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Abstract 

In sports, it is crucial to adapt to errors and negative outcomes. However, research on 

post-error behavior of athletes is limited. Furthermore, the handful of studies available mainly 

focus on basketball. In this thesis post-error behavior of athletes participating in the motorsport 

Formula One was examined by analyzing lap time data. Based on a general definition of errors 

as a mismatch between the expected outcome and actual outcome of one’s actions, we 

operationalized errors as laps with a slower lap time than the preceding lap. Using this definition, 

we investigated how Formula One drivers adapt following errors and how this can be related to 

existing cognitive control theories. Due to differences between races, ten races were first 

analyzed separately. Next, the results from each race were entered into meta-analyses. The 

meta-analytical results revealed that following an error (i.e., a slower lap), drivers systematically 

speed up again on the next lap. In lab tasks, this has been described as post-error speeding or 

even post-error recklessness. In Formula One, this could suggest that drivers go full gas, and 

perhaps take more risks as they try to immediately compensate for the slower lap time. As far 

as we know, this is a first study on post-error behavior of Formula One drivers. The main 

contribution of this study is that it increases our understanding of the generalizability of results 

across sports. On top of this, we discuss the applied relevance of our research for the world of 

sports. 

  



 

 

Nederlandstalige Samenvatting 

In sport is het cruciaal dat men zich aanpast aan fouten en negatieve uitkomsten. 

Onderzoek naar het gedrag van sporters na fouten is echter beperkt. Bovendien focussen de 

handvol beschikbare studies zich voornamelijk op basketbal. In deze thesis is het gedrag na 

fouten van Formule 1-coureurs onderzocht door rondetijden te analyseren. Op basis van een 

algemene definitie van fouten als een mismatch tussen de verwachte uitkomst en de werkelijke 

uitkomst van iemands acties, operationaliseerden we fouten als ronden met een tragere 

rondetijd dan de voorgaande ronde. Aan de hand van deze definitie onderzochten we hoe 

Formule 1-coureurs zich aanpassen na fouten en hoe dit gerelateerd kan worden aan 

bestaande cognitieve controle-theorieën. Vanwege verschillen tussen races werden tien races 

eerst apart geanalyseerd. Vervolgens werden de resultaten van elke race in meta-analyses 

ingevoerd. Uit de meta-analytische resultaten bleek dat Formule 1-coureurs na een fout (d.w.z. 

na een langzamere ronde) systematisch weer sneller rijden in een volgende ronde. In de context 

van computer taken werd dit omschreven als ‘post-error speeding’ of zelfs ‘post-error 

roekeloosheid’. In Formule 1 zou dit erop kunnen wijzen dat coureurs vol gas gaan, en 

misschien meer risico's nemen omdat ze proberen de tragere rondetijd onmiddellijk te 

compenseren. Voor zover bekend, is dit de eerste studie over het gedrag van Formule 1-

coureurs na een fout. De belangrijkste bijdrage van deze studie is dat het ons inzicht in de 

generaliseerbaarheid van de resultaten over verschillende sporten vergroot. Daarnaast, 

bespreken we ook de toegepaste relevantie van ons onderzoek voor de sportwereld. 
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Introduction 

Post-Error Behavioral Adaptations 

Detection of and adaptation to errors and sub-optimal outcomes is vital for adaptive 

human behavior (Steinhauser & Kiesel, 2011). That is why post-error behavior has been a topic 

of interest in research for many years. One of the best documented post-error effects is post-

error slowing. This effect entails slowing down of responses after an error compared to after a 

correct response (Danielmeier & Ullsperger, 2011; Schroder & Moser, 2014). Post-error slowing 

has long been interpreted in terms of adaptive cognitive control. Cognitive control is the ability 

to adapt behavior and information processing to task demands, context and goals (Larson et 

al., 2015; Notebaert et al., 2009).  Identifying and responding to errors is considered a crucial 

aspect of cognitive control (Larson et al., 2015; Steinhauser & Kiesel, 2011). Cognitive control 

theories view post-error slowing as a strategic adaptation that results in more cautious behavior, 

leading to slower responses and increased accuracy following errors (Damaso et al., 2020; 

Notebaert et al., 2009; Williams et al., 2016).  

While some studies indeed observe an increased accuracy following errors, providing 

supportive evidence for the cognitive control account (Danielmeier et al., 2011; Danielmeier & 

Ullsperger, 2011; Desmet et al., 2012; Van der Borght et al., 2016), other studies fail to observe 

a post-error accuracy increase (Danielmeier & Ullsperger, 2011; Hajcak & Simons, 2008; 

Notebaert et al., 2009; Notebaert & Verguts, 2011). Therefore, the cognitive control account has 

been challenged by other accounts trying to explain the dissociation between post-error slowing 

and post-error accuracy. These alternative accounts are often referred to as ‘non-strategic 

accounts’ or ‘maladaptive accounts’ as they do not consider post-error slowing to be a strategic 

adaptive effect. Instead, these accounts argue that errors and post-error processes will lead to 

impaired performance (Musco et al., 2023; Wessel, 2018). For instance, Notebaert et al. (2009) 

proposed the orienting account according to which slowing occurs after infrequent events 

because these capture the attention and slow down task-relevant processing, which will in turn 

negatively impact performance. This account thus argues that post-error slowing is often 

observed because errors are typically infrequent and therefore surprising. In line with this idea, 

Notebaert et al. (2009) observed post-error slowing when errors were infrequent, but observed 

post-correct slowing and post-error speeding when errors were frequent. They also found that, 

independent of the frequency of errors, participants made more errors following an error. 

More recently, consensus models have been proposed in which the strategic and non-

strategic accounts are integrated. For example, Wessel (2018) proposed the adaptive orienting 

account of error processing. In this model two stages are dissociated. First, a mismatch between 

expected and actual outcome activates an automatic cascade in which ongoing processes are 

interrupted and attention is oriented to the source of the mismatch. This stage is proposed to 

be triggered by any unexpected event, not only errors. However, for errors, the first stage is 
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followed by a second controlled stage when sufficient time remains. In this stage, controlled 

processes are activated to retune to the task and increase caution. This two-stage model thus 

integrates the idea of non-strategic accounts that error-detection and its consequences will 

impair performance with the idea of strategic accounts that post-error processes will lead to 

improved performance (Wessel, 2018). 

Despite these recent attempts to integrate strategic and non-strategic accounts on post-

error behavioral adaptations, the theoretical debate continues. One aspect which has further 

fueled this debate, is the fact that several studies did not observe post-error slowing or even 

observed post-error speeding following infrequent errors. Compared to post-error slowing, post-

error speeding is speeding up of responses after an error compared to after a correct response. 

In a study on sequential effects of a previous outcome on current performance, Williams et al. 

(2016) compared the performance of paid and unpaid participants using the ‘Buckets Game’. 

This task differs from typical forced-choice tasks as it is characterized by an explicit speed-

accuracy trade-off and is relatively slow-paced. Therefore, it allows for more deliberate post-

error adaptations. Williams et al. (2016) observed no post-error slowing when participants were 

paid and even observed post-error speeding when participants were unpaid. They interpreted 

their results in terms of participant motivation. According to the authors, unpaid participants 

were discouraged after errors and therefore become reckless which caused them to respond 

faster and less accurate. Further, when reanalyzing two memory experiments, Damaso et al. 

