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1	 Abstract


Data analytics has been a major part in American football to allow for evaluation of both player 
and team performances, with a significant amount of data being readily available. Here, a more 
in-depth analysis in the area of pass rushing and pass blocking will be done by using K-Nearest 
Neighbor (KNN) machine learning models to find a more precise metric of determining pressure 
created by the pass rush. Additionally, KNN would be used to predict the motion of a pass 
rusher, which would then be used to predict pressure created in that new location, allowing for 
the creation of an entirely new metric, by comparing the true pressure with the predicted one. 
An extensive analysis with these new metrics would then be conducted, giving American football 
players and coaches new insights into player and team performances, which can be used to 
improve the quality of the game, by the means of performance, while at the same time creating 
new ways of focusing on the safety of the Quarterback. Finally, a dashboard was build on an 
HTML-based webpage, visualizing the new metrics for a better understanding of its concepts.


2	 Introduction


2.1	American Football and Data Science


American football has been the most popular sport in the United States since 1972, but while 
not claiming the top spot outside the United States, the sport has been slowly expanding over 
the last several years.1 In 2007, the National Football League (NFL), the largest American 
football league in the world, played their first game on international ground in London, and has 
since then, as of 2023, played 44 games outside of the United States in the United Kingdom, 
Mexico, and Germany, showing a rising interest in the sport around the world. An estimated 200 
million people have watched the 2022 Super Bowl, seeing the Kansas City Chiefs beat the 
Philadelphia Eagles 38:35.2 Approximately 56 million of these views stem from outside of the 
United States, showing an increase of 7% compared to 2021.3 Due to the fact that American 
football is deeply rooted in the United States’ culture, US Americans typically grow up with the 
sport and get familiar with it from a very early age. When this is not the case (like for many 
non-US Americans), an entry into the sport can often be fairly difficult, as, to a layman, the 
game itself from the outside can look quite confusing and complex. The game flow can appear to 
be chaotic, as all 22 players on the field are tasked with a certain operation, which means that 
every player is in motion, throughout the entirety of a play. But, some players move away from 
the ball, while others run towards it, some players seek for separation from their opponents, 
while others actively move towards one another. These, and many more small concepts together 
make up the game of American football. A key factor, though, is the fact that American football 
(unlike its European counterpart), is very static. It can be compared to tennis, where one point 
is played after another, and once a point is finished, both players reset and prepare for the next 
point. The exact same thing happens in American football: once a play is over, it is “called dead” 
- the ball may not be advanced any further, and no more tackles are allowed to be made. The 
players then regroup and start a new play. This makes the sport incredibly interesting to both 
the fan, as well as to data scientists. For the fan, from a tactical standpoint, as the sport mimics 
the game of chess, where one team reacts to the tactics of the other. For the data scientist, due 
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to the fact that the game is so repetitive, with the same formations and motions being repeated 
over and over again, data collection and analytics have become a main focus point for the NFL. 
With this in mind, the NFL, in cooperation with NFL Next Gen Stats and Amazon’s Web 
Services, started implementing a new technology in 2014, for better and more precise tracking 
and data collecting.4 As a result, data analytics has become a vital part in every team’s 
operations as the competitiveness of the sport undoubtably leads to every organization looking 
for every possible inch of advantage that can be gained over the competition. Naturally, the NFL 
is constantly looking for new and better ways to analyze the collected data, to improve the 
game, both from a performance, as well as a safety perspective, as it is not only important for 
the teams to make the game better, but also safer for all of the players. Under this premise, the 
“NFL Big Data Bowl” was created in 2019, a yearly competition for data scientists to emerge 
themselves into a specific area of the game and to look for new and creative ways to improve the 
sport.

	 For this thesis, the data provided by the NFL Big Data Bowl 2023 was used to create a new 
metric to analyze player and team performance, based on machine learning algorithms. But, 
before going more in depth about the task at hand, the next section will be dedicated to a brief 
explanation of, and guide for the game of football, to give the reader a better understanding of 
the sport, as well as familiarize them with specific terminology used in American football.


2.2	Introduction to American Football Terminology, Rules, 	 	
	 	 and Tactics


2.2.1	 The Basics


While there are many variations of American football (professional, collegiate, high-school, etc.), 
for which the rules differ slightly, the core of the game is always the same. To clarify, here, only 
professional, NFL football will be considered.

	 The game is played on a field that is 120 yards in length and 53.33 yards in width. The last 
ten yards on each side of the field are called the end zones. The small lines on the field are the 
yard markers, while the big numbers indicate how many yards one is away from the closest end 
zone. A representation of an American football field can be seen in Figure 1.
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	 Figure 1: Illustration of an American Football Field



	 A game consists of four quarters, each of which being 15 minutes long. At any point of the 
game, there are 22 players on the field, 11 from each team. The team that is in possession of the 
ball is called the offense, the other is called the defense. The ultimate goal of the game is to 
have a player end up in the opponent’s end zone, which can be achieved by either running the 
ball into the end zone, or catching it in it. This achievement will be rewarded with 6 points and 
is called a touchdown. While there are many different, alternative ways to score points (e.g. 
kicking the ball through the goal posts), those will be unimportant for this thesis.

	 As mentioned earlier, the game consists of plays, which give the offense a chance to advance 
the ball towards the opponent’s end zone. Whenever a team gains possession of the ball, that 
team will get 4 plays (also called tries or downs) to advance the ball 10 yards. Should the 
offense succeed in doing so, they will receive another four attempts to again advance 10 yards, 
until they eventually reach the end zone. As an example: A team gains possession of the ball at 
their own 35 yard line (so 35 yards away from their own end zone), they now have what is called 
“1st down and 10”. Lets assume that with their first play, they advance the ball 4 yards to their 
own 39 yard line. It is now “2nd down and 6”. With the next play, the team advances the ball 8 
yards to go to their own 47 yard line and therefore break the needed 10 yards. They now get the 
ball at their 47 yard line at it is again 1st down and 10. Should the offense not manage to 
advance 10 yards in 4 tries, the defense receives possession of the ball and therefore becomes the 
offense.


	 Several scenarios can cause a play to be over:

	 1. The player with the ball was tackled by the defense.

	 2. The player with the ball has stepped outside of the field.

	 3. The ball was thrown but not caught and has hit the ground

	 4. The player reaches the end zone

	 

	 If the ball is thrown, there are three possible scenarios:

	 1. The ball is caught by an offensive player, then the pass is called complete.

	 2. The ball is not caught by any player, then the pass is called incomplete.

	 3. The ball is caught by a defensive player, then the pass was intercepted and the defense 		
	 gains possession of the ball and becomes the offense.


	 If a player is in possession of the ball but it falls out of their hands, it is called a fumble and 
whichever team first picks the ball up will be in possession of the ball.


2.2.2	 Player Positions, Formations, and Tactics


American football is a highly tactical game, especially due to the fact that is not fluid. Before 
every play, both teams are able to regroup and come up with a new strategy to advance the 
ball/stop the offense from doing so. Every player on the field has a specific role and only if the 
team works together, execution of the game plan is possible. A typical formation of both the 
offense and the defense together with the name of each position can be seen in Figure 2. The 
offense can be separate in the following groups:
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	 The Passer/Quarterback (QB): In most cases the most important player on the field. The 
Quarterback can be described as the chess master of the game, as the entire play runs through 
them. They, together with the coaches, come up with the strategy before the play, give 
directions to every player on the offense on where to move, and are the ones to decide whether 
to throw the ball or to run with it. They are tasked with the job to remain calm in a chaotic 
environment, to choose which player to throw the ball to, and throw a pass precise enough for 
their teammate to catch, all while being chased by defensive players. A good Quarterback is 
often key to long-term success for teams, which is why the Quarterback is the best paid position 
in the NFL.


	 The Wide Receivers/Running Backs (WR/RB): Often referred to as the “skill players”, 
they are the players who receive the ball from the Quarterback, either in the form of a throw 
(for the Wide Receivers) or in the form of a handoff (for the Running Back). Prior to the play, 
the Quarterback instructs these players where they have to run to in the form of routes. These 
routes are predetermined, but the Quarterback has to be fully conscious of all the routes of the 
Wide Receivers and Running Backs, as the chemistry between the players and the timing of the 
throw has to be just right for the Wide Receivers to even have a chance to catch the ball. How 
routes can look like for a hypothetical play can be seen in Figure 3.


	 The Pass Blocker/Offensive Line: The Right Tackle (RT), Right Guard (RG), 
Center (C), Left Guard (LG), and Left Tackle (LT) together make up the entirety of the 
Offensive Line. Their entire job is to protect the Quarterback from the defense. Throughout 
any play, a certain amount of defensive players will try to put pressure on the Quarterback by 
trying to get to, and tackle them, or at least to allow them as little time as possible to throw the 
ball and therefore not allow for the Wide Receivers to get to the positions where they are meant 
to be at. The Offensive Line acts as a shield around the Quarterback and tries to block those 
defensive players from getting through. For right-handed Quarterbacks, the Left Tackle is 
usually the most important position in the Offensive Line, as they are the player who protect 
the Quarterback’s blindside. For a right-handed Quarterback, when they prepare to throw, their 
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Figure 2: Potential formation of the offense on the bottom and the defense on the top, with 
the offense lining up with four Wide Receivers and one Running Back and the defense with 

four Defensive Linemen and three Linebacker



left leg will be in front, with their upper body facing to the right. With the players wearing 
helmets, their view is already narrowed, meaning that they are very limited in their views of the 
left side of the field. If a defensive player is running towards them from the right side, they are 
typically able to recognize that threat and react to it, but with their left side being “blind”, a 
tackle to the Quarterback can usually have worse consequences, as they are not able to brace 
their body for impact. This is why the Left Tackle is that important in doing as good of a job as 
possible from avoid the defense from breaking through to the Quarterback.


	 

	 There are countless opportunities for the offense to structure a play. As mentioned before, 
they can choose between passing and running the ball. They may choose to engage more players 
than just the typical five Offensive Lineman in the pass block to give the Quarterback more 
time, or they may choose to engage more Wide Receivers to increase the chances of a 
completion, while accepting the fact that they will have less time to throw.


	 Similarly, the defense has many different options to line up themselves and react to the 
formation of the offense. Generally speaking, the defense can be split into two groups: the Pass 
Rush and the Coverage. The Pass Rushers are the direct opponents to the Offensive Line, 
therefore are the players trying to break through the Offensive Line to get to the Quarterback. 
The Pass Rush is often referred to as the Defensive Line and consists mainly of the Defensive 
End (DE) and the Defensive Tackle (DT), but these positions have further subcategories. 
The Coverage on the other hand, which mostly consists of the Cornerback/Defensive Back 
(CB) and the Strong and Free Safeties (SS/FS), are tasked with not allowing for the Wide 
Receivers to catch the ball or tackle them if they do catch it. In an in-between position are the 
Outside and Inside Linebacker (OLB/ILB), these are players who can be engaged either in 
the pass rush, or drop back and help out in the Coverage. The way a defense lines up before a 
play is called a formation, which can take on many different forms. The defense may choose to 
play man-to-man coverage, meaning that every defender chooses one offensive player to be 
assigned to, or they may play zone coverage, where the defenders have a specific zone that 
they are tasked with defending. These coverages are further categorized, for example Cover 0, 
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Figure 3: An example of the routes the WRs and the RB could run for a hypothetical pass 
play. The exact location of a turning point is determined prior to the play and known to 

both the WR/RB and the QB.



Cover 1, or Cover 2, which can indicate how many Safeties are on the field, or how many 
Linebackers are engaged in the pass rush. It can be seen how highly complex every play can 
become, and this is again something the Quarterback has to be aware of, as they are the ones 
that have to read the formation off of the defense and analyze how many defenders might be 
potentially rushing and how many will be in coverage, as these factors can create an imbalance 
very quickly. Naturally, if the defense decides to rush the Quarterback with more players than 
are available on offense to block, the Defensive Line will be able to break through more easily 
and take away time for the Quarterback to throw, which is something that could then be used 
by the Quarterback, as there will be a lack of defenders in Coverage. A visualization of the a 
possible defensive formation in a simplified form can be seen in Figure 4. Here, the defense is 
lining up in a formation called “Cover 2 Sink LB Blitz”. The defense is using three Defensive 
Linemen (2 DEs and 1 DT), four Linebacker (2 OLBs and 2 ILBs), two Cornerbacks, and two 
Safeties. In this case, the three Defensive Linemen, as well as the ILB to the left from the 
perspective of the Quarterback are rushing the passer, while the OLBs, as well as the right ILB 
are in pass coverage, having been assigned a zone that they try to defend against Wide 
Receivers. Similarly, the Safeties are covering a specific zone towards the deeper parts of the 
field, while the two Cornerbacks are assigned to a certain Wide Receiver that they will cover 
one-on-one. Again, it would be the job of the Quarterback and the Offensive Line to read this 
formation and adapt the pass blocking accordingly.


2.2.3	 Additional, Important Terminology in the Context of This 		 	 	
	 	 	 Thesis


With the main focus of this thesis being the pass block and pass rush, the possible outcomes for 
a pass rush have to be understood. If a pass rusher is not able to break through the Offensive 
Line, the logical consequence is that the player was blocked. This block can have resulted from 
one player (single-team), two players (double-team), or even more. Naturally, if there are 
more Offensive Linemen than pass rushers, more than one Offensive Lineman can focus on 
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Figure 4: Simplification of a Cover 2 Sink LB Blitz, with one ILB pass rushing, the other 
being in pass coverage, alongside the two OLB



blocking a pass rusher. This can have strategical consequences, for example if a certain player is 
known to be an efficient pass rusher, then the Offensive Line intentionally tries to block that 
player with multiple men, which on the other hand opens up the possibility of one-on-one 
matchup for other pass rushers.

	 In the event that a pass rusher is able to break through the Offensive Line, their ultimate 
goal is to get to the Quarterback. Here, three possible outcomes can occur:

	 A sack: This is the best possible outcome for the pass rusher as it means that they actively 
tackled the Quarterback to the ground, and therefore ended the play, potentially resulting in a 
loss of yardage for the offensive team, as the Quarterback typically gets sacked behind the 
starting line of the play.

	 A hit: Should the pass rusher manage to create contact with the Quarterback that is not 
quite enough to bring them to the ground, it is recorded as a hit. A hit can still be very 
effective, as this can result in the Quarterback becoming off-balance, throwing a bad pass, or 
simply slowing them down, allowing for a different pass rusher to get to them.

	 A hurry: A hurry occurs when the Quarterback is forced to either hurry up with their throw, 
forcing them to throw the ball more hectically (and therefore more inaccurately) than they 
intended to, or is forcing the Quarterback to scramble, meaning that they have to run away 
from the threat of the pass rusher and find a new position to throw the ball from or simply try 
to run with the ball themselves as far as they can. A scramble can be a scripted play by the 
offense, but does quite naturally come with a certain risk of injuries from a tackle, which a team 
typically tries to avoid, simply due to the importance of the Quarterback.

	 A dropback pass: This is a specific type of pass in which the Quarterback is designed to 
move several steps back before throwing the ball. This move has the advantage of creating both 
distance to the pass rush, as well as allowing the Quarterback to use their momentum to bring 
their body forwards and generate more power into the throw.


2.3	Area of Focus


For the 2023 NFL Big Data Bowl, pass block and pass rush were chosen to be the main focus for 
all competitors, meaning that only plays in which the Quarterback dropped back to throw the 
ball were considered and only corresponding data was provided. For the rest of this thesis, when 
a pass is mentioned, it is referring to a dropback pass.


3	 Research Question


The main goal of this thesis, based on the data provided, was to come up with a new way to 
analyze the effectiveness of the pass rush of the defense, allowing for a closer evaluation of the 
performance of both the team, as well as individual players. As mentioned earlier, data analytics 
already play an important role in the NFL, as player and team performance are a decisive factor 
in preparations for upcoming games to analyze the opponents, as well as for the own team to 
find out in which area the team and/or an individual player has to improve in, and therefore 
structure practices accordingly. But while the importance of data analytics is undeniable, it has 
to be mentioned that actual evaluation is not equal for every position and player in American 
football. As an example, the impact of a Wide Receiver on the game can be evaluated via their 
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individual production, as in how many touchdowns they scored, how many yards they ran, or 
how often they were targeted, while a Quarterback can be evaluated by a calculated 
Quarterback Rating (QBR), which is based on similar metrics to that of a Wide Receiver.

	 A problem arises when it comes to the evaluation of the Offensive and Defensive Line, as 
these players are typically not involved in attempting to catch the ball. Data on whether a pass 
rusher was able to create a sack, hit, or hurry on the Quarterback in a play is recorded, but the 
issue with this is the fact that those variables are binary in nature, meaning that on a play, a 
player either achieved a sack/hit/hurry, or they did not.

	 With the creation of a more precise metric to analyze the effectiveness of the pass rush, and 
to define the exact amount of pressure that the Defensive Line acts upon on the offense, new 
ways to analyze performance will be possible, opening new doors for not only coaches and 
players, but also giving new insights into the protection of the quarterback, a key point of 
improvement that is strived for by all teams.


4	 Exploratory Data Analysis


4.1	The Data


4.1.1	 Overview


The data used for this thesis was provided by the NFL, NFL Next Gen Stats, and Pro Football 
Focus via the NFL Big Data Bowl 2023, which was hosted on Kaggle, and is publicly available. 
The data contains information for the first eight weeks of the 2021 NFL season, tracking every 
outcome of every play, as well as precise telemetry for every player involved on the play. There 
are 12 CSV files, which can be divided in five different categories: game, play, player, PFF 
Scouting, and tracking data, all of which will be described in more detail in the following 
sections.


4.1.2	 Game Data


The game data named games.csv contains all games played in the first eight weeks of the 2021 
NFL season with the names of the teams playing in each game. Each game is given a unique 
gameId, by which games can be identified through the different data sets. A description of each 
variable in the game data set can be seen in Table 1.


Table 1: Name and description for each

variable in the game data


	 	 	 	 	 	 	 	 	 Name		 	 	 Description (Domain)

	 	 	 	 	 	 	 	 	 gameId	 	 	 	 Game Identifier, unique (numeric)

	 	 	 	 	 	 	 	 	 season	 	 	 	 Season of the game (numeric)

	 	 	 	 	 	 	 	 	 week	 	 	 	 Week of the game 	(numeric)

	 	 	 	 	 	 	 	 	 gameDate	 	 	 Game Date (time, mm/dd/yyyy)

	 	 	 	 	 	 	 	 	 gameTimeEastern		 Start time of game (time, HH:MM:SS, EST)

	 	 	 	 	 	 	 	 	 homeTeamAbbr	 	 Home team three-letter code (text)

	 	 	 	 	 	 	 	 	 visitorTeamAbbr		 Visiting team three-letter code (text)
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4.1.3	 Play Data


The play data named plays.csv contains play-level information for each play of each game, 
which includes a description of the play. As an example: (13:33) (Shotgun) T. Brady pass 
incomplete deep right to C. Godwin. This description contains the time on the game clock, the 
formation of the offense and (in the event of a pass play), the name of the passer, the intended 
receiver and where the ball was thrown to. Each play can be identified by a playId, as well as 
the corresponding gameId, for which the playId will be unique for, meaning that identical 
playId may appear for different games. A description of each variable in the play data set can 
be seen in Table 2.


Table 2: Name and description for each variable in the play data


	 	 Name		 	 	 	 Description (Domain)

	 	 gameId	 	 	 	 	 Game Identifier, unique (numeric)

	 	 playId	 	 	 	 	 Play Identifier, not unique across games (numeric)

	 	 playDescription		 	 Description of play (text)

	 	 quarter		 	 	 	 Game quarter (numeric)

	 	 down	 	 	 	 	 Down (numeric)

	 	 yardsToGo	 	 	 	 Distance needed for a first down (numeric)

	 	 possessionTeam	 	 	 Team abbr. of team on offense with possession of ball (text)

	 	 defensiveTeam	 	 	 Team abbr. of team on defense (text)

	 	 yardLineSide	 	 	 3-letter team code corresponding to line-of-scrimmage (text)

	 	 yardLineNumber	 	 	 Yard line at line-of-scrimmage (numeric)

	 	 gameClock	 	 	 	 Time on clock of play (MM:SS)

	 	 preSnapHomeScore	 	 Home score prior to the play (numeric)

	 	 preSnapVisitorScore		 Visiting team score prior to the play (numeric)

	 	 passResult	 	 	 	 Dropback outcome of the play (C: Complete pass, I: Incomplete pass, S: Quarterback sack, IN: Intercepted

	 	 	 	 	 	 	 	 pass, R: Scramble (text)

	 	 penaltyYards	 	 	 Yards gained by offense by penalty (numeric)

	 	 prePenaltyPlayResult	 Net yards gained by the offense, before penalty yardage (numeric)

	 	 playResult	 	 	 	 Net yards gained by the offense, including penalty yardage (numeric)

	 	 foulName[i]		 	 	 Name of the i-th penalty committed during the play. i ranges between 1 and 3 (text)

	 	 foulNflId[i]	 	 	 nflId of the player committing the i-th penalty during the play, with i ranging between 1 and 3 (numeric)

	 	 absoluteYardLineNumber	 Distance from end zone for possession team (numeric)

	 	 offensiveFormation	 	 Formation used by possession team (text)

	 	 personnelO	 	 	 	 Personnel used by offensive team (text)

	 	 defendersInTheBox	 	 Number of defenders in close proximity to line-of-scrimmage (numeric)

	 	 personnelD	 	 	 	 Personnel used by defensive team (text)

	 	 dropbackType	 	 	 Dropback categorization of quarterback (text)

	 	 pff_playAction	 	 	 Indicator for whether offense executes play action fake on the play. Variable provided by PFF (binary)

	 	 pff_passCoverage	 	 Coverage scheme of defense. Variable provided by PFF (text)

	 	 pff_passCoverageType	 Whether defense's coverage type was man, zone or other. Variable provided by PFF (text)


4.1.4	 Player Data


The player data named players.csv contains player-level information for each player that has 
been tracked at least one time throughout the games. Each player can be identified with a 
unique nflId. A description of each variable in the player data set can be seen in Table 3.


4.1.5	 PFF Scouting Data


For each game and play, player-level scouting information is provided by Pro Football Focus for 
all 22 players on the field. This includes information such as which role a certain player has (e.g. 
pass rush), whether a player created or allowed a sack/hit/hurry on the Quarterback and, if 
applicable, which player they faced in a matchup. Each player can be identified via the unique 
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nflId, the playId and the gameId. A description of each variable in the PFF Scouting data set 
can be seen in Table 4. The file is named pffScoutingData.csv.


4.1.6	 Tracking Data


For each player and the football, in each game and play, specific tracking data was recorded 
every tenth of a second, which is considered a frame. This tracking data includes the player’s 
and the football’s x-coordinates, y-coordinates, speed, acceleration, and orientation for every 
frame of the play. The tracking data is stored in files named week[i].csv with i ranging from 1 
to 8, corresponding to the week of the game and play. Each player can be uniquely identified via 
their nflId, and corresponding playId and gameId. A description of each variable in the 
tracking data set can be seen in Table 5.


Table 3: Name and description for each variable in

the player data


	 	 	 	 	 	 	 Name		 	 	 Description (Domain)


	 	 	 	 	 	 	 nflId	 	 	 	 Player identification number, unique across players (numeric)

	 	 	 	 	 	 	 height	 	 	 	 Player height (text)

	 	 	 	 	 	 	 weight	 	 	 	 Player weight (text)

	 	 	 	 	 	 	 birthDate	 	 	 Date of birth (YYY-MM-DD)

	 	 	 	 	 	 	 collegeName		 	 Player college (text)

	 	 	 	 	 	 	 officialPosition	 Official player position (text)

	 	 	 	 	 	 	 displayName		 	 Player name (text)


Table 4: Name and description for each variable in the PFF Scouting data


	 	 Name		 	 	 	 Description (Domain)

	 	 gameId	 	 	 	 	 Game Identifier, unique (numeric)

	 	 playId	 	 	 	 	 Play Identifier, not unique across games (numeric)

	 	 nflId	 	 	 	 	 Player identification number, unique across players (numeric)

	 	 pff_role	 	 	 	 Player's role on this play. Possible values: Coverage, Pass, Pass block, Pass route, Pass rush (text)

	 	 pff_positionLinedUp		 Position that the player was aligned at the snap of the ball on this play (text)

	 	 pff_hit		 	 	 	 If player is a defensive player, indicator for whether they are credited with recording a hit on this

	 	 	 	 	 	 	 	 play (binary)

	 	 pff_hurry	 	 	 	 If player is a defensive player, indicator for whether they are credited with recording a hurry on this

	 	 	 	 	 	 	 	 play (binary)

	 	 pff_sack	 	 	 	 If player is a defensive player, indicator for whether they are credited with recording a sack on this

	 	 	 	 	 	 	 	 play (binary)

	 	 pff_beatenByDefender	 If player is a blocking offensive player, indicator for whether they are by a defender but was not

	 	 	 	 	 	 	 	 charged for yielding a hit, hurry or sack (binary)

	 	 pff_hitAllowed	 	 	 If player is a blocking offensive player, indicator for whether they are responsible for a hit on the QB (binary)

	 	 pff_hurryAllowed	 	 If player is a blocking offensive player, indicator for whether they are responsible for a hurry on the QB (binary)

	 	 pff_sackAllowed		 	 If player is a blocking offensive player, indicator for whether they are responsible for a sack on the QB (binary)

	 	 pff_nflIdBlockedPlayer	 If player is blocking offensive player, the nflId of the first defender the offensive player blocked (numeric)

	 	 pff_blockType	 	 	 If player is a blocking offensive player, the type of block that the offensive player is executing on the

	 	 	 	 	 	 	 	 defender (text)

	 	 pff_backFieldBlock	 	 If player is a blocking offensive player, indicator for whether block occurred in offensive backfield
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Table 5: Name and description for each variable in the PFF Scouting data


	 	 	 	 Name		 	 Description (Domain)

	 	 	 	 gameId	 	 	 Game Identifier, unique (numeric)

	 	 	 	 playId	 	 	 Play Identifier, not unique across games (numeric)

	 	 	 	 nflId	 	 	 Player identification number, unique across players (numeric)

	 	 	 	 frameId		 	 Frame identifier for each play, starting at 1 (numeric)

	 	 	 	 time	 	 	 Time stamp of play (time, yyyy-mm-dd, hh:mm:ss)

	 	 	 	 jerseyNumber	 Jersey number of player (numeric)

	 	 	 	 club	 	 	 Team abbreviation of corresponding player (text)

	 	 	 	 playDirection	 Direction that the offense is moving (left or right)

	 	 	 	 x	 	 	 	 Player position along the length of the field, 0 - 120 yards (numeric)

	 	 	 	 y	 	 	 	 Player position along width of the field, 0 - 53.3 yards (numeric)

	 	 	 	 s	 	 	 	 Speed in yards/second (numeric)

	 	 	 	 a	 	 	 	 Acceleration in yards/second2 (numeric)

	 	 	 	 dis		 	 	 Distance traveled from prior time point, in yards (numeric)

	 	 	 	 o	 	 	 	 Player orientation in degrees, 0 - 360 (numeric)

	 	 	 	 dir		 	 	 Angle of player motion in degrees, 0 - 360 (numeric)

	 	 	 	 event	 	 	 Tagged play details, including moment of ball snap, pass release, pass catch, tackle, etc (text)


4.2	Data Preprocessing


With 32 teams in the NFL, there are an even 16 possible games per week. Each team receives 
one “bye week” per year, meaning they will not compete for that weekend. Bye weeks are 
assigned between week 6 and week 14 and can vary for each team from year to year. In 2021, in 
week 6, the New York Jets, the Atlanta Falcons, the New Orleans Saints, and the San Francisco 
49ers had their bye weeks. For week 7, it was the Buffalo Bills, the Pittsburgh Steelers, the Los 
Angeles Chargers, the Dallas Cowboys, the Minnesota Vikings, and the Jacksonville Jaguars. 
And for week 8, the Las Vegas Raiders and the Baltimore Ravens had their bye week. This 
means that for the first five weeks, 16 games took place per week, 14 in week 6, 13 in week 7 and 
15 in week 8. Naturally, this is reflected in the the amount of pass plays that were ran by the 
offense, as over the first five weeks, the average of pass plays per game was at 1120.8, which 
dropped to 1004 in week 6, 917 in week 7 and 1032 in week 8. This comes out to approximately 
70.14 passing plays per game, or 35.07 per team, on average. The distribution of average pass 
plays per team can be seen in Figure 5. The Kansas City Chiefs were leading this statistic with 
42.375 passing plays on average over the first 8 weeks, while the Green Bay Packers were trailing 
with 28.25 passing plays on average. As mentioned earlier, the entire focus here is on dropback 
passes, which are only one type of pass, while the most common at that.5 Nonetheless, while 
these are only a portion of all pass plays in a game, the big difference in the amount of plays per 
team can be simply be explained by the type of offense a team runs, which often correlates to 
the playing style of the team’s Quarterback. A team with a mobile Quarterback with a strong 
arm (like Kansas City’s Patrick Mahomes) is prone to build their offense around them, profiting 
from efficient pass play, while teams with higher focus on run play, or a Quarterback more 
focused on short passes, would naturally score lower on this list.

	 Furthermore, one straightforward metric to evaluate Quarterbacks on is the completion 
percentage, the percentage of how many of their thrown passes were caught by their Wide 
Receiver. While completion percentage is not a bulletproof metric, as many factors have to be 
accounted for when analyzing a pass (since a mistake by the Wide Receiver or a good pass rush 
by the defense, giving the Quarterback too little time and forcing them to throw the ball away, 
all count against the completion percentage), it still gives a solid first indicator of the efficiency 
of the Quarterback and the offense as a whole. The distribution of the completion percentage 
across all 32 teams can be seen in Figure 6.
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	 Similarly to the average amount of plays per week, the tracking data shows a similar picture, 
as mentioned earlier, the tracking data collects several metrics for each player and the football, 
every tenth of a second, for each play and game. This results in 1,091,038 entries, on average, 
per week, for the first five weeks, and 973,797, 906,292, and 978,949 entries respectively for 
weeks 6, 7, and 8, coming out to a total of 8,314,178 frames tracked.

	 Due to the fact that all of the tracking data only includes the nflId for each player, but 
neither the position of the player, nor the role that said player had on that play, adding these 
two values to the data frame was seen as necessary. All eight tracking CSV files were 
concatenated into one large dataframe, allowing all upcoming operations to be done at once, as 
accessing individual weeks would only be necessary for specific tasks, but to ensure that this 
would be easily possible, a separate column called “weeks” was introduced, representing the 
corresponding week. With the PFF Scouting data, all necessary data for player position and role 
on the play could be accessed easily, and while the tracking data describes different aspects of 
the same play, the quintessence is the exact same - for every play, in both datasets, all players 
involved will overlap. Therefore, matching the player in both data sets can be done easily with 
the gameId, playId, and nflId identifier. Since the position and role of a player does not 
change during a play (if, then only for different plays), the information provided by the PFF 
Scouting data can be simply added to every frame for that play in the tracking data. Iterating 
over every entry in the PFF Scouting data, the tracking data can be filtered for the respective 
identifiers, returning a dataframe that contains every frame of that play for only one player. 
Role and position can then be added straightforwardly.	 

	 Lastly, here it should be added that for all variables that were important to this thesis, no 
missing values were present.
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	 Figure 5: Average number of passing 
plays for the first 8 weeks per team

Figure 6: Completion percentage 
throughout the first 8 weeks per team



5	 Methodology


5.1	Definition of Pressure


As mentioned, the analysis and evaluation of pass rushers proves to be far more intricate than 
those of skill players like Quarterbacks and Wide Receivers, as their contribution to the game 
can be measured directly on the scoreboard. While a direct measurement of a successful pass 
rush is the occurrence of a sack/hit/hurry on the play, the question arrises whether that is a 
truly fair metric. As an example, a pass rusher who is being double-teamed by two Offensive 
Linemen, and is therefore obviously not able to create as much pressure on the Quarterback, 
will, in this binary metric, be considered to have an unsuccessful play, while in reality, due to the 
fact that they are attracting an additional Offensive Lineman, they are able to create the 
opportunity for a different pass rusher to only have one or even no Offensive Linemen blocking 
them, who is then able to create direct pressure on the Quarterback. So even though the first 
pass rusher was not able to actively create pressure, their passive contribution on the play may 
still lead to success on the play.

	 Due to the fact that information on whether a player created a sack/hit/hurry on a play is 
available for every pass rusher on every play, for the purpose of this thesis, pressure will be 
defined as either a sack, a hit, or a hurry having occurred on a play for that pass rusher. While a 
sack is the ultimate form of pressure that a pass rusher may bring on a play, achieving both a 
hit on the Quarterback, as well as making the Quarterback hurry up and change plans during 
the play, are forms of pressure that have to be recognized. In the first eight weeks, the average 
height for all players who were involved at least once during a pass rush comes out to be just 
over 6’1” (1.85 m) with an average weight of 252.12 lbs (114.36 kg). So it is easy to imagine the 
pressure that a pass rusher is putting on the Quarterback if they are able to beat their Offensive 
Lineman and have a straight path towards the Quarterback. With American football being such 
a physical sport, the effects of a pass rusher breaking through the Offensive Line are not only 
present in physical pressure, but also mentally for the Quarterback, as they obviously try to 
avoid being tackled by a pass rusher, so that no loss of yardage occurs on the play, but also to 
simply not be tackled, since, even though helmets and padding are being worn, injuries are not 
uncommon. Injuries in American football are five times more likely to occur during full-contact 
sessions (which can be games or practice), with 40% of those injuries being strains and sprains.6 

While only 5% of all injures are concussions, the importance of awareness for that injury has to 
be stressed, as a correlation between head-related injuries and chronic traumatic encephalopathy 
(CTE) has been found, in addition to mental health related issues, which include dementia, 
depression, and Parkinson’s disease.7 While helmets have obviously had a huge impact in 
reducing head-related injures, helmet-to-helmet and helmet-to-ground contact have been shown 
to be the main causes for concussions.8

	 With this in mind, the strategical (a loss of yardage for the offense), as well as the underlying  
(mentally for the Quarterback) effects of pressure created on a Quarterback are becoming clear, 
which is why it is important to be able to do a deeper, more precise analysis of it. Instead of 
describing pressure as a binary variable for the entirety of a play (as it is now), the goal of this 
thesis is to define a metric that is able to describe the exact amount of pressure that is created 
by a pass rusher and the entire team at every frame of the play, to allow for a better analysis. 
To do so, the K-Nearest Neighbor (KNN) machine learning model will be used. In the second 
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step, KNN will be used to predict the location of a pass rusher, their speed, acceleration, and 
orientation on the next frame to allow for a comparison of pressures between the predicted 
location and the real one.


5.2	K-Nearest Neighbor (KNN)


The K-Nearest Neighbor (KNN) algorithm is a supervise, non-parametric learning classifier. It 
can be used for both classification and for regression problems, both of which will be present in 
this thesis. With KNN, maximum condition probability is used as a decision rule to predict the 
classification of a new observation.9 Simply put, for KNN, the training data is in an n-
dimensional space, with n representing the amount of features of the data. A new observation is 
then put in this space and via proximity to the k-nearest neighbors, the classification of the new 
observation is then determined. The value for k naturally plays a vital role in the classification 
process, while other parameters can also be tuned, such as giving weight to the distance to the 
neighbors. As an example, if k=19, and 9 data points of classification A are relatively close to 
the new observation, while 10 data points of classification B are relatively far from the new 
observation, by default, the KNN model would classify the new observation as B, while with a 
weighted distance, it would be classified as A.

	 Generally, KNN is based on “majority voting”, meaning 50% or more of the k-nearest 
neighbors need to be of a classification for the new observation to be classified as the same, but 
an alternative way of parameter tuning would be to change the percentage required for a 
classification.

	 An example of a simple KNN with two features and two classes can be seen in Figure 7. 
Here, three of the five nearest neighbors are of class A, therefore, the KNN also classifies the 
new observation into class A.


	 

	 For regression problems, the same concept applies, but instead of a straightforward 
classification, the average value of the k-nearest neighbors is calculated and used to the 
determine the value of the new observation.

	 Another important factor for this thesis was the fact that the probability of a prediction 
could be extrapolated from a KNN model, which is a key factor for the metric creation and will 
be discussed in more detail later on. Allowing for all of the tasks at hand that came with the 
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creation and evaluation of a new metric to be brought under the same roof, and be solved with 
the KNN algorithm, while at the same time keeping full control of parameter tuning, was the 
main reason why KNN was the algorithm of choice.


5.3	Predicting Pressure of Pass Rusher With KNN


5.3.1	 General Concept


The concept and definition of pressure has been established already, but the task at hand now is 
to find a way of determining the pressure that each player is actually creating for the entirety of 
the play, frame by frame. For this, the concept of the magnitude of pressure by a player at any 
given time has to be established first, as there are several factors that have to be accounted for.

	 Naturally, if an Offensive Linemen is in control of a one-on-one matchup with an pass rusher 
and is able to block the opponent, the pressure of the pass rusher would be close to zero. A 
Quarterback can be considered relatively safe from a pass rusher if the blocker is essentially 
right in between the passer and the pass rusher. The speed and acceleration of the pass rusher 
would be quite small when only looking at that moment.

	 Similarly, if a pass rusher has beaten their blocker, or if no blocker was assigned to the pass 
rusher, the line of the pass rusher towards the Quarterback would be unhindered. The speed and 
acceleration would consequently increase with every frame and the distance between the passer 
and the pass rusher would diminish frame by frame. In this instance the pressure would be 
relatively high, increasing per frame, which could then again be reduced, should a blocker 
recover and manage to get the pass rusher off of their track.

	 This is where a machine learning model comes into play. For every play, information is 
available whether or not a player was able to achieve pressure. In every play, every frame can be 
looked at as a still image on the play, while at the same time, the outcome of the play for the 
player is already known. Therefore, a KNN can be used to take the telemetry data for every 
frame, and classify it into two categories: whether or not a pressure occurred. A new observation 
would then be put in the identical space, as the same telemetry data would be available, and, 
based on the k-nearest neighbors, the new frame could be predicted to have ended in a pressure 
or not. The key advantage here, as mentioned earlier, is the fact that the probability of the 
classification can be extrapolated per prediction, which can be seen as a perfect fit to metricize 
pressure. This is the most important step in this thesis and the baseline for everything that 
follows.

	 This would mean that, as an example, if for a certain frame, the pass rusher was able to leave 
their blocker behind and was on a clear path with substantial speed and acceleration, based on 
the trained data, this frame would, in theory, be very close to other frames of plays that ended 
in a pressure occurrence, and the model would therefore predict, with a relatively high 
percentage, for this play to have had a pressure occurred, therefore giving this player, in this 
frame, a higher magnitude of pressure. With this, from now on the definition of pressure is able 
to shift from a mere binary metric, to a precise number between 0 and 1.

	 Additionally, with over 1.5 million recorded frames for pass rushers, the amount of data that 
can be used for training and testing can be considered substantial. Since the data is already split 
into weeks, using seven weeks for training, and the eighth for testing, would only be logical, as 
with that, further (and easier) analysis will be possible.
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	 Data manipulation will be necessary. While there are already many valuable features in the 
provided data, there is additional telemetry that can be calculated that can be seen as beneficial 
for the model, as those can have an impact on the accuracy of the model.

	 It has to be mentioned that, V. Karpick, a finalist of the NFL Big Data Bowl 2023, has also 
come up with a “Pressure Index”, but used a Convolutional Neural Network (CNN) to determine 
when in a sequence the pass rush was able to create pressure, and did so to evaluate the 
Offensive Line.10 Nonetheless, while a different approach, some of the added, calculated features 
will be similar.


5.3.2	 Data Manipulation


Firstly, all computations and data manipulation, as well as the implementation of the machine 
learning model were done using Python 3.8. All data-related graphs were done with Plotly in 
Streamlit.

	 The tracking data provided shows the true direction that a play unfolded into. NFL teams 
have to switch sides after the first and the third quarter. The sides for the first and third quarter 
are determined before the game and at halftime via a coin toss, meaning that teams might stay 
on the same sides after halftime, but nonetheless, both teams play on each side of the field for 
two quarters. Here, it means that the data will show all teams play both from right to left, as 
well as from left to right, at every game. For a better performance of the machine learning 
model, the plays have to be ensured to uniformly go into the same direction. It was chosen for 
all plays to go from left to right, meaning that the Quarterback would be trying to score a 
touchdown into the right end zone. Doing so would ensure that pass rush would always come 
from the right, meaning that the x - and y-coordinates would be of the same domain. Plays 
which were found to go from right to left, had to be flipped both by the x-axis and by the y-
axis, so that it could be ensured that plays that happened towards the right side of the field 
when looking towards the end zone, would also stay that way. For any frame that was part of a 
play going from right to left, the x-value would be subtracted from 120, and the y-value would 
be subtracted from 160/3, corresponding to the length and width of a football field. The final 
variable that would have to be adapted for this is the orientation, as the player would be turned 
by 180°. For orientation values smaller than 180, 180 would be added to it, while for values 
larger than 180, 180 would be subtracted from it, to ensure those values to stay between 0 and 
360.

	 As mentioned earlier, the position on a play as well as the role that the player had on that 
play (Passer, Pass Route, Pass Coverage, Pass Rush, Pass Bock), where not yet in the tracking 
data, but could be extrapolated from the PFF Scouting data, adding position and role for every 
player, at every play, at every frame. The position would be of great value in this data set, as it 
would simplify the telemetry calculation that would follow.

	 The following variables per frame are considered for the KNN model to determine the 
likelihood of pressure occurring:


• 	speed of the pass rusher

• 	acceleration of the pass rusher

• 	orientation of the pass rusher

• 	x-offset between the pass rusher and the Quarterback
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• 	y-offset between the pass rusher and the Quarterback

• 	distance between pass rusher and Quarterback

• 	x-offset to the closest pass blocker

• 	y-offset to the closest blocker

• 	distance to the closest blocker

• 	speed of the closest blocker

• 	acceleration of the closest blocker

• 	orientation of the closest blocker

• 	angle created between the pass rusher, pass blocker and Quarterback, with the 

Quarterback as the vertex

• 	x-offset of the pass rusher compared to their last frame

• 	y-offset of the pass rusher compared to their last frame


	 

Speed, acceleration, and orientation of both the pass rusher, as well as the blocker can be 
extrapolated right from the data, while for the rest, data manipulation and certain calculations 
will have to be undertaken. A visualization of these telemetries can be seen in Figure 8.


	 

	 With the Quarterback being the main focus of the pass rush, the distance between the pass 
rusher and the Quarterback is an important factor for the evaluation of pressure. The absolute 
position on the field, which is the one given, is of no value here, as for the pressure, it is 
essentially unimportant whether a play is being played at the 20 yard line of the offense, or at 
the 20 yard line of the defense. There may, of course, be underlying differences in the way pass 
rush is conducted depending on the position along the play, as different formations and 
strategies can be applied, but these will, if applicable, show up in the analysis. Nonetheless, the 
goal of the pass rusher is unchanged: generate as much pressure on the Quarterback as possible. 
Because of this, centering the play around the Quarterback and taking positions relative to 
them, allows for a much better metric for the KNN model.

	 The x - and y-offset between the pass rusher and the Quarterback can be calculated 
straightforwardly by subtracting their respective x - and y-coordinates from one another. The 
distance between the pass rusher and the Quarterback can then be calculated using Pythagoras’ 
Theorem. Similarly, generating the x - and y-offset for the pass rusher compared to their last 
frame can be done by subtracting the corresponding coordinates from those of the last frame 
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from one another. For the first frame of a play, since there is no previous frame, these offsets 
would automatically be set to 0.

	 A more challenging situation arises when it comes to the pass blockers, as the number of pass 
blockers can vary drastically from play to play. As mentioned earlier, for one type of pass play, 
more players running passing routes may be required, and therefore, only five pass blockers are 
being used on this play, while a scenario with eight or nine pass blockers can occur close to the 
opponents end zone, where the offense uses a “fake play”, by pretending to “punch” the ball in 
with the Running Back (which requires as many pass blockers as possible to help create space 
for the Running back), but instead throw the ball to an available Wide Receiver, to catch the 
defense off-guard. Because of this, using the position of all pass blockers in the KNN model 
becomes impossible, as the number of features would vary from play to play. On the other hand, 
taking every pass blocker during a play into consideration would not necessarily be of benefit, as 
blockers are usually being assigned which pass rusher to block, or at least are given a direction 
into which to block. This means that a Defensive End coming to rush from the left side of the 
offense will have, for example, the Left Tackle as an assigned blocker, meaning the Right Tackle 
will have nothing to do with this matchup, as they will be concerned with an entirely different 
pass rusher, so their position and all their respective telemetry does not influence the 
aforementioned Defensive End. It therefore means that only taking a selected few pass blockers 
into consideration is a way to deal with this problem, the question now arises, though, how 
many pass blockers to consider. As mentioned earlier, a player can be blocked by a multitude of 
players. One-on-one matchups are the most common form of pass blocking, but double-teaming 
is not uncommon, either due to a lack of pass rushers or due to intentionally doubling a player. 
In some instances triple, or even quadruple-teaming is possible, while only nine instances of 
quadruple-teaming are present in the data. The provided PFF Scouting data contains 
information on which pass rusher was blocked by each pass blocker. With this, the amount of 
blockers can be calculated, but this number can obviously be zero as well, as unblocked pass 
rushers can occur either due to an outnumbering of pass rushers to pass blockers or due to a 
false assignment, where the two pass blockers block the same pass rusher, leaving a different pass 
rusher unassigned, who is therefore able to break through to the Quarterback easily. With the 
number of assigned blockers varying from play to play as well, the PFF Scouting data also does 
not become of benefit here, and even if an automatic, calculated assignment would be used here, 
pass rushers will not always be assigned to the blocker who is then credited with a block right 
from the beginning, as pass rushers may be performing crossing routes amongst each other to 
make it more difficult for the pass blockers to find the right assignment. So, auto-assigning one 
pass blocker would mean that the pass rusher and pass blocker could be entirely offset at the 
start of the play, resulting in false data for the KNN, since the model would, for this player, not 
be able to recognize the pass blocker that is actually in-between the rusher and the Quarterback,  
falsely making the magnitude of pressure in this frame relatively high.

	 As a solution to this, for each frame, only a certain amount of the closest blockers to the 
rusher could be considered, as this would solve issues regarding rushers switching routes mid-
play and having a new assigned blocker, while still generating a logical geometric pattern at an 
early stage of the play, allowing useful data for the KNN, returning a reasonable pressure 
magnitude. Additionally, this would allow for the model to have a set number of features, as the 
number of closest blockers considered would be fixed beforehand.

	 To generate all the telemetry needed for the KNN, at each frame for a pass rusher, all pass 
blockers on this play would be taken into account. Implementing this would not be of challenge, 
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as the role of all players on the play was available from the earlier data manipulation, so the 
data could always be filtered for all pass rushers on the play, in that specific frame. With this 
subset of the data, the distance to every blocker from a pass rusher could be calculated by 
subtracting their x - and y-coordinates, and again generating the distance via Pythagoras’ 
Theorem. Additionally, the x - and y-offset and the distance from the pass blocker to their 
Quarterback can be calculated in the same way that they were for the pass rusher. With this, 
the angle between the passer, the rusher and the blocker, with the passer at the vertex can be 
calculated. While computing those telemetries, the speed, acceleration, and orientation of the 
respective blocker would also be extrapolated and all of those would be put into one array. Once 
all telemetries were gathered from all pass blockers, the distances to the individual blocker could 
be compared and ordered from smallest to largest. This allows the dataframe that would be fed 
into the KNN to have the closest, second closest, etc. blockers, to always be in the proper 
column and could be validly used as a feature.

	 The question now arises, at which number to set the amount of closest blockers. A more in-
depth description of the parameter tuning of the model, as well as the evaluation of the accuracy 
will be done later on in this thesis, but it can be noted already that the raw metric of accuracy 
in this instance is not the ideal way of evaluating the model, but when it comes to comparing 
the models amongst one another, it is giving a valid sense of the model. Due to the fact that 
four blockers for one pass rusher only occurred in nine different instances throughout all plays, 
only three models were considered: only the closest blocker, the two closest blockers, and the 
three closest blockers. The differences between the three models were only incremental, as they 
peaked at 87.17%, 86.97%, and 87.17%, respectively. The two reasons why the model with only 
the closest blocker was chosen, was for one to avoid overfitting, as multiple blockers for one pass 
rusher are commonly not the norm, so in many instances this would just be feeding the model 
with unnecessary data. Even though the models performed evenly per the accuracy, as 
mentioned, this is not the best way of evaluating the model. Secondly, in the event that there is 
indeed more than one blocker assigned for one pass rusher, only having the closest blocker in the 
model would not make a difference for the amount of pressure being created by the rusher, since 
beating one blocker would instantly turn the second blocker into the closest, keeping the 
pressure low, and only once all blockers are beaten the pressure would get higher.


5.3.2	 Parameter Tuning


The most important step for a KNN is determining its k-value. Again, here, accuracy is the 
metric used to compare models within each other. To find an appropriate value for k, the model 
would be run for all values for k from 1 to 100. This would be done for all three models, with 
the closest blocker, the two closest blockers, and the three closest blockers. Plotting the k-value 
against its accuracy for all three models can be seen in Figure 9, with the models having been 
trained on weeks 1 through 7, and being tested on week 8. For each model, a high increase in 
accuracy in the lower bounds for k can be seen, which is typical for KNN of this size. All three 
models would eventually reach a peak and then level out just below the peak. For the model 
with one blocker, this would happen for k in the 30s, for the model with two blockers for k in 
the 60s, and for the model with three blockers for k in the 40s.
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	 Weight was added in the form of distance in-between the neighbors. The reason for that 
being that, for one, without the weight, the classification would merely happen on a pure 
majority vote, meaning that the probability percentage of the classification for the new 
observation would always be of the form n/k, with n being the number of the majority 
classification. By adding the distance as weight, this would calculate the percentage as an 
average of all the distances, giving the pressure magnitude are more dynamic, and precise 
number. Secondly, clustering of data is to be expected with this type of data. With a large 
number of the data points in the beginning of the play looking relatively similar to one another, 
as well as certain other scenarios within the play, adding weight to the distance would allow for 
model to account for this and proper predictions closer to similar, already learnt scenarios could 
be made.

	 Since the choice was made to only go with the closest blocker, a final value for k had to be 
established. Since the KNN would be ran a total of eight times, always being trained on seven of 
the eight weeks, and being tested on the remaining week, the k with the highest accuracy for the 
model could be established. All models peaked in the high 30s, so a k of 37 was set. This k 
would be used for every model from here on out to allow for an even and fair evaluation of all 
models.


5.4	Predicted Motion Pressure (PMP)


5.4.1	 General Concept


Having created an entirely new metric that is able to define pressure as a floating value instead 
of a binary classification, it has opened the door for an entirely new field of analysis of pass 
rushers. With many outside factors coming into play that generate the pressure metric, an 
analysis of players based purely on the magnitude of pressure alone would be illogical, which will 
be explained later on in this thesis. Because of this, an additional metric had to be created to 
allow for an evaluation of player performance, independent of outside factors (such as position or 
amount of blockers), while at the same time giving a direct comparison to every other pass 
rusher. This new metric is called the Predicted Motion Pressure.

	 The main idea was that, given the provided and calculated data, instead of predicting the 
amount of pressure from a pass rusher, the location, speed, acceleration, and orientation in the 
next frame could be predicted by using a KNN, allowing for a comparison between the predicted 
telemetry data with the actual one. Considering the data at hand, when giving the model the 
distance to the passer, distance to the closest blocker, speed, acceleration, etc., it is possible to 
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Figure 9: Accuracy of KNN models with only the closest, only the two closets, and only the 
three closest blockers considered for k up to 100



have it predict the x-offset, y-offset, speed, acceleration, and orientation, since instead of giving 
the KNN the binary variable pressure as an outcome, it would be the x-offset, y-offset, speed, 
acceleration, and orientation. Naturally, five separate models need to be run. Similarly to the 
first KNN, the model would put the data of every single frame into a space with all of the 
provided features. A new observation would then be placed into this space and the k-nearest 
neighbors could be used to provide a prediction of all five telemetry data points. Logically, here, 
a regression KNN would have to be used. The model would, instead of comparing the 
classification of the k-nearest neighbors, take the offset to the k-nearest neighbors and calculate 
the average out of those, returning the predicted value.

	 When analyzing this idea, before further evaluation of this model, in theory, the validity of it 
should be given. When taking any possible frame of a play, based off of all the telemetries in this 
frame, a model that is taking the k most similar plays and is generating an average value for the 
next frame, that new value should be a fair representation of what the next location, speed, 
acceleration, and orientation of the pass rusher should look like, especially considering the 
amount of data at hand.

	 With this newly generated information, an entirely new set of telemetry data can be 
generated, one that is identical in composition to the original one, but instead using the 
predicted telemetries to generate a new location for the pass rusher. Since this dataframe has 
the same structure, the same KNN can be used to predict the pressure magnitude for this 
predicted location, returning the amount of pressure that the “average” player would have 
achieved in this situation. This can be done frame by frame, allowing for a direct comparison of 
the real pressure created, and the one for the predicted motion. This entirely new metric is the 
most valuable asset for player evaluation and analysis.


5.4.2	 Data Manipulation


An extensive amount of data manipulation had to be done to ensure that the KNN returns valid 
predictions, both for the KNN that predicts the location, speed, acceleration, and orientation of 
the rusher in the next frame, as well as the one that predicts the probability of pressure 
occurring for the new location. The reason the motion prediction is even possible is due to the 
knowledge of the required telemetry data, as these values can be used as outputs of the model. 
While speed, acceleration, and orientation can be used straightforwardly, the issue here arises 
that the offsets per frame always indicate the offset to the last frame. Predicting this would be 
nonsensical, as they are already calculated values. Instead, the offsets have to be shifted by one 
frame backwards, giving the model information on what the x - and y-offsets were in the next 
frame, the one that is to be evaluated. The offsets from the first frame are not of use (they were 
arbitrary set to zero anyways). To shift the data, all offsets were put into the list, popping the 
first entry and appending the list with a new value. The value of this last entry could again be 
arbitrary, as the last frame for every play would be deleted entirely anyways, since a prediction 
of the next location is not necessary, since the play is over, and a invalid frame would fill the 
KNN with faulty data. This now means that every play would be shortened by one frame each 
for this KNN. Running the KNN as described earlier would return floating numbers for the x-
offset and the y-offset, as well as for the speed, acceleration, and orientation. All of these number 
are rounded to two decimal places, as they are of this form originally.
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	 For the next step, an entirely new set of telemetry data would have to be created that looks 
identical to the telemetry data calculated or extrapolated earlier. Determining all the needed 
telemetry is not difficult, given the new offsets determine the new location of the rusher and 
from this, distance to the passer, distance to the blockers, etc., could be calculated. The issue 
here is, though, that the predicted offset indicate the location for the next frame, meaning the 
distances to the passer and blockers would have to be calculated with the telemetry of the next 
frame. Once this has been established, all telemetries can be calculated or extrapolated in the 
exact same manner as for the initial pressure prediction KNN, simply by extrapolating the data 
from the next frame. Speed, acceleration, and orientation of the blockers are given anyways, and 
the speed, acceleration, and orientation of the rusher were predicted. The procedure of finding 
the closest pass blocker has to be gone through again as well, though, since the new location of 
the rusher may find a different pass blocker to be the closest.

