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Abstract

Background Extended reality (XR) applications have many uses, ranging from training in workplaces, to
inspection and virtual collaboration. One of the major challenges in authoring XR environments, is the
time intensive process of creating the 3D assets. An alternative approach is to use 3D scanning methods,
where the environment or objects are captured using depth cameras. The obtained point cloud then
needs to be classified and aligned with a template model, to deduce its pose in space. This alignment
problem is called Point Cloud Registration (PCR). Many different algorithms exist to solve this problem.
A distinction is made between methods based on machine learning and global methods, which do not use
a learning approach.

Aim and objective The goal of this thesis is to compare different registration methods. This in order
to determine a framework of choosing which algorithm should be used in a specific application. The
capturing of the point clouds is also considered, to derive some guidelines for achieving best results.
Finally, training of the learning-based methods is also investigated. More specifically, whether training
using available CAD models for creating a synthetic datasets, yields good performances in terms of the
studied metrics.

Materials and Methods The literature is studied to obtain a list of state-of-the-art registration methods.
The studied algorithms are ICP, RANSAC, FGR, PointNetLK, RPMNet and ROPNet. Performances
are measured using typical metrics found in the literature, such as relative and mean errors, recall, R?
and timings. The experiments are performed using the Realsense Intel D435i camera. The objects are
positioned at a know pose with respect to the camera, for obtaining a ground truth solution. Pre-
processing is applied to clean up the point clouds. All codes are run on a personal device or on a GPU
provided by Google Colab.

Results During the experiments several parameters such as the voxel size, training models and input data
are varied. From these tests it is concluded that different registration methods can be used depending
on the application. GO-ICP yields overall the best accuracies, while requiring more time. RANSAC
and FGR are very fast, but less precise and with more variability in the results. The learning-based
methods perform the best on average when trained on normal data, created from the CAD models.
PointNetLK and RPMNet achieve results similar to GO-ICP after applying refinement. ROPNet leads
to the highest errors. For PointNetLK and RPMNet, training with available CAD models leads to
performances comparable to RANSAC and GO-ICP after refinement. For capturing the point clouds,
important aspects to consider are the camera used, pre-processing to remove outlier or irrelevant points
and the size of the transformation. Best results are achieved when the point cloud is cleaned up from any
background information, while maintaining as much points of the actual object. In the end, a framework
is presented to choose a registration method, based on the application. It considers typical questions
such as the speed requirements, accuracies and available resources.

Discussion and conclusion The experiments are carried out for medium sized objects, based on the
Cranfield and ModelNet40 datasets. The captured point cloud is created by fixing the camera and
creating a depth image from a single point of view. Further improvements are possible by creating
a larger point cloud, combining different point of views, from different cameras. The accuracy of the
ground truth estimation and the pre-processing of the point clouds could also be improved further.
Finally, other registration methods with more complex training datasets can be considered to compare
against the found results.

Keywords: Point Cloud Registration, Extended Reality, Intel RealSense, Comparison, Framework
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Chapter 1

Introduction

1.1 Motivation

Extended Reality (XR) environments have many applications such as training in manufacturing, educa-
tion or entertainment. An extended reality environment is the combination of virtual reality (VR) and
augmented reality (AR). VR refers to a completely digital environment, often experienced by the user
using a headset. In AR the real world is extended using virtual information. Extended reality is a space
in which the real and virtual world coexist.

The creation, also called authoring, of such an application consists of two main steps, which are visualised
in Figure 1.1. The first one entails the modelling of the virtual space, which is the focus in this paper.
The programming of the interactions between the user and the virtual objects is the second step. There
are again two main ways to model the virtual space. The objects can all be modelled using 3D software
such as Blender, Maya or Studio Max. However, this is a time consuming and labour intensive task.
Hence the need for an alternative, scanning-based method. Here, the environment is scanned using a
3D camera to obtain a virtual copy of the real world. It remains then to locate and align the objects
of interest with their CAD models, to find their position in the scene. This alignment problem is solved
using Point Cloud Registration (PCR).

[ Extended reality authoring ]

[ Interactions programming Modeling process ]
3D software ] [ Scanning-based
intensive

)

Align objects & find pose

Point Cloud Registration

Figure 1.1: Schematic overview of the steps required in XR authoring. The focus in this paper lies on
Point Cloud Registration after applying the scanning-based technique.

The problem of Point Cloud Registration consists in finding a rigid transformation between two point
clouds. A point cloud is a representation of an object by points in space. The idea is shown in Figure 1.2,
where the template (blue) point cloud is obtained from an existing CAD model of the object. The source
(red) point cloud is the one obtained from the scanning of the environment. The pose of the source is
determined with respect to the template using registration. When the pose of the camera itself is known
in a coordinate system (xyz)¢g, then the pose of the source is known too.

Point Cloud Registration (PCR) is an important problem in computer vision. When the two point clouds
contain an equal number of points, obtained by applying a rigid transformation, an accurate solution
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Point Cloud Registration

@ Template
@ source

Figure 1.2: Concept of Point Cloud Registration.

often exists. However, when noise is introduced or the point clouds only share a limited number of
points, the performance drops. Most algorithms solving the registration problem are tested on synthetic
data. Even though noise can be added artificially, this data does not always represent real data, obtained
by 3D cameras in an accurate way. In this thesis, different registration methods are compared when
applied to data captured by 3D cameras. A visualisation of these steps is shown in Figure 1.3.

Captured Virtual Environment Extracted Object (Source) Alligned Object (PCR)

Intel RealSense
Camera

Object Pose
—>

Aim of this Thesis

Figure 1.3: Schematic overview of the goal of this thesis.

1.2 Thesis Goals

1.2.1 Scope

In this first stage, the objects are captured separately by a 3D camera. The problem of detection is not
considered here, as it is outside of the scope of this thesis. Detection refers to the process of assigning
a label to each point or point cloud. However, YOLO by Redmon, J. et al. [35], which uses 2D images,
could be used for this step. Alternatively, the 3D point cloud itself can also be used for this, with PointNet
[2]. Thus, two assumptions are made:

1. The point cloud is already segmented from the environment, however the cutout may not be very
precise.

2. The points are already assigned a label corresponding to the object they represent.

The objects are 3D printed and thus not reflecting. A CAD model is available for all the components,
which serves as the template point cloud.

Working with real-world data introduces challenges such as data noise, partiality and outliers. Due to
noise, exact correspondences will not exist anymore. Partiality means that one or both point clouds
contain only a part of the total object, resulting in only a few points which overlap. Finally, outliers
introduce points that are not a part of the object but are part of the point cloud due to the method of
acquiring the data.
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The environment is considered to be indoors, well-lit and relatively structured. The focus lies on manu-
facturing environments, which meet these conditions.

1.2.2 Research Questions

The main goal of this thesis is to compare different available Point Cloud Registration techniques, given a
set of template CAD models and depth camera scans, considering different parameters. The performance
of the result is measured using a set of metrics. These are based on the difference between the ground
truth solution and the one obtained using the algorithms. A more detailed discussion can be found in
Chapter 3 and Appendix B.

The problem is split into three sub-research questions. First, there is the choice of the Point Cloud
Registration technique. Different methods exist, where some have to be trained and others not. Which
of the studied Point Cloud Registration techniques yields the most accurate results and best performance
for XR applications? The performance is again measured using the metrics explained in Chapter 3. As
a first hypothesis, it is assumed the non-training based methods will lead to a more robust result, while
the training based methods might have more problems recognizing features in real scans.

Secondly, for learning-based methods, training is an important step. The available template models can
be modified to account for noise and partiality during training. Is it sufficient to only use synthetic data,
based on the available CAD models of the objects, to train the methods? In other words, does the final
registration result yield accurate results, when the method is trained using synthetic data? These results
depend greatly on the way in which the data is generated. Different cases, such as data with noise,
partiality and environmental clutter are considered.

Lastly, the captured images have to fit certain constraints in order to fulfil the desired quality for reg-
istration. How accurate should the depth image of the object be to achieve satisfying results? For this
question, different situations are considered such as different sized objects, varying poses and the presence
of environmental clutter.

These questions are not unrelated; a certain registration method may require different training methods
or may impose other constraints on the data. An overview is given in Figure 1.4.

Question 1
Non learning-based PCR

‘Which Point Cloud Registration techniques yield Capturing objects with 3D camera on s
the most accurate results & best performances? P g 00) Question

Learning-based PCR How accurate should the depth image of the object
be to achieve satisfying results?

Question 2 [ Training using CAD models ]
® Main Steps
® PCR Methods
® PCR Inputs
Research Questions

Sufficient to only use synthetic data, based on the
available CAD models to train the methods?

Figure 1.4: Schematic overview of the three main research questions. Arrows indicate the relationship
between the different aspects of the thesis, with A, B & C corresponding to the three main steps to
answer the research questions. Blue boxes indicate inputs for the models, represented by the red boxes.
Yellow boxes contain the respective research question.

1.3 Thesis Structure

The structure of this thesis is divided into three main parts. First, the literature is discussed together with
the selection of the registration techniques in Chapter 2. In this part an overview is given of the current
(2022-2023) state-of-the-art about authoring of XR environments. Afterwards, the main applications of
Point Cloud Registration are discussed in various domains. Lastly, a selection is made of registration
techniques based on their pros and cons. This part leads to the definition of the methods, shown in the
red boxes of Figure 1.4.

In the next part, the metrics that are considered to asses the performances are explained in Chapter 3.
The experimental setup, the 3D camera and ground truth estimation are discussed in Chapter 4. These
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chapters are all used in preparation of the experiments and are represented by step A and the related
blue box in Figure 1.4.

The final part shows the obtained results. The outcomes of training the learning-based methods are
shown in Chapter 5. This is step B in Figure 1.4. Lastly, the experiments are carried out. A parameter
study is given in Chapter 6 and the experimental conclusions are drawn in Chapter 7, to finish step C in
Figure 1.4.

A discussion on future work is presented in Chapter 8 and conclusions are summarised in Chapter 9.

In Appendix A-E, some additional background information and findings are given for the interested
reader, which is used as a reference throughout the paper.

All codes used during the project are presented on the project Github page!.

1In case the Github hyperlink malfunctions, a backup of all the additional files is made available here.


https://github.com/dwjoris/XRTwin_CAD_model_alignment.git
https://vub-my.sharepoint.com/:f:/g/personal/menthy_denayer_vub_be/EgztyhoVz5JLianKSp7KcxEBhoGzQ2AWnmX_uOmPsXBKbQ?e=U3EBTC

Chapter 2

Literature Study

This chapter summarizes the results of the literature study. This thesis is made in the context of XR
applications. Section 2.1 gives an overview of XR applications and authoring methods. After, the
applications of Point Cloud Registration in general are discussed in Section 2.2. Finally, the actual
algorithms that are used during the experiments are shown in Section 2.3.

2.1 Authoring XR Environments

In this first section, the current state-of-the-art related to the authoring of eXtended Reality (XR)
environments is discussed. Applications are mentioned in Section 2.1.1. Finally, some techniques for
creating XR environments are given in Section 2.1.2 to formulate conclusions on future work in Section
2.1.3.

2.1.1 Applications

Applications for XR environments are vast. In this section, a few uses are discussed, which introduce
new ways of authoring the environment. Although VR is often related to recreational purposes, many
educational applications also exist. Lee, Y. et al. [26] discusses the use of XR for sharing a virtual
environment, allowing users to experience the surroundings of another user, even when they are not
themselves present at the location. In a study, Nilsson, S. et al. [32] also mentions the positive results
and acceptance of using XR environments for real work settings. By researching methods of increasing
the performance and speed of authoring XR environments, more researchers, students or workers could
benefit from its many uses. Some popular applications are discussed in the following subsections.

Training

XR environments can help with the vocational training of personnel in manufacturing or other industries.
Doolani, S. et al. [12] mention the benefits of using XR, such as consistency in the training process
and safety when the real environments provide possible threats. It is even stated that training in XR
environments results in a longer recall after training and a lower mental workload. The paper mentions the
usefulness of the different techniques (AR, VR, MR) for the different training phases. Mixed Reality (MR
or XR) appears to be an interesting application in almost all phases, ranging from the first introductory
phase to the operational and end phases.

A specific case is worked out by Bhattacharya, B. et al. [5], where AR is used to assist with complex
assemblies. Using AR authoring, the assembly can be first recorded by a professional and used afterwards
for new trainees. During the training, textual information and 3D digital objects are used to guide the
user towards the desired end product. The information is displayed on a screen before the user, instead
of using a head-mounted display. From their studies, AR appeared to be the most effective system for
this application, instead of VR or a manual guide.

Outside of manufacturing, XR environments can be used in other domains, such as safety, military and
medical training as well as education [12]. The main idea behind these concepts is often the need for
highly efficient, cost-effective and optimized working conditions. XR could provide a flexible and effective
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tool for educating new workers with the needed skills. On the other hand, these tools also provide
a safe alternative to training in real scenarios. For example, for medical training, the students could
exercise as often as needed, without additional costs or health risks for the patients. Alternatively, novice
workers can be trained without any risk in dangerous environments, where mistakes could be harmful to
themselves or the equipment. Lastly, it is also noted that VR environments can even be used in language
learning. Users indicated the overall enjoyment of learning with these tools, but retention of the subjects
also increased.

An important comment is made by Doolani, S. et al. [12] about the real-world application of XR
environments. It is noted that tools which require head-mounted displays are often harder to roll out
and adopt than tools which only rely on mobile devices. Methods depending strongly on head-mounted
displays are more often used in research contexts.

The success of using XR environments for manufacturing training is reviewed using many metrics such
as performance, time taken to complete assignments, user feedback and more. The performance of these
methods also greatly depends on the hardware and software used inside the devices and tools.

Building Information Modelling (BIM)

Building Information Modelling (BIM) refers to a representation of the physical and functional properties
of a building [45]. BIM can aid with design consistency, cost estimation, visualisation and more. This
can help with the recycling and maintenance of long-lifetime buildings.

As mentioned by Alizadehsalehi, S. [1] construction progress is often measured using pictures, visual
inspections, technical drawings and reports. To increase the efficiency of these inspections, XR environ-
ments can be used to visualize progress in an interactive manner.

Prouzeau, A. et al. [33] discusses another use, where digital twins are used to aid with maintaining
buildings. Digital twins are copies of physical assets. A digital twin can be made of a room, where other
information such as the location of ventilation, and electricity... can be added. Several use cases are
discussed in the paper. The idea is that maintenance personnel can enter a room, scan a QR code and
see relevant information using an AR display. In this way, it would be quicker to find, for example, the
reason for a high temperature in the room or a fault in a pipe. This inspection would even be possible
from a remote location, as the user can experience the digital environment from anywhere.

Context aware applications

A final set of applications for eXtended Reality consists of building virtual environments in which users
and their avatars can interact with each other and their surroundings. Lee, Y. et al. [26] focuses on
XR authoring for building a collaborative, virtual environment where workers can interact remotely.
The paper mentions the possibility to deliver virtual information in an intuitive manner, as well as the
benefits of spatial awareness when looking around a virtual environment. In their experiments, Lee, Y. et
al. [26] created a web browser application, which can be used together with a tablet to share the virtual
environment,.

Finally, Wang, T. et al. [47] developed CAPturAR, which is a tool to record daily activities using a head-
mounted device. Once the information is captured, users can create their own AR applications. These
can be used to remind them of taking medication, exercise and more. Different use cases are discussed
such as healthy life operation and augmenting non-smart objects. Even though user feedback is positive,
the device used for capturing the environment and activity is still bulky, limiting the movement of the
user.

2.1.2 Authoring Techniques

In this section, a non-exhaustive list of different authoring techniques and toolboxes is presented. As
mentioned by Hendricks, Z. et al. [20], there are two steps in XR authoring: the modelling process and
the programming of the interactions between the user and the virtual environment. Here, the focus lies on
the modelling of the environment and the creation of virtual assets. However, the programming process is
often difficult and a major challenge in authoring methods. Toolboxes designed for novice users often lack
the possibility of using XR for their specific purpose, while other tools require experienced programmers.
Some existing tools for programming interactions include RhoVer [3], CoRgi [11], Avango [44] and DIVE
[14].
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Authoring tools are defined by Bhattacharya, b. et al. [5] as tools combining all the relevant information,
such as sensor readings, objects and other graphical info, to create AR, more general XR, data. The
typical process of creating these environments starts with the creation of virtual objects. This is achieved
by modelling the objects using 3D software (Maya, Studio Max, Blender) or by capturing data using
laser-scanning methods [1]. The latter is achieved using 2D or 3D near-depth sensors or head-mounted
devices. Afterwards, these components are placed inside the environment. The placement is either done
manually or automatically, possibly with respect to a marker. A maker is a symbol or picture used for
fast recognition and registration [5].

Bhattacharya, b. et al. [5] use depth sensors in order to capture visual information. Their technique
called AREDA is used for the authoring of assemblies. The assembly is first constructed by an experienced
worker and simultaneously captured by the Microsoft Kinect camera. Using an algorithm called RANSAC
and markers, a plane can be fitted on which the objects are present. The data consists of a point cloud
which is post-processed to achieve the desired results. The skin of the hand is removed from the picture
and by comparing different frames, single assembly components are extracted. By loading 3D models
of the same components into a library, point cloud registration is performed to find the pose of the
objects. In this case, Principal Component Analysis (PCA) combined with Iterative Closest Point (ICP)
is used for the registration process. The latter is selected because of its robustness and simplicity. More
complicated algorithms might be more accurate but would require more computing time. An overview
of Point Cloud Registration techniques can be found in Appendix A.

Similarly, Alizadehsalehi, Z. [1] discusses using laser-scanning methods to capture point cloud data from
a construction scene. Even though this might require the aid of experienced workers and is more expen-
sive, the results are more accurate than image-based methods. The point cloud can be post-processed
afterwards and converted to a mesh or BIM. The data can also be aligned with a template model to
visualise the as-built state of the construction. Volk, R. et al. [45] mention the different post-processing
possibilities of using point clouds. Object detection can be performed to extract objects of interest, noise
and clutter can be removed and image alignment can be performed. Wang, T. et al. [47] use the depth
information together with Yolo v3 [35] for object detection. Once the object is detected in the 2D image,
the result is projected back onto the depth information to extract the object.

Lee, Y. et al. [26] use both 3D-created models and depth camera information for authoring the digital
environment. Objects Of Interest (OOI) are created as a model since they will often move inside the
environment. The surroundings however remain mostly static, such that depth cameras can be used
to capture the environment, to limit the workload. The OOI is then also masked or removed from the
background point cloud, containing the Ambient Objects (AO).

Prouzeau, A. et al. [33] use digital twins of the environment in order for the user to be able to easily place
the virtual assets inside of the room. Inside the digital twin, a marker is placed where the information
should be visualised. Afterwards, a marker is placed at the same location inside the real world. In this
way, digital twins are used to easily author the environment and add digital assets, without needing to
be present inside the real environment. Aside from markers, the paper also proposes machine-learning
techniques for matching real objects and their virtual copies.

Tools such as Unity3D, which is a game engine, are used for working with 3D environments, while, for
example, Vuforia, an AR library, is used for the registration process. Other methods exist like Powerspace
or AMIRE, which are linking systems used to link the virtual content with the real world using markers.

AR Core is an authoring tool for programming situated visualisations! manually.

Based on the idea of ”What You eXperience Is What You Get”, iaTar lets the user immediately experience
the created AR environment [33].

Farrago [51] is an IOS application which allows the creation and viewing of 3D assets directly in the
camera view. It also uses markers for tracking. Objects are created using a so-called object brush,
where a mesh is attached to the markers, allowing the users to create complex geometries based on basic
templates.

In order to train, for example, the YOLO v3 method, with labelled training images, a technique proposed
by Laielli, M. et al. [24] is used. The idea is to use AR to extract objects from their surroundings when
captured by a depth camera. The user indicates the position of the object by creating a 3D volume

1A situated visualisation refers to a tight link between the virtual information and real physical environment [33].
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around it. For obtaining the pose of the 3D object volumes, SLAM is used. SLAM is another AR tool
for mobile devices, which builds a map of the environment and locates the devices inside of it. For this,
it uses the gyroscope and accelerometer sensors inside of the mobile device. Once the 3D object volume
is found and correctly aligned, it is projected in 2D for finding an accurate bounding box around the
object.

2.1.3 Conclusions

Extended reality applications are extensive. Use cases range from education to vocational training and
entertainment. User feedback in real working environments is overall positive, although tools relying on
heavy head-mounted displays are difficult to roll out commercially.

For the authoring of the environments, many tools exist. Environments are created using 3D models
(CAD) or using laser-scanning technologies. The latter allows different post-processing steps to extract
and visualise the information of interest. For this reason, the scanning-based approach is further in-
vestigated in this thesis. The Intel Realsense camera is used to capture a point cloud of the studied
objects.

3D scanning is a promising tool for the creation of virtual environments, but requires experienced person-
nel and is more expensive. Maintenance of the digital environments and the quality of 3D representations
are other challenges still present in this domain. The problem of object alignment is looked into in this

paper.

2.2 Point Cloud Registration Applications

Point Cloud Registration (PCR) is the problem of aligning two point clouds with each other. Typically,
this means finding the rigid transformation that transforms the source point cloud into the template point
cloud. An example is shown in Figure 2.1. A more complete discussion on Point Cloud Registration is
given in Appendix A.

Before PCR After PCR

® Source @® Result (PointNetLK)
@® Template

Figure 2.1: The basic idea behind Point Cloud Registration: a source point cloud (green) is aligned with
a template point cloud (red). The result is shown on the right (blue) after applying PointNetLK.

