known as the scaling dimension of the operator. Applying the trans-
lations Pµ, respectively special conformal transformations Kµ, on O∆ creates an operator
with scaling dimension ∆ + 1, respectively ∆ − 1. This is an immediate consequence of
the commutation relations of the conformal group and the Jacobi identity. Indeed, one
can compute that

[D, [Pµ,O∆]] = −[O∆, [D,Pµ]]− [Pµ, [O∆, D]]

= −[O∆, [D,Pµ]] + [Pµ, [D,O∆]] (3.32)
= −[O∆, Pµ] + ∆[Pµ,O∆] = (∆ + 1)[Pµ,O∆] ,

and hence [Pµ,O∆] is an operator with scaling dimension ∆ + 1. A similar proof shows
that [Kµ,O∆] has scaling dimension ∆ − 1. Representations of the conformal group can
now be built similar to the highest-weight representation of angular momenta introduced
in Section 3.1.2. We start from a conformal primary operator , which is an operator Ô∆

that is annihilated by the special conformal transformations Kµ, i.e.

[Kµ, Ô∆] = 0 , µ = 1, . . . , d . (3.33)

As the special conformal transformations lower a scaling dimension, the highest-weight in
this case corresponds to the lowest scaling dimension. From a conformal primary, we get
descendant operators by applying space-time translations Pµ:

Ô∆+n = Pµ1 · · ·PµnÔ∆ , (3.34)

and the operators obtained in this way have scaling dimension ∆+ n. Hence, in the lan-
guage of highest-weight representations, the operators Pµ and Kµ are the ladder operators
of this representation.

The scaling dimension of an operator is bounded from below by the unitarity bound ,
which for scalars is [14]

∆ ≥ d− 2

2
. (3.35)

This bound can be derived from requiring that the scalar product of primaries and de-
scendants are positive definite. The unitarity bound implies that a representation must
have an operator with lowest scaling dimension, and hence guarantees the existence of
primary operators. The above discussion can be generalized to primary operators with
non-zero spin. However, as we will focus on scalar operators in later chapters, we do not
go into the details.



CHAPTER 3. QUANTUM FIELD THEORY 27

The presence of conformal symmetry greatly simplifies the 2-point and 3-point corre-
lation functions. One can show that they are given by [10]

⟨O∆1(x)O∆2(y)⟩ =
δ∆1,∆2

|x− y|2∆1
, (3.36)

⟨O∆1(x)O∆2(y)O∆3(z)⟩ =
c123

|x− y|∆12|y − z|∆23|x− z|∆13
, (3.37)

where c123 is a constant to be computed and we have defined ∆12 = ∆1 + ∆2 − ∆3 et
cetera. A deep fact on CFTs is that correlation functions involving more than three
interaction vertices can be reduced to combinations of the above two expressions by using
the operator product expansion (OPE). Schematically, the expansion reads4 [15]:

O1(x1)O2(x2)
x1→x2−−−−→

∑
i

C
(i)
12 (x1, x2)Oi(x2) . (3.38)

The above expression is convergent for x1 sufficiently close to x2 and must be interpreted
as being valid inside correlation functions. This allows us to reduce n-point correlation
functions to (n−1)-point correlation functions, at the price of introducing the OPE coeffi-
cients C(i)

12 . Hence, we can use the OPE to iteratively reduce n-point correlation functions
until we reach 2-point correlation functions. The OPE reminds us of the definition of an
algebra, where the OPE coefficients are interpreted as structure constants. In essence,
conformal symmetry simplifies the n-point correlation functions and makes calculations
easier.

4We again restrict our attention to scalar operators for simplicity. For operators with spin, the spirit
remains the same, but the algebra becomes more complicated.



Chapter 4

Dynamical systems and RG flows

In an attempt to describe the world around us as accurately as possible, science relies on
models which allow us to interpret observations and make testable predictions. Many mod-
els study evolutions through time and rely on dynamical systems theory. A well-known
example is the Lotka-Volterra population model of prey and predators. The concept of
renormalization of a QFT, as introduced in Section 3.4, reveals the deep fact that physics
changes with the energy scale. This implies that coupling constants of interactions vary
as we change the energy scale of a theory. Naturally, we want to determine this evolution.
We will find it useful to import tools from dynamical systems theory and apply them in
our study of (holographic) RG flows.

In this chapter, we first remind readers of basic concepts on dynamical systems. This
will also introduce the tools we employ in Part III and provide intuition on the major
complications faced in Chapter 9 through simple examples which can easily be visualized.
Next, we discuss the renormalization group flow of QFTs and their relation with dynamical
systems in more detail.

4.1 Fixed points and linearization
In this section, we will review the most important definitions from dynamical systems
theory [16]. To start, we define the phase space P ⊂ Rn where (x1, . . . , xn) represent
variables of interest to us. Dynamical systems have a first-order ordinary differential
equation specifying the evolution of these n variables through phase space. Restricting
our attention to homogeneous systems, this differential equation reads

ẋ = f(x) , (4.1)

where from now on, bold font denotes column n-vectors. Dots are used to denote deriva-
tives with respect to the evolution parameter, which in most dynamical systems will be
time t. However, for renormalization group flows, this evolution parameter is the energy
scale, while for their holographic dual, this parameter is the AdS coordinate r. In this
chapter, we will stick to t for simplicity.

A flow is a solution x(t) of equation (4.1). Analytic solutions are hard to find if the
functions f(x) are non-linear and complicated, such that numerical techniques are used to
find flow solutions. Starting from an initial condition x(0), solutions can be constructed
by updating the phase point along the phase velocity from equation (4.1) by small time
steps.

28
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Interesting phase points are those where the phase velocity vanishes, such that a flow
will stay at this phase point forever. Such a fixed point (FP) x⋆ is hence a solution to the
equations f(x⋆) = 0. For a point x close to the fixed point, we can approximate equation
(4.1) via a Taylor series:

ẋ = f(x) ≈ f(x⋆) + J · (x− x⋆) + . . . , (4.2)

where the dots denote higher-order contributions which we will omit. Here, we introduced
the Jacobian matrix J evaluated at the fixed point:

(J )ij =
∂fi(x)

∂xj

∣∣∣
x=x⋆

. (4.3)

Since f(x⋆) = 0 by definition, the linearization of the dynamical system from equation
(4.1) around x⋆ gives

u̇ = J · u , (4.4)

with u = x−x⋆. This linearization allows us to gain information about the nature of the
FP and the behaviour of flows originating from initial conditions close to the fixed point.
Indeed, the general solution close to x⋆ is

x(t) = x⋆ +
n∑

i=1

Aie
λitvi , (4.5)

where λi,vi are the eigenvalues and their corresponding eigenvectors of J . Loosely stated,
positive eigenvalues λi > 0 will ‘repel’ flows away from the FP in the direction of vi, while
negative ones λi < 0 will ‘attract’ flows towards the FP in the direction of vi.

A saddle point is a FP for which the Jacobian matrix has both positive as well as
negative eigenvalues. Hence, a saddle will repel flows in some directions, but attract them
in other directions. In our study of AdS vacua of supergravity theories in Chapter 9, all
vacua will turn out to be saddle points.1 We will be interested in finding holographic
RG flows between two AdS vacua, meaning two saddle points of a dynamical system.
The major complication in the numerical construction of such a flow solution is the fine-
tuning of the expansion coefficients Ai. We will illustrate this in a simple model in the
next section.

4.2 Fine-tuned flows: an illustrative example
In Part III, we will construct holographic RG flows which are essentially flows of dynam-
ical systems in a 14-dimensional phase space. A major difficulty comes from the fact
that almost all critical points are saddle points. Let us explain this issue in an overly
simplified situation to provide intuition to readers. Consider the 2d dynamical system in
the variables (x, y) with flow equations{

ẋ = −1 + x3 ,

ẏ = −1− y2 .
(4.6)

1The only exception is the vacuum located at the origin of the de Wit-Nicolai supergravity from
Section 9.2, which is a star node.
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Figure 4.1: Illustrative example of fine-tuning a flow between critical points, involving saddle
points. The streamlines of the system of equations of (4.6) are shown (red) along with the
critical points (black dots) and some solutions, explained in detail in the text.

While we can easily obtain closed-form analytic expressions for solutions starting from
any initial condition, let us, in line with the situation we will encounter in Part III, only
make use of the linearization procedure and employ numerical techniques to construct
solutions. We find that the above system has two fixed points at (1,−1) and (1, 1). The
Jacobian matrix is

J (x, y) =

(
3x2 0
0 −2y

)
. (4.7)

The point (1,−1) is a star node, and as the eigenvalues of the Jacobian are 3 and 2,
solutions will flow away from it in all directions. This is a toy version of the SO(8)
vacuum of the de Wit-Nicolai supergravity of Section 9.2. The other critical point (1, 1)
is a saddle point, as its eigenvalues are 3 and −2, and represents for example the G2

vacuum of the same supergravity theory. In both cases, the eigenvectors point along
the x- and y-axis, respectively. The saddle point therefore attracts flows in the vertical
directions, but repels flows in the horizontal directions.

Suppose that we are interested in finding a flow that starts from (1,−1) at t = −∞
and ends up in (1, 1) at t = +∞. To construct such a flow, we start from the initial
condition from equation (4.5) where we put Ai ̸= 0 for eigenvalues λi > 0. We evaluate
this expression at an initial time tin < 0, e.g. tin = ln(10−2), to induce a small perturbation
on top of the fixed point. The linear expansion around the critical point gives{

x(ti) = 1 + A1e
3tin ,

y(ti) = −1 + A2e
2tin .

(4.8)

In this toy example, we therefore have two arbitrary coefficients (A1, A2) that determine
the initial condition. The task at hand is to find values such that the flow (x(t), y(t)) at
a “late time” gets as close as possible to the saddle point. Since the dynamical system is
homogeneous, we have a freedom in redefining the coordinate t, and this freedom allows
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us to fix the value of one of the coefficients, say A1 = 1. Hence, we have to scan a one-
dimensional parameter space and try to find the optimal parameter value. An example
of such a scan is given in Figure 4.1, showing 15 estimates with equidistant values for A2

ranging from 0.713 (white) to 9.975 (black). Another generic feature of fine-tuning flow
solutions is that often, due to numerical errors, solutions will inevitably diverge away from
the target at very late times. Hence, the numerical solution has to be cut off at some late
time.

This toy example raises an important issue that we need to overcome when construct-
ing holographic RG flows. The real issue arises from the fact that we will work in a
14-dimensional space, implying that we will have to solve a much more complicated ver-
sion of the above issue.

4.3 Renormalization group flows
We have discussed the issue of divergent loop integrals in perturbative calculations in
QFT and how to remedy them in Section 3.4. While regulating these infinities, one in-
evitably introduces a mass or energy scale, such as the scale Λ in the cut-off method. As
a consequence, after renormalization is performed, the parameters of the renormalized
Lagrangian (i.e., masses and coupling constants) depend on this scale Λ, while the pa-
rameters of the bare Lagrangian do not. This insight allows us to find the evolution of
the renormalized Lagrangian parameters as we change the scale Λ, and the equations that
govern this evolution are known as the renormalization group (RG) equations. Therefore,
a coupling constant in the Lagrangian is a function of the energy scale Λ and is therefore
called a running coupling constant g(Λ).

The evolution of a running coupling2 g(Λ) is captured by the beta-function, which can
be derived from the Callan-Symanzik equation [17]:

β(g) =
∂g

∂ ln Λ
= Λ

∂g

∂Λ
. (4.9)

Now, we can make the link with dynamical systems. A running coupling constant lives in
a phase space, which can be viewed as a ‘theory space’ T , and its evolution is governed
by the dynamical system ġ = β(g), where the dot now denotes a derivative with respect
to ln Λ. The fixed points of the RG equations correspond to CFTs. Indeed, whenever
g = g⋆ such that β(g⋆) = 0, the coupling constant ‘does not run’ and the strength of
the interaction is identical on all scales, such that the QFT enjoys scale invariance. A
running coupling can approach a FP at high energy (Λ → ∞), which is called a UV fixed
point, or approach an IR fixed point as the energy is decreased. Equivalently stated, the
UV behaviour is probed at short-distance interactions, while IR behaviour corresponds to
large-distance interactions. As convention, we consider the evolution of RG flows going
from the UV (high energy) to the IR (low energy). A famous example of a running
coupling is the strong coupling of QCD: its interaction strength decreases as we increase
energy, or equivalently, decrease distances of interactions.

Theories involving several parameters, such as the Standard Model with three coupling
constants for each product of its gauge group, can then be studied using dynamical systems
theory. In general, we expect the beta functions to be complicated, such that we can gain

2We restrict our attention to a single coupling constant for simplicity for now.
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Figure 4.2: Illustration of RG flows in a theory space T around a fixed point (CFT) at couplings
g⋆. Blue (red) arrows denote deformations by irrelevant (relevant) operators and show how a
QFT will flow from the UV to the IR. Generic flows, starting from deformations from both
irrelevant and relevant operators, are shown in black.

information from linearizing the RG equations around fixed points. Suppose g⋆ is a FP
of the RG equations and the eigenvectors vi and eigenvalues λi = ∆i − d of the Jacobian
of the beta function are known. As before, the general solution close to g⋆ can then be
written as

g(Λ) = g⋆ +
n∑

i=1

Aivi

(
Λ

Λ0

)∆i−d

, (4.10)

where Λ0 is some reference scale. Here, the perturbation terms correspond to operators
which are introduced in the Lagrangian of the CFT and deform it. The numbers ∆i

correspond to the scaling dimensions of these operators. The net effect of this deformation
depends on the value of λi, as we mentioned in Section 4.1, and this in turn depends on
the value of the scaling dimension ∆i [17]:

• ∆i > d: As we go from the UV to the IR, the couplings will flow back towards the
fixed point values g⋆. The corresponding operator is then said to be an irrelevant
operator .

• ∆i < d: Now, the opposite situation occurs. As the energy scale goes into the IR,
the RG flow will be repelled away from g⋆. The corresponding operator is then said
to be a relevant operator .

• ∆i = d: In this case, the eigenvector has vanishing eigenvalue, and the corresponding
operator is said to be a marginal operator . Higher-order quantum corrections can
induce a weak dependence on the scale.

The RG flows around a CFT are visualized in Figure 4.2. Deformations coming from irrel-
evant operators will quickly die out, and RG flows will hence be centered along the same
trajectories determined by the relevant operators, which is related to critical universality.
Irrelevant operators, on the other hand, provide information which is, in the literal sense
of the word, irrelevant for the physics at low energies.



Part II

Supergravity and holography



Chapter 5

Interlude: why new theories?

Before we delve into the mathematical details of the theories central to this thesis, let us
slow down to get the bigger picture in view again. In the introductory part of this thesis,
we briefly discussed two successful theories of 20th century physics: Einstein’s theory
of GR and the Standard Model of particle physics. Why do we need theories beyond
them? There are two ways of motivating new theories: either bottom-up or top-down.
In the bottom-up or ‘experimentally oriented’ approach, we look for holes in our current
description and try to fill those up with invoking as little new physics as possible. In the
top-down approach, which is the ‘theoretical approach’, ambitious physicists attempt to
find a mathematically well-defined theory of everything and try to fit current theories and
our own universe into this larger framework.

In the bottom-up perspective, even those most fanatical about the Standard Model
must admit that several reasons indicate that it is not a final, complete theory. One
of those reasons is an issue known as the hierarchy problem. However, a more severe
problem of the Standard Model is the observation that it only accounts for about 4% of the
energy-matter content of the universe [9]. Indeed, besides the vacuum energy mentioned
in Chapter 2, our universe contains dark matter which cannot consist of Standard Model
particles. These issues are covered in more detail in Section 5.1. One way of resolving
both issues is by introducing a new space-time symmetry known as supersymmetry.

The top-down approach, on the other hand, arises from the observation that GR and
the principles of quantization are intrinsically incompatible with each other. Our current
methods fail to create a consistent theory of quantum gravity out of GR. Obtaining such
a unified theory is the main motivation for string theory, which is introduced in detail
in Section 5.2. Supergravity theories, which are limits of string theories, provide an
important bridge between GR and string theory.

As mentioned in the outline of this thesis, this chapter provides a more technical mo-
tivation for supergravity and string theory. However, at the same time, we will introduce
readers to the essential concepts from those theories without any of the mathematical
details. As such, this chapter serves as an introduction to the bulk content of Part II.

33
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5.1 The hierarchy problem, dark matter and super-
symmetry

The fact that none of the particles of the Standard Model are viable candidates for dark
matter is an obvious motivation for the search of beyond the Standard Model physics.
Another, subtler issue of the Standard Model is known as the hierarchy problem [18]. This
issue is related to the sensitivity of the Higgs potential to new physics. It is well-known
that the breaking of the electroweak sector of the Standard Model causes the Higgs field
to acquire a vacuum expectation value and that, through interactions with the Higgs
boson, the Standard Model particles acquire their masses in a gauge invariant manner.
The mass of the Higgs receives quantum corrections from virtual particles coupled to the
Higgs that run in loops of Feynman diagrams. These corrections can become enormous,
especially if the energy scale at which new physics appears lies around the Planck scale
MP ∼ 1018 GeV. This is certainly expected to be the case, as some sort of quantum
gravity theory should reign in this regime. These quantum corrections will therefore also
affect the masses of quarks, leptons and the gauge bosons, through their coupling to the
Higgs boson. In essence, it seems as if the entire mass spectrum of the Standard Model
depends on the energy scale of new physics and is in that sense finely tuned, which is an
undesirable aspect of a theory. The problem exists in various scenarios, including those
where new, heavy particles indirectly couple to the Higgs and scenarios in which the scale
of new physics lies beneath the Planck scale. In essence, theories are consistent with a
natural mass of the fundamental Higgs scalar which is on the order of the Planck scale,
while its effective, experimental value is around 125 GeV, which is why this issue is known
as the hierarchy problem.

One proposed explanation of this problem adds an additional space-time symmetry,
known as supersymmetry (susy), to the theory. The main idea is that susy connects
bosonic and fermionic states by an operator Q which acts schematically as

Q |Boson⟩ = |Fermion⟩ , Q |Fermion⟩ = |Boson⟩ . (5.1)

In fact, under certain circumstances, theories can have multiple xerox copies of this op-
erator, with N denoting the number of copies. As a consequence of the action of the
Q operator, representations (multiplets) of bosons and fermions will be unified in larger
representations, called supermultiplets . If susy is present in Nature, then Standard Model
particles will have so-called superpartners, which differ in spin by 1/2 and carry names
as selectrons, squarks, gluinos, photinos and so on. If susy is an unbroken symmetry,
superpartners have equal masses.

Susy solves the hierarchy problem via the Feynman rule that fermions running through
a loop of a Feynman diagram carry an additional minus sign. Consider for example the
one-loop diagrams that contribute to the Higgs mass given in Figure 5.1. If the spin-
1/2 fermions running in the loop on the left have bosonic superpartners (scalars) with
an identical mass that run in a loop as well, such as in the diagram on the right, then
there must be a relative minus sign between the two contributions. In essence, their
contributions to the Higgs mass will cancel out, such that it remains on the order of GeV
rather than the Planck scale.
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Figure 5.1: One-loop diagrams involving fermions f and their scalar superpartners S. Their
contributions cancel out and solves the hierarchy problem.

Of course, one needs to ensure that this cancellation also persists at higher orders.
Besides, if superpartners have the same mass, then particle colliders should have already
discovered these superparticles, which is not the case. Therefore, the superpartners must
be much heavier, which implies that susy must be a broken symmetry in Nature. This
is actually also favourable from the perspective of the dark matter problem, given the
following scenario. The lightest supersymmetric particle is a possible candidate for a dark
matter particle. In the early, hot universe, superparticles were in thermal equilibrium with
Standard Model particles. As the universe cooled down, this equilibrium was lost, and
the superparticles annihilated or decayed to the lightest supersymmetric particle. The
freeze-out abundance of this lightest superpartner could be an important contribution to
dark matter sources.

The above discussion shows that susy is a promising way to deal with problems of
the Standard Model, and provides a motivation to study susy in more detail in the next
chapter.

5.2 String theory and supergravity
Einstein’s theory of gravity is a classical field theory. As explained earlier, QED arose
from the quantization of the electromagnetic field and resulted in the first successful and
consistent QFT. One can wonder whether a similar approach can be used to develop a
quantum theory of gravity by quantizing the metric, the dynamical field of GR. In this
case, the quanta of the gravitational field are spin-2 particles known as gravitons , which
are massless and travel at the speed of light. The action of a free, massless spin-2 particle
turns out to be unique and is known as the Pauli-Fierz action [19]. Sadly, it turns out
that the gravitational interaction is an irrelevant interaction and therefore, this QFT is
non-renormalizable and UV-incomplete [20]. We are forced to maintain GR only as a
low-energy effective field theory and as of today, we lack a quantum theory of gravity.
One proposed UV-complete theory of quantum gravity is string theory .

5.2.1 Basics of string theory
We will present a short introduction to string theory based on [21, 22]. String theory
treats one-dimensional extended objects, the strings, as the fundamental objects in the
theory. Strings can be either open or closed, depending on whether or not its embedding
into the higher-dimensional manifold is periodic in the spatial coordinate. The only two
parameters appearing in the theory are the string coupling gs and the length of the
string ℓs, or equivalently, the Regge slope α′ = ℓ2s. The vibrational modes of these strings
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correspond to different particles. Historically, string theory was invented as an attempt to
describe strong interactions, since hadrons resemble ‘stringy objects’ and the excitations
of the strings could account for the vast amount of observed hadrons. However, with the
advent and success of QCD, string theory fell out of favor as a fundamental theory of
the strong interaction. Later, it was observed that string theories always contain a spin-2
particle, which became identified with the graviton. Ever since, string theory is studied
as a favourable candidate of a theory of quantum gravity. Two other generic features of
string theories support this goal. First, string theories containing fermions automatically
require supersymmetry to be built in the theory and are therefore known as superstring
theories . Second, Yang-Mills gauge groups, such as the gauge group of the Standard
Model, naturally arise in the framework of (super)string theory.

A remarkable feature of superstring theories is that mathematical consistency auto-
matically requires them to be formulated only in ten dimensions of space-time.1 Hence,
the remaining six dimensions have to be ‘curled-up’, or compactified, on an internal man-
ifold whose size is small enough such that it escaped detection in experiments so far.
Nevertheless, the structure of internal manifolds, such as their topology, has implications
for the particle content of the 4d theory. In essence, the world looks effectively four-
dimensional at low energy scales, or equivalently, large distance scales. These scales are
relative to the scales built out of fundamental constants of Nature, such as the Planck
length

ℓP =

(
ℏG
c3

)1/2

∼ 10−35 m , (5.2)

and the Planck mass

mP =

(
ℏc
G

)1/2

∼ 1019 GeV . (5.3)

Hence, the size of the strings ℓs as well as the length scale of the internal manifolds
is expected to be on the order of the Planck length. Similar to how the resolution of
microscopes depends on the wavelength of light, experiments at energies below mP (such
as particle accelerators operating at the TeV-scale) cannot resolve distances on the order
of the Planck length. Therefore, they are unable to probe the internal manifold or resolve
the stringy nature of particles. This is why the four-dimensional Standard Model has
been successful in explaining particle physics phenomena in our everyday lives.

There are five distinct superstring theories which are all formulated in ten dimensions
of space-time: type I, type IIA, type IIB and two heterotic theories. Type IIA and IIB
arise from using the superstring formalism for both left- and right-moving modes and have
N = 2 supersymmetry. The two possibilities are related to giving the supersymmetries
either the same or an opposite chirality. Type I string theory can be obtained from type
IIB by modding out the left-right symmetry and has N = 1 supersymmetry. Besides
superstring theories, there exist bosonic string theories which necessarily are formulated
in 26 dimensions for mathematical consistency and which do not contain fermions. Nev-
ertheless, a ‘hybrid’ theory, named heterotic string theory , can be obtained by using the

1In fact, string theory consists of a 2d CFT on the world-sheet of the string, and mathematical
consistency requires that the central charge of this CFT vanishes. For this, additional scalar fields have
to be introduced on the world-sheet in order to have an anomaly-free theory. However, these scalars
can be interpreted as extra dimensions of space-time. We will not go into the details and stick to this
interpretation.
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bosonic 26d formalism for left-movers, and the 10d superstring formalism for right-movers
and has N = 1 susy. There are two possibilities related to two possible Lie algebras so(32)
and e8 × e8 in the construction.

5.2.2 Branes
String theory contains other higher-dimensional objects besides strings, which are shown
in Figure 5.2 and are known as p-branes, where p denotes the number of spatial dimen-
sions of the object. A point-particle, for example, is a 0-brane, whereas a string is a
1-brane. The p-branes sweep out a (p + 1)-dimensional volume during their evolution,
which is called the world-volume, as generalisation of the concept of a world-line of a point
particle from GR. For a string, the world-volume is two-dimensional and hence referred
to as world-sheet . As in QFT, one can perform perturbation theory in string theories.
Diagrams in a QFT are built out of mergers of world-lines of particles in the theory. The
analogue in string theory are diagrams where world-sheets of strings merge and is hence
an expansion in Riemann surfaces. The loop expansion thus becomes an expansion in
the genus of surfaces, with each increasing order introducing an additional factor of gs.
Certain superstring theories have a unique world-sheet topology at each order of the per-
turbation expansion which comes with a UV-finite contribution. This is in huge contrast
with the enormous proliferation of Feynman diagrams from higher-order terms in QFT
with infinities which have to be regulated. However, whether or not this perturbation
theory is meaningful depends, of course, on the value of the string coupling gs.

The p-branes with p ̸= 1 do not belong to perturbative string theory, as they become
infinitely heavy in the limit gs → 0. Rather, they are seen as non-perturbative excitations.
The study of branes led to a remarkable amount of discoveries and demonstrates the power
of string theory. For instance, it allowed for a microscopic description of the Bekenstein-
Hawking entropy of black holes [23]. The AdS/CFT correspondence and its generalization
to gauge/gravity dualities likewise arose out of studies of branes, as we will argue in more
detail in Section 7.2. In type I and type II superstring theory, there exist Dp-branes on
which open strings can end, where D stands for Dirichlet boundary conditions. In type
IIB (IIA), only Dp-branes with odd p (even p) are allowed [24]. The D3-branes play an
important role in the original AdS/CFT correspondence, formulated in type IIB string
theory. Here, the gauge side of the correspondence comes from the massless modes of the
open strings. When anchored to Dp-branes, these modes describe oscillations of the Dp-
brane which, in the low-energy limit, result in the dynamics of a YM gauge theory living
on the world-volume of the brane. The gravity side is related to a curved geometry which
arises as follows. As mentioned, branes provide a higher-dimensional generalization of the
notion of a point particle. Similar to how particles can be charged under gauge fields and
generate fluxes, such as in electromagnetism, Dp-branes can be charged under (p + 1)-
form gauge fields which have (p+2)-form field strengths. Therefore, adding Dp-branes in
the solution sources the field strengths and generates fluxes which, as a source of energy,
curve the geometry. Such brane configurations also yield solutions in the low-energy limit
(see below). These solutions have an event horizon and can be seen as higher-dimensional
generalizations of the Reissner-Nördstrom black hole solution of GR. For this reason, they
are also referred to as black branes. For example, the D3-branes of Maldacena’s original
AdS/CFT curve the geometry due to a five-form flux.
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(a) (b) (c)

Figure 5.2: Branes in string theory. (a) A point-particle or 0-brane. (b) Two inequivalent 1-
branes: an open string (left) and a closed string with a visualization of its 2d world-sheet (right).
(c) Dp-brane visualized as a plane, with an open string attached to the brane.

5.2.3 The supergravity limit
While each of the string theories is a consistent quantum theory, the calculations become
more tractable in a classical, low-energy limit of string theory. This limit is also known
as the supergravity limit , as one approximates the string theory by a supergravity (sugra)
theory. Besides an expansion in the coupling parameter of string theory gs, in string
theory, one also performs an expansion related to ‘stringy effects’. That is, one can
perform an expansion in terms of a dimensionless quantity made out of the length of the
string ℓs (or equivalently, the Regge slope α′). By letting the size of the string tend to
zero, we reduce the strings back to ordinary point particles. As we can only excite modes
below the string energy scale, roughly stated equivalent to ℓ−1

s , the limit ℓs → 0 means
we omit all higher-energy excitation modes which arise from a finite length of the strings.

While these effective supergravity theories are non-renormalizable, this is of no issue
since they are intended to describe low-energy phenomena of a more fundamental theory
(the string theory) which itself is renormalizable in the UV. An independent way of
obtaining supergravity theories is to promote susy from a global symmetry to a local one,
i.e. by gauging susy. Supergravity cures the UV divergences of classical GR to some
extent: while GR is only one-loop finite, pure sugra theories are finite up to two loops
[25, 26].