(2020) observed normal post-error slowing after errors caused by responding too fast and 

observed post-error speeding after errors due to poor evidence quality. Similarly, Steinhauser 

and Kiesel (2011) observed that participants slowed down after errors caused by themselves, 

but sped up after externally caused errors (e.g., an error due to a keyboard malfunction). Lastly, 

speeding following sub-optimal outcomes has also been observed in gambling tasks. For 

example, Verbruggen et al. (2017) observed that participants sped up following a gambled loss.  

Since none of the previously explained accounts is able to account for this lack of post-

error slowing, it has been proposed that the feeling of control over the outcome might determine 

whether post-error slowing or speeding occurs (Eben et al., 2023). Controllability, or better lack 

of controllability, indeed seems to characterize situations in which post-error speeding is 

observed. Based on these observations and their own research, Eben et al. (2023) proposed 

that people take the controllability of the outcome into account to adapt to errors in the most 

adaptive way. If people feel they have control over the outcome, the best option is to slow down 

and be more cautious which might yield better outcomes in the future. On the other hand, if they 

feel they have no control over the outcome, being more cautious will not work. The best 

alternative might then be to speed up to increase the number of successes in the same amount 

of time. So, depending on the controllability, either post-error slowing or post-error speeding is 

goal-directed and adaptive (Eben et al., 2023).  
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While the debate regarding the mechanisms underlying post-error behavioral 

adaptations continues in lab studies, it is also necessary to consider the applicability of these 

findings to real-world contexts. However, it is important to recognize that the definition of errors 

may differ depending on the context. In cognitive control literature, errors are typically defined 

as pressing an incorrect response button. This definition is not always applicable to real-world 

situations, which complicates extending the findings from lab studies to other contexts. 

Additionally, since contextual factors can influence and determine which post-error behavioral 

adaptations occur, the context might still create differences in post-error behavior even when 

similar (operational) definitions are used. Research should thus investigate post-error behavior 

in different real-world settings while clearly delineating what constitutes an error and 

acknowledging the specific context. By broadening the scope of research to real-world settings, 

our understanding of post-error behavior could improve significantly. 

 

Post-Error Behavioral Adaptations in Sports 

One context in which detecting, adapting to and learning from errors is especially crucial 

is in sports. Yet, the literature on post-error behavior of athletes is limited. A possible reason for 

this might be that it is not always easy to define errors in sport contexts and that an overarching 

(over different sports) conceptual definition might not even be possible. Therefore, we propose 

to use a more general definition of errors in which errors are defined as a mismatch between 

the expected outcome and actual outcome of one’s actions (Musco et al., 2023; Wessel et al., 

2012). Using this definition, one can formulate an operational definition of errors based on the 

specific sport context. 

Previously, Yu et al. (2021) investigated the behavioral adaptations of athletes following 

self-generated errors using a combined flanker/stop-signal task. They assessed whether post-

error adjustments differ between athletes participating in open-skill sports, closed-skill sports 

and controls with a sedentary lifestyle. Yu et al. (2021) used a dichotomous typology of sports 

suggested by Schmidt and Wrisberg (2008). Based on the complexity, stability and predictability 

of the environment, Schmidt and Wrisberg (2008) differentiate between open- and closed-skill 

exercise. Closed-skill sports are characterized by little direct interaction with an opponent, a 

self-paced context and little adjustment due to unpredictability (Chueh et al., 2017; Schmidt & 

Wrisberg, 2008; Yu et al., 2021). Open-skill sports, on the other hand, are characterized by 

frequent dynamic interactions and a lot of unpredictability (Chueh et al., 2017; Schmidt & 

Wrisberg, 2008; Yu et al., 2021). This leads to uncertainty about which actions need to be 

prepared beforehand and therefore requires more flexibility. The results of Yu et al. (2021) 

revealed that both sport groups needed less time for successful post-error adjustment compared 

to the control group. Specifically, the authors only observed post-error slowing in the group of 

sedentary controls and there were no differences in post-error accuracy between the three 
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groups. Moreover, they observed post-error speeding in the open-skill sport group. These 

results clearly contrast with previous studies showing longer post-error slowing and increased 

post-error accuracy in people with better fitness (Themanson & Hillman, 2006; Themanson et 

al., 2008). Yu et al. (2021) argue that this might be because the participants in these previous 

studies were not athletes with regular sport training, but rather just individuals with a higher 

physical activity compared to controls. So, Yu et al. (2021) concluded that athletes with regular 

sport training, especially those participating in open-skill sports, have a more efficient error 

processing compared to sedentary controls. 

While Yu et al. (2021) assessed differences in post-error adaptations between athletes 

and non-athletes, it is difficult to generalize these conclusions to real-life sport performances. 

Besides studying the post-error behavior of athletes using computer tasks, it is also necessary 

to evaluate their post-error behavior during sport participation. More applied research on post-

error behavioral adaptations in sports is mostly limited to analyses of real game data of 

basketball games. In basketball, players repeatedly make field goal attempts and free shots. 

The ball can either land in the basket or outside the basket. Given that errors are generally 

defined as deviations from one’s goal (Musco et al., 2023; Wessel et al., 2012), this binary 

outcome structure allows to delineate an error from a correct action. Therefore, previous studies 

on the effect of a previous outcome on subsequent behavior and performance in sports have 

focused their analyses on basketball. Bocskocsky et al. (2014) concluded that basketball 

players are more cautious after misses and thus are less likely to attempt a difficult shot after a 

missed shot, while they are more likely to attempt a difficult shot following a hit. In line with this, 

the study of Neiman and Loewenstein (2011) revealed that basketball players significantly 

change their behavior on a three-point field goal (3-pointer) based on the outcome of the 

previous 3-pointer. More specifically, they attempt less 3-pointers after a missed 3-pointer 

compared to a made 3-pointer, the effect of multiple made or missed 3-pointers is cumulative 

and the effect of the outcome on a 3-pointer diminishes over time. However, the results of Rao 

(2010) indicated that basketball players do not change their behavior in response to any length 

of strings of misses or hits. It is necessary to note that the datasets and methods differed 

between the three studies, which might, in part, explain the different results. First, Rao (2010) 

included only one NBA (National Basketball Association) team in his analysis which resulted in 

only 4.522 shots being analyzed, Bocskocsky et al. (2014) included over 83.000 shots from a 

whole NBA season and Neiman and Loewenstein (2011) analyzed over 76.000 shots from both 

men’s and women’s basketball seasons. Second, the way the datasets were constructed also 

differed between the studies. Finally, the models and equations used to analyze the effect of a 

previous shot on the current shot were also different.  

Besides the fact that the results of these three studies are inconsistent with each other, 

these studies also contrast with the post-error recklessness and speeding observed in athletes 
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participating in open-skill sports (Williams et al., 2016; Yu et al., 2021). As basketball is 

considered an open-skill sport (Wang et al., 2013), one would expect post-error speeding or 

recklessness based on the research of Yu et al. (2021). Instead, post-error cautiousness or no 

response to errors was observed. This demonstrates that findings from lab studies cannot easily 

be generalized to real-life game data. Thus, to gain a good understanding of post-error 

adaptations during sport participation, it is necessary to study post-error behavior using data 

from real-life sport performances. On top of this, it is also necessary to consider different sports 

besides basketball. While the studies of Bocskocsky et al. (2014), Neiman and Loewenstein 

(2011) and Rao (2010) provide insight into how basketball players adapt following an error (i.e., 

a missed shot), it is difficult to generalize these findings to other sports. Generalization is 

complicated by similar reasons which complicate generalizing lab results to real-world settings. 

