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Chapter 1

Introduction

Microorganisms have developed a myriad of sensory and regulatory mechanisms to
adapt their metabolic state to cellular and environmental cues. Synthetic biologists have
tapped into these systems to construct whole-cell biosensors: microbial cells able to
specifically and dose-dependently convert a chemical signal to a change in gene ex-
pression. Biosensors based on metabolite-responsive transcription factor (MRTFs) have
been applied in diverse metabolic engineering applications, including real-time moni-
toring, high-throughput screening, adaptive laboratory evolution and dynamic pathway
regulation. For the latter, biosensors are used to autonomously adapt metabolic flux
by regulating key pathway enzymes in response to changes in intracellular metabolite
concentration, and increased production titers, rates and yields have resulted from their
implementation.

3-Hydroxypropionic acid is considered as one of the top value-added chemicals for mi-
crobial production from renewable feedstocks, and biosensors have been applied to im-
prove its production through different pathways. However, the heterologous pathway
starting from β-alanine has not yet been addressed in this context, which might be due
to the lack of characterised biosensors responsive to β-alanine until recently. These
biosensors could also prove beneficial in other applications, as β-alanine is a popular
food supplement among athletes for improving their performance during high-intensity
exercise.
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CHAPTER 1. INTRODUCTION 2

In order to optimally benefit practical applications, biosensors need to be tunable. How-
ever, the effect of different interventions to the biosensor dose-response curve is com-
plex and not entirely understood. Different mathematical models have been developed
to assist in biosensor design, exposing interesting parameters to facilitate response curve
engineering. Notably, Mannan et al. (2017) proposed that their simple phenomenolog-
ical model is widely applicable across different MRTF-based biosensor architectures.
Although frequently cited in literature, this model has not yet been further evaluated by
independent researchers.

In this work, whole-cell biosensors are reviewed and their application in metabolic en-
gineering is illustrated with a case study on 3-hydroxypropionic acid. Next, the use
of mathematical models for the study of biosensors is discussed and the different tran-
scription factors responsive to β-alanine are cited. Furthermore, simulations of the phe-
nomenological model ofMannan et al. (2017) are studied to provide further insight in the
effect of the tunable parameters of MRTF-based biosensors of the repressed-repressor
architecture, and a parameter estimation method is implemented to fit biosensor char-
acterisation data to the model. Finally, an array of β-alanine-responsive biosensors are
characterised in vivo, and their response curve was engineered by tuning the MRTF ex-
pression level and mutating predicted transcription-factor binding sites.



Chapter 2

Literature review

2.1 Whole-cell biosensors

Microorganisms have evolved mechanisms to sense and adapt to cellular and environ-
mental signals. Synthetic biologists have exploited this body of sensory systems to con-
structwhole-cell biosensors: microbial cells that convert a chemical (e.g. concentration)
or physical (e.g. temperature) signal into a change in gene expression. Depending on
the application, the target genes code for proteins ranging from fluorescent reporters to
enzymes. Whole-cell biosensors have been extensively studied to probe intracellular
metabolite concentrations for applications in metabolic engineering (Qin et al., 2022).
Therefore, this review focuses on metabolite-responsive biosensors in microorganisms.
This section sets out the major mechanistic classes and applications of these biosensors.

2.1.1 Mechanistic classification of biosensors

2.1.1.1 Metabolite-responsive transcription factor-based biosensors

Metabolite-responsive transcription factor (MRTF)-based biosensors apply MRTFs to
regulate the transcription of a particular gene of interest. In nature, transcription factors
bind to specific DNA [deoxyribonucleic acid] sequences on the genome (transcription-
factor binding sites or TFBSs) to repress or activate transcription of target genes (Fig-
ure 2.1A). This leads to the distinction between repressor and activator transcription
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factors, respectively. In addition to this regulation module, MRTFs encompass a sens-
ing module. Typically, binding of the cognate metabolite (the effector) to the effector-
binding domain of theMRTF relays conformational changes to theDNA-binding domain
(DBD) (Fic et al., 2009). Effector binding can either activate or reverse the activity of
the MRTF, giving rise to four patterns (Figure 2.1B) (Mannan et al., 2017). However,
more complex mechanisms exist, where an MRTF both acts as repressor and activator
for different operons (Pastan & Adhya, 1976; Platko et al., 1990; Henry & Cronan Jr,
1991; Pittard & Davidson, 1991) or for the same operon in response to effector binding
(Englesberg et al., 1969; Ni’Bhriain et al., 1983; Charlier et al., 1993; Bhagwat et al.,
1997).

A B

Figure 2.1: Metabolite-responsive transcription factor (MRTF)-based biosensors.
(A) MRTFs generally consist of two domains: an effector-binding domain (EBD) re-
sponsible for binding of the effector molecule and a DNA-binding domain (DBD) re-
sponsible for interaction with the transcription factor binding site (TFBS) of a gene of
interest (GOI). (B) Possible interactions between effector, MRTF and GOI, giving rise
to four patterns of biosensors. Adapted from Wu, Du, Chen & Liu (2020).

Patterns 3 and 4 (Figure 2.1B) are overrepresented in biosensor literature as they con-
stitute inducible systems (Wu, Du, Chen & Liu, 2020). However, some important com-
pounds still lack a biosensor (Qin et al., 2022). Hanko et al. (2020) formulated a method
to mine metabolite-inducible transcription factors from any genome sequence to fill this
gap. The researchers relied on the common feature that MRTF genes are often arranged
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in a divergent orientation to the operon they regulate in order to link a putative MRTF
gene to its hypothetical effector. Concretely it was assumed that if that operon encoded
at least two enzymes that operate in the same metabolic pathway, the corresponding
MRTF is responsive to the primary substrate metabolised by the enzymes encoded in
the operon. This strategy was applied to Cupriavidus necator H16, a member of the
Betaproteobacteria known for its versatile metabolism and diverse genetic regulation
(Vandamme & Coenye, 2004; Pohlmann et al., 2006). This way, effectors could be pro-
posed for sixteen putative MRTFs, including predicted members of the feast/famine reg-
ulatory protein (FFRP) and GntR transcription factor families (see also Section 2.3). For
each identified inducible system, the MRTF gene and intergenic region were amplified
from the genome of C. necator through polymerase chain reaction (PCR). Biosensors
were constructed by cloning this amplicon into a reporter vector so that amonomeric red
fluorescent protein (mRFP) was placed under transcriptional control of the metabolite-
inducible promoter. For fifteen of the MRTFs, a successful biosensor could be con-
structed, showing induced mRFP fluorescence after adding the predicted effector to the
growth medium (Hanko et al., 2020).

Biosensors are often sourced from an organism distinct from the host where it is applied.
Heterologous biosensors expand the repertoire of perceptible metabolites and should,
in principle, function orthogonal to the host’s metabolism. However, differing codon
usage or regulatory elements might challenge this approach (Carpenter et al., 2018).
Concerning previous paragraph’s example, identified metabolite-inducible biosensors
were tested for their functionality in the industrially important Gammaproteobacteria
Escherichia coli and Pseudomonas putida. Respectively, 7 and 11 out of 15 biosensors
showed a significant increase in fluorescence after ligand addition without any modi-
fication. The β-alanine (BA)-responsive MRTF OapR was insensitive to its ligand in
both E. coli and P. putida. By simply replacing the upstream sequence of oapR with
a medium-strength core promoter and strong ribosome binding site (RBS), a 40- and
3-fold increase in fluorescence was obtained upon ligand addition, respectively (Hanko
et al., 2020).

Biosensors can even be used across domains of life. Numerous reports describe the
usage of biosensors sourced from Bacteria in the industrial production host Saccha-
romyces cerevisiae due to the lack of thoroughly characterised MRTFs in yeast and the
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complexity of its transcriptional regulation network (Teo et al., 2013; Umeyama et al.,
2013; Li et al., 2015; Teo & Chang, 2015; Castaño-Cerezo et al., 2020). However, this
is not without challenges, as the basic transcription factor machinery is very dissimilar
across domains of life, especially between Bacteria on the one hand and Archaea and
Eukaryota on the other hand (Werner & Grohmann, 2011). Therefore, one often relies
on transcriptional repression since this is easier to implement artificially. Indeed, one
can easily imagine a bacterial MRTF to block transcription elongation in a eukaryotic
system (according to the ’roadblock’ mechanism). However, it would be more difficult
to engineer the same MRTF to interface with the eukaryotic transcriptional machinery
and recruit RNA polymerase (RNAP) to the promoter to activate transcription (Carpen-
ter et al., 2018). Still, the complexity of biology can lead to unintended results. In a
recent publication, it was attempted to construct a biosensor in E. coli based on the fatty
acid degradation regulator from archaeal species Sulfolobus acidocaldarius (FadRSa).
In S. acidocaldarius, transcriptional repression by the FadRSa is relieved by the spe-
cific binding of fatty acyl-coenzyme A (CoA) molecules to FadRSa (Wang et al., 2019).
However, when attempted to transfer this system to E. coli, adding the effector did not
induce the expression of the reporter gene mkate2 (Sybers et al., 2022). Hence, a func-
tional biosensor could not be constructed in E. coli since this requires responsiveness to
the effector.

MRTF-based biosensors are the most widely applied type of whole-cell biosensors (Qin
et al., 2022). This is due to several advantages. First, they are abundant in prokaryotes
(Ulrich et al., 2005) and are responsive to a vast repertoire of metabolites (Fernandez-
López et al., 2015). Besides, their intrinsic modularity and relative ease of engineering
decrease the development time for biosensors. A drawback, however, is the relatively
long response time because of the inherent time scales of transcription and translation
(Liu et al., 2015; De Paepe et al., 2017; Carpenter et al., 2018).

2.1.1.2 Two-component regulatory system-based biosensors

In two-component regulatory system (TCRS)-based biosensors, the sensing and regula-
tion modules consist of two distinct proteins: a sensor histidine kinase and a response
regulator (Figure 2.2). The sensor kinase is often integrated into the cytoplasmic mem-
brane, its N-terminal input domain projecting into the extracellular or periplasm and the
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C-terminal transmitter domains located in the cytoplasm (Briegel et al., 2009). In re-
sponse to the presence or absence of a signal sensed by the input domain, the sensor
kinase autophosphorylates at a conserved histidine residue of the transmitter domain.
This phosphate can subsequently be transferred to a conserved aspartate residue of the
receiver domain of the response regulator, leading in most cases to allosteric activation
of an output domain (Ninfa & Magasanik, 1986; Nixon et al., 1986; Hess et al., 1988;
Kofoid & Parkinson, 1988; Stock et al., 2000). Most commonly, the output domain is a
DBD; as such, the response regulator constitutes a transcription factor, either a repressor
or activator (Galperin, 2006). Again, TCRSs are often far more complex than presented
above, as they are most often involved in larger networks (Jung et al., 2012).

Figure 2.2: Example of a two-component regulatory system-based biosensor. After
binding of a ligand (star) to the sensor histidine kinase (HK), it phosphorylates itself. The
posphate group can subsequently be transferred to a response regulator (RR), activating
transcription of a gene of interest in response. Adapted from Liu et al. (2015).

A well-studied and conserved example of a TCRS is embodied by the phosphate (Pho)
regulon (Torres-Bacete et al., 2021). The E. coli Pho regulon encompasses at least 47
genes that are induced under phosphate starvation (Lamarche et al., 2008). Under lim-
iting extracellular concentrations of inorganic phosphate (Pi), the preferred source of
phosphorus, sensor kinase PhoR autophosphorylates (Wanner, 1993). PhoR~P, in turn,
phosphorylates response regulator PhoB, converting it into its active state (Makino et al.,
1989). PhoB~P both functions as an activator and repressor of Pho regulon members,
all containing a conserved Pho box in their promoter sequence (Makino et al., 1986).
For instance, the expression of phoA is induced under phosphate stress. It encodes
bacterial alkaline phosphatase that functions in the periplasm to free Pi by hydrolysing
organophosphate compounds (Wanner, 1996). Upon shifting to Pi-rich conditions, PhoR
functions as a phospho-PhoB phosphatase to terminate the signal cascade (Carmany
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et al., 2003). It should be noted that the currently accepted model in literature states
that PhoR does not directly bind Pi; in fact, it lacks a typical periplasmic input domain
altogether (Scholten & Tommassen, 1993; Uluşeker et al., 2019). PhoR would sense the
abundance of Pi via the PstSCAB complex (the phosphate-specific transport system) and
PhoU (the chaperone-like PhoR/PhoB inhibitory protein) (Gardner et al., 2014). The ex-
istence of extensive cross-regulation even enhances the complexity (Wanner et al., 1988;
Wanner & Wilmes-Riesenberg, 1992; Fisher et al., 1995; Kim et al., 1996; Verhamme
et al., 2002; Nishino et al., 2005; Zhou et al., 2005).

However complex, the Pho regulon has been used to construct TCRS-based biosensors.
Torres-Bacete et al. (2021) constructed a synthetic Pi-starvation promoter library by re-
placing the -35 promoter region of the strong constitutive promoter BG42with sequence-
randomised Pho boxes (Zobel et al., 2015). Degenerate primers based on a consensus
sequence of Pho boxes from six different species were used to amplify the BG42 pro-
moter to generate a combinatorial promoter library that should be portable across dif-
ferent species. These promoters drive the expression of the msfgfp (monomeric super
folder green fluorescent protein) reporter gene (Landgraf, 2012). Selected promoters
were characterised in the industrially relevant strains E. coli W and P. putida KT2440,
revealing a wide range of induction strengths (often called dynamic range, see also Sec-
tion 2.2.2) and host-dependent performance.

The biotechnological significance of these biosensors was demonstrated by decoupling
growth and production in P. putida. It has previously been established that by separating
a fermentation process into distinct growth and production phases, optimal productiv-
ity of the target product can be attained (Farmer & Liao, 2000; Gadkar et al., 2005).
Therefore, chemical inducers are often applied to manually activate the expression of
the pathway enzymes when sufficient cell density has been obtained. However, adding
an external inducer to the fermentation broth can complicate downstream processing or
result in toxic effects (Palomares et al., 2004). The synthetic Pi-depletion promoters
obviate the need for such chemical inducers. During the initial growth phase, P. putida
gradually consumed the Pi from the mediumwhile GFP fluorescence remained at a basal
level. When extracellular Pi became limiting, P. putida suddenly stopped growing and
displayed high-level fluorescence during the expression phase. Therefore, the biomass
concentration at which the shift from growth to expression occurs can be tuned by ad-
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justing the initial phosphate concentration in the growth medium.

In general, TCRSs possess several interesting properties that make them suitable for
application in biosensors. They offer a straightforward platform to sense membrane-
impermeable compounds and are abundantly represented acrossBacteria (Wuichet et al.,
2010). As the transmitter and receiver domains are generally well conserved, sensor ki-
nases and response regulators can be interchanged to some extent (Nixon et al., 1986;
Kofoid & Parkinson, 1988). However, this could also lead to unwanted interactions of
the TCRS-based biosensor with endogenous proteins (Wanner, 1992). Besides, the engi-
neering and heterologous use of TCRSs is complex due to the involvement of membrane
proteins and possibly unanticipated accessory proteins (Carpenter et al., 2018). Finally,
as withMRTFs, transcriptional regulation leads to slow response times (Liu et al., 2015).

2.1.1.3 RNA-based biosensors

Last century, it has become increasingly evident that RNA [ribonucleic acid] does not
merely function as a passive carrier of information, but can also adopt an active role in
catalysis and gene control. Ribozymes can catalyse chemical reactions in the absence of
proteins, and small RNAs (sRNAs), T-boxes, RNA thermometers and attenuation allow
sophisticated gene regulation in Bacteria (Yanofsky, 1981; Kruger et al., 1982; Mizuno
et al., 1984; Altuvia et al., 1989; Grundy & Henkin, 1993). However, this review con-
stricts the definition of RNA-based biosensors to include only naturally evolved and
synthetic riboswitches. Riboswitches most commonly reside in the 5’ untranslated re-
gion (UTR) of the messenger RNA (mRNA) transcript they regulate. They consist of
an aptamer domain and an expression platform. The former directly binds to its cognate
effector. Typically, riboswitches adopt multiple tertiary structures, one of which is sta-
bilised on effector binding (Liberman & Wedekind, 2012). The conformational change
experienced upon effector binding is transduced to the expression platform where it af-
fects the expression of the downstream gene (Lotz & Suess, 2018).

RNA-based biosensors thus combine a sensing and regulation module in a single tran-
scription unit. These modules can communicate through multiple mechanisms. In the
first possible pattern, effector binding induces the formation of a terminator, leading
to premature termination of transcription (Figure 2.3A) (Winkler et al., 2002). Con-
versely, effector binding can also stabilise an alternative structure (the antiterminator),
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leading to positive regulation (Wachsmuth et al., 2013). This mechanism seems to be
favoured by Bacteria as it allows to interrupt transcription when it is not needed, and
hence save time and resources (Breaker, 2011). On the other hand, some transcripts
display ligand-responsive self-cleavage activity. Effector binding can either activate or
inactivate the ribozyme activity of such transcripts, leading to degradation or stabilisa-
tion of the mRNA molecule (Winkler et al., 2004). Finally, the simplest RNA-based
biosensors operate on the level of translation initiation. The RBS can be sequestered or
liberated upon effector binding, affecting its accessibility for the ribosome and hence the
expression of the target gene (Figure 2.3B) (Nahvi et al., 2002; Findeiß et al., 2017).

A B

Figure 2.3: Regulatory mechanisms employed by RNA-based biosensors. (A) Binding
of the ligand (magenta sphere) to the aptamer stabilises a terminator structure, halting
transcription (above); or conversely, ligand binding stabilises an alternative structure
(antiterminator), allowing transcription elongation to proceed (below). (B) Binding of
the ligand traps the ribosome binding site (RBS, magenta box) in base-pairing, inac-
cessible to the ribosome (above); or conversely, ligand binding stabilises an alternative
structure, freeing the RBS for the ribosome to bind to and initiate translation (below).
For both panels, RNA is depected in green, RNA polymerase in grey and ribosomes in
yellow. Adapted from Bervoets & Charlier (2019).

The modular nature of riboswitches has prompted many synthetic biologists to engineer
artificial riboswitches de novo. For instance, Win & Smolke (2007) constructed syn-
thetic RNA-based biosensors in S. cerevisiae by including the tobacco ringspot virus
hammerhead ribozyme in the 3’ UTR of the yeast-enhanced GFP gene (yegfp). They
chose to include the ribozyme in this atypical location as excessive secondary structure
in the 5’ UTR represses efficient translation in eukaryotes (Pelletier & Sonenberg, 1985).
Besides, cleavage in the 3’ UTR results in rapid degradation of the transcript, a property
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used as regulatory mechanism in Eukaryota and some Bacteria (Stoeckle & Hanafusa,
1989; Nielsen & Christiansen, 1992; Brown et al., 1993; Binder et al., 1994; Maeda &
Wachi, 2012; López-Garrido et al., 2014; Liu et al., 2016; Zhu et al., 2016). The ri-
bozyme was surrounded by spacer sequences to insulate it from the flanking sequences
on the transcrpt to increase the portability and modularity of the riboswitch. A synthetic
aptamer responsive to theophylline was grafted in one of the loop sequences of the ri-
bozyme in order to render its self-cleavage activity responsive to this small molecule.
This way, inducible as well as repressible biosensors with a range of dynamic ranges
were obtained in vivo, respectively. Furthermore, it was shown that for some but not
all riboswitches, the aptamer could be replaced with the tetracycline miniaptamer while
retaining its function. The functionality of the biosensors was proven by enabling small
molecule-mediated regulation of cell growth (by including the riboswitch in the 3’ UTR
of the histidine biosynthesis gene his5) and intracellular monitoring of metabolite pro-
duction (see also Section 2.1.2). For the latter application, the original theophylline-
inducible biosensor was applied that shows reduced responsiveness to xanthine produced
by yeast. These proof-of-concept applications show the potential of this gene-regulatory
platform for diverse applications.

RNA-based biosensors have not yet reached the requiredmaturity formass application in
metabolic engineering (Etzel &Mörl, 2017). Notwithstanding the limited knowledge of
natural aptamers, synthetic aptamers can be designed to bind virtually any desired ligand
through the powerful protocol designated systematic evolution of ligands by exponential
enrichment (SELEX) (Tuerk & Gold, 1990; Lotz & Suess, 2018). However, the main
bottleneck remains the signal propagation from the sensing module to the regulation
module, which is challenging to engineer and not yet entirely understood (Fowler et al.,
2008; Ceres et al., 2013;Wachsmuth et al., 2013, 2015; Trausch&Batey, 2015; Hallberg
et al., 2017). Furthermore, RNA-based biosensors often have shortcomings concerning
dynamic and operational ranges (the operational range is defined as the range of concen-
trations for which a dose-dependent change in output can be measured) (Hossain et al.,
2020). Still, RNA-based biosensors show great promise because of their faster response
times and less demanding nature for cellular resources (Win & Smolke, 2007; Liu et al.,
2015).
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2.1.2 Applications of biosensors

The fact that biosensors respond to their cognate effectors in a specific and dose-dependent
manner, as discussed in Section 2.2.2, can be exploited in several applications that are
divisible into four groups: monitoring, high-throughput screening (HTS), adaptive lab-
oratory evolution (ALE) and metabolic flux regulation. In this section, these applica-
tions are explained and illustrated with a comprehensive discussion of biosensor im-
plementations developed to increase the production of 3-hydroxypropionic acid (3-HP),
a promising platform molecule. 3-HP can be produced in vivo through four important
pathways: the CoA-dependent glycerol oxidation pathway, the CoA-independent glyc-
erol oxidation pathway, the malonyl-CoA pathway and the BA pathway (Jiang et al.,
2009). Depending on the pathway at hand, investigated hosts include E. coli, Klebsiella
pneumoniae, Pseudomonas denitrificans (nom. rej.), Pseudomonas asiatica and S. cere-
visiae (Somasundar et al., 2011; Rathnasingh et al., 2012; Zhou et al., 2013; Borodina
et al., 2015; Song et al., 2016; Thi Nguyen et al., 2021).

2.1.2.1 Monitoring

In their simplest form, whole-cell biosensors can be used to translate the presence of a
specific compound to a change in gene expression, most often of a fluorescent reporter
gene. Potential applications range from quality assurance in food production (Zhao et al.,
2021) to environmental monitoring (Ravikumar et al., 2011; Fernandez-López et al.,
2015; Ravikumar et al., 2017; Landry et al., 2018; Chaurasia et al., 2020; Liu et al.,
2020) and healthcare (Guo et al., 2018; Tanna et al., 2021). Monitoring of metabolite
concentrations also has applications inmetabolic engineering. In this context, biosensors
offer the attractive feature of real-time quantification, as opposed to analytical techniques
that require cumbersome sample preparation (U.S. EPA, 1996; Lee et al., 2013; Rogers
& Church, 2016b). In such a way, biosensors responsive to the desired end product
can be used to follow product formation in real time, providing information to explore
process parameters or mutant strains yielding increased product titres and productivities.

3-HP biosensors have been used to monitor product formation. The first 3-HP biosen-
sors were not directly responsive to 3-HP itself because no 3-HP-responsive MRTFs
were known yet. Instead, two metabolic pathways were constructed that converted 3-



CHAPTER 2. LITERATURE REVIEW 13

HP to a detectable ligand intracellularly. The acrylate-sensitive biosensor based on the
MRTF AcuR from Cereibacter sphaeroides emerged as the superior because of its lack
of catabolite repression and sharply higher dynamic range (Sullivan et al., 2011; Rogers
et al., 2015). Therefore, this biosensor was chosen to screen 24 production conditions
for improved 3-HP titre through the malonyl-CoA pathway in E. coli by measuring flu-
orescence as a proxy for product formation. The applied concentration of cerulenin (a
fatty acid biosynthesis inhibitor (Nomura et al., 1972)) was varied in combination with
the IPTG (isopropyl β-D-1-thiogalactopyranoside, used to induce the expression ofmcr)
concentration. The identified optimal conditions led to a 3-HP titre of 4.2 g/L, a 23-fold
increase compared to earlier efforts (Rogers & Church, 2016a).