Point Cloud Registration has many uses and applications. In this section, some relevant cases are dis-
cussed. The problem of registration and its several solutions is of use in robotics applications, computer
vision, construction, autonomous driving and more. As discussed in Appendix A, much research exists
on different techniques to solve the registration problem. However, the obtained methods are usually
tested on synthetic data. This is data on which a rigid transformation is applied inside the computer.
The benefit of this is the knowledge of the ground truth solution, to accurately assess the method’s
performance. It is the aim of this thesis to rather test the methods on real-world data, captured by a
3D camera. The examples discussed below often deal with similar problems, where noise and partiality?
introduce additional difficulties.

2Partiality refers to the fact that point clouds, captured by a depth camera, are incomplete. Only one angle from the
object is captured, not the complete cloud.
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2.2.1 Point Cloud Registration In Robotics

Jerbié, B. et al. [22] discusses the idea of using a robot arm combined with Point Cloud Registration to
achieve a full scan of an unknown object. The robot arm gripper is placed before a stereo camera and
captured into a point cloud. Afterwards, the gripper rotates over a set angle and a new point cloud is
registered. ICP is then performed to find the rigid transformation, which can be compared to the real
rotation enacted by the robot itself. If the results are sufficiently close, the clouds are concatenated.
After a full 360° revolution, a complete training template is obtained for the object. This template can,
in turn, be used for object recognition or registration in the scene.

The idea of using a robot to align the objects, in order to know the ground truth, allows for the registration
process to be evaluated. However, as also explained by Jerbi¢, B. et al. [22], the object point cloud must
be separated from the gripper holding it.

Ciocarlie, M. et al. [8] propose a framework for household object grasping by a robot. The robot is
equipped with stereo cameras and laser range sensors to capture a point cloud of the environment. This
point cloud is first segmented to distinguish the objects from the surroundings. For this, a plane is first
fitted, since household objects are often placed on a flat surface. Afterwards, the closest points based
on the Euclidean distance, to the plane are detected, representing the objects. These are then compared
to a library of object models. Using an ICP variant, alignment is achieved. If the match between the
segmented point cloud and the model exceeds a certain threshold, the object is detected. This information
is then used for collision detection and movement planning.

2.2.2 Point Cloud Registration In Construction

Similarly to the discussion in Section 2.1.1, Qian, W. et al. [46] discuss the use of Point Cloud Registration
in construction. The idea is to capture point clouds using 3D cameras from different positions and
combine them into a mapping of the construction site. This allows for quicker inspection, monitoring
and comparison of ”as-designed” and ”as-built” conditions.

Liu, S. et al. [29] proposes another method of environment recreation using PCR. Similarly to the
paper by Jerbié, B. et al. [22], multiple pictures are taken using a depth camera and recombined using
ICP. However, the ICP algorithm is modified to take into account the depth measurement errors of the
RealSense Intel camera. These errors scale quadratically with the depth measurements. For this reason,
points are weighted depending on their error when minimizing the loss function.

A final example of 3D mapping is given by Mahmood, B. et al. [30]. In this paper, RANSAC, another
PCR technique is used to reconstruct indoor scenes. The results are aimed to be used in interactive
AR devices. RANSAC is used because of the many similar features in indoor scenes, such as doors and
windows. The algorithm is able to reject false correspondences leading to an accurate reconstruction.

Even though this thesis is not aimed at creating a mapping of the environment, similar techniques and
steps are still relevant. The capturing of the data using the right camera and the cleaning of the obtained
point cloud to remove noise and outliers are two crucial steps when working in real-world conditions.

2.2.3 Point Cloud Registration In Real-Time

Donghoon, L. et al. [25] discusses the problem of Point Cloud Registration in the case of unknown objects
captured with a 3D camera. As already mentioned before, most methods are tested using synthetic data,
for which CAD models exist. These can be altered slightly by adding Gaussian noise to mimic distortions
introduced by the camera. However, these synthetic data sets often do not properly model effects such
as self-occlusions, partiality and noise.

In this paper, Point Cloud Registration is applied online, on unseen objects, without prior knowledge
of any CAD models, in real-time. Opposite to many other papers, this means the input of the system
consists of two partial point clouds, overlapping only partially. For this reason, training is done using
the Linemod dataset [6], which consists of real-world data and their camera pose to estimate the ground
truth.

Lastly, the paper mentions the need for learning-based methods when working in real-time applications.
ICP and its variants are often slower due to their iterative nature. However, they can be used for further
offline refinement.
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2.2.4 Conclusion

Point Cloud Registration has many applications in robotics, construction and more. Point clouds are often
captured using depth cameras such as Microsoft Kinect or Intel RealSense. After some pre-processing,
such as filtering or segmentation, the relevant objects are extracted and PCR is applied. In many cases,
ICP is used for its robustness and simplicity. In this thesis, other techniques are compared to verify
whether they can provide more accurate results when dealing with data captured by depth cameras.

2.3 Point Cloud Registration Techniques

Point Cloud Registration is a well-researched problem with many different solutions available in the
literature. Overviews?, containing some of the most prominent techniques, have been made by Li, L. et
al. [27], Gu, X. et al. [17] and Zhang, Z. et al. [56].

2.3.1 Selection Criteria

To make a selection of these methods, criteria are used based on the performance of the techniques and
their availability and flexibility. These criteria are also used in literature to describe the properties of the
algorithms. This allows to summarize the different methods as in Tables A.2-A.3 (Appendix A). Since
this project concerns the alignment of a source, captured by a 3D camera, noise and partiality have to
be taken into account. Performance criteria considered are:

e Robustness to noise

e Robustness to partiality

e Limited computation time

e Generalizability to different objects or training capabilities

Noise or measurement errors are unavoidable when working with real data. Especially in working en-
vironments, containing multiple objects and non-optimal lighting conditions, noise is an issue. For this
reason, the selected techniques have to be able to take this into account.

When capturing the environment, objects might only be visible from a certain angle. This means the
registration methods have to be able to work with partial information. As mentioned before, working
environments are often cluttered with numerous objects and making a precise, complete scan for all of
them is time-consuming. Hence the reason for selecting methods that are able to work with the partial
scans. Computation time is another important consideration, especially when applying registration for
real-time applications.

Lastly, it is important for the methods to yield accurate results for a wide variety of objects. Learning-
based methods can be trained with the available template CAD models, in order to identify relevant
features for the used object set. Non-learning-based methods are typically more generalizable, although
this may come at the cost of lower accuracy or longer computation.

Since it offers a lot of packages and libraries for data processing, Python is mainly used for coding. The
programs are run on a Windows laptop with an NVIDIA GeForce RTX 3070 GPU and AMD Ryzen 7
Processor.

2.3.2 Selected Methods

Based on the mentioned criteria in Section 2.3.1 and the summary made in Appendix A and Tables
A.2-A.3, the following methods are chosen. Three categories are made. Firstly, the global registration
methods, which are not learning-based. Secondly, the learning-based methods, which require training.
Lastly, the ICP-based methods are used for refinement, after applying a global or learning-based regis-
tration technique. More details about the methods are presented in Appendix A. In this section, each
method is briefly discussed, more specifically its major benefits and pitfalls.

3 An overview is given as a GitHub repository by XuyangBai [52] with an extensive list of methods and feature detectors.


https://github.com/XuyangBai/awesome-point-cloud-registration.git

2.3. POINT CLOUD REGISTRATION TECHNIQUES 11

Global Registration Methods

Global registration methods do not require any training process, which makes them often easy to imple-
ment and use. The following methods are some popular examples. RANSAC and FGR are implemented
from the Open3D Python library [60], GO-ICP is taken from the authors code [53].

¢ RANSAC [13] is a popular registration method for scene reconstruction. It shows good perfor-
mance for partial data and is robust to noise and initialization. No training is required, however,
RANSAC requires a preliminary step for feature extraction. Aside from this, there are also different
parameters to initialize and tweak.

e Fast Global Registration (FGR) [59] has the major benefit of being very quick. It is also used
for partial registration and does not require any training. However, some papers [54, 63] mention
the sensitivity of FGR to noise.

e Globally Optimal ICP (GO-ICP) [53] is robust to noise and improves on the basic ICP method
by finding a globally optimal solution. Its major downside is in the speed of the method.

Learning-based Methods

Learning-based methods use machine learning and therefore require training. The training process itself
can be quite computationally expensive and time-consuming since it is important for the obtained model
to not underfit or overfit the data. The quality of the data is thus also crucial. The more the data
resembles the real world data, the better the results. On the other hand the more training might be
required for the model to fit. Learning-based methods are often more robust and fast (after training).
All the methods described below are implemented from the learning3D Python library [37], except for
ROPNet, which is taken from the author’s provided code [63, 62].

¢ PointNetLK [2] uses PointNet to extract features from the point clouds. It is noise robust and also
works on partial data. Performance however drops when applied to unseen categories of data and
for large transformations. Even though the latter is a major disadvantage, in this case, PointNetLK
is trained on the available CAD models of the objects. This means the problem of unseen data
categories is not relevant here.

e Partial Registration Network (PRNet) [49] is specifically designed for partial registration. It
yields accurate results even when the point clouds only partially overlap. However, it suffers from
the same issue as PointNetLK regarding larger transformations.

¢ Robust Point Matching Network (RPM-Net) [54] is more robust to initialization. This means
it also works for larger transformations. RPM-Net is robust to noise but slower than other methods
such as ICP and DCP.

e Representative Overlapping Points Network (ROPNet) [63] is another method, specifically
created to solve the partial overlap problem. It is robust to noise and has good generalizability.

ICP-based methods (refinement)

Tterative Closest Point (ICP) [21] and its variants are very popular and basic registration methods, which
are often used. The main problem with ICP is its lower performance for larger transformations. For
this reason, ICP is often used as a refinement step after applying a learning-based or global registration
method. ICP works by establishing correspondences and evaluating a metric. The metric can be based on
point-to-point distances, point-to-plane or plane-to-plane. These might yield different results depending
on the case.



Chapter 3

Metrics

In order to compare the registration methods, selected in Section 2.3, metrics are required. This chapter
contains a summary of the major metrics used during the experiments. A mathematical definition for
each criteria is given in Appendix B. Here, the meaning behind each metric is further discussed and their
implementation.

3.1 Metrics Selection

The metrics used for evaluating the performance of the registration methods can be classified in different
groups. The first group of metrics evaluates the rotational and translational errors in degrees and a
measure of length. These metrics are the easiest to interpret and are directly linked to the rigid motion
estimation. The rotation and translation errors are computed in different ways. A first approach is to use
the relative errors. The relative rotational error is computed using Equation B.1. It is a measure of the
remaining rotational angle after first transforming the object using the ground truth, and afterwards the
inverse (or transposed) of the predicted rotation matrix. When the registration is perfect, R;e = Ry,
and the relative rotation error becomes zero.

Another set of rigid motion metrics are the root-mean-square errors. These errors compute the difference
between the expected result and the obtained result. The difference is squared, averaged and finally the
root is taken. The formulas are given by Equations B.4.

Lastly, the absolute errors are also computed. These represent the absolute difference between the ground
truth and Euler angles or translation vector and the one obtained from the registration process.

Secondly, there is a group of metrics evaluating the accuracy of the prediction in a more general way.
The Recall and Coefficient of determination (R?) tools make up this group. They are also linked to
determining whether or not a result is considered successful or not. The Recall coefficient is given by
Equation B.5 and corresponds to the percentage of points for which the mean-squared-error (computed
with the complete transformation matrix) is lower than a given threshold. For this, the point cloud
transformed using the ground truth and estimated transformations are compared. An example of these
two point clouds is given in Figure 3.1.

The Coefficient of determination R? is computed using Equation B.6. It is a measure of the fit of the
predicted result with respect to the ground truth. Ideally, the two point clouds perfectly overlap, resulting
in a value of one for R2. Notice that it is also possible for R? to become negative in this context. This
can be seen from Equation B.6, when the sum of squared distances (SSD) becomes larger than the total
sum of squares (TSS). This means that the the squared distances between the prediction and the ground
truth are larger than the square distances between the point and the mean of the point cloud. A typical
example of a negative R? value is shown in Figure 3.2.

The registration process can also fail. This means the result does not match the template in a satisfactory
way, resulting in large errors. It is not fair to estimate the performance of the methods by also considering
these cases when computing the mean errors. Instead, the number of failure cases are saved, as well as
the scan it relates to. This results in a final metric, which is called the number of failure cases and
is expressed as a percentage of the total number of considered scans. This metric essentially gives an

12
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@ Ground Truth @ Template
@ Estimated Transformation @ Source

Figure 3.1: Example of the Base-Top_Plate object, Figure 3.2: Example of a solution with a nega-

where the source, transformed with the ground  tive R? value. The estimated transformation (e)

truth (@) and estimated transformation (@) are  clearly does not overlap the template (®). Result

compared, in order to compute the recall metric. shown is for the Base-Top_Plate object, after ap-
plying PointNetLK.

idea of the required quality for the scanned point cloud. When the number of failure cases is low, the
method is robust to different angles and positions of the object. A large number of failure cases indicates
that the method only works for certain scans, while it fails for other scans, containing for example less
information.

The implementation of the errors is realised in compute_errors.py and the errors.py class, in the code
available on Github. When multiple symmetric solutions are possible, the code computes the different
possibilities and selects the one yielding the highest recall value. Finally, the R? value is verified together
with the Mean Relative Angular Error (MRAE). The registration result is only accepted when the R?
value is positive and the MRAE is below 120°. The last condition is arbitrarily chosen. However, when
the rotation error reaches as high values as 120°, it is clear the result is no longer satisfactory.

A final metric that is used to asses the performance of the algorithms is the computation time. The time
is measured from the point of starting the registration process - thus not including the loading of the data
- up to the point where the transformation matrix is obtained. In order to achieve a fair comparison, all
the registration methods are run multiple times, on the same computer, in the same conditions’.

3.2 Conclusion

This chapter contains a summary of the metrics that are used during the experiments. There are four
types of metrics considered. The first group consists of metrics evaluating the quality of the rigid motion
estimation in terms of rotational and translational errors. The second group determines the quality of the
point cloud alignment and whether or not the result is considered satisfactory. The third group evaluates
the number of failure cases and the scans they relate to. Finally, the computation time makes up the
final group of metrics. A summary is also shown in Table 3.1.

1During the computation of the registration, no other programs are run in the background. However, it is difficult to
completely remove the effects of background tasks. For this reason, the algorithms are run multiple times. The results
should be interpreted considering the used specifications and with the possibility of small variations.
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Table 3.1: Overview of the different metrics used during the experiments.

Metric Group Meaning Unit

Mean Relative Error (MRE) Group 1 Relative translational and rotational er- °/mm
rors

Root Mean Square Error (RMSE) Group 1 RMS of errors between ground truth °/mm
and estimation

Mean Absolute Error (MAE) Group 1  Absolute difference between ground °/mm
truth and estimation

Recall Group 2 Percentage of points for which MSE is %
smaller than given threshold

Coefficient of Determination (R?) Group 2 Fit of the predicted point cloud with /
template

Number of Failure Cases Group 3  Number of results for which R? < 0 and /
MRAFE > 120°

Computation Time Group 4 Time for the registration process s




Chapter 4

Experimental Setup

To finalize the preparation of the experiments, a setup is created to capture the point clouds. First, the
datasets and objects used during the experiments are mentioned in Section 4.1. After, the experimental
conditions are given in Section 4.2. Finally, a summary of the different steps can be found in Section 4.3.

4.1 Datasets

Before performing Point Cloud Registration, a template point cloud must first be created. This data can
be acquired from typical datasets such as ModelNet40 or Linemod [25]. The dataset can be generated
on a computer, which is called synthetic data. On the other hand, the data can also be captured using a
3D camera, resulting in real-world data. The latter often contains noise or represents only a certain part
of an object.

In this paper, two main datasets are considered. The Cranfield benchmark dataset [9] is used as a
benchmark to evaluate robotic assembly operations. The ModelNet40 dataset [58] is typically considered
to compare the different Point Cloud Registration methods with each other.

4.1.1 Cranfield benchmark

The Cranfield benchmark dataset contains six unique objects, visualised in Figure 4.1. CAD models of
these objects are available to generate the required templates and training data. For the experiments,
the objects are 3D printed, as shown in Figure 4.1. They are thus non-reflecting, as reflections on shiny
surfaces are not considered in this paper.

Cranfield benchmark dataset (CAD files) Cranfield benchmark dataset (3D printed)

ic@

Figure 4.1: Left: 3D CAD models of the Cranfield benchmark objects. Right: 3D printed Cranfield
benchmark objects.

This dataset is chosen for several reasons. Firstly, the objects are used to compare robotic Peg-In-Hole
(PIH) assembly operations. This operation requires a high amount of accuracy to be performed correctly.
For this reason, it is interesting to consider the accuracy of Point Cloud Registration for these types
of objects. Secondly, the objects have relatively simple shapes, without too much details. They are

15
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geometric and often times symmetric. Similar objects are expected to be found inside a manufacturing
environment.

4.1.2 ModelNet40

The ModelNet40 dataset, created by Zhirong, W. et al. [58], consists of 12,311 objects from 40 different
categories. It is often used to compare different registration methods with each other. The CAD models
are each verified to be correctly classified and cleaned from any irrelevant information, such as floors.
The categories include a wide variety of objects, like cars, airplanes, vases... Some examples are shown

s B
Af 5 AR

Figure 4.2: A selection of ModelNet40 objects from Figure 4.3: Collection of 10 different ModelNet40
different categories (chair, person, bookshelf, air- objects all contained under the ”chair” category.
plane, tent, car, cup, vase, bottle and laptop).

The differences between these two datasets are summarized in Table 4.1. The six objects from the
Cranfield benchmark dataset are all unique, while those of the ModelNet40 dataset are part of a category.
Inside this category, different variations of the same object exist, as shown in Figure 4.3. This, together
with the difference in size, has an effect on the construction of the training dataset for the learning-
based registration methods, as is explained in Chapter 5. The symmetry of the objects is another
important consideration to be taken into account when interpreting the results. Symmetric objects
introduce additional solutions to the registration problem, as is shown in Figure 4.4. This means that
the found transformation matrix may still be a correct solution to the problem, even though it does not
exactly correspond to the ground truth transformation, as there are several ground truth solutions.

Table 4.1: Main differences between the Cranfield benchmark and ModelNet40 datasets.

Property Cranfield benchmark ModelNet40
CAD models 6 12,311

Categories 6 40

Symmetry | All objects symmetric Symmetric & non-symmetric objects
Application PIH assembly Point Cloud Registration

Since pretrained models are available for the ModelNet40 dataset and because it is generally used as a
benchmark for testing registration methods, three objects are also 3D printed from this dataset. These
are chosen for their print-ability and relatively simple geometries. The objects are shown in Figure 4.5.

4.2 Experimental Setup

Aside from synthetic data, generated on a computer, the point clouds can also be captured using a 3D
camera. Registration is then applied to align the obtained real-world scan with the CAD model of the
same object. In order to verify the result, the ground truth transformation is compared to the one
obtained after registration. This section handles the major considerations of these steps.

4.2.1 Environment

The experiments are all conducted inside a well-lit, indoors environment (Figure 4.6). The objects used
are 3D printed and matte. They are placed upon a light coloured table to a create contrast with the
background.
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Symmetry axis

Symmetry plane

Figure 4.4: Left: The Round-Peg object from the Cranfield benchmark dataset contains a symmetry axis,
indicated by the arrow. Every rotation (blue) around this axis, does not change the pose of the object
in a meaningful way. In this case, there are an infinite amount of ground truth solutions. Right: The
Base_Top-Plate object has a symmetry plane. Mirroring the object around this plane results again in
the same pose.

ModelNet40 dataset (CAD files) ModelNet40 dataset (3D printed)
T I

Figure 4.5: Three objects from the ModelNet40 dataset, 3D printed.

4.2.2 Intel RealSense Camera
Working Principle

In order to capture the objects in the real world, a depth camera is used. More specifically, the Intel
RealSense D4xx series camera captures the objects and saves them into a point cloud or .ply file. These
cameras are able to determine the depth information using stereo-vision. The working principle is ex-
plained by Tadic, V. et al. [41]. The RealSense cameras are fitted with an infrared projector and a left-
and right side camera. The two side cameras capture the scene separately. After, the processor correlates
the same points between the two images in order to compute the depth information. The idea illustrated
in Figure 4.7.

Different types of RealSense cameras are available on the market with varying accuracies, field-of-views,
resolutions and depth capabilities [10]. During the experiments, the D455 and D435i variants are mainly
used. The D455 camera provides a more accurate depth map, however, its minimal depth range is limited
to 50cm. The D435i camera is able to capture depth already at 30cm, which allows for a more accurate
scan for the smaller objects. Since the objects used during the experiments are not very large - the largest
object fits inside a 20x18x2cm box - the D435i camera is used to capture the scans. This camera also
has an Inertial Measurement Unit (IMU) incorporated, which is useful for robotics applications. Other
cameras, such as the D415 and D405 cameras are also available on the market. The D415 camera achieves
a high accuracy [41], while the D405 version has a minimum depth range of only 7em [10]. Tests are
also performed with the Realsense Lidar 1515 camera. However, the captured point clouds are of lower
quality, hence why this camera is not further discussed.
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2 A—\'\/
\
Figure 4.6: Example of the setup used during the Figure 4.7: Concept of stereo-vision. The left and
experiments. The camera height and angle are right camera identify the same feature, allowing
variable to obtain accurate scans of the objects. the processor to estimate the depth.

The paper is used to determine the ground truth
(Section 4.2.3).

Filtering

The point clouds are captured by the camera and saved using the RealSense viewer software (Figure 4.8).
The program allows to perform some initial processing in order to increase the accuracy of the scans.
The settings used for the camera are saved inside a .json file and added to the Github page.