	 Since for the last frame, no offsets, speed, acceleration, and orientation were predicted, the 
last frame would again have to be taken out of the model, but, one final step would have to be 
conducted to finalize this model. This KNN now predicts the pressure for the motion occurring 
on the next frame, since all telemetries are based on the location in the next frame. This means 
that, to be able to compare the predicted pressure based off of the predicted motion with the 
predicted pressure with the actual motion, all newly predicted values have to be shifted by one 
frame forward again. This now leaves an empty value for the first frame, since there is obviously 
no motion that precedes that of the first frame. To compensate for that, the actual pressure was 
simply chosen as the starting value. From there on out, comparisons frame-by-frame can be 
made between the true predicted pressure and the one of the motion that would be predicted for 
that frame. 


5.5	HTML - and JavaScript Based Dashboard


As a final step, an single-page, HTML-based webpage was build, making use of JavaScript, or 
more specifically, D3. D3 is a JavaScript library, specifically developed for manipulating data, by 
binding arbitrary data to a Document Object Model (DOM), which allows for the data to be 
transformed in any way desired, making use of Scalable Vector Graphic (SVG). D3 is a great 
way of creating not only unique graphs, but also smooth animations with the data. Visualization 
is a key component in making theoretical concepts more understandable, which in this case is 
useful to both the data scientist, as well as the American football player or coach. Since precise 
data of the location of every player on a play, with 10 frames per second, is available, an exact 
recreation of every play is possible via an animation. The goal here was to build a dashboard 
that allows the user to visualize any play from a top-down position, while at the same time 
providing key information on the determined pressure by the KNN model mentioned earlier. 
Only week 8 was used for this iteration of the dashboard, using different types of 
transformations of the data to depict and explain how and when pressure was applied by 
individual player and the entire defense on a play, both by creating animations of the play, as 
well as graphically. The website can be accessed under http://week8dashboard.x10.mx/. A more 
in-depth explanation on how to navigate and use the webpage will be given later on, but the 
user is advised to allow for the data to load when accessing the website, which may take a few 
seconds.
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6	 Results and Discussion


6.1	Predicted Pressure Model


6.1.1	 Model Accuracy and Validity


Evaluating the accuracy and validity of the KNN model predicting pressure on a play is not a 
straightforward task. As mentioned, an accuracy of 87.17% was achieved, which, at first glance, 
appears to be a respectable number. The issues with this metric becomes obvious when looking 
at the specificity and sensitivity of the model, though. The specificity here represents the 
amount of frames that the model has correctly predicted to not have been a pressure, compared 
to the sum of the correctly predicted frames that did not end in a pressure, plus the frames 
falsely having been predicted to have ended in a pressure, while in actuality not having ended in 
a pressure. The sensitivity in this case represents the amount of frames correctly having been 
predicted to have ended in a pressure, divided by the sum of correctly predicted frames that 
ended in a pressure, plus the frames falsely having been predicted to not have ended in a 
pressure, while actually having ended in a pressure. While the specificity comes out to an 
impressive 99.20%, the sensitivity is only at 8.96%. While this can be seen as worrisome at first, 
an explanation for this can be found quite easily. The issue with the data at hand is that only 
the overall result of a play is available to the model. This means that, especially for the first few 
frames of a play where pressure is naturally low (or even zero), as the Quarterback is naturally 
fully protected by the Offensive Line, and values for speed and acceleration are relatively low, 
the model classifies these frames into the “no pressure” category, while the play overall might 
have included pressure, and therefore the prediction would be considered false. As there is no 
information available on when exactly the pressure has occurred during a play (which is why 
this metric is being created), this is the only way of dealing with this problem, by having to feed 
the model with “false” information. This is why KNN is such an ideal choice, though, as it is able 
to compensate for the fact that some of the data is skewed, which also results in the probability 
being a fair way of metricizing pressure. The overall prediction of whether or not pressure has 
occurred per frame can be entirely neglected when it comes to the accuracy of the model. So 
even if a prediction on a frame is classified “wrongly”, it is the percentage that matters in this 
case. From a logical perspective, the model returning a low number in the early frames of a play, 
due to the majority vote of the KNN, is entirely what is trying to be achieved here, even if later 
on in the play a pressure has occurred, classifying the prediction wrong, and skewing all 
classification metrics. Therefore, a better way of analyzing the validity of the play has to be 
found.

	 With the PFF Scouting data simply classifying whether or not a pressure has occurred on the 
play, the identical thing can be done for the predictions. For each play, the highest number of 
pressure predicted will be an indicator on whether or not a play has contained pressure. With 
the percentage for this KNN having been set at 50% to classify a frame having induced pressure, 
this means that if only one frame has had a percentage of more than 50% pressure probability 
on the play, the entire play will be classified to have had pressure created. The accuracy with 
this method improves slightly to 87.91%, and even though the specificity drops to 89.70%, the 
sensitivity now has a drastic increase to 73.88%. A deeper analysis now could obviously be done 
by adjusting the percentage required for the model to classify a frame to have contained a 
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pressure, but these numbers were deemed sufficient for a valid representation of the pressure on 
the play.

	 An additional way of analyzing the validity is to look only at the players that were able to 
achieve a sack on the play, with the sack being the perfect way of determining pressure. A sack 
ends the play and finds the pass rusher to be right at the Quarterback. This means that, in a 
valid model, the pressure on these plays would naturally be very high and the model should 
predict those plays to have contained pressure. For sack plays only, the model has an accuracy of 
95.90%, with the average highest pressure on all of those plays coming out to be 84.73%, again 
giving another form of validation to the model.

	 As a final, less scientific, but in this case strong way of validating the model, the eye-test 
comes into play. Animations of each provided play for week 8 can be found in the 
aforementioned dashboard, along with an animation of the pressure during the play. Alongside 
actual video footage of any play, the predicted pressure can be compared to what is occurring on 
the field. It is fairly easy to give an educated estimate on how much pressure a pass rusher is 
able to create for the duration of a play, as in whether or not the Quarterback is disturbed by 
their presence, or the pass rusher is clearly being held up, or even blocked. These observations 
can then be compared to the numbers provided by the model, which appear to give a realistic 
representation. Figure 10 shows the pressure created by Indianapolis Colts’ DeForest Buckner 
(nflId 43296) on play 4334 against the Tennessee Titan (gameId 2021103106) in week 8. 
Buckner’s pressure pre-snap is relatively high due to the way he lines up on the play, as this 
constellation is considered relatively like to have ended in a pressure by the model, and therefore 
returning a higher percentage number, ergo more pressure. The pressure drops around frame 10, 
as Buckner is faced head-on by the pass blocker, and this matchup is continuing until around 
frame 20 to 25 when Buckner is able to beat the pass blocker and is able to create a clear path 
towards the Quarterback of the Tennessee Titans, Ryan Tannehill. From there on out, the 
pressure increased significantly, with the model maxing out the pressure at 93.28% at frame 45, 
achieving the sack, and resulting in an 8 yard loss on the play for the Titans, as well as 
unfortunately injuring Ryan Tannehill in the process.
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Figure 10: Pressure created by Deforest Buckner on play 
4334 against the Tennessee Titans, resulting in a sack



6.1.2	 Team Performance Analysis


The advantage of a new metric, especially in sport sciences with the competitiveness in mind, is 
the fact that it allows for rankings to be created of all sorts, both for players, as well as for the 
teams. It will be explained further on why this new metric is not entirely ideal for individual 
performances, but coincidentally allows for major, new ways of analyzing team performances. 
Initially, instead of looking at the pressure of an individual player on a play, the pressure of the 
entire pass rush can be investigated. The average pressure of the entire pass rush on every play 
can be calculated, therefore also allowing for the calculation of the average pressure the pass 
rush has created amongst all plays the team has been a part of. Similarly, since the opponents of 
the teams are available for every play, the average pressure that each team has allowed amongst 
all plays can be calculated as well. From here, the pass rush, as well as the pass block from every 
team can be ranked accordingly. The average pressure created by the pass rush of each team can 
be seen in Figure 11, while the average pressure allowed by each team’s pass block can be seen 
in Figure 12. The Carolina Panthers are found to have created the highest amount of pressure 
with an average of 13.34% per play, while the Atlanta Falcons created the least amount of 
pressure within the first eight weeks of the 2021 NFL season with 11.70%. The Tampa Bay 
Buccaneers allowed for the least amount of pressure to be created by their opponents with only 
11.45% on average, while the Indianapolis Colts allowed the most pressure with 14.53% on 
average.


	 

	 The color of each point represents the winning percentage, with the more green meaning a 
team is closer to a winning percentage of 1, while the more red meaning a winning percentage 
closer to 0. Naturally, the more pressure the pass rush creates, the better, while the opposite is 
the case for the pass block. It has to be noted that, for the entirety of the team-specific analysis, 
only the frames were accounted for once the ball was snapped to the Quarterback. The duration 
between the start of the measurements and the actual snapping of the ball can at times be 
several frames, while at other times the measurements started with the snapping of the ball. 
While for player-specific analysis, keeping the frames before the ball was snapped can be of 
benefit, as the motion a pass rusher does prior to the snap can have an impact on the pressure 
they are creating/will be creating throughout the play, while for the team-based analysis these 
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Figure 10: Average pressure created by each 
team along with their respective win 

percentage

Figure 11: Average pressure allowed by each 
team along with their respective win 

percentage



frames can skew the data, as naturally these frames will include little pressure. By eliminating 
these frames a more fair analysis can be made.

	 Success in sport is typically measured by wins, and maximizing every aspect of the game to 
increase the chances of success will always be of highest priority of any team. With this in mind, 
it is logical to further analyze the direct impact that both the pass rush and the pass block have 
on the success of the team, as in whether or not the amount of pressure created/allowed has any 
correlation to the team’s winningness.

The win percentage after the first eight games can be analyzed, but it has to be mentioned that 
this can be a relatively small sample size in terms of games played, being only about half-way 
into the season. An example for this are the Kansas City Chiefs: after week 8, their win-loss 
record was 4-4, putting them at a winning percentage of 50%, while eventually going on a run 
and finishing the season with a 12-5 record, putting their winning percentage at 70.59%, making 
the playoffs and just barely losing out on going the Super Bowl, losing to the Cincinnati Bengals 
24:27 in overtime in the AFC Championship game. While, of course, many variables can change 
throughout the course of a season, for the purpose of this analysis it will be assumed that the 
average pressure created and allowed over the course of the first eight weeks is a fair 
representation of that throughout the season. The distribution of pressure created and pressure 
allowed compared to the winning percentage of a team after the first eight weeks can be seen in 
Figure 12 and 13. The distribution of pressure created and pressure allowed versus the winning 
percentage at the end of the regular season can be seen in Figure 14 and 15.

	 Doing a straightforward Pearson correlation, the linear relationship between pressure created/
allowed per team and the respective win percentage can be established. For the average pressure 
created by the pass rush versus the win percentage after eight weeks, the Pearson correlation 
coefficient was found to be 0.2160, with a p-value of 0.2351. For the pressure created by the pass 
rush versus the winning percentage after all 17 weeks, the Pearson correlation coefficient was 
found to be 0.1013, with a p-value of 0.5814. For the pressure allowed by the pass rush versus 
the winning percentage after eight weeks, the Pearson correlation coefficient comes out to be 
-0.4947, with a p-value of 0.0044, while after all 17 weeks the Pearson correlation coefficient 
dropped to -0.350, with a p-value of 0.049. It can therefore be seen that for the pressure allowed 
by the pass block, a slight negative correlation (logically, as the less pressure allowed, the better) 
with the winning percentage could be determined, both being considered significant due to their 
p-value at an alpha level of 0.05.
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Figure 12: Average pressure created by each 
team versus the team’s winning percentage 

after 8 weeks

Figure 13: Average pressure allowed by each 
team versus the team’s winning percentage 

after 8 weeks



	 

	 The following additional ranking were created and can be found in the appendix:


1. Average pressure created by the pass rush per team (11.1.1)

2. Average pressure allowed by the pass block per team (11.1.2)

3. Average pressure created by each position (11.1.3)

4. Average pressure created by each formation (11.1.4)

5. Average pressure created by the pass rush per team for the NLT (11.1.5)

6. Average pressure created by the pass rush per team for Cover-2 (11.1.6)

7. Average pressure created by each position for the Green Bay Packers (11.1.7)

8. Average pressure created by each formation for the Los Angeles Rams (11.1.8)

9. Average pressure allowed by the pass block per team for the LLB (11.1.9)

10. Average pressure allowed by the pass block per team for Cover-3 (11.1.10)

11. Average pressure allowed by each position for the New York Giants (11.1.11)

12. Average pressure allowed by each formation for the New York Jets (11.1.12)


	 For rankings 5 to 12, only one team/position/formation was chosen to be shown here, just to 
give a general sense of how these rankings look like. Creating the same rankings for other teams/
positions/formations can be done straightforwardly with the Python code provided, also in the 
appendix. Teams/positions/formations will be towards the top of the respective ranking, the 
higher the created pressure, or the lower the allowed pressure for each category.

	 From a statistician’s point of view, this new metric has opened an entirely new field of 
analysis that could be further investigated, as for every play it is now known how much pressure 
each position created, how many blockers that position had, which formation the defense was in, 
and obviously, who the opponent was. It would therefore, from a pure statistical view, be of 
relevance to find the correlations within these categories, and determine the ones who have a 
significant impact on the amount of pressure that is being created. But considering that this is 
the field of sport science, it is believed that this would not necessarily be the most beneficial 
step to take. The reason for that being is, while data analytics play such a vital role in the world 
of sports, a purely statistical approach would mean a generalization, which is not always helpful 
to teams and their performance, which is what should be of highest priority. Sports, especially 
American football, is a field of fluidity and spontaneity, where not everything can be seen as 
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Figure 14: Average pressure created by each 
team versus the team’s winning percentage 

after 18 weeks

Figure 15: Average pressure allowed by each 
team versus the team’s winning percentage 

after 18 weeks



entirely binary. Momentary and situational impact is a difficult metric to calculate, as too many 
factors come into play. A perfect example for this is the analysis done here comparing the 
pressure created/allowed to the winning percentage. Following a naive approach, pass rush could 
be deemed as entirely insignificant to the success of a team, and could therefore lead to the 
assumption that teams should not put their efforts and resources into it, while in reality, the 
impact that specific roles can have on the game is not always as clear. A good pass rush may be 
able to bring pressure in decisive situations, creating a turnover in just the right moment. The 
“bend don’t break mentality” is a philosophy followed by many defensive coordinators, in which a 
defense may allow the offense to progress the ball, but eventually not allow for a touchdown to 
happen, therefore tiring the offense out, as they would spend long and grueling time on the field, 
only to come up empty handed.

	 An example to showcase this is the amount of pressure created by each position, which can 
be seen in Figure 16. The NRT (Nose Right Tackle, a type of Defensive Tackle) position is found 
to created, on average, the least amount of pressure. But when looking at the distribution of 
pressure created by each team for every position (Figure 17), the NRT of the Green Bay Packers 
is found to create the most amount of pressure amongst all NRTs from different teams. Now, 
when looking at the amount of pressure created by each position from the Green Bay Packers, 
the NRT ranks 7th out of 18, the highest out of any of their Tackle positions (the full ranking 
for the pressure created by each position from the Green Bay Packers can be found in the 
appendix in section 11.1.7). So even though the NRT is overall the position creating the least 
amount of pressure, to the Green Bay Packers, this position has turned out to have made a 
siignificant impact. So even when doing any form regression model, an interaction term between 
the team and the position may turn out to be of significance, this would still be a generalization 
of the whole matter, and not be of benefit to the team, as they do not necessarily have any 
interest in finding general correlations between certain factors and the pressure created, but 
rather are interested in their own data, their performance, and how that compares to the rest of 
the league. The correlations and causations have to be done on a team-specific level, with the 
correlations being established by the team’s data analyst, and the causations being investigated 
by the coaches, as they are the ones with the highest knowledge of the game. From a data 
scientist’s perspective, on a league-wide level, providing the metric, and allowing for all types of 
rankings to be created, can be considered a completed task.
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Figure 17: Average pressure created per team 
per position

Figure 16: Average pressure created per 
position



	 The aforementioned example of the Green Bay Packers would be exactly how this metric and 
these created rankings are intended to be used on a team-specific level. On the one hand, teams 
have now received a new, more precise metric to evaluate the pass rush, allowing for teams to 
analyze both their own defense, by not only seeing which positions create the most pressure 
within a team, but also how their own positions compare to the rest of the league, and the 
offense, identically seeing which positions from the opponents were able to create the most 
pressure over the previous weeks, or which formation was the most successful against the team, 
and are therefore able to adjust their game plans going forward. But also opponent-specific 
analysis to prepare for upcoming games have now received a new metric to be used, as teams are 
able to analyze the positions and formations that have created the most pressure against or by 
the next opponent, allowing for strategies to be adapted to the opponent with far more accuracy 
than previously possible.

	 The opportunities for analysis within just one team have exponentially increased with this 
new metric to evaluate pressure, and it is up to each team on how to implement it. Interaction 
terms within one team may open the door to entirely new discoveries within the tactics and 
strategies of the game.

	 

6.1.3	 Ineffectiveness of the Model for Player-Level Analyses


An analysis of the players’ performance would be the logical next step to take, naturally, as it 
was the individual players for whom the pressure was calculated. Unfortunately, this analysis is 
not quite as straightforward as one might initially believe for it to be. Calculating the pressure 
players were able to create over all of their plays and putting all players into one ranking based 
on this statistic would be highly unbalanced and quite simply unfair, as it would be like 
comparing a Formula 1 car with a rally car based on the same metrics. Similar to how each car 
is build for a specific purpose (the Formula 1 car being built specifically for circuit racing on 
paved tracks, being optimized for high straight-line - and corning speeds, while the rally cars is 
built for off-road racing on different types of surfaces), each position in the NFL has a different 
task that is linked to specific scenarios and different outcomes. Different positions require 
different body types and shapes, as a Wide Receiver ideally has a figure for fast acceleration, 
while reaching high speeds to create separation from Cornerbacks and Safeties, while Offensive 
Linemen need to be as powerful as possible to withstand the pressure of the pass rush, with no 
need to sprint for extended periods of time. This is why players are typically bound to one 
position, only switching sides, or at most switch to a position that is as similar as possible, as 
their physique would simply put them in a disadvantage at an entirely different position. This 
was already seen when comparing the average amounts of pressure that each position was able 
to create during the pass rush. It is due to the nature of the game that a Linebacker, when 
attempting the pass rush, will not be faced with as many blockers (if any), compared to a 
Defensive End who is opposing a pass blocker right from the start of the play. This is exactly the 
point of the Linebacker, as with engaging a Linebacker in the pass rush, there is a certain risk-
and-reward that comes with it: the additional pressure created by the Linebacker due to the 
outnumbering of rushers to blockers, will give the Quarterback less time to throw the ball, while 
leaving more space open in the secondary part of the defense for a Wide Receiver to catch the 
ball. This can nicely be seen in Figure 18, showing the average pressure created by every player, 
regardless of their position with respect to the average amount of blockers that each player 
faced. Obviously, the more blockers a player has to face, the less pressure they will be able to 
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create, but is exactly this what makes a player analysis, even when looking at each position 
individually, difficult. Even for the same position, even though one player might have created a 
higher average amount of pressure, the average amount of blockers may have been smaller as 
well, compared to a different player, making the comparison unfair. The average may also be 
skewed due to plays in which a pass rusher was left unassigned, and therefore created a high 
amount of pressure throughout the play.


	 

	 This does not mean that this metric is not useful for analysis, it just shows that, again, a 
generalization is difficult to do, due to the fact of the vast numbers of factors that play into 
account in a competitive setting. Alternatively, this metric should be used as a tool for players 
and coaches for play-specific analyses of players. Individual plays can be analyzed to understand 
what a player did well, or where they could have improved. Questions like why a certain play did 
not create as much pressure can be answered far more easily now that a metric for every frame 
of the play is available, instead of only having an overall result of the play. Identically, a team 
like the Tennessee Titans would naturally further analyze play 4334 in their game against the 
Indianapolis Colts that was mentioned earlier, in which DeForest Buckner sacked Ryan 
Tannehill and injured him on the play, to understand why Buckner was able to break through, 
while now having a more precise metric to evaluate the pressure received frame-by-frame, 
especially considering the gravity of that play.

	 This does of course now also reward players who were not credited with a binary form of 
pressure on a play by Pro Football Focus, while in actuality having created a fair amount of 
pressure percentage-wise, further changing the perception and understanding of pressure.

	 Nonetheless, being able to actually compare pass rushers with one another should still be the 
goal to be able to properly evaluate a player’s performance to the rest of the league. And while a 
direct comparison was shown to be a difficult task, it is believed that the Predicted Motion 
Pressure was not only able to solve this issue, but also allow for a comparison of every pass 
rusher, regardless of position.
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Figure 18: Average number of blockers vs average 
amount of pressure created for every pass rusher



6.2	Predicted Motion Pressure Model


6.2.1	 Advantages of the Predicted Motion Pressure Model


It has already been established that American football is a situational, but fast and reactionary 
sport. It is this characteristic that can be used to create not only a metric that is a more precise 
way of measuring pressure (as it was done in the previous sections), but rather an entirely new 
metric, the Predicted Motion Pressure (PMP). The reason PMP is able to function, is due to 
the fact that the difference in the pressure being evaluated from the predicted motion to that of 
the actual motion is only due to the motion of the pass rusher. Every other variable can be 
taken over from the actual occurrences on the field, which means that the position of the pass 
blocker and the passer can be entirely accepted in the model, giving the model a strong form of 
validity. This is because of the reactionary nature of pass rush and pass block. Similarly to 
chess, in which the black pieces have to react to the moves being done by the white pieces (at 
least in the first stages of the game), the pass blocker is the one reacting to the moves being 
made by the pass rusher. The pass rusher is the one that has to be able to get past the pass 
blocker, while it is the pass blocker who has to analyze the moves of the pass rusher and react 
accordingly. If a pass rusher moves towards the right, so will the pass blocker, to not allow the 
rusher to get past. This concept is the most fundamental foundation of the PMP.

	 Additionally, the frequency of measurements being made at 10 per second, allow for a fairly 
precise evaluation. With plays commonly being only a few seconds long, the moves being made 
have to be split-second decisions. The more time would pass between measurements, the larger 
the differentials in speed, acceleration, orientation, and position, leading to less accurate 
predictions, and therefore less powerful evaluations. From a data manipulation point of view, 
predicting the motion several frames into the future would be entirely possible, while tedious. 
The issue with this would be that, due to the vast number of factors influencing players’ 
motions, the entropy of the data on the play would increase with every play, as the predictions 
would move further and further away from the actualities. As an example, if a pass rusher is 
predicted to make a move towards the right side of the field, while in actuality moving towards 
the left, the pass blocker will, with some delay caused by having to react to the motion, 
obviously also move to the left. Now, if the predictions of the motion would be used to predict 
the following frames, the player would be likely to continue going further right, especially since 
the pass blocker would move further to the left, as the real motion is being used there, 
encouraging the model to even further move the pass rusher away from the blocker, resulting in 
entirely faulty predictions that are unusable for any form of evaluation. If something similar 
would be desirable to do, the motions of the pass blocker would also have to be predicted, which 
would lead to less valuable comparisons between the predicted and actual motion of the pass 
rusher.

	 Being able to keep all variables besides the motion of the pass rusher to be identical, allows 
for a straightforward analysis of the efficiency of a pass rusher. The difference in pressure created 
for every single frame essentially displays how good or bad the move of the pass rusher was, 
compared to an average of all other pass rushers throughout the first eight weeks who were in a 
situation as similar as possible to the one of the pass rusher being evaluated. This is, again, why 
KNN is such a fine choice here, not only because of the predictions that it is able to make, but 
also because the concept behind it gives validity to the evaluation.
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	 This delta in pressure is now an entirely new metric that pass rushers can be evaluated by, 
both over the duration of the play, and for situation-specific instances, in which a certain move 
on a specific play can be analyzed by the coach or player to determine whether a player could 
have done a better move, or if the one made was actually above average and being the reason for 
success on the play, allowing for entirely new insights into the motions, effectiveness, and 
efficiency of pass rushers.

	 An additional advantage point of this new metric is that it is entirely independent of the role  
of a player, as well as the outcome of the play. It is completely non-detrimental whether a pass 
rushers had two blockers, creating close to no pressure on the play, or was able to achieve a sack 
on the play, creating maximum amount of pressure. It is the efficiency and the impact of every 
move that is being compared, so even if the pass rusher did have two blockers on a play, some of 
the moves that were made could have created more pressure than would have been predicted, 
but due to the fact that there were two blockers, it was simply a suboptimal situation for the 
pass rusher to get out of. On the other hand, even though a player achieved a sack on the play, 
there may have still been situations in which a better move could have been made, even though 
naturally, if the play ended in a pressure, it can be assumed that the moves made were efficient 
anyways.

	 It becomes obvious that this metric does not evaluate the ability of a player to create 
pressure on the play, but rather uses the earlier created metric of pressure to evaluate a player’s 
decision-making abilities. According to the National Strength and Conditioning Association, 
anticipation appears to be a trainable quality, so giving players a metric that allows them to 
evaluate their decision-making abilities could see further improvements in the players’ 
performances.11

	 Lastly, unlike in the pressure metric, the amount of times a player engaged in the pass rush is 
not detrimental to the evaluation process. When just looking at the pressure, the Cornerbacks 
and Safeties did achieve an above average amount of pressure, which has two reasons: for one, 
naturally, these positions being engaged in the pass rush is usually done as an element of 
surprise, risking the open Wide Receiver, while at the same time having a high probability of 
not being assigned to a pass blocker, creating a high amount of pressure from the get-go, 
therefore achieving a higher average. But it is exactly the rare usage of these positions in the 
pass rush that can lead to a higher average, as they have a much smaller sample size, skewing 
the average in their favor, creating an imbalance in the data. For the PMP, this is not as much 
of a problem. Of course, if a player engages more frequently in the pass rush, their average will 
eventually level out to a true value, but nonetheless, a smaller sample size, or even just one 
engagement in the pass rush can be used to determine efficiency to a certain extend.


6.2.2	 Player Performance and Efficiency Analysis


An illustration of the PMP in comparison to the actual pressure created can be seen in Figure 
19. Here, Harold Landry’s (nflId 46110) pressure and PMP in the Tennessee Titan’s game 
against the Indianapolis Colts (gameId 2021103106) in week 8 on play 225 can be seen. The 
actual pressure is colored blue, the PMP red. Due to the fact that the play was relatively long, 
with about 7 second, and Landry not being able to create much pressure during the early parts 
of the play, he was still able to generate pressure on the Colt’s Quarterback Carson Wentz 
towards the end of the play, resulting in Wentz throwing the ball away and not completing the 
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pass, bringing Landry’s pressure to a solid 17.39%. Simultaneously, the delta between the actual 
pressure and the PMP on the play for Landry was at a impressive 3.1508, ranking this as the 
160th best play amongst the 36362 available plays, meaning that Landry did not only do an 
obviously good job by creating pressure, but was also able to generate much more pressure than 
would have been predicted for him to achieve.


	 

	 Naturally, the higher the delta, the better. For all plays, the delta per play averages out to 
0.1929. Rounding the delta per play to one decimal place and looking at the amount of 
occurrences, it can be seen that the distribution is normal. This distribution can be seen in 
Figure 20. The highest delta per play within the first eight weeks was achieved by Arizona 
Cardinals’ Tanner Vallejo (nflId 45008) on play 2855 against the Houston Texans (gameId 
2021102408), with a delta of 6.9974, while the lowest delta was achieved by Denico Autry from 
the Tennessee Titans on play 742 against the Buffalo Bills (gameId 2021101800), with a delta of 
-4.5858. The 20 highest deltas can be found in the appendix, section 11.2.1, while the Python 
code to create the full list can be found in section 11.3.4. The presence of players in this whom 
are known for their pass rushing abilities like Aaron Donald and Josh Allen (twice in the top 20) 
should not come as a surprise, but rather as a confirmation of the validity of the PMP.

	 Looking at Figure 21, the distribution between the average pressure created and the pressure 
to PMP delta per play can be seen. A significant correlation at an alpha level of 0.05 could be 
found, with a Pearson Correlation coefficient of 0.4904. While this correlation is logical, since a 
high pressure on a play is likely to have originated from a good motion by the pass rusher, it is 
of course not guaranteed, stressing the validity of the PMP as a separate analytical metric that 
can be used for individual evaluations. Again, it is not necessarily the outcome of the play that 
should be analyzed when looking at the delta with the PMP, but rather the efficiency of the 
player, so the two metrics should be considered independent from one another.

	 The overall efficiency and decision-making abilities of a pass rusher can be evaluated by 
computing the average of the PMP delta over all pass rushes conducted by a player. The 20 
highest average deltas can be found in section 11.2.2, with Grant Delpit (nflId 52452) topping 
that list with an average delta 2.4524.

	 While the PMP is a metric based on an average on the motions of all the pass rushers, the 
delta that is being created here comes with a highly personal characteristic. While the pressure 
that a player creates in a frame is completely dependent on the overall situation, the difference 
in pressure and PMP is result of the decisions of the pass rusher, and that alone. Players with 
higher delta values have only come to that due to the well made decisions. These decisions can, 
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Figure 19: Harold Landry’s pressure and PMP on play 225 in the game TEN vs IND



and should, of course be further analyzed by the teams, coaches, and players. There is no once-
in-for-all answer to what a player has to do to do achieve a higher amount of pressure with their 
next motion, as every play is unique and too many factors would have to be accounted for. 
Rather, this new metric can be used to study individual situations to recognize patterns in the 
player’s behavior, both good and bad, again to improve the performance. A generalization for 
teams or positions is again of no use, as it is the individual that needs to be analyzed. The 
rankings created allow for all the players to compare themselves to the rest of the league, while 
especially giving the opportunity to study the higher-ranked players.


	 


6.3	Deployment in the Form of a Dashboard


The visualization aspect of this thesis has always been of highest priority. On the one hand, this 
is due to the intricacy of the sport, the game itself is highly tactical and chaotic, with all the 
established factors having an influence on pressure created by the pass rush. On the other hand, 
describing the motions of an American football player and being able to fully grasp the concept 
of the created metrics to the fullest extend is difficult to achieve on static paper, which this 
thesis is. Because of that, creating a dashboard that allows the user to have animations at hand 
to show not only the entirety of the play, but also the pressure created by the entire offense and 
individual players, was seen as a beneficial step to take under the premise of this thesis. While 
Python is an incredible tool for data analytics and data visualization to a certain extend, the 
animations in mind would put Python to its limits. With the knowledge gained from the Data 
Visualization course taken for this Master’s trajectory, shifting to HTML and JavaScript 
appeared to be the ideal solution. Especially with D3 being optimized for visualization by using 
SVG objects, animations can not only be run smoothly, but also in high quality. With this in 
mind, a dashboard was created using the predictions for pressure made on week 8 of the data, 
allowing for the user to choose any game and play played during this week and is able to 
visually analyze the play and the pressure. Two screenshots from the dashboard can be seen in 
the appendix in  section 11.5. 

	 Firstly, with the two dropdown windows the user is able to select which game and play they 
would like to see. After the selection, the first animation window will show the entirety of the 
game frame by frame, keeping 200 ms between each frame, meaning half of the speed of the 
movements in real time. This was chosen to give more time to the user to take as much in as 
possible. Still, the animation is able to create a smooth recreation of the play, also because of 
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Figure 20: Distribution of the PMP delta Figure 21: Average pressure vs PMP 
delta per play



the precise data provided by the NFL. The proper abbreviations of the teams will be written in 
the respective end zones, as well as useful information of the play, such as a description of the 
play, score in the game, and offensive and defensive personnel, will be provided to the right of 
the animation. The color of each team is equal to the actual jersey color that each team wore 
during the game.

	 In the second window, the same play is animated, also at half the speed, this time focusing 
on the pressure created by the pass rush. The opacity of the color of the pass rushers will 
increase, the more pressure an individual pass rusher is able to create. To the right, a line graph 
will animate the total pressure created by the pass rush frame by frame, in synchronization with 
the animations of the play. Alongside, information on the maximum and average pressure 
created can be found.

	 Lastly, the user is able to select one of the pass rushers from the selected play. Again, an 
animation of the play is shown in the third window, this time highlighting the chosen pass 
rusher. To the right, the first line graph shows an animation of the pressure created by the pass 
rusher per frame with a blue line, while the second line graph shows the same animation, but in 
addition also the Predicted Motion Pressure with a red line, to be able to compare the two. 
Additionally, information on the maximum and average pressure created by the pass rusher, as 
well as the delta between the actual created pressure and the PMP over the course of the entire 
play is shown.

	 Every animation will automatically restart once the play is over. At any point a different play 
can be chosen to be viewed without interference of the previous play.

	 


7	 Ethical Thinking, Societal Relevance, and 	 	 	 	
	 Stakeholder Awareness


7.1	Stakeholder Awareness


The National Football League is hosting some of the largest franchises in the world. According 
to Forbes, the Dallas Cowboys are the most valuable amongst the 32 teams in the league with 
an evaluation of 5.7 billion US Dollars.12 It’s become quite clear that the NFL has evolved from 
being merely a league that is governing a sport, to a high-profile business. The success of a team 
can have huge impact on the financial evaluation of the team with teams handling income 
numbers in the hundreds of millions. Bringing data analytics and the creation of new metrics 
into the game always comes with the main goal in mind: to improve the game in any shape or 
form. But while the impact of these analyses can be quite obvious for players and coaches, the 
list can be extended when looking at the bigger picture. The owners of the club have a huge 
interest in finding ways to improve performance, as this is directly correlated to a financial gain. 
The analysis done in this thesis was done purely from the point of view of a data scientist, it is 
up to the team to do individual analysis based on their needs, as this thesis merely provides the 
new metric along with a general analysis. But a deeper dive by the teams may uncover newly 
found tactics, which can make the game from an entertainment standpoint better or worse, 
which therefore affects the millions of fans all around the globe. The aspect of player safety will 
be touched upon in the next section, but the health of the player is something that not only 
affects the players themselves, but also the coaches, and, not to forget, the team physicians. It 
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can be seen that the NFL is an intricate operation, where many nodes of the web are connected 
with one another. So one small change in the structure can have a huge impact on many people, 
and while no predictions want to be made on the impact that this new metrics will make on the 
entire NFL, the awareness for it has to be ever present. On top of the stakeholder list here will 
always be the player, though. The game itself should always remain the main focus point, and 
players, as athletes would look to use any information provided to improve their own game. 
Then again, for the players, this is also a profession, often as the main source of income. 
Improvements on the side of the player can be difference in millions of Dollars in the next 
contract. It is clear that, even just for one stakeholder, the impact of change can reach many 
different layers.


7.2	Societal Relevance


7.2.1	 Player Safety in Regards to Players, Coaches, and Fans


As mentioned earlier, injuries are not an uncommon occurrence in the NFL, mainly due to the 
fact that American football is a full-contact sport. The NFL is regarded as the best American 
football league in the world, with the rosters of the teams being filled with professional, high-
performance athletes, so staying as injury-free as possible is always a main aspect of their 
routines. Reducing injuries as much as possible should always be high on the agenda for every 
sport, while the reasoning behind it can often differ. For one, especially with the presence of 
head injuries (clearly a main topic in American football), long-term effects and complications 
can be a byproduct. Depression, dementia or even Parkinson’s disease are serious issues, and the 
risks of any of these occurring need to be reduced as much as possible. At the end of the day, 
while it is making money to these players, this is only a sport, for which it is not worth putting 
so much on the line. With this in mind, the safety aspect of this thesis is obviously a massive 
topic, as the pass rush and pass block are exactly what determine how safe the Quarterback is, 
as these are the plays that often are the reason for more serious injuries for Quarterbacks. The 
Offensive Line is able to gain significant new insights into the workings of a defense from the 
new metrics generated, and are therefore able to adjust accordingly and better protect their 
Quarterback. It was seen that a better performing Offensive Line correlates with a better 
performing team, much of which can be accredited directly to the Quarterback, who is given 
more time behind the Offensive Line to throw the ball.

	 Secondly, the Quarterback is obviously immediately affected by the safety provided to them, 
as not only their performance can be in danger, but also their well-being. With the risk of 
injuries increasing with a weaker Offensive Line, a lot is at stake for the Quarterback, as a long-
term injury can cost the player extensive amounts of income. Time off of the field will set any 
player (regardless of the sport) back in regards to their performance and they will need time to 
get back to their previous level.

	 But this immediately also affects the coach, as they are the ones that have to work with what 
they are given. And if the Quarterback is injured, they are forced to play the (possibly weaker) 
backup Quarterback, which can change the entire setup and tactics of the offense.

	 Lastly, the safety and injury-risk minimization will always have an enormous impact on the 
fans watching the game. From a fan perspective, the best possible American football should be 
played, which automatically implies the best players playing, in their best possible form. The fan 
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is rooting for their team to win, but the probability of the team winning is obviously higher, in 
the better condition the team is.

	 A prime example for this are the 2022 San Francisco 49ers. A staggering four of their 
Quarterbacks were injured during the play either by active or passive impact of the defense, 
leaving them without an option during the NFC Championship Game in the playoffs. Their run 
for a title was massively affected by all these injuries. It can be seen as quite unfortunate when a 
team loses a game not because of bad performance, but simply because of not being able to play 
their best player, only because of injury. From the fan perspective this is a disappointment, but 
obviously also from that of the competitor.

	 No claims are being made that any of the work done in this thesis could make an immediate 
impact by drastically reducing injury numbers due to better safety for the Quarterback, but 
even an ever so slightly improvement that can be gained in that aspect would be considered a 
big success.


7.2.2	 Performance Analysis to Improve the Game


As mentioned already, apart from the health-science related aspect of safety, data analysis done 
in any sport are often linked to performance improvements. Here, it is easy to wander off into 
the philosophical questions, as in what the societal aspect of any sport really is, but it can be 
argued that it is in fact larger than one might initially think. Similarly to what was brought up 
about the impact player safety has on the millions of fans, the same can be said about 
performance analysis in general. While it was noted that new discoveries do not necessarily lead 
to the game itself being better, as a newly found tactic, revealed by the metrics, might turn the 
entirety of the game into a defensive bout, resulting in less points being scores, meaning less 
exciting games. But even then, the game would again start to evolve into an entirely different, 
better performing direction. Especially for American football, with the ever lasting fight between 
offense and defense, new strategies from one side will be caught out by the other, and game 
plans will be adapted accordingly. New metrics for players and coaches to learn from will 
continue to push the limits that athletes can go to into new heights. Athletes, especially on that 
level, are competitors at heart, it may often be difficult to understand for non-professional 
athletes, with what intensity they work, and with how much determination they want to win. 
Improvements in any area will always make the game better from an athletic standpoint, and 
even if only that, this is automatically increasing the entertainment for the people around the 
sport.


7.3	Player Performance Evaluation and Ethics


There is one major point that has to be brought up when discussing the evaluation, not of a 
team, but rather of individual players. A team will always look to improve as a unit, while for 
the individual it will remain a fight against oneself. The major flaw that comes with creating any 
form of metric in sports, is that automatically the players will be ranked by it. Logically, some 
players perform better than others, and ending at the bottom of a list can have massive impacts 
on a player. As a data scientist, rankings are purely made to point specific observations out, and 
not to criticize any player, positively or negatively. Exactly because of that, it is recommended 
to not take the rankings as criticism, but rather as a tool for the individual players to see where 
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they can improve on. This goes for any player, from first to last on the list. Perfection is difficult 
to reach, even for the best player in any category; improvements, even if incremental, can always 
be made. It is understood that the entire operation of the NFL is business in itself, and therefore 
the financial aspect will always play a role, even when it comes to the evaluation of players, but 
an individual metric should never be the once-in-for-all, decisive factor on whether or not to cut 
or promote a player. Especially for this metric, it was shown that even a successful play that 
ended in a sack can have a lower PMP value, and should therefore only be used as a tool for 
improvement.


8	 Conclusion


Manipulating the data provided by the NFL that focuses on pass rush and pass block, new 
telemetries were created to analyze a pass rusher’s x-offset, y-offset, and distance to the passer, 
and to the blocker, as well as the angle created between the three players for every frame on a 
play, with each frame representing a tenth of a second. Along with information on the speed, 
acceleration, and orientation of the pass rusher and pass blocker, as well as information on 
whether or not the play has contained a sack, a hit, or a hurry, a K-Nearest Neighbor machine 
learning algorithm was able to be used to predict the likelihood of pressure having occurred on a 
play, based on the created and provided telemetry data, for each frame. This probability 
percentage was then defined as a new metric to far more precisely measure pressure occurring on 
a play, as it allows for an evaluation of pressure at any moment of the play. This has created 
numerous possibilities for not only players, but also for teams to better understand when, for a 
pass rusher, they were able to apply pressure to the offense by doing play-specific analysis, as 
well as which positions and formations are performing to what standard for each team. It has 
also opened the door for opponent-specific analysis to improve the creation of the game plan. 
Generalizing analysis were shown to not be of use here, while rather team-specific analysis could 
create entirely new ways of perceiving the game. The different categories that were established 
were ranked, both league-wide, as well as team-specific. Overall, the Carolina Panthers were 
found to have created the highest amount of pressure over the course of the first eight weeks of 
the 2021 NFL season, while the Tampa Bay Buccaneers allowed for the least amount of pressure 
to be created by their opponents.

	 Furthermore, an additional metric was created by using the same KNN to predict the motion 
(position, speed, acceleration, and orientation) of a pass rusher, and therefore allowing for the 
comparison of the actual pressure created by the pass rusher to that of the predicted motion. 
Due to the ways that KNN works, the predicted motion could be considered the average move 
amongst all pass rushers who were found to be in a similar position, with similar telemetries, 
and therefore the difference in pressure between the reality and prediction could be seen as how 
good the move that the pass rusher made compared to the average. This metric was shown to be 
an ideal metric to compare not only pass rushers from the same position, but all pass rushers, as 
this metric is not influenced by the position, number of blockers, or even the total amount of 
pressure created, as it evaluates the decision making of a pass rusher and how intuitive the 
player moves. So even though a player might have created a pressure on the play, their Predicted 
Motion Pressure may have been fairly low, pointing towards the fact that they could have done 
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even better moves, while a player being double-teamed for the entirety of the play, and never 
getting the chance to get to the Quarterback, might have still made solid decisions on the play.

	 Finally, a dashboard was created based on HTML and JavaScript’s D3 library to animate not 
only the plays, but also the pressure created by each player on the play, as well as every PMP. 
This allows for a better understanding and analysis of when players did or did not create 
pressure on a play and where good or bad decisions were being made. Especially in regards to a 
dynamic, and occasionally chaotic sport such as American football, visualizing was deemed the 
most important factor.


9	 Future Research


9.1	Finding the Optimal Move 


The opportunities when it comes to data analytics, even only in this part of American football, 
are endless. This can be seen alone from the vast differences in directions that the finalists of the 
NFL Big Data Bowl 2023 decided to go in. For the project, there was one clear point that 
jumped out in regards to future research: finding the optimal move of the pass rusher, as in the 
best physically possible move that would have created the highest magnitude of pressure. The 
predicted move, with all of its telemetries, is essentially the “average move” that the pass rushers 
have made in a similar situation, and a comparison between the actual move and the predicted 
one turned out to be a solid metric to evaluate a pass rusher’s performances, regardless of the 
situation they found themselves in. Nonetheless, finding the optimal move that a pass rusher 
could make in a certain situation, with the same metrics that were used for all the KNNs in this 
thesis, would open the door for entirely new aspects of the game, especially from a tactical side 
of view. The informations gained from seeing the best possible move could be used to deeply 
analyze the current understanding of what the best move actually is. It could uncover new 
techniques or tactics for teams to implement and improve the pass rusher, while at the same 
time giving the Offensive Line new strategies to prepare for. From an evaluation standpoint, 
seeing how good the actual move made was compared to the best one would create an entirely 
new metric, with three values now being able to be compared to one another.

	 In regards to this thesis, the reason the implementation was not completed, was due to the 
“physically possible” aspect of the move. When sticking with KNN, it would be entirely possible 
to brute force every single location around the pass rusher, with all possible values for speed, 
acceleration and orientation, to determine the best one. From a pure Physics standpoint, when 
only analyzing the telemetries of the pass rusher, establishing humanly possible bounds for those 
is not entirely possible. Without a blocker, naturally the highest amount of pressure a rusher 
could bring with their next move would be to get as close a possible to the Quarterback in the 
next frame. When being, lets assume, several yards away from the Quarterback, though, it is 
(unfortunately) not humanly possible for the passer to suddenly be right by the Quarterback. 
Finding the maximum amount of acceleration change a passer could have within a tenth of a 
second would automatically lead to the maximum amount of velocity change that could be made 
in that time frame (as acceleration is simply the change of velocity over a certain period of 
time), while identically being able to calculate the maximum x - and y-distances that could be 
travelled with that velocity in that time (again, since velocity is the change in distance over a 
certain delta of time). Something similar could be done for the maximum orientation change 
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that is possible in a tenth of a second, and these bounds could even be adapted to the player 
specifically, as the delta of the values may be larger or smaller for certain athletes. With this, all 
possible scenarios could be tested and the pressure could be determined via the KNN, finding 
the telemetries with the highest magnitude of pressure, which would then be the best move. The 
issue here is the fact that this does not account for any blockers at all. As soon as a blocker is 
within that path, the brute force method would start to induce chaos, as there would be a high 
number of variables that first would have to be understood, and then be accounted for. Firstly, 
as mentioned, the best possible move a rusher could make would, in most cases, be the move as 
close to the Quarterback as possible, that is humanly possible. But, as soon as a blocker is 
within this path, the entire equation falls apart, as it is obviously entirely physically impossible 
for the rusher to suddenly move through the blocker in the tenth of a second, if they were in 
front of them a moment ago. The question now arises, what the best move would indeed be 
when a blocker is in the way. This would be starting an entirely new analysis of player motion. 
Potentially, given the speed of a rusher, it would be to face the blocker head on and try to 
overpower them, while on the other hand, maybe an agility move to get around the blocker 
would be the best move in that case. This analysis would be a massive undertaking and would 
be an entire project in itself, for which the time resources of this thesis were simply not enough.

	 But, should this be attempted, sticking to KNN was found to not necessarily be the best 
approach. A very fitting method for this kind of analysis would be to use a deep learning model 
in the form of reinforcement learning, or more precisely Q-Learning. Simplified, a Q-Learning 
model analyses the state that it is currently in, looks at all the possible actions it could take, 
and, by a defined reward that it would receive from taking the action, would be able to establish 
the best possible action that it could take. This is fitting for the problem at hand, as the state 
would be clearly defined, and the reward would come in the form of amount of pressure received, 
with more obviously being equal to a higher reward. The only issue here are the possible actions 
that can be taken from a state, as this again leads back to the humanly possible states that a 
rusher could be in, but if that problem can be tackled and solved, implementing the Q-Learning 
model would be the best option to go with.


9.2	Dashboard Improvements 


The dashboard that was shown for the purpose of this thesis could be considered the foundation 
of an intricate new way for coaches to analyze the way American football is played. The main 
goal of the dashboard was to be clear and straightforward, so that both data scientists, as well 
as players and coaches could benefit from it. And while the dashboard in itself already provides 
a fair amount of information, the extensions that could be made for it are endless. For team 
specific analyses to be implemented into it would be the first point, while more in-depth player 
data could be beneficial as well, such as being able to pull up multiple plays of a player to 
compare at once. Film study is a vital point in the operation of an American football team, and 
it is believed that the dashboard could be used in combination with that. Especially when 
focusing on one team specifically, the dashboard could be adapted to the needs of the team, 
prioritizing those aspects of the game that the team would deem important. With access to 
actual video footage of a play, the dashboard could be fed with those to pull up the play besides 
the animation, to be able to have an actual visualization of the play. Overall, the foundation has 
been laid for a far bigger project.
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11	Appendix


11.1	 Pressure Metric Based Rankings


11.1.1	Average Pressure Created by the Pass Rush per Team




	 	 Number		 	 Team		 	 	 Average Pressure Created

	 	 1	 	 	 	 	 CAR	 	 	 	 13.36%


	 	 2	 	 	 	 	 TEN	 	 	 	 13.17%

	 	 3	 	 	 	 	 CLE	 	 	 	 13.08%

	 	 4	 	 	 	 	 LA		 	 	 	 13.01%

	 	 5	 	 	 	 	 BAL	 	 	 	 12.89%

	 	 6	 	 	 	 	 BUF	 	 	 	 12.78%

	 	 7	 	 	 	 	 CHI	 	 	 	 12.65%

	 	 8	 	 	 	 	 SF		 	 	 	 12.63%

	 	 9	 	 	 	 	 PIT	 	 	 	 12.62%

	 	 10	 	 	 	 	 MIA	 	 	 	 12.58%

	 	 11	 	 	 	 	 TB		 	 	 	 12.57%

	 	 12	 	 	 	 	 IND	 	 	 	 12.56%

	 	 13	 	 	 	 	 LV		 	 	 	 12.55%

	 	 14	 	 	 	 	 NYJ	 	 	 	 12.52%

	 	 15	 	 	 	 	 JAX	 	 	 	 12.48%

	 	 16	 	 	 	 	 HOU	 	 	 	 12.45%

	 	 17	 	 	 	 	 ARI	 	 	 	 12.40%

	 	 18	 	 	 	 	 PHI	 	 	 	 12.39%

	 	 19	 	 	 	 	 DEN	 	 	 	 12.38%

	 	 20	 	 	 	 	 LAC	 	 	 	 12.34%

	 	 21	 	 	 	 	 SEA	 	 	 	 12.29%

	 	 22	 	 	 	 	 DAL	 	 	 	 12.23%

	 	 23	 	 	 	 	 NE		 	 	 	 12.18%

	 	 24	 	 	 	 	 WAS	 	 	 	 12.13%

	 	 25	 	 	 	 	 MIN	 	 	 	 12.13%

	 	 26	 	 	 	 	 GB		 	 	 	 12.12%

	 	 27	 	 	 	 	 CIN	 	 	 	 12.08%

	 	 28	 	 	 	 	 KC		 	 	 	 12.04%

	 	 29	 	 	 	 	 NYG	 	 	 	 11.98%

	 	 30	 	 	 	 	 DET	 	 	 	 11.96%

	 	 31	 	 	 	 	 NO		 	 	 	 11.89%

	 	 32	 	 	 	 	 ATL	 	 	 	 11.70%
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11.1.2	Average Pressure Allowed by the Pass Block per Team




	 	 Number		 	 Team		 	 	 Average Pressure Allowed

	 	 1	 	 	 	 	 TB		 	 	 	 11.45%


	 	 2	 	 	 	 	 ARI	 	 	 	 11.93%

	 	 3	 	 	 	 	 GB		 	 	 	 11.93%

	 	 4	 	 	 	 	 NE		 	 	 	 11.94%

	 	 5	 	 	 	 	 DAL	 	 	 	 11.96%

	 	 6	 	 	 	 	 LA		 	 	 	 11.99%

	 	 7	 	 	 	 	 LAC	 	 	 	 12.03%

	 	 8	 	 	 	 	 PIT	 	 	 	 12.05%

	 	 9	 	 	 	 	 NYG	 	 	 	 12.05%

	 	 10	 	 	 	 	 SF		 	 	 	 12.14%

	 	 11	 	 	 	 	 CLE	 	 	 	 12.19%

	 	 12	 	 	 	 	 BAL	 	 	 	 12.21%

	 	 13	 	 	 	 	 WAS	 	 	 	 12.24%

	 	 14	 	 	 	 	 LV		 	 	 	 12.33%

	 	 15	 	 	 	 	 KC		 	 	 	 12.34%

	 	 16	 	 	 	 	 NO		 	 	 	 12.37%

	 	 17	 	 	 	 	 CAR	 	 	 	 12.40%

	 	 18	 	 	 	 	 CIN	 	 	 	 12.41%

	 	 19	 	 	 	 	 BUF	 	 	 	 12.53%

	 	 20	 	 	 	 	 TEN	 	 	 	 12.57%

	 	 21	 	 	 	 	 ATL	 	 	 	 12.59%

	 	 22	 	 	 	 	 NYJ	 	 	 	 12.59%

	 	 23	 	 	 	 	 MIN	 	 	 	 12.59%

	 	 24	 	 	 	 	 DET	 	 	 	 12.59%

	 	 25	 	 	 	 	 JAX	 	 	 	 12.66%

	 	 26	 	 	 	 	 DEN	 	 	 	 12.76%

	 	 27	 	 	 	 	 CHI	 	 	 	 12.86%

	 	 28	 	 	 	 	 HOU	 	 	 	 12.92%

	 	 29	 	 	 	 	 PHI	 	 	 	 11.97%

	 	 30	 	 	 	 	 MIA	 	 	 	 11.99%

	 	 31	 	 	 	 	 SEA	 	 	 	 13.42%

	 	 32	 	 	 	 	 IND	 	 	 	 14.53%
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11.1.3	Average Pressure Created by Each Position




	 	 Position	 	 	 Position		 	 Average Pressure Created

	 	 1	 	 	 	 	 SSL	 	 	 	 33.77%


	 	 2	 	 	 	 	 RCB	 	 	 	 22.11%

	 	 3	 	 	 	 	 SCBoR	 	 	 21.28%

	 	 4	 	 	 	 	 SCBoL		 	 	 20.74%

	 	 5	 	 	 	 	 SCBL	 	 	 	 19.50%

	 	 6	 	 	 	 	 LCB	 	 	 	 19.19%

	 	 7	 	 	 	 	 SCBiL		 	 	 18.91%

	 	 8	 	 	 	 	 SCBR	 	 	 	 16.33%

	 	 9	 	 	 	 	 RLB	 	 	 	 15.59%

	 	 10	 	 	 	 	 LOLB	 	 	 	 15.39%

	 	 11	 	 	 	 	 MLB	 	 	 	 14.43%

	 	 12	 	 	 	 	 LEO	 	 	 	 14.34%

	 	 13	 	 	 	 	 LILB	 	 	 	 14.33%

	 	 14	 	 	 	 	 RILB	 	 	 	 14.11%

	 	 15	 	 	 	 	 SSR	 	 	 	 14.04%

	 	 16	 	 	 	 	 ROLB		 	 	 13.17%

	 	 17	 	 	 	 	 REO	 	 	 	 12.90%

	 	 18	 	 	 	 	 FS		 	 	 	 12.88%

	 	 19	 	 	 	 	 LE		 	 	 	 11.64%

	 	 20	 	 	 	 	 RE		 	 	 	 11.22%

	 	 21	 	 	 	 	 DLT	 	 	 	 10.64%

	 	 22	 	 	 	 	 NT		 	 	 	 10.49%

	 	 23	 	 	 	 	 NLT	 	 	 	 10.13%

	 	 24	 	 	 	 	 DRT	 	 	 	 10.12%

	 	 25	 	 	 	 	 NRT	 	 	 	 9.59%
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11.1.4	Average Pressure Created by Each Coverage




