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1 List of abbreviations

AQST amplitude quantum state tomography

CD counteradiabatic driving

CNOT controlled NOT

CVD chemical vapor deposition

CW continuous wave

ENDOR electron nuclear double resonance

ESR electron spin resonance

HPHT high-pressure high-temperature

ISC intersystem crossing

MW microwave

NMR nuclear magnetic resonance

NV nitrogen-vacancy

ODMR optical detection of magnetic resonance

PL photoluminescence

PQST phase quantum state tomography

QND quantum non-demolition

QNMR quantum nuclear magnetic resonance

QST quantum state tomography

RF radiofrequency

SNR signal to noise ratio

STA shortcuts to adiabaticity

ZFS zero field splitting

ZPL zero phonon line
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2 Abstract

The nitrogen-vacancy (NV) center, a point defect occurring in diamond, provides new possibil-

ities in quantum thermodynamics and quantum information science, triggering vivid theoretical

and experimental activity. The centers offer atom-like properties (e.g. long spin coherence

times and well-defined optical transitions), while being enclosed in a robust diamond material,

enabling a scalable, room temperature quantum technology. In this master thesis, a theoreti-

cal framework for an NV-mediated quantum Otto cycle (based on an existing, experimentally

demonstrated Otto cycle protocol) and initial thermal state preparation is presented and exper-

imental steps are taken to provide the means for its implementation. In a first step, the NV

electron spin is manipulated and read out employing continuous wave and pulsed optical detec-

tion of magnetic resonace (ODMR), and Rabi measurements. The electron π-pulse was ∼ 800

ns, long enough to resolve the hyperfine structure in a pulsed ODMR experiment. This en-

ables to apply narrowband nuclear spin-selective microwave pulses, resulting in the possibility

of electron-nuclear double resonance measurements of the 14N nuclear spin associated with the

NV center. Pulsed ODMR and Rabi measurements are conducted on this nuclear spin and re-

veal a resonance frequency of 7.11 MHz for the |mS,mI〉 = |− 1, 1〉 ↔ |− 1, 0〉 transition, and

a nuclear π-pulse of ∼ 16.5µs. Using the electron and nuclear control parameters (resonance

frequencies and π-pulse durations), the NV two-qubit system is initialized to the |0, 0〉 state

with a sufficient polarization to increase the contrast of nuclear Rabi oscillations between states

|0〉N and |1〉N approximately twofold. For this, the used pulse protocols had to be optimized

for the laser pulse duration and the negative effects of applying RF waves: resonance frequency

shift and sample drift. Lastly, nuclear state preparation and quantum state tomography (QST)

protocols are introduced. The QST protocols are based on the adjacent measurements of Rabi

oscillations of a reference state |0〉N and Rabi oscillations of the prepared state |ψ〉 around the

x- and y-axis of the Bloch sphere. From inspection of these Rabi oscillations, using three dif-

ferent calculation protocols (based on either the amplitude or the phase of the Rabi signals) a

maximum two-qubit fidelity of 0.9995 is obtained across seven measurements of three different

states.
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3 Samenvatting

Kwantum thermodynamica is een relatief recente tak van de fysica die de laatste jaren met

grote interesse werd bestudeerd en die een bijzondere contributie heeft geleverd aan de ont-

wikkeling van nieuwe kwantum technologieën. Om een schaalbare kwantum technologie te

kunnen creëren, moet voldaan worden aan twee contrasterende eisen. Enerzijds moeten de

qubits precies te controleren zijn, anderzijds moet de technologie ook op industriële schaal

kunnen worden vervaardigd. Een precieze qubit controle is reeds bewezen, bijvoorbeeld met

supergekoelde atomen, maar tenzij iedereen in de toekomst een voorraad vloeibare stikstof in

huis heeft, is deze technologie niet schaalbaar. Het kan dus dat de technologie van de toekomst

niet koud wordt, maar wel glanzend: diamanten kwantum technologie is namelijk wel bijzonder

schaalbaar, en significante verbeteringen worden geboekt in de controle van de vastestof qubits.

Diamant bestaat uit een tetrahedraal netwerk van koolstofatomen in een sp3-hybridisatie. In

het rooster kunnen defecten voorkomen, zoals ontbrekende atomen (gaten), dislocaties en inter-

stitiële of substitutionele atomen, waarbij stikstof het vaakst voorkomt. Een specifiek puntdefect

dat in diamanten kan voorkomen is het nitrogen-vacancy (NV) centrum, wat vertaald kan wor-

den als het stikstof-gat centrum. Deze NV centra bestaan uit een substitutioneel stikstof atoom

gekoppeld met een naburig gat en hebben de eigenschappen van geı̈soleerde atomen, ondanks

dat ze vastzitten langs één van de kristallografische assen van het diamantrooster. Dat maakt

dat ze voldoen aan beide contrasterende eisen en een veelbelovend alternatief vormen voor de

supergekoelde kwantum technologie. NV centra kunnen voorkomen in twee ladingstoestanden:

neutraal (NV0) of negatief geladen (NV−). De negatief geladen centra zijn het meest abondant

en worden ook gebruikt in deze thesis.

De Hamiltoniaan van een NV− centrum in een extern magnetisch veld bevat bij benadering

vijf termen: de nulveldsplitsing, het elektron Zeeman effect, de hyperfijnsplitsing, het nuclear

quadrupool effect, en het kern Zeeman effect. Voor de doelen gesteld in deze masterproef kan

deze Hamiltoniaan verder worden vereenvoudigd. Zo is de kern Zeeman term bijvoorbeeld erg

klein en kan deze worden verwaarloosd tegenover de andere effecten. Daarnaast wordt ook

enkel rekening gehouden met de kernspin van het stikstofatoom 14N van het NV centrum zelf

en niet met andere kernen die eventueel in het diamantrooster nog aanwezig kunnen zijn. Ten

laatste is bij het gebruikte magneetveld enkel de component parallel met de NV as van belang
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en zorgt de aanwezigheid van het veld ervoor dat het effect van de transversale nulveldsplits-

ing verwaarloosbaar wordt. Deze aannames in gedachten wordt de benaderende Hamiltoniaan

gegeven in formule 3 op pagina 18. De eigentoestanden van het systeem worden dan gegeven

door |S,mS〉 ⊗ |I,mI〉 met S de spin van het ongepaarde NV elektron S = 1 , mS = −1, 0, 1

en I de kernspin van het stikstofatoom I = 1, mI = −1, 0, 1. De bijbehorende eigenwaarden

geven het spectrum van energietoestanden. Een aantal configuraties zijn hierbij belangrijk en

kunnen worden afgeleid m.b.v. moleculaire orbitaaltheorie. Het is het eenvoudigste om hierbij

eerst enkel te kijken naar het effect van de nulveldsplitsing en daarna de andere termen één voor

één mee in acht te nemen, waarop de bekomen energieniveaus steeds verder opsplitsen. Dit is

geı̈llustreerd in figuren 2 op pagina 18 en 3 op pagina 19.

De elektron spin van het NV centrum kan makkelijk optisch worden uitgelezen via Optical De-

tection of Magnetic Resonance (ODMR) en ook simpel optisch worden gepolariseerd. Hiervoor

wordt het NV centrum geëxciteerd met groen laserlicht, waarna het terug naar de grondtoestand

relaxeert via spin-afhankelijke paden. Als de electron spin van het NV centrum wordt gegeven

door mS = 0, dan zal het systeem na excitatie relaxeren via een radiatieve transitie, die spin-

behoudend is. Als de electron spin gelijk is aan ±1, dan vergroot de kans dat het systeem

relaxeert via een donkere transitie, die de spin polariseert naar mS = 0. Op deze manier kan de

NV elektron spin op een tijd van enkele honderden nanoseconden tot 90% worden gepolariseerd

naar mS = 0. Voor de kernspin ontbreken deze eenvoudige uitlees- en polarisatieprocedures,

maar het is wel mogelijk om de kernspin te manipuleren en uit te lezen via de elektronspin. Dit

is één van de grote onderdelen van deze masterproef en beslaat de gehele sectie 7.1. Hierbij

wordt als eerste op de elektron spin gefocust. Het protocol voor continuous wave ODMR wordt

uitgelegd en het resultaat gedemonstreerd, alsook metingen van Rabi oscillaties tussen ms = 0

en mS = −1 (zie figuur 17 op pagina 57 en 18 op pagina 59). Rabi metingen tonen aan dat de

π-puls ∼ 800 ns bedraagt. Dit is een vrij grote waarde zodat de hyperfijn resonanties onder-

scheiden kunnen worden in een gepulste ODMR meting.

Nadat de elektronspin kan worden gecontroleerd en uitgelezen, wordt er gefocust op de kern-

spin. Een nucleair Rabi protocol en een nucleaire ODMR worden uitgevoerd om de resonantie

frequenties en de duratie van de nucleaire π-puls te bepalen (zie figuur 19 op pagina 60 en 20

op pagina 61). Hieruit volgen een π-puls van ∼ 16.5 µs aan en een resonantiefrequentie van

∼ 7.11 MHz voor de mI = 0 ↔ mI = 1 transitie in de elektronisch geëxciteerde toestand
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mS = −1. Deze waarden kunnen worden gebruikt in nucleaire protocollen, zoals een nucleaire

spin polarisatie en een nucleaire Rabi met deze initialisatie. De eerste van deze sequenties is

een uitbreiding van de elektron polarisatie en brengt het NV centrum naar de toestand mS = 0,

mI = 0. De graad van polarisatie wordt uitgelezen met een gepulste ODMR meting van de

elektron spin. Met een volledig gedepolariseerde nucleaire toestand zijn namelijk drie even

grote hyperfijn pieken te zien voor één elektronische overgang (maximaal gemengde toestand

van de drie kernspins), terwijl bij een volledig gepolariseerde nucleaire spin slechts één hyper-

fijn piek te zien is met een contrast dat drie keer zo groot is. Dit is te zien in figuur 22 op pagina

63 samen met gebruikte puls sequentie. De bekomen polarisatie is niet volledig en er blijft

een kleine residuele populatie met spin verschillend van nul achter zodat de contrastverhoging

beperkt blijft. Dan pas ik de vooraf gebruikte nucleaire Rabi sequentie aan door steeds eerst de

nucleaire spin te polariseren tot mI = 0 en vervolgens Rabi oscillaties tussen deze toestand en

mI = 1 op te meten (zie figuur 23 op pagina 64). De bekomen oscillaties hebben een contrast

dat ongeveer tweemaal zo groot is als dat van Rabi oscillaties zonder initialisatie.

Om een optimale controle over de elektron en kernspin te verkrijgen, optimaliseer ik de ge-

bruikte puls sequentie. De duratie en frequentie van de gebruikte microgolf en radiofrequente

pulsen werd al onderzocht a.d.h.v. Rabi en ODMR metingen, maar ook de duratie van de laser-

pulsen is belangrijk. Deze moeten namelijk lang genoeg zijn om de elektronspin te polariseren

naar mS = 0, maar ook voldoende kort zodat de kernspin niet wordt gedepolariseerd. Via

een parameterstudie wordt een optimale waarde van 500 ns bekomen voor de laserpuls duratie

bij een laservermogen van 1 mW. Vervolgens wordt het effect van radiofrequente magnetis-

che velden ook in detail bestudeerd. Wanneer veel of lange RF pulsen worden aangelegd, is er

namelijk een verhoogde sample drift zodanig dat het NV centrum snel de focus van de laser ver-

laat. Om dit effect tegen te gaan, wordt een target lock functie ingebouwd in de meetsoftware

om het NV centrum in focus te houden. Naast een drift in de locatie is er ook een verandering te

zien van de resonantiefrequenties (meer bepaald van de nulveldsplitsing) naar lagere frequen-

ties bij aanleg van langere of meer RF pulsen. Dit onverwachte gedrag wordt gelinkt aan de

opwarming van het diamantsample en genoodzaakt dat de resonantiefrequenties opnieuw wor-

den opgemeten bij elke (grote) verandering van de tijd waarin het sample wordt blootgesteld

aan radiofrequente straling.

Een tweede onderdeel van deze thesis bekijkt de NV elektron en kernspin als effectieve twee-
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niveau systemen, zodat ze equivalent zijn aan twee spin qubits. Deze qubits kunnen in tegen-

stelling tot klassieke bits niet enkel in toestand |0〉 of |1〉 zijn, maar ook in elke lineaire com-

binatie van deze twee toestanden. In de experimenten in deze masterproef, zal de kernspin als

qubit worden behandeld met de twee toestandenmI = 0 enmI = 1. Een algemene toestand van

de kernspin qubit wordt dan gegeven door |ψ〉N = cos( θN
2

) + eiφNsin( θN
2

), zodat onmiddellijk

voldaan is aan de normalisatieconditie en een toestand dus bepaald wordt door twee hoeken θN

en φN . Op deze manier stelt elk punt op de Blochsfeer een mogelijke toestand voor. Verder kan

ook gebruikt worden gemaakt van de densiteitsoperator ρN om de kernspin qubit toestanden

voor te stellen.

Met een meetprocedure genaamd Quantum State Tomography (QST) kunnen de elementen van

de densiteitsoperator (en dus θN en φN ) worden bepaald. In deze thesis worden twee specifieke

protocollen gebruikt die beiden zijn gebaseerd op Rabi metingen: een amplitudo QST (AQST)

en fase QST (PQST). Hiervoor werd het experimenteel protocol ontworpen o.b.v. een electron

QST, de AQST berekeningen werden geoptimaliseerd en de PQST methode werd volledig zelf

ontworpen. AQST maakt gebruik van de amplitudo van drie opeenvolgende Rabi oscillaties:

één Rabi meting van rotaties rond de x-as (x-Rabi), één meting van oscillaties rond de y-as (y-

Rabi) en één referentie Rabi tussen toestanden |0〉N en |1〉N om met deze maximale amplitudo

de andere twee te normaliseren (de straal van de Blochsfeer is 1). Uit de ratio’s van de verschil-

lende amplitudo’s en de vorm van de x- en y-Rabi signalen, kunnen dan de coördinaten (x, y, z)

oftewel (θN , φN) van de Bloch vector worden bepaald met de formules (12) tot (14) op pagina

27 en 28. PQST gebruikt enkel de x- en y-Rabi en maakt gebruik van fase-informatie om θN

en φN te bepalen, via formule (17) en (18) op pagina 29. Vanwege de sterke aanwezigheid van

sample drift tijdens de metingen, is de fasegebaseerde methode succesvoller hier. De ampli-

tudogebaseerde methode heeft echter als voordeel dat met de derde Rabi meting redundantie

wordt ingebracht, zodat het resultaat op interne consistentie kan worden gecontroleerd. Hoe

goed beide methodes werken kan worden gekwantificeerd a.d.h.v. de fidelity van een meting

van een gekende toestand. Deze grootheid drukt uit in hoeverre de gekende en gemeten toes-

tand overeen komen op een schaal van 0 tot 1. Een andere methode is om de Rabi oscillaties

van de gekende toestand te plotten over de experimentele data en deze te vergelijken. Het

QST protocol werd toegepast op een aantal nucleaire toestanden in verschillende regio’s van de

Blochsfeer. In nabijheid van de assen is het moeilijker om een toestand correct op te meten,

maar behaalde ik toch een 2-qubit fidelity van minstens 0.9962 met de fasegebaseerde methode
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en een fidelity van 0.9733 met de amplitudogebaseerde methode. Op een algemene toestand,

dus niet op de limiet van het meetbereik, behaalde ik maximaal een fidelity van 0.9995 met de

fasegebaseerde methode en 0.9985 met de amplitudogebaseerde methode. Om deze waarden

te kunnen behalen, werkte ik met het contrast van de Rabi oscillaties als amplitudo, i.p.v. de

gemeten intensiteit. Voornamelijk bij aanwezigheid van sample drift verbeterde dit de resul-

taten.

Het laatste onderwerp dat in deze thesis wordt aangesneden is het gebruik van NV centra in

een kwantum Otto cyclus. Kwantum motoren zijn een uitbreiding van de gekende klassieke

motoren, zoals de Carnot of Otto motor, en kunnen worden gebruikt om warmte om te zetten in

arbeid. Het verschil tussen deze klassieke en kwantum motoren ligt voornamelijk in de inter-

pretatie van de thermodynamische variabelen van arbeid, warmte, volume en temperatuur. Via

inspectie van een klassieke Otto cyclus kan worden afgeleid dat een kwantum motor kan wor-

den gerealiseerd in elk systeem met ten minste twee verschillende energieniveaus die onder een

tijdsafhankelijke Hamiltoniaan evolueren. Het leveren van/ ondergaan van arbeid wordt hier

geı̈nterpreteerd als het verkleinen/ vergroten van de kloof tussen de twee energieniveaus van het

twee-niveau systeem. Het opnemen of afgeven van warmte wordt in de kwantum thermodynam-

ica geı̈nterpreteerd als het exciteren van populatie naar de toestand met hogere energie of het

relaxeren van populatie naar de toestand met lagere energie. Op die manier is volume gerela-

teerd aan de energiekloof en temperatuur aan de populaties van de verschillende energieniveaus.

Naast de interpretatie van de verschillende thermodynamische variabelen, verandert ook het

concept van adiabatische overgangen. In de klassieke thermodynamica gebeuren deze overgan-

gen snel, zodat er geen warmte met de omgeving kan worden uitgewisseld op de tijdsschaal van

de overgang. In de kwantum thermodynamica betekent een adiabatische overgang echter dat er

geen exctitaties mogen plaatsvinden, zodat de overgang quasistatisch moet gebeuren. Dit heeft

echter het negatieve gevolg dat de vermogensuitvoer van de motor bij zulke lange overgangen

daalt naar nul. In sectie 5.7.2 op pagina 39 wordt de kwantum Otto cyclus in een algemeen twee-

level systeem wiskundig besproken, waarna in de volgende sectie de netto geleverde arbeid en

efficiëntie kunnen worden berekend en de positieve arbeid voorwaarde kan worden gesteld. In

sectie 5.7.4 wordt een oplossing voor de de lage vermogensuitvoer besproken, namelijk het

versnellen van de adiabatische overgangen door een proces genaamd counteradiabatic driving.

Deze techniek gebruikt een externe controle Hamiltoniaan om ervoor te zorgen dat het systeem

gedurende de hele overgang in de adiabatische eigentoestanden blijft en er geen excitaties kun-
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nen gebeuren. Vervolgens wordt een mogelijke controle Hamiltoniaan voor een spinsysteem in

een magneetveld B0(t) gegeven in formules (43) en (44) op pagina 45.

Met de voorgaande theoretische grondslag, stel ik een design voor een kwantum Otto motor

prototype gebaseerd op NV centra in diamant voor. Dit materiaal werd reeds in 2017 gebruikt

om kwantum effecten in microscopische motoren te demonsteren en bleef sindsdien erg interes-

sant voor kwantum thermodynamica door zijn lange spin coherentie tijden, de mogelijkheid tot

koppeling met nucleaire spinbaden in het diamantrooster en de optische polarisatie van de elek-

tronenspin. Vooraleer in te gaan op de NV-gebaseerde Otto motor, wordt eerst een gelijkaardig

systeem van een scalair gekoppelde 1H en 13C spin bekeken. Voor dit systeem werd een kwan-

tum Otto cyclus reeds experimenteel gedemonstreerd, en de daarbij bekomen resultaten worden

hier nagegaan. Vervolgens wordt beargumenteerd waarom een gelijkaardig protocol kan wor-

den gebruikt met een NV electron en 14N nucleaire spin (zie figuur 13 op pagina 49). Hierbij

wordt ook een protocol voorgesteld om beide spins te initialiseren naar een bepaalde thermische

toestand. Dit initialisatie protocol werd ook in zekere mate experimenteel getest, zoals te zien is

op figuur 21 op pagina 62. Om ook effectief het volledige protocol te kunnen uitvoeren, moeten

nog additionele experimenten verricht worden, bijvoorbeeld om de transitietempo’s tussen ver-

schillende energieniveaus onder laserlicht te bepalen.
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4 Introduction

The field of thermodynamics is best known for its ability to represent reality with an amaz-

ingly small number of variables. For systems in equilibrium, the Hamiltonian is sufficient [1]

to reconstruct the complete state of a system, from which then all other observables can be de-

duced. However, recent years were marked by an increasing interest in the thermodynamics of

out-of-equilibrium quantum systems [2] [3]. Quantum thermodynamics, as the encompassing

field is called, blends various branches of physics, such as quantum information science, quan-

tum optics, condensed matter physics, etc. Theoretically, it argues that only a few additional

variables are necessary to describe a quantum device such as a heat engine [1]. Apart from

advances in the fundamental understanding of generalizing concepts of classical physics to the

quantum realm, the field is also characterized by significant contributions to the development of

new technologies that take advantage of quantum systems by actively manipulating them [4].

A scalable quantum technology requires meeting two conflicting demands, namely high preci-

sion control and easy scale-up. The first requirement is best fulfilled in single trapped atoms, but

the second one is easier to find in solid-state, nanofabricated systems. In recent years, nitrogen-

vacancy centers have emerged as a promising candidate platform for such a scalable quantum

technology. These color centers offer atom-like properties such as long-lived spin states and

well-defined optical transitions, but lie inside the robust solid-state material diamond, enabling

not only the two demands but also room-temperature operation [5]. As the diamond lattice can

contain other magnetic nuclei as well, the interactions between the NV electron spin and the

nearby nuclei allow for NV-mediated access to individual nuclear spin states with extraordinar-

ily long-lived quantum states exceeding 1 s [6]. In contrast to these long coherence times, the

timescale on which the solid-state spins can be manipulated is very fast: electronic spin transi-

tions can be driven in nanoseconds and nuclear spins can be rotated on microsecond timescales

[5]. Because of this, the nearby nuclei can be used as additional states for logical operations or

a long-lived quantum memory, and logical operations between qubits at short timescales can be

performed by selectively exciting specific transitions within the multi-spin energy levels [5].