5.2.4 Dualities and M-theory
One can wonder why there are five distinct superstring theories, rather than one single,
fundamental theory. It turns out that there are various dualities linking the five string
theories we have mentioned earlier. A duality in this context is an equivalence between
different field and/or string theories [27]. There exist different well-known dualities in
theoretical physics, such as the Montonen-Olive duality [28]. This is an example of a
strong/weak duality or S-duality, as two distinct formulations are related to each other
by replacing the coupling g by 1/g, hence changing the strength of the coupling.

The various superstring theories are similarly related by S- and T -dualities. The S-
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duality again amounts to replacing gs with 1/gs. The T -duality, on the other hand, relates
theories with different geometries for the internal manifold. Note that these dualities link
different string theories to each other. In this regard, the AdS/CFT is a completely new
kind of duality, as it provides a link between a quantum field theory and a string theory,
which at first sight are two entirely inequivalent theories.

The dualities linking the various string theories seem to suggest that they are only
different manifestations of a more fundamental theory. Another surprising result is that
the type IIA and heterotic string theories at large coupling “grow an eleventh dimension”
with size gsℓs, which is either a circle or a line. Stated otherwise, a new quantum theory,
known as M-theory , is conjectured to exist in eleven dimensions. According to Witten,
M “stands for magic, mystery, or membrane, according to taste” [29]. Not much is known
yet about M-theory, but like the superstring theories, it admits a low-energy supergravity
theory. It turns out that the action of this 11d supergravity and its field content are
uniquely fixed. Moreover, other supergravity theories in d < 11 dimensions can be ob-
tained by compactifying some of the space-time dimensions on an internal manifold. In
some sense, the quantum M-theory and its classical 11d supergravity limit incorporate
many different theories in one. Hence, one could suggest to Witten to interpret M as
standing for “mother of all theories”.

SUPERSTRING THEORY

SUPERGRAVITY

SUPERSYMMETRY

STANDARD MODEL

solve Standard Model issues

global → local susy

UV completionlow-energy limit

local → global susy

E

Figure 5.3: Links between the Standard Model, supersymmetry and -gravity, and superstring
theories discussed in this chapter. They are organized according to energy regimes at which
they are (believed to be) valid descriptions of Nature.

To summarize this chapter, whether one wants to solve flaws in the Standard Model
or formulate a theory of quantum gravity, supersymmetry inevitably enters the stage. Su-
pergravity theories are a next stop along the way, which can be reached either by gauging
supersymmetry or by considering low-energy limits of superstring theories. The relations
between the various theories we have discussed in this chapter are summarized by Figure
5.3. While we motivated the study of more fundamental theories from a phenomeno-
logical point of view, we want to emphasize that a large fraction of research in string
theory is disconnected from phenomenology. Nevertheless, we can gain deep insights into
the theoretical framework of physics from these studies. Indeed, a prime example is the
discovery of the gauge/gravity duality, a revolutionizing idea which originated from the
study of brane solutions. Following this line of thought, we will leave the cherished Stan-
dard Model behind, and, wading deeper into the waters of the great unknown, set sail for
the terra incognita.



Chapter 6

Supersymmetry and supergravity

After the motivation given in the previous chapter, we will now discuss the mathematics
of both supersymmetry and supergravity and focus on important aspects for holographic
RG flows. After explaining theories with global (also called rigid) supersymmetry, we
combine conformal symmetry with supersymmetry, leading to superconformal symmetry.
An important example of a superconformal field theory is the N = 4 super-Yang-Mills
which appears in Maldacena’s original AdS/CFT conjecture. Next, we discuss supergrav-
ity, obtained by promoting global supersymmetry to a local symmetry. This chapter is
largely based on [10].

6.1 Global supersymmetry
Since supersymmetry involves spinors and we would like our discussion to be valid for
any number of space-time dimensions, we begin this chapter with a discussion of spinors
in an arbitrary number of dimensions of space-time.

6.1.1 Spinors in higher dimensions
Spinors in d space-time dimensions are treated in detail in [10]. We will assume spinor
components are anti-commuting Grassmann numbers. As in d = 4, the key tools at our
disposal are the gamma matrices, which satisfy the algebra

{γµ, γν} = 2ηµν1 , (6.1)

which is known as the Clifford algebra. This algebra has an irreducible representation
in terms of square matrices of dimension 2⌊d/2⌋, where ⌊·⌋ denotes the integer part. New
elements of the algebra which are constructed from the γµ matrices must necessarily be
anti-symmetric products, as symmetric products can be decomposed using equation (6.1).
Recalling the anti-symmetrization of indices, as in equation (2.13), we define the notation

γµ1···µr ≡ γ[µ1···µr] , (6.2)

such that for example γµν = 1
2
(γµγν − γνγµ). We call r the rank of the gamma matrix.

These products of gamma matrices serve as generators for the representation. In even
dimensions d = 2m, we can define the matrix γ⋆ by

γ⋆ = (−i)m+1γ0γ1 · · · γd−1 , (6.3)

40
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where indices are raised and lowered using the Minkowski metric. This matrix is used in
left- and right-hand or chiral projection operators

PL = 1
2
(1+ γ⋆) , PR = 1

2
(1− γ⋆) . (6.4)

In d = 2m dimensions, a Dirac fermion field Ψ is a reducible representation and can be
written in terms of two Weyl fields φ and χ, which are chiral fermions as they are defined
as (

φ
0

)
= PLΨ ,

(
0
χ̃

)
= PRΨ , (6.5)

where the tilde denotes the Dirac conjugate1. Gamma matrices have an interesting sym-
metry property. There exists a unitary matrix, the charge conjugation matrix C, such
that for any matrix of the Clifford algebra Γ(r) with rank r, we have(

CΓ(r)
)T

= −trCΓ(r) , tr = ±1 , (6.6)

which is then said to be (anti-)symmetric, depending on the sign of tr. For the applications
of susy and sugra, we replace the Dirac conjugate of a spinor λ by the Majorana conjugate:

λ ≡ λTC . (6.7)

We define the charge conjugate λC of a spinor as

λC ≡ B−1λ∗ , B = it0Cγ
0 , (6.8)

where an asterix denotes ordinary complex conjugation. Using charge conjugation, we
can define a Majorana spinor ψ as Dirac spinor that satisfies the reality condition

ψ = ψC , (6.9)

and hence Majorana spinors have half as many degrees of freedom as a Dirac fermion.
Majorana spinors are the most natural spinors to consider in the formulation of super-
gravity theories and are therefore central to our story. However, the reality condition from
equation (6.9) can only consistently be applied if t1 = −1, where t1 is defined in equation
(6.6), which holds in2 d = 4, 8, 9, 10 and 11. Majorana spinors have 2⌊d/2⌋ number of
components. However, for d = 10, the Majorana and Weyl conditions can be imposed
simultaneously, and this reduces the number of components by an additional factor 2.
Hence, in d = 10, fundamental spinors have 2⌊d/2⌋−1 = 16 components.

6.1.2 Supersymmetry algebras and representations
There exists a famous no-go theorem in theoretical physics, the Coleman-Mandula the-
orem [30], which states that, under reasonable assumptions, the Lie symmetry group of
an interacting QFT is a direct product of the Poincaré group and an internal symme-
try group (i.e., of which the generators commute with the generators of the Poincaré

1We reserve overlines to denote the Majorana conjugate, to be defined later on, as this is the more
natural conjugation to consider in supergravity.

2The condition t1 = −1 also holds for d = 8, 9, but since then t0 = −1, these spinors are called
pseudo-Majorana. We will not consider them in more detail in this thesis. We will also not discuss
symplectic spinors, which are used in d = 5, 6, 7.
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algebra). Susy provides a loophole to this theorem. Because the supercharges Q are
fermionic generators rather than bosonic, the symmetry algebra becomes a generalisation
of a Lie algebra, for which the Coleman-Mandula theorem does not hold. Another no-go
theorem, the Haag–Łopuszański–Sohnius theorem [31], further restricts the possibilities
of supersymmetry algebras of an interacting QFT.

In global susy, the Poincaré symmetries with generators Pµ,Mµν are joined by the
spinor supercharges Qi

α, where α is an explicit spinor index and i = 1, . . . ,N labels the
distinct supercharges in the algebra. The generators form a new algebraic structure known
as a superalgebra, which is a Z2-graded Lie algebra. That is, the algebra has even and odd
elements, which in physics terminology are called bosonic B and fermionic F , respectively.
The bracket relations consist of a mixture of commutation and anti-commutation relations,
depending on whether the bracket is between even or odd elements. Schematically, we
have

[B,B] = B , [B,F ] = F , {F, F} = B . (6.10)

The Poincaré algebra is a Lie subalgebra of the susy algebra. Therefore, the commutation
relations between its generators are still valid in the susy algebra: see equations (3.17)
and (3.18). In global susy, the minimal extension requires the additional bracket relations

{Qiα, Q
†jβ} = 1

2
δ j
i

(
γµγ

0
) β

α
P µ , (6.11)

[Mµν , Qiα] = −1
2
i(γµν)

β
α Qiβ , (6.12)

[Pµ, Qiα] = 0 , (6.13)

and other brackets vanish. In particular, Q anti-commutes with itself and hence “squares
to zero”, which is important for representations of the susy algebra. From the bracket
relation in equation (6.11), one can show that the energy of any state in the Hilbert space of
a global susy field theory is positive. Moreover, it can be used to show that supermultiplets
contain an equal amount of bosonic and fermionic degrees of freedom. This relation is
why Q is sometimes loosely stated to be the “square root” of the translations. The second
line above reinforces that the generators Qi

α are spinors and carry angular momentum
1/2. Equation (6.13) implies that superpartners have the same mass. We refer to N = 1
susy as simple supersymmetry , while susy theories with N > 1 are said to have extended
supersymmetry .

The space of states can be formulated using ideas of highest-weight representations,
discussed in Section 3.1.2. Here, the highest weight corresponds to the maximal helicity
hm of a particle in the representation. Other states in the representation are obtained
by acting with the creation and annihilation operators Q,Q†, which raise or lower the
helicity by 1/2. Due to the required anti-symmetry in products of supercharges, states
with helicity h0 − 1

2
m have multiplicity equal to the binomial coefficient

(N
m

)
.

In extended susy in d = 4, the above structure of representations limits the integer
N to the range N ≤ 8. Since the supercharges change the helicity of a particle by 1/2,
theories with 4 < N ≤ 8 necessarily contain a spin-3/2 particle. Such particles can
only sit in the supergravity multiplet, and hence these field theories must necessarily
correspond to supergravity theories. Therefore, field theories with global susy obey the
stricter constraint N ≤ 4. Theories with N ≥ 9 are excluded because they necessarily
contain particles of spin s ≥ 5/2, for which no consistent interacting field theory is known.
Note that these bounds apply to d = 4, such that we have up to maximally N = 32
independent components for the supercharges, and only N = 16 for global susy theories.
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These bounds onN hold in all dimensions of space-time. Note, however, that supercharges
have more components in higher dimensions, such that the bound on N changes. Recalling
that irreducible spinors have 2⌊d/2⌋ components in d dimensions, a single spinor in 11d, for
example, has 32 components. Hence, only N = 1 supersymmetry is allowed in 11d, and
moreover, this must necessarily be incorporated as a supergravity theory. A supergravity
theory is said to be maximally supersymmetric (or simply ‘maximal’) if it is invariant under
the action of supercharges with N = 32 independent components in total. Examples are
the N = 8, d = 4 and N = 1, D = 11 theories.

Extended supersymmetries can have an additional symmetry, called R-symmetry,
which essentially rotates supercharges into each other. As such, these symmetries com-
mute with Lorentz and translation generators and only act on the supercharges:

[TA, Qiα] = (UA)
j
i Qjα , (6.14)

where TA is a generator of the R-symmetry, and UA its corresponding rotation matrix.
Moreover, extended susy algebras can have additional charges, known as central charges
Z, which modify the anti-commutator of supercharges of the same chirality. The simplest
example is for N = 2, d = 4, where we can have the additional bracket relation

{Qiα, Qjβ} = −1
2
εij (PL)αβ Z , (6.15)

and the bracket for the opposite chirality follows from charge conjugation.
Supersymmetric field theories start from an action with a specified Lagrangian in

terms of fields. One postulates the supersymmetry transformations of the fields, which
can generically be written as

δϵϕ(x) = −i[ϵαQα, ϕ(x)] , (6.16)

where the parameters of the transformation ϵα are spinors. The theory is said to be
supersymmetric if the susy transformations on the fields leave the action invariant. When
looking for solutions of an extended susy theory, central charges are crucial for massive
solutions. Indeed, one can show directly from the algebra that the mass M is restricted
by

M ≥ |Z| , (6.17)
for the above example of N = 2 and multiple, similar bounds can be derived for N > 2.
The bound in equation (6.17) is known as the Bogomol’nyi–Prasad–Sommerfield bound
or BPS bound . An important point to stress is that a solution of a supersymmetric
field theory is not necessarily itself invariant under the supersymmetry transformations.
However, one can show that whenever the BPS bound from equation (6.17) is satisfied,
the solution is supersymmetric and in this case is known as a BPS solution. Hence,
equality in the BPS bound is a fingerprint of a remaining amount of supersymmetry in
the solution. However, it can happen that invariance under some supercharges is broken
and the solution carries less supersymmetry compared to the theory we started with.
If nQ independent supercharges leave a solution invariant, the solution is referred to as
nQ

N -BPS.

6.2 Superconformal field theory
Now that we highlighted the main points of supersymmetric field theories, we can ex-
tend the susy symmetry algebra even further. For example, in RG flows of susy field
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theories, we also have additional conformal symmetry at the critical points of the beta
functions. Hence, conformal symmetry and supersymmetry join into the superconformal
algebra (SCA), and a QFT invariant under this symmetry group is called a superconformal
field theories (SCFT). The SCA is again a superalgebra which contains the conformal al-
gebra so(2, d) as Lie subalgebra. Moreover, there appear new supercharges, the conformal
supercharges, denoted by Si

α. Intuitively speaking, just as Q is seen the “square-root” of
Pµ, S can be seen as the “square-root” of Kµ. Figure 6.1 below summarizes the various
Lie (super)algebras that have been encountered in this thesis so far.

translations Pµ

space-time rotations Mµν

special conformal Kµ

scale transformations D

Poincaré

super-Poincaré

superconformalconformal

susy Qi
α

conformal supercharges Si
α

Figure 6.1: Lie (super)algebras encountered in this thesis and their corresponding generators.
Bold ellipses denote Lie algebras, while dashed ellipses denote superalgebras.

Superconformal algebras only exist for d ≤ 6 [13], and a classification can be found
in [32]. On top of the commutators of the conformal algebra, which were specified in
equations (3.17) – (3.20), and those of the super-Poincaré algebra, given by equations
(6.11) – (6.13), the SCA has additional bracket relations. These depend on d and the
R-symmetry group, but schematically, they have the general structure [13]

[D,Q] ∝ 1
2
Q , [D,S] ∝ 1

2
S , [P, S] ∝ Q , (6.18)

{S, S} ∝ K , {Q,S} ∝M +D +R . (6.19)

The representation theory of the SCA mimics that of the conformal algebra, discussed
in Section 3.5. Again, the dilatation operator generates the Cartan subalgebra and we
can define the Weyl weight wx of an element x of the SCA as the eigenvalue under the
action of D, i.e. [D, x] = wxx. The Weyl weights of all generators of the superconformal
algebra are given in Table 6.1. Similar to how we defined a conformal primary operator,

wx 1 1/2 0 −1/2 −1
x Pµ Qi

α D,Mµν , TA Si
α Kµ

Table 6.1: Weyl weights of the generators of the superconformal algebra.

we can define a superconformal primary operator as a state which is annihilated by all
supercharges Si

α. Other states, again called descendant operators , arise by acting with
the supercharges Qi

α on a superconformal primary. Note that this representation is finite,
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as supercharges square to zero. Moreover, a representation can contain states which are
annihilated by a (combination of) supercharges Q, such that the representation is said
to be a short representation, and the primary operator is known as a chiral primary
operator . Since the conformal algebra is a subalgebra of the SCA, the representations of
the SCA will include representations of the conformal algebra. Note, for instance, that a
superconformal primary is also a conformal primary. Besides, by acting with supercharges
Q on a superconformal primary, we find additional states which are conformal primaries.

6.2.1 N = 4 super Yang-Mills
Many applications of AdS/CFT involve superconformal field theories. An important
example is the N = 4, d = 4 super Yang-Mills (SYM) field theory, which combines a
Yang-Mills SU(N) symmetry with susy. This particular theory appears in Maldacena’s
original AdS/CFT conjecture, to be discussed in Section 7.2. We briefly provide a few
more details on this theory, but readers are referred to [10, 13] for a more extensive
discussion. This theory has a gauge potential Aµ, four chiral fermion fields PLλ and six
real scalars X i in representations of the R-symmetry group SU(4) ∼= SO(6) as traceless,
hermitian matrices. The Lagrangian is [10]

L = tr
(
1
2
FµνF

µν + 2λ
α
γµDµPLλα +DµX

iDµX i

+
(
g
(
(Cα

β )
iλαPL[X

i, λβ]
)
+ h.c.

)
+ 1

2
g2
∑
i,j

[X i, Xj]2
)
, (6.20)

where Dµ is the covariant derivative, g is the gauge coupling and the matrices Ci are
given in terms of the Pauli matrices:

C1 =

(
0 σ1

−σ1 0

)
, C2 =

(
0 −σ3
σ3 0

)
, C3 =

(
iσ2 0
0 iσ2

)
, (6.21)

C4 =

(
0 iσ2
iσ2 0

)
, C5 =

(
0 1
−1 0

)
, C6 =

(
−iσ2 0
0 iσ2

)
. (6.22)

The trace operation appearing in the Lagrangian ensures gauge-invariance of the con-
structed operators.

Of particular importance for AdS/CFT are the single-trace operators , which belong
to short multiplets [21]. They can be written as

O = tr
(
ϕI1 · · ·ϕIn

)
. (6.23)

Since commutators of scalar fields appear in the susy algebra of this theory, if some of
the indices are anti-symmetrized, the state can be written as {Q,ψ} for some field ψ and
(combination of) supercharge(s) Q and is therefore a descendant state. Hence, only when
the indices I1, . . . , In are symmetrized does the state correspond to a primary operator,
and their scaling dimension is equal to n [13].

6.3 Supergravity
We still require a few additional tools for the formulation of supergravity. Since super-
gravity heavily depends on both fermions and curved space-time, we have to introduce
the frame field in order to combine these two concepts in supergravity.
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6.3.1 Frame fields and spinors in curved space-times
For the application of supergravity, it is convenient to introduce a new basis for the tangent
space TpM of the space-time manifold which will allow us to work with spinors in curved
space-times. In GR, one often works with the coordinate basis êµ = ∂µ for the tangent
space, as mentioned in Chapter 2. However, there exists another basis which turns out to
be more favorable if one wants to couple fermions to gravity. This is certainly required in
supergravity, as the graviton will have a superpartner, the spin-3/2 gravitino. The new
basis of TpM is based on the input that locally, at a space-time point, the curvature of the
manifold can be negated in the sense that there exists coordinates such that space-time
looks flat in a neighbourhood surrounding that point [1]. Therefore, one can choose an
orthonormal basis êa with respect to the Minkowski metric. That is, their inner product
satisfies

êa · êb = ηab . (6.24)

If we denote the coordinate basis, introduced in Chapter 2, by êµ = ∂µ, then one can
expand the coordinate basis vectors êµ in terms of the orthonormal basis vectors

êµ = eaµêa , (6.25)

and one can similarly define the components eµa . The orthonormal basis vectors êa are
known as the tetrad or vielbein (in 4d also vierbein), but we will call them frame fields .
As before, we will, by abuse of terminology, refer to their components eaµ as frame fields
as well. If we expand the inner product in equation (6.25), we find that

gµν = eaµe
b
νηab , (6.26)

such that, loosely speaking, frame fields are the “square root” of the metric. Note that
frame fields hence depend on the space-time coordinates. The idea is that every point in
space-time has a local frame, which is characterized by local frame indices which in our
convention will be denoted by Latin letters a, b, . . . while Greek letters µ, ν, . . . are used
for coordinate indices . These local frames are not unique, but they are equivalent up to
local Lorentz transformations [10]. Such local Lorentz transformations act only on the
frame indices and leave coordinate indices inert. We can still perform diffeomorphisms
(coordinate transformations), which then act on coordinate indices while leaving frame
indices invariant.

Since spinors are characterized by their properties under Lorentz transformations,
it is evident that one needs a way to encode how spinors transform under these local
Lorentz transformations. The defining relation of the Clifford algebra of gamma matrices,
equation (6.1), uses the Minkowski metric. To adapt this to curved space-times, we
therefore interpret this equation as valid in the local frame, i.e. we should, given the
above conventions, rewrite equation (6.1) as {γa, γb} = 2ηab1. As before, the matrices γa
are numerical, constant matrices. The frame fields are then used to transition between the
local and the coordinate basis, i.e. we construct new gamma matrices γµ(x) = eµa(x)γ

a,
which are now space-time dependent, for the curved space-time.

In the language of frame fields, the connection is specified by ωab = ω ab
µ dxµ, known

as the spin connection. In GR, we required invariance under general coordinate transfor-
mations, seen as local (gauged) translations. As a consequence, the principle of minimal
substitution dictated that ordinary derivatives of vectors and coordinate tensors should
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be replaced by covariant derivatives ∇µ using the Christoffel connection. Spinors ψ in
gravitational theories must be described by local frame components, and invariance un-
der local Lorentz transformations (generated by the matrices γab) similarly dictates that
partial derivatives acting on spinor fields are replaced by a covariant derivative Dµ which
is created from the spin connection, i.e.

Dµψ(x) =
(
∂µ +

1
4
ωµab(x)γ

ab
)
ψ(x) , (6.27)

suppressing the spinor indices. The spin-3/2 gravitino field Ψµ, to be defined later on as
the gauge field of local supersymmetry, therefore has a combined covariant derivative, as
they carry a vector as well as spinor index, i.e.:

∇µΨν = DµΨν − Γρ
µνΨρ =

(
∂µ +

1
4
ωµab(x)γ

ab
)
Ψν − Γρ

µνΨρ . (6.28)

6.3.2 Eleven-dimensional supergravity and dimensional reduc-
tion

We have already remarked several times that supergravity is the gauged version of global
susy, such that the susy parameters ϵα now depend on the space-time coordinates ϵα(x). A
brief, hand-waving argument explains why gauging susy implies gravity is present. Start-
ing from the generic transformation rule on fields, see equation (6.16), the commutator of
two susy transformations δ1, δ2 with parameters3 ϵ1, ϵ2 is given by

[δ1, δ2]ϕ(x) = −1
2
ϵ1γ

µϵ2 (∂µϕ(x)) , (6.29)

which is a translation (as expected) with parameter −1
2
ϵ1γ

µϵ2. Therefore, if we want to
promote susy to a local symmetry, this implies that translations become promoted to
local symmetries. Such transformations are precisely the diffeomorphisms and imply that
gravity is present in the theory. As we remarked in Section 3.3, the consistent gauging
of a global symmetry requires the introduction of a gauge field, which in this case is a
spin-3/2 field known as the gravitino Ψµα. If we gauge N -extended susy, this introduces
N gravitini fields.

The simplest supergravity is4 N = 1, D = 11 supergravity [33], as its action and field
content are completely fixed. The maximal number of space-time dimensions in which
sugra theories can be formulated is 11, because a fundamental spinor in D = 12 is a
Majorana spinor5 and hence has 26 = 64 components. Therefore, this would violate the
constraint that sugra theories must have N ≤ 32 components of supercharges. The field
content of 11d sugra is as follows [10]. The graviton field is, of course, present and contains
44 bosonic degrees of freedom. There is one gravitino, which has 128 fermionic degrees
of freedom. As the bosonic and fermionic degrees of freedom must be equal there are 84
bosonic degrees of freedom left, which are accounted for by a 3-form gauge field AMNP .

Most of the maximally supersymmetric sugra theories in d < 11 can be obtained
from 11d supergravity by compactification, with type IIB sugra in 10d being the only
exception. Compactification means that we obtain a lower-dimensional theory, say in

3We suppress the spinor indices.
4We denote the number of space-time dimensions using capital D, since we will construct d-dimensional

(d < D) theories via compactification.
5It cannot be a Majorana-Weyl spinor, as such spinors only exist in D = 2 mod 8 [10].
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d dimensions, from a D-dimensional theory by reducing D − d space dimensions to a
compact space. Hence we write the D-dimensional space-time as a product space-time:
MD =Md +XD−d, where XD−d is a compact space, referred to as the internal manifold.
This process is known as Kaluza-Klein (KK) compactification.

When compactifying fields in the theory, we get so-called towers of massive states,
which we can motivate using the simplest example of a free scalar field living in R1,d−1×S1,
such that the compact space is a circle. The scalar field satisfies the Klein-Gordon equation
(□ − m2)ϕ = 0, with the d’Alembertian operator given by □ = gµν∇µ∇ν . Writing the
space-time coordinates as (xµ, y), with y the coordinate on the circle, we can decompose
the d’Alembertian as □d+1 = □d + ∂2y , and the Klein-Gordon equation becomes(

□d + ∂2y −m2
)
ϕ(xµ, y) = 0 . (6.30)

Since we require ϕ to be single-valued along the circle, y must be periodic and hence we
can expand ϕ in Fourier modes as

ϕ(xµ, y) =
∑
k∈Z

eiky/Lϕk(x
µ) , (6.31)

where L is the radius of the circle and k labels the different Fourier modes. Hence equation
(6.30) becomes [

□d −
(
k

L

)2

−m2

]
ϕk(x

µ) = 0 . (6.32)

Hence, from the d-dimensional space-time point of view, we have an infinite amount of
scalar fields, namely the Fourier modes ϕk(x

µ), with masses m2
k = m2 + (k/L)2, which

is an infinite tower of massive modes for each value of k. In dimensional reduction, a
procedure related to Kaluza-Klein compactification, we perform a consistent truncation
of this tower of states and retain only a finite subset of the Fourier modes. Usually,
these include only the massless and/or some of the lightest modes. The heavier Fourier
modes are omitted in a consistent way, that is, such that field equations are satisfied on
the smaller subset and the omitted, heavier modes are not sourced by the lighter modes
which are kept.

As mentioned above, dimensional reduction allows us to create maximally symmetric
theories in d < 11 dimensions starting from the 11d sugra theory, of which the field content
was specified above. Of particular interest for the thesis is the N = 8, d = 4 sugra theory.
Via dimensional reduction, one can find the following field content. The 11d gravitino
gives rise to eight gravitinos and 56 spin-1/2 fields in 4d. Using Greek letters to denote
4d coordinates, and Latin letters for coordinates on the internal manifold, the 11d metric
yields the 4d metric gµν , 7 spin-1 particles gµi and 28 scalars gij. The 3-form components
give 21 vectors Aµij and 42 scalars of which 35 come from Aijk and the remaining 7 from
Aµνi. In total, there are 28 vector fields and 70 scalar fields in the N = 8, d = 4 theory,
which will turn out to be important for our story later on. In particular, we remark that
the compactifications mentioned above are on a torus T 7 and as a result, the vectors turn
out to gauge a U(1)28 gauge group. Moreover, the scalar potential in this supergravity
vanishes. One can deform the gauge group into a less trivial group, and this results in a
so-called gauged supergravity, where the coupling between vectors and scalars introduces
a non-trivial scalar potential. This will be discussed in more detail in Section 6.3.5.
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6.3.3 Scalar geometry and Kähler manifolds
The previous section discussed how to obtain four-dimensional supergravities from higher
dimensions through compactification. Due to this compactification, the four-dimensional
maximally supersymmetric supergravity contains 70 scalar fields. An important feature
is the fact that the kinetic terms of these scalar fields are non-trivial. That is, instead of
the usual term −1

2
∂µϕi∂

µϕi, where i labels the scalars, the kinetic terms are of the form
Kij(ϕ)∂µϕ

i∂µϕj. The matrix Kij(ϕ), which depends on the scalars, can be interpreted as
a metric on a new manifold, the scalar manifold Mscalars. This manifold and its geometry
is part of the data of a theory and, unlike the space-time metric gµν , is not a dynamical
quantity. It turns out that these scalar manifolds are completely characterized by their
isometries. For example, the scalar manifold of the N = 8, d = 4 sugra is the symmetric
space Mscalars = E7,7/SU(8).