	 	 Number		 	 Position		 	 Average Pressure Created

	 	 1	 	 	 	 	 Prevent	 	 	 13.75%


	 	 2	 	 	 	 	 Cover-0	 	 	 13.21%

	 	 3	 	 	 	 	 Bracket	 	 	 13.10%

	 	 4	 	 	 	 	 2-Man		 	 	 12.96%

	 	 5	 	 	 	 	 Cover-1	 	 	 12.44%

	 	 6	 	 	 	 	 Red Zone	 	 	 13.39%

	 	 7	 	 	 	 	 Cover-3	 	 	 12.39%

	 	 8	 	 	 	 	 Cover-2	 	 	 12.37%

	 	 9	 	 	 	 	 Quarters	 	 	 12.27%

	 	 10	 	 	 	 	 Cover-6	 	 	 12.06%

	 	 11	 	 	 	 	 Miscellaneous		 12.01%

	 	 12	 	 	 	 	 Goal Line	 	 	 11.58%
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11.1.5	Average Pressure Created by the Pass Rush per Team for the 	 	
	 	 	 NRT





	 	 Number		 	 Team		 	 	 Average Pressure Created

	 	 1	 	 	 	 	 GB		 	 	 	 13.11%


	 	 2	 	 	 	 	 TB		 	 	 	 12.06%

	 	 3	 	 	 	 	 SEA	 	 	 	 11.83%

	 	 4	 	 	 	 	 MIA	 	 	 	 11.54%

	 	 5	 	 	 	 	 LA		 	 	 	 10.49%

	 	 6	 	 	 	 	 DET	 	 	 	 10.27%

	 	 7	 	 	 	 	 ARI	 	 	 	 10.15%

	 	 8	 	 	 	 	 HOU	 	 	 	 10.04%

	 	 9	 	 	 	 	 TEN	 	 	 	 9.85%

	 	 10	 	 	 	 	 NO		 	 	 	 9.84%

	 	 11	 	 	 	 	 CAR	 	 	 	 9.71%

	 	 12	 	 	 	 	 NE		 	 	 	 9.65%

	 	 13	 	 	 	 	 NYG	 	 	 	 9.61%

	 	 14	 	 	 	 	 IND	 	 	 	 9.60%

	 	 15	 	 	 	 	 PIT	 	 	 	 9.67%

	 	 16	 	 	 	 	 CIN	 	 	 	 9.57%

	 	 17	 	 	 	 	 SF		 	 	 	 9.55%

	 	 18	 	 	 	 	 JAX	 	 	 	 9.54%

	 	 19	 	 	 	 	 DEN	 	 	 	 9.53%

	 	 20	 	 	 	 	 DAL	 	 	 	 9.29%

	 	 21	 	 	 	 	 BAL	 	 	 	 9.18%

	 	 22	 	 	 	 	 WAS	 	 	 	 9.06%

	 	 23	 	 	 	 	 BUF	 	 	 	 8.88%

	 	 24	 	 	 	 	 MIN	 	 	 	 8.76%

	 	 25	 	 	 	 	 CHI	 	 	 	 8.73%

	 	 26	 	 	 	 	 LV		 	 	 	 8.56%

	 	 27	 	 	 	 	 ATL	 	 	 	 8.40%

	 	 28	 	 	 	 	 LAC	 	 	 	 8.34%

	 	 29	 	 	 	 	 PHI	 	 	 	 8.32%

	 	 30	 	 	 	 	 NYJ	 	 	 	 8.14%

	 	 31	 	 	 	 	 KC		 	 	 	 8.03%

	 	 32	 	 	 	 	 CLE	 	 	 	 7.98%
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11.1.6	Average Pressure Created by the Pass Rush per Team for 		 	 	
	 	 	 Cover-2





	 	 Number		 	 Team		 	 	 Average Pressure Created

	 	 1	 	 	 	 	 CAR	 	 	 	 14.64%

	 	 2	 	 	 	 	 LA		 	 	 	 13.56%

	 	 3	 	 	 	 	 BAL	 	 	 	 13.50%

	 	 4	 	 	 	 	 MIN	 	 	 	 13.34%

	 	 5	 	 	 	 	 JAX	 	 	 	 13.07%

	 	 6	 	 	 	 	 ARI	 	 	 	 13.00%

	 	 7	 	 	 	 	 HOU	 	 	 	 12.92%

	 	 8	 	 	 	 	 IND	 	 	 	 12.89%

	 	 9	 	 	 	 	 NYJ	 	 	 	 12.86%

	 	 10	 	 	 	 	 WAS	 	 	 	 12.82%

	 	 11	 	 	 	 	 NO		 	 	 	 12.75%

	 	 12	 	 	 	 	 TEN	 	 	 	 12.75%

	 	 13	 	 	 	 	 PIT	 	 	 	 12.73%

	 	 14	 	 	 	 	 CHI	 	 	 	 12.62%

	 	 15	 	 	 	 	 PHI	 	 	 	 12.50%

	 	 16	 	 	 	 	 KC		 	 	 	 12.35%

	 	 17	 	 	 	 	 NYG	 	 	 	 12.33%

	 	 18	 	 	 	 	 BUF	 	 	 	 12.31%

	 	 19	 	 	 	 	 NE		 	 	 	 12.16%

	 	 20	 	 	 	 	 CLE	 	 	 	 12.08%

	 	 21	 	 	 	 	 DAL	 	 	 	 11.96%

	 	 22	 	 	 	 	 SEA	 	 	 	 11.95%

	 	 23	 	 	 	 	 TB		 	 	 	 11.86%

	 	 24	 	 	 	 	 ATL	 	 	 	 11.77%

	 	 25	 	 	 	 	 DET	 	 	 	 11.60%

	 	 26	 	 	 	 	 MIA	 	 	 	 11.37%

	 	 27	 	 	 	 	 LAC	 	 	 	 11.26%

	 	 28	 	 	 	 	 SF		 	 	 	 11.21%

	 	 29	 	 	 	 	 CIN	 	 	 	 11.18%

	 	 30	 	 	 	 	 LV		 	 	 	 10.96%

	 	 31	 	 	 	 	 GB		 	 	 	 10.55%

	 	 32	 	 	 	 	 DEN	 	 	 	 9.40%
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11.1.7	Average Pressure Created by Each Position for the Green Bay 		
	 	 	 Packers





	 	 Position	 	 	 Position		 	 Average Pressure Created

	 	 1	 	 	 	 	 SCBoR	 	 	 25.91%

	 	 2	 	 	 	 	 LCB	 	 	 	 19.83%

	 	 3	 	 	 	 	 LLB	 	 	 	 17.79%

	 	 4	 	 	 	 	 RILB	 	 	 	 14.91%

	 	 5	 	 	 	 	 LOLB	 	 	 	 14.87%

	 	 6	 	 	 	 	 LILB	 	 	 	 14.18%

	 	 7	 	 	 	 	 RLB	 	 	 	 13.56%

	 	 8	 	 	 	 	 NRT	 	 	 	 13.11%

	 	 9	 	 	 	 	 ROLB		 	 	 12.80%

	 	 10	 	 	 	 	 SCBL	 	 	 	 12.44%

	 	 11	 	 	 	 	 NLT	 	 	 	 10.98%

	 	 12	 	 	 	 	 LE		 	 	 	 10.79%

	 	 13	 	 	 	 	 LEO	 	 	 	 10.77%

	 	 14	 	 	 	 	 RE		 	 	 	 10.77%

	 	 15	 	 	 	 	 REO	 	 	 	 10.72%

	 	 16	 	 	 	 	 DLT	 	 	 	 10.39%

	 	 17	 	 	 	 	 MLB	 	 	 	 10.13%

	 	 18	 	 	 	 	 DRT	 	 	 	 9.53%

	 	 19	 	 	 	 	 NT		 	 	 	 9.39%
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11.1.8	Average Pressure Created by Each Coverage for the Los Angeles 
	 	 	 Rams





	 	 Number		 	 Position		 	 Average Pressure Created

	 	 1	 	 	 	 	 Cover-1	 	 	 14.01%

	 	 2	 	 	 	 	 Cover-0	 	 	 13.58%

	 	 3	 	 	 	 	 Cover-2	 	 	 13.56%

	 	 4	 	 	 	 	 Cover-3	 	 	 13.15%

	 	 5	 	 	 	 	 Prevent	 	 	 13.08%

	 	 6	 	 	 	 	 Red Zone	 	 	 12.80%

	 	 7	 	 	 	 	 Quarters	 	 	 12.63%

	 	 8	 	 	 	 	 Cover-6	 	 	 12.53%

	 	 9	 	 	 	 	 2-Man		 	 	 11.63%
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11.1.9	Average Pressure Allowed by the Pass Block per Team against 		
	 	 	 the LLB





	 	 Number		 	 Team		 	 	 Average Pressure Allowed

	 	 1	 	 	 	 	 NE		 	 	 	 13.68%


	 	 2	 	 	 	 	 ARI	 	 	 	 14.07%

	 	 3	 	 	 	 	 HOU	 	 	 	 14.20%

	 	 4	 	 	 	 	 BUF	 	 	 	 14.71%

	 	 5	 	 	 	 	 SF		 	 	 	 14.99%

	 	 6	 	 	 	 	 JAX	 	 	 	 15.08%

	 	 7	 	 	 	 	 MIN	 	 	 	 15.34%

	 	 8	 	 	 	 	 MIA	 	 	 	 15.63%

	 	 9	 	 	 	 	 GB		 	 	 	 15.76%

	 	 10	 	 	 	 	 NYJ	 	 	 	 15.95%

	 	 11	 	 	 	 	 IND	 	 	 	 16.03%

	 	 12	 	 	 	 	 DET	 	 	 	 16.05%

	 	 13	 	 	 	 	 SEA	 	 	 	 16.11%

	 	 14	 	 	 	 	 LAC	 	 	 	 16.35%

	 	 15	 	 	 	 	 WAS	 	 	 	 16.60%

	 	 16	 	 	 	 	 CLE	 	 	 	 16.70%

	 	 17	 	 	 	 	 DAL	 	 	 	 16.77%

	 	 18	 	 	 	 	 TB		 	 	 	 17.04%

	 	 19	 	 	 	 	 LA		 	 	 	 17.51%

	 	 20	 	 	 	 	 CAR	 	 	 	 18.06%

	 	 21	 	 	 	 	 BAL	 	 	 	 18.14%

	 	 22	 	 	 	 	 NYG	 	 	 	 18.40%

	 	 23	 	 	 	 	 CHI	 	 	 	 18.43%

	 	 24	 	 	 	 	 DEN	 	 	 	 18.55%

	 	 25	 	 	 	 	 PIT	 	 	 	 19.56%

	 	 26	 	 	 	 	 ATL	 	 	 	 20.07%

	 	 27	 	 	 	 	 LV		 	 	 	 20.37%

	 	 28	 	 	 	 	 TEN	 	 	 	 21.66%

	 	 29	 	 	 	 	 PHI	 	 	 	 22.35%

	 	 30	 	 	 	 	 CIN	 	 	 	 22.48%

	 	 31	 	 	 	 	 NO		 	 	 	 26.98%

	 	 32	 	 	 	 	 KC		 	 	 	 27.42%
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11.1.10	 Average Pressure Allowed by the Pass Block per Team 	 	 	 	
	 	 	 	 against Cover-3





	 	 Number		 	 Team		 	 	 Average Pressure Allowed

	 	 1	 	 	 	 	 DAL	 	 	 	 11.37%

	 	 2	 	 	 	 	 LAC	 	 	 	 11.62%

	 	 3	 	 	 	 	 TB		 	 	 	 11.74%

	 	 4	 	 	 	 	 NE		 	 	 	 11.79%

	 	 5	 	 	 	 	 GB		 	 	 	 11.81%

	 	 6	 	 	 	 	 PIT	 	 	 	 11.82%

	 	 7	 	 	 	 	 LA		 	 	 	 11.83%

	 	 8	 	 	 	 	 SF		 	 	 	 11.93%

	 	 9	 	 	 	 	 NYG	 	 	 	 11.96%

	 	 10	 	 	 	 	 ARI	 	 	 	 11.97%

	 	 11	 	 	 	 	 CIN	 	 	 	 11.99%

	 	 12	 	 	 	 	 WAS	 	 	 	 12.06%

	 	 13	 	 	 	 	 CLE	 	 	 	 12.10%

	 	 14	 	 	 	 	 BAL	 	 	 	 12.11%

	 	 15	 	 	 	 	 ATL	 	 	 	 12.19%

	 	 16	 	 	 	 	 MIN	 	 	 	 12.24%

	 	 17	 	 	 	 	 LV		 	 	 	 12.27%

	 	 18	 	 	 	 	 TEN	 	 	 	 12.28%

	 	 19	 	 	 	 	 NYJ	 	 	 	 12.31%

	 	 20	 	 	 	 	 NO		 	 	 	 12.33%

	 	 21	 	 	 	 	 HOU	 	 	 	 12.36%

	 	 22	 	 	 	 	 BUF	 	 	 	 12.37%

	 	 23	 	 	 	 	 KC		 	 	 	 12.45%

	 	 24	 	 	 	 	 JAX	 	 	 	 12.50%

	 	 25	 	 	 	 	 CAR	 	 	 	 12.76%

	 	 26	 	 	 	 	 DET	 	 	 	 12.78%

	 	 27	 	 	 	 	 CHI	 	 	 	 13.09%

	 	 28	 	 	 	 	 SEA	 	 	 	 13.09%

	 	 29	 	 	 	 	 MIA	 	 	 	 13.12%

	 	 30	 	 	 	 	 DEN	 	 	 	 13.24%

	 	 31	 	 	 	 	 PHI	 	 	 	 13.40%

	 	 32	 	 	 	 	 IND	 	 	 	 14.69%
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11.1.11	 Average Pressure Allowed against Each Position for the New 	
	 	 	 	 York Giants





	 	 Position	 	 	 Position		 	 Average Pressure Allowed

	 	 1	 	 	 	 	 SCBoL		 	 	 8.36%


	 	 2	 	 	 	 	 NRT	 	 	 	 8.56%

	 	 3	 	 	 	 	 SCBR	 	 	 	 8.74%

	 	 4	 	 	 	 	 DLT	 	 	 	 9.36%

	 	 5	 	 	 	 	 DRT	 	 	 	 9.57%

	 	 6	 	 	 	 	 NLT	 	 	 	 10.37%

	 	 7	 	 	 	 	 NT		 	 	 	 10.43%

	 	 8	 	 	 	 	 RE		 	 	 	 10.99%

	 	 9	 	 	 	 	 LE		 	 	 	 11.17%

	 	 10	 	 	 	 	 LILB	 	 	 	 11.41%

	 	 11	 	 	 	 	 REO	 	 	 	 11.60%

	 	 12	 	 	 	 	 SCBiL		 	 	 11.65%

	 	 13	 	 	 	 	 ROLB		 	 	 12.49%

	 	 14	 	 	 	 	 RILB	 	 	 	 14.03%

	 	 15	 	 	 	 	 LEO	 	 	 	 14.32%

	 	 16	 	 	 	 	 RLB	 	 	 	 15.40%

	 	 17	 	 	 	 	 LOLB	 	 	 	 15.46%

	 	 18	 	 	 	 	 SCBoR	 	 	 17.32%

	 	 19	 	 	 	 	 LLB	 	 	 	 18.40%

	 	 20	 	 	 	 	 MLB	 	 	 	 18.79%

	 	 21	 	 	 	 	 SCBL	 	 	 	 20.28%

	 	 2	 	 	 	 	 SCBiR		 	 	 22.81%


52



11.1.12	 Average Pressure Allowed against Each Coverage for the New 
	 	 	 	 York Jets





	 	 Number		 	 Position		 	 Average Pressure Allowed

	 	 1	 	 	 	 	 Red Zone	 	 	 11.39%


	 	 2	 	 	 	 	 Cover-0	 	 	 12.20%

	 	 3	 	 	 	 	 Cover-3	 	 	 12.31%

	 	 4	 	 	 	 	 Cover-2	 	 	 12.55%

	 	 5	 	 	 	 	 Cover-6	 	 	 12.67%

	 	 6	 	 	 	 	 Cover-1	 	 	 12.84%

	 	 7	 	 	 	 	 Quarters	 	 	 12.98%

	 	 8	 	 	 	 	 2-Man		 	 	 15.35%

	 	 9	 	 	 	 	 Bracket	 	 	 17.22%
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11.2	 PMP Based Rankings


11.2.1	Top 20 Highest PMP Delta on One Play




	 	 Number		 Player	 	 	 	 	 nflId	 	 	 Team		 	 PMP Delta on One Play

	 	 1	 	 	 	 Tanner Vallejo		 	 	 45008	 	 	 ARI	 	 	 6.9774

	 	 2	 	 	 	 Chris Jones	 	 	 	 43326	 	 	 KC		 	 	 6.3135

	 	 3	 	 	 	 Carlos Dunlap		 	 	 35493	 	 	 SEA	 	 	 6.2516

	 	 4	 	 	 	 Josh Allen		 	 	 	 47790	 	 	 JAX	 	 	 5.9540

	 	 5	 	 	 	 Aaron Donald		 	 	 41239	 	 	 LA		 	 	 5.6189

	 	 6	 	 	 	 Matt Judon	 	 	 	 43435	 	 	 NE		 	 	 5.5378

	 	 7	 	 	 	 Azeez Ojulari	 	 	 	 53479	 	 	 NYG	 	 	 5.5329

	 	 8	 	 	 	 John Franklin-Meyers		 46204	 	 	 NYJ	 	 	 5.4213

	 	 9	 	 	 	 Charles Harris		 	 	 44834	 	 	 DET	 	 	 5.2702

	 	 10	 	 	 	 Josh Allen		 	 	 	 47790	 	 	 JAX	 	 	 5.2690

	 	 11	 	 	 	 B.J. Hill	 	 	 	 	 46138	 	 	 CIN	 	 	 5.1722

	 	 12	 	 	 	 Efe Obada		 	 	 	 42331	 	 	 BUF	 	 	 5.1161

	 	 13	 	 	 	 Jabrill Peppers	 	 	 44837	 	 	 NYG	 	 	 5.0989

	 	 14	 	 	 	 Leonard Williams		 	 42349	 	 	 NYG	 	 	 5.0646

	 	 15	 	 	 	 Everson Griffen	 	 	 35539	 	 	 MIN	 	 	 4.8936

	 	 16	 	 	 	 Demario Davis	 	 	 38607	 	 	 NO		 	 	 4.8716

	 	 17	 	 	 	 Kyler Fackrell		 	 	 43377	 	 	 LAC	 	 	 4.8623

	 	 18	 	 	 	 Harold Landry	 	 	 46110	 	 	 TEN	 	 	 4.7474

	 	 19	 	 	 	 Logan Wilson		 	 	 52473	 	 	 CIN	 	 	 4.7408

	 	 20	 	 	 	 Myles Bryan	 	 	 	 52991	 	 	 NE		 	 	 4.7333
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11.2.2	Top 20 Highest Average PMP Delta




	 	 Number		 Player	 	 	 	 	 nflId	 	 	 Team		 	 Average PMP Delta

	 	 1	 	 	 	 Grant Delpit	 	 	 	 52452	 	 	 CLE	 	 	 2.4534

	 	 2	 	 	 	 Kevin King	 	 	 	 44845	 	 	 GB		 	 	 2.4184

	 	 3	 	 	 	 George Odum		 	 	 46349	 	 	 IND	 	 	 2.3689

	 	 4	 	 	 	 Tashaun Gipson	 	 	 38868	 	 	 CHI	 	 	 2.3554

	 	 5	 	 	 	 Charvarius Ward	 	 	 46757	 	 	 KC		 	 	 2.3291

	 	 6	 	 	 	 Myles Bryan	 	 	 	 52991	 	 	 NE		 	 	 2.3132

	 	 7	 	 	 	 Tanner Vallejo		 	 	 45008	 	 	 ARI	 	 	 2.1690

	 	 8	 	 	 	 Donte Deayon		 	 	 43761	 	 	 LA		 	 	 2.1390

	 	 9	 	 	 	 Avonte Maddox	 	 	 46194	 	 	 PHI	 	 	 2.0817

	 	 10	 	 	 	 Ryan Neal		 	 	 	 46711	 	 	 SEA	 	 	 1.9981

	 	 11	 	 	 	 Tre’Davious White	 	 44839	 	 	 BUF	 	 	 1.9162

	 	 12	 	 	 	 Caden Sterns	 	 	 	 53581	 	 	 DEN	 	 	 1.8749

	 	 13	 	 	 	 Elijah Lee		 	 	 	 45045	 	 	 CLE	 	 	 1.7442

	 	 14	 	 	 	 Grant Stuard	 	 	 	 53688	 	 	 TB		 	 	 1.7355

	 	 15	 	 	 	 M.J. Steward	 	 	 	 46122	 	 	 CLE	 	 	 1.8090

	 	 16	 	 	 	 Daryl Worley	 	 	 	 43366	 	 	 DET	 	 	 1.5591

	 	 17	 	 	 	 Jamal Dean	 	 	 	 47877	 	 	 TB		 	 	 1.5519

	 	 18	 	 	 	 Markus Bailey		 	 	 52623	 	 	 CIN	 	 	 1.5346

	 	 19	 	 	 	 Kristian Fulton	 	 	 52469	 	 	 TEN	 	 	 1.4951

	 	 20	 	 	 	 Micah Kiser	 	 	 	 46216	 	 	 DEN	 	 	 1.3408
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11.3	 Python Code


11.3.1	Disclaimer


Due to the fact that millions of data points have to be processed at various stages of the code, 
some individual computations took several hours to compile. Letting the code run from top to 
bottom would most likely result in a computation time of over a day, which is why the code has 
be structured in the following way: for any computation that requires a changing of the data 
frame, or the creation of a new one, a new function would be built that loads the data frame 
that is to be manipulated, does the computation, and then creates an entirely new CSV file. 
This helps to keep track of where in the process one is, but if its desired to imitate the steps, the 
size of the files will come out to several gigabytes. The in-between created files can obviously be 
deleted once it is all completed. The Python code will be separated into four sections: the data 
preprocessing with the exploratory data analysis, the both machine learning models with all the 
required data manipulation, the data analysis, and finally the Streamlit code for all 
visualizations that are found in this thesis.
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11.3.2	Data Preprocessing


import pandas as pd

# Add the week to each recorded frame and concatenate the weeks
def add_weeks_to_data():
    # Load data
    week1 = pd.read_csv('week1.csv')
    week2 = pd.read_csv('week2.csv')
    week3 = pd.read_csv('week3.csv')
    week4 = pd.read_csv('week4.csv')
    week5 = pd.read_csv('week5.csv')
    week6 = pd.read_csv('week6.csv')
    week7 = pd.read_csv('week7.csv')
    week8 = pd.read_csv('week8.csv')

    # Add number of weeks
    week1['week'] = 1
    week2['week'] = 2
    week3['week'] = 3
    week4['week'] = 4
    week5['week'] = 5
    week6['week'] = 6
    week7['week'] = 7
    week8['week'] = 8

    # Concat all weeks
    frames = [week1, week2, week3, week4, week5, week6, week7, week8]

    # Create new df
    all_weeks = pd.concat(frames, ignore_index=True)
    all_weeks = all_weeks.drop(all_weeks.columns[0], axis=1)

    # Create new csv
    all_weeks.to_csv('all_weeks_concat.csv')

# Adding the position of each player for each frame to the data set
def add_position_to_week():
    # Load the required csv files
    week = pd.read_csv('all_weeks_concat.csv')
    pff_data = pd.read_csv('pffScoutingData.csv')

    # For each player and each frame in the data set, find the corresponding position via the PFF Scouting data
    for i in range(len(week)):
        if week['team'][i] != 'football':
            df = pff_data.loc[
                (pff_data['gameId'] == week['gameId'][i]) & (pff_data['playId'] == week['playId'][i]) & (
                        pff_data['nflId'] == week['nflId'][i])]
            df = df.reset_index(drop=True)
            week.at[i, 'position'] = df['pff_positionLinedUp'][0]   # Add the position in a new column

    # Create a new CSV file
    week.to_csv('all_weeks_with_positions.csv')

# Flip all plays with play direction going left, so that all plays will have the same play direction.
# X-axis and y-axis each have to be reversed and the orientation has to be flipped by 180 degrees.
def flip_plays():
    # Load the data
    weeks = pd.read_csv('all_weeks_with_positions.csv')

    length = 120        # Define the length of the field
    width = 160 / 3     # Define the width of the field

    # For each frame, if the play direction is left, flip the play
    for i in range(len(weeks)):
        if weeks['playDirection'][i] == 'left':
            weeks.at[i, 'x'] = length - weeks['x'][i]   # Reversing the x-axis
            weeks.at[i, 'y'] = width - weeks['y'][i]    # Reversing the y-axis

            # If the orientation is more than 180 degrees, 180 will be subtracted from it, otherwise 180 will be added
            if weeks['o'][i] >= 180:
                weeks.at[i, 'o'] = weeks['o'][i] - 180
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            else:
                weeks.at[i, 'o'] = 180 + weeks['o'][i]

            weeks.at[i, 'playDirection'] = 'right'  # Change the label for play direction

    # Create a new CSV file
    # If a function had to be redone, the CSV file would have a version number in it, this can obviously be changed
    weeks.to_csv('all_weeks_going_right2.csv')

# Adding the role to every frame for every player, this will be useful to determine passer, pass rush and pass block
# later.
def add_role():
    # Load the data
    pff_data = pd.read_csv('pffScoutingData.csv')
    weeks = pd.read_csv('all_weeks_going_right2.csv')

    weeks['role'] = ""  # Add a new column

    # Same procedure as with the position, just with the role this time
    for i in range(len(weeks)):
        if weeks['team'][i] != 'football':
            df = pff_data.loc[
                (pff_data['gameId'] == weeks['gameId'][i]) & (pff_data['playId'] == weeks['playId'][i]) & (
                        pff_data['nflId'] == weeks['nflId'][i])]
            df = df.reset_index(drop=True)
            weeks.at[i, 'role'] = df['pff_role'][0]     # Overwrite the role with the correct one

    # Create a new CSV file
    weeks.to_csv('weeks_final2.csv')

# The preprocessing in the previous step turned out to create floats for some of the int-type data, like the nflId
# as well as turning the x, y and o data into floats with several trailing zeros.
# It was also noticed that the newly created data frames would have leading empty columns, therefore the first three
# would be dropped here, but it will be considered from here on out.
def cleaning_all_weeks():
    weeks = pd.read_csv('weeks_final2.csv')     # Load the data
    weeks = weeks.drop(weeks.columns[0], axis=1)
    weeks = weeks.drop(weeks.columns[0], axis=1)
    weeks = weeks.drop(weeks.columns[0], axis=1)
    weeks['nflId'] = weeks['nflId'].fillna(0)
    weeks['nflId'] = weeks['nflId'].astype(int)
    weeks['jerseyNumber'] = weeks['jerseyNumber'].fillna(0)
    weeks['jerseyNumber'] = weeks['jerseyNumber'].astype(int)
    weeks['x'] = weeks['x'].round(2)
    weeks['y'] = weeks['y'].round(2)
    weeks['o'] = weeks['o'].round(2)

    # Create new CSV file
    weeks.to_csv('weeks_final2.1.csv')

# Filter the data frame to only contain the passer, the pass rusher and the pass blocker, as this will be needed later
# on.
def only_passer_rusher_blocker():
    # Load the data
    weeks = pd.read_csv('weeks_final2.1.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)
    weeks_reduced = weeks.loc[(weeks['role'] == 'Pass') | (weeks['role'] == 'Pass Block') | (weeks['role'] == 'Pass Rush')]
    weeks_reduced = weeks_reduced.reset_index(drop=True)

    # Create a new CSV file
    weeks_reduced.to_csv('weeks_only_passer_blocker_rusher.csv')

# Adding whether a sack, hit, or hurry has occurred on a play for a pass rusher, defining the occurrence of either one
# as a pressure and adding the binary event to every frame for that play for that pass rusher.
def add_sack_hit_hurry_pressure():
    # Loading the data
    weeks = pd.read_csv('weeks_only_passer_blocker_rusher.csv')
    pff_data = pd.read_csv('pffScoutingData.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)

    # Creating new columns
    weeks['pressure'] = 0
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    weeks['sack'] = 0
    weeks['hit'] = 0
    weeks['hurry'] = 0

    # Iterating over every frame. If via the PFF Scouting data a pressure has occurred on the play, add that information
    # to the data frame.
    for i in range(len(weeks)):
        df = pff_data.loc[
            (pff_data['gameId'] == weeks['gameId'][i]) & (pff_data['playId'] == weeks['playId'][i]) & (
                    pff_data['nflId'] == weeks['nflId'][i])]
        df = df.reset_index(drop=True)
        if (df['pff_hit'][0] == 1) | (df['pff_hurry'][0] == 1) | (df['pff_sack'][0] == 1):
            weeks.at[i, 'pressure'] = 1
        if df['pff_hit'][0] == 1:
            weeks.at[i, 'hit'] = 1
        if df['pff_hurry'][0] == 1:
            weeks.at[i, 'hurry'] = 1
        if df['pff_sack'][0] == 1:
            weeks.at[i, 'sack'] = 1

    # Create a new CSV file
    weeks.to_csv('weeks_with_sack_hit_hurry_pressure.csv')

# Add the pass result of the play to the data frame for potential further analysis later on
def add_pass_result():
    # Load the data
    plays = pd.read_csv('plays.csv')
    weeks = pd.read_csv('weeks_with_sack_hit_hurry_pressure.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)
    weeks['pass_result'] = ''  # Add a new column

    # Iterate over every frame
    for i in range(len(weeks)):
        # Find the corresponding play via the plays data and retrieve the pass result from there
        df = plays.loc[
            (plays['gameId'] == weeks['gameId'][i]) & (plays['playId'] == weeks['playId'][i])]
        df = df.reset_index(drop=True)
        weeks.at[i, 'pass_result'] = df['passResult'][0]  # Overwrite the pass result

    # Create a new CSV file
    weeks.to_csv('weeks_with_sack_hit_hurry_pressure_and_play_result.csv')

# Lastly, some EDA that was mentioned in the thesis

# Finding the total frames tracked for each week
def find_avg_number_of_plays_per_game():
    # Load all weeks
    week1 = pd.read_csv('week1.csv')
    week2 = pd.read_csv('week2.csv')
    week3 = pd.read_csv('week3.csv')
    week4 = pd.read_csv('week4.csv')
    week5 = pd.read_csv('week5.csv')
    week6 = pd.read_csv('week6.csv')
    week7 = pd.read_csv('week7.csv')
    week8 = pd.read_csv('week8.csv')

    # Average amount for non-bye weeks and the all frames for all weeks
    avg_tracking = (len(week1) + len(week2) + len(week3) + len(week4) + len(week5)) / 5
    total_tracking = len(week1) + len(week2) + len(week3) + len(week4) + len(week5) + len(week6) + len(week7) + len(
        week8)

    # Print to display
    print(len(week1))
    print(len(week2))
    print(len(week3))
    print(len(week4))
    print(len(week5))
    print(len(week6))
    print(len(week7))
    print(len(week8))
    print(avg_tracking)
    print(total_tracking)
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# Finding the average amount of plays per game
def find_avg_number_of_plays_per_game():
    # Loading the data
    games = pd.read_csv('games.csv')
    plays = pd.read_csv('plays.csv')

    # Filtering the games data to the those of each week
    games_week1 = games.loc[(games['week'] == 1)]
    games_week1 = games_week1.reset_index(drop=True)

    games_week2 = games.loc[(games['week'] == 2)]
    games_week2 = games_week2.reset_index(drop=True)

    games_week3 = games.loc[(games['week'] == 3)]
    games_week3 = games_week3.reset_index(drop=True)

    games_week4 = games.loc[(games['week'] == 4)]
    games_week4 = games_week4.reset_index(drop=True)

    games_week5 = games.loc[(games['week'] == 5)]
    games_week5 = games_week5.reset_index(drop=True)

    games_week6 = games.loc[(games['week'] == 6)]
    games_week6 = games_week6.reset_index(drop=True)

    games_week7 = games.loc[(games['week'] == 7)]
    games_week7 = games_week7.reset_index(drop=True)

    games_week8 = games.loc[(games['week'] == 8)]
    games_week8 = games_week8.reset_index(drop=True)

    # Create a list for all games of the respective week and filter the plays data frame to only the plays of the
    # respective week.
    week1_games_list = games_week1['gameId'].unique()
    plays_week1 = plays[plays['gameId'].isin(week1_games_list)]
    plays_week1 = plays_week1.reset_index(drop=True)

    week2_games_list = games_week2['gameId'].unique()
    plays_week2 = plays[plays['gameId'].isin(week2_games_list)]
    plays_week2 = plays_week2.reset_index(drop=True)

    week3_games_list = games_week3['gameId'].unique()
    plays_week3 = plays[plays['gameId'].isin(week3_games_list)]
    plays_week3 = plays_week3.reset_index(drop=True)

    week4_games_list = games_week4['gameId'].unique()
    plays_week4 = plays[plays['gameId'].isin(week4_games_list)]
    plays_week4 = plays_week4.reset_index(drop=True)

    week5_games_list = games_week5['gameId'].unique()
    plays_week5 = plays[plays['gameId'].isin(week5_games_list)]
    plays_week5 = plays_week5.reset_index(drop=True)

    week6_games_list = games_week6['gameId'].unique()
    plays_week6 = plays[plays['gameId'].isin(week6_games_list)]
    plays_week6 = plays_week6.reset_index(drop=True)

    week7_games_list = games_week7['gameId'].unique()
    plays_week7 = plays[plays['gameId'].isin(week7_games_list)]
    plays_week7 = plays_week7.reset_index(drop=True)

    week8_games_list = games_week8['gameId'].unique()
    plays_week8 = plays[plays['gameId'].isin(week8_games_list)]
    plays_week8 = plays_week8.reset_index(drop=True)

    # Display the amount of plays per week
    print(len(plays_week1))
    print(len(plays_week2))
    print(len(plays_week3))
    print(len(plays_week4))
    print(len(plays_week5))
    print(len(plays_week6))
    print(len(plays_week7))
    print(len(plays_week8))
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    # Calculate the average amount of plays per game
    plays_per_game = len(plays) / len(games)

    # Display the average
    print(plays_per_game)

# Finding the highest amount of blockers a pass rusher has faced
def find_highest_number_of_blockers():
    # Load the data
    plays = pd.read_csv('plays.csv')
    pff_data = pd.read_csv('pffScoutingData.csv')

    max_blockers = 0    # Set max number of blocker to 0

    # Iterate over all plays
    for i in range(len(plays)):
        # Filter the PFF Scouting data to be only one play each
        one_play = pff_data.loc[(pff_data['gameId'] == plays['gameId'][i]) & (pff_data['playId'] == plays['playId'][i])]
        one_play = one_play.reset_index(drop=True)

        # Filter the one-play data to only show the pass rushers
        only_rushers = one_play.loc[(one_play['pff_role'] == 'Pass Rush')]
        only_rushers = only_rushers.reset_index(drop=True)
        rusher_id = only_rushers['nflId'].unique()  # Get the nflId for each pass rusher on the play

        # Iterate over all pass rushers on the play and find how many pass blockers were credited with blocking this
        # pass rusher. If the blocker count is a new max, overwrite the previous max
        for j in rusher_id:
            blocker_count = (one_play['pff_nflIdBlockedPlayer'] == j).sum()
            if blocker_count > max_blockers:
                max_blockers = blocker_count

    # Display the maximum amount of blockers
    print(max_blockers)
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11.3.3	Machine Learning Models


import pandas as pd
import math
from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.neighbors import KNeighborsRegressor

# Calculating the required telemetry for every pass rusher for the three closest blockers as described in the thesis
def add_telemetry_rushers():
    # Load the data
    plays = pd.read_csv('plays.csv')
    weeks = pd.read_csv('weeks_with_sack_hit_hurry_pressure_and_play_result.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)

    # Add the required, described columns
    weeks['x_to_passer'] = 0
    weeks['y_to_passer'] = 0
    weeks['distance_to_passer'] = 0
    weeks['x_to_blocker'] = 0
    weeks['y_to_blocker'] = 0
    weeks['distance_to_blocker'] = 0
    weeks['blocker_o'] = 0
    weeks['angle'] = 0
    weeks['x_to_second_blocker'] = 0
    weeks['y_to_second_blocker'] = 0
    weeks['distance_to_second_blocker'] = 0
    weeks['second_blocker_o'] = 0
    weeks['second_angle'] = 0
    weeks['x_to_third_blocker'] = 0
    weeks['y_to_third_blocker'] = 0
    weeks['distance_to_third_blocker'] = 0
    weeks['third_blocker_o'] = 0
    weeks['third_angle'] = 0
    weeks['x_offset'] = 0
    weeks['y_offset'] = 0

    # Create an empty data frame only responsible for the telemetry data
    telemetry_df = pd.DataFrame(columns=weeks.columns)

    # Iterate over all plays
    for k in range(len(plays)):
        # Filter the data to the current play
        one_play = weeks.loc[(weeks['gameId'] == plays['gameId'][k]) & (weeks['playId'] == plays['playId'][k])]
        one_play = one_play.reset_index(drop=True)
        # Iterate over every frame of the current play
        for i in range(len(one_play)):
            # If the current frame is that of a pass rusher, calculate all required telemetry for that frame
            if one_play['role'][i] == 'Pass Rush':
                df_passer = one_play.loc[
                    (one_play['role'] == 'Pass') & (one_play['frameId'] == one_play['frameId'][i])]
                df_passer = df_passer.reset_index(drop=True)
                # All telemetries in regards to the passer
                one_play.at[i, 'x_to_passer'] = df_passer['x'][0] - one_play['x'][i]
                one_play.at[i, 'y_to_passer'] = df_passer['y'][0] - one_play['y'][i]
                one_play.at[i, 'distance_to_passer'] = round(
                    math.sqrt((one_play['y_to_passer'][i] ** 2) + (one_play['x_to_passer'][i]) ** 2), 2)

                # Create a data frame of all pass blockers on this frame
                df_blocker = one_play.loc[
                    (one_play['role'] == 'Pass Block') & (one_play['frameId'] == one_play['frameId'][i])]
                df_blocker = df_blocker.reset_index(drop=True)
                all_blockers = []
                individual_blocker = []

                # Iterate over every found pass blocker and calculate the required telemetries to the pass rusher and
                # the angle between pass rusher, pass blocker and passer.
                # Append every telemetry to a list. Append the list to a bigger list that will hold the telemetries to
                # each pass blocker. This will allow to determine the closest blockers and allow for a quick indexing to
                # the right column.
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                for j in range(len(df_blocker)):
                    x_to_blocker = one_play['x'][i] - df_blocker['x'][j]
                    individual_blocker.append(x_to_blocker)

                    y_to_blocker = one_play['y'][i] - df_blocker['y'][j]
                    individual_blocker.append(y_to_blocker)

                    distance_to_blocker = math.sqrt((x_to_blocker ** 2) + (y_to_blocker ** 2))
                    individual_blocker.append(distance_to_blocker)

                    x_passer_to_blocker = df_passer['x'][0] - df_blocker['x'][j]
                    y_passer_to_blocker = df_passer['y'][0] - df_blocker['y'][j]
                    distance_passer_to_blocker = round(math.sqrt(x_passer_to_blocker ** 2 + y_passer_to_blocker ** 2))

                    # Vector calculation to find the angle between passer, pass blocker, and pass rusher
                    dot_product = one_play['x_to_passer'][i] * x_passer_to_blocker + one_play['y_to_passer'][
                        i] * y_passer_to_blocker
                    cos_theta = dot_product / (distance_passer_to_blocker * one_play['distance_to_passer'][i])
                    cos_theta = min(1, max(-1, cos_theta))
                    theta = math.acos(cos_theta)
                    theta_degrees = math.degrees(theta)
                    individual_blocker.append(theta_degrees)
                    individual_blocker.append(df_blocker['o'][j])

                    all_blockers.append(individual_blocker)     # Append list to bigger list
                    individual_blocker = []                     # Reset the individual blocker list

                # Findin the smallest distance smallest distance
                min_val = float('inf')
                closest_blocker = None
                for sub_arr in all_blockers:
                    if sub_arr[2] < min_val:
                        min_val = sub_arr[2]
                        closest_blocker = sub_arr

                # Indexing the telemetries to the columns of the closest blocker
                one_play.at[i, 'x_to_blocker'] = closest_blocker[0]
                one_play.at[i, 'y_to_blocker'] = closest_blocker[1]
                one_play.at[i, 'distance_to_blocker'] = closest_blocker[2]
                one_play.at[i, 'angle'] = closest_blocker[3]
                one_play.at[i, 'blocker_o'] = closest_blocker[4]

                # Removing the closest blocker and finding the second closest blocker
                all_blockers.remove(closest_blocker)
                min_val = float('inf')
                closest_blocker = None
                for sub_arr in all_blockers:
                    if sub_arr[2] < min_val:
                        min_val = sub_arr[2]
                        closest_blocker = sub_arr

                # Indexing the telemetries to the columns of the second closest blocker
                one_play.at[i, 'x_to_second_blocker'] = closest_blocker[0]
                one_play.at[i, 'y_to_second_blocker'] = closest_blocker[1]
                one_play.at[i, 'distance_to_second_blocker'] = closest_blocker[2]
                one_play.at[i, 'second_angle'] = closest_blocker[3]
                one_play.at[i, 'second_blocker_o'] = closest_blocker[4]

                # Removing the closest blocker and finding the third closest blocker
                all_blockers.remove(closest_blocker)
                min_val = float('inf')
                closest_blocker = None
                for sub_arr in all_blockers:
                    if sub_arr[2] < min_val:
                        min_val = sub_arr[2]
                        closest_blocker = sub_arr

                # Indexing the telemetries to the columns of the third closest blocker
                one_play.at[i, 'x_to_third_blocker'] = closest_blocker[0]
                one_play.at[i, 'y_to_third_blocker'] = closest_blocker[1]
                one_play.at[i, 'distance_to_third_blocker'] = closest_blocker[2]
                one_play.at[i, 'third_angle'] = closest_blocker[3]
                one_play.at[i, 'third_blocker_o'] = closest_blocker[4]
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                # Adding the offset to the previous frame. Setting it to zero in case of the first frame
                if one_play['frameId'][i] == 1:
                    one_play.at[i, 'x_offset'] = 0
                    one_play.at[i, 'y_offset'] = 0
                else:
                    df_rusher = one_play.loc[
                        (one_play['nflId'] == one_play['nflId'][i]) & (
                                one_play['frameId'] == one_play['frameId'][i] - 1)]
                    df_rusher = df_rusher.reset_index(drop=True)
                    one_play.at[i, 'x_offset'] = df_rusher['x'][0] - one_play['x'][i]
                    one_play.at[i, 'y_offset'] = df_rusher['y'][0] - one_play['y'][i]

        # Adding the newly found telemetries to the telemetry data frame
        telemetry_df = pd.concat([telemetry_df, one_play], ignore_index=True)

    # Deleting all non-pass rushers from the list, as those will not be important for the prediction
    only_rushers = telemetry_df.loc[(telemetry_df['role'] == 'Pass Rush')]
    only_rushers = only_rushers.reset_index(drop=True)

    # Creating a new CSV file
    only_rushers.to_csv('weeks_only_rushers_with_telemetry_three_blockers.csv')

# Finding the optimal k for one blocker with the telemetries created for k from 1 to 100, predicting the occurrence of
# a pressure on the play.
def find_optimal_k_one_blocker():
    # Load the data
    weeks = pd.read_csv('weeks_only_rushers_with_telemetry_three_blockers.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)

    # Round the telemetries to two decimal places, as this is the precision of all other telemetries
    weeks['x_to_passer'] = weeks['x_to_passer'].round(2)
    weeks['y_to_passer'] = weeks['y_to_passer'].round(2)
    weeks['distance_to_passer'] = weeks['distance_to_passer'].round(2)
    weeks['x_to_blocker'] = weeks['x_to_blocker'].round(2)
    weeks['y_to_blocker'] = weeks['y_to_blocker'].round(2)
    weeks['distance_to_blocker'] = weeks['distance_to_blocker'].round(2)
    weeks['blocker_o'] = weeks['blocker_o'].round(2)
    weeks['angle'] = weeks['angle'].round(2)
    weeks['x_offset'] = weeks['x_offset'].round(2)
    weeks['y_offset'] = weeks['y_offset'].round(2)

    # Train the model on the first seven weeks
    weeks_train = weeks.loc[
        (weeks['week'] == 1) | (weeks['week'] == 2) | (weeks['week'] == 3) | (weeks['week'] == 4) | (
                    weeks['week'] == 5) | (weeks['week'] == 6) | (weeks['week'] == 7)]
    weeks_train = weeks_train.reset_index(drop=True)

    # Test the model on the eighth week
    weeks_test = weeks.loc[(weeks['week'] == 8)]
    weeks_test = weeks_test.reset_index(drop=True)

    # Defining the features (the created telemetries, plus speed, acceleartion, and orientation)
    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a']

    # Creating the train and test datasets
    X_train = weeks_train[features]
    y_train = weeks_train['pressure']
    X_test = weeks_test[features]
    y_test = weeks_test['pressure']

    # Running the KNN for all k from 1 to 100 with weights for the distances to the closest neighbors
    for i in range(1, 101):
        clf = KNeighborsClassifier(n_neighbors=i, weights='distance')

        # Train the KNN
        clf = clf.fit(X_train, y_train)

        # Predict the response for the test dataset
        y_pred = clf.predict(X_test)

        # Display the accuracy to find the best one
        print("Accuracy with one blocker:", metrics.accuracy_score(y_test, y_pred), "for k being:", i)
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# Repeat the process from the previous function, but with the two closest blockers
def find_optimal_k_two_blockers():
    weeks = pd.read_csv('weeks_only_rushers_with_telemetry_three_blockers.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)

    weeks['x_to_passer'] = weeks['x_to_passer'].round(2)
    weeks['y_to_passer'] = weeks['y_to_passer'].round(2)
    weeks['distance_to_passer'] = weeks['distance_to_passer'].round(2)
    weeks['x_to_blocker'] = weeks['x_to_blocker'].round(2)
    weeks['y_to_blocker'] = weeks['y_to_blocker'].round(2)
    weeks['distance_to_blocker'] = weeks['distance_to_blocker'].round(2)
    weeks['blocker_o'] = weeks['blocker_o'].round(2)
    weeks['angle'] = weeks['angle'].round(2)
    weeks['x_to_second_blocker'] = weeks['x_to_second_blocker'].round(2)
    weeks['y_to_second_blocker'] = weeks['y_to_second_blocker'].round(2)
    weeks['distance_to_second_blocker'] = weeks['distance_to_second_blocker'].round(2)
    weeks['second_blocker_o'] = weeks['second_blocker_o'].round(2)
    weeks['second_angle'] = weeks['second_angle'].round(2)
    weeks['x_offset'] = weeks['x_offset'].round(2)
    weeks['y_offset'] = weeks['y_offset'].round(2)

    weeks_train = weeks.loc[
        (weeks['week'] == 1) | (weeks['week'] == 2) | (weeks['week'] == 3) | (weeks['week'] == 4) | (
                    weeks['week'] == 5) | (weeks['week'] == 6) | (weeks['week'] == 7)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_test = weeks.loc[(weeks['week'] == 8)]
    weeks_test = weeks_test.reset_index(drop=True)

    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a',
                'x_to_second_blocker', 'y_to_second_blocker', 'distance_to_second_blocker', 'second_blocker_o',
                'second_angle']

    X_train = weeks_train[features]
    y_train = weeks_train['pressure']
    X_test = weeks_test[features]
    y_test = weeks_test['pressure']

    for i in range(1, 101):
        clf = KNeighborsClassifier(n_neighbors=i, weights='distance')

        clf = clf.fit(X_train, y_train)

        y_pred = clf.predict(X_test)

        print("Accuracy with two blockers:", metrics.accuracy_score(y_test, y_pred), "for k being:", i)

# Repeat the process from the previous function, but with the three closest blockers
def find_optimal_k_three_blockers():
    weeks = pd.read_csv('weeks_only_rushers_with_telemetry_three_blockers.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)

    weeks['x_to_passer'] = weeks['x_to_passer'].round(2)
    weeks['y_to_passer'] = weeks['y_to_passer'].round(2)
    weeks['distance_to_passer'] = weeks['distance_to_passer'].round(2)
    weeks['x_to_blocker'] = weeks['x_to_blocker'].round(2)
    weeks['y_to_blocker'] = weeks['y_to_blocker'].round(2)
    weeks['distance_to_blocker'] = weeks['distance_to_blocker'].round(2)
    weeks['blocker_o'] = weeks['blocker_o'].round(2)
    weeks['angle'] = weeks['angle'].round(2)
    weeks['x_to_second_blocker'] = weeks['x_to_second_blocker'].round(2)
    weeks['y_to_second_blocker'] = weeks['y_to_second_blocker'].round(2)
    weeks['distance_to_second_blocker'] = weeks['distance_to_second_blocker'].round(2)
    weeks['second_blocker_o'] = weeks['second_blocker_o'].round(2)
    weeks['second_angle'] = weeks['second_angle'].round(2)
    weeks['x_to_third_blocker'] = weeks['x_to_third_blocker'].round(2)
    weeks['y_to_third_blocker'] = weeks['y_to_third_blocker'].round(2)
    weeks['distance_to_third_blocker'] = weeks['distance_to_third_blocker'].round(2)
    weeks['third_blocker_o'] = weeks['third_blocker_o'].round(2)
    weeks['third_angle'] = weeks['third_angle'].round(2)
    weeks['x_offset'] = weeks['x_offset'].round(2)
    weeks['y_offset'] = weeks['y_offset'].round(2)

    weeks_train = weeks.loc[
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        (weeks['week'] == 1) | (weeks['week'] == 2) | (weeks['week'] == 3) | (weeks['week'] == 4) | (
                    weeks['week'] == 5) | (weeks['week'] == 6) | (weeks['week'] == 7)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_test = weeks.loc[(weeks['week'] == 8)]
    weeks_test = weeks_test.reset_index(drop=True)

    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a',
                'x_to_second_blocker', 'y_to_second_blocker', 'distance_to_second_blocker', 'second_blocker_o',
                'second_angle', 'x_to_third_blocker', 'y_to_third_blocker', 'distance_to_third_blocker',
                'third_blocker_o', 'third_angle']

    X_train = weeks_train[features]
    y_train = weeks_train['pressure']
    X_test = weeks_test[features]
    y_test = weeks_test['pressure']

    for i in range(1, 101):
        clf = KNeighborsClassifier(n_neighbors=i, weights='distance')

        clf = clf.fit(X_train, y_train)

        y_pred = clf.predict(X_test)

        print("Accuracy with three blockers:", metrics.accuracy_score(y_test, y_pred), "for k being:", i)

# With the accuracies being close to one another and the decision being made to advance with only the closest blocker,
# the telemetries were recalculated to also include the speed and acceleration of the blocker.
# Same process as before, but this time only taking the closest blocker into consideration
def add_telemetry_rusher_for_one_blocker_full():
    plays = pd.read_csv('plays.csv')
    weeks = pd.read_csv('weeks_with_sack_hit_hurry_pressure_and_play_result.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)

    weeks['x_to_passer'] = 0
    weeks['y_to_passer'] = 0
    weeks['distance_to_passer'] = 0
    weeks['x_to_blocker'] = 0
    weeks['y_to_blocker'] = 0
    weeks['distance_to_blocker'] = 0
    weeks['blocker_o'] = 0
    weeks['angle'] = 0
    weeks['blocker_s'] = 0
    weeks['blocker_a'] = 0
    weeks['x_offset'] = 0
    weeks['y_offset'] = 0

    telemetry_df = pd.DataFrame(columns=weeks.columns)

    for k in range(len(plays)):
        one_play = weeks.loc[(weeks['gameId'] == plays['gameId'][k]) & (weeks['playId'] == plays['playId'][k])]
        one_play = one_play.reset_index(drop=True)
        for i in range(len(one_play)):
            if one_play['role'][i] == 'Pass Rush':
                df_passer = one_play.loc[
                    (one_play['role'] == 'Pass') & (one_play['frameId'] == one_play['frameId'][i])]
                df_passer = df_passer.reset_index(drop=True)
                one_play.at[i, 'x_to_passer'] = df_passer['x'][0] - one_play['x'][i]
                one_play.at[i, 'y_to_passer'] = df_passer['y'][0] - one_play['y'][i]
                one_play.at[i, 'distance_to_passer'] = round(
                    math.sqrt((one_play['y_to_passer'][i] ** 2) + (one_play['x_to_passer'][i]) ** 2), 2)

                df_blocker = one_play.loc[
                    (one_play['role'] == 'Pass Block') & (one_play['frameId'] == one_play['frameId'][i])]
                df_blocker = df_blocker.reset_index(drop=True)
                all_blockers = []
                individual_blocker = []

                for j in range(len(df_blocker)):
                    x_to_blocker = one_play['x'][i] - df_blocker['x'][j]
                    individual_blocker.append(x_to_blocker)

                    y_to_blocker = one_play['y'][i] - df_blocker['y'][j]
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                    individual_blocker.append(y_to_blocker)

                    distance_to_blocker = math.sqrt((x_to_blocker ** 2) + (y_to_blocker ** 2))
                    individual_blocker.append(distance_to_blocker)

                    x_passer_to_blocker = df_passer['x'][0] - df_blocker['x'][j]
                    y_passer_to_blocker = df_passer['y'][0] - df_blocker['y'][j]
                    distance_passer_to_blocker = round(math.sqrt(x_passer_to_blocker ** 2 + y_passer_to_blocker ** 2))

                    dot_product = one_play['x_to_passer'][i] * x_passer_to_blocker + one_play['y_to_passer'][
                        i] * y_passer_to_blocker
                    cos_theta = dot_product / (distance_passer_to_blocker * one_play['distance_to_passer'][i])
                    cos_theta = min(1, max(-1, cos_theta))
                    theta = math.acos(cos_theta)
                    theta_degrees = math.degrees(theta)
                    individual_blocker.append(theta_degrees)
                    individual_blocker.append(df_blocker['o'][j])
                    individual_blocker.append(df_blocker['s'][j])
                    individual_blocker.append(df_blocker['a'][j])
                    all_blockers.append(individual_blocker)
                    individual_blocker = []

                min_val = float('inf')
                closest_blocker = None
                for sub_arr in all_blockers:
                    if sub_arr[2] < min_val:
                        min_val = sub_arr[2]
                        closest_blocker = sub_arr

                one_play.at[i, 'x_to_blocker'] = closest_blocker[0]
                one_play.at[i, 'y_to_blocker'] = closest_blocker[1]
                one_play.at[i, 'distance_to_blocker'] = closest_blocker[2]
                one_play.at[i, 'angle'] = closest_blocker[3]
                one_play.at[i, 'blocker_o'] = closest_blocker[4]
                one_play.at[i, 'blocker_s'] = closest_blocker[5]
                one_play.at[i, 'blocker_a'] = closest_blocker[6]

                if one_play['frameId'][i] == 1:
                    one_play.at[i, 'x_offset'] = 0
                    one_play.at[i, 'y_offset'] = 0
                else:
                    df_rusher = one_play.loc[
                        (one_play['nflId'] == one_play['nflId'][i]) & (
                                one_play['frameId'] == one_play['frameId'][i] - 1)]
                    df_rusher = df_rusher.reset_index(drop=True)
                    one_play.at[i, 'x_offset'] = df_rusher['x'][0] - one_play['x'][i]
                    one_play.at[i, 'y_offset'] = df_rusher['y'][0] - one_play['y'][i]

        telemetry_df = pd.concat([telemetry_df, one_play], ignore_index=True)

    only_rushers = telemetry_df.loc[(telemetry_df['role'] == 'Pass Rush')]
    only_rushers = only_rushers.reset_index(drop=True)

    only_rushers.to_csv('weeks_only_rushers_with_telemetry_one_blocker_full.csv')