Captured point cloud

RealSense Camera

Figure 4.8: Example of the RealSense viewer software.

Before applying registration to the scanned point cloud, the objects first need to be extracted from the
environment. As mentioned before, segmentation and detection of the objects is not within the scope of
this thesis. However, the Open3D toolbox in Python still provides some basic functions to remove the
background information. The process is shown in Figure 4.9, coded in pcl_post_processing.py and consists
of the following steps.

1. The floor or table is first detected using the segment_plane function. This allows to split up the
point cloud into the objects, floor (and clutter). The function also allows to estimate the normal
vector required to estimate the ground truth (Section 4.2.3).

2. The remaining point cloud is segmented into the different objects using the cluster_dbscan function.
The user should then manually choose the index of the desired object to retain.

3. Outliers are removed from the extracted object with the remove_statistical_outlier function. This
is done to make sure only the relevant points are included for the registration process.

4. The oriented bounding box is estimated using the get_oriented_bounding_box function. Even though
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the object is already obtained in Step 3, it is interesting to be able to change the size of the oriented
bounding box to assess the effect of including environmental clutter (floors, noise...).

5. The oriented bounding box allows to extract all the points inside using the created inside_rect
function. The bounding box is scaled as desired, to study the effects mentioned before.

6. The normal information of the point cloud is estimated using the estimate_normals function.

7. The final point cloud is saved inside a .txt file to be used in the remaining process.

. Q

Outliers

Figure 4.9: Different steps of the pre-processing procedure. 0. The initial scan, obtained with the
RealSense D435i camera. 1. Plane (red) detection and segmentation from the objects (grey). 2. Segmen-
tation of the remaining objects into the object of interest (light-blue) and clutter (black). 3. Removal
of the outliers (yellow). 4. Estimation of the oriented bounding box overlaid with the original scan. 5.
Extraction of the points inside the estimated bounding box. 6. Estimation of the normals.

4.2.3 Ground Truth Determination

In order to be able to assess the performance of the results, using the metrics described in Chapter 3,
a ground truth transformation is required. Determining the ground truth is not a trivial task, as the
used RealSense cameras do not allow to determine the absolute pose of the camera with respect to the
positioned object. To solve this problem, the camera is placed such that it is parallel to a reference
marker (piece of paper) on the table, as indicated in Figure 4.6. The object is placed on the reference
marker and oriented as desired. The ground truth transforms the template point cloud, attached to the
camera center, into the source point cloud, placed on the table. This transformation is now characterized
by two rotations and a translation. The complete process is visualised in Figure 4.10. The following steps
are performed:

1. The template is rotated over an angle fx around the X-axis. This operation aligns the Y-axes of
both objects with each other. The angle 0x corresponds to the angle between the Y-axis of the
template coordinate frame (Y7) and the normal to the plane, on which the objects sits (Yg). It is
computed using the scalar product.

o B Ysx
YrYs = ‘Y5|COS(0X) = (O 1 O) Ysyv | =Ygy (4.1)
Ysz
Y.
=0y = cos ! Y (4.2)
[Ys|

2. The template is rotated around the new Y-axis (Y7]) over an angle 6y. This angle depends on the
orientation of the object on the table and is chosen as desired. When the object lies parallel to the
template, the angle is zero.

3. The template is also shifted by a translation vector. A first guess is obtained by using the mean
center of the source point cloud on the table. Afterwards, some corrections are added to make the
two clouds align. This step can also be performed as a first step as in Figure 4.10, where it is placed
first for clarity.
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Figure 4.10: Overview of the steps required to approximate the ground truth transformation. The red
point cloud represents the template, initially positioned in the camera center. The yellow point cloud is
the source, captured on the table. The coordinate systems X1 YrZr and XgYsZg are attached to the
template and source respectively.

The final ground truth estimation is only an approximation of the real transformation. The captured
scans are already subject to measurement noise. This results in some deformations of the scanned object,
which means it will not align perfectly with the original template. Thus, the transformation is corrected
in the end, until the desired alignment is achieved. It is likely that the obtained transformation from the
registration methods differs with a couple of degrees and millimeters from the computed ground truth
result. This is to be taken into account when analyzing the results in Chapter 6. The described process
is automated inside the function input_writer.py which can be found on the Github page.

4.3 Procedure

The flow of operation for the experiments is visualised in Figure 4.11. The obtained .hdf5 file, containing
the source and template point clouds and the ground truth transformation is used in the subsequent steps.
Before applying the registration, the other, symmetric ground truth transformations are also added to
the same file. For objects, such as Round-Peg, with an infinite amount of solutions, only a couple of
transformations are added. Adding the symmetric solutions is performed through the add_symmetric.py
function.

After applying the initial processing, registration is performed with the methods selected in Section 2.3.
The estimated transformations are saved in a .hdf5 file. The results are used to compute the metrics,
explained in Chapter 3, visualise the results or perform a refinement step. The refinement method, ICP,
also returns a file containing the found transformation matrices. These can again be used to compute
the errors or visualise the results.

4.4 Conclusion

In this chapter, the process of the performed experiments is discussed, as well as the datasets used. The
objects are part of the ModelNet40 and Cranfield benchmark datasets. The latter is typically used to
asses PIH assambly operations, while the ModelNet40 objects form a benchmark for registration.

During the experiments, the RealSense D4351 camera is used. The scanned point clouds are first filtered
and pre-processed to extract the object of interest. The ground truth is estimated using the normal vector
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Figure 4.11: Flowchart of the different processing steps during the experiments. The gray and red
rectangles represent a Python file. The magenta, blue and green rectangles represent the file types taken
as inputs, or produced as outputs of the different Python files.

estimation and known orientation of the object on the table. After, a .hdf5 file is created to perform the
chosen registration method. The results can then be visualised, refined and characterized.



Chapter 5
Training

The learning-based registration methods, PointNetLK, RPMNet, PRNet and ROPNet have to be trained.
Section 5.1 discusses the different considered training datasets. The main results of the training process
are given in Section 5.2. This chapter contains the conclusions of the training process that are required
to understand the results discussed in Chapter 6. A more detailed discussion can be found in Appendix

D.

5.1 Training Files Generation

For the creation of the training files, the idea is to use to available CAD models of the considered objects.
These models are sampled into a point cloud with a desired number of points. The obtained point cloud
is then randomly transformed with a translation vector and rotation matrix. Different variations of data
can be created, following the basic guidelines proposed in the literature [54, 2, 49, 63, 48, 38].

As mentioned in Section 4.1 (Table 4.1), the Cranfield benchmark dataset, used during the experiments,
only contains six objects. Thus, each object is transformed multiple times to create a sufficiently large
dataset. The number of variations per object is set to 820 for the training set and 205 for the testing set.
This is chosen in correspondence to the number of objects in each category of the ModelNet40 dataset.

In general, three basic training sets are considered, an example is shown in Figure 5.1.

Normal Noisy Partial Floor, Noisy & Partial

Figure 5.1: The algorithms are trained using different datasets. They can be simply sampled from the
CAD models (Normal), or noise can be added (Noisy). Points can also be removed (Partial). Finally, a
floor can be added to mimic, for example, the presence of a table (Floor, Noisy & Partial).

e Normal Data containing the point clouds sampled from the original CAD models, transformed
according to the above mentioned considerations.
e Noisy Data consists of the same data with noise added to the source (transformed) point cloud.

e Partial Data where 70% of the points are removed from the source (transformed) point cloud.
The points are sampled as the ones closest to a random chosen point in space.

Additional, more complex, datasets can also be considered, such as:
e Noisy & Partial Data created as a combination of noisy and partial data to better mimic the

real-world scans.

22
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e Floor Data where a floor (plane) is added to the mesh in order to simulate a table or floor on
which the object is positioned.

e Floor, Noisy & Partial Data which is a combination of the before mentioned cases.

The convergence of the latter training sets is not always guaranteed, as more complexity is added to the
dataset, as is further discussed in Section 5.2 and Appendix D.

Since the datasets are extensive in size and the training takes multiple hours (sometimes even more than
twelve hours), Google Colab is used [16]. It provides the user with a CPU or GPU runtime that can be
accessed online, either for free or payed (Colab Pro(+)).

The generation of the training files is coded in create_train_files.py. In Section 5.2, the results of training
the different learning-based methods are discussed. A more detailed discussion can be found in Appendix
D. Each method is first trained and afterwards validated with a new (synthetic) dataset, consisting of
100 new transformations.

5.2 Training Results

Training the learning-based methods requires significant time and computational efforts. On top of this,
the convergence of the methods depends on the training parameters and the considered dataset. In the
end, the training is validated for PointNetLK on normal and noisy Cranfiel data. For RPMNet and
ROPNet, the training is validated on normal, noisy, partial and floor Cranfield data. The training of
PRNet did not converge and requires more power than the other three methods. This method is thus
no longer considered in the further experiments. The detailed results of the validation are reported in
Appendix D.

The datasets have to be generated carefully, to not cause under- or overfitting. It is clear that the training
data used is not a perfect representation of the real world data. However, a compromise has to be made
between the complexity of the training set, the available resources and the required accuracy. In this
thesis, the goal is to verify whether simple models can already lead to satisfying results comparable to,
or better than, those of the global registration methods. For this reason, more complex training is left
for future work.

5.3 Conclusion

Training is done on various training sets where the original objects are randomly transformed and addi-
tional features such as noise or partiality are added.

Training the methods can be difficult due to the significant time and computation power required. Some
methods, such as PointNetLK have more trouble converging on the training set, while RPMNet and
ROPNet can be trained on more datasets. PRNet does not stabilize during training and is therefore no
longer considered.



Chapter 6

Experimental Results

Using the setup mentioned in Chapter 4 and the training models from Chapter 5, the obtained point
clouds are run through the registration methods selected in Section 2.3. The results are used to compute
an array of metrics, given in Chapter 3. Firstly, in Section 6.1, the main variables considered during the
experiments are discussed. In Section 6.2, the results are summarised for the global registration methods,
including FGR, RANSAC and GO-ICP. After, the results for the learning-based methods, PointNetLK,
ROPNet and RPMNet are given in Section 6.3.

The goal of this chapter is to obtain insight into the effect of the different parameters on the registration
results. The specific evolutions are discussed case by case. An overview of the main conclusions and an
answer to the research questions posed in Chapter 1, can directly be found in Chapter 7. In Chapter 7,
a flowchart is also presented, based on the main learning outcomes, to decide on a registration method.
All results and data from the experiments are also available on the Github page.

6.1 Variables

Each considered registration method comes with its own set of parameters, that can be tuned to achieve
a better or worse result. Other parameters are related to the data itself. The parameters that are
considered and varied, are summarised in Table 6.1.

Table 6.1: Parameters considered during the experiments with their respective categories and range of
considered (or feasible) values.

Parameter Category Values
Voxel size Data Processing 0.001-0.1
Bounding Box Data Processing 1.0-1.8
Zero-mean Data Processing True/False
MSE Threshold GO-ICP 0.00001-0.1
Trim Factor GO-ICP 0.0001-0.1
Refinement PCR Methods True/False

Training Model Learning Methods Normal, Noisy, Partial, Combination

6.1.1 Voxel Size

The voxel size (VS) is typically used to downsample the data, resulting in less points and an averaged
version of the scan. It works by selecting a cube with a size defined by the voxel size and taking the mean
of all the points inside this cube. The resulting points define the new point cloud that can be used for
registration. An example is shown in Figure 6.1.

6.1.2 Bounding Box

As already mentioned in Chapter 4, the scans are preprocessed in such a way to allow the user to
choose a bounding box around the object. The bigger the bounding box, the more information from
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Original VS:0.01

Figure 6.1: Example of applying a voxel size equal to 0.01 to the Base-Top_Plate object.

the environment (such as the table) is included in the point cloud. The bounding box is expressed as a
number that is multiplied with the corners of the basic extracted box. A factor of 1.5 means the size of
the box is increased by a factor of 50%. An example of the effect of changing the bounding box is shown
in Figure 6.2.

BB=1.0 BB=1.2 BB=1.4 BB=1.6 BB=1.8

Figure 6.2: Evolution of increasing the bounding box for the Base-Top_Plate object. The bounding box
is increased relatively, starting from the initial case for a unit box (BB = 1.0). The unit box is the
smallest considered bounding box. Afterwards it is increased by 20% for a bouning box of 1.2.

6.1.3 Zero-mean

The registration process aims to determine a transformation between the captured source point cloud
and the template. However, it is also possible to already move the captured point cloud to the origin,
by removing its mean vector. This results in a smaller transformation to be found by the registration
method. However, it is hypothesized that this may lead to some algorithms getting stuck inside local
minima solutions.

6.1.4 MSE Threshold & Trim Factor

The Mean-Square-Error (MSE) Threshold and Trim Factor are two parameters used in the GO-ICP
method. The first variable defines the error threshold which needs to be achieved in order for the
algorithm to converge. The second parameter (trim factor) removes a percentage of the point cloud to
counteract outliers. Notice that the Trim Factor does not work in the same way as the voxel size defined
before.

6.1.5 ICP-Refinement

To improve performance of the registration methods, ICP-refinement is applied. The results are compared
when the refinement is either applied (True) or not (False). Important to note is that the ICP algorithm
itself is also a registration method. This means that the previously discussed parameters, such as the
voxel size, zero-mean and bounding box, can also be varied here.

6.1.6 Training Models

Finally, for the learning-based methods, the training model is also varied according to the ones obtained
in Chapter 5.
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6.2 Global Registration Methods

In this section the results for the global registration methods are compared and discussed. The section is
divided into subsections, reporting the results related to the before-mentioned parameters (Section 6.1).
The algorithms are run on the created scans mentioned in Chapter 4 and the metrics from Chapter 3 are
computed. In order to assess whether the algorithms yield the same results every time and to obtain a
good measure of the registration time, they are applied multiple times on the same scans. For GO-ICP,
the algorithm is applied two times on each scan, due to long computation times and the method always
yielding the same results. For RANSAC, FGR and ICP, the algorithms are applied 20 times on each
scan.

6.2.1 Zero Mean

The results show that adapting the point cloud, centering its mean on the origin, usually has a small
influence on the metrics. Depending on the object, the errors are either very similar or a bit higher. The
complete list of metrics can be found in Appendix E, Table E.1. The results are taken as an average over
the different objects. Table E.1 shows that GO-ICP performs better when the point cloud is not centered
on the origin. For RANSAC and FGR, centering yields better results. For the remaining experiments,
the best cases are used. Thus a non-zero mean for GO-ICP and a zero-mean for RANSAC and FGR.

6.2.2 MSE Threshold & Trim Factor

The MSE threshold and Trim Factor are specific for GO-ICP. In Figure 6.3, the registration time for
GO-ICP is plotted as a function of the MSE threshold.

144

T T T T T
107° 1074 1073 1072 107
MSE Threshold (log scale)

Figure 6.3: Evolution of the registration time for GO-ICP, taken as the mean over all objects, as a
function of the MSE threshold. The lower the threshold, the higher the number of iterations and thus
computation time.

From Figure 6.3 it can be seen that the computation time decreases with an increasing threshold. This is
as expected, as increasing the threshold means that the algorithm needs to perform less iterations before
converging to a result. In the end, the timing seems to converge to a value of around 6s. This is already
relatively long, especially for real-time applications.

Increasing the threshold comes at the cost of a lower performance for the algorithm. In Figure 6.4 the
threshold is plotted as a function of the computation time. Each point is colored corresponding to the
recall metric. As the threshold is increased, the recall metric lowers. For some objects such as the Round-
Peg (Figure 6.4b), this happens quite drastically. The recall metric reduces from 100% for a threshold
of 0.00001 to a recall of 0% for a threshold of 0.0001. Reducing the threshold immediately leads to the
object failing for all scan cases considered.

The failure cases are also indicated in Figure 6.5. The colors now represent the percentage of failure cases
over the scans instead of the recall metric.

Figures 6.4-6.5 make it clear that GO-ICP yields the best results when used at a low threshold, due to
the strict convergence criteria. As indicated in Figure 6.5, the number of failure cases falls to zero in
most cases, which means GO-ICP always leads to a satisfactory result. The algorithm does not fall into
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Figure 6.4: Recall for GO-ICP, two different objects, as a function of the time and voxel size. The higher
the recall, the better the the registration results fits unto the template. The different objects each yield
the highest values of recall for a low MSE threshold. Increasing the threshold leads to a sudden decrease
of the recall. This means the result does no longer match the template in an accurate way.
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Figure 6.5: Failure cases for GO-ICP, for two objects, as a function of the time and voxel size. As the
threshold is lowered, more scans lead to unsatisfactory results (R? < 0, MRAE > 120°), increasing the
number of failure cases. Similar to the recall metric, the best performance is obtained for the lowest MSE
threshold. However, this comes at the cost of the highest computation times.

local minima solutions and is able to find the global solution, in contrary to ICP for example. However,
this comes at the clear cost of a longer computation time.

Aside from the MSE threshold, GO-ICP also uses a trim factor to remove outliers. From Figure 6.6, it
can be concluded that increasing the trim factor serves no useful purposes. This only leads to an increase
in the number of failure cases and even a little increase in the required registration time. As the scans
used during the experiments are already cleaned up from outliers, it is not surprising for the trim factor
to not yield any added benefits.

6.2.3 Voxel Size

The voxel size is adapted for RANSAC, FGR, ICP and GO-ICP. Firstly, the effect on the computation
time is considered in Figure 6.7. It is again important to note that the time measurements are largely
dependent on the device specifications and to some extent on the other programs that are run in the
background.

From Figure 6.7, it is clear that the increase in voxel size reduces the required timing for RANSAC and
FGR. This is not surprising, as there are less points to consider during the registration process, thus
lowering the number of operations and time. Between RANSAC and FGR, it seems FGR is usually the
fastest method. For very small voxel sizes, both methods converge to each other.
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Figure 6.6: Effect of the trim factor for GO-ICP on the mean number of failure cases (a) and registration
time (b). Increasing the trim factor leads to a higher number of scans yielding unsatisfying results and thus
more failure cases (a). The computation time (b) increases slightly, due to the additional computations
of removing the outlier points.
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Figure 6.7: Comparison of the average computa-
tion time over different objects for ICP, RANSAC
and FGR as a function of the voxel size. For
both RANSAC and FGR, the computation time
decreases with an increasing voxel size. ICP shows

Figure 6.8: Evolution of the mean failure cases
over all objects for ICP, as a function of the voxel
size. For higher voxel sizes, ICP is able to find a
better result for more scans, reducing the number
of failure cases.

an opposite trend as the algorithm is unable to find
a solution for low voxel sizes and only finds a so-
lution for higher voxel sizes.

The standard ICP method sees an increase in the computation time for an increasing voxel size. This is
counter-intuitive, since there are less points to match and thus a decrease in timing would be expected.
However, looking at the number of failure cases (Figure 6.8), it is clear that for a large range of voxel
sizes, ICP does not yield satisfactory results. In these cases, the algorithm does not really do anything,
as the result is usually coinciding with the identity matrix. This means the method runs a lower number
of iterations, resulting in a lower computation time. For larger voxel sizes the method begins to return
better transformation results, which require more computation time and more iterations. The threshold
for convergence also changes with the voxel size. It increases as the voxel size increases. Thus for a higher
voxel size, the threshold is less strict and ICP is able to find a converged result. It is then also easier
for ICP to identify pairs of points and escape local minima. Hence the increase in performance. In the
remainder of the experiments, ICP is used solely as a refinement technique.

All registration times in Figure 6.7 appear to be below 1s, which means these algorithms are relatively
quick, especially in comparison to GO-ICP (Section 6.2.2). It is also clear that changing the voxel size
can lead to drastic changes in the computation time. Selecting a larger voxel size would be preferential,
especially for real-time applications.
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It is of course important to verify how the accuracy of the results changes by adapting a larger voxel size.
To this end, the voxel size and registration times are plotted for each object, together with the achieved
recall value. Figure 6.9 shows the results for RANSAC for four objects.
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Figure 6.9: Recall for RANSAC, for different objects, as a function of the time and voxel size. The higher
the recall (green), the better the registration results fit unto the templates. The different objects each
yield the highest values of recall for a certain voxel size. An optimal voxel size can be identified for each
object, which might differ between the different objects. For example, the optimal voxel size in terms of
recall, is 0.003 for the Base-Top_Plate (a), but 0.008 for the Pendulum (d).

Figure 6.9 shows the same trend of registration time and voxel size for each object. Larger objects, such
as the Base-Top_Plate (Figure 6.9a), require longer registration times, as they contain a larger number
of points. Smaller objects, like the Guitar object (Figure 6.9¢), require less registration time. Looking
at the recall values, most objects have one (sometimes more), optimal voxel size(s), at least in terms of
the recall percentage. The Base-Top_Plate object (Figure 6.9a), for example, has an optimal voxel size
of around 0.003. This value, is not the same for each object, as the objects are considerably different
in shape and size. For the same voxel size, smaller objects will have less points than larger objects.
However, the shape of the object and the chosen algorithm also play an important role in selecting the
voxel size. The optimal voxel size is also dependent on the metric used. Figure 6.10 shows the same plot
as in Figure 6.9, however, now the number of failure cases is used to color the different points.

The optimal voxel size in Figure 6.10 has now changed for some objects. For example, for the Base-
Top_Plate object (Figure 6.10a), the optimal is now around 0.005. To illustrate this more clearly, the
optimal voxel sizes in terms of the recall metric and the number of failure cases are shown in Figure 6.11.