However, in order to make calculations feasible, we will only consider a subsector
of this manifold which is related to only 14 out of the 70 scalar fields of the theory.
Therefore, after having performed a consistent truncation (see Section 6.3.5), we will
work in a N = 1, d = 4 supergravity theory. The scalar manifold for such a supergravity
is a specific type of manifold known as a Kähler manifold. Kähler manifolds are complex
manifolds, which can be considered real manifolds of even dimension 2n parametrized by
n complex coordinates zα = xα+ ixα+n, with {xα, xα+n} real coordinates on the manifold.
The complex metric tensor can be expanded into

ds2 = 2gαβ dz
α dzβ + gαβ dz

α dzβ + gαβ dz
α dzβ . (6.33)

Kähler manifolds have additional constraints on their metric. One constraint requires the
metric to be hermitian, which means it can be put in the form

ds2 = 2gαβ dz
α dzβ . (6.34)

For a hermitian metric, one can define the fundamental 2-form Ω = −2igαβ dz
α ∧ dzβ.

A Kähler manifold is then a complex manifold with a hermitian metric for which its
2-form is closed (i.e., its exterior derivative vanishes). Following the conventions from
the literature, we denote the metric on a Kähler manifold by Kαβ rather than gαβ. This
Kähler metric Kαβ can be written as

Kαβ = ∂α∂βK , (6.35)

where K = K(z, z) is the Kähler potential. We adopt the notation that Greek subscripts
α, β, . . . denote derivatives with respect to complex scalars, while barred subscripts α, β, ...
denote derivatives with respect to their complex conjugates, i.e.

∂α ≡ ∂

∂zα
, ∂α ≡ ∂

∂zα
. (6.36)

In our work, we will encounter the Poincaré plane (or hyperbolic upper half-plane)
as Kähler manifold. As a symmetric space, the Poincaré plane is the coset space6

6Since SU(1, 1) ∼= SL(2,R), this is also SL(2,R)/U(1). The group SL(2,R) are the Möbius transfor-
mations with real parameters.
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SU(1, 1)/U(1). Considered as a real manifold, it has two coordinates x, y with y > 0.
The metric is

ds2 =
1

y2
(
dx2 + dy2

)
. (6.37)

Therefore, distances become infinite as one approaches the line y = 0. We introduce the
complex coordinate z = x+ iy which is therefore restricted to the upper half-plane since
Im(z) > 0. The metric can be written as

ds2 =
1

(Im(z))2
dz dz . (6.38)

For the Poincaré plane, the most common7 Kähler potential used in the literature is

K = −log(−i(z − z)) , (6.39)

such that the Kähler metric is
Kzz = − 1

(z − z)2
. (6.40)

This hyperbolic space is equivalent to the well-known8 Poincaré disk |z| < 1. Both spaces
are related to each other by a conformal transformation. In particular, the line y = 0 of
the plane gets mapped into the boundary of the disk |z| = 1. We will not discuss further
details of this transformation. The most common Kähler potential used in the literature
for the Poincaré disk is

K = − log(1− zz) , (6.41)

such that the Kähler metric in this case is equal to

Kzz =
1

(1− zz)2
. (6.42)

As mentioned, Kähler manifolds appear in N = 1, d = 4 supergravities coupled to chiral
multiplets, which we introduce in the next section.

6.3.4 Chiral multiplets in N = 1, d = 4 supergravity
Fields in sugra theories are organized into supermultiplets. Naturally, the supermultiplet
which is always present, and which is the only possible supermultiplet for N > 16 real
supercharges, is the supergravity multiplet, containing the graviton and N gravitinos.
However, supergravity theories with N ≤ 16 supercharges can have additional supermul-
tiplets known as matter multiplets . We only discuss the chiral multiplets in N = 1, d = 4,
as this will be of relevance to the thesis. Each chiral multiplet contains a spin-1/2 Weyl
spinor χ and a complex scalar z. The kinetic terms of the complex scalars are given by a
Kähler metric, introduced in the previous section. The action of a supergravity coupled
to a chiral multiplet is not unique and depends on a completely arbitrary holomorphic
function called the holomorphic superpotential W (z). Clearly, there are hence in principle
an infinite amount of N = 1, d = 4 sugra theories coupled to chiral multiplets. However,

7The Kähler potential is not unique. Given a Kähler potential K(z, z), the potential K(z, z) + f(z) +
f(z) is another Kähler potential giving rise to the same Kähler metric, due to equation (6.35).

8If not from physics or mathematics, then certainly from the works by M.C. Escher [34].
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the choices are limited in our work as we restrict our attention to the interesting subset
of theories for which a higher-dimensional origin out of string theory is known.

Since we will be interested in classical solutions, in which fermions vanish, we can limit
ourselves to the bosonic part of the action involving the metric gµν (or frame fields eaµ)
and the scalars zα, where α = 1, . . . , n labels the different chiral multiplets in our theory.
If the supergravity is coupled to n chiral multiplets, the bosonic part of the Lagrangian is

e−1Lbosonic =
1

2κ2

(
R(e)−Kαβ∂µz

α∂µzβ − 2V (z, z)
)
, (6.43)

where e ≡ det eaµ should not be confused with the Euler number. The first term contains
the Ricci scalar, obtained from the frame fields, and corresponds to the Einstein-Hilbert
part of the action. The second term are the kinetic terms of the scalars which, as men-
tioned, live on a Kähler manifold with Kähler metric Kαβ. The final term, which is the
most important one for Part III of the thesis, is the scalar potential . For a supergravity
coupled to chiral multiplets, this scalar potential is completely determined by the Kähler
potential, the Kähler metric and the holomorphic superpotential W :

V (z, z) = eK
(
KαβDαWDβW − 3WW

)
, (6.44)

Here, we have introduced the Kähler covariant derivative Dα, which acts as

Dα(·) = ∂α(·) + (∂αK)(·) , Dα(·) = ∂α(·) + (∂αK)(·) . (6.45)

We emphasize that the superpotential, by definition, is a function of the scalars zα only,
while this is not the case for the Kähler potential and consequently V depends on both
zα and zα.

6.3.5 Gauged supergravity and consistent truncation
Our discussions above have been introducing the so-called basic supergravity theories.
That is, while the super-Poincaré group is gauged, other symmetries, on the other hand,
are not gauged in the theory. In particular, the 28 vector fields of the maximally super-
symmetric 4d supergravity form a U(1)28 symmetry group. A next step towards our work
in Part III is to deform this basic supergravity into a gauged supergravity . The details of
this gauging procedure are involved and go beyond the scope of this thesis. We will merely
state the essential ingredients and provide references for further reading. Moreover, we
restrict our attention to the N = 8, d = 4 theory. Recall that the scalar manifold of this
theory is E7,7/SU(8).

There are two ways of obtaining a gauged supergravity theory. One option is to gauge
the vectors in the theory into a Yang-Mills group. The other option is to promote the
isometries of the scalar manifold to symmetries of the complete action of the theory, which
is known as the embedding tensor formalism [35–37]. In the latter approach, the genera-
tors XM of the algebra of the gauge group G are hence written as linear combinations of
the generators tα of the e7,7 algebra:

XM = Θ α
M tα , (6.46)

where Θ is known as the embedding tensor. We further restrict our attention to gaugings
where the Θ tensor is built from 36 ⊕ 36′ representations of a sl(8,R) basis for e7,7,
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discussed in detail in [38, 39]. As a consequence of this, there are only four inequivalent
gauged supergravity theories of interest to us which arise from the ungauged, basic N =
8, d = 4 supergravity. They are given in Table 6.2 and will be discussed in more detail in
Chapter 9. We restrict our attention to these gauged supergravities because they can be
obtained from higher-dimensional theories. The gauge group of the 4d theory depends on
the internal manifold on which we perform the dimensional reduction. Hence, we denote
this internal space by XG. We delay further discussions on the details of XG to Chapter
9.

Gauge group G a b ã b̃

SO(8) 1 1 0 0

ISO(7) 1 0 0 1

[SO(6)× SO(1, 1)]⋉R12 0 0 1 −1

[SO(6)× SO(2)]⋉R12 0 0 1 1

Table 6.2: Four gauge groups of 4d gauged supergravities considered in this thesis and their
values of a, b, ã, b̃ which parametrize the superpotential via equations (6.49) and (6.50).

As mentioned before, the ungauged supergravity theories have a vanishing scalar po-
tential V . For our work, the most important feature of gauging a supergravity is the fact
that the vector fields become coupled to the scalar fields. This introduces a scalar poten-
tial to the theory, which is a function of 70 scalar fields for the 4d theories we consider
in this thesis. However, it is rather difficult to work with the complete scalar potential
and to consider all 70 real variables. Therefore, one often restricts the attention, in a
mathematically well-defined way, to a subset of the scalar fields. That is, we perform
a consistent truncation, meaning that we only retain fields which are invariant under a
subgroup of the E7,7 isometry group. We will again not discuss the details of these trun-
cations, and only cover the most important aspects and results for our story. It turns out
that there are three Z2 symmetry operations within SL(8,R) which can be represented as
[38]:

S1 : (x1, x2, x3, x4, x5, x6, x7, x8) 7→ (x1,−x2,−x3,−x4,−x5,−x6,−x7,−x8) ,
S2 : (x1, x2, x3, x4, x5, x6, x7, x8) 7→ (x1,−x2,−x3,−x4,−x5,−x6,−x7,−x8) , (6.47)
S3 : (x1, x2, x3, x4, x5, x6, x7, x8) 7→ (x1,−x2,−x3,−x4,−x5,−x6,−x7,−x8) .

By imposing invariance under one, two or all three of the above Si, one can obtain
consistent truncations of the gauged supergravities which retain respectively 38, 22 or 14
real scalar fields [38]. In this thesis, we will only consider the latter, which we will refer
to as the Z3

2-invariant truncation (or simply Z3
2-truncation). The major advantage is that

the truncated theory can be recast in the language of a N = 1, d = 4 supergravity theory
coupled to 7 chiral multiplets, which introduces 7 complex scalars zα. Therefore, we can
use the results from Section 6.3.4 to compute the scalar potential explicitly. It turns out
that the 7 complex scalars parametrize the Kähler manifold[

SL(2,R)
U(1)

]7
, (6.48)

which are 7 ‘commuting’ copies of the Poincaré plane or Poincaré disk, which we discussed
in detail in Section 6.3.3.
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IIA, IIB or 11D sugra

N = 8, d = 4
(ungauged)

G = SO(8)

G = ISO(7)

G = [SO(6)× SO(1, 1)]⋉ R12

G = [SO(6) × SO(2)] ⋉ R12

N = 1, d = 4 with
7 chiral multiplets

V (ϕ) = 0
70 scalars

VG(ϕ) ̸= 0, hard
70 scalars

VG(ϕ) computable
14 scalars

T 6, T 7

uplift

X6
G, X

7
G

Z3
2-truncation

WG,K

Figure 6.2: Overview of the gauged supergravities and the Z3
2-truncation appearing in this thesis.

A detailed discussion is given in the text.

As mentioned before, the action of chiral multiplets depends on a holomorphic super-
potential W . For the four truncated supergravities of this thesis, this superpotential is
characterized by constants a, b, ã, b̃. Indeed, the superpotential can be written as the sum
of a universal part W0 (i.e. shared by all four different gauge groups) given by

W0 = 2g(z1z5z6 + z2z4z6 + z3z4z5 + z1z4z7 + z2z5z7 + z3z6z7) , (6.49)

and a G-dependent part such that the the full superpotential becomes

WG = W0 + 2g(ãz4z5z6z7 + b̃+ z1z2z3(a+ bz4z5z6z7)) , (6.50)

where g is the gauge coupling. The constants a, b, ã, b̃ must satisfy aã = bb̃ = 0, a
constraint coming from consistency requirements on the embedding tensor. These values
are given in Table 6.2. With the above information on the truncated theories, one is able
to explicitly compute the scalar potential VG by using equation (6.44).

To summarize the discussion up to now, we refer readers to Figure 6.2. On the left
hand side, we give the basic (i.e., ungauged) supergravities of interest in this thesis, which
are formulated in 10d, 11d and 4d. The 4d ungauged supergravity is obtained from the 10d
or 11d theories via dimensional reduction on a torus and is maximally supersymmetric. By
dimensionally reducing on more complicated manifolds XG, or equivalently, by gauging
the vector fields of the 4d theory, one obtains a gauged supergravity theory. We find
four inequivalent gauged supergravities, given in the middle of the figure. The scalar
potential has become non-zero due to the gauging. To make calculations feasible, we
work in a N = 1, d = 4 supergravity coupled to 7 chiral multiplets obtained from the
Z3

2-truncation, shown at the right of the figure. This allows us to compute the scalar
potential explicitly as a function of 14 out of the 70 scalar fields. Our work presented in
Chapter 9 is situated precisely in these truncated theories.
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6.3.6 AdS vacua and BPS equations
Since we will work in a N = 1, d = 4 supergravity coupled to chiral multipets, we are of
course interested in its solutions. In particular, we are interested in classical (i.e., with
vanishing fermions), vacuum background solutions, also called vacua. Classical solutions
are solutions of the bosonic part of the action, given in equation (6.43). The vacuum
solutions correspond to extrema of the scalar potential V . That is, the scalar fields z⋆α at
a vacuum satisfy

∂αV (z, z)|z⋆α = 0 , (6.51)

for all α. Looking back at the action in equation (6.43) and comparing with equation
(2.33), we see that these background solutions are space-times with a cosmological con-
stant Λ = V . In our case, the scalar potential is negative and hence we will work with
AdS vacua. Vacuum configurations can correspond to saddle points or even maxima of
the scalar potential. One can wonder whether this implies that such vacua are unstable
with respect to small, local perturbations to the scalar fields. It turns out that, due to
the curved AdS background, these extrema can still be stable provided that the masses
of the scalar fields satisfy the Breitenlohner-Freedman (BF) bound [40, 41]

m2L2 ≥ −(d− 1)2

4
, (6.52)

where L is the length scale of the AdS space-time (see Section 2.4). We will refer to
the dimensionless numbers m2L2 as squared masses for simplicity. Hence, the BF bound
tells us that tachyonic modes (which have negative squared masses) are allowed up to a
certain extent in a negatively-curved, AdS background space-time. Note that, in a flat
space-time, this is not the case, and the squared masses must be positive.

An interesting result is that the Kähler covariant extrema z⋆α of the superpotential,
defined by

DαW (z)|z⋆α = 0 , (6.53)

for all α, are also extrema of the scalar potential, as we will now show explicitly in more
detail compared to most references on this material. Indeed, if we act with a partial
derivative on V from equation (6.44), we get

∂γV |z⋆α = eK
[
(∂γK)(KαβDαWDβW − 3WW ) + ∂γ

(
KαβDαWDβW − 3WW

)]
(6.54)

= eK
[
− 3(∂γK)WW + ∂γ(Kαβ)DαWDβW

+Kαβ
(
∂γ(DαW )DβW +DαW∂γ(DβW )

)
− 3∂γ(WW )

]
(6.55)

= −3eK
[
(∂γK)WW + ∂γ(WW )

]
(6.56)

= −3eKW
[
(∂γK)W + ∂γW

]
, (6.57)

where we have made heavily use of equation (6.53) and in the final step used the fact that
the superpotential is a function of zα only, such that ∂γW (z) = 0. In the final equation,
we recognize the Kähler covariant derivative, and hence we find

∂γV |z⋆α = −3eKWDγW = 0 , (6.58)
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again because of equation (6.53). This shows that Kähler covariant extrema of the super-
potential are indeed extrema of the scalar potential.

These extrema of the superpotential are important to our story, as they correspond
to supersymmetric vacua. Similar to global susy, a solution of a sugra theory is not
necessarily itself invariant under susy transformations. Whenever a solution carries a
residual amount of global susy, the solution is again called a BPS solution. There exists a
prescription to determine such solutions using Killing spinors, which are the “square roots”
of Killing vectors familiar from GR.9 These are a finite subset of the spinor functions for
which the susy transformations leave the solution invariant. Therefore, they form a set of
constant parameters and hence determine the residual (global) susy of the solution. One
can derive the Killing spinor conditions from the fermion transformation rules [10]. One
can write the local susy transformations schematically as

δϵB(x) = ϵ(x)f(B) F (x) + . . . , δϵF (x) = g(B)ϵ(x) + . . . , (6.59)

where B(x) and F (x) represent boson and fermion fields, respectively. The dots denote
higher-order terms involving fermion fields only. If the solution has residual susy, this
means that the set of equations δϵF (x) = 0, δϵB(x) = 0 has a non-trivial solution for
some spinor ϵ. Since fermion fields vanish in a classical solution, the equation δϵB(x) is
trivially satisfied and the higher-order terms vanish. Only the linear term in the δϵF (x)
equation remains. Hence, a BPS solution is a classical solution for which the linearized
fermion susy transformations vanish, i.e.

δϵF (x)|lin = 0 . (6.60)

If there are nQ linearly independent solutions to this set of equations, then we say the
solution preserves nQ supercharges and is said to be nQ

N -BPS. An important point to keep
in mind is that the original symmetries are local, while the preserved ones are global.

As we have outlined above, we will be working in a N = 1, d = 4 sugra theory coupled
to chiral multiplets. It is therefore instructive to consider the susy transformations of the
gravitini Ψµ and the spin-1/2 chiral fermions10 χα. They are [42]

δϵPLΨµ =

(
∂µ +

1

4
ω ab
µ − 3

2
iAµ

)
PLϵ+

1

2
γµe

K/2WPRϵ , (6.61)

δϵPRΨµ =

(
∂µ +

1

4
ω ab
µ +

3

2
iAµ

)
PRϵ+

1

2
γµe

K/2WPLϵ , (6.62)

δϵPLχ
α = PL

(
γµ∂µz

α − eK/2KαβDβW
)
ϵ , (6.63)

δϵPRχ
β = PR

(
γµ∂µz

β − eK/2KαβDαW
)
ϵ , (6.64)

where Aµ is the Kähler connection

Aµ = 1
6
i
(
∂µz

αKα − ∂µz
αKα

)
. (6.65)

For an AdS vacuum, the scalars take constant values and hence their derivatives as well
as the Kähler connection vanish. In order to have residual susy, we have to require that

9More precisely, for any pair of Killing spinors ϵ, ϵ′, the bilinear ϵ′γµϵ is a Killing vector.
10The index α runs over the different chiral multiplets and is not to be confused with a spinor index,

which is suppressed here.
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there exist four-component Killing spinors which solve all of the above equations. For this,
equations (6.63) and (6.64) are satisfied if the scalars are a Kähler covariant extremum
of the superpotential, i.e. they satisfy equation (6.53). Equations (6.61) and (6.62) can
then, schematically speaking, be recast in the form Dµϵ = cγµϵ, with some constant c
depending on the values of the scalar fields. The linearly independent solutions to these
equations then determine the residual supercharges in the solution.

Finally, we remark that, due to a Higgs-like breaking mechanism, non-zero values of
the scalar fields imply that the gauge symmetry of the theory is broken and the vacuum
is invariant under a residual symmetry group which is contained within G. Hence, when
we discuss the vacua of gauged supergravities in Chapter 9, we will specify the number
of residual supercharges nQ (denoted simply by N in Chapter 9) and the residual global
symmetry group of each solution.



Chapter 7

Gauge/gravity duality

Recent research in string theory has culminated in the discovery of an interesting, new
class of dualities which relate gravitational theories to quantum field theories, known
as gauge/gravity dualities. These dualities provide an exact correspondence between
all fields, operators, observables, et cetera of both theories. The true claim of fame of
gauge/gravity dualities is that they are in particular strong/weak dualities: whenever the
gravitational theory is weakly coupled, the gauge theory is at strong coupling and vice
versa. These dualities therefore give us a new computational tool to gain insight into
theories at strong coupling, where perturbative calculations fail. This is the spirit behind
our work of Chapter 9.

This chapter aims to introduce the concept of a gauge/gravity duality in more detail.
We start off with the first hints towards such dualities obtained from fields theories at
large N and the holographic nature of the correspondence. The gauge/gravity duality is
motivated using the most famous example, the AdS/CFT correspondence discovered by
Maldacena in 1997 [43]. We also develop the holographic dictionary employed in Part III
of the thesis.

7.1 Large N field theories and holography
As we briefly mentioned in Section 4.3, QCD enjoys asymptotic freedom, meaning that the
strong coupling constant decreases at larger energies. At low energies however, the theory
is strongly coupled and perturbation theory fails. Therefore, new tools must be sought
to perform calculations. One possible trick, invented by ’t Hooft, is to treat the number
of colours N , equal to three for QCD, as a free parameter. One could hope to solve the
theory in the limit N → ∞ and treat the finite N case using a perturbative expansion
in 1/N . In the ’t Hooft limit , which corresponds to taking N → +∞ while keeping the
’t Hooft coupling λ ≡ g2N constant, it turns out that planar diagrams dominate [44].
That is, a diagram which has Euler number χ carries a factor Nχ. Therefore, the planar
diagrams, which have χ = 2, dominate in the expansion when taking the limit N → ∞.
Other diagrams become suppressed by factors 1/N2. Hence, the expansion resembles
the genus expansion of perturbative string theory, which we briefly mentioned in Section
5.2.1. This motivates us to identify large N gauge theories with string theories, where
the string coupling gs is associated with the parameter 1/N . The argument by ’t Hooft
is very general and this led to the remarkable idea that string theories, possibly including
quantum gravity, may be equivalent to field theories.

57
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Moreover, this identification is a particular manifestation of holography , meaning that
the field theory lives in one dimension of space-time less compared to the gravity theory.
The first hints of holography came from the study of black hole thermodynamcis. As well-
known in the field of black hole thermodynamics [45], the Bekenstein-Hawking entropy of
a black hole depends on the area of its event horizon [46, 47]. As such, Bekenstein argued
that the maximal entropy of a region of space depends on its boundary [48]. Based on
this, ’t Hooft made the interpretation that all phenomena in a 3d volume can be explained
via degrees of freedom which reside on the 2d boundary surface of that volume [49]. One
can interpret the 2d surface as a ‘screen’ of bits of information, of which the 3d volume is
its ‘image’, which is precisely the idea of a hologram [50].

In gauge/gravity dualities, holography similarly states an equivalence between a grav-
itational theory in d + 1 space-time dimensions and a gauge theory in d space-time di-
mensions. We will introduce the most famous example of the gauge/gravity duality, the
AdS/CFT correspondence of Maldacena.

7.2 The Maldacena conjecture
Studies of the connection between field theories at largeN and string theory led Maldacena
to formulate the AdS/CFT correspondence. We will review, schematically, the argument
behind this correspondence based on [10, 13, 21, 24, 51]. The first dualities were found by
considering stacks of N coincident branes in superstring or M-theory. The three original
AdS/CFT correspondences formulated in the groundbreaking paper of Maldacena are
[43]:

M-theory on AdS4 × S7 ↔ SCFT on N M2-branes , (7.1)
M-theory on AdS7 × S4 ↔ SCFT on N M5-branes , (7.2)

Type IIB string theory on AdS5 × S5 ↔ SCFT on N D3-branes . . (7.3)

We will consider in more detail Maldacena’s conjecture given in the last line. More
precisely, we will motivate the conjecture that the following two theories are dual to each
other:

Type IIB superstring theory on AdS5 × S5 ↔ N = 4, d = 4, G = SU(N) SYM , (7.4)

where one assumes fields are compactified on the internal space S5. In the duality, one
identifies the YM coupling constant with the string coupling by gYM = 4πgs. As pre-
liminary checks of the correspondence, one can verify that the global symmetries match
on both sides. As a SCFT, the SYM theory has both Q and S supercharges, such that
both sides have 32 real supercharges. Recall from Section 2.4 that the isometry group of
an AdS5 space is SO(2, 4), which is precisely the conformal group in 4d as we mentioned
in Section 3.1.4. The isometry group of S5 is SO(6) ∼= SU(4), which coincides with the
gauge group of the right hand side.

Let us now present the arguments presented by Maldacena [43] that led to the cor-
respondence of (7.4). In order to make the argument tractable, readers are encouraged
to look at Figure 7.1 while reading the derivation. The correspondence arises by com-
paring two different points of view on the stack of N coincident D3-branes. Type IIB
string theory contains two perturbative excitations: open strings ending on the branes
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AdS5 × S5N = 4, SU(N) SYM

sugra sugra

long wavelength
in the bulk

RR flux N

gsNgsN ≫ 1gsN ≪ 1

Figure 7.1: Illustration of the argument leading to the Maldacena conjecture. Details are given
in the text. Left: open string point of view at gsN ≪ 1. Right: closed string point of view at
gsN ≫ 1.

and describing excitations of the brane, and closed strings, which are interpreted as ex-
citations of empty space and yield a gravitational solution. In this sense, AdS/CFT is a
manifestation of a closed string/open string duality.

In the first point of view, which we call the open string point of view, the branes
are localized, topological defects in a flat, Minkowski space-time background as gravity is
essentially “switched-off” in this picture, as the 10d gravitational constant depends on gs.
At energies below the string energy scale, only massless modes are available to be excited.
The massless, closed string states living in the bulk (i.e., away from the branes) give a
free supergravity multiplet which effectively yields a type IIB sugra action describing their
low-energy dynamics. The massless, open strings give a N = 4 vector supermultiplet, with
as low-energy Lagrangian that of1 N = 4, U(N) SYM. In the so-called Maldacena limit2

ℓs → 0, these two excitations decouple from each other (their interaction vanishes) and
result in a free sugra theory in the bulk plus a gauge theory living on the world-volume
of the branes. This is shown at the left in Figure 7.1.

Now, let us adopt a different point of view, which we will refer to as the closed string
point of view. In this picture, gravity is relevant and as such, the branes will curve the
geometry and yield a non-trivial gravitational solution. Specifically, the result is a black
3-brane, a concept which we briefly introduced in Section 5.2.2. We can write down a
classical sugra solution for the extremal black 3-brane. We decompose the coordinates in
coordinates xµ, µ = 0, 1, 2, 3 along the brane, and transverse coordinates ya, a = 1, . . . , 6.
The metric is given by

ds2 = H(ya)−1/2ηµν dx
µ dxν +H(ya)1/2δab dy

a dyb , (7.5)

= H(ya)−1/2ηµν dx
µ dxν +H(ya)1/2(dr2 + r2 dΩ2

5) , (7.6)

1A U(N) gauge theory is essentially a SU(N) theory and in fact, in the limit considered here, only
the SU(N) part is described [13].

2Note that ℓs is a dimensionful quantity and we are actually considering the limit of Section 5.2.3.
Nevertheless, we will simply refer to this limit as ℓs → 0 or equivalently, α′ → 0.
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where H(ya) is a harmonic function and r =
√
yaya is the radial coordinate in the trans-

verse direction. For the extremal black brane, we have

H(ya) = 1 +
L4

r4
, (7.7)

where L is given by
L4 = 4π(α′)2gsN . (7.8)

The black 3-brane has a horizon at r = 0. Similar to ordinary black holes, approaching
the horizon implies that energies are redshifted as seen by an observer at infinity. For
this observer, there are hence two different low-energy excitations. The first one are
massless particles which propagate in the bulk with a long wavelength. The second kind
of excitations consist of any excitation in the theory that is brought arbitrary close to the
horizon r = 0 and, due to the redshift, becomes a low-energy excitation. Again, these two
types of excitations decouple in the low-energy limit and give a free sugra theory in the
bulk on the one hand, and the ‘near-horizon’ (i.e., r ≈ 0) geometry of the black brane on
the other. This near-horizon geometry can be found by approximating H ≈ L4/r4, such
that the metric is approximated by

ds2 ≈ r2

L2
ηµν dx

µ dxν + L2

(
1

r2
dr2 + dΩ2

5

)
. (7.9)

Performing the change of coordinates z = L2/r, this becomes

ds2 =
L2

z2
(
dz2 + ηµν dx

µ dxν
)
+ L2 dΩ2

5 , (7.10)

which, upon comparing with equation (2.47), we recognize as the line element of the
product space AdS5 × S5. The length scales of the AdS5 and S5 spaces are both equal to
L. Note that this is indeed similar to an extremal Reissner-Nördstrom black hole, which
has an AdS2×S2 near horizon geometry in 4d, also known as the Robinson-Bertotti metric
[10]. This second viewpoint on the stack of branes is presented at the right of Figure 7.1.
In this second picture, the integer N , which appears in the gauge group of the gauge side
of the correspondence, is equal to the flux of the five-form F (5) of type IIB string theory
through the five-sphere, i.e.