First, the operational definition of errors can differ across sports. This already complicates 

generalizing findings from one sport to another. Second, the context in which errors occur differs 

greatly across sports. In lab research, it has been demonstrated that the context might 

determine which post-error behavioral adaptations are goal-directed and adaptive. Similarly, it 

is possible that contextual differences between sports, lead to different post-error behavioral 

adaptations to be adaptive. While every competitive sport has the general goal to win, the exact 

manner to reach that goal indeed differs across sports. This highlights the need for further 

research on post-error behavioral adaptations in sports. Specifically, it is necessary to 

investigate the adaptations that occur in various sports while clearly delineating what constitutes 

an error in these sports. In order to address this gap in the literature, this thesis will examine 

post-error behavior in a different sport than basketball, namely in the motorsport Formula One 

(F1). 

 

Formula One and Research on Formula One 

Over the past few years, F1 has grown into a global phenomenon with millions of fans 

worldwide (van Leeuwen et al., 2017). This has resulted in a booming industry surrounding F1 

(Aversa et al., 2015; Bell et al., 2016). Despite the popularity of the sport and the huge business 

surrounding it, the literature on F1 is relatively limited. The problem is not that there is no data 

available on F1 races. On the contrary, a lot of data is publicly available online due to fans 

dedicating websites to F1 results and due to the FIA’s (Féderation Internationale de 

l’Automobile) freely accessible motorsport results and statistics database. Race data is not just 

informative for fans, F1 teams also make extensive use of both race data and data generated 

by their cars, making F1 a data-driven sport (Bell et al., 2016). During a race, large amounts of 

data are constantly transmitted to the team. The team uses this data together with more general 

race data before, during and after races for strategic purposes.  



 

 

6 

The limited existing studies on F1 are mostly from an engineering, technological or 

economical perspective and do not focus on the behavior of the drivers. There are many 

analyses on the car design, with most studies focusing on the aerodynamics of F1 cars and how 

to improve this. Every piece of the car and its effect on the aerodynamic performance has been 

studied in detail (Axerio-Cilies, 2012; Azmi et al., 2017; Patil et al., 2014; Prat, 2018; Rind & Hu, 

2007). There are also studies on the evolution and impact of technological developments in the 

world of F1 (Jenkins, 2010; Jenkins & Floyd, 2001). The last domain with a relatively large body 

of literature on F1 is the economic domain. For example, Aversa et al. (2015) investigated the 

business model of F1 firms and their impact on firm performance and Henderson et al. (2010) 

investigated the impact of the Singapore Grand Prix on tourism.  

However, in addition to the car, F1 drivers are also an essential part of the sport. 

Therefore, studying the drivers and their behavior, next to analyzing and improving the cars, 

can also help to improve performance. One reason for the limited research on F1 drivers is the 

fact that, for a long time, racecar drivers were not considered athletes (Potkanowicz & Mendel, 

2013). Due to this stereotype, only a handful of studies have focused on racecar drivers before. 

For example, Baur et al. (2006) and van Leeuwen et al. (2017) compared the motor and driving 

skills of racecar drivers and non-racing drivers, and Bernardi et al. (2014) compared their brain 

activity. While all three authors focus on racecar drivers, only Bernardi et al. (2014) included 

some F1 drivers in their sample. The other studies included racecar drivers competing in other 

competitions. A few studies have also tried to answer the question ‘Which F1 driver is the best 

of all time?’ (Bell et al., 2016; Eichenberger & Stadelmann, 2009; Phillips, 2014). It is clear that 

research on racecar drivers is scarce, with most studies examining physiological differences or 

general driving performance. Furthermore, only some of these studies included F1 drivers in 

their sample. So, while F1 drivers play a crucial role in the sport, research on their behavior is 

lacking. 

 

Errors in Formula One 

F1 is an exceptionally demanding sport, not just physically, but also mentally and 

cognitively (Klarica, 2001; Potkanowicz & Mendel, 2013). Due to the demanding nature of the 

sport, everyone involved needs to perform their job with the highest precision. It is imperative to 

avoid mistakes, as any mistake can have profound consequences including serious damage, 

injuries or death. The fact that in F1 any mistake can have huge repercussions becomes clear 

by looking at the high number of crashes, serious injuries and deaths. In total 52 drivers lost 

their lives in accidents during F1 events. Most fatalities occurred in the 50’s, 60’s and 70’s. Since 

then, safety has improved dramatically due to various safety protocols being adopted by the FIA 

(Potter, 2011). Due to these safety improvements only one driver died in F1 since 1994. The 

safety measures thus reduced the risk of deaths and serious injuries, but there is still a high 
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crash rate. In 2018 there were 31 incidents in 21 races, in 2019 27 incidents in 21 races and in 

2020 there were 26 incidents in 17 races (UKGamblingSites, 2022). Furthermore, research by 

Potter (2011) indicates that from 1950 to 1996 F1 drivers exhibit partially offsetting behavior in 

response to safety improvements. Specifically, a decrease in the probability of a casualty given 

an accident by 1%, increased the accident rate by 0.53%. Drivers responded even stronger to 

changes in the risk of death. When the probability of death given an accident decreased by 1%, 

the accident rate increased by 1.3%. So, increased safety reduces the risk of casualties and 

deaths given an accident, but seems to lead to more reckless behavior of the drivers. Lastly, 

despite all safety devices and protocols, crashes can still have serious consequences for drivers 

and teams. First, crashes can cause physical injuries or psychological distress to the drivers 

involved (Guest et al., 2016; Minoyama & Tsuchida, 2004). Second, on the side of the team, 

crashes can come with a big price tag due to material damage. 

On top of this continuous stress due to the ever-present risk of crashes, injuries and 

death, there is a huge pressure to perform optimally all the time in order to score as many points 

as possible. The sport comprises two Championships: the Driver Championship and 

Constructor Championship. The goal is to win the Constructor Championship as team and win 

the Driver Championship as individual driver. Both championships are won by accumulating the 

highest number of points over all races of a season. Points are awarded based on the finishing 

position of the drivers in each race. Due to the non-forgiving and precise nature of F1, any minor 

mistake during the race could mean the difference between winning or losing (crucial points). 

So, everyone needs to put in their best performance every single race as there is absolutely no 

room for errors, not even for minor errors with non-life-threatening consequences. As F1 

reporter Will Buxton said in the fourth season of the Netflix series ‘Drive to Survive’, “In the race, 

there’s no margin for error. No room for mistakes” (Gay-Rees et al., 2022).  

Mistakes are of course inevitable when it comes to humans, F1 not being an exception. 

However, as far as we know, no research has looked yet at the post-error behavior of F1 drivers. 

As mentioned earlier, to investigate post-error behavior in a sport, it is important to define 

beforehand what constitutes an error and a correct action. Importantly, we cannot consider 

mistakes which lead to an inability to continue the race (e.g., a crash) as there is no post-error 

behavior to analyze. Investigating the impact of a crash on the performance in the next race 

would be possible but we decided against this because of the long interval between two races. 