For some objects, the optimal voxel sizes in Figure 6.11 are not too different between the two metrics. For
others, such as the Range-Hood object, the difference is more noticeable. Another interesting comment is
the fact that the optimal voxel sizes, for FGR, are less critical for the smaller objects. The same number
of failure cases are found for different voxel sizes, for the same object, hence the presence of multiple
markers. When looking at the optimal values in terms of the number of failure cases, the difference in
smaller (right) and larger (left) objects is also more clear. However, the conclusion is different between
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Figure 6.10: Failure cases, for RANSAC, for different objects, as a function of the time and voxel size.
The lower the number of failure cases (green), the more scans yield a result for which R? > 0 and
MRAFE < 120°. An optimal voxel size can be identified for each object, which might differ between the
different objects. For example, the optimal voxel size in terms of the number of failure cases, is 0.005 for
the Base-Top_Plate (a), but 0.008 for the Pendulum (d).

RANSAC and FGR. For RANSAC, bigger objects seem to result in less failure cases for somewhat bigger
voxel sizes. While for FGR, the opposite seems to be true.

A relevant question would be to wonder which metric should be chosen to select the correct voxel size.
The answer depends on the requirements. When the goal is to use the algorithms independently, to
quickly get an accurate result, it would be better to consider the recall metric. However, as mentioned
before in Chapter 3, the recall result is computed over the number of successful registration cases only.
Figures 6.10 and 6.11 have shown that a high value for the recall metric, does not necessarily correspond
to a low number of failure cases. This only means that, for the successful registration attempts, the result
coincides well with the template. When the goal is to make sure that the registration process succeeds
over a wider array of point cloud scans, it is better to consider the number of failure cases as the metric
to select the voxel size. Even though the results might not be the most accurate initially, refinement
can be applied to improve the recall metric in these cases. Refinement, as is discussed in Section 6.2.5,
improves the metrics and can sometimes lead to an even lower number of failure cases.

The results for GO-ICP are discussed separately due to the different working of the algorithm. GO-ICP
uses the MSE threshold to determine when the result has converged. However, when changing the voxel
size, it is possible that the method cannot converge anymore. This is because the increase in voxel size
reduces the density of the point cloud. As a result, the distances between the template points and the
source (scanned point cloud) points might become larger than the threshold, even in the case of a perfect
alignment. For this reason, the algorithm never converges. Thus, it is important, when changing the
voxel size, to also adapt the MSE threshold accordingly. Figure 6.12 compares the results for recall, when
the voxel size is adapted (Figure 6.12a) and when the whole, original point cloud is used (Figure 6.12b).

Figure 6.12 shows that adapting the voxel size can lead to an improvement in results, when using a
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Figure 6.11: Optimal voxel sizes in terms of recall (@) and number of failures (o) for all considered
objects. The objects are ordered from biggest to smallest from left to right. The optimal voxel size does
not always align between the two metrics. Some objects (Range-Hood, Round-Peg) have multiple voxel
sizes, yielding the same recall results or number of failure cases. The size of the object correlates to some
degree to the optimal voxel size. This is most clear when considering the number of failure cases (0) for
RANSAC. The optimal voxel sizes are bigger for the bigger objects and smaller for the smaller objects.
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Figure 6.12: By adapting the voxel size together with the MSE threshold, the GO-ICP algorithm achieves
better results in terms of recall. The recall for a MSE threshold of 0.01 (@) only achieves values of around
40% for the original point cloud (b). When the voxel size is adapted to 0.01, the recall is increased
to higher values (a), except for the smaller objects, which always fail, resulting in a zero recall value.
Additionally, the computation time for lower values of the threshold (e, @), is always lower than the
reference for a threshold of 0.00001 (---+), without adapting the voxel size (@, b).

larger MSE threshold. As shown in Figure 6.4, increasing the MSE threshold, degrades the recall metric
significantly. This is also shown in Figure 6.12b, where the original point clouds are used. The timing is
expressed as a percentage of the time required to do registration for the lowest MSE threshold of 0.00001.
For this value, the registration time is on average the longest (Figure 6.3). On Figure 6.12a, the voxel
size is adapted, for each MSE threshold, while allowing the algorithm to still converge. For the thresholds
0.01 (@) and 0.001 (®@), the recall values have improved to higher values, for almost all objects, except the
smallest ones (Square-Peg, Round-Peg). The additional benefit of using a lower threshold, is the reduced
registration time, compared to the reference of 0.00001 (---+).
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6.2.4 Bounding Box

Changing the bounding box means introducing more points to the source point cloud. For GO-ICP, this
leads to very long registration times, without convergence. The presence of a high number of points,
that are not appearing inside of the template point cloud, lead to the algorithm not converging anymore.
Thus, for GO-ICP it is recommended to make sure the scanned point cloud is post processed to contain
as little outlier points as possible, either using a method as in Chapter 4 or by using the trim factor.

For RANSAC and FGR, the tests are redone for five different bounding boxes, increasing each time with
20% of the original box. The scans considered are from the Base-Top_Plate, Pendulum, Separator and
Range-Hood objects. The algorithms are run for one voxel size per object, chosen based on the results
shown in Section 6.2.3, where a good performance in terms of failure cases and recall is obtained. Figure
6.13 shows the evolution of recall and the number of failure cases, for the different bounding boxes and
the reference case, where the point cloud is cleaned up from any outlier points.
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Figure 6.13: Effect of changing the bounding box on the recall (-e=) and the number of failure cases
(-e-). The effect is most clear on the recall metric, which decreases as the bounding box increases. The
evolution is more constant for FGR (b), while RANSAC (a) is able to reach higher values of recall for a
bounding box of 1.8. However, for both methods the recall drops significantly from the reference value.

Both RANSAC and FGR see a drop in performance, in terms of the recall metric, when the bounding box
is increased, as shown in Figure 6.13. For FGR, the evolution is more steady, while being less constant
for RANSAC. The number of failure cases is less affected by the change in bounding box. This is because
the R? value, used for determining whether the scan is considered to be failed or not, is not always a good
indicator for the performance when dealing with a lot of outlier points. A more in depth discussion on the
R? metric and the relative errors is given in Appendix E. Additionally, when looking at the computation
time, it also increases on average, when increasing the bounding box, as shown in Figure 6.14.

6.2.5 Refinement

Finally, ICP refinement is applied, for three different voxel sizes, on the results obtained for RANSAC
and FGR. Figures 6.15-6.16, show the positive effects of applying ICP refinement, leading to precise
results of a couple of degrees and millimeters in the best cases for almost all objects. For most scans, the
optimal voxel size when applying refinement is 0.1. The refinement step has less danger of falling into
local minima and usually requires only a small correction. Thus, it is sufficient to use a limited set of
points or a large voxel size.

From Figures 6.15-6.16, RANSAC seems to outperform FGR most of the time. The smaller objects,
specifically the Round-Peg show higher rotational errors. However, as mentioned before, this object has
an infinite number of ground truth solutions. For this reason, the rotational error is not a good metric
for this object. It can be noted that, even considering only four possible solutions, the errors are still
limited to 25° in the worst case.

Finally, the refinement can also reduce the number of failure cases. This means, more scans will lead to
a satisfactory result. However, one must be careful to interpret this result. It is possible that the found
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Figure 6.14: Evolution of the registration time for RANSAC (-e-) and FGR (-e-), taken as the mean over
all objects, as a function of the bounding box size. As expected, the mean registration time increases

over time, as more points are present in the point cloud to process. FGR still yields the lowest timings,
compared to RANSAC.
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Figure 6.15: Applying ICP refinement, after RANSAC, improves both the rotational (a) and translational
(b) errors for all objects. For most objects, the highest voxel size (@) yields the lowest error values. The
Guitar and Range-Hood objects reach slightly better errors for a voxel size of 0.01 (@). For some voxel
sizes, the objects fail for all scans (Shaft-New, Round-Peg), hence the lower number of datapoints.

transformation is completely the result of ICP itself. Thus, in this case, ICP has performed more than
simply a refinement step.

For GO-ICP, the effect of refinement depends on the used MSE threshold, as is shown in Figure 6.17,
where the relative gain is plotted of applying refinement for each threshold. As the MSE threshold
increases, the results of GO-ICP worsen, as already shown in Section 6.2.2. Thus, the additional gain of
applying refinement increases, as the errors reduce by a factor of around 90% for high thresholds. For a
low threshold, the results of GO-ICP are already very precise, up to a couple of degrees and millimeters.
Here, the gain of applying refinement is almost zero.

6.2.6 Failure Cases

From the experiments, it is found that different scans may lead to a failure for some parameter values,
while not for others. However, for the different objects, there are typically some scans that more often
lead to a positive result and others which almost always lead to a failure. By studying these scans, some
conclusions can be drawn.

Essentially, three elements are important when applying registration. Firstly, the quality of the scan
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Figure 6.16: Applying ICP refinement, after FGR, improves both the rotational (a) and translational
(b) errors for all objects. For most objects, the highest voxel size (@) yields the lowest error values. The
Range-Hood object reaches better errors for a voxel size of 0.001 (@). For some voxel sizes, the objects
fail for all scans (Shaft-New, Round-Peg), hence the lower number of datapoints.
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Figure 6.17: Relative reduction of the mean relative angular (-e-) and translational (-e-) errors. The
gain of applying refinement is limited for small values of the MSE threshold. However, for larger MSE
threshold, where the results of GO-ICP decline, the gain of applying refinement increases significantly.

plays a role in the obtained result. This includes the presence of outliers, environmental clutter and the
accuracy of the shape of the object. A clear example of this are the Shaft-New, Guitar or Bookshelf
objects, also shown in Figure 6.18. For these object, the scans are of a lower quality than other objects,
such as the Base-Top_Plate. This is related mainly to their size and the accuracy of the used camera. The
Bookshelf object, for example, has small parts with a thickness lower than 1mm. These are no longer
detected by the camera. The better the quality of the scan, the better the features are identified and
thus also the better the result.

Aside from the quality of the scan, the initial pose of the template and source also play a role. When
the template and the source are already somewhat aligned before the registration, the chances for the
method to fall into a local minimum are lower. An example for the Base-Top_Plate is shown in Figure
6.19. Related to this, the size of the transformation to be estimated is also important. When the method
has to find a difficult transformation, over multiple axes, with large angles, the results are worse or there
might not be a successful result at all. When the transformation consists of only a smaller rotation
around a single axis, the methods are usually able to identify the solution better.

Finally, which scans fail and which succeed, also depends on the parameters, bounding box and method
used. Guidelines for creating the point cloud scans are further given in Chapter 7.
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Figure 6.18: Example of lower quality scans, usually leading to failures, for (a) Shaft-New, (b) Bookshelf
and (c) Guitar.
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Figure 6.19: Example of different initial alignments for different scans of the Base-Top_Plate object. The
initial pose of (a) leads to failure more often than (b), since the latter is already better aligned with the
template initially.

6.2.7 Conclusions

Different parameters play an important role in the registration result for the global registration methods.
For GO-ICP, the MSE threshold is the key variable. The lower the threshold, the better the results,
however, also the longer the registration takes. The trim factor does not result in major changes. However,
it can be used to remove outliers, since GO-ICP does not converge for larger bounding boxes. An adapted
voxel size can be used to improve the results for lower thresholds. Refinement only leads to an added
gain for higher thresholds.

RANSAC and FGR are mainly influenced by the voxel size. Depending on the metric, an optimal voxel
size can be defined. However, there is no clear trend to the dependency of the voxel size. Adapting
the bounding box usually leads to worse results. ICP refinement has a positive influence on the results,
especially for smaller voxel sizes.

6.3 Learning-based Methods

The learning-based methods are studied in a similar way to the global methods in Section 6.2. Again,
the algorithms are applied multiple times on the same scans. Since the results are always the same, the
number of iterations is limited to five, to get an accurate reading of the timing results.

6.3.1 Zero Mean

Similarly to the global methods, the zero mean has a limited effect on the results. The difference is
illustrated in Table E.1 for RPMNet and ROPNet. PointNetLK centers the point cloud inside the
algorithm, hence why it is not included inside of the table. The best results are further used. This means
a non-zero mean for RPMNet and ROPNet. Due to ROPNet failing for most objects, the results in Table
E.1 are only shown for a limited selection of objects that do not fail.
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6.3.2 Voxel Size

As was the case for RANSAC and FGR, the registration time decreases for PointNetLK, RPMNet and
ROPNet, with an increasing voxel size, for a similar reason; a reduction of the number of points. This is
shown in Figure 6.20. PointNetLK and RPMNet also show a significant preparation time of 11s for the
data, when the results are run on a personal computer!. This is not the case when the registration is run
on Google Colab.

The datapoints for RPMNet and ROPNet are also more limited than those of PointNetLK. Both RPMNet
and ROPNet require more intensive GPU power. The small voxel sizes can therefore only be run on Google
Colab. To keep the time measurements consistent, the curves start at a higher voxel size. Both algorithms
also require a minimal number of datapoints to work. When the voxel size is too large, the smaller objects
will have too little points, and thus the registration cannot be performed. Thus the datapoints are limited
to a voxel size of 0.006 for RPMNet. ROPNet shows some similar problems, however, a 0.003 voxel size
is the only one where all the objects work. To still illustrate the effect of the voxel size on the timing,
only a limited number of objects is considered in Figure 6.20b.
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Figure 6.20: Average registration time, as a function of the voxel size, for PointNetLK and RPMNet (a)
and ROPNet (b). Increasing the voxel size, decreases the registration time for all methods. RPMNet
and ROPNet require a minimal number of points in order to work. For this reason, the smaller objects
can no longer be processed for larger voxel sizes. Bigger objects, require more memory to be processed at
small voxel sizes. The timings for ROPNet are limited to only four, big objects, due to before mentioned
limits.

The effect of the voxel size on the metrics is shown in Figures 6.21-6.22, for PointNetLK. The effect is
limited for most objects, except the Guitar object. This could be explained by the fact that the training
model used for these results is the one obtained by training PointNetLK on the normal Cranfield dataset
(Chapter 5). This dataset does not include the Guitar object. When looking at the failure cases in
Figure 6.22, the same conclusions can be drawn. Important to note is the fact that PointNetLK, as
well as RPMNet and ROPNet, always yield the same results for a specific scan. This is not the case for
RANSAC and FGR. Thus, the scan either always fails or succeeds.

For RPMNet, the evolution of the recall metric and the number of failure cases is given in Figure 6.23.
Here, the voxel size has a more noticable effect on the results. Similarly to RANSAC and FGR, an
optimal voxel size could be determined. However, the evolution is again not very defined. Notice also
the link between the number of failure cases and the recall. As more scans succeed, the average is taken
over more cases, leading to a change in the recall metric.

6.3.3 Training Models

The learning-based methods can be trained using different datasets, as discussed in Chapter 5. For Point-
NetLK, the method is trained on normal and noisy Cranfield data. The available pretrained ModelNet40
data is also used during the tests. RPMNet is trained on normal, noisy, partial and floor Cranfield data.

IThe personal computer used has the following specifications: Windows laptop, NVIDIA GeForce RTX 3070 GPU and
AMD Ryzen 7 processor
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Figure 6.21: Effect of the voxel size on the registration time and recall for PointNetLK, for different
objects, using the normal Cranfield data trained model. The effect of the voxel size on the recall metric
is less pronounced compared to the global registration methods. Except for the Guitar object, the voxel
size has a limited effect. However, a higher voxel size results in a high recall for most objects. This is
interesting, as the registration time is also the lowest for these values.
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Figure 6.22: Effect of the voxel size on the registration time and failure cases for PointNetLK, for
different objects, using the normal data trained model. Again, the number of failure cases does not
change significantly by adapting the voxel size. The Guitar object fails with almost every scan, except
for larger voxel sizes. The optimal voxel size, in the sense of recall or the number of failure cases, is
mostly the same, as the effect of the voxel size is limited.

Here, pretrained models for normal, noisy and partial ModelNet40 data are also available. Figure 6.24
shows the effect of the voxel size on the registration time for the different training models.

Figure 6.24 shows that the change of training model does not impact the registration time in a meaningful
way. The small differences are to be contributed to background tasks, running on the computer, and not
to the registration result itself.

The effect of the models, trained on the Cranfield data, on the recall metric and the number of failure
cases, is shown for PointNetLK in Figure 6.25. For the recall metric, the differences between the training
models are not very large, usually between 5 — 10%. For the number of failure cases however, the normal
Cranfield data model outperforms the noisy Cranfield data model.

The results of the Cranfield data trained models can be compared to those of the ModelNet40 trained
models, which do not contain the Cranfield data 2, but they do contain the Guitar, Bookshelf and Range-
Hood objects. Figure 6.26 shows that the normal Cranfield data model (@) performs overall the best
when considering the recall metric. For some objects however the model trained on ModelNet40 data (@)
performs better, especially when considering the number of failure cases. This is in line with expectations

2 Base-Top_Plate, Pendulum, Separator, Round-Peg, Square-Peg and Shaft-New
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Figure 6.23: Recall (-e-) and Failure cases (-o-) for RPMNet, using the normal Cranfield data trained
model, as a function of the voxel size, for different objects. The voxel size plays a more important role
compared to PointNetLK. Especially the recall metric varies significantly. Notice the relation between
both metrics. As more or less scans fail, the recall metric adapts accordingly. A voxel size of around
0.005 yields good results for both recall and the number of failure cases for most of these objects.
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Figure 6.24: Average registration time, as a function of the voxel size, for PointNetLK (a) and RPMNet
(b). Changing the trained model does not influence the registration times. Differences could be related
to random background tasks and not the actual registration process.
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Figure 6.25: Recall (a) and Failure cases (b) for PointNetLK, trained on normal (-e-) and noisy (-e-)
Cranfield data. The noisy Cranfield data model performs worse for almost all voxel sizes when considering
the recall (a) and is outperformed by the normal Cranfield data model over all voxel sizes for the number

of failure cases (b).
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for the Guitar object for example. However, since the ModelNet40 data contains many more objects,
compared to the limited six objects of the Cranfield data set, the model is able to generalize even to
objects, on which it was not trained. The Cranfield trained models (e, ®) are trained on a more limited
dataset and thus have more trouble generalizing to other objects, or even certain scans.
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Figure 6.26: Recall (a) and Failure cases (b) for PointNetLK, trained on normal (@) and noisy (e)
Cranfield data, and normal ModelNet40 (@) data. For the recall metric (a), the results are best when
using the normal Cranfiel data trained model for most objects. The Guitar object is an exception to this.
This object is however not included in the dataset for the normal Cranfield data trained model. It is
included in the pretrained model, for which the recall is indeed higher. In terms of the number of failure
cases, the pretrained data generalizes better than the normal Cranfield data, yielding a low number of
failure cases even for the Base-Top_Plate, Shaft-New and Round-Peg objects, for which it is not trained.

For RPMNet, the different models are compared in Figure 6.27. Here, the normal and noisy Cranfield
data models (-e-, -8-) perform the best for both metrics compared to the partial and floor Cranfield data
models (-e-, -o-). Notice also the decrease overall in recall (Figure 6.27a) and the increase in the number
of failure cases (Figure 6.27b), compared to PointNetLK (Figure 6.25).
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Figure 6.27: Recall (a) and Failure cases (b) for RPMNet, trained on normal (-e-), noisy (-e-), partial
(-e-) and floor (-e-) Cranfield data. The results are best when using the normal (-e-) or partial (-e-)
models. Depending on the metric, the normal or partial model yields a better result. However, both the
recall (a) and number of failure cases (b) are not too different between the two.

Figure 6.28 compares the results to the the models trained on normal, noisy and partial ModelNet40
data. Again, the normal Cranfield data model (@) achieves, on average, a good result for most objects.

The Guitar and Bookshelf objects obtain a better recall for the ModelNet40 trained models, as they are
part of this dataset.
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Figure 6.28: Recall (a) and Failure cases (b) for RPMNet, trained on normal Cranfield data (@), pretrained
normal (@), pretrained noisy (@) and pretrained partial (@) ModelNet40 data. The results are best when
using the normal ModelNet40 (@) or partial ModelNet40 (@) models. The normal Cranfield model (@)
yields the most consistent results over all objects. Some objects, such as the Bookshelf or Guitar objects
achieve a higher recall for the pretrained models, as they are not included in the normal Cranfield training
data.

Finally, the same tests are repeated for ROPNet, as shown in Figure 6.29. The normal Cranfield data
model (-e-) yet again performs, on average, good for both metrics, together with the noisy Cranfield data
model (-o-). Again, the recall metric has dropped compared to RPMNet (Figure 6.27) and the number
of failure cases has increased.

Recall Failure Cases

—o— Normal Cranfield 100 A —e— Normal Cranfield
601 —8— Noisy Cranfield —8— Noisy Cranfield
—eo— Partial Cranfield —e— Partial Cranfield
50 —e— Floor, Noisy & Partial Cranfield 95 A —e— Floor, Noisy & Partial Cranfield

40 -

90

Recall (%)
w
o

85

Failure Cases (%)

201

80 -
101

751
0

0.(;03 0.605 0.606 0.(;03 O.dOS 0.606
Voxel size Voxel size
(a) Recall (b) Failure Cases

Figure 6.29: Recall (a) and Failure cases (b) for ROPNet, trained on normal (-e-), noisy (-e-), partial
(-e-) and floor (-e-) Cranfield data. The results are shown as the average of for four objects, the Base-
Top_Plate, Pendulum, Separator and Bookshelf. The normal (-e-) or noisy (-e-) models yield the best
performance. On average, a voxel size of 0.006 yields the best results. However, ROPNet is outperformed
by both PointNetLK and RPMNet.