Later, multiple MRTFs that are directly responsive to 3-HP have been discovered and
developed into biosensors (Zhou et al., 2015; Hanko et al., 2017, 2020; Magnus, 2021),
among which the 3-HP-inducible biosensor based on the MRTF MmsR from P. deni-
trificans (Nguyen, Kim & Park, 2019; Nguyen, Ainala, Zhou & Park, 2019). Binding
of 3-HP to MmsR increases its affinity for the PmmsA promoter, resulting in increased
expression of the reporter gene gfp. This biosensor was subsequently used to study 3-
HP tolerance in different species. Compared to its isomer L-lactic acid, 3-HP is highly
toxic at high intracellular concentrations in E. coli, leading to decreased growth rates and
productivities. By growing E. coliW in the presence of increasing 3-HP concentrations
in an ALE experiment, multiple mutations were accumulated in its genome, leading to
much increased 3-HP tolerance. Among these mutations, disruption of the minor global
transcriptional regulator gene yieP was entirely responsible for this increased tolerance
(Nguyen-Vo et al., 2019). A later study found that this effect is mainly caused by the
increase in expression of the yohJK operon upon yieP mutation, that acts as a repressor
of this operon. In order to obtain insight into the physiological role of YohJK, the MmsR
biosensor was applied. When yohJK was overexpressed inE. coli harbouring the biosen-
sor, a drastic decrease in GFP fluorescence was observed, corresponding to a decrease
in intracellular 3-HP concentration. This observation suggests that yohJK encodes 3-HP
exporter(s), further supported by the prediction of YohJ and YohK to be inner membrane
proteins (Daley et al., 2005). Notably, deletion of yieP yielded just as fluorescence lev-
els (Nguyen-Vo et al., 2020). Similar results were obtained in K. pneumoniae, where
deletion of yieP enhanced 3-HP tolerance and production through the CoA-independent
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glycerol oxidation pathway under 3-HP-stressed conditions (Nguyen-Vo et al., 2022).

In addition to end product-responsive biosensors, biosensors sensitive to a limiting inter-
mediate product can be used in metabolic engineering. In S. cerevisiae, the intracellular
concentration of malonyl-CoA is tightly regulated, severely limiting the production of
malonyl-CoA-derived products such as 3-HP (David et al., 2016). Acetyl-CoA carboxy-
lase (Acc1p), the enzyme that converts acetyl-CoA to malonyl-CoA in the cytoplasm,
is regulated at the transcriptional and post-translational level (Haßlacher et al., 1993).
At low glucose availability, Acc1p can be phosphorylated at 15 residues causing down-
regulation of its enzymatic activity (Woods et al., 1994; Li et al., 2014). A malonyl-
CoA-responsive biosensor was developed based on the repressor FapR from Bacillus
subtilis to improve the availability of malonyl-CoA in the cytoplasm (Schujman et al.,
2003). fapR was expressed in S. cerevisiae after codon-optimisation and appendage of
the SV40 nuclear localisation signal to its 3’ end. By introducing its TFBS fapO 7 bp
downstream of the TATA box of a synthetic hybrid promoter consisting of the GAL1
core promoter sequence and TEF1 upstream activating sequence driving expression of
yegfp, a malonyl-CoA-inducible system with low leaky expression was developed. This
biosensor was used to screen thirteen phosphorylation site mutants for increased intra-
cellular malonyl-CoA levels. When three beneficial mutations were combined (S659A,
S686A and S1157A), the 3-HP titre through the malonyl-CoA pathway was increased
1.5-fold relative to the non-mutated strain. This study suggests that increased Acc1p
activity benefits 3-HP production in S. cerevisiae (Chen et al., 2018).

2.1.2.2 High-throughput screening

Previous section introduced the use of biosensors to monitor intracellular metabolite
concentration in real time by measuring fluorescence as a proxy for titre. By comparing
the fluorescent output of different mutants, strains with increased production of 3-HP
could be identified. A downside of this approach is that these measurements occur in
parallel: different mutants are spatially separated in, for instance, 96-well plates (Rogers
& Church, 2016a). This constrains the throughput of the ”test” step of the metabolic en-
gineering cycle. Therefore, these studies could only compare a small number of mutants.
However, the complexity of biology requires that many designs be assessed before an
optimal producer strain can be obtained (Rogers & Church, 2016b).
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DNA sequencing and synthesis advances have dramatically progressed the throughputs
of both the ”design” and ”build” steps. However, the most significant progress would be
obtained if a multiplexed solution for the ”test” step were implemented. This means that
the best-performing cells can be identified and isolated from amixture of cells containing
different designs. Biosensors in combination with fluorescence-activated cell sorting
(FACS) can be used to succeed in this objective. The biosensor couples the presence of
an inconspicuous metabolite to the expression of a fluorescent reporter gene, and cells
that fluoresce more brightly correlate with increased production of that target metabolite
(Binder et al., 2012; Rogers & Church, 2016b). FACS then allows sorting a mutant
library in bins according to their fluorescent properties in a high-throughput fashion,
resolving the screening bottleneck. Libraries consisting of up to 109 clones have been
analysed in a single experiment, a millionfold improvement compared to conventional
analytical methods (Zweigenbaum et al., 1999; Santoro et al., 2002).

In literature, two attempts to increase microbial 3-HP production through HTS have
focused on the malonyl-CoA pathway in S. cerevisiae. Li et al. (2015) constructed
a malonyl-CoA biosensor to screen a genome-wide overexpression library for genes
that increased intracellular malonyl-CoA concentration, an important bottleneck in 3-HP
production. Themalonyl-CoA-inducible biosensor was constructed by transforming two
plasmids in a 3-HP-producing yeast strain, one plasmid containing the fapR gene encod-
ing a malonyl-CoA-responsive transcription factor and another containing the tdTomato
fluorescent reporter gene under transcriptional control of a synthetic FapR-regulated pro-
moter. Finally, an S. cerevisiae strain CEN.PK2-1C cDNA library was cloned under the
control of the strong constitutive TEF1 promoter on a third plasmid. This plasmid was
transformed in the whole-cell biosensor, followed by overnight incubation and FACS
screening.

After three rounds of FACS, each time sorting the cells showing high-level fluorescence,
plasmids from 72 colonies were isolated for sequencing to identify the overexpressed
genes. Of this sampling, only two genes could be identified to correspond with an
increase in fluorescence: PMP1 encoding an important subunit of the proton-ATPase
PMA1, and TPI1 coding for the enzyme triose-phosphate isomerase. When these genes
were individually overexpressed in S. cerevisiae, 3-HP titres through the malonyl-CoA
pathway were improved by 100% and 120%, respectively, after 72 h. It was hypoth-



CHAPTER 2. LITERATURE REVIEW 16

esised that overexpression of PMP1 led to an improved proton gradient, accelerating
the uptake of biotin, a crucial cofactor of acetyl-CoA carboxylase. TPI1, on the other
hand, would improve ATP production by redirecting the carbon flux from dihydroxy-
acetone phosphate to glycerol, to pyruvate. As one molecule of ATP is consumed per
molecule of malonyl-CoA produced, an increased concentration of ATP should enhance
malonyl-CoA accumulation. Interestingly, co-overexpression of PMP1 and TPI1 only
led to a 47% increase in 3-HP titre. The authors attributed this antagonistic effect to
the basification of the cytosol due to increased PMP1p activity, resulting in decreased
Tpi1p activity. In addition, the cellular burden associated with the simultaneous over-
expression of two genes might adversely affect 3-HP production. In conclusion, two
novel gene targets for enhanced 3-HP production were identified from a genome-wide
overexpression library by HTS (Li et al., 2015).

In contrast to the ”brute force” screening approach followed in the previous example,
Ferreira et al. (2019) applied a more rational approach guided by flux balance analysis
(FBA). This way, 168 genes were in silico predicted as candidates for up- or downreg-
ulation to enhance the flux toward malonyl-CoA. To alter the expression of these target
genes in vivo, dCas9 [’dead’ CRISPR (clustered regularly interspaced short palindromic
repeats)-associated protein 9]-based regulation was applied, where dCas9 is fused to the
tripartite activator VP64-p65-Rta (VPR). This synthetic transcription factor can be con-
veniently targeted to any genomic locus using a complementary guide RNA (gRNA), to
which dCas9 binds. Interestingly, dCas-VPR can both act as activator and repressor,
depending on the position with respect to the transcription start site. As it remains hard
to predict the regulatory outcome for a given gRNA a priori, up to 21 gRNAs were de-
signed per selected gene to sample a gradient of regulatory activities, giving rise to a
library of 3194 gRNAs. This library was co-transformed with a FapR-based malonyl-
CoA biosensor (David et al., 2016) in S. cerevisiae CEN.PK-11C in order to enrich for
gRNAs that increased the availability of malonyl-CoA. At each stage of the screening,
the gRNAs were sequenced to reveal the dynamics of the sorting process. Only 49 gR-
NAs were significantly enriched, corresponding to 46 genes. Notably, both gene targets
discovered in the previous study were on the shortlist based on FBA but did not yield
significantly enriched gRNAs. The selected gRNAs were retransformed in S. cerevisiae
and tested for their ability to increase the production of 3-HP from glucose. More than
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a third of the gRNAs did not result in increased 3-HP titres. The ones that did, tar-
geted genes with functions ranging from cofactor supply to production of malonyl-CoA
precursors.

Without explicitly referring to Li et al. (2015), the researchers compared the effect on
the 3-HP yield of their approach based on dCas9-VPR to the conventional approach
for expression tuning based on the strong TEF1 promoter. For ALD2, for which FBA
suggested that upregulation would increase the flux to malonyl-CoA, the TEF1-based
approach did not result in increased 3-HP titre, whereas the dCas9-based approach did.
On the other hand, the method of Ferreira et al. (2019) relying on FBA primarily ex-
poses well-annotated gene targets, neglecting unknown or not thoroughly characterised
targets. However, the gRNA that led to the most significant increase in 3-HP produc-
tion serendipitously regulated a second target gene: HTA1, encoding an essential histone
protein. Notably, a second gRNA did not regulate its predicted gene at all but increased
3-HP production through upregulation of SPO23, a gene of unknown function. These
results suggest that, although valuable to make a rough selection of gene targets, FBA
can still fail to predict highly relevant genes. In conclusion, HTS leveraging whole-cell
biosensors in FACS screenings has been used to improve bioproduction successfully,
yet concrete applications remain challenging due to the high prevalence of false posi-
tives. Several publications have addressed this issue, promising improved HTS cam-
paigns leading to ever-improving product titres (Raman et al., 2014; Woolston et al.,
2018; Flachbart et al., 2019).

2.1.2.3 Adaptive laboratory evolution

The previous sections introduced discrete successes in the rational engineering ofmetabolism
towards increased product (3-HP) formation. However, rational engineering remains
difficult due to the complexity underlying physiology and the need for robust methods
of genetic modification. These challenges can be overcome by ALE. In brief, ALE
comes down to culturing cells for an extended period of time in a desired environment.
According to the principles of natural selection, microorganisms isolated at the end of
the cultivation period will have accumulated mutations leading to improved fitness un-
der the experimental conditions. Therefore, ALE does not require a priori knowledge
to guide strain development and optimisation. A body of studies has harnessed ALE
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to improve growth rate (Yu et al., 2013; LaCroix et al., 2015; Pfeifer et al., 2017) and
increase stress tolerance (Riehle et al., 2003; Alcántara-Díaz et al., 2004; Çakar et al.,
2005; Jansen et al., 2005; Stoebel et al., 2009; Zorraquino-Salvo et al., 2014; Nguyen-Vo
et al., 2019) or substrate utilisation (Sonderegger & Sauer, 2003; Lee & Palsson, 2010;
Hong et al., 2011; Utrilla et al., 2012; Latif et al., 2015; Cordova et al., 2016; Rajaraman
et al., 2016; Sandberg et al., 2017). However, optimising product titres through ALE is
far less evident, as the cellular burden associated with high-level production of a certain
metabolite is most likely to decrease fitness (Sandberg et al., 2019). This can be resolved
by coupling the production of the metabolite of interest to overall energy and biomass
generation. However, genetic modifications to achieve such coupling again require a
thorough knowledge of metabolism and can be highly complex (Burgard et al., 2003;
Pharkya et al., 2004; Fong et al., 2005; Jantama et al., 2008; Otero et al., 2013; von
Kamp & Klamt, 2017).

The use of whole-cell biosensors poses an elegant solution to this problem. An end
product-sensitive biosensor can be used to drive the expression of a selector gene, e.g.
encoding antibiotic resistance. By exposing microorganisms carrying the biosensor
construct to increasing concentrations of the corresponding antibiotic, mutants with in-
creased productivity are selected. This way, appropriate application of ALE can po-
tentially substitute the ”design” and ”build” steps of the metabolic engineering cycle
entirely.

Seok et al. (2018) developed a biosensor based on the 3-HP-responsive transcription
factor MmsR that induced the expression of the tetracycline resistance gene in response
to 3-HP accumulation. This biosensor was used to increase 3-HP titres of the CoA-
independent glycerol oxidation pathway through ALE. During a culture experiment that
lasted over seven days, the tetracycline concentration in the medium was gradually in-
creased to evolve the strain towards higher 3-HP production. The genomes of two iso-
lates with greatly enhanced 3-HP titres and yields with respect to the parental strain
were sequenced to reveal the mutations underlying their superior production character-
istics. The strains, named EV1 and EV2, acquired 34 and 29 mutations in their genome,
respectively. Among these, EV1 exhibited a mutation in cyaA, encoding adenylyl cy-
clase, while EV2 showed a mutation in crp, encoding cyclic adenosine monophosphate
(cAMP) receptor protein. These mutations seem connected, as adenylyl cyclase catal-
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yses the conversion of adenosine triphosphate (ATP) to cAMP, the effector of MRTF
CRP (Zubay et al., 1970; Seok et al., 2021).

To further study the effect of these mutations, they were separately introduced into the
parental strain. The mutation affecting cyaA (S254R, situated in the catalytic domain
of adenylyl cyclase (Crasnier et al., 1994)) led to a drop in intracellular cAMP accu-
mulation through a decreased catalytic efficiency. On the other hand, the mutated crp
(T168P, situated in the DBD (McKay & Steitz, 1981)) led to decreased binding of CRP
to the promoter region of gapA, encoding glyceraldehyde-3-phosphate dehydrogenase
A, one of the regulon members of CRP. Because of the importance of CRP as a global
regulator and adenylyl cyclase as the enzyme producing its effector (Gottesman, 1984),
the authors conducted transcriptome analysis to identify differentially expressed genes
in both mutant strains. 78 and 359 genes, of which 34 were overlapping, were dif-
ferentially expressed in the cyaA and crp mutants, respectively. In both cases, gapA
expression was decreased to 25% compared to the parental strain. It was hypothesised
that the downregulation of gapA redistributed carbon flux to 3-HP production and de-
creased acetate accumulation from overflow metabolism. Besides, the crp mutation led
to differential expression of several other genes involved in central carbon metabolism
and transport. Finally, both mutations were combined, and the constructed strain was
examined for increased production of 3-HP from glycerol supplemented with 1 g/L yeast
extract during fed-batch fermentation. 55 g/L 3-HP was produced at a yield of 0.91 g/g,
93% of the theoretical maximum. No acetate accumulation could be registered through-
out the entire bioprocess. In conclusion, this study applied ALE to reveal non-intuitive
targets for metabolic engineering that led to an appreciable increase in 3-HP production.
Importantly, as biosensor-based ALE mediates cell growth to product formation, the en-
gineered strains did not display severe growth defects, in contrast to classical metabolic
engineering endeavours (Seok et al., 2021).

2.1.2.4 Metabolic flux regulation

As already stated earlier, high-level production of a metabolite can significantly con-
strain the growth rate of the producer strain. The fact is that traditional metabolic engi-
neering efforts have often increased product titres, yields and productivities by consti-
tutively overexpressing the enzymes of the pathway of interest in addition to knocking



CHAPTER 2. LITERATURE REVIEW 20

out genes encoding competitive pathways (Song et al., 2016). However, this can lead to
metabolic imbalances such as competition for cellular resources between the production
pathway and biomass synthesis and to accumulation of pathway intermediates (Glick,
1995; Martin et al., 2003). This observation has incited metabolic engineers to tune the
expression level of pathway enzymes relative to each other in order to optimise the path-
way flux (Anthony et al., 2009; Ajikumar et al., 2010; Curran et al., 2013; Nowroozi
et al., 2014). Still, such static pathway control is optimised to specific laboratory condi-
tions, while real-life bioprocesses cannot guarantee the applicability of these conditions
uniformly throughout the fermentor (Delvigne et al., 2014; Pigou & Morchain, 2015).

These problems have inspired synthetic biologists to regulate metabolic flux in a more
dynamic way using whole-cell biosensors. In brief, biosensors are used to regulate the
expression of key enzymes in response to cellular or environmental cues. The resulting
dynamic pathway regulation is a promising avenue to optimise pathway production, as
evidenced by the recent surge of publications in this field (Liu & Zhang, 2018; Maury
et al., 2018; Moser et al., 2018; Wang et al., 2018; Otero-Muras et al., 2019; Boada
et al., 2020; Liang et al., 2020; Lv et al., 2020; Qin et al., 2020; Wu, Chen, Liu, Tian,
Lv, Li, Du, Chen, Ledesma-Amaro & Liu, 2020; Xu et al., 2020; Zhang et al., 2020; Hao
et al., 2021; Lai et al., 2021; Mannan & Bates, 2021; Torres-Bacete et al., 2021; Zhu
et al., 2021; Ferrer et al., 2022; Ni et al., 2022; Verma et al., 2022). Dynamic regulation
has also been applied to increase 3-HP production through the malonyl-CoA pathway.
Being heterologous to S. cerevisiae, this pathway is evidently not regulated by the host
and biosensors allow to implement such regulation artificially.

One application has focused to implement a two-stage metabolic control system in re-
sponse to the concentration of glucose. Separating a bioprocess in distinct growth and
production phases relieves the competition for cellular resources between these two ob-
jectives, and often leads to enhanced product titres (see also Section 2.1.1.2). One pos-
sible approach to implement a two-stage process is to use promoter(s) activated under
glucose limitation to control the expression of the heterologous pathway. Maury et al.
(2018) identified promoters with glucose-dependent expression profiles by reanalysis of
genome-wide transcription data in S. cerevisiae under glucose limitation and excess. 34
promoters corresponding to genes with interesting expression profiles were further stud-
ied by cloning these upstream of a quickly maturing and rapidly degrading GFP gene



CHAPTER 2. LITERATURE REVIEW 21

variant. The resulting biosensors allowed to study the dynamic behaviour of the identi-
fied promoters by measuring fluorescence of cell cultures during microscale batch and
fed-batch cultivation with glucose as sole carbon source and revealed distinct expression
profiles. Three promoters showing significant activation under glucose limitation were
used to drive the expression of mcr, the key enzyme of the malonyl-CoA pathway. Of
these, regulation by the ICL1 promoter led to a 70% increase in 3-HP titre as compared to
the constitutive PGK1 promoter during microscale fed-batch fermentation. Intriguingly,
PICL1 is characterised by a short but strong burst of activation upon glucose deprivation,
whereas PPGK1 shows a longer window of activation. In conclusion, endogenous promot-
ers of S. cerevisiae were identified using transcriptomics and reporter studies and were
subsequently used for dynamic regulation of 3-HP production. Although this approach
does not reveal the underlying regulatory mechanisms and is therefore less flexible, an
increase in 3-HP titre could be reported. Of course, the reported promoters should in
principle be applicable for the production of any product that merits two-stage produc-
tion.

Another study has combined a two-stage metabolic control system with continuous con-
trol of mcr expression. For the latter, a malonyl-CoA biosensor based on B. subtilis
FapR was developed by inserting three fapO TFBSs in the consitutive TEF1 promoter
driving expression of mcr. This way, expression of mcr is tailored to the intracellular
malonyl-CoA availability mediated by FapR. In theory, the resulting continuous con-
trol should allow to balance metabolic fluxes automatically while reducing intermediate
metabolite accumulation as well as metabolic burden from enzyme expression. How-
ever, implementation of the continuous control led to a decrease in 3-HP titre compared
to constitutive expression of mcr when tested during microscale fed-batch cultivation
of S. cerevisiae CEN.PK113-11C. This was attributed to insufficiently high intracellular
malonyl-CoA concentrations to induce mcr expression adequately. A second layer of
metabolic flux regulation was implemented by placing the fatty acid synthase 1 gene
(FAS1) under the control of PHXT1, a promoter repressed by low glucose availability (Oz-
can & Johnston, 1995). This allows toe downregulate fatty acid biosynthesis upon glu-
cose limitation leading to accumulation of malonyl-CoA.When both control layers were
implemented simultaneously, production of 3-HP was increased tenfold, to 1.0 g/L. In
conclusion, 3-HP production in S. cerevisiae was dynamically regulated through a com-
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bination of two-stage and continuous metabolic control. During the initial growth phase,
biomass could be produced with metabolic fluxes similar to those experienced under na-
tive conditions. Deprivation of glucose subsequently lead to accumulation of malonyl-
CoA. This finally induced mcr expression, initiating the production phase (David et al.,
2016).

Many other control topologies have been implemented in literature for a variety of pro-
duction pathways (Liu et al., 2018; Xu, 2018; Han & Zhang, 2020; Jiang et al., 2020;
Hartline et al., 2021). However, these two examples should suffice to show the main
strategies employed and increased titres, yields and productivities obtained through the
dynamic regulation of metabolic flux by whole-cell biosensors.

2.2 Modelling biosensors

Mathematical modelling has received increased attention in synthetic biology since the
start of this century. Key strengths are its potential to predict behaviour of complex
systems or reveal inconsistencies between the current model and the observed experi-
mental data. Model simulations can guide experimental design and allow the scientist
to allocate his expensive resources more efficiently (Ingalls, 2018). The focus of this
section is the use of modelling for biosensor design. We start with a discussion of the
Hill equation, an important formalism for biosensor modelling (Section 2.2.1). We then
illustrate the use of the Hill function to fit dose-response curves directly or as an element
in more complex models (Sections 2.2.3 and 2.2.4).

2.2.1 The Hill equation and ultrasensitivity

TheHill equationwas introduced in 1910 to fit the binding curves of oxygen to haemoglobin
that show a clear sigmoidal shape, in contrast to the hyperbolic binding curves that are
normally observed. Archibald Hill found that an equation of the form

y D 100
Kxn

1 C Kxn
(2.1)

where y be the percentage saturation of haemoglobin with oxygen, x the partial ten-
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sion of oxygen and K and n empirical constants, fits the experimental data satisfactorily
for Hill coefficients n ranging from 1.0 to 3.2 (Hill, 1910). Later, it was found that
haemoglobin functions as a homotetramer and that it binds oxygen in a positively co-
operative manner (Perutz, 1980). The latter means that binding a single molecule of
oxygen increases the apparent affinity for further binding, giving rise to the S-shaped
appearance of the binding curves.

For n > 1, the Hill function experiences a larger slope at intermediate input levels, a
phenomenon called ultrasensitivity (Figure 2.4). Negative cooperativity can bemodelled
for 0 < n < 1. Negatively cooperative binding curves show a subsensitive response to
variations in ligand concentration (Zhang et al., 2013). n D 1 returns the hyperbolic
Langmuir equation (the binding equivalent of the Michaelis-Menten equation for en-
zyme kinetics).
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Figure 2.4: Simulations of the Hill function (Equation 2.1). In each case, K is set to 1.

Besides positive cooperative binding, signal transduction pathways and gene regulatory
circuits can combine discrete mechanisms that could give rise to ultrasensitivity. These
can be grouped by homo-multimerisation, multistep signalling, molecular titration, co-
valent modification cycles and positive feedback and can be fitted by adapted forms of
the Hill equation (Zhang et al., 2013).