The benefit of using NV centers in quantum information science has been extensively investi-

gated both theoretically and experimentally. Fundamental topics that were studied, included

spin and charge dynamics, dynamical decoupling and dynamical nuclear spin polarization.
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More advanced topics quickly followed. For example, NV centers in diamond were used to

demonstrate a quantum error correction protocol [7] in 2016, which is paramount for large-

scale quantum information processing. Last year, the standard quantum limit was beaten in

ambient conditions [8] using an interferometer based on an NV electron spin, associated 14N

nuclear spin and a 13C nuclear spin, allowing for more precise calculation than is typically

achievable in room-temperature quantum systems. Furthermore, entanglement between two

distant NV centers [9], multiparticle entanglement [10] and multiple quantum algorithms [11]

[12] [13] have been demonstrated experimentally, thanks to the development of various quan-

tum gates affecting either the NV electron spin, a nearby nuclear spin or both. A protocol

for highly selective nuclear-nuclear quantum gates at room temperature has been proposed by

Jiang and Chen. [14], showing fidelities higher than ∼ 0.95. Also recently, NV centers have

been used to control and read the state of synthetic polyproline with electron spins localized on

molecular side groups, which lays the foundation for building larger quantum networks using

well-established chemistry methods [15].

NV centers have also been extensively employed in quantum thermodynamics. For example,

quantum signatures were demonstrated in an NV-based three-level quantum engine [16], the

validity of quantum fluctuation relations in a driven open quantum system was experimentally

verified for the first time using NV centers [17] and it was only last year that an autonomous

dissipative Maxwell’s demon was realized with a spin qutrit (three hyperfine states) formed by

an NV center at room temperature [18].

But before one can venture further into the complex applications of NV centers in the field of

quantum thermodynamics, one must first be able to perform simple quantum gates and real-

ize simple quantum thermodynamic protocols. Therefore, the ultimate goal to which this work

contributes is the construction of a quantum Otto engine based on nitrogen-vacancy centers

in diamond, which will provide the foundation for more involved work later. In order to per-

form quantum operations, one must be able to control the electronic and nuclear spin of the

NV center, as well as read out the spin state. Multiple protocols to control and read out the

electronic and nuclear spin associated with an NV center are presented in and experimentally

demonstrated, paving the way towards the practical implementation of the quantum Otto cycle.
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5 Theory

5.1 The diamond lattice and different types of NV centers

The diamond lattice is formed by a rigid carbon network in sp3-hybrid orbitals. Each of the car-

bon atoms is bound to four others in a tetrahedral structure, defining the four crystallographic

axes. Defects such as vacancies, dislocations and interstitial or substitutional atoms occur natu-

rally in this lattice. The most abundant impurity is nitrogen, and based on the amount of nitrogen

impurities and their type, diamonds are usually classified in four categories [19]. The first type

(Ia) occurs most commonly and has a high nitrogen percentage up to 0.3%. The second type

(Ib) comprises mostly of synthetic diamonds and may contain up to 500 ppm of atomic nitrogen.

Type IIa is rare and has a low nitrogen content. Lastly, type IIb is used to address p-type semi-

conductors. The aforementioned synthetic diamonds can be fabricated either by high-pressure

high-temperature (HPHT) synthesis or by chemical vapor deposition (CVD).

A specific type of point defect that can be found in diamond material is the nitrogen-vacancy

(NV) center, consisting out of a substitutional nitrogen atom and a vacancy replacing two neigh-

boring carbon atoms. NV centers belong to the general class of color center defects, as their

presence colors the transparent diamond in a purple to dark red hue. Although NV color centers

have a similar behavior to isolated atoms in free space, they are confined in the solid-state lattice

and aligned with the crystallographic axes [20] as shown in figure 1.

Figure 1: Diamond structure and crystallographic axes.
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NV centers can occur in two different charge states: neutral (NV0) or negatively charged (NV−)

[21]. When a nitrogen atom couples to a vacancy, three nitrogen electrons are used to form co-

valent bonds with neighboring carbon atoms and the remaining two form a lone pair. The

vacancy contributes three electrons to the NV center (dangling bonds from the surrounding car-

bon atoms), of which two form a quasi-covalent bond and the third one remains unpaired. The

complex is electrically neutral and has a C3V symmetry with a threefold rotational axis through

the NV bond axis. The unpaired vacancy electron is mostly responsible for the paramagnetic

behavior of the NV0 complex. In general, most NV centers capture an additional electron,

which are often supplied by other impurities in the diamond lattice (e.g. substitutional nitro-

gen). The extra electron forms a spin pair with the third vacancy electron and is responsible for

the extensive paramagnetic behavior of the NV− center. Theoretical evidence for a positively

charged NV+ center exists [22] and points out that it will most likely not be magneto-optically

active. As the NV− center is mostly of highest interest for this thesis, it will simply be called

NV center when there is no possible confusion.

5.2 The ground-state spin Hamiltonian of an NV− center

As the NV− center has a nonzero total spin magnetic moment, the Zeeman effect occurs when-

ever the center is being subjected to external magnetic fields. The Hamiltonian [23] and corre-

sponding energetic spectrum will first be discussed in the absence of magnetic fields and then

in their presence.

5.2.1 In absence of magnetic fields

Without external magnetic field, there are three contributions to the approximate ground-state

spin Hamiltonian Ĥ of the NV defect: the zero-field splitting (ZFS), the hyperfine interaction

with nearby nuclear spins (e.g. 14N (I = 1), 15N (I = 1
2
, 13C (I = 1

2
), etc.), and the nuclear

quadrupole effect.

Ĥ = ĤZFS + ĤHFS + ĤQ

= DS2
z + E(S2

x − S2
y) +

∑N
k=1 S ·Ak · Ik +

∑
Ik>1 Ik ·Pk · Ik (1)

Here the z-axis is taken to be the NV axis,D andE are the axial and transversal ZFS parameters,

Sx, Sy and Sz are the components of the electron spin vector S, Ak are hyperfine coupling

tensors of the NV center to nearby nuclei with Ik (k = 1, ..., N ) their respective spin vectors

and Pk are the quadrupole tensors of these nuclear spins. D has a value of 2.87 GHz and
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depends on temperature, whereas the off-axis ZFS parameter E, which is always less than D,

results from local strain in the diamond lattice. In high purity CVD grown diamonds E takes

on values of around 100 kHz, in nanodiamonds this can rise to a few MHz [21].

5.2.2 In presence of magnetic fields

When magnetic fields are present, the Hamiltonian is expanded with one Zeeman term for each

spin in the system (NV electron spin and possible surrounding nuclear spins). However, as the

nuclear magneton is much smaller than the Bohr magneton for electrons, the nuclear Zeeman

interaction is negligible for the purposes of this thesis and will be left out of the Hamiltonian.

The full ground-state spin Hamiltonian of the NV defect in presence of an external magnetic

field is then given by:

Ĥ = ĤZFS + ĤZM + ĤHFS + ĤQ

= DS2
z + E(S2

x − S2
y) + gµBB · S +

∑N
k=1 S ·Ak · Ik +

∑
Ik>1 Ik ·Pk · Ik (2)

Here, g is the Landé g-factor and µB the Bohr magneton. The E-splitting [21] relates mainly to

external fields, strain and temperature and is smaller than the Zeeman splitting. It is rarely ob-

served in presence of magnetic fields (which is the situation covered in this dissertation) and can

therefore be omitted for further purposes. Additionally, the magnetic field B can be divided into

a magnetic field component along the NV axis BNV and a component perpendicular to it B⊥ =

Bxex + Byey (taking the NV axis in the z-direction). Two regimes can then be distinguished:

the weak (< 100 mT [24]) and strong (> 100 mT) magnetic field regime [21]. In the weak

field regime the transversal component of the magnetic field is small, so that the last term in the

Hamiltonian can be left out and the energy dependence of the system on the magnetic field is

approximately linear. In the strong field regime the energy is strongly correlated to the orienta-

tion of the magnetic field with respect of the color center and the NV axis no longer dictates the

direction of the quantization axis. The projection of the spin along the NV axis, |ms〉, is then

no longer an eigenstate of the spin Hamiltonian, which leads to strong modifications of the spin

dynamics of the NV center: spin polarization and spin dependent photoluminescence become

inefficient and the contrast of resonance lines reduces (see further). Operation in the weak field

is thus preferred and will be used in this thesis. In addition, the situation with the 14N spin of

the NV center as only nuclear spin will be investigated. Using the above approximations, the

NV Hamiltonian can be written as:

Ĥ = DS2
z + gµBBNV SZ + ASZIZ + PI2

Z (3)
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Instead of the hyperfine and quadrupole tensor, there are now only scalar constants. The electron

- 14N hyperfine coupling constantA is equal to−2.16 MHz and the nuclear quadrupole coupling

constant P if the nitrogen nucleus is equal to −4.95 MHz [25].

5.3 The energetic structure of an NV center

Solving the Schrödinger equation using the Hamiltonian from formula 3 gives the possible

states in which an NV center can occur and their corresponding energies. The eigenstates of

the complete approximate Hamiltonian are given by a tensor product of the spin eigenstates

|S,mS〉e of the NV electron spin and |I,mI〉N of the nitrogen nucleus, written in short notation

as |mI ,mS〉. When the hyperfine interaction is omitted, the eigenstates are simply the electronic

eigenstates |S,mS〉e (also written as |mS〉e when there is no possible confusion).

The easiest way to understand the energy spectrum of the NV center is by starting with a Hamil-

tonian that only describes axial zero field splitting and then adding more terms and observing

the changes.

5.3.1 Only axial zero field splitting

When there is only axial zero field splitting, the eigenstates of the system are purely electronic

|mS〉e. In the ground state, the spin of the NV− center is S = 1 (triplet state) [21]. This can be

seen using molecular orbitals. The NV− center has six electrons, which occupy four molecular

orbitals. Filling these orbitals with electrons, it can be determined that the lowest energy state

is a triplet state, also called the 3A2-state. This triplet state can have a magnetic spin quantum

number of 0 (as is the case in the left molecular orbital (MO) scheme on figure 2a)), 1 (as in the

right MO scheme) or −1 (similar to the right MO scheme, but with the top two spins inverted).

The |0〉e state has the lowest energy, as can be seen in the many electron representation on the

right of figure 2a) and the |1〉e and | − 1〉e states are degenerate at higher energy. Depending on

the temperature of the sample, a transition between the |0〉e and | ± 1〉e degenerate state, can be

invoked by a resonant microwave field around 2.87 GHz. A similar theory holds for a certain

optically excited state of the NV center, the triplet 3E state, for which the molecular orbitals (for

mS = 0 and mS = 1) are shown in figure 2b), as well as the many electron representation.
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Figure 2: a) Molecular orbital and many electron representation of the ground spin triplet state
3A2 of the NV center. b) Molecular orbital and many electron representation of the excited spin

triplet state 3E of the NV center.

5.3.2 Effect of Zeeman splitting

The presence of a magnetic field [21] does not alter the energy of the |0〉e eigenstate, but lifts

the degeneracy of the | ± 1〉e state. As the magnetic moment associated with the spin of an

electron always points opposite to this spin momentum, the energy of the aligned spin |1〉e will

rise and the energy of the anti-aligned spin | − 1〉e will drop. The energy difference is equal to

2gµBBNV .

5.3.3 Effect of hyperfine and nuclear quadrupole interactions

For every NV center there is an associated nitrogen nuclear spin associated that also affects the

electronic energy levels. The nitrogen atom can be either the 14N isotope with spin I = 1 or

the 15N isotope with spin 1
2
. The abundancy [26] of the first isotope is much greater (naturally

99, 63%), so that the occurrence of 15N complexes is ignored. The interaction with 13C nuclear

spins is also not taken into account.

The effect of the hyperfine interaction and nuclear quadrupole effect depends on the values of

both the electron and nuclear spin and results in a splitting of the electronic energy levels. The

|0〉e level splits into two sublevels due to the nuclear quadrupole effect, whereas the other elec-

tronic levels split into three due to the hyperfine effect. Therefore the |1〉N and | − 1〉N levels

are degenerate for |0〉e, but not for nonzero electronic spin. In practice, there will be a small

gap between |1〉N and | − 1〉N even in |0〉e, because of the nuclear Zeeman effect. This can

be ignored as the effect is very small and cannot be seen in the indicated transitions (it has the

same effect on higher lying energy levels).
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The total splitting of the energy levels shown in figure 2 due to the electron Zeeman effect,

hyperfine coupling and nuclear quadrupole effect is illustrated in figure 3.

Figure 3: Splitting of the NV electronic energy levels due to the electron Zeeman effect, nuclear

quadrupole effect and hyperfine coupling between the electronic and nuclear spin.

5.4 Optical manipulation and read-out of the NV spin state

In the previous paragraph, two possible states were described in which NV electrons can arrange

themselves: the triplet ground state 3A2 and a triplet excited state 3E. In order to understand

the optical properties of NV centers used in this thesis, two more energy levels need to be

considered: the spin singlet states 1A1 and 1E. The energy of these states lies in the gap between
3A2 and 3E. The lifetime of the metastable 1E state is around 300 ns and the lifetime of the 1A1

state is ∼1 ns [27].

5.4.1 Polarization of the electron spin

One of the advantages of working with NV centers is that their electronic spin can be easily

polarized. To see how, a schematic drawing of the electronic energy levels of interest (in pres-

ence of magnetic fields, but without hyperfine interaction) is presented in figure 4. The states
3A2, 3E, 3A1 and 1E are shown as purple boxes, wherein the spin-dependent energy levels lie.
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In between the different energy levels, arrows depict the possible transitions. In thermal equi-

librium (at room temperature), the electronic state is maximally mixed (see section 5.5 for more

information about mixed quantum states) and the occupation probability of each energy level

is 1/3. When applying laserlight, the spin dependency of the indicated transitions allows to

polarize the electronic spin to mS = 0.

The absorption maximum of NV centers in the ground state lies in the green region (532 nm).

By shining laser light of this wavelength on an NV center, it can be excited to the 3E state. Then

the center can relax back to the ground state in multiple ways. Either it can emit a red 637 nm

photon, which brings the center back to 3A2 in a single step and conserves the electron spin, or

the system can relax via a non-radiative pathway (infrared transition) known as the intersystem

crossing (ISC), taking the center first through the singlet states 1A1 and 1E which changes the

electron spin to mS = 0. The probability of undergoing either transition depends on the spin

of the NV electron. Studies [27] [28] have shown that the | ± 1〉e spin sublevel of 3E has a

probability of ∼ 1
3

to decay non-radiatively, in contrast to a probability of only a few percent

for |0〉e. As a result the non-radiative process occurs more for the | ± 1〉e states than the |0〉e
states. As radiative decay preserves the electron spin, the system ends up in the |0〉e sublevel

of 3A2 regardless of the starting spin value, which results in a polarization of the center under

continuous illumination by green laser light. At room temperature, the transitions from 1E to
1A1 to 3A2 take ∼ 200 ns [29], so that in this time a polarization of ∼90% can be obtained.

5.4.2 Optical read-out of the NV spin state: ODMR

Because of the spin-dependent probability of relaxing via emission of a red photon, a measure-

ment of the red light intensity in a photoluminescence (PL) spectrum can be used to determine

the electronic spin state mS and thereof derived values (e.g. energy differences and the external

magnetic field). Because of the hyperfine coupling between the electronic and nuclear spin,

the nuclear spin state can also be determined via electron-nuclear double resonance (ENDOR)

techniques [30]. As the control of the nuclear spin is one of the goals of the thesis, this will be

explained in detail later.

First, assume there is no magnetic field and no hyperfine coupling present. As seen in the previ-

ous section, the NV centers in state |± 1〉e are more inclined to follow the non-radiative ISC, so

they emit less fluorescence than their |0〉e counterparts during their decay. The photolumines-
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Figure 4: Simplified energetic structure of an NV center in an external magnetic field without

hyperfine coupling. The purple blocks indicate many electron states and the black lines show

possible variations in magnetic spin quantum number for these states. A blue arrow indicates the

possibility of MW excitation, whereas green arrows show excitations for which green (532 nm)

laser light is used. Black wiggly lines show internal conversion and red wiggly lines relaxation

via emission of red (637 nm) or infrared (1042 nm) light. Straight black lines give a dark

transition called the intersystem crossing.

cence (PL) of the NV center is thus substantially higher when the |0〉e state is populated and this

enables the detection of electron spin resonance (ESR) of the defect. In this specific case, the

experimental readout method is known as the optical detection of magnetic resonance (ODMR)

[21] and relies on the simultaneous application of laser light and a microwave field which is

swept in the region of the resonance frequency of the transition |0〉e ↔ |±1〉e. If the NV center

is initially polarized in the |0〉e state, the photoluminescence drops when the exact resonance

condition is reached, because of an increase in non-radiative decay. The resonance frequency

reflects the ZFS and is approximately 2.87 GHz at room temperature.

When a magnetic field is applied to the NV center, the |±1〉e state splits into the |1〉e and |−1〉e
states due to the Zeeman effect. This creates two possible resonance conditions ν± given by

formula (4). This also allows to calculate the ambient magnetic field in the direction of the NV

center axis BNV from the distance between the resonances.
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ν± = D ± gµBBNV (4)

The previously mentioned ODMR technique is also known as CW-ODMR because of the con-

tinuous illumination of the NV centers with green laser light, continuous sweeping of the fre-

quency of the MW field and continuous measurement of the PL intensity. CW-ODMR has a

limited frequency resolution of several MHz due to power broadening of the laser and MW

pulses, but the fast scan speed makes it useful in extracting the resonant frequency of an NV

electron spin [5]. For more advanced applications, pulsed protocols can be used to probe and

manipulate the state of an NV center. The pulsed schemes allow to achieve a projection-noise

limited sensitivity as the tools for manipulating and measuring the spins (laser light, MW field,

RF field, . . . ) do not interfere with the free precession of the electrons [31].

5.5 Qubit representation of the NV center spins

Although the aim of this thesis is to investigate the use of NV centers in the field of quantum

thermodynamics, it is useful to look first at quantum information theory [32]. This is because

throughout this work, the NV center is often regarded as a two level system, which is what a

qubit is by definition. Qubits are the quantum equivalent of bits (binary digits), the classical

information unit. The logical value of a bit can either be 0 or 1, nothing else and nothing in

between. Because different laws govern quantum systems, qubits (quantum bits) can assume

the logical values 0 and 1, but also any linear combination of these two states. In experiments,

qubits can be physically represented by any quantum object with two well defined distinct

eigenstates, e.g. two orthogonal photon polarization states (such as horizontal-vertical).

Mathematically, the eigenstates of a qubit are represented by |0〉 and |1〉. In our NV center sys-

tem, we could look at either the electron spin qubit with logical state vectors |0〉e and |1〉e or the
14N nuclear spin qubit with logical state vectors |0〉N and |1〉N . It is very important to note that

these logical states do not necessarily correspond to the ”real” |mS〉e and |mI〉N eigenstates.

It is possible that the real spin eigenvalue associated with logical state |1〉e is indeed mS = 1,

but depending on which two levels are chosen to create the approximate two-level system, this

could also be mS = −1 or mS = 0 or any pair of orthogonal linear combinations of these

eigenvectors.
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Using the computational basis set {|0〉, |1〉}, all possible states |ψ〉 of the qubit can be written

as [32]:

|ψ〉 = a|0〉+ b|1〉 (5a)

= cos ( θ
2
)|0〉+ eiφ sin ( θ

2
)|1〉 (5b)

Here, a and b are two complex numbers related to each other by the normalization condition

|a|2+|b|2 = 1, such that the state can also be parametrized by angles θ ∈ [0, π] and φ ∈ [0, 2π[ for

which holds that a = cos( θ
2
) and b = eiφsin( θ

2
). This allows for a geometric visualization of the

qubit state as a point on the surface of a unit radius sphere (which is called the Bloch sphere)

as can be seen in figure 5. Another useful representation of a qubit is the density operator

(also called density matrix) ρ [32], which is defined in formula 6. This is because in quantum

information science one frequently deals with situations in which the state vector of the system

is unknown, but one does know that a set of possible states {|ψi〉} can occur with a probability

{pi} (pi > 0 and
∑

i pi = 0).

ρ =
∑

i pi|ψi〉〈ψi| (6)

The density operator has a few interesting properties. First of all, it is a positive operator,

which means that its eigenvalues are real and non-negative. Secondly, due to the conservation

of probabilities, the trace of ρ is always equal to 1. Lastly, if the trace of ρ2 is also equal

to 1, then the corresponding quantum state is a pure state. The concepts of pure and mixed

states are important in quantum mechanics, as they follow from a classical probability theory

(deterministic and random states) [33]. To understand these concepts better, it is interesting

to look at the singular value decomposition of a density operator ρ =
∑

i λi|ψi〉〈ψi|. As ρ

is positive, this means that λi ≥ 0. Furthermore because of the trace condition, the sum of

all λi must be equal to 1. This means that the eigenvalue vector λ = (λ1, ..., λn) of ρ can be

interpreted as a probability distribution. This distribution can vary between two extreme cases:

1. If λ = (1, 0, 0, ..., 0) ρ corresponds to a pure state |ψ〉 and can be written as |ψ〉〈ψ|.

2. If λ = (1/n, 1/n, 1/n, ..., 1/n) ρ corresponds to a maximally mixed state and can be

written as I/n, where I is the identity matrix.

On the Bloch sphere, pure states lie on the surface, whereas mixed states lie inside the sphere

(along the vertical line between the two basis states of which the system state is a mixture).

For example, suppose a state |ψ〉 is equal to |0〉 with a probability p and equal to |1〉 with a

probability 1− p, then the density matrix ρ of |ψ〉 is given by [33]:
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ρ =

p 0

0 1− p

 (7)

Figure 5: The Bloch sphere representation of a qubit state vector |ψ〉 determined by the angles

θ and φ. The intersections of the sphere with the z-axis (at z = 1 and z = −1) give the end

points of the two basis vectors |0〉 and |1〉. The x- and z-axis are in real units and the y-axis in

imaginary units.