In conclusion, the specific training models, which consider for example partial or noisy data, do not
necessarily lead to better results. The opposite is often true. The goal of these models is to better
approximate real world data. However, simply adding noise or removing points clearly is insufficient for
obtaining better results. Instead, the trained models probably overfit more on the data, leading to a
worse generalization and thus worse results compared to the normal data trained models. In order for
the models to generalize well to other objects, not included in the dataset, it is also important to have a
wide variety of objects, as is the case for the ModelNet40 trained training models.
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6.3.4 Bounding Box

The bounding box is adapted for PointNetLK and RPMNet, since these two methods lead to the best
results and ROPNet only works for a limited voxel size. The results are shown for PointNetLK and
RPMNet in Figure 6.30 for the recall and number of failure cases and Figures 6.31-6.32 for the relative
€rrors.
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Figure 6.30: Effect of changing the bounding box on the recall (-e-) and the number of failure cases (-o-),
for PointNetLK (a) and RPMNet (b). PointNetLK (a) shows a clear decrease in the recall and increase
in the number of failure cases, when the bounding box is increased. RPMNet (b) has no drastic change
in performance when the bounding box is further decreased.

The effect is most clear for PointNetLK in Figure 6.30a. Both the recall and number of failure cases
worsen when the bounding box is increased. For most objects, a similar effect can be seen for the relative
errors in Figure 6.31. The Range-Hood object on the other hand, outperforms the reference case for a
bounding box of 1.2 and 1.4. Some objects, like the Pendulum even lead to all scans failing for one value
(1.2) and not for a bigger value of 1.4.
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Figure 6.31: Mean relative angular (-e-) and translational (-e-) errors for PointNetLK, as a function of
the different bounding boxes. For the Base-Top_Plate (a) object, the errors show a clear evolution. The
other objects fail at bounding boxes higher than 1.4 (b) or 1.2 and show a less clear evolution. The
Range-Hood (b) object benefits again from the additional points, leading to lower errors, however also a
higher number of failure cases.

RPMNet shows a small decrease for the recall in Figure 6.30b, indicating that the method is more
resistant to including more points, especially when they do not significantly change the features present
in the scan. The errors in Figure 6.32 also indicate a less clear evolution, with some objects such as the
Separator and Range-Hood outperforming the reference case for a bigger bounding box.

Although it is difficult to generalize these results, it is clear that the different methods, lead to different
conclusions and considerations. However, as with the global registration methods, the best results are
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obtained when the most relevant information is present inside the point cloud. For the Base-Top_Plate
or Pendulum objects this is usually the cleaned up, reference point cloud. For the Range-Hood object,
this is around a bounding box of 1.2 or 1.4 with respect to the reference. It is also important to note
that, changing the bounding box, may lead to different scans failing or working. For example, Figure
6.31a contains the results of the same scans always working, while for the Pendulum object, the scans
change depending on the bounding box. Finally, as a recommendation, all methods should ideally be used
with a cleaned-up point cloud. When this is not possible, some methods, such as PointNetLK or FGR
will have a sharper decrease in performance compared to RANSAC and RPMNet. This however does
not mean that RANSAC and RPMNet should be used with point clouds containing a lot of background
information.
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Figure 6.32: Mean relative angular (-e-) and translational (-e-) errors for RPMNet, as a function of the
different bounding boxes. For larger bounding boxes, the errors mostly show an upwards trend. Again,
the presence of additional points can lead to a better identification of features, resulting in lower errors.
Missing points indicate a failure for this bounding box, over all scans.

6.3.5 Refinement

ICP refinement improves the rotational and translational errors, as shown in Figure 6.33 for PointNetLK
and Figure 6.34 for RPMNet. Again, the higher voxel size refinement (@) performs the best overall for
both the translational and rotational errors. This is also the case for the global registration methods.
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Figure 6.33: Mean relative angular (a) and translational (b) errors, for PointNetLK, all objects, after
applying ICP refinement, for different voxel sizes. As for the global registration methods, the 0.1 voxel
size (@) yields the best performance overall. For some objects (Shaft-New, Bookshelf), a voxel size of 0.01
(@) results in even lower errors.
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Figure 6.34: Mean relative angular (a) and translational (b) errors, for RPMNet, all objects, after applying
ICP refinement, for different voxel sizes. As for the global registration methods, the 0.1 voxel size (®)
yields the best performance overall. For some objects (Shaft-New, Round-Peg), a voxel size of 0.01 (@)
results in even lower errors.

6.3.6 Failure Cases

The scans leading to failure and success are, for most objects, similar to the global registration methods.
To reiterate, the quality of the scan is an important factor. However, the size of the transformation and
the initial pose of the template also play a role.

6.3.7 Conclusion

PointNetLK is relatively insensitive to a changing voxel size, and yields on average the best results for
the normal Cranfield data training model. The bounding box leads to a steep decrease in performance,
similarly to the global registration methods. Refinement can help to improve the registration results
overall.

RPMNet leads to different results, depending on the selected voxel size. However, a too large voxel size
can cause the algorithm to not work anymore, due to too little points. A low voxel size requires a larger
computational effort, especially for the larger objects. The normal and partial Cranfield trained models
perform the best in terms of recall and number of failure cases. Again, ICP refinement leads to better
translational and rotational errors when a larger voxel size is selected.

ROPNet performs the worst between the registration methods, with an overall lower recall and a higher
number of failure cases. In the same way as RPMNet, ROPNet does not work anymore for too high voxel
sizes and requires more GPU power. The normal Cranfield data trained model shows the best results
overall.



Chapter 7

Experiments Conclusions

In this chapter, the main conclusions from Chapter 6 are first summarised in Section 7.1. An answer
to each of the research questions is formulated in Section 7.2 and some guidelines for selecting the best
registration method, considering certain specifications are also given in Section 7.3.

7.1 Parameters

In this section the main effects of each parameter, introduced in Chapter 6 are given. More details into
the reasons behind these evolutions can be found in Chapter 6. This section is only meant to give a brief
overview of the main conclusions.

7.1.1 Zero Mean

Before applying registration, the point clouds can be centered on the origin to reduce the size of the
transformation to be estimated. It was found that this operation has little effect on the metrics. The
best case was chosen for each method; GO-ICP, RPMNet and ROPNet are not centered (non-zero mean),
while RANSAC and FGR are centered (zero mean). PointNetLK centers the point clouds automatically.

7.1.2 MSE Threshold & Trim factor

The MSE threshold and trim factor are parameters used only for GO-ICP. The MSE threshold determines
the convergence of the method, while the trim factor is used to remove outliers. From the experiments,
it was concluded that the lowest thresholds yield the best results, but require the highest computation
times (several seconds up to a minute for larger objects). Increasing the thresholds lowers the performance
drastically. The trim factor has little effect on the results.

7.1.3 Voxel Size

The voxel size can be seen as a simple filtering technique, where the point cloud is reduced by taking
the average of all points inside a voxel with a given size, the voxel size. This parameter affects both the
learning-based and the global registration methods.

The larger the voxel size, the lower the number of points and thus the lower the registration time. This
holds true for all methods, except for ICP. This is however a local registration method, to be used only for
smaller transformations. For too large transformations, the algorithm performs little iterations leading
to lower registration times.

For RANSAC, FGR, RPMNet and ROPNet, the voxel size also affects the registration results. For
these four methods, an optimal voxel size could be determined by considering the maximal recall, the
minimal number of failure cases or any other metric. However, this optimal value might differ between
these different metrics and is highly dependent on the object shape, size, the considered method and the
considered metric. For these methods, no clear evolution could be seen when changing the voxel size.
One important comment is related to ROPNet and RPMNet. These are learning-based methods and

44
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require a minimal number of points in order to work. Thus, after increasing the voxel size too much, too
little points will be left, and the methods will not work anymore.

PointNetLK appeared to be more resistant against a changing voxel size, with little effect on the recall
metric and the number of failure cases for most objects. However, best performances were found for
higher voxel sizes (0.01).

GO-ICP can also be combined with the voxel size parameter. However, it is important to combine
the voxel size with the MSE threshold, as these two cannot be changed independently from one another.
Increasing the voxel size, reduces the spacing between the points in the point cloud leading to convergence
issues when the threshold is not adapted. The voxel size can prove especially useful in cases of higher
MSE thresholds, to improve upon the results without considering the voxel size. This is when the original
point cloud is used, without filtering.

7.1.4 Bounding Box

Another studied parameter is the bounding box. Here, the scanned point cloud is considered for different
situations, where each time, more points from the environment are considered as the bounding box
increases. This is again shown in Figure 7.1.

BB=1.0 BB=1.2 BB=1.4 BB=1.6

Figure 7.1: Example of increasing the bounding box for the Base-Top_Plate, each time with 20% from
the reference case of BB = 1.0.

It was found that increasing the bounding box yields overall a worse result for most methods. Exceptions
occur for objects, such as the Range-Hood object, where the additional points may lead to better regis-
tration results. A general guideline would be too clean up the point cloud, while maintaining the most
relevant information, to achieve the best results. The main difference between the considered methods
lies in the sensitivity to the bounding box. PointNetLK and FGR led to a steeper decrease in performance
as the bounding box increased, while RPMNet and RANSAC still lose in performance, but at a lesser
rate. GO-ICP does not converge anymore when too much points, that are not present in the template,
are included. ROPNet results in a low performance overall and only works for a limited number of voxel
sizes and was thus not considered during these tests.

7.1.5 Training Models

For the learning-based registration methods, the different trained models are compared to each other.
In terms of timing, the models do not have any significant effects. The other metrics, such as recall
and the number of failure cases can be influenced. For PointNetLK, the normal Cranfield data trained
model performed the best overall. For RPMNet, the same model yields on average a good performance.
Depending on the considered metric, the partial or noisy Cranfield data trained model can outperform
the normal Cranfield data trained model. ROPNet leads to the highest errors, but similar conclusions to
RPMNet still apply.

For PointNetLK and RPMNet, some models trained on the ModelNet40 dataset were also compared.
These models have the advantage of being trained on a much larger dataset, allowing them to generalize
better, at the expense of less accurate results. Except for objects such as the Guitar or Bookshelf, which
are only a part of the ModelNet40 trained models, the normal Cranfield data trained model, usually
performs the best on a wide range of tested objects.

7.1.6 Refinement

All methods achieved better results when a refinement step, using ICP, was applied on the results. Overall,
a voxel size of 0.01 — 0.1 led to the best result for all objects when applying refinement. For GO-ICP,
the effect of refinement depends on the MSE threshold. For very low thresholds, the results are already
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converged and the gain of applying refinement is close to zero. For larger thresholds, this gain increases,
as the metrics can still be improved.

7.1.7 Failure Cases

Finally, from the tests it was seen that there are in general three reasons for a failed registration result.
The first one is related to the quality of the captured point cloud. If the scan does not represent the
object or its features in an accurate way, there is a higher chance of failure. Secondly, the initial pose and
size of the transformation also play a role. The registration is more likely to fail when the point clouds
are positioned close to a local minimum in the original pose. A larger transformation also increases the
difficulty of finding an accurate registration result. Finally, the parameters discussed before also play a
vital role. Depending on the voxel size, bounding box and used method, some scans might lead to failure,
while others do not. It is thus important to be mindful when selecting these variables, considering the
results mentioned in this section.

7.2 Research Questions

In this section, an answer to the research questions posed in Chapter 1 is formulated. The conclusions are
based on the setup of the experiments (Chapter 4), the training of the learning-based methods (Chapter
5) and the parametric study (Chapter 6). For obtaining a general overview, the tables mentioned in
the subsequent sections consist of the averages taken over the best results for each object. This means
that the test case from Chapter 6, resulting in the highest number of best metrics, for each method is
considered. Chapter 6 presents a series of test cases that examine the impact of varying parameters,
including voxel size, mean squared error (MSE) threshold, trim factor, and training models, on overall
system performance through different experiments. The best metrics are the lowest errors for the group
1 (rotational and translational errors) and group 3 (number of failure cases) metrics (Table 3.1) and the
highest metrics for group 2 (recall and R?). The complete set of data, as well as all of the individual
results from the methods are available on the Github page.

First of all, the training and the trained models are discussed in Section 7.2.1, to answer the following
question: Is it sufficient to only use the available CAD models for training the learning-based methods?.

Secondly, the required quality of the point cloud scans is discussed in Section 7.2.2. How accurate should
the depth image of the object be to achieve satisfying results? This is the main question answered.

Finally, a comparison of all methods is given in Section 7.2.3, to answer the question: Which of the
studied registration methods yields the best performance?

7.2.1 Is it sufficient to only use the available CAD models for training the
learning-based methods?

As explained in Chapter 5, the CAD models of the objects are used to generate different types of training
datasets. The Cranfield objects are converted to a point cloud and randomly transformed. Noise,
partiality or floor information can also be added. Some examples are shown in Figure 7.2.

Normal Noisy Partial Floor, Noisy & Partial

Figure 7.2: The algorithms are trained using different datasets. They can be simply sampled from the
CAD models (Normal), or noise can be added (Noisy). Points can also be removed (Partial). Finally, a
floor can be added to mimic, for example, the presence of a table (Floor, Noisy & Partial).

The results for the different training models, for each method, taken as the average over the best cases
in terms of the voxel size, are summarised in Table 7.1.


https://github.com/dwjoris/XRTwin_CAD_model_alignment.git

7.2. RESEARCH QUESTIONS 47

Table 7.1: Overview of all metrics, for the learning-based registration methods, for each training model.
The results are taken as the average over all objects. For each object, the best results are selected, in
terms of the voxel size. Recall is taken with a 0.01 threshold. Best errors are shown in bold per method.
For ROPNet, the floor Cranfield data model is not mentioned as only one scan, from one object does not
fail.

Model MRAE MRTE RMSE RMSE MAE MAE Recall R?  Failure
R e R R S L R 0 SV B A VO

PointNetLK

Normal 14.14 7.06 0.12 4.07 13.00 0.02 95.20 0.87 51.71
Noisy 16.17 9.62 0.13 5.55 9.20 0.03 90.95 0.81 65.60

RPMNet

Normal  21.68 11.40 0.18 6.58 13.77 0.05 76.53 0.63 66.92
Noisy 28.60 9.50 0.23 5.48 12.83 0.03 60.96  0.61 77.83
Partial 27.30 13.19 0.22 7.61 9.87 0.06 99.35 0.63 60.97
Floor 18.12 13.54 0.32 7.82 38.90 0.07 43.67 0.60  77.08

ROPNet

Normal 22.73 11.14 0.18 6.43 10.54 0.05 71.11 0.74 79.06
Noisy 24.25 14.44 0.20 8.34 12.85 0.07 60.30 0.63  76.55
Partial 31.50 10.32 0.25 5.96 40.67 0.04 68.92 0.60 75.26

Table 7.1 shows that PointNetLK outperforms both RPMNet and ROPNet in all metrics. For Point-
NetLK, the normal Cranfield data trained model achieves the best results overall. However, except for the
number of failure cases, the metrics are not very different. For RPMNet and ROPNet, the best metrics
are more scattered over the different models. For RPMNet, the normal and noisy Cranfield data trained
models perform the best overall. For ROPNet, the normal and partial Cranfield trained models yield the
best errors. Important to note is that the results are not all too different. When training the methods
with the available CAD models, it is thus sufficient to use a normal Cranfield data trained model. Adding
noise or partiality may improve the results for some metrics, but the training process also becomes more
challenging, as already mentioned in Chapter 5.

Of course, it is possible to create more complex and extensive datasets, to mimick the real world scans
in a better way. However, as discussed in Chapter 5, a balance must be found between the stability of
training, the available resources, time and the complexity of the training dataset. Adding simple noise or
partiality may lead to some improvements, but may also lead to overfitting of the data, leading to more
failure cases and less generalizability as also shown in Table 7.1, when looking at the number of failure
cases.

The results presented in Table 7.1 can still be refined using ICP refinement, which is further discussed in
Section 7.2.3.

7.2.2 How accurate should the depth image of the object be to achieve sat-
isfying results?

Assigning a quantitative value to the accuracy of the depth image is difficult. There are many parameters
that play a role as explained in Section 7.1. Whether the results are considered to be satisfactory can
also depend on the specific application. For this reason, this section aims to give some qualitative
considerations, to take into account when creating point clouds. The quality of the registration result
depends on the captured point cloud, the transformation size an the initial pose. In general, based on
the experiments, some general, qualitative guidelines are the following.

e (Clean up the point clouds from any outliers. These refer to a single point, or a small cloud of points
that are not related to the object. Simple denoising operations can be performed with the Open3D
toolbox in Python, as mentioned in Chapter 4.
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e Limit the point cloud to the relevant information, excluding environment points such as the floor.
This is more critical for some methods, such as PointNetLK and GO-ICP. Removing planes can be
achieved using the Open3D toolbox (Chapter 4).

e Limit the number of points removed related to the object. Maximize the information related to the
object, while minimizing the environment effects.

e Keep in mind the limitations of the used camera when creating a point cloud. Smaller objects,
require the camera to be closer and more precise. Most Intel cameras have a minimal depth
distance, before which they cannot capture a point cloud. Pick the right camera for the application,
depending on the object size.

e If possible, capture the object from a position that requires a limited transformation. The smaller
the transformation to be found, the better the results are in general. An alternative would be to
use a random initialization of the algorithm.

e If the point cloud is generated from a single pose, capture the object from a view that includes
as much of the object as possible, as opposed to a small part or section. Be mindful of specific
features, such as holes or edges.

e Consider lightning conditions and reflections on the objects. Symmetry of the objects also plays a
role in determining the performance or when training the learning-based methods.

e Tweak the camera settings to obtain a sharp and clear point cloud, reducing waviness and rounding.
The Intel Realsense cameras already provide some pre-processing options, as discussed in Chapter
4.

These guidelines are only meant to focus the reader on some specific points to be taken into account
when creating a point cloud. There are other improvements or future paths that can be explored, which
are discussed in Chapter 8.

7.2.3 Which of the studied registration methods yields the best performance?

Finally, all the registration methods can be compared to each other, in terms of their best performances,
averaged over all objects. The results are shown in Table 7.2 for the global registration method and Table
7.3 for the learning-based methods. In Tables 7.2-7.3, both the metrics (¢) discussed in Chapter 3 as well
as the standard deviation (o) between the objects and scans are reported. This standard deviation is not
a measure of the repeatability of the experiments. Instead, it signifies the variations in metrics between
the objects and the individual scans of the same object. High values indicate that some specifc scans
may lead to a much better performance than others. Low values indicate that most objects yield similar
errors. These standard deviations are computed as follows:

[Ty Varlob) Ny = 1) .
2 obj (Nob; — 1) '
1 Nobj
Var(obj) = m Z(l‘l — i’)2 (72)
o7 i=1
Nop; = NoNit — Ny, (7.3)

where the sum is taken over the variance of all the objects (Var(obj)), weighted by the number of samples.
The objects variance is computed with the typical variance formula, where Ny; is the total number of
experiments per object, or the number of scans Ny, multiplied with the number of iterations per scan Ny
for which the experiments is repeated. From this value, the number of failure cases Ny is subtracted,
since the errors are not computed here. x represents one of the nine considered metrics from Tables
7.2-7.3 and T its mean value over the experiments. For the number of failure cases, Equation 7.2 is used
directly, with the sum taken over the different objects instead.

As mentioned in Chapter 4.2.3, the ground truth definition is not perfect, as the scanned point cloud
is usually a bit deformed compared to the template. This means that errors of a couple of degrees and
millimeters are to be expected. Figure 7.3 shows an example of the alignment result, for some of the best
cases, used in determining the results of Tables 7.2-7.3.
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@® Template @ Transformed Source

(b)

Figure 7.3: Best results for (a) Base-Top_Plate, RANSAC, VS: 0.003, MRAE = 2.88°, MRTE =
3.27mm, (b) Pendulum, PointNetLK, VS: 0.008, Model: Noisy Cranfield, M RAE = 3.35°, MRTE =
7.04mm, (c) Range-Hood, GO-ICP, MSE: 0.0001, Trim: 0.0001, M RAE = 4.51°, MRTE = 0.45mm

First of all, GO-ICP yields overall the best performances over all objects, compared to the other registra-
tion methods. With only around 5° rotational errors and around 2mm translational errors. The number
of failure cases is limited and usually only appear for smaller objects or lower quality scans. However,
as shown in Chapter 6, the registration times can run up to 5s or even a minute for the biggest objects,
when the lowest thresholds are selected. ICP refinement does not influence the results significantly, as
already mentioned before in Section 7.1. The variations between objects and scans is the most limited for
GO-ICP, indicating a good result over a wide range of scans (or poses) and object types. These results
are in line with the literature [53], discussed in Section 2.3, where the speed of GO-ICP is also indicated
as its major disadvantage.

For the global registration methods, RANSAC follows the performance of GO-ICP, yielding similar errors
of around 7° and 3mm after applying ICP refinement. However, RANSAC on itself leads to higher errors
of around 18° and 5mm, with often high variances, especially for the mean absolute errors (MAE). This
is not surprising, as RANSAC uses a random initialization, meaning that the same scans or input point
clouds may lead to very different results. This variance can be beneficial to overcome the problem of
local minima, but introduces less robustness. The refinement also reduces the standard deviations. As
mentioned in Section 2.3, RANSAC is able to overcome initialization problems and partiality. However,
parameters need to be chosen correctly to achieve high performances. This is in correspondence to the
literature [13].

FGR leads to similar conclusions as RANSAC, although FGR performs a bit worse with errors around
10° and 5mm after refinement. The number of failure cases is also higher, indicating that FGR works
for a more limited range of object types and initial poses. This is in line with Section 2.3, where the
sensitivity of FGR to noise is mentioned, while also being the quickest method. This is again similar to
the performance mentioned in the literature [59].