Instead of considering distinct mechanisms that lead to a Hill equation pattern, Frank
(2013) proposed common themes that could underly ultrasensitivity. Briefly, by includ-
ing a stochastic term in the Michaelis-Menten equation to account for failure of the sys-
tem to detect or transmit the input signal, sigmoid input-output relations were retrieved.
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The sigmoid character was increasingly evident for more reactions in the signal cascade
or greater failure rates of signal transduction. More strikingly, ultrasensitivity may arise
from departure from the spatial homogeneity assumption of the law of mass action. The
law of mass action claims that the rate of an elementary chemical reaction varies as the
product of the concentrations of the participating reagents. As an example, consider the
irreversible reaction of two molecular species A and B to yield P:

A C B k
���! P (2.2)

The rate v (M s�1) of reaction 2.2 then becomes

v D
dŒP�

dt
D kŒA�ŒB� (2.3)

where k denotes the mass action rate constant of reaction 2.2 (M �1s�1), t denotes
time (s) and the concentration of each chemical species X is denoted as ŒX� (M ). Equa-
tion (2.3) can also be read as ”the rate of a reaction is proportional to the probability
by which the reactants collide with one another” (Ingalls, 2018). Amongst others, the
well-known Michaelis-Menten equation is based on mass action (Michaelis & Menten,
1913).

However, application of the law of mass action requires two assumptions to be made.
Spatial homogeneity requires that the concentrations of all chemical species be inde-
pendent of the position in the reaction volume. Therefore, the reaction rate will also be
independent of the positional coordinate. Secondly, the continuum hypothesis assumes
that the species concentrations are sufficiently high that discrete changes in molecule
count can be approximated as continuous changes in concentration. On the level of in-
dividual cells, the latter requirement is likely not to be satisfied, as the expression level
of a particular protein is often low (for instance, the lac repressor is present at about
5 tetramers per cell) (Gilbert & Müller-Hill, 1966; Halling, 1989). This inconsistency
can be overcome by considering the average behaviour of a cell culture (Ingalls, 2018).
Still, diffusion limitations can arise in the cell through molecular crowding, compromis-
ing the assumption of a ”well-mixed” reaction volume (Elowitz et al., 1999; Kuthan,
2001). As an alternative to mass action, spatially explicit biochemical dynamics can
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be simulated using specialised software (Andrews & Bray, 2004). By spatially explicit
modelling of a simple reaction scheme under diffusion-limited conditions, input-output
relations with a Hill coefficient as high as 2.4 could be retrieved (Frank, 2013).

In conclusion, while initially proposed as an empirical description of cooperative bind-
ing, the Hill equation can be used to model a variety of biological mechanisms. More
interestingly, sigmoid input-output relations can arise in absence of a clear mechanistic
description because of stochastic failure of signal transmission or limited diffusion. The
arguments in this section aimed to prove that a hill coefficient n > 1 does not necessarily
point to positive cooperativity.

2.2.2 Characteristics of a biosensor

Biosensor dose-response curves have an S-shaped appearance; hence, it should be of no
surprise that the Hill equation is often used to fit this relationship:

P.M/ D

8<:b C a M n

�nCM n for ligand-inducible biosensors,

b C a �n

�nCM n for ligand-repressible biosensors.
(2.4)

In these equations, P refers to the expression level of the target protein and M to the
applied metabolite concentration (mM). A fit to the Hill function thus summarises the
response curves to four dose-response parameters: b, a, � and n (Figure 2.5). The basal
output b is defined as the minimum value of the dose-response curve. The maximum
increase in output a is defined as the difference between the maximum and minimum
values of the dose-response curve. The ratio of both defines the dynamic range �:

� D
a

b
(2.5)

The threshold � is the metabolite concentration for which 50% of the maximum output is
attained relative to the basal level. The Hill coefficient n, on the other hand, relates to the
overall steepness of the dose-response curve (Mannan et al., 2017). � and n together de-
termine the operational range of the biosensor. Biosensors with small Hill coefficients
exhibit large operational ranges. Such analog-like behaviour is typically useful for mon-
itoring metabolites over a large range of concentrations and HTS, ALE and metabolic
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flux regulation, where a differential response is required for increasing concentrations.
On the other hand, biosensors with large Hill coefficients display digital-like behaviour
resembling on/off switches. They can be used to monitor the concentration of a metabo-
lite in a more qualitative way or to turn target gene expression on or off in response to
effector supplementation (Dietrich et al., 2010).

Figure 2.5: Biosensor dose-response curve with indication of the dose-response param-
eters. See main text for definition of these parameters. Adapted from Mannan et al.
(2017).

Besides the response curve’s shape, its molecular specificity is critical for the proper
functioning of the biosensor (Rogers et al., 2016). Only if the biosensor is responsive to
a single metabolite or if the presence of any additional ligands can be excluded, can the
dose-dependent output be solely attributed to the metabolite of interest (De Paepe et al.,
2017).

2.2.3 Dynamic modelling of gene expression

Modelling of gene regulatory networks is often addressed using dynamic models. A
dynamical model describes how the abundances of the included components vary in
time, in the form of a set of differential equations. As a simplification, interactions
between components can be modelled by the law of mass action (cfr. Section 2.2.1). In
the current section, this approach is illustrated with a simple model of gene expression
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(Ingalls, 2018).

Consider the expression of a gene in Bacteria (Figure 2.6). Modelling all distinct re-
actions of transcription and translation would lead to far too complex models; instead,
transcription and translation are modelled as zeroth- and first-order reactions, respec-
tively. The degradation of mRNA and proteins balances transcription and translation.
In addition, cell growth causes dilution of the mRNA and protein pools. Decay and di-
lution are collectively represented by the parameter ıi (where i D m for the transcript
and i D p for the protein). It is assumed that the ”background expression machinery”,
containing nucleic acids, RNAP enzymes and ribosomes, is constant. Applying mass
action then gives

d

dt
m.t/ D vm � ımm.t/

d

dt
p.t/ D k1m.t/ � ıpp.t/

(2.6)

where m and p signify the concentration of the considered mRNA transcript and pro-
tein product, respectively. vm represents the rate of transcription of the gene of interest,
while k1 represents the per-mRNA translation rate. In the case of constitutive expres-
sion, vm can be represented by a constant value k0 (Equation 2.7). However, the ma-
jority of bacterial genes is regulated by transcription factors. Without knowledge of the
precise mechanism, repressible transcription can be modelled by an inhibitory hill func-
tion, while activated transcription can be modelled by an activatory hill function. For
simplicity, a ligand-insensitive transcription factor is considered.

vm D

8̂̂̂<̂
ˆ̂:

k0 for constitutive expression

˛0 C ˛ 1
1C.ŒTF�=K/n for a repressor

˛0 C ˛ .ŒTF�=K/n

1C.ŒTF�=K/n for an activator

(2.7)

In Equation (2.7), ˛0 and ˛ indicate the basal and maximum increase in transcription
rate, while K designates the apparent dissociation constant. These equations assume
that the transcription factor (TF) is in equilibrium with its TFBS(s). This assumption
is justified, as transcription factor binding/unbinding occurs on a much faster time scale
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Figure 2.6: Central dogma of molecular biology. A gene (DNA) is transcribed to mes-
senger RNA (mRNA) that can subsequently be translated to polypeptides (protein). Pro-
duction of mRNA and protein are balanced by their decay. From Ingalls (2018).

than transcription.

In Equation (2.6), the mRNA concentration can be assumed in quasi-steady state as
mRNA decay is usually much faster than protein decay. This assumption reduces Equa-
tion (2.6) to

mqss.t/ D
vm

ım

(2.8)

d

dt
p.t/ D k1mqss.t/ � ıpp.t/ (2.9)

where the quasi-steady state concentration of mRNA transcripts was denoted as mqss

for clarity. As an example, consider the case of a repressor. Upon the substitution of
Equation (2.7) in Equation (2.8), we obtain Equation (2.10).

mqss.t/ D
˛0

ım

C
˛

ım

1

1 C .ŒTF�=K/n
(2.10)

Substituting Equation (2.10) once again in Equation (2.9), Equation (2.11) is obtained,
which describes the time dependency of the expression of a protein under the control of
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a constitutive repressor.

d

dt
p.t/ D

˛0k1

ım

C
˛k1

ım

1

1 C .ŒTF�=K/n
� ıpp.t/ (2.11)

The behaviour of the system can be analysed by solving Equation (2.11) for certain initial
conditions. As more mechanistic details of this hypothetical genetic circuit are unveiled,
the model can be further refined. Conversely, if the model does not agree satisfactorily
with experimental findings, the assumptions of the model have to be refined. In the long
term, the concentrations often approach a constant value: the steady state. Steady states
are of particular interest to the modeller and can be calculated by setting Equation (2.11)
to zero:

pss
D

˛0k1

ımıp

C
˛k1

ımıp

1

1 C .ŒTF�=K/n

D ˇ0 C
ˇ

1 C .ŒTF�=K/n
D ˇ0 C

ˇ � Kn

Kn C ŒTF�

(2.12)

where pss designates the steady-state concentration of the target protein, ˇ0 D
˛0k1

ımıp
and

ˇ D
˛k1

ımıp
.

Recently, a dynamic model development workflow was published named generation
and analysis of models for exploring synthetic systems (GAMES). It encompasses all
steps from model formulation to parameter fitting and comparison of multiple candidate
models, along with remediation strategies in case of failure in one of the steps. The
researchers made their code freely accessible to improve the rigour and reproducibility
of model development. Such efforts are precious to lower the barrier for biologists to
start modelling and contribute to the progress of synthetic biology (Dray et al., 2022).

2.2.4 The phenomenologicalmodel ofMannan for biosensor response

The dose-response curve of a particular biosensor most likely has to be engineered in
order for the biosensor to be harnessed for different applications (see Sections 2.1.2
and 2.2.2). Indeed, native MRTFs have evolved to function optimally in their biological
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context. Synthetic biologists generally isolate these MRTFs for an application discrete
from their natural function and hence, their dose-response parameters are presumably
suboptimal for the intended application (Mahr & Frunzke, 2016). Dose-response engi-
neering, however, remains challenging due to several reasons. Firstly, a lot of biosensor
components can be targeted for engineering, both in the sensing and regulation modules
(see Section 2.1.1.1), but the expected outcome has not always been properly under-
stood (De Paepe et al., 2017). Secondly, changes to one component often affect multiple
dose-response parameters at the same time (Wang et al., 2015). Together, these aspects
complicate rational biosensor design and therefore, response curve engineering has of-
ten been undertaken through trial-and-error methodologies (Mannan et al., 2017; Koch
et al., 2019).

In 2017, a notable paper was published that aimed to better characterise the interplay
between the tunable parameters and dose-response curves of MRTF-based biosensors.
Mannan and colleagues formulated a phenomenological model to describe the dose-
response relationships of all biosensor patterns in Figure 2.1B. This model (referred to as
”the Mannan model for biosensor response” throughout this thesis) represents the input-
output relations of the sensing and regulation modules as two separate Hill functions.
That is, the concentration of active transcription factor TF is modelled as a function of
metabolite concentration M , and the expression level of the target gene P is again mod-
elled as a function of TF . P as well as the correspondingmRNA transcripts are assumed
to be in steady state. Since both modules can hold negative or positive interactions, in-
hibitory or activatory Hill functions can once again be used (see also Equations 2.4 and
2.7):

fi.x/ D

8<:bi C
ai

1C.Ki �x/ni
(inhibitory Hill function),

bi C
ai �.Ki �x/ni

1C.Ki �x/ni
(activatory Hill function),

(2.13)

for i D f1; 2g. i D 1 refers to the sensing module, whereas i D 2 refers to the regulation
module. x refers to the inputs (M or TF , respectively) and fi.x/ to the outputs (TF or
P , respectively). Further, b1 signifies the basal level and a1 the maximum increase of
transcription factor activity. K1 is the transcription factor-metabolite affinity, while n1

betokens the sensitivity of transcription factor-metabolite binding. On the other hand, b2
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models the basal level of promoter expression. a2 is the maximum increase in promoter
expression. K2 represents the affinity of the active transcription factor for its TFBS and
n2 refers to the sensitivity of transcription factor-TFBS binding. The target gene expres-
sion can then be written as the composite function P D f2.f1.M//. As an example,
consider pattern 3 in Figure 2.1B, the so-called repressed-repressor. As this pattern
is composed of two negative interactions, both f1.M/ and f2.TF / are represented by
inhibitory Hill functions in Equation (2.13), yielding Equation (2.14) (Mannan et al.,
2017).

P D b2 C
a2

1 C .K2 � .b1 C
a1

1C.K1�M/n1
//n2

(2.14)

Equation (2.14) gives rise to a sigmoidal dose-response curve (Figure 2.7A); the same is
true for the other patterns in Figure 2.1B. Next, Equation (2.14) was transformed to yield
expressions for the dose-response parameters (i.e. b, a, � and �, see Section 2.2.2) as a
function of the tunable parameters (i.e. b1, a1, K1, n1, b2, a2, K2 and n2). The Mannan
model predicts a fundamental constraint in biosensor design: for increasing transcrip-
tion factor-TFBS affinity (i.e. increasing K2), both � and � increased. In other words, a
broader dynamic range can be obtained by tuning of the TFBS, but at the same time, the
concentration of metabolite required to elicit that response will also grow (Figure 2.7B).
These predictions could be reproduced in vivo, by mutating the TFBS of the E. coli
lac repressor (LacI, a repressed-repressor). Simulations indicated that, although the re-
lationship between� and � is monotonically increasing for b1 D 0, for increasing values
of b1, the dynamic range reaches a maximum value that cannot be exceeded by tuning
K2. Nevertheless, the affinity of an MRTF for its TFBS is one of the most commonly
employed tunable parameters in biosensor design. Similar constraints between � and �

were observed for the other patterns in Figure 2.1B (Mannan et al., 2017).

Interestingly, the Mannan model also predicts two tunable parameters that affect � and
� orthogonally: the promoter dynamic range (i.e. �2 D

a2

b2
) and transcription factor-

metabolite affinity (K1), respectively (Figure 2.7C). This orthogonal control could be
validated in vivo for E. coli LacI. �2 was increased by replacing the -35 and -10 regions
of the lacUV5 promoter with the corresponding regions of the stronger PA1 promoter
of phage T7, while K1 was tuned by switching to a lower affinity effector (methyl-1-
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A B

C

Figure 2.7: The Mannan model for biosensor response. (A) A dose-response curve
obtained by simulation of Equation (2.14) with parameters b1 D 0:01, a1 D 300,
K1 D 0:1, n1 D 6, b2 D 4:1, a2 D 1000, K2 D 0:9 and n2 D 2. (B) Simulations
of the fundamental constraint in biosensor design for for varying values of b1. The inset
shows dose-response curves for varying K2 at a high basal transcription factor activity.
(C) Dynamic range and threshold can be controlled orthogonally by promoter dynamic
range and transcription factor-metabolite affinity. Panels B-C were adapted from Man-
nan et al. (2017).
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thio-β-D-galactopyranoside (TMG) instead of IPTG). However, good fits could not be
obtained by solely refitting �2 or K1. For the first experiment, a2, b2, and also n2

were refitted; for the second experiment, K1 had to be refitted in combination with b1.
These couplings cannot be fully explained by the model. Moreover, the K1 value for
TMG was 100-fold lower than the fitted value for IPTG, whereas earlier competition
binding assays demonstrated that the affinity for TMG is approximately 10-fold lower
(Gilbert & Müller-Hill, 1966). According to the model, �2 and K1 should also provide
orthogonal control of dynamic range and threshold in the other three biosensor patterns
in Figure 2.1B (Mannan et al., 2017).

Importantly, the authors claim that their phenomenological model is broadly applica-
ble since it is constructed without any specific mechanistic assumptions. Hence, the
reported design principles should also be of wide applicability. The authors finally sug-
gest that a large portion of the biosensor design space can be accessed by tuning the
promoter strength in combination with mutated TFBSs. For MRTFs with large basal
activities (”leaky MRTFs”), perturbing the affinity for its cognate metabolite by protein
engineering would be more appropriate (Mannan et al., 2017).

2.3 β-Alanine-responsive transcription factors

BA (3-aminopropanoic acid) is the only β-type amino acid found in nature. Although
nonproteinogenic, it plays an important role in metabolism as a direct precursor for pan-
tothenic acid (vitamin B5) which is, in turn, a component of CoA and the acyl-carrier
protein (Maas, 1952; Alberts & Vagelos, 1966). Escherichia colimainly synthesises BA
through the α-decarboxylation of L-aspartic acid catalysed by PanD (Cronan Jr, 1980).
Alternatively, the degradation of uracil and possibly the hydrolysis of carnosine supply
BA to the cell (Slotnick & Weinfeld, 1957; Campbell, 1960; Klein et al., 1986). BA
can also be actively taken up by the action of CycA, an H+ symporter (Schneider et al.,
2004). The degradation of spermine and spermidine could also constitute a source of
BA (Razin et al., 1958). The degradation of BA has been characterised in Pseudomonas
fluorescens. It proceeds in two enzymatic steps: in the first step, a transaminase cataly-
ses the transamination reaction of BAwith pyruvic acid yielding malonate semialdehyde
and L-alanine. Malonate semialdehyde is a toxic intermediate that is oxidatively decar-
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boxylated to acetyl-CoA and CO2 by the action of the acylating malonate-semialdehyde
dehydrogenase (Yamada & Jakoby, 1960; Hayaishi et al., 1961; Dalwadi &King, 2020).
Notably, a malonate-semialdehyde dehydrogenase purified from Pseudomonas aerugi-
nosa was shown to form malonic acid instead of acetyl-CoA (Nakamura & Bernheim,
1961).

Given its importance as a central metabolite, it should be of no surprise that several
MRTFs bind BA and regulate its metabolism in response. The first BA-responsive reg-
ulator to be described, BarR, was discovered in the Thermoproteota Sulfolobus acido-
caldarius (Sa-BarR) and Sulfurisphaera tokodaii (St-BarR) (Liu et al., 2014). BarR is
a member of the FFRP family, one of the largest transcription factor families in Ar-
chaea (Pérez-Rueda & Janga, 2010). This transcription factor family was named after
the role of E. coli leucine-responsive regulatory protein (Lrp), which is the archetype
of the family, to coordinate metabolism under feast or famine conditions (that is, high
or low nutritional availability) (Anderson et al., 1976; Calvo & Matthews, 1994). The
Lrp/AsnC family of transcriptional regulators is another frequently used designation in
literature. FFRPs are small proteins (for instance, Sa-BarR only consists of 152 amino
acid residues) that consist of two domains: an N-terminal DBD and a C-terminal regu-
lation of amino acid metabolism (RAM) domain separated by a linker region (Platko &
Calvo, 1993; Ettema et al., 2002). The latter typically encompasses the effector binding
site(s) and enables oligomerisation. Besides, FFRPs typically contain short unstructured
N- and C-terminal tails that are essential in E. coli Lrp for higher-order oligomerisation
and DNA binding (Chen et al., 2001; de los Rios & Perona, 2007; Ziegler & Freddolino,
2021).

Purified Sa-BarR and St-BarR form octamers in vitro in the presence and absence of BA,
notwithstanding that a small fraction of St-BarR eluted as lower-order complexes during
gel filtration experiments in the presence of 5 mM BA. Both proteins are closely related
to S. tokodaii glutamine receptor protein (Grp, 69% sequence identity), an FFRP fam-
ily member for which crystal structures have been elucidated. In these structures, Grp
makes up a tetramer of dimers arranged in a closed ring, the RAM domains interacting
centrally and the DBDs projecting outward. In this common quaternary structure across
FFRPs, the DNA is assumed to wrap around the contour of the assembly. Its effector
glutamine binds to two different binding sites: one situated at the RAM domain between



CHAPTER 2. LITERATURE REVIEW 35

two adjacent dimers (the canonical Type I binding site of FFRPs) and a second one near
the DBD (Type IV binding site) (Kumarevel et al., 2008; Shrivastava et al., 2009). These
crystal structures were used to build a structural homology model of St-BarR. BA could
be modelled in a cleft corresponding to the former binding site of Grp, pointing out
several residues potentially involved in BA binding in BarR (Liu et al., 2014).

The barR gene is situated in a divergent orientation with respect to a putative BA—
pyruvate aminotransferase gene (SACI_RS10335 and STK_RS06165 in S. acidocaldar-
ius and S. tokodaii, respectively). Sa-BarR binds to a semi-palindromic binding motif
found in the barR/SACI_RS10335 intergenic region and coding sequence of SACI_RS10335.
It was shown to bind to this region in vivo both in the presence and absence of exoge-
nous BA. In contrast to most FFRPs that function as autorepressors, Sa-BarR activates
transcription of its own structural gene in a BA-independent fashion (Kölling & Lother,
1985; Lin et al., 1992; Cordone et al., 2005; McFarland & Dorman, 2008). In addition,
Sa-BarR activates SACI_RS10335 expression in response to BA. It was hypothesised
that this regulatory mechanism induces BA degradation under excess BA in order to
recover energy and building blocks under the form of acetyl-CoA. Finally, it also func-
tions as an activator of the SACI_RS11230/SACI_RS11235 operon encoding glutamate
synthase in the presence of BA. The upstream region of the glutamate synthase gene is
a common binding target of FFRPs, and BarR could function here to connect BA and
α-amino acid metabolism in S. acidocaldarius (Ernsting et al., 1992; Nguyen-Duc et al.,
2013; Song et al., 2013; Vassart et al., 2013; Lu et al., 2019). Our lab is currently char-
acterising a novel BA-responsive FFRP, AHOS_RS02205, a homologue of BarR and
Grp from the Thermoproteota member ”Acidianus hospitalis”.

On the other hand, OapR is a BA-responsive transcription factor that belongs to the
GntR family (briefly introduced in Section 2.1.1.1). The GntR family is a large fam-
ily of transcription factors that contain a conserved N-terminal DBD and a C-terminal
oligomerisation and/or effector-binding domain connected by a peptide linker of vari-
able length (Haydon & Guest, 1991). Family members can be classified into seven
subfamilies according to the architecture of the C-terminal domain. OapR belongs to
the MocR subfamily, which is widespread across Bacteria but absent in Archaea (Su-
vorova & Rodionov, 2016). It was named after Ensifer meliloti MocR, a transcription
factor putatively involved in the regulation of rhizopine catabolism (Rossbach et al.,
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1994). MocR subfamily transcription factors possess a large C-terminal domain homol-
ogous to the class-I pyridoxal 5’-phosphate (PLP)-dependent aminotransferase fam-
ily, an ancient enzyme family represented by aspartate aminotransferase (AAT) (Mehta
et al., 1993). They typically regulate metabolic pathways involving PLP and amino
acids, but their regulatory targets can be as divergent as peptidoglycan biosynthesis,
virulence genes in phytopathogenic bacteria and membrane proteins (Belitsky & Sonen-
shein, 2002; Savidor et al., 2014; Takenaka et al., 2015; Milano et al., 2016).

Very few MocR members have been structurally or functionally characterised. For in-
stance,B. subtilisGabR is the onlyMocR transcription factor for which three-dimensional
structures have been determined. These structures reveal a homodimeric assembly with
the two monomers swapping domains in a head-to-tail manner. The C-terminal do-
mains interface centrally, forming two binding pockets for PLP. GabR binds to PLP
covalently through its active site lysine residue (K312). Upon addition of its effector
γ-aminobutyric acid (GABA), the active site PLP dislodges from this lysine and instead
forms a Schiff base with GABA through a transaldimination reaction. Hence, GabR can
only bind GABA in the presence of cofactor PLP. Notwithstanding their striking similar-
ity to class-I aminotransferases, no MocR transcription factor has been found to catalyse
a chemical reaction to date (Edayathumangalam et al., 2013; Okuda et al., 2015).

oapR is transcribed in divergent orientation of the oapTD operon encoding putative
BA—pyruvate transaminase and malonate-semialdehyde dehydrogenase. In C. neca-
tor H16, it activates transcription of oapTD in response to BA (Hanko et al., 2020). Its
TFBSs have been predicted through comparative genomics analysis and are present as
two direct repeats (D1 and D2) and one inverted repeat (I3) in the oapR/oapTD inter-
genic region (Suvorova & Rodionov, 2016). This genetic arrangement closely resem-
bles that of GabR, although the precise topology is not equivalent. A mechanism for
GabR-mediated regulation has been proposed based on experimental findings in B. sub-
tilis. In the absence of GABA, GabR binds to D1 and I3 with its inversely oriented
DBDs and to the sequence in between through electrostatic interactions with a positively
charged groove along its AAT-like domain (Edayathumangalam et al., 2013; Amidani
et al., 2017). This arrangement occludes the -35 core promoter sequence for RNAP,
and hence, prevents initiation of transcription. Binding of GABA would then induce a
conformational change, displacing the DBD bound from I3 to D2, fromwhere GabR can
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recruit RNAP and activate transcription. At the same time, GabR represses transcription
from its structural gene irrespective of effector binding (Belitsky & Sonenshein, 2002;
Nardella et al., 2020).