The density operator of a qubit in a generic pure state |ψ〉 (as in formula 5) can be determined

as follows:

ρ = |ψ〉〈ψ|

=

 cos ( θ
2
)

eiφ sin ( θ
2
)

(cos ( θ
2
) e−iφ sin ( θ

2
)
)

= 1
2

1 + cos (θ) e−iφ sin (θ)

eiφ sin (θ) 1− cos (θ)

 (8)

Using the Euler relation and the Pauli matrices (see formula 9), this can be written as ρ =
1
2
(I + ~rρ · ~σ). Here, I is the identity matrix, ~σ is the three-element vector of Pauli matrices

(X, Y, Z) and ~rρ is the unit Bloch vector (cos (φ) sin (θ), sin (φ) sin (θ), cos (θ)).

X =

0 1

1 0

 , Y =

0 −i

i 0

 , Z =

1 0

0 −1

 (9)

As stated in section 5.3, the NV set-up used in this thesis contains both an electron and nuclear

spin qubit. The density operator of the total system in a generic state |ψ〉e ⊗ |ψ〉N can then be

written as:
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ρtot = (|ψ〉e ⊗ |ψ〉N)(e〈ψ| ⊗N 〈ψ|)

= ρe ⊗ ρN (10)

Here, state |ψ〉e is equal to cos ( θe
2

)|0〉e + eiφe sin ( θe
2

)|1〉e as in formula 5 and an analogous

expression holds for |ψ〉N . The second equality follows from a property of the tensor product

[34]. The other way around ρe and ρN can also be found from the total density matrix by taking

the partial trace with respect to the other qubit.

ρe = TrN [ρtot] =
∑1

i=0(Ie ⊗N 〈i|)ρtot(Ie ⊗ |i〉N) (11a)

ρN = Tre[ρtot] =
∑1

i=0(e〈i| ⊗ IN)ρtot(|i〉e ⊗ Ie) (11b)

5.6 Quantum state tomography of the NV center

Quantum state tomography (QST) is used to address measurement procedures that allow to

determine the matrix elements of the density operator of a system. This is essential in quantum

thermodynamics and quantum information science, because it allows to check intermediary or

final qubit states and to follow quantum processes. Various methods can be used to do this. For

example it is possible to determine either the electronic or the nuclear spin state of an NV center

using three Rabi measurements, where one is used as a reference measurement, and the other

two to determine θ and φ. This method relies on the amplitudes of the Rabi measurements and

will thus be referred to as the amplitude QST or AQST. The experimental method and formulas

used to determine the density operator are based on previous work at Hasselt University [35].

At this time the proposed scheme was used to determine the NV electron state. In this thesis, I

have designed a similar QST protocol to determine the 14N nuclear spin state, and have extended

on the method of calculating the density matrix using the Rabi amplitudes. Furthermore, I have

demonstrated that it is also possible to perform a quantum state tomography using only two

Rabi measurements. This method relies on the phases of the Rabi oscillations and is therefore

called phase QST or PQST. This method can also be used to determine the electronic spin state.

5.6.1 Amplitude quantum state tomography

AQST can be explained more visually with the aid of the Bloch sphere, so this method will be

addressed first. As stated in the previous section, any qubit state can be represented by a point

on the Bloch sphere (which indicates the end point of the corresponding state vector). Deter-

mining the coordinates (x, y, z) of this point is thus equivalent to determining the quantum state.

One relation is already obtained from the unit radius of the Bloch sphere, namely x2 + y2 + z2=
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1. Then one additional equation is necessary to determine the values of θN and φN . However,

it is useful to perform two more measurements in order to check for internal consistency.

In the presented AQST protocol, a reference Rabi measurement starts off the measurement se-

quence. Here, the amplitude AR of the Rabi oscillations between |0〉 and |1〉 is determined.

Theoretically, this is the largest amplitude that can occur in any Rabi measurement and is used

to normalize the next two measurements. The phase of the RF field in this experiment is not

important as all phases would give the same maximum amplitude. Therefore the same reference

nuclear Rabi measurement (e.g. fig. 19) can be used for all tomography measurements. How-

ever, due to the possibility of experimental conditions changing over time it’s better to conduct

all three Rabi measurements adjacently and measure a new reference Rabi each time.

After the reference measurement, the nuclear spin is brought from |0〉 to |ψ〉N , which is the

state to be measured. It is important to prepare the system to a known state, so that the QST

results can be compared with this. Once the method proves to be viable, this state preparation

stage can be replaced by any quantum protocol manipulating the nuclear spin to a known or

unknown state. For now, the state preparation consists out of an initialization to |0〉N , after

which a transition specific RF pulse is used to tilt the nuclear spin vector over a certain angle

θN towards |1〉N . The next step of the state preparation happens in overlap with the following

Rabi measurements. In these measurements, RF magnetic field pulses of a certain duration τ

are applied to induce rotations of this nuclear spin state around the x- or y-axes. By applying

RF waves with a certain phase and choosing the zero-point of this phase angle φN to be the

positive x-axis, one can effectively rotate |ψ〉 to the azimuthal angle −φN . Together, these two

controls generate a uniquely determined nuclear state.

The x-component of the qubit state vector is determined using a second Rabi experiment, where

|ψ〉N rotates around the x-axis. If the amplitude of the oscillations is equal to Ax, then this

means that the Bloch vector is tracing a circle around the x-axis with radius Ax/AR. The third

Rabi measurement, used to find the y-coordinate, is analogous: one brings the system to |ψ〉N
again and then measures Rabi oscillations around the y-axis. Then in the same way, if the

amplitude is Ay, then the Bloch vector is tracing a circle around the y-axis with radius Ay/AR.

This concept is depicted schematically in figure 6.

Using the formulas for a sphere and a circle (technically a cylinder) in Cartesian coordinates,

26



Figure 6: Schematic representation of the state vector |ψ〉 (purple arrow) on the Bloch sphere.

During the two Rabi measurements, this vector traces the two purple circles on the sphere

around the x- and y-axis.

one can write three equations for x, y and z:

x2 + y2 + z2 = 1 (12a)

y2 + z2 = (Ax
AR

)2 (12b)

x2 + z2 = ( Ay
AR

)2 (12c)

This set of equations can be solved for x, y and z as follows:

x2 = 1− (Ax
AR

)2 (13a)

y2 = 1− ( Ay
AR

)2 (13b)

z2 = A2
x+A2

y

A2
R
− 1 (13c)

Equation 13 does not yet uniquely specify (x, y, z) as there is a sign ambiguity. In order to

determine the signs of x, y and z, one has to look at the shape of the Rabi oscillations. For this,

one has to keep in mind that in the employed Rabi protocols, the measured PL signal is inversely

proportional to the probability of being in |0〉N . This is the case because the fluorescence sig-

nal will be measured using pulsed ODMR with a π-pulse whose frequency corresponds to the

|0, 0〉 ↔ | − 1, 0〉 transition. Thus, when the probability of being in |0〉N rises, the PL intensity
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drops (the resonance peak gets deeper). This means that if a Rabi signal starts off in a down-

ward trend, then the Bloch vector is brought closer to |0〉N . For the x-Rabi this means that y

is positive, since the rotation is positive. Analogously, an x-Rabi starting in an upward trend

signifies a negative y, a y-Rabi starting in a downward trend signifies a negative x and a y-Rabi

starting in an upward trend signifies a positive x. The z-coordinate can be found by looking at

whether the x- and y-Rabi start above our below their mean value. If the Rabi oscillations start

off with an above average PL signal, then this means that z is negative, otherwise z is positive.

When x, y, and z are uniquely determined, θN and φN can be calculated using formula (14).

This way, |ψ〉N can be determined easily using formula (5).

θN = tan−1(

√
x2+y2

z
) (14a)

φN = tan−1( y
x
) (14b)

By definition, tan−1(a) returns a value α ∈]−π
2
, π

2
[. However, also by definition θN ∈ [0, π] and

φN ∈ [0, 2π[. Since tan(α + π) = tan(π), an angle π should be added to θN if it is smaller

than zero. For a negative φN , one has to look at the sign of x. If x is negative, then an angle π

should be added to φN . If x is positive, then an angle 2π should be added to φN .

5.6.2 Phase quantum state tomography

In performing AQST, three measurements are necessary to determine the coordinates (x, y, z)

of the quantum state. Since the endpoint of this state vector is confined to the Bloch sphere

(normalization condition), these coordinates are not independent of each other and in fact two

variables (θN , φN) are sufficient to fully describe the quantum system. This implies that two

measurements should also suffice to determine these angles and sparked the idea for PQST,

where the phases α and β of respectively the x- and y-Rabi measurement can be linked to the

angles θN and φN describing quantum state |ψ〉N .

The simplest approach is to first find α and β as a function of θN and φN . As can be seen

on figure 7, geometrical arguments can be used. Since the the Rabi oscillations of the refer-

ence measurement define the x-axis as rotation axis (more information can be found in section

7.2), this offsets φN automatically by 270 degrees. Therefore, the formulas will be derived

first for a situation where |ψ〉N lies in the octant of the Bloch sphere with θN ∈ [0◦, 90◦] and

φN ∈ [180◦, 270◦]. To simplify calculations, φN will be measured from the negative y-axis for
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now and then later corrected with the 270 degree offset. The angle φ′N will be used to denote

the phase angle measured from the negative y-axis so that φN = 270− φ′N .

The top left of figure 7 shows the 3D Bloch sphere representation of state |ψ〉N and the angles

θN and φN . Then there are three projections of the Bloch sphere in different directions: a top

view along the z-axis and two side views along the x- and y-axis. The last two also show

the rotations of |ψ〉N around the corresponding axes in Rabi measurements with a light purple

circle.

Figure 7: Determination of the phase angles α(θN , φN) and β(θN , φN) of the x- and y-Rabi for

θ ∈ [0◦, 90◦] and φ ∈ [180◦, 270◦]. The dark purple circle is located at θ and the light purple

circle is the circle over which |ψ〉 moves in an x-Rabi measurement (side view X) or y-Rabi

measurement (side view Y).
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From this figure, the phase angle α of the x-Rabi can be calculated as follows:

α = tan−1[ sin(θ)cos(φ′)
cos(θ)

] (15)

On figure 7 it can be seen that α and β have opposite signs. In the calculations here, these

signs are not taken into account and corrections are made for that when necessary. I chose this

approach so that the formulas used are the same for every octant and the signs of the angles

can be determined at the end. However, one should know that the Rabi phase angles α and β

are both restricted to the domain [−180◦, 180◦] and that their sign varies from octant to octant.

Keeping this in mind, phase angle β of the y-Rabi can be determined in a similar manner:

β = tan−1[ sin(θ)sin(φ′)
cos(θ)

] (16)

Now that α(θN , φ
′
N) and β(θN , φ

′
N) are known, the inverse relations can be determined. To find

φ′N(α, β) isolate cos(θN) in both formulas and equate them. This gives:

φ′N = tan−1[ tan(β)
tan(α)

] (17)

This formula for φ′N can be substituted in either one of the starting equations, giving θN(α, β):

θN = tan−1[ tan(α)

cos(φ′N)
] (18a)

= tan−1[ tan(β)

sin(φ′N)
] (18b)

Note that only now φ′N can be adjusted for the offset of 270 degrees and the elements of the

density operator can be determined using φN = 270◦ − φ′N and θN .

PQST calculations in other octants of the Bloch sphere

The formulas (15) to (18) are created in such a way that they are valid in each one of the eight

octants of the Bloch sphere, without altering any signs. However, in order to do so, one must

adapt the meaning of θN and φN according to which octant |ψ〉N lies in. For example, when

θN is larger than 90◦, this would mean that cos(θN) becomes negative. However, the above

calculations are based on geometrical arguments and the length of a line is never negative, nor

can an angle of a right-angled triangle be greater than 90 degrees. Therefore, when θN is larger

than 90 degrees, one should instead use θ′N = 180◦ − θN in the calculations. For φN , there

are more options, as it can be either in [0◦, 90◦], [90◦, 180◦], [180◦, 270◦] or [270◦, 360◦]. The

third case was already discussed before and it involved redefining the zero-axis of φN to the
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negative y-axis at 270◦ and then correcting for this later. Once again, this was done since the

calculations were all based on geometrical arguments in right-angled triangles, so no angle can

be larger than 90 degrees. If φN lies in another octant, one can use the same trick.

To find α and β as a function of the known angles θN and φN , for example when constructing

the ideal Rabi oscillations for a known state, the following step-by-step plan can be used.

1. When θN ∈ [0◦, 90◦] take θ′N = θN . When θN ∈ [90◦, 180◦] take θ′N = 180◦ − θN .

2. When φN ∈ [0◦, 90◦], take φ′N = 90◦−φN . When φN ∈ [90◦, 180◦] take φ′N = 180◦−φN .

When φN ∈ [180◦, 270◦] take φ′N = 270◦ − φN . When φN ∈ [270◦, 360◦] take φ′N =

360◦ − φN .

3. Solve formulas (15) and (16) using θ′N and φ′N instead of θN and φN and α′ and β′ instead

of α and β.

4. If θN is smaller than 90 degrees, α = α′ and β = β′. If θN is larger than 90 degrees, α =

180◦ - α′ and β = 180◦ - β′.

5. The sign of α and β is determined by the range of φN .

φN ∈ α β

[0◦, 90◦] - +

[90◦, 180◦] - -

[180◦, 270◦] + -

[270◦, 360◦] + +

The use of the above plan will now be illustrated using a state |ψ〉N with θN ∈ [90◦, 180◦]

and φN ∈ [0◦, 90◦], as can be seen on figure 8. Starting with the first step, θN should be re-

placed in the calculations by θ′N = 180◦ − θN . Next, φN lies between 0 and 90 degrees, so that

φ′N = 90◦ − φN should be used in the calculations. Looking at figure 8, one can see that using

these choices of θ′N and φ′N guarantee that the formulas (15) and (16) are still valid to find α′

and β′. Then, as θ is larger than 90 degrees, α is equal to 180◦− α′ and β is equal to 180◦− β′.

Lastly, α < 0 and β > 0 because φN ∈ [0◦, 90◦].

When starting from an unknown state |ψ〉N , one can determine θN and φN from the phases α

and β of the x- and y-Rabi measurement using the following step-by-step plan
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Figure 8: Determination of the phase angles α(θN , φN) and β(θN , φN) of the x- and y-Rabi for

θN ∈ [90◦, 180◦] and φN ∈ [0◦, 90◦]. The dark purple circle is located at θN and the light purple

circle is the circle over which |ψ〉N moves in an x-Rabi measurement (side view X) or y-Rabi

measurement (side view Y).

1. Determine α and β by fitting the x- and y-Rabi oscillations. The values of both angles

need to lie between −180◦ and 180◦. If not, add or subtract 360◦. When α and β are in

the range of −90 to 90 degrees, use α′ = |α| and β′ = |β|, otherwise use α′ = 180◦− |α|

and β′ = 180◦ − |β|.

2. Calculate θ′N and φ′N from formulas (17) and (18).

3. Inspect the signs of α and β to determine the offset of φ′N , so that φN is equal to this offset

plus or minus |φ′N |. The results in the table below can be verified with figure 9.
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α β φN

- + 90◦ − |φ′N |

- - 90◦ + |φ′N |

+ - 270◦ − |φ′N |

+ + 270◦ + |φ′N |

4. Inspect whether the x- and y-Rabi oscillations start above or below their mean value. If

they start below their mean value, this means that θN < 90◦ and θN = θ′N . If they start

above, this means that θN > 90◦ and θN = 180◦ − |θ′N |.

Figure 9: Determination of the relation between φN and the signs of α and β, the phase angles

of the x- and y-Rabi measurements. The top view of the Bloch sphere is shown for each pos-

sible quadrant in which φN can lay. Projections of the Rabi rotations around the x- and y-axis

are shown as respectively red and blue lines. When keeping in mind the positive direction of

rotation, this allows to determine the sign of α and β. a) φN ∈ [0◦, 90◦] has α < 0 and β > 0.

b) φN ∈ [90◦, 180◦] has α < 0 and β < 0. c) φN ∈ [180◦, 270◦] has α > 0 and β < 0. d)

φN ∈ [270◦, 360◦] has α > 0 and β > 0.

Experimentally, both AQST and PQST have their advantages and drawbacks. For example,

because AQST uses a reference measurement, the obtained coordinates can be verified using

this redundant information. On the other hand, the amplitude of the Rabi oscillations is very

susceptible to sample drifts that occur when applying RF magnetic fields (see section 7.1.3). If

the NV center drifts out of focus during one of the three Rabi measurements, this means that the

amplitude of that particular measurement will be lower than it should be. This is particularly

true for states along one of the axes, where x- and y-Rabi oscillations should have either the

same amplitude as the reference Rabi or amplitude zero. Due to small measurement errors or

sample drift it can occur that the reference Rabi amplitude is actually smaller than the x- or
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y-Rabi, which results in complex coordinates. Methods exist to correct for this mathematical

inconvenience, but can make the calculations cumbersome. The phase of the Rabi measure-

ments is less affected by this sample drift and is therefore more useful when it’s difficult to keep

the NV center in focus.

5.6.3 Fidelity of QST measurements

As stated, the goal of QST is to recover the elements of the density operator of a known quan-

tum state and to determine the elements of the density operator of an unknown quantum state.

To quantify the reliability of QST, the fidelity F [36] of the experimentally determined density

operator (of a known quantum system) can be calculated using formula (19). The fidelity ex-

presses how much two quantum states are alike as a number from zero (orthogonal states) to

one (identical states). In this formula, ρe is the experimentally determined density operator and

ρt is the theoretically calculated density operator of the prepared quantum state.

F = T (ρtρe)√
Tr(ρ2

t )Tr(ρ
2
e)

(19)

Another way of visualizing the similarity between the created and measured state is to plot

the expected Rabi oscillations for the created state over the experimental data. For this, the

Rabi signal of this ideal (created) state can be simulated using the formula cx + A2sin2(ωt+α
2

)

for the x-Rabi and cy + B2sin2(ωt+β
2

) for the y-Rabi. If necessary, cx, cy can be fitted using

the experimental data to create a nice visualization. In AQST, the amplitudes Ax and Ay can

calculated using a reference Rabi measurement (giving AR) and theoretically calculated x2 and

y2 values. In PQST the phases can be determined from θN and φN and geometrical arguments,

as already showed in equations (15) and (16) (but paying attention to the definition of the angles

and the offset). The frequency can be determined using Tπ in both cases. Apart from AR and

Tπ no experimental values must be used. By plotting the resulting x- and y-Rabi oscillations

on top of the experimental fits, the correspondence of the created and measured states can

be visualized. The more closely the two Rabi sequences overlap, the better the two states

correspond and the higher the fidelity of the QST measurement.
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5.7 The NV center as quantum Otto engine

5.7.1 Quantum engines

An engine [1] is an omnipresent thermodynamic device that is used to convert one form of en-

ergy into another, in particular heat to work for a heat engine. Part of the heat from a hot bath is

hereby ejected to a cold bath, which limits the efficiency of power generation and is the essence

of the second law of thermodynamics. Classic heat engines are well known -think about the

steam engine that fueled the industrial revolution for example- but so are some of their quantum

counterparts. The primary quantum heat engine is the laser, because of the equivalence of the

three-level laser with the Carnot engine.

The difference of classical and quantum heat engines lies mostly in the renewed interpretation

of classical concepts in the quantum world. Therefore, to determine what is a quantum heat

engine, it is instructive to determine first what a classical heat engine exactly is. The classical

Otto cycle will be used as an example, because it can be realized in practice quite easily, as

opposed to the ideal Carnot cycle. The classical Otto cycle [37] consists out of a sequence

of isentropic (adiabatic) and isochoric strokes and is visualized in figure 10. Here, the cycle

starts with a working substance at a low temperature Tl. The first stroke (1→ 2) adiabatically

compresses the substance and an amount of work Win is done on the system. Then in the

second stroke (2→ 3), the working substance is brought into contact with a thermal reservoir at

temperature Th > Tl and heated at constant volume. Then in the third stroke (3→ 4), also called

the power stroke, the working substance is expanded adiabatically, delivering work Wout to its

environment. Lastly, the system is brought into contact with a thermal reservoir at temperature

Tl, cooling the working substance at constant volume and reaching back the initial state.

From this figure it can be concluded that the working substance in the classical Otto cycle is

characterized by two properties:

1. It can heat up/ cool down.

2. It can perform work/ work can be performed on it (the internal energy U can change).

Any working substance -be it a gas, a liquid, or something else- that has these two properties

can be used as Otto engine. Therefore, a quantum working substance with these two properties

can be used as a quantum Otto engine. It will be seen that spins (electronic or nuclear) can be

used as possible quantum working media. So when looking at what the concepts work/ heat and
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Figure 10: Classical Otto cycle. The vertical axis represents the entropy of the working sub-

stance, which is varied between a low value Sl and a high value Sh. The horizontal axis repre-

sents the volume of the working substance, which is also varied from a low value Vl to a high

value Vh. Stroke 1→ 2 and stroke 3→ 4 are isentropic (adiabatic) and stroke 2→ 3 and 4→

1 are isochoric.The entire cycle is reversible and the working substance is always in thermody-

namic equilibrium.

energy/ volume/ temperature mean in quantum mechanics, this system will sometimes be used.

The interpretation of internal energy in quantum mechanics is not surprising. To find the internal

energy of a quantum system, one first needs to find the spectrum of energy eigenvalues, which

can be determined by solving the Schrödinger equation. Then the particular energy eigenstate

(internal energy) of system with density operator ρ and Hamiltonian Ĥ(t) can be found in the

following way [38]:

E(t) = tr[ρ(t)Ĥ(t)] (20)

The first law of thermodynamics links a change in internal energy to both work and heat and

the same thing can be done in quantum thermodynamics.

dE = δQ+ δW (21a)

= tr[Ĥ(t)dtρ(t)]dt+ tr[ρ(t)dtĤ(t)]dt (21b)

This can be integrated over a time τ to determine the energy change of a quantum system during

a certain process, as is illustrated by the following formulas.
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∆E =
∫ τ

0
δQ+

∫ τ
0
δW (22a)

= 〈Q〉+ 〈W 〉 (22b)

= tr[ρ(τ)Ĥ(τ)]− tr[ρ(0)Ĥ(0)] (22c)

These formulas confirm that (just as in classical thermodynamics) the change in internal energy

only depends on the end points of the process, whereas heat and work are path-dependent. Note

that in quantum thermodynamics, the minimal requirements are the existence of a meaningful

Hamiltonian and meaningful states at the beginning and end of the process. They do not nec-

essarily need to be available, nor meaningful during the time-resolved evolution [38]. Further-

more, the formulas show that in a unitary evolution, heat relates to the Liouville-von Neumann

equation dtρ(t) = − i
~ [Ĥ(t), ρ(t)] and work to a change in the time-dependent Hamiltonian

dtĤ(t).