N =

∫
S5

F (5) . (7.11)

Therefore, in both points of view, we have two decoupled theories in the low-energy
limit. Both contain supergravity in the bulk, and so we are naturally led to identify the
gauge theory from the open string point of view with the type IIB string theory on an
AdS5 × S5 background. This is precisely the Maldacena conjecture from (7.4).

So far, we have glossed over the fact that the above two descriptions are only valid
in particular regimes of the string coupling gs. Taking this into account will demonstrate
that the AdS/CFT correspondence is in particular a strong/weak duality. Indeed, the
open string point of view has a valid perturbative description in the regime gsN ≪ 1.
The reason is that in string perturbation theory, any additional world-sheet boundary
brings in a factor gs from the genus and a factor N coming from the Chan-Paton trace.
On the other hand, the closed string point of view will provide a valid approximation if
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the sizes L of the space-times we are dealing with are large compared to the string length
scale, such that stringy effects can be neglected. Looking at equation (7.8), and using the
fact that α′ = ℓ2s, we find that (

L

ℓs

)4

= 4πgsN . (7.12)

Hence, we find that a supergravity limit can provide an adequate description of the above
solution provided that gsN ≫ 1. Therefore, both sides of the AdS/CFT correspondence
reign in different regimes of gs, which is why it is said to be a strong/weak duality. This
is represented schematically by Figure 7.2.

There are several versions of the Maldacena conjecture. In its strongest form, the
correspondence uses the full string theory on the gravity side, and moreover claims the
conjecture to hold for all values of gs and N . It is, however, desirable to consider weaker
forms of the conjecture in which we have more control over the theories. Taking the
limit α′ → 0 is one example. Another example is the ’t Hooft limit mentioned earlier in
Section 7.1, where one takes the limit N → ∞ with fixed ’t Hooft coupling λ = gsN . The
strong/weak aspect of the duality manifests itself in the fact that one naturally works at
λ ≪ 1 on the field theory side, but λ ≫ 1 on the gravity side. One can consider an even
weaker version by considering the limit λ→ ∞. In this case, we have an expansion in α′

on the gravity side, such that one can work with classical type IIB sugra, while the gauge
side now has an expansion in λ−1/2.

Open string (gsN ≪ 1)

Closed string (gsN ≫ 1)

N = 4, d = 4, SU(N) SYM

Near-horizon AdS5 × S5

gs ↔ 1/gs

α′ → 0

α′ → 0

AdS/CFT

Figure 7.2: Relation between the two different points of view, taking the supergravity limit, and
dualities relating the different descriptions.

The other examples of the AdS/CFT correspondence, given in equations (7.1) and
(7.2), share most of the features of the correspondence discussed above but are concep-
tually more involved to formulate and discuss. For example, in the case of (7.1), which
will be of relevance to us in Chapter 9, there can be no Yang-Mills gauge group at the
CFT side of the correspondence, as the Yang-Mills coupling is dimensionful in 3d and
hence would break conformal invariance. Moreover, the M-branes, unlike D-branes, do
not admit the interpretation of strings attached to them and stretched in between them.
As a consequence, the dual field theories are more complicated than the N = 4 SYM
theory, and they turn out to be superconformal Chern-Simons theories [52].

7.3 Holographic dictionary
The true strength of dualities is that they stipulate two different theories to be equivalent
to one another. In order to turn the gauge/gravity dualities into a computational tool,
we have to introduce the holographic dictionary , which gives us a precise and explicit
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identification between all objects of the gravitational and gauge theories. The dictionary
is holographic, since the gauge theory is said to “live on the boundary” of AdS, as we will
argue in a moment. The quotation marks indicate that this statement is merely helping
us to visualize what is going on, but should be used with care. Like Feynman diagrams,
such pictorial statements are only useful to physicists if there is a way to convert them
into computations.

To connect AdS/CFT with the ideas of holography, we identify the coordinates xµ
in the bulk with coordinates xµ in the field theory. The extra coordinate in the gravity
theory of AdS (r or z) is identified with the RG scale of the dual field theory, which
can be viewed as an evolution coordinate, and one identifies E ∼ 1/z ∼ r [21]. One
can hence consider QFTs obtained from the CFT by integrating out degrees of freedom
heavier above a certain energy scale E. If we consider the theory at E = ∞ to be the
fundamental theory, then this corresponds to r = ∞ or z = 0, which is the boundary of
AdS. This is why it is often said that the CFT “lives at the boundary”. Hence we have a
consistent holographic interpretation of the AdS/CFT correspondence.

The postulate at the basis of the holographic dictionary offered by AdS/CFT is the
identification of the generating function of Green’s functions of the gauge theory with the
supergravity action in the AdS5 × S5 geometry [53]. This postulate implies that fields ϕ
in the bulk must be identified with operators O in the boundary, which is known as the
field-operator correspondence [54]. For example, the field dual to the energy-momentum
tensor operator in the gauge side of AdS/CFT is the metric, which reinforces the idea of
the gauge/gravity duality. In Section 2.4, we mentioned that boundary conditions must
be specified for fields living in an AdS space. These boundary conditions will switch on
operators in the dual field theory, as we will argue in more detail now.

Let us limit the discussion on the holographic dictionary to a single scalar field ϕ living
in AdSd from now on, as this case is most important for the purpose of holographic RG
flows. Consider a scalar field ϕ(x, z) in the bulk with boundary condition ϕ(x, z = 0) ≡
ϕ0(x). The postulate mentioned above implies that we identify [13]〈

e
∫
d4x ϕ0(x)O(x)

〉
CFT

= Z [ϕ(x, z = 0) = ϕ0(x)] . (7.13)

Let us discuss the right hand side in the supergravity limit of the correspondence. The
supergravity action3 is

S =
1

2κ2

∫
ddx dz

√
|g| (−R + gµν∂µϕ∂νϕ+ 2V (ϕ)) . (7.14)

The existence of an AdS vacuum implies the potential V should have at least one critical
point ϕ⋆, through which we can define the length scale of AdS space L via

V (ϕ⋆) = −d(d− 1)

2L2
= Λ . (7.15)

The cosmological constant was inferred by comparing with our results given in equations
(2.33) and (2.39). Note that the potential is negative since the cosmological constant is

3We work in Euclidean signature, in order to be consistent with the provided references. However, we
will still call the Euclideanized AdS space simply AdS.
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negative for AdS. We can expand the potential up to quadratic terms around ϕ⋆, which
we assume without loss of generality to lie at the origin ϕ⋆ = 0. The action reduces to

S =
1

2κ2

∫
ddx dz

√
|g|
(
−R + 2Λ + gµν∂µϕ∂νϕ+m2ϕ2

)
. (7.16)

We now demand that the AdS metric satisfies the equations of motion for the metric and
derive the equation of motion for the scalar field which follows from this requirement. We
will present the argument behind this, which we derived independently in order to be able
to provide a simplified, tractable version of the exact derivation. Substituting the AdS
metric in the above action, we find

S ∝
∫

ddx dz

[
Ld−1

zd−1
(∂xϕ)

2 +
Ld−1

zd−1
(∂zϕ)

2 +
m2Ld+1

zd+1
ϕ2

]
+ . . . , (7.17)

where we used the shorthand notation (∂xϕ)
2 = δµν∂µϕ∂νϕ, with µ = 0, 1 . . . , d−1 and we

only explicitly wrote terms relevant for the scalar field dynamics. The terms in between
square brackets can be seen as a conventional Lagrangian density for a scalar field Lscalar.
The equations of motion are therefore given by the Euler-Lagrange equations, see equation
(3.22). We find the result

Ld−1

zd−1

(
∂2xϕ+ ∂2zϕ

)
− (d− 1)

Ld−1

zd
∂zϕ− m2Ld+1

zd+1
ϕ = 0 , (7.18)

By multiplying with zd+1/Ld−1, one finds the simpler equation

z2
(
∂2xϕ+ ∂2zϕ

)
− (d− 1)z∂zϕ−m2L2ϕ = 0 . (7.19)

We are interested in the behaviour of solutions near the boundary, as the boundary
conditions are crucial according to the postulate mentioned above. Assuming that the
scalar field has an asymptotic expansion near the boundary z = 0 with a scaling behaviour
z∆ with ∆ > 0, we write the following ansatz for ϕ:

ϕ(x, z) ≈ ϕ0(x)z
∆ , for z ≈ 0 . (7.20)

Substituting this ansatz in the equation of motion gives us

(∂2xϕ0)z
∆+2 +∆(∆− 1)ϕ0z

∆ −∆(d− 1)ϕ0z
∆ −m2L2ϕ0z

∆ = 0 . (7.21)

Near the boundary z = 0, we can neglect the z∆+2 term compared to the other terms.
The remaining terms then have ϕ0 as a common factor. Therefore, we find that solutions
behave asymptotically as

ϕ(x, z) ≈ ϕ
(−)
0 (x)z∆− + ϕ

(+)
0 (x)z∆+ , for z ≈ 0 . (7.22)

where ∆± are the roots of

∆(∆− d) = m2L2 , ∆± = 1
2

(
d±

√
d2 + 4m2L2

)
. (7.23)
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A more rigorous derivation of the above relation using the exact solutions can be found
in [55]. It can be shown that the postulate from equation (7.13) tells us precisely that,
as the notation already suggested, the operator O which is dual to the field ϕ has scaling
dimension ∆ given by (7.23). This single entry from the holographic dictionary is the
most important one for the application of holographic RG flows. Indeed, the effect of
introducing an operator which deforms the CFT depends on the scaling dimension of the
operator: recall our discussion on (ir)relevant deformations and the resulting RG flows
from Section 4.3. We remark that similar relations hold for particles with non-zero spin,
and an overview is provided in [56] and references therein.

Recall that scalar fields in an AdS space-time are allowed to have tachyonic modes
(i.e., m2L2 < 0) up to some value which is known as the BF bound: see the discussion
around equation (6.52). We indeed find the BF bound again if we require that the roots
∆± are real numbers, which implies

m2L2 ≥ −d
2

4
. (7.24)

Recall that scaling dimensions have to satisfy the unitarity bound

∆ ≥ d− 2

2
. (7.25)

It is clear that the root ∆+ is guaranteed to satisfy this bound. For generic values of the
squared mass, the root ∆− will not satisfy the unitarity bound, and the above relation
specifies the scaling dimension uniquely. However, for a certain range of the squared
mass, both roots ∆± from equation (7.13) satisfy the unitarity bound, such that there is
an ambiguity in the dictionary. Indeed, by requiring that ∆− satisfies the unitarity bound
from equation (7.25), we straightforwardly derive that this situation occurs if the squared
mass satisfies

m2L2 ≤ 4− d2

4
. (7.26)

As mentioned, in this case, there is an ambiguity in defining the scaling dimension of the
dual operator. However, this issue is resolved in the presence of supersymmetry, as we
will discuss in more detail in Chapter 9.

7.4 Evidence and prospects of AdS/CFT
It is, as of yet, impossible to provide a proof of Maldacena’s conjecture, as we have no
complete analytic control over both theories. They have to be treated perturbatively, but
both descriptions are valid in different regimes of gsN . There exist a few quantities which
can be treated non-perturbatively, such as anomalies, and compared to the calculations at
the gravity side. Besides this, the matching of global symmetries and its representations
is a first indication that the duality could be valid. Since the symmetry group is a super-
conformal group, the SYM operators are organized in representations of chiral primary
states and its descendants. For example, the single-trace operators, mentioned in Section
6.2.1, correspond to single-particle states in the gravity theory, while descendant states
are mapped to bound states. The complete matching of representations is beyond the
scope of this thesis and can be found in [13, 24].
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Regardless of a proof, the true triumph of AdS/CFT is its ability to correctly com-
pute correlation functions of the gauge theory using the gravity theory. Indeed, equation
(7.13) allows us to compute correlation functions in the gauge side by employing standard
path integral techniques. Differentiating with respect to ϕ0 brings down a factor O and
sends a ϕ particle into the bulk. The right hand side, in a sugra approximation, allows
an expansion in Feynman diagrams. However, in this case, external legs represent the
boundary values of scalar fields and are known as bulk-to-boundary propagators. Simi-
larly, we can have bulk-to-bulk and boundary-to-boundary propagators and from them,
we can construct generalizations of Feynman diagrams called Witten diagrams which al-
low us to compute correlation functions. Details on these computations can be found in
the references mentioned at the beginning of Section 7.2. As a consequence of the fact
that AdS/CFT calculations give correct answers, the general consensus is that the duality
is valid, or at least to some extent such that new insights can be gained from it. Moreover,
the AdS/CFT correspondence is generalized to many other cases were it turned out to be
useful as well.

As we have mentioned earlier, the main motivation for studying AdS/CFT is that it
provides a window into strongly coupled field theories. Therefore, we briefly anticipate
what new insights and results may be discovered from AdS/CFT to close this chapter.
For example, it is expected that the principles of AdS/CFT can be used to learn more
about QCD, and this idea is dubbed AdS/QCD [57–59]. However, it is not yet known
which gravity theory is dual to QCD, even in the large N limit [60]. Moreover, the
absence of conformal symmetry and supersymmetry complicate calculations. Similarly, it
is hoped that AdS/CFT might teach us more about condensed matter physics, a concept
called AdS/CMT [61–63]. For example, there has been work performed on describing
superfluids using so-called holographic superconductors [64, 65]. A thorough introduction
to applications of AdS/CFT is given by [60].

While such applications of AdS/CFT are certainly interesting, in this thesis we use
the gauge/gravity duality in order to study RG flows of strongly coupled field theories
holographically. This was already done in the context of Maldacena’s original conjecture,
where RG flows induced by deformations of the N = 4 SYM Lagrangian were studied
holographically in for example [66, 67]. However, in this thesis we explore this application
of AdS/CFT in the different context of four-dimensional gauged supergravities dual to
three-dimensional superconformal Chern-Simons field theories. In particular, we work in
the theories that were introduced in Chapter 6. This work is presented in Section 6.3.5.
As an introduction to the topic, we will first discuss toy models to describe holographic
RG flows in an arbitrary number of space-time dimensions in the next chapter.
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Holographic RG flows



Chapter 8

Toy models for holographic RG flows

In the previous chapter, we have explained how AdS/CFT provides a holographic corre-
spondence between a gravitational theory living in an AdSd+1 background and a CFTd

without gravity. The claim to fame of holography is that it offers a way to compute field
theory quantities by using the gravitational theory. One can consider deforming the theo-
ries on both sides. For example, inspired by the ideas of RG flows discussed in Section 4.3,
one can deform the CFT by introducing relevant operators with scaling dimension ∆ < d
which induce an RG flow. According to our holographic dictionary and field-operator cor-
respondence, this implies a scalar field ϕ is introduced in the gravitational theory which
acts as the source term of the relevant operator. Our goal is to describe these RG flows
by studying their holographic duals.

As an introduction to holographic RG flows, we will provide two toy models in this
chapter which can be discussed analytically. The first involves a single scalar field, which is
then generalized to an arbitrary amount of scalar fields with non-trivial kinetic terms. The
second toy model is the closest to the situation we will encounter in the next chapter. In
both toy models, it turns out that one can find first-order gradient flow equations which
simplify the task of finding solutions to the second-order equations of motion. While
the toy models are inspired by [10], we give our calculations1 with, to the best of our
knowledge, an unprecedented amount of intermediate steps compared to other sources in
order to guide the future explorers of holography through these toy models.

8.1 Single scalar field
We are interested in situations where the RG flow in the field theory side goes from
a CFTd in the UV towards a CFTd in the IR. We denote these two endpoints of the
flow as CFTUV and CFTIR accordingly. The energy scale E, the evolution coordinate of
the RG flow, is identified with the ‘extra coordinate’ r in the (d + 1)-dimensional dual
gravitational theory via E ∼ r, as explained in the previous chapter. As such, the UV
corresponds to r = +∞ and the IR to r = −∞. By the AdS/CFT correspondence, the
gravitational theory must have two AdS spaces at these locations. While we will present
the toy models in Euclidean signature, we will keep on referring to the Euclidean AdS
space (i.e., hyperbolic space) simply as AdS throughout this chapter.

1Wherever possible, we checked intermediate steps with code from Mathematica, using for example
the diffgeo.m package [68] for symbolic GR calculations.
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V (ϕ)

ϕ

AdSUV
AdSIR

A′ = 1/LIR
A′ = 1/LUV

(a)

r

(b)

ϕ1 ϕ2

UVIR

ϕ(r)

A(r)

ϕ2

ϕ1

Figure 8.1: Sketch of the single scalar toy model. (a) Scalar potential with two critical points,
giving two AdS vacua lying at the UV and the IR. (b) Generic scalar and scale factor profiles
as a function of r. The slopes of the scale factor (red) are related to the length scales of AdS.

In the first toy model, we consider a QFTd obtained by deforming the CFTUV by a
single relevant operator O∆ dual to a single scalar field ϕ in the bulk, i.e.

LQFT = LCFT + ϕ0O∆ , (8.1)

where ϕ0 is the boundary value of ϕ at the UV boundary r = +∞. While the deformation
breaks conformal invariance, we will still require the QFTd to enjoy Poincaré invariance
in d space-time dimensions. Due to the gauge/gravity correspondence, the gravity the-
ory must then be invariant under the d-dimensional Poincaré group as well. Since our
holographic correspondence identifies the bulk xµ coordinates with the boundary xµ co-
ordinates, we make the following general ansatz for the bulk bosonic fields:

ds2 = e2A(r)δij dx
i dxj + dr2 , ϕ = ϕ(r) , (8.2)

in which the d-dimensional Poincaré invariance is manifest. The function A(r) is called the
scale factor . The above ansatz (8.2) is known as the domain wall ansatz, and accordingly,
its solutions are called domain wall solutions. The action that corresponds to this domain
wall ansatz is

S =
1

2κ2

∫
ddx dz

√
g [−R + ∂µϕ∂

µϕ+ 2V (ϕ)] , (8.3)

For our purpose, we want the ansatz to describe asymptotically anti-de Sitter space-
times, i.e. with AdS space-times at r = ±∞, since the endpoints of the RG flow are
CFTs. The scalars, when at these AdS solutions, lie at extrema of the scalar potential.
Moreover, the domain wall ansatz at AdS solutions reduces to

ds2 = e2r/Lδij dx
i dxj + dr2 . (8.4)

One can easily check that via the change of variables2 r = −L ln(z/L), the above line
element becomes precisely that of an AdS space-time with length L in the form given in

2Note that this change of variables is different from the relation z = 1/r used in the previous chapter
and in Section 2.4.
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equation (2.47). Recall that the value of the scalar potential gives us the length scale and
the cosmological constant, as given by equation (7.15).

Therefore, the scalar potential should have multiple critical points ϕ⋆
k with correspond-

ing length scales length scales Lk. Given two of such vacua, we would like to find a domain
wall solution which interpolates between these vacua, situated at r = ±∞, respectively.
Due to our identification E ∼ r, we denote the AdS spaces as AdSUV and AdSIR, respec-
tively. Likewise, we label the length of the AdS vacuum at r = +∞ (r = −∞) as LUV

(LIR). This situation is sketched in Figure 8.1. The value of the scalar fields at AdSUV

(AdSIR) will be denoted by ϕ1 (ϕ2).

8.1.1 Equations of motion
We now derive the equations of motion in the above toy model in more explicit details
compared the literature (see for example [56]). We will provide the step-by-step derivation
of the Klein-Gordon equation in this curved background, in order to make the derivation
of the more general case of multiple scalar fields with a non-trivial scalar manifold in
Section 8.2 more tractable. The Klein-Gordon equation reads

□ϕ− dV

dϕ
= 0 , (8.5)

where □ = ∇µ∇µ = gµν∇µ∇ν . However, the covariant derivative acting on a scalar
function reduces to an ordinary partial derivative, and we therefore encounter a term
∇µ(∂

µϕ), for which we can use the result [1]

∇µV
µ =

1√
g
∂µ(

√
gV µ) . (8.6)

Hence, the scalar equation of motion in curved space-time reads

1√
g
∂µ (

√
ggµν∂νϕ)−

dV

dϕ
= 0 . (8.7)

Substituting the domain wall solution, we find the scalar equation of motion

ϕ′′ + dA′ϕ′ =
dV (ϕ)

dϕ
, (8.8)

where primes denote derivatives with respect to r throughout this chapter. The Einstein
equations require a bit more work. First of all, we note that it is easier to work with the
Einstein field equations in the form [10]:

Rµν = κ2
(
Tµν −

1

d− 1
Tgµν

)
, (8.9)

where T = gµνTµν is the trace of the energy-momentum tensor. For the domain wall
ansatz, the only non-vanishing components of the Riemann tensor are [10]

R kl
ij = −2(A′)2δklij , (8.10)

R rj
ri = −(A′′ + (A′)2)δji , (8.11)
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where we emphasize that we use indices i, j, . . . for the xi coordinates on the d-dimensional
manifold. From this, one can derive that the only non-vanishing components of the Ricci
tensor are [69]

Rik = −e2A
(
d(A′)2 + A′′) δik , (8.12)

Rrr = −d(A′′ + (A′)2) . (8.13)

The energy-momentum tensor can be derived from the action, which (for Euclidean sig-
nature) is done via the formula [8]

Tµν =
2√
g

δSM

δgµν
, (8.14)

where the matter action SM is, in our case, given by

SM =
1

κ2

∫
ddx dz

√
g

(
1

2
gµν∂µϕ∂νϕ+ V (ϕ)

)
≡ 1

κ2

∫
ddx dz

√
gLM . (8.15)

Varying the action, we find3

δSM =

∫
ddx dz

[√
g

(
1

2
∂µϕ∂νϕ

)
δgµν + δ(

√
g)LM

]
. (8.16)

For the second term, we can use the result [1]

δ(
√
g) = −1

2

√
ggµνδg

µν . (8.17)

Hence, we find that the energy-momentum tensor of the scalar field is

Tµν = −∂µϕ∂νϕ+
1

2
gµνg

ρσ∂ρϕ∂σϕ+ gµνV (ϕ) . (8.18)

For the metric of the domain wall solution, one finds

Tµν = −δrµδrν(ϕ′)2 +
1

2
gµν(ϕ

′)2 + gµνV (ϕ) , (8.19)

such that the trace is equal to

T =
d− 1

2
(ϕ′)2 + (d+ 1)V (ϕ) . (8.20)

Upon using this result for the energy-momentum tensor in equation (8.9) along with the
results from equations (8.12) and (8.13), we find that the Einstein equations reduce to

A′′ + (A′)2 = −1

d

(
(ϕ′)2 +

2

d− 1
V

)
, (8.21)

A′′ + d(A′)2 = − 2

d− 1
V . (8.22)

By taking the difference between these two equations, we end up with the equation of
motion

3We ignore the prefactor κ−2, as it simply gets cancelled when we substitute our result for Tµν in
equation (8.9).
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(A′)2 =
1

d(d− 1)

(
(ϕ′)2 − 2V (ϕ)

)
(8.23)

for the scale factor A(r). Equations (8.8) and (8.23) are the coupled set of equations of
motion for ϕ(r), A(r) to be solved in order to determine the domain wall solution.

These equations of motion are consistent with our earlier discussion of AdS vacua.
Indeed, if ϕ⋆ is a critical point of the potential (i.e., dV/ dϕ = 0), then equation (8.8) is
trivially satisfied by ϕ(r) = ϕ⋆. Due to the relation between the AdS length scale L and
the potential (see equation (7.15)), we find

A′ =
1

L
, (8.24)

which gives A(r) = r/L, up to possible integration constants which can be scaled away
by a change of variables. This is indeed precisely the metric of AdS as given in equation
(8.4).

Let us focus on the solutions of the equations of motion close to the critical points,
such that linearization is a good approximation to the full solution. Hence we write

ϕ(r) = ϕ⋆
k + δϕ(r) , (8.25)

A′(r) =
1

Lk

+ a′(r) , (8.26)

and write the potential as

V =
1

2

[
−d(d− 1)

L2
k

+m2
k(δϕ)

2

]
, (8.27)

around ϕ⋆
k, and consider the equations of motion (8.8) and (8.23) up to first order in the

perturbations δϕ and a′. We find that equation (8.23) shows that a′ is of second order in
δϕ and hence negligible. This implies that equation (8.8) results in

(δϕ)′′ +
d

Lk

h′ −m2
kδϕ = 0 . (8.28)

This can easily be solved by the ansatz δϕ ∼ eλr, with characteristic equation

λ2 +
d

Lk

λ−m2
k = 0 , (8.29)

which has solutions λ± given by

λ± = − 1

2Lk

(
d±

√
d2 + 4m2L2

k

)
≡ − 1

Lk

∆± , (8.30)

where in the final equation, we have defined

∆± =
1

2

(
d±

√
d2 + 4m2

kL
2
k

)
. (8.31)

This is analogous to the derivation we presented in Section 7.3 which concluded that
the scaling dimension of the operator dual to the bulk scalar field is inferred from the
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boundary behaviour of the scalar field. Therefore, we again identify4 ∆k = ∆+ as the
scaling dimension of the operator dual to ϕ in the dual field theory.

This identification is consistent with interpreting the domain wall solution as dual to
a RG flow in the dual field theory. Indeed, in the UV (r = +∞) and the IR (r = −∞),
the solution can be approximated by

ϕ(r) ≈ ϕ⋆
k +Bke

(∆k−d) r
Lk + Cke

−∆k
r
Lk . (8.32)

At r = +∞, the B-term is dominant. In order for this perturbation to vanish as we
approach the critical point, we therefore have to require that ∆1 < d, which is consistent
with the interpretation that the QFTd is a relevant deformation of a CFTUV (see Section
4.3). At the other endpoint r = −∞, the C-term diverges and has to be put to zero.
The B-term now requires that ∆2 > d, which indeed agrees with the interpretation of an
irrelevant deformation such that the RG flow will converge towards the AdSIR vacuum.

8.1.2 Irreversibility of holographic RG flows
We will now prove a technically simple to derive, but conceptually deep result which
states that holographic RG flows are irreversible. We start from equation (8.8) and take
another derivative with respect to r, resulting in

A′A′′ =
1

d(d− 1)
ϕ′
(
ϕ′′ − dV

dϕ

)
. (8.33)

On the right hand side, we recognize equation (8.8) and upon substitution, we find that

A′′ = − (ϕ′)2

d− 1
. (8.34)

One can equivalently derive this result by combining equations (8.21) and (8.22). This
simple result tells us that A′′ ≤ 0, i.e. A′ is a decreasing function of r. Hence, we have
that

A′(r = −∞) > A′(r = +∞) . (8.35)

Making use of the fact that the AdSIR is located at r = −∞ and AdSUV at r = +∞,
with their length scales related to A′ via equation (8.24), this becomes 1/LIR > 1/LUV.
By using equation (7.15), we can equivalently state that

VUV > VIR . (8.36)

Therefore, we find that holographic RG flows are compelled to flow to a point which
lies ‘deeper’ in the potential landscape. As a consequence, holographic RG flows are
necessarily irreversible flows. Irreversibility of RG flows in field theory has been a long-
standing problem and was proven first in 2d by Zamolodchikov [70]. The proof relies on
the existence of a function of the coupling c(g) which is monotonically decreasing along
the RG flow. Intuitively, one expects that the amount of degrees of freedom decreases as

4We ignore, for the sake of simplicity and clarity in this toy model, the subtlety of the ambiguity of
this identification for the case where both roots ∆± lie above the unitarity bound. This issue is discussed
in detail in the next chapter and Appendix B.
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we flow from a QFTUV to a QFTIR, as heavier excitation modes of the theory will become
integrated out along the RG flow. However, it has been difficult to generalize the proof
of the Zamolodchikov c-theorem to higher dimensions [71, 72]. Holography provides us
with an alternative way to establish the irreversibility of RG flows via gravity duals of
field theories and so-called holographic c-theorems [56].