Escherichia coli does not encode any homologs to OapR and expression from a heterolo-
gous oapTD promoter was not mobilised by endogenous transcription factors in response
to BA. Thus, OapR allows orthogonal gene expression control in E coli, making it an
interesting MRTF for use as BA-responsive biosensor in E coli. Such biosensors have
been constructed by the Minton group and our group, which revealed a dual function in
E coli in response to BA. In the absence of BA, increasing the expression level of oapR
results in a decrease in fluorescent reporter gene expression from the oapTD promoter,
indicating that OapR represses transcription in the absence of BA. Upon BA supplemen-
tation, OapR functions as an activator, as the fluorescence measured in the presence of
OapR and BA exceeds the fluorescence in the absence of OapR (Hanko et al., 2020;
Magnus, 2021).



Chapter 3

Aims and objectives

Whole-cell biosensors are emerging synthetic biology tools that allow to differentially
regulate gene expression in response to changes in physicochemical parameters expe-
rienced by the cell, such as metabolite concentration. This makes biosensors, and par-
ticularly biosensors based on metabolite-responsive transcription factors (MRTFs), ex-
cellently suited for metabolic engineering applications. For instance, dynamic pathway
regulation has developed a true hype among metabolic engineers. Dynamic pathway
regulation allows to dynamically and autonomously control metabolic flux by regulating
key pathway enzymes in response to changes in intracellular metabolite concentration,
and its implementation has led to increased production titers, rates and yields in a range
of applications.

In order to be widely applicable, biosensors need to be tunable. However, a lack of
quantitative understanding of the effect of different interventions on its response curve
resulted in a high reliance on trial-and-error methodologies during biosensor develop-
ment. In this context, a simple phenomenological model has been published, which
revealed fundamental constraints for the design of MRTF-based biosensors and exposed
tunable parameters that allow orthogonal control of the dynamic range and threshold.
Because the model was formulated without imposing mechanistic assumptions, it was
claimed that the model should be broadly applicable.

The first part of this thesis aims to obtain further insight in the effect of perturbations to
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MRTF-based biosensors on their response curve. For this purpose, model simulations
were compared to published results of real-life biosensors. In addition, a parameter
estimation method to fit biosensor characterisation data to the model was implemented
in Python and evaluated using simulated data sets.

The second part of this thesis aims to engineer and characterise Escherichia coli biosen-
sors responsive to β-alanine, an intermediate compound for the production of industrially
important platform molecules such as 3-hydroxypropionic acid. Mutations were intro-
duced in the predicted transcription factor binding sites of Cupriavidus necator OapR
through site-directed mutagenesis and their effect on the dose-response characteristics
was characterised in vivo. In addition, experimental dose-response curves of biosensors
based on AHOS_RS02205 from ”Acidianus hospitalis” were analysed and fitted to a
Hill function.

Together, these endeavours fit inwith the goal to improve the production of 3-hydroxypropionic
acid by implementing biosensor-mediated dynamic control at the β-alanine node in Es-
cherichia coli.



Chapter 4

Materials and methods

4.1 Mathematical modelling

Simulations and fitting were performed in Python 3.9.12 (Van Rossum & Drake, 2009)
alongwith the packages NumPy 1.21.5, Matplotlib 3.5.1, pandas 1.4.3, seaborn
0.11.2, lmfit 1.0.3, SciPy 1.7.3 and SALib 1.4.5.

Throughout this thesis the common logarithm log10.x/ is denoted lg.x/ and the natural
logarithm loge.x/ is denoted ln.x/ for brevity.

4.1.1 Dose-response parameter estimation

Experimental dose-response curves obtained through the procedure described in Sec-
tion 4.2.2.2 were fitted to a Hill function as described before (Landry et al., 2018).
Briefly, a data set comprising measurements of the normalised fluorescence (FL/OD600)
across biological replicates was fit to Equation (2.4) using the fit function of the lmfit
Model class. Data points corresponding to a supplementation with 100 mM β-alanine
(BA) were omitted for fitting, as their concomitant decreased FL/OD600 were not ex-
pected to be directly related to the function of the biosensor. Default options were
used, except for the weights option that was used to multiply each residual with the
inverse of the mean FL/OD600 at that data point, which improves the fitting at low
BA concentrations. 95% confidence intervals on b, a, � and n were calculated using
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the conf_interval function, which executes the F -test (Newville et al., 2016).

4.1.2 Development of a parameter estimation method for the Man-
nan model for biosensor response

4.1.2.1 The parameter estimation method

The parameter estimation method (PEM) implemented in MATLAB by Mannan et al.
(2017) was adapted to run on Python. This method departs from eight transcription-
factor binding site (TFBS) mutants that hence exhibit a different transcription factor-
TFBS affinity (K2). Briefly, for each strain i , all biological replicates were fitted sepa-
rately to aHill function (Equation 2.4), yielding�i;E , �i;E and bi;E where the subscriptE
denotes that the parameters were experimentally determined. These dose-response pa-
rameters were globally fitted to the Mannan model by forcing all model parameters ex-
cept K2 (that is, p D fb1; a1; K1; n1; b2; a2; n2g) to be equal for all strains. For each
strain i individually, all model parameters (including K2 were fixed across biological
replicates. Concretely, dose-response parameters were fitted to the Mannan model by
minimising the objective function

C.K2;1; K2;2; :::; K2;n; p/ D

nX
iD1

�
�i;E � �i;M .K2;i ; p/

O�E

�2

C�
�i;E � �i;M .K2;i ; p/

O�E

�2

C 
lg.bi;E / � lg.bi;M .K2;i ; p//

lg. ObE /

!2

(4.1)

where n denotes the number of strains; �i;M , �i;M and bi;M designate the i th model
predictions of the dose-response parameters; O�E , O�E and ObE designate the maximum
measured values of the dose-response parameters and K2;i is the fitted value of K2 for
strain i . The repressed-repressor pattern was chosen as case study, for which the model
predictions can be computed as
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� D �2

..b1 C a1/n2 � b
n2

1 /K
n2

2

.1 C .K2.b1 C a1//n2 C �2/.1 C .b1K2/n2/
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� D
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K1
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a1K2

n2
p

A � 1 � b1K2

� 1 (4.3)

b D b2 C
a2

1 C .K2.b1 C a1//n2
(4.4)

Note that the M subscript was omitted for brevity in Equations (4.2) to (4.4). In Equa-
tion (4.3), A is a function of tunable parameters as:

A D 2 �
.1 C .K2.b1 C a1//n2/ � .1 C .b1K2/n2/

2 C ..b1 C a1/n2 C b
n2

1 /K
n2

2

(4.5)

The optimisation problem in Equation (4.1) can be solved via nonlinear least-squares.
The choice of covariates, including the optimisation algorithm, imposed bounds and
scaling, impacts the obtained results (Kreutz, 2019). Mannan et al. (2017) used mul-
tistart optimisation to minimise C.K2;1; K2;2; :::; K2;n; p/ but not all covariates were
clearly defined. Therefore, a strategy based on Dray et al. (2022) is proposed below.

First, bounds should be imposed on the model parameters in order to prevent mathemat-
ical errors (such as division by zero), biologically irrelevant results and to improve con-
vergence. Bounds were applied as in Mannan et al. (2017), except for n1 (the sensitivity
of metabolite-transcription factor binding) and K2 that were further constrained and n2

(the sensitivity of transcription factor-TFBS binding) that was extended (Table 4.1).

Table 4.1: Bounds applied for parameter estimation for theMannanmodel for biosensor
response.

b1 0 0.1

a1 0 500

K1 1 � 10�4 1

Parameter Lower bound Upper bound

Continued on next page
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Table 4.1: Bounds applied for parameter estimation for theMannanmodel for biosensor
response. (Continued)

n1 1.0 4.0

b2 0 20

a2 0 3 � 103

K2 5 � 10�3 1

n2 0.5 3.0

Parameter Lower bound Upper bound

A PEM should be able to identify the global optimum of the objective function in the
presence of multiple local minima. Often, deterministic optimisation algorithms are
applied for fitting. Such methods start from an initial guess and seek to decrease the
objective function over multiple iterations using derivative information. However, these
algorithms can get stuck in local minima depending on the choice of initial guess. This
limitation can be overcome by initiating multiple independent optimisation runs from
a series of random initial guesses. If implemented correctly, a portion of the runs end
in local minima while another portion ends in the global optimum. Latin hypercube
sampling (LHS) was used to generate the initial guesses (Figure 4.1). For illustration,
drawing N samples from a 2-dimensional parameter space through LHS can be thought
of as dividing the parameter space in N 2 boxes (Figure 4.1B). For the first sample, a
box in the first column of the parameter space is selected; the sample is subsequently
drawn from a uniform distribution within this box. This rationale is repeated for the
second sample, where any box from the second column can be chosen that is situated
in a row that has not yet been sampled in the previous step. Therefore, LHS allows
for better sampling of the parameter space, where purely uniformLy drawn samples can
accidentally lie close to each other (Figure 4.1C-D) (McKay et al., 1979).

The LHS implementation of the SALib package was applied to generate initial guesses
within the parameter bounds (Herman &Usher, 2017). K1, n1, K2 and n2 were sampled
over a logarithmic scale by sampling the exponent space and subsequently transform-
ing the sample m as 10m. All other parameters were directly sampled on a linear scale.
Further, eight samples were drawn for K2 in total, one for each strain. This way, 500 pa-
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A

C D

B

p p

p p

Distance to next neighbour Distance to next neighbour

Figure 4.1: Comparison of random sampling of initial parameter guesses from a uniform
distribution and using Latin hypercube sampling (LHS). (A-B) Generation of 20 initial
guesses in a two-dimensional parameter space (with hypothetical parameters p1 and
p2) from a uniform distribution (A) and using LHS (B). (C-D) Histogram showing the
distribution of the Euclidean distances to the nearest neighbour in parameter space for
1000 repetitions of the sampling of 20 initial guesses in a two-dimensional parameter
space from a uniform distribution (C) and using LHS (D). Adapted from Raue et al.
(2013).
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rameter sets were generated and subsequently optimised by minimising Equation (4.1)
using the Levenberg-Marquardt algorithm implemented using the minimize function
from the lmfit package (Levenberg, 1944; Marquardt, 1963; Moré, 1978; Newville
et al., 2016). Default parameters were applied, except for the option nan_policy that
was set to ’propagate’. Levenberg-Marquardt is a deterministic optimisation algorithm
that interpolates between the Gauss-Newton and steepest descent methods, and it is a
reasonable first choice for nonlinear least-squares minimisation problems (Ashyraliyev
et al., 2009; Transtrum & Qiu, 2012; Dray et al., 2022). The parameter set yielding the
lowest objective value is then reported as the best fit.

4.1.2.2 Evaluation of the parameter estimation method

The proper implementation of the PEM set out in Section 4.1.2.1 was evaluated accord-
ing to Dray et al. (2022). This method departs from simulated data for which the model
parameters are known in advance. It is then evaluated whether the PEM succeeds in
finding global optima and whether the parameter values corresponding to the optimal
solution are similar to the true values.

As we were not yet able to construct sufficient amounts of TFBS mutants for OapR
and AHOS_RS02205 to fit the Mannan model adequately, we departed from LacI (a
repressed-repressor, see Figure 2.1B) data from literature (’LacExp1’ fromMannan et al.
(2017)). This data includes experimental values of�, � and b for a varying number of bi-
ological replicates across eight TFBS mutants. For each strain i , the standard deviations
of the dose-response parameters were calculated (s�i

and s�i
and sbi

). LHS was then
performed as described in Section 4.1.2.1 to generate 104 parameter sets and their ob-
jective function value was calculated with respect to the LacI data using Equations (4.1)
to (4.5). The nine parameter sets yielding the lowest objective function values (i.e. best
describing the LacI data) were considered as true values of nine simulated data sets. For
each data set, the true dose-response parameters .�i;T rue; �i;T rue; bi;T rue/ were com-
puted for each strain i from Equations (4.2) to (4.4) and simulated .�; �; b/ triplets
were generated by drawing the same number of replicates for a given strain as reported
by Mannan et al. (2017) from (N .�i;T rue; s2

�i
/, N .�i;T rue; s2

�i
/, N .bi;T rue; s2

bi
/). If

negative or zero values were generated in the process, they were arbitrarily set to 1.0 to
exclude biological and mathematical infeasibilities.
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The procedure described above yields nine simulated data sets akin to experimental data
for which the true model parameters are known. The data sets show a variety of plausible
behaviours with various objective function properties that might challenge the PEM in
different ways. Each data set was individually fitted to the Mannan model according to
the strategy expounded in Section 4.1.2.1. Note that the same initial guesses generated
through LHS were used for all data sets in order to save on computational power. The
obtained objective function values were then compared to the objective computed for
the data set with and without noise (Cpass) and the best fit was compared to the ideal
noise-free solution.

4.2 Molecular biology work

4.2.1 Materials

4.2.1.1 Buffers, media and solutions

This section lists the buffers, media and solutions used throughout this thesis project.
Chemicals used for their preparation were obtained from Sigma Aldrich (St. Louis,
MO, USA), unless indicated otherwise (Table 4.2).

Table 4.2: Composition of the different media, buffers and solutions used throughout
this thesis project.

Media

Solid LB medium 25.0 g/L LB broth base (Labconsult, Brussels, Bel-
gium), 15.0 g/L micro agar (Labconsult).

Liquid LB medium 25.0 g/L LB broth base (Labconsult).

InBio basis 83.3 mM NH4Cl, 47.3 mM (NH4)2SO4, 27.5 mM
KH2PO4, 52.5 mM K2HPO4, 50.0 mM MOPS,
17.9 mM NaCl. pH was adjusted to 7.0 with
NaOH/HCl. Autoclaved.

Medium/buffer/solutiona Compositionb

Continued on next page
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Table 4.2: Composition of the different media, buffers and solutions used throughout
this thesis project. (Continued)

InBio glucose & MgSO4

solution
458 mM glucose, 10.1 mM MgSO4. Autoclaved.

InBio vitamin & trace ele-
ment solution

23.7 mM FeCl2, 50.0 mM CaCl2; 11.3 mM MnCl2,
3.10 mM CuCl2, 3.00 mM CoCl2, 10.5 mM ZnCl2,
0.400mMH3BO4, 1.10mMdisodium EDTA, 3.60mM
thiamine.HCl. Filter-sterilised.

InBio molybdate solution 4.00 mM Na2MoO4. Filter-sterilised.

InBio minimal medium 4 volumes of InBio basis + 1 volume InBio glucose &
MgSO4 solution + 1/1000 InBio vitamin & trace ele-
ment solution + 1/10000 InBio molybdate solution.

10X MOPS Buffer
(Teknova, Hollister,
CA, USA)

400 mM MOPS, 40.0 mM tricine, 0.100 mM FeSO4,
95.0 mM NH4Cl, 2.76 mM K2SO4, 5.00 µM CaCl2,
5.25 mM MgCl2, 500 mM NaCl, 2:92 � 10�6 mM
(NH4)2MoO4, 4:00 � 10�4 mMH3BO3, 3:02 � 10�5 mM
CoCl2, 9:62 � 10�6 mM CuSO4, 8:08 � 10�5 mM
MnCl2, 9:74 � 10�6 mM ZnSO4.

Potassium phosphate diba-
sic solution (Teknova)

132 mM K2HPO4.

10X ACGU Solution
(Teknova)

1.99 mM adenine, 1.99 mM cytosine, 1.99 mM gua-
nine, 1.99 mM uracil

MOPS EZ Rich Defined
Mediumc

For the preparation of 1000 mL of medium: 100 mL of
10X MOPS Buffer, 10 mL potassium phophate diba-
sic solution, 100 mL 10X ACGU Solution, 10 mL
of 20% glucose (Teknova), 780 mL sterile H2O
(Teknova). Filter-sterilised.

Buffers/solutions

Medium/buffer/solutiona Compositionb

Continued on next page
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Table 4.2: Composition of the different media, buffers and solutions used throughout
this thesis project. (Continued)

1000X chloramphenicol
solution

25 mg/mL chloramphenicol in ethanol.

1000X kanamycin solution 60 mg/mL kanamycin.

5X TBE buffer 446 mM Tris, 445 mM H3BO3, 10 mM disodium
EDTA.

6X DNA loading dye 25% Ficoll 400, 0.1% xylene cyanol, 0.1% bromophe-
nol blue, 0.5% SDS, 0.1% disodium EDTA.

FastAP (Thermo Scientific,
Waltham, MA, USA)

1 U/µL FastAP Thermosensitive Alkaline Phosphatase.

2X GoTaq® Green Mas-
ter Mix (Promega, Madi-
son, WI, USA)

2.5 U/µL GoTaq® DNA Polymerase, 400 µM dATP,
400 µM dGTP, 400 µM dCTP, 400 µM dTTP, 3.00 mM
MgCl2 in Green GoTaq® Reaction Buffer (pH 8.5).

2X KAPA HiFi DNA Poly-
merase master mix (Roche,
Basel, Switzerland)

1 U/µL KAPA HiFi DNA Polymerase, 600 µM dATP,
600 µM dGTP, 600 µM dCTP, 600 µM dTTP, 2.00 mM
MgCl2 in KAPA HiFi Fidelity Buffer.

Naringenin solutiond Naringenin in ethanol.

Medium/buffer/solutiona Compositionb

a Media abbreviations: LB, lysogeny broth.
b Chemical abbreviations: MOPS, 3-(morpholin-4-ium-4-yl)-1-propanesulfonate;
EDTA, ethylenediaminetetraacetic acid; SDS, sodium dodecyl sulphate; dATP, de-
oxyadenosine triphosphate; dGTP, deoxyguanosine triphosphate; dCTP, deoxycyti-
dine triphosphate; dTTP, deoxythymidine triphosphate.

c Themanufacturer suggests an additional supplement (’5XEZSupplement’) containing
the twenty canonical α-amino acids and calcium pantothenate. This was omitted as it
could influence the assay of interest in our work.

d Concentration varied depending on the experiment.
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4.2.1.2 Kits

Several commercially available kits were used to facilitate cloning (Table 4.3). All kits
were obtained from Promega.

Table 4.3: Overview of the kits used throughout this thesis project.

PureYield™ Plasmid Miniprep System Plasmid DNA purification.

PureYield™ Plasmid Midiprep System Plasmid DNA purification.

Wizard®SVGel and PCRClean-Up Sys-
tem

Purification of restricted DNA fragments
from agarose gels and PCR products.

Kit Usea

a Abbreviations: PCR, polymerase chain reaction.

4.2.1.3 Bacterial strains

This section describes the different Escherichia coli strains used throughout this thesis
project (Table 4.4).

Table 4.4: Overview of E. coli strains used troughout this thesis project.

DH5α F- λ– Φ80lacZΔM15 Δ(lacZYA-
argF)U169 recA1 endA1
hsdR17(rK-, mK

+) phoA glnV44
thi-1 gyrA96 relA1

Cloning Invitrogen (Carlsbad,
CA, USA)

DH10B F- λ– Φ80lacZΔM15 mcrA
Δ(mrr-hsdRMS-mcrBC)
ΔlacX74 recA1 endA1 araD139
Δ(ara-leu)7697 galU galK
rpsL(StrR) nupG

Cloning Thermo Scientific

Strain Genotype Use Supplier

Continued on next page
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Table 4.4: Overview of E. coli strains used troughout this thesis project. (Continued)

MG1655 F- λ- rph-1 rfb-50 ilvG- In vivo
character-
isation of
biosensors

Netherlands Culture
Collection of Bac-
teria (Utrecht, The
Netherlands)

Strain Genotype Use Supplier

4.2.1.4 Plasmid vectors

This section describes the different plasmid vectors used throughout this thesis project
for the construction of whole-cell biosensors (Table 4.5).

Table 4.5: Overview of plasmid vectors used throughout this thesis project.

Inducible transcription factor constructs (pITC)

pITC pSC101 ori, chloramphenicol resistance
gene and naringenin-inducible system,
consisting of the Herbaspirillum sero-
pedicae fdeR transcription factor gene
and corresponding fdeAR promoter (De
Paepe et al., 2018).

Drs. ir. Am-
ber Bernauw & Dr.
ir. Indra Bervoets
(MICR VUB)

pITC-
AHOS_RS02205

pITC containing the AHOS_RS02205
gene from ”Acidianus hospitalis” W1
(codon-optimised for E. coli) under con-
trol of H. seropedicae PfdeAR

Drs. ir. Amber
Bernauw (MICR
VUB)

pITC-OapR pITC containing the oapR gene from
Cupriavidus necator H16 (codon-
optimised for E. coli) under control of
H. seropedicae PfdeAR

Drs. ir. Amber
Bernauw (MICR
VUB)

Promoter reporter constructs (pPRC)

Plasmid Featuresa Source

Continued on next page
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Table 4.5: Overview of plasmid vectors used throughout this thesis project. (Continued)

pPRC pBR322 ori, Tn5 (containing a
kanamycin resistance gene) and a
promoterless mkate2 reporter gene.

Drs. ir. Am-
ber Bernauw & Dr.
ir. Indra Bervoets
(MICR VUB)

pPRC-1S pPRC containing the ”A. hospitalis”W1
AHOS_RS02205 promoter upstream of
the mkate2 reporter gene.

Drs. ir. Amber
Bernauw (MICR
VUB)

pPRC-2S pPRC containing the ”A. hospitalis”W1
AHOS_RS02210 promoter upstream of
the mkate2 reporter gene.

Drs. ir. Amber
Bernauw (MICR
VUB)

pPRC-49S pPRC containing the C. necator H16
oapTD promoter upstream of themkate2
reporter gene.

Drs. ir. Amber
Bernauw (MICR
VUB)

pPRC-mut1.1 pPRC-49S containing the 8C>G substi-
tution in the D1 site.

Constructed during
this project.

pPRC-mut1.2 pPRC-49S containing the 7A>T substi-
tution in the D1 site.

Constructed during
this project.

pPRC-mut2 pPRC-49S containing the 8C>G substi-
tution in the D2 site.

Constructed during
this project.

pPRC-mut3.1 pPRC-49S containing the 10G>C sub-
stitution in the I3 site.

Constructed during
this project.

pPRC-mut3.2 pPRC-49S containing the 8C>G substi-
tution in the I3 site.

Constructed during
this project.

pPRC-mut3.3 pPRC-49S containing the 7A>T substi-
tution in the I3 site.

Constructed during
this project.

Plasmid Featuresa Source

Continued on next page
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Table 4.5: Overview of plasmid vectors used throughout this thesis project. (Continued)

pPRC-54S pPRC containing the Sulfolobus acido-
caldarius barR promoter upstream of
the mkate2 reporter gene.

Drs. ir. Amber
Bernauw (MICR
VUB)

pPRC-55S pPRC containing the S. acidocaldarius
SACI_RS10335 promoter upstream of
the mkate2 reporter gene.

Drs. ir. Amber
Bernauw (MICR
VUB)

Single-plasmid biosensor constructs (pBS)

pBS pITC containing the promoterless
mkate2 reporter gene inserted in MCS2.

Drs. ir. Am-
ber Bernauw & Dr.
ir. Indra Bervoets
(MICR VUB).

pBS-OapR+_ pITC-OapR containing the promoterless
mkate2 reporter gene.

Constructed during
this project.

pBS-_+49S pITC containing the mkate2 reporter
gene under control of PoapTD from
C. necator H16.