Now that the quantum interpretations of internal energy, work and heat are clear, the concepts of

volume and temperature can be investigated, as well as the working substance itself. Focusing

on quantum working substances based on spins, the concept of spin temperature [39] will be

explained. Spins inside a solid state material interact with the lattice through spin-lattice relax-

ation, resulting in the lattice acting as a sort of thermostat for the spins. At thermal equilibrium,

the lattice temperature can also be assigned to the present spins, meaning that the properties

of the system can be predicted by Boltzmann’s law pi ∼ e−Ei/kBT . Here, pi is the population

of a certain spin energy level Ei and T is the lattice temperature. Using the density opera-

tor formalism, such a Boltzmann thermal state can also be written as ρ ∼= e−Ĥ/kBT . This

description is valid when the driving field of the spins is relatively weak and varies relatively

slowly. For stronger, quickly fluctuating (pulsed) driving fields, the concept of spin temperature

distinct from the lattice temperature can be introduced. In this case, for a spin 1/2 system, the

spin temperature T is introduced through the relation p+/p− = e−Ĥ/kBT , where p+ and p− are

the populations of the two possible spin states. When p+ = p− the spin temperature grows

to infinity, whereas a π-pulse (flipping the spin populations) can create negative temperatures.

It needs to be remarked that the concept of spin temperature will be used loosely here, since

steady-states do not always correspond to thermal equilibrium states. This is the case when they

result from an optical pumping process and not from coupling to a thermal reservoir. One can

see that the state resulting from optical pumping is no thermal state because it generates ap-

proximately equal populations for |0,−1〉, |0, 0〉 and |0, 1〉 even though their energies are split

by the ambient magnetic field [2].
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So for quantum working substances, heat is linked to polarization through the concept of spin

temperature. Therefore to be able to heat up or cool down a working substance, it needs to have

a certain amount of energy levels that can be occupied with certain probabilities. The other

required property is to be able to have a change in internal energy. In quantum mechanics, this

corresponds to a change in the energy levels due to a time-varying Hamiltonian. The time vari-

ance of this system Hamiltonian is often expressed using a control parameter λ. Using these

two requirements, it is clear that a two-level system is the most simple quantum system that

can be used as a working substance in a quantum Otto engine. As was stated in the previous

sections, both the electronic and nuclear spin of the NV center can be seen as a two-level spin

qubit system, implying that they can be used as working media for Otto engines. Lastly, to find

a quantum analog for volume, one can look at the classical expansion and compression strokes.

The engine delivers work in the expansion stroke, when going from a small volume to a large

one. In quantum mechanics, the work is related to the energy difference between the two en-

ergy levels. Therefore, the ’volume’ of the quantum system can also be linked to the distance

between the two energy levels of a system. If the energetic difference is large, more work can

be performed when transitioning to the lower energy state than when the energetic difference is

small. Therefore, the inverse size of the energy gap between the two energetic states can be used

as a quantum analog of volume, so that for a quantum Otto engine the work will be delivered in

the energy gap compression stroke (whereas for a classic Otto engine this would be in the vol-

ume expansion stroke). Using this interpretation, the quantum isochoric processes [3] involve

changing the energy level occupations (and thus the system entropy), without changing the en-

ergy levels themselves, until the working substance is in equilibrium with a certain heat bath.

This shows quantum isochoric processes are quite similar to classical isochoric processes, since

they both involve a change in temperature through a heat exchange without any work performed.

Apart from the change in interpretation of work and heat, the concept of adiabaticity [40] also

changes going from a classical engine to a quantum engine. The isentropic strokes 1 → 2 and

3 → 4 are necessarily adiabatic in both the classical and quantum heat engine. A classical

adiabatic process can be achieved through rapid expansion and compression over the working

substance to guarantee that there is no heat exchange with the thermal baths. This requires a fast

driving. In contrast, quantum adiabatic processes require that the populations of energy levels

of the working substance remain constant as a certain internal (e.g. volume) or external (e.g.
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magnetic field) variable changes, ensuring that the entropy remains unchanged. This implies

a quasi-static process, where a very slow driving assures that no excitations are happening in

the system and the populations remain constant. Deffner and Campbell define this difference in

interpretation [3] as follows: “Quantum adiabatic processes form only a subset of classical adi-

abatic processes”. This refers to the fact that the classical and quantum Otto cycles are different

not only in timescale, but also in their physical concept.

Note also that a classical Otto cycle has all the four stages in thermodynamic equilibrium so

that the cycle as a whole is a reversible process. A quantum Otto cycle only reaches thermal

equilibrium in two stages of the cycle, which introduces irreversibility [38]. It still equilibrates

with the thermal reservoirs, as in the classical case, but there is no equilibrium reached in the

isentropic strokes. This means that in the isentropic strokes, only points 1 and 3 are equilibrium

points, which is enough to ensure the entropy conservation along the adiabatic paths and allows

to calculate the entropy values S2 and S4 using the same thermal probabilities as in points 1

and 3. This local thermal equilibrium condition at the end of each stroke is also what separates

the quantum Otto cycle from the Carnot cycle [3]. In the Carnot cycle, the adiabatic strokes

are also isothermal, which requires that both work and heat must be exchanged with the ther-

mal reservoir in order to keep the temperature of the working substance equal to the reservoir

temperature. This results in a thermodynamically reversible isothermal process and there is

zero irreversible entropy production. As the Otto cycle on the other hand only requires a local

thermal equilibrium at the end of each stroke, the working substance will be in a thermal state

with temperature Th at the end of the power stroke 3 → 4. The subsequent thermalization of

the working substance through isochoric cooling in contact with the cold thermal reservoir is

accompanied with an irreversible entropy production.

5.7.2 The Quantum Otto cycle in a two level system

Consider a generic two level system with energy eigenvalues {Eg, Ee} and eigenvectors {|ψg〉, |ψe〉}.

The Hamiltonian of such a system is given by formula (23) [3].

Ĥ = Eg|ψg〉〈ψg|+ Ee|ψe〉〈ψe| (23)

Rescaling this Hamiltonian such that Eg = 0, this gives:

Ĥ = (Ee − Eg)|ψe〉〈ψe| (24a)

= ∆|ψe〉〈ψe| (24b)
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The thermal state corresponding to this two-level system at a temperature T is given by formula

(25). Here, pg and pe are the probabilities of the system being in the ground or excited state.

During the Otto cycle, these probabilities will vary from pig and pie to pfg and pfe and back again.

The energy level splitting will be varied between ∆i and ∆f , with ∆f > ∆i.

ρeq = pg|ψg〉〈ψg|+ pe|ψe〉〈ψe| (25)

Figure 11: Quantum Otto cycle. The vertical axis represents the gap between the two energy

levels of the working substance, which is varied between a low value ∆1 and a high value ∆2.

The horizontal axis represents the probability of being in the excited state, which is also varied

from a low value p1
e to a high value p2

e. Stroke 1→ 2 and stroke 3→ 4 are isentropic (adiabatic)

and stroke 2 → 3 and 4 → 1 are isochoric. The circles indicate the energy levels in the cycle

and their populations.

The quantum Otto cycle then consists out of four strokes [3] which will be explained in detail

below.

Isentropic energy gap expansion

Assuming that the working substance is initially in thermal equilibrium with the cold bath, T1
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is equal to Tl. Then, during the adiabatic stroke 1 → 2, work is performed to increase the

energy splitting from ∆i to ∆f . Since no heat is exchanged during this isentropic expansion,

the populations at the start and end of this stroke are equal: p1
g = p2

g = pig and p1
e = p2

e = pie.

However, in order for these equations to hold, the state of the working substance at point 2

cannot be in the thermal equilibrium with the cold bath anymore. An effective local temperature

can be defined at point 2 as follows:

p1
e = p2

e

⇒ e−∆i/kBTl = e−∆f/kBT2

⇒ T2 = ∆f

∆i
Tl (26)

As the process is adiabatic, the change in internal energy going from point 1 to point 2 is entirely

due to work W1→2.

W1→2 =
∑

n=g,e

∫ 2

1
pndEn (27)

Keeping the ground state energy fixed at zero, this can be rewritten as follows:

W1→2 = (E2
e − E2

g )p
2
e − (E1

e − E1
g )p

1
e (28a)

= ∆f
e
−∆f /kBT2

1+e
−∆f /kBT2

−∆i
e−∆i/kBTl

1+e−∆i/kBTl

= ∆f
e−∆i/kBTl

1+e−∆i/kBTl
−∆i

e−∆i/kBTl

1+e−∆i/kBTl

= ∆f−∆i

2
2e−∆i/kBTl

1+e−∆i/kBTl

= ∆f−∆i

2
[1− tanh( ∆i

2kBTl
)] (28b)

Isochoric heating

After the isentropic expansion, the two-level system is connected to the thermal reservoir at high

temperature Th. While equilibrating with the bath, the energy eigenvalues remain constant. The

internal energy change in this isochoric heating stroke is thus equal to the heat exchange from

the bath to the working substance Q2→3.

Q2→3 =
∑

n=g,e

∫ 3

2
pndEn (29a)

= (E3
e − E3

g )p
3
e − (E2

e − E2
g )p

2
e (29b)

= ∆f
e
−∆f /kBTh

1+e
−∆f /kBTh

−∆f
e
−∆f /kBT2

1+e
−∆f /kBT2

= ∆f

2
[tanh(

∆f

2kBT2
)− tanh(

∆f

2kBTh
)] (29c)

Isentropic energy gap compression

During the isentropic compression, also called the power stroke, work is extracted by reducing

the energy gap of the working substance from ∆f to ∆i. Similar to the first stroke, no heat is
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exchanged and the occupations remain invariant: p3
g = p4

g = pfg and p3
e = p4

e = pfe . This means

that analogously to the isentropic expansion stroke, one can derive a local effective temperature

at point 4.

T4 = ∆i

∆f
Th (30)

And one can determine a formula for the delivered work W3→4.

W3→4 =
∑

n=g,e

∫ 4

3
pndEn (31a)

= (E4
e − E4

g )p
4
e − (E3

e − E3
g )p

3
e (31b)

= ∆i
e−∆i/kBTh

1+e−∆i/kBTh
−∆f

e
−∆f /kBT4

1+e
−∆f /kBT4

= −∆f−∆i

2
[1− tanh(

∆f

2kBTh
)] (31c)

Isochoric cooling

The isochoric cooling stroke returns the two level system back to its initial state. For this,

the working substance is connected to a thermal reservoir at low temperature Tl and heat is

exchanged with this bath. Similar to the isochoric heating stroke, one can derive that the heat

Q4→1 lost to the cold bath is given by:

Q4→1 =
∑

n=g,e

∫ 1

4
pndEn (32a)

= (E1
e − E1

g )p
1
e − (E4

e − E4
g )p

4
e (32b)

= ∆i
e−∆i/kBTl

1+e−∆i/kBTl
−∆i

e−∆i/kBT4

1+e−∆i/kBT4

= −∆i

2
[tanh( ∆i

2kBT4
)− tanh( ∆i

2kBTl
)] (32c)

5.7.3 Efficiency of the quantum Otto cycle and positive work condition

Using the formulas (26) and (30) for the effective temperatures of the working substance at point

2 and 4, the work and heat exchanges can be expressed purely in terms of the bath temperatures

and the energy splittings.

W1→2 = ∆f−∆i

2
[1− tanh( ∆i

2kBTl
)] (33a)

Q2→3 = ∆f

2
[tanh( ∆i

2kBTl
)− tanh(

∆f

2kBTh
)] (33b)

W3→4 = −∆f−∆i

2
[1− tanh(

∆f

2kBTh
)] (33c)

Q4→1 = −∆i

2
[tanh(

∆f

2kBTh
)− tanh( ∆i

2kBTl
)] (33d)

The net work W that can be extracted from the working substance in the quantum Otto cycle

is given by formula (34) below [3]. The minus sign in the first equation is added to receive a

positive output work (conventionally, work leaving the system is negative).

42



W = −(W1→2 +W3→4) (34a)

= ∆f−∆i

2
[1− tanh(

∆f

2kBTh
)]− ∆f−∆i

2
[1− tanh( ∆i

2kBTl
)]

= ∆f−∆i

2
[tanh( ∆i

2kBTl
)− tanh(

∆f

2kBTh
)] (34b)

The Otto efficiency [3] can then be calculated as follows:

η = W
Q2→3

(35a)

= 1− ∆i

∆f
(35b)

Because of the assumption that ∆f > ∆i, the net work output is positive when:

tanh( ∆i

2kBTl
) > tanh(

∆f

2kBTh
)

⇒ ∆i

Tl
>

∆f

Th

⇒ Th
Tl

>
∆f

∆i
(36)

This quantum positive work condition limits the quantum Otto efficiency to be smaller than

the Carnot efficiency, just as in the classical case. For a classical Otto engine, work can be

extracted when Th is larger than Tl. For quantum Otto engines, this condition is necessary but

not sufficient. Work can only be extracted when Th is larger than ∆f

∆i
Tl. This indicates that the

second law in quantum thermodynamics is not just an expansion of the classical second law of

thermodynamics, but a refinement of it [41].

5.7.4 Counteradiabatic driving

The active manipulation of quantum systems is both the strength of quantum thermodynam-

ics and one of its major roadblocks. Traditionally, thermodynamic transformations are always

quasi-static, meaning that the system of interest is always kept at equilibrium. If an arbitrary

finite time transformation has to be made, then this would always require some thermodynamic

control [6] that has the power to avoid any form of irreversibility induced by manipulating the

system on short timescales. An example of such thermodynamic controls are the Shortcuts to

adiabaticity (STA) which make sure that the system of interest reaches an adiabatic state of

a certain transformation within a finite time. A specific example of such an STA technique

is called counteradiabatic driving (CD). This technique stands out among other STA methods

because it ensures that the system follows the adiabatic eigenstates at all times (instead of just

ending up in an adiabatic state) by introducing an external control Hamiltonian ĤCD. This is

important because if there are transitions between the eigenstates in the finite-time driving, this

leads to the build up of quantum coherences in the energy basis and the additional energy stored
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in these coherences is dissipated in the subsequent thermal stages of the engine cycle. This is

why the term ”quantum internal friction” is sometimes used to describe the effect [42].

Practical heat engines (both classical and quantum) operate far from the maximum efficiency

condition set by Carnot and are optimized for maximum power, sacrificing efficiency. For quan-

tum heat engines, this trade-off is much larger, because they require an infinitely slow driving

of the adiabatic strokes to reach maximum efficiency, limiting output power to zero. Therefore,

quantum heat engines can benefit a lot from the aforementioned quantum controls [4].

To see how CD works, imagine a quantum system with Hamiltonian Ĥ0(t) and instantaneous

eigenstates and energies given by:

Ĥ0(t)|n(t)〉 = En(t)|n(t)〉 (37)

A time-varying Hamiltonian typically introduces transitions between the quantum states that are

driven by it. If the change is slow, one can refer to this change using the adiabatic basis, which

is the eigenbasis of the instantaneous (’frozen’) Hamiltonian Ĥ0(t). In this approximation, the

states (containing both dynamical and geometrical phases) driven by Ĥ0(t) are:

|ψn(t)〉 = exp
[

1
i~

∫ t
0
dt′En(t′)−

∫ t
0
dt′〈n(t′)|δt′n(t′)〉

]
|n(t)〉 (38)

Although the transition amplitude is small when slowly varying Ĥ0, it is not zero. Therefore, in

the counteradiabatic driving method, one searches a Hamiltonian ĤCD(t) for which the transi-

tion probabilities are zero. In other words, one searches ĤCD(t) such that:

i~δt|ψn(t)〉 = ĤCD(t)|ψn(t)〉 (39)

For this CD-Hamiltonian, the eigenstates must follow |n(t)〉 exactly, so that there are no tran-

sitions between the eigenstates of Ĥ0(t) at any time (instead of just at infinity). M. V. Berry

demonstrated [43] that this counteradiabatic driving Hamiltonian can be written as:

ĤCD(t) =
∑

n |n(t)〉En(t)〈n(t)|+ i~
∑

n(|δtn(t)〉〈n(t)| − 〈n(t)|δtn(t)〉|n(t)〉〈n(t)|) (40a)

= Ĥ0(t) + Ĥ1(t) (40b)

A more involved derivation of this formula can be found in appendix A. By differentiating

equation (37) with respect to time and then multiplying with the bra 〈m(t)| on the left, it can be

found that:
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〈m(t)|δtn(t)〉 =
〈m(t)|δtĤ0(t)|n(t)〉
En(t)− Em(t)

(41)

Inserting a decomposition of the identity into formula (40) and substituting formula (41), pro-

vides a convenient expression for Ĥ1(t). Note that this single CD Hamiltonian works for all the

states |n(t)〉, so that {|n(t)〉} can be regarded as the set of ’moving eigenstates’ of ĤCD(t).

Ĥ1(t) = i~
∑

n

∑
m6=n
|m(t)〉〈m(t)|δtĤ0(t)|n(t)〉〈n(t)|

En − Em
(42)

The Hamiltonian ĤCD(t) is only specified up until a constant energy term, meaning there are

infinitely many CD Hamiltonians that can generate the evolution |n(t)〉 and they differ only

in a constant. The simplest choice is to take En(t) equal to zero, so that the corresponding

eigenstates |n(t)〉 have no phase factors and are driven by:

ĤCD(t) = i~
∑

n |δtn(t)〉〈n(t)| (43)

As a special example, the following Hamiltonian can be used to drive a spin system in an ambi-

ent magnetic field without transitions [43]. This is relevant, because the envisioned NV-based

quantum Otto engine shall consist of two spins in an ambient magnetic field. The derivation of

this formula can be seen in appendix B.

ĤCD(t) = [γB0(t) + 1
B0(t)2B0(t)× δtB0(t)] · S (44)

5.7.5 Theoretical design of a quantum Otto engine based on NV centers

NV centers are interesting working substances for quantum Otto engines because of their cou-

pling to naturally occurring spin baths in diamond, such as 13C or 14N spins, their long co-

herence times and the optical polarization of the NV electron spin (∼ 95% ground state po-

larization, corresponding to a spin temperature of ∼ 7 mK at zero magnetic field) [2]. These

properties inspired Klatzow et al. [16] to demonstrate quantum effects in microscopic heat en-

gines for the first time in 2017 using ensembles of NV centers. These quantum effects, also

called the quantum thermodynamic signatures, are what truly differentiates quantum heat en-

gines from their classical counterparts. The origin of these signatures is the fact that quantum

heat engines may posses coherence between their internal states, which can act as a power boost

in some circumstances (as compared to classical heat engines using the same resources) [44] or

can result in the thermodynamic equivalence of different quantum heat engine types [45].
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The purpose of this thesis is to propose a simple quantum Otto cycle prototype in diamond

using the NV electron and associated 14N spin. Because the electron spin and nuclear spin are

weakly coupled by the hyperfine interaction, the two-qubit system resembles the set-up used by

Peterson et al. [46] [47] to create a finite-time quantum Otto engine based on a spin-1/2 system

and nuclear magnetic resonance (NMR) techniques. As the proposed NV-based quantum Otto

engine has almost the same protocol as the NMR-based one, apart from the initialization proto-

col and coupling mechanism of the spins, the work by Peterson et al. will be explained first. All

the changes in the density operators in the presented pulse protocol were verified using MatLab.

In the NMR-based quantum Otto engine, a 13C labeled CHCl3 liquid sample diluted in Acetone-

D6 was used, providing the working medium (13C nuclear spin), heat bus (1H nuclear spin),

and weakly coupled environment (chlorine isotopes). This sample was placed in a large static

magnetic field, which defined the z-axis. The magnetization of the nuclear spins was controlled

using time-modulated RF fields in the x- and y-direction and longitudinal field gradient pulses.

The hot environment was created by high-RF modes near the Larmor frequency of 1H (∼ 500

MHz), and the cold environment by low-RF modes near the Larmor frequency of 13C (∼ 125

MHz). The rotating frame is used to simplify calculations. This is the case both for the 13C spin

and the 1H spin. Figure 12 shows the protocol used to extract work from the carbon spin.

Figure 12: Simplified NMR-based quantum Otto pulse protocol. The 1H and 13C spins are

initially prepared in a hot and a cold thermal state. Blue circles represent RF pulses inducing

rotations around the x-axis, and red circles around the y-axis. Orange connections indicate an

evolution under the scalar interaction ĤJ for a time 1/2J . Here, the 1H spin is used as a heat

bus, delivering heat to 13C. The unitary driving for expansion and compression is implemented

using a time-modulated RF field on resonance with the carbon Larmor frequency. [46].

At the start of this protocol, both spins have been prepared in pseudothermal states. For 13C the

prepared state corresponds to kBTl = 6.6 ± 0.1 peV and for 1H both kBT 1
h = 21.5 ± 0.4 and
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kBT
2
h = 40.5 ± 3.7 are used and compared. This initial state preparation is performed using

spatial average techniques using RF and gradient fields, and represents the cooling stroke. The

approximate density matrices rho1
C and rho1

H after this state preparation are given in formula

(45) for high temperature T 1
h .

ρ1
C ≈

0.78 0

0 0.22

 ρ1
H ≈

0.67 0

0 0.33

 (45)

After this, three RF pulses are applied to the carbon spin, changing its density operator to

ρ2
C = ρ1

eq = exp(
−ĤC

1

kBTl
)/Z1, where ĤC

1 = −hν1I
C
x (ν1 = 2.0 kHz) and Z1 = Tr[exp(

−ĤC
1

kBTl
)].