Between the learning-based methods, PointNetLK achieves overall the best results, except for the mean
absolute error (MAE) and the number of failure cases, which is a bit lower for a refined RPMNet.
After applying refinement, PointNetLK achieves errors around 6° and 2mm, which is close to the results
obtained for GO-ICP. However, the number of failure cases, the variations between objects and the recall
are all worse than GO-ICP. Similar to RANSAC and FGR, the results are worse without refinement.
Here, PointNetLK reaches errors of around 13° and 5mm. Since PointNetLK yields the same results for
a single scan, the deviations are a bit lower than FGR and RANSAC. However, this comes at the cost
of sometimes falling into local minima and thus a higher number of failure cases compared to RANSAC.
PointNetLK requires the least strong GPU between the learning-based methods. The registration time
itself is limited to around 0.1s, however, during testing on a personal device, the dataloading could take
up to 11s. This effect was significantly reduced when working with the GPU from Google Colab to a
time similar to the registration time. The data loading is however not related to the actual registration
method and could be improved. As discussed in Section 2.3 and literature [2], the generalizability of
PointNetLK to unseen categories of data is limited, shown by the reduced performance for objects such
as the Guitar. Additionally, as discussed in Section 7.1, large transformations can prove challenging.
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Table 7.2: Overview of all metrics, for the global registration methods. The results are taken as the
average over all objects. For each object, the best results are selected, in terms of the voxel size, MSE
threshold and trim factor, meaning the test case with the highest amount of best errors. Recall is taken
with a 0.01 threshold. For each method the errors (¢) and standard deviations (o) are given, as well as
the refinement case (ICP). Best errors are shown in bold.

Data MRAE MRTE RMSE RMSE MAE MAE Recall R? Failure
/o] P14 [mm] | []L [mm] ] [TL [mm] ] [%] T [ A

Global Registration

GO-ICP

€ 4.85 2.73 0.04 1.58 4.00 0.00 100 0.98 28.64
o 3.08 1.61 0.02 0.93 4.13 0.01 0.00 0.04 30.08

GO-ICP + ICP
€ 4.85 2.73 0.04 1.58 3.99 0.00 100 0.98  28.64
o 3.10 1.58 0.03 0.91 4.14 0.01 0.00 0.04 30.08
RANSAC

€ 18.62 6.23 0.16 3.60 16.43 0.02 85.94 0.88  50.82
o 12.64 4.20 0.09 2.42 31.31 0.03 2171 013 26.24

RANSAC + ICP

€ 5.85 2.83 0.05 1.63 9.70 0.01 97.34 093  43.58
o 7.20 2.51 0.06 1.45 29.05 0.02 9.52 0.16  24.63
FGR

€ 27.41 11.67 0.29 6.74 19.08 0.06 61.18 0.58  75.57
o 38.52 4.56 0.13 2.63 14.14 0.06 2750  0.20 17.52

FGR + ICP

€ 12.59 4.95 0.10 2.86 7.81 0.01 91.26 0.81  47.26
o 12.26 3.40 0.10 1.96 7.00 0.02 13.62  0.20 11.46

However, performances for the translational and rotational errors were able to almost match those of
GO-ICP after applying refinement.

RPMNet achieves errors of around 6° and 3mm after ICP refinement. The number of failure cases is a
bit lower compared to PointNetLK, RANSAC and FGR, but the variations are again higher. Although
these deviations are more limited than for RANSAC, FGR and even PointNetLK (without considering
refinement). RPMNet has a slightly higher registration time compared to PointNetLK and the global
methods. It also suffers from the same effect as PointNetLK when loading the data. As indicated in
Section 2.3, RPMNet is more robust to initialization problems, which is reflected in the lower number of
failure cases, compared to PointNetLK and FGR, especially after refinement. The method is also a bit
slower, as also mentioned in the literature study [54].

Finally, ROPNet reaches errors of around 20° and 3mm with a higher number of failure cases of 70% after
refinement. This method is thus outperformed by the other registration methods. One slight advantage
of using ROPNet is the limited time required to load the data and perform the registration (around
0.05s), compared to PointNetLK and RPMNet. However, this difference quickly diminishes when using a
stronger GPU. ROPNet has the additional disadvantage of requiring more GPU power and only working
for a more limited voxel size range. Compared to the global methods, ROPNet also needs to be trained.
ROPNet yields a lower performance than expected from the literature study [63]. This could be related
to the dataset not being sufficiently representative of the real world data scans.

To summarise, a qualitative comparison is made in Table 7.4. Different applications, might require
different methods. When speed is crucial, method such as RANSAC and FGR can be considered. When
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Table 7.3: Overview of all metrics, for the learning-based registration methods. The results are taken
as the average over all objects. For each object, the best results are selected, in terms of the voxel size
and training model, meaning the test case with the highest amount of best errors. Recall is taken with
a 0.01 threshold. For each method the errors (¢) and standard deviations (o) are given, as well as the
refinement case (ICP). Best errors are shown in bold.

Data MRAE MRTE RMSE RMSE MAE MAE Recall R? Failure
/o] P14 [mm] | [l [mm] ] [T [mm] ] %]t 1T [%])

Learning-based Registration

PointNetLK

€ 14.04 6.36 0.11 3.67 12.55 0.02 95.18 0.86  57.92
o 13.86 1.09 0.11 0.63 34.82 0.01 12.44 0.16  34.05

PointNetLK + ICP

€ 4.12 2.36 0.03 1.36 7.80 0.00 99.57 0.97 58.65
o 8.55 1.31 0.07 0.76 36.18 0.00 2.95 0.15  28.24

RPMNet

€ 25.78 10.21 0.21 5.90 11.08 0.04 71.48  0.62 59.31
o .77 1.09 0.06 0.63 2.75 0.01 14.83 0.14  25.20
RPMNet + ICP

€ 7.59 3.65 0.06 2.11 4.52 0.01 95.94 0.89 45.52
o 8.05 2.80 0.06 1.62 6.61 0.01 9.31 0.22 30.34
ROPNet

€ 25.88 10.99 0.21 6.35 30.84 0.05 67.38 0.72  74.70
o 10.22 2.19 0.08 1.27 9.32 0.02 6.50 0.08  16.90

ROPNet + ICP

€ 7.90 4.89 0.06 2.82 31.91 0.01 94.33 095  70.60
o 12.31 3.30 0.09 1.91 8.76 0.02 6.29 0.12 17.01

higher accuracies are required it is possible to use GO-ICP or PointNetLK with refinement. If the
precision of the method is not as crucial, for example to get a first approximation of the result, methods
such as FGR, RPMNet or even ROPNet can be used.

Table 7.4: Comparison of the tested registration methods. + indicates a very good performance, m a
medium performance and — a bad performance. GO-ICP leads to very precise, low variance results, but
takes the longest computation time and requires cleaned-up pointclouds. PointNetLK is much faster,
but has a lower precision, more variance and a higher requirement on the GPU. RANSAC and FGR are
the quickest and most performing, however they lead again to low precision and high variance. Except
for GO-ICP, most methods still work with a non-cleaned-up point cloud, however usually at a worse
performance.

Method ‘ Precision Variance Time Pre-processing GPU Requirements
GO-ICP + + - - m
RANSAC m — + m +
FGR - - + m +
PointNetLK m m m - m
RPMNet m m m m —
ROPNet — m + m _
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7.3 Guidelines

To conclude this chapter, a framework is presented in the form of a flowchart to choose a registration
method, depending on the requirements and specifications. The aim of these flowcharts is to help other
researches who want to use a registration method in their own application or research. These flowcharts,
presented in Figures 7.4-7.6, contain a number of questions, based on the carried out experiments. In
this section, a rundown is given of how to read these charts.

Firstly, the availability of computation power is a major consideration when choosing between learning-
based and global registration methods. As mentioned in Chapters 5-6, learning-based methods require a
significant amount of GPU power during the training process. Thus, if no strong GPU is available, these
methods are no longer a viable option. When sufficient power is available, both approaches are still open.

Global Registration
Methods

Learning-based
Methods

Global Registration
Methods

Large computation
power available?

Figure 7.4: The availability or large computation power plays an important role in choosing the right
registration method. If sufficient power is available, both options remain open. Otherwise, the global
registration methods are to be used.

For the global registration methods, RANSAC, FGR and GO-ICP, the flowchart of Figure 7.5 is followed.
A first important question is related to the pre-processing of the data. This question refers to the
possibility of cleaning up the point cloud to only contain relevant points and thus no floor points for
example. As mentioned in Section 7.1, a too large bounding box reduces the performance significantly
for most methods. However, some methods are more resistant to this than others. GO-ICP does no
longer converge when there are too many irrelevant points and thus no longer becomes an option when
pre-processing is not possible in the application.

When pre-processing, to remove the environmental information, is possible, all three methods are still
open. The next question is related to the computation time. When speed is critical in the application,
GO-ICP again should no longer be considered, since it leads to registration times of several seconds up to
a minute. If speed is not critical, the precision and variance can be considered. GO-ICP yields the lowest
errors and variances as shown in Table 7.2. If precision is not critical, for example when an approximate
solution is sufficient or when speed is more important, RANSAC or FGR should be considered.

The choice between RANSAC and FGR, which is slightly faster, lies mainly in the accuracy but also in
the number of failure cases (Table 7.2). Or, in other words, the number of poses of an object that lead
to a successful registration result. Alternatively, when looking for speed or when pre-processing is not
available, the alternative path of the learning-based methods can also be looked into. This is of course
only possible when sufficient computation power is available.

For GO-ICP, the threshold, trim factor and voxel size are still to be determined. For achieving the best
results, the threshold should be chosen as low as possible. When the process needs to be sped up, the
threshold can be increased. Adapting the voxel size at the same time can improve the results here too.
For RANSAC and FGR, mainly the voxel size has to be chosen.

All methods can be refined using ICP to achieve better performance. As mentioned in Section 7.1, for
GO-ICP, the refinement only leads to an added gain for higher thresholds.

Figure 7.6 shows a similar flowchart for the learning-based methods. Again, a first question to be asked
is related to the availability of pre-processing. When the point cloud cannot be cleaned up, PointNetLK
is not an ideal choice as shown in Section 7.1. RPMNet or ROPNet are better choices in this case.

When pre-processing is possible, the GPU strength should be considered. PointNetLK requires much less
GPU power compared to RPMNet and ROPNet. Thus, when a strong GPU is not available for executing
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Global Registration
Methods
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No Pre-processing
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593

Learning

Global

Method

Learning-based Registration Methods

Global Registration Methods

Point Cloud Registration Method

Flowchart question
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---------- P Alternative path

Choose VS [ Choose parameter

Yes Low computation
time required?
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Speed up
method?
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Choose small MSE threshold

J

Lowest transform
errors?
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Figure 7.5: Flowchart showing the different questions to be asked when choosing one of the considered
global registration methods, RANSAC, FGR and GO-ICP. A legend is shown in the top right corner. The
gray boxes indicate the question to be asked and full arrows the path to follow. The red boxes show the
registration methods. The green boxes indicate the parameters to tune. Dotted lines indicate alternative
paths, where the learning-based methods could be considered instead.

the registration, PointNetLK is the better choice. Important to note is that this question differs from
the one introduced in Figure 7.4. The training of the learning-based methods is an intensive process,
that requires significant GPU power. However, the training process is normally done only once, before
using the methods in the application. For PointNetLK, the training process benefits from using stronger
GPU’s, to save time and consider bigger datasets, however the actual registration process does not need
as high specifications. For RPMNet and ROPNet, the actual registration process can also be intensive
in terms of required memory and power, especially for lower voxel sizes.

A next question is related to the complexity of the dataset when training. As discussed in Chapter 5,
training PointNetLK is more difficult than RPMNet or ROPNet. The latter two methods could be trained
with noisy, partial or even floor Cranfield data, while PointNetLK is limited to noisy Cranfield data. When
an even more complex dataset is considered, RPMNet and ROPNet are more viable options to achieve
training convergence. The main difference between RPMNet and ROPNet lies in their performance.
When a low number of failure cases is required, with higher accuracies, RPMnet should be chosen.
ROPNet has a limited advantage when timing is critical over RPMNet.

When the complexity of the training dataset is limited, all methods are still open. In this case, the next
question is related to generalizability. PointNetLK achieves good results over almost all objects, and is
thus the method of choice when this is an important factor. If not, the number of failure cases is again
considered. ROPNet leads in general to a high number of failure cases, meaning it succeeds only for a
limited number of poses of the same object. RPMNet and PointNetLK achieve a lower number of failure
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cases. Between these two, PointNetLK leads to the highest precisions, as also shown in Table 7.3.

For the three methods, the voxel size should still be chosen. For PointNetLK, the voxel size has a limited
effect as mentioned in Section 7.1. For RPMNet and ROPNet, as is the case for RANSAC and FGR,
the voxel size has a more significant effect. However, when dealing with a large number of objects, an
average, general value can be chosen.

Finally, as with the global registration methods, ICP refinement improves the errors, as is also shown in
Table 7.3.

Learning-based
Methods

Learning ) Learning-based Registration Methods

Global Global Registration Methods

. . R Point Cloud Registration Method
Global Registration Pre-processing No
Methods Possible? 3 Flowchart question

A

——» Possible path

H Yes
i No Powerfulgpuy |  TTTTTTUTCTCT » Alternative path
available? Choose parameter
Yes

|

:

Complex training
dataset?

No Yes
~
Large Work for high Yes
generalizability? number of poses? )
No No

Work for high
number of poses?

Yes
Choose VS Choose VS
No
High precision?
Yes
Choose VS
J
Y
Lowest transform
errors?
Yes

Figure 7.6: Flowchart showing the different questions to be asked when choosing one of the considered
learning-based registration methods, PointNetLK, RPMNet or ROPNet. A legend is shown in the top
right corner. The gray boxes indicate the question to be asked and full arrows the path to follow. The
red boxes show the registration methods. The green boxes indicate the parameters to tune. Dotted lines
indicate alternative paths, where the global methods could be considered instead.



Chapter 8

Future Work

In this final chapter, some possible improvements and paths for future work are discussed. The chapter
is divided into different sections, related to the different steps of the thesis, which could be improved.
Sections 8.1-8.2 are focused on enhancements of the preparation steps, before applying the registration
methods. Section 8.3 deals with other registration techniques that can be tested. Finally, Section 8.4
discusses the training models for the learning-based methods. A schematic overview is given in Figure
8.1.

8.1 Point Cloud Capturing

During the experiments, the Intel Realsense D435i camera is used to capture the point clouds. Other
cameras, such as the D405 camera could be considered, since it provides a better accuracy for smaller
objects. In this report, the used objects are part of typical benchmarks and datasets of computer vision
and assembly operations. These objects are typically medium sized. The same experiments can be
redone for bigger objects or complete scenes and much smaller objects, such as bolts or screws. Finally,
the scanned parts are all created using 3D printing. The influence of different surfaces could also be
investigated in future work.

The camera is placed at a fixed position and the object is placed at a known pose. To gather a more
complete point cloud, different cameras could be used to capture different angles of the same object [43].
In this way, partiality can be reduced. The difficulty here lies in the synchronization of the different
cameras and the additional costs. Alternatively, the point cloud can be increased by moving the camera
around the object to achieve a similar result. This is then becomes a SLAM (Simultaneous Localization
And Mapping) problem. An example of a possible implementation, using ICP, is given by Newcombe, R.
A. et al. [31, 28]. Another example of 3D reconstruction is shown by Sungjoon, C. [40].

8.2 Pre-processing

Another step that can be improved is the point cloud pre-processing. In this thesis, the point clouds
are cleaned up by removing the background information, such as the floor and by applying some basic
denoising algorithms based on the removal of statistical outliers. More advanced processing techniques
consist of filtering the point cloud based on a template. This is called guided image filtering [19, 57].
Other filtering approaches are summarised by Han, X. et al. [18]. An alternative approach to filtering
is the reconstruction of the point clouds, to also reduce partiality. TopNet [42] or surface reconstruction
[4] could be used as part of point cloud completion. This also serves as an alternative to using multiple
cameras or moving the camera around the object, as discussed in Section 8.1.

Another area of improvement is related to the ground truth estimation. During the experiments, the
objects are oriented to a known pose and using an estimation of the normal vectors of the table, are
aligned with their templates. However, some corrections need to be made to ensure a good alignment.
Since there is no 1 : 1 correspondence between the points and due to some deformations of the captured
point cloud, it is difficult to define an exact ground truth definition. Another approach could be to use a
marker based system, to determine the pose of the camera in the scene. Alternatively, other registration
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methods can be used as a reference during the experiments. However, since the goal of this thesis is to
compare the different methods, this approach was not considered here.

Finally, the problem of object detection can also be considered. Combined with registration, this would
allow for the system to automatically select the correct template model. The detection can be performed
on the 2D captured image, using Yolo [35]. An alternative would be to apply the detection on the 3D
point cloud directly [61].

8.3 Point Cloud Registration Techniques

In this thesis, six methods were mainly tested, namely RANSAC, FGR, GO-ICP, PointNetLK, RPMNet
and ROPNet. Other algorithms exist, both in the space of global registration methods, as well as learning-
based methods. One example, also applicable to real-world data, is DeepPRO, by Donghoo, L. [25]. Many
other methods exists, a more extensive list of other methods can be found in Appendix A or the Github
page created by XuyangBai.

8.4 Training Datasets

Finally, as mentioned before, a more complex training dataset can be considered, to better capture the
real world scans. Instead of simply removing points or adding partiality, more complex operations can be
looked into. An example is given by Jiwan, K. [23]. Alternatively, the algorithms can be trained on real
captured data instead of synthetically created datasets. However, this would require very large datasets
to be created, for each set of objects, for which the method needs to work.

Alternative cameras (D405) Point Cloud Reconstruction [42, 4]
Multiple cameras [43] Guided Image Filtering [19] PCR methods [25, 27]
SLAM reconstruction [31] Object detection [35], [61] Advanced Training [23]

Point Cloud Capturing }—»’ Point Cloud Processing }—»’ Point Cloud Registration ‘

Figure 8.1: Overview of the different areas of future work possibilities, based on the main steps of this
thesis.


https://github.com/XuyangBai/awesome-point-cloud-registration.git
https://github.com/XuyangBai/awesome-point-cloud-registration.git

Chapter 9

Conclusion

In this thesis, different Point Cloud Registration methods were compared in the context of extended reality
environments, to speed up the authoring process of the virtual assets. Three main research questions
are answered: (1) Which algorithm, for achieving object alignment, works best, in terms of some defined
metrics, specifically in an industrial setting?, (2) For the learning-based methods, is it sufficient to train
the algorithms using the available CAD models? and (3) How accurate does the captured depth image
need to be to achieve satisfying results?.

To answer these questions, the literature was studied to determine a set of registration methods, that
could be applied to real-world point cloud scans. The list of algorithms includes RANSAC, FGR, GO-ICP,
PointNetLK, RPMNet and ROPNet. Metrics were also taken from the literature to study the performance
of these methods. Relative and absolute errors, recall, number of failure cases and required computation
times are the main ones used. The point clouds are created using the Intel Realsense D435i camera. This
device is able to create accurate scans, for medium sized, 3D printed objects in a well lit environment.
The point clouds are processed to remove outliers and deduce the ground truth transformation.

The learning-based methods, PointNetLK, RPMNet, PRNet and ROPNet, were trained on different
datasets. The training data was generated based on the Cranfield and ModelNet40 benchmarks. Different
cases were considered, where noise, partiality (removed points) or even floor information (added points
to mimic a table or floor) was added to the point clouds. PRNet proved to be unstable during training.
RPMNet and ROPNet could easily be trained on most cases, while PointNetLK converged less easily.

Experiments were setup, where parameters, such as the voxel size, bounding box, MSE threshold and
training models were varied. Varying these variables allowed to determine the achievable performance
for each method and to formulate an answer to the main research question (1). In the end, GO-ICP was
found to produce the smallest errors, while requiring the most computation time and being more sensitive
to outlier points. RANSAC, PointNetLK and RPMNet achieved similar results, reaching a performance
close to GO-ICP after applying ICP refinement, but for a shorter computation time. FGR and ROPNet
proved to be the quickest methods, yielding also the largest errors. Thus the method to use depends on
the application and requirements.

The learning-based methods achieved overall a performance similar to the global methods, when trained
on the available CAD models. The answer to research question (2) is thus that the learning-based
methods can be trained on the synthetic dataset, yielding already satisfying results. However, these
methods also require a larger setup effort due to the training process. For capturing the point clouds,
different guidelines were presented as an answer to research question (3). To achieve best performances,
information from the object should be maximized, while environmental clutter should be minimized.
Ideally, the point cloud is cleaned up from any background information such as floors or tables, since this
decreases the performance significantly. In the end, a framework was presented, which allows the reader
to choose a registration method, based on required specifications.

Finally, future work is possible on all steps of the thesis. Different or multiple scanning cameras could be
considered. Processing and training can be more advanced with, for example, point cloud reconstruction
or guided image filtering. Other registration methods, such as DeepPRO can also be considered and
compared to the results presented in this thesis.
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Appendix A

Point Cloud Registration Techniques

A.1 Introduction

In this chapter, the main Point Cloud Registration techniques are discussed. The methods are divided
into ICP-based, Learning-based and Probabilistic methods'. Other techniques, belonging to different
categories are discussed at the end. An overview is given in Table A.1.

First, the problem of Point Cloud Registration is illustrated. After, the basic idea behind each technique
is explained. Their advantages and disadvantages as well as their main application domains are also
discussed. A summary is given in Tables A.2-A.3.

A.2 Problem statement

Point Cloud Registration is the problem of aligning two point clouds with each other by means of a
(non-)rigid transformation. As is explained by Wang, Y. et al. [49] in mathematical terms, if X and Y
represent two point clouds, which means they contain a set of points in the euclidean space R?. Usually,
the original point cloud Y is called the template, while the altered point cloud X is called the source.
Assuming both clouds are linked with a rigid transformation, thus with a rotation matrix R and a
translation vector . The problem of Point Cloud Registration consists of finding the rigid transformation
[R, ] minimizing

Z, (A.1)

1 N

To simplify the notation, it is assumed both X and Y contain the same number of data points N.
However, in practice, this is often not the case, as the data captured from a 3D camera may have a
different number of points and at different locations. The transformation is also assumed to be rigid,
meaning X is created from Y by applying only a rotation R and translation # to its points. In the case
of a non-rigid transformation, shearing and scaling are also applied [27].