Constructed during
this project.

pBS-OapR+49S pITC-OapR containing the mkate2 re-
porter gene under control of PoapTD from
C. necator H16.

Constructed during
this project.

Plasmid Featuresa Source

a Abbreviations: ori, origin of replication; MCS, multiple cloning site.

4.2.1.5 Oligonucleotide primers

This section describes the different oligonucleotide primers used throughout this thesis
project (Table 4.6). Oligonucleotides were synthesised by Sigma Aldrich (St. Louis,
MO, USA) or Integrated DNA Technologies (Leuven, Belgium). All primers were used
at 10 µM stock concentration.
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Table 4.6: Overview of oligonucleotide primers used throughout this thesis project.

IB0560 1 GTCCAGATAG CCCAGTAGCT
21 GACATTC

Fw primer for colony PCR
of pPRC and pBS con-
structs and sequencing
primer for pPRC and
pBS constructs.

IB0313 1 GTGGTTATTC ACGGTGCCTT
21 CC

Rv primer for colony PCR
of pPRC constructs.

IB0264 1 CCTTCGTAAA TCTGGCGAGT
21 GG

Rv primer for colony PCR
of pBS constructs.

VC001 1 GTGCAGTTTG AACACGCCAA
21 ACCCTACAGG CAAGCGTCAT
41 C

Fw primer for the con-
struction of pPRC-mut1.1
through SDM.

VC002 1 GATGACGCTT GCCTGTAGGG
21 TTTGGCGTGT TCAAACTGCA
41 C

Rv primer for the con-
struction of pPRC-mut1.1
through SDM.

VC003 1 GTGCAGTTTG AACACGCCAA
21 ACCGAACAGG CAAGCGTCAT
41 C

Fw primer for the con-
struction of pPRC-mut1.2
through SDM.

VC004 1 GATGACGCTT GCCTGTTCGG
21 TTTGGCGTGT TCAAACTGCA
41 C

Rv primer for the con-
struction of pPRC-mut1.2
through SDM.

VC011 1 GTCCGGACAA GACTGCCTTA
21 CCCTGCAGTT TGAACACG

Fw primer for the con-
struction of pPRC-mut2
through SDM.

VC012 1 CGTGTTCAAA CTGCAGGGTA
21 AGGCAGTCTT GTCCGGAC

Rv primer for the con-
struction of pPRC-mut2
through SDM.

Name Sequence (5’ → 3’) Purposea

Continued on next page
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Table 4.6: Overview of oligonucleotide primers used throughout this thesis project.
(Continued)

VC019 1 GTCTGGCCGA CAAAATATAC
21 ACTCCGGACA AGACTGCCTT
41 AC

Fw primer for the con-
struction of pPRC-mut3.1
through SDM.

VC020 1 GGTAAGGCAG TCTTGTCCGG
21 AGTGTATATT TTGTCGGCCA
41 GACG

Rv primer for the con-
struction of pPRC-mut3.1
through SDM.

VC021 1 CGTCTGGCCG ACAAAATATA
21 GAGTCCGGAC AAGACTGCCT
41 TACC

Fw primer for the con-
struction of pPRC-mut3.2
through SDM.

VC022 1 GGTAAGGCAG TCTTGTCCGG
21 ACTCTATATT TTGTCGGCCA
41 GACG

Rv primer for the con-
struction of pPRC-mut3.2
through SDM.

VC023 1 CGTCTGGCCG ACAAAATATT
21 CAGTCCGGAC AAGACTGCCT
41 TACC

Fw primer for the con-
struction of pPRC-mut3.3
through SDM.

VC024 1 GGTAAGGCAG TCTTGTCCGG
21 ACTGAATATT TTGTCGGCCA
41 GACG

Rv primer for the con-
struction of pPRC-mut3.3
through SDM.

AB245 1 GACGATGGTA GTCAGCTGCC
21 TACTAAG

Sequencing of mkate2 on
pPRC-mut constructs.

VC031 1 TCTGATGCCA CTTGTCCACC
21 TCTC

Sequencing of mkate2 on
pPRC-mut constructs.

VC032 1 AGAGGTGGAC AAGTGGCATC Sequencing of ori on
pPRC-mut constructs.

VC033 1 AAAGGTTGGG CTTCGGAATC Sequencing of ori on
pPRC-mut constructs.

Name Sequence (5’ → 3’) Purposea

Continued on next page
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Table 4.6: Overview of oligonucleotide primers used throughout this thesis project.
(Continued)

VC034 1 AGACTGGGCG GTTTTATGG Sequencing of Tn5 on
pPRC-mut constructs.

IB0036 1 GCGGAGCCTA TGGAAAAACG Sequencing of Tn5 on
pPRC-mut constructs.

Name Sequence (5’ → 3’) Purposea

a Abbreviations: Fw, forward; Rv, reverse; PCR, polymerase chain reaction;
SDM, site-directed mutagenesis; ori, origin of replication.

4.2.1.6 Restriction enzymes

This section describes the different restriction enzymes used throughout this thesis project
(Table 4.7). FastDigest restriction enzymes were used, obtained from Thermo Scientific.

Table 4.7: Overview of restriction enzymes used throughout this thesis project.

BamHI G↓G A T T C
C C T A A↑G

Restriction of pITC and pPRC.

KpnI G G T A C↓C
C↑C A T G G

Restriction of pITC and pPRC.

DpnI G Am6↓T C
C T ↑Am6G

Digest parent DNA after site-
directed mutagenesis.

Restriction en-
zyme

Recognition site (5’ → 3’) and
restriction sites (↓)

Purpose

4.2.2 Methods

4.2.2.1 Cloning

For all cloning experiments, E. coli DH5α or DH10B was used depending on the avail-
ability. Strains were grown at 37 °C, either on solid or in liquid LB medium supple-
mented with the appropriate antibiotics. DNA concentrations were determined on a
NanoDrop spectrophotometer (Thermo Scientific).
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Construction of pBS constructs. pBS plasmids were constructed using restriction
enzyme digestion and ligation. For this purpose, pITC and pPRC constructs were di-
gested with BamHI and KpnI. Reaction mixtures were prepared according to the man-
ufacturer’s instructions, except for the final volume that was doubled to 40 µL. The re-
action mixtures were subsequently incubated for 30 min at 37 °C. Next, 1 µL of FastAP
was added to the pITC reaction mixtures to prevent self-ligation. Both reaction mix-
tures were then incubated for 30 more minutes at 37 °C, after which the enzymes were
inactivated through incubation at 70 °C (15 min). Restricted plasmids were resolved
by agarose gel electrophoresis (0.8% UltraPure™ Agarose from Invitrogen, Carlsbad,
CA, USA). The desired fragments were subsequently purified from gel and loaded on
0.8% agarose gels to estimate their concentrations.

Each pPRC fragment was subsequently ligated in the appropriate linearised pITC vector
using T4 DNA Ligase (Thermo Scientific) according to the manufacturer’s instructions
with adaptations. Briefly, the insert DNAwas added in threefold molar excess to the lin-
earised vector. Subsequently, 2 µL of 10X T4 DNA Ligase buffer and 5 U of T4 DNA
Ligase were added and nuclease-free H2O was added to 20 µL. The reaction mixtures
were incubated overnight at room temperature (RT), after which they were used to trans-
form CaCl2-competent E. coli DH10B. 100 µL aliquots of competent cells were thawed
on ice for at least 10 min and, subsequently, 5 µL of reaction mixture was added to each
aliquot. The cells were gently mixed and incubated on ice for 15 min. Next, a heat shock
was applied by incubating the cells for 3 min at 37 °C. The cells were then incubated
10 min at RT and transferred to 1 mL of liquid LB medium. Cultures were incubated for
2 h at 37 °C in a shaking incubator and plated on solid LB medium supplemented with
chloramphenicol to obtain colonies.

Colony polymerase chain reaction (PCR) was performed to confirm successful cloning.
For this purpose, single colonies were picked with a sterile toothpick and transferred to
both a replica plate and a microcentrifuge tube containing 30 µL of nuclease-free H2O.
The replica plate was then incubated overnight to obtain colonies and the microcen-
trifuge tubes were incubated for 10 min at 100 °C. They were subsequently allowed to
cool down, after which the cell debris was spun down by centrifugation. The resulting
supernatant was used as template for PCR using 2X GoTaq® Green Master Mix ac-
cording to manufacturer’s instructions. Each PCR tube contained 6 µL of nuclease-free
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H2O, 2 µL of both primers (IB0560 and IB0264), 12.5 µL of master mix and 1.5 µL
of template. The applied PCR program consisted of (1) inital denaturation at 95 °C
for 2 min, (2) 35 cycles of denaturation (30 s at 95 °C), annealing (30 s at 56 °C) and
extension (1.5 min at 72 °C) and (3) final extension at 72 °C for 3 min. Next, the ob-
tained PCR products were analysed by agarose gel electrophoresis (0.8% agarose). Plas-
mids for which the PCR products showed the desired migration were purified and sent
for Sanger sequencing using IB0560 as sequencing primer (Eurofins Genomics, Ebers-
berg, Germany). Transformants containing the intended pBS constructs were stored in
50% glycerol at -80 °C.

Construction of pPRC-mut constructs. pPRC-mut plasmids were constructed from
pPRC-49S by site-directed mutagenesis according to Edelheit et al. (2009) with adapta-
tions. For each desired mutation, two primers were designed that encompass said muta-
tion (VC001 up to VC024 in Table 4.6). These primers were used to amplify pPRC-49S
in two separate PCR reactions. PCR was performed using the 2X KAPA HiFi DNA
Polymerase master mix. Reaction mixtures contained 500 ng of pPRC-49D, 4 µL of
primer (forward or reverse), 12.5 µL of master mix and nuclease-free H2O added to a
final volume of 25 µL. The applied PCR program consisted of (1) inital denaturation at
95 °C for 3 min, (2) 35 cycles of denaturation (20 s at 98 °C), annealing (15 s at 65 °C)
and extension (3.5 min at 72 °C) and (3) final extension for 10 min at 72 °C. The two
single-primer PCR reaction products introducing the samemutation were then combined
and denatured at 95 °C to separate the newly synthesised DNA strands from the tem-
plate. The mixtures were subsequently cooled to 37 °C to allow reannealing of the mu-
tated strands. Finally, 3 µL of DpnI was added and the reaction mixtures were incubated
overnight at 37 °C to digest the methylated, non-mutated template DNA (pPRC-49S).

4 µL of mutated plasmids was then transformed in CaCl2-competent E. coli. Trans-
formation by heat shock was performed as described before, with the minor difference
that a heat shock of 40 s at 42 °C was applied instead of 3 min at 37 °C. Colony PCR
was performed as described before except for the primers (IB0560 in combination with
IB0313), number of cycles (35) and extension time (35 s and 2 min for the final ex-
tension). A band at 600 bp on an (1.0%) agarose gel indicates the presence of a pPRC-
49S-derived plasmid. PCR products showing such bands were sent for sequencing using



CHAPTER 4. MATERIALS AND METHODS 58

IB0560 as sequencing primer. For each intended mutation, one colony corresponding to
a PCR product containing the intendedmutation was used to isolate the mutated plasmid,
yielding the six different pPRC-mut constructs (see Table 4.5). For each mutated plas-
mid, all plasmid features were sequenced using primers AB245, VC031 up to VC034
and IB0036 (see Table 4.6); no secondary mutations were found.

4.2.2.2 In vivo characterisation of biosensors

E. coliMG1655 was used for all in vivo experiments. To assemble a whole-cell biosen-
sor, 1 µL of the desired pITC and pPRC plasmid vectors were co-transformed in CaCl2-
competent E. coliMG1655 according to the heat shock method as described before.

For the actual in vivo biosensor characterisation, biosensor strains were cultured in InBio
minimal medium or MOPS EZ Rich Defined Medium. For each strain, a preculture was
first set up in 200 µL of the desired culture medium supplemented with chlorampheni-
col and kanamycin using transparent 96-well microplates (Greiner Bio-One, Fricken-
hausen, Germany). Individual colonies were inoculated using a sterile toothpick and the
plate was sealed using a Breathe-Easy® sealing membrane (Sigma-Aldrich) and grown
overnight at 30 °Cwith shaking (600 rpm). A black 96-well plate (Greiner Bio-One) was
prepared by adding the required amount of naringenin stock solution to each well. Stock
concentrations were chosen such that no more than 40 µL of stock had to be added to the
wells. Following the addition, the solvent was evaporated for 10 min at 75 °C followed
by further evaporation at RT. The selected culture medium was subsequently added to
each well and β-alanine (BA) was supplemented. Finally, the overnight preculture was
used to inoculate each well at a 300-fold dilution. This way, the final volume in each
well totalled 200 µL. These operations were supported by the visual pipetting aid Pipette
Show (Falk et al., 2022). Optical density at 600 nm (OD600) and mKate2 fluorescence
(FL; excitation wavelength: 588 nm, emission wavelength: 633 nm) were measured ev-
ery 20 min on a Synergy H1 microplate reader (BioTek Instruments Inc, Winooski, VT,
USA) over the course of a 60 h culture experiment. Plates were incubated at 30 °C with
shaking (425 rpm). The gain factor was set to 110 unless indicated otherwise.

Data analysis was performed using the programming language R 4.1.3 (R Core Team,
2022). For each time point, mean OD600 and FL values across four replicates of blank
medium were subtracted from all measurements. Growth curves (OD600 plotted in func-
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tion of time) and the time-dependency of FL were studied to select three consecutive
time points where all cultures are in stationary phase and the FL profiles are sufficiently
stable. For each well, the mean OD600 and FL was taken across these three time points.
Subsequently FL

OD600
could be computed (reported in relative fluorescence units or RFU).



Chapter 5

Results and Discussion

5.1 Mathematical modelling

5.1.1 Systematic analysis of the Mannan model for biosensor re-
sponse for the repressed-repressor architecture

In order to better comprehend the model and the behaviour it encodes, extensive sim-
ulations of the Mannan model for biosensor response were performed. Briefly, each
tunable parameter was perturbed and the effect on the dose-response relationships and
the basal output b, threshold � and dynamic range�was assessed. The simulations were
restricted to the repressed-repressor architecture for brevity. In each case, a biological
explanation was provided for the observed behaviour. Where possible, the results were
compared to published results of real-life biosensors based on the repressed-repressors
LacI (lac repressor) and ArsR from Escherichia coli, tet repressor (TetR) from Tn10 and
FapR from Bacillus subtilis.

In the case of a repressed-repressor, the basal transcription factor activity, b1, corre-
sponds to the concentration of active transcription factor (TF ) that is able to bind to
the transcription-factor binding site (TFBS) and repress transcription at full induction.
One can indeed think of a transcription factor locked in the active conformation with no
effector bound to its binding site. Perturbations in b1 lead to very small shifts of TF that
coincide with a large effect on the expression level of the output gene P (Figure 5.1). b

60
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is largely unaffected, but � and � reveal interesting nonlinearities. It was already noted
by Mannan et al. (2017) that � decreases for increasing b1, but not that � reaches a
maximum value. The large effect on � can be partly ascribed to the high transcription
factor-TFBS affinity K2 used during the simulations: for high values of both b1 and K2,
repressors will be able to bind to the TFBS even in the presence of effector, thus low-
ering the maximum increase in expression a and hence � (see Equation 2.5) (Mannan
et al., 2017).
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Figure 5.1: Model simulations perturbing the basal transcription factor activity (b1)
for the repressed-repressor architecture. Data were computed from Equations (2.13),
(2.14) and (4.2) to (4.4) with parameters a1 D 300, K1 D 0:1, n1 D 6:0, b2 D 4:1,
a2 D 1000, n2 D 2:0 and b1 values span the range b1 D 0:01 to b1 D 8. Metabolite
concentrations (M ) are plotted on a logarithmic scale.
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The maximum increase in transcription factor activity a1 represents the portion of re-
pressor that can be deactivated by the effector. Increasing a1 corresponds to increases
in the expression level of the transcription factor. Perturbations in a1 alter b, � and
� simultaneously (Figure 5.2). For small values of a1, large values of b are reported
that rapidly decrease for elevating a1. For low-level transcription factor expression,
there is indeed not enough repressor present to fully repress transcription of the target
gene, consistent with the elevated basal output. It is therefore recommended to choose
an adequately strong promoter for the transcription factor gene, as low levels of b are
frequently desired for applications of whole-cell biosensors (Chen et al., 2018; Hicks
et al., 2020). For intermediate levels of a1, � increases steeply, mainly due to the very
small values of b in the denominator of Equation (2.5). However, the engineer should
be aware that � increases at the same time and that high-level expression of the tran-
scription factor may impair growth. Higher transcription factor concentrations require
higher metabolite concentrations to elicit the same effect, consistent with these results.

Although an intuitive explanation can be provided for the observed results for perturba-
tions in a1, literature does not corroborate these results unanimously. For FapR-based
biosensors studied in Saccharomyces cerevisiae, increasing the metabolite-responsive
transcription factor (MRTF) expression level by employing a higher fapR copy num-
ber led to a lower basal output and broader dynamic range (Li et al., 2015; Chen et al.,
2018). However, an effect on � can hardly be descried in these studies, as few data
points were measured and fits to a Hill function of the form of Equation (2.4) were
omitted. Furthermore, the threshold of a TetR-based biosensor could be markably de-
creased in Salmonella enterica by random mutagenesis of the promoter expressing tetR.
a was slightly increased, but b unaffected. Western blot analysis confirmed that TetR
expression was reduced for these mutated promoters (Georgi et al., 2012). Wang et al.
(2015) could also confirm that increased expression of TetR and ArsR led to increased
thresholds of the corresponding E. coli biosensors. However, this was consistently ac-
companied by a significant decrease in �, which appears to be in contradiction to the
Mannan model. Increasing the MRTF expression level could perhaps lead to simul-
taneous increases in a1 and b1 in a system-dependent manner, possibly increasing or
decreasing the dynamic range. More intricate couplings with other parameters can nei-
ther be excluded. Although its effect on � seems to be difficult to predict, tuning the
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Figure 5.2: Model simulations perturbing the maximum increase in transcription factor
activity (a1) for the repressed-repressor architecture. Data were computed from Equa-
tions (2.13), (2.14) and (4.2) to (4.4) with parameters b1 D 0:01, K1 D 0:1, n1 D 6:0,
b2 D 4:1, a2 D 1000, n2 D 2:0, and a1 values span the range a1 D 1 to a1 D 300.
Metabolite concentrations (M ) and a1 are plotted on a logarithmic scale.
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MRTF expression level is very straightforward, making it an interesting parameter for
response curve engineering.

Perturbations in the metabolite-transcription factor affinity K1 confirm the orthogonal
control of the threshold already discussed in Section 2.2.4 (Figure 5.3). The observation
that � / K�1

1 can easily be rationalised. For lower affinity (i.e. lower K1, see Equa-
tion 2.13), higher metabolite concentrations are required to inactivate the transcription
factor. Therefore, more active repressor is available at higher metabolite concentrations,
leading to an enhanced overall threshold. An analogous reasoning can be followed for
higher K1.

The sensitivity of metabolite-transcription factor binding n1 determines the steepness of
the transcription factor activation curve (Figure 5.4). Higher values of n1 correspond
to steeper activation curves, in turn leading to steeper relationships between protein ex-
pression P and M . Transcription factors with a higher n1 also exhibit lower thresholds
because they are more responsive to their cognate metabolite, as a result of which the
transcription factor becomes inactivated at lower concentrations. Although n1 does not
affect b and �, one can hardly consider n1 to provide orthogonal control of � as cooper-
ative binding is complex and so is engineering cooperativity (Falson et al., 2004; Setny
& Wiśniewska, 2018; Anashkin et al., 2019).

The portion of output gene expression unaffected by repressor binding is represented by
the basal level of promoter expression b2. Perturbations in b2 lead to vertical displace-
ment of the relationship between P on the one hand and M or TF on the other hand
(Figure 5.5). b2 affects the basal output as b / b2; its relationship to � is more intricate.
Hence, the basal output can be reduced by diminishing the leaky promoter expression.
For repressors, this is determined to a considerable extent by the position of the TFBS
in the promoter region. The strongest repression is generally achieved for a TFBS re-
siding between the -35 and -10 core promoter elements, followed by TFBSs residing in
proximal (downstream of the -10 sequence) and distal (upstream of the -35 sequence) lo-
cations, respectively (Lanzer & Bujard, 1988; Elledge & Davis, 1989). Multiple TFBSs
have also been introduced in promoter regions to reduce b, to varying success (Li et al.,
2015; David et al., 2016). For LacI and TetR, it has been shown that one TFBS suffices
to achieve maximal repression in E. coli. However, this study used TFBSs exhibiting a
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Figure 5.3: Model simulations perturbing the metabolite-transcription factor affin-
ity (K1) for the repressed-repressor architecture. Data were computed from Equa-
tions (2.13), (2.14) and (4.2) to (4.4) with parameters b1 D 0:01, a1 D 300, n1 D 6:0,
b2 D 4:1, a2 D 1000, K2 D 0:9, n2 D 2:0, and a1 values span the range K1 D 4 � 10�2

to K1 D 1 � 10�1. Metabolite concentrations (M ) and K1 are plotted on a logarithmic
scale.
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Figure 5.4: Model simulations perturbing the sensitivity of transcription factor-
metabolite binding (n1) for the repressed-repressor architecture. Data were computed
from Equations (2.13), (2.14) and (4.2) to (4.4) with parameters b1 D 0:01, a1 D 300,
K1 D 0:1, b2 D 4:1, a2 D 1000, K2 D 0:9, n2 D 2:0, and n1 values span the range
n1 D 3:5 to n1 D 6:0. Metabolite concentrations (M ) and n1 are plotted on a logarith-
mic scale.
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high affinity for the MRTF and a high MRTF expression level (Cox III et al., 2007).
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Figure 5.5: Model simulations perturbing the basal level of promoter expression (b2)
for the repressed-repressor architecture. Data were computed from Equations (2.13),
(2.14) and (4.2) to (4.4) with parameters b1 D 0:01, a1 D 300, K1 D 0:1, n1 D 6:0,
a2 D 1000, K2 D 0:9, n2 D 2:0, and b2 values span the range b2 D 4:10 to b2 D 100.
Metabolite concentrations (M ) are plotted on a logarithmic scale.

The maximum increase in promoter expression a2 pertains to the output expression level
at full induction and relative to the basal level. Increases in a2 can be brought about by
increasing the promoter strength (Mannan et al., 2017). The orthogonal control of the
dynamic range by the promoter dynamic range �2 D

a2

b2
was already discussed in Sec-

tion 2.2.4 and is supported by the simulations in Figure 5.6. However, careful analysis
of Equation (4.4) reveals that not only �, but also b is a function of a2. However, the
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fraction in Equation (4.4) is dominated by the denominator under the chosen parameter
settings. Therefore, this term only increases with 0.01 at most, which is not visibly dis-
cernible on Figure 5.6. However, this term does become significant for lower values of
a1, K2 and/or n2 (shown in Figure I.1 for a1). Under such conditions, the increase in
dynamic range is limited by collateral damage of a2 on b, as b / a2. This suggests that,
under conditions of low MRTF expression or low MRTF-TFBS affinity, not all TFBSs
will be occupied and will be expressed to a promoter strength-dependent extent. This
trend can be observed for some biosensors; for others only the increase in dynamic range
is observed (Cox III et al., 2007).
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Figure 5.6: Model simulations perturbing the maximum increase in promoter expres-
sion (a2) for the repressed-repressor architecture. Data were computed from Equa-
tions (2.13), (2.14) and (4.2) to (4.4) with parameters b1 D 0:01, a1 D 300, K1 D 0:1,
n1 D 6:0, b2 D 4:1, K2 D 0:9, n2 D 2:0, and a2 values span the range a2 D 1000 to
a2 D 1700. Metabolite concentrations (M ) are plotted on a logarithmic scale.
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The effect of tuning K2 has also been thoroughly discussed in Section 2.2.4. The sim-
ulations in Figure 5.7 are in accordance with (Mannan et al., 2017). For higher values
of K2, lower amounts of active transcription factor are required to fully repress tran-
scription of the output gene. Therefore, higher metabolite concentrations are required
for derepression, explaining the increased threshold. For low values of K2, the basal
output increases steeply. In this regime, the maximum level of active transcription fac-
tor (b1 C a1) does no longer suffice to fully repress transcription of the target gene even
in the absence of metabolite, leading to an enhanced basal output. Note also the striking
agreement between the effect of tuning a1 and K2. Indeed, Equation (2.14) can easily
be rewritten to encompass the product K2 � a1, which explains why a1 and K2 are partly
interchangeable. This complementarity can lead to unidentifiability, a problem during
parameter estimation (Waterfall et al., 2006; Dray et al., 2022). The behaviour becomes
more dissimilar for increased b1 values (see Figure I.2).