Filling in the formulas, this gives:

ρ2
C ≈

 0.5 0.28

0.28 0.5

 (46)

To obtain this density operator from ρ1
C , one needs an expression for the unitary rotation oper-

ator Û i
R(α) over an angle α around the i-axis (i = x, y or z). This formula [48] is given below

and can be adapted to any α and i present in the pulse sequence. After creating the rotation

operator, one can apply this to the density matrix ρ in the following manner: Û i
R(α)†ρÛ i

R(α).

This gives the same result as ρ1
eq.

Û i
R(α) = exp(−iαSi) (47)

In the expansion stroke, the energy level splitting is increased by changing the RF field grad-

ually during a certain time τ . This time was varied by the authors between 100 and 700

µs to better understand the effect of finite-time driving. Starting at t = 0, the Hamiltonian

ĤC
exp = −hν(t)[cos(πt/2τ)SCx + sin(πt/2τ)SCy ] (with ν(t) = ν1[1 − t/τ ] + ν2t/τ ) changes

from ĤC
1 to ĤC

2 = −hν2S
C
y (ν2 = 3.6 kHz). Because of this, the density matrix of the carbon

spin is no longer diagonal in the energy eigenbasis of the final Hamiltonian.

In the heating stroke, heat is transferred from 1H to 13C via the scalar coupling (J-coupling)

between the two spins. This happens gradually using four sets of RF pulses and three interme-

diate evolutions under the J-coupling Hamiltonian (each for a duration of 1/2J). To simulate

this coupling, it is important to work with the combined density matrix of the two-spin system

ρC,H = ρ2
C ⊗ ρ1

H so that the scalar coupling Hamiltonian ĤJ = 2π~JICz IHz can work on both

spins at the same time. The unitary operator that evolves the system state under ĤJ is given by
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ÛJ(t) = exp(−iĤJt/~), which can be found by inspection of the time dependent Schrödinger

equation. This operator is then applied to the combined density matrix in the same manner as

the previous rotation operators were applied to the carbon density matrix. After heating, the

individual density operators can be found using formula (11). This gives:

ρ3
C ≈

0.67 0

0 0.33

 ρ3
H ≈

 0.5 0.28

0.28 0.5

 (48)

After thermalization with the RF field (using three RF-pulse induced rotations of the Bloch

vector), the carbon spin has reached the hot thermal state given by ρ4
C = ρ2

eq = exp(
−ĤC

2

kBTh1 )/Z2,

where Ĥ2
C was given above and Z2 = Tr[exp(

−ĤC
2

kBTh1 )]. The approximate density operator is

given below.

ρ4
C ≈

 0.5 −0.17i

0.17i 0.5

 (49)

Lastly, an energy gap compression is performed using the time-reversed process of the expan-

sion protocol. This means that the system evolves under ĤC
comp(t) = −ĤC

exp(τ − t).

The delivered work and absorbed heat can be calculated using the following formulas, also taken

from Peterson et al. [46]. These formulas take into account the reduction of delivered work and

absorbed heat due to the occurrence of transitions (with probability ξ) in the expansion and

compression strokes.

W = ∆f−∆i

2
[tanh( ∆i

2kBTl
)− tanh(

∆f

2kBTh
)]− ξ[∆itanh(

∆f

2kBTh
) + ∆f tanh( ∆i

2kBTl
)] (50)

Q = ∆f

2
[tanh( ∆i

2kBTl
)− tanh(

∆f

2kBTh
)]− ξ∆f tanh( ∆i

2kBTl
) (51)

When using a counteradiabatic driving Hamiltonian, the second term in both formulas can be

discarded since one is certain that no transitions will occur. However, as this is not the case, one

must account for the possibility of transitions. Using the experimentally determined transition

probability ξ ≈ 0.02 for a compression and expansion time of 700 µs, the results from Peterson

et al. [46] are checked. In particular, extracted work W , efficiency η = W/Q and output power

P . As these values were only provided in a graph, they have a high uncertainty, but seem to

lie close to the obtained result, indicating a successful simulation of the experiment. This is

also the case when using T 2
h as temperature of the hot bath. However, it must be noted that

the power values were determined using a cycle time of 1.4 ms, which is equal to the duration

of the expansion and compression strokes. However, when taking into account the duration of
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the other strokes as well (without the initialization of the spins), the duration of the protocol is

longer and the output power drops.

As stated, an NV-based Otto engine can be created similarly to the 13C-based engine. In the

current version, the NV electron spin is assigned the role of the heat bus, the associated 14N

spin becomes the working substance, MW modes near the electron Larmor frequency νe make

up the hot environment and RF modes near the 14N Larmor frequency νN the cold environ-

ment. These frequencies are equal to respectively 280.24 MHz [49] and −30.766 [50] kHz in

an ambient magnetic field of 10 mT. The opposite signs express the opposite rotation direction

when precessing around the magnetic field. The hyperfine coupling between the electron and

nuclear spin allows for the heat exchange. Apart from the initial state preparation of the two

nuclear spins, the pulse protocol from the NMR-based Otto engine can essentially be used with

an adapted coupling mechanism (hyperfine coupling through an evolution under the Hamilto-

nian Hhfs = 2π~ASzIz for a time of 1/2A). This is depicted on figure 13 below.

Figure 13: Simplified prototype of an NV-based quantum Otto pulse protocol. The pulse se-

quence is based on the work of Peterson et al. [46]. Only the use of the NV electron and nuclear

spin in this sequence is new. The electron and 14N spins are initially prepared in a hot and a cold

thermal state. Purple boxes represent RF pulses inducing rotations around the x-axis, and blue

boxes around the y-axis. Red connections indicate an evolution under the hyperfine interaction

during a time 1/2A, where A is the hyperfine coupling constant. Lastly, the unitary driving for

expansion and compression is implemented using a time-modulated RF field on resonance with

the nitrogen Larmor frequency.

Although the actual Otto cycle protocol is almost identical to the work by Peterson at al. [46], I

designed a prototype initalization protocol for both spins. To create the desired thermal starting

states, the NV electron spin and associated 14N nuclear spin are manipulated using MW-, RF-

and laser pulses. Since both spins have S = 1, the system is actually a three-level system, but
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it can be used as an approximate two-level system. For this to be true, one has to reduce the

population of the third energy level and withhold from any manipulation of this level. Here, the

states |0〉e and |−1〉e are chosen as the electronic two-level system and the |0〉N and |1〉N as the

nuclear one. The initialization protocol is illustrated in figure 14 and was also experimentally

verified (see page 62). It starts with both spins in a maximally mixed state, where the probabil-

ity of having any nuclear or electronic spin is equal to 1/3.

A long laser pulse is applied to the system, polarizing the electron spin to |0〉e. Then a nuclear

spin-selective MW pulse is applied to the electron spin. This pulse flips the electron spin based

on the value of the nuclear spin, a property made possible by the hyperfine interaction between

both spins. Specifically, the electron spin is flipped to | − 1〉e when the nuclear spin is equal

to | − 1〉N . Then, an RF pulse induces a nuclear spin transition | − 1〉N → |0〉N , while the

electron spin is still in the excited | − 1〉e state. Lastly, a laser pulse is applied to bring the

electron spin back to |0〉e, while leaving the nuclear spin untouched. If this laser pulse is long

enough, the electron spin will once again be polarized to |0〉e, while the nuclear spin will be

partly polarized to |0〉N . This is also what is presented experimentally. However, by reducing

the length of the laser pulse, a tunable mixed state can be created between |0〉e and | − 1〉e: the

longer the laser pulse, the more population will be in the lower energy level. This allows to

control the electron spin temperature. However, this is also linked to the nuclear spin temper-

ature, since the population of the |0〉N energy level increases as well, when the electron spin

polarizes. For the moment, the specific rates of these transitions are not known. They should

be determined experimentally by performing a significant amount of parametric studies of laser

power duration. Once the rate is known, it can be used to determine the laser pulse duration

and amount of iterations for a certain set of initial temperatures. Note that during the initial-

ization, the electron and 14N spin are actively manipulated together (e.g. nuclear spin-selective

MW pulses inducing rotations of the electron spin). Afterwards, the two spins shall only be ma-

nipulated separately, apart from allowing them to exchange heat due to their hyperfine coupling.

After determining the rate of laser-induced polarization and the temperatures to be used, an-

other property of the nuclear spin must be calculated: the transition probability between the

energy levels in the expansion and compression protocols. These probabilities can either be

determined theoretically (e.g. using the Suzuki-Trotter approximation [51]) or experimentally

(by QST). Alternatively, one could employ a counteradiabatic driving Hamiltonian to reduce
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Figure 14: Initialization protocol of electron and 14N nuclear spin for an NV-based quantum

Otto engine. Populations are indicated by purple dots. In a) to d) electronic energy levels are

shown, as well as the splitting due to the nuclear spin. In e) both electronic and nuclear energy

levels are shown. The bottom two levels are always used in the two-level system, while the top

energy level is mostly depleted. a) A nuclear spin-selective MW pulse flips the electron spin

from mS = 0 to mS = −1 when mI = −1. b) An RF-pulse flips the nuclear spin to mI = 0,

while leaving the electron spin untouched. c) A laser pulse partially repolarizes the electron

spin to mS = 0. d) The final state expressed using electron energy levels. Depending on the

duration of the laser pulse, a certain amount of population was transferred to |0, 0〉. This is

indicated by the sheer dot. e) The final state expressed using both electron and nuclear energy

levels. As the distance between the electronic energy levels is much higher than for the nuclear

energy levels, a certain population in mS = −1 compared to mS = 0 generates a much higher

spin temperature than the same population would generate in mI = 1 compared to mI = 0.

these probabilities to zero. However, in this case, the work must be corrected in another manner

because of the energetic cost of the CD driving source. It was demonstrated [42] that the total

cost during the driving time of a general quantum Otto cycle is given by:
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〈ĤCD(τ)〉 =
∫ τ

0
Tr[ρ0(t) d

dt
ĤCD(t)]dt (52)

When the transition probabilities are known, the NV-based quantum Otto cycle could be sim-

ulated using either a regular finite-time driving or using counteradiabatic driving. The work,

efficiency and power output can then be compared to discover the optimal operation regime.

After this, the experimental implementation of the Otto cycle using a single NV center in dia-

mond can be pursued.
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6 Experimental set-up

I have performed all experimental demonstrations in this thesis on the set-up shown schemat-

ically in figure 15. All experiments start with an optical initialization of the NV center spins.

This is performed using a continuous wave, solid-state Gem 532 laser manufactured by Laser

Quantum with an emission wavelength of 532 nm. The laser light passes a WPHSM05-532

half wave plate from Thorlabs and a PBS201 - 20 mm polarizing qube from Thorlabs, to-

gether providing power control. After focusing the laser light with a Thorlabs lens (L1) of type

AC254-150-A-ML with a focus distance of 150.0 mm, pulsed operation is made possible by

an acousto-optic modulator (AOM) of type AOMO 3200-146 made by Crystal Technology, Inc.

The beam is focused by a set of lenses (L2) and pinholes (P1), which block the out-of-focus laser

light and is finally reflected by a dichroic mirror (DM) of type DMLP567R from Thorlabs. All

pinholes used in the set-up are Thorlabs P30S pinholes with a diameter of 30± 2µm, although

the exact types of lenses and pinholes are not relevant here, as they are simply used to guide

the beam towards the diamond sample. The dichroic mirror reflects light with a wavelength

less than 567 nm, while light with longer wavelengths can pass through. This means that the

laser light is reflected towards the diamond sample (where it is focused by a set of lenses (L2)

on a certain single NV center) and that the red fluorescence emitted by the NV center can pass

through towards the detector. Behind the dichroic mirror, a long-pass filter is placed to ensure

that the laser light is blocked. This is a FELH05550 filter from Thorlabs and has a cut-off wave-

length of 550 nm. After filtering, the light passes through a pinhole (P2) once again blocking

the out-of-focus light. Then the beam is collimated by a final lens (L3), which is an FELH0550

type lens from Thorlabs, onto an SPCM-AQRH-14 single photon counter from Excelitas Tech-

nologies capturing the signal, which is then sent to the control PC. All signals are generated and

read out on this PC via a LabView program. The constructed pulse sequences then go to a pulse

generator, which is an arbitrary wave generator (AWG) of model M8190A from Keysight. This

device generates the desired signals and sends them to the correct instruments: laser signals to

the AOM, MW signals to the MW switch and RF signals to the RF switch. Both switches are

connected separately to either a microwave or radiofrequency wave generator and an amplifier

on the other end. The source of both the MW and RF signals is the mentioned AWG and the

MW amplifier is a ZHL-16W-43-S+ type amplifier from Mini-Circuits, while the RF amplifier

is a ZX60-100VH+ from Mini-Circuits. After amplification, both signals are sent to a diplexer

of type D1276-0-250/2000-4000H-A from TTE, which combines them and then sends them
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through a copper wire towards the sample. After passing through an antenna fabricated on top

of the diamond surface, the wire ends with a 50 Ohm terminator, which is necessary to avoid

reflection back into the wire causing interference with the original signal. A detail of this PCB

can also be seen in figure 15. On this detail, the diamond can be seen in the center with the

lithographically deposited electrodes and MW/ RF antenna on top. The antenna is seen as a

horizontal line connecting the diplexer and a 50Ω terminator and the electrodes are wirebonded

vertically to the voltage source and preamplifier. These electrodes are present to perform elec-

trically read measurements, but are not used in this thesis. They do make it easier to locate and

distinguish NV centers based on their relative position to the antenna and electrodes.

The quality of the diamond sample is very important in experiments, since the T ∗2 spin co-

herence time of the NV electron and nucleus are mostly limited by their interactions with the

paramagnetic impurities embedded in the diamond matrix [21]. This spin bath is related to the

electronic spins of nitrogen impurities and the nuclear spins of 13C atoms. HPHT diamonds

contain a lot of of nitrogen impurities and a low NV concentration. In contrast, isotopically

purified CVD diamond is a very pure material which gives long spin coherence times, both for

the longitudinal spin relaxation time (∼ 5 ms) and the transversal relaxation time T2 (∼ 2 ms).

These were at the time (2014) the longest ever observed values in a solid-state system at room

temperature. A coherence of several orders of magnitude higher can be achieved at low tem-

peratures [52]. The coherence time of the spins is important because it dictates the timescale

on which a certain spin state can be kept constant. In this master thesis, measurements are

performed on a single NV center in a type IIa electronic grade diamond with a (111)-surface,

located between a nanofabricated antenna and electrode. In figure 16, the location of this NV

center can be seen. The left side of figure 16 is an optical scan of the diamond sample parallel to

the surface and the color legend indicates the amount of photons detected when a certain pixel is

in focus of the laser light. On the left, the brighter part indicates the presence of an electrode and

on the right this is the antenna. In between lies diamond filled with islands of fluorescence that

correspond to defects. These defects are not necessarily NV centers: an ODMR measurement

must be performed with the laser focused on this center to confirm this. Using the cursor, the

in-plane focusing can be performed (this is not done on figure 16, but the NV center of interest

is indicated with a white circle). Then a scan is conducted in the perpendicular direction (a

z-scan) to focus on the correct depth within the diamond. Such an exemplary z-scan is shown

on the right side of figure 16.
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Figure 15: Simplified diagram of experimental set-up used to perform optical measurements of

NV spin states. Left: components and optical paths. Right: detail of the PCB containing the

diamond sample.

Figure 16: Optical determination of the location of defects in diamond. Left: xy-scan parallel to

the diamond surface. Different colors indicate the amount of photons emitted by a certain pixel

when in focus. Right: z-scan perpendicular to the diamond surface. The highest counts indicate

the location of the defect. Note that it is not possible to distinguish NV centers from other

fluorescent defects using this method, but can be done by performing ODMR or spectroscopy

measurements.
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7 Results and discussion

The experimental progress of this master thesis can be divided in two consecutive steps: ma-

nipulating the electronic and nuclear 14N spin of a single NV center, and preparing the nuclear

spin in an arbitrary state, of which the fidelity was checked with via the electron spin through

quantum state tomography. Each of these steps will now be discussed in more detail. Note

that in each experiment, the presented pulse sequence is repeated many times and the result is

averaged over time.

7.1 Manipulation and read out of the electronic and nuclear NV spin

7.1.1 Electronic spin

As the electronic spin of an NV center is easily manipulated and read out optically [27] this is

the starting point of the measurements. In fact, when performing a continuous wave ODMR

read out, the presence of a dip at the resonance frequency of 2.87 GHz is seen as proof that the

laser is focused on an NV center. Resolving individual hyperfine transitions requires the pres-

ence of a magnetic field, lifting the degeneracy of the electronic spin states mS = ±1. Figure

17a) shows the protocol used for CW ODMR measurements and 17c) shows the result of such

a measurement. The presence of two dips in intensity, located symmetrically around 2.87 GHz,

confirms that there is an NV center in the focus of the laser. This measurement only shows the

effect of of the ZFS and Zeeman term in the Hamiltonian. Using CW ODMR with a higher

resolution, it is possible to see the effects of the hyperfine splitting as well. Power broadening

can obscure this hyperfine structure, which is why pulsed ODMR (protocol in figure 17b)) is

used instead. It’s important to resolve this hyperfine structure (which is made possible through

the long coherence time of the NV center providing small spectral linewidths of electron spin

transitions [53]), because this is what gives access to the nuclear spin states through ENDOR

measurements of the electronic spin. When one knows the resonance frequency of a certain

|0,mI〉 ↔ | ± 1,mI〉 transition, one can selectively excite the nuclear state mI in other pulse

protocols. The result can be seen in figure 17d). From the Lorentzian fit, the resonance fre-

quency of the |0, 0〉 ↔ |−1, 0〉 transition is 2852 MHz, the resonance frequency of the |0, 1〉 ↔

| − 1, 1〉 transition is 2849.84 MHz and for the |0,−1〉 ↔ | − 1,−1〉 transition this is 2854.16

MHz. Note that these resonance frequencies are not fixed, but depending both on the magnetic

field strength and other environmental effects. Therefore, later on other MW frequencies will
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be used to address the same transitions.

Figure 17: Manipulation and read-out of the electronic state of the NV center. a) Continu-

ous wave ODMR protocol. b) Pulsed ODMR protocol. The symbol above the MW π-pulse

indicates that the frequency of this pulse is swept. This means that in every iteration of the se-

quence, the frequency of the MW magnetic field is increased stepwise between two predefined

values. When all frequencies have been employed, the next pulse sequence uses again the first

frequency and the protocol repeats itself. c) PL spectrum measured in a CW ODMR exper-

iment. d) PL spectrum measured in a pulsed ODMR experiment. Hyperfine and quadrupole

effects are visible due to a decreased power broadening and an increased resolution.

As the intensity of the measured PL signal says little about the measurement (it relies on many

experimental parameters, e.g. the used objective lens), the ODMR is shown using contrast C

instead of intensity. The formula for contrast is given below:

C =
−(Imax − I)

Imax
∗ 100% (53)

In the above formula, Imax is the maximum value of the experimentally measured PL intensi-

ties. The minus sign is present to achieve a signal that looks qualitatively similar to the regular

intensity signal. This is important as later on, in certain calculations, the visual properties of

Rabi oscillations will be used. It will be seen on all figures using contrast data, that the baseline

is never at C = 0. This is due to experimental noise, increasing Imax above (or decreasing Imin

below) the fitted baseline.

To find the duration of the π-pulse (used in the pulsed ODMR protocol), the electronic Rabi

protocol was performed first. The Rabi sequence [54] consists out of an initial laser pulse

polarizing the NV center to state |0〉e after which a microwave field is applied for a variable
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time τ . This sequence is repeated for some time with the same MW power and frequency, while

increasing τ from zero to some value τF . The laser pulse starting the second iteration is also

the readout laser pulse of the first iteration and so on. The influence of the MW field on the NV

center is mostly due to the magnetic component, which can be written as:

BMW (t) = BMW · cos(2πft) (55)

This field addresses the spin operation on the transition |0〉 ↔ |±1〉 with a transition frequency

of ω0 = D − γBNV . The resonance condition 2πf = ω0 can be fulfilled by adjusting BNV

and should be kept in all iterations of the sequence. The component of BMW perpendicular

to Sz can be seen as the sum of two circularly polarized fields, rotating in the opposite sense.

The left-hand rotating field B1 directly drives the spin rotation and in this reference frame

the approximate electronic Hamiltonian (without hyperfine and quadrupole interactions) can be

written asH = γB1Sx. This results in the spin state oscillating between |0〉 and |−1〉with Rabi

frequency ΩR = γB1. In the Bloch sphere representation, the spin state vector rotates aroundB1

by an angle θ = 2πγB1τ after a time τ . The NV center photoluminescence will vary sinusoidally

with the Rabi frequency while the spin state vector rotates in the Bloch sphere. A successful

demonstration of Rabi oscillations means that coherent control has been achieved [55]. The

resulting signal can then be used to determine the duration of π-pulses. The measurement in

figure 18 reveals a π-pulse of ∼ 800 ns.

Figure 18: Electronic Rabi oscillations of the NV center. a) Electron Rabi protocol. b) PL

spectrum measured in an electron Rabi experiment.
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7.1.2 Nuclear spin

In the previous section, it became clear that to manipulate the electronic spin of an NV center,

microwave magnetic fields need to be applied during times on the order of hundreds of nanosec-

onds. For 14N nuclear spins one has to apply RF magnetic fields on timescales of tens of mi-

croseconds [5]. The manipulation of nuclear spin states is also more difficult than its electronic

counterpart because the nuclei lack the optical polarization mechanism and easy read-out of the

electrons. Therefore, the electronic spin will be used to manipulate the nuclear spin state, by

applying narrowband nuclear spin-state selective MW pulses, that flip the electron spin depend-

ing on the state of the nuclear spin. This operation is equivalent to a CNOT gate [53] and the

resonance frequencies of the pulses can be found by inspection of the hyperfine peaks in pulsed

ODMR measurements. Via ENDOR, the nuclear spin can also be read through the electron spin.