# Again determining the best k for the KNN, this time with all telemetries. The same function can be done by testing for
# each week individually and taking the average k out of all 8 models.
# Same process as before.
def find_optimal_k_one_blocker_full():
    weeks = pd.read_csv('weeks_only_rushers_with_telemetry_one_blocker_full.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)

    weeks['x_to_passer'] = weeks['x_to_passer'].round(2)
    weeks['y_to_passer'] = weeks['y_to_passer'].round(2)
    weeks['distance_to_passer'] = weeks['distance_to_passer'].round(2)
    weeks['x_to_blocker'] = weeks['x_to_blocker'].round(2)
    weeks['y_to_blocker'] = weeks['y_to_blocker'].round(2)
    weeks['distance_to_blocker'] = weeks['distance_to_blocker'].round(2)
    weeks['blocker_o'] = weeks['blocker_o'].round(2)
    weeks['angle'] = weeks['angle'].round(2)
    weeks['blocker_s'] = weeks['blocker_s'].round(2)
    weeks['blocker_a'] = weeks['blocker_a'].round(2)
    weeks['x_offset'] = weeks['x_offset'].round(2)
    weeks['y_offset'] = weeks['y_offset'].round(2)
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    weeks_train = weeks.loc[
        (weeks['week'] == 1) | (weeks['week'] == 2) | (weeks['week'] == 3) | (weeks['week'] == 4) | (
                weeks['week'] == 5) | (weeks['week'] == 6) | (weeks['week'] == 7)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_test = weeks.loc[(weeks['week'] == 8)]
    weeks_test = weeks_test.reset_index(drop=True)

    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train = weeks_train[features]
    y_train = weeks_train['pressure']
    X_test = weeks_test[features]
    y_test = weeks_test['pressure']

    for i in range(1, 101):
        clf = KNeighborsClassifier(n_neighbors=i, weights='distance')

        clf = clf.fit(X_train, y_train)

        y_pred = clf.predict(X_test)

        print("Accuracy with one blocker:", metrics.accuracy_score(y_test, y_pred), "for k being:", i)

# With the ideal k having been found, run the model with that k=37 and al telemetries, now also extracting the
# probability of each prediction, which will be defined as the amount of pressure created by the pass rusher.
# Run the model eight times, always training on seven weeks and predicting on the chosen eighth.
def predict_pressure_week8():
    # Load the data
    weeks = pd.read_csv('weeks_only_rushers_with_telemetry_one_blocker_full.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)

    # Round all telemetries to two decimal places
    weeks['x_to_passer'] = weeks['x_to_passer'].round(2)
    weeks['y_to_passer'] = weeks['y_to_passer'].round(2)
    weeks['distance_to_passer'] = weeks['distance_to_passer'].round(2)
    weeks['x_to_blocker'] = weeks['x_to_blocker'].round(2)
    weeks['y_to_blocker'] = weeks['y_to_blocker'].round(2)
    weeks['distance_to_blocker'] = weeks['distance_to_blocker'].round(2)
    weeks['blocker_o'] = weeks['blocker_o'].round(2)
    weeks['angle'] = weeks['angle'].round(2)
    weeks['blocker_s'] = weeks['blocker_s'].round(2)
    weeks['blocker_a'] = weeks['blocker_a'].round(2)
    weeks['x_offset'] = weeks['x_offset'].round(2)
    weeks['y_offset'] = weeks['y_offset'].round(2)

    # Splitting the data into train and test data. Training on weeks 1-7 and testing on week 8 here.
    weeks_train = weeks.loc[
        (weeks['week'] == 1) | (weeks['week'] == 2) | (weeks['week'] == 3) | (weeks['week'] == 4) | (
                weeks['week'] == 5) | (weeks['week'] == 6) | (weeks['week'] == 7)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_test = weeks.loc[(weeks['week'] == 8)]
    weeks_test = weeks_test.reset_index(drop=True)

    # Defining the features
    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train = weeks_train[features]
    y_train = weeks_train['pressure']
    X_test = weeks_test[features]
    y_test = weeks_test['pressure']

    clf = KNeighborsClassifier(n_neighbors=37, weights='distance')

    clf = clf.fit(X_train, y_train)

    y_predicted_pressure = clf.predict(X_test)  # Prediction of occurrence of pressure on the play
    y_predicted_pressure_probability = clf.predict_proba(X_test)[:, 1]  # Probability of occurrence of pressure
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    # Add predictions to the data frame
    weeks_test['predicted_pressure'] = y_predicted_pressure
    weeks_test['predicted_pressure_probability'] = y_predicted_pressure_probability

    # Creating a new CSV file
    weeks_test.to_csv('week8_predicted_pressure_final.csv')

# Identical to the week 8 predictions
def predict_pressure_week7():
    weeks = pd.read_csv('weeks_only_rushers_with_telemetry_one_blocker_full.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)

    weeks['x_to_passer'] = weeks['x_to_passer'].round(2)
    weeks['y_to_passer'] = weeks['y_to_passer'].round(2)
    weeks['distance_to_passer'] = weeks['distance_to_passer'].round(2)
    weeks['x_to_blocker'] = weeks['x_to_blocker'].round(2)
    weeks['y_to_blocker'] = weeks['y_to_blocker'].round(2)
    weeks['distance_to_blocker'] = weeks['distance_to_blocker'].round(2)
    weeks['blocker_o'] = weeks['blocker_o'].round(2)
    weeks['angle'] = weeks['angle'].round(2)
    weeks['blocker_s'] = weeks['blocker_s'].round(2)
    weeks['blocker_a'] = weeks['blocker_a'].round(2)
    weeks['x_offset'] = weeks['x_offset'].round(2)
    weeks['y_offset'] = weeks['y_offset'].round(2)

    weeks_train = weeks.loc[
        (weeks['week'] == 1) | (weeks['week'] == 2) | (weeks['week'] == 3) | (weeks['week'] == 4) | (
                weeks['week'] == 5) | (weeks['week'] == 6) | (weeks['week'] == 8)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_test = weeks.loc[(weeks['week'] == 7)]
    weeks_test = weeks_test.reset_index(drop=True)

    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train = weeks_train[features]
    y_train = weeks_train['pressure']
    X_test = weeks_test[features]
    y_test = weeks_test['pressure']

    clf = KNeighborsClassifier(n_neighbors=37, weights='distance')

    clf = clf.fit(X_train, y_train)

    y_predicted_pressure = clf.predict(X_test)
    y_predicted_pressure_probability = clf.predict_proba(X_test)[:, 1]

    weeks_test['predicted_pressure'] = y_predicted_pressure
    weeks_test['predicted_pressure_probability'] = y_predicted_pressure_probability

    weeks_test.to_csv('week7_predicted_pressure_final.csv')

# Identical to the week 8 predictions
def predict_pressure_week6():
    weeks = pd.read_csv('weeks_only_rushers_with_telemetry_one_blocker_full.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)

    weeks['x_to_passer'] = weeks['x_to_passer'].round(2)
    weeks['y_to_passer'] = weeks['y_to_passer'].round(2)
    weeks['distance_to_passer'] = weeks['distance_to_passer'].round(2)
    weeks['x_to_blocker'] = weeks['x_to_blocker'].round(2)
    weeks['y_to_blocker'] = weeks['y_to_blocker'].round(2)
    weeks['distance_to_blocker'] = weeks['distance_to_blocker'].round(2)
    weeks['blocker_o'] = weeks['blocker_o'].round(2)
    weeks['angle'] = weeks['angle'].round(2)
    weeks['blocker_s'] = weeks['blocker_s'].round(2)
    weeks['blocker_a'] = weeks['blocker_a'].round(2)
    weeks['x_offset'] = weeks['x_offset'].round(2)
    weeks['y_offset'] = weeks['y_offset'].round(2)

    weeks_train = weeks.loc[
        (weeks['week'] == 1) | (weeks['week'] == 2) | (weeks['week'] == 3) | (weeks['week'] == 4) | (
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                weeks['week'] == 5) | (weeks['week'] == 7) | (weeks['week'] == 8)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_test = weeks.loc[(weeks['week'] == 6)]
    weeks_test = weeks_test.reset_index(drop=True)

    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train = weeks_train[features]
    y_train = weeks_train['pressure']
    X_test = weeks_test[features]
    y_test = weeks_test['pressure']

    clf = KNeighborsClassifier(n_neighbors=37, weights='distance')

    clf = clf.fit(X_train, y_train)

    y_predicted_pressure = clf.predict(X_test)
    y_predicted_pressure_probability = clf.predict_proba(X_test)[:, 1]

    weeks_test['predicted_pressure'] = y_predicted_pressure
    weeks_test['predicted_pressure_probability'] = y_predicted_pressure_probability

    weeks_test.to_csv('week6_predicted_pressure_final.csv')

# Identical to the week 8 predictions
def predict_pressure_week5():
    weeks = pd.read_csv('weeks_only_rushers_with_telemetry_one_blocker_full.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)

    weeks['x_to_passer'] = weeks['x_to_passer'].round(2)
    weeks['y_to_passer'] = weeks['y_to_passer'].round(2)
    weeks['distance_to_passer'] = weeks['distance_to_passer'].round(2)
    weeks['x_to_blocker'] = weeks['x_to_blocker'].round(2)
    weeks['y_to_blocker'] = weeks['y_to_blocker'].round(2)
    weeks['distance_to_blocker'] = weeks['distance_to_blocker'].round(2)
    weeks['blocker_o'] = weeks['blocker_o'].round(2)
    weeks['angle'] = weeks['angle'].round(2)
    weeks['blocker_s'] = weeks['blocker_s'].round(2)
    weeks['blocker_a'] = weeks['blocker_a'].round(2)
    weeks['x_offset'] = weeks['x_offset'].round(2)
    weeks['y_offset'] = weeks['y_offset'].round(2)

    weeks_train = weeks.loc[
        (weeks['week'] == 1) | (weeks['week'] == 2) | (weeks['week'] == 3) | (weeks['week'] == 4) | (
                weeks['week'] == 6) | (weeks['week'] == 7) | (weeks['week'] == 8)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_test = weeks.loc[(weeks['week'] == 5)]
    weeks_test = weeks_test.reset_index(drop=True)

    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train = weeks_train[features]
    y_train = weeks_train['pressure']
    X_test = weeks_test[features]
    y_test = weeks_test['pressure']

    clf = KNeighborsClassifier(n_neighbors=37, weights='distance')

    clf = clf.fit(X_train, y_train)

    y_predicted_pressure = clf.predict(X_test)
    y_predicted_pressure_probability = clf.predict_proba(X_test)[:, 1]

    weeks_test['predicted_pressure'] = y_predicted_pressure
    weeks_test['predicted_pressure_probability'] = y_predicted_pressure_probability

    weeks_test.to_csv('week5_predicted_pressure_final.csv')

# Identical to the week 8 predictions
def predict_pressure_week4():
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    weeks = pd.read_csv('weeks_only_rushers_with_telemetry_one_blocker_full.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)

    weeks['x_to_passer'] = weeks['x_to_passer'].round(2)
    weeks['y_to_passer'] = weeks['y_to_passer'].round(2)
    weeks['distance_to_passer'] = weeks['distance_to_passer'].round(2)
    weeks['x_to_blocker'] = weeks['x_to_blocker'].round(2)
    weeks['y_to_blocker'] = weeks['y_to_blocker'].round(2)
    weeks['distance_to_blocker'] = weeks['distance_to_blocker'].round(2)
    weeks['blocker_o'] = weeks['blocker_o'].round(2)
    weeks['angle'] = weeks['angle'].round(2)
    weeks['blocker_s'] = weeks['blocker_s'].round(2)
    weeks['blocker_a'] = weeks['blocker_a'].round(2)
    weeks['x_offset'] = weeks['x_offset'].round(2)
    weeks['y_offset'] = weeks['y_offset'].round(2)

    weeks_train = weeks.loc[
        (weeks['week'] == 1) | (weeks['week'] == 2) | (weeks['week'] == 3) | (weeks['week'] == 5) | (
                weeks['week'] == 6) | (weeks['week'] == 7) | (weeks['week'] == 8)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_test = weeks.loc[(weeks['week'] == 4)]
    weeks_test = weeks_test.reset_index(drop=True)

    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train = weeks_train[features]
    y_train = weeks_train['pressure']
    X_test = weeks_test[features]
    y_test = weeks_test['pressure']

    clf = KNeighborsClassifier(n_neighbors=37, weights='distance')

    clf = clf.fit(X_train, y_train)

    y_predicted_pressure = clf.predict(X_test)
    y_predicted_pressure_probability = clf.predict_proba(X_test)[:, 1]

    weeks_test['predicted_pressure'] = y_predicted_pressure
    weeks_test['predicted_pressure_probability'] = y_predicted_pressure_probability

    weeks_test.to_csv('week4_predicted_pressure_final.csv')

# Identical to the week 8 predictions
def predict_pressure_week3():
    weeks = pd.read_csv('weeks_only_rushers_with_telemetry_one_blocker_full.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)

    weeks['x_to_passer'] = weeks['x_to_passer'].round(2)
    weeks['y_to_passer'] = weeks['y_to_passer'].round(2)
    weeks['distance_to_passer'] = weeks['distance_to_passer'].round(2)
    weeks['x_to_blocker'] = weeks['x_to_blocker'].round(2)
    weeks['y_to_blocker'] = weeks['y_to_blocker'].round(2)
    weeks['distance_to_blocker'] = weeks['distance_to_blocker'].round(2)
    weeks['blocker_o'] = weeks['blocker_o'].round(2)
    weeks['angle'] = weeks['angle'].round(2)
    weeks['blocker_s'] = weeks['blocker_s'].round(2)
    weeks['blocker_a'] = weeks['blocker_a'].round(2)
    weeks['x_offset'] = weeks['x_offset'].round(2)
    weeks['y_offset'] = weeks['y_offset'].round(2)

    weeks_train = weeks.loc[
        (weeks['week'] == 1) | (weeks['week'] == 2) | (weeks['week'] == 4) | (weeks['week'] == 5) | (
                weeks['week'] == 6) | (weeks['week'] == 7) | (weeks['week'] == 8)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_test = weeks.loc[(weeks['week'] == 3)]
    weeks_test = weeks_test.reset_index(drop=True)

    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train = weeks_train[features]
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    y_train = weeks_train['pressure']
    X_test = weeks_test[features]
    y_test = weeks_test['pressure']

    clf = KNeighborsClassifier(n_neighbors=37, weights='distance')

    clf = clf.fit(X_train, y_train)

    y_predicted_pressure = clf.predict(X_test)
    y_predicted_pressure_probability = clf.predict_proba(X_test)[:, 1]

    weeks_test['predicted_pressure'] = y_predicted_pressure
    weeks_test['predicted_pressure_probability'] = y_predicted_pressure_probability

    weeks_test.to_csv('week3_predicted_pressure_final.csv')

# Identical to the week 8 predictions
def predict_pressure_week2():
    weeks = pd.read_csv('weeks_only_rushers_with_telemetry_one_blocker_full.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)

    weeks['x_to_passer'] = weeks['x_to_passer'].round(2)
    weeks['y_to_passer'] = weeks['y_to_passer'].round(2)
    weeks['distance_to_passer'] = weeks['distance_to_passer'].round(2)
    weeks['x_to_blocker'] = weeks['x_to_blocker'].round(2)
    weeks['y_to_blocker'] = weeks['y_to_blocker'].round(2)
    weeks['distance_to_blocker'] = weeks['distance_to_blocker'].round(2)
    weeks['blocker_o'] = weeks['blocker_o'].round(2)
    weeks['angle'] = weeks['angle'].round(2)
    weeks['blocker_s'] = weeks['blocker_s'].round(2)
    weeks['blocker_a'] = weeks['blocker_a'].round(2)
    weeks['x_offset'] = weeks['x_offset'].round(2)
    weeks['y_offset'] = weeks['y_offset'].round(2)

    weeks_train = weeks.loc[
        (weeks['week'] == 1) | (weeks['week'] == 3) | (weeks['week'] == 4) | (weeks['week'] == 5) | (
                weeks['week'] == 6) | (weeks['week'] == 7) | (weeks['week'] == 8)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_test = weeks.loc[(weeks['week'] == 2)]
    weeks_test = weeks_test.reset_index(drop=True)

    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train = weeks_train[features]
    y_train = weeks_train['pressure']
    X_test = weeks_test[features]
    y_test = weeks_test['pressure']

    clf = KNeighborsClassifier(n_neighbors=37, weights='distance')

    clf = clf.fit(X_train, y_train)

    y_predicted_pressure = clf.predict(X_test)
    y_predicted_pressure_probability = clf.predict_proba(X_test)[:, 1]

    weeks_test['predicted_pressure'] = y_predicted_pressure
    weeks_test['predicted_pressure_probability'] = y_predicted_pressure_probability

    weeks_test.to_csv('week2_predicted_pressure_final.csv')

# Identical to the week 8 predictions
def predict_pressure_week1():
    weeks = pd.read_csv('weeks_only_rushers_with_telemetry_one_blocker_full.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)

    weeks['x_to_passer'] = weeks['x_to_passer'].round(2)
    weeks['y_to_passer'] = weeks['y_to_passer'].round(2)
    weeks['distance_to_passer'] = weeks['distance_to_passer'].round(2)
    weeks['x_to_blocker'] = weeks['x_to_blocker'].round(2)
    weeks['y_to_blocker'] = weeks['y_to_blocker'].round(2)
    weeks['distance_to_blocker'] = weeks['distance_to_blocker'].round(2)
    weeks['blocker_o'] = weeks['blocker_o'].round(2)
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    weeks['angle'] = weeks['angle'].round(2)
    weeks['blocker_s'] = weeks['blocker_s'].round(2)
    weeks['blocker_a'] = weeks['blocker_a'].round(2)
    weeks['x_offset'] = weeks['x_offset'].round(2)
    weeks['y_offset'] = weeks['y_offset'].round(2)

    weeks_train = weeks.loc[
        (weeks['week'] == 2) | (weeks['week'] == 3) | (weeks['week'] == 4) | (weeks['week'] == 5) | (
                weeks['week'] == 6) | (weeks['week'] == 7) | (weeks['week'] == 8)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_test = weeks.loc[(weeks['week'] == 1)]
    weeks_test = weeks_test.reset_index(drop=True)

    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train = weeks_train[features]
    y_train = weeks_train['pressure']
    X_test = weeks_test[features]
    y_test = weeks_test['pressure']

    clf = KNeighborsClassifier(n_neighbors=37, weights='distance')

    clf = clf.fit(X_train, y_train)

    y_predicted_pressure = clf.predict(X_test)
    y_predicted_pressure_probability = clf.predict_proba(X_test)[:, 1]

    weeks_test['predicted_pressure'] = y_predicted_pressure
    weeks_test['predicted_pressure_probability'] = y_predicted_pressure_probability

    weeks_test.to_csv('week1_predicted_pressure_final.csv')

# Concatenating all the predictions into one data frame
def concat_all_weeks():
    week1 = pd.read_csv('week1_predicted_pressure_final.csv')
    week2 = pd.read_csv('week2_predicted_pressure_final.csv')
    week3 = pd.read_csv('week3_predicted_pressure_final.csv')
    week4 = pd.read_csv('week4_predicted_pressure_final.csv')
    week5 = pd.read_csv('week5_predicted_pressure_final.csv')
    week6 = pd.read_csv('week6_predicted_pressure_final.csv')
    week7 = pd.read_csv('week7_predicted_pressure_final.csv')
    week8 = pd.read_csv('week8_predicted_pressure_final.csv')

    frames = [week1, week2, week3, week4, week5, week6, week7, week8]

    all_weeks = pd.concat(frames, ignore_index=True)
    all_weeks = all_weeks.drop(all_weeks.columns[0], axis=1)

    all_weeks.to_csv('weeks_predicted_pressure.csv')

# Adding the opponent of every team per game for every frame for further analysis later on
def add_opponent():
    # Load the data
    weeks = pd.read_csv('weeks_predicted_pressure.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)
    games = pd.read_csv('games.csv')
    weeks['opponent'] = ""  # Create a new column

    # Iterate over every frame
    for i in range(len(weeks)):
        # Find the game on the frame via the games dataset
        game = games.loc[(games['gameId'] == weeks['gameId'][i])]
        game = game.reset_index(drop=True)
        # If the team on the frame is the home team, add the visiting team as the opponent, else, vice versa
        if game['homeTeamAbbr'][0] == weeks['team'][i]:
            weeks.at[i, 'opponent'] = game['visitorTeamAbbr'][0]
        else:
            weeks.at[i, 'opponent'] = game['homeTeamAbbr'][0]

    # Creatin a new CSV file
    weeks.to_csv('weeks_predicted_pressure_final.csv')
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# This concludes the first KNN model. Next, the PMP will be determined.

# As described in the thesis, to be able to predict the motion in the next frame of a pass rusher, the x-offset and
# y-offset, speed, acceleration, and orientation from the next frame have to be retrieved and replaced with the current
# data.
def get_xysao_for_all():
    # Load the data
    weeks = pd.read_csv('weeks_only_rushers_with_telemetry_one_blocker_full.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)

    # Round all telemetries to two decimal places
    weeks['x_to_passer'] = weeks['x_to_passer'].round(2)
    weeks['y_to_passer'] = weeks['y_to_passer'].round(2)
    weeks['distance_to_passer'] = weeks['distance_to_passer'].round(2)
    weeks['x_to_blocker'] = weeks['x_to_blocker'].round(2)
    weeks['y_to_blocker'] = weeks['y_to_blocker'].round(2)
    weeks['distance_to_blocker'] = weeks['distance_to_blocker'].round(2)
    weeks['blocker_o'] = weeks['blocker_o'].round(2)
    weeks['angle'] = weeks['angle'].round(2)
    weeks['blocker_s'] = weeks['blocker_s'].round(2)
    weeks['blocker_a'] = weeks['blocker_a'].round(2)
    weeks['x_offset'] = weeks['x_offset'].round(2)
    weeks['y_offset'] = weeks['y_offset'].round(2)

    # The to-be-predicted telemetries are put into a list. Append an arbitrary value to the list and pop the first
    # entry. This moves every value up by one. The last frame is not important here as that one does not need to be
    # predicted.
    x_offset_list = weeks['x_offset'].tolist()
    x_offset_list.append(0)
    x_offset_list.pop(0)
    y_offset_list = weeks['y_offset'].tolist()
    y_offset_list.append(0)
    y_offset_list.pop(0)
    speed_list = weeks['s'].tolist()
    speed_list.append(0)
    speed_list.pop(0)
    acc_list = weeks['a'].tolist()
    acc_list.append(0)
    acc_list.pop(0)
    o_list = weeks['o'].tolist()
    o_list.append(0)
    o_list.pop(0)

    # Append the lists to new columns
    weeks['x_offset_next'] = x_offset_list
    weeks['y_offset_next'] = y_offset_list
    weeks['s_next'] = speed_list
    weeks['a_next'] = acc_list
    weeks['o_next'] = o_list

    # Iterate over every frame to find the last frame of every play, which can be deleted. This needs to be done so that
    # those frames do not interfere with the predictions later on.
    for i in range(len(weeks)-1):
        if weeks['frameId'][i] > weeks['frameId'][i+1]:
                weeks = weeks.drop(i)

    weeks = weeks.reset_index(drop=True)
    weeks = weeks.drop(weeks.index[-1])
    weeks = weeks.reset_index(drop=True)

    # Creating a new CSV file
    weeks.to_csv('all_weeks_with_next_xysao.csv')

# With the to-be-predicted telemetries now in the right spot, a KNN model can be run over the data identically to the
# earlier KNN, this time predicting the x-offset, y-offset, speed, acceleration, and orientation. For now, only
# predictions for the eighth week will be made, as those will be the focus of the dashboard, the other weeks will follow
# later.
def predict_xysao():
    # Load the data
    weeks = pd.read_csv('all_weeks_with_next_xysao.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)

    # Split the datasets into training and testing data
    weeks_train = weeks.loc[
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        (weeks['week'] == 1) | (weeks['week'] == 2) | (weeks['week'] == 3) | (weeks['week'] == 4) | (
                weeks['week'] == 5) | (weeks['week'] == 6) | (weeks['week'] == 7)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_test = weeks.loc[(weeks['week'] == 8)]
    weeks_test = weeks_test.reset_index(drop=True)

    # Define the features
    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train1 = weeks_train[features]
    y_train1 = weeks_train['x_offset_next'] # x-offset as outcome variable
    X_test1 = weeks_test[features]

    # Run the identical model to before to predict the x-offset
    clf1 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf1 = clf1.fit(X_train1, y_train1)

    y_predicted_x_offset = clf1.predict(X_test1)

    weeks_test['x_offset_predicted'] = y_predicted_x_offset     # Adding the predicted x-offset

    # Change the outcome variable to the y-offset
    X_train2 = weeks_train[features]
    y_train2 = weeks_train['y_offset_next']
    X_test2 = weeks_test[features]

    # Run the identical model to before to predict the y-offset
    clf2 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf2 = clf2.fit(X_train2, y_train2)

    y_predicted_y_offset = clf2.predict(X_test2)

    weeks_test['y_offset_predicted'] = y_predicted_y_offset     # Adding the predicted y-offset

    # Change the outcome variable to the speed
    X_train3 = weeks_train[features]
    y_train3 = weeks_train['s_next']
    X_test3 = weeks_test[features]

    # Run the identical model to before to predict the speed
    clf3 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf3 = clf3.fit(X_train3, y_train3)

    y_predicted_s_next = clf3.predict(X_test3)

    weeks_test['s_next_predicted'] = y_predicted_s_next     # Adding the predicted speed

    # Change the outcome variable to the acceleration
    X_train4 = weeks_train[features]
    y_train4 = weeks_train['a_next']
    X_test4 = weeks_test[features]

    # Run the identical model to before to predict the acceleration
    clf4 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf4 = clf4.fit(X_train4, y_train4)

    y_predicted_a_next = clf4.predict(X_test4)

    weeks_test['a_next_predicted'] = y_predicted_a_next      # Adding the predicted acceleration

    # Run the identical model to before to predict the orientation
    X_train5 = weeks_train[features]
    y_train5 = weeks_train['o_next']
    X_test5 = weeks_test[features]

    clf5 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf5 = clf5.fit(X_train5, y_train5)
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    y_predicted_o_next = clf5.predict(X_test5)

    weeks_test['o_next_predicted'] = y_predicted_o_next     # Adding the predicted orientation

    # Creating a new CSV file with all the predicted telemetries
    weeks_test.to_csv('week8_predicted_xysao_final.csv')

# Creating the telemetries with the predicted motion of the pass rusher. As described in the thesis, the data has to
# again be manipulated, as the predicted telemetries will have to be matched with the next frame, as that is what is
# intended to be predicted. With there being one frame less per play, since the last one was deleted, there need to be
# no worries about list indices to be out of bounds, as the next frame can always be taken. The calculations are then
# identical to those made earlier.
def create_telemetry_week8_double_ml():
    # Load the data
    plays = pd.read_csv('plays.csv')
    weeks = pd.read_csv('weeks_with_sack_hit_hurry_pressure_and_play_result.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)
    weeks = weeks.loc[(weeks['week'] == 8)]
    week8_predicted_xy = pd.read_csv('week8_predicted_xysao.csv')

    # New columns for telemetries
    weeks['x_to_passer'] = 0
    weeks['y_to_passer'] = 0
    weeks['distance_to_passer'] = 0
    weeks['x_to_blocker'] = 0
    weeks['y_to_blocker'] = 0
    weeks['distance_to_blocker'] = 0
    weeks['blocker_o'] = 0
    weeks['angle'] = 0
    weeks['blocker_s'] = 0
    weeks['blocker_a'] = 0
    weeks['x_offset'] = 0
    weeks['y_offset'] = 0
    weeks['speed'] = 0
    weeks['acceleration'] = 0
    weeks['orientation'] = 0

    # New data frame for telemetries
    telemetry_df = pd.DataFrame(columns=weeks.columns)

    # Iterating over all plays
    for k in range(len(plays)):
        # filter for the tracking data of the current play
        one_play = weeks.loc[(weeks['gameId'] == plays['gameId'][k]) & (weeks['playId'] == plays['playId'][k])]
        one_play = one_play.reset_index(drop=True)

        last_frame = one_play['frameId'].max()  # finding the amount of frames in the play

        # Iterate over every frame from the current play
        for i in range(len(one_play)):
            # Drop the last frame, again, as this frame will not need to be predicted
            if (one_play['frameId'][i] == last_frame) & (one_play['role'][i] == 'Pass Rush'):
                one_play = one_play.drop(i)
            else:
                # If the current frame is that of a pass rusher, calculate the required telemetries identically to
                # earlier, just with the data from the pass blocker and passer of the next frame.
                if one_play['role'][i] == 'Pass Rush':
                    df_passer = one_play.loc[
                        (one_play['role'] == 'Pass') & (one_play['frameId'] == one_play['frameId'][i+1])]
                    df_passer = df_passer.reset_index(drop=True)
                    df_rusher_predictor = week8_predicted_xy.loc[(week8_predicted_xy['gameId'] == one_play['gameId'][i])
                                                                 & (week8_predicted_xy['playId'] == one_play['playId'][i])
                                                                    & (week8_predicted_xy['nflId'] == one_play['nflId'][i])
                                                                    & (week8_predicted_xy['frameId'] == one_play['frameId'][i])]
                    df_rusher_predictor = df_rusher_predictor.reset_index(drop=True)
                    one_play.at[i, 'x_to_passer'] = df_passer['x'][0] - one_play['x'][i] - 

df_rusher_predictor['x_offset_predicted'][0]
                    one_play.at[i, 'y_to_passer'] = df_passer['y'][0] - one_play['y'][i] - 

df_rusher_predictor['y_offset_predicted'][0]
                    one_play.at[i, 'distance_to_passer'] = round(
                        math.sqrt((one_play['y_to_passer'][i] ** 2) + (one_play['x_to_passer'][i]) ** 2), 2)

                    df_blocker = one_play.loc[
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                        (one_play['role'] == 'Pass Block') & (one_play['frameId'] == one_play['frameId'][i+1])]
                    df_blocker = df_blocker.reset_index(drop=True)
                    all_blockers = []
                    individual_blocker = []

                    # Calculate the required telemetries for all blockers, appending them to a list. The data here is
                    # already those of the next frame, so the same code as earlier can be used.
                    for j in range(len(df_blocker)):
                        x_to_blocker = one_play['x'][i] - df_blocker['x'][j] - df_rusher_predictor['x_offset_predicted'][0]
                        individual_blocker.append(x_to_blocker)

                        y_to_blocker = one_play['y'][i] - df_blocker['y'][j] - df_rusher_predictor['y_offset_predicted'][0]
                        individual_blocker.append(y_to_blocker)

                        distance_to_blocker = math.sqrt((x_to_blocker ** 2) + (y_to_blocker ** 2))
                        individual_blocker.append(distance_to_blocker)

                        x_passer_to_blocker = df_passer['x'][0] - df_blocker['x'][j]
                        y_passer_to_blocker = df_passer['y'][0] - df_blocker['y'][j]
                        distance_passer_to_blocker = round(math.sqrt(x_passer_to_blocker ** 2 + y_passer_to_blocker ** 2))

                        dot_product = one_play['x_to_passer'][i] * x_passer_to_blocker + one_play['y_to_passer'][
                            i] * y_passer_to_blocker
                        cos_theta = dot_product / (distance_passer_to_blocker * one_play['distance_to_passer'][i])
                        cos_theta = min(1, max(-1, cos_theta))
                        theta = math.acos(cos_theta)
                        theta_degrees = math.degrees(theta)
                        individual_blocker.append(theta_degrees)
                        individual_blocker.append(df_blocker['o'][j])
                        individual_blocker.append(df_blocker['s'][j])
                        individual_blocker.append(df_blocker['a'][j])
                        all_blockers.append(individual_blocker)
                        individual_blocker = []

                    # Finding the smallest distance, only taking the closest blocker here
                    min_val = float('inf')
                    closest_blocker = None
                    for sub_arr in all_blockers:
                        if sub_arr[2] < min_val:
                            min_val = sub_arr[2]
                            closest_blocker = sub_arr

                    one_play.at[i, 'x_to_blocker'] = closest_blocker[0]
                    one_play.at[i, 'y_to_blocker'] = closest_blocker[1]
                    one_play.at[i, 'distance_to_blocker'] = closest_blocker[2]
                    one_play.at[i, 'angle'] = closest_blocker[3]
                    one_play.at[i, 'blocker_o'] = closest_blocker[4]
                    one_play.at[i, 'blocker_s'] = closest_blocker[5]
                    one_play.at[i, 'blocker_a'] = closest_blocker[6]

                    # Add the offset to the last frame, which is straightforward, as it is the predicted one
                    one_play.at[i, 'x_offset'] = df_rusher_predictor['x_offset_predicted'][0]
                    one_play.at[i, 'y_offset'] = df_rusher_predictor['y_offset_predicted'][0]
                    one_play.at[i, 'speed'] = df_rusher_predictor['s_next_predicted'][0]
                    one_play.at[i, 'acceleration'] = df_rusher_predictor['a_next_predicted'][0]
                    one_play.at[i, 'orientation'] = df_rusher_predictor['o_next_predicted'][0]

        # Add telemetry to telemetry data frame
        telemetry_df = pd.concat([telemetry_df, one_play], ignore_index=True)

    # Filter for only the pass rushers, as passer and pass blockers are no longer required
    only_rushers = telemetry_df.loc[(telemetry_df['role'] == 'Pass Rush')]
    only_rushers = only_rushers.reset_index(drop=True)

    # Creating a new CSV file
    only_rushers.to_csv('weeks8_predicted_telemetry_rushers2.csv')

# Predicting the pressure for the predicted motion is identical to the earlier predictions, with the only difference
# being the fact that the model is trained over weeks 1-7, but obviously tested on the predicted telemetry data set.
def predict_pressure_with_predicted_telemetry():
    # Load the data
    weeks_train = pd.read_csv('weeks_only_rushers_with_telemetry_one_blocker_full.csv')
    weeks_train = weeks_train.drop(weeks_train.columns[0], axis=1)
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    # Filtering for the training dataset and rounding all telemetries to two decimal places
    weeks_train = weeks_train.loc[
        (weeks_train['week'] == 1) | (weeks_train['week'] == 2) | (weeks_train['week'] == 3) | (weeks_train['week'] == 4) | (
                weeks_train['week'] == 5) | (weeks_train['week'] == 6) | (weeks_train['week'] == 7)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_train['x_to_passer'] = weeks_train['x_to_passer'].round(2)
    weeks_train['y_to_passer'] = weeks_train['y_to_passer'].round(2)
    weeks_train['distance_to_passer'] = weeks_train['distance_to_passer'].round(2)
    weeks_train['x_to_blocker'] = weeks_train['x_to_blocker'].round(2)
    weeks_train['y_to_blocker'] = weeks_train['y_to_blocker'].round(2)
    weeks_train['distance_to_blocker'] = weeks_train['distance_to_blocker'].round(2)
    weeks_train['blocker_o'] = weeks_train['blocker_o'].round(2)
    weeks_train['angle'] = weeks_train['angle'].round(2)
    weeks_train['blocker_s'] = weeks_train['blocker_s'].round(2)
    weeks_train['blocker_a'] = weeks_train['blocker_a'].round(2)
    weeks_train['x_offset'] = weeks_train['x_offset'].round(2)
    weeks_train['y_offset'] = weeks_train['y_offset'].round(2)

    # Using the predicted motion telemetry dataset as the test dataset and rounding all telemetries to two decimal
    # places.
    weeks_test = pd.read_csv('weeks8_predicted_telemetry_rushers2.csv')
    weeks_test = weeks_test.drop(weeks_test.columns[0], axis=1)
    weeks_test['x_to_passer'] = weeks_test['x_to_passer'].round(2)
    weeks_test['y_to_passer'] = weeks_test['y_to_passer'].round(2)
    weeks_test['distance_to_passer'] = weeks_test['distance_to_passer'].round(2)
    weeks_test['x_to_blocker'] = weeks_test['x_to_blocker'].round(2)
    weeks_test['y_to_blocker'] = weeks_test['y_to_blocker'].round(2)
    weeks_test['distance_to_blocker'] = weeks_test['distance_to_blocker'].round(2)
    weeks_test['blocker_o'] = weeks_test['blocker_o'].round(2)
    weeks_test['angle'] = weeks_test['angle'].round(2)
    weeks_test['blocker_s'] = weeks_test['blocker_s'].round(2)
    weeks_test['blocker_a'] = weeks_test['blocker_a'].round(2)
    weeks_test['x_offset'] = weeks_test['x_offset'].round(2)
    weeks_test['y_offset'] = weeks_test['y_offset'].round(2)
    weeks_test['speed'] = weeks_test['speed'].round(2)
    weeks_test['acceleration'] = weeks_test['acceleration'].round(2)
    weeks_test['orientation'] = weeks_test['orientation'].round(2)
    weeks_test['s'] = weeks_test['speed']
    weeks_test['a'] = weeks_test['acceleration']
    weeks_test['o'] = weeks_test['orientation']

    # Defining the features
    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train = weeks_train[features]
    y_train = weeks_train['pressure']
    X_test = weeks_test[features]

    # Running the model, again with k=37
    clf = KNeighborsClassifier(n_neighbors=37, weights='distance')

    clf = clf.fit(X_train, y_train)

    y_predicted_pressure = clf.predict(X_test)
    y_predicted_pressure_probability = clf.predict_proba(X_test)[:, 1]

    # Adding the predicted occurrence, and, most importantly, the probability of a pressure occurring for the predicted
    # motion telemetry
    weeks_test['predicted_pressure'] = y_predicted_pressure
    weeks_test['predicted_pressure_probability'] = y_predicted_pressure_probability

    # Creating a new CSV file
    weeks_test.to_csv('week8_double_ml_pressure_final.csv')

# Finalizing the prediction by adding the PMP to the predicted pressure data frame
def finalize_prediction():
    # Loading the data
    plays = pd.read_csv('plays.csv')
    weeks = pd.read_csv('week8_predicted_pressure_final.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)
    week8 = pd.read_csv('week8_double_ml_pressure_final.csv')
    week8 = week8.drop(week8.columns[0], axis=1)
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    full_pressure_list = []
    full_pressure_probability_list = []

    # Iterating over every play
    for i in range(len(plays)):
        # Filtering for the current play from the predicted pressure data frame
        one_play = weeks.loc[(weeks['gameId'] == plays['gameId'][i]) & (weeks['playId'] == plays['playId'][i])]
        one_play = one_play.reset_index(drop=True)
        # Filtering for the current play from the PMP data frame
        one_play_predicted = week8.loc[(week8['gameId'] == plays['gameId'][i]) & (week8['playId'] == plays['playId'][i])]
        one_play_predicted = one_play_predicted.reset_index(drop=True)
        players = one_play['nflId'].unique().tolist()   # Find all unique players (pass rushers)

        # Iterate over every player, filter the play data by the current player
        for j in players:
            # The predicted pressure from the first KNN is needed here to get the actual pressure on the first frame,
            # as that will be used for the PMP in the first frame. The other PMP have to be moved one frame back,
            # naturally, as they predict the pressure of the next frame.
            one_play_player = one_play.loc[(one_play['nflId'] == j)]
            one_play_player = one_play_player.reset_index(drop=True)
            one_play_predicted_player = one_play_predicted.loc[(one_play_predicted['nflId'] == j)]
            one_play_predicted_player = one_play_predicted_player.reset_index(drop=True)

            # Turn all PMP for this play into a list
            indiv_player_pressure = one_play_predicted_player['predicted_pressure'].tolist()
            # Append the full PMP list with the actual pressure occurrence on the first frame
            full_pressure_list.append(one_play_player['predicted_pressure'][0])
            # Append the entries of the smaller list to the bigger one, this will result in the entries of the PMP to
            # now be the same size as the actual pressure occurrence predicitons
            for k in range(len(indiv_player_pressure)):
                full_pressure_list.append(indiv_player_pressure[k])

            # Repeat the process, this time with the pressure probabilities for the predicted motion
            indiv_player_pressure_probability = one_play_predicted_player['predicted_pressure_probability'].tolist()
            full_pressure_probability_list.append(one_play_player['predicted_pressure_probability'][0])
            for l in range(len(indiv_player_pressure_probability)):
                full_pressure_probability_list.append(indiv_player_pressure_probability[l])

    # Add the list to the column. The actual pressure and the PMP will now fit the right frames.
    weeks['predicted_motion_predicted_pressure_outcome'] = full_pressure_list
    weeks['predicted_motion_predicted_pressure_probability_outcome'] = full_pressure_probability_list

    # Creatin a new CSV file
    weeks.to_csv('week8_pmp_final.csv')

# This function will be used to fill the data frame with all frames with the predicted pressure and the PMP values for
# the pass rusher. The values for all non-pass rushers will be set to 1 as this will help later on with the
# visualization. Here, the data frame with all tracking data will be filtered for only week 8, the other weeks will be
# done later on.
def fill_dataframe():
    # Load the data
    predicted_weeks = pd.read_csv('week8_pmp_final.csv')
    predicted_weeks = predicted_weeks.drop(predicted_weeks.columns[0], axis=1)
    weeks = pd.read_csv('weeks_final2.1.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)
    week8 = weeks.loc[(weeks['week'] == 8)]     # Filter for week 8
    week8 = week8.reset_index(drop=True)
    week8['predicted_pressure'] = 1     # Set pressure occurrence to 1
    week8['predicted_motion_pressure'] = 1      # Set pressure probability to 1

    # Iterate over every frame to add the appropriate predictions for the frames with pass rushers.
    for i in range(len(week8)):
        print(i)
        if week8['role'][i] == 'Pass Rush':
            player = predicted_weeks.loc[(predicted_weeks['gameId'] == week8['gameId'][i]) &
                                         (predicted_weeks['playId'] == week8['playId'][i]) &
                                         (predicted_weeks['nflId'] == week8['nflId'][i]) &
                                         (predicted_weeks['frameId'] == week8['frameId'][i])]
            player = player.reset_index(drop=True)
            week8.at[i, 'predicted_pressure'] = player['predicted_pressure_probability'][0]
            week8.at[i, 'predicted_motion_pressure'] = player['predicted_motion_predicted_pressure_probability_outcome'][0]

    # Creating a new CSV file
    week8.to_csv('week8_all_data_filled.csv')
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# Adding the game name to every frame, this is done for the dashboard later, so that the actual names of the game can
# be used and not the gameId.
def add_game_name():
    # Load the data
    week8 = pd.read_csv('week8_all_data_filled.csv')
    week8 = week8.drop(week8.columns[0], axis=1)

    week8['game_name'] = ''     # Create new column

    # Iterate over every frame and add the appropriate game name
    for i in range(len(week8)):
        if week8['gameId'][i] == 2021102800:
            week8.at[i, 'game_name'] = 'Arizona Cardinals vs Green Bay Packers'
        if week8['gameId'][i] == 2021103100:
            week8.at[i, 'game_name'] = 'Atlanta Falcons vs Carolina Panthers'
        if week8['gameId'][i] == 2021103103:
            week8.at[i, 'game_name'] = 'Cleveland Browns vs Pittsburgh Steelers'
        if week8['gameId'][i] == 2021103102:
            week8.at[i, 'game_name'] = 'Chicago Bears vs San Francisco 49ers'
        if week8['gameId'][i] == 2021103101:
            week8.at[i, 'game_name'] = 'Buffalo Bills vs Miami Dolphins'
        if week8['gameId'][i] == 2021103104:
            week8.at[i, 'game_name'] = 'Detroit Lions vs Philadelphia Eagles'
        if week8['gameId'][i] == 2021103105:
            week8.at[i, 'game_name'] = 'Houston Texans vs Los Angeles Rams'
        if week8['gameId'][i] == 2021103106:
            week8.at[i, 'game_name'] = 'Indianapolis Colts vs Tennessee Titans'
        if week8['gameId'][i] == 2021103107:
            week8.at[i, 'game_name'] = 'New York Jets vs Cincinnati Bengals'
        if week8['gameId'][i] == 2021103109:
            week8.at[i, 'game_name'] = 'Seattle Seahawks vs Jacksonville Jaguars'
        if week8['gameId'][i] == 2021103110:
            week8.at[i, 'game_name'] = 'Denver Broncos vs Washington Football Team'
        if week8['gameId'][i] == 2021103111:
            week8.at[i, 'game_name'] = 'New Orleans Saints vs Tampa Bay Buccaneers'
        if week8['gameId'][i] == 2021103112:
            week8.at[i, 'game_name'] = 'Minnesota Vikings vs Dallas Cowboys'
        if week8['gameId'][i] == 2021110100:
            week8.at[i, 'game_name'] = 'Kansas City Chiefs vs New York Giants'
        if week8['gameId'][i] == 2021103108:
            week8.at[i, 'game_name'] = 'Los Angeles Chargers vs New England Patriots'

    # Creating new CSV file
    week8.to_csv('week8_all_data_and_names_final.csv')

# Get the opponent for each frame in week 8, again for the dashboard later on
def get_opponent():
    # Load the data
    week8 = pd.read_csv('week8_all_data_and_names_final.csv')
    week8 = week8.drop(week8.columns[0], axis=1)

    week8['opponent'] = ''  # Create new column

    # Iterate over every frame and add the approapriate opponent
    for i in range(len(week8)):
        if week8['team'][i] == 'ATL':
            week8.at[i, 'opponent'] = 'CAR'
        if week8['team'][i] == 'CAR':
            week8.at[i, 'opponent'] = 'ATL'
        if week8['team'][i] == 'ARI':
            week8.at[i, 'opponent'] = 'GB'
        if week8['team'][i] == 'GB':
            week8.at[i, 'opponent'] = 'ARI'
        if week8['team'][i] == 'DET':
            week8.at[i, 'opponent'] = 'PHI'
        if week8['team'][i] == 'PHI':
            week8.at[i, 'opponent'] = 'DET'
        if week8['team'][i] == 'SEA':
            week8.at[i, 'opponent'] = 'JAX'
        if week8['team'][i] == 'JAX':
            week8.at[i, 'opponent'] = 'SEA'
        if week8['team'][i] == 'CLE':
            week8.at[i, 'opponent'] = 'PIT'
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        if week8['team'][i] == 'PIT':
            week8.at[i, 'opponent'] = 'CLE'
        if week8['team'][i] == 'IND':
            week8.at[i, 'opponent'] = 'TEN'
        if week8['team'][i] == 'TEN':
            week8.at[i, 'opponent'] = 'IND'
        if week8['team'][i] == 'NYJ':
            week8.at[i, 'opponent'] = 'CIN'
        if week8['team'][i] == 'CIN':
            week8.at[i, 'opponent'] = 'NYJ'
        if week8['team'][i] == 'HOU':
            week8.at[i, 'opponent'] = 'LA'
        if week8['team'][i] == 'LA':
            week8.at[i, 'opponent'] = 'HOU'
        if week8['team'][i] == 'NO':
            week8.at[i, 'opponent'] = 'TB'
        if week8['team'][i] == 'TB':
            week8.at[i, 'opponent'] = 'NO'
        if week8['team'][i] == 'DEN':
            week8.at[i, 'opponent'] = 'WAS'
        if week8['team'][i] == 'WAS':
            week8.at[i, 'opponent'] = 'DEN'
        if week8['team'][i] == 'LAC':
            week8.at[i, 'opponent'] = 'NE'
        if week8['team'][i] == 'NE':
            week8.at[i, 'opponent'] = 'LAC'
        if week8['team'][i] == 'BUF':
            week8.at[i, 'opponent'] = 'MIA'
        if week8['team'][i] == 'MIA':
            week8.at[i, 'opponent'] = 'BUF'
        if week8['team'][i] == 'CHI':
            week8.at[i, 'opponent'] = 'SF'
        if week8['team'][i] == 'SF':
            week8.at[i, 'opponent'] = 'CHI'
        if week8['team'][i] == 'MIN':
            week8.at[i, 'opponent'] = 'DAL'
        if week8['team'][i] == 'DAL':
            week8.at[i, 'opponent'] = 'MIN'
        if week8['team'][i] == 'KC':
            week8.at[i, 'opponent'] = 'NYG'
        if week8['team'][i] == 'NYG':
            week8.at[i, 'opponent'] = 'KC'
    # Creating a new CSV file
    week8.to_csv('week8_all_data_and_names_and_opponents_final.csv')

# Also for the dashboard, add the player name to every frame
def add_player_name():
    # Load the data
    week8 = pd.read_csv('week8_all_data_and_names_and_opponents_final.csv')
    week8 = week8.drop(week8.columns[0], axis=1)
    player = pd.read_csv('players.csv')
    player_selected = player[['nflId', 'displayName']]
    merged_df = pd.merge(week8, player_selected, on='nflId', how='left')    # Merge data frames by nflId

    # Final data frame for the individual predicted pressures and PMP for the dashboard
    merged_df.to_csv('week8_all_data_and_names_and_opponents_and_game_names_final.csv')

# Calculating the pressure created by the entire defense on every frame. Also for the dashboard.
def get_total_pressure_by_defense():
    # Load the data
    rushers_total_pressure = pd.DataFrame(columns=['gameId', 'playId', 'frameId', 'total_pressure'])
    week8 = pd.read_csv('week8_all_data_and_names_and_opponents_and_game_names_final.csv')
    week8 = week8.drop(week8.columns[0], axis=1)
    games = week8['gameId'].unique().tolist()
    # Iterate over every game in week 8
    for i in games:
        game_df = week8.loc[(week8['gameId'] == i)]
        game_df = game_df.reset_index(drop=True)
        plays = game_df['playId'].unique().tolist() # Find the plays for each game
        # Iterate over every play for that game
        for j in plays:
            play_df = game_df.loc[(game_df['playId'] == j)]
            play_df = play_df.reset_index(drop=True)
            play_length = play_df['frameId'].max()
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            rushers_df = play_df.loc[(play_df['role'] == 'Pass Rush')]  # Filter for the pass rushers on that play
            rushers_df = rushers_df.reset_index(drop=True)

            # For every frame, take the sum of the predicted pressure of every pass rusher and add the new row to the
            # new dataframe
            for k in range(play_length):
                rushers_per_frame = rushers_df.loc[(rushers_df['frameId'] == k+1)]
                rushers_per_frame = rushers_per_frame.reset_index(drop=True)
                total_pressure = rushers_per_frame['predicted_pressure'].sum()
                new_row = {'gameId': i, 'playId': j, 'frameId': k+1, 'total_pressure': total_pressure}
                rushers_total_pressure = rushers_total_pressure.append(new_row, ignore_index=True)

    # Creating a new CSV file
    rushers_total_pressure.to_csv('week8_total_pressure_defense_final.csv')

# As some of the column types got switched from int to float here, this had to be reversed
def convert_total_pressure_df():
    week8 = pd.read_csv('week8_total_pressure_defense_final.csv')
    week8 = week8.drop(week8.columns[0], axis=1)
    week8['gameId'] = week8['gameId'].astype(int)
    week8['playId'] = week8['playId'].astype(int)
    week8['frameId'] = week8['frameId'].astype(int)
    week8.to_csv('week8_total_pressure_defense_final.csv')

# Similarly to above, adding the game names to this data frame
def add_game_name_to_total_pressure_df():
    week8 = pd.read_csv('week8_total_pressure_defense_final.csv')
    week8 = week8.drop(week8.columns[0], axis=1)

    for i in range(len(week8)):
        print(i)
        if week8['gameId'][i] == 2021102800:
            week8.at[i, 'game_name'] = 'Arizona Cardinals vs Green Bay Packers'
        if week8['gameId'][i] == 2021103100:
            week8.at[i, 'game_name'] = 'Atlanta Falcons vs Carolina Panthers'
        if week8['gameId'][i] == 2021103103:
            week8.at[i, 'game_name'] = 'Cleveland Browns vs Pittsburgh Steelers'
        if week8['gameId'][i] == 2021103102:
            week8.at[i, 'game_name'] = 'Chicago Bears vs San Francisco 49ers'
        if week8['gameId'][i] == 2021103101:
            week8.at[i, 'game_name'] = 'Buffalo Bills vs Miami Dolphins'
        if week8['gameId'][i] == 2021103104:
            week8.at[i, 'game_name'] = 'Detroit Lions vs Philadelphia Eagles'
        if week8['gameId'][i] == 2021103105:
            week8.at[i, 'game_name'] = 'Houston Texans vs Los Angeles Rams'
        if week8['gameId'][i] == 2021103106:
            week8.at[i, 'game_name'] = 'Indianapolis Colts vs Tennessee Titans'
        if week8['gameId'][i] == 2021103107:
            week8.at[i, 'game_name'] = 'New York Jets vs Cincinnati Bengals'
        if week8['gameId'][i] == 2021103109:
            week8.at[i, 'game_name'] = 'Seattle Seahawks vs Jacksonville Jaguars'
        if week8['gameId'][i] == 2021103110:
            week8.at[i, 'game_name'] = 'Denver Broncos vs Washington Football Team'
        if week8['gameId'][i] == 2021103111:
            week8.at[i, 'game_name'] = 'New Orleans Saints vs Tampa Bay Buccaneers'
        if week8['gameId'][i] == 2021103112:
            week8.at[i, 'game_name'] = 'Minnesota Vikings vs Dallas Cowboys'
        if week8['gameId'][i] == 2021110100:
            week8.at[i, 'game_name'] = 'Kansas City Chiefs vs New York Giants'
        if week8['gameId'][i] == 2021103108:
            week8.at[i, 'game_name'] = 'Los Angeles Chargers vs New England Patriots'

    # Final data frame for the pressure by the entire defense for the dashboard
    week8.to_csv('week8_total_pressure_defense_final.csv')

# Now, the same predictions as for week 8 have to be made for all other weeks. The code is straightforward and the same,
# only swapping out the appropriate week.
# Week 7:
def predict_xysao_week7():
    weeks = pd.read_csv('all_weeks_with_next_xysao.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)

    weeks_train = weeks.loc[
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        (weeks['week'] == 1) | (weeks['week'] == 2) | (weeks['week'] == 3) | (weeks['week'] == 4) | (
                weeks['week'] == 5) | (weeks['week'] == 6) | (weeks['week'] == 8)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_test = weeks.loc[(weeks['week'] == 7)]
    weeks_test = weeks_test.reset_index(drop=True)