Therefore, we will consider only specific in-race mistakes and correct actions. In each race, the 

goal is to finish as fast as possible trough driving the fastest laps. Given that errors are generally 

defined as a mismatch between the expected outcome and actual outcome of one’s actions 

(Musco et al., 2023; Wessel et al., 2012), the speed goal allows to distinguish ‘errors’ from 

‘correct actions’. To investigate the effect of errors on the drivers, we will focus on lap times. We 

will use the time set on a previous lap as expectation for the time on the next lap. A slower lap 
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than the preceding lap could then be considered erroneous, even when we are agnostic about 

the reason for the slower lap time. To avoid that slower laps are the consequence of incidents, 

only races without incidents will be selected. However, slower laps can still be caused by various 

factors, for example, by a driving error, by a lapse of attention or by traffic. This means that 

sometimes the driver might feel responsible for the slow down error, but other times not. We 

are aware that in lab tasks, one would typically distinguish these situations (e.g., Eben et al. 

(2023)). However, in this study, this distinction is not possible with the available data. 

 

The Current Thesis 

In this thesis we will study the post-error behavior of F1 drivers using data which is 

publicly available online. Our operational definition of driver-errors allows us to investigate the 

behavior of a driver following errors. Interestingly, this operational definition also allows us to 

consider the gravity of the error (i.e., how much slower a lap is than the preceding lap) as the 

deviation from the expectation is treated as a continuous measure. Additionally, we will take 

driver performance into account and explore the interaction between performance during the 

race (e.g., number positions gained or lost) and post-error behavioral adaptations. On the basis 

of adaptive accounts of error processing, we predict that drivers who adapt more after errors, 

will drive a better race. Lastly, we will explore whether error commission itself is correlated with 

performance by investigating the standard deviations and means of the difference in lap time 

with the preceding lap. 

Due to limited and inconsistent research on post-error behavior in sports, it is difficult to 

formulate a hypothesis for our main research question based on previous research. Using a 

computer task, Yu et al. (2021) demonstrated that athletes with regular sport training showed 

no post-error slowing compared to controls. Furthermore, they even observed post-error 

speeding in the open-skill sport group. A difficult question is whether F1 should be considered 

an open- or closed-skill sport. When focusing only on F1 races, one could consider these open 

as there are frequent dynamic interactions and the drivers are faced with a lot of unpredictability. 

So, based on this study, we would expect post-error speeding. However, based on more applied 

research in the field of basketball, post-error cautiousness or no response to errors could be 

expected. Bocskocsky et al. (2014) and Neiman and Loewenstein (2011) both observed that 

basketball players are more cautious following misses and more reckless following made shots. 

However, Rao (2010) concluded that basketball players do not change their behavior in 

response to misses or hits. Since basketball and F1 are very different sports which place 

different demands on the athletes involved, it is unsure whether the effects found in basketball 

will generalize to F1. Lastly, it could also be important to consider the controllability over the 

outcome. More general lab research on post-error adjustment namely suggests that the feeling 

of control over the outcome might determine whether post-error slowing or speeding occurs 
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(Eben et al., 2023). However, as mentioned earlier, the reason for the slower lap time is unsure 

and cannot be derived from the available dataset. Therefore, it is not possible to build a clear 

hypothesis based on the controllability drivers experience to have over the outcome and errors. 

It is clear that the results of previous studies are inconsistent, making it difficult to 

formulate a clear hypothesis for our main research question. We will explore what adaptations 

take place in the context of F1 and how these relate to previous studies. By expanding the scope 

of post-error research in sports beyond basketball, we aim to determine how generalizable the 

results are to other sports. This might in turn inform on the influence of contextual differences 

between sports on post-error adaptations. Furthermore, this study also has applied relevance 

for the world of sports, in particular for F1. Since performance and error monitoring are highly 

important in sports, a better understanding of post-error behavior could potentially inform on 

how to improve performance, train athletes or even select athletes.  
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Materials and Methods 

Datasets 

Data on the fastest lap times, races and drivers was retrieved from Ergast Developer 

API (http://ergast.com/mrd/). The database of Ergast Developer API includes racing data of F1 

races since 1950 and can be used for non-commercial purposes. The database was 

downloaded in April 2022. All our analysis were performed using data from the Ergast Developer 

API datasets. From their database, four datafiles were used in the analyses: a file including 

results from the races (results.csv), a file on pit stops during the races (pit_stops.csv), a file 

including the lap times set in the races (lap_times.csv) and a file with information on the drivers 

(drivers.csv). 

To select the races and to check the data of Ergast Developer API, the FIA’s F1 archives 

were first consulted. These archives include timing information, visual lap charts and additional 

race information such as information on incidents. Additionally, for the race selection we also 

consulted online available lap charts, race reports and online available lists of red flags, yellow 

flags and safety car deployments. Table 1 provides an overview of all additional information 

sources consulted to check the Ergast Developer API data or select the races.  

Information on driver performance during a race was retrieved from Ergast Developer 

API. Information on driver performance anno 2023 was retrieved from the FIA’s archives website 

and the official F1 website. The data from both information sources was retrieved in April 2023 

and combined into one dataset. The general performance datafile is made availble on the OSF 

(see Data Availability Statement). 

 

Table 1 

List of Additional Information Sources Used to Check the Data or Select Races. 

Link Information Source 

https://www.fia.com/f1-archives FIA’s F1 archive 

https://davidor.github.io/formula1-lap-charts/#/ Lap charts 

https://www.formula1.com/ F1 official website 

https://f1.fandom.com/wiki/Red-flagged_races Red flagged races 

https://en.wikipedia.org/wiki/List_of_red-flagged_Formula_One_races Red flagged races 

https://f1.fandom.com/wiki/Safety_Car#List_of_Safety_Car_deployments Safety car deployments 

 

Race Selection 

For the lap time analysis, ten grands prix (GP) from 2016 to 2021 were selected. These 

races were selected based on the absence of red flags, yellow flags, (virtual) safety cars and 

collisions or incidents involving two or more cars during the race. We chose to exclude races in 

which any of these events occurred as the occurrence of these events could compromise the 

lap times set in the race. The selection was made using lap charts and technical reports 

http://ergast.com/mrd/
https://www.fia.com/f1-archives
https://davidor.github.io/formula1-lap-charts/#/
https://www.formula1.com/
https://f1.fandom.com/wiki/Red-flagged_races
https://en.wikipedia.org/wiki/List_of_red-flagged_Formula_One_races
https://f1.fandom.com/wiki/Safety_Car#List_of_Safety_Car_deployments
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available on the FIA’s F1 archives websites and using online lists of red-flagged races and 

safety car deployments. In case of doubt, full race reports which are available on the F1 official 

website were consulted. In eight out of the ten races one or more drivers retired or had technical 

issues. However, these drivers did not hinder any of the other drivers as this would have resulted 

in an intervention by the stewards (e.g., a red flag or safety car). Therefore, these races were 

still included but the drivers who encountered issues during the race were excluded from the 

analyses. Table 2 provides an overview of the races analyzed and total number of drivers 

included and excluded in the analyses. Table 3 provides an extensive overview of all the drivers 

who participated in each race and which drivers were removed from the analyses, and why. 