The first protocol to be addressed is the nuclear Rabi protocol (see fig. 19a)), which can be

used to determine the duration of the nuclear π-pulse. It consists out of a first laser pulse that

polarizes the electronic spin state to |0〉e and completely depolarizes the nuclear state (so that

the probabilities of occupancy of a certain nuclear energy level are all equal to 1/3). Then fol-

lows a MW π-pulse with a frequency corresponding to the transition between the |0, 1〉 state

and the | − 1, 1〉 state. An RF pulse of frequency 7.11 MHz and variable duration τ is then

used to drive transitions between nuclear spin states mI = 1 and mI = 0. This resonance

frequency can be calculated theoretically as the sum of the nuclear quadrupole splitting (4.95

MHz) and the hyperfine splitting (2.16 MHz), which is shown in figure 19b). The next laser

pulse has a duration of 500 ns, chosen specifically to bring back the electronic spin to zero,

while leaving the nuclear spin untouched. The exact duration of this pulse will be addressed

later on. If there was any nuclear spin transfer during the RF pulse in the | − 1〉e state, then this

will remain present in the |0〉e state. The second MW π-pulse has the same frequency as the

first one and is used to probe the probability of being in the |0, 1〉 state, which is approximately

equivalent to the probability of having mI = 1, as the electron spin is largely polarized to zero

at this point. The last laser pulse is used to read out the photoluminescence coming from the

NV center: this value will be high when the probability of being in |0, 1〉 is high and low in

the other case. As the protocol starts with a depolarized nuclear spin, the PL at time zero de-

fines the minimum value (all three hyperfine peaks are well visible). The maximum PL then

indicates the duration of a π-pulse, which completely flips the |1〉N part of the nuclear spin to
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|0〉N (the left hyperfine peak, corresponding to the |0, 1〉 ↔ | − 1, 1〉 transition, has less con-

trast or disappears completely). From figure 19c) it is clear that the nuclear π-pulse is∼ 16.5µs.

Figure 19: Nuclear Rabi measurement. a) Pulse protocol. MW frequency f1 corresponds to the

|0, 1〉 ↔ | − 1, 1〉. b) PL spectrum measured in a nuclear Rabi experiment.

Once the duration of the nuclear π-pulse is known, the resonance frequency can be verified using

nuclear ODMR. In addition, another manipulation of the nuclear spin based on the quadrupole

splitting was checked. This reveals a resonance frequency of ∼ 4.95 MHz, also in line with

theoretical calculations [25]. The nuclear ODMR protocol looks similar to the electron ODMR

explained earlier, but now the RF frequency is sweeped instead of the MW frequency. This is

depicted in figure 20a). The MW π-pulse frequency is set to the resonance frequency of the

|0, 1〉 ↔ | − 1, 1〉 transition in both experiments.

As stated, two different transitions will be investigated here. The first one is the transition be-

tween | − 1, 1〉 and | − 1, 0〉. In the pulse protocol used for this transition, the first MW pulse

brings the population of |0, 1〉 to | − 1, 1〉. Then the RF pulse is swept around the transition

| − 1, 1〉 → | − 1, 0〉. The following laser pulse repolarizes the electronic spin to zero, but does

not alter the nuclear spin. The next MW π-pulse is used to probe the population of the |0, 1〉

energy level. Therefore, when the RF pulse is on-resonance, population is transferred from

|0, 1〉 to |0, 0〉, lowering the population in the |0, 1〉 state. However as before, a low population

corresponds to a high PL signal, so a resonance peak is seen in the RF frequency spectrum.

Using a Lorentzian fit of the data as seen in figure 20 a resonance frequency of 7.104 MHz was
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Figure 20: Nuclear ODMR measurement. a) Pulse protocol. Frequency f1 corresponds to the

|0, 1〉 ↔ |− 1, 1〉 in both measurements. Frequency f2 also corresponds to the |0, 1〉 ↔ |− 1, 1〉

transition, but this does not necessarily need to be so. For example the |0, 0〉 ↔ | − 1, 0〉

transition could also be chosen and this would invert contrast. b) PL spectrum measured in

a nuclear ODMR experiment centered at the | − 1, 1〉 ↔ | − 1, 0〉 transition. c) PL spectrum

measured in a nuclear ODMR experiment centered at the |0, 0〉 ↔ |0, 1〉 transition.

found. This is not far away from the original guess of 7.11 MHz and given the large linewidth

(0.32 MHz) of the resonance the theoretically predicted value still drives the transition effi-

ciently. Note that for this measurement the contrast (see formula (54)) was determined using

the minimum value of the PL intensity Imin instead of Imax and the minus sign was dropped.

The reason for this is that the PL intensity was seen to rise with respect to the baseline at this

resonance frequency, whereas other resonances dropped with respect to the baseline. Therefore,

Imin technically fulfills the role of Imax in this situation.

The second measurement investigates the transition between |0, 0〉 and |0, 1〉. These energy

levels are splitted only due to the nuclear quadrupole effect (mI = 0 and mI = ± 1) and very

slightly by the nuclear Zeeman effect (mI = 1 and mI = −1). As the first MW π-pulse induces

a transition between the |0, 1〉 and | − 1, 1〉 states, the first state becomes vacant. Therefore an

RF pulse with the correct frequency can induce a transition from the |0, 0〉 state to the |0, 1〉

state. This increases the population of the |0, 1〉 state, so that the PL signal decreases at the

resonance frequency and a dip is seen in the RF frequency spectrum.

Once the RF pulse duration (16.5µs) and frequency (7.11 MHz) are known, they can be used in

other protocols designed to manipulate the nuclear spin, collectively known as QNMR proto-

cols. QNMR stands for Quantum Nuclear Magnetic Resonance and describes any protocol that
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measures nuclear resonance frequencies. In this thesis, the nuclear Rabi and nuclear ODMR are

QNMR protocols. Another QNMR protocol is used to polarize the nuclear spin, either partially

or fully. The pulse sequence for partial polarization can be seen in figure 21a) and 21b) shows

the resulting PL spectrum. First a MW π-pulse is used to excite the |0, 1〉 → |− 1, 1〉 transition,

after which an RF π-pulse excites this state further to | − 1, 0〉. Then a short laser pulse is used

to bring the electronic state back to zero, after which pulsed ODMR is used for the readout. In

comparison to the regular pulsed ODMR measurement depicted in figure 17, it is clear that the

left hyperfine peak is much smaller. As this peak corresponds to the |0, 1〉 → |−1, 1〉 transition,

it proves that the nuclear spin has been partially polarized from |1〉N to |0〉N . In the ideal case,

all population from |1〉N would be transferred to |0〉N , creating a mixed state with a probabil-

ity of 2/3 to be in state mI = 0 and 1/3 to be in state mI = −1. As could be seen that the

population transfer is not complete, the probability to find the system in a state mI = 0 will

be slightly lower than 2/3 since there is some residual probability to find the system in state

mI = 1. This pulse protocol was also suggested for the spin initialization in the NV-based Otto

cycle. However, to create thermal states of choice, the rate of laser-induced population transfer

must be better characterized.

Figure 21: Partial polarization of the nuclear spin. a) Pulse protocol. b) PL spectrum showing

the depletion of the |0, 1〉 state (left hyperfine peak).

To achieve a full nuclear polarization, the mI = −1 spin must also be flipped to zero. This

can be done by inserting a second pair of consecutive MW and RF π-pulses as was done

by Chakraborty et al. [25]. However, since the nuclear ODMR measurement (see figure 20)

showed broad resonances, a single RF pulse can be used to excite both the | − 1, 1〉 → | − 1, 0〉
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transition and the |1,−1〉 → |1, 0〉 transition. It is important for the second transition to be per-

formed with ms = 1 instead of −1 as in the first one, to achieve two-level system transitions.

Should this not be the case, the RF pulse would excite both the | − 1, 1〉 and the | − 1, 1〉 state

to the | − 1, 0〉 state. This would generate three-level system dynamics, which is more difficult

to interpret. Therefore, the NV center under consideration is always placed inside an ambient

magnetic field, splitting the ZFS resonance and providing two two-level systems to manipulate

nuclear spins. The complete protocol used for a full polarization can be seen in figure 22a). The

first MW π-pulse is at the resonance frequency of | − 1, 1〉 → | − 1, 0〉 and the second one at

the resonance frequency of |1,−1〉 → |1, 0〉. The RF pulse has a frequency of 7.11 MHz and

polarizes both nuclear spins to mI = 0. The resulting PL spectrum is plotted in figure 22b).

It can be seen that only the central peak, corresponding to the |0, 0〉 ↔ | − 1, 0〉 transition re-

mains, proving that the spin system has been fully polarized to |0, 0〉. Note that if the other

two resonance peaks would have disappeared completely, the system would be in the pure state

|0, 0〉. This is not the case, meaning that a small population of mI = ±1 energy levels remains.

However, because this population is small, the system can still be assigned the pseudopure state

|0, 0〉 to good approximation, as is also done here.

Figure 22: Full polarization of the nuclear spin. a) Pulse protocol. b) PL spectrum showing the

depletion of the |0, 1〉 state (left hyperfine peak) and |0,−1〉 state (right hyperfine peak).

This full polarization protocol can also be attached before the normal nuclear Rabi protocol

to create Rabi oscillations with a larger contrast. As the system is polarized each time to the

|0, 0〉 state before driving the Rabi oscillations, the resulting signal will show approximately

three times as much contrast, since three hyperfine peaks are now concentrated into one. The
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resulting protocol can be seen in figure 23, together with the measured signals. For the Rabi

oscillations without initialization, the noise level is approximately 3% (∼ 200 counts/ s in

absolute intensity), which is of the same order of magnitude as the amplitude (∼ 300 counts/

s). The maximum contrast of these oscillations is ∼ 3%. With initialization, the noise level is

the same as before, but the oscillation amplitude is larger, giving a better maximum contrast

of ∼ 6 %. For a full polarization, one would expect a threefold increase in contrast since

the population of |0〉N is increased approximately threefold in the initial polarization stage.

However, it was seen that only an approximate polarization could be achieved, hence the smaller

contrast increase.

Figure 23: Nuclear Rabi measurement with intialization. a) Pulse protocol. b) PL spectrum

showing Rabi oscillations of the nuclear spin in depolarized state (with the pulse sequence

presented in figure 19) in orange and completely polarized to mI = 0 in blue. The contrast of

the Rabi oscillations of the polarized state is approximately twice the contrast of the depolarized

Rabi oscillations.
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7.1.3 Optimization of the pulse sequences

In order to achieve the best manipulation, which in turn generates the highest nuclear polar-

ization, the pulse sequence must be optimized. The duration of the MW and RF π-pulses was

determined using respectively electron and nuclear Rabi measurements. In this section, I have

determined the optimal duration of laser pulses via parametric studies at 1 MW laser power.

In addition, I have investigated and mitigated the negative effects of applying RF waves to the

diamond sample.

Optimization of the laser pulse duration

In the pulse protocol for a full nuclear polarization depicted in figure 22a), three laser pulses

can be distinguished. The first one is the initialization pulse and is taken to be 3000 ns long to

ensure that the system starts out in a state with a polarized electronic spin |0〉e and a depolarized

nuclear spin. The last laser pulse is used to read out the final system state and then initialize it

back to the aforementioned starting state. In this sense, the first and last laser pulse are equiv-

alent, which is why they have the same duration. The laser pulse in between serves a different

purpose. It is used to repolarize only the electron spin that has been depolarized by the previ-

ous MW and RF pulses, without changing the nuclear spin. More specifically, the laser pulse

should be long enough to repolarize the electron spin to zero, but at the same time short enough

to prevent depolarization of the nuclear spin. The loss of nuclear spin polarization during laser

excitation has multiple origins [25]. First, the ground and excited state of the NV center have

different energy eigenstates, so that the laser excitation projects nuclear spin eigenstates corre-

sponding to the electronic ground state onto superpositions of those nuclear spin states in the

excited state. Furthermore, as the laser pulse duration increases, so does the probability of NV−

to NV0 charge conversion somewhere during this pulse. The neutral NV complex has different

hyperfine couplings and nuclear quadrupole interactions, resulting in a different energy splitting

between the nuclear spin eigenstates. Lastly, the spin-lattice relaxation time T1 is shorter for the

neutral NV center, resulting in an increased loss of spin polarization.

To determine the optimal duration of the laser pulse, an alternate version of the half polarization

QNMR protocol is used in which no RF pulse is being applied (see fig. 24) so that after the

electron spin is changed to |−1〉e, there is no change in nuclear spin state. Therefore, the second

laser pulse should restore the initial state of electron polarization and nuclear depolarization. If
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this is not the case, it means that the laser pulse was not long enough to polarize the system back

from | − 1, 1〉 to |0, 1〉, which leaves only |0, 0〉 and |0,−1〉 to be detected. This is tested for

increasing laser pulse durations, demonstrating that a pulse of 500 ns is sufficient to reach the

electronic ground state again. The pulse protocol and the results of a few of these measurements

(with laser pulse durations ranging from 100 ns to 1000 ns) are depicted in figure 25. For all

these measurements, the laser power was equal to 1 mW.

Figure 24: First pulse protocol for the parametric study of laser pulse duration.

Figure 25: First parametric study of laser pulse duration. a) Result for 100 ns laser pulse. b)

Result for 300 ns laser pulse. c) Result for 500 ns laser pulse.

I investigate the effect of the laser pulse duration on the electronic spin using an alternative

pulse sequence without RF application (without nuclear polarization) because it makes it eas-

ier to detect changes in population. In principle, the ineffective polarization of the electronic

spin to the ground state at low laser pulse durations could also be seen when the nuclear spin

is polarized to |0〉N . When doing so, the depth of the |0, 0〉 ↔ | − 1, 0〉 hyperfine peak would

have to be compared for different laser pulse durations. Once it reaches maximum depth, then

the electron spin is fully polarized to zero. However, this method is not optimal as there are

other factors affecting peak depth as well, for example how well the NV center is kept in focus

during the measurement (sample drift). To eliminate those factors, it’s better to have all three
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peaks present in the signal, so that the relative peak depths can be investigated. Here, the only

difference in peak depth between the resonances comes from a population difference.

A laser pulse of 500 ns is just long enough to polarize the electronic spin to |0〉e, so the pulse

needs to be at least this long. Besides polarizing the electronic spin, laser pulses also depolarize

the nuclear spin [25]. This can be seen by repeating the parametric study for a system in the

state |0, 0〉, which means that this time the regular full polarization protocol is used with the RF

π-pulse present. The results for a few of these measurements are presented in figure 26. It is

clear that if the laser pulses become longer, the nuclear polarization is lost. The measurement at

500 ns shows a significant amount of nuclear polarization, which is why this duration is chosen

for the laser pulse used to repolarize the electron spin after excitation. At 3000 ns, which is the

duration of the initializing laser pulse presented here, almost all polarization has disappeared.

This means that each measurement starts with a practically depolarized nuclear spin. In liter-

ature [25] an optimal duration of ∼ 5000 ns was found to create a full nuclear depolarization

using a laser power of ∼ 150µW at the sample, which is much less than the laser power of

1 mW used in the experiments presented here. Therefore, it is interesting to investigate also

the optimal duration of this first initializing laser pulse and compare the results at a lower laser

power.

Figure 26: Parametric study of laser pulse duration for a spin-polarized NV center. a) Result

for 500 ns laser pulse. b) Result for 1500 ns laser pulse. c) Result for 3000 ns laser pulse.

Effect of RF pulse duration on the sample and the resonances

Applying RF pulses is seen to affect the location of the sample in both the directions parallel

and perpendicular to the diamond plane. Furthermore, the resonance frequencies of the system

change under RF application. As all hyperfine resonances move together in the same direction
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(to lower frequencies), the shift is proven to be a shift in ZFS. The approximate Hamiltonian

presented in formula (3) cannot explain this behavior and the current hypothesis is that it is

linked to heating of the sample. The resulting sample drift and frequency shift depend on which

sample stage is used. This may be because the second sample holder allows for more movement,

since it had been installed more recently and the sample needs some time to properly set. Figure

27 illustrates this behavior for the first sample holder. It can also be seen that for the application

of an RF π-pulse, the left hyperfine peak is depopulated. This is because these measurements

were performed using the partial polarization protocol as seen in figure 21.

Figure 27: Effect of RF application on resonance frequencies. Intensity is plotted in arbitrary

units so that both the blue and orange data points can be plotted on the same graph. Only relative

peak depths and frequency shifts are important. The blue data points show the result of a regular

pulsed ODMR measurement. All three hyperfine peaks have approximately equal contrast. The

orange data points show the result of a QNMR measurement were RF waves are applied. It can

be seen that they induce a transition from |1〉N to |0〉N , as the relative depths of the hyperfine

peaks changes, and that they also induce a frequency shift. a) Left hyperfine peaks. b) Right

hyperfine peaks.

In order to correct for this unforeseen behavior, two steps are taken. First, to correct for sample

drift a target lock functionality is implemented in the software. To use this functionality, one

has to put the NV center of interest in the laser focus manually and then enable the target

lock. This saves the current amount of measured photons and compares the counts at each

point in time to this reference value. If the counts change by a significant amount (in this case

50% of the original value), the laser scans around the previous focus point and moves into

the direction where the measured counts are closest to the reference counts. This is repeated
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until the difference is once again smaller than the threshold, indicating that the NV center is

back in focus. Secondly, to correct for the frequency shift, alternative pulse protocols have

been designed where the RF and MW frequencies are varied at the same time. For example,

a microwave frequency sweep experiment can be performed while applying an off-resonant

RF field in the background. The resulting PL spectrum will then look like a pulsed ODMR

measurement, but with resonance frequencies influenced by the RF waves. This means that for

every pulse protocol including RF pulses, two or three measurements must be performed: one

or two (depending on the protocol, one could need resonance frequencies of one or two Zeeman

peaks) with an MW frequency sweep to determine the resonance frequencies and then another

one without that uses the correct frequencies.

7.2 Quantum Tomography of the nuclear spin state

Now that the necessary tools to manipulate the nuclear spin are in hand, quantum state tomog-

raphy measurements can be performed. The validity of this technique must be checked using

known nuclear spin states, before it can be used to determine unknown nuclear spin states. The

protocol used for QST of a known state can be seen in figure 28. It blends the process of creat-

ing a nuclear state and then determining it, and is identical to the protocol used for measuring

initialized nuclear spin Rabi oscillations (see fig. 23) apart from two things. First, there is an

additional RF pulse with duration TRF after the third MW pulse. Secondly the RF pulses with

duration τ (the ones that drive Rabi oscillations) now have a definite phase. To see the effect

of these alterations, go through all the steps of the pulse protocol. They can be divided in an

initialization stage, a Rabi driving stage and a readout stage. The initialization stage consists of

the first seven pulses (and technically the phase of the Rabi driving RF pulse). The system is

brought to the |0, 0〉 state by the first five pulses (laser - MW - MW - RF - laser) and then the

nuclear state can be altered from here to any generic state |ψ〉N . To do so, the system is brought

first to | − 1, 0〉 and then an RF pulse of duration TRF is used to rotate the |0〉N state over an

angle θN = π TRF
Tπ

around the x-axis, where Tπ is the RF pulse duration of a π-pulse. Note that

this also changes φN , because the rotation around the x-axis tilts |ψ〉N towards the negative

y-axis (φN = 270◦). Alternatively, if one defines the natural rotation axis of Rabi oscillations as

the positive y-axis, then φN would remain zero. This is an easier viewpoint, but would require

different measurement parameters, so I have decided to keep the current viewpoint.
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The initialization stage and Rabi driving stage intersect slightly, because (apart from the afore-

mentioned offset) φN is controlled via the phase in the Rabi driving stage. When the phase

difference between these two RF pulses is zero, that would mean that the second one would

start with the ending phase of the first one. This means that the Rabi oscillations are still driven

around the x-axis, so that the starting state |ψ〉N is still defined by (θN = TRF
Tπ

180◦, φN = 270◦).

If now a phase difference ∆φ 6= 0 is added to this second RF pulse, then the rotations of the

Bloch vector |ψ〉N are no longer driven around the x-axis but around an axis that makes an angle

∆φ with the x-axis. Alternatively, one could state that the Bloch vector does rotate around the

x-axis defined by φN = 0 but that |ψ〉N itself has acquired a phase −∆φ with respect to the

negative y-axis. This second viewpoint will be adopted here, so that in this way any generic

state |ψ〉N can be created with any (θN , φN). After driving Rabi oscillations of this state, the

fluorescence is read out in the readout stage consisting of the last three pulses (laser - MW -

laser). As before the MW pulses have a frequency corresponding to the |0, 1〉 ↔ | − 1, 1〉,

|0,−1〉 ↔ | − 1,−1〉 and |0, 0〉 ↔ | − 1, 0〉 (twice) transitions.

Figure 28: Pulse protocol used to prepare the nuclear spin qubit in an arbitrary state |ψ〉N =

cos( θN
2

) + eiφsin( θN
2

) and subsequent tomography of this state. TRF is used to control θN and

φ is used to control φN .

It was stated before that three Rabi measurements were necessary for QST: a reference Rabi,

an x-Rabi (rotation of the Bloch vector around the x-axis) and a y-Rabi (rotation of the Bloch

vector around the y-axis). It was explained in the previous paragraph how an x-Rabi can be

performed on a state |ψ〉N characterized by the angles θN and φN . However, a rotation of this

vector around the y-axis must also be driven. The selection of the rotation axis also happens

through the phase of the MW/ RF field. If phase 0◦ corresponds to the positive x-axis, then phase

90◦ corresponds to the positive y-axis. This means that to create a state with phase 270◦ − φN
the x-Rabi measurement must be performed with phase φN and the y-Rabi measurement must
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be performed with phase 90◦ + φN . Therefore in the x-Rabi measurement the RF pulses are in

phase with |ψ〉N , whereas in the y-Rabi measurement the RF pulses are 90 degrees out of phase.