8.1.3 Gradient flow equations
The equations of motion for the domain wall ansatz, (8.8) and (8.23), constitute a set of
non-linear, second order differential equations. However, in special circumstances, there
exists a set of first-order ordinary differential equations (gradient flow equations) of which
the solutions also solve the full equations of motion. Suppose that there exists some
function W (ϕ), the superpotential, such that the potential V (ϕ) can be written as

V (ϕ) =
1

2

(
dW

dϕ

)2

− d

2(d− 1)
W 2 . (8.37)

Then a solution of the system of first-order gradient flow equations

ϕ′ =
dW

dϕ
, A′ = − 1

d− 1
W (8.38)

solves the equations of motion (8.8) and (8.23). For the sake of completeness, we will give
the explicit calculations which, to the best of our knowledge, are rarely provided in the
literature. First of all, we note that

ϕ′′ =
d2W

dϕ2
ϕ′ . (8.39)

We take a derivative with respect to ϕ in equation (8.37) to find

dV

dϕ
=

d2W

dϕ2

dW

dϕ
− d

d− 1

dW

dϕ
W , (8.40)

= ϕ′′ − d

d− 1
ϕ′W . (8.41)

In the last equation, we can make use of the second gradient flow equation of (8.38), which
then results in equation (8.8). To prove that solutions of (8.38) imply (8.23), we note that

(A′)2 =
1

d− 1

(
W 2

d− 1

)
. (8.42)

From equation (8.37), we can find that

W 2

d− 1
=

1

d

(
−2V +

1

2

(
dW

dϕ

)2
)

=
1

d

(
−2V +

1

2
(ϕ′)2

)
. (8.43)

Combining the above equations then leads to (8.23), as was to be shown.
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8.2 Multiple scalar fields
The above, simple toy model of a single scalar field can be generalized to a toy model
involving multiple scalar fields ϕI which live on a non-trivial scalar manifold with a metric
KIJ(ϕ). This toy model is of special interest to us, as it is closely related to the situation
we will discuss in the next chapter. Indeed, as explained in detail in Section 6.3.5, we
will construct holographic RG flows in a N = 1, d = 4 supergravity theory coupled to
7 chiral multiplets, and hence we have to deal with 7 complex scalars which live on a
Kähler manifold, such that their kinetic terms depend on a Kähler metric (see Section
6.3.3). Therefore, the metric KIJ used here has to be considered a toy version of the
Kähler metric Kαβ.

To discuss this toy model, we again start from the domain wall ansatz for the metric
gµν from equation (8.2), but the matter Lagrangian density, defined in equation (8.15),
gets generalized to

LM =
1

2
KABg

ρσ∂ρϕ
A∂σϕ

B + V (ϕ) , (8.44)

Note that we write V (ϕ) for notational simplicity, but the potential depends on all scalars
ϕI . The scalar equations of motion are found from the Euler-Lagrange equations. As
intermediate steps, we find

∂LM

∂(∂µϕI)
= KIL∂

µϕL ,
∂LM

∂ϕI
=

1

2
(∂IKAB)∂ρϕ

A∂ρϕB + ∂IV . (8.45)

where we introduced the notation ∂I ≡ ∂/∂ϕI . The Euler-Lagrange equations then give

∂IV = ∇µ

(
KIL∂

µϕL
)
− 1

2
(∂IKAB) ∂ρϕ

A∂ρϕB . (8.46)

We again use equation (8.6) to find

∂IV = KIL
1√
g
∂µ(

√
g∂µϕL) + (∂µKIL) ∂

µϕL − 1

2
(∂IKAB) ∂ρϕ

A∂ρϕB , (8.47)

where we emphasize that the covariant derivative ∇µ is defined with respect to the space-
time metric gµν . Upon using our domain wall ansatz for gµν , we find

∂IV = KIL

(
d(A′)

(
ϕL
)′
+
(
ϕL
)′′)

+ (∂rKIL)
(
ϕL
)′ − 1

2
(∂IKAB)

(
ϕA
)′ (

ϕB
)′
. (8.48)

Using the chain rule in the second term, we find that it becomes

∂IV = KIL

(
d(A′)

(
ϕL
)′
+
(
ϕL
)′′)

+(∂CKIL)
(
ϕC
)′ (

ϕL
)′− 1

2
(∂IKAB)

(
ϕA
)′ (

ϕB
)′
. (8.49)

The equation of motion can be simplified if we raise the index I. For this, we multiply
the above equation on both sides with KIJ . Now note that

(∂CKIL)
(
ϕC
)′ (

ϕL
)′
= 1

2
(∂CKIL)

(
ϕC
)′ (

ϕL
)′
+ 1

2
(∂LKIC)

(
ϕC
)′ (

ϕL
)′
, (8.50)

since C,L are dummy indices. Using this, the final two terms of (8.49) will be combined
into a Christoffel symbol, defined with respect to the metric of the scalar manifold, i.e.

ΓA
BC(K) ≡ 1

2
KAD (∂BKDC + ∂CKBD − ∂DKBC) . (8.51)

We hence end up with the scalar equation of motion
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∂JV = d(A′)
(
ϕJ
)′
+
(
ϕJ
)′′

+ ΓJ
AB(K)

(
ϕA
)′ (

ϕB
)′
. (8.52)

For the Einstein equations, we can still use equations (8.12) and (8.13). The energy-
momentum tensor is now

Tµν = −KIJ∂µϕ
I∂νϕ

J +
1

2
KIJgµνg

ρσ∂ρϕ
I∂σϕ

J + gµνV (ϕ) , (8.53)

which for the domain wall ansatz reduces to

Tµν = −KIJδ
r
µδ

r
ν(ϕ

I)′(ϕJ)′ +
1

2
KIJgµν(ϕ

I)′(ϕJ)′ + gµνV (ϕ) , (8.54)

and taking the trace then yields

T =
d− 1

2
KIJ

(
ϕI
)′ (

ϕJ
)′
+ (d+ 1)V . (8.55)

One then finds the system of second-order equations

A′′ + (A′)2 = −1

d

(
KIJ

(
ϕI
)′ (

ϕJ
)′
+

2

d− 1
V

)
. (8.56)

A′′ + d(A′)2 = − 2

d− 1
V , (8.57)

Note that the second equation is unchanged with respect to the one scalar case, as we
could already anticipate from beforehand. Indeed, this is simply since the scalar kinetic
term does not enter this equation. By taking the difference of these equations, one finds

(A′)2 =
1

d(d− 1)

(
KIJ

(
ϕI
)′ (

ϕJ
)′ − 2V

)
. (8.58)

Equations (8.52) and (8.58) generalize the original equations of motion in (8.8) and (8.23)
to the many scalar fields toy model. As before, they are second-order equations of motion,
but first-order flow equations can be found if V can be written as

V =
1

2
KIJ∂

IW∂JW − d

2(d− 1)
W 2 . (8.59)

The gradient flow equations are generalized to

(
ϕI
)′
= ∂IW = KIJ∂JW , A′ = − 1

d− 1
W . (8.60)

We prove that a solution of the gradient flow equations also satisfies the second-order
equations of motion. We start by taking a covariant derivative with respect to the scalar
metric, which is defined to act on a ‘vector’ XI as

DIX
J ≡ ∂IX

J + ΓJ
IA(K)XA , (8.61)

on both sides of equation (8.59). The Christoffel symbols ΓJ
IA(K) were defined in equa-

tion (8.51). For notational simplicity, we drop the explicit K dependence when writing
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these Christoffel symbols. As usual, the covariant derivative on a scalar reduces to or-
dinary partial derivatives, and the metric postulate implies KIJ has vanishing covariant
derivative. Hence we find

∂JV = DJ
(
∂AW

)
∂AW − d

d− 1
W∂JW (8.62)

= DJ
(
∂AW

)
∂AW + dA′ (ϕJ

)′
, (8.63)

where we have used the gradient flow equations in the second step. Comparing the above
with the scalar equation of motion in (8.58), it is sufficient to show that(

ϕJ
)′′

+ ΓJ
AB∂

AW∂BW = DJ
(
∂AW

)
∂AW , (8.64)

where we again substituted
(
ϕA
)′

= ∂AW . Let us focus on rewriting
(
ϕJ
)′′. First of all,

note that (
ϕJ
)′′

=
d

dr

(
ϕJ
)′
=

d

dr

(
∂JW

)
. (8.65)

Using the chain rule on this, we find that(
ϕJ
)′′

= ∂A
(
∂JW

)
∂AW = ∂J

(
∂AW

)
∂AW , (8.66)

where we commuted partial derivatives and raised and lowered dummy indices to obtain
the final equality. Substituting in (8.64), we can rephrase that it is sufficient to show that

∂J(∂AW )∂AW + ΓJ
AB∂

AW∂BW = DJ(∂AW )∂AW . (8.67)

To show this, we rewrite the right hand side:

DJ
(
∂AW

)
∂AW = KJLDL

(
∂AW

)
∂AW (8.68)

= ∂J(∂AW )∂AW +KJLKALΓ
A
LM∂

MW∂LW , (8.69)

which is precisely the left hand side of (8.67) since KJLKAL = δJA. It is less work to show
that the Einstein equation of motion is satisfied as well. Indeed, we can completely mimic
the derivation for the single scalar case: simply combine the equation

(A′)2 =
1

d− 1

W 2

d− 1
, (8.70)

obtained from squaring the equation on the right of (8.60), with the equation

W 2

d− 1
=

1

d

(
KIJ

(
ϕI
)′ (

ϕJ
)′ − 2V

)
, (8.71)

obtained from rewriting equation (8.59), to immediately find that equation (8.58) is sat-
isfied.



Chapter 9

Holographic RG flows in gauged
supergravity

In previous chapters, we have introduced the necessary tools in order to study holographic
RG flows in gauged supergravity theories. After the toy models of the previous chapter,
we are now ready to tackle theories studied in the literature. We will limit our discussion
to maximally supersymmetric four-dimensional gauged supergravity theories which are
known to embed into string theory. Hence, we fix d = 3 from now on. Moreover, we work
in the Z3

2-invariant truncation which keeps 14 real scalar fields out of the original 70 real
scalar fields. As the scalar potential depends on the gauging, the vacuum structure, as
well as the holographic RG flows interpolating between them, vary between the different
theories we consider.

This chapter is organized as follows. In Section 9.1, we reiterate for completeness the
general set-up of the problem at hand. We specify the domain wall ansatz and the first-
order gradient flow equations used to construct holographic RG flows. After discussing
the main difficulty related to constructing holographic RG flows, we explain the design
of our new numerical algorithm, inspired by machine learning principles, to overcome
this hurdle. Sections 9.2 – 9.5 discuss each of the four gauged supergravities of interest in
detail. We summarize known results from previous studies and, whenever possible, extend
this work to the Z3

2-truncation, which is currently the largest truncation considered in the
context of constructing holographic RG flows. Therefore, this chapter aims to present the
most thorough overview of work in this field to date. Finally, in Section 9.6, we reflect on
our results and possible continuations of our work.

9.1 Set-up and numerical methods
We start this chapter with a general discussion on constructing holographic RG flows,
which is relevant for each of the following sections.

9.1.1 General set-up of the problem
Our goal is to construct holographic RG flows in four-dimensional gauged supergravi-
ties. We restrict our attention to a specific subset of gauged supergravities which can be
obtained via dimensional reduction (see Section 6.3.2) of ten- or eleven-dimensional super-
gravity (and by extension, string or M-theory). We briefly mentioned these gauged super-

76



CHAPTER 9. HOLOGRAPHIC RG FLOWS IN GAUGED SUPERGRAVITY 77

gravities in our discussion from Section 6.3.5. Hence, there exist methods to ‘lift’ the 4d
vacua obtained in these supergravities to solutions of the higher-dimensional theories. We
have summarized the relations between the gauged supergravities, the higher-dimensional
theories and the dual CFTs in Figure 9.1. Detailed information and references for further
reading are given in each of the mentioned sections. As we will see, all 3d dual field
theories are superconformal field theories, discussed in Section 6.2, which are moreover
Chern-Simons gauge theories. These are so-called topological field theories, where the
3-form of gauge fields A has kinetic terms A ∧ dA. The gauge coupling k, also known as
the Chern-Simons level, is quantized (i.e., k ∈ Z) to guarantee gauge invariance. Note
that therefore, Chern-Simons theories are necessarily strongly coupled. Note that the
dual field theories cannot be e.g. a more familiar Yang-Mills theory, since the Yang-Mills
coupling becomes dimensionful in three dimensions of space-time, which breaks conformal
invariance.

M-theory, M2-branes Type IIA, D2-branes Type IIB, D3-branes

AdS4 × S7 AdS4 × S6 AdS4 × S1 × S̃5

G = SO(8)
Section 9.2

G = ISO(7)
Section 9.3

G = [SO(6)× SO(1, 1)]⋉R12, Section 9.4
G = [SO(6)× SO(2)]⋉R12, Section 9.5

ABJM SU(N) Chern-Simons J-fold CFT

near-horizon
geometry

dimensional
reduction

AdS/CFT

Figure 9.1: Higher-dimensional origin of the four-dimensional gauged supergravities (with gauge
groups G) discussed in this chapter, along with their dual field theories.

The domain wall ansatz from which we construct holographic RG flows, already men-
tioned in Chapter 8, is

ds2 = e2A(r)ηµν dx
µ dxν + dr2 , (9.1)

where ηµν is the 3d Minkowski metric in order to be consistent with Poincaré invariance of
the dual, 3d field theory. Two AdS vacua are located at r = ±∞ in the above coordinate
system. Hence, the starting point of constructing holographic RG flows is the identifica-
tion of the critical points of the scalar potential of interest, as these may serve as endpoints
of the flows. Recall that the AdS vacuum at r = +∞ (r = −∞) is referred to as the UV
vacuum (IR vacuum), and the irreversibility property, derived in Section 8.1.2, dictates
that holographic RG flows go from the UV to the IR. In the Z3

2-truncation, discussed in
Section 6.3.5, the theory can be recast in a N = 1, d = 4 supergravity theory coupled to 7
chiral multiplets introduced in Section 6.3.4. Hence, we retain only 7 complex scalars zα
of which the scalar kinetic terms are non-trivial as the complex scalars live on a Kähler
manifold, explained in Section 6.3.3. Employing the N = 1, d = 4 supergravity language
allows us to compute the scalar potential in terms of the Kähler potential K, the Käh-
ler metric Kαβ and the superpotential W (z): see equation (6.44). Therefore, the scalar
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potential in this specific truncation is a function of 14 real variables. Vacuum solutions
correspond to the extrema of this scalar potential. As explained in Section 6.3.6, vacuum
solutions with residual supersymmetry correspond to the Kähler covariant extrema of the
superpotential. That is, they are solutions of DαW = 0, with Dα the Kähler covariant
derivative from equation (6.45).

Since the potential is a function of 14 real variables, finding its critical points is a
daunting task unless numerical methods are used. One possibility is to use Wolfram
Mathematica, a program well suited for symbolic calculations. Following the convention
of [73], we label critical points using the first 7 digits1 of their scalar potential value.
That is, a critical point with label Pn1n2n3n4n5n6n7 has a scalar potential value V =
−n1n2.n3n4n5n6n7. Recall that the potential is negative, since we are dealing with AdS
vacua and the potential essentially determines the value of the cosmological constant.

Parametrizations and conventions related to the (super)potential and Kähler geometry
vary greatly in the literature. We have chosen to, for each gauged supergravity theory
separately, adopt the conventions of papers which are most related to our own work. This
unfortunately implies that the overall forms of K, W and V vary throughout this chapter.
Moreover, we are only interested in supersymmetric vacua, as they are guaranteed to
be stable [74, 75]. All known non-supersymmetric vacua are perturbatively unstable in
the higher-dimensional theories (see for example [76] for more details). In fact, all non-
supersymmetric vacua of string theory are conjectured to be unstable [77], which is why
we choose to neglect such vacua in our work.

A second advantage of restricting our attention to supersymmetric vacua is that there
exist first-order gradient flow equations which automatically solve the equations of motion
obtained from the above ansatz. Such gradient flow equations as solutions to the complete
equations of motion were discussed in detail in the toy models of Chapter 8. For the
N = 1, d = 4 supergravity theory coupled to chiral multiplets that we consider in this
chapter, the gradient flow equations (also called BPS equations) can be derived from
equations (6.61) – (6.64). The result is [38, 78]

(zα)′ = ∓
√
2geK/2Kαβ W

|W |DβW , (zα)′ = ∓
√
2geK/2Kαβ W

|W |DαW , (9.2)

A′ = ±
√
2geK/2|W | , (9.3)

As before, primes denote derivatives with respect to r. The signs above are related to the
freedom in choosing the sign of the radial coordinate in the domain wall ansatz. We will
always use the upper sign in these equations. During our work, we have discovered that
equation (9.3) is the correct version of the equation that was provided in (6.3) of [78].
However, we have verified that this error does not influence the results of the reference.
Note that the metric and the scalars are decoupled in the BPS equations, and this allows
one to solve the equations sequentially. That is, one first solves the first line of coupled
ordinary differential equations to find the solutions of the scalars zα(r), from which the
profile of A′(r) can be obtained by substituting the values of zα(r) in the second equation.
Below, we will limit our discussion to the solutions of the scalar fields, as the scale factor
does not provide independent information.

1Note that these are the truncated values, and not the rounded ones.
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Note that, due to the BPS equations, we are actually interested in solutions of a
dynamical system in the fourteen real scalar fields, with the coordinate r acting as the
evolution parameter. Dynamical systems were recapitulated in Section 4.1. Supersym-
metric vacua, as Kähler covariant extrema of the superpotential, are fixed points of the
above gradient flow equations in the sense that (zα)′ = 0 for all α. Hence, we will use the
terms ‘fixed points’ and ‘critical points’ interchangeably throughout this chapter. Similar
to our toy models of Chapter 8, these fixed points correspond to AdS4 space-times dual
to CFT3 theories. We will only discuss solutions to the BPS equations that interpolate
between fixed points, since we have a clear interpretation of such solutions using hologra-
phy. Unlike ordinary dynamical systems, solutions tending towards infinity are singular
and do not admit a viable interpretation [79]. Therefore, the link with dynamical systems
should be interpreted in a careful way.

We will split the complex scalars into their real and imaginary parts, and we define
zα(r) = xα(r)+ iyα(r). We can find BPS equations for xα(r), yα(r) by taking the real and
the imaginary part of equation (9.2). These equations are numerically integrated using
NDSolve in Mathematica in order to find the flow solutions. Recall that holographic RG
flows must go from the UV to the IR, as explained in Section 8.1.2, since the flows must
go ‘deeper’ into the scalar potential landscape. However, it turns out to be numerically
favourable to construct the solutions in the other direction (i.e., from the IR to the UV)
and hence the flows go from a deeper value of the potential to a higher value. Therefore,
rephrased in the language of RG flows in the dual field theory, we start from an IR CFT
and approach a UV CFT by switching on irrelevant deformations (in the sense defined in
Section 4.3).

At the gravity side of the gauge/gravity duality, this means that we linearize the BPS
equations of the real fields xα(r), yα(r), which we will from now on collectively denote by
ϕa(r), a = 1, . . . , 14, around a supersymmetric vacuum ϕ⋆

a. For this, we have to compute
the Jacobian matrix at the fixed point, as explained in Section 4.1. We diagonalize the
Jacobian, and obtain its eigenvalues and eigenvectors (λa,va), a = 1, . . . , 14, with bold
font denoting 14-dimensional vectors. We refer to an eigenvector of the Jacobian as a
mode. The initial condition for the flow solutions is written as

ϕ(rin) = ϕ⋆ +
14∑
a=1

Aavae
λarin = ϕ⋆ +

14∑
a=1

Aavae
−δa

rin
L . (9.4)

In order to flow away from the fixed point, we will fix Aa = 0 for modes with λa < 0
(δa > 0). We provide all the linearized BPS equations and the values of the remaining
coefficients (i.e., corresponding to λa > 0) used to construct the flows in Appendix A.
Above, rin is the initial value at which we evaluate the initial condition. Since we start the
flow solution close to the IR (r = −∞), we take rin = ln(10−2). In the above equation, L
is the length scale of the AdS space-time of the critical point, which can be found from
the potential value through equation (7.15). In our case, we have2

L =

√
− 3

V (z⋆α)
. (9.5)

2This equation holds throughout this chapter except for Section 9.3, where the reference that we follow
uses conventions such that V = −12/L2.
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Moreover, our initial condition also introduced δa, defined by

δa = −Lλa , (9.6)

The reason for introducing δa is that the operators in the dual field theory which are dual
to the scalars ϕa will have a scaling dimension ∆a given by

∆a = δa , ∆a = 3− δa , (9.7)

depending on which option satisfies the unitarity bound ∆ ≥ (d− 2)/2, which is ∆ ≥ 1/2
in our case. This relation between the asymptotic behaviour of the bulk scalar fields and
scaling dimensions of operators in the dual field theory was derived in the toy model of
Section 8.1.

Recall that the AdS/CFT dictionary translates the squared masses of the scalars in
the bulk to scaling dimensions in the dual field theory according to equation (7.23). As
discussed in Section 7.3, for a certain range of squared masses m2L2, both roots ∆± of this
equation lie above the unitarity bound and the scaling dimension is defined ambiguously
by this equation, as there exists two inequivalent ways of quantization. For example,
at the SO(8)-invariant vacuum of G = SO(8) gauged supergravity (see Section 9.2), all
scalar fields have a mass m2L2 = −2, such that the scaling dimension is either ∆+ = 2 or
∆− = 1. As it turns out, 35 of these scalars are dual to gauge-invariant scalar bilinears
TrX2, with ∆ = ∆− = 1, while the other 35 are dual to fermionic bilinears Trλ2,
with ∆ = ∆+ = 2 [60]. In Section 7.3, we mentioned that supersymmetry solves this
ambiguity, as the linearized BPS equations specify which scaling dimensions are selected
by supersymmetry. We give a more complete discussion of this in Appendix B, where
we also compute the masses and the corresponding roots ∆± for each of the 14 scalar
fields at each vacuum discussed in this chapter and we show which scaling dimensions are
‘selected’ by supersymmetry by linearizing the BPS equations.

Our goal is therefore to find coefficients Aa such that the initial condition for the
real fields ϕa(rin) will result in a flow which in the UV (r → +∞) approaches a second
AdS vacuum. As we have illustrated in Section 4.2, this requires a fine-tuning of the
expansion coefficients, which is the main complication especially in the large Z3

2-truncation
we consider in this thesis. To tackle this issue, we have designed and developed an original
algorithm which automates the fine-tuning process. All Mathematica code used in this
thesis is original and can be found in [80].

9.1.2 A new algorithm to construct holographic RG flows
The design of our algorithm is inspired by the foundations of machine learning (ML) [41].
The core idea behind any ML algorithm is the minimization of a certain loss function
or error function f , which essentially measures the discrepancy between an output of
the algorithm and the correct answer or desired output. The loss function depends on a
certain number of parameters which influence the output of the algorithm. Importantly,
whenever the loss function is differentiable with respect to these parameters, one can
iteratively update the parameters along the gradient of the loss function in order to
improve the algorithm output. Such gradient descent algorithms are quite popular and
well-studied. An example of gradient descent in the context of finding vacua of gauged
supergravities is given in [81].
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f(A)

AA(1) A(2)A(3)A(4)A(5)· · ·

Figure 9.2: Visualization of the step descent algorithm in a one-dimensional parameter space.
Starting from an initial parameter A(1) (black dot), the parameter space is explored in the
direction of decreasing loss function values towards the minimum of the loss function (red dot).

The ideas behind ML algorithms and gradient descent inspired the following algo-
rithm. We integrate the BPS equations up until r = rmax and denote the endpoint of the
constructed solution as zαE. The easiest loss function to consider is the Euclidean distance
between zαE and the ‘target’ AdS vacuum zαUV in the UV that we want to reach. Hence,
in our algorithm, we will work with the loss function

f : Rn → R : (A1, . . . , An) 7→ f(A1, . . . , An) = dEucl(z
α
E, z

α
UV) , (9.8)

where we compute the Euclidean distance from the real fields xα, yα, collectively denoted
by ϕa. Hence, the loss function uses

dEucl(z
α
E, z

α
UV) =

√√√√ 14∑
a=1

(ϕa
E − ϕa

UV)
2 . (9.9)

The algorithm parameters Ai, i = 1, . . . , n are simply, as the notation suggested, the
coefficients appearing in the expansion (9.4) which correspond to the modes which repel
us away from the IR AdS vacuum from which we start the solution. In practice, we
can rescale the r-coordinate, as the BPS equations constitute a homogeneous dynamical
system, thereby giving us the freedom to fix the value of one of these coefficients.

In order to minimize the loss function, we constructed a simpler version of a gradient
descent algorithm which we will call the step descent algorithm. The step descent algo-
rithm starts from an initial guess for the parameters, say (A

(1)
1 , . . . , A

(1)
n ), for which the

solution is computed up until r = r(1) and from which an initial value of the loss function
is calculated. At each iteration step, we store the current best set of parameter values
(A⋆

1, . . . , A
⋆
n) found during the search, i.e. with a minimal value of the loss function f⋆. At

every r(j), we perform the following loop for each of the n parameters Ai. Start each loop
with a boolean variable directionFound, initialized with False, and an initial stepsize
sin and let û be a unit vector in Rn pointing in the i-direction (that is, a vector containing
zeroes and 1 on the i-th entry). Set an integer variable, counter, equal to zero. While
the counter is below a specified integer, do:

• If directionFound is False: compute the solution for the new parameter values
(A⋆

1, . . . , A
⋆
n)± sû, with s the current step size, and compute f±.
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– If f± ≥ f⋆: divide the stepsize by a specified factor sfactor and increase
counter by one.

– If f+ < f⋆ (f− < f⋆), put sign = 1 (sign = −1) and put directionFound to
True.

• If directionFound is True: compute the solution for the new parameter values
(A⋆

1, . . . , A
⋆
n) + ssignû, with s the current step size, and compute fs.

– If fs ≥ f⋆: divide the stepsize by a specified factor sfactor and increase
counter by one.

– If fs < f⋆, the parameters are not altered, and the program simply updates
the values of (A⋆

1, . . . , A
⋆
n) to the new, improved parameter values.

The above loop is performed for each of the parameters and attempts to decrease the
loss function within each cycle. The procedure is visualized in Figure 9.2 for a one-
dimensional parameter space. Once all parameters have been fine-tuned, we increase
r(j) → r(j+1) = r(j) + ∆r, construct the flow solution up to r = r(j+1), compute the loss
function at (A⋆

1, . . . , A
⋆
n) and start the above loop again.

Now that we have explained the general set-up and our numerical methods, we are
ready to present our results.

9.2 SO(8) gauged supergravity
The first 4d gauged supergravity we will discuss has gauge group G = SO(8). Historically,
this was the first maximally supersymmetric gauged supergravity discovered by de Wit
and Nicolai, which is why this gauged supergravity is also known as the de Wit-Nicolai
theory [82, 83]. It can be obtained by performing a dimensional reduction of 11d super-
gravity on AdS4 × S7 [84, 85]. The embedding into 11d supergravity was considered in
[86]. Note that this is precisely the situation we mentioned in equation (7.1), such that the
gauge theory in 11d is located on the world-volume of a stack of coincident M2-branes. In
this model, the dual field theory is a conformal Chern-Simons field theory, known as the
ABJM theory [87], which has gauge group U(N)k×U(N)−k, where k is the Chern-Simons
level. Maximal supersymmetry is preserved only if the Chern-Simons level k equals 1 or
2, and since the coupling might be thought of as k−1, the theory is necessarily strongly
coupled [88]. Therefore, holography allows us to identify the conformal phases of the dual
ABJM theory and probe their strongly coupled RG flows.

To discuss this gauged supergravity and its holographic RG flows, we will follow the
conventions of [78]. The superpotential in the Z3

2-truncation is

W =z1z2z3z4z5z6z7

+ z1z2z3z7 + z1z2z5z6 + z1z3z4z5 + z1z4z6z7 + z2z3z4z6 + z2z4z5z7 + z3z5z6z7 (9.10)
+ z1z2z4 + z1z3z6 + z1z5z7 + z2z6z7 + z2z3z5 + z3z4z7 + z4z5z6 + 1 .

The Kähler potential is

K = −
7∑

α=1

log (1− zαzα) , (9.11)
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which means that we are working in 7 copies of the Poincaré disk. The scalar potential
is given by

V = 2eK
(
KαβDαWDβW − 3WW

)
(9.12)

In [78], the authors discuss a SO(3) × Z2-invariant subtruncation of the Z3
2-truncation

which retains three complex scalars ζa, which can be found from the Z3
2-truncation if one

identifies
z3 = z4 = z5 = ζ1 , z1 = −ζ2 , z2 = z6 = z7 = −ζ3 . (9.13)

All our work on holographic RG flows presented in this section therefore directly extends
the work of [78].

9.2.1 Supersymmetric vacua
A list of the supersymmetric vacua is provided in Table 9.1, with coordinates given in
Section A.1.1. We have numerically computed the location of the U(1) × U(1) critical
point which, to the best of our knowledge, has not appeared in the literature before
within this truncation. It has been proven explicitly that, apart from the maximally
supersymmetric SO(8) vacuum at the origin, all supersymmetric critical points should
have N ≤ 2 supersymmetry [89], which is indeed the case for the supersymmetric vacua
found in the Z3

2-truncation.
In order to construct holographic RG flows that interpolate between the various AdS

vacua of Table 9.1, we have to linearize the BPS equations around the IR vacua. As
explained in Section 9.1.1, we can deduce the directions for the initial conditions of the
flows from the eigenvectors of the Jacobian of the BPS equations which correspond to
positive eigenvalues (negative δa’s in equation (9.6)). We repeat once again that the
number of coefficients to fine-tune in the initial condition is one less than the total number
of parameters n in the loss function, or equivalently, total number of positive eigenvalues
of the Jacobian. This is due to our freedom to rescale r, such that we can fix the value of
one of the coefficients. An overview of the values of δa for each critical point is given in
Table 9.2.