 

Table 2 

Overview of the Analyzed Races. 

Race Number of drivers included  Number of drivers removed 

2016 Japanese GP 22 0 

2017 Abu Dhabi GP 17 3 

2018 Russian GP 18 2 

2019 Hungarian GP 18 2 

2020 Hungarian GP 19 1 

2020 70th Anniversary GP 19 1 

2020 Spanish GP 19 1 

2021 Monaco GP 18 2 

2021 French GP 20 0 

2021 Dutch GP 17 3 
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Table 3 

Extensive Overview of the Drivers who Participated in Each Race. 
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Note. If a driver was excluded from the analysis, the reason for exclusion is indicated: retirement (R), 

collision involving only 1 car (C), did not start (DNS), damage without retirement (D).  
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Lap Time Analysis 

To investigate how drivers adapt following an error, lap times of the selected races were 

analyzed. Differences between circuits hindered analyzing the races together as these 

differences impact lap times. Therefore, in a first step, each race was analyzed separately. Next, 

the results of these separate analyses were entered into meta-analyses. 

First, the lap time data of each race was preprocessed. For each driver, the first and last 

lap and the lap before and after a pit stop were removed. For the remaining laps, two difference 

scores were calculated. First, the difference in lap time with the preceding lap was calculated, 

which was used as indicator of errors vs. correct actions. A positive difference indicated a slower 

lap than the preceding lap, while a negative difference indicated a faster lap than the preceding 

lap. Second, the difference with the following lap was calculated which was used to investigate 

adaptation. A positive difference indicated that, on the next lap, the driver slowed down, while a 

negative difference indicated that the driver sped up. Importantly, we took into account the fact 

that we removed the laps before and after a pit stop as the difference scores were only 

calculated for consecutive laps.  

After preprocessing the data, two univariate linear regression models were fitted. In each 

model the difference in lap time with the preceding lap was the independent variable (Difference 

1) and the difference in lap time with the following lap the dependent variable. Further, the sign 

of the independent variable was taken into account (i.e., whether it was a positive or negative 

difference) to allow for a direct comparison of the effect following errors and correct actions 

(Sign). In both models, a different measure of performance was taken into account to explore 

whether the effects differ depending on performance of the driver. In model 1, the change in 

positions between start and finish of each driver was entered as measure of performance 

(Position Change). In model 2, the finishing position of each driver was entered as measure of 

performance (Finishing Position). An example of a race analysis script (including the 

preprocessing steps) is made available on the OSF (see Data Availability Statement). 

In order to generalize across different races, the relevant regression coefficients of the 

two univariate linear regression models obtained for each race were entered into a meta-

analysis. The relevant regression coefficients are: one for the effect following a negative 

difference with the preceding lap, one for the difference in effect following a positive difference 

with the preceding lap compared to a negative difference, one for the interaction effect with 

performance for negative differences with the preceding lap and one for the difference in 

interaction effect with performance for positive differences with the preceding lap compared to 

negative differences. The other regression coefficients were not further analyzed as these were 

not relevant for our research question. As there are four relevant regression coefficients in each 

model, eight meta-analyses were performed in total. Significance was inferred based on the 

95% confidence intervals. For each coefficient, a random-effect model was used as high 
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heterogeneity between races was expected due to differences in the driver population, circuits 

and years. The heterogeneity could further be assessed using the Cochran’s Q test for 

heterogeneity. The meta-analysis script and datafiles are available on the OSF (see Data 

Availability Statement). 

 The main analyses were followed up by a closer investigation of the standard deviations 

and means of the difference in lap time with the preceding lap (i.e., the deviation from the 

expectation) of each driver in each race. The mean indicates one’s average deviation from the 

expectation and the standard deviation indicates how widely spread these deviations are from 

one’s mean deviation. Specifically, potential correlations with performance measures were 

explored to investigate whether error commission itself is correlated with performance. Two 

types of performance measures were included, namely variables reflecting performance in the 

specific race and variables reflecting performance anno 2023. The variables reflecting in-race 

performance are starting position, finishing position and difference in positions between start 

and finish. Further, finishing position and difference in position corrected for retired drivers were 

also included. Specifically, these measures were corrected for all drivers behind a retiring driver. 

Meaning that when one driver retired, the finishing position of every driver behind him was 

corrected by one since this position gain could have been due to the retirement only. The 

variables reflecting performance anno 2023 are number of races started, number of 

championships won, number of race wins, number of podiums, number of career points and 

number of career points per started race by April 2023. 

First, the standard deviation and mean was calculated separately for each driver. Next, 

correlation coefficients were calculated between the standard deviations and performance 

measures and between the means and the performance measures. Since only ten races were 

included, no statistical tests could be performed as there were too little datapoints. We thus 

provide a description of the correlation patterns that arose in our dataset. A correlation between 

the mean difference in lap time with the preceding lap and performance, would suggest that 

high or low performing drivers tend to have a higher or lower average deviation from their 

preceding lap time. Similarly, a correlation between the standard deviation of the difference in 

lap time with the preceding lap and performance, would suggest that high or low performing 

drivers tend to have a more or less variable deviation from one’s mean deviation from their 

preceding lap time. The datafile and script of these exploratory analyses are available on the 

OSF (see Data Availability Statement). 
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Results 

 Heterogeneity across the ten races was evaluated by calculating the Cochran’s Q 

statistic for the eight meta-analyses (Table 4). The results showed that significant heterogeneity 

was present in seven of the eight meta-analyses. The only exception was the third meta-

analysis, which did not show significant heterogeneity at the 0.05 level of significance. 

Nonetheless, we chose to use random effects models for the meta-analyses given the 

differences in driver population, circuits and years. The lack of significant heterogeneity in the 

third meta-analysis does not rule out the use of a random effects model as there could still be 

non-significant heterogeneity. Furthermore, the other regression coefficients obtained from the 

same regression model did show significant heterogeneity. 

 

Table 4  

Overview of Cochrane’s Q Statistics and Tests of Heterogeneity for the Eight Meta-Analyses. 

Regression 

model 
Regression coefficient 

Cochran's Q 

statistic 

Degrees of 

freedom 
P-value 

Model 1 

Difference 1 54.76 9.00 < 0.0001 

Difference 1 * Sign 38.61 9.00 < 0.0001 

Difference 1 * Position Change 11.61 9.00 0.2362 

Difference 1 * Sign * Position Change  31.02 9.00 0.0003 

     

Model 2 

Difference 1 43.03 9.00 < 0.0001 

Difference 1 * Sign 38.24 9.00 < 0.0001 

Difference 1 * Finishing Position 28.93 9.00 0.0007 

Difference 1 * Sign * Finishing Position  27.55 9.00 0.0011 

 

 Table 5 reports the means and standard deviations of the independent and dependent 

variable for each race. The total number of datapoints analyzed in each race is also reported. 

In total 9855 laps over all ten races were included in the lap time analyses. The number of laps 

analyzed in each race varied between 789 and 1260.  The mean difference in lap time with the 

previous lap ranges from -121.7ms to 45.6ms (Mean x) and the standard deviation from 

652.3ms to 1146.8ms (SD x). The mean difference in lap time with the following lap ranges from 

-73.5ms to 60.9ms  (Mean y) and the standard deviation from 654.7ms to 1062.8ms (SD y). 