    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train1 = weeks_train[features]
    y_train1 = weeks_train['x_offset_next']
    X_test1 = weeks_test[features]

    clf1 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf1 = clf1.fit(X_train1, y_train1)

    y_predicted_x_offset = clf1.predict(X_test1)

    weeks_test['x_offset_predicted'] = y_predicted_x_offset

    X_train2 = weeks_train[features]
    y_train2 = weeks_train['y_offset_next']
    X_test2 = weeks_test[features]

    clf2 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf2 = clf2.fit(X_train2, y_train2)

    y_predicted_y_offset = clf2.predict(X_test2)

    weeks_test['y_offset_predicted'] = y_predicted_y_offset

    X_train3 = weeks_train[features]
    y_train3 = weeks_train['s_next']
    X_test3 = weeks_test[features]

    clf3 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf3 = clf3.fit(X_train3, y_train3)

    y_predicted_s_next = clf3.predict(X_test3)

    weeks_test['s_next_predicted'] = y_predicted_s_next

    X_train4 = weeks_train[features]
    y_train4 = weeks_train['a_next']
    X_test4 = weeks_test[features]

    clf4 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf4 = clf4.fit(X_train4, y_train4)

    y_predicted_a_next = clf4.predict(X_test4)

    weeks_test['a_next_predicted'] = y_predicted_a_next

    X_train5 = weeks_train[features]
    y_train5 = weeks_train['o_next']
    X_test5 = weeks_test[features]

    clf5 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf5 = clf5.fit(X_train5, y_train5)

    y_predicted_o_next = clf5.predict(X_test5)

    weeks_test['o_next_predicted'] = y_predicted_o_next

    weeks_test.to_csv('week7_predicted_xysao_final.csv')
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def create_telemetry_week7_double_ml():
    plays = pd.read_csv('plays.csv')
    weeks = pd.read_csv('weeks_with_sack_hit_hurry_pressure_and_play_result.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)
    weeks = weeks.loc[(weeks['week'] == 7)]
    week7_predicted_xy = pd.read_csv('week7_predicted_xysao_final.csv')

    weeks['x_to_passer'] = 0
    weeks['y_to_passer'] = 0
    weeks['distance_to_passer'] = 0
    weeks['x_to_blocker'] = 0
    weeks['y_to_blocker'] = 0
    weeks['distance_to_blocker'] = 0
    weeks['blocker_o'] = 0
    weeks['angle'] = 0
    weeks['blocker_s'] = 0
    weeks['blocker_a'] = 0
    weeks['x_offset'] = 0
    weeks['y_offset'] = 0
    weeks['speed'] = 0
    weeks['acceleration'] = 0
    weeks['orientation'] = 0

    telemetry_df = pd.DataFrame(columns=weeks.columns)

    for k in range(len(plays)):
        one_play = weeks.loc[(weeks['gameId'] == plays['gameId'][k]) & (weeks['playId'] == plays['playId'][k])]
        one_play = one_play.reset_index(drop=True)
        last_frame = one_play['frameId'].max()
        for i in range(len(one_play)):
            if (one_play['frameId'][i] == last_frame) & (one_play['role'][i] == 'Pass Rush'):
                one_play = one_play.drop(i)
            else:
                if one_play['role'][i] == 'Pass Rush':
                    df_passer = one_play.loc[
                        (one_play['role'] == 'Pass') & (one_play['frameId'] == one_play['frameId'][i+1])]
                    df_passer = df_passer.reset_index(drop=True)
                    df_rusher_predictor = week7_predicted_xy.loc[(week7_predicted_xy['gameId'] == one_play['gameId'][i])
                                                                 & (week7_predicted_xy['playId'] == one_play['playId'][i])
                                                                    & (week7_predicted_xy['nflId'] == one_play['nflId'][i])
                                                                    & (week7_predicted_xy['frameId'] == one_play['frameId'][i])]
                    df_rusher_predictor = df_rusher_predictor.reset_index(drop=True)
                    one_play.at[i, 'x_to_passer'] = df_passer['x'][0] - one_play['x'][i] - 

df_rusher_predictor['x_offset_predicted'][0]
                    one_play.at[i, 'y_to_passer'] = df_passer['y'][0] - one_play['y'][i] - 

df_rusher_predictor['y_offset_predicted'][0]
                    one_play.at[i, 'distance_to_passer'] = round(
                        math.sqrt((one_play['y_to_passer'][i] ** 2) + (one_play['x_to_passer'][i]) ** 2), 2)

                    df_blocker = one_play.loc[
                        (one_play['role'] == 'Pass Block') & (one_play['frameId'] == one_play['frameId'][i+1])]
                    df_blocker = df_blocker.reset_index(drop=True)
                    all_blockers = []
                    individual_blocker = []

                    for j in range(len(df_blocker)):
                        x_to_blocker = one_play['x'][i] - df_blocker['x'][j] - df_rusher_predictor['x_offset_predicted'][0]
                        individual_blocker.append(x_to_blocker)

                        y_to_blocker = one_play['y'][i] - df_blocker['y'][j] - df_rusher_predictor['y_offset_predicted'][0]
                        individual_blocker.append(y_to_blocker)

                        distance_to_blocker = math.sqrt((x_to_blocker ** 2) + (y_to_blocker ** 2))
                        individual_blocker.append(distance_to_blocker)

                        x_passer_to_blocker = df_passer['x'][0] - df_blocker['x'][j]
                        y_passer_to_blocker = df_passer['y'][0] - df_blocker['y'][j]
                        distance_passer_to_blocker = round(math.sqrt(x_passer_to_blocker ** 2 + y_passer_to_blocker ** 2))

                        dot_product = one_play['x_to_passer'][i] * x_passer_to_blocker + one_play['y_to_passer'][
                            i] * y_passer_to_blocker
                        cos_theta = dot_product / (distance_passer_to_blocker * one_play['distance_to_passer'][i])
                        cos_theta = min(1, max(-1, cos_theta))
                        theta = math.acos(cos_theta)
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                        theta_degrees = math.degrees(theta)
                        individual_blocker.append(theta_degrees)
                        individual_blocker.append(df_blocker['o'][j])
                        individual_blocker.append(df_blocker['s'][j])
                        individual_blocker.append(df_blocker['a'][j])

                        all_blockers.append(individual_blocker)
                        individual_blocker = []

                    min_val = float('inf')
                    closest_blocker = None

                    for sub_arr in all_blockers:
                        if sub_arr[2] < min_val:
                            min_val = sub_arr[2]
                            closest_blocker = sub_arr

                    one_play.at[i, 'x_to_blocker'] = closest_blocker[0]
                    one_play.at[i, 'y_to_blocker'] = closest_blocker[1]
                    one_play.at[i, 'distance_to_blocker'] = closest_blocker[2]
                    one_play.at[i, 'angle'] = closest_blocker[3]
                    one_play.at[i, 'blocker_o'] = closest_blocker[4]
                    one_play.at[i, 'blocker_s'] = closest_blocker[5]
                    one_play.at[i, 'blocker_a'] = closest_blocker[6]

                    one_play.at[i, 'x_offset'] = df_rusher_predictor['x_offset_predicted'][0]
                    one_play.at[i, 'y_offset'] = df_rusher_predictor['y_offset_predicted'][0]
                    one_play.at[i, 'speed'] = df_rusher_predictor['s_next_predicted'][0]
                    one_play.at[i, 'acceleration'] = df_rusher_predictor['a_next_predicted'][0]
                    one_play.at[i, 'orientation'] = df_rusher_predictor['o_next_predicted'][0]

        telemetry_df = pd.concat([telemetry_df, one_play], ignore_index=True)

    only_rushers = telemetry_df.loc[(telemetry_df['role'] == 'Pass Rush')]
    only_rushers = only_rushers.reset_index(drop=True)

    only_rushers.to_csv('weeks7_predicted_telemetry_rushers.csv')

def predict_pressure_with_predicted_telemetry_week7():
    weeks_train = pd.read_csv('weeks_only_rushers_with_telemetry_one_blocker_full.csv')
    weeks_train = weeks_train.drop(weeks_train.columns[0], axis=1)
    weeks_train = weeks_train.loc[
        (weeks_train['week'] == 1) | (weeks_train['week'] == 2) | (weeks_train['week'] == 3) | (weeks_train['week'] == 4) | (
                weeks_train['week'] == 5) | (weeks_train['week'] == 6) | (weeks_train['week'] == 8)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_train['x_to_passer'] = weeks_train['x_to_passer'].round(2)
    weeks_train['y_to_passer'] = weeks_train['y_to_passer'].round(2)
    weeks_train['distance_to_passer'] = weeks_train['distance_to_passer'].round(2)
    weeks_train['x_to_blocker'] = weeks_train['x_to_blocker'].round(2)
    weeks_train['y_to_blocker'] = weeks_train['y_to_blocker'].round(2)
    weeks_train['distance_to_blocker'] = weeks_train['distance_to_blocker'].round(2)
    weeks_train['blocker_o'] = weeks_train['blocker_o'].round(2)
    weeks_train['angle'] = weeks_train['angle'].round(2)
    weeks_train['blocker_s'] = weeks_train['blocker_s'].round(2)
    weeks_train['blocker_a'] = weeks_train['blocker_a'].round(2)
    weeks_train['x_offset'] = weeks_train['x_offset'].round(2)
    weeks_train['y_offset'] = weeks_train['y_offset'].round(2)

    weeks_test = pd.read_csv('weeks7_predicted_telemetry_rushers.csv')
    weeks_test = weeks_test.drop(weeks_test.columns[0], axis=1)
    weeks_test['x_to_passer'] = weeks_test['x_to_passer'].round(2)
    weeks_test['y_to_passer'] = weeks_test['y_to_passer'].round(2)
    weeks_test['distance_to_passer'] = weeks_test['distance_to_passer'].round(2)
    weeks_test['x_to_blocker'] = weeks_test['x_to_blocker'].round(2)
    weeks_test['y_to_blocker'] = weeks_test['y_to_blocker'].round(2)
    weeks_test['distance_to_blocker'] = weeks_test['distance_to_blocker'].round(2)
    weeks_test['blocker_o'] = weeks_test['blocker_o'].round(2)
    weeks_test['angle'] = weeks_test['angle'].round(2)
    weeks_test['blocker_s'] = weeks_test['blocker_s'].round(2)
    weeks_test['blocker_a'] = weeks_test['blocker_a'].round(2)
    weeks_test['x_offset'] = weeks_test['x_offset'].round(2)
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    weeks_test['y_offset'] = weeks_test['y_offset'].round(2)
    weeks_test['speed'] = weeks_test['speed'].round(2)
    weeks_test['acceleration'] = weeks_test['acceleration'].round(2)
    weeks_test['orientation'] = weeks_test['orientation'].round(2)
    weeks_test['s'] = weeks_test['speed']
    weeks_test['a'] = weeks_test['acceleration']
    weeks_test['o'] = weeks_test['orientation']

    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train = weeks_train[features]
    y_train = weeks_train['pressure']
    X_test = weeks_test[features]

    clf = KNeighborsClassifier(n_neighbors=37, weights='distance')

    clf = clf.fit(X_train, y_train)

    y_predicted_pressure = clf.predict(X_test)
    y_predicted_pressure_probability = clf.predict_proba(X_test)[:, 1]

    weeks_test['predicted_pressure'] = y_predicted_pressure
    weeks_test['predicted_pressure_probability'] = y_predicted_pressure_probability

    weeks_test.to_csv('week7_double_ml_pressure_final.csv')

def finalize_prediction_week7():
    plays = pd.read_csv('plays.csv')
    weeks = pd.read_csv('week7_predicted_pressure_final.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)
    week7 = pd.read_csv('week7_double_ml_pressure_final.csv')
    week7 = week7.drop(week7.columns[0], axis=1)
    full_pressure_list = []
    full_pressure_probability_list = []

    for i in range(len(plays)):
        one_play = weeks.loc[(weeks['gameId'] == plays['gameId'][i]) & (weeks['playId'] == plays['playId'][i])]
        one_play = one_play.reset_index(drop=True)
        one_play_predicted = week7.loc[(week7['gameId'] == plays['gameId'][i]) & (week7['playId'] == plays['playId'][i])]
        one_play_predicted = one_play_predicted.reset_index(drop=True)
        players = one_play['nflId'].unique().tolist()
        for j in players:
            one_play_player = one_play.loc[(one_play['nflId'] == j)]
            one_play_player = one_play_player.reset_index(drop=True)
            one_play_predicted_player = one_play_predicted.loc[(one_play_predicted['nflId'] == j)]
            one_play_predicted_player = one_play_predicted_player.reset_index(drop=True)

            indiv_player_pressure = one_play_predicted_player['predicted_pressure'].tolist()
            full_pressure_list.append(one_play_player['predicted_pressure'][0])
            for k in range(len(indiv_player_pressure)):
                full_pressure_list.append(indiv_player_pressure[k])

            indiv_player_pressure_probability = one_play_predicted_player['predicted_pressure_probability'].tolist()
            full_pressure_probability_list.append(one_play_player['predicted_pressure_probability'][0])
            for l in range(len(indiv_player_pressure_probability)):
                full_pressure_probability_list.append(indiv_player_pressure_probability[l])

    weeks['predicted_motion_predicted_pressure_outcome'] = full_pressure_list
    weeks['predicted_motion_predicted_pressure_probability_outcome'] = full_pressure_probability_list

    weeks.to_csv('week7_pmp_final.csv')

# Week 6:
def predict_xy_week6():
    weeks = pd.read_csv('all_weeks_with_next_xysao.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)

    weeks_train = weeks.loc[
        (weeks['week'] == 1) | (weeks['week'] == 2) | (weeks['week'] == 3) | (weeks['week'] == 4) | (
                weeks['week'] == 5) | (weeks['week'] == 7) | (weeks['week'] == 8)]
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    weeks_train = weeks_train.reset_index(drop=True)
    weeks_test = weeks.loc[(weeks['week'] == 6)]
    weeks_test = weeks_test.reset_index(drop=True)

    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train1 = weeks_train[features]
    y_train1 = weeks_train['x_offset_next']
    X_test1 = weeks_test[features]

    clf1 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf1 = clf1.fit(X_train1, y_train1)

    y_predicted_x_offset = clf1.predict(X_test1)

    weeks_test['x_offset_predicted'] = y_predicted_x_offset

    X_train2 = weeks_train[features]
    y_train2 = weeks_train['y_offset_next']
    X_test2 = weeks_test[features]

    clf2 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf2 = clf2.fit(X_train2, y_train2)

    y_predicted_y_offset = clf2.predict(X_test2)

    weeks_test['y_offset_predicted'] = y_predicted_y_offset

    X_train3 = weeks_train[features]
    y_train3 = weeks_train['s_next']
    X_test3 = weeks_test[features]

    clf3 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf3 = clf3.fit(X_train3, y_train3)

    y_predicted_s_next = clf3.predict(X_test3)

    weeks_test['s_next_predicted'] = y_predicted_s_next

    X_train4 = weeks_train[features]
    y_train4 = weeks_train['a_next']
    X_test4 = weeks_test[features]

    clf4 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf4 = clf4.fit(X_train4, y_train4)

    y_predicted_a_next = clf4.predict(X_test4)

    weeks_test['a_next_predicted'] = y_predicted_a_next

    X_train5 = weeks_train[features]
    y_train5 = weeks_train['o_next']
    X_test5 = weeks_test[features]

    clf5 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf5 = clf5.fit(X_train5, y_train5)

    y_predicted_o_next = clf5.predict(X_test5)

    weeks_test['o_next_predicted'] = y_predicted_o_next

    weeks_test.to_csv('week6_predicted_xysao_final.csv')

def create_telemetry_week6_double_ml():
    plays = pd.read_csv('plays.csv')
    weeks = pd.read_csv('weeks_with_sack_hit_hurry_pressure_and_play_result.csv')
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    weeks = weeks.drop(weeks.columns[0], axis=1)
    weeks = weeks.loc[(weeks['week'] == 6)]
    week6_predicted_xy = pd.read_csv('week6_predicted_xysao_final.csv')

    weeks['x_to_passer'] = 0
    weeks['y_to_passer'] = 0
    weeks['distance_to_passer'] = 0
    weeks['x_to_blocker'] = 0
    weeks['y_to_blocker'] = 0
    weeks['distance_to_blocker'] = 0
    weeks['blocker_o'] = 0
    weeks['angle'] = 0
    weeks['blocker_s'] = 0
    weeks['blocker_a'] = 0
    weeks['x_offset'] = 0
    weeks['y_offset'] = 0
    weeks['speed'] = 0
    weeks['acceleration'] = 0
    weeks['orientation'] = 0

    telemetry_df = pd.DataFrame(columns=weeks.columns)

    for k in range(len(plays)):
        one_play = weeks.loc[(weeks['gameId'] == plays['gameId'][k]) & (weeks['playId'] == plays['playId'][k])]
        one_play = one_play.reset_index(drop=True)
        last_frame = one_play['frameId'].max()
        for i in range(len(one_play)):
            if (one_play['frameId'][i] == last_frame) & (one_play['role'][i] == 'Pass Rush'):
                one_play = one_play.drop(i)
            else:
                if one_play['role'][i] == 'Pass Rush':
                    df_passer = one_play.loc[
                        (one_play['role'] == 'Pass') & (one_play['frameId'] == one_play['frameId'][i+1])]
                    df_passer = df_passer.reset_index(drop=True)
                    df_rusher_predictor = week6_predicted_xy.loc[(week6_predicted_xy['gameId'] == one_play['gameId'][i])
                                                                 & (week6_predicted_xy['playId'] == one_play['playId'][i])
                                                                    & (week6_predicted_xy['nflId'] == one_play['nflId'][i])
                                                                    & (week6_predicted_xy['frameId'] == one_play['frameId'][i])]
                    df_rusher_predictor = df_rusher_predictor.reset_index(drop=True)
                    one_play.at[i, 'x_to_passer'] = df_passer['x'][0] - one_play['x'][i] - 

df_rusher_predictor['x_offset_predicted'][0]
                    one_play.at[i, 'y_to_passer'] = df_passer['y'][0] - one_play['y'][i] - 

df_rusher_predictor['y_offset_predicted'][0]
                    one_play.at[i, 'distance_to_passer'] = round(
                        math.sqrt((one_play['y_to_passer'][i] ** 2) + (one_play['x_to_passer'][i]) ** 2), 2)

                    df_blocker = one_play.loc[
                        (one_play['role'] == 'Pass Block') & (one_play['frameId'] == one_play['frameId'][i+1])]
                    df_blocker = df_blocker.reset_index(drop=True)
                    all_blockers = []
                    individual_blocker = []

                    for j in range(len(df_blocker)):
                        x_to_blocker = one_play['x'][i] - df_blocker['x'][j] - df_rusher_predictor['x_offset_predicted'][0]
                        individual_blocker.append(x_to_blocker)

                        y_to_blocker = one_play['y'][i] - df_blocker['y'][j] - df_rusher_predictor['y_offset_predicted'][0]
                        individual_blocker.append(y_to_blocker)

                        distance_to_blocker = math.sqrt((x_to_blocker ** 2) + (y_to_blocker ** 2))
                        individual_blocker.append(distance_to_blocker)

                        x_passer_to_blocker = df_passer['x'][0] - df_blocker['x'][j]
                        y_passer_to_blocker = df_passer['y'][0] - df_blocker['y'][j]
                        distance_passer_to_blocker = round(math.sqrt(x_passer_to_blocker ** 2 + y_passer_to_blocker ** 2))

                        dot_product = one_play['x_to_passer'][i] * x_passer_to_blocker + one_play['y_to_passer'][
                            i] * y_passer_to_blocker
                        cos_theta = dot_product / (distance_passer_to_blocker * one_play['distance_to_passer'][i])
                        cos_theta = min(1, max(-1, cos_theta))
                        theta = math.acos(cos_theta)
                        theta_degrees = math.degrees(theta)
                        individual_blocker.append(theta_degrees)
                        individual_blocker.append(df_blocker['o'][j])
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                        individual_blocker.append(df_blocker['s'][j])
                        individual_blocker.append(df_blocker['a'][j])

                        all_blockers.append(individual_blocker)
                        individual_blocker = []

                    min_val = float('inf')
                    closest_blocker = None

                    for sub_arr in all_blockers:
                        if sub_arr[2] < min_val:
                            min_val = sub_arr[2]
                            closest_blocker = sub_arr

                    one_play.at[i, 'x_to_blocker'] = closest_blocker[0]
                    one_play.at[i, 'y_to_blocker'] = closest_blocker[1]
                    one_play.at[i, 'distance_to_blocker'] = closest_blocker[2]
                    one_play.at[i, 'angle'] = closest_blocker[3]
                    one_play.at[i, 'blocker_o'] = closest_blocker[4]
                    one_play.at[i, 'blocker_s'] = closest_blocker[5]
                    one_play.at[i, 'blocker_a'] = closest_blocker[6]

                    one_play.at[i, 'x_offset'] = df_rusher_predictor['x_offset_predicted'][0]
                    one_play.at[i, 'y_offset'] = df_rusher_predictor['y_offset_predicted'][0]
                    one_play.at[i, 'speed'] = df_rusher_predictor['s_next_predicted'][0]
                    one_play.at[i, 'acceleration'] = df_rusher_predictor['a_next_predicted'][0]
                    one_play.at[i, 'orientation'] = df_rusher_predictor['o_next_predicted'][0]

        telemetry_df = pd.concat([telemetry_df, one_play], ignore_index=True)

    only_rushers = telemetry_df.loc[(telemetry_df['role'] == 'Pass Rush')]
    only_rushers = only_rushers.reset_index(drop=True)

    only_rushers.to_csv('weeks6_predicted_telemetry_rushers.csv')

def predict_pressure_with_predicted_telemetry_week6():
    weeks_train = pd.read_csv('weeks_only_rushers_with_telemetry_one_blocker_full.csv')
    weeks_train = weeks_train.drop(weeks_train.columns[0], axis=1)
    weeks_train = weeks_train.loc[
        (weeks_train['week'] == 1) | (weeks_train['week'] == 2) | (weeks_train['week'] == 3) | (weeks_train['week'] == 4) | (
                weeks_train['week'] == 5) | (weeks_train['week'] == 7) | (weeks_train['week'] == 8)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_train['x_to_passer'] = weeks_train['x_to_passer'].round(2)
    weeks_train['y_to_passer'] = weeks_train['y_to_passer'].round(2)
    weeks_train['distance_to_passer'] = weeks_train['distance_to_passer'].round(2)
    weeks_train['x_to_blocker'] = weeks_train['x_to_blocker'].round(2)
    weeks_train['y_to_blocker'] = weeks_train['y_to_blocker'].round(2)
    weeks_train['distance_to_blocker'] = weeks_train['distance_to_blocker'].round(2)
    weeks_train['blocker_o'] = weeks_train['blocker_o'].round(2)
    weeks_train['angle'] = weeks_train['angle'].round(2)
    weeks_train['blocker_s'] = weeks_train['blocker_s'].round(2)
    weeks_train['blocker_a'] = weeks_train['blocker_a'].round(2)
    weeks_train['x_offset'] = weeks_train['x_offset'].round(2)
    weeks_train['y_offset'] = weeks_train['y_offset'].round(2)

    weeks_test = pd.read_csv('weeks6_predicted_telemetry_rushers.csv')
    weeks_test = weeks_test.drop(weeks_test.columns[0], axis=1)
    weeks_test['x_to_passer'] = weeks_test['x_to_passer'].round(2)
    weeks_test['y_to_passer'] = weeks_test['y_to_passer'].round(2)
    weeks_test['distance_to_passer'] = weeks_test['distance_to_passer'].round(2)
    weeks_test['x_to_blocker'] = weeks_test['x_to_blocker'].round(2)
    weeks_test['y_to_blocker'] = weeks_test['y_to_blocker'].round(2)
    weeks_test['distance_to_blocker'] = weeks_test['distance_to_blocker'].round(2)
    weeks_test['blocker_o'] = weeks_test['blocker_o'].round(2)
    weeks_test['angle'] = weeks_test['angle'].round(2)
    weeks_test['blocker_s'] = weeks_test['blocker_s'].round(2)
    weeks_test['blocker_a'] = weeks_test['blocker_a'].round(2)
    weeks_test['x_offset'] = weeks_test['x_offset'].round(2)
    weeks_test['y_offset'] = weeks_test['y_offset'].round(2)
    weeks_test['speed'] = weeks_test['speed'].round(2)
    weeks_test['acceleration'] = weeks_test['acceleration'].round(2)
    weeks_test['orientation'] = weeks_test['orientation'].round(2)
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    weeks_test['s'] = weeks_test['speed']
    weeks_test['a'] = weeks_test['acceleration']
    weeks_test['o'] = weeks_test['orientation']

    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train = weeks_train[features]
    y_train = weeks_train['pressure']
    X_test = weeks_test[features]

    clf = KNeighborsClassifier(n_neighbors=37, weights='distance')

    clf = clf.fit(X_train, y_train)

    y_predicted_pressure = clf.predict(X_test)
    y_predicted_pressure_probability = clf.predict_proba(X_test)[:, 1]

    weeks_test['predicted_pressure'] = y_predicted_pressure
    weeks_test['predicted_pressure_probability'] = y_predicted_pressure_probability

    weeks_test.to_csv('week6_double_ml_pressure_final.csv')

def finalize_prediction_week6():
    plays = pd.read_csv('plays.csv')
    weeks = pd.read_csv('week6_predicted_pressure_final.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)
    week6 = pd.read_csv('week6_double_ml_pressure_final.csv')
    week6 = week6.drop(week6.columns[0], axis=1)
    full_pressure_list = []
    full_pressure_probability_list = []

    for i in range(len(plays)):
        print(i)
        one_play = weeks.loc[(weeks['gameId'] == plays['gameId'][i]) & (weeks['playId'] == plays['playId'][i])]
        one_play = one_play.reset_index(drop=True)
        one_play_predicted = week6.loc[(week6['gameId'] == plays['gameId'][i]) & (week6['playId'] == plays['playId'][i])]
        one_play_predicted = one_play_predicted.reset_index(drop=True)
        players = one_play['nflId'].unique().tolist()
        for j in players:
            one_play_player = one_play.loc[(one_play['nflId'] == j)]
            one_play_player = one_play_player.reset_index(drop=True)
            one_play_predicted_player = one_play_predicted.loc[(one_play_predicted['nflId'] == j)]
            one_play_predicted_player = one_play_predicted_player.reset_index(drop=True)

            indiv_player_pressure = one_play_predicted_player['predicted_pressure'].tolist()
            full_pressure_list.append(one_play_player['predicted_pressure'][0])
            for k in range(len(indiv_player_pressure)):
                full_pressure_list.append(indiv_player_pressure[k])

            indiv_player_pressure_probability = one_play_predicted_player['predicted_pressure_probability'].tolist()
            full_pressure_probability_list.append(one_play_player['predicted_pressure_probability'][0])
            for l in range(len(indiv_player_pressure_probability)):
                full_pressure_probability_list.append(indiv_player_pressure_probability[l])

    weeks['predicted_motion_predicted_pressure_outcome'] = full_pressure_list
    weeks['predicted_motion_predicted_pressure_probability_outcome'] = full_pressure_probability_list

    weeks.to_csv('week6_pmp_final.csv')

# Week 5:
def predict_xy_week5():
    weeks = pd.read_csv('all_weeks_with_next_xysao.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)

    weeks_train = weeks.loc[
        (weeks['week'] == 1) | (weeks['week'] == 2) | (weeks['week'] == 3) | (weeks['week'] == 4) | (
                weeks['week'] == 6) | (weeks['week'] == 7) | (weeks['week'] == 8)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_test = weeks.loc[(weeks['week'] == 5)]
    weeks_test = weeks_test.reset_index(drop=True)
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    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train1 = weeks_train[features]
    y_train1 = weeks_train['x_offset_next']
    X_test1 = weeks_test[features]

    clf1 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf1 = clf1.fit(X_train1, y_train1)

    y_predicted_x_offset = clf1.predict(X_test1)

    weeks_test['x_offset_predicted'] = y_predicted_x_offset

    X_train2 = weeks_train[features]
    y_train2 = weeks_train['y_offset_next']
    X_test2 = weeks_test[features]

    clf2 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf2 = clf2.fit(X_train2, y_train2)

    y_predicted_y_offset = clf2.predict(X_test2)

    weeks_test['y_offset_predicted'] = y_predicted_y_offset

    X_train3 = weeks_train[features]
    y_train3 = weeks_train['s_next']
    X_test3 = weeks_test[features]

    clf3 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf3 = clf3.fit(X_train3, y_train3)

    y_predicted_s_next = clf3.predict(X_test3)

    weeks_test['s_next_predicted'] = y_predicted_s_next

    X_train4 = weeks_train[features]
    y_train4 = weeks_train['a_next']
    X_test4 = weeks_test[features]

    clf4 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf4 = clf4.fit(X_train4, y_train4)

    y_predicted_a_next = clf4.predict(X_test4)

    weeks_test['a_next_predicted'] = y_predicted_a_next

    X_train5 = weeks_train[features]
    y_train5 = weeks_train['o_next']
    X_test5 = weeks_test[features]

    clf5 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf5 = clf5.fit(X_train5, y_train5)

    y_predicted_o_next = clf5.predict(X_test5)

    weeks_test['o_next_predicted'] = y_predicted_o_next

    weeks_test.to_csv('week5_predicted_xysao_final.csv')

def create_telemetry_week5_double_ml():
    plays = pd.read_csv('plays.csv')
    weeks = pd.read_csv('weeks_with_sack_hit_hurry_pressure_and_play_result.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)
    weeks = weeks.loc[(weeks['week'] == 5)]
    week5_predicted_xy = pd.read_csv('week5_predicted_xysao_final.csv')
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    weeks['x_to_passer'] = 0
    weeks['y_to_passer'] = 0
    weeks['distance_to_passer'] = 0
    weeks['x_to_blocker'] = 0
    weeks['y_to_blocker'] = 0
    weeks['distance_to_blocker'] = 0
    weeks['blocker_o'] = 0
    weeks['angle'] = 0
    weeks['blocker_s'] = 0
    weeks['blocker_a'] = 0
    weeks['x_offset'] = 0
    weeks['y_offset'] = 0
    weeks['speed'] = 0
    weeks['acceleration'] = 0
    weeks['orientation'] = 0

    telemetry_df = pd.DataFrame(columns=weeks.columns)

    for k in range(len(plays)):
        one_play = weeks.loc[(weeks['gameId'] == plays['gameId'][k]) & (weeks['playId'] == plays['playId'][k])]
        one_play = one_play.reset_index(drop=True)
        last_frame = one_play['frameId'].max()
        for i in range(len(one_play)):
            if (one_play['frameId'][i] == last_frame) & (one_play['role'][i] == 'Pass Rush'):
                one_play = one_play.drop(i)
            else:
                if one_play['role'][i] == 'Pass Rush':
                    df_passer = one_play.loc[
                        (one_play['role'] == 'Pass') & (one_play['frameId'] == one_play['frameId'][i+1])]
                    df_passer = df_passer.reset_index(drop=True)
                    df_rusher_predictor = week5_predicted_xy.loc[(week5_predicted_xy['gameId'] == one_play['gameId'][i])
                                                                 & (week5_predicted_xy['playId'] == one_play['playId'][i])
                                                                    & (week5_predicted_xy['nflId'] == one_play['nflId'][i])
                                                                    & (week5_predicted_xy['frameId'] == one_play['frameId'][i])]
                    df_rusher_predictor = df_rusher_predictor.reset_index(drop=True)
                    one_play.at[i, 'x_to_passer'] = df_passer['x'][0] - one_play['x'][i] - 

df_rusher_predictor['x_offset_predicted'][0]
                    one_play.at[i, 'y_to_passer'] = df_passer['y'][0] - one_play['y'][i] - 

df_rusher_predictor['y_offset_predicted'][0]
                    one_play.at[i, 'distance_to_passer'] = round(
                        math.sqrt((one_play['y_to_passer'][i] ** 2) + (one_play['x_to_passer'][i]) ** 2), 2)

                    df_blocker = one_play.loc[
                        (one_play['role'] == 'Pass Block') & (one_play['frameId'] == one_play['frameId'][i+1])]
                    df_blocker = df_blocker.reset_index(drop=True)
                    all_blockers = []
                    individual_blocker = []

                    for j in range(len(df_blocker)):
                        x_to_blocker = one_play['x'][i] - df_blocker['x'][j] - df_rusher_predictor['x_offset_predicted'][0]
                        individual_blocker.append(x_to_blocker)

                        y_to_blocker = one_play['y'][i] - df_blocker['y'][j] - df_rusher_predictor['y_offset_predicted'][0]
                        individual_blocker.append(y_to_blocker)

                        distance_to_blocker = math.sqrt((x_to_blocker ** 2) + (y_to_blocker ** 2))
                        individual_blocker.append(distance_to_blocker)

                        x_passer_to_blocker = df_passer['x'][0] - df_blocker['x'][j]
                        y_passer_to_blocker = df_passer['y'][0] - df_blocker['y'][j]
                        distance_passer_to_blocker = round(math.sqrt(x_passer_to_blocker ** 2 + y_passer_to_blocker ** 2))

                        dot_product = one_play['x_to_passer'][i] * x_passer_to_blocker + one_play['y_to_passer'][
                            i] * y_passer_to_blocker
                        cos_theta = dot_product / (distance_passer_to_blocker * one_play['distance_to_passer'][i])
                        cos_theta = min(1, max(-1, cos_theta))
                        theta = math.acos(cos_theta)
                        theta_degrees = math.degrees(theta)
                        individual_blocker.append(theta_degrees)
                        individual_blocker.append(df_blocker['o'][j])
                        individual_blocker.append(df_blocker['s'][j])
                        individual_blocker.append(df_blocker['a'][j])
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                        all_blockers.append(individual_blocker)
                        individual_blocker = []

                    min_val = float('inf')
                    closest_blocker = None

                    for sub_arr in all_blockers:
                        if sub_arr[2] < min_val:
                            min_val = sub_arr[2]
                            closest_blocker = sub_arr

                    one_play.at[i, 'x_to_blocker'] = closest_blocker[0]
                    one_play.at[i, 'y_to_blocker'] = closest_blocker[1]
                    one_play.at[i, 'distance_to_blocker'] = closest_blocker[2]
                    one_play.at[i, 'angle'] = closest_blocker[3]
                    one_play.at[i, 'blocker_o'] = closest_blocker[4]
                    one_play.at[i, 'blocker_s'] = closest_blocker[5]
                    one_play.at[i, 'blocker_a'] = closest_blocker[6]

                    one_play.at[i, 'x_offset'] = df_rusher_predictor['x_offset_predicted'][0]
                    one_play.at[i, 'y_offset'] = df_rusher_predictor['y_offset_predicted'][0]
                    one_play.at[i, 'speed'] = df_rusher_predictor['s_next_predicted'][0]
                    one_play.at[i, 'acceleration'] = df_rusher_predictor['a_next_predicted'][0]
                    one_play.at[i, 'orientation'] = df_rusher_predictor['o_next_predicted'][0]

        telemetry_df = pd.concat([telemetry_df, one_play], ignore_index=True)

    only_rushers = telemetry_df.loc[(telemetry_df['role'] == 'Pass Rush')]
    only_rushers = only_rushers.reset_index(drop=True)

    only_rushers.to_csv('weeks5_predicted_telemetry_rushers.csv')

def predict_pressure_with_predicted_telemetry_week5():
    weeks_train = pd.read_csv('weeks_only_rushers_with_telemetry_one_blocker_full.csv')
    weeks_train = weeks_train.drop(weeks_train.columns[0], axis=1)
    weeks_train = weeks_train.loc[
        (weeks_train['week'] == 1) | (weeks_train['week'] == 2) | (weeks_train['week'] == 3) | (weeks_train['week'] == 4) | (
                weeks_train['week'] == 6) | (weeks_train['week'] == 7) | (weeks_train['week'] == 8)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_train['x_to_passer'] = weeks_train['x_to_passer'].round(2)
    weeks_train['y_to_passer'] = weeks_train['y_to_passer'].round(2)
    weeks_train['distance_to_passer'] = weeks_train['distance_to_passer'].round(2)
    weeks_train['x_to_blocker'] = weeks_train['x_to_blocker'].round(2)
    weeks_train['y_to_blocker'] = weeks_train['y_to_blocker'].round(2)
    weeks_train['distance_to_blocker'] = weeks_train['distance_to_blocker'].round(2)
    weeks_train['blocker_o'] = weeks_train['blocker_o'].round(2)
    weeks_train['angle'] = weeks_train['angle'].round(2)
    weeks_train['blocker_s'] = weeks_train['blocker_s'].round(2)
    weeks_train['blocker_a'] = weeks_train['blocker_a'].round(2)
    weeks_train['x_offset'] = weeks_train['x_offset'].round(2)
    weeks_train['y_offset'] = weeks_train['y_offset'].round(2)

    weeks_test = pd.read_csv('weeks5_predicted_telemetry_rushers.csv')
    weeks_test = weeks_test.drop(weeks_test.columns[0], axis=1)
    weeks_test['x_to_passer'] = weeks_test['x_to_passer'].round(2)
    weeks_test['y_to_passer'] = weeks_test['y_to_passer'].round(2)
    weeks_test['distance_to_passer'] = weeks_test['distance_to_passer'].round(2)
    weeks_test['x_to_blocker'] = weeks_test['x_to_blocker'].round(2)
    weeks_test['y_to_blocker'] = weeks_test['y_to_blocker'].round(2)
    weeks_test['distance_to_blocker'] = weeks_test['distance_to_blocker'].round(2)
    weeks_test['blocker_o'] = weeks_test['blocker_o'].round(2)
    weeks_test['angle'] = weeks_test['angle'].round(2)
    weeks_test['blocker_s'] = weeks_test['blocker_s'].round(2)
    weeks_test['blocker_a'] = weeks_test['blocker_a'].round(2)
    weeks_test['x_offset'] = weeks_test['x_offset'].round(2)
    weeks_test['y_offset'] = weeks_test['y_offset'].round(2)
    weeks_test['speed'] = weeks_test['speed'].round(2)
    weeks_test['acceleration'] = weeks_test['acceleration'].round(2)
    weeks_test['orientation'] = weeks_test['orientation'].round(2)
    weeks_test['s'] = weeks_test['speed']
    weeks_test['a'] = weeks_test['acceleration']
    weeks_test['o'] = weeks_test['orientation']
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    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train = weeks_train[features]
    y_train = weeks_train['pressure']
    X_test = weeks_test[features]

    clf = KNeighborsClassifier(n_neighbors=37, weights='distance')

    clf = clf.fit(X_train, y_train)

    y_predicted_pressure = clf.predict(X_test)
    y_predicted_pressure_probability = clf.predict_proba(X_test)[:, 1]

    weeks_test['predicted_pressure'] = y_predicted_pressure
    weeks_test['predicted_pressure_probability'] = y_predicted_pressure_probability

    weeks_test.to_csv('week5_double_ml_pressure_final.csv')

def finalize_prediction_week5():
    plays = pd.read_csv('plays.csv')
    weeks = pd.read_csv('week5_predicted_pressure_final.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)
    week5 = pd.read_csv('week5_double_ml_pressure_final.csv')
    week5 = week5.drop(week5.columns[0], axis=1)
    full_pressure_list = []
    full_pressure_probability_list = []

    for i in range(len(plays)):
        one_play = weeks.loc[(weeks['gameId'] == plays['gameId'][i]) & (weeks['playId'] == plays['playId'][i])]
        one_play = one_play.reset_index(drop=True)
        one_play_predicted = week5.loc[(week5['gameId'] == plays['gameId'][i]) & (week5['playId'] == plays['playId'][i])]
        one_play_predicted = one_play_predicted.reset_index(drop=True)
        players = one_play['nflId'].unique().tolist()
        for j in players:
            one_play_player = one_play.loc[(one_play['nflId'] == j)]
            one_play_player = one_play_player.reset_index(drop=True)
            one_play_predicted_player = one_play_predicted.loc[(one_play_predicted['nflId'] == j)]
            one_play_predicted_player = one_play_predicted_player.reset_index(drop=True)

            indiv_player_pressure = one_play_predicted_player['predicted_pressure'].tolist()
            full_pressure_list.append(one_play_player['predicted_pressure'][0])
            for k in range(len(indiv_player_pressure)):
                full_pressure_list.append(indiv_player_pressure[k])

            indiv_player_pressure_probability = one_play_predicted_player['predicted_pressure_probability'].tolist()
            full_pressure_probability_list.append(one_play_player['predicted_pressure_probability'][0])
            for l in range(len(indiv_player_pressure_probability)):
                full_pressure_probability_list.append(indiv_player_pressure_probability[l])

    weeks['predicted_motion_predicted_pressure_outcome'] = full_pressure_list
    weeks['predicted_motion_predicted_pressure_probability_outcome'] = full_pressure_probability_list

    weeks.to_csv('week5_pmp_final.csv')

# Week 4:
def predict_xy_week4():
    weeks = pd.read_csv('all_weeks_with_next_xysao.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)

    weeks_train = weeks.loc[
        (weeks['week'] == 1) | (weeks['week'] == 2) | (weeks['week'] == 3) | (weeks['week'] == 5) | (
                weeks['week'] == 6) | (weeks['week'] == 7) | (weeks['week'] == 8)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_test = weeks.loc[(weeks['week'] == 4)]
    weeks_test = weeks_test.reset_index(drop=True)

    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']
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    X_train1 = weeks_train[features]
    y_train1 = weeks_train['x_offset_next']
    X_test1 = weeks_test[features]

    clf1 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf1 = clf1.fit(X_train1, y_train1)

    y_predicted_x_offset = clf1.predict(X_test1)

    weeks_test['x_offset_predicted'] = y_predicted_x_offset

    X_train2 = weeks_train[features]
    y_train2 = weeks_train['y_offset_next']
    X_test2 = weeks_test[features]

    clf2 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf2 = clf2.fit(X_train2, y_train2)

    y_predicted_y_offset = clf2.predict(X_test2)

    weeks_test['y_offset_predicted'] = y_predicted_y_offset

    X_train3 = weeks_train[features]
    y_train3 = weeks_train['s_next']
    X_test3 = weeks_test[features]

    clf3 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf3 = clf3.fit(X_train3, y_train3)

    y_predicted_s_next = clf3.predict(X_test3)

    weeks_test['s_next_predicted'] = y_predicted_s_next

    X_train4 = weeks_train[features]
    y_train4 = weeks_train['a_next']
    X_test4 = weeks_test[features]

    clf4 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf4 = clf4.fit(X_train4, y_train4)

    y_predicted_a_next = clf4.predict(X_test4)

    weeks_test['a_next_predicted'] = y_predicted_a_next

    X_train5 = weeks_train[features]
    y_train5 = weeks_train['o_next']
    X_test5 = weeks_test[features]

    clf5 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf5 = clf5.fit(X_train5, y_train5)

    y_predicted_o_next = clf5.predict(X_test5)

    weeks_test['o_next_predicted'] = y_predicted_o_next

    weeks_test.to_csv('week4_predicted_xysao_final.csv')

def create_telemetry_week4_double_ml():
    plays = pd.read_csv('plays.csv')
    weeks = pd.read_csv('weeks_with_sack_hit_hurry_pressure_and_play_result.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)
    weeks = weeks.loc[(weeks['week'] == 4)]
    week4_predicted_xy = pd.read_csv('week4_predicted_xysao_final.csv')

    weeks['x_to_passer'] = 0
    weeks['y_to_passer'] = 0
    weeks['distance_to_passer'] = 0
    weeks['x_to_blocker'] = 0
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    weeks['y_to_blocker'] = 0
    weeks['distance_to_blocker'] = 0
    weeks['blocker_o'] = 0
    weeks['angle'] = 0
    weeks['blocker_s'] = 0
    weeks['blocker_a'] = 0
    weeks['x_offset'] = 0
    weeks['y_offset'] = 0
    weeks['speed'] = 0
    weeks['acceleration'] = 0
    weeks['orientation'] = 0

    telemetry_df = pd.DataFrame(columns=weeks.columns)

    for k in range(len(plays)):
        one_play = weeks.loc[(weeks['gameId'] == plays['gameId'][k]) & (weeks['playId'] == plays['playId'][k])]
        one_play = one_play.reset_index(drop=True)
        last_frame = one_play['frameId'].max()
        for i in range(len(one_play)):
            if (one_play['frameId'][i] == last_frame) & (one_play['role'][i] == 'Pass Rush'):
                one_play = one_play.drop(i)
            else:
                if one_play['role'][i] == 'Pass Rush':
                    df_passer = one_play.loc[
                        (one_play['role'] == 'Pass') & (one_play['frameId'] == one_play['frameId'][i+1])]
                    df_passer = df_passer.reset_index(drop=True)
                    df_rusher_predictor = week4_predicted_xy.loc[(week4_predicted_xy['gameId'] == one_play['gameId'][i])
                                                                 & (week4_predicted_xy['playId'] == one_play['playId'][i])
                                                                    & (week4_predicted_xy['nflId'] == one_play['nflId'][i])
                                                                    & (week4_predicted_xy['frameId'] == one_play['frameId'][i])]
                    df_rusher_predictor = df_rusher_predictor.reset_index(drop=True)
                    one_play.at[i, 'x_to_passer'] = df_passer['x'][0] - one_play['x'][i] - 

df_rusher_predictor['x_offset_predicted'][0]
                    one_play.at[i, 'y_to_passer'] = df_passer['y'][0] - one_play['y'][i] -

 df_rusher_predictor['y_offset_predicted'][0]
                    one_play.at[i, 'distance_to_passer'] = round(
                        math.sqrt((one_play['y_to_passer'][i] ** 2) + (one_play['x_to_passer'][i]) ** 2), 2)

                    df_blocker = one_play.loc[
                        (one_play['role'] == 'Pass Block') & (one_play['frameId'] == one_play['frameId'][i+1])]
                    df_blocker = df_blocker.reset_index(drop=True)
                    all_blockers = []
                    individual_blocker = []

                    for j in range(len(df_blocker)):
                        x_to_blocker = one_play['x'][i] - df_blocker['x'][j] - df_rusher_predictor['x_offset_predicted'][0]
                        individual_blocker.append(x_to_blocker)

                        y_to_blocker = one_play['y'][i] - df_blocker['y'][j] - df_rusher_predictor['y_offset_predicted'][0]
                        individual_blocker.append(y_to_blocker)

                        distance_to_blocker = math.sqrt((x_to_blocker ** 2) + (y_to_blocker ** 2))
                        individual_blocker.append(distance_to_blocker)

                        x_passer_to_blocker = df_passer['x'][0] - df_blocker['x'][j]
                        y_passer_to_blocker = df_passer['y'][0] - df_blocker['y'][j]
                        distance_passer_to_blocker = round(math.sqrt(x_passer_to_blocker ** 2 + y_passer_to_blocker ** 2))

                        dot_product = one_play['x_to_passer'][i] * x_passer_to_blocker + one_play['y_to_passer'][
                            i] * y_passer_to_blocker
                        cos_theta = dot_product / (distance_passer_to_blocker * one_play['distance_to_passer'][i])
                        cos_theta = min(1, max(-1, cos_theta))
                        theta = math.acos(cos_theta)
                        theta_degrees = math.degrees(theta)
                        individual_blocker.append(theta_degrees)
                        individual_blocker.append(df_blocker['o'][j])
                        individual_blocker.append(df_blocker['s'][j])
                        individual_blocker.append(df_blocker['a'][j])

                        all_blockers.append(individual_blocker)
                        individual_blocker = []

                    min_val = float('inf')
                    closest_blocker = None
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                    for sub_arr in all_blockers:
                        if sub_arr[2] < min_val:
                            min_val = sub_arr[2]
                            closest_blocker = sub_arr

                    one_play.at[i, 'x_to_blocker'] = closest_blocker[0]
                    one_play.at[i, 'y_to_blocker'] = closest_blocker[1]
                    one_play.at[i, 'distance_to_blocker'] = closest_blocker[2]
                    one_play.at[i, 'angle'] = closest_blocker[3]
                    one_play.at[i, 'blocker_o'] = closest_blocker[4]
                    one_play.at[i, 'blocker_s'] = closest_blocker[5]
                    one_play.at[i, 'blocker_a'] = closest_blocker[6]

                    one_play.at[i, 'x_offset'] = df_rusher_predictor['x_offset_predicted'][0]
                    one_play.at[i, 'y_offset'] = df_rusher_predictor['y_offset_predicted'][0]
                    one_play.at[i, 'speed'] = df_rusher_predictor['s_next_predicted'][0]
                    one_play.at[i, 'acceleration'] = df_rusher_predictor['a_next_predicted'][0]
                    one_play.at[i, 'orientation'] = df_rusher_predictor['o_next_predicted'][0]

        telemetry_df = pd.concat([telemetry_df, one_play], ignore_index=True)

    only_rushers = telemetry_df.loc[(telemetry_df['role'] == 'Pass Rush')]
    only_rushers = only_rushers.reset_index(drop=True)

    only_rushers.to_csv('weeks4_predicted_telemetry_rushers.csv')

def predict_pressure_with_predicted_telemetry_week4():
    weeks_train = pd.read_csv('weeks_only_rushers_with_telemetry_one_blocker_full.csv')
    weeks_train = weeks_train.drop(weeks_train.columns[0], axis=1)
    weeks_train = weeks_train.loc[
        (weeks_train['week'] == 1) | (weeks_train['week'] == 2) | (weeks_train['week'] == 3) | (weeks_train['week'] == 5) | (
                weeks_train['week'] == 6) | (weeks_train['week'] == 7) | (weeks_train['week'] == 8)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_train['x_to_passer'] = weeks_train['x_to_passer'].round(2)
    weeks_train['y_to_passer'] = weeks_train['y_to_passer'].round(2)
    weeks_train['distance_to_passer'] = weeks_train['distance_to_passer'].round(2)
    weeks_train['x_to_blocker'] = weeks_train['x_to_blocker'].round(2)
    weeks_train['y_to_blocker'] = weeks_train['y_to_blocker'].round(2)
    weeks_train['distance_to_blocker'] = weeks_train['distance_to_blocker'].round(2)
    weeks_train['blocker_o'] = weeks_train['blocker_o'].round(2)
    weeks_train['angle'] = weeks_train['angle'].round(2)
    weeks_train['blocker_s'] = weeks_train['blocker_s'].round(2)
    weeks_train['blocker_a'] = weeks_train['blocker_a'].round(2)
    weeks_train['x_offset'] = weeks_train['x_offset'].round(2)
    weeks_train['y_offset'] = weeks_train['y_offset'].round(2)

    weeks_test = pd.read_csv('weeks4_predicted_telemetry_rushers.csv')
    weeks_test = weeks_test.drop(weeks_test.columns[0], axis=1)
    weeks_test['x_to_passer'] = weeks_test['x_to_passer'].round(2)
    weeks_test['y_to_passer'] = weeks_test['y_to_passer'].round(2)
    weeks_test['distance_to_passer'] = weeks_test['distance_to_passer'].round(2)
    weeks_test['x_to_blocker'] = weeks_test['x_to_blocker'].round(2)
    weeks_test['y_to_blocker'] = weeks_test['y_to_blocker'].round(2)
    weeks_test['distance_to_blocker'] = weeks_test['distance_to_blocker'].round(2)
    weeks_test['blocker_o'] = weeks_test['blocker_o'].round(2)
    weeks_test['angle'] = weeks_test['angle'].round(2)
    weeks_test['blocker_s'] = weeks_test['blocker_s'].round(2)
    weeks_test['blocker_a'] = weeks_test['blocker_a'].round(2)
    weeks_test['x_offset'] = weeks_test['x_offset'].round(2)
    weeks_test['y_offset'] = weeks_test['y_offset'].round(2)
    weeks_test['speed'] = weeks_test['speed'].round(2)
    weeks_test['acceleration'] = weeks_test['acceleration'].round(2)
    weeks_test['orientation'] = weeks_test['orientation'].round(2)
    weeks_test['s'] = weeks_test['speed']
    weeks_test['a'] = weeks_test['acceleration']
    weeks_test['o'] = weeks_test['orientation']

    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train = weeks_train[features]
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    y_train = weeks_train['pressure']
    X_test = weeks_test[features]

    clf = KNeighborsClassifier(n_neighbors=37, weights='distance')

    clf = clf.fit(X_train, y_train)

    y_predicted_pressure = clf.predict(X_test)
    y_predicted_pressure_probability = clf.predict_proba(X_test)[:, 1]

    weeks_test['predicted_pressure'] = y_predicted_pressure
    weeks_test['predicted_pressure_probability'] = y_predicted_pressure_probability

    weeks_test.to_csv('week4_double_ml_pressure_final.csv')

def finalize_prediction_week4():
    plays = pd.read_csv('plays.csv')
    weeks = pd.read_csv('week4_predicted_pressure_final.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)
    week4 = pd.read_csv('week4_double_ml_pressure_final.csv')
    week4 = week4.drop(week4.columns[0], axis=1)
    full_pressure_list = []
    full_pressure_probability_list = []

    for i in range(len(plays)):
        one_play = weeks.loc[(weeks['gameId'] == plays['gameId'][i]) & (weeks['playId'] == plays['playId'][i])]
        one_play = one_play.reset_index(drop=True)
        one_play_predicted = week4.loc[(week4['gameId'] == plays['gameId'][i]) & (week4['playId'] == plays['playId'][i])]
        one_play_predicted = one_play_predicted.reset_index(drop=True)
        players = one_play['nflId'].unique().tolist()
        for j in players:
            one_play_player = one_play.loc[(one_play['nflId'] == j)]
            one_play_player = one_play_player.reset_index(drop=True)
            one_play_predicted_player = one_play_predicted.loc[(one_play_predicted['nflId'] == j)]
            one_play_predicted_player = one_play_predicted_player.reset_index(drop=True)

            indiv_player_pressure = one_play_predicted_player['predicted_pressure'].tolist()
            full_pressure_list.append(one_play_player['predicted_pressure'][0])
            for k in range(len(indiv_player_pressure)):
                full_pressure_list.append(indiv_player_pressure[k])

            indiv_player_pressure_probability = one_play_predicted_player['predicted_pressure_probability'].tolist()
            full_pressure_probability_list.append(one_play_player['predicted_pressure_probability'][0])
            for l in range(len(indiv_player_pressure_probability)):
                full_pressure_probability_list.append(indiv_player_pressure_probability[l])

    weeks['predicted_motion_predicted_pressure_outcome'] = full_pressure_list
    weeks['predicted_motion_predicted_pressure_probability_outcome'] = full_pressure_probability_list

    weeks.to_csv('week4_pmp_final.csv')

# Week 3:
def predict_xy_week3():
    weeks = pd.read_csv('all_weeks_with_next_xysao.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)

    weeks_train = weeks.loc[
        (weeks['week'] == 1) | (weeks['week'] == 2) | (weeks['week'] == 4) | (weeks['week'] == 5) | (
                weeks['week'] == 6) | (weeks['week'] == 7) | (weeks['week'] == 8)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_test = weeks.loc[(weeks['week'] == 3)]
    weeks_test = weeks_test.reset_index(drop=True)