By analogy with n1, increasing the sensitivity of transcription factor-TFBS binding n2

leads to steeper P versus M or TF curves. However, in contrary to n1, � is not no-
tably affected but b and � are (Figure 5.8). Consider the blue curve in Figure 5.8: due
to its subsensitive response to varying concentrations of active transcription factor, P

only increases with 1.5% and 97% of a2 relative to b2 for M D 0 and M ! C1,
respectively.

5.1.2 Development of a parameter estimation method for the Man-
nan model for biosensor response

Parameter estimation method (PEM) evaluation data sets were generated based on ex-
perimental data of Mannan et al. (2017) and show a range of distinct behaviours (see
Figure 5.9). For instance, �, � and b varied widely for data set 6, whereas the change in
� and b for increasing � was only limited for data set 7. A constant, however, across all
data sets is the large amount of noise. This poses a significant challenge to the PEM. For
each data set, the data points were drawn from a normal distribution with standard de-
viations of .�; �; b/ computed from real experimental data from Mannan et al. (2017)
(see Section 4.1.2.2). The variation is therefore expected to be biologically relevant,
but remind once more of a common issue in molecular biology (Lillacci & Khammash,
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Figure 5.7: Model simulations perturbing the transcription factor-TFBS affinity (K2)
for the repressed-repressor architecture. Data were computed from Equations (2.13),
(2.14) and (4.2) to (4.4) with parameters b1 D 0:01, a1 D 300, K1 D 0:1, n1 D 6:0,
b2 D 4:1, a2 D 1000, n2 D 2:0, and K2 values span the range K2 D 0:02 to K2 D 0:9.
Metabolite concentrations (M ) and K2 are plotted on a logarithmic scale.



CHAPTER 5. RESULTS AND DISCUSSION 71

10 1 100 101 102

Active transcription factor, TF

0

200

400

600

800

1000

Pr
ot

ei
n 

ex
pr

es
sio

n,
 P

100 101 102

Metabolite, M (µM)

0

200

400

600

800

1000

Pr
ot

ei
n 

ex
pr

es
sio

n,
 P

1.00.7 2.0 3.0
TF-TFBS sensitivity, n2

0

100

200

Dy
na

m
ic 

ra
ng

e,
 

1.00.7 2.0 3.0
0

10

20

Ba
sa

l o
ut

pu
t, 

b

1.00.7 2.0 3.0
10

20
Th

re
sh

ol
d,

 
 (µ

M
)

Figure 5.8: Model simulations perturbing the sensitivity of transcription factor-TFBS
binding (n2) for the repressed-repressor architecture. Data were computed from Equa-
tions (2.13), (2.14) and (4.2) to (4.4) with parameters b1 D 0:01, a1 D 300, K1 D 0:1,
n1 D 6:0, b2 D 4:1, a2 D 1000, K2 D 0:9, and n2 values span the range n2 D 0:75 to
n2 D 3:0. Metabolite concentrations (M ) and n2 are plotted on a logarithmic scale.
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2010). The value of Cpass, the objective function value comparing a PEM evaluation
data set before and after noise addition (see Section 4.1.2.2), can be used as a measure
for the amount of noise in a given data set. This indicated that PEM evaluation data set
1 was least noisy; data set 7 showed the most noisy.

The entire PEM evaluation procedure took approximately 39 h to run on a single 3.20
GHz processor of a Dell XPS 8930 computer. All fits could reproduce the overall be-
haviour of the data sets, except for one (data set 7). Moreover, the objective function
values reached by the best 290 optimisation runs surpassed Cpass for all data sets. These
observations suggest that the PEM is implemented properly, and that the behaviour of
the simulated data sets can be reproduced by minimising Equation (4.1). Below, overall
trends across the results are indicated by means of three representative PEM data sets.
The remainder of the results can be consulted in Appendix I.

For each data set, the best fit (yielding the lowest objective function value upon optimi-
sation) is reported along with the remainder of the fits. This reveals that a significant
portion of the optimisation runs return model parameters that yield bad fits. This might
occur if the objective function exhibits local minima. In this case, the algorithm could
then get stuck in such a minimum and exit as it cannot further minimise Equation (4.1).
However, the performance visualisations do not support the presence of local minima
as the main cause of this observation. If local minima were the main bottleneck, the
performance visualisation would show a step-by-step decrease of the objective function
with multiple runs reproducibly returning the same objective, corresponding to a local
minimum. Our results displayed a rather continuously decreasing profile of the objec-
tive function, steep for high C but gradually levelling out to reach a global optimum.
The experimental noise is neither a likely cause, as the same phenomena were observed
when fitting a simulated data set with a smaller amount of noise (results not shown).

It was noted that, among the ”worst” fits (those displaying the highest objective function
values upon optimisation) across the data sets, most optimal parameter values resided
near the bounds (results not shown). This was not true for the best fits (Figures I.9
to I.13), except for b1, that appeared to be more attracted to the boundaries for the best
fits as compared to the worst fits. It has been put forward that when the algorithmmeets a
boundary of parameter space, it might get stuck there and return a suboptimal fit, unable
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Figure 5.9: Simulated data sets used for parameter estimation method (PEM) eval-
uation. For each data set, the pink dashed line corresponds to an interpolation of
.�i;T rue; �i;T rue; bi;T rue/, the dose-response parameters prior to noise addition. The
dose-response parameters obtained after noise addition .�i ; �i ; bi/ make up the PEM
evaluation data and are represented as triangles, colour-coded according to their strain
i . (Continued on next page)
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Figure 5.9: Simulated data sets used for parameter estimation method (PEM) eval-
uation. For each data set, the pink dashed line corresponds to an interpolation of
.�i;T rue; �i;T rue; bi;T rue/, the dose-response parameters prior to noise addition. The
dose-response parameters obtained after noise addition .�i ; �i ; bi/ make up the PEM
evaluation data and are represented as triangles, colour-coded according to their strain
i . (Continued on next page)
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Figure 5.9: Simulated data sets used for parameter estimation method (PEM) eval-
uation. For each data set, the pink dashed line corresponds to an interpolation of
.�i;T rue; �i;T rue; bi;T rue/, the dose-response parameters prior to noise addition. The
dose-response parameters obtained after noise addition .�i ; �i ; bi/ make up the PEM
evaluation data and are represented as triangles, colour-coded according to their strain
i . (Continued)
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to move away from the boundary towards the global optimum (Transtrum et al., 2010).
Our approach based on Latin hypercube sampling (LHS) ensures in principle that some
initial guesses are generated in proximity to the boundaries of parameter space. How-
ever, Mannan et al. (2017) reported that they consistently recovered the global optimum
across 500 optimisation runs. Furthermore, their resulting fits only deviated slightly
from the best fit. This implies that they implemented the PEM differently, for instance,
by generating initial guesses through a method distinct of LHS or using a different opti-
misation algorithm with superior convergence.

Notwithstanding the noise in the data sets and the suboptimal performance of the de-
veloped PEM, the best fit nearly overlapped the ideal noise-free solution for data set 1
(Figure 5.10B). It was pulled to slightly higher � and lower b, fitting the noise to a
limited extent. This is also reflected by the objective function value (Figure 5.10C).
The algorithm succeeded to minimise Equation (4.1) further than the objective function
value of the ideal noise-free solution, overfitting the data. PEM runs corresponding to
data sets 2, 6 and 9 reached similarly high quality of fitting (Figures I.3, I.6 and I.8).
Notably, PEM evaluation data sets 1, 6 and 9 are the least noisy of the nine considered
data sets, as reflected by their Cpass. Data set 2 on the other hand has the third highest
value of Cpass of all data sets.

Data set 3 suits as an example case of fits that reproduced the main trend in the data,
but lack some features of the ideal noise-free solution. The best fit of data set 3 did
not adequately reproduce the curvature of the noise-free solution, especially for the re-
lationship between � and � (Figure 5.11B). This is due to overfitting and a lack of data
points for intermediate � (between 20 µM and 25 µM). Data sets 4, 5 and 8 displayed
similar faults in fitting (Figures I.4, I.5 and I.7). Notably, these data sets showed supe-
rior convergence as compared to the data sets yielding better fits, represented by data
set 1. In case of data set 3, the objective function value returned by the 400 best runs
was essentially the same (Figure 5.11C). Although a slight upward tendency can be no-
ticed starting from run index 50, model parameters corresponding to the 100 best runs
produced visibly overlapping fits (results not shown). This counterintuitive observation
might be due to the higher occurrence of outliers in these data sets. These play a rel-
atively large part in the value of the objective function, possibly increasing the basin
of attraction. For multistart deterministic optimisation (as implemented in our PEM),
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Figure 5.10: Results of fitting to parameter estimation method (PEM) evaluation data
set 1. (A) All 500 fits to the data. The best fit (displaying the lowest objective function
value) is plotted as in green, the remainder of the fits is shown in grey. (B) Only the
best fit is shown in green, along with the ideal noise-free solution (an interpolation of
.�i;T rue; �i;T rue; bi;T rue/) plotted as a pink dashed line. In panels A and B, triangles
represent the dose-response parameters of PEM evaluation data set 1 (the training data).
(C) Performance visualisation for the PEM evaluation problem. Left panel: the objective
function values obtained after 500 runs of least-squares optimisation (run index 0 up
to 499) are sorted increasingly. The horizontal dashed line representsCpass, the objective
function value computed for the ideal noise-free solution. Right panel: a close-up on the
100 best runs suggests that a global optimum is reached. Cpass is beyond the axis limits.
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the rate of convergence to the global optimum is correlated with the size of the basin of
attraction, which could explain this observation (Raue et al., 2013).

Finally, the best fit obtained for data set 7 did not capture the true trend at all (Fig-
ure 5.12B). Not surprisingly, this data set exhibited the largest level of noise of all data
sets under consideration. Three outlier data points at higher dynamic range influence
the objective function so much, that the most effective way to minimise it is by drawing
the fit almost vertically (left panel in Figure 5.12B). Four outlying points have a similar
effect on the b component of the fit (right panel). The objective function value of the
best fit is 4 times smaller than Cpass, pointing to substantial overfitting (Figure 5.12C).
However, we cannot assume that a global optimum is reached for this PEM evalua-
tion problem, as the optimum with lowest objective function value was only returned
12 times.

With the exception of data set 7, the objective function seems to converge to the same,
global optimum for each distinct PEM evaluation data set. This idea is strengthened
by the fact that the 100 best fits of these data sets visibly overlap (for data sets 2, 6
and 9, the 82, 80 and 59 best runs were used, respectively, to exclude runs that con-
verged to a distinct objective function value, results not shown). However, only data
set 1 yielded consistent parameter estimates close to the true parameter values for the
100 best optimisation runs (Figures I.9 to I.13). Only b1 was not reasonably close to the
true value (Figure I.9A). Although all parameter values were estimated reproducibly for
data sets 2 and 5, they were more dissimilar to the true values. The remaining PEM eval-
uation problems all yielded at least one variable parameter. Notably, a1 and K2 show
variation across all of these data sets. Conversely, b2 and a2 could each time be uniquely
estimated.

The observations raised above suggest that for some data sets, themodel exhibits uniden-
tifiability. Unidentifiability is a common issue in systems biology models that occurs
when some regions of the objective function landscape are flat. This implies that the
objective is insensitive to changes in some parameters, and distinct parameter sets can
yield similarly good fits. The fact that this unidentifiability is not observed across all
considered PEM evaluation data sets argues that the problem is related to the experi-
mental data, and that is not an inherent property of the model (practical identifiability
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Figure 5.11: Results of fitting to parameter estimation method (PEM) evaluation data
set 3. (A) All 500 fits to the data. The best fit (displaying the lowest objective function
value) is plotted as in green, the remainder of the fits is shown in grey. (B) Only the
best fit is shown in green, along with the ideal noise-free solution (an interpolation of
.�i;T rue; �i;T rue; bi;T rue/) plotted as a pink dashed line. In panels A and B, triangles
represent the dose-response parameters of PEM evaluation data set 3 (the training data).
(C) Performance visualisation for the PEM evaluation problem. Left panel: the objective
function values obtained after 500 runs of least-squares optimisation (run index 0 up
to 499) are sorted increasingly. The horizontal dashed line representsCpass, the objective
function value computed for the ideal noise-free solution. Right panel: a close-up on the
100 best runs suggests that a global optimum is reached. Cpass is beyond the axis limits.
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Figure 5.12: Results of fitting to parameter estimation method (PEM) evaluation data
set 7. (A) All 500 fits to the data. The best fit (displaying the lowest objective function
value) is plotted as in green, the remainder of the fits is shown in grey. (B) Only the
best fit is shown in green, along with the ideal noise-free solution (an interpolation of
.�i;T rue; �i;T rue; bi;T rue/) plotted as a pink dashed line. In panels A and B, triangles
represent the dose-response parameters of PEM evaluation data set 7 (the training data).
(C) Performance visualisation for the PEM evaluation problem. Left panel: the objective
function values obtained after 500 runs of least-squares optimisation (run index 0 up
to 499) are sorted increasingly. The horizontal dashed line representsCpass, the objective
function value computed for the ideal noise-free solution. Right panel: a close-up on the
100 best runs cannot assure that a global optimum is reached. Cpass is beyond the axis
limits.
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rather than structural). However, unambiguous identification of the type of identifiabil-
ity and the unidentifiable parameters requires specialised methodologies, for example
the analysis of the parameter profile likelihood (Raue et al., 2009, 2010, 2011; Wieland
et al., 2021). Such analysis exceeds the scope of this thesis.

In conclusion, the PEM developed during this thesis and described in Section 4.1.2.1 can
yield good fits, but some issues should be addressed before it can be used for real-life
problems: suboptimal convergence, overfitting and potential unidentifiability. The lat-
ter two presumably originate from the quality of the experimental data. While based on
real-life data, some data points are clearly outliers. In reality, one would probably con-
sider to repeat these experiment; however, we did not omit these outliers to prevent any
bias. Follow-up experiments and remediation strategies for these problems are briefly
proposed below.

It has been suggested that the suboptimal convergence, conveyed by the relatively smooth
appearance of the sorted objective function values upon optimisation, would be caused
by interference of the parameter bounds. This can be alleviated by employing the geodesic
Levenberg-Marquardt algorithm, an adapted versionwith improved convergence (Transtrum
et al., 2010, 2011). Trust region methods also exhibit faster convergence when far from
the global optimum (Vanden Berghen, 2004).

One way to remedy overfitting is to reduce the experimental variation. Increasing the
amount of biological replicates leads to a better estimation of the variation, however,
the standard deviation of the experimental results does not necessarily decrease (Cum-
ming et al., 2007). A better solution would be to resort to robust regression, where the
influence of outliers is diminished by including a loss function in the objective function
(Huber, 1981). One could also consider to replace the � term in Equation (4.1). b and
a can be directly obtained from fitting, whereas � is computed from Equation (2.5) and
therefore incorporates both the error on b and a. Instead, a or lg.a/ could be included
in Equation (4.1). Further experiments should verify whether this improves the PEM.

If the encountered difficulties to estimate some parameter values (see Figures I.9 to I.10,
I.12 and I.13) were truly caused by practical unidentifiability, they should also be allevi-
ated by improving the quality of the experimental data. In addition, the amount of data
could be increased by measuring the dose-response curves of more TFBSmutants (Raue
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et al., 2009). If this would be infeasible, the final option is to remove the unidentifiable
parameter from the model (Maiwald et al., 2016).

5.2 In vivo characterisation of biosensors

Biosensors based on theMRTFsOapR fromCupriavidus necatorH16 andAHOS_RS02205
from ”Acidianus hospitalis” were studied in the industrially important bacterial species
E. coli. In advance of the results presented in Sections 5.2.2 and 5.2.3, these MRTFs
confer differential regulation in response to the supplementation of their effector β-
alanine (BA), leading to functional biosensors. However, their mechanism and even
their regulatory pattern might be different in their native context, as some accessory
factors are likely to be absent in E. coli.

Where feasible, the dose-response curves were parameterised by fitting to a Hill function
(see also Section 4.1.1). Some parameters are quoted throughout the discussion, but all
best-fit parameters can be consulted in Appendix II.

5.2.1 Plasmid systems used for the assembly of biosensors

All studied biosensors were constructed using a modular two-plasmid system, consisting
of a promoter reporter constructs (pPRC) and inducible transcription factor constructs
(pITC) (Figure 5.13A). pPRC plasmid vectors harbour the mkate2 fluorescent reporter
gene. The promoter of interest can be conveniently introduced upstream ofmkate2 using
seamless ligation cloning extract (SLiCE) cloning (Zhang et al., 2012). In addition, the
MRTF gene under study can be introduced inmultiple cloning site 4 (MCS4) on the pITC
vector. This way, it is placed under transcriptional control of the naringenin-inducible
fdeAR promoter which is regulated by the FdeR transcription factor fromHerbaspirillum
seropedicae (De Paepe et al., 2018). This allows facile tuning of the expression level of
the MRTF of interest, as the supplementation of different concentrations of naringenin
provides different levels of induction of the MRTF gene (Bernauw et al., 2022).

Using the above two-plasmid system, a biosensor can be assembled by co-transforming
the pITC-TF (pITC harbouring the transcription factor gene) and pPRC-Prom (pPRC
harbouring the corresponding promoter upstream of themkate2 gene) inE. coliMG1655.
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Figure 5.13: Overview of the plasmid systems used during this thesis project. (A) The
two-plasmid system used for the in vivo characterisation of biosensors consists of a pro-
moter reporter construct (pPRC) and inducible transcription factor construct (pITC). The
studied promoter sequence is inserted in multiple cloning site (MCS) 1, the transcription
factor gene is inserted in MCS4. (B) The single plasmid pBiosensor constructs (pBS for
short) can be constructed from the pPRC and pITC constructs by inserting the module
encompassing mkate2 in pPRC in MCS3 on pITC. Further details on the used plasmid
vectors can be consulted in Table 4.5. Plasmid maps were kindly provided by Drs. ir.
Amber Bernauw.
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The resulting biosensors were studied during in vivo experiments, where the normalised
fluorescence (FL/OD600) output in response to different BA concentrations was mea-
sured using a fluorescent plate reader (Section 4.2.2.2). The ”full” biosensor strains
were accompanied during these experiments with control strains. ”no TF” strains lack-
ing the transcription factor gene (pITC + pPRC-Prom) convey the response of the studied
promoters in the absence of transcription factor. Finally, negative controls (NC) were
used, harbouring the empty pITC and pPRC plasmids.

For industrial applications, plasmid-based systems are often avoided as they can be lost
if the applied selective pressure is inadequate. Instead, the different components are
inserted in the genome of the biosensor strain. To simulate these effects during biosensor
characterisation, a single-plasmid biosensor construct (pBS) with low copy number can
be used (Figure 5.13B). In this case, the copy number of theMRTF gene equals that of the
output gene, resembling the situation on the genome. On the downside, pBS constructs
provide less flexibility. pBS constructs were constructed for the wild-type (WT) OapR
biosensor during this thesis project using restriction enzyme digestion and ligation (see
also Section 4.2.2.1). However, their in vivo analysis was beyond the scope of this thesis.

5.2.2 OapR-based biosensors

5.2.2.1 Preliminary experiments to determine a suitable β-alanine concentration
gradient and naringenin concentration

Based on previous experiments at our lab, a BA concentration gradient expected to
span the operational range of a WT OapR biosensor (harbouring pITC-OapR + pPRC-
49S) was prepared. In addition, four naringenin concentrations were selected: 30 mg/L,
10 mg/L, 2 mg/L and 0 mg/L. In the absence of naringenin, the BS strain is expected to
give rise to similarly low levels of output fluorescence as a no TF strain, as the expression
of OapR is not induced in the former. However, leaky expression from the fdeAR pro-
moter might give rise to a background concentration of OapR present in the cell, which is
undesirable for applications where the OapR expression needs to be tightly controlled.
In addition, 2 mg/L naringenin is not expected to induce OapR expression to a large
extent. Consequently, low mkate2 expression levels are expected for these biosensors.
In order to be able to descry small differences in output fluorescence between the BS
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and no TF strains, the gain factor was increased to 150. The biosensors were studied in
minimal medium to exclude the potential interaction of compounds structurally related
to BA with OapR (Hanko et al., 2020).

A dose-response curve measured at 30 mg/L naringenin reveals a previously unnoted
feature for OapR biosensors: the output fluorescence levels out at about 0.50 mM BA
until 2.0 mM BA and increases once again for BA concentrations exceeding 3.5 mM
(Figure 5.14A). The first shift in output fluorescence seems to occur at a relatively low
BA concentration. Due to the lack of data points in this region as well as for saturating
BA concentrations, attempts to fit this dose-response curve to a Hill function failed.
Therefore, the dynamic range can not be accurately estimated. Instead, the fold induction
can be used in analogy with Equation (2.5):

Fold D
Phigh � Plow

Plow

(5.1)

wherePhigh andPlow signify the normalised fluorescence in the presence and absence of
effector, respectively. At 2.0 mMBA, a fold induction of 97 was obtained that increased
further to 211 for 40 mM BA.

In the presence of 10 mg/L naringenin, a good fit to Hill function could be obtained
(Figure 5.14B). The decrease in MRTF concentration drastically changes the shape of
the dose-response curve. Although no dose-response parameters were obtained in the
presence of 30 mg/L naringenin, the basal output seems to be increased and the maxi-
mum increase in expression decreased. This observation is consistent with OapR’s role
as a dual-function transcription factor in E. coli, combining properties of a repressor and
activator (see also Section 2.3). The dynamic range only approximates to 1.

At 2 mg/L and 0 mg/L naringenin, no meaningful fits could be obtained (Figure 5.15).
Both dose-response curves reveal a larger influence of noise on these data sets. In the
presence of 2 mg/L naringenin, the fold induction at 2.0 mM BA and 40 mM BA equals
0.6 and 1.3, respectively (Figure 5.15A). In the absence of naringenin, no induction was
observed, as the output fluorescence of the BS and no TF strains overlap at 40 mM BA
(Figure 5.15B). The upward trend of the normalised fluorescence output for increasing
BA concentrations is most likely OapR-independent, as it is common to both the BS
as the no TF strain. Instead, the metabolism of BA might lead to an increase in gene
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Figure 5.14: Response curve of the OapR/PoapTD biosensor in the presence of 30 mg/L
naringenin (A) and 10 mg/L naringenin (B). (A) The relative fluorescence out-
put (FL/OD600, in relative fluorescence units (RFU)) was measured after 50 h incu-
bation in minimal medium supplemented with different β-alanine (BA) concentrations
and 30 mg/L naringenin. (B) FL/OD600 was measured after 40 h incubation in mini-
mal medium supplemented with the same [BA] gradient and 10 mg/L naringenin. In
each case, the gain factor was set to 150. [BA] is plotted on a symmetrical logarithmic
scale. Grey diamonds represent the control strain (empty pITC + pPRC), red triangles
the biosensor lacking the oapR gene (pITC + pPRC-49S) and blue circles the wild-type
biosensor (pITC-OapR + pPRC-49S). All error bars represent the mean ± standard error
of the mean across four biological replicates, except for the data points plotted as open
circles (one biological replicate for the WT strain in the presence of 0.25 mM BA in
panel (A) and three biological replicates for the WT strain in the presence of 20 mM BA
in panel (B)) as some strains did not grow. In panel (B), the solid line was plotted using
the best-fit parameters from a fit to Equation (2.4) (ligand-inducible version, parameters
can be consulted in Table II.1. Experimental data for panel (B) was kindly provided by
Dr. ir. Indra Bervoets.
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expression, among which mkate2 that is transcribed at a basal level in the absence of
OapR.