Scatterplots of the lap time data are reported in Appendix A. 
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Table 5  

Overview of the Means and Standard Deviations and Number of Observations per Analyzed 

Race. 

Race Mean x (ms) SD x (ms) Mean y (ms) SD y (ms) 
Number of 

laps 

2016 Japanese GP 45.6 738.5 60.9 739.4 953 

2017 Abu Dhabi GP -58.8 889 -32.2 883.8 801 

2018 Russian GP -58.4 945.6 -32.1 938.8 811 

2019 Hungarian GP -23.5 804.6 -6.7 814.5 1105 

2020 Hungarian GP -121.7 1146.8 -73.5 1062.8 1110 

2020 70th Anniversary GP -36.9 652.3 -23.6 654.7 789 

2020 Spanish GP -9.2 745 6.2 741.6 1060 

2021 Monaco GP -51.6 960.8 -33.6 955.5 1260 

2021 French GP -30.8 789.4 -8.6 779.5 905 

2021 Dutch GP 8.3 900.9 18.2 899.6 1061 

 

Note. This table provides an overview of the mean and standard deviation of the difference in lap time 

with the previous lap (x) and difference in lap time with the following lap (y) for each analyzed race. The 

number of laps per analyzed race is also reported. 

 

Figure 1 provides an overview of the results of the meta-analyses on the four relevant 

regression coefficients of model 1. Model 1 fitted the effect of the difference in lap time with the 

previous lap on the difference in lap time with the following lap, taking into account the sign of 

independent variable and the change in positions of each driver. Panel A and B of Figure 1 

indicate that the effect of a difference in lap time with the previous lap on the difference in lap 

time with the following lap, is significantly different depending on the sign of the difference in lap 

time with the previous lap and that this effect is significant for positive differences only (i.e., 

when a driver drove a slower lap compared to the previous lap). More specifically, the results 

indicate that, over all races, when a lap was faster than the lap before, there was no significant 

adaptation on the following lap. Further, the meta-analytical results indicate there is a significant 

negative effect when a driver set a slower lap time compared to the lap before. Panel C and D 

of Figure 1 indicate that there is no significant interaction effect between a difference with the 

previous lap and the change in positions, neither for positive nor for negative differences.  
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1A. Difference 1 
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1B. Difference 1 * Sign 
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Figure 1 

Results of the Meta-Analyses of the Relevant Regression Coefficients of Model 1.  
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1C. Difference 1 * Position Change 
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Figure 1 (continued) 

1D. Difference 1 * Sign * Position Change 

 

0.00 [-0.03, 0.03] 

0.00 [ -0.03, 0.04] 

0.05 [-0.05, 0.15] 

-0.04 [-0.12, 0.03] 
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-0.08 [-0.17, 0.00] 

0.05 [0.02, 0.08] 

0.01 [-0.02, 0.03] 

Note. Model 1 fitted the effect of the difference in lap time with the previous lap (Difference 1) on 

the difference in lap time with the following lap, taking into account the sign of independent variable 

(Sign) and the change in positions of each driver (Position Change). Panel A shows the effect for 

negative differences (faster lap), panel B shows the difference in effect for positive differences 

(slower lap) compared to negative differences, panel C shows the interaction effect with 

performance for negative differences and panel D shows the difference in interaction effect with 

performance for positive differences compared to negative differences. 
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Figure 2 provides an overview of the results of the meta-analyses on the four relevant 

regression coefficients of model 2. Model 2 fitted the effect of the difference in lap time with the 

previous lap on the difference in lap time with the following lap, taking into account the sign of 

independent variable and the finishing position of each driver. Panel A and B of Figure 2 indicate 

that, similar to model 1, the effect of a difference in lap time with the previous lap on the 

difference in lap time with the following lap, is significantly different depending on the sign of the 

difference in lap time with the previous lap and that this effect is significant for positive 

differences only (i.e., when a driver drove a slower lap compared to the previous lap). 

Specifically, the results indicate that, over all races, when a lap was faster than the previous 

lap, there was no significant difference between the lap and the next lap. So, in line with model 

1, the meta-analytical results indicate that there is no significant adaptation following a faster 

lap. Further, the results indicate that there is a significant negative effect when a driver set a 

slower lap time compared to the lap before. The estimates of the effects differ slightly due to the 

inclusion of a different performance measure in each model. However, the meta-analytical 

effects are highly similar. Panel C and D of Figure 2 indicate that there is no significant 

interaction effect between a difference with the previous lap and the finishing position of a driver, 

neither for positive nor for negative differences 
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Figure 2 

Results of the Meta-Analyses of the Relevant Regression Coefficients of Model 2.  
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2D. Difference 1 * Sign * Finishing Position 
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Figure 2 (continued) 

2C. Difference 1 * Finishing position 

Note. Model 2 fitted the effect of the difference in lap time with the previous lap (Difference 1) on 

the difference in lap time with the following lap, taking into account the sign of independent variable  

(Sign) and the finishing position of each driver (Finishing Position). Panel A shows the effect for 

negative differences (faster lap), panel B shows the difference in effect for positive differences 

(slower lap) compared to negative differences, panel C shows the interaction effect with 

performance for negative differences and panel D shows the difference in interaction effect with 

performance for positive differences compared to negative differences. 



 

 

22 

Finally, we explored potential correlations between performance measures and the 

standard deviation and the mean of the difference in lap time with the preceding lap of each 

driver in each race. Table 6 provides an overview of the correlation coefficients. An extensive 

overview of the standard deviations, means and performance measures per race per driver is 

provided in Appendix B.  

Interestingly, the standard deviations seemed to be moderately correlated with 

performance in a specific race, performance in the season and performance anno 2023. The 

means were not to slightly correlated with performance. In each race, racers whose standard 

deviations were smaller had a better starting position and a better finishing position. 

Furthermore, when looking at the difference in positions between start and finish, racers whose 

standard deviations were smaller gained more places or lost less places. This pattern became 

even stronger when correcting for retired drivers. When focusing on performance anno 2023, 

similar patterns arose. Racers whose standard deviations were smaller, started in more races, 

won more races, were on more podiums, won more championships and won more career points 

by April 2023. These correlations were not due to experience only, as the number of career 

points per race was also higher for these racers. Importantly, these correlations are exploratory 

in nature as no statistical test was performed. 

 

Table 6 

Correlations Between Performance Measures and Drivers’ Standard Deviation (SD) or Mean 

of the Difference in Lap Time with the Preceding Lap. 