    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train1 = weeks_train[features]
    y_train1 = weeks_train['x_offset_next']
    X_test1 = weeks_test[features]

    clf1 = KNeighborsRegressor(n_neighbors=37, weights='distance')
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    clf1 = clf1.fit(X_train1, y_train1)

    y_predicted_x_offset = clf1.predict(X_test1)

    weeks_test['x_offset_predicted'] = y_predicted_x_offset

    X_train2 = weeks_train[features]
    y_train2 = weeks_train['y_offset_next']
    X_test2 = weeks_test[features]

    clf2 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf2 = clf2.fit(X_train2, y_train2)

    y_predicted_y_offset = clf2.predict(X_test2)

    weeks_test['y_offset_predicted'] = y_predicted_y_offset

    X_train3 = weeks_train[features]
    y_train3 = weeks_train['s_next']
    X_test3 = weeks_test[features]

    clf3 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf3 = clf3.fit(X_train3, y_train3)

    y_predicted_s_next = clf3.predict(X_test3)

    weeks_test['s_next_predicted'] = y_predicted_s_next

    X_train4 = weeks_train[features]
    y_train4 = weeks_train['a_next']
    X_test4 = weeks_test[features]

    clf4 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf4 = clf4.fit(X_train4, y_train4)

    y_predicted_a_next = clf4.predict(X_test4)

    weeks_test['a_next_predicted'] = y_predicted_a_next

    X_train5 = weeks_train[features]
    y_train5 = weeks_train['o_next']
    X_test5 = weeks_test[features]

    clf5 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf5 = clf5.fit(X_train5, y_train5)

    y_predicted_o_next = clf5.predict(X_test5)

    weeks_test['o_next_predicted'] = y_predicted_o_next

    weeks_test.to_csv('week3_predicted_xysao_final.csv')

def create_telemetry_week3_double_ml():
    plays = pd.read_csv('plays.csv')
    weeks = pd.read_csv('weeks_with_sack_hit_hurry_pressure_and_play_result.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)
    weeks = weeks.loc[(weeks['week'] == 3)]
    week3_predicted_xy = pd.read_csv('week3_predicted_xysao_final.csv')

    weeks['x_to_passer'] = 0
    weeks['y_to_passer'] = 0
    weeks['distance_to_passer'] = 0
    weeks['x_to_blocker'] = 0
    weeks['y_to_blocker'] = 0
    weeks['distance_to_blocker'] = 0
    weeks['blocker_o'] = 0
    weeks['angle'] = 0
    weeks['blocker_s'] = 0
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    weeks['blocker_a'] = 0
    weeks['x_offset'] = 0
    weeks['y_offset'] = 0
    weeks['speed'] = 0
    weeks['acceleration'] = 0
    weeks['orientation'] = 0

    telemetry_df = pd.DataFrame(columns=weeks.columns)

    for k in range(len(plays)):
        one_play = weeks.loc[(weeks['gameId'] == plays['gameId'][k]) & (weeks['playId'] == plays['playId'][k])]
        one_play = one_play.reset_index(drop=True)
        last_frame = one_play['frameId'].max()
        for i in range(len(one_play)):
            if (one_play['frameId'][i] == last_frame) & (one_play['role'][i] == 'Pass Rush'):
                one_play = one_play.drop(i)
            else:
                if one_play['role'][i] == 'Pass Rush':
                    df_passer = one_play.loc[
                        (one_play['role'] == 'Pass') & (one_play['frameId'] == one_play['frameId'][i+1])]
                    df_passer = df_passer.reset_index(drop=True)
                    df_rusher_predictor = week3_predicted_xy.loc[(week3_predicted_xy['gameId'] == one_play['gameId'][i])
                                                                 & (week3_predicted_xy['playId'] == one_play['playId'][i])
                                                                    & (week3_predicted_xy['nflId'] == one_play['nflId'][i])
                                                                    & (week3_predicted_xy['frameId'] == one_play['frameId'][i])]
                    df_rusher_predictor = df_rusher_predictor.reset_index(drop=True)
                    one_play.at[i, 'x_to_passer'] = df_passer['x'][0] - one_play['x'][i] -

 df_rusher_predictor['x_offset_predicted'][0]
                    one_play.at[i, 'y_to_passer'] = df_passer['y'][0] - one_play['y'][i] - 

df_rusher_predictor['y_offset_predicted'][0]
                    one_play.at[i, 'distance_to_passer'] = round(
                        math.sqrt((one_play['y_to_passer'][i] ** 2) + (one_play['x_to_passer'][i]) ** 2), 2)

                    df_blocker = one_play.loc[
                        (one_play['role'] == 'Pass Block') & (one_play['frameId'] == one_play['frameId'][i+1])]
                    df_blocker = df_blocker.reset_index(drop=True)
                    all_blockers = []
                    individual_blocker = []

                    for j in range(len(df_blocker)):
                        x_to_blocker = one_play['x'][i] - df_blocker['x'][j] - df_rusher_predictor['x_offset_predicted'][0]
                        individual_blocker.append(x_to_blocker)

                        y_to_blocker = one_play['y'][i] - df_blocker['y'][j] - df_rusher_predictor['y_offset_predicted'][0]
                        individual_blocker.append(y_to_blocker)

                        distance_to_blocker = math.sqrt((x_to_blocker ** 2) + (y_to_blocker ** 2))
                        individual_blocker.append(distance_to_blocker)

                        x_passer_to_blocker = df_passer['x'][0] - df_blocker['x'][j]
                        y_passer_to_blocker = df_passer['y'][0] - df_blocker['y'][j]
                        distance_passer_to_blocker = round(math.sqrt(x_passer_to_blocker ** 2 + y_passer_to_blocker ** 2))

                        dot_product = one_play['x_to_passer'][i] * x_passer_to_blocker + one_play['y_to_passer'][
                            i] * y_passer_to_blocker
                        cos_theta = dot_product / (distance_passer_to_blocker * one_play['distance_to_passer'][i])
                        cos_theta = min(1, max(-1, cos_theta))
                        theta = math.acos(cos_theta)
                        theta_degrees = math.degrees(theta)
                        individual_blocker.append(theta_degrees)
                        individual_blocker.append(df_blocker['o'][j])
                        individual_blocker.append(df_blocker['s'][j])
                        individual_blocker.append(df_blocker['a'][j])

                        all_blockers.append(individual_blocker)
                        individual_blocker = []

                    min_val = float('inf')
                    closest_blocker = None

                    for sub_arr in all_blockers:
                        if sub_arr[2] < min_val:
                            min_val = sub_arr[2]
                            closest_blocker = sub_arr
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                    one_play.at[i, 'x_to_blocker'] = closest_blocker[0]
                    one_play.at[i, 'y_to_blocker'] = closest_blocker[1]
                    one_play.at[i, 'distance_to_blocker'] = closest_blocker[2]
                    one_play.at[i, 'angle'] = closest_blocker[3]
                    one_play.at[i, 'blocker_o'] = closest_blocker[4]
                    one_play.at[i, 'blocker_s'] = closest_blocker[5]
                    one_play.at[i, 'blocker_a'] = closest_blocker[6]

                    one_play.at[i, 'x_offset'] = df_rusher_predictor['x_offset_predicted'][0]
                    one_play.at[i, 'y_offset'] = df_rusher_predictor['y_offset_predicted'][0]
                    one_play.at[i, 'speed'] = df_rusher_predictor['s_next_predicted'][0]
                    one_play.at[i, 'acceleration'] = df_rusher_predictor['a_next_predicted'][0]
                    one_play.at[i, 'orientation'] = df_rusher_predictor['o_next_predicted'][0]

        telemetry_df = pd.concat([telemetry_df, one_play], ignore_index=True)

    only_rushers = telemetry_df.loc[(telemetry_df['role'] == 'Pass Rush')]
    only_rushers = only_rushers.reset_index(drop=True)

    only_rushers.to_csv('weeks3_predicted_telemetry_rushers.csv')

def predict_pressure_with_predicted_telemetry_week3():
    weeks_train = pd.read_csv('weeks_only_rushers_with_telemetry_one_blocker_full.csv')
    weeks_train = weeks_train.drop(weeks_train.columns[0], axis=1)
    weeks_train = weeks_train.loc[
        (weeks_train['week'] == 1) | (weeks_train['week'] == 2) | (weeks_train['week'] == 4) | (weeks_train['week'] == 5) | (
                weeks_train['week'] == 6) | (weeks_train['week'] == 7) | (weeks_train['week'] == 8)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_train['x_to_passer'] = weeks_train['x_to_passer'].round(2)
    weeks_train['y_to_passer'] = weeks_train['y_to_passer'].round(2)
    weeks_train['distance_to_passer'] = weeks_train['distance_to_passer'].round(2)
    weeks_train['x_to_blocker'] = weeks_train['x_to_blocker'].round(2)
    weeks_train['y_to_blocker'] = weeks_train['y_to_blocker'].round(2)
    weeks_train['distance_to_blocker'] = weeks_train['distance_to_blocker'].round(2)
    weeks_train['blocker_o'] = weeks_train['blocker_o'].round(2)
    weeks_train['angle'] = weeks_train['angle'].round(2)
    weeks_train['blocker_s'] = weeks_train['blocker_s'].round(2)
    weeks_train['blocker_a'] = weeks_train['blocker_a'].round(2)
    weeks_train['x_offset'] = weeks_train['x_offset'].round(2)
    weeks_train['y_offset'] = weeks_train['y_offset'].round(2)

    weeks_test = pd.read_csv('weeks3_predicted_telemetry_rushers.csv')
    weeks_test = weeks_test.drop(weeks_test.columns[0], axis=1)
    weeks_test['x_to_passer'] = weeks_test['x_to_passer'].round(2)
    weeks_test['y_to_passer'] = weeks_test['y_to_passer'].round(2)
    weeks_test['distance_to_passer'] = weeks_test['distance_to_passer'].round(2)
    weeks_test['x_to_blocker'] = weeks_test['x_to_blocker'].round(2)
    weeks_test['y_to_blocker'] = weeks_test['y_to_blocker'].round(2)
    weeks_test['distance_to_blocker'] = weeks_test['distance_to_blocker'].round(2)
    weeks_test['blocker_o'] = weeks_test['blocker_o'].round(2)
    weeks_test['angle'] = weeks_test['angle'].round(2)
    weeks_test['blocker_s'] = weeks_test['blocker_s'].round(2)
    weeks_test['blocker_a'] = weeks_test['blocker_a'].round(2)
    weeks_test['x_offset'] = weeks_test['x_offset'].round(2)
    weeks_test['y_offset'] = weeks_test['y_offset'].round(2)
    weeks_test['speed'] = weeks_test['speed'].round(2)
    weeks_test['acceleration'] = weeks_test['acceleration'].round(2)
    weeks_test['orientation'] = weeks_test['orientation'].round(2)
    weeks_test['s'] = weeks_test['speed']
    weeks_test['a'] = weeks_test['acceleration']
    weeks_test['o'] = weeks_test['orientation']

    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train = weeks_train[features]
    y_train = weeks_train['pressure']
    X_test = weeks_test[features]

    clf = KNeighborsClassifier(n_neighbors=37, weights='distance')
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    clf = clf.fit(X_train, y_train)

    y_predicted_pressure = clf.predict(X_test)
    y_predicted_pressure_probability = clf.predict_proba(X_test)[:, 1]

    weeks_test['predicted_pressure'] = y_predicted_pressure
    weeks_test['predicted_pressure_probability'] = y_predicted_pressure_probability

    weeks_test.to_csv('week3_double_ml_pressure_final.csv')

def finalize_prediction_week3():
    plays = pd.read_csv('plays.csv')
    weeks = pd.read_csv('week3_predicted_pressure_final.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)
    week3 = pd.read_csv('week3_double_ml_pressure_final.csv')
    week3 = week3.drop(week3.columns[0], axis=1)
    full_pressure_list = []
    full_pressure_probability_list = []

    for i in range(len(plays)):
        one_play = weeks.loc[(weeks['gameId'] == plays['gameId'][i]) & (weeks['playId'] == plays['playId'][i])]
        one_play = one_play.reset_index(drop=True)
        one_play_predicted = week3.loc[(week3['gameId'] == plays['gameId'][i]) & (week3['playId'] == plays['playId'][i])]
        one_play_predicted = one_play_predicted.reset_index(drop=True)
        players = one_play['nflId'].unique().tolist()
        for j in players:
            one_play_player = one_play.loc[(one_play['nflId'] == j)]
            one_play_player = one_play_player.reset_index(drop=True)
            one_play_predicted_player = one_play_predicted.loc[(one_play_predicted['nflId'] == j)]
            one_play_predicted_player = one_play_predicted_player.reset_index(drop=True)

            indiv_player_pressure = one_play_predicted_player['predicted_pressure'].tolist()
            full_pressure_list.append(one_play_player['predicted_pressure'][0])
            for k in range(len(indiv_player_pressure)):
                full_pressure_list.append(indiv_player_pressure[k])

            indiv_player_pressure_probability = one_play_predicted_player['predicted_pressure_probability'].tolist()
            full_pressure_probability_list.append(one_play_player['predicted_pressure_probability'][0])
            for l in range(len(indiv_player_pressure_probability)):
                full_pressure_probability_list.append(indiv_player_pressure_probability[l])

    weeks['predicted_motion_predicted_pressure_outcome'] = full_pressure_list
    weeks['predicted_motion_predicted_pressure_probability_outcome'] = full_pressure_probability_list

    weeks.to_csv('week3_pmp_final.csv')

# Week 2:
def predict_xy_week2():
    weeks = pd.read_csv('all_weeks_with_next_xysao.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)

    weeks_train = weeks.loc[
        (weeks['week'] == 1) | (weeks['week'] == 3) | (weeks['week'] == 4) | (weeks['week'] == 5) | (
                weeks['week'] == 6) | (weeks['week'] == 7) | (weeks['week'] == 8)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_test = weeks.loc[(weeks['week'] == 2)]
    weeks_test = weeks_test.reset_index(drop=True)

    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train1 = weeks_train[features]
    y_train1 = weeks_train['x_offset_next']
    X_test1 = weeks_test[features]

    clf1 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf1 = clf1.fit(X_train1, y_train1)

    y_predicted_x_offset = clf1.predict(X_test1)
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    weeks_test['x_offset_predicted'] = y_predicted_x_offset

    X_train2 = weeks_train[features]
    y_train2 = weeks_train['y_offset_next']
    X_test2 = weeks_test[features]

    clf2 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf2 = clf2.fit(X_train2, y_train2)

    y_predicted_y_offset = clf2.predict(X_test2)

    weeks_test['y_offset_predicted'] = y_predicted_y_offset

    X_train3 = weeks_train[features]
    y_train3 = weeks_train['s_next']
    X_test3 = weeks_test[features]

    clf3 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf3 = clf3.fit(X_train3, y_train3)

    y_predicted_s_next = clf3.predict(X_test3)

    weeks_test['s_next_predicted'] = y_predicted_s_next

    X_train4 = weeks_train[features]
    y_train4 = weeks_train['a_next']
    X_test4 = weeks_test[features]

    clf4 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf4 = clf4.fit(X_train4, y_train4)

    y_predicted_a_next = clf4.predict(X_test4)

    weeks_test['a_next_predicted'] = y_predicted_a_next

    X_train5 = weeks_train[features]
    y_train5 = weeks_train['o_next']
    X_test5 = weeks_test[features]

    clf5 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf5 = clf5.fit(X_train5, y_train5)

    y_predicted_o_next = clf5.predict(X_test5)

    weeks_test['o_next_predicted'] = y_predicted_o_next

    weeks_test.to_csv('week2_predicted_xysao_final.csv')

def create_telemetry_week2_double_ml():
    plays = pd.read_csv('plays.csv')
    weeks = pd.read_csv('weeks_with_sack_hit_hurry_pressure_and_play_result.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)
    weeks = weeks.loc[(weeks['week'] == 2)]
    week2_predicted_xy = pd.read_csv('week2_predicted_xysao_final.csv')

    weeks['x_to_passer'] = 0
    weeks['y_to_passer'] = 0
    weeks['distance_to_passer'] = 0
    weeks['x_to_blocker'] = 0
    weeks['y_to_blocker'] = 0
    weeks['distance_to_blocker'] = 0
    weeks['blocker_o'] = 0
    weeks['angle'] = 0
    weeks['blocker_s'] = 0
    weeks['blocker_a'] = 0
    weeks['x_offset'] = 0
    weeks['y_offset'] = 0
    weeks['speed'] = 0
    weeks['acceleration'] = 0
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    weeks['orientation'] = 0

    telemetry_df = pd.DataFrame(columns=weeks.columns)

    for k in range(len(plays)):
        one_play = weeks.loc[(weeks['gameId'] == plays['gameId'][k]) & (weeks['playId'] == plays['playId'][k])]
        one_play = one_play.reset_index(drop=True)
        last_frame = one_play['frameId'].max()
        for i in range(len(one_play)):
            if (one_play['frameId'][i] == last_frame) & (one_play['role'][i] == 'Pass Rush'):
                one_play = one_play.drop(i)
            else:
                if one_play['role'][i] == 'Pass Rush':
                    df_passer = one_play.loc[
                        (one_play['role'] == 'Pass') & (one_play['frameId'] == one_play['frameId'][i+1])]
                    df_passer = df_passer.reset_index(drop=True)
                    df_rusher_predictor = week2_predicted_xy.loc[(week2_predicted_xy['gameId'] == one_play['gameId'][i])
                                                                 & (week2_predicted_xy['playId'] == one_play['playId'][i])
                                                                    & (week2_predicted_xy['nflId'] == one_play['nflId'][i])
                                                                    & (week2_predicted_xy['frameId'] == one_play['frameId'][i])]
                    df_rusher_predictor = df_rusher_predictor.reset_index(drop=True)
                    one_play.at[i, 'x_to_passer'] = df_passer['x'][0] - one_play['x'][i] - 

df_rusher_predictor['x_offset_predicted'][0]
                    one_play.at[i, 'y_to_passer'] = df_passer['y'][0] - one_play['y'][i] - 

df_rusher_predictor['y_offset_predicted'][0]
                    one_play.at[i, 'distance_to_passer'] = round(
                        math.sqrt((one_play['y_to_passer'][i] ** 2) + (one_play['x_to_passer'][i]) ** 2), 2)

                    df_blocker = one_play.loc[
                        (one_play['role'] == 'Pass Block') & (one_play['frameId'] == one_play['frameId'][i+1])]
                    df_blocker = df_blocker.reset_index(drop=True)
                    all_blockers = []
                    individual_blocker = []

                    for j in range(len(df_blocker)):
                        x_to_blocker = one_play['x'][i] - df_blocker['x'][j] - df_rusher_predictor['x_offset_predicted'][0]
                        individual_blocker.append(x_to_blocker)

                        y_to_blocker = one_play['y'][i] - df_blocker['y'][j] - df_rusher_predictor['y_offset_predicted'][0]
                        individual_blocker.append(y_to_blocker)

                        distance_to_blocker = math.sqrt((x_to_blocker ** 2) + (y_to_blocker ** 2))
                        individual_blocker.append(distance_to_blocker)

                        x_passer_to_blocker = df_passer['x'][0] - df_blocker['x'][j]
                        y_passer_to_blocker = df_passer['y'][0] - df_blocker['y'][j]
                        distance_passer_to_blocker = round(math.sqrt(x_passer_to_blocker ** 2 + y_passer_to_blocker ** 2))

                        dot_product = one_play['x_to_passer'][i] * x_passer_to_blocker + one_play['y_to_passer'][
                            i] * y_passer_to_blocker
                        cos_theta = dot_product / (distance_passer_to_blocker * one_play['distance_to_passer'][i])
                        cos_theta = min(1, max(-1, cos_theta))
                        theta = math.acos(cos_theta)
                        theta_degrees = math.degrees(theta)
                        individual_blocker.append(theta_degrees)
                        individual_blocker.append(df_blocker['o'][j])
                        individual_blocker.append(df_blocker['s'][j])
                        individual_blocker.append(df_blocker['a'][j])

                        all_blockers.append(individual_blocker)
                        individual_blocker = []

                    min_val = float('inf')
                    closest_blocker = None

                    for sub_arr in all_blockers:
                        if sub_arr[2] < min_val:
                            min_val = sub_arr[2]
                            closest_blocker = sub_arr

                    one_play.at[i, 'x_to_blocker'] = closest_blocker[0]
                    one_play.at[i, 'y_to_blocker'] = closest_blocker[1]
                    one_play.at[i, 'distance_to_blocker'] = closest_blocker[2]
                    one_play.at[i, 'angle'] = closest_blocker[3]
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                    one_play.at[i, 'blocker_o'] = closest_blocker[4]
                    one_play.at[i, 'blocker_s'] = closest_blocker[5]
                    one_play.at[i, 'blocker_a'] = closest_blocker[6]

                    # add offset
                    one_play.at[i, 'x_offset'] = df_rusher_predictor['x_offset_predicted'][0]
                    one_play.at[i, 'y_offset'] = df_rusher_predictor['y_offset_predicted'][0]
                    one_play.at[i, 'speed'] = df_rusher_predictor['s_next_predicted'][0]
                    one_play.at[i, 'acceleration'] = df_rusher_predictor['a_next_predicted'][0]
                    one_play.at[i, 'orientation'] = df_rusher_predictor['o_next_predicted'][0]

        telemetry_df = pd.concat([telemetry_df, one_play], ignore_index=True)

    only_rushers = telemetry_df.loc[(telemetry_df['role'] == 'Pass Rush')]
    only_rushers = only_rushers.reset_index(drop=True)

    only_rushers.to_csv('weeks2_predicted_telemetry_rushers.csv')

def predict_pressure_with_predicted_telemetry_week2():
    weeks_train = pd.read_csv('weeks_only_rushers_with_telemetry_one_blocker_full.csv')
    weeks_train = weeks_train.drop(weeks_train.columns[0], axis=1)
    weeks_train = weeks_train.loc[
        (weeks_train['week'] == 1) | (weeks_train['week'] == 3) | (weeks_train['week'] == 4) | (weeks_train['week'] == 5) | (
                weeks_train['week'] == 6) | (weeks_train['week'] == 7) | (weeks_train['week'] == 8)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_train['x_to_passer'] = weeks_train['x_to_passer'].round(2)
    weeks_train['y_to_passer'] = weeks_train['y_to_passer'].round(2)
    weeks_train['distance_to_passer'] = weeks_train['distance_to_passer'].round(2)
    weeks_train['x_to_blocker'] = weeks_train['x_to_blocker'].round(2)
    weeks_train['y_to_blocker'] = weeks_train['y_to_blocker'].round(2)
    weeks_train['distance_to_blocker'] = weeks_train['distance_to_blocker'].round(2)
    weeks_train['blocker_o'] = weeks_train['blocker_o'].round(2)
    weeks_train['angle'] = weeks_train['angle'].round(2)
    weeks_train['blocker_s'] = weeks_train['blocker_s'].round(2)
    weeks_train['blocker_a'] = weeks_train['blocker_a'].round(2)
    weeks_train['x_offset'] = weeks_train['x_offset'].round(2)
    weeks_train['y_offset'] = weeks_train['y_offset'].round(2)

    weeks_test = pd.read_csv('weeks2_predicted_telemetry_rushers.csv')
    weeks_test = weeks_test.drop(weeks_test.columns[0], axis=1)
    weeks_test['x_to_passer'] = weeks_test['x_to_passer'].round(2)
    weeks_test['y_to_passer'] = weeks_test['y_to_passer'].round(2)
    weeks_test['distance_to_passer'] = weeks_test['distance_to_passer'].round(2)
    weeks_test['x_to_blocker'] = weeks_test['x_to_blocker'].round(2)
    weeks_test['y_to_blocker'] = weeks_test['y_to_blocker'].round(2)
    weeks_test['distance_to_blocker'] = weeks_test['distance_to_blocker'].round(2)
    weeks_test['blocker_o'] = weeks_test['blocker_o'].round(2)
    weeks_test['angle'] = weeks_test['angle'].round(2)
    weeks_test['blocker_s'] = weeks_test['blocker_s'].round(2)
    weeks_test['blocker_a'] = weeks_test['blocker_a'].round(2)
    weeks_test['x_offset'] = weeks_test['x_offset'].round(2)
    weeks_test['y_offset'] = weeks_test['y_offset'].round(2)
    weeks_test['speed'] = weeks_test['speed'].round(2)
    weeks_test['acceleration'] = weeks_test['acceleration'].round(2)
    weeks_test['orientation'] = weeks_test['orientation'].round(2)
    weeks_test['s'] = weeks_test['speed']
    weeks_test['a'] = weeks_test['acceleration']
    weeks_test['o'] = weeks_test['orientation']

    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train = weeks_train[features]
    y_train = weeks_train['pressure']
    X_test = weeks_test[features]

    clf = KNeighborsClassifier(n_neighbors=37, weights='distance')

    clf = clf.fit(X_train, y_train)

    y_predicted_pressure = clf.predict(X_test)
    y_predicted_pressure_probability = clf.predict_proba(X_test)[:, 1]
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    weeks_test['predicted_pressure'] = y_predicted_pressure
    weeks_test['predicted_pressure_probability'] = y_predicted_pressure_probability

    weeks_test.to_csv('week2_double_ml_pressure_final.csv')

def finalize_prediction_week2():
    plays = pd.read_csv('plays.csv')
    weeks = pd.read_csv('week2_predicted_pressure_final.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)
    week2 = pd.read_csv('week2_double_ml_pressure_final.csv')
    week2 = week2.drop(week2.columns[0], axis=1)
    full_pressure_list = []
    full_pressure_probability_list = []

    for i in range(len(plays)):
        one_play = weeks.loc[(weeks['gameId'] == plays['gameId'][i]) & (weeks['playId'] == plays['playId'][i])]
        one_play = one_play.reset_index(drop=True)
        one_play_predicted = week2.loc[(week2['gameId'] == plays['gameId'][i]) & (week2['playId'] == plays['playId'][i])]
        one_play_predicted = one_play_predicted.reset_index(drop=True)
        players = one_play['nflId'].unique().tolist()
        for j in players:
            one_play_player = one_play.loc[(one_play['nflId'] == j)]
            one_play_player = one_play_player.reset_index(drop=True)
            one_play_predicted_player = one_play_predicted.loc[(one_play_predicted['nflId'] == j)]
            one_play_predicted_player = one_play_predicted_player.reset_index(drop=True)

            indiv_player_pressure = one_play_predicted_player['predicted_pressure'].tolist()
            full_pressure_list.append(one_play_player['predicted_pressure'][0])
            for k in range(len(indiv_player_pressure)):
                full_pressure_list.append(indiv_player_pressure[k])

            indiv_player_pressure_probability = one_play_predicted_player['predicted_pressure_probability'].tolist()
            full_pressure_probability_list.append(one_play_player['predicted_pressure_probability'][0])
            for l in range(len(indiv_player_pressure_probability)):
                full_pressure_probability_list.append(indiv_player_pressure_probability[l])

    weeks['predicted_motion_predicted_pressure_outcome'] = full_pressure_list
    weeks['predicted_motion_predicted_pressure_probability_outcome'] = full_pressure_probability_list

    weeks.to_csv('week2_pmp_final.csv')

# Week 1:
def predict_xy_week1():
    weeks = pd.read_csv('all_weeks_with_next_xysao.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)

    weeks_train = weeks.loc[
        (weeks['week'] == 2) | (weeks['week'] == 3) | (weeks['week'] == 4) | (weeks['week'] == 5) | (
                weeks['week'] == 6) | (weeks['week'] == 7) | (weeks['week'] == 8)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_test = weeks.loc[(weeks['week'] == 1)]
    weeks_test = weeks_test.reset_index(drop=True)

    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train1 = weeks_train[features]
    y_train1 = weeks_train['x_offset_next']
    X_test1 = weeks_test[features]

    clf1 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf1 = clf1.fit(X_train1, y_train1)

    y_predicted_x_offset = clf1.predict(X_test1)

    weeks_test['x_offset_predicted'] = y_predicted_x_offset

    X_train2 = weeks_train[features]
    y_train2 = weeks_train['y_offset_next']
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    X_test2 = weeks_test[features]

    clf2 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf2 = clf2.fit(X_train2, y_train2)

    y_predicted_y_offset = clf2.predict(X_test2)

    weeks_test['y_offset_predicted'] = y_predicted_y_offset

    X_train3 = weeks_train[features]
    y_train3 = weeks_train['s_next']
    X_test3 = weeks_test[features]

    clf3 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf3 = clf3.fit(X_train3, y_train3)

    y_predicted_s_next = clf3.predict(X_test3)

    weeks_test['s_next_predicted'] = y_predicted_s_next

    X_train4 = weeks_train[features]
    y_train4 = weeks_train['a_next']
    X_test4 = weeks_test[features]

    clf4 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf4 = clf4.fit(X_train4, y_train4)

    y_predicted_a_next = clf4.predict(X_test4)

    weeks_test['a_next_predicted'] = y_predicted_a_next

    X_train5 = weeks_train[features]
    y_train5 = weeks_train['o_next']
    X_test5 = weeks_test[features]

    clf5 = KNeighborsRegressor(n_neighbors=37, weights='distance')

    clf5 = clf5.fit(X_train5, y_train5)

    y_predicted_o_next = clf5.predict(X_test5)

    weeks_test['o_next_predicted'] = y_predicted_o_next

    weeks_test.to_csv('week1_predicted_xysao_final.csv')

def create_telemetry_week1_double_ml():
    plays = pd.read_csv('plays.csv')
    weeks = pd.read_csv('weeks_with_sack_hit_hurry_pressure_and_play_result.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)
    weeks = weeks.loc[(weeks['week'] == 1)]
    week1_predicted_xy = pd.read_csv('week1_predicted_xysao_final.csv')

    weeks['x_to_passer'] = 0
    weeks['y_to_passer'] = 0
    weeks['distance_to_passer'] = 0
    weeks['x_to_blocker'] = 0
    weeks['y_to_blocker'] = 0
    weeks['distance_to_blocker'] = 0
    weeks['blocker_o'] = 0
    weeks['angle'] = 0
    weeks['blocker_s'] = 0
    weeks['blocker_a'] = 0
    weeks['x_offset'] = 0
    weeks['y_offset'] = 0
    weeks['speed'] = 0
    weeks['acceleration'] = 0
    weeks['orientation'] = 0

    telemetry_df = pd.DataFrame(columns=weeks.columns)
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    for k in range(len(plays)):
        one_play = weeks.loc[(weeks['gameId'] == plays['gameId'][k]) & (weeks['playId'] == plays['playId'][k])]
        one_play = one_play.reset_index(drop=True)
        last_frame = one_play['frameId'].max()
        for i in range(len(one_play)):
            if (one_play['frameId'][i] == last_frame) & (one_play['role'][i] == 'Pass Rush'):
                one_play = one_play.drop(i)
            else:
                if one_play['role'][i] == 'Pass Rush':
                    df_passer = one_play.loc[
                        (one_play['role'] == 'Pass') & (one_play['frameId'] == one_play['frameId'][i+1])]
                    df_passer = df_passer.reset_index(drop=True)
                    df_rusher_predictor = week1_predicted_xy.loc[(week1_predicted_xy['gameId'] == one_play['gameId'][i])
                                                                 & (week1_predicted_xy['playId'] == one_play['playId'][i])
                                                                    & (week1_predicted_xy['nflId'] == one_play['nflId'][i])
                                                                    & (week1_predicted_xy['frameId'] == one_play['frameId'][i])]
                    df_rusher_predictor = df_rusher_predictor.reset_index(drop=True)
                    one_play.at[i, 'x_to_passer'] = df_passer['x'][0] - one_play['x'][i] - 

df_rusher_predictor['x_offset_predicted'][0]
                    one_play.at[i, 'y_to_passer'] = df_passer['y'][0] - one_play['y'][i] - 

df_rusher_predictor['y_offset_predicted'][0]
                    one_play.at[i, 'distance_to_passer'] = round(
                        math.sqrt((one_play['y_to_passer'][i] ** 2) + (one_play['x_to_passer'][i]) ** 2), 2)

                    df_blocker = one_play.loc[
                        (one_play['role'] == 'Pass Block') & (one_play['frameId'] == one_play['frameId'][i+1])]
                    df_blocker = df_blocker.reset_index(drop=True)
                    all_blockers = []
                    individual_blocker = []

                    for j in range(len(df_blocker)):
                        x_to_blocker = one_play['x'][i] - df_blocker['x'][j] - df_rusher_predictor['x_offset_predicted'][0]
                        individual_blocker.append(x_to_blocker)

                        y_to_blocker = one_play['y'][i] - df_blocker['y'][j] - df_rusher_predictor['y_offset_predicted'][0]
                        individual_blocker.append(y_to_blocker)

                        distance_to_blocker = math.sqrt((x_to_blocker ** 2) + (y_to_blocker ** 2))
                        individual_blocker.append(distance_to_blocker)

                        x_passer_to_blocker = df_passer['x'][0] - df_blocker['x'][j]
                        y_passer_to_blocker = df_passer['y'][0] - df_blocker['y'][j]
                        distance_passer_to_blocker = round(math.sqrt(x_passer_to_blocker ** 2 + y_passer_to_blocker ** 2))

                        dot_product = one_play['x_to_passer'][i] * x_passer_to_blocker + one_play['y_to_passer'][
                            i] * y_passer_to_blocker
                        cos_theta = dot_product / (distance_passer_to_blocker * one_play['distance_to_passer'][i])
                        cos_theta = min(1, max(-1, cos_theta))
                        theta = math.acos(cos_theta)
                        theta_degrees = math.degrees(theta)
                        individual_blocker.append(theta_degrees)
                        individual_blocker.append(df_blocker['o'][j])
                        individual_blocker.append(df_blocker['s'][j])
                        individual_blocker.append(df_blocker['a'][j])

                        all_blockers.append(individual_blocker)
                        individual_blocker = []

                    min_val = float('inf')
                    closest_blocker = None

                    for sub_arr in all_blockers:
                        if sub_arr[2] < min_val:
                            min_val = sub_arr[2]
                            closest_blocker = sub_arr

                    one_play.at[i, 'x_to_blocker'] = closest_blocker[0]
                    one_play.at[i, 'y_to_blocker'] = closest_blocker[1]
                    one_play.at[i, 'distance_to_blocker'] = closest_blocker[2]
                    one_play.at[i, 'angle'] = closest_blocker[3]
                    one_play.at[i, 'blocker_o'] = closest_blocker[4]
                    one_play.at[i, 'blocker_s'] = closest_blocker[5]
                    one_play.at[i, 'blocker_a'] = closest_blocker[6]
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                    one_play.at[i, 'x_offset'] = df_rusher_predictor['x_offset_predicted'][0]
                    one_play.at[i, 'y_offset'] = df_rusher_predictor['y_offset_predicted'][0]
                    one_play.at[i, 'speed'] = df_rusher_predictor['s_next_predicted'][0]
                    one_play.at[i, 'acceleration'] = df_rusher_predictor['a_next_predicted'][0]
                    one_play.at[i, 'orientation'] = df_rusher_predictor['o_next_predicted'][0]

        telemetry_df = pd.concat([telemetry_df, one_play], ignore_index=True)

    only_rushers = telemetry_df.loc[(telemetry_df['role'] == 'Pass Rush')]
    only_rushers = only_rushers.reset_index(drop=True)

    only_rushers.to_csv('weeks1_predicted_telemetry_rushers.csv')

def predict_pressure_with_predicted_telemetry_week1():
    weeks_train = pd.read_csv('weeks_only_rushers_with_telemetry_one_blocker_full.csv')
    weeks_train = weeks_train.drop(weeks_train.columns[0], axis=1)
    weeks_train = weeks_train.loc[
        (weeks_train['week'] == 2) | (weeks_train['week'] == 3) | (weeks_train['week'] == 4) | (weeks_train['week'] == 5) | (
                weeks_train['week'] == 6) | (weeks_train['week'] == 7) | (weeks_train['week'] == 8)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_train['x_to_passer'] = weeks_train['x_to_passer'].round(2)
    weeks_train['y_to_passer'] = weeks_train['y_to_passer'].round(2)
    weeks_train['distance_to_passer'] = weeks_train['distance_to_passer'].round(2)
    weeks_train['x_to_blocker'] = weeks_train['x_to_blocker'].round(2)
    weeks_train['y_to_blocker'] = weeks_train['y_to_blocker'].round(2)
    weeks_train['distance_to_blocker'] = weeks_train['distance_to_blocker'].round(2)
    weeks_train['blocker_o'] = weeks_train['blocker_o'].round(2)
    weeks_train['angle'] = weeks_train['angle'].round(2)
    weeks_train['blocker_s'] = weeks_train['blocker_s'].round(2)
    weeks_train['blocker_a'] = weeks_train['blocker_a'].round(2)
    weeks_train['x_offset'] = weeks_train['x_offset'].round(2)
    weeks_train['y_offset'] = weeks_train['y_offset'].round(2)

    weeks_test = pd.read_csv('weeks1_predicted_telemetry_rushers.csv')
    weeks_test = weeks_test.drop(weeks_test.columns[0], axis=1)
    weeks_test['x_to_passer'] = weeks_test['x_to_passer'].round(2)
    weeks_test['y_to_passer'] = weeks_test['y_to_passer'].round(2)
    weeks_test['distance_to_passer'] = weeks_test['distance_to_passer'].round(2)
    weeks_test['x_to_blocker'] = weeks_test['x_to_blocker'].round(2)
    weeks_test['y_to_blocker'] = weeks_test['y_to_blocker'].round(2)
    weeks_test['distance_to_blocker'] = weeks_test['distance_to_blocker'].round(2)
    weeks_test['blocker_o'] = weeks_test['blocker_o'].round(2)
    weeks_test['angle'] = weeks_test['angle'].round(2)
    weeks_test['blocker_s'] = weeks_test['blocker_s'].round(2)
    weeks_test['blocker_a'] = weeks_test['blocker_a'].round(2)
    weeks_test['x_offset'] = weeks_test['x_offset'].round(2)
    weeks_test['y_offset'] = weeks_test['y_offset'].round(2)
    weeks_test['speed'] = weeks_test['speed'].round(2)
    weeks_test['acceleration'] = weeks_test['acceleration'].round(2)
    weeks_test['orientation'] = weeks_test['orientation'].round(2)
    weeks_test['s'] = weeks_test['speed']
    weeks_test['a'] = weeks_test['acceleration']
    weeks_test['o'] = weeks_test['orientation']

    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train = weeks_train[features]
    y_train = weeks_train['pressure']
    X_test = weeks_test[features]

    clf = KNeighborsClassifier(n_neighbors=37, weights='distance')

    clf = clf.fit(X_train, y_train)

    y_predicted_pressure = clf.predict(X_test)
    y_predicted_pressure_probability = clf.predict_proba(X_test)[:, 1]

    weeks_test['predicted_pressure'] = y_predicted_pressure
    weeks_test['predicted_pressure_probability'] = y_predicted_pressure_probability
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    weeks_test.to_csv('week1_double_ml_pressure_final.csv')

def finalize_prediction_week1():
    plays = pd.read_csv('plays.csv')
    weeks = pd.read_csv('week1_predicted_pressure_final.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)
    week1 = pd.read_csv('week1_double_ml_pressure_final.csv')
    week1 = week1.drop(week1.columns[0], axis=1)
    full_pressure_list = []
    full_pressure_probability_list = []

    for i in range(len(plays)):
        one_play = weeks.loc[(weeks['gameId'] == plays['gameId'][i]) & (weeks['playId'] == plays['playId'][i])]
        one_play = one_play.reset_index(drop=True)
        one_play_predicted = week1.loc[(week1['gameId'] == plays['gameId'][i]) & (week1['playId'] == plays['playId'][i])]
        one_play_predicted = one_play_predicted.reset_index(drop=True)
        players = one_play['nflId'].unique().tolist()
        for j in players:
            one_play_player = one_play.loc[(one_play['nflId'] == j)]
            one_play_player = one_play_player.reset_index(drop=True)
            one_play_predicted_player = one_play_predicted.loc[(one_play_predicted['nflId'] == j)]
            one_play_predicted_player = one_play_predicted_player.reset_index(drop=True)

            indiv_player_pressure = one_play_predicted_player['predicted_pressure'].tolist()
            full_pressure_list.append(one_play_player['predicted_pressure'][0])
            for k in range(len(indiv_player_pressure)):
                full_pressure_list.append(indiv_player_pressure[k])

            indiv_player_pressure_probability = one_play_predicted_player['predicted_pressure_probability'].tolist()
            full_pressure_probability_list.append(one_play_player['predicted_pressure_probability'][0])
            for l in range(len(indiv_player_pressure_probability)):
                full_pressure_probability_list.append(indiv_player_pressure_probability[l])

    weeks['predicted_motion_predicted_pressure_outcome'] = full_pressure_list
    weeks['predicted_motion_predicted_pressure_probability_outcome'] = full_pressure_probability_list

    weeks.to_csv('week1_pmp_final.csv')

# Lastly, the accurary and validity of the model have to be analyzed.
# First, determine sensitivity and specificity. The model is implemented identically to before.
def sensitivity_specificity():
    weeks = pd.read_csv('weeks_only_rushers_with_telemetry_one_blocker_full.csv')

    weeks = weeks.drop(weeks.columns[0], axis=1)

    weeks['x_to_passer'] = weeks['x_to_passer'].round(2)
    weeks['y_to_passer'] = weeks['y_to_passer'].round(2)
    weeks['distance_to_passer'] = weeks['distance_to_passer'].round(2)
    weeks['x_to_blocker'] = weeks['x_to_blocker'].round(2)
    weeks['y_to_blocker'] = weeks['y_to_blocker'].round(2)
    weeks['distance_to_blocker'] = weeks['distance_to_blocker'].round(2)
    weeks['blocker_o'] = weeks['blocker_o'].round(2)
    weeks['angle'] = weeks['angle'].round(2)
    weeks['blocker_s'] = weeks['blocker_s'].round(2)
    weeks['blocker_a'] = weeks['blocker_a'].round(2)
    weeks['x_offset'] = weeks['x_offset'].round(2)
    weeks['y_offset'] = weeks['y_offset'].round(2)

    weeks_train = weeks.loc[
        (weeks['week'] == 1) | (weeks['week'] == 2) | (weeks['week'] == 3) | (weeks['week'] == 4) | (
                weeks['week'] == 5) | (weeks['week'] == 6) | (weeks['week'] == 7)]
    weeks_train = weeks_train.reset_index(drop=True)
    weeks_test = weeks.loc[(weeks['week'] == 8)]
    weeks_test = weeks_test.reset_index(drop=True)

    features = ['x_to_passer', 'y_to_passer', 'distance_to_passer', 'x_to_blocker', 'y_to_blocker',
                'distance_to_blocker', 'blocker_o', 'angle', 'x_offset', 'y_offset', 'o', 's', 'a', 'blocker_s',
                'blocker_a']

    X_train = weeks_train[features]
    y_train = weeks_train['pressure']
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    X_test = weeks_test[features]
    y_test = weeks_test['pressure']

    clf = KNeighborsClassifier(n_neighbors=37, weights='distance')

    clf = clf.fit(X_train, y_train)

    y_predicted_pressure = clf.predict(X_test)

    # Get true positives, true negative, false positives, and false negatives since this is a binary classification
    tn, fp, fn, tp = confusion_matrix(y_test, y_predicted_pressure).ravel()
    specificity = tn / (tn+fp)
    sensitivity = tp / (tp + fn)

    # Display both
    print(specificity)
    print(sensitivity)

# Determine the predicitons per play for one pass rusher. If one frame predicts a pressure, the entire play will be
# classified as a pressure having occurred
def per_play_predictions():
    players = pd.read_csv('rushers_per_play_final.csv')
    players = players.drop(players.columns[0], axis=1)
    players['predicted_result'] = 0
    weeks = pd.read_csv('weeks_predicted_pressure_final.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)
    for i in range(len(players)):
        print(i)
        one_player = weeks.loc[(weeks['gameId'] == players['gameId'][i]) & (weeks['playId'] == players['playId'][i]) & (weeks['nflId'] == players['nflId'][i])]
        one_player = one_player.reset_index(drop=True)
        # This will be 1 if any frame had a probability of larger than 50%
        predicted_result = one_player['predicted_pressure'].max()
        players.at[i, 'predicted_result'] = predicted_result

    players.to_csv('rushers_per_play_accuracy.csv')

# Specificity, sensitivity, and accuracy with the per-play predicitons
def play_analysis():
    players = pd.read_csv('rushers_per_play_accuracy.csv')
    players = players.drop(players.columns[0], axis=1)
    true_pressure = []
    predicted_pressure = []
    # For each play, if a pressure has occurred, that will be the true pressure, which will be compared to the predicted
    # one.
    for i in range(len(players)):
        if (players['rusher_sack'][i] == 1) | (players['rusher_hit'][i] == 1) | (players['rusher_hurry'][i] == 1):
            true_pressure.append(1)
        else:
            true_pressure.append(0)
        if players['predicted_result'][i] == 1:
            predicted_pressure.append(1)
        else:
            predicted_pressure.append(0)

    #  Get true positives, true negative, false positives, and false negatives since this is a binary classification
    tn, fp, fn, tp = confusion_matrix(true_pressure, predicted_pressure).ravel()

    # Calculate specificity, sensitivity, and accuracy
    specificity = tn / (tn + fp)
    sensitivity = tp / (tp + fn)
    accuracy = (tp + tn) / (tp + tn + fp + fn)

    # Display all values
    print(specificity)
    print(sensitivity)
    print(accuracy)

# Get the accuracy of sack plays having been correctly predicted, as this is the ultimate pressure that can be created
def sack_result():
    players = pd.read_csv('rushers_per_play_accuracy.csv')
    players = players.drop(players.columns[0], axis=1)
    true_sack = []
    predicted_pressure = []
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    sack_percentage_list = []
    for i in range(len(players)):
        # If a sack occurs on the play, add it to the true sack list. If it is also predicted, add a 1 to the prediction
        # list, 0 otherwise.
        if players['rusher_sack'][i] == 1:
            true_sack.append(1)
            sack_percentage_list.append(players['highest_pressure_on_play'][i])
            if players['predicted_result'][i] == 1:
                predicted_pressure.append(1)
            else:
                predicted_pressure.append(0)

    #  Get true positives, true negative, false positives, and false negatives since this is a binary classification
    tn, fp, fn, tp = confusion_matrix(true_sack, predicted_pressure).ravel()
    # Calculate specificity, sensitivity, and accuracy
    specificity = tn / (tn + fp)
    sensitivity = tp / (tp + fn)
    accuracy = (tp + tn) / (tp + tn + fp + fn)
    # Caclulate the average pressure occuring on sack plays
    average_pressure = sum(sack_percentage_list) / len(sack_percentage_list)
    # Display all
    print(average_pressure)
    print(specificity)
    print(sensitivity)
    print(accuracy)
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11.3.4	Data Analysis


import pandas as pd
pd.set_option('display.max_columns', None)
import scipy.stats as stats

# Analyse each pass rusher per play by getting average pressure, highest pressure, amount of blockers, length of play
# and additional stats.
def rushers_per_play():
    # Load the data
    weeks = pd.read_csv('weeks_predicted_pressure_final.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)
    plays = pd.read_csv('plays.csv')
    players = pd.read_csv('players.csv')
    pff_data = pd.read_csv('pffScoutingData.csv')

    # Define the new data frame with the required stats
    column_names = ['gameId', 'playId', 'nflId', 'player_name', 'team', 'opponent', 'position', 'total_pressure',
                    'avg_pressure',
                    'highest_pressure_on_play', 'blockers', 'len_of_play', 'rusher_sack', 'rusher_hit', 'rusher_hurry',
                    'play_result']

    rushers = pd.DataFrame(columns=column_names)

    # Iterate over every play
    for i in range(len(plays)):
        # Filter the tracking data of the pass rushers only the current play
        plays_df = weeks.loc[(weeks['gameId'] == plays['gameId'][i]) & (weeks['playId'] == plays['playId'][i])]
        plays_df = plays_df.reset_index(drop=True)
        player_list = plays_df['nflId'].unique()    # Get the list of all pass rushers on the play
        for k in player_list:
            # Filter for only the current player
            player_df = plays_df.loc[(plays_df['nflId'] == k)]
            player_df = player_df.reset_index(drop=True)
            # Take only the frames either starting with the ball snap or every play if no event is specified
            ball_snap_list = player_df['event'].tolist()
            if ('ball_snap' in ball_snap_list) & (ball_snap_list[0] != 'ball_snap'):
                row_index = ball_snap_list.index('ball_snap')
                player_df = player_df.drop(player_df.index[:row_index])
                player_df = player_df.reset_index(drop=True)

            # Take over the required static data such as game, play, name, team, opponent and position
            gameId = player_df['gameId'][0]
            playId = player_df['playId'][0]
            nflId = player_df['nflId'][0]

            indiv_player_df = players.loc[(players['nflId'] == k)]
            indiv_player_df = indiv_player_df.reset_index(drop=True)
            name = indiv_player_df['displayName'][0]

            team = player_df['team'][0]
            opponent = player_df['opponent'][0]
            position = player_df['position'][0]

            total_pressure = player_df['predicted_pressure_probability'].sum()  # Total amount of pressure on play
            avg_pressure = total_pressure / len(player_df)  # Average amount of pressure created on play
            highest_pressure_on_play = player_df['predicted_pressure_probability'].max()    # Max amount of pressure

            pff_play = pff_data.loc[(pff_data['gameId'] == plays['gameId'][i]) & (pff_data['playId'] == plays['playId'][i])]
            pff_play = pff_play.reset_index(drop=True)
            blockers = pff_play['pff_nflIdBlockedPlayer'].eq(k).sum()   # Get the amount of blockers the player faced

            len_of_play = len(player_df)    # Length of the play

            # Did player create a pressure on the play according to PFF
            pff_rusher = pff_play.loc[(pff_play['nflId'] == k)]
            pff_rusher = pff_rusher.reset_index(drop=True)
            rusher_sack = pff_rusher['pff_sack'][0]
            rusher_hit = pff_rusher['pff_hit'][0]
            rusher_hurry = pff_rusher['pff_hurry'][0]

            # Get the pass result on the play, if it's a penalty, skip this play

113



            one_play = plays.loc[(plays['gameId'] == plays['gameId'][i]) & (plays['playId'] == plays['playId'][i])]
            one_play = one_play.reset_index(drop=True)
            play_result = one_play['passResult'][0]

            if play_result != 'R':
                new_row = {'gameId': gameId, 'playId': playId, 'nflId': nflId, 'player_name': name, 'team': team,
                           'opponent': opponent, 'position': position, 'total_pressure': total_pressure,
                           'avg_pressure': avg_pressure,
                           'highest_pressure_on_play': highest_pressure_on_play, 'blockers': blockers,
                           'len_of_play': len_of_play, 'rusher_sack': rusher_sack, 'rusher_hit': rusher_hit,
                           'rusher_hurry': rusher_hurry, 'play_result': play_result}

                rushers = rushers.append(new_row, ignore_index=True)

    # Creating new CSV file
    rushers.to_csv('rushers_per_play_final.csv')

# Create the average pressure created for each individual pass rusher
def full_player_analysis():
    # Load the data
    rushers_per_play = pd.read_csv('rushers_per_play_final.csv')
    rushers = rushers_per_play['nflId'].unique().tolist()  # Get all unique pass rushers

    # Create new data frame
    column_names = ['nflId', 'player_name', 'team', 'position', 'total_pressure', 'avg_pressure',
                    'total_blockers', 'avg_blockers', 'pressures_created', 'total_plays']
    rushers_avg = pd.DataFrame(columns=column_names)

    # Iterate over every pass rusher
    for i in rushers:
        rusher = rushers_per_play.loc[(rushers_per_play['nflId'] == i)]
        rusher = rusher.reset_index(drop=True)
        # Get all the wanted information
        nflId = rusher['nflId'][0]
        player_name = rusher['player_name'][0]
        team = rusher['team'][0]
        position = rusher['position'][0]
        total_pressure = rusher['avg_pressure'].sum()
        avg_pressure = total_pressure / len(rusher)  # Compute the average amount of pressure created
        total_blockers = rusher['blockers'].sum()
        avg_blockers = total_blockers / len(rusher)
        pressures_created = 0
        for j in range(len(rusher)):
            if (rusher['rusher_sack'][j] == 1.0) | (rusher['rusher_hit'][j] == 1.0) | (
                    rusher['rusher_hurry'][j] == 1.0):
                pressures_created += 1
        total_plays = len(rusher)

        new_row = {'nflId': nflId, 'player_name': player_name, 'team': team,
                   'position': position, 'total_pressure': total_pressure, 'avg_pressure': avg_pressure,
                   'total_blockers': total_blockers, 'avg_blockers': avg_blockers,
                   'pressures_created': pressures_created, 'total_plays': total_plays}
        rushers_avg = rushers_avg.append(new_row, ignore_index=True)  # Append all data to new data frame

    # Creating new CSV file
    rushers_avg.to_csv('rushers_avg_final.csv')

# Finding the average pressure per defense per play
def team_pressure_per_play():
    # Load the data
    rushers_per_play = pd.read_csv('rushers_per_play_final.csv')
    plays = pd.read_csv('plays.csv')
    pff = pd.read_csv('pffScoutingData.csv')
    # Create new data frame
    column_names = ['gameId', 'playId', 'team', 'opponent', 'number_of_rushers', 'number_of_blockers' 'total_pressure',
                    'avg_pressure',
                    'play_result', 'len_of_play', 'coverage', 'coverage_type']
    team_per_play = pd.DataFrame(columns=column_names)

    # Iterate over every play
    for i in range(len(plays)):
        # Find the number of pass rushers on a play
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        number_of_rusher_df = pff.loc[(pff['gameId'] == plays['gameId'][i]) &
                                      (pff['playId'] == plays['playId'][i]) & (pff['pff_role'] == 'Pass Rush')]
        number_of_rusher_df = number_of_rusher_df.reset_index(drop=True)
        number_of_rushers = len(number_of_rusher_df['pff_role'])

        # This is done to avoid game 2021101700 play 2372 where there were no rushers
        if (plays['passResult'][i] != 'R') & (number_of_rushers != 0):
            rusher = rushers_per_play.loc[(rushers_per_play['gameId'] == plays['gameId'][i]) &
                                          (rushers_per_play['playId'] == plays['playId'][i])]
            rusher = rusher.reset_index(drop=True)
            # Get all required data
            blockers_on_play = pff.loc[(pff['gameId'] == plays['gameId'][i]) &
                                       (pff['playId'] == plays['playId'][i]) & (pff['pff_role'] == 'Pass Block')]
            blockers_on_play = blockers_on_play.reset_index(drop=True)

            gameId = rusher['gameId'][0]
            playId = rusher['playId'][0]
            team = rusher['team'][0]
            opponent = rusher['opponent'][0]
            number_of_rushers = len(rusher)
            number_of_blockers = len(blockers_on_play)
            total_pressure = rusher['total_pressure'].sum()
            avg_pressure = rusher['avg_pressure'].sum() / number_of_rushers  # Calculate average pressure on play
            play_result = rusher['play_result'][0]
            len_of_play = rusher['len_of_play'][0]
            coverage = plays['pff_passCoverage'][i]
            coverage_type = plays['pff_passCoverageType'][i]

            # Append data to new data frame
            new_row = {'gameId': gameId, 'playId': playId, 'team': team,
                       'opponent': opponent, 'number_of_rushers': number_of_rushers,
                       'number_of_blockers': number_of_blockers,
                       'total_pressure': total_pressure, 'avg_pressure': avg_pressure,
                       'play_result': play_result, 'len_of_play': len_of_play, 'coverage': coverage,
                       'coverage_type': coverage_type}
            team_per_play = team_per_play.append(new_row, ignore_index=True)