We remark that the location of the 7 scalars at the susy vacua given in the appendix
is not unique, due to a residual symmetry which determines an orbit (in the group-
theoretical sense) of the vacua. Hence, we will often construct holographic RG flows that
interpolate between AdS vacua which lie at different locations compared to the values of
Section A.1.1. In each case, we verified explicitly that the points considered in the flows
are susy vacua, i.e., they solve DαW = 0, with a value of the scalar potential that agrees
with the one given in Table 9.2. We will return to the issue of the existence of several
‘copies’ of the same vacuum in Section 9.2.5.

We are now ready to discuss the holographic RG flows we have constructed in this
theory. An overview of the flows that will be discussed is given in Figure 9.3. The
arrows in this figure point in the direction of the ‘physical’ flows: from the UV (higher
scalar potential value) to the IR (lower scalar potential value). Numerical solutions are
constructed in the opposite direction.
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Point N Cont. symmetry V Refs.
P0600000 N = 8 SO(8) −6 [83]
P0719157 N = 1 G2 −7.19157 [86]
P0779422 N = 2 SU(3)× U(1) −7.79422 [90]
P1200000 N = 1 U(1)× U(1) −12 [91–93]
P1384096 N = 1 SO(3) −13.84096 [41]

Table 9.1: Supersymmetric vacua in the SO(8) gauged supergravity. Potential values are at
g = 1.

Point δa n

P0600000 1(×14) –

P0719157 −1.4494897(×1), 0.5917517(×6), 1.4082482(×6), 3.449489(×1) 1

P0779422
−1.561552(×1), −0.5615528(×1), 0.666666(×3), 1(×4),

1.333333(×3), 2.5615528(×1), 3.5615528(×1)
2

P1200000
−1.8058837(×2), −1.7320508(×1), 0.2679491(×1), 0.6436060(×2), 1(×2),

1.3563939(×2), 1.7320508(×1), 3.7320508(×1), 3.8058837(×2)
3

P1384096
−2.8025410(×1), −1.7163163(×1), −0.9632443(×2), 0.4273831(×2), 0.7487353(×1),

1.2512646(×1), 1.5726168(×2), 2.9632443(×2), 3.7163163(×1), 4.8025410(×1)
4

Table 9.2: Values of δa for the susy vacua in SO(8) gauged supergravity, with the multiplicity
given in brackets. The integer n denotes the number of parameters of the loss function.

N = 8, SO(8)

N = 1, G2

N = 2,SU(3)× U(1)

N = 1,U(1)× U(1)

N = 1, SO(3)

Figure 9.5

Figure 9.4

Figure 9.4

Figures 9.7, 9.8

Figures 9.12, 9.13

Figures 9.14, 9.15

Figures 9.9, 9.10, 9.11

Figure 9.3: Overview of holographic RG flows in the SO(8) theory discussed in this section.
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9.2.2 Reconstructing known flows
Let us start our discussion by reconstructing flows that were reported in the literature
before within subtruncations of the Z3

2-truncation to verify that they are still solutions in
the larger truncation. From Table 9.2, we see that it is quite straightforward to construct
holographic RG flows from the SO(8) vacuum in the UV to the G2 or SU(3)×U(1) vacua
in the IR. Indeed, no coefficients have to be tuned for the G2 point. For the SU(3)×U(1),
the solution is not as sensitive to the undetermined coefficient as other flows, which implies
one can easily find a convergent flow from SO(8) to SU(3)×U(1). These ‘direct flows’ (to
be compared with triangular flows later on) to G2 and SU(3) × U(1), are reconstructed
in Figure 9.4. We will always show solutions by plotting the scalars zα(r) in the complex
(x, y)-plane, as well as the evolution of the real fields as function of r. For the latter, we
plot the real parts (imaginary parts) using solid lines (dashed lines).

As it is our first encounter with numerical holographic RG flow solutions in this thesis,
we have extensively annotated the plots that aim to guide the reader through plots of
more complicated flow solutions to come. We emphasize once again that holographic RG
flows go from the UV to the IR (i.e., to a more negative value of the scalar potential),
but are numerically constructed in the opposite direction. The arrows drawn in the figure
point in the direction in which the physical solution will flow. When discussing our flow
solutions in the text, our terminology will always relate to this direction for the flow
solutions, e.g. we say that our flows ‘start from the UV’ and ‘end in the IR’.

By fine-tuning the undetermined coefficient of the SU(3)× U(1) IR vacuum, one can
find a so-called triangular holographic RG flow between all three aforementioned fixed
points. That is, there exists a flow which starts from the SO(8) vacuum in the UV and
ends up in the SU(3)×U(1) in the IR, but (as opposed to ‘direct flows’) comes arbitrarily
close to the G2 vacuum at intermediate values of r. This holographic RG flow was already
found in the SO(3) × Z2-truncation [78], and was first constructed in a SU(3)-invariant
truncation in [88]. The same flow within our Z3

2-truncation is shown in Figure 9.5. Let
us also use this triangular flow to provide an example of a plot of A′(r), using equation
(9.3), shown in Figure 9.6. At the AdS vacua, A′ is constant and equal to A′ = 1/L, as
we argued in detail in Chapter 8. Recall that, due to the irreversibility of holographic RG
flows, combined with equation (9.5), A′ is a monotonically increasing function of r as we
go from the UV to the IR, which is indeed the case. Below, we will only discuss solutions
by specifying the solutions of the scalar fields zα(r), as the solution for A′(r) does not
convey independent, physically interesting information.
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Figure 9.4: Top: Direct flow from the SO(8) vacuum (origin) in the UV to the G2 vacuum in
the IR. Bottom: Direct flow from the SO(8) vacuum (origin) in the UV to the SU(3) × U(1)
vacuum in the IR. The arrows denote the direction in which the physical solution will flow: from
the UV towards the IR.
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Figure 9.5: Triangular flow from the SO(8) vacuum (origin) in the UV to the G2 vacuum
(crosses) and eventually reaching the SU(3)× U(1) vacuum (dots) in the deep IR.
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Figure 9.6: Plot of the profile A′(r) related to the solution shown in Figure 9.5. Dashed lines
show the value of 1/L, with L the length scale of the corresponding AdS space-time.

9.2.3 New flows to the U(1)× U(1) vacuum
An interesting aspect of the Z3

2-truncation is the fact that it also contains the P1200000
point with a U(1)×U(1) symmetry group, which lies outside of the SO(3)×Z2-truncation
of [78]. This opens up new possibilities for holographic RG flows. A flow from the SO(8)
point to this U(1)×U(1) point which preserves the U(1)×U(1) symmetry along the flow
was already constructed in [93]. We reconstructed this flow, shown in Figure 9.7 below,
within the Z3

2-truncation (note that z2 and z6 vanish identically along this flow).
Since the above flow preserves the U(1)×U(1) symmetry, it can be constructed within

a U(1) × U(1)-invariant truncation which contains only these two susy vacua. However,
since our Z3

2-truncation only imposes invariance under a discrete symmetry group, this
truncation admits holographic RG flows which break the continuous symmetry of the
endpoints along the flow. We were able to construct such a holographic RG flow, which
showcases this new feature of the Z3

2-truncation. The result is given in Figure 9.8. In-
deed, we note that along this flow, the continuous symmetry is completely broken and
all 7 complex scalars have a different evolution. To the best of our knowledge, such a
phenomenon has not been reported in the literature on holographic RG flows before.

The two flow solutions just discussed start from the SO(8) vacuum in the UV. However,
we were also able to find holographic RG flows which start from the G2 vacuum in the
UV and again end in the U(1) × U(1) vacuum in the IR. As before, there exist several,
inequivalent flow solutions. First of all, we can require the flow to preserve a continuous
symmetry group along the flow. Such a solution is given in Figure 9.9. However, we are
again able to explicitly break the continuous symmetry along the flow, and an example of
such a flow is given in Figure 9.10. In fact, we have found multiple, inequivalent versions
of this latter flow which interpolate between different copies of the G2 vacuum in the UV
(recall that a residual symmetry determines an orbit for the critical points, resulting in
these ‘copies’). Indeed, another example of the same flow, which starts from a different
G2 vacuum, is given in Figure 9.11. These flows are inequivalent also in the sense that
both approach the G2 vacuum differently. That is, while the solution of z5 merges with
z6 before approaching the G2 vacuum in Figure 9.11, z5 merges with z2 and z7 in Figure
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9.11.
Due to the irreversibility of holographic RG flows, only the SU(3)×U(1) vacuum can

serve as UV endpoint besides the SO(8) and G2 vacua, if the U(1)× U(1) vacuum is the
IR endpoint of the flow. However, we have not been successful in finding a flow from the
SU(3)×U(1) vacuum in the UV to the U(1)×U(1) vacuum in the IR. We will report on
these attempts and the insights gained from our numerical explorations in Section 9.2.5.
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Figure 9.7: Flow from the SO(8) vacuum (origin) in the UV to the U(1)× U(1) vacuum (dots)
in the IR, which was found in [93].
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Figure 9.8: Flow from the SO(8) vacuum (origin) in the UV to the U(1)× U(1) vacuum (dots)
in the IR, where the continuous symmetry is broken along the flow.
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Figure 9.9: Flow from the SO(8) vacuum (origin) in the UV to the G2 vacuum (crosses) and
eventually reaching the U(1)×U(1) vacuum in the IR and preserving the U(1)×U(1) symmetry.
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Figure 9.10: Triangular flow from the SO(8) vacuum (origin) in the UV to the G2 vacuum
(crosses) and to the U(1)× U(1) vacuum (dots) in the deep IR.
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Figure 9.11: An inequivalent triangular flow from the SO(8) vacuum (origin) in the UV to the
G2 vacuum (cross) and to the U(1)× U(1) vacuum (dots) in the deep IR.

9.2.4 New flows to the SO(3) vacuum
The supersymmetric vacuum which lies ‘deepest’ in the potential landscape (and hence
in RG scale) is the vacuum preserving a SO(3) symmetry group. We reconstructed the
previously found flow [78] from the SO(8) vacuum in the UV to the SO(3) vacuum in the
IR, which is shown in Figure 9.12. As before, the linearized BPS equations within the
Z3

2-truncation allow us to break the continuous symmetry along the flow. We were able
to find such a flow, and this new result is shown in Figure 9.13.

We were also able to construct flows from the G2 vacuum in the UV to the SO(3)
vacuum in the IR. In [78], the authors constructed triangular RG flows which start from
the SO(8) critical point in the UV, approach the G2, and eventually reach the SO(3)
vacuum in the IR. We verified that a similar RG flow can be constructed within the
larger Z3

2-truncation considered here. The result is shown in Figure 9.14. However, in the
truncation discussed in this reference, there are only two irrelevant operators which can
be turned on in the IR. The two additional irrelevant modes which appear in our larger
truncation both break the symmetry of the SO(3) critical point along the flow (see Section
A.1.2). The two coefficients of these modes therefore parametrize a family of triangular
flows which are connected to the flow of Figure 9.14. One example of a flow coming from
this family, with ‘maximal’ symmetry breaking (i.e., both additional irrelevant modes are
switched on) is given in Figure 9.15.

We have attempted to construct flows that start from either the SU(3)×U(1) vacuum
or the U(1)×U(1) vacuum in the UV and reach the SO(3) vacuum in the IR but we did
not find any results regarding these flows. The insights gained from our explorations are
discussed in the next section.
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Figure 9.12: Flow from the SO(8) vacuum (origin) in the UV to the SO(3) vacuum (dots) in
the IR which preserves the SO(3) symmetry.
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Figure 9.13: Flow from the SO(8) vacuum (origin) in the UV to the SO(3) vacuum (dots) in
the IR, where the continuous symmetry is broken along the flow.
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Figure 9.14: Flow from the SO(8) vacuum (origin) in the UV to the G2 vacuum (cross) and
eventually reaching the SU(3)× U(1) vacuum (dots) in the IR which preserves the SO(3) sym-
metry.
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Figure 9.15: Flow from the SO(8) vacuum (origin) in the UV to the G2 vacuum (cross) and
eventually reaching the SU(3)×U(1) vacuum (dots) in the IR, where the continuous symmetry
group is maximally broken.

9.2.5 On conjectured flows and the plethora of vacua
In the previous sections, we showed various new flows between some of the vacua of
this SO(8) gauged supergravity theory. However, we were unsuccessful in constructing
new flows interpolating between some of the vacua which lie ‘deeper’ in RG scale (more
negative potential value), as already mentioned a few times. A priori, there is no argument
that forbids the existence of these flows, and therefore, it is worth sharing our insights on
this issue gained from our numerical explorations.

An example of a flow which, at first sight, seems likely to connect the SU(3) × U(1)
vacuum in the UV to the U(1)×U(1) vacuum in the IR is given in Figure 9.16. Unleashing
our algorithm to this situation and optimizing the algorithm parameters (i.e., the step
sizes s and ∆r) yielded the flow in this figure as ‘best’ attempt (i.e., minimal loss function).
The flow diverges away from the target vacuum as soon as we continue the fine-tuning
using our algorithm and go to larger values of r. The same conclusion holds for the flow
from the SU(3)×U(1) in the UV to the SO(3) vacuum in the IR, which was not found in
[78] and was conjectured by the authors to exist within the Z3

2-truncation in this reference.
While we are unable to conclude that such flows do not exist, our numerical explorations
at least demonstrate that finding these flows is much harder compared to finding flows
which originate from the SO(8), G2 or SU(3)× U(1) vacua in the UV.

To fully appreciate why constructing flows between vacua at a deeper RG scale is
much harder to achieve, we emphasize once again that all critical points come in different
‘copies’. That is, the location of each critical point as given in Appendix A.1.1 is certainly
not unique, except for the SO(8) vacuum at the origin. Other locations can be related
to the location given in the appendix by acting with a symmetry group on the vector
of complex scalars (z1, . . . , z7), and therefore, we speak of the orbit of the critical point.
These copies are leftovers from the symmetry breaking, as indeed the scalar potential has
(loosely speaking) a similar shape as the Mexican hat potential. However, instead of a
continuous orbit, the vacua have a discrete orbit, since we are only considering a subspace
of the scalar manifold. This situation is visualized in Figure 9.17.

While rigorously determining this residual symmetry group goes beyond the scope of
this thesis, we have performed a rough, preliminary scan for these different copies starting
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Figure 9.16: An attempt to construct a flow from the SU(3) × U(1) vacuum in the UV to the
U(1)× U(1) vacuum in the IR.
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V

Figure 9.17: Visualization of the scalar potential V and the SO(8) and G2 vacua. Since the G2

breaks the continuous symmetry, it has a continuous orbit (red) within the 70-dimensional scalar
manifold. However, since we only consider a 14-dimensional subspace of the scalar manifold
(black line), only a few points of this orbit are vacua within our truncation (black dots). Figure
adapted from [94].
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from the location given in the appendix to quantify our statements. We looked for a
symmetry group of discrete transformations that map each susy vacuum to another susy
vacuum with the same value of the scalar potential. Since susy vacua solve DαW = 0, we
used the symmetries of the superpotential from equation (9.10) as our guide to find these
discrete symmetries. We looked into permutations of the scalars, sign flips zα → −zα and
taking the complex conjugate. It turns out that 168 permutations leave the superpotential
invariant, and one can show that this subgroup is isomorphic to PSL(3, 2). Indeed, in
[78], the authors remark that the 7 complex scalars of the Z3

2-truncation can be identified
with the points on the Fano plane, which has PSL(3, 2) as symmetry group. Out of all
27 = 128 possible sign combinations for the 7 scalars, we find that the superpotential is
left invariant only if (z1, . . . , z7) is replaced by

(−z1,−z2,−z3,−z4,−z5,−z6,−z7)
(−z1,−z2,−z3,−z4,−z5,−z6,−z7)
(−z1,−z2,−z3,−z4,−z5,−z6,−z7)
(−z1,−z2,−z3,−z4,−z5,−z6,−z7)
(−z1,−z2,−z3,−z4,−z5,−z6,−z7)
(−z1,−z2,−z3,−z4,−z5,−z6,−z7)
(−z1,−z2,−z3,−z4,−z5,−z6,−z7)

Therefore, starting from each susy critical point as given in Appendix A.1.1, we obtain all
copies of that critical point and its complex conjugate obtained from these permutations,
sign flips, and their combined transformations. We then check which copies solve the
equation DαW = 0 and count the number of different copies that are obtained in this
way. These numbers are reported in Table 9.3. Note that these estimates provide only
a lower bound on the number of distinct copies, as it is possible that other copies exist
which are not within the orbit we have established above (the only exception being, of
course, the unique SO(8) vacuum).

With these lower bounds, it is now clear that finding flows between vacua at deeper
scalar potential values is a gargantuan task. For example, to find the flow conjectured
in [78], going from SU(3) × U(1) to SO(3), one has to consider more than 25 000 pairs
of copies of these vacua. For a flow from U(1)× U(1) to SO(3), this becomes more than
300 000 pairs. Keeping in mind that these flows have to be constructed numerically by a
careful fine-tuning of parameters, we can only appreciate the complexity of this task.

Point Lower bound
P0600000 1
P0719157 16
P0779422 56
P1200000 672
P1384096 448

Table 9.3: Lower bounds on number of distinct copies of each of the critical points.
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9.3 ISO(7) gauged supergravity
The second four-dimensional gauged supergravity of interest has an isometry group of a
7-dimensional Euclidean space ISO(7) ≡ SO(7)⋉R7 as gauge group [95–97]. This theory
has an additional parameter c, since the 7 translations (i.e., R7 in the above semi-direct
product) are said to be dyonically gauged. In a purely electric gauging, like the SO(8)
gauging from the previous section, we only consider the 28 ‘electric’ vector fields that
enter the Lagrangian of the N = 8, d = 4 theory. However, one can also consider their
dual vector fields, which are called ‘magnetic’. By introducing these new vector fields,
covariant derivatives acquire a new term proportional to the magnetic vector field, with
proportionally constant c. This constant c determines the ratio between the (electric)
gauge coupling g and the magnetic gauge coupling m, i.e. c = m/g. While this seems
suggestive that there exists an entire family of gaugings parametrized by c, it turns out
that there are only two inequivalent members corresponding to c = 0 and c ̸= 0 [98].
The coupling of scalars to the magnetic vectors introduces additional terms in the scalar
potential. Since the dyonically gauged case (i.e., c ̸= 0) has therefore a rich structure of
AdS vacua, it provides the ideal arena for the study of holographic RG flows. We will
hence restrict our attention to dyonically gauged ISO(7) supergravity and, without loss
of generality, we put c = 1.

Let us briefly remark here that it is possible to dyonically gauge the SO(8) supergrav-
ity theory from the previous section. These deformed theories are often called ω-deformed
SO(8) supergravity in the literature, as there exists a continuous family of distinct gaug-
ings parametrized by ω [99–101]. However, it has not been possible so far to identify a
higher-dimensional origin of the parameter ω. In fact, there exist no-go theorems which
state that it is impossible to obtain these theories from ten or eleven dimensions [102],
which is why we restricted our attention to the electric gauging (i.e., ω = 0) of SO(8)
supergravity theory.

Unlike the SO(8) case, it is known how to obtain the dyonic ISO(7) gauged super-
gravity theory from higher dimensions. This theory arises from dimensional reduction of
type IIA supergravity on a S6 internal manifold [103, 104]. Therefore, the AdS vacua of
the 4d theory uplift to AdS4 × S6 backgrounds. Massive type IIA supergravity on these
backgrounds is dual to superconformal Chern-Simons theories with gauge group SU(N),
and low Chern-Simons level k, which is identified with the magnetic coupling m in the
supergravity theory.

For our discussion, we will adopt the conventions of [105]. The Kähler potential is

K = −
7∑

α=1

log(2 Im(zα)) , (9.14)

such that we will be working in 7 copies of the upper half-plane. The superpotential is3

W = 2m+ 2g(z1z2z3 + z1z6z7 + z2z7z5 + z3z5z6 + (z1z5 + z2z6 + z3z7)z4) , (9.15)

and the scalar potential is given by

V = 4eK
(
KαβDαWDβW − 3WW

)
. (9.16)

3This superpotential coincides with the one obtained from Section 6.3.5 using Table 6.2 and equations
(6.49), (6.50) up to a permutation of the complex scalars. However, we stick to the conventions of the
mentioned reference to facilitate the comparison between our work and the reference.
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9.3.1 Supersymmetric vacua
A list of the supersymmetric vacua is provided in Table 9.4, with coordinates given in
Section A.2.1. We remark that an additional supersymmetric vacuum was found within
a Z2

2-invariant truncation, which keeps 22 real scalar fields rather than 14, in [38]. During
our work, we discovered that the precision of the numerical values given for the P2569710
and P3561023 points in [105] is quite poor. Since it is desirable to minimize numerical
errors in our computations as much as possible, we computed the location of the critical
point independently. The values are reported in the appendix with an improved accuracy
compared to [105]. The values of δa are provided in Table 9.5 below. As we are working
within the larger Z3

2-truncation compared to [105], these values provide a direct extension
of their work.

We will now discuss some of the holographic RG flows constructed in this theory. An
overview of the known flows is given in Figure 9.18. For previously found flows reported
in the literature, it is not possible to break the continuous symmetry group along the
flow similar to the flows of the previous section. This is shown by the linearized BPS
equations, given in Section A.2.1. As such, we do not discuss these flows in this thesis.

Point N Cont. symmetry V Refs.
P1998705 N = 1 G2 −19.98705 [106–108]
P2078460 N = 2 SU(3)× U(1) −20.78460 [109]
P2327730 N = 3 SO(4) −23.27730 [89]
P2379560 N = 1 SU(3) −23.79560 [96]
P2569710 N = 1 U(1) −25.69710 [105]
P3561023 N = 1 U(1) −35.61023 [105]

Table 9.4: Supersymmetric vacua in the ISO(7) gauged supergravity. Potential values are at
g,m, c = 1.

Point δa n

P1998705 1−
√
6(×1), 1− 1√

6
(×6), 1 + 1√

6
(×6), 1 +

√
6(×1) –

P2078460 1−
√
17

2 (×1), 3−
√
17

2 (×1), 2
3 (×3), 1(×4), 4

3 (×3), 1+
√
17

2 (×1), 3+
√
17

2 (×1) 2

P2327730 −
√
3(×1), 1−

√
3(×2), 2−

√
3(×1), 1(×6),

√
3(×1), 1 +

√
3(×2), 2 +

√
3(×1) 3

P2379560 1−
√
6(×2), 0(×2), 1

3 (×3), 5
3 (×3), 2(×2), 1 +

√
6(×2) 2

P2569710
-1.7271365, -1.7169275, -1.0440791, -0.2418020, 0.7083131, 0.8775354, 0.8888917,

1.1111082, 1.1224645, 1.2916868, 2.2418021, 3.0440791, 3.7169276, 3.7271365 4

P3561023
-2.1201597, -1.9726403, -1.6337960, -1.0225228, -1.0050748, 0.4696956, 0.6036253,

1.3963756, 1.5303052, 3.0050758, 3.0225238, 3.6337969, 3.9726413, 4.1201607 5

Table 9.5: Values of δa for the susy vacua in ISO(7) gauged supergravity, with multiplicity given
in brackets. For P2569710 and P3561023, all δa have multiplicity one. The integer n denotes
the number of parameters of the loss function.
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N = 1,U(1)

Figure 9.21

Figure 9.22, [105]

[110]

Figures 9.19, 9.20

[105]

Figure 9.18: Overview of known holographic RG flows in the ISO(7) theory.

9.3.2 New flows to the P2569710 vacuum
Previous studies on holographic RG flows in this theory involved truncations with con-
tinuous symmetry groups, most notably SU(3) [110] and SO(3) [105]. Therefore, these
truncations do not contain the U(1) invariant P2569710 and P3561023 vacua. Hence
there have been, as far as we know, no studies about holographic RG flows which reach
these vacua. Our main goal in this theory was to fill this gap, since our Z3

2-truncation
does contain these vacua. We have successfully constructed new holographic RG flows
ending at the P2569710 vacuum in the IR. We constructed a flow that originates from
the G2 vacuum in the UV, and preserves a U(1) symmetry along the flow. The result is
shown in Figure 9.19. In Section 9.2, we observed that solutions can break the continuous
symmetry group along the flow in the Z3

2-truncation. It turns out that this is also possi-
ble for the flow ending at the P2569710 vacuum. In Figure 9.20, we present such a flow
where the continuous U(1) symmetry is broken along the flow, before it gets restored as
we approach the U(1) vacuum in the IR.

We would like to briefly compare these flows to previously known flows that also
originate from the G2 vacuum in the UV and which we reconstructed in the larger Z3

2-
truncation. We show a flow from the G2 vacuum that reaches the SU(3)×U(1) vacuum in
the IR in Figure 9.21, and a flow which reaches the SO(4) vacuum in the IR in Figure 9.22.
Note that for these solutions, the initial ‘velocity’ of the flow (which, numerically, starts
from the IR) is pointing towards the target vacuum (in the UV). This is not the case for
the flow of Figure 9.19: the complexity of this flow requires some scalars (such as z3 and
z7) to perform an excursion through the scalar manifold before eventually approaching
the UV vacuum. Such flows are difficult to construct with our algorithm, as it uses the
distance between the endpoint of the flow and the desired UV target as loss function to
minimize. This is presumably the reason why we were not able to find a flow that ends
in the deeper U(1) vacuum, P3561023.
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Figure 9.19: Flow from the G2 vacuum (cross) in the UV to the U(1) vacuum P2569710 (dots)
in the IR. The flow itself preserves U(1) symmetry.
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Figure 9.20: Flow from the G2 vacuum (cross) in the UV to the U(1) vacuum P2569710 (dots)
in the IR. The flow itself breaks the U(1) symmetry.
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Figure 9.21: Flow from the G2 vacuum (cross) in the UV and reaching the SU(3)×U(1) vacuum
(dots) in the IR.
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Figure 9.22: Flow from the G2 vacuum (cross) in the UV and reaching the SO(4) vacuum (dots)
in the IR.
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9.3.3 Plethora of vacua
Given our discussion of Section 9.2.5, one may wonder whether the vacua of this gauged
supergravity similarly have several ‘copies’ due to symmetries. This is indeed the case,
and therefore, we performed the analysis explained in Section 9.2.5 within this theory.
It turns out that the subgroup of permutations that leave the superpotential invariant is
again the unique (up to isomorphism) group PSL(3, 2) and there are 7 sign flips giving
copies of the vacua, which in the current parametrization are

(−z1,−z2,−z3,−z4,−z5,−z6,−z7)
(−z1,−z2,−z3,−z4,−z5,−z6,−z7)
(−z1,−z2,−z3,−z4,−z5,−z6,−z7)
(−z1,−z2,−z3,−z4,−z5,−z6,−z7)
(−z1,−z2,−z3,−z4,−z5,−z6,−z7)
(−z1,−z2,−z3,−z4,−z5,−z6,−z7)
(−z1,−z2,−z3,−z4,−z5,−z6,−z7) ,

such that the same symmetry group leaves the superpotential invariant. We have deter-
mined how many distinct copies can be found by applying this symmetry group. The
lower bounds on these numbers are given in Table 9.6. As in the SO(8) theory, there are
many pairs of vacua that can serve as endpoints of RG flows for vacua lying deeper in RG
scale, complicating the construction of solutions.

Point Lower bound
P1998705 8
P2078460 56
P2327730 168
P2379560 56
P2569710 1344
P3561023 1344

Table 9.6: Lower bounds on number of distinct copies of each of the critical points in the ISO(7)
theory.