The described QST protocol will be tested using three different nuclear spin states. First, two

random states are measured to check whether the QST technique works and if the results are

reproducible. Then, a state very close to the negative y-axis on the Bloch sphere is measured to

test the limits of operation. For each state, at least two full QST measurements have been per-

formed, allowing to check the validity of the results. The results of all these measurements are

summarized in table 1 at the end of this section. Furthermore, using 95% confidence intervals

of the fit parameters, the QST calculations are repeated using the ’worst’ combination of fit pa-

rameters within these intervals. This gives more insight in how robust the technique is. Lastly, it

will be seen that the used protocols, specifically the AQST, are susceptible to sample drift which

degrades their fidelity. This negative effect can be mitigated both during and after the measure-

ments. For example, the three Rabi measurements are taken directly after each other using the

target lock function of the software to compensate as much as possible for the sample drift over

time. Because of the change in sample drift and resonance frequencies with the amount of RF

waves applied, the reference measurement is also performed in presence of the same TRF -pulse

that is used in the x-Rabi and y-Rabi measurements, but off-resonance (9.11 MHz). This way,

each measurement applies the same amount of RF waves to the diamond sample, so that equal

measurement conditions are achieved. After the measurements one can perform the QST cal-

culations on the contrast amplitude of Rabi oscillations instead of their intensity amplitude. To

do so, the contrast C of the Rabi oscillations is calculated using formula (53). When the sample

drift lowers the overall intensity of the measured NV photoluminescence (because the center

moves out of the laser focus), the contrast is unchanged. Therefore the effects of sample drift

are partially removed from the resulting AQST calculations. For PQST, this is not the case and

the results and fidelities of PQST are invariant under this transformation, because phase angles

α and β do not change. The PQST calculations will always be performed using regular inten-

sity data (as is measured in the experiment). The AQST calculations will be performed both for

intensity and contrast data, after which the results can be compared.

As a concluding remark, note that the described pulse protocol for determination of a known

nuclear state can be easily adapted to perform QST of unknown nuclear states. For this, the

state preparation is no longer needed: the RF pulse with duration TRF can be omitted and the
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phases of the RF pulses of duration τ can be adapted to 0◦ for an x-Rabi and 90◦ for an y-Rabi.

The calculations performed on the measured data remain the same for both AQST and PQST.

7.2.1 QST of the state (θN = 58.41◦, φN = 249◦)

First, the AQST protocol is tested using the generic state |ψ〉N = cos( θN
2

)|0〉N + eiφNsin( θN
2

)

with θN = 58.41◦ and φN = 249◦. This state has the following density operator ρt, which was

calculated using MatLab:

ρt = 1
2

 1.5238 −0.3053 + 0.7952i

−0.3053− 0.7952i 0.4762


When determining the density operator of the system using QST, this is the ideal result. In

figure 29 the used results of Rabi measurements as reference and in the x- and y-direction are

given. To create the desired state, TRF was taken equal to Tπ ∗ 58.41◦

180◦
creating a 58.41 degree

pulse. The phases of the x-Rabi and y-Rabi were taken to be 21 and 111 degrees.

Amplitude quantum state tomography

Using the intensity measurements presented above (first row), the values for x2, y2 and z2 (the

coordinates of the nuclear spin Bloch vector) can be determined. Each Rabi signal is fitted with

a function of the form c+A2sin2(ωt+φ) using MatLab, where the fit parameters are estimated

starting from given guessed values. The amplitude of a Rabi measurement is equal to A2

2
and

by looking at the 95% confidence interval one can see how good the estimation is. From the

Matlab fits follow AR = 339.3013 counts/ s, Ax = 316.5128 counts/ s and Ay = 248.6450

counts/ s, generating x2, y2 and z2:

x2 = 1− (Ax
AR

)2 = 0.1298

y2 = 1− ( Ay
AR

)2 = 0.4630

z2 = A2
x+A2

y

A2
R
− 1 = 0.4072

Using the rules for sign determination, x, y and z can be uniquely determined. Here, x is

negative as the y-Rabi starts off in a decreasing trend, y is negative as the x-Rabi starts off in an

increasing fashion, and z is positive as both the x- and y-Rabi start below their mean value.

x = −0.3603

y = −0.6804

z = 0.6381
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Figure 29: Nuclear tomography of the (θN = 58.41◦, φN = 249◦) state using intensity data in

(a to c) and intensity contrast data (d to f). a) Intensity reference Rabi oscillations, measured

with an off-resonance 58.41◦ pulse and zero phase difference. b) Intensity x-Rabi measured

with an on-resonance 58.41◦ pulse and 21◦ phase difference. The match with the ideal case is

nearly perfect. c) Intensity y-Rabi measured with an on-resonance 58.41◦ pulse and 111◦ phase

difference. The match between the Rabi oscillations of the theoretical and experimental case

is less good than for the x-Rabi. d) Contrast reference Rabi oscillations. e) Contrast x-Rabi

oscillations. f) Contrast y-Rabi oscillations.

From these coordinates and formula 13, θN = 50.3479◦ and φN = 242.0980◦. Because x is

negative, an angle π had to be added to tan−1(y/x) to get the correct angle. Using these values,

the experimentally recovered density operator ρe,A can be determined:

ρe,A = 1
2

 1.6381 −0.3603 + 0.6804i

−0.3603− 0.6804i 0.3619


Phase quantum state tomography

The described MatLab program also fits the phases of the Rabi oscillations. Using the phase

angles of the x- and y-Rabi, one can determine the experimental density operator ρe,P via PQST

calculations. The x-phase α is found to be 59.0147◦ and the y-phase β is −33.3519◦. Using

the step by step plan presented in section 5.6.2, this gives θN = 60.8178◦ and φN = 248.4340◦.
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The signs of α and β determine a 270◦ offset for φ and from inspection of the Rabi signals it is

inferred that θN < 90◦. This allows to determine ρe,P .

ρe,P = 1
2

 1.4876 −0.3209 + 0.8120i

−0.3209− 0.8120i 0.5124


Discussion and verification of the results

The measured density operators both look quite similar to the ideal case ρt, which can also be

showed graphically by plotting the real and imaginary values of the different density operators.

This is depicted in figure 30.

Figure 30: Comparison of the real and imaginary parts of the theoretical density operator (see

”Theory”) with the experimentally determined density operators. ”AQST (I)” shows the density

operator calculated in amplitude tomography based on intensity data. ”AQST (C)” shows the

density operator determined in amplitude tomography based on contrast data. Lastly, ”PQST”

shows the density operator calculated in phase quantum state tomography. The red outline in

the last three columns shows the theoretically expected values.

The fidelity F of the different density operators can be calculated using formula (18), given in

section 5.6.3. Using the obtained density operators, a fidelity of 0.9927 is determined for the

presented AQST measurement and a fidelity of 0.9995 is determined for the presented PQST.

Alternatively, one can compare the Rabi oscillations expected for the theoretical (ideal) state
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(blue) with the measured Rabi oscillations (red). This can be seen also on figure 29. The

oscillations are quite close together, indicating the correspondence between the created and

measured state. For these ideal Rabi oscillations, the baselines were fitted using experimental

data, the frequencies were calculated using Tπ, the amplitudes using the reference measurement

and the x and y coordinates of the ideal state and the phase angles using formulas (15) and (16),

resulting in phases α = 56.62◦ of the x-Rabi and β = −30.23◦ These values are close to the

fitted phases of the experimental data.

To check the result, the 95% confidence intervals of the fit parameters can be inspected. Using

these confidence intervals, one can determine what the ’worst case’ fidelity would be for the

presented measurement given the noise levels. These ’worst case’ scenarios combine top and

bottom limits of the confidence intervals to generate the worst possible fidelities. This is calcu-

lated for the QST presented in figure 29. The ’worst case’ amplitude tomography gives angles:

θN = 31.6542◦ and φN = 205.8829◦ and a fidelity of FA = 0.8861. The ’worst case’ phase

tomography gives angles θN = 59.5791◦ and φN = 213.8623◦ and a fidelity of FP = 0.9330.

Another way to verify the results obtained in this subsection, is to repeat the entire procedure

(reference Rabi, x-Rabi and y-Rabi). These measurements were performed at a different time

to allow for slightly different experimental conditions. AQST measurements gave the following

angles: θN = 58.3851◦ and φN = 243.3618◦ resulting in a fidelity FA of 0.9982. PQST mea-

surements gave angles: θN = 58.9123◦ and φN = 254.185◦ resulting in a fidelity FP of 0.9985.

Both of the QST measurements show good fidelities, which hints that sample drift was lim-

ited during these measurements. To verify this, AQST and PQST calculations can be repeated

using the same measurement data, but adapted to contrast (see formula (53)) instead of the

absolute intensity. This was illustrated for the first measurement in the second row of figure

29. Using these measurements the results of AQST are slightly altered, leading to new angles

θCN = 48.1344◦ and φCN = 247.8780◦ and a new fidelity FC
A = 0.9919 that can be compared

with the previously calculated fidelity FA = 0.9927. In this case, the low amount of sample

drift already resulted in a good QST measurement, so that using the contrast cannot offer much

improvement. In fact, in this case the fidelity slightly drops. For the second measurement of

this state, the fidelity of the intensity contrast measurement is given by FC
A = 0.9985 which is

slightly higher than FA = 0.9982.
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Lastly, calculating the ’worst case’ tomography using contrast data, the fidelity rises a little

bit compared to the ’worst case’ AQST fidelity determined two paragraphs ago. The results are

θCN = 33.4903◦, φCN = 204.7013◦ and FC
A = 0.8866. The ’worst case’ PQST fidelity does not

change upon using contrast data.

7.2.2 QST of the state (θN = 137.02◦, φN = 53◦)

In order to verify the reproducibility of the presented AQST and PQST method, it was tested on

another generic state |ψ〉 with θN = 137.02◦ and φN = 53◦. The density operator of this state is

given below:

ρt = 1
2

 0.2684 0.4103− 0.5445i

0.4103 + 0.5445i 1.7316


The used pulse sequence and the resulting Rabi oscillations are shown in figure 31. To create

|ψ〉N , TRF is taken to be Tπ ∗ 137.02◦

180◦
. The phases of the x-Rabi and y-Rabi were taken to be 217

and 307 degrees.

Amplitude quantum state tomography

During these measurements, sample drift was seen to be more pronounced. Because of this

reason and to illustrate the methodology, the results in this section will be discussed using

the contrast first, after which they are compared with the results obtained from intensity data.

From the three Rabi signals in figure 31 (second row), the following amplitudes are found:

AR = 2.093058%, Ax = 2.0220605% and Ay = 1.7242245%. Both the x- and y-Rabi start

off above their mean PL intensity, which means that z is negative. The x-Rabi starts off in a

downward trend, which signifies that y is positive, and the y-Rabi starts off in an upward trend,

which means that x is positive. This gives the following coordinates of |ψ〉N :

x = 0.2582634314

y = 0.5669215113

z = −0.7822403723

Similar to before one can calculate θN = 141.4678◦ and φN = 65.5091◦. Using these values,

the experimentally recovered density operator ρe,A can be determined:

ρe,A = 1
2

 0.2177 0.2582− 0.5669i

0.2582 + 0.5669i 1.7823


76



Figure 31: Nuclear tomography of the (θN = 137.02◦, φN = 53◦) state using using intensity

data in (a to c) and intensity contrast data (d to f). The duration of the π-pulse found in the

reference measurement does not exactly match with the x- and y-Rabi. However, the initial

phases and amplitudes match rather well. a) Intensity reference Rabi oscillations, measured

with an off-resonance 137.02◦ pulse and 0◦ phase difference. b) Intensity x-Rabi measured with

an on-resonance 137.02◦ pulse and 217◦ phase difference.c) Intensity y-Rabi measured with an

on-resonance 137.02◦ pulse and 307◦ phase difference. d) Contrast reference Rabi oscillations.

e) Contrast x-Rabi oscillations. f) Contrast y-Rabi oscillations.

Phase quantum state tomography

The x-phase α is found to be −140.0881809◦ and the y-phase β is 157.2769148◦. As both

angles are larger than 90 degrees in absolute value, the formulas (17) and (18) must be solved

using 180◦ − |α| = 39.9118191◦ and 180◦ − |β| = 22.72308524◦. From the signs of α and

β it is clear that φ ∈ [0◦, 90◦] and thus an offset of 90 degrees is to be used. This gives θN =

136.9100◦ and φN = 63.4052◦, from which ρe,P can be determined.

ρe,P = 1
2

 0.2697 0.3058− 0.6109i

0.3058 + 0.6109i 1.7303


Discussion and verification of the results

As before, the experimentally obtained density operators are similar to the theoretical one. This
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is illustrated in figure 32.

Figure 32: Comparison of the real and imaginary parts of the theoretical density operator with

the experimentally determined density operators, using AQST on intensity and contrast data,

and PQST.

Using these density operators, the fidelities of both measurements can be determined. The con-

trast AQST measurement has a fidelity of FC
A = 0.9935 (compare with FA = 0.9914) and the

PQST measurement has a fidelity of 0.9962. On figure 31, the ideal Rabi oscillations expected

for ρt were also plotted in blue over the experimental data. The frequency of the x- and espe-

cially the y-Rabi are slightly larger than the frequency of the reference Rabi. Because of this,

the ideal Rabi oscillations (with the same frequency as the reference Rabi) look less similar to

the experimental data. The separation between the ideal curves and the fitted Rabi signal is still

within noise level and therefore the deviation of the reference frequency can be attributed to the

fit itself. Using a larger RF pulse duration interval, this error might be corrected, as it allows to

better fit the frequency.

The calculated fidelities can be compared with a ’worst case’ tomography as was done in the

previous subsection. These calculations give AQST angles θCN = 162.7402◦ and φCN = 58.3218◦

resulting in a fidelity FC
A = 0.9500 for contrast data and give θN = 168.0179◦, φN = 44.2536◦

and FA = 0.9278 for intensity data. The ’worst case’ PQST calculations give θN = 132.6006◦
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and φN = 77.6463◦ and a fidelity of FP = 0.9757.

The entire QST measurement protocol (reference Rabi, x-Rabi, y-Rabi) was repeated two more

times, to check the obtained results. The first repetition suffered most from sample drift and

showed an AQST fidelity of FC
A = 0.9642 (a significant improvement compared to the fidelity

calculated using regular intensity data FA = 0.9004) and a PQST fidelity of 0.9993, showing

once again that PQST is less affected by sample drift than AQST. The second repetition showed

an AQST fidelity of FC
A = 0.9969 (compared to FA = 0.9876) and a PQST fidelity of 0.9919.

7.2.3 QST of the state (θN = 87.6◦ and φN = 270◦)

For state vectors close to the axes, it’s harder to perform QST using these Rabi-based protocols,

especially for AQST. This has multiple reasons. For example, when |ψ〉N is aligned with the

z-axis, this means that the reference Rabi, x-Rabi and y-Rabi all have the same (maximum)

amplitude. Due to small measurement errors or sample drift, the x- or y-Rabi amplitude could

become a bit larger than the reference Rabi, leading to complex coordinates in the calculation,

which needs to be corrected. The same thing can happen when performing AQST on a state

along the x- or y-axis. Here, either the x-Rabi or y-Rabi will have approximately the same

amplitude as the reference Rabi and the other one will have zero amplitude. Apart from the

fact that it is hard to measure this zero-amplitude Rabi (one has to wait a long time for noise to

cancel out and to be sure that the amplitude really is zero), it is also hard to fit reliably because

of the low signal-to-noise ratio (SNR). PQST also shares this problem. The lower the SNR, the

harder it becomes to determine the phase correctly.

To test this limiting behavior, QST of the state (θN = 87.6◦, φN = 270◦) is performed. This state

lies closely to the negative y-axis, but not exactly along it, so some y-Rabi oscillations should

still be detectable. The density operator of this state is given below:

ρt = 1
2

 1.0419 0.9991i

−0.9991i 0.9581


In figure 33 the results of the reference Rabi measurement and the Rabi measurements in the x-

and y-direction are given for both the regular and contrast intensity data. To create the desired

state, TRF was taken equal to 87.6◦

180◦
Tπ creating a 87.6◦-pulse and the phases of the x-Rabi and
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y-Rabi were taken to be 0 and 90 degrees.

Figure 33: Nuclear tomography of the (θN = 87.6◦, φN = 270◦) state using intensity data in

(a to c) and intensity contrast data (d to f). a) Reference Rabi oscillations, measured with an

off-resonance 87.6◦ pulse and zero phase difference. b) x-Rabi measured with an on-resonance

87.6◦ pulse and 0◦ phase difference. c) y-Rabi measured with an on-resonance 87.6◦ pulse and

90◦ phase difference. d) Contrast reference Rabi oscillations. e) Contrast x-Rabi oscillations.

f) Contrast y-Rabi oscillations.

Amplitude quantum state tomography

Using the presented contrast measurements, the values for x2, y2 and z2 can be determined.

The amplitudes of the Rabi oscillations are AR = 2.042221%, Ax = 2.074685% and Ay =

0.001788%. This gives for the coordinates of |ψ〉N :

x2 = −0.0320455334

y2 = 0.9999992335

z2 = 0.0320463

It can be seen that, using these values, x would get a complex value. This is not possible

of course, but can be overcome by taking x =
√
|x2|. For small values of x this is a good

approximation. Both the x- and y-Rabi start off in a increasing fashion, implying that x is
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positive and y is negative. Furthermore, the x-Rabi starts above its mean value (techically the

first datapoint lies above, but it’s better to look at the fit here) and the y-Rabi starts off below.

Normally, this should not happen, but at this limiting case it is possible that there are slight

deviations from this rule. As the y-Rabi is much weaker than the x-Rabi, the sign of z will

be determined using the latter and is found to be negative. All of this leads to the following

coordinates:

x = 0.1790126627

y = −0.9999996167

z = −0.1790148038

Formula 13 then allows to calculate θN = 99.9937◦ and φN = 280.1492◦. An angle of 180◦ had

to be added to θN and an angle of 360◦ to φN to get the correct results. In this way, the AQST

density operator can be found:

ρe,A = 1
2

 0.8265 0.1735 + 0.9694i

0.1735− 0.9694i 1.1735


Phase quantum state tomography

With PQST, the intensity data is fitted to find the phases of the x- and y-Rabi oscillations. This

gives: α = 93.79319106◦ and β = 42.19261203◦. Normally, it’s not possible for α to be larger

then 90 degrees when β is not, but as stated before this is a limiting case. As the y-Rabi has a

much weaker signal than the x-Rabi, α is used to determine that θN is larger than 90 degrees.

The step-by-step plan presented in section 4.7.2 dictates that α′ = 180◦ − |α| = 86.20680894◦

and β′ = β should be used in the calculations. As α and β are both positive, this means that

an offset of 270 degrees must be used. After calculation, one finds φN = 273.4395◦. This

can be used in formula (17) to determine θN , which is found to be 93.7932◦. Then ρe,P can be

determined.

ρe,P = 1
2

 0.9340 0.0599 + 0.9960i

0.0599− 0.9960i 1.0660


Discussion and verification of the results

Both of the experimental density operators correspond to some extent to the theoretical one,

which is illustrated in figure 34.

The AQST measurement has a fidelity of FC
A = 0.9806 and the PQST measurement has a

fidelity of FP = 0.9962. The AQST fidelity is lower than in previous measurements, but this
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Figure 34: Comparison of the real and imaginary parts of the theoretical density operator with

the experimentally determined density operators.

particular state is also harder to measure than the other ones because |ψ〉N was close to the

y-axis. Without using the contrast, the AQST fidelity would be slightly higher at FA = 0.9863.

The PQST fidelity is high, even if β lies far from its ideal value of zero. This is because φN is

calculated from the ratio of tan(β) and tan(α) and α lies close to 90 degrees, making the de-

nominator much bigger than the numerator. Therefore, even if the y-phase cannot be measured

as accurately as normally, this does not necessarily matter as long as α ∼ 90◦. The correspon-

dence of the theoretical and experimental states can also be visualized by plotting the theoretical

Rabi oscillations on top of the experimental ones, as was also depicted in figure 33. Especially

the x-Rabi is close to the theoretical one.

For this particular measurement, the ’worst case’ AQST gives angles θN = 117.7200◦ and

φN = 299.7985◦ and a fidelity of FA = 0.8740 for intensity data, and gives θCN = 117.9902◦

and φCN = 302.1060◦ and a fidelity of FC
A = 0.8638 for contrast data. The ’worst case’ PQST

measurement gives angles θN = 99.7777◦ and φN = 281.7042◦ and a fidelity of FA = 0.9785.

To quantify the reproducibility of this measurement technique, the presented QST was per-

formed multiple times. However, because of the difficulties explained at the start of this sub-
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section, most measurements were unsuccessful. This could be seen even before the calculations

because Ax would become larger than AR, which is theoretically not possible. If one sees this

happening, one could choose to discard the measurement and start new measurements until

AR > Ax. Doing this, the above results and fidelity were obtained. Note that even though

AR > Ax for intensity data, the reverse was true for contrast data, so even when one repeats

the measurements until AR > Ax, it could still be that the contrast data generates complex co-

ordinates. Therefore, one could also choose to keep the measurement with AR < Ax. The next

paragraph illustrates what can happen in such a situation.

What to do when sample drift is clearly present in the QST measurements

Below, the results of a second QST measurement (using intensity data) of the state |ψ〉N with

θN = 87.6◦ and φN = 270◦ are presented. For generic states, it may be hard to discern whether

the amplitude of a certain Rabi measurement has been affected by drift, but for the presented

measurement Ax > AR indicates that AR is lower than it should be because of drift and no

confusion is possible. The presented measurement suffered in particular from sample drift

(AR << Ax) and the measured amplitudes as a result do not provide correct information about

the quantum state.

AR = 394.8050 counts/ s

Ax = 450.9005 counts/ s

Ay = 80.6450 counts/ s

ACR = 2.2705805%

ACx = 2.188232%

ACy = 0.15691202%

α = 87.6052◦

β = 49.5895◦

These fit parameters, together with the fact that x is positive, y is negative and z is positive,

can be used to determine θN and φN . Hereby, it must be noted that in the intensity AQST

calculations a correction for the negative x2 value was necessary, and in the contrast AQST

calculations for the negative z2 value. AQST calculations on intensity data give θN = 62.3661◦

and φN = 299.4042◦, which results in a low measurement fidelity of FA = 0.8953. Using

instead contrast data, the angles θN = 75.9849◦ and φN = 284.9765◦ can be determined,

resulting in an increased fidelity of FC
A = 0.9733. For PQST, sample drift does not necessarily
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deteriorate the resulting fidelity. Using α and β as presented, it can be determined that θN =

87.6081◦ and φN = 272.8122◦. This lies much closer to the theoretical values and gives a

fidelity of Fp = 0.9994. It can thus be concluded that the effect of ’bad’ amplitudes is mostly

confined to AQST and has no visible effect on the fidelity of PQST. Therefore, if one wishes

to use AQST, one should rerun the measurement until AR > Ax (or at least until the difference

between AR and Ax is small) and use contrast data. This is not necessary when one wishes to

use PQST.