    # Creating new CSV file
    team_per_play.to_csv('team_per_play.csv')

# Data frame created to plot team's average pressure created per team with the winning percentage after eight weeks
def team_vs_pressure_8_weeks():
    # Load data
    teams_per_play = pd.read_csv('team_per_play.csv')
    teams = teams_per_play['team'].unique().tolist()
    # Create new data frame
    column_names = ['team', 'avg_pressure', 'avg_blockers', 'avg_rushers', 'total_plays', 'avg_length', 'record']
    teams_avg = pd.DataFrame(columns=column_names)
    # Iterate over every team
    for i in teams:
        team = teams_per_play.loc[(teams_per_play['team'] == i)]
        team = team.reset_index(drop=True)
        # Get important data like average pressure, blockers, rushers per play
        team_name = team['team'][0]
        avg_pressure = team['avg_pressure'].sum() / len(team)
        avg_blockers = team['number_of_blockers'].sum() / len(team)
        avg_rushers = team['number_of_rushers'].sum() / len(team)
        total_play = len(team)
        avg_length = team['len_of_play'].sum() / len(team)
        # Add team record after eight weeks
        if team_name == "BUF":
            record = 5 / 8
        if team_name == "NE":
            record = 4 / 8
        if team_name == "NYJ":
            record = 2 / 7
        if team_name == "MIA":
            record = 1 / 8
        if team_name == "BAL":
            record = 5 / 7
        if team_name == "CIN":
            record = 5 / 8
        if team_name == "PIT":
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            record = 4 / 7
        if team_name == "CLE":
            record = 4 / 8
        if team_name == "TEN":
            record = 6 / 8
        if team_name == "LAC":
            record = 4 / 7
        if team_name == "DEN":
            record = 4 / 8
        if team_name == "KC":
            record = 4 / 8
        if team_name == "DAL":
            record = 6 / 7
        if team_name == "PHI":
            record = 3 / 8
        if team_name == "NYG":
            record = 2 / 8
        if team_name == "WAS":
            record = 2 / 8
        if team_name == "GB":
            record = 7 / 8
        if team_name == "MIN":
            record = 3 / 7
        if team_name == "CHI":
            record = 3 / 8
        if team_name == "DET":
            record = 0
        if team_name == "TB":
            record = 6 / 8
        if team_name == "NO":
            record = 5 / 7
        if team_name == "CAR":
            record = 4 / 8
        if team_name == "ATL":
            record = 3 / 7
        if team_name == "ARI":
            record = 7 / 8
        if team_name == "LA":
            record = 7 / 8
        if team_name == "SF":
            record = 3 / 7
        if team_name == "SEA":
            record = 3 / 8
        if team_name == "LV":
            record = 5 / 7
        if team_name == "IND":
            record = 3 / 8
        if team_name == "JAX":
            record = 1 / 7
        if team_name == "HOU":
            record = 1 / 8

        # Append data to new data frame
        new_row = {'team': team_name, 'avg_pressure': avg_pressure, 'avg_blockers': avg_blockers,
                   'avg_rushers': avg_rushers, 'total_plays': total_play, 'avg_length': avg_length, 'record': record}
        teams_avg = teams_avg.append(new_row, ignore_index=True)

    # Creating new CSV file
    teams_avg.to_csv('teams_avg_final.csv')

# Identical code to the previous function, but replace team with opponent to see the pressure that each offense faced/
# How much pressure they allowed
def opponent_pressure_8_weeks():
    teams_per_play = pd.read_csv('team_per_play.csv')
    teams = teams_per_play['opponent'].unique().tolist()

    column_names = ['team', 'avg_pressure', 'avg_blockers', 'avg_rushers', 'total_plays', 'avg_length', 'record']
    teams_avg = pd.DataFrame(columns=column_names)

    for i in teams:
        team = teams_per_play.loc[(teams_per_play['opponent'] == i)]
        team = team.reset_index(drop=True)
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        team_name = team['opponent'][0]
        avg_pressure = team['avg_pressure'].sum() / len(team)
        avg_blockers = team['number_of_blockers'].sum() / len(team)
        avg_rushers = team['number_of_rushers'].sum() / len(team)
        total_play = len(team)
        avg_length = team['len_of_play'].sum() / len(team)
        if team_name == "BUF":
            record = 5 / 8
        if team_name == "NE":
            record = 4 / 8
        if team_name == "NYJ":
            record = 2 / 7
        if team_name == "MIA":
            record = 1 / 8
        if team_name == "BAL":
            record = 5 / 7
        if team_name == "CIN":
            record = 5 / 8
        if team_name == "PIT":
            record = 4 / 7
        if team_name == "CLE":
            record = 4 / 8
        if team_name == "TEN":
            record = 6 / 8
        if team_name == "LAC":
            record = 4 / 7
        if team_name == "DEN":
            record = 4 / 8
        if team_name == "KC":
            record = 4 / 8
        if team_name == "DAL":
            record = 6 / 7
        if team_name == "PHI":
            record = 3 / 8
        if team_name == "NYG":
            record = 2 / 8
        if team_name == "WAS":
            record = 2 / 8
        if team_name == "GB":
            record = 7 / 8
        if team_name == "MIN":
            record = 3 / 7
        if team_name == "CHI":
            record = 3 / 8
        if team_name == "DET":
            record = 0
        if team_name == "TB":
            record = 6 / 8
        if team_name == "NO":
            record = 5 / 7
        if team_name == "CAR":
            record = 4 / 8
        if team_name == "ATL":
            record = 3 / 7
        if team_name == "ARI":
            record = 7 / 8
        if team_name == "LA":
            record = 7 / 8
        if team_name == "SF":
            record = 3 / 7
        if team_name == "SEA":
            record = 3 / 8
        if team_name == "LV":
            record = 5 / 7
        if team_name == "IND":
            record = 3 / 8
        if team_name == "JAX":
            record = 1 / 7
        if team_name == "HOU":
            record = 1 / 8

        new_row = {'team': team_name, 'avg_pressure': avg_pressure, 'avg_blockers': avg_blockers,
                   'avg_rushers': avg_rushers, 'total_plays': total_play, 'avg_length': avg_length, 'record': record}
        teams_avg = teams_avg.append(new_row, ignore_index=True)
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    teams_avg.to_csv('opponent_avg_final.csv')

# Identical code above for average pressure created per team, but this time with record after all weeks
def team_vs_pressure_all_weeks():
    teams_per_play = pd.read_csv('team_per_play.csv')
    teams = teams_per_play['team'].unique().tolist()

    column_names = ['team', 'avg_pressure', 'avg_blockers', 'avg_rushers', 'total_plays', 'avg_length', 'record', 'final_record']
    teams_avg = pd.DataFrame(columns=column_names)

    for i in teams:
        team = teams_per_play.loc[(teams_per_play['team'] == i)]
        team = team.reset_index(drop=True)
        team_name =  team['team'][0]
        avg_pressure = team['avg_pressure'].sum() / len(team)
        avg_blockers = team['number_of_blockers'].sum() / len(team)
        avg_rushers = team['number_of_rushers'].sum() / len(team)
        total_play = len(team)
        avg_length = team['len_of_play'].sum() / len(team)
        if team_name == "BUF":
            record = 5/8
            final_record = 11/17
        if team_name == "NE":
            record = 4/8
            final_record = 10 / 17
        if team_name == "NYJ":
            record = 2/7
            final_record = 4 / 17
        if team_name == "MIA":
            record = 1/8
            final_record = 8 / 17
        if team_name == "BAL":
            record = 5/7
            final_record = 8 / 17
        if team_name == "CIN":
            record = 5/8
            final_record = 10 / 17
        if team_name == "PIT":
            record = 4/7
            final_record = 9 / 17
        if team_name == "CLE":
            record = 4/8
            final_record = 8 / 17
        if team_name == "TEN":
            record = 6/8
            final_record = 12 / 17
        if team_name == "LAC":
            record = 4/7
            final_record = 9 / 17
        if team_name == "DEN":
            record = 4/8
            final_record = 7 / 17
        if team_name == "KC":
            record = 4/8
            final_record = 12 / 17
        if team_name == "DAL":
            record = 6/7
            final_record = 12 / 17
        if team_name == "PHI":
            record = 3/8
            final_record = 9 / 17
        if team_name == "NYG":
            record = 2/8
            final_record = 4 / 17
        if team_name == "WAS":
            record = 2/8
            final_record = 7 / 17
        if team_name == "GB":
            record = 7/8
            final_record = 13 / 17
        if team_name == "MIN":
            record = 3/7
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            final_record = 8 / 17
        if team_name == "CHI":
            record = 3/8
            final_record = 6 / 17
        if team_name == "DET":
            record = 0
            final_record = 3 / 17
        if team_name == "TB":
            record = 6/8
            final_record = 13 / 17
        if team_name == "NO":
            record = 5/7
            final_record = 9 / 17
        if team_name == "CAR":
            record = 4/8
            final_record = 5 / 17
        if team_name == "ATL":
            record = 3/7
            final_record = 7 / 17
        if team_name == "ARI":
            record = 7/8
            final_record = 11 / 17
        if team_name == "LA":
            record = 7/8
            final_record = 12 / 17
        if team_name == "SF":
            record = 3/7
            final_record = 10 / 17
        if team_name == "SEA":
            record = 3/8
            final_record = 7 / 17
        if team_name == "LV":
            record = 5/7
            final_record = 10 / 17
        if team_name == "IND":
            record = 3/8
            final_record = 9 / 17
        if team_name == "JAX":
            record = 1/7
            final_record = 3 / 17
        if team_name == "HOU":
            record = 1/8
            final_record = 4 / 17

        new_row = {'team': team_name, 'avg_pressure': avg_pressure, 'avg_blockers': avg_blockers,
                   'avg_rushers': avg_rushers, 'total_plays': total_play, 'avg_length': avg_length, 'record': record, 'final_record': final_record}
        teams_avg = teams_avg.append(new_row, ignore_index=True)

    teams_avg.to_csv('teams_avg_final.csv')

# Identical code above for average pressure allowed per team, but this time with record after all weeks
def opponent_pressure():
    teams_per_play = pd.read_csv('team_per_play.csv')
    teams = teams_per_play['opponent'].unique().tolist()

    column_names = ['team', 'avg_pressure', 'avg_blockers', 'avg_rushers', 'total_plays', 'avg_length', 'record', 'final_record']
    teams_avg = pd.DataFrame(columns=column_names)

    for i in teams:
        team = teams_per_play.loc[(teams_per_play['opponent'] == i)]
        team = team.reset_index(drop=True)
        team_name = team['opponent'][0]
        avg_pressure = team['avg_pressure'].sum() / len(team)
        avg_blockers = team['number_of_blockers'].sum() / len(team)
        avg_rushers = team['number_of_rushers'].sum() / len(team)
        total_play = len(team)
        avg_length = team['len_of_play'].sum() / len(team)
        if team_name == "BUF":
            record = 5 / 8
            final_record = 11 / 17
        if team_name == "NE":
            record = 4 / 8
            final_record = 10 / 17
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        if team_name == "NYJ":
            record = 2 / 7
            final_record = 4 / 17
        if team_name == "MIA":
            record = 1 / 8
            final_record = 8 / 17
        if team_name == "BAL":
            record = 5 / 7
            final_record = 8 / 17
        if team_name == "CIN":
            record = 5 / 8
            final_record = 10 / 17
        if team_name == "PIT":
            record = 4 / 7
            final_record = 9 / 17
        if team_name == "CLE":
            record = 4 / 8
            final_record = 8 / 17
        if team_name == "TEN":
            record = 6 / 8
            final_record = 12 / 17
        if team_name == "LAC":
            record = 4 / 7
            final_record = 9 / 17
        if team_name == "DEN":
            record = 4 / 8
            final_record = 7 / 17
        if team_name == "KC":
            record = 4 / 8
            final_record = 12 / 17
        if team_name == "DAL":
            record = 6 / 7
            final_record = 12 / 17
        if team_name == "PHI":
            record = 3 / 8
            final_record = 9 / 17
        if team_name == "NYG":
            record = 2 / 8
            final_record = 4 / 17
        if team_name == "WAS":
            record = 2 / 8
            final_record = 7 / 17
        if team_name == "GB":
            record = 7 / 8
            final_record = 13 / 17
        if team_name == "MIN":
            record = 3 / 7
            final_record = 8 / 17
        if team_name == "CHI":
            record = 3 / 8
            final_record = 6 / 17
        if team_name == "DET":
            record = 0
            final_record = 3 / 17
        if team_name == "TB":
            record = 6 / 8
            final_record = 13 / 17
        if team_name == "NO":
            record = 5 / 7
            final_record = 9 / 17
        if team_name == "CAR":
            record = 4 / 8
            final_record = 5 / 17
        if team_name == "ATL":
            record = 3 / 7
            final_record = 7 / 17
        if team_name == "ARI":
            record = 7 / 8
            final_record = 11 / 17
        if team_name == "LA":
            record = 7 / 8
            final_record = 12 / 17
        if team_name == "SF":
            record = 3 / 7
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            final_record = 10 / 17
        if team_name == "SEA":
            record = 3 / 8
            final_record = 7 / 17
        if team_name == "LV":
            record = 5 / 7
            final_record = 10 / 17
        if team_name == "IND":
            record = 3 / 8
            final_record = 9 / 17
        if team_name == "JAX":
            record = 1 / 7
            final_record = 3 / 17
        if team_name == "HOU":
            record = 1 / 8
            final_record = 4 / 17

        new_row = {'team': team_name, 'avg_pressure': avg_pressure, 'avg_blockers': avg_blockers,
                   'avg_rushers': avg_rushers, 'total_plays': total_play, 'avg_length': avg_length, 'record': record,'final_record': final_record}
        teams_avg = teams_avg.append(new_row, ignore_index=True)

    teams_avg.to_csv('opponent_avg_final.csv')

# Pearson Correlation for the pass rush vs winning percentage after eight weeks
def defense_winning_eight_weeks():
    pressure_defense = pd.read_csv('teams_avg_final.csv')
    pressure_defense = pressure_defense.drop(pressure_defense.columns[0], axis=1)

    corr, p_value = stats.pearsonr(pressure_defense['avg_pressure'], pressure_defense['record'])

    print("Pearson correlation coefficient:", corr)
    print("p-value:", p_value)

# Pearson Correlation for the pass rush vs winning percentage after all weeks
def defense_winning_all_weeks():
    pressure_defense = pd.read_csv('teams_avg_final.csv')
    pressure_defense = pressure_defense.drop(pressure_defense.columns[0], axis=1)

    corr, p_value = stats.pearsonr(pressure_defense['avg_pressure'], pressure_defense['final_record'])

    print("Pearson correlation coefficient:", corr)
    print("p-value:", p_value)

# Pearson Correlation for the pass block vs winning percentage after eight weeks
def offense_winning_eight_weeks():
    pressure_defense = pd.read_csv('opponent_avg_final.csv')
    pressure_defense = pressure_defense.drop(pressure_defense.columns[0], axis=1)

    corr, p_value = stats.pearsonr(pressure_defense['avg_pressure'], pressure_defense['record'])

    print("Pearson correlation coefficient:", corr)
    print("p-value:", p_value)

# Pearson Correlation for the pass block vs winning percentage after eight weeks
def offense_winning_all_weeks():
    pressure_defense = pd.read_csv('opponent_avg_final.csv')
    pressure_defense = pressure_defense.drop(pressure_defense.columns[0], axis=1)

    corr, p_value = stats.pearsonr(pressure_defense['avg_pressure'], pressure_defense['final_record'])

    print("Pearson correlation coefficient:", corr)
    print("p-value:", p_value)

# Code to create a CSV file to showcase the average pressure created by position for each team, which will be used
# for visualization
def position_per_team_pressure():
    # Load data
    rushers = pd.read_csv('rushers_per_play_final.csv')
    rushers = rushers.drop(rushers.columns[0], axis=1)
    # Load the average pressure by team and sort it, iterating over every unique team in that list will allow for the
    # final data frame here to be in order of the average pressure allowed by each team, which will be easier for the
    # visualization later on
    teams_avg = pd.read_csv('teams_avg_final.csv')
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    teams_avg = teams_avg.drop(teams_avg.columns[0], axis=1)
    teams_avg = teams_avg.sort_values(by='avg_pressure', ascending=False)
    team_names = teams_avg['team'].unique()
    # Create new data frame
    column_names = ['team', 'position', 'avg_pressure', 'number_of_plays']
    teams_and_positions = pd.DataFrame(columns=column_names)
    # Iterate over every team
    for i in team_names:
        team = rushers.loc[(rushers['team'] == i)]
        team = team.reset_index(drop=True)
        positions_per_team = team['position'].unique()  # Take each unique position
        for j in positions_per_team:
            # Get the average pressure created by each position
            position = team.loc[(team['position'] == j)]
            position = position.reset_index(drop=True)
            team_name = i
            position_name = j
            avg_pressure = position['avg_pressure'].mean()
            number_of_plays = len(position)
            # Add data to new data frame
            new_row = {'team': team_name, 'position': position_name, 'avg_pressure': avg_pressure, 'number_of_plays': number_of_plays}
            teams_and_positions = teams_and_positions.append(new_row, ignore_index=True)

    teams_and_positions.to_csv('positions_per_team_avg.csv')

# Get the average pressure created for each team per position. This is the identical code as before, switching out the
# position and the team. The resulting data frame is identical, just in a different order, but this was done for easier
# handling later on in the visualization
def teams_per_position_pressure():
    rushers = pd.read_csv('rushers_per_play_final.csv')
    rushers = rushers.drop(rushers.columns[0], axis=1)
    position_avg = pd.read_csv('position_avg_final.csv')
    position_avg = position_avg.drop(position_avg.columns[0], axis=1)
    position_avg = position_avg.sort_values(by='avg_pressure', ascending=False)
    position_avg = position_avg.reset_index(drop=True)
    position_names = position_avg['position'].unique()
    column_names = ['position', 'team', 'avg_pressure', 'number_of_plays']
    teams_and_positions = pd.DataFrame(columns=column_names)

    for i in position_names:
        position = rushers.loc[(rushers['position'] == i)]
        position = position.reset_index(drop=True)
        teams_per_position = position['team'].unique()
        for j in teams_per_position:
            team = position.loc[(position['team'] == j)]
            team = team.reset_index(drop=True)
            team_name = j
            position_name = i
            avg_pressure = team['avg_pressure'].mean()
            number_of_plays = len(team)

            new_row = {'position': position_name, 'team': team_name, 'avg_pressure': avg_pressure,
                       'number_of_plays': number_of_plays}
            teams_and_positions = teams_and_positions.append(new_row, ignore_index=True)

    teams_and_positions.to_csv('teams_per_positions_avg.csv')

# Average pressure allowed by each team per formation/coverage.
# Identical code to before, just changing position with formation.
def teams_per_formation_pressure():
    team_per_play = pd.read_csv('team_per_play.csv')
    team_per_play = team_per_play.drop(team_per_play.columns[0], axis=1)
    column_names = ['formation', 'team', 'avg_pressure']
    teams_and_formation = pd.DataFrame(columns=column_names)
    formations = team_per_play['coverage'].unique()
    for i in formations:
        formation = team_per_play.loc[(team_per_play['coverage'] == i)]
        formation = formation.reset_index(drop=True)
        teams = formation['team'].unique()
        for j in teams:
            team = formation.loc[(formation['team'] == j)]
            team = team.reset_index(drop=True)
            formation_name = i
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            team_name = j
            avg_pressure = team['avg_pressure'].mean()

            new_row = {'formation': formation_name, 'team': team_name, 'avg_pressure': avg_pressure}

            teams_and_formation = teams_and_formation.append(new_row, ignore_index=True)

    teams_and_formation.to_csv('teams_and_formation.csv')

# Average pressure allowed by each team per position. Identical code to before, but changing out the team with the
# opponent, returning in the average amount of pressure that was allowed, instead of created.
def opponents_per_position_pressure():
    rushers = pd.read_csv('rushers_per_play_final.csv')
    rushers = rushers.drop(rushers.columns[0], axis=1)
    position_avg = pd.read_csv('position_avg_final.csv')
    position_avg = position_avg.drop(position_avg.columns[0], axis=1)
    position_avg = position_avg.sort_values(by='avg_pressure', ascending=False)
    position_avg = position_avg.reset_index(drop=True)
    position_names = position_avg['position'].unique()
    column_names = ['position', 'team', 'avg_pressure', 'number_of_plays']
    teams_and_positions = pd.DataFrame(columns=column_names)

    for i in position_names:
        position = rushers.loc[(rushers['position'] == i)]
        position = position.reset_index(drop=True)
        teams_per_position = position['opponent'].unique()
        for j in teams_per_position:
            team = position.loc[(position['opponent'] == j)]
            team = team.reset_index(drop=True)
            team_name = j
            position_name = i
            avg_pressure = team['avg_pressure'].mean()
            number_of_plays = len(team)

            new_row = {'position': position_name, 'team': team_name, 'avg_pressure': avg_pressure,
                       'number_of_plays': number_of_plays}
            teams_and_positions = teams_and_positions.append(new_row, ignore_index=True)

    teams_and_positions.to_csv('opponents_per_positions_avg.csv')

# Identical code to above, changing position with formation/coverage to return the average pressure allowed by each team
# per coverage.
def opponents_per_formation_pressure():
    team_per_play = pd.read_csv('team_per_play.csv')
    team_per_play = team_per_play.drop(team_per_play.columns[0], axis=1)
    column_names = ['formation', 'team', 'avg_pressure']
    teams_and_formation = pd.DataFrame(columns=column_names)
    formations = team_per_play['coverage'].unique()
    for i in formations:
        formation = team_per_play.loc[(team_per_play['coverage'] == i)]
        formation = formation.reset_index(drop=True)
        teams = formation['opponent'].unique()
        for j in teams:
            team = formation.loc[(formation['opponent'] == j)]
            team = team.reset_index(drop=True)
            formation_name = i
            team_name = j
            avg_pressure = team['avg_pressure'].mean()

            new_row = {'formation': formation_name, 'team': team_name, 'avg_pressure': avg_pressure}

            teams_and_formation = teams_and_formation.append(new_row, ignore_index=True)

    teams_and_formation.to_csv('opponents_and_formation.csv')

# Get the rankings for pressure created by each team's NRT
def NRT_all_teams():
    tpp = pd.read_csv('teams_per_positions_avg.csv')
    tpp = tpp.drop(tpp.columns[0], axis=1)
    nrt = tpp.loc[(tpp['position'] == 'NRT')]
    nrt = nrt.sort_values(by='avg_pressure', ascending=False)
    nrt = nrt.reset_index(drop=True)
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    nrt.to_csv('nrt.csv')

# Rank the average pressure created by all positions of the Green Bay Packers
def GB_all_positions():
    ppt = pd.read_csv('positions_per_team_avg.csv')
    ppt = ppt.drop(ppt.columns[0], axis=1)
    gb = ppt.loc[(ppt['team'] == 'GB')]
    gb = gb.sort_values(by='avg_pressure', ascending=False)
    gb = gb.reset_index(drop=True)
    gb.to_csv('gb.csv')

# Rank the average pressure created in Cover-2 for all teams
def cover2_all_teams():
    formations = pd.read_csv('teams_and_formation.csv')
    formations = formations.drop(formations.columns[0], axis=1)
    cover2 = formations.loc[(formations['formation'] == 'Cover-2')]
    cover2 = cover2.sort_values(by='avg_pressure', ascending=False)
    cover2 = cover2.reset_index(drop=True)
    cover2.to_csv('cover2.csv')

# Rank the average pressure created by all coverages for the Los Angeles Rams
def LA_all_formations():
    formations = pd.read_csv('teams_and_formation.csv')
    formations = formations.drop(formations.columns[0], axis=1)
    la = formations.loc[(formations['team'] == 'LA')]
    la = la.sort_values(by='avg_pressure', ascending=False)
    la = la.reset_index(drop=True)
    la.to_csv('la.csv')

# Rank the average pressure allowed against the LLB by all teams
def LLB_all_opponents():
    tpp = pd.read_csv('opponents_per_positions_avg.csv')
    tpp = tpp.drop(tpp.columns[0], axis=1)
    llb = tpp.loc[(tpp['position'] == 'LLB')]
    llb = llb.sort_values(by='avg_pressure', ascending=True)
    llb = llb.reset_index(drop=True)
    llb.to_csv('llb.csv')

# Rank the average pressure allowed against the Cover-3 formation against all opponents
def cover3_all_opponents():
    formations = pd.read_csv('opponents_and_formation.csv')
    formations = formations.drop(formations.columns[0], axis=1)
    cover3 = formations.loc[(formations['formation'] == 'Cover-3')]
    cover3 = cover3.sort_values(by='avg_pressure', ascending=True)
    cover3 = cover3.reset_index(drop=True)
    cover3.to_csv('cover3.csv')

# Rank the average pressure allowed against all positions by the New York Giants
def NYG_all_positions():
    ppt = pd.read_csv('opponents_per_positions_avg.csv')
    ppt = ppt.drop(ppt.columns[0], axis=1)
    nyg = ppt.loc[(ppt['team'] == 'NYG')]
    nyg = nyg.sort_values(by='avg_pressure', ascending=True)
    nyg = nyg.reset_index(drop=True)
    nyg.to_csv('nyg.csv')

# Rank the average pressure allowed against all coverages by the New York Jets
def NYJ_all_formations():
    formations = pd.read_csv('opponents_and_formation.csv')
    formations = formations.drop(formations.columns[0], axis=1)
    nyj = formations.loc[(formations['team'] == 'NYJ')]
    nyj = nyj.sort_values(by='avg_pressure', ascending=True)
    nyj = nyj.reset_index(drop=True)
    nyj.to_csv('nyj.csv')

# Show the average pressure allowed by each position. Identical code to the average pressure per team.
def positions_vs_pressure():
    teams_per_play = pd.read_csv('rushers_per_play_final.csv')
    positions = teams_per_play['position'].unique().tolist()

    column_names = ['position', 'avg_pressure', 'avg_blockers', 'total_plays']
    position_avg = pd.DataFrame(columns=column_names)

    for i in positions:
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        position = teams_per_play.loc[(teams_per_play['position'] == i)]
        position = position.reset_index(drop=True)
        position_name = position['position'][0]
        avg_pressure = position['avg_pressure'].sum() / len(position)
        avg_blockers = position['blockers'].sum() / len(position)
        total_plays = len(position)

        new_row = {'position': position_name, 'avg_pressure': avg_pressure, 'avg_blockers': avg_blockers,
                   'total_plays': total_plays}
        position_avg = position_avg.append(new_row, ignore_index=True)

    position_avg = position_avg.sort_values(by='avg_pressure', ascending=True)
    position_avg.to_csv('position_avg_final.csv')

# Average pressure created by each coverage type. Identical code as above.
def coverage_vs_pressure():
    teams_per_play = pd.read_csv('team_per_play.csv')
    coverages = teams_per_play['coverage'].unique().tolist()

    column_names = ['coverage', 'avg_pressure', 'avg_blockers', 'total_plays']
    coverage_avg = pd.DataFrame(columns=column_names)

    for i in coverages:
        coverage = teams_per_play.loc[(teams_per_play['coverage'] == i)]
        coverage = coverage.reset_index(drop=True)
        coverage_name = coverage['coverage'][0]
        avg_pressure = coverage['avg_pressure'].sum() / len(coverage)
        avg_blockers = coverage['number_of_blockers'].sum() / len(coverage)
        total_plays = len(coverage)

        new_row = {'coverage': coverage_name, 'avg_pressure': avg_pressure, 'avg_blockers': avg_blockers,
                   'total_plays': total_plays}
        coverage_avg = coverage_avg.append(new_row, ignore_index=True)

    coverage_avg = coverage_avg.sort_values(by='avg_pressure', ascending=True)
    coverage_avg.to_csv('coverage_avg_final.csv')

# Filter the data frame only for DeForest Buckner and his sack against the Tennessee Titans, which will be used for
# visualization later
def buckner_sack_play():
    weeks = pd.read_csv('weeks_predicted_pressure_final.csv')
    weeks = weeks.drop(weeks.columns[0], axis=1)
    buckner = weeks.loc[(weeks['gameId'] == 2021103106) & (weeks['playId'] == 4334) & (weeks['nflId'] == 43296)]
    buckner = buckner.reset_index(drop=True)
    buckner.to_csv('buckner_sack_game_2021103106_play_4334.csv')

# Lastly, analyses on the PMP have to be done.

# Concatenate all PMP predictions into one data frame
def concat_all_pmp():
    week1 = pd.read_csv('week1_pmp_final.csv')
    week2 = pd.read_csv('week2_pmp_final.csv')
    week3 = pd.read_csv('week3_pmp_final.csv')
    week4 = pd.read_csv('week4_pmp_final.csv')
    week5 = pd.read_csv('week5_pmp_final.csv')
    week6 = pd.read_csv('week6_pmp_final.csv')
    week7 = pd.read_csv('week7_pmp_final.csv')
    week8 = pd.read_csv('week8_pmp_final.csv')

    frames = [week1, week2, week3, week4, week5, week6, week7, week8]

    all_weeks = pd.concat(frames, ignore_index=True)
    all_weeks = all_weeks.drop(all_weeks.columns[0], axis=1)

    all_weeks.to_csv('pmp_all_weeks.csv')

# Finding the difference between PMP and actual pressure for every frame
def find_delta_every_frame():
    pmp = pd.read_csv('pmp_all_weeks.csv')
    pmp = pmp.drop(pmp.columns[0], axis=1)
    pmp['pmp_delta'] = pmp['predicted_pressure_probability'] - pmp['predicted_motion_predicted_pressure_probability_outcome']
    pmp.to_csv('pmp_with_delta_every_play.csv')
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# Find the difference between PMP and actual pressure for the overall play per player
def pmp_per_player_per_play():
    pmp = pd.read_csv('pmp_with_delta_every_play.csv')
    plays = pd.read_csv('plays.csv')
    pmp_per_player_per_play = pd.DataFrame(columns=['gameId', 'playId', 'nflId', 'team', 'position', 'avg_pressure', 'pmp_delta'])

    for i in range(len(plays)):
        print(i)
        one_play = pmp.loc[(pmp['gameId'] == plays['gameId'][i]) & (pmp['playId'] == plays['playId'][i])]
        one_play = one_play.reset_index(drop=True)
        players = one_play['nflId'].unique()
        for j in players:
            one_player = one_play.loc[(one_play['nflId'] == j)]
            one_player = one_player.reset_index(drop=True)
            gameId = one_player['gameId'][0]
            playId = one_player['playId'][0]
            nflId = one_player['nflId'][0]
            team = one_player['team'][0]
            position = one_player['position'][0]
            avg_pressure = one_player['predicted_pressure_probability'].mean()
            pmp_delta = one_player['pmp_delta'].sum()

            new_row = {'gameId': gameId, 'playId': playId, 'nflId': nflId, 'team': team,
                       'position': position, 'avg_pressure': avg_pressure,'pmp_delta': pmp_delta}
            pmp_per_player_per_play = pmp_per_player_per_play.append(new_row, ignore_index=True)

    pmp_per_player_per_play.to_csv('pmp_per_player_per_play.csv')

# Find the average pressure to PMP delta across all pass rushers
def find_average_delta():
    pmp = pd.read_csv('pmp_per_player_per_play.csv')
    pmp = pmp.drop(pmp.columns[0], axis=1)
    print(pmp['pmp_delta'].mean())

# Pearson Correlation between delta on a play and average pressure created on a play
def pressure_pmp_correlations():
    pressure_pmp = pd.read_csv('pmp_per_player_per_play.csv')
    pressure_pmp = pressure_pmp.drop(pressure_pmp.columns[0], axis=1)

    corr, p_value = stats.pearsonr(pressure_pmp['avg_pressure'], pressure_pmp['pmp_delta'])

    print("Pearson correlation coefficient:", corr)
    print("p-value:", p_value)

# Create new dataset for each pass rusher and their average PMP delta
def average_pmp_per_player():
    pmp = pd.read_csv('pmp_per_player_per_play.csv')
    pmp = pmp.drop(pmp.columns[0], axis=1)
    all_players = pd.read_csv('players.csv')
    players = pmp['nflId'].unique()
    pmp_per_player = pd.DataFrame(
        columns=['nflId', 'name', 'pmp_delta'])
    for i in players:
        player = pmp.loc[(pmp['nflId'] == i)]
        player = player.reset_index(drop=True)
        nflId = player['nflId'][0]
        one_player = all_players.loc[(all_players['nflId'] == i)]
        one_player = one_player.reset_index(drop=True)
        name = one_player['displayName'][0]
        pmp_delta = player['pmp_delta'].mean()
        new_row = {'nflId': i, 'name': name, 'pmp_delta': pmp_delta}
        pmp_per_player = pmp_per_player.append(new_row, ignore_index=True)

    pmp_per_player.to_csv('pmp_per_player.csv')
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11.3.5	Streamlit Visualizations


import altair as alt
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go

# Running this code will allow the user to open a Streamlit site locally that shows all the graphs more in-depth than
# in the thesis, as hovering over the data points is possible.

alt.themes.enable("streamlit")

st.set_page_config(layout="wide", page_title="Master Thesis Visualizations - Christopher Patzanovsky",
                   page_icon=":statue_of_liberty:")

st.write("""
# Master Thesis - Analysis of the NFL
### Christopher Patzanovsky
""")

# Read all the required data frames
df = pd.read_csv('rushers_avg.csv')
df = df.drop(df.columns[0], axis=1)

df2 = pd.read_csv('teams_avg_final.csv')
df2 = df2.drop(df2.columns[0], axis=1)
sorted_df2 = df2.sort_values(by='avg_pressure', ascending=False)

df3 = pd.read_csv('opponent_avg_final.csv')
df3 = df3.drop(df3.columns[0], axis=1)
sorted_df3 = df3.sort_values(by='avg_pressure', ascending=True)

df4 = pd.read_csv('position_avg_final.csv')
df4 = df4.drop(df4.columns[0], axis=1)
df4 = df4.sort_values(by='avg_pressure', ascending=False)

df6 = pd.read_csv('teams_completions_percentages.csv')
df6 = df6.drop(df6.columns[0], axis=1)
df6_avg_plays = df6.sort_values(by='avg_plays', ascending=True)
df6_comp_perc = df6.sort_values(by='completion_percentage', ascending=True)

df7 = pd.read_csv('buckner_sack_game_2021103106_play_4334.csv')
df7 = df7.drop(df7.columns[0], axis=1)

df8 = pd.read_csv('positions_per_team_avg.csv')
df9 = pd.read_csv('teams_per_positions_avg.csv')

df10 = pd.read_csv('week8_pmp_final.csv')
df10 = df10.drop(df10.columns[0], axis=1)

landry = df10.loc[(df10['gameId'] == 2021103106) & (df10['playId'] == 225) & (df10['nflId'] == 46110)]
landry = landry.reset_index(drop=True)

df11 = pd.read_csv('pmp_per_player_per_play.csv')
df11 = df11.drop(df11.columns[0], axis=1)

df11['delta_rounded'] = df11['pmp_delta'].round(1)
df11g = df11.groupby('delta_rounded').count().reset_index()

# Distribution of all players and their average pressure created by the amount of blockers they faced
fig = px.scatter(df, x='avg_blockers', y='avg_pressure', color='team',
                     range_x=[-0.05, 2.05],range_y=[0, 0.4],
                     hover_data=['player_name', 'team', 'position'], labels={'avg_blockers': 'Average number of blockers', 

'avg_pressure': 'Average pressure created', 'team': 'Team'})

st.write(fig)

# Defining the color scale for the winning respective percentage
colorscale = [[0, 'red'], [0.5, 'red'], [0.5, 'green'], [1, 'green']]
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# Average pressure created by each team with winning record
fig3 = px.scatter(sorted_df2, x='team', y='avg_pressure',
                     range_y=[0.10, 0.14], color='record',
                  color_continuous_scale='RdYlGn',
                  range_color=(0, 1), labels={'team': 'Team', 'avg_pressure': 'Average pressure created', 'record': 'Record'})
st.write(fig3)

# Average pressure allowed by each team with respective winning record
fig4 = px.scatter(sorted_df3, x='team', y='avg_pressure',
                     range_y=[0.10, 0.14], color='record',
                  color_continuous_scale='RdYlGn',
                  range_color=(0, 1), labels={'team': 'Team', 'avg_pressure': 'Average pressure allowed', 'record': 'Record'})
st.write(fig4)

# Average pressure created per position with the respective average number of blockers faced
fig5 = px.scatter(df4, x='position', y='avg_pressure',
                     range_y=[0, 0.4], color='avg_blockers',
                  color_continuous_scale='RdYlGn',
                  range_color=(0, 1.60801144492132), labels={'position': 'Position', 'avg_pressure': 'Average pressure created', 

'avg_blockers': 'Average number of blockers'}, category_orders={'position': df4['position'].unique()})

st.write(fig5)

# Average number of plassing plays for the first 8 weeks per team
fig6 = px.scatter(df6_avg_plays, x='team', y='avg_plays',
                     range_y=[25, 45], labels={'team': 'Team', 'avg_plays': 'Average number of passing plays for the first 8 weeks'})
st.write(fig6)

# Completion percentage for each team for the first 8 weeks
fig7 = px.scatter(df6_comp_perc, x='team', y='completion_percentage',
                     range_y=[0.4, 0.65], labels={'team': 'Team', 'completion_percentage': 'Completion percentage throughout the first 8 weeks'})
st.write(fig7)

# Create a data frame with the accuracy of each k from 1 to 100 for all three modeled KNNs
k_list = []
for i in range(100):
    k_list.append(i+1)

data = {'k': k_list,
        'one_blocker': [0.8023052607935839, 0.8023052607935839, 0.8429267170303333, 0.8437046329825407, 0.8558445044620602, 
0.856644333539682, 0.8613885251918768, 0.8621609628627307, 0.8645166238447675, 0.8654260185494607, 0.8665490662269433, 
0.8672009817080185, 0.8679953325042867, 0.8683568990736226, 0.8688170747073228, 0.86905811908688, 0.8695292512832874, 
0.8697319476933696, 0.8701044708254126, 0.870241427859252, 0.8704934288015164, 0.8706413423980629, 0.8708221256827308, 
0.8708221256827308, 0.8710741266249952, 0.8711836922520667, 0.8714302149129775, 0.8714411714756847, 0.8715616936654633, 
0.8716219547603525, 0.8714959542892203, 0.8715726502281704, 0.8715671719468169, 0.871616476478999, 0.8715507371027561, 
0.871720563824717, 0.8716329113230598, 0.8716055199162919, 0.8716603027298276, 0.8716712592925348, 0.871578128509524, 
0.8716274330417062, 0.8716109981976454, 0.871654824448474, 0.8716493461671204, 0.8716603027298276, 0.8716931724179491, 
0.8716329113230598, 0.8716767375738883, 0.8715616936654633, 0.8715836067908775, 0.8715836067908775, 0.871578128509524, 
0.8715616936654633, 0.8715452588214025, 0.8715178674146347, 0.8715671719468169, 0.871501432570574, 0.8715069108519276, 
0.8714685628824526, 0.8713699538180882, 0.871501432570574, 0.8714137800689168, 0.8714630846010989, 0.8714466497570382, 
0.8714576063197453, 0.8714521280383918, 0.8714356931943311, 0.871397345224856, 0.8714028235062097, 0.8713809103807953, 
0.8714083017875632, 0.8713918669435025, 0.8713316058486131, 0.8713535189740275, 0.8714083017875632, 0.8714028235062097, 
0.871320649285906, 0.871320649285906, 0.8712329967842488, 0.8712001270961274, 0.8712549099096631, 0.8712384750656024, 
0.871243953346956, 0.8712549099096631, 0.8712384750656024, 0.8712384750656024, 0.871243953346956, 0.8711891705334203, 
0.8712056053774809, 0.8711891705334203, 0.8712220402215417, 0.8711508225639453, 0.8712110836588346, 0.871139866001238, 
0.8711891705334203, 0.8711508225639453, 0.8711508225639453, 0.8711343877198845, 0.8711234311571774],

        'two_blocker': [0.7924936588893332, 0.7924936588893332, 0.8306991930491566, 0.8311867600896247, 0.8446304625312947, 
0.8451508992598842, 0.8519823161077906, 0.8525411008058552, 0.8562389407195174, 0.8573072055834644, 0.8596299968773796, 
0.860062781104312, 0.8613775686291697, 0.8622157456762665, 0.8633387933537491, 0.8640016653975315, 0.8644782758752924, 
0.8650041908852355, 0.8654424533935214, 0.8658478462136858, 0.866412109193104, 0.8664395005998718, 0.8667462843556719, 
0.8669051545149256, 0.8672995907723828, 0.8673653301486258, 0.867787157812851, 0.8679350714093974, 0.8679788976602261, 
0.8681815940703083, 0.8683568990736226, 0.8684335950125727, 0.8685048126701691, 0.8686582045480692, 0.8688061181446157, 
0.8689540317411621, 0.8688444661140907, 0.8688992489276264, 0.8689266403343943, 0.8690362059614658, 0.8690252493987586, 
0.8690909887750015, 0.8690800322122944, 0.869019771117405, 0.869019771117405, 0.8689485534598086, 0.8690909887750015, 
0.8690909887750015, 0.869162206432598, 0.8691731629953051, 0.8692443806529015, 0.869277250341023, 0.8693429897172659, 
0.8693484679986194, 0.8694415987816302, 0.8694635119070445, 0.8695182947205803, 0.8694744684697516, 0.8695566426900553, 
0.8695895123781767, 0.8695456861273482, 0.8695949906595303, 0.8696388169103589, 0.8696552517544196, 0.8696552517544196, 
0.8695895123781767, 0.8697100345679554, 0.8696278603476517, 0.8696278603476517, 0.8696771648798339, 0.8696223820662982, 
0.8696716865984804, 0.8696607300357732, 0.8696442951917125, 0.8696333386290053, 0.8696771648798339, 0.8696333386290053, 
0.8696004689408838, 0.8697100345679554, 0.869649773473066, 0.8696607300357732, 0.8696442951917125, 0.8696552517544196, 
0.869649773473066, 0.8696333386290053, 0.869649773473066, 0.8696388169103589, 0.8696716865984804, 0.8696552517544196, 
0.8696662083171267, 0.8696442951917125, 0.8696826431611875, 0.8696935997238946, 0.8696990780052481, 0.8697483825374304, 
0.8696935997238946, 0.8697209911306625, 0.8697374259747233, 0.8697209911306625, 0.8696826431611875],

        'three_blocker': [0.8040309194199595, 0.8040309194199595, 0.8432389790674869, 0.8434416754775692, 0.8556472863333315, 
0.8564197240041854, 0.8612296550326232, 0.8620294841102449, 0.8644563627498781, 0.8654095837053999, 0.8666202838845397, 
0.8672283731147864, 0.8680994198500046, 0.8683568990736226, 0.8687951615819085, 0.8691786412766587, 0.8694142073748624, 
0.8698962961339769, 0.8701044708254126, 0.8703674283303842, 0.8705208202082843, 0.8707509080251343, 0.8707344731810737, 
0.8709207347470952, 0.8710303003741666, 0.8712932578791381, 0.8713863886621489, 0.8714356931943311, 0.8715123891332811, 
0.8714521280383918, 0.871578128509524, 0.8714192583502703, 0.8716219547603525, 0.8714411714756847, 0.8716055199162919, 
0.8716876941365954, 0.8717041289806562, 0.8715671719468169, 0.8715836067908775, 0.8715726502281704, 0.8716055199162919, 
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0.8716822158552419, 0.8716712592925348, 0.8717041289806562, 0.8717041289806562, 0.8716986506993026, 0.8716931724179491, 
0.871654824448474, 0.8716931724179491, 0.8716931724179491, 0.8716767375738883, 0.8715890850722311, 0.8715452588214025, 
0.871501432570574, 0.8715288239773419, 0.8715671719468169, 0.8715562153841097, 0.8714685628824526, 0.8714904760078668, 
0.8714795194451597, 0.8714083017875632, 0.8714247366316239, 0.8713754320994418, 0.8714247366316239, 0.8714192583502703, 
0.8714137800689168, 0.8714137800689168, 0.8713480406926739, 0.8714466497570382, 0.8713644755367346, 0.8713863886621489, 
0.871397345224856, 0.8713480406926739, 0.8713261275672596, 0.8713480406926739, 0.8713316058486131, 0.8713151710045525, 
0.871282301316431, 0.8712549099096631, 0.8712384750656024, 0.8711672574080059, 0.8711782139707132, 0.8711453442825917, 
0.871139866001238, 0.8711453442825917, 0.8711015180317631, 0.8711453442825917, 0.8711015180317631, 0.8711727356893595, 
0.8711234311571774, 0.8710960397504095, 0.8711069963131166, 0.8711015180317631, 0.8711069963131166, 0.8711015180317631, 
0.8710686483436416, 0.8710193438114595, 0.871052213499581, 0.8710686483436416, 0.8711015180317631]}

print(len(data['three_blocker']))

# Plot all three graphs for eahc KNN
fig8 = px.line(data, x='k', y='one_blocker',
                     range_x=[0, 101], range_y=[0.75, 0.9], labels={'k': 'k', 'one_blocker': 'Accuracy of KNN with one closest blocker'})
st.write(fig8)

fig9 = px.line(data, x='k', y='two_blocker',
                     range_x=[0, 101], range_y=[0.75, 0.9], labels={'k': 'k', 'two_blocker': 'Accuracy of KNN with two closest blockers'})
st.write(fig9)

fig10 = px.line(data, x='k', y='three_blocker',
                     range_x=[0, 101], range_y=[0.75, 0.9], labels={'k': 'k', 'three_blocker': 'Accuracy of KNN with three closest blockers'})
st.write(fig10)

# Average pressure created vs the win percentage eight weeks
fig11 = px.scatter(sorted_df2, x='avg_pressure', y='record',
                     range_x=[0.115, 0.135], range_y=[0, 1], color='team',  labels={'avg_pressure': 'Average pressure created by 

the pass rush', 'record': 'Winning percentage after 8 weeks', 'team': 'Team'})

st.write(fig11)

# Average pressure allowed vs the win percentage eight weeks
fig12 = px.scatter(sorted_df3, x='avg_pressure', y='record',
                     range_x=[0.11, 0.135], range_y=[0, 1], color='team', labels={'avg_pressure': 'Average pressure allowed by 

the pass block', 'record': 'Winning percentage after 8 weeks', 'team': 'Team'})

st.write(fig12)

# Average pressure created vs the win percentage all weeks
fig13 = px.scatter(sorted_df2, x='avg_pressure', y='final_record',
                     range_x=[0.115, 0.135], range_y=[0, 1], color='team', labels={'avg_pressure': 'Average pressure created by 

the pass rush', 'final_record': 'Winning percentage after 18 weeks', 'team': 'Team'})

st.write(fig13)

# Average pressure allowed vs the win percentage all weeks
fig14 = px.scatter(sorted_df3, x='avg_pressure', y='final_record',
                     range_x=[0.11, 0.135], range_y=[0, 1], color='team', labels={'avg_pressure': 'Average pressure allowed by the pass block', 'final_record': 'Winning percentage after 18 weeks', 'team': 'Team'})
st.write(fig14)

# Predicted pressure over the course of one play for DeForest Buckner
fig15 = px.line(df7, x='frameId', y='predicted_pressure_probability',
                     range_x=[0, 47], range_y=[0, 1], labels={'frameId': 'Frames', 'predicted_pressure_probability': 'Pressure'}, line_shape='spline')
st.write(fig15)

# Average pressure created by each position per team
fig16 = px.scatter(df8, x='team', y='avg_pressure', range_y=[0, 0.5], color='position', labels={'team': 'Team', 'avg_pressure': 

'Average pressure created', 'position': 'position'})

st.write(fig16)

# Average pressure created by each team per position
fig17 = px.scatter(df9, x='position', y='avg_pressure', range_y=[0, 0.5], color='team', labels={'position': 'Position', 

'avg_pressure': 'Average pressure created', 'team': 'Team'}, category_orders={'position': df9['position'].unique()})

st.write(fig17)

# Predicted pressure and PMP for one play of Harold Landry
fig18 = go.Figure()
fig18.add_trace(go.Scatter(x=landry['frameId'], y=landry['predicted_pressure_probability'],
                    mode='lines',
                    name='Pressure', line_shape='spline'))
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fig18.add_trace(go.Scatter(x=landry['frameId'], y=landry['predicted_motion_predicted_pressure_probability_outcome'],
                    mode='lines', line_color='red',
                    name='Predicted Motion Pressure', line_shape='spline'))
fig18.update_layout(xaxis_title='Frames',
                   yaxis_title='Pressure')
st.write(fig18)

# Bar plot to show the distribution of the PMP delta across all pass rushers
fig19 = px.bar(df11g,
             x='delta_rounded', y='pmp_delta', labels={'delta_rounded': 'PMP difference rounded to the first decimal place', 'pmp_delta': 'Count'},
             barmode='stack')
st.write(fig19)

# Scatter plot to the distribution of average pressure created per play vs the PMP delta on that play
fig20 = px.scatter(df11,
             x='avg_pressure', y='pmp_delta',labels={'avg_pressure': 'Average pressure created', 'pmp_delta': 'PMP delta'})

st.write(fig20)
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11.4	 HTML - and JavaScript Code

<!DOCTYPE html>

<html>

    <head>

        <script src="https://d3js.org/d3.v7.min.js"></script>

        <style>

            /* Add your custom CSS styles here */

            .container {

                display:flex;

            }

            #graph-container-legend {

                width: 720px;

                height: 50px;

            }

            #graph-container {

                width: 720px;

                height: 320px;

                border: 5px solid black;

            }

            #text-container {

                width: 1500px;

                height: 320px;

            }

            #graph-container2-legend {

                width: 720px;

                height: 50px;

            }

            #graph-container2 {

                width: 720px;

                height: 320px;

                border: 5px solid black;

            }

            #graph-container4 {

                width: 320px;

                height: 320px;

                margin: 20px;

            }

            #text-container2 {

                width: 720px;

                height: 320px;

            }

            #graph-container3-legend {

                width: 1700px;

                height: 50px;

            }

            #graph-container3 {

                width: 720px;

                height: 320px;

                border: 5px solid black;

            }

            #graph-container5 {

                width: 320px;

                height: 320px;

                margin: 20px;

            }

            #graph-container6 {

                width: 320px;

                height: 320px;

                margin: 20px;

            }

            #text-container3 {

                width: 720px;

                height: 320px;

            }

            .dot {

                stroke: black;

                stroke-opacity: 1;

                fill-opacity: ß;

            }

        </style>

    </head>

    <body>

        <h1>Visualization of Machine-Learning-Predicted Pressure and Predicted Motion Pressure (PMP) for all Games in Week 8 of the 2021 NFL Season</h1>

        <p>Please allow up to 30 seconds for the data to load.</p>

        <p>This webpage was build entirely with HTML and JavaScript's D3 library, visualizing all games of week 8 of the 2021 NFL Season, with a main focus on the pass rush and pass block.</p>

        <p>Below, first the game, and then the desired play can be chosen.</p>

        <p>The first section will show a top-down animation of the play at 0.5 times the speed. The colors of the teams represent the colors of the jerseys worn for that game.</p>

        <p>The second section will show a top-down animation of the play at 0.5 times the speed, with the pass rushers pressure being indicated by the change of color of the individual circle. The more red, the higher the 
pressure. The overall pressure throught the play is shown in the graph to the right of the animation.</p>

        <p>In the last section one of the pass rushers involved on the play can be chosen. The animation will focus on the selected player. To the right of the animation the graphs for the pressure, as well as the PMP can 
be seen.</p>

        <p>An in-depth explanation of the generation of the predicted pressure and the PMP can be found at the bottom of this page. Should there be a delay between the graph and the animation, please refresh the page.</p>

        <select id="game-dropdown">

            <option value="">Select a game</option>

        </select>

        <select id="play-dropdown">

            <option value="">Select a play</option>

        </select>

        <h3>Full visualization of the play</h3>

        <div id="graph-container-legend"></div>

        <div class="container">

            <div id="graph-container"></div>

            <div id="text-container"></div>

        </div>

        <hr>

        <h3>Visualization of pressure on the play</h3>

        <div id="graph-container2-legend"></div>

        <div class="container">

            <div id="graph-container2"></div>

            <div id="graph-container4"></div>

            <div id="text-container2"></div>

        </div>

        <hr>

        <h3>Individual Player Analysis</h3>

        <select id="player-dropdown">

            <option value="">Select a player</option>

        </select>

        <div id="graph-container3-legend"></div>

        <div class="container">

            <div id="graph-container3"></div>

            <div id="graph-container6"></div>

            <div id="graph-container5"></div>

            <div id="text-container3"></div>

        </div>

        <hr>

        <h3>How the predicted pressure was created</h3>

        <p>Using a KNN machine learning model, telemetry data from every frame, of every play, for every player was evaluated on the probability on whether or not a sack, hit, or hurry would be the outcome of the 
play.<br>This telemetry includes speed, acceleration, orientation of the rusher and blocker, as well as distances and angles to the passer and blocker from the rusher.<br>Due to the fact that whether or not a play would 
end in a sack/hit/hurry was available for every play, every frame could be fed with the information of the end of the play, allowing for the KNN to predict the outcome of the play as the outcome variable.</p>

        <h3>How the Predicted Motion Pressure (PMP) was created</h3>

        <p>Similarly to the KNN above, the telemetry between the rusher, blocker and passer could be used to predict the next x - and y-coordinates, speed, acceleration, and orientation of a rusher.<br>New telemetry of the 
rusher with that new position could then be used in the with the original KNN to predict the pressure in that new position, allwoing for a comparison between the actual pressure and the predicted one.</p>

        

        <script>
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            // Creating the layout of the first animation.

            const svg = d3.select("#graph-container").append("svg").attr("width", 720).attr("height", 320)

            const rect1 = svg.append("rect").attr("x",0).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "lightgreen").attr("stroke", "black")

            const rect2 = svg.append("rect").attr("x",60).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

            const rect3 = svg.append("rect").attr("x",120).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

            const rect4 = svg.append("rect").attr("x",180).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

            const rect5 = svg.append("rect").attr("x",240).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

            const rect6 = svg.append("rect").attr("x",300).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

            const rect7 = svg.append("rect").attr("x",360).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

            const rect8 = svg.append("rect").attr("x",420).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

            const rect9 = svg.append("rect").attr("x",480).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

            const rect10 = svg.append("rect").attr("x",540).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

            const rect11 = svg.append("rect").attr("x",600).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

            const rect12 = svg.append("rect").attr("x",660).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "lightgreen").attr("stroke", "black")

            const text1 = svg.append("text").attr("x",65).attr("y",30).attr("fill","white").text("G")     

            const text2 = svg.append("text").attr("x",65).attr("y",290).attr("fill","white").text("G")

            const text3 = svg.append("text").attr("x",113).attr("y",30).attr("fill","white").text("10")

            const text4 = svg.append("text").attr("x",113).attr("y",290).attr("fill","white").text("10")

            const text5 = svg.append("text").attr("x",172).attr("y",30).attr("fill","white").text("20")

            const text6 = svg.append("text").attr("x",172).attr("y",290).attr("fill","white").text("20")

            const text7 = svg.append("text").attr("x",232).attr("y",30).attr("fill","white").text("30")

            const text8 = svg.append("text").attr("x",232).attr("y",290).attr("fill","white").text("30")

            const text9 = svg.append("text").attr("x",292).attr("y",30).attr("fill","white").text("40")

            const text10 = svg.append("text").attr("x",292).attr("y",290).attr("fill","white").text("40")

            const text11 = svg.append("text").attr("x",352).attr("y",30).attr("fill","white").text("50")

            const text12 = svg.append("text").attr("x",352).attr("y",290).attr("fill","white").text("50")

            const text13 = svg.append("text").attr("x",412).attr("y",30).attr("fill","white").text("40")

            const text14 = svg.append("text").attr("x",412).attr("y",290).attr("fill","white").text("40")

            const text15 = svg.append("text").attr("x",472).attr("y",30).attr("fill","white").text("30")

            const text16 = svg.append("text").attr("x",472).attr("y",290).attr("fill","white").text("30")

            const text17 = svg.append("text").attr("x",532).attr("y",30).attr("fill","white").text("20")

            const text18 = svg.append("text").attr("x",532).attr("y",290).attr("fill","white").text("20")

            const text19 = svg.append("text").attr("x",593).attr("y",30).attr("fill","white").text("10")

            const text20 = svg.append("text").attr("x",593).attr("y",290).attr("fill","white").text("10")

            const text21 = svg.append("text").attr("x",645).attr("y",30).attr("fill","white").text("G")

            const text22 = svg.append("text").attr("x",645).attr("y",290).attr("fill","white").text("G")

            

            // Creating the layout of the second animation.

            const svg_2 = d3.select("#graph-container2").append("svg").attr("width", 720).attr("height", 320)

            const rect1_2 = svg_2.append("rect").attr("x",0).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "white").attr("stroke", "black")

            const rect2_2 = svg_2.append("rect").attr("x",60).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "white").attr("stroke", "black")

            const rect3_2 = svg_2.append("rect").attr("x",120).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "white").attr("stroke", "black")

            const rect4_2 = svg_2.append("rect").attr("x",180).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "white").attr("stroke", "black")

            const rect5_2 = svg_2.append("rect").attr("x",240).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "white").attr("stroke", "black")

            const rect6_2 = svg_2.append("rect").attr("x",300).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "white").attr("stroke", "black")

            const rect7_2 = svg_2.append("rect").attr("x",360).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "white").attr("stroke", "black")

            const rect8_2 = svg_2.append("rect").attr("x",420).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "white").attr("stroke", "black")

            const rect9_2 = svg_2.append("rect").attr("x",480).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "white").attr("stroke", "black")

            const rect10_2 = svg_2.append("rect").attr("x",540).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "white").attr("stroke", "black")

            const rect11_2 = svg_2.append("rect").attr("x",600).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "white").attr("stroke", "black")

            const rect12_2 = svg_2.append("rect").attr("x",660).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "white").attr("stroke", "black")

            const text1_2 = svg_2.append("text").attr("x",65).attr("y",30).attr("fill","black").text("G")     

            const text2_2 = svg_2.append("text").attr("x",65).attr("y",290).attr("fill","black").text("G")

            const text3_2 = svg_2.append("text").attr("x",113).attr("y",30).attr("fill","black").text("10")

            const text4_2 = svg_2.append("text").attr("x",113).attr("y",290).attr("fill","black").text("10")

            const text5_2 = svg_2.append("text").attr("x",172).attr("y",30).attr("fill","black").text("20")

            const text6_2 = svg_2.append("text").attr("x",172).attr("y",290).attr("fill","black").text("20")

            const text7_2 = svg_2.append("text").attr("x",232).attr("y",30).attr("fill","black").text("30")

            const text8_2 = svg_2.append("text").attr("x",232).attr("y",290).attr("fill","black").text("30")

            const text9_2 = svg_2.append("text").attr("x",292).attr("y",30).attr("fill","black").text("40")

            const text10_2 = svg_2.append("text").attr("x",292).attr("y",290).attr("fill","black").text("40")

            const text11_2 = svg_2.append("text").attr("x",352).attr("y",30).attr("fill","black").text("50")

            const text12_2 = svg_2.append("text").attr("x",352).attr("y",290).attr("fill","black").text("50")

            const text13_2 = svg_2.append("text").attr("x",412).attr("y",30).attr("fill","black").text("40")

            const text14_2 = svg_2.append("text").attr("x",412).attr("y",290).attr("fill","black").text("40")

            const text15_2 = svg_2.append("text").attr("x",472).attr("y",30).attr("fill","black").text("30")

            const text16_2 = svg_2.append("text").attr("x",472).attr("y",290).attr("fill","black").text("30")

            const text17_2 = svg_2.append("text").attr("x",532).attr("y",30).attr("fill","black").text("20")

            const text18_2 = svg_2.append("text").attr("x",532).attr("y",290).attr("fill","black").text("20")

            const text19_2 = svg_2.append("text").attr("x",593).attr("y",30).attr("fill","black").text("10")

            const text20_2 = svg_2.append("text").attr("x",593).attr("y",290).attr("fill","black").text("10")

            const text21_2 = svg_2.append("text").attr("x",645).attr("y",30).attr("fill","black").text("G")

            const text22_2 = svg_2.append("text").attr("x",645).attr("y",290).attr("fill","black").text("G")


            // Creating the layout of the third animation.

            const svg3 = d3.select("#graph-container3").append("svg").attr("width", 720).attr("height", 320)

            const rect1_3 = svg3.append("rect").attr("x",0).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "lightgreen").attr("stroke", "black")

            const rect2_3 = svg3.append("rect").attr("x",60).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

            const rect3_3 = svg3.append("rect").attr("x",120).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

            const rect4_3 = svg3.append("rect").attr("x",180).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

            const rect5_3 = svg3.append("rect").attr("x",240).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

            const rect6_3 = svg3.append("rect").attr("x",300).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

            const rect7_3 = svg3.append("rect").attr("x",360).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

            const rect8_3 = svg3.append("rect").attr("x",420).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

            const rect9_3 = svg3.append("rect").attr("x",480).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

            const rect10_3 = svg3.append("rect").attr("x",540).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

            const rect11_3 = svg3.append("rect").attr("x",600).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

            const rect12_3 = svg3.append("rect").attr("x",660).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "lightgreen").attr("stroke", "black")

            const text1_3 = svg3.append("text").attr("x",65).attr("y",30).attr("fill","white").text("G")     

            const text2_3 = svg3.append("text").attr("x",65).attr("y",290).attr("fill","white").text("G")

            const text3_3 = svg3.append("text").attr("x",113).attr("y",30).attr("fill","white").text("10")

            const text4_3 = svg3.append("text").attr("x",113).attr("y",290).attr("fill","white").text("10")

            const text5_3 = svg3.append("text").attr("x",172).attr("y",30).attr("fill","white").text("20")

            const text6_3 = svg3.append("text").attr("x",172).attr("y",290).attr("fill","white").text("20")

            const text7_3 = svg3.append("text").attr("x",232).attr("y",30).attr("fill","white").text("30")

            const text8_3 = svg3.append("text").attr("x",232).attr("y",290).attr("fill","white").text("30")

            const text9_3 = svg3.append("text").attr("x",292).attr("y",30).attr("fill","white").text("40")

            const text10_3 = svg3.append("text").attr("x",292).attr("y",290).attr("fill","white").text("40")

            const text11_3 = svg3.append("text").attr("x",352).attr("y",30).attr("fill","white").text("50")

            const text12_3 = svg3.append("text").attr("x",352).attr("y",290).attr("fill","white").text("50")

            const text13_3 = svg3.append("text").attr("x",412).attr("y",30).attr("fill","white").text("40")

            const text14_3 = svg3.append("text").attr("x",412).attr("y",290).attr("fill","white").text("40")

            const text15_3 = svg3.append("text").attr("x",472).attr("y",30).attr("fill","white").text("30")

            const text16_3 = svg3.append("text").attr("x",472).attr("y",290).attr("fill","white").text("30")

            const text17_3 = svg3.append("text").attr("x",532).attr("y",30).attr("fill","white").text("20")

            const text18_3 = svg3.append("text").attr("x",532).attr("y",290).attr("fill","white").text("20")

            const text19_3 = svg3.append("text").attr("x",593).attr("y",30).attr("fill","white").text("10")

            const text20_3 = svg3.append("text").attr("x",593).attr("y",290).attr("fill","white").text("10")

            const text21_3 = svg3.append("text").attr("x",645).attr("y",30).attr("fill","white").text("G")

            const text22_3 = svg3.append("text").attr("x",645).attr("y",290).attr("fill","white").text("G")

            

            //  Loading in all necessary CSV files

            d3.csv("/data/week8_all_data_and_names_and_opponents_and_game_names_final.csv").then(function(data) {

                d3.csv("/data/week8_total_pressure_defense_final.csv").then(function(data2) {

                    d3.csv("/data/games_week8_html.csv").then(function(data_games) {

                        d3.csv("/data/plays_with_names_html.csv").then(function(data_plays) {

                

                            // Fill the game dropdown window with all the possile games from the data.