In Eq. A.1 m(z;) represents a mapping function, which links each point of point cloud X to its corre-
sponding point in cloud Y. This is further explained in A.3. Different methods, such as DCP and ICP,
define this function in other ways.

A.3 ICP-based methods

Tterative Closest Point (ICP) by Besl & McKay [2] is considered to be a simple but groundbreaking Point
Cloud Registration method. It is an iterative and local method. There are two main steps in the ICP
algorithm, which are repeated until the error metric reaches a sufficiently low value [17]:

ISome techniques belong to more than one class of methods. For such cases, the class making up the bulk of the technique
is chosen.

62
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1. Establish correspondences between point clouds based on geometric information.
2. Solve a least-squares problem in order to find the transformation parameters.
These steps can be further divided into different phases [27] [56], including:

1. (Key) Point Selection Reduce the number of data points by selecting a local descriptor based
on distance or in a uniform or random manner.

2. Matching Estimating correspondences using the euclidean distance or other relevant information
(i.e. intensity, visual information).

3. Point Rejection Identifying which correspondences are invalid and removing them. This is done
based on the euclidean distance, a percentage threshold, RANSAC-based or using other metrics.

4. Error metric establishment & minimization Different metrics (point-to-point, point-to-plane)
are used together with several minimization algorithms such as the Levenberg-Marquardt algorithm.

As mentioned in A.2, the mapping function m(x;) takes on a different form depending on the method.
For ICP, m(x;) is defined as

m(z;,Y) = argmin||Rz; + £ — 93] (A.2)
J

Thus, m(z;,Y) tries to find the closest point in cloud Y to each point z; € X. As mentioned by Wang,
Y et al. [49] this leads to a ”chicken-and-the-egg” problem. To solve Eq. A.1, the correspondences must
first be known. Vice-versa, to find the correspondences, the rigid transformation [R,ﬂ must be known.
For this reason, ICP tries to iteratively find a mapping m*(z;,Y’) and the resulting transformation [R, ﬂ k
at each step k.

ICP is a simple and efficient method, that yields the best results with small transformations [55]. On the
other hand, the method is sensitive to outliers, noise and initialization. This can cause the solution to
converge to a local minimum. The problem scales quadratically and integration of deep learning is also
non-trivial [2]. For this reason, ICP is applied after using a global method, which can be learning- or
probabilistic-based, as a final refinement step [27].

In order to solve the problems of ICP, many variants exist such as GO-ICP and Generalized-ICP. Other
methods such as DCP are based on the same ideas, but use a learning approach instead.

A.3.1 GO-ICP

Globally Optimal ICP (GO-ICP) builds further onto the ICP algorithm but uses a Branch-and-Bound
(BnB) scheme to avoid falling into local minima [27]. It is therefore considered a global method, while
ICP is a local method. The BnB scheme searches the entire rigid transformation space to find a globally
optimal solution for [R, ﬂ . This can be compared to searching along the branches of a tree structure to
find an increasingly more accurate solution. One of the difficulties is defining the boundaries in which the
solution is expected to be found [53]. Bunb is used to solve non-convex problems, such as ICP or NP-hard
problems. For GO-ICP, it guides the solution from ICP along the local minima until it finds the global
optimum [53]. An in-depth explanation of the GO-ICP algorithm is given by Jialong, Y. et al. [53].

The main advantages of GO-ICP are the robustness to noise and outliers, which is also confirmed by the
experiments of Wang, Y. et al. [48] applied on noisy ModelNet40 data. Because of the global estimation,
GO-ICP does not fall into local-minima [27]. However, because of the global approach, GO-ICP has a
much longer computation time. This makes it unusable for real-time applications. GO-ICP is more fitted
for situations in which an accurate solution is requested or when a good initialization is not available [53].

A.3.2 Generalized-ICP

Generalized-ICP is another ICP variant which uses a different approach for the minimization step of Eq.
A.1. Generalized-ICP assumes the points of X and Y to be subjected to a Gaussian distribution. This
leads to the introduction of covariance matrices in Eq. A.1. This method is thus considered to be a
probabilistic approach [39]. Furthermore, it also includes the point-to-plane variant of ICP. This means
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Eq. A.1 is changed to
XN
E= > 1 - (RE: + 1 = a1 (A.3)

to include the information of the surface normal n; at the point g; [39].

The advantages of Generalized-ICP include better resistance to incorrect correspondences and a more
accurate result, while still maintaining the simplicity and speed of ICP [39].

A.4 Learning-based methods

Another class of Point Cloud Registration methods is the class of Learning-based methods. These tech-
niques involve Machine-learning and training a network, using a loss function, to recognize features and
eventually align the point clouds.

These methods can be divided into two classes: correspondence-free and correspondence-based methods.
Correspondence-free methods use only a global description of the point clouds to align them. Important
examples include PointNetLK and PCRNet, which are both based on PointNet. Correspondence-based
methods use a framework inspired by traditional methods such as ICP and use local information of the
point clouds. They try to find explicit correspondences between the two point clouds [56].

In general, Learning-based methods are more robust and faster. They can also be used for other means
such as segmentation or classification. Since real-world data often includes noise and outliers, Learning-
based methods provide a good solution there. The main problem of these methods is to identify invariant
features that can be trained [27].

A.4.1 PointNet

PointNet is not an actual Point Cloud Registration technique. Instead, it is a deep learning approach
to generate descriptors for each point in the point cloud or a global descriptor for the entire cloud. The
network used is called PoitnNet-Cla [56]. However, the results of PointNet are used to apply Point
Cloud Registration based on the generated descriptors. The network generates a resulting vector of a
size irrespective of the number of samples of the point cloud [2]. PointNet itself is also used for other
tasks such as classification or segmentation [2].

PointNet++ is another approach to extracting local features from the point cloud. It is also based on
PointNet [56].

The two techniques mentioned below are correspondence-free methods. These methods are very straight-
forward with their performance depending greatly on the quality of the extracted descriptors. Zhang, Z.
et al. [56] note that ”"the performance is ideal when the point clouds are the same, except for the pose.
However, when there is a large difference between the two input point clouds, the performance depends
greatly on the feature extractor network.”

PointNetLK

PointNetLK is a Point Cloud Registration method based on PointNet. The idea behind this technique is
to use PointNet to achieve a fixed dimensional vector describing the point clouds. A schematic overview
is given below.

MLP = pooling function -
¥(7;) € RX G=¢(X)eRE

]vxz (i=1,.N)e X CR?

¢ : R3*N s R

In the network, PointNet applies a Multi-layer Perceptron (MLP) to each point of X to create a K-
dimensional vector for every point. Afterwards, a pooling function combines this information into a
single global vector G. The pooling function is either a function extracting the maximum or the average.
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According to Aoki, Y. et al. [2], an average pooling function yields better results when working with
noisy data. The goal is then to find the rigid body transformation 7" such that

oY) = o(T - X) (A4)

or in other words, such that the global descriptors of the original and transformed point cloud match.
For this, an interactive algorithm is used similar to the Lucas-Kanade algorithm. The rigid body trans-
formation is then assumed to be

T= 63323(2 §iAi). (A.5)

A; are called the generators of the exponential map and & (i = 1...6) (twist parameters) are found by
training the network [2].

According to Aoki, Y. et al. [2], PointNetLK achieves very high performance, and robustness against
noise and can even achieve good results on untrained classes of data?. Furthermore, it can also be used
to align 2.5D data, which is often available in real-time applications. Lastly, it is also insensitive to the
initial configuration [27]. However, since PointNetLK is an iterative, local technique, its performance
drops for large transformations [55].

PCRNet

Point Cloud Registration Network (PCRNet) is another learning-based, correspondence-free method,
which uses PointNet in a similar way as PointNetLK. However, when the global descriptor is found for
both point clouds, they are concatenated and afterwards a data-driven technique is used to align the
features instead of the Lucas-Kanade algorithm in PointNetLK [56]. PCRNet can be used as a single-
shot method, meaning it does not need to iterate. This makes it especially interesting for high-speed
applications. However, an iterative version of PCRNet also exists, which uses the result of the last
iteration as an input for the network [38].

The experiments of Sarode, V. et al. [38] show that PCRNet is more robust to noise than PointNetLK
and achieves convergence in only a few iterations. It can achieve similar accuracy to GO-ICP but is much
faster. PointNetLK does show better generalizability.

PRNet

Partial Registration Network (PRNet) focuses on Point Cloud Registration for point clouds that only
have partial overlap. This means they only share a part of their data. The goal is to fit the two point
clouds together to achieve a complete picture of the object [49]. PRNet is an iterative, local method
[65]. It is correspondence-free as it does not try to match every point of both clouds, but instead uses
keypoints. The basic idea behind PRNet is explained by the graph below.

@ ’Keypoint detection} Gumbel-Softmax %Keypoint mapping @

Tterate with: 7 = Ri-1gi-1 4 -1

As explained in an article by Wong, W. [50], Gumbel-Softmax is a way of making the function argmax
differentiable. This means the mapping function m introduced in Section A.2, becomes differentiable,
which is not the case for ICP. As a result, the correspondences in ICP are ”sharp”. However, when
working with neural networks, back-propagation of the error is desirable. For this reason, the mapping
function is based on Gumbel-Softmax, so point correspondences become sharper as the problem converges
for a more accurate result. Wang, Y. et al. [49] gives a complete explanation.

As with other correspondence-free methods, the performance of PRNet drops for big transformations
[55]. The method can also be slow [49].

21t must be noted however that the performance of learning-based methods is much lower when applied on unseen
categories of data [55].
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A.4.2 DCP

Deep Closest Point (DCP) is another global (correspondence-based) Point Cloud Registration technique
which is based on ICP [49]. However, it takes a deep learning approach. DCP is a one-shot algorithm,
that differs from ICP by its choice of the mapping function m (Section A.2) [49]. The method can be
summarized in three steps, represented in the scheme below [48].

PointNet/DGCNN | ‘ Pointer generation SVD
XY 1 Common embedding l @'—»

The initial point clouds X and Y are first mapped onto a common high-dimensional space. This can
be done using either PointNet or a graph-based neural network called DGCNN. From the experiments
of Wang. Y. et al. [48], DGCNN provided the best results, as it also incorporates local geometry
information. The resulting features are then used in a mapping function m, which is now defined as

m(z;,Y) = softmax(qﬁygbfi). (A.6)

In Eq. A.6, ¢y represents the embedding of Y and ¢,, the i'" row of the embedding matrix ¢,. The
equation for m yields a probabilistic vector for each point z; € X in relation to Y [48].

DCP results in a reliable solution, even after a single pass. However, it can be improved by using either
an iterative version or by applying ICP to the obtained result. It does not fall into local minima, as is
the case for ICP and is also faster [48]. DCP is also insensitive to the initial configuration, achieving the
same accuracy even for larger transformations [55].

The main disadvantages of DCP include its sensitivity to noise [55]. The performance discussed by Wang,
Y. et al. [48] is mainly based on experiments with synthetic data. It is not ideal for partial-to-partial
registration [49]. Since DCP is a learning-based method, it also performs less accurately on unseen data
[65]. Lastly, the embedding dimension must also be chosen in advance [48].

A.4.3 RPM-Net

Robust Point Matching Network (RPM-Net) is a learning-based Point Cloud Registration approach. It
is a combination of the iterative method RPM and deep learning. RPM itself is similar to ICP, but it
uses a permutation matrix M to assign correspondences. As a result, Eq. A.1 turns into

J K

arg m{nZijk(||Rm} +t— )2 - ), (A7)
MRt j=1k=1

where the matrix M is initialized by

mp 4 e PURT +H—yili—a), (A.8)

The higher the parameter 3, the closer m; i comes to either zero or one, such that m;; € {0,1}. RPM-
Net expands on RPM by using hybrid features instead of the spatial distances in Eq. A.7 and Eq. A.8.
This allows the method to use additional information besides only the spatial information. Moreover,
RPM-Net also updates the values for o and 3 iteratively. The algorithm is visualised below [54].

XY { Hybrid Features } mp; R, 1]
o,

Tt = Rl—lfz—l + tz—l
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From the input clouds, the hybrid features are estimated as well as the parameters o and 8. From this
information, the permutation matrix M is computed, resulting in the rigid body transformation after
applying SVD. The transformation is used to update the point cloud X, such that the method can work
iteratively [54].

RPM-Net is robust to initialization and works well even when not all points have correspondence [54]. It
is also robust to noise [27]. However, RPM-net is slower than ICP and one-shot DCP [54].

A.4.4 ROPNet

Representative Overlapping Points Network (ROPNet) by Lifa, Z. et al. [63] is a learning-based regis-
tration method, specifically designed for solving the partial-to-partial registration problem. While other
techniques such as RPM-Net and PRNet solve this problem in an indirect way, ROPNet explicitly consid-
ers the fact that not all points in the template cloud have a corresponding point in the source cloud. By
establishing an overlap score and finding which points are related, the remaining non-overlapping points
can be removed when calculating the final estimation for the rigid transformation. In this way, the prob-
lem of partial-to-partial registration is shifted to partial-to-complete registration. The main structure of
the algorithm is shown below.

@i’ Initial alignment & Overlap TFMR Representative Points }&»

The two initial point clouds X, Y are the input of the context-guided (CG) module, which finds the first set
of overlapping points. After a first alignment, the Transformer-based feature matching removal (TFMR)
module, removes the wrong correspondences and finally, using SVD, the transformation is computed [63].

Lifa, Z. et al. [63] report the very high performance of ROPNet, outperforming DeepGMR, RPMNet and
RPNet on unseen categories and shapes of data as well as in its robustness to noise.

A.5 Probabilistic methods

A final set of techniques use statistics and probability computations to solve the Point Cloud Registration
problem. The idea is to consider point clouds as density functions and optimize a statistical discrepancy
[27]. The main advantages of using probabilistic methods include a better resilience to uncertainty in the
data [48] and improved accuracy when dealing with partiality [49].

A.5.1 DeepGMR

Deep Gaussian Mixture Registration (DeepGMR) is a global probabilistic Point Cloud Registration
method. The idea is to fit the point clouds to a Gaussian Mixture Model (GMM), which is a weighted sum
of Gaussian distributions in the 3D space. The registration process then tries to minimize the divergence
between the probabilistic distributions [55].

DeepGMR is robust to noise, generalizable and invariant to the initial pose. The solution is found in a
single step, thus making DeepGMR a real-time technique [55].

A.6 Global Registration Methods

The following two methods, RANSAC and FGR, are considered global registration methods [15]. This
refers to the fact that they do not require any initialization. However, the obtained results are more
coarse. Further refinement is possible by applying a local method to the obtained results such as ICP,
which yields more accurate results for small transformations.

Both methods discussed in this section are not learning-based. Instead, features are first extracted from
the point cloud using Fast Point Feature Histograms (FPFH) [36]. The resulting features are then used as
input for the algorithms. Rusu, R. et al. [36] explain the details of the FPFH algorithm. Essentially, for
every point p inside of the point cloud, the k-nearest neighbours are selected and the geometrical relations
between the point p and its neighbours are computed. These properties range from the 3D coordinates
and normal estimations to curvatures. This results in pose-invariant local features representing the model
properties at the point p.
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A.6.1 RANSAC

RANdom SAmple Consensus (RANSAC) was first introduced by Fischler, M. et al. [13] in 1981. It is a
paradigm for fitting a model to experimental data. This is another way of looking at the Point Cloud
Registration problem, where the source contains the experimental data and the template is the model.
The idea behind RANSAC is different from the typical least-squares algorithm. The latter tries to fit a
model to all data points but has no method of dealing with gross errors®. Heuristics are used to remove
these outliers by iteratively removing the most erroneous points until certain criteria are met.

The concept of RANSAC is the following:

’ Select a random subset of points S;

I

’ Compute a model M; using S }

|

’ Find set of points S} within certain error tolerance of M; ‘

If #(Sl) >t f#(Sl) <t

’ Compute new model M7 using S7

’ Select new subset of points S }—

As is clear from the diagram, RANSAC tries to grow a set of points, which fit the model instead of trying
to fit the model immediately to all data points. There are however some undefined parameters, for which
different selection methods exist, such as the number of subsets (S7) to try, the error tolerance and the
threshold t.

RANSAC is specifically designed to deal with erroneous feature detectors. For this reason, it is often used
when working with partial point clouds of environments which need to be combined to create a virtual
map.

A.6.2 FGR

Fast Global Registration (FGR) is another global registration algorithm by Zhou, Q. et al. [59]. It does
not involve model fitting or local refinement as it combines the coarse and fine registration steps into one.
FGR also takes the features from the FPFH algorithm as input and does not recompute the correspon-
dences during execution, allowing for a fast registration process. Correct and false correspondences are
distinguished using a robust estimator p(), which is called the scaled Geman-McClure estimator.

The main benefits of FGR are its robustness to noise and partiality, according to Zhou, Q. et al. [59].
The method is also fast compared to other global registration techniques and has a lower computational
cost. It does not require any initialization but matches the accuracy of well-initialized local methods such
as ICP. Several other papers [54, 63] do however mention the sensitivity of FGR to noise.

3This is the term used for outliers by Fischler, M. et al. [13]
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Appendix B

Metrics

In order to evaluate and compare the different Point Cloud Registration methods, various metrics are
used. This section gives an overview of the most common metrics and a selection for the experiments.

First, in Section B.1, metrics evaluating the accuracy of the rigid motion are discussed. Section B.2
explains the Feature Extraction Metrics, used for evaluating the results of the trained feature extrac-
tor. Finally, Section B.3 mentions some miscellaneous methods for evaluating the performance of the
techniques.

B.1 Rigid Motion Estimation

The output of the Point Cloud Registration problem is the rigid transformation [R, ﬂ showing the relation
between the source X and template Y point clouds. Metrics computed using the rotation matrix and
translation vector are therefore chosen to assess the performance of the results.

B.1.1 Mean Relative Error (MRE)
The Mean Relative Error (MRE) is obtained by first calculating the difference between the ground truth

and the obtained result and then taking the mean. It can be defined for the rotation as well as the
translation, as is explained by Zhang, Z. et al. [56].

Mean Relative Angular Error (MRAE)
The Mean Relative Angular Error (MRAE, °) is defined as

¢ R} .Ry) —1
MRAE = mean (cos1 < race(ByreRot) )) (B.1)

2

where pre denotes the prediction result and gt is the ground truth.

Mean Relative Translation Error (MRTE)
The Mean Relative Translation Error (MRTE, m) is defined as
MRTE = mean (||tpre — tyel2) - (B.2)

B.1.2 (Root) Mean Squared Error ((R)MSE)

The (Root) Mean Squared Error ((R)MSE) is a more detailed metric, computed from the ground truth
and predicted values. They are, for the translation (MSTE, m?) and rotation (MSRE, 02), respectively:

MSTE = mean (Epre — 1) (B.3)
MSRE = mean (R%, Ry —T)°. (B.4)

Taking the root out of these errors results in the Root Mean Squared Error.
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B.1.3 Mean Absolute Error (MAE)

The Mean Absolute Error (MAE) is the mean of the absolute error between the ground truth and
predicted values. For the rotation, the Euler Angles can be used. The error is then expressed in degrees.

B.1.4 Recall (R)

Recall (R) is another metric introduced by Wentao, Y. [55], based on the RMSE. The idea is to identify
the number of pairs for which the RMSE is smaller than a certain threshold. Since the real pairs are
often unknown due to noise in the data, the ground truth transformation T is used instead.

RMSE = \/mean(|Tyu(&;) — Tpre (&)} < Threshold 7 (B.5)

While the before-introduced metrics should approximate zero as close as possible, recall should converge
to one.

B.1.5 Area Under Curve (AUC)

A final metric for evaluating the rigid motion solution is the Area Under Curve (AUC) metric by Vinit,
S. [38]. The success ratio is defined as the ratio of experiments that are considered a success over the
total number of experiments. The threshold for defining whether or not an experiment is a success is
called the success criteria, which can for example be an allowed rotation error. AUC is then defined as
the area under the curve obtained by plotting the success ratio as a function of the success criteria. AUC
is a measure of registration success. The higher the value of AUC, the better.

B.2 Feature Extraction Metrics

Another set of metrics discussed by Zhiyuan, Z. [48], aims to analyse the accuracy of the found corre-
spondences. These metrics are of more importance to evaluate the found features. The aim of this report
is more on the Rigid Motion estimation. Nevertheless, they are mentioned for completeness.

Feature-match Recall

Feature-match Recall expresses the percentage of pairs found between point clouds X and Y, which can
predict the pose with high confidence.

Registration Recall

Registration Recall aims to express the number of overlapping fragments with the ground-truth pose that
can be correctly identified.

B.3 Other metrics

Computation speed

Some Point Cloud Registration Methods, such as Generalized-ICP, achieve high accuracy but are com-
putationally slow. In real-time applications, speed is a crucial parameter. Hence the use of computation
speed to compare the different techniques.

Coefficient of determination (R?)

The Coefficient of determination (R?) is a statistical tool indicating the accuracy of a prediction. It is
most easily understood by looking at the problem of fitting a linear curve to some data points as shown
in Figure B.1. The closer the value of R? gets to one, the better the fitting. R? is defined as

SSD

2
=1 - ——
R TSS

(B.6)
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where SSD indicates the Sum of Squared Distances (the blue lines in Figure B.1),

SSD = Z\fpre(xi) —uil?, (B.7)

with fpre the fitted curve and y; the data points. T'SS is defined as

TSS = |y — I, (B.8)

with ¢ the mean of the data points ;.
The Coefficient of determination is also used by Yue, W. [49] as a metric for Point Cloud Registration.
A definition is not given but based on Eq. B.6 - B.8, the following formulas can be used:

SSD = || Tu(:) — Tpre(Ti)13, (B.9)

where &; € X, T is the ground truth and T, the predicted rigid transformation.