Variable Correlation with SD Correlation with Mean 

Starting Pos. 0,37 -0,06 

Finishing Pos. 0,57 0,01 

Pos. Difference -0,28 -0,11 

Finishing Pos. Corrected 0,54 0,02 

Pos. Difference Corrected -0,31 -0,09 

# R -0,22 0,05 

# C -0,24 0,11 

# W -0,26 0,12 

# P -0,27 0,12 

Career Points -0,30 0,11 

Points / R -0,37 0,10 
 

Note. Variables reflecting performance in a race: starting position (Starting Pos.), finishing position 

(Finishing Pos.), difference in positions (Pos. Difference), finishing position corrected for retired drivers 

(Finishing Pos. Corrected) and difference in positions corrected for retired drivers (Pos. Difference 

Corrected). Variables reflecting performance by April 2023: number of races started (# R), number of 

championships won (# C), number of race wins (# W), number of podiums (# P), number of career points 

(Career Points) and number of career points per started race (Points / R). 
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Discussion 

Post-Error Behavioral Adaptations in Formula One 

The objective of this thesis was to study post-error behavior in F1 racing. We analyzed 

lap time data from ten incident-free races between 2016 and 2021 to investigate how F1 drivers 

adapt following errors. Based on a general definition of errors as a mismatch between expected 

and actual outcome (Musco et al., 2023; Wessel et al., 2012), we formulated an operational 

definition of driver-errors. In our analyses, we considered the time set on the previous lap the 

expectation for the next lap. Consequently, a slower lap than the preceding one could be 

considered erroneous, as the general goal is to drive as fast as possible. The results of our 

meta-analyses revealed no significant adaptation following a lap on which drivers accelerated 

(i.e., a correct action), while faster lap times were observed following a lap on which drivers 

slowed down (i.e., an error). This indicates that when drivers set a slower lap compared to the 

lap before, they speed up again on the next lap. However, they do not show any adaptation 

when they set a faster lap compared to the lap before. Given our operational definition of driver-

errors, these findings are in line with the concept of post-error speeding which is defined as 

speeding up after an error compared to after a correct response. 

In lab tasks, post-error speeding has also been referred to as post-error recklessness 

(Williams et al., 2016). In line with this, we propose that the observed post-error speeding in F1 

racing may indicate that drivers take more risks and become more reckless in an attempt to 

immediately compensate for a slower lap. Previous research suggests that recklessness and 

thrill-seeking tendencies may indeed characterize racecar drivers. A previous study examining 

the impact of increased safety on driver behavior found that improved safety measures resulted 

in drivers exhibiting more reckless behavior, partially offsetting the safety improvements (Potter, 

2011). Additionally, the trait sensation-seeking has been shown to correlate with the 

participation in dangerous sports and fast and reckless driving (Zuckerman, 2015). Sensation-

seeking is defined as "the need for varied, novel, and complex sensations and experiences and 

the willingness to take physical and social risks for the sake of such experiences" (Zuckerman, 

1979, p. 10). Thrill-seeking, a subcategory of sensation-seeking, has also been found to predict 

involvement in motorsports (Yıldırım-Yenier et al., 2016). In this study, motorsport involvement 

was a categorical variable with three levels, namely not involved, spectator or driver. Higher 

thrill-seeking scores were related to higher levels of involvement (Yıldırım-Yenier et al., 2016). 

Although a detailed investigation of recklessness in F1 drivers specifically is lacking, these 

studies suggest that F1 drivers respond to external changes with heightened recklessness, and 

that sensation- and thrill-seeking are predict participation in motorsports and reckless driving. 

Therefore, we argue that the observed post-error speeding pattern in our study could also be 

labeled post-error recklessness, as a reckless attitude may underlie this behavior. 
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While our primary objective was to investigate post-error behavior in F1 racing, our 

findings also have implications for the phenomenon known as the ‘Hot Hand’. In contrast to 

post-error behavior, the Hot Hand is a phenomenon related to success and refers to a greater 

chance of future success following a previous successful outcome (Williams et al., 2016). 

Whether or not the Hot Hand is a fallacy, has already been extensively debated in the field of 

basketball (Bocskocsky et al., 2014; Gilovich et al., 1985; Neiman & Loewenstein, 2011; Rao, 

2010). However, similar to the literature on post-error behavior, research in other sports is 

necessary to enhance the applicability and generalizability of the findings. Our study 

demonstrates that, following a lap on which drivers sped up, they do not significantly speed up 

more or slow down again on the subsequent lap. An interesting avenue for future research could 

involve examining the beliefs of F1 fans and racecar drivers regarding this phenomenon. This 

would complement research on the Hot Hand effect in basketball, in which both behavior and 

beliefs regarding the hot hand effect are investigated (Gilovich et al., 1985).  

We also tested the interaction effect between lap time difference scores and driver 

performance. We hypothesized an interaction between post-error adaptations and performance, 

as adaptive accounts of error processing posit that post-error processes are engaged to improve 

performance (Musco et al., 2023; Wessel, 2018). Given that there are many different aspects 

of driver performance, we considered two different performance measures: the finishing position 

in a race and change in positions between start and finish in a race. The results revealed no 

significant interaction with neither performance measures. A possible reason for the lack of 

interaction effect is the fact that F1 is the pinnacle of motorsport. F1 represents the highest class 

of international formula racing, which includes any open-wheeled single-seater motorsport. To 

compete in F1 as a racecar driver requires many years of dedication, hard work and outstanding 

performance in lower motorsport classes. Due to this selection, performance effects might be 

small. Another reason for the lack of interaction with performance could be the distant and 

indirect nature of the performance measures used, which are influenced by multiple factors 

beyond just post-error adaptations. 

While post-error adaptations were not found to be related with performance, a further 

exploration of the difference scores revealed another driver factor that may be related to 

performance. By using a difference score between current and previous lap time as indicator of 

errors vs. correct actions, we were able to investigate the means and standard deviations of 

these difference scores. The mean indicated one’s average deviation from the expected lap 

time and the standard deviation indicated how widely spread these deviations are from one’s 

mean deviation. Calculating the standard deviation per driver revealed that better performance 

is correlated with a smaller standard deviation. This correlation was observed not only for in 

race performance, but also for performance two to seven years later (i.e., performance by April 

2023). In contrast, the means of the difference score showed little or no correlation with the 
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performance measures. A lower standard deviation indicates that the difference scores are 

closer to the mean difference score of the driver. This implies that drivers who exhibit more 

consistent deviations from their previous lap times tend to perform better, regardless of their 

mean difference from their previous lap time. So, instead of the post-error and post-correct 

behavioral adaptations, the consistency of the deviations from the preceding lap time seems to 

be correlated with performance. The correlation between the standard deviations of the 

difference scores and performance could also explain why no significant interaction effect 

between the post-error behavioral adaptations and performance was observed. It is important 

to note that these analyses were exploratory in nature, as the limited dataset prevented testing 

these correlations. Therefore, future research could aim to further investigate and evaluate the 

significance of these correlations. It would be particularly interesting to determine whether this 

deviation-consistency factor is a stable factor which predicts future performance, as these 

findings would have practical implications for F1 teams and academies in driver selection and 

training.  

 

Advantages and Implications 

Previous research on post-error behavior during real-life sport performances has 

predominantly focused on basketball. We have argued that research in other sports is 

necessary to increase our scientific understanding of post-error behavior in sports and to 

determine to what extent these effects generalize across sports. In line with this, our study 

investigated the post-error behavior of F1 drivers. Given that F1 races can be considered an 

open-skill sport, our results confirm the results of Yu et al. (2021) who showed post-error 

speeding in a group of athletes participating in open-skill sports using a computer task. 

However, both our results and those of Yu et al. (2021) contrast with previous research on post-

error behavior in basketball, another open-skill sport (Wang et al., 2013). Studies in basketball 

have shown either post-error cautiousness or no response to errors (Bocskocsky et al., 2014; 

Neiman & Loewenstein, 2011; Rao, 2010). We identify two possible reasons for these 

contrasting results. First, the (operational) definition of errors differs across lab studies and 

different sports, making it difficult to generalize findings across these different settings. Second, 

while every competitive sport has the general goal to win, the exact manner to reach that goal 

differs greatly across sports. As a consequence, the most goal-directed and adaptive way to 

adapt to errors might differ across sports. It is thus possible that, similar to lab studies, 

(contextual) differences between sports create differences in post-error behavior across sports. 