                            //Based on the selection made, the play dropdown window is filled with the plays from that game.

                            var games = Array.from(new Set(data.map(function(d) { return d.game_name; })))

                

                            var gameDropdown = d3.select("#game-dropdown")

                            gameDropdown.selectAll("option").remove();

                            var defaultOption = gameDropdown.append("option")

                                .text("Select a game")

                                .attr("value", "");

                            var gameOptions = gameDropdown.selectAll("option")

                                .data([""].concat(games))

                                .enter()
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                                .append("option")

                                .text(function(d) { return d; })

                                .attr("value", function(d) { return d; })

                            

                            defaultOption.attr("selected", true)


                            gameDropdown.on("change", function() {

                                var selectedGame = this.value

                                var selectedGamePlays = [...new Set(data.filter(function(d) { return d.game_name === selectedGame; })

                                        .map(function(d) { return d.playId; }))];

                                

                                var playDropdown = d3.select("#play-dropdown")

                                playDropdown.selectAll("option").remove()


                                playDropdown.append("option")

                                    .text("Select a play")

                                    .attr("value", "")


                                playDropdown.selectAll("option")

                                    .data([""].concat(selectedGamePlays))

                                    .enter()

                                    .append("option")

                                    .text(function(d) { return d; })

                                    .attr("value", function(d) { return d; })

                            })


                            d3.select("#play-dropdown").on("change", function() {


                                //  Once the play is selected, reset all containers. This is for when a new play is selected.

                                d3.select('#graph-container-legend').html('')

                                d3.select('#graph-container').html('')

                                d3.select('#text-container').html('')

                                d3.select('#graph-container2-legend').html('')

                                d3.select('#graph-container2').html('')

                                d3.select('#graph-container3-legend').html('')

                                d3.select('#graph-container3').html('')

                                d3.select('#graph-container4').html('')

                                d3.select('#graph-container5').html('')

                                d3.select('#graph-container6').html('')

                                d3.select('#text-container2').html('')


                                // Specifying height and width of the containers.

                                const width = 720;

                                const width_text = 1500

                                const height = 320;


                                const width_legend = 720

                                const height_legend = 50


                                const width_graph = 320

                                const height_graph = 320


                                // Recreate the layouts of the animations.

                                const svg_legend = d3

                                    .select("#graph-container-legend")

                                    .append("svg")

                                    .attr("width", width_legend)

                                    .attr("height", height_legend)


                                const svg = d3

                                    .select("#graph-container")

                                    .append("svg")

                                    .attr("width", width)

                                    .attr("height", height)


                                const svg_text = d3

                                    .select("#text-container")

                                    .append("svg")

                                    .attr("width", width_text)

                                    .attr("height", height)


                                const svg_legend2 = d3

                                    .select("#graph-container2-legend")

                                    .append("svg")

                                    .attr("width", width_legend)

                                    .attr("height", height_legend)


                                const svg_2 = d3

                                    .select("#graph-container2")

                                    .append("svg")

                                    .attr("width", width)

                                    .attr("height", height)


                                const svg_text2 = d3

                                    .select("#text-container2")

                                    .append("svg")

                                    .attr("width", width)

                                    .attr("height", height)


                                const rect1 = svg.append("rect").attr("x",0).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "lightgreen").attr("stroke", "black")

                                const rect2 = svg.append("rect").attr("x",60).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                const rect3 = svg.append("rect").attr("x",120).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                const rect4 = svg.append("rect").attr("x",180).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                const rect5 = svg.append("rect").attr("x",240).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                const rect6 = svg.append("rect").attr("x",300).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                const rect7 = svg.append("rect").attr("x",360).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                const rect8 = svg.append("rect").attr("x",420).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                const rect9 = svg.append("rect").attr("x",480).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                const rect10 = svg.append("rect").attr("x",540).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                const rect11 = svg.append("rect").attr("x",600).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                const rect12 = svg.append("rect").attr("x",660).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "lightgreen").attr("stroke", "black")

                                const text1 = svg.append("text").attr("x",65).attr("y",30).attr("fill","white").text("G")     

                                const text2 = svg.append("text").attr("x",65).attr("y",290).attr("fill","white").text("G")

                                const text3 = svg.append("text").attr("x",113).attr("y",30).attr("fill","white").text("10")

                                const text4 = svg.append("text").attr("x",113).attr("y",290).attr("fill","white").text("10")

                                const text5 = svg.append("text").attr("x",172).attr("y",30).attr("fill","white").text("20")

                                const text6 = svg.append("text").attr("x",172).attr("y",290).attr("fill","white").text("20")

                                const text7 = svg.append("text").attr("x",232).attr("y",30).attr("fill","white").text("30")

                                const text8 = svg.append("text").attr("x",232).attr("y",290).attr("fill","white").text("30")

                                const text9 = svg.append("text").attr("x",292).attr("y",30).attr("fill","white").text("40")

                                const text10 = svg.append("text").attr("x",292).attr("y",290).attr("fill","white").text("40")

                                const text11 = svg.append("text").attr("x",352).attr("y",30).attr("fill","white").text("50")

                                const text12 = svg.append("text").attr("x",352).attr("y",290).attr("fill","white").text("50")

                                const text13 = svg.append("text").attr("x",412).attr("y",30).attr("fill","white").text("40")

                                const text14 = svg.append("text").attr("x",412).attr("y",290).attr("fill","white").text("40")

                                const text15 = svg.append("text").attr("x",472).attr("y",30).attr("fill","white").text("30")

                                const text16 = svg.append("text").attr("x",472).attr("y",290).attr("fill","white").text("30")

                                const text17 = svg.append("text").attr("x",532).attr("y",30).attr("fill","white").text("20")

                                const text18 = svg.append("text").attr("x",532).attr("y",290).attr("fill","white").text("20")

                                const text19 = svg.append("text").attr("x",593).attr("y",30).attr("fill","white").text("10")

                                const text20 = svg.append("text").attr("x",593).attr("y",290).attr("fill","white").text("10")

                                const text21 = svg.append("text").attr("x",645).attr("y",30).attr("fill","white").text("G")

                                const text22 = svg.append("text").attr("x",645).attr("y",290).attr("fill","white").text("G")


                                const rect1_2 = svg_2.append("rect").attr("x",0).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "white").attr("stroke", "black")

                                const rect2_2 = svg_2.append("rect").attr("x",60).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "white").attr("stroke", "black")

                                const rect3_2 = svg_2.append("rect").attr("x",120).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "white").attr("stroke", "black")

                                const rect4_2 = svg_2.append("rect").attr("x",180).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "white").attr("stroke", "black")
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                                const rect5_2 = svg_2.append("rect").attr("x",240).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "white").attr("stroke", "black")

                                const rect6_2 = svg_2.append("rect").attr("x",300).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "white").attr("stroke", "black")

                                const rect7_2 = svg_2.append("rect").attr("x",360).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "white").attr("stroke", "black")

                                const rect8_2 = svg_2.append("rect").attr("x",420).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "white").attr("stroke", "black")

                                const rect9_2 = svg_2.append("rect").attr("x",480).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "white").attr("stroke", "black")

                                const rect10_2 = svg_2.append("rect").attr("x",540).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "white").attr("stroke", "black")

                                const rect11_2 = svg_2.append("rect").attr("x",600).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "white").attr("stroke", "black")

                                const rect12_2 = svg_2.append("rect").attr("x",660).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "white").attr("stroke", "black")

                                const text1_2 = svg_2.append("text").attr("x",65).attr("y",30).attr("fill","black").text("G")     

                                const text2_2 = svg_2.append("text").attr("x",65).attr("y",290).attr("fill","black").text("G")

                                const text3_2 = svg_2.append("text").attr("x",113).attr("y",30).attr("fill","black").text("10")

                                const text4_2 = svg_2.append("text").attr("x",113).attr("y",290).attr("fill","black").text("10")

                                const text5_2 = svg_2.append("text").attr("x",172).attr("y",30).attr("fill","black").text("20")

                                const text6_2 = svg_2.append("text").attr("x",172).attr("y",290).attr("fill","black").text("20")

                                const text7_2 = svg_2.append("text").attr("x",232).attr("y",30).attr("fill","black").text("30")

                                const text8_2 = svg_2.append("text").attr("x",232).attr("y",290).attr("fill","black").text("30")

                                const text9_2 = svg_2.append("text").attr("x",292).attr("y",30).attr("fill","black").text("40")

                                const text10_2 = svg_2.append("text").attr("x",292).attr("y",290).attr("fill","black").text("40")

                                const text11_2 = svg_2.append("text").attr("x",352).attr("y",30).attr("fill","black").text("50")

                                const text12_2 = svg_2.append("text").attr("x",352).attr("y",290).attr("fill","black").text("50")

                                const text13_2 = svg_2.append("text").attr("x",412).attr("y",30).attr("fill","black").text("40")

                                const text14_2 = svg_2.append("text").attr("x",412).attr("y",290).attr("fill","black").text("40")

                                const text15_2 = svg_2.append("text").attr("x",472).attr("y",30).attr("fill","black").text("30")

                                const text16_2 = svg_2.append("text").attr("x",472).attr("y",290).attr("fill","black").text("30")

                                const text17_2 = svg_2.append("text").attr("x",532).attr("y",30).attr("fill","black").text("20")

                                const text18_2 = svg_2.append("text").attr("x",532).attr("y",290).attr("fill","black").text("20")

                                const text19_2 = svg_2.append("text").attr("x",593).attr("y",30).attr("fill","black").text("10")

                                const text20_2 = svg_2.append("text").attr("x",593).attr("y",290).attr("fill","black").text("10")

                                const text21_2 = svg_2.append("text").attr("x",645).attr("y",30).attr("fill","black").text("G")

                                const text22_2 = svg_2.append("text").attr("x",645).attr("y",290).attr("fill","black").text("G")


                                const svg3 = d3.select("#graph-container3").append("svg").attr("width", 720).attr("height", 320)

                                const rect1_3 = svg3.append("rect").attr("x",0).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "lightgreen").attr("stroke", "black")

                                const rect2_3 = svg3.append("rect").attr("x",60).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                const rect3_3 = svg3.append("rect").attr("x",120).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                const rect4_3 = svg3.append("rect").attr("x",180).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                const rect5_3 = svg3.append("rect").attr("x",240).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                const rect6_3 = svg3.append("rect").attr("x",300).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                const rect7_3 = svg3.append("rect").attr("x",360).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                const rect8_3 = svg3.append("rect").attr("x",420).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                const rect9_3 = svg3.append("rect").attr("x",480).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                const rect10_3 = svg3.append("rect").attr("x",540).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                const rect11_3 = svg3.append("rect").attr("x",600).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                const rect12_3 = svg3.append("rect").attr("x",660).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "lightgreen").attr("stroke", "black")

                                const text1_3 = svg3.append("text").attr("x",65).attr("y",30).attr("fill","white").text("G")     

                                const text2_3 = svg3.append("text").attr("x",65).attr("y",290).attr("fill","white").text("G")

                                const text3_3 = svg3.append("text").attr("x",113).attr("y",30).attr("fill","white").text("10")

                                const text4_3 = svg3.append("text").attr("x",113).attr("y",290).attr("fill","white").text("10")

                                const text5_3 = svg3.append("text").attr("x",172).attr("y",30).attr("fill","white").text("20")

                                const text6_3 = svg3.append("text").attr("x",172).attr("y",290).attr("fill","white").text("20")

                                const text7_3 = svg3.append("text").attr("x",232).attr("y",30).attr("fill","white").text("30")

                                const text8_3 = svg3.append("text").attr("x",232).attr("y",290).attr("fill","white").text("30")

                                const text9_3 = svg3.append("text").attr("x",292).attr("y",30).attr("fill","white").text("40")

                                const text10_3 = svg3.append("text").attr("x",292).attr("y",290).attr("fill","white").text("40")

                                const text11_3 = svg3.append("text").attr("x",352).attr("y",30).attr("fill","white").text("50")

                                const text12_3 = svg3.append("text").attr("x",352).attr("y",290).attr("fill","white").text("50")

                                const text13_3 = svg3.append("text").attr("x",412).attr("y",30).attr("fill","white").text("40")

                                const text14_3 = svg3.append("text").attr("x",412).attr("y",290).attr("fill","white").text("40")

                                const text15_3 = svg3.append("text").attr("x",472).attr("y",30).attr("fill","white").text("30")

                                const text16_3 = svg3.append("text").attr("x",472).attr("y",290).attr("fill","white").text("30")

                                const text17_3 = svg3.append("text").attr("x",532).attr("y",30).attr("fill","white").text("20")

                                const text18_3 = svg3.append("text").attr("x",532).attr("y",290).attr("fill","white").text("20")

                                const text19_3 = svg3.append("text").attr("x",593).attr("y",30).attr("fill","white").text("10")

                                const text20_3 = svg3.append("text").attr("x",593).attr("y",290).attr("fill","white").text("10")

                                const text21_3 = svg3.append("text").attr("x",645).attr("y",30).attr("fill","white").text("G")

                                const text22_3 = svg3.append("text").attr("x",645).attr("y",290).attr("fill","white").text("G")


                                

                                // Defining the xScale and the yScale for the animation of the play.

                                // Scaling linear to fit the height and the width of the play.

                                const xScale = d3.scaleLinear()

                                    .domain([0, 120])

                                    .range([0, width]);


                                const yScale = d3.scaleLinear()

                                    .domain([0, 160/3])

                                    .range([0, height]);

                                

                                // Defining the duration and delay of the animation, making it at 0.5 times the actual speed, since on frame represents 1/10th of a second.

                                const duration = 200

                                const delay = 200


                                let frameIndex = 0  // frameIndex to keep track of the frame during the animation


                                // Matching the offensive team with the jersey they wore during the actual game for the first animation

                                function getColor(d) {

                                    if (d.team === "ATL") {return "black"}

                                    if (d.team === "CAR") {return "white"}

                                    if (d.team === "ARI") {return "red"}

                                    if (d.team === "GB") {return "green"}

                                    if (d.team === "DET") {return "blue"}

                                    if (d.team === "PHI") {return "white"}

                                    if (d.team === "SEA") {return "navy"}

                                    if (d.team === "JAX") {return "white"}

                                    if (d.team === "CLE") {return "orange"}

                                    if (d.team === "PIT") {return "white"}

                                    if (d.team === "IND") {return "blue"}

                                    if (d.team === "TEN") {return "white"}

                                    if (d.team === "NYJ") {return "black"}

                                    if (d.team === "CIN") {return "white"}

                                    if (d.team === "HOU") {return "black"}

                                    if (d.team === "LA") {return "white"}

                                    if (d.team === "NO") {return "white"}

                                    if (d.team === "TB") {return "red"}

                                    if (d.team === "DEN") {return "orange"}

                                    if (d.team === "WAS") {return "white"}

                                    if (d.team === "LAC") {return "navy"}

                                    if (d.team === "NE") {return "white"}

                                    if (d.team === "BUF") {return "white"}

                                    if (d.team === "MIA") {return "turquoise"}

                                    if (d.team === "CHI") {return "navy"}

                                    if (d.team === "SF") {return "white"}

                                    if (d.team === "MIN") {return "purple"}

                                    if (d.team === "DAL") {return "white"}

                                    if (d.team === "KC") {return "red"}

                                    if (d.team === "NYG") {return "white"}

                                    if (d.team === "football") {return "brown"}

                                }


                                // Matching the defensive team with the jersey they wore during the actual game for the first animation

                                function getOpponent(d) {

                                    if (d.opponent === "ATL") {return "black"}

                                    if (d.opponent === "CAR") {return "white"}

                                    if (d.opponent === "ARI") {return "red"}

                                    if (d.opponent === "GB") {return "green"}

                                    if (d.opponent === "DET") {return "blue"}

                                    if (d.opponent === "PHI") {return "white"}

                                    if (d.opponent === "SEA") {return "navy"}

                                    if (d.opponent === "JAX") {return "white"}
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                                    if (d.opponent === "CLE") {return "orange"}

                                    if (d.opponent === "PIT") {return "white"}

                                    if (d.opponent === "IND") {return "blue"}

                                    if (d.opponent === "TEN") {return "white"}

                                    if (d.opponent === "NYJ") {return "black"}

                                    if (d.opponent === "CIN") {return "white"}

                                    if (d.opponent === "HOU") {return "black"}

                                    if (d.opponent === "LA") {return "white"}

                                    if (d.opponent === "NO") {return "white"}

                                    if (d.opponent === "TB") {return "red"}

                                    if (d.opponent === "DEN") {return "orange"}

                                    if (d.opponent === "WAS") {return "white"}

                                    if (d.opponent === "LAC") {return "navy"}

                                    if (d.opponent === "NE") {return "white"}

                                    if (d.opponent === "BUF") {return "white"}

                                    if (d.opponent === "MIA") {return "turquoise"}

                                    if (d.opponent === "CHI") {return "navy"}

                                    if (d.opponent === "SF") {return "white"}

                                    if (d.opponent === "MIN") {return "purple"}

                                    if (d.opponent === "DAL") {return "white"}

                                    if (d.opponent === "KC") {return "red"}

                                    if (d.opponent === "NYG") {return "white"}

                                }


                                // Function to get match the specific roles of the player to a color for the second animation

                                function getColor2(d) {

                                    if (d.role === "Pass Rush") {return "red"}

                                    if (d.role === "Coverage") {return "white"}

                                    if (d.role === "Pass") {return "blue"}

                                    if (d.role === "Pass Route") {return "lightgreen"}

                                    if (d.role === "Pass Block") {return "green"}

                                    else {return "black"}

                                }


                                var selectedGame = d3.select("#game-dropdown").property("value")    //  finding the selected game

                                var selectedPlay = this.value                                       //  finding the selected play


                                

                                // Filtering the data by selected game and play

                                var playData = data.filter(function(d) {

                                    return d.game_name === selectedGame && d.playId === selectedPlay

                                })


                                // Filtering for the first index of the play data to get the information on the home and away team

                                var firstIndexData = playData.filter(function(d) {

                                    return d.frameId == 1

                                })


                                // Filtering the data of the first index only for the Quarterback

                                var firstIndexDataQB = firstIndexData.filter(function(d) {

                                    return d.role === "Pass"

                                })


                                // Filtering the second data frame by selected game and play

                                var playData2 = data2.filter(function(d) {

                                    return d.game_name === selectedGame && d.playId === selectedPlay

                                })


                                // This was used later on as a simpler tool of finding the names of the team

                                var teams = data_games.filter(function(d) {

                                    return d.game_name === selectedGame

                                })


                                // This filtered the original plays.csv data to determine the score on the play 

                                var teams_plays = data_plays.filter(function(d) {

                                    return d.game_name === selectedGame && d.playId === selectedPlay

                                })


                                // Determinig the maximum frames to help set the x-axis, the maximum pressure on all plays to help set the y-axis,

                                // and the maximum and average pressure on the selected play by the entire team.

                                maxFrames = d3.max(playData2, function(d) { return parseInt(d.frameId); })

                                maxPressure = d3.max(data2, function(d) { return parseFloat(d.total_pressure); })

                                maxPressure_on_play = d3.max(playData2, function(d) { return parseFloat(d.total_pressure); })

                                meanPressure_on_play = d3.mean(playData2, function(d) { return parseFloat(d.total_pressure); })

                                

                                // Setting up the first graph

                                var xScale_graph = d3.scaleLinear()

                                                        .domain([1, maxFrames])

                                                        .range([40, width_graph])


                                var yScale_graph = d3.scaleLinear()

                                                        .domain([0, maxPressure])

                                                        .range([height_graph-40, 0])


                                var svg_graph = d3.select('#graph-container4')

                                                    .append("svg")

                                                    .attr("width", width_graph)

                                                    .attr("height", height_graph)

                                

                                var path = svg_graph.append("path")

                                                        .attr("class", "line")

                                                        .style("fill", "none")

                                                        .style("stroke", "steelblue")

                                                        .style("stroke-width", "2")


                                var xAxis = d3.axisBottom(xScale_graph)


                                svg_graph.append("g")

                                            .attr("class", "x-axis")

                                            .attr("transform", "translate(0," + (height_graph - 40) + ")")

                                            .call(xAxis)


                                var yAxis = d3.axisLeft(yScale_graph).ticks(maxPressure)


                                svg_graph.append("g")

                                    .attr("class", "y-axis")

                                    .attr("transform", "translate(40,0)")

                                    .call(yAxis)


                                svg_graph.append("text")

                                        .attr("class", "y-axis-label")

                                        .attr("transform", "rotate(-90)")

                                        .attr("x", -height_graph / 2 + 20)

                                        .attr("y", 15)

                                        .style("text-anchor", "middle")

                                        .text("Pressure");


                                svg_graph.append("text")

                                        .attr("class", "x-axis-label")

                                        .attr("x", width_graph / 2 + 20)

                                        .attr("y", height_graph)

                                        .style("text-anchor", "middle")

                                        .text("Frame");


                                var currentIndex = 0    // keeping track of the current index


                                var line = d3.line()

                                                .x(function(d) { return xScale_graph(d.frameId); })

                                                .y(function(d) { return yScale_graph(d.total_pressure); })
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                                                .curve(d3.curveCardinal)

                                

                                // Creating a line for the pressure of the graph, revealing it frame by frame and smooting it out

                                // The graph will run parallel to the second animation for better visualization.

                                // They will eventually run out of sync, the page just has to be refreshed then.

                                function updateLine() {

                                    var currentFrameData = playData2.slice(0, currentIndex + 1)

                                    var holdPeriodDuration = delay*2.5


                                    path.datum(currentFrameData)

                                        .attr("d", line

                                        )

                                    currentIndex++


                                    if (currentIndex >= playData2.length) {

                                        setTimeout(function(){

                                            currentIndex = 0

                                            path.attr("d", null)

                                            updateLine()

                                        }, holdPeriodDuration)

                                    }

                                    else {

                                        setTimeout(updateLine, delay)

                                    }

                                }


                                setTimeout(updateLine, delay)

                                

                                // Filling the container next to the first animation with useful information, such a score on the play, personnel by the offense and defense and the coverage type.

                                const team_text0 = svg_text.append("text").data(teams_plays).attr("x",35).attr("y",30).attr("fill","black").text(d => d.playDescription)

                                const team_text1 = svg_text.append("text").attr("x",35).attr("y",60).attr("fill","black").text("Current Score: ")

                                const team_text2 = svg_text.append("text").data(teams).attr("x",135).attr("y",60).attr("fill","black").text(d => d.homeTeamAbbr)

                                const team_text3 = svg_text.append("text").data(teams_plays).attr("x",175).attr("y",60).attr("fill","black").text(d => d.preSnapHomeScore)

                                const team_text4 = svg_text.append("text").attr("x",200).attr("y",60).attr("fill","black").text("-")

                                const team_text5 = svg_text.append("text").data(teams_plays).attr("x",215).attr("y",60).attr("fill","black").text(d => d.preSnapVisitorScore)

                                const team_text6 = svg_text.append("text").data(teams).attr("x",240).attr("y",60).attr("fill","black").text(d => d.visitorTeamAbbr)

                                const team_text7 = svg_text.append("text").attr("x",35).attr("y",90).attr("fill","black").text("Offensive Personnel: ")

                                const team_text8 = svg_text.append("text").data(teams_plays).attr("x",180).attr("y",90).attr("fill","black").text(d => d.personnelO)

                                const team_text9 = svg_text.append("text").attr("x",35).attr("y",120).attr("fill","black").text("Defensive Personnel: ")

                                const team_text10 = svg_text.append("text").data(teams_plays).attr("x",180).attr("y",120).attr("fill","black").text(d => d.personnelD)

                                const team_text11 = svg_text.append("text").attr("x",35).attr("y",150).attr("fill","black").text("Defensive Coverage: ")

                                const team_text12 = svg_text.append("text").data(teams_plays).attr("x",180).attr("y",150).attr("fill","black").text(d => d.pff_passCoverage)


                                // Filling the container next to the second animation and first pressure graph with information on the maximum and average pressure of the defense.

                                const pressure_text0 = svg_text2.append("text").attr("x",35).attr("y",240).attr("fill","black").text("Maximum pressure by the defense: ")

                                const pressure_text1 = svg_text2.append("text").attr("x",285).attr("y",240).attr("fill","black").text(maxPressure_on_play)

                                const pressure_text2 = svg_text2.append("text").attr("x",35).attr("y",270).attr("fill","black").text("Average pressure by the defense: ")

                                const pressure_text3 = svg_text2.append("text").attr("x",285).attr("y",270).attr("fill","black").text(meanPressure_on_play)


                                // Adding the team names to the end zone of the first graph

                                const endzone_text = svg.append("text").data(firstIndexDataQB).attr("x",650).attr("y",175).attr("fill","white").text(d => d.opponent).attr("transform","rotate(90, 690, 160)").attr("font-
size", "40px")

                                const endzone_text2 = svg.append("text").data(firstIndexDataQB).attr("x",0).attr("y",175).attr("fill","white").text(d => d.team).attr("transform","rotate(270, 30, 160)").attr("font-size", 
"40px")


                                // Adding a legend to the first animation with the appropriate team names. Removing all circles beforehand in case of a different play being loaded.

                                svg_legend.selectAll("circle").remove();

                                const circle_svg_legend = svg_legend.append("circle").data(firstIndexDataQB).attr("cx",25).attr("cy",25).attr("r",5).attr("fill",getColor).attr("stroke", "black").attr("stroke-width", 1)

                                const off_team_svg_legend = svg_legend.append("text").data(firstIndexDataQB).attr("x",35).attr("y",30).attr("fill","black").text(d => d.team)

                                const circle_opponent_svg_legend = svg_legend.append("circle").data(firstIndexDataQB).attr("cx",85).attr("cy",25).attr("r",5).attr("fill",getOpponent).attr("stroke", "black").attr("stroke-
width", 1)

                                const def_team_svg_legend = svg_legend.append("text").data(firstIndexDataQB).attr("x",95).attr("y",30).attr("fill","black").text(d => d.opponent)

                                const circle_football_svg_legend = svg_legend.append("circle").data(firstIndexDataQB).attr("cx",145).attr("cy",25).attr("r",5).attr("fill","brown").attr("stroke", "black").attr("stroke-
width", 1)

                                const football_svg_legend = svg_legend.append("text").data(firstIndexDataQB).attr("x",155).attr("y",30).attr("fill","black").text("Football")


                                // Adding a legend to the second animation with the appropriate role names. Removing all circles beforehand in case of a different play being loaded.

                                svg_legend2.selectAll("circle").remove();

                                const circle_qb = svg_legend2.append("circle").attr("cx",25).attr("cy",25).attr("r",5).attr("fill","blue").attr("stroke", "black").attr("stroke-width", 1)

                                const qb_text = svg_legend2.append("text").attr("x",35).attr("y",30).attr("fill","black").text("QB")

                                const circle_receiver = svg_legend2.append("circle").attr("cx",85).attr("cy",25).attr("r",5).attr("fill","lightgreen").attr("stroke", "black").attr("stroke-width", 1)

                                const receiver_text = svg_legend2.append("text").attr("x",95).attr("y",30).attr("fill","black").text("WR")

                                const circle_ol = svg_legend2.append("circle").attr("cx",145).attr("cy",25).attr("r",5).attr("fill","green").attr("stroke", "black").attr("stroke-width", 1)

                                const ol_text = svg_legend2.append("text").attr("x",155).attr("y",30).attr("fill","black").text("OL")

                                const circle_cov = svg_legend2.append("circle").attr("cx",205).attr("cy",25).attr("r",5).attr("fill","white").attr("stroke", "black").attr("stroke-width", 1)

                                const cov_text = svg_legend2.append("text").attr("x",215).attr("y",30).attr("fill","black").text("Cov")

                                const circle_rush = svg_legend2.append("circle").attr("cx",265).attr("cy",25).attr("r",5).attr("fill","red").attr("stroke", "black").attr("stroke-width", 1)

                                const rush_text = svg_legend2.append("text").attr("x",275).attr("y",30).attr("fill","black").text("Pass Rush (opacity changes based on pressure created by player)")


                                // Function for both the first, and the second animation.

                                // Animates the play from the top-down view frame by frame. Circles have to be deleted after every frame, if the frame index reaches its maximum value, the animation resets.

                                function animateFrames() {

                                    const frameData = playData.filter(d => parseInt(d.frameId) === frameIndex)


                                    svg.selectAll("circle").remove();


                                    svg.selectAll("circle")

                                        .data(frameData)

                                        .enter()

                                        .append("circle")

                                        .attr("r", 5)

                                        .attr("cx", d => xScale(parseFloat(d.x)))

                                        .attr("cy", d => yScale(parseFloat(d.y)))

                                        .attr("fill", getColor)

                                        .attr("stroke", "black")

                                        .attr("stroke-width", 1)

                                        .transition()

                                        .duration(duration)

                                        .attrTween("cx", function (d) {

                                            const interpolateX = d3.interpolate(this.getAttribute("cx"), xScale(parseFloat(d.x)))

                                            return function (t) {

                                                return interpolateX(t)

                                            }

                                        })

                                        .attrTween("cy", function (d) {

                                            const interpolateY = d3.interpolate(this.getAttribute("cy"), yScale(parseFloat(d.y)));

                                            return function (t) {

                                                return interpolateY(t)

                                            }

                                        })


                                    svg_2.selectAll("circle").remove();


                                    const dots = svg_2.selectAll("circle")

                                        .data(frameData)

                                        .enter()

                                        .append("circle")

                                        .attr("r", 5)

                                        .attr("cx", d => xScale(parseFloat(d.x)))

                                        .attr("cy", d => yScale(parseFloat(d.y)))

                                        .attr("fill", getColor2)

                                        .attr("stroke", "black")

                                        .attr("stroke-opacity", 1)

                                        .attr("stroke-width", 1)

                                        .style("fill-opacity", d => d.predicted_pressure)

                                        

                                        .transition()

                                        .duration(duration)

                                        .attrTween("cx", function (d) {
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                                            const interpolateX = d3.interpolate(this.getAttribute("cx"), xScale(parseFloat(d.x)))

                                            return function (t) {

                                                return interpolateX(t)

                                            }

                                        })

                                        .attrTween("cy", function (d) {

                                            const interpolateY = d3.interpolate(this.getAttribute("cy"), yScale(parseFloat(d.y)));

                                            return function (t) {

                                                return interpolateY(t)

                                            }

                                        })    

                                    

                                    frameIndex++


                                    if (frameIndex > d3.max(playData, d => parseInt(d.frameId))) {

                                        frameIndex = 0

                                    }


                                    setTimeout(animateFrames, delay);

                                }


                            

                                setTimeout(animateFrames, delay)


                                // Creating the drop down window for the player selection and filling it with all the pass rushers on the play.

                                var selectedGame = this.value

                                var selectedPlayPlayers = [...new Set(playData.filter(function(d) { return d.playId === selectedPlay && d.role === "Pass Rush"; })

                                        .map(function(d) { return d.displayName; }))];

                                

                                var playerDropdown = d3.select("#player-dropdown")

                                playerDropdown.selectAll("option").remove()


                                playerDropdown.append("option")

                                    .text("Select a Pass Rusher")

                                    .attr("value", "")


                                playerDropdown.selectAll("option")

                                    .data([""].concat(selectedPlayPlayers))

                                    .enter()

                                    .append("option")

                                    .text(function(d) { return d; })

                                    .attr("value", function(d) { return d; })


                                // Once the player is selected, same procedure as for the first two animations: delete the contents of the containers in case of a new play being selected and define all necessary variables.

                                d3.select("#player-dropdown").on("change", function() {

                                    d3.select('#graph-container3-legend').html('')

                                    d3.select('#graph-container3').html('')

                                    d3.select('#graph-container5').html('')

                                    d3.select('#graph-container6').html('')

                                    d3.select('#text-container3').html('')


                                    const width = 720;

                                    const height = 320;


                                    const width_legend = 1700

                                    const height_legend = 50


                                    const width_graph = 320

                                    const height_grpah = 320


                                    const svg_legend3 = d3

                                        .select("#graph-container3-legend")

                                        .append("svg")

                                        .attr("width", width_legend)

                                        .attr("height", height_legend)


                                    const svg3 = d3

                                        .select("#graph-container3")

                                        .append("svg")

                                        .attr("width", width)

                                        .attr("height", height)


                                    const svg_text3 = d3

                                        .select("#text-container3")

                                        .append("svg")

                                        .attr("width", width)

                                        .attr("height", height)


                                    const rect1 = svg3.append("rect").attr("x",0).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "lightgreen").attr("stroke", "black")

                                    const rect2 = svg3.append("rect").attr("x",60).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                    const rect3 = svg3.append("rect").attr("x",120).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                    const rect4 = svg3.append("rect").attr("x",180).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                    const rect5 = svg3.append("rect").attr("x",240).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                    const rect6 = svg3.append("rect").attr("x",300).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                    const rect7 = svg3.append("rect").attr("x",360).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                    const rect8 = svg3.append("rect").attr("x",420).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                    const rect9 = svg3.append("rect").attr("x",480).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                    const rect10 = svg3.append("rect").attr("x",540).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                    const rect11 = svg3.append("rect").attr("x",600).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "green").attr("stroke", "black")

                                    const rect12 = svg3.append("rect").attr("x",660).attr("y", 0).attr("width", 60).attr("height", 320).attr("fill", "lightgreen").attr("stroke", "black")

                                    const text1 = svg3.append("text").attr("x",65).attr("y",30).attr("fill","white").text("G")     

                                    const text2 = svg3.append("text").attr("x",65).attr("y",290).attr("fill","white").text("G")

                                    const text3 = svg3.append("text").attr("x",113).attr("y",30).attr("fill","white").text("10")

                                    const text4 = svg3.append("text").attr("x",113).attr("y",290).attr("fill","white").text("10")

                                    const text5 = svg3.append("text").attr("x",172).attr("y",30).attr("fill","white").text("20")

                                    const text6 = svg3.append("text").attr("x",172).attr("y",290).attr("fill","white").text("20")

                                    const text7 = svg3.append("text").attr("x",232).attr("y",30).attr("fill","white").text("30")

                                    const text8 = svg3.append("text").attr("x",232).attr("y",290).attr("fill","white").text("30")

                                    const text9 = svg3.append("text").attr("x",292).attr("y",30).attr("fill","white").text("40")

                                    const text10 = svg3.append("text").attr("x",292).attr("y",290).attr("fill","white").text("40")

                                    const text11 = svg3.append("text").attr("x",352).attr("y",30).attr("fill","white").text("50")

                                    const text12 = svg3.append("text").attr("x",352).attr("y",290).attr("fill","white").text("50")

                                    const text13 = svg3.append("text").attr("x",412).attr("y",30).attr("fill","white").text("40")

                                    const text14 = svg3.append("text").attr("x",412).attr("y",290).attr("fill","white").text("40")

                                    const text15 = svg3.append("text").attr("x",472).attr("y",30).attr("fill","white").text("30")

                                    const text16 = svg3.append("text").attr("x",472).attr("y",290).attr("fill","white").text("30")

                                    const text17 = svg3.append("text").attr("x",532).attr("y",30).attr("fill","white").text("20")

                                    const text18 = svg3.append("text").attr("x",532).attr("y",290).attr("fill","white").text("20")

                                    const text19 = svg3.append("text").attr("x",593).attr("y",30).attr("fill","white").text("10")

                                    const text20 = svg3.append("text").attr("x",593).attr("y",290).attr("fill","white").text("10")

                                    const text21 = svg3.append("text").attr("x",645).attr("y",30).attr("fill","white").text("G")

                                    const text22 = svg3.append("text").attr("x",645).attr("y",290).attr("fill","white").text("G")


                                    const xScale = d3.scaleLinear()

                                        .domain([0, 120])

                                        .range([0, width]);


                                    const yScale = d3.scaleLinear()

                                        .domain([0, 160/3])

                                        .range([0, height]);

                                

                                    const duration = 200

                                    const delay = 200


                                    let frameIndex = 0


                                    var selectedGame = d3.select("#game-dropdown").property("value")

                                    var selectedPlay = d3.select("#play-dropdown").property("value")

                                    var selectedPlayer = this.value // finding the selected player


137



                                    var playData = data.filter(function(d) {

                                        return d.game_name === selectedGame && d.playId === selectedPlay

                                    })


                                    var firstIndexData = playData.filter(function(d) {

                                        return d.frameId == 1

                                    })


                                    var firstIndexDataQB = firstIndexData.filter(function(d) {

                                        return d.role === "Pass"

                                    })


                                    // Finding the name of the selected player so it can be used later on.

                                    var playerData = playData.filter(function(d) {

                                        return d.displayName === selectedPlayer

                                    })


                                    // Adding the names of the teams to the endzone

                                    const endzone_text = svg3.append("text").data(firstIndexDataQB).attr("x",650).attr("y",175).attr("fill","white").text(d => d.opponent).attr("transform","rotate(90, 690, 
160)").attr("font-size", "40px")

                                    const endzone_text2 = svg3.append("text").data(firstIndexDataQB).attr("x",0).attr("y",175).attr("fill","white").text(d => d.team).attr("transform","rotate(270, 30, 160)").attr("font-
size", "40px")


                                    // Similar to before, finding the maximum amount of frames for the x-axis

                                    // Also finding the maximum and average pressure on the play by the player

                                    // Finding the delta between the predicted pressure and the predicted motion pressure by taking the sum of all values of both and subtracting from one another.

                                    maxFrames = d3.max(playerData, function(d) { return parseInt(d.frameId); })

                                    maxPressure_on_play = d3.max(playerData, function(d) { return parseFloat(d.predicted_pressure); })

                                    meanPressure_on_play = d3.mean(playerData, function(d) { return parseFloat(d.predicted_pressure); })

                                    sumPressure_on_play = d3.sum(playerData, function(d) { return parseFloat(d.predicted_pressure); })

                                    sumPMP_on_play = d3.sum(playerData, function(d) { return parseFloat(d.predicted_motion_pressure); })

                                    delta = sumPressure_on_play - sumPMP_on_play


                                   // Filling the container to the right of the third animation and the two graphs with information on the maximum and average pressure on the play, as well as the delta between pressure and 
	 	 	 	 	 	 PMP.

                                    const pressure_text0 = svg_text3.append("text").attr("x",35).attr("y",210).attr("fill","black").text("Maximum pressure by the player: ")

                                    const pressure_text1 = svg_text3.append("text").attr("x",285).attr("y",210).attr("fill","black").text(maxPressure_on_play)

                                    const pressure_text2 = svg_text3.append("text").attr("x",35).attr("y",240).attr("fill","black").text("Average pressure by the player: ")

                                    const pressure_text3 = svg_text3.append("text").attr("x",285).attr("y",240).attr("fill","black").text(meanPressure_on_play)

                                    const pressure_text4 = svg_text3.append("text").attr("x",35).attr("y",270).attr("fill","black").text("Delta between pressure and PMP: ")

                                    const pressure_text5 = svg_text3.append("text").attr("x",285).attr("y",270).attr("fill","black").text(delta)


                                    // Creating two animated graphs: one to show the pressure per frame along the play, one to show the pressure and the PMP per frame along the play.

                                    // Setup is identical to the first graph above.

                                    var xScale_graph = d3.scaleLinear()

                                                        .domain([1, maxFrames])

                                                        .range([40, width_graph])


                                    var yScale_graph = d3.scaleLinear()

                                                            .domain([0, 1.05])

                                                            .range([height_graph-40, 0])


                                    var svg_graph3 = d3.select('#graph-container6')

                                                        .append("svg")

                                                        .attr("width", width_graph)

                                                        .attr("height", height_graph)

                                    

                                    var path3 = svg_graph3.append("path")

                                                            .attr("class", "line3")

                                                            .style("fill", "none")

                                                            .style("stroke", "steelblue")

                                                            .style("stroke-width", "2")


                                    var xAxis = d3.axisBottom(xScale_graph)

                                                    

                                    svg_graph3.append("g")

                                                .attr("class", "x-axis")

                                                .attr("transform", "translate(0," + (height_graph - 40) + ")")

                                                .call(xAxis)


                                    var yAxis = d3.axisLeft(yScale_graph).ticks(10)


                                    svg_graph3.append("g")

                                        .attr("class", "y-axis")

                                        .attr("transform", "translate(40,0)")

                                        .call(yAxis)


                                    svg_graph3.append("text")

                                            .attr("class", "y-axis-label")

                                            .attr("transform", "rotate(-90)")

                                            .attr("x", -height_graph / 2 + 20)

                                            .attr("y", 15)

                                            .style("text-anchor", "middle")

                                            .text("Pressure");


                                    svg_graph3.append("text")

                                            .attr("class", "x-axis-label")

                                            .attr("x", width_graph / 2 + 20)

                                            .attr("y", height_graph)

                                            .style("text-anchor", "middle")

                                            .text("Frame");


                                    var currentIndex2 = 0


                                    var line3 = d3.line()

                                                    .x(function(d) { return xScale_graph(d.frameId); })

                                                    .y(function(d) { return yScale_graph(d.predicted_pressure); })

                                                    .curve(d3.curveCardinal)


                                    // Animating both graphs the same way as before.

                                    function updateLine2() {

                                        var currentFrameData = playerData.slice(0, currentIndex2 + 1)

                                        var holdPeriodDuration = delay*2.5


                                        path3.datum(currentFrameData)

                                            .attr("d", line3

                                            )

                                            currentIndex2++


                                        if (currentIndex2 >= playerData.length) {

                                            setTimeout(function(){

                                                currentIndex2 = 0

                                                path3.attr("d", null)

                                                updateLine2()

                                            }, holdPeriodDuration)

                                        }

                                        else {

                                            setTimeout(updateLine2, delay)

                                        }

                                    }


                                    setTimeout(updateLine2, delay)


                                    var svg_graph = d3.select('#graph-container5')

                                                        .append("svg")

                                                        .attr("width", width_graph)

                                                        .attr("height", height_graph)
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                                    var path = svg_graph.append("path")

                                                            .attr("class", "line")

                                                            .style("fill", "none")

                                                            .style("stroke", "steelblue")

                                                            .style("stroke-width", "2")


                                    var path2 = svg_graph.append("path")

                                                            .attr("class", "line2")

                                                            .style("fill", "none")

                                                            .style("stroke", "red")

                                                            .style("stroke-width", "1")


                                    svg_graph.append("g")

                                                .attr("class", "x-axis")

                                                .attr("transform", "translate(0," + (height_graph - 40) + ")")

                                                .call(xAxis)


                                    svg_graph.append("g")

                                        .attr("class", "y-axis")

                                        .attr("transform", "translate(40,0)")

                                        .call(yAxis)


                                    svg_graph.append("text")

                                            .attr("class", "y-axis-label")

                                            .attr("transform", "rotate(-90)")

                                            .attr("x", -height_graph / 2 + 20)

                                            .attr("y", 15)

                                            .style("text-anchor", "middle")

                                            .text("Pressure");


                                    svg_graph.append("text")

                                            .attr("class", "x-axis-label")

                                            .attr("x", width_graph / 2 + 20)

                                            .attr("y", height_graph)

                                            .style("text-anchor", "middle")

                                            .text("Frame");


                                    var currentIndex = 0


                                    var line = d3.line()

                                                    .x(function(d) { return xScale_graph(d.frameId); })

                                                    .y(function(d) { return yScale_graph(d.predicted_pressure); })

                                                    .curve(d3.curveCardinal)


                                    var line2 = d3.line()

                                                    .x(function(d) { return xScale_graph(d.frameId); })

                                                    .y(function(d) { return yScale_graph(d.predicted_motion_pressure); })

                                                    .curve(d3.curveCardinal)

                                    


                                    function updateLine() {

                                        var currentFrameData = playerData.slice(0, currentIndex + 1)

                                        var currentFrameData2 = playerData.slice(0, currentIndex + 1)

                                        var holdPeriodDuration = delay*2.5


                                        path.datum(currentFrameData)

                                            .attr("d", line

                                            )

                                        path2.datum(currentFrameData2)

                                            .attr("d", line2)

                                        currentIndex++


                                        if (currentIndex >= playerData.length) {

                                            setTimeout(function(){

                                                currentIndex = 0

                                                path.attr("d", null)

                                                path2.attr("d", null)

                                                updateLine()

                                            }, holdPeriodDuration)

                                        }

                                        else {

                                            setTimeout(updateLine, delay)

                                        }

                                    }


                                    setTimeout(updateLine, delay)


                                    // Function to match the role of the players to a color for the legend.

                                    function getColor(d) {

                                        if (d.displayName === selectedPlayer) {return "red"}

                                        if (d.role === "Pass Rush") {return "white"}

                                        if (d.role === "Coverage") {return "white"}

                                        if (d.role === "Pass") {return "black"}

                                        if (d.role === "Pass Route") {return "black"}

                                        if (d.role === "Pass Block") {return "black"}

                                        else {return "blue"}

                                    }


                                    // Adding the legend

                                    svg_legend3.selectAll("circle").remove();

                                    const circle_offense = svg_legend3.append("circle").attr("cx",25).attr("cy",25).attr("r",5).attr("fill","black").attr("stroke", "black").attr("stroke-width", 1)

                                    const offense_text = svg_legend3.append("text").attr("x",35).attr("y",30).attr("fill","black").text("Offense")

                                    const circle_defense = svg_legend3.append("circle").attr("cx",125).attr("cy",25).attr("r",5).attr("fill","white").attr("stroke", "black").attr("stroke-width", 1)

                                    const defense_text = svg_legend3.append("text").attr("x",135).attr("y",30).attr("fill","black").text("Defense")

                                    const circle_football = svg_legend3.append("circle").attr("cx",225).attr("cy",25).attr("r",5).attr("fill","blue").attr("stroke", "black").attr("stroke-width", 1)

                                    const football_text = svg_legend3.append("text").attr("x",235).attr("y",30).attr("fill","black").text("Football")

                                    const circle_player = svg_legend3.append("circle").attr("cx",325).attr("cy",25).attr("r",5).attr("fill","red").attr("stroke", "black").attr("stroke-width", 1)

                                    const player_text = svg_legend3.append("text").attr("x",335).attr("y",30).attr("fill","black").text(selectedPlayer)

                                    const predicted_pressure_text = svg_legend3.append("text").attr("x",800).attr("y",30).attr("fill","black").text("Predicted Pressure:")

                                    const rect_blue = svg_legend3.append("rect").attr("x",930).attr("y", 25).attr("width", 50).attr("height", 2).attr("fill", "steelblue").attr("stroke", "steelblue")

                                    const pmp_text = svg_legend3.append("text").attr("x",1000).attr("y",30).attr("fill","black").text("Predicted Motion Pressure:")

                                    const rect_red = svg_legend3.append("rect").attr("x",1180).attr("y", 25).attr("width", 50).attr("height", 2).attr("fill", "red").attr("stroke", "red")

                                    

                                    // Function for the third animation, identical to the first two.

                                    function animateFrames() {

                                        const frameData = playData.filter(d => parseInt(d.frameId) === frameIndex)

                                        //console.log(frameIndex)


                                        svg3.selectAll("circle").remove();


                                        svg3.selectAll("circle")

                                            .data(frameData)

                                            .enter()

                                            .append("circle")

                                            .attr("r", 5)

                                            .attr("cx", d => xScale(parseFloat(d.x)))

                                            .attr("cy", d => yScale(parseFloat(d.y)))

                                            .attr("fill", getColor)

                                            .attr("stroke", "black")

                                            .attr("stroke-width", 1)

                                            .transition()

                                            .duration(duration)

                                            .attrTween("cx", function (d) {

                                                const interpolateX = d3.interpolate(this.getAttribute("cx"), xScale(parseFloat(d.x)))

                                                return function (t) {

                                                    return interpolateX(t)

                                                }
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                                            })

                                            .attrTween("cy", function (d) {

                                                const interpolateY = d3.interpolate(this.getAttribute("cy"), yScale(parseFloat(d.y)));

                                                return function (t) {

                                                    return interpolateY(t)

                                                }

                                            })

                                        frameIndex++


                                        if (frameIndex > d3.max(playData, d => parseInt(d.frameId))) {

                                            frameIndex = 0

                                        }


                                        setTimeout(animateFrames, delay);

                                    }

                                

                                    setTimeout(animateFrames, delay)

                                })

                })

            })})})})

        </script>

    </body>

<htlm>
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11.5	 Dashboard Screenshots
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