7SS = |& — 3 (B.10)

® Data
—— Prediction
—— Error

R?=10091

y-axis

X-axis
Figure B.1: Example of the Coefficient of determination metric R2.

(Modified) Chamfer distance

The Chamfer distance is another metric, which computes the minimal distance between points of two
point clouds. It is mentioned and modified by Zi Jian, Y. [54]. The reason why this metric is an interesting
one compared to the metrics in Section B.1, is because it does not penalize alternative solutions in the
case of symmetry. Furthermore, since RPM-Net [54] is especially effective in the case of partial point
clouds, the metric is modified to

- 1 1
CD:—E min 5—42—1——5 min ||Z — 7|2, B.11
|X| 2 ge H yH2 |Y| Z Fex || y||2 ( )
reX yey

Yeiean clean

where X, Y are the partial point clouds and X jcqn, Yeican are the complete point clouds.



Appendix C

Code

In this chapter the layout of the code, that is used during the experiments, is discussed. The files are
all written in the Python programming language. The goal of this chapter is to give an overview of the
structure of the code and the available functionalities. Specific information about the individual functions
is given in the related chapters or as comments inside the Python files. The full package of code used,
can be found at the project Github page.

C.1 General Layout

The package is subdivided into different modules. The functions inside these modules are called upon
from inside the main.py file. The following modules are available:

e _test Contains a set of Python files to perform Point Cloud Registration with the desired method.
Each of these functions has the same type of input and output. The input consists of an .hdf5 file
containing the template point cloud, source point cloud and the ground truth transformation. The
output is saved inside a folder, bearing the same name as the used method. This folder contains
a .hdf5 file with the found transformation, as well as the original point clouds and ground truth
solutions.

e _train Contains a set of Python files to train the learning-based registration methods. The training
is further discussed in Chapter 5. The functions require a training and testing dataset and return a
trained model. This model is saved inside the toolboxes folder, under the respective registration
method.

e datasets Holds the different datasets of CAD models that are used. In this case, it contains the
CAD models used in the experiments and the ModelNet40 dataset. These are discussed more in
depth in Chapter 4.

e h5 files This folder contains a set of functions to pre- and post-process the different file types into
the required .hdf5 files. The obtained scans from the experiments and a series of various produced
.hdf5 files is also included. These steps are further discussed in Chapter 4.

e misc Is a collection of miscellaneous functions with different utilities. This includes computing the
metrics used for comparing the results and visualising the obtained transformations.

e toolboxes In this folder, the different toolboxes are added. These toolboxes mainly contain the
required files to make the different Point Cloud Registration methods work. The most prominent
packages here are the learning3d toolbox [37], ROPNet [63] and GO-ICP [53, 34].

The goal of this report is not too explain the details of every Python file. The algorithms themselves
are only implemented from the authors source code. The remaining files are used to efficiently perform
the experiments. The results of the registration are also added on the Github page, together with the
created codes. Further documentation is available inside the files in the form of comments. The main.py
files control the different tools available and should provide a good starting point for applying the code.
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C.2 Toolboxes

Several modules and packages are used to perform the registration methods, visualise the point clouds
and process the data. The main ones are described in Table C.1.

APPENDIX C. CODE

Table C.1: Summary of the libraries and modules used in the package.

Module Description Application

PyTorch Machine-learning module for Python Training, testing of learning-based
methods and tensor computations.

Numpy Module for array operations Point cloud data transformations, error
computations

Open3D [60] Open-source library for handling 3D Point cloud visualisations and transfor-

Learning3D [37]

ROPNet [63]
GO-ICP [53]
CUDA

data

Library of common registration meth-
ods!

Library for ROPNet registration
Library for GO-ICP registration
Module for accessing GPU capabilities

mations, ICP, FGR, RANSAC
PointNetLK, RPMNet, PRNet

ROPNet
GO-ICP
Accessing GPU

1The methods are implemented using the source code of the original methods.



Appendix D
Training

This chapter discusses the training of the learning-based methods more in depth. The method of gener-
ating the training files is further explained in Section D.1. After, the results of the training process and
its validation are considered for PointNetLK, RPMNet, PRNet and ROPNet in Section D.2. The chapter
concludes with a short discussion on the feasibility of the learning based methods.

D.1 Training Files Generation

As mentioned in Chapter 5, different variations of data can be created, using some basic guidelines as
proposed in the literature [54, 2, 49, 63, 48, 38]:

e The objects are sampled with 1024 (or 2048) points.

The point clouds are shifted, such that their means are placed in the origin.

The point clouds are rescaled to fit inside a unit sphere.

Translations are limited to be within a [—0.5,0.5] range.

Rotation are created about any random axis, limited to a [0°,45°] range.

e Noise is added according to a normal distribution with zero mean and a standard deviation of 0.01,
N(0,0.01). The noise is clipped to be within a [—0.05,0.05] range.

e Partiality is achieved by removing a percentage of points in a certain direction.

In Section D.2, the results of training the different learning-based methods are discussed. Special cases
and findings for each method are mentioned in respective subsections (D.2.1-D.2.4). Each method is first
trained and afterwards validated with a new (synthetic) dataset, consisting of 100 new transformations.

D.2 Training Results

The training process depends on some important parameters, including the training data itself, the
batch-size and the number of epochs. During training, the method applies registration on the data and
compares the result to the ground truth estimation. From this, a loss (error) is computed, which is used
to adapt the model parameters. The basic idea behind this, is to guide the model towards the lowest
loss, by adapting a gradient-descent approach. Instead of adapting the loss after each individual case,
it is also possible to compute the loss over multiple situations, before adapting the parameters. The
benefit of this, is to allow the algorithm to generalize better and to converge more quickly to the optimal
solution. However, this comes at the risk of overfitting to the data and a higher demand on the memory.
The amount of cases combined before adapting the parameters is called the batch-size. A batch-size of
one corresponds to the case where the parameters are updated after each solution. A higher value of the
batch-size, means that more objects are combined before updating the parameters.

In order to allow the algorithm to learn the features of the objects and to prevent overfitting, the
training data is run multiple times trough the method in a random order. The total amount of times the

7
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algorithm moves through the complete training data, is called the number of epochs. As the number of
epochs increases, meaning the algorithm has seen the data multiple times and been able to capture the
important features, the loss should decrease. Once the loss has converged to a low value, the training is
stopped. Ideally, the number of epochs should be sufficiently large, such that the loss reaches its lowest
value.

During training, the algorithm is not only applied on the training set. The method is also used on another
dataset, called the testing dataset. This dataset contains data, constructed in exactly the same fashion,
however each iteration differs from the training set. The method is then verified on this testing set, which
is not used for training, in order to asses the generalization properties. When the testing loss achieves a
minimal value, the parameters are saved. In the end, the model used, is the one that achieves the lowest
loss during the training cycle on the testing data.

Care must be taken to initiate the training process correctly. A too low batch-size may lead to the loss
decreasing very slowly or not at all, leading to a model that is underfitted. This typically leads to a loss
for training and testing that remains high, as in Figure D.1la. On the other hand, the algorithm should
be able to generalize. This means it should be able to still yield satisfactory results when applied to new
data, on which it is not trained. If the batch-size is chosen too large, the algorithm may overfit the data.
As a result, it will only achieve high performance for data on which it is trained, but not on never-before
seen data. In this case, the training loss decreases to a low value, while the testing loss remains high.
This is illustrated in Figure D.1b. The process of training is summarised in the pseudo-code Listing D.1.

Training and Validation Losses (Frobenius) Training and Validation Losses (Frobenius)
0.8+ Training Training
—— Validation 0.8 —— Validation
0.71
0.6
0.6 1
0.51
@ &
S 041 S 0.44
0.31
0.24 0.2
0.19
0.01 0.01
T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 0 20 40 60 80
Number of Epochs Number of Epochs

(a) Underfitting, both training and testing losses do (b) Overfitting, only the training loss converges, batch-
not converge, batch-size is 4 size is 7

Figure D.1: Example of the evolution of the training and validation loss as a function of the epochs, for
PointNetLK on noisy data (0.01 standard deviation) . In this case, the too low batch-size (a) leads to
underfitting of the data, as both the validation and training loss do not converge to a lower value. A too
high batch-size (b) leads to overfitting, as the training loss converges but the validation loss does not.

Listing D.1: Training process basics

for epoch in range (number_epochs):

#TRAIN DATA
for batch in range (number_batches):

update (parameters)
iteration ++

(end for)

#TEST DATA

(end for)

The results of training the learning-based methods are summarised in Table D.1.

As can be seen from Table D.1, the errors are all low, with values of R? close to one, rotational errors
(Relative, RMSE, MAE) at most 3° and small absolute translation errors (MAE). It is important to
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note that the translation errors are expressed in millimeters. However, as mentioned in Section D.1, the
training objects are re-scaled to fit inside a unit radius sphere. This means, the objects do not have
the same scale as in the real world. Instead, they are much bigger, due to the scaling operation. A
comparison for the Base-Top_Plate object is shown in Figure D.2.

@ Training Size

® Real Size

b

l 22.3972cm 216cm

HOROBORORORORORO

Figure D.2: Difference in the sizes of the training and captured point clouds. The blue point cloud is
scaled to fit inside a unit sphere (with a radius of 1m considering the convention used). The red point
cloud is scaled to the size of the captured data in cm.

The recall values are sometimes (RPMNet, partial, floor data) lower, for the same reason. For these
cases, the translational errors are of the order of 2cm on average. Since the recall values are taken with
a threshold of 1em, this explains the lower percentages.

Finally, during training, only one ground truth solution is considered. Most objects contain some symme-
try planes as mentioned in Section 4.1. This results in some situations where the obtained transformation
could be considered satisfactory, even though it differs from the ground truth solution. However, con-
sidering the results in Table D.1, there does not seem to be a big impact on the results. Instead, the
symmetry of the objects results in bigger challenges during the training process itself. It is possible for
the method to not converge due to this problem, such as is the case for PointNetLK (Section D.2.1-D.2.4).
The results mentioned in Table D.1 only include instances of converged training sessions.

The subsections below detail the findings for each method more in depth.
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D.2.1 Training PointNetLK

81

PointNetLK is the most sensitive to the presence of symmetric objects. The method is first trained on
normal data, without the addition of noise or partiality. The evolution of the loss is shown in Figure D.3.

Training and Validation Losses (Frobenius & RMSE-Feature losses)
2.00 4

Training
1.75 4 —— Validation
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6 2‘5 5‘0 7‘5 160 1%5 15‘30 1%5 260
Number of Epochs
Figure D.3: Training and testing loss evolution as a
function of the number of epochs for PointNetLK,
trained with a batch-size of 32, Colab-GPU, on
all the data, 820-205 training-testing distribution,
errors validated
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Figure D.4: Training and testing loss evolution as a
function of the number of epochs for PointNetLK,
trained with a batch-size of 20, Colab-GPU, no
Round-Peg, 820-205 training-testing distribution,
symmetric function on average, errors validated

The loss is indeed decreasing when the amount of epochs increases as one would expect. However, the
losses show some peaks, where their values suddenly increase. One explanation for this is the use of
symmetric objects. Since the algorithm is trained by comparing the estimated transformation and the
ground truth, it is possible for the solution to lead to a high loss, even though it matches one of the
(many) symmetric solutions. This effect is also illustrated in Figure D.5 where the results of training are
shown for epoch 62. This indeed lines up with the higher values of Figure D.3 around this epoch.

When introducing noise to the training data, additional complexity is added. Due to the noise, there no
longer exists a 1 : 1 correspondence between points in both point clouds. Different batch-sizes are tried
to achieve a convergence of the loss, however, in the end the Round-Peg object was removed from the
training set. This object has an infinite amount of symmetric solutions. Combined with the additional
noise, the training did not converge. When the object is removed, the loss evolves as in Figure D.4.

The loss now converges to a low value. Further investigation of the peaks around epochs 79, 167 and
214 shows some failures of registration for the Base-Top_Plate and Shaft-New objects here, as shown in
Figure D.6. Lastly, the algorithm is trained by choosing the symmetric function parameter as average
instead of max. The symmetric function refers to one of the parameters for PointNetLK. As mentioned
by Aoki, Y. et al. [2], choosing the symmetric function as average improves the results for noisy data.

(@) (b) (© (d) () (b)

Figure D.5: Examples of failure cases during the training
process of PointNetLK on normal data, after epoch 62 in
Figure D.3. The main failures are observed for the Shaft-
New (a) and object, or due to symmetric solutions for the
Round-Peg (d) and Square-Peg (b,c) objects.

Figure D.6: Examples of failure cases
during the training process of Point-
NetLK on noisy data, for epochs 167
and 214 in Figure D.4. The main fail-
ures are observed for the Shaft-New (a)
and Base-Top_plate (b) objects.

Other datasets including partiality or floor information are tried, but lead to the algorithm not converging
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for the considered objects.

D.2.2 Training RPMNet

RPMNet is trained on similar datasets with normal and noisy data. However, RPMNet seems to be
more robust to the presence of symmetric objects. Thus, the method is also trained on noisy data with
all objects present, but also on partial data and even data containing floor information. An important
comment is the different loss definition used in Figures D.7-D.8. The implementation of the RMSE-
Feature loss in the available code does not work in the case of a different number of points between the
two point clouds. For this reason, it is removed from the loss computation in some training sessions. The

batch-size is also chosen smaller than for PointNetLK, since better results are obtained.

Training and Validation Losses (Frobenius & RMSE-Feature losses)
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Figure D.7: Training and testing loss evolution as
a function of the number of epochs for RPMNet,
trained with a batch-size of 8, PC-GPU, on all the
data, 820-205 training-testing distribution, errors
validated
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Figure D.8: Training and testing loss evolution as
a function of the number of epochs for RPMNet,
trained with a batch-size of 8, Colab-GPU, on all
the data, 820-205 training-testing distribution, er-
rors validated

D.2.3 Training ROPNet

Similarly to RPMNet, ROPNet is also trained on normal data, noisy data and floor data. From the
results in Table D.1, ROPNet achieves a better performance over all metrics than both PointNetLK and
RPMNet in almost all cases.

D.2.4 Training PRNet

PRNet is the final learning-based method considered. However, after running different training cycles, it
is concluded PRNet is too demanding to be trained successfully. One attempt is made by training the
algorithm with only a single object. The results are shown in Table D.1

From these results it is clear PRNet is already outperformed by the other learning-based methods on the
synthetic dataset. This is also observed by Choy, C. et al. [7], who mention issues with high-variance
training losses and crashes during training. Considering also the amount of time required to train the
algorithm, it is not considered during the further investigation of the methods. The issue of memory and
time is further described in Section D.3.

D.3 Learning-based Methods Feasibility

A major consideration when using learning-based approaches is the availability of sufficient computation
power. A good example of this is the PRNet algorithm. This method specifically requires, at least in the
tests performed for this thesis, the most computing power and memory. A small comparison is given in
D.2.

Table D.2 gives an overview of the required computation time for different possible GPU’s. From this
table it is clear that training the algorithm on a GPU with less than 15G B of memory becomes infeasible.
Google Colab, while providing a more powerful GPU, limits the usage using computation units (CU). In
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Table D.2: Overview of the training process for PRNet on different runtimes. The total computation
time is computed for Ny = 200. The bottom half of the table shows the available CU, CH and maximal
epoch that can be computed, given the 100 available computation units, for the different runtimes. The
number of computation units is not limited when training on a personal device or the basic Google Colab
plan. This is indicated in the table as /. Abbreviations: Tx - Time per epoch, Ng - Total number of
epochs, HR - High-ram usage, GPUp - Premium GPU, CU - Computation Units, CH - Computation
Hours, BS - Batch Size

Variable | Laptop | Google Colab | Google Colab Pro

Runtime Type | GPU 8GB GPU 12GB GPU 14.76 GB GPU + HR GPUp + HR
Tr [min] 252.5 16.58 18.25 17.87 4.13

Tr X Ng [h) 841.7 55.27 60.83 59.57 13.77
CU/h 7 i 1.96 2.05 13.08
Max. CU / / 100 100 100
Max. CH / / 51.02 48.78 7.645
Max. Epoch / / 167.7 163.8 111.1
Max. BS 4 8 8 8 22

total, 100 units are available. These decrease while using the GPU at a rate depending on the runtime
type. For PRNet, it is thus only possible to reach epoch 111 in a time of 8h. In Sections D.2.1-D.2.2,
reaching an epoch of 111 is not always required to achieve convergence of the loss. However, as also noted
by Choy, C. et al. [7], the training of PRNet is not very stable and can lead to crashed and high-variance
losses.

The training in general for the different methods can take a significant amount of time and requires a lot
of computation power. Besides this, the dataset must be correctly constructed. Some datasets are too
specific and will not lead to convergence of the method. The more difficult the training set becomes, the
more difficult it is to train the method on this dataset and the more danger of overfitting if not sufficient
data is provided. Training on a simpler dataset requires less effort and time, but may lead to a worse
accuracy in the results. This is schematically illustrated in Figure D.9.

The different types of training models are proposed based on the literature. However it is clear that
the datasets, constructed as in Figure 5.1, are still not a perfect description of the real world scans.
More advanced modelling is possible, although requiring more pre-processing and a longer training time.
Additionally, other loss functions could be considered to take into account the symmetry of the objects.

1 Trainability
Accuracy }
Normal Noisy Partial Noisy & Partial Floor Floor, Noisy & Partial
Data Data Data Data Data Data

Figure D.9: Schematic representation of the compromise between accuracy of the training set in rep-
resenting the real world scans and the ability the train the method. The different datasets are added
according to their complexity.



Appendix E

Experimental Results

In this chapter, some additional results from the experiments are shown. The main parameter study can
be found in Chapter 6. Conclusions are summarised in Chapter 7.

E.1 Zero Mean

Table E.1 illustrates the effect of centering the point cloud for GO-ICP, RANSAC, FGR, RPMNet and
ROPNet. As discussed in Chapter 6, the best results are considered for the other experiments.

E.2 Global Registration Methods
E.2.1 Bounding Box

The R? metric is not the best metric to use when there are many outlier points. As a reminder, the
result of registration is considered unsatisfactory when the coefficient of determination R? is negative
and the rotational error (MRAE) is larger than 120°. The R? value is computed by considering the sum
of squared distances (SSD) between the result and the ground truth and the total sum of squares (TSS)
between the result and its mean. Since there are more points, that are spread out, the distance to the
mean (TSS) is, on average, larger than the distance between the result and the ground truth (SSD).
Thus, the ratio of SSD and TSS is typically small, leading to a higher value of R, since

SSD

2
=1—-—.
R TSS

(E.1)

For this reason, the amount of failure cases is not necessarily representative for the performance of the
results. The recall value determines the amount of points, for which the mean-squared error (MSE) is
lower than a given threshold.

The Mean Relative Error is only based on the found transformation matrix and is thus a better fit to
asses the performance in this case.

84
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E.2. GLOBAL REGISTRATION METHODS
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Figure E.1: Effect of the bounding box size on the Mean Relative Error (MRE) for RANSAC, for four
objects. The first data point is taken from the previous experiments, at the same voxel size, for the
cleaned up point cloud. The errors do not show a clear trend for most scans. This can be related to the
fact that, some scans taken from a certain pose, may benefit from the additional points, as this can help
to better identify features. However, near the end (BB = 1.8), the error seems to increase for almost all
objects. The angular (-e-) and translational (-e-) errors show overall a similar evolution.
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Figure E.2: Effect of the bounding box size on the Mean Relative Errors (MRE) for FGR, for four objects.
The first data point is taken from the previous experiments, at the same voxel size, for the cleaned up
point cloud. The errors now show a more clear evolution for Pendulum and Range-Hood. Again, this is
most likely due to the specific scans, which benefit from the additional points. Except for the Separator,
The angular (-e-) and translational (-e-) errors show a similar evolution.

As can be seen from Figures E.1-E.2, the errors show again a more clear trend for FGR, where they are
generally increasing. For RANSAC, this trend is more difficult to identify. The reason for this could lie
in the scans that are used during the experiments. Since, for each object, different poses of the objects
are considered, some scans might benefit from the additional points added through the larger bounding
box. In some cases, most notably, the Range-Hood object (Figure E.1), the error even drops below the
value obtained for the cleaned up point cloud. However, for this specific object, the bigger bounding box
could indeed prove useful. Due to the cleanup process, some information is lost around the bottom of
the object, which is recovered by increasing the bounding box, as shown in Figure E.3.

For a very large bounding box, which is increased by 80%, most errors show again an upwards trends.
For FGR, the errors seem to increase over almost all objects, except the Separator. Again, the increased
bounding box can yield some additional information, used to find features in the point cloud, leading to
lower errors. It should be noted too that, for this specific object, the error only changes by a couple of
degrees with a changing bounding box size.

Another important comment is that the errors are only computed over the scans, which are not considered
to be failed. Again, this means scans for which R?> > 0 and the MRAE < 120°. Looking at the
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BB=1.0 BB=1.2 BB=1.4

Figure E.3: By increasing the bounding box for the Range-Hood object, additional information is recov-
ered, that is used to better identify features.

distribution of the successful and failed scans, it is clear that this varies a lot between bounding boxes.
For some values of the bounding box, certain scans may perform better, while not for another value. This
is yet again related to the fact that some scans can benefit from the additional points, while others do
not.
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