A

B

Figure 5.15: Response curve of the OapR/PoapTD biosensor in the presence of 2 mg/L
naringenin (A) and in the absence of naringenin naringenin (B). In each case, the relative
fluorescence output (FL/OD600, in relative fluorescence units (RFU)) was measured af-
ter 45 h in minimal medium supplemented with different β-alanine (BA) concentrations.
For panel (A), the gain factor was set to 150; for panel (B), the gain factor was adjusted to
140 due to amistake. [BA] is plotted on a symmetrical logarithmic scale. Grey diamonds
represent the control strain (empty pITC + pPRC), red triangles the biosensor lacking the
oapR gene (pITC + pPRC-49S) and blue circles the wild-type biosensor (pITC-OapR +
pPRC-49S). All error bars represent the mean ± standard error of the mean across four
biological replicates, except for the NC strain in in panel (A) where three biological
replicates were used. Experimental data for panel (B) was kindly provided by Dr. ir. In-
dra Bervoets.
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In conclusion, these preliminary response curves suggest that OapR biosensors have a
large dynamic range, provided that oapR is expressed to a high level. An interesting
two-stage behaviour was observed in the presence of 30 mg/L naringenin, that requires
further study. Leaky expression of oapR in the absence of naringenin appears unimpor-
tant.

Based on these considerations, all further experiments onOapR biosensors applied 30mg/L
naringenin. Based on the determined threshold value in the presence of 10mg/L (1.3mM,
95% confidence interval (CI) 0.6 mM - C1), the BA gradient was refined to include
more data points at lower BA concentrations. Besides, we chose to continue withMOPS
EZ Rich Defined Medium. This commercially available medium is expected to lead to
more reproducible results. By leaving out the medium component containing amino
acids and calcium pantothenate, it was intended to reduce the influence of structurally
or metabolically related compounds on the OapR-mediated expression of mkate2. Fi-
nally, the gain was adjusted to 110.

Under these conditions, a good fit to the Hill function could be obtained. The second
stage of output fluorescence is less apparent compared to the response curves obtained
under previous conditions, but is suggested by the lack-of-fit of the data points between
10 mM and 40 mM BA. The fit also reveals a low basal output (58 RFU (95% CI 46-
71 RFU)) and a broad dynamic range (� � 135). Besides, a low threshold is reported
(0.27 mM (95% CI 0.21-0.36 mM)).

5.2.2.2 Tuning the transcription-factor binding site

Little is known of the mechanisms of transcriptional regulation byMocR subfamily tran-
scription factors, posing a challenge upon their implementation in whole-cell biosensors.
For instance, OapR has not yet been subjected to in vitro characterisation to date. Nev-
ertheless, its TFBSs on the genome ofC. necatorH16 have been predicted through com-
parative genomics, in addition to ten additional genomes of Betaproteobacteria. Three
binding sites were predicted, of which two direct repeats (D1 and D2) and one inverted
repeat (I3) (Figure 5.17A). D1 and D2 are separated by about 11 nucleotides, corre-
sponding to one full turn of B-DNA (10.5 nucleotides). D2 and I3 are separated by 15
nucleotides. All TFBSs are located upstream of the predicted core promoter sequence,
which could explain why OapR primariliy functions as an activator, as this region is pri-
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Figure 5.16: Response curve and fitted Hill function of the OapR/PoapTD biosensor in
the presence of 30 mg/L naringenin. The relative fluorescence output (FL/OD600, in rel-
ative fluorescence units (RFU)) was measured after 35 h incubation in rich medium sup-
plemented with different β-alanine (BA) concentrations. The gain factor was set to 110.
[BA] is plotted on a symmetrical logarithmic scale. Grey diamonds represent the control
strain (empty pITC + pPRC), red triangles the biosensor lacking the oapR gene (pITC
+ pPRC-49S) and blue circles the wild-type biosensor (pITC-OapR + pPRC-49S). All
error bars represent the mean ± standard error of the mean across four biological repli-
cates. The solid line was plotted using the best-fit parameters from a fit to Equation (2.4)
(ligand-inducible version, parameters can be consulted in Table II.1.
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marily located by activators in E. coli. The predicted I3 site shows a single nucleotide
overlap to the predicted -35 sequence, a position most suited for class I activation. D1
and D2 reside further from the core promoter sequence and could be involved in class II
activation (van Hijum et al., 2009; Suvorova & Rodionov, 2016).

GCCTGTACGGTC AACTGTACGGTA GACTGTATATTT

A

B

Figure 5.17: Predicted OapR DNA binding sites in the genome of C. neca-
tor H16. (A) Schematic overview of the oapR/oapTD intergenic region. The predicted
transcription-factor binding sites (TFBSs) are indicated in red (D1, D2 and D3) and
their native sequence is displayed. Nucleotides indicated in red were separately tar-
geted for mutation. The core promoter sequences of oapR (orange) and oapTD (green)
were predicted using BPROM (Softberry Inc., Mount Kisco, NY, USA). (B) Sequence
logo showing the conservation of nucleotides across the D1, D2 and I3 sites of C. neca-
tor H16. Three positions are indicated (7A, 8C and 10G) that are conserved across all
sites and were separately targeted targeted for mutation. TFBS predictions were taken
from (Novichkov et al., 2013). Sequence logo was created using WebLogo with the
average GC content of C. necator H16 (66.3%) (Schneider & Stephens, 1990; Crooks
et al., 2004).

Six single-nucleotide mutations were introduced in the pPRC-49S plasmid through site-
directed mutagenesis. In order to maximally affect OapR binding, nucleotides that were
present in all three TFBSs predicted for C. necator H16 and sharing high-level conser-
vation in the same type of site (that is, D1, D2 or I3) across Betaproteobacteria were
targeted for mutation (Suvorova & Rodionov, 2016) (Figure 5.17B). This led to the mu-
tant biosensors mut1.1 (8C>G substitution in the D1 site), mut1.2 (7A>T in the D1 site),
mut2 (8C>G substitution in the D2 site), mut3.1 (10G>C substitution in the D1 site),
mut3.2 (8C>G substitution in the D1 site), mut3.3 (7A>T substitution in the D1 site).
Note that throughout this thesis, the nucleotide positions of I3 are defined based on the
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sequence of the bottom strand in order to parallel the D1 and D2 sites.

All designed mutations could be successfully obtained, with efficiencies ranging from
20% to 75% across different mutations, only slightly lower than reported in the orig-
inal publication of the applied method (Edelheit et al., 2009). Therefore, all mutated
plasmids were co-transformed with pITC-OapR in E. coli MG1655 to investigate the
effect on the fluorescence output. The normalised fluorescence was measured in the
absence of BA, as well as in the presence of low (0.50 mM) and high (20 mM) BA con-
centrations. In addition, a control strain was included harbouring pITC-OapR and the
empty pPRC, whose response was only measured at 0 and 20 mM BA. All mut strains
displayed decreased output fluorescence in the presence of BA compared to the control
strains (Figure 5.18).

However, during the preparation of this manuscript, it was noted that the pPRC-mut3.1
and pPRC-mut3.3 plasmids exhibited a smaller overlapping peak on the Sanger sequenc-
ing chromatograms, located at the position of the designed mutation. In both cases, the
overlapping peak corresponded to the WT sequence at that position, suggesting that the
obtained pPRC-mut3.1 and pPRC-mut3.3 plasmids were not genotypically pure. To test
this hypothesis, a dilution of the original colony harbouring pPRC-mut3.1 was plated
out. Three separate colonies were isolated and cultivated overnight and their plasmids
were purified and sent for sequencing. This revealed three distinct behaviours: one
colony exhibited the designed mutation, another one the WT sequence and the third
exhibited the same pattern of overlapping peaks noted before. Therefore, the results
corresponding to mut3.1 and mut3.3 should be interpreted with caution, as the origi-
nal plasmid (pPRC-49S) might be present in these mut strains and the ratio of original
to mutated plasmids is unknown. Still, their reduced output fluorescence compared to
the WT strain in the presence of BA marks these strains for further investigation (Fig-
ure 5.18A).

The inducibility of mut3.2 is most severely affected (Figure 5.18B). It is only induced
0.9-fold at 0.5 mM BA and 1.7-fold at 20 mM BA. Further, mut 1.1, mut 1.2 and mut2
show increased fluorescence at 0 mM BA compared to the WT, suggesting that their
basal output might be affected. To study these effects in more detail as well as to de-
termine the effect on � and n, all mutant strains were studied in the presence of a larger
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Figure 5.18: Quantitative evaluation of transcription-factor binding site (TFBS) muta-
tions to the oapTD promoter. Biosensors harbouring a promoterless reporter gene (pITC-
OapR + pPRC), the different TFBS mutations in the oapTD promoter region (pITC-
OapR + pPRC-mut1.1 up to pPRC-mut3.3) and the wild-type biosensor (pITC-OapR
+ pPRC-49S) were grown in rich medium supplemented with 0 mM (blue bars),
0.5 mM (yellow bars) and 20 mM β-alanine (BA) (red bars) and 30 mg/L naringenin.
The relative fluorescence output (FL/OD600, in relative fluorescence units (RFU)) was
measured after 39 h . The gain factor was set to 110. (A)Overview of the FL/OD600 val-
ues across all measured conditions. (B) Close-up on the lowest measured FL/OD600 val-
ues to display the basal output and the limited induction of the no P and mut3.2 strains.
Reported values represent the mean ± standard error of the mean across four biological
replicates, except for the no P and mut3.3 strains where three biological replicates were
used. Experimental data was kindly provided by Dr. ir. Indra Bervoets.
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range of BA concentrations.

For both D1 mutants, fits to a Hill function confirm the observed increase in b (mut1.1:
124 RFU (95% CI 95-154 RFU), mut1.2: 109 RFU (95% CI 94-124 RFU)) and decrease
in a (mut1.1: 1228 RFU (95% CI 1104-1360 RFU), mut1.2: 1456 RFU (95% CI 1340-
1583 RFU)) with respect to the WT (Figure 5.19). These effects translate to a decreased
dynamic range (� D 10 and 13, respectively). Besides, the threshold is decreased for
mut1.1 (� D 0:07mM(95%CI 0.05-0.10mM)). The threshold ofmut1.2 lies in the same
range as for the WT. This leads to a smaller operational range for the mut1.1 biosensor
(� 0-1 mM).

The mut2 biosensor also shows an increased basal output (124 RFU (95% CI 103-
145RFU)) (Figure 5.20). The value of a is even further reduced to 408RFU (95%CI 348-
487 RFU), reducing the dynamic range to 3.3. The data is fit best with a small value of
n D 0:8 (95% CI 0.6-1.2), highlighting the shallow nature of the response.

For the mut3.1 biosensor, b and a values appear largely unaffected and its dynamic
range is also close to the value calculated for the WT (117 and 135, respectively) (Fig-
ure 5.21A). However, it has a more shallow appearance than the WT dose-response
curve, which is also reflected by their increased � and higher n. The high degree of dis-
similarity among biological replicates, reflected by the large standard error, could be due
to the genotypic impurity of the pPRC-mut3.1 plasmid prep discussed earlier. Indeed,
the transformation step of the purified mut plasmids in E. coliMG1655 that precedes the
plate reader experiment could resolve the mutated and unmutated plasmids in distinct
colonies and distinct replicates. This dissimilarity was also noted for the mut3.3 biosen-
sor. However, in the latter case, this effect was caused by a single biological replicate.
From 0.05mMBA on, it consistently outfluoresced the other replicates, reaching sixfold
higher FL/OD600 at 40.0 mM BA. Therefore, it was considered an outlier and removed
from the data set. A fit of the resulting data set to a Hill function revealed a narrow
dynamic range of 12, mainly due to a which was reduced with a factor 9 compared to
the WT (Figure 5.21C). Besides, the fitting suggested a decreased � .

Finally, the response curve of the mut3.2 biosensor evidenced a significantly affected
a value (a D 139 RFU (95% CI 83-247 RFU)) (Figure 5.21B). In fact, the fluorescent
output does not exceed that of the no TF strain. This suggests that the introduced muta-
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Figure 5.19: Response curve and fitted Hill functions of the mut1 biosensors in the pres-
ence of 30 mg/L naringenin. (A) The relative fluorescence output (FL/OD600, in relative
fluorescence units (RFU)) was measured after 40 h incubation in rich medium supple-
mented with different β-alanine (BA) concentrations. Grey diamonds represent the con-
trol strain (empty pITC+ pPRC), red triangles the biosensor lacking the oapR gene (pITC
+ pPRC-mut1.1) and violet circles the full biosensor (pITC-OapR + pPRC-mut1.1).
(B) FL/OD600 was measured after 30 h incubation in rich medium supplemented with the
same [BA] gradient. The same encoding as for panel (A) was used, with red triangles
representing a strain carrying pITC + pPRC-mut1.2 and purple circles pITC-OapR +
pPRC-mut1.2. In each case, the gain factor was set to 110. [BA] is plotted on a symmet-
rical logarithmic scale. All error bars represent the mean ± standard error of the mean
across four biological replicates, except for the no TF strain in panel (A) where three
biological replicates were used. The solid lines were plotted using the best-fit parame-
ters from a fit to Equation (2.4) (ligand-inducible version, parameters can be consulted
in Table II.1.
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Figure 5.20: Response curve and fitted Hill function of the mut2 biosensor in the pres-
ence of 30 mg/L naringenin. The relative fluorescence output (FL/OD600, in relative
fluorescence units (RFU)) was measured after 35 h incubation in rich medium supple-
mented with different β-alanine (BA) concentrations. The gain factor was set to 110.
[BA] is plotted on a symmetrical logarithmic scale. Grey diamonds represent the control
strain (empty pITC + pPRC), red triangles the biosensor lacking the oapR gene (pITC +
pPRC-mut2) and blue circles the full biosensor (pITC-OapR + pPRC-mut2). All error
bars represent the mean ± standard error of the mean across three biological replicates,
except for the NC and no TF strains where four biological replicates were used. The
solid lines were plotted using the best-fit parameters from a fit to Equation (2.4) (ligand-
inducible version, parameters can be consulted in Table II.1.
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Figure 5.21: Response curve and fitted Hill functions of the mut3 biosensors in the pres-
ence of 30 mg/L naringenin. (A) The relative fluorescence output (FL/OD600, in relative
fluorescence units (RFU)) was measured after 32 h incubation in rich medium supple-
mented with different β-alanine (BA) concentrations. Grey diamonds represent the con-
trol strain (empty pITC+ pPRC), red triangles the biosensor lacking the oapR gene (pITC
+ pPRC-mut3.1) and yellow green circles the full biosensor (pITC-OapR + pPRC-
mut3.1). (B) FL/OD600 was measured after 39 h incubation in rich medium supple-
mented with the same [BA] gradient. Grey diamonds: pITC + pPRC, red triangles: pITC
+ pPRC-mut3.2, green circles: pITC-OapR + pPRC-mut3.2. (C) FL/OD600 was mea-
sured after 30 h incubation in rich medium supplemented with the same [BA] gradient.
Grey diamonds: pITC + pPRC, red triangles: pITC + pPRC-mut3.2, green circles: pITC-
OapR + pPRC-mut3.3. In each case, the gain factor was set to 110. [BA] is plotted on
a symmetrical logarithmic scale. All error bars represent the mean ± standard error
of the mean across four biological replicates, except for the mut3.3 strain where three
biological replicates were used and two in the presence of 2.0 mM BA (indicated by
the open circle). The solid lines were plotted using the best-fit parameters from a fit
to Equation (2.4) (ligand-inducible version, parameters can be consulted in Table II.1.
(Continued on next page)
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Figure 5.21: Response curve and fitted Hill functions of the mut3 biosensors in the pres-
ence of 30 mg/L naringenin. (A) The relative fluorescence output (FL/OD600, in relative
fluorescence units (RFU)) was measured after 32 h incubation in rich medium supple-
mented with different β-alanine (BA) concentrations. Grey diamonds represent the con-
trol strain (empty pITC+ pPRC), red triangles the biosensor lacking the oapR gene (pITC
+ pPRC-mut3.1) and yellow green circles the full biosensor (pITC-OapR + pPRC-
mut3.1). (B) FL/OD600 was measured after 39 h incubation in rich medium supple-
mented with the same [BA] gradient. Grey diamonds: pITC + pPRC, red triangles: pITC
+ pPRC-mut3.2, green circles: pITC-OapR + pPRC-mut3.2. (C) FL/OD600 was mea-
sured after 30 h incubation in rich medium supplemented with the same [BA] gradient.
Grey diamonds: pITC + pPRC, red triangles: pITC + pPRC-mut3.2, green circles: pITC-
OapR + pPRC-mut3.3. In each case, the gain factor was set to 110. [BA] is plotted on
a symmetrical logarithmic scale. Error bars represent the mean ± standard error of the
mean across four biological replicates, except for the mut3.3 strain where three biolog-
ical replicates were used and two in the presence of 2.0 mM BA (indicated by the open
circle). Note that data for mut3.1 at 6.0 mM BA is missing. The solid lines were plot-
ted using the best-fit parameters from a fit to Equation (2.4) (ligand-inducible version,
parameters can be consulted in Table II.1. (Continued)
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tion abrogates the ability of OapR to activate transcription in E. coli. The basal output
is only increased by twofold (b D 116 RFU (95% CI 96-136 RFU)) compared to the
WT, approximating the dynamic range to 1. At 100 mM BA, the fluorescent output of
the biosensor drops to the range of the NC strain. This behaviour can also be observed
on other response curves (Figure 5.20A-C) and is more likely to be stress-related than
caused by a direct effect on OapR. Indeed, strains grown in the presence of 100 mM BA
show a delayed onset of the exponential growth phase regardless of which pPRC con-
struct they carried. An additional control could be performed in the future, where the
normalised fluorescence of the no TF strain is measured in the presence of the same
BA concentration gradient. The superposition of this response curve to the one belong-
ing to mut3.2 could clarify to which extent the observed induction is due to the action
of OapR.

A next step could be to purify OapR and study its binding to the different mutated pro-
moter regions in vitro. It would be especially interesting to unravel the detrimental effect
of the mutation harboured by mut3.2, as it could provide further insight into the regula-
tion by OapR.

In conclusion, different dose-response characteristics were obtained upon mutation of
the predicted TFBSs. In most cases, b and a were simultaneously affected, reducing the
dynamic range. The parametrisation of the obtained biosensors will allow them to be
rationally selected for different applications.

5.2.3 AHOS_RS02205-based biosensors

The MRTF AHOS_RS02205 from the archaeon ”Acidianus hospitalis” W1 was studied
inE. coli in combinationwith different promoters. For this purpose, pITC-AHOS_RS02205
was used in combination with several pPRC variants (see Table 4.5). Firstly, pPRC-
1S contained the promoter of the AHOS_RS02205 structural gene upstream of mkate2.
Escherichia coli whole-cell biosensors containing pITC-AHOS_RS02205 and pPRC-
1S plasmids conveyed a downwards trend in the fluorescence output for increasing
naringenin concentrations in the absence of BA, indicating that it functions as a repres-
sor in E coli (Drs. ir. Amber Bernauw, unpublished data). In the presence of BA, a
concentration-dependent derepression was observed (Figure 5.22). In the presence of
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10 mg/L naringenin, a relatively high basal level of expression was measured, leading to
a modest dynamic range (� 1, Figure 5.22A).When the concentration of naringenin was
doubled, b decreased (3313 RFU (95%CI 3088-3535 RFU) to 2505 RFU (95%CI 2276-
2724 RFU)) whereas a increased (4718 RFU (95% CI 4301-5162 RFU) to 6463 RFU
(95% CI 5822-7148 RFU)), leading to a broader dynamic range (� 2). The threshold
increased simultaneously (from 0.20 mM (95% CI 0.17-0.24 mM) to 0.20 mM (95% CI
0.23-0.32 mM)). These observations support the predictions of the Mannan model for
increasing a1 values in the repressed-repressor architecture (the maximum increase in
transcription factor activity, see Section 5.1.1).

On the genome of ”A. hospitalis”, AHOS_RS02205 resides in a divergent orientation
of the putative aminotransferase gene AHOS_RS02210. As feast/famine regulatory pro-
teins (FFRPs) such as AHOS_RS02205 commonly regulate their divergent gene, the reg-
ulation of PAHOS_RS02210 by AHOS_RS02205 was assessed (Ziegler & Freddolino, 2021).
Increasing the intracellular AHOS_RS02205 concentration in E. coli (by increasing the
naringenin concentration) resulted in an increase in mKate2 fluorescence (Drs. ir. Am-
ber Bernauw, unpublished data). This suggests that AHOS_RS02205 activates expres-
sion from PAHOS_RS02210 in E. coli. Consistent with this observation, the normalised flu-
orescence of the biosensor (pITC-AHOS_RS02205 + pPRC-2S) at 0 mM BA exceeded
that of a strain lacking the MRTF gene (pITC + pPRC-2S) (Figure 5.23). Both strains
showed overlapping output fluorescence at 10 mMBA, indicating that AHOS_RS02205
functions as a repressed-activator of the AHOS_RS02210 promoter in E. coli. However,
the measured signal was very weak, which can be appreciated by comparing the out-
put fluorescence of the NC strain (harbouring empty pITC and pPRC plasmids) with
the BS and no TF strains. This counterintuitive result is probably due transcriptional
readthrough on pPRC, leading to expression of the promoterless mkate2 in NC. Insert-
ing the (weak) AHOS_RS02210 promoter upstream of mkate2 could interfere with this
readthrough and reduce its effect on mkate2 expression.

Still, this biosensor can be considered functional, as a significantly differed from zero
for both applied naringenin concentrations (95%CIs 643-1184 RFU and 369-629 RFU,
respectively). Although significant differences between both experiments were noted
for b and a, these results should be interpreted with caution, due to the low output flu-
orescence of the BS strain and the differing output signals for the NC strains. More
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Figure 5.22: Response curves and fitted Hill functions of the
AHOS_RS02205/PAHOS_RS02205 biosensor in the presence of 10 mg/L naringenin (A)
and 20 mg/L naringenin (B). In each case, the relative fluorescence output (FL/OD600,
in relative fluorescence units (RFU)) was measured after 30 h incubation in rich
medium supplemented with different β-alanine (BA) concentrations. The gain factor
was set to 140. [BA] is plotted on a symmetrical logarithmic scale. Grey diamonds
represent the control strain (empty pITC + pPRC), red triangles the biosensor lacking
the AHOS_RS02205 gene (pITC + pPRC-1S) and orange circles the full biosen-
sor (pITC-AHOS_RS02205 + pPRC-1S). Error bars represent the mean ± standard
error of the mean across four biological replicates. The solid lines were plotted
using the best-fit parameters from a fit to Equation (2.4) (ligand-inducible version,
parameters can be consulted in Table II.2. Experimental data was kindly provided by
Drs. ir. Amber Bernauw.
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Figure 5.23: Response curves and fitted Hill functions of the
AHOS_RS02205/PAHOS_RS02210 biosensor in the presence of 8 mg/L naringenin (A) and
20 mg/L naringenin (B). In each case, the relative fluorescence output (FL/OD600, in
relative fluorescence units (RFU)) was measured after 30 h incubation in rich medium
supplemented with different β-alanine (BA) concentrations. The gain factor was set
to 140. [BA] is plotted on a symmetrical logarithmic scale. Grey diamonds represent
the control strain (empty pITC + pPRC), red triangles the biosensor lacking the
AHOS_RS02205 gene (pITC + pPRC-2S) and green circles the full biosensor (pITC-
AHOS_RS02205 + pPRC-2S). Error bars represent the mean ± standard error of the
mean across four biological replicates, except for the NC strain in panel (A) where three
biological replicates were used. The solid lines were plotted using the best-fit parame-
ters from a fit to Equation (2.4) (ligand-repressible version, parameters can be consulted
in Table II.2. Experimental data was kindly provided by Drs. ir. Amber Bernauw.
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differences might be observed upon fortification of the AHOS_RS02210 promoter.