9.4 [SO(6)× SO(1, 1)]⋉R12 gauged supergravity
The final two gauged supergravities can be discussed in parallel to some extent as they are,
loosely speaking, related to each other by a sign flip. Indeed, the only difference between
the two gauge groups is one compact or non-compact generator (giving SO(2) or SO(1, 1),
respectively). Additionally, the two superpotentials, following the parametrization given
in equations (6.49) and (6.50), are the same up to a sign flip in the b̃-term. While this
implies that the vacua structures are different, both theories share some general properties.
For example, the gauging is of dyonic type, like the ISO(7) gauged supergravity of the
previous section. The 4d gauged supergravity is obtained from dimensional reduction of
type IIB supergravity on a S1 × S̃5 internal manifold, where S̃5 is known as a squashed
five-sphere [111, 112]. The 4d vacua uplift to 10d so-called S-fold background solutions
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of type IIB supergravity [113]. Loosely speaking, they can be constructed from quotients
of degenerate solutions (Janus solutions), where the string coupling diverges at infinity
[114]. The AdS4 vacua are dual to CFTs which are constructed from field theories that
are localized on the interface between two N = 4 SYM theories (see Section 6.2.1) [115].
That is, on the two sides of the interface, we have N = 4 SYM theories, but the gauge
coupling has different values on both sides [116]. From such theories, we can build new
N = 4 SCFTs by introducing Chern-Simons interactions, which are known as J-fold
constructions [117]. These theories are dual to the AdS4 vacua that we find.

The dyonic ISO(7), [SO(6)×SO(1, 1)]⋉R12 and [SO(6)×SO(2)]⋉R12 gaugings are par-
ticular examples of CSO(p, q, r) gaugings, which have an ‘electric’ subalgebra cso(p, q, r)
and a ‘magnetic’ subalgebra cso(p′, q′, r′) [118]. The gauge group is then of the form

[SO(p, q)× SO(p′, q′)]⋉N , (9.17)

with N nilpotent. For p+q = 7, we find the ISO(p, q) gaugings, of which the ISO(7) model
with p = 7, q = 0 and p′ = q′ = 0 is an example. The two remaining supergravity theories
correspond to the above ansatz, with p = 6, q = 0 and p′ = q′ = 1 or p′ = 2, q′ = 0. These
models can be embedded into type IIA (type IIB) supergravity if p + q is odd (even),
which is consistent with earlier remarks.

To discuss the 4d supergravity theory, we follow the conventions of [111, 112], which
coincide with the conventions used in Section 6.3.5. Hence, the superpotential is obtained
from equations (6.49) and (6.50) with the values from Table 6.2, from which the scalar
potential can be computed using equation (6.44).

In both supergravity theories, rather than distinct points as in the previous sections,
one finds that the AdS vacua actually constitute families of vacua. That is, they are
parametrized by continuous parameters and lie on so-called flat directions of the scalar
potential [111]. Therefore, contrary to the SO(8) and ISO(7) supergravities, the locations
of the vacua now depend on continuous parameters. Note that this situation is different
from the ‘copies’ of vacua we discussed before, as the mass spectra change when we move
along these flat directions. Moreover, the residual symmetry of vacua becomes enhanced
at certain, special points along these flat directions.

9.4.1 Supersymmetric vacua
A list of the supersymmetric vacua is provided in Table 9.7, with their locations given
in Section A.3.1. In this section, we use F instead of P to emphasize that all vacua that
we consider are part of a family of supersymmetric solutions. We refer to both F0300000
families of vacua collectively as “the IR”, and to the F0289794 vacuum as “the UV”.
The endpoints of our flows will be denoted by their χ, φ or χ1,2,3 coordinates, respectively.
Moreover, we refer to the UV as the UV plane, as this UV family of vacua is parametrized
by two independent coordinates due to the constraint χ1 + χ2 + χ3 = 0. Note that this is
unlike the situation in the IR, where χ and φ parametrize two lines instead of a plane.4
For generic points in both the UV as well as the IR, there is a residual U(1)×U(1) global
symmetry. This symmetry becomes enhanced at special points, as discussed in Section
A.3.1. The values of δa at vacua relevant for the flow solutions are given in Table 9.8. We
note that these values change as we change the parameters χ, φ and χ1,2,3.

4This statement is valid for the Z3
2-truncation of the thesis. In a larger truncation, such as the one

considered in [111], all points in a (χ, φ)-plane correspond to AdS vacua.
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Family N Cont. symmetry V Refs.
F0289794(χ1,2,3) N = 1 U(1)2, SU(2)× U(1), SU(3) −2.897944 [112]
F0300000(χ) N = 2 U(1)2, SU(2)× U(1) −3 [112, 119, 120]
F0300000(φ) N = 2, 4 U(1)2, SU(2)× U(1), SO(4) −3 [111]

Table 9.7: Supersymmetric vacua of the [SO(6)×SO(1, 1)]⋉R12 gauged supergravity. Potential
values are at g = c = 1. Symmetry enhancements occur at special values for the parameters
χ, χ1,2,3 and φ given in the appendix.

Family δa n

F0289794(χ1,2,3 = 0)
−1.44949 (×2), 0 (×2), 0.333333 (×3),
1.66667 (×3), 2 (×2), 3.44949 (×2)

–

F0289794(χ⋆
1,2,3)

−1.44949 (×2), 0 (×2), 0.327182 (×1), 0.33179 (×2),
1.66821 (×2), 1.67282 (×2), 2 (×2), 3.44949 (×2)

–

F0300000(χ = 0)
−1.56155 (×2),−0.561553 (×2), 0 (×2), 1 (×2),

2 (×2), 2.56155 (×2), 3.56155 (×2)
4

F0300000(χ = 0.01)
−1.56155 (×2),−0.561553 (×2),−0.0004 (×1), 0 (×1), 0.9996 (×1),

1.0004 (×1), 2 (×1), 2.0004 (×1), 2.56155 (×2), 3.56155 (×2)
5

Table 9.8: Values of δa for the susy vacua, with multiplicity given in brackets. The integer n
denotes the number of parameters of the loss function.

9.4.2 New holographic RG flows
Given the above set-up of families of vacua both in the UV and the IR, one can wonder
whether holographic RG flows exist going from any point of the UV plane to any point in
the IR. While a complete answer to this question is beyond the scope of the thesis, our
goal is to provide a preliminary exploration on this matter.

In [112], the authors give one holographic RG flow which starts from the origin χ1,2,3 =
0 of the UV plane and ends at the origin χ = 0 in the IR. We reproduced this flow in
Figure 9.23. We remark that the real scalar fields x1,2,3 are not exactly at zero, but since
these values are very small compared to the values at the critical points, we attribute
this to numerical errors. This flow has a SU(3) symmetry in the UV and a SU(2)×U(1)
symmetry in the IR. In our work, we were able to construct a new flow which originates
from a different UV vacuum that has SU(2) × U(1) symmetry and ends at the same IR
vacuum, such that the SU(2) × U(1) symmetry is preserved along the flow and in the
endpoint. The result is shown in Figure 9.24. The UV vacuum is located at

χ⋆
1,3 ≈ 0.02029767 , χ⋆

2 ≈ −0.0405452 . (9.18)

Besides, we found a new flow which ended at a different vacuum in the IR. This new flow
is given in Figure 9.25 and ends at χ = 0.01. To construct this flow, we changed our
loss function to use a Euclidean distance for the 14 scalar fields excluding x1,2,3, summed
together with |x1 + x2 + x3|, to adapt the algorithm to the current situation. We remark
that at χ = 0.01, the loss function gets an additional parameter which likely allows flows
to break the continuous symmetry: see Section A.4.2. We have, however, not explicitly
computed such a flow solution.
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Figure 9.23: Flow from the χ1,2,3 = 0 vacuum in the UV with SU(3) symmetry to the χ = 0
vacuum with SU(2)× U(1) symmetry in the IR.
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Figure 9.24: Flow from the χ⋆
1,2,3 vacuum with SU(2)×U(1) symmetry in the UV to the χ = 0

vacuum with SU(2)× U(1) symmetry in the IR.
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Figure 9.25: Flow from a vacuum with U(1)×U(1) symmetry in the UV to the χ = 0.01 vacuum
with U(1)× U(1) symmetry in the IR.

9.5 [SO(6)× SO(2)]⋉R12 gauged supergravity
Our introduction of this final 4d gauged supergravity of interest to us can be brief, as most
of the notable features were already discussed in the previous section. As in the previous
section, this gauged supergravity has flat directions for its scalar potential. However,
these directions are, loosely stated, located outside of our Z3

2-truncation. That is, out
of the families of vacua, only a single point is seen as a vacuum solution within our
Z3

2-truncation.
A list of the supersymmetric vacua is provided in Table 9.9, with their locations

specified in Section A.4.1. We have discovered that the P0758297 critical point has been
reported erroneously in [39]. Instead, the correct critical point can be obtained, as we have
verified, by taking the complex conjugate of the 7 scalars provided in equation (3.19) in
[39]. The values of δa at the critical points are given in Table 9.10. It is clear that, within
the Z3

2-truncation, there is only a single holographic RG flow that can be constructed,
going from the SO(3) vacuum in the UV to the U(1) vacuum in the IR. However, we were
not able to construct this flow with our algorithm such that the construction of this flow
is left for future work. From the linearized BPS equation of Section A.4.2, we conjecture
that there exist two kinds of flows, depending whether or not the continuous symmetry
is broken along the flow.
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Point/family N Cont. symmetry V Refs.
P0752907 N = 1 SO(3) −7.52907 [39]
P0758297 N = 1 U(1) −7.58297 [39]

Table 9.9: Supersymmetric vacua in [SO(6)×SO(2)]⋉R12 gauged supergravity. Potential values
are at g = c = 1.

Point δa n

P0752907
−3.03142,−2.14466,−2.14466,−1.88118, 0.333333, 0.333333, 0.663692,

1.33631, 1.66667, 1.66667, 3.88118, 4.14466, 4.14466, 5.03142
–

P0758297
−2.93747,−2.53094,−1.95438,−1.86799,−0.406614, 0.692894, 0.724684,

1.27532, 1.30711, 2.40661, 3.86799, 3.95438, 4.53094, 4.93747
5

Table 9.10: Values of δa for the susy vacua. All values have multiplicity 1. The integer n denotes
the number of parameters of the loss function.

9.6 Discussion and outlook
We now discuss the results that we have presented in the previous sections, reflect about
our work and comment on possible continuations.

9.6.1 Discussion of results
Our results include several new holographic RG flows which give us new information
regarding RG flows of the dual field theories. In the SO(8) theory, we have studied
flows that reach the U(1) × U(1) vacuum for the first time, as earlier work considered
truncations that did not capture this critical point. For similar reasons, we were able
to construct a new holographic RG flow reaching one of the deeper U(1) vacua of the
ISO(7) gauged supergravity. While the Z3

2-truncation was already considered in [112] for
the [SO(6)×SO(1, 1)]⋉R12 supergravity, we constructed two new flows with less residual
symmetry that were not considered in this reference.

Besides completely new flows, we discussed new, inequivalent flows which are related to
flows found earlier and interpolate between the same IR and UV vacua. These are based on
our observation that, in the Z3

2-truncation, solutions can break the continuous symmetry
along the flow. Moreover, we discovered that there even exist multiple, inequivalent
ways to break this symmetry by flowing towards different copies of the same vacua. Our
explorations therefore indicate a rich and intricate structure of holographic RG flows,
which gives us a glimpse of the RG flow structure of the dual field theories. One may
therefore be interested in further investigation of these inequivalent holographic RG flows.
Such a study would give information on which patterns of symmetry breaking will (not)
be observed in the dual field theories. On the other hand, we have presented arguments
that indicate that such a task will be intimidating to say the least. Indeed, in Section
9.2.5, we argued that the susy vacua have many copies, leading to an enormous amount
of possible flows to consider and classify.
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9.6.2 Future work
We were not able to find some of the holographic RG flows and hence future work can build
on the work presented here to fill this gap. In particular, we have only partially explored
the flows in the theory of Section 9.4, which possibly contains an interesting structure due
to the flat directions of the scalar potential. However, one needs to adjust and improve
our algorithm. Indeed, we have remarked in Section 9.3.2 that complicated flows have
a rather unpredictable flow pattern, which makes our algorithm design inadequate to
capture them. This becomes an even greater issue in the two final gauged supergravities
we discussed. Indeed, the SO(8) and ISO(7) models have vacua which attract and stabilize
solutions and reduce the sensitive dependence of solutions on the initial conditions. In
particular, these are the SO(8) and G2 vacua, which attract solutions from almost all
directions. Further comments on possible improvements of our numerical methods will
be discussed in Section 9.6.3.

In this thesis, we have restricted our attention to four-dimensional gauged supergravity.
One may extend our methods and work to other dimensions of space-time. For example,
five-dimensional gauged supergravities have received attention in the literature, as they
are linked with the most well-known example of AdS/CFT explained in Section 7.2.
In this case, AdS/CFT and holographic RG flows allow us to probe deformations of
N = 4 SYM [67, 121]. All tricks presented in this thesis can again be applied: consistent
truncations, first-order flow equations in terms of a superpotential and so on. Indeed, the
general ideas behind holographic RG flows are captured adequately by the toy models
we discussed in Chapter 8, which were formulated in an arbitrary number of space-time
dimensions. Another attractive feature of the 5d theories is the fact that there are only 42
scalar fields, as opposed to 70 in 4d, as the scalar manifold is E6,6/Usp(8) [10]. Therefore,
consistent truncations maintain more of the original physics and give even more insightful
approximations compared to the 4d studies. Selected papers on holographic RG flows in
5d gauged supergravity include [122–125].

A final possible direction to extend our work is to study holographic RG flows that
interpolate between non-supersymmetric AdS vacua. We have limited our discussion
to supersymmetric vacua, as they are guaranteed to be stable vacua and since we can
numerically integrate the ‘simple’ (on a conceptual level) BPS equations from equation
(9.2) to find flow solutions. Unlike changing the dimension, studying non-susy AdS vacua
therefore requires completely different tools and brings additional challenges into the
story. However, this is certainly an interesting direction to pursue, as many field theories
of interest to us are non-supersymmetric. Some examples were briefly discussed in Section
7.4. We hope that AdS/CFT can deliver us a deeper understanding of these theories and
equip us with a tool to probe their currently inaccessible strongly coupled regimes.

9.6.3 Comparison of numerical methods and future algorithms
As explained above, our numerical algorithm was successful in the construction of new
holographic RG flows. Let us compare the performance of our newly designed step descent
algorithm with methods currently in use in the literature on holographic RG flows. Re-
cent papers, most notably [112], made use of a brute-force search method. That is, these
methods explore the full parameter space and look for regular flows, steadily improving
the accuracy of the search until, eventually, the code finds an interpolating flow between
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AdS vacua. A comparison between the two methods is given in Table 9.11. The clearest

Brute-force methods Step descent algorithm
− Days to weeks computation time + Hours to a day computation time
− Waste of computational resources + Targeted search
− Not adjustable + Adjustable and improvable
+ In principle guaranteed to find flows − Not guaranteed to converge

Table 9.11: Comparison between algorithms to construct holographic RG flows currently being
used in the literature and the algorithm designed in this thesis.

advantage of our targeted search algorithm compared to the brute-force methods is that
it reduces the required amount of computation time and computational resources.5 How-
ever, a major drawback is that the step descent algorithm is not guaranteed to converge
when starting from any initial ansatz. On the other hand, a brute-force method should
(at least in principle) eventually find the correct initial condition to construct a flow.
This drawback is a common phenomenon encountered in gradient descent algorithms,
our source of inspiration for the step descent algorithm. Indeed, this main issue may be
attributed to a loss function that has a shape similar to Figure 9.26. In essence, our
algorithm converges to a local minimum of the loss function, which is different from the
true minimum we want to find.

f(A)

A

Figure 9.26: Visualization of a major drawback of gradient descent algorithms. The algorithm
converges to a local minimum (red) lying close to the initial guess (black) and is unable to find
the true minimum (blue).

Let us speculate about possible solutions to this problem. First of all, recall that
our algorithm uses a step descent rather than gradient descent, such that we explore
the parameter space in a less efficient way compared to gradient descent algorithms.
Therefore, a first improvement would be to adjust our algorithm to include a proper
gradient descent, which may improve our odds of finding the true minimum. Moreover,
the step sizes s and ∆r are unaltered during the search. If we implement code which
adapts the step sizes according to the amount of convergence, the speed and performance

5The estimate of computational time for brute-force methods is based on private communication with
Colin Sterckx related to the work of [112], assuming sequential computations, and on personal experience
using a basic brute-force method which we implemented ourselves.
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of the algorithm will be drastically improved. Furthermore, we could alter the loss function
used in the algorithm. Indeed, our simple Euclidean distance-based loss function does not
properly quantify how ‘close’ a solution is to the desired solution. For example, the flows
constructed in Figures 9.19 and 9.20 required some of the scalars to start off (in the IR)
along directions which are not directly aimed at the UV target. Indeed, solutions that
‘shoot’ in the direction of the UV target blow up at later integration times. Finding
this flow required us to reduce the step sizes of the algorithm to correct this tendency to
converge towards such undesired solutions. This is likely the main reason why we were
not able to construct other holographic RG flows, and we believe this could be prevented
by a more clever design of the loss function. Indeed, this has been demonstrated by
the flow reported Figure 9.25, which we found by using a different loss function adapted
to the problem at hand. Throughout our explorations, we have already experimented
with other designs for the loss function. Firstly, we replaced the Euclidean distance
by a hyperbolic distance, which is actually the ‘correct’ metric since we are working in
hyperbolic spaces. However, quite surprisingly and still unexplained, this worsened the
convergence of the algorithm compared to the ‘wrong’ Euclidean metric. Secondly, we
considered a loss function which compared the value of A′ (see equation (9.3)) at the end
of the flow solution with the UV target. Again, this did not improve convergence. In
short, the design of the loss function should be refined for future work, but it is unclear
what possibilities may yield better results.

9.6.4 Machine learning meets theoretical physics
Our results and discussions suggest to direct future research on holographic RG flows
towards more cleverly designed algorithms which remind us of machine learning methods.
It is our personal opinion that targeted search algorithms, when upgraded to proper ma-
chine learning algorithms, will prove to be more fruitful compared to brute-force methods.
Since our work essentially boils down to finding fine-tuned flow solutions of dynamical sys-
tems in a phase space with many dimensions, this puts our work into a bigger picture for
future research. Indeed, future work (without restricting our attention to the specific case
of holographic RG flows) may benefit from exploring the intersection of machine learning
methods with theoretical or computational physics. In fact, this development has already
been started recently in this field, as machine learning algorithms are employed to find
vacuum solutions [41]. Expanding this intersection of knowledge domains is certainly an
exciting prospect which may influence the whole body of physics in general.



Appendix A

Critical points and linearized BPS
equations

We specify the locations of the vacua in the Z3
2-truncation using the conventions speci-

fied in Sections 9.2 – Section 9.5. Recall that a vacuum with label Pn1n2n3n4n5n6n7 has
potential value V = −n1n2.n3n4n5n6n7.

A.1 SO(8) gauged supergravity

A.1.1 Locations of critical points
P0600000: N = 8, SO(8)

z1 = z2 = z3 = z4 = z5 = z6 = z7 = 0 (A.1)

P0719157: N = 1, G2

z1 = z2 = z3 = z4 = z5 = z6 = z7 =
3 +

√
3− 31/4

4

(
1− i3−1/4

√
2 +

√
3

)
(A.2)

P0779422: N = 2, SU(3)× U(1)

z1 = z3 = z4 = z5 = i

√
5− 2

√
6 , z2 = z6 = z7 = 2−

√
3 (A.3)

P1200000: N = 1,U(1)× U(1)

z1 = −z5 = 0.3660254(1− i) , z2 = z6 = 0 (A.4)
z3 = z4 = 0.3660254(1 + i) , z7 = 0.5773502i (A.5)

P1384096: N = 1, SO(3)

z1 = −0.4833214− 0.3864057i, (A.6)
z2 = z6 = z7 = 0.3162021− 0.5162839i (A.7)
z3 = z4 = z5 = 0.1696359 + 0.1415740i (A.8)

109
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A.1.2 Linearized BPS equations
P0719157: N = 1, G2

x1,2,3,4,5,6,7 = −0.142565 + 0.223702A1e
2.24423r

y1,2,3,4,5,6,7 = −0.209269− 0.304654A1e
2.24423r

The top figure of Figure 9.4 was created with A1 = 1.

P0779422: N = 2, SU(3)× U(1)

x1,3,4,5 = 0 + 0.301579A2e
0.905142r,

y1,3,4,5 = 0.317837 − 0.389262A1e
2.517r

x2,6,7 = 0.267949 − 0.362353A1e
2.517r

y2,6,7 = 0 + 0.460507A2e
0.905142r

The bottom figure of Figure 9.4 was created with (A1, A2) = (1, 0). Figure 9.5 was created
with (A1, A2) = (1,−0.1020462419).

P1200000: N = 1,U(1)× U(1)

x1 = −0.366025 − 0.0472688A1e
3.61177r − 0.217087A2e

3.61177r + 0.319801A3e
3.4641r

y1 = −0.366025 − 0.0587983A1e
3.61177r − 0.270037A2e

3.61177r − 0.319801A3e
3.4641r

x2 = −0 + 0.318184A1e
3.61177r − 0.419622A2e

3.61177r

y2 = −0 − 0.539002A1e
3.61177r − 0.451521A2e

3.61177r

x3 = −0.366025 − 0.211878A1e
3.61177r + 0.319801A3e

3.4641r

y3 = −0.366025 + 0.263558A1e
3.61177r + 0.319801A3e

3.4641r

x4 = −0.366025 + 0.211878A1e
3.61177r + 0.319801A3e

3.4641r

y4 = −0.366025 − 0.263558A1e
3.61177r + 0.319801A3e

3.4641r

x5 = −0.366025 − 0.0472688A1e
3.61177r − 0.217087A2e

3.61177r − 0.319801A3e
3.4641r

y5 = −0.366025 − 0.0587983A1e
3.61177r − 0.270037A2e

3.61177r + 0.319801A3e
3.4641r

x6 = −0 − 0.500922A1e
3.61177r − 0.419622A2e

3.61177r

y6 = −0 + 0.342372A1e
3.61177r − 0.451521A2e

3.61177r

x7 = −0

y7 = −0.57735 + 0.426401A3e
3.4641r

The A1-mode breaks the symmetry. Figure 9.7 was created with A1 = A2 = 0 and
A3 = −1. Figure 9.8 was created with

(A1, A2, A3) = (0.099671,−0.1007,−0.1317) . (A.9)

Figure 9.9 was created with A1 = 0, A2 = 0.1 and A3 = −0.110952124. Figure 9.10 was
created with A1 = A2 = 0.1, and A3 = −0.162581999. Figure 9.11 was created with
A1 = A2 = −0.1 and A3 = −0.162581999.
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P1384096: N = 1, SO(3)

x1 = −0.483321 + 0.168488A1e
6.0197r + 0.366609A2e

3.68655r

y1 = −0.386406 − 0.215774A1e
6.0197r + 0.321566A2e

3.68655r

x2 = −0.316202 + 0.012542A1e
6.0197r − 0.240569A2e

3.68655r + 0.202913A3e
2.06899r − 0.203681A4e

2.06899r

y2 = −0.516284 + 0.0162529A1e
6.0197r + 0.38121A2e

3.68655r + 0.191427A3e
2.06899r − 0.192151A4e

2.06899r

x3 = −0.169636 + 0.360345A1e
6.0197r − 0.17284A2e

3.68655r + 0.0191429A3e
2.06899r − 0.462658A4e

2.06899r

y3 = −0.141574 − 0.421996A1e
6.0197r − 0.1449A2e

3.68655r + 0.0180324A3e
2.06899r − 0.43582A4e

2.06899r

x4 = −0.169636 + 0.360345A1e
6.0197r − 0.17284A2e

3.68655r − 0.483894A3e
2.06899r + 0.485726A4e

2.06899r

y4 = −0.141574 − 0.421996A1e
6.0197r − 0.1449A2e

3.68655r − 0.455825A3e
2.06899r + 0.45755A4e

2.06899r

x5 = −0.169636 + 0.360345A1e
6.0197r − 0.17284A2e

3.68655r + 0.464752A3e
2.06899r − 0.0230679A4e

2.06899r

y5 = −0.141574 − 0.421996A1e
6.0197r − 0.1449A2e

3.68655r + 0.437792A3e
2.06899r − 0.0217297A4e

2.06899r

x6 = −0.316202 + 0.012542A1e
6.0197r − 0.240569A2e

3.68655r − 0.00802724A3e
2.06899r + 0.194008A4e

2.06899r

y6 = −0.516284 + 0.0162529A1e
6.0197r + 0.38121A2e

3.68655r − 0.00757286A3e
2.06899r + 0.183026A4e

2.06899r

x7 = −0.316202 + 0.012542A1e
6.0197r − 0.240569A2e

3.68655r − 0.194886A3e
2.06899r + 0.00967311A4r

2.06899r

y7 = −0.516284 + 0.0162529A1e
6.0197r + 0.38121A2e

3.68655r − 0.183854A3e
2.06899r + 0.00912556A4e

2.06899r

The A3 and A4 modes break the continuous symmetry. Figure 9.12 was created with
A3 = A4 = 0, A2 = 1 and A1 = 0.1. Figure 9.13 was created with A3 = A4 = 0.3, A2 = 1
and A1 = 31.5. Figure 9.14 was created with A3 = A4 = 0, A2 = 1 and fine-tuning
A1 = 1.7686. Figure 9.15 was created with A2 = 1, A3 = A4 = 0.15 and fine-tuning
A1 = 9.278570.

A.2 ISO(7) gauged supergravity

A.2.1 Locations of critical points
P1998705: N = 1, G2

z1 = z2 = z3 = z4 = z5 = z6 = z7 =
1

4 · 21/3 (1 + i
√
15), . (A.10)

P2078460: N = 2, SU(3)× U(1)

z1 = z2 = z5 = z6 =
i√
2
, z3 = z4 = z7 =

1

2

(
1 + i

√
3
)
. (A.11)

P2327730: N = 3, SO(4)

z1 = −z2 = −z3 = −1
2
z4 = z5 = −z6 = −z7 =

1

24/3

(
−1 + i

√
3
)

(A.12)

P2379560: N = 1, SU(3)

z1 = z2 = z5 = z6 =
1

4

(√
3 + i

√
5
)
, z3 = z4 = z7 =

1

4

(
−1 + i

√
15
)

(A.13)
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P2569710: N = 1,U(1)

z1 = z5 = 0.4874331 + 0.5960593i

z2 = z6 = 0.1081762 + 1.1727984i,

z3 = −0.2177695 + 0.5098402i (A.14)
z4 = −0.5988588 + 0.5894185i,

z7 = 1.210100 + 0.8849423i

P3561023: N = 1,U(1)

z1 = z5 = −0.1102603 + 0.7629108i

z2 = z6 = 0.8364390 + 0.3907021i

z3 = −0.4021216 + 0.3120032i (A.15)
z4 = −0.9448821 + 1.4405741i

z7 = 0.7401864 + 1.1525653i

A.2.2 Linearized BPS equations
P2078460: N = 2, SU(3)× U(1)

x1,2,5,6 = 0 − 0.34556A2e
0.739045r

y1,2,5,6 = 0.707107 + 0.421613A1e
2.05512r

x3,4,7 = 0.5 − 0.15518A1e
2.05512r + 0.36137A2e

0.739045r

y3,4,7 = 0.866025 + 0.268779A1e
2.05512r + 0.208637A2e

0.739045r

The expansion preserves the symmetry at the critical point. Figure 9.21 is made with

(A1, A2) = (1,−0.21555924645) . (A.16)

P2327730: N = 3, SO(4)

x1,5 = −0.39685 + 0.104502A1e
2.41233r − 0.557678A2e

1.01957r − 0.557678A3e
1.01957r

y1,5 = 0.687365 + 0.390007A1e
2.41233r + 0.149429A2e

1.01957r + 0.149429A3e
1.01957r

x2,3,6,7 = 0.39685 − 0.104502A1e
2.41233r + 0.321975A3e

1.01957r

y2,3,6,7 = 0.687365 + 0.390007A1e
2.41233r + 0.086273A3e

1.01957r

x4 = 0.793701 − 0.142753A1e
2.41233r + 0.086273A2e

1.01957r + 0.086273A3e
1.01957r

y4 = 1.37473 + 0.0382504A1e
2.41233r + 0.321975A2e

1.01957r + 0.321975A3e
1.01957r

Figure 9.22 was made with parameters

(A1, A2, A3) = (3.5709160396,−0.2920101,−0.2920101) . (A.17)

We note that triangular RG flows can be constructed by requiring A2 ̸= A3 while fine-
tuning. Such flows were reported in [105].

P2379560: N = 1, SU(3)

x1,2,5,6 = 0.433013 − 0.0846158A1e
2.04114r − 0.17883A2e

2.04114r

y1,2,5,6 = 0.559017 0.479722A1e
2.04114r + 0.444676A2e

2.04114r

x3,4,7 = −0.25 + 0.164449A2e
2.04114r

y3,4,7 = 0.968246 0.130164A1e
2.04114r



APPENDIX A. CRITICAL POINTS AND LINEARIZED BPS EQUATIONS 113

We have not shown any flows which start from this critical point in the IR. A flow between
this vacuum and the G2 vacuum is known [110]. However, since our expansion preserves
the symmetry of the critical point, there are no interesting new features (e.g., symmetry
breaking along flows) within the larger Z3

2-truncation.