7.2.4 Summary of QST results

Table 1 summarizes the obtained angles and fidelities for all nuclear states on which tomography

was performed. In this way, the results of AQST with intensity or contrast data and PQST can

be compared within the measurement of a single nuclear spin state and across all measurements.

Taking the average fidelity of the first five measurements in table 1 (so excluding the limiting

cases), the following numbers are found:

FA = 0.9741

FC
A = 0.9890

FP = 0.9971

Note that the fourth measurement was severely impacted by sample drift, so calculating the

average AQST fidelity without taking this measurement into account results in FA = 0.9925 and

FC
A = 0.9952. In this case, the fidelity of each QST protocol is approximately equal to or better

than the two-qubit CNOT fidelity measured by Rong et al. [56] in a naturally abundant 13C

diamond at room temperature. Lastly, using the final two measurements the limiting average

fidelities can be determined as FA = 0.9408, FC
A = 0.9770 and FP = 0.9978. Taking all

measurements into account, the average achievable two-qubit fidelity for QST of a general

nuclear spin state is given by:

FA = 0.9646

FC
A = 0.9856

FP = 0.9973

When taking into account that two of the seven measurements were pushing the limits of the

used QST protocols and that another measurement was clearly affected by sample drift, the
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resulting fidelities (especially for PQST) are high. The fault-tolerant threshold is typically pro-

posed between 10−4 and 10−2, depending on both the noise model that is used and the com-

putational overhead [56]. For example, using the so-called fault-tolerant quantum computing,

researchers aim to compute accurately even when the used quantum gates have a high error

probability (or accordingly, a low fidelity). In 2005 Knill [57] showed that non-trivial quan-

tum computations could be implemented using quantum resources comparable to the digital

resources of the computers of that time with fidelities as low as 0.99. Using more involved

computational overhead, this could even drop to 0.97, at which point contrast AQST and PQST

give results sufficiently below the fault-tolerant threshold, and this at ambient conditions.

Note also that the calculated fidelities are the result of both the creation and subsequent mea-

surement of the nuclear spin state via the electron spin. Therefore, the fidelity is limited by

imperfect manipulations of the nuclear spin (for example because of imperfect control fields),

interactions between the quantum system and the environment, and imperfect fitting due to

residual noise. The fact that the two-qubit fidelity of the electronic readout of the nuclear spin

is good, may be due to the quantum non-demolition (QND) nature of the measurement [58].

Such QND measurements are obtained when the Hamiltonian describing the interaction be-

tween the observable (in this case the nuclear spin) and the measurement apparatus (in this case

the electron spin) commutes with the observable itself. In this case, the coupling between the

nuclear and electron spin happens through hyperfine coupling and the approximate Hamiltonian

Ĥ = DS2
z + gµBBNV SZ +ASZIZ + PI2

Z that was presented in formula (3) clearly commutes

with IZ . As no non-commuting observables are present in the measurement, no uncertainty is

introduced to the measurement in this way. This means that the predictability of a subsequent

value of a once precisely measured observable is maintained [59]. Keep in mind however, that

the QND character of the measurement is only approximate. The hyperfine coupling tensor

A also contains contributions perpendicular to the NV axis, which results in spin mixing and

quantum jumps (abrupt, discontinuous evolutions of a quantum state). If the jump time is longer

than the measurement time, the QND measurement can be deemed successful. This is interest-

ing to investigate in future work.

As a last remark, the adaptation of the presented QST protocols for mixed-state determination

is envisioned. This will provide a more complete procedure to determine any nuclear spin state

(pure or mixed), which is for example useful for quantum thermodynamic applications.
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Table 1: Results of intensity AQST, contrast AQST and PQST calculations for all performed

QST measurements.

θN = 58.41◦, φN = 249◦ Measurement 1 Measurement 2

θA 50.3479 58.3851

φA 242.0980 243.3618

FA 0.9927 0.9982

θCA 48.1344 57.3224

φCA 247.8780 243.8386

FC
A 0.9919 0.9985

θP 60.8178 58.9123

φP 248.4340 254.1850

FP 0.9995 0.9985

θN = 137.02◦, φN = 53◦ Measurement 1 Measurement 2 Measurement 3

θA 145.3984 100.2758 126.6436

φA 63.58559 50.6054 42.9581

FA 0.9914 0.9004 0.9876

θCA 141.4678 115.2077 131.7113

φCA 65.5091 53.7838 48.1563

FC
A 0.9935 0.9642 0.9969

θP 136.9100 136.6825 142.7954

φP 63.4052 48.5976 39.7088

FP 0.9962 0.9993 0.9919

θN = 87.6◦, φN = 270◦ Measurement 1 Measurement 2

θA 97.5928 62.3661

φA 279.0506 299.4042

FA 0.9863 0.8953

θCA 99.9937 75.9849

φCA 280.1492 284.9765

FC
A 0.9806 0.9733

θP 93.7932 87.6081

φP 273.4395 272.8122

FP 0.9962 0.9994
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8 Conclusion

In this master thesis I investigated control and readout protocols of the 14N nuclear spin asso-

ciated to an NV center with the aim of future implementation in an NV-based quantum Otto

engine, for which I discussed the theoretical foundation. In a broader context, this work con-

tributes to the wide range of possible applications of NV centers in quantum thermodynamics

and quantum information theory, which can be found in present-day literature.

The presented NV quantum Otto engine is mostly based on the work by Peterson et al. (which

was also verified using MatLab simulations), since the system employed there is similar to the

two-qubit system consisting of an NV electron and associated 14N nuclear spin. In this cycle,

the NV electron spin is used as a heat bus, the associated 14N spin as working substance, MW

modes near the electron Larmor frequency νe make up the hot environment and RF modes near

the 14N Larmor frequency νN the cold environment. I presented an initial state preparation of

the two nuclear spins theoretically in section 5.7 and have experimentally demonstrated this to

certain extent experimentally. The pulse protocol from the NMR-based Otto engine can essen-

tially be used with an adapted coupling mechanism (hyperfine coupling).

To manipulate the electron and 14N nuclear spin of an NV center, control parameters (resonance

frequencies and π-pulse durations between different energy levels) had to be determined. For

this, I have executed multiple measurements and derived the control parameters by fitting the

acquired data. The electronic π-pulse was set at∼ 800 ns, which was verified by Rabi measure-

ments, and at this long duration the hyperfine structure (due to the presence of the 14N nuclear

spin) could be resolved in pulsed ODMR measurements of the electronic spin. Narrowband

nuclear spin-state selective MW pulses at these resonance frequencies can then be applied to

flip the electronic spin depending on the state of the nuclear spin. This enables to manipulate

nuclear spins (e.g. polarization) and to perform ENDOR measurements of the 14N spin. For the

nuclear spin, the duration of the π-pulse was set at ∼ 16.5µs, which was also verified by Rabi

measurements. The resonance frequency of the | − 1, 0〉 ↔ | − 1, 1〉 transition was theoreti-

cally predicted to be ∼ 7.11 MHz, which was verified using a nuclear ODMR protocol. The

linewidth of this resonance was sufficiently broad to excite the |0,−1〉 ↔ |1,−1〉 transition as

well. The |0, 0〉 ↔ |, 1〉 transition at ∼ 4.95 MHz was also probed with nuclear ODMR.
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With the electronic and nuclear control parameters in hand, the NV two-qubit system could be

polarized to the |0, 0〉 state. After ENDOR readout, it was seen that the system was not com-

pletely polarized, but some population remained in the mI = ±1 states. However, since the

difference in contrast between the |0〉N (C =∼ 19%) and |0,±〉N (C =∼ 6.5%) resonances

was ∼ 12.5%, the polarization is still sufficient. Then, I used this polarization sequence to gen-

erate nuclear Rabi oscillations with a higher contrast. For a perfect polarization, the contrast

should increase threefold compared to the depolarized case. As the polarization was imperfect,

the contrast increase was limited to approximately twofold. In future works, this polarization

could be optimized by measuring the duration of the RF and MW π-pulses more precisely. This

could be done using very long measurements (using large τ ) providing a lot of Rabi periods.

Besides the necessary control parameters, I optimized other aspects of the pulse protocols as

well to provide a good control of the nuclear and electronic spin. For example, the duration

of the laser pulse responsible for the electronic spin flip from mS = ±1 to mS = 0 in the

polarization protocol was optimized so that the required spin flip took place, but the nuclear

spin was unaffected. Using a laser power of 1 mW, an optimal duration of 500 ns was found.

In a further study, it is interesting to look at the duration of the initializing laser pulse of each

sequence as well, since it was discovered to be too short to fully depolarize the nuclear spin.

I also investigated the effects of the application of RF waves, namely the shift in resonance

frequencies and drift of the diamond sample. With application of more (or longer) RF waves,

the resonance frequencies shift more towards lower values. This is a shift in zero-field splitting

as both the |0〉e ↔ | − 1〉e and |0〉e ↔ |1〉e transition frequencies shift in the same direction.

To overcome this problem, each measurement using RF waves was preceded by the same mea-

surement protocol using off-resonance RF waves in presence of a swept MW field, indicating

the RF modified resonance frequencies. The sample drift was also found to increase when the

amount of applied RF fields increased. This was partly solved by implementing a function in

the software to keep the NV center in focus by comparing measured PL intensities at all times

and correcting the position of the laser focus when this intensity changed too much (> 50%).

For the last experimental step, I created three different generic nuclear spin states |ψ〉N =

cos( θN
2

) + eiφNsin( θN
2

) and performed a subsequent tomography of this state. I have executed

the measurement protocol and have modeled the data using the theory devised in section 5.6

for three nuclear states. Two of these states used randomly selected angles: (θN = 58.41,
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φN = 249) and (θN = 237.02, φN = 53), the third state was chosen in the vicinity of the

negative y-axis on the Bloch sphere to test the limits of the used QST protocol. I have measured

the fidelity of the newly designed protocols and have demonstrated the overall superiority of the

PQST method compared to the AQST method with a maximum fidelity of Fmax
P = 0.9995 and

an average fidelity (over seven measurements of the three mentioned states) of F avg
P = 0.9973.

This is close to the limits needed to execute effectively quantum error correction protocols,

which is considered as a benchmark for executing computational operations and scaling up the

quantum system. For the AQST calculations, two different methods were used. The first one

determined the amplitudes of the Rabi oscillations using the PL intensity as measured, whereas

the second one used the contrast amplitude. Because the presence of sample drift lowers the

intensity measured, but does not affect the contrast, the second method was best suitable. With

this method, I obtained a maximum two-qubit fidelity of FC,max
A = 0.9985 (compare with

Fmax
A = 0.9982 for intensity data) and an average fidelity of FC,avg

A = 0.9856 (compare with

F avg
A = 0.9646). Note that the maximum fidelities are not far apart, since the measurement for

which they were obtained suffered little from sample drift. However, other measurements did,

so the difference between the average fidelities is larger. Note also that these fidelities express

how well a nuclear state could be created and then read out through the electron spin, as the used

protocol combined the creation of a specific state and subsequent tomography. In future works,

this state preparation could be decoupled from the QST measurement scheme, and the obtained

fidelities could be compared to the ones obtained here. These QST protocols are essential to

characterize the expansion and compression protocols in NV-based quantum Otto engines. In

addition, the possibility of creating a protocol for mixed state QST can be investigated. This

would make QST useful for validating thermal states in the quantum Otto cycle as well.

89



9 Acknowledgements

To start, I would like to express my gratitude to prof. dr. Milos Nesladek, without whom this

project would not have been possible. I am extremely thankful to have been able to conduct my

master thesis on the topic of NV centers, in which I am very much interested, and appreciate

the opportunity given to me by prof. Nesladek, as well as all of his helpful remarks, advice and

sharing of his expertise in the field. In this regard, I would also like to pay my special regards to

prof. dr. Jacques Tempere of Antwerp University, who has kindly agreed to be my copromotor

and who has given me the chance to present my work for him and his colleagues in Antwerp,

while also helping me with the formalities of my thesis submission. For his help in guiding me

through the principles of quantum thermodynamics, quantum heat engines and counteradiabatic

driving, and for his most helpful remarks on my experimental progress and the design of an

NV-based quantum Otto engine prototype, I would like to express my sincere gratitude to dr.

Abhishek Shukla, my second copromotor. Special thanks also to PhD student Michael Petrov,

who has been a tremendous help in working with the experimental set-up, understanding the

software and implementing the pulse protocols, while also commenting on my progress. Finally,

I am grateful to my parents and my friend Remy Vandebosch for proofreading my thesis.

90



References

[1] R. Kosloff and A. Levy, “Quantum Heat Engines and Refrigerators : Continuous Devices,”

Annu. Rev. Phys. Chem., vol. 65, no. 93, pp. 365–393, 2014.

[2] F. Binder and L. A. Correa, Thermodynamics in the Quantum Regime. Cham: Springer

Nature Switzerland AG, 195 ed., 2018.

[3] S. Deffner and S. Campbell, An introduction to the thermodynamics of quantum informa-

tion. San Rafael,: Morgan & Claypool Publishers, 2019.

[4] B. Ca̧kmak, “Finite-time two-spin quantum Otto engines: Shortcuts to adiabaticity vs.

Irreversibility,” Turkish Journal of Physics, vol. 45, no. 1, pp. 59–73, 2021.

[5] L. Childress and R. Hanson, “Diamond NV centers for quantum computing and quantum

networks,” MRS Bulletin, vol. 38, no. 2, pp. 134–138, 2013.

[6] P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski,

D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin,

“Room-temperature quantum bit memory exceeding one second,” Science, vol. 336,

no. 6086, pp. 1283–1286, 2012.

[7] J. Cramer, N. Kalb, M. A. Rol, B. Hensen, M. S. Blok, M. Markham, D. J. Twitchen,

R. Hanson, and T. H. Taminiau, “Repeated quantum error correction on a continuously

encoded qubit by real-time feedback,” Nature Communications, vol. 7, no. May, pp. 1–7,

2016.

[8] T. Xie, Z. Zhao, X. Kong, W. Ma, M. Wang, X. Ye, P. Yu, Z. Yang, S. Xu, P. Wang,

Y. Wang, F. Shi, and J. Du, “Beating the standard quantum limit under ambient conditions

with solid-state spins,” Science Advances, vol. 7, no. 32, pp. 1–11, 2021.
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A Derivation of the general CD Hamiltonian

In section 5.7.4, formula (40) gives a general expression for the counteradiabatic driving Hamil-

tonian. Using Berry’s work [43] as a reference, the expression for ĤCD is now derived using

formula (37) as a starting point. This formula expresses the time independent Schrödinger

equation for a general quantum system evolving under Hamiltonian Ĥ0(t).

Ĥ0(t)|n(t)〉 = En(t)|n(t)〉 (A1)

As stated, in the adiabatic approximation, the states driven by Ĥ0(t) are:

|ψn(t)〉 = exp
[

1
i~

∫ t
0
dt′En(t′)−

∫ t
0
dt′〈n(t′)|δt′n(t′)〉

]
|n(t)〉 (A2)

The goal now is to find a counteradiabatic driving Hamiltonian ĤCD(t), so that the previous

states are eigenvalues of this Hamiltonian (and therefore, no transitions can happen, even at

finite time driving). To find the expression for ĤCD(t), it is instructive to inspect first the

unitary operator Û(t) given in the following formula:

Û(t) =
∑

n exp
[

1
i~

∫ t
0
dt′En(t′)−

∫ t
0
dt′〈n(t′)|δt′n(t′)〉

]
|n(t)〉〈n(0)| (A3)

If the system is in state |n(0)〉 before the driving, then applying Û(t) generates the state |ψn(t)〉.

Then to find a Hamiltonian which will cause exactly this behavior, one can solve the Schrodinger

equation using Û(t) (as this is just the regular Schrödinger equation multiplied by 〈n(0)| on the

right).

i~δtÛ(t) = ĤCD(t)Û(t) (A4)

⇒ ĤCD(t) = i~(δtÛ(t))Û †(t) (A5)

Formula (A3) can be substituted into formula (A5) as follows:

ĤCD(t) = i~ exp
[

1
i~

∫ t
0
dt′(En(t′)− Em(t′))−

∫ t
0
dt′(〈n(t′)|δt′n(t′)〉 − 〈m(t′)|δt′m(t′)〉)

]
·∑

n(|δtn(t)〉〈n(0)|+ En(t)
i~ |n(t)〉〈n(0)| − 〈n(t′)|δt′n(t′)〉|n(t)〉〈n(0)|)·∑

m |m(0)〉〈m(t)|

= i~
∑

n
En(t)
i~ |n(t)〉〈n(t)|+ |δtn(t)〉〈n(t)| − 〈n(t′)|δt′n(t′)〉|n(t)〉〈n(t)| (A6)

To go from the first step to the second, one uses that 〈n(0)|m(0)〉 = δnm. Furthermore, the

following expressions were used:
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Û †(t) =
∑

n exp
[
−1
i~

∫ t
0
dt′En(t′) +

∫ t
0
dt′〈n(t′)|δt′n(t′)〉

]
|n(0)〉〈n(t)|

δtÛ(t) =
∑

n exp
[

1
i~

∫ t
0
dt′En(t′)−

∫ t
0
dt′〈n(t′)|δt′n(t′)〉

]
(|δtn(t)〉〈n(0)|+ En(t)

i~ |n(t)〉〈n(0)| − 〈n(t′)|δt′n(t′)〉|n(t)〉〈n(0)|)

This proves formula (40).
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B Derivation of the CD Hamiltonian for 1/2-spins in an am-

bient magnetic field

A spin in an ambient magnetic fieldB0(t) can be described by the following Hamiltonian:

Ĥ0(t) = γB0(t) · Ŝ (B1)

Here, γ is the gyromagnetic ratio of the spin of interest and Ŝ is the spin vector operator of this

particular particle. As HCD(t) is derived in particular for S = 1/2 particles, this operator is

given by:

Ŝ = ~
2

0 1

1 0

 î+ ~
2

0 −i

i 0

 ĵ + ~
2

1 0

0 −1

 k̂ (B2)

From equation (42), taking B0(t) in the z-direction for now, the extra term Ĥ1(t) in the coun-

teradiabatic driving Hamiltonian is given by:

Ĥ1(t) = i~γδtB0(t)
∑1/2

n=−1/2

∑
m 6=n
|m(t)〉〈m(t)|Ŝ|n(t)〉〈n(t)|

En(t)− Em(t)
(B3)

In this formula, the energy is given by (where B0(t) is the magnitude ofB0(t)):

En(t) = γ~nB0(t) (B4)

Expanding the summations and inserting this into the formula (B3) gives:

Ĥ1(t) = i
B0(t)

δtB0(t)[| ↓ (t)〉〈↓ (t)|Ŝ| ↑ (t)〉〈↑ (t)| − | ↑ (t)〉〈↑ (t)|Ŝ| ↓ (t)〉〈↓ (t)|] (B5)

The matrix elements are given by:

〈↓ (t)|Ŝ| ↑ (t)〉 = 〈↓ (t)|Ŝxî+ Ŝy ĵ| ↑ (t)〉

= ~
2
(̂i+ iĵ) (B6)

〈↑ (t)|Ŝ| ↓ (t)〉 = 〈↑ (t)|Ŝxî+ Ŝy ĵ| ↓ (t)〉

= ~
2
(̂i− iĵ) (B7)

Formulas (B6) and (B7) were determined using the general formulas for matrix elements of

Pauli spin operators:

〈n± 1|Ŝx|n〉 = ~
2

√
s(s+ 1)− n(n± 1) (B8)

〈n± 1|Ŝy|n〉 = ∓ i~
2

√
s(s+ 1)− n(n± 1) (B9)
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Before ĤCD can be determined, only | ↓ (t)〉〈↑ (t)| and | ↑ (t)〉〈↓ (t)| must be calculated. This

is done in the following basis:

| ↑ (t)〉 =

1

0

 and | ↓ (t)〉 =

0

1

 (B10)

Giving:

| ↓ (t)〉〈↑ (t)| =

0 0

1 0

 and | ↑ (t)〉〈↓ (t)| =

0 1

0 0

 (B11)

Substituting (B6), (B7) and (B11) into (B5) gives the proof of formula (44) for spin 1/2 systems:

Ĥ1(t) = i
B0(t)

δtB0(t)[~
2
(̂i+ iĵ)

0 0

1 0

− ~
2
(̂i− iĵ)

0 1

0 0

]

= 1
B0(t)

δtB0(t)[~
2
(îi− ĵ)

0 0

1 0

− ~
2
(îi+ ĵ)

0 1

0 0

]

= 1
B0(t)

δtB0(t)[~
2

0 −i

i 0

 î− ~
2

0 1

1 0

 ĵ]

= 1
B0
δtB0[Ŝy î− Ŝxĵ]

= 1
B0

(δtB0,xSy − δtB0,ySx) (B12)

Although this result was derived for spin 1/2 systems, it is valid for all possible S. Reverting

back to general axes, formula (B12) can be expressed as:

Ĥ1(t) = 1
B2

0
δtB0 × S ·B0

= 1
B2

0
B0 × δtB0 · S (B13)

Equation (B12) can be found back from (B13) by carrying out the cross and scalar product and

then taking the z-component (B0(t) = B0(t)k̂). Together with the expression for Ĥ0(t), the

full counteradiabatic driving Hamiltonian is then given by (B14) below, which concludes the

proof of formula (44).

ĤCD(t) = Ĥ0(t) + Ĥ1(t)

= [γB0(t) + 1
B0(t)2B0(t)× δtB0(t)] · S (B14)
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