Given their high level of amino acid sequence identity (66%) and common genomic ar-
rangement (divergent with respect to a putative aminotransferase gene), AHOS_RS02205
and Sulfolobus acidocaldarius BarR (Sa-BarR, see also Section 2.3) can be safely as-
sumed to be homologues. Therefore, it was investigatedwhether AHOS_RS02205 could
regulate the expression of the barR and SACI_RS10335 promoters in E. coli. For this
purpose, plasmid vectors pPRC-54S and pPRC-55S were used, respectively.

Increasing the naringenin concentration reduced the output fluorescence of a strain har-
bouring pITC-AHOS_RS02205 and pPRC-54S in a concentration-dependent manner
(Drs. ir. Amber Bernauw, unpublished data). This indicates that, in contrast with its na-
tive regulation in S. acidocaldarius, PbarR is repressed by AHOS_RS02205. This repres-
sion was abrogated upon BA supplementation, meaning that AHOS_RS02205 functions
as a repressed-repressor of the barR promoter, again distinct to the BA-independent au-
toregulation of Sa-BarR in S. acidocaldarius. The dynamic range approximated to 1.2.

On the other hand, increasing naringenin concentrations revealed a gradual activation
of PSACI_RS10335 in E. coli biosensors harbouring pITC-AHOS_RS02205 and pPRC-55S
(Drs. ir. Amber Bernauw, unpublished data). BA acts in a reciprocal fashion, reduc-
ing the output fluorescence with � � 5. This larger dynamic range compared to the
AHOS_RS02205/PAHOS_RS02210 biosensor (also functions a repressed-activator), goes at
the cost of an increase basal expression level.

In conclusion, AHOS_RS02205 is functional as an MRTF in E. coli. Four archaeal pro-
moters were used, resulting in four BA biosensors with differing dose-response parame-
ters. Notably, not only repressor-based regulationwas retrieved (Figures 5.22 and 5.24A),
but AHOS_RS02205 could also function as an activator (Figures 5.23 and 5.24B), which
is exceptional due to the evolutionary distance separating Bacteria and Archaea (see also
Section 2.1.1.1). It should be noted that in each case, native archaeal promoters were
used, implicating that the dose-response characteristics of these biosensors could be fur-
ther improved, for instance, by exchanging the predicted core promoter sequences with
endogenous E. coli promoter sequences.
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Figure 5.24: Response curve and fitted Hill function of the
AHOS_RS02205/PbarR biosensor (A) and AHOS_RS02205/PSACI_RS10335 biosensor (B).
In each case, the relative fluorescence output (FL/OD600, in relative fluorescence
units (RFU)) was measured after 30 h incubation in rich medium supplemented with
different β-alanine (BA) concentrations and 20 mg/L naringenin. The gain factor was
set to 140. [BA] is plotted on a symmetrical logarithmic scale. For both panels, grey
diamonds represent the control strain (empty pITC + pPRC). In panel (A), red triangles
represent the biosensor lacking the AHOS_RS02205 gene (pITC + pPRC-54S) and
purple circles the full biosensor (pITC-AHOS_RS02205 + pPRC-54S). The solid line
was plotted using the best-fit parameters from a fit to Equation (2.4) (ligand-inducible
version, parameters can be consulted in Table II.2. The same encoding is used for
panel (B), where red triangles represent a strain carrying pITC + pPRC-55S and brown
circles pITC-AHOS_RS02205 + pPRC-55S. The solid line was plotted using the
best-fit parameters from a fit to Equation (2.4) (ligand-repressible version, parameters
can be consulted in Table II.2. Error bars represent the mean ± standard error of the
mean across four biological replicates, except for the no TF strains in both panels
where three biological replicates were used. Experimental data was kindly provided by
Drs. ir. Amber Bernauw.



Conclusion

In the first part of this thesis, an extensive discussion of the Mannan model for biosen-
sor response is provided, a simple phenomenological model that has received significant
attention in literature but has never been re-examined by an independent group. Simula-
tions of the repressed-repressor architecture revealed interesting behaviour in response
to perturbations in tunable parameters beyond the parameters on which the original pub-
lication focused. For instance, tuning a1 (signifying the maximum increase in tran-
scription factor activity) affected the basal output, threshold and dynamic range of the
dose-response curve at the same time, similar to the effect of tuning K2 (representing
the affinity of the transcription factor for its DNA binding site) but simpler to realise
in practice by altering the transcription factor expression level. Although the observed
behaviour was intuitively satisfying, the predicted effect was in part contradicted by
literature, possibly implying that the a1 parameter alone is not sufficient to model the
expression level of the metabolite-responsive transcription factor (MRTF).

In addition, Mannan et al. (2017) proposed the promoter dynamic range (i.e. �2 D
a2

b2
,

where b2 represents the basal level of promoter expression and a2 the maximum increase
in promoter expression) as a key tunable parameter allowing orthogonal control of the
biosensor dynamic range. However, our results qualify this claim by defining limiting
conditions, as for lower values of a1, K2 or n2 (representing the sensitivity of MRTF
binding to its DNA binding site), the effect on the dynamic range is moderated by knock-
on effects on the basal output.

Furthermore, a parameter estimation method (PEM) serving to fit experimental biosen-
sor characterisation data to the Mannan model was implemented in Python. Evalua-
tion of the PEM based on simulated data sets akin to experimental data proved it to be
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functional and revealed that the resulting fits could reproduce the overall behaviour of
the training data for eight of the nine considered data sets. However, signs of overfit-
ting and parameter unidentifiability suggest a requirement on high-quality experimental
data, difficult to obtain in molecular biology. Potential improvements to the PEM were
proposed, as its application to real-life data could provide further insight in the validity
of the Mannan model.

In the second part of this study, β-alanine-responsive biosensors were studied in Es-
cherichia coli due to their enormous potential in metabolic engineering applications,
among which the implementation of dynamic control in the β-alanine pathway for the
production of 3-hydroxypropionic acid. Biosensors were characterised in vivo and pa-
rameterised by fitting to a Hill function, an indispensable step that allows their rational
selection for different applications.

The dose-response curve of a biosensor based on Cupriavidus necator OapR, an MRTF
displaying both properties of a repressor and activator, was engineered by the introduc-
tion of single-nucleotide substitutions in the predicted TFBSs. This resulted in diverse
dose-response characteristics that might serve different applications. For instance, the
analog-like behaviour exhibited by the mut3.1 biosensor might be more suitable to dif-
ferentially regulate the expression of a target gene in response to a larger concentra-
tion range, for example in dynamic pathway control. However, it should be examined
whether this behaviour persists in a genotypically pure strain.

Interestingly, the 8C>G substitution in the I3 site of the mut3.2 strain decreases the dy-
namic range more than 100-fold. We hypothesise that the 8C residue is crucial for the
action of OapR as an activator in E. coli. In vitro experiments, such as electrophoretic
mobility shift assays in the presence and absence of purified RNA polymerase, are ide-
ally suited to test this hypothesis as well as to further study the relative importance of
the other DNA binding sites but exceeded the scope of this thesis.

Finally, four biosensors based on the MRTF AHOS_RS02205 from the archaeon ”Acid-
ianus hospitalis” were parameterised. Although their dynamic ranges are narrow, the ac-
tion ofAHOS_RS02205 as a repressed-activator on theAHOS_RS02210 and SACI_RS10335
promoters in E. coli is exceptional and adds two β-alanine-repressible biosensors to the
synthetic biology toolbox. These biosensors are potentially useful to downregulate gene
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expression in response to β-alanine, for instance, to dynamically divert the flux from en-
dogenous β-alanine catabolism to the heterologous 3-hydroxypropionic acid production
pathway in response to intracellular β-alanine accumulation. However, further response
curve engineering is required to increase the utility of these biosensors.



Summary

Whole-cell biosensors are a key enabling technology in metabolic engineering. Biosen-
sors based on metabolite-responsive transcription factors (MRTFs) have proven their
use in a range of applications, of which the dynamic regulation of metabolic fluxes has
received most attention by the research community. However, limited understanding of
the tunability of biosensors has made their development labour-intensive and delayed
their en masse industrial application. Mathematical modelling efforts have addressed
this bottleneck, and one notable study has revealed theoretical constraints for biosensor
design and exposed tunable parameters that allow orthogonal control of the biosensor
dynamic range and sensing threshold. However, it was based on the well-characterised
lac repressor and has never applied to new biosensors, that could possess more complex
mechanisms not covered by the model.

The first part of this thesis aimed to obtain further insight in the contribution of the differ-
ent tunable parameters on the biosensor response curve by investigating this phenomeno-
logical model. Simulations revealed interesting behaviour in response to perturbations
in the a1 parameter (representing the maximum increase in transcription factor activity)
that did not fully correspond to the effect of tuning the expression level of repressed-
repressors described in literature, potentially implying that this parameter alone cannot
capture that effect. In addition, the proposed orthogonal control of the biosensor dy-
namic range was nuanced by identifying limiting conditions that moderate this effect. A
parameter estimation method was implemented in Python to fit biosensor characterisa-
tion data to this model, which will allow to study the effect of these tunable parameters
more quantitatively and provide further insight in the validity of the model.

For the second part of this thesis, biosensors responsive to the industrially important

107



SUMMARY 108

intermediate compound β-alanine were studied in Escherichia coli. Six mutated biosen-
sors were constructed by introducing mutations in the predicted DNA binding sites of
Cupriavidus necator OapR, and their response to β-alanine was quantified in vivo. A
range of dose-response characteristics emergedwith affected dynamic ranges, thresholds
and sensitivies across the mutant strains. Notably, a single-nucleotide substitution in the
I3 site reduced the dynamic range 100-fold, and the resulting biosensor appeared to have
lost the ability to activate the expression from the oapTD promoter and thus function
solely as a repressor. On the other hand, four biosensors based on the archaeal MRTF
AHOS_RS02205 from ”Acidianus hospitalis” were parameterised. All biosensors were
functional in E. coli, either as repressed-repressors or repressed-activators, which is ex-
ceptional due to the evolutionary distance separating Bacteria and Archaea.

In conclusion, this thesis project has extracted additional information from a phenomeno-
logical model that could aid biosensor response curve engineering and provided the
first steps for its practical application to new biosensors. On the other hand, β-alanine-
responsive biosensors were engineered, resulting in a set of novel biosensors with poten-
tial applications for the production of β-alanine-derived products, such as the promising
platform molecule 3-hydroxypropionic acid.



Samenvatting

‘Whole-cell’ biosensoren zijn een sleuteltechnologie binnen de metabole engineering.
Hierbij krijgen biosensoren gebaseerd op metaboliet-responsieve transcriptie factoren
(MRTFs) veel aandacht nadat ze hun nut bewezen in tal van applicaties door het toepassen
van dynamische regulatie van metabole fluxen. Niettemin blijft hun ontwikkeling voor
gebruik in industriële toepassingen voorlopig beperkt door het arbeidsintensieve pro-
ces dat gepaard gaat met hun ontwikkeling omwille van de beperkte kennis van de af-
stembaarheid van biosensoren. Verschillendewiskundigemodelleringspogingen hebben
zich toegespitst op dit specifieke knelpunt en een opmerkelijke studie heeft theoretische
beperkingen voor biosensor ontwerp onthuld en stelt hierbij afstembare parameters naar
voor die orthogonale controle van het dynamisch bereik en de gevoeligheidsdrempel
van de biosensor moeten toelaten. Deze studie is echter gebaseerd op de goed gekarak-
teriseerde lac repressor en werd nog niet toegepast op andere nieuwe biosensoren die
volgens veel complexere mechanismen fungeren.

In het eerste deel van de thesis tracht men door het onderzoeken van dit fenomenologisch
model verdere inzichten te bekomen in de bijdragen van de verschillende afstembare
parameters op de respons curve van een biosensor. Simulaties onthulden interessant
gedrag als reactie op verstoringen in de a1 parameter (maximale toename in transcrip-
tie factor activiteit) die niet volledig overeenkomt met het effect beschreven voor een
gerepresseerde-repressor in de literatuur wat impliceert dat deze parameter op zichzelf
dit effect niet kan neerzetten. Daarenboven, werd de vooropgestelde orthogonale con-
trole van het dynamisch bereik van de biosensor genuanceerd door het identificeren
van limiterende condities die dit effect matigen. Een parameterschattingsmethode werd
geïmplementeerd in Python om biosensor karakteriseringsdata te fitten op het model op-
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dat het effect van deze afstembare parameters kwantitatief bestudeerd kon worden en er
verdere inzichten verworven worden voor de validatie van het model.

Voor het tweede deel van de thesis werden biosensoren, responsief aan de industrieel
belangrijke verbinding β-alanine, bestudeerd in Escherichia coli. Zes biosensor mu-
tanten werden gebouwd door het introduceren van mutaties in de voorspelde DNA-
binding sites van OapR van Cupriavidus necator en hun respons op toevoeging van
β-alanine werd kwantitatief opgevolgd in vivo. Een reeks van dosis-respons curves
werden bekomen met gewijzigd dynamisch bereik, drempelwaarden en gevoeligheden
over de verschillende gemuteerde stammen. Opmerkelijk, een enkele nucleotide sub-
stitutie in de I3 site reduceerde het dynamisch bereik met factor 100 en de resulterende
biosensor lijkt het vermogen tot activatie vanaf de oapTD promoter verloren te hebben
waardoor deze enkel nog als repressor kan fungeren. Anderzijds werden vier biosen-
soren gebaseerd op de archaeale MRTF AHOS_RS02205 van ”Acidianus hospitalis”
geparametriseerd. Alle biosensoren bleken functioneel in E. coli, als gerepresseerde-
repressors of gerepresseerde-activatoren, ondanks de evolutionaire afstand tussen Bac-
teria en Archaea.

Tot slot leverde dit project bijkomende informatie startend van een fenomenologisch
model die zal bijdragen aan toekomstige biosensor respons curve ontwikkeling en de
eerste stappenwerden ondernomen voor de praktische applicatie ervan op nieuwe biosen-
soren. Anderzijds werden verschillende β-alanine-responsieve biosensoren ontworpen
resulterend in een set van nieuwe biosensoren die toegepast kunnen worden voor de
productie van verbindingen afkomstig van β-alanine zoals het veelbelovende platform
molecule 3-hydroxypropionzuur.
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Supplementary material to Section 5.1
Mathematical modelling

I.1 Additional simulations of the Mannan model
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Figure I.1: Model simulations perturbing the maximum increase in promoter expres-
sion (a2) for the repressed-repressor architecture. Data were computed from Equa-
tions (2.13), (2.14) and (4.2) to (4.4) with parameters b1 D 0:01, a1 D 10:0, K1 D 0:1,
n1 D 6:0, b2 D 4:1, K2 D 0:9, n2 D 2:0, and a2 values span the range a2 D 1000 to
a2 D 1700. Metabolite concentrations (M ) are plotted on a logarithmic scale.
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Figure I.2: Model simulations perturbing the transcription factor-TFBS affinity (K2) for
the repressed-repressor architecture. Data were computed from Equations (2.13), (2.14)
and (4.2) to (4.4) with parameters b1 D 8, a1 D 300, K1 D 0:1, n1 D 6:0, b2 D 4:1,
a2 D 1000, n2 D 2:0, and K2 values span the range K2 D 5 � 10�4 to K2 D 9 � 10�1.
Metabolite concentrations (M ) and K2 are plotted on a logarithmic scale.
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I.2 Additional parameter estimation method evaluation
results

A

B

C

Figure I.3: Results of fitting to parameter estimation method (PEM) evaluation data
set 2. (A) All 500 fits to the data. The best fit (displaying the lowest objective function
value) is plotted as in green, the remainder of the fits is shown in grey. (B) Only the
best fit is shown in green, along with the ideal noise-free solution (an interpolation of
.�i;T rue; �i;T rue; bi;T rue/) plotted as a pink dashed line. In panels A and B, triangles
represent the dose-response parameters of PEM evaluation data set 2 (the training data).
(C) Performance visualisation for the PEM evaluation problem. Left panel: the objective
function values obtained after 500 runs of least-squares optimisation (run index 0 up
to 499) are sorted increasingly. The horizontal dashed line representsCpass, the objective
function value computed for the ideal noise-free solution. Right panel: a close-up on the
100 best runs suggests that a global optimum is reached. Cpass is beyond the axis limits.
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Figure I.4: Results of fitting to parameter estimation method (PEM) evaluation data
set 4. (A) All 500 fits to the data. The best fit (displaying the lowest objective function
value) is plotted as in green, the remainder of the fits is shown in grey. (B) Only the
best fit is shown in green, along with the ideal noise-free solution (an interpolation of
.�i;T rue; �i;T rue; bi;T rue/) plotted as a pink dashed line. In panels A and B, triangles
represent the dose-response parameters of PEM evaluation data set 4 (the training data).
(C) Performance visualisation for the PEM evaluation problem. Left panel: the objective
function values obtained after 500 runs of least-squares optimisation (run index 0 up
to 499) are sorted increasingly. The horizontal dashed line representsCpass, the objective
function value computed for the ideal noise-free solution. Right panel: a close-up on the
100 best runs suggests that a global optimum is reached. Cpass is beyond the axis limits.
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Figure I.5: Results of fitting to parameter estimation method (PEM) evaluation data
set 5. (A) All 500 fits to the data. The best fit (displaying the lowest objective function
value) is plotted as in green, the remainder of the fits is shown in grey. (B) Only the
best fit is shown in green, along with the ideal noise-free solution (an interpolation of
.�i;T rue; �i;T rue; bi;T rue/) plotted as a pink dashed line. In panels A and B, triangles
represent the dose-response parameters of PEM evaluation data set 5 (the training data).
(C) Performance visualisation for the PEM evaluation problem. Left panel: the objective
function values obtained after 500 runs of least-squares optimisation (run index 0 up
to 499) are sorted increasingly. The horizontal dashed line representsCpass, the objective
function value computed for the ideal noise-free solution. Right panel: a close-up on the
100 best runs suggests that a global optimum is reached. Cpass is beyond the axis limits.
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Figure I.6: Results of fitting to parameter estimation method (PEM) evaluation data
set 6. (A) All 500 fits to the data. The best fit (displaying the lowest objective function
value) is plotted as in green, the remainder of the fits is shown in grey. (B) Only the
best fit is shown in green, along with the ideal noise-free solution (an interpolation of
.�i;T rue; �i;T rue; bi;T rue/) plotted as a pink dashed line. In panels A and B, triangles
represent the dose-response parameters of PEM evaluation data set 6 (the training data).
(C) Performance visualisation for the PEM evaluation problem. Left panel: the objective
function values obtained after 500 runs of least-squares optimisation (run index 0 up
to 499) are sorted increasingly. The horizontal dashed line representsCpass, the objective
function value computed for the ideal noise-free solution. Right panel: a close-up on the
100 best runs suggests that a global optimum is reached. Cpass is beyond the axis limits.
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Figure I.7: Results of fitting to parameter estimation method (PEM) evaluation data
set 8. (A) All 500 fits to the data. The best fit (displaying the lowest objective function
value) is plotted as in green, the remainder of the fits is shown in grey. (B) Only the
best fit is shown in green, along with the ideal noise-free solution (an interpolation of
.�i;T rue; �i;T rue; bi;T rue/) plotted as a pink dashed line. In panels A and B, triangles
represent the dose-response parameters of PEM evaluation data set 8 (the training data).
(C) Performance visualisation for the PEM evaluation problem. Left panel: the objective
function values obtained after 500 runs of least-squares optimisation (run index 0 up
to 499) are sorted increasingly. The horizontal dashed line representsCpass, the objective
function value computed for the ideal noise-free solution. Right panel: a close-up on the
100 best runs suggests that a global optimum is reached. Cpass is beyond the axis limits.
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Figure I.8: Results of fitting to parameter estimation method (PEM) evaluation data
set 9. (A) All 500 fits to the data. The best fit (displaying the lowest objective function
value) is plotted as in green, the remainder of the fits is shown in grey. (B) Only the
best fit is shown in green, along with the ideal noise-free solution (an interpolation of
.�i;T rue; �i;T rue; bi;T rue/) plotted as a pink dashed line. In panels A and B, triangles
represent the dose-response parameters of PEM evaluation data set 9 (the training data).
(C) Performance visualisation for the PEM evaluation problem. Left panel: the objective
function values obtained after 500 runs of least-squares optimisation (run index 0 up
to 499) are sorted increasingly. The horizontal dashed line representsCpass, the objective
function value computed for the ideal noise-free solution. Right panel: a close-up on the
100 best runs suggests that a global optimum is reached. Cpass is beyond the axis limits.
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A

B

Figure I.9: Distribution of the optimised parameter values. Box plots represent the
distribution of the best-fit values of b1 (the basal level of transcription factor activity,
panel (A)) and a1 (the maximum increase in transcription factor activity, panel (B))
across the 100 best runs of the optimisation algorithm, except for parameter estimation
method (PEM) evaluation data sets 2 (82 best runs), 6 (80 best runs) and 9 (59 best runs)
to exclude runs that converged to a distinct objective function value. PEM evaluation
data set 7 was not included due to lack-of-fit. Boxes show the quartiles of the parameter
distribution while the whiskers delineate the remainder of the distribution within 1.5 in-
terquartile ranges of the nearest box edge. Outliers (parameter values that do not reside
within 1.5 interquartile ranges of the nearest quartile) are shown as grey diamonds. Pink
stars represent the true parameter values of the ideal noise-free solution of each data set.
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A

B

Figure I.10: Distribution of the optimised parameter values. Box plots represent the
distribution of the best-fit values of K1 (the transcription factor-metabolite affinity,
panel (A)) and n1 (the sensitivity of transcription factor-metabolite binding, panel (B))
across the 100 best runs of the optimisation algorithm, except for parameter estimation
method (PEM) evaluation data sets 2 (82 best runs), 6 (80 best runs) and 9 (59 best runs)
to exclude runs that converged to a distinct objective function value. PEM evaluation
data set 7 was not included due to lack-of-fit. Boxes show the quartiles of the parameter
distribution while the whiskers delineate the remainder of the distribution within 1.5 in-
terquartile ranges of the nearest box edge. Outliers (parameter values that do not reside
within 1.5 interquartile ranges of the nearest quartile) are shown as grey diamonds. Pink
stars represent the true parameter values of the ideal noise-free solution of each data set.
K1 is shown on a logarithmic scale.
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A

B

Figure I.11: Distribution of the optimised parameter values. Box plots represent the dis-
tribution of the best-fit values of b2 (the basal level of promoter expression, panel (A))
and a2 (the maximum increase in promoter expression, panel (B)) across the 100 best
runs of the optimisation algorithm, except for parameter estimation method (PEM) eval-
uation data sets 2 (82 best runs), 6 (80 best runs) and 9 (59 best runs) to exclude runs
that converged to a distinct objective function value. PEM evaluation data set 7 was
not included due to lack-of-fit. Boxes showing the quartiles and whiskers delineating
the remainder of the parameter distribution within 1.5 interquartile ranges of the nearest
box edge are too small to be descried, indicating that b2 and a2 were reproducibly de-
termined across all shown data sets. Outliers (parameter values that do not reside within
1.5 interquartile ranges of the nearest quartile) are shown as grey diamonds. Pink stars
represent the true parameter values of the ideal noise-free solution of each data set.
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1 2 3 4 5 6 8 9
PEM evaluation data set #

1.0

1.5

2.0

2.5

3.0

n 2

Figure I.13: Distribution of the optimised parameter values. Box plots represent the dis-
tribution of the best-fit values of n1 (the sensitivity of transcription factor-TFBS binding)
across the 100 best runs of the optimisation algorithm, except for parameter estimation
method (PEM) evaluation data sets 2 (82 best runs), 6 (80 best runs) and 9 (59 best runs)
to exclude runs that converged to a distinct objective function value. PEM evaluation
data set 7 was not included due to lack-of-fit. Boxes show the quartiles of the parameter
distribution while the whiskers delineate the remainder of the distribution within 1.5 in-
terquartile ranges of the nearest box edge. Outliers (parameter values that do not reside
within 1.5 interquartile ranges of the nearest quartile) are shown as grey diamonds. Pink
stars represent the true parameter values of the ideal noise-free solution of each data set.
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