P2569710: N = 1,U(1)

x1 = 0.487433 + 0.0805976A1e
2.52742r − 0.583761A2e

2.51248r − 0.217792A3e
1.52786r + 0.101019A4e

0.353844r

y1 = 0.596059 − 0.436001A1e
2.52742r − 0.119631A2e

2.51248r + 0.142738A3e
1.52786r + 0.0851004A4e

0.353844r

x2 = 0.108176 + 0.0491102A1e
2.52742r + 0.315758A2e

2.51248r + 0.249373A3e
1.52786r + 0.0745267A4e

0.353844r

y2 = 1.1728 − 0.0991282A1e
2.52742r + 0.212624A2e

2.51248r − 0.352276A3e
1.52786r + 0.0266824A4e

0.353844r

x3 = −0.21777 − 0.0702244A1e
2.52742r − 0.302592A3e

1.52786r − 0.764726A4e
0.353844r

y3 = 0.50984 − 0.547589A1e
2.52742r + 0.150666A3e

1.52786r + 0.0775593A4e
0.353844r

x4 = −0.598859 − 0.0564274A1e
2.52742r + 0.57109A3e

1.52786r − 0.358423A4e
0.353844r

y4 = 0.589419 − 0.443772A1e
2.52742r − 0.020298A3e

1.52786r − 0.0187729A4e
0.353844r

x5 = 0.487433 + 0.0805976A1e
2.52742r + 0.583761A2e

2.51248r − 0.217792A3e
1.52786r + 0.101019A4e

0.353844r

y5 = 0.596059 − 0.436001A1e
2.52742r + 0.119631A2e

2.51248r + 0.142738A3e
1.52786r + 0.0851004A4e

0.353844r

x6 = 0.108176 + 0.0491102A1e
2.52742r − 0.315758A2e

2.51248r + 0.249373A3e
1.52786r + 0.0745267A4e

0.353844r

y6 = 1.1728 − 0.0991282A1e
2.52742r − 0.212624A2e

2.51248r − 0.352276A3e
1.52786r + 0.0266824A4e

0.353844r

x7 = 1.2101 + 0.164504A1e
2.52742r − 0.146936A3e

1.52786r + 0.402256A4e
0.353844r

y7 = 0.884942 − 0.22444A1e
2.52742r + 0.171483A3e

1.52786r + 0.266689A4e
0.353844r

Note that the A2-mode breaks the symmetry of the fixed point (z1 = z5, z2 = z6). Figure
9.19 was made with

(A1, A2, A3, A4) = (1, 0, 0.15615488023200016,−0.01011) , (A.18)

while Figure 9.20 was made with

(A1, A2, A3, A4) = (1, 0.005, 0.1561553522550902,−0.01011) . (A.19)
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P3561023: N = 1,U(1)

x1 = −0.11026 + 0.386828A1e
3.65229r + 0.0461372A2e

3.39817r + 0.0364767A3e
2.81446r + 0.320631A4e

1.76145r

− 0.0888923A5e
1.73139r

y1 = 0.762911 − 0.194545A1e
3.65229r − 0.401245A2e

3.39817r + 0.121247A3e
2.81446r + 0.323186A4e

1.76145r

+ 0.0874768A5e
1.73139r

x2 = 0.836439 − 0.226951A1e
3.65229r + 0.302688A2e

3.39817r − 0.131328A3e
2.81446r − 0.540451A4e

1.76145r

+ 0.409767A5e
1.73139r

y2 = 0.390702 − 0.114444A1e
3.65229r + 0.17518A2e

3.39817r + 0.492662A3e
2.81446r − 0.0256776A4e

1.76145r

− 0.0226078A5e
1.73139r

x3 = −0.402122 − 0.657371A1e
3.65229r − 0.120826A2e

3.39817r + 0.0019231A3e
2.81446r − 0.679593A5e

1.73139r

y3 = 0.312003 − 0.0387341A1e
3.65229r + 0.240211A2e

3.39817r + 0.664027A3e
2.81446r + 0.0263984A5e

1.73139r

x4 = −0.944882 + 0.00348252A1e
3.65229r + 0.199985A2e

3.39817r + 0.030437A3e
2.81446r − 0.264003A5e

1.73139r

y4 = 1.44057 − 0.104856A1e
3.65229r + 0.289221A2e

3.39817r − 0.0055178A3e
2.81446r + 0.152541A5e

1.73139r

x5 = −0.11026 + 0.386828A1e
3.65229r + 0.0461372A2e

3.39817r + 0.0364767A3e
2.81446r − 0.320631A4e

1.76145r

− 0.0888923A5e
1.73139r

y5 = 0.762911 − 0.194545A1e
3.65229r − 0.401245A2e

3.39817r + 0.121247A3e
2.81446r − 0.323186A4e

1.76145r

+ 0.0874768A5e
1.73139r

x6 = 0.836439 − 0.226951A1e
3.65229r + 0.302688A2e

3.39817r − 0.131328A3e
2.81446r + 0.540451A4e

1.76145r

+ 0.409767A5e
1.73139r

y6 = 0.390702 − 0.114444A1e
3.65229r + 0.17518A2e

3.39817r + 0.492662A3e
2.81446r + 0.0256776A4e

1.76145r

− 0.0226078A5e
1.73139r

x7 = 0.740186 + 0.0402257A1e
3.65229r − 0.482697A2e

3.39817r − 0.0264938A3e
2.81446r − 0.0365176A5e

1.73139r

y7 = 1.15257 + 0.222625A1e
3.65229r − 0.0138388A2e

3.39817r + 0.0736079A3e
2.81446r + 0.27424A5e

1.73139r

We have not been able to find holographic RG flows from this critical point. We expect
that, as was the case for the other U(1) critical point, there exists a flow which preserves
the U(1) symmetry (by putting A4 = 0) and a flow which breaks the U(1) symmetry (by
putting A4 ̸= 0).

A.3 [SO(6)× SO(1, 1)]⋉R12 gauged supergravity

A.3.1 Locations of critical points

F0289794(χ1,2,3): The critical point is located at

z1,2,3 = c

(
−χ1,2,3 + i

√
5

3

)
, z4 = z5 = z6 = z7 =

1√
6
(1 + i

√
5) . (A.20)

Here, χ1,2,3 are constant parameters and are subject to the constraint χ1 + χ2 + χ3 = 0.
A generic solution preserves a U(1)2 symmetry. This symmetry becomes enhanced to
SU(2) × U(1) if we have a pairwise identification between the χi parameters, and gets
even further enhanced to SU(3) at χ1,2,3 = 0.
F0300000(χ): The critical point is located at

z1 = −z3 = c

(
−χ+ i

1√
2

)
, z2 = ic , z4 = z6 = i ,

z5 = z7 =
1√
2
(1 + i) . (A.21)
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A generic solution preserves only U(1)2, while this symmetry becomes enhanced to SU(2)×
U(1) at χ = 0.
F0300000(φ): The critical point is located at

z1 = z2 =
ic
√
φ2 + 1√
2

, z3 = ic , z4 = z5 =
1√
2
(1 + i) ,

z6 = −z7 =
1√
φ2 + 1

(−φ+ i) . (A.22)

A generic solution again only preserves U(1)2 and N = 2. At φ = 0, this becomes
enhanced to SU(2)×U(1) and N = 2, while at φ = 1, this enhances to SO(4) and N = 4.
We remark that F0300000(φ = 0) represents the same critical point as F0300000(χ = 0).

A.3.2 Linearized BPS equations
F0300000(χ = 0): N = 2, SU(2)× U(1)

x1,3 = 0 + 0.552092A2e
0.561553r

y1,3 = 0.707107 − 0.905646A1e
1.56155r

x2 = 0 −A2e
0.561553r −A4e

1.56155r

y2 = 1 −A12.71828
1.56155r −A3e

0.561553r

x4,6 = 0 + 0.780776A3e
0.561553r

y4,6 = 1 + 1.28078A4e
1.56155r

x5,7 = 0.707107 + 0.353553A1e
1.56155r − 0.353553A2e

0.561553r − 0.353553A3e
0.561553r + 0.353553A4e

1.56155r

y5,7 = 0.707107 − 0.353553A1e
1.56155r − 0.353553A2e

0.561553r + 0.353553A3e
0.561553r + 0.353553A4e

1.56155r

Flows were obtained by putting A1 = −1. Figure 9.23 was found in [112] with parameter
values

(A2, A3, A4) = (0.00429589502, 0.3421361222342497,−0.15669397894) . (A.23)

We obtained Figure 9.24 by fine-tuning the parameters to the values

(A1, A2, A3) = (−0.027605720061501006, 0.3397537432343989,−0.30789650806929986) .
(A.24)



APPENDIX A. CRITICAL POINTS AND LINEARIZED BPS EQUATIONS 116

F0300000(χ = 0.01): N = 2,U(1)× U(1)

x1 = −0.01 − 0.473483A3e
0.561553r + 0.052623A4e

0.561553r

y1 = −0.707107 + 0.452416A1e
1.56155r − 0.126687A2e

1.56155r

x2 = −0 − 0.253456A1e
1.56155r − 0.389575A2e

1.56155r + 0.428808A3e
0.561553r − 0.0476578A4e

0.561553r

y2 = −1 + 0.249775A1e
1.56155r − 0.069943A2e

1.56155r − 0.483821A4e
0.561553r

x3 = −0.01 − 0.473483A3e
0.561553r + 0.052623A4e

0.561553r

y3 = −0.707107 + 0.452416A1e
1.56155r − 0.126687A2e

1.56155r

x4 = −0 + 0.377756A4e
0.561553r − 0.706824A5e

0.00039984r

y4 = −1 + 0.32462A1e
1.56155r + 0.498958A2e

1.56155r

x5 = −0.707107 + 0.00260258A1e
1.56155r + 0.324928A2e

1.56155r + 0.303213A3e
0.561553r − 0.375812A4e

0.561553r

− 0.0141308A5e
0.00039984r

y5 = −0.707107 + 0.355838A1e
1.56155r + 0.226014A2e

1.56155r + 0.303213A3e
0.561553r + 0.308414A4e

0.561553r

− 0.0141308A5e
0.00039984r

x6 = −0 + 0.377756A4e
0.561553r + 0.706824A5e

0.00039984r

y6 = −1 + 0.32462A1e
1.56155r − 0.498958A2e

1.56155r

x7 = −0.707107 + 0.00260258A1e
1.56155r + 0.324928A2e

1.56155r + 0.303213A3e
0.561553r − 0.375812A4e

0.561553r

+ 0.0141308A5e
0.00039984r

y7 = −0.707107 + 0.355838A1e
1.56155r + 0.226014A2e

1.56155r + 0.303213A3e
0.561553r + 0.308414A4e

0.561553r

Note that A5 breaks the symmetry of the critical point. In fact, it is likely possible to
break the symmetry along the flow (i.e., put A5 ̸= 0 such that z4 ̸= z6 and z5 ̸= z7 along
the flow). However, we did not verify this statement by creating a full solution, up until
the UV vacuum. Figure 9.25 was created with parameters (putting A5 = 0)

(A1, A2, A3, A4) = (−7.662078398570975, 4.673264742920671, 0.05936499004466509, 0.5543896161564815) . (A.25)

A.4 [SO(6)× SO(2)]⋉R12 gauged supergravity

A.4.1 Locations of critical points

P0752907: N = 1, SO(3)

z1 = z2 = z3 =
1√
3

(
2 + i

√
5
)
, (A.26)

z4 = z5 = z6 =
1

1081/4

(
−1 + i

√
5
)
, z7 =

1

1081/4

(
5 + i

√
5
)
, (A.27)

P0758297: N = 1,U(1)
Note that this location is the corrected version of the location provided in [39].

z1 =
κ√
6
e

π
3
i , z2 = z3 =

√
3 + κ2

4
√
2

+ i

√
3(−1 + κ2)

4
√
2

z4 =
κ− 2

2
√
3 4
√
2κ2 − 5

+ i

4

√
7κ2

2
− 8

κ
, z5 = z6 =

√
κ

4
√
6
e

2π
3
i , (A.28)

z7 =

√
κ2 + 2 4

√
2κ2 − 5√

6(2− κ)
+ i

4

√
7κ2

2
− 8

κ
, κ ≡

√√
13− 1 ≈ 1.6141720 . (A.29)
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A.4.2 Linearized BPS equations
P0758297: N = 1,U(1)

x1 = −0.329491 − 0.0105981A1e
4.67016r + 0.531815A2e

4.02385r − 0.0581137A4e
2.96984r + 0.250936A5e

0.64646r

y1 = −0.570696 + 0.0486849A1e
4.67016r + 0.1631A2e

4.02385r + 0.344803A4e
2.96984r − 0.591551A5e

0.64646r

x2 = −0.418537 + 0.0837058A1e
4.67016r − 0.364737A2e

4.02385r − 0.582028A3e
3.10719r + 0.0183412A4e

2.96984r

− 0.259639A5e
0.64646r

y2 = −0.38797 + 0.0491905A1e
4.67016r + 0.00108551A2e

4.02385r − 0.0271857A3e
3.10719r + 0.603269A4e

2.96984r

+ 0.244692A5e
0.64646r

x3 = −0.418537 + 0.0837058A1e
4.67016r − 0.364737A2e

4.02385r + 0.582028A3e
3.10719r + 0.0183412A4e

2.96984r

− 0.259639A5e
0.64646r

y3 = −0.38797 + 0.0491905A1e
4.67016r + 0.00108551A2e

4.02385r + 0.0271857A3e
3.10719r + 0.603269A4e

2.96984r

+ 0.244692A5e
0.64646r

x4 = −0.164316 − 0.409271A1e
4.67016r + 0.341085A2e

4.02385r + 0.0372728A4e
2.96984r − 0.383014A5e

0.64646r

y4 = −0.637235 + 0.357766A1e
4.67016r + 0.438277A2e

4.02385r + 0.057542A4e
2.96984r + 0.206638A5e

0.64646r

x5 = −0.405889 − 0.454195A1e
4.67016r − 0.119006A2e

4.02385r − 0.153763A3e
3.10719r + 0.0651159A4e

2.96984r

+ 0.227142A5e
0.64646r

y5 = −0.70302 + 0.242622A1e
4.67016r − 0.208615A2e

4.02385r − 0.369948A3e
3.10719r + 0.0860953A4e

2.96984r

− 0.00888242A5e
0.64646r

x6 = −0.405889 − 0.454195A1e
4.67016r − 0.119006A2e

4.02385r + 0.153763A3e
3.10719r + 0.0651159A4e

2.96984r

+ 0.227142A5e
0.64646r

y6 = −0.70302 + 0.242622A1e
4.67016r − 0.208615A2e

4.02385r + 0.369948A3e
3.10719r + 0.0860953A4e

2.96984r

− 0.00888242A5e
0.64646r

x7 = −1.5392 + 0.330155A1e
4.67016r − 0.0230995A2e

4.02385r − 0.230127A4e
2.96984r + 0.0543129A5e

0.64646r

y7 = −0.637235 + 0.209394A1e
4.67016r + 0.0133712A2e

4.02385r + 0.261208A4e
2.96984r + 0.191916A5e

0.64646r

We did not find a flow starting from this point. We observe that the A4 mode breaks
the symmetry at the fixed point, and hence there likely exists two inequivalent solutions,
depending on whether or not they break the symmetry along the flows.



Appendix B

Scalar masses and scaling dimensions

Recall that the scaling dimensions of operators in the dual field theory can be obtained
from the masses of the bulk scalar fields. They are related to the roots ∆± of

m2L2 = ∆(∆− 3) , (B.1)

which were given in equation (7.23). For most values of the squared masses, the scaling
dimension is equal to the root ∆+, as ∆− lies below the unitarity bound (∆ ≥ (d− 2)/2)
and can therefore not be interpreted as the scaling dimension of an operator. However,
if the squared masses are within a certain negative range, both roots ∆± lie above the
unitarity bound, and there is an ambiguity in defining the scaling dimension of the dual
operator. As we argued in Section 7.3, this range is

− d2

4
≤ m2L2 ≤ 4− d2

4
. (B.2)

For our purpose, the dual field theories are formulated in d = 3, such that the bound
becomes

− 2.25 ≤ m2L2 ≤ −1.25 . (B.3)

The ambiguity is resolved by the presence of supersymmetry, such as in the case considered
in Chapter 9. Indeed, by linearizing the BPS equations, the eigenvalues of the Jacobian
matrix are related to the scaling dimensions that are selected by supersymmetry. In this
appendix, we compute the mass spectra at each of the vacua considered in Chapter 9
and compute the corresponding roots ∆±. The masses m2L2 can be obtained from the
eigenvalues of the mass matrix M with entries

Ma
c =

1

2
Ka

b∂
b∂cV , (B.4)

where indices a refer to the 14 real scalar fields, which we denoted by ϕa in Chapter 9, and
Kab is the 14× 14 matrix specifying the kinetic terms for the fields ϕa. We specify which
of these roots is selected by the linearized BPS equations, for which we refer readers to
Tables 9.2, 9.5, 9.8 and 9.10. The values of δa give the selected scaling dimension by the
relation

∆a = δa , ∆a = 3− δa , (B.5)

depending on which option satisfies the unitarity bound. These results are specified in
Tables B.1 – B.4 below for each of the considered sugra theory.
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m2L2 −2

P0600000 ∆+ −2

∆− −1

m2L2 −2.24158(×6) −1.42509(×6) −1.55051(×1) −6.44949(×1)

P0719157 ∆+ −1.59175(×6) −2.40825(×6) −3.44949(×1) −4.44949(×1)

∆− −1.40825(×6) −0.59175(×6) −0.44949(×1) −1.44949(×1)

m2L2 −2.22222(×3) −2.00000(×4) −1.55556(×3) −1.12311(×1) −2.00000(×2) −7.12311(×1)

P0779422 ∆+ −1.66667(×3) −2(×4) −2.33333(×3) −2.56155(×1) −3.56155(×2) −4.56155(×1)

∆− −1.33333(×3) −1(×4) −0.66666(×3) −0.43845(×1) −0.56155(×2) −1.56155(×1)

m2L2 −2.22938(×2) −2.19615(×1) −2.00000(×2) −1.51659(×2) −0.73205(×1)

∆+ −1.64361(×2) −1.73205(×1) −2(×2) −2.35639(×2) −2.73205(×1)

∆− −1.35639(×2) −1.26795(×1) −1(×2) −0.64361(×2) −0.26795(×2)

P1200000

m2L2 −2.73205(×1) −3.06709(×2) −8.19615(×1) −8.67887(×2)

∆+ −3.73205(×1) −3.80588(×2) −4.73205(×1) −4.80588(×2)

∆− −0.73205(×1) −0.80588(×2) −1.73205(×1) −1.80588(×2)

m2L2 −2.24473(×2) −2.18813(×1) −1.68560(×1) −1.09949(×2) −0.10892(×2)

∆+ −1.57262(×2) −1.74874(×1) −2.25126(×1) −2.57262(×2) −2.96324(×2)

∆− −1.42738(×2) −1.25126(×1) −0.74874(×1) −0.42738(×2) −0.03676(×2)

P1384096

m2L2 −2.66206(×1) −3.81757(×2) −8.09469(×1) −8.65678(×1) −16.2619(×1)

∆+ −3.71632(×1) −3.96324(×2) −4.71632(×1) −4.80254(×1) −5.80254(×1)

∆− −0.71632(×1) −0.96324(×2) −1.71632(×1) −1.80254(×1) −2.80254(×1)

Table B.1: Masses of the 14 scalar fields at vacua of SO(8) gauged supergravity. The two roots ∆± are obtained using equation (B.2). Grey-
coloured values of ∆− are below the unitarity bound and hence do not correspond to scaling dimensions in the dual theory. Boldface values of
∆± denote modes that are selected by the linearized BPS equations.
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m2L2 −2.24158(×6) −1.42509(×6) −1.55051(×1) −6.44949

P1998705 ∆+ −1.59175(×6) −2.40825(×6) −3.44949(×1) −4.44949(×1)

∆− −1.40825(×6) −0.591752(×6) −0.44949(×1) −1.44949(×1)

m2L2 −2.22222(×3) −2.00000(×4) −1.55556(×3) −1.12311(×1) −2.00000(×2) −7.12311(×1)

P2078460 ∆+ −1.66666(×3) −2.00000(×4) −2.33333(×3) −2.56155(×1) −3.56155(×2) −4.56155(×1)

∆− −1.33333(×3) −1.00000(×4) −0.66666(×3) −0.43845(×1) −0.56155(×2) −1.56155(×1)

m2L2 −2.19615(×1) −2.00000(×6) −0.73205(×3) −2.73205(×3) −8.19615(×1)

P2327730 ∆+ −1.73205(×1) −2.00000(×6) −2.73205(×3) −3.73205(×3) −4.73205(×1)

∆− −1.26795(×1) −1.00000(×6) −0.26795(×3) −0.73205(×3) −1.73205(×1)

m2L2 −2.22222(×3) −2.00000(×2) −0.88888(×3) −0.00000(×2) −1.55051(×2) −6.44949(×2)

P2379560 ∆+ −1.66666(×3) −2.00000(×2) −2.66666(×3) −3.00000(×2) −3.44949(×2) −4.44949(×2)

∆− −1.33333(×3) −1.00000(×2) −0.333333(×3) −0.00000(×2) −0.44949(×2) −1.44949(×2)

m2L2 −2.20661(×2) −2.10747(×2) −2.09876(×2) −1.87655(×2) −1.86254(×2) −1.69973(×2) −1.62323(×2)

∆+ −1.70831(×2) −1.87754(×2) −1.88889(×2) −2.11111(×2) −2.12246(×2) −2.24180(×2) −2.29169(×2)

∆− −1.29169(×2) −1.12246(×2) −1.11111(×2) −0.88889(×2) −0.87754(×2) −0.75820(×2) −0.70831(×2)

P2569710

m2L2 −0.13418(×2) −0.783875(×2) −2.66477(×2) −2.71014(×2) −4.22234(×2) −8.09862(×2) −8.16441(×2)

∆+ −3.04408(×2) −3.24180(×2) −3.71693(×2) −3.72714(×2) −4.04408(×2) −4.71693(×2) −4.72714(×2)

∆− −0.04408(×2) −0.24180(×2) −0.71693(×2) −0.72714(×2) −1.04408(×2) −1.71693(×2) −1.72714(×2)

m2L2 −2.24908(×2) −2.23926(×2) −1.44651(×2) −1.18847(×2) −0.01525(×2) −0.06807(×2) −2.30308(×2)

∆+ −1.53027(×2) −1.60361(×2) −2.39637(×2) −2.53030(×2) −3.00507(×2) −3.02252(×2) −3.63380(×2)

∆− −1.46973(×2) −1.39639(×2) −0.60363(×2) −0.46970(×2) −0.00507(×2) −0.02252(×2) −0.63380(×2)

P3561023

m2L2 −3.86395(×2) −4.02540(×2) −4.11312(×2) −4.61524(×2) −7.57068(×2) −9.80923(×2) −10.8556(×2)

∆+ −3.97264(×2) −4.00508(×2) −4.02252(×2) −4.12016(×2) −4.6338(×2) −4.97264(×2) −5.12016(×2)

∆− −0.97264(×2) −1.00508(×2) −1.02252(×2) −1.12016(×2) −1.63380(×2) −1.97264(×2) −2.12016(×2)

Table B.2: Masses of the 14 scalar fields at vacua of ISO(7) gauged supergravity. The two roots ∆± are obtained using equation (B.2). Grey-
coloured values of ∆− are below the unitarity bound and hence do not correspond to scaling dimensions in the dual theory. Boldface values of
∆± denote modes that are selected by the linearized BPS equations.
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m2L2 −2.22222(×3) −2.00000(×2) −0.88888(×3) −0.00000(×3) −1.55051(×2) −6.44949(×2)

F0289794(χ1,2,3 = 0) ∆+ −1.66666(×3) −2.00000(×2) −2.66666(×3) −3.00000(×3) −3.44949(×2) −4.44949(×2)

∆− −1.33333(×3) −1.00000(×2) −0.33333(×3) −0.00000(×2) −0.44949(×2) −1.44949(×2)

m2L2 −2.22171(×2) −2.22013(×2) −2.00000(×2) −0.88529(×2)

∆+ −1.66821(×2) −1.67282(×1) −2.00000(×2) −2.66821(×2)

∆− −1.33179(×2) −1.32718(×2) −1.00000(×2) −0.33179(×2)

F0289794(χ⋆
1,2,3)

m2L2 −0.87445(×1) −0.00000(×2) −1.55051(×2) −6.44949(×2)

∆+ −2.67282(×2) −3.00000(×2) −3.44949(×2) −4.44949(×2)

∆− −0.32718(×2) −0.00000(×2) −0.44949(×2) −1.44949(×2)

m2L2 −2.00000(×4) −1.12311(×2) −0.00000(×2) −2.00000(×4) −7.12311(×2)

F0300000(χ = 0) ∆+ −2.00000(×4) −2.56155(×2) −3.00000(×2) −3.56155(×4) −4.56155(×2)

∆− −1.00000(×4) −0.438447(×2) −0.00000(×2) −0.561553(×4) −1.56155(×2)

m2L2 −2.00040(×1) −2.00000(×1) −1.99960(×2) −1.12311(×2)

∆+ −1.99960(×1) −2.00000(×1) −2.00040(×2) −2.56155(×2)

∆− −1.00040(×1) −1.00000(×1) −0.99960(×2) −0.43845(×2)

F0300000(χ = 0.01)

m2L2 −0.00000(×1) −0.00120(×1) −2.00000(×4) −7.12311(×2)

∆+ −3.00000(×1) −3.00040(×1) −3.56155(×4) −4.56155(×2)

∆− −0.00000(×1) −0.00040(×1) −0.56155(×4) −1.56155(×2)

Table B.3: Masses of the 14 scalar fields at vacua of [SO(6) × SO(1, 1)] ⋉ R12 gauged supergravity. The two roots ∆± are obtained using
equation (B.2). Grey-coloured values of ∆− are below the unitarity bound and hence do not correspond to scaling dimensions in the dual
theory. Boldface values of ∆± denote modes that are selected by the linearized BPS equations. The values of χ⋆

123 are given in equation (9.18).
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m2L2 −2.22321(×1) −2.22222(×2) −1.55059(×1) −0.88888(×2) −3.42004(×1)

∆+ −1.66369(×1) −1.66666(×2) −2.33631(×1) −2.66666(×2) −3.88118(×1)

∆− −1.33631(×1) −1.33333(×2) −0.66369(×1) −0.333333(×2) −0.881184(×1)

P0752907

m2L2 −4.74423(×2) −9.18240(×1) −10.2209(×1) −11.0335(×2) −18.2838(×1)

∆+ −4.14466(×2) −4.88118(×1) −5.03142(×1) −5.14466(×2) −6.03142(×1)

∆− −1.14466(×2) −1.88118(×1) −2.03142(×1) −2.14466(×2) −3.03142(×1)

m2L2 −2.21279(×1) −2.19952(×1) −1.64889(×1) −1.59858(×1) −1.42805(×1) −1.38518(×1) −3.35737(×1)

∆+ −1.69289(×1) −1.72468(×1) −2.27532(×1) −2.30711(×1) −2.40661(×1) −3.40661(×1) −3.86799(×1)

∆− −1.30711(×1) −1.27532(×1) −0.72468(×1) −0.69289(×1) −0.59339(×1) −0.40661(×1) −0.86799(×1)

P0758297

m2L2 −3.77399(×1) −6.93661(×1) −9.09334(×1) −9.56617(×1) −9.68275(×1) −13.9985(×1) −17.4411(×1)

∆+ −3.95438(×1) −4.53094(×1) −4.86799(×1) −4.93747(×1) −4.95438(×1) −5.53094(×1) −5.93747(×1)

∆− −0.95438(×1) −1.53094(×1) −1.86799(×1) −1.93747(×1) −1.95438(×1) −2.53094(×1) −2.93747(×1)

Table B.4: Masses of the 14 scalar fields at vacua of [SO(6)× SO(2)]⋉R12 gauged supergravity. The two roots ∆± are obtained using equation
(B.2). Grey-coloured values of ∆− are below the unitarity bound and hence do not correspond to scaling dimensions in the dual theory. Boldface
values of ∆± denote modes that are selected by the linearized BPS equations.
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Poincaré group, 22
Poincaré patch, 16
Poincaré plane, 49

rank, 10
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