Future research on post-error processes in sports could help to disentangle which 

factors or dimensions determine which post-error behavioral adaptations will occur in a sport. It 

is possible that a dichotomous typology of sports as open- or closed-skill is unable to fully 

capture the differences between sports. A close investigation of the definitions of open- and 
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closed- skill sports reveals that two important dimensions, which distinguish between sports, 

are intertwined. Closed-skill sports are defined as sports that are characterized by little direct 

interaction with an opponent, a self-paced context and little adjustment due to unpredictability. 

Open-skill sports are characterized by frequent dynamic interactions, an externally-paced 

context and a lot of unpredictability, which leads to more uncertainty and requires more flexibility 

(Chueh et al., 2017; Schmidt & Wrisberg, 2008; Yu et al., 2021). Within these definitions, the 

concepts of ‘interactivity’ and ‘agency’ are combined and assumed to be connected. However, 

the level of interactivity and agency in sports can vary independently of each other. Firstly, 

sports differ in their degree of interactivity, ranging from individual sports to interactive team-

sports. On top of this, within team-sports, one can distinguish between inter- and intra-team 

interactions. Secondly, sports also vary in the athletes’ sense of agency, which refers to the 

feeling of control over one’s own actions and their consequences in the external world (Haggard, 

2017; Moore, 2016). This dimension is closely related to the concept of ‘controllability’ which 

has been proposed to determine post-error adaptations in lab-based tasks (Eben et al., 2023). 

Therefore, rather than a dichotomous typology of sports, a multidimensional typology of sports 

might be more useful to understand the differences in post-error adaptations across sports. 

However, the dimensions suggested above are based primarily on the definitions of open- and 

closed-skill sports. To gain a good understanding of which dimensions indeed differentiate 

sports in terms of post-error adaptations, further research in various other sports is needed. 

This will contribute to a more comprehensive understanding of the factors influencing and 

determining post-error behavior in different sport contexts. 

The main advantage of this study is the use of meta-analyses to analyze the results 

across the ten different F1 races from 2016 to 2021. This approach is particularly valuable as it 

allowed us to account for differences between races which can impact lap times, such as length 

of the circuits. By pooling data across the different races, we were able to obtain a more precise 

estimate of the overall effect across the ten races which improves the accuracy and reliability of 

our findings. Lastly, our meta-analytical approach increases the generalizability of our findings 

as races from different years with a different driving population and driven on different circuits 

were included in the analyses. Overall, the use of meta-analyses in our study offers valuable 

advantages by providing a comprehensive analysis across multiple races, accounting for race 

differences, and increasing the generalizability of the findings to other F1 races. 

 

Limitations and Future Directions 

 The main limitation of this study is the definition of errors vs. correct actions. Due to the 

complex nature of F1 racing, identifying and categorizing errors proved to be complicated. 

Based on a general definition of errors as deviations from the expected outcome (Musco et al., 

2023; Wessel et al., 2012), we operationalized driver-errors as laps with a slower lap time than 
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the preceding lap. Our operational definition focused on lap times specifically due to the 

availability of precise lap time data. However, we do not exclude the possibility that other errors 

are present or more relevant in the sport. For example, several mistakes and errors are defined 

in the FIA’s Sporting Regulations. When suspected incidents or breaches of these regulations 

occur, the FIA stewards investigate them and impose sanctions and penalties on the drivers or 

teams who made a mistake. We chose to not investigate the effect of these regulatory mistakes, 

as these often come with a punishment for the drivers. The post-error behavioral effects could 

therefore also reflect effects by the penalty. Nevertheless, we acknowledge that our operational 

definition of errors is just one possible way of defining errors in the context of F1 racing. Other 

errors may exist and be relevant to investigate in this sport. 

 There were several methodological challenges which required specific data-processing 

steps and decisions. First, several information sources were used to select the races as each 

separate source was incomplete. This approach could have resulted in certain races that meet 

the predetermined criteria to be overlooked. Secondly, all racecar drivers who experienced any 

issues during a race were completely excluded from the analysis of that race, even if they did 

drive some laps. This decision was made to mitigate the impact of, for example, mechanical or 

technical issues. However, other researchers could choose to still include these drivers in the 

analysis. Thirdly, due to differences between races, a decision was made to analyze each race 

separately and enter the regression coefficients obtained in these analyses into meta-analyses. 

Alternatively, other methods, such as normalizing the lap time data, could have been used to 

address these differences.  

 There are also several challenges related to the interpretation of the results due to the 

inherent complexity of F1 racing. Firstly, it could be argued that the fast laps following a slow 

lap merely reflect regression to the mean. However, on the basis of regression to the mean, one 

would also expect a slow lap following fast laps, which was not observed. Therefore, we argue 

that it is unlikely that the results are due to regression to the mean. Nevertheless, it should be 

acknowledged that our analyses do not completely rule out the possibility that the findings reflect 

an influence of other factors. While we considered a slower lap than the preceding lap 

erroneous, we are agnostic about the reason for the slower lap. The slower lap could have been 

caused by a variety of factors such as a driving errors, traffic, tire management or weather 

conditions. It is possible that these factors slowed down the drivers on one lap, which they then 

compensated on the following lap. One way to potentially investigate this alternative explanation 

would be to include these potential confounding factors in the linear regression models. 

Unfortunately, we were unable to incorporate these factors in our analyses, as the available 

dataset did not include information on factors such as weather conditions or traffic.  

Interpretation wise, it is also possible to argue that the correlations between the standard 

deviations of the difference scores and performance measures are due to ‘traffic’, with higher-
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performing drivers experiencing less ‘traffic’ as they start more in front which allows them to 

deviate more consistently from their preceding laps. However, this statement relies on the 

assumption that ‘traffic’ is related to the starting position. So, while this may hold true for the 

correlation with starting position, it is important to note that other performance measures are 

also correlated with the standard deviations. One of these correlations potentially contradicts 

the traffic-statement, namely the correlation between the standard deviations and position 

change between start and finish of a race. Drivers with a smaller standard deviation, lost less 

or gained more positions throughout a race. If a driver gained more positions, it means they 

have overtaken more cars, which could also be seen as encountering traffic. So, while we are 

agnostic about the significance and reason for the observed correlations, we argue that 

attributing these correlations to the influence of traffic is also premature. As previously 

mentioned, more research is necessary to investigate the significance and understand the 

reason and predictive ability of these correlations. 

Our research question can also be approached using different types of F1 data. Firstly, 

instead of using online data, one could use data collected by F1 teams themselves as these 

data are more extensive compared to online available data. For example, we were only able to 

investigate lap time data. However, F1 racing teams not only collect timing information on a lap 

basis, but also per (mini-) sector. As (mini-) sectors are smaller than laps, (mini-) sector analyses 

could uncover more instantaneous adaptations. Another option could be to use simulation data 

to investigate the post-error behavior of racecar drivers. F1 simulators recreate F1 cars in a 

virtual environment and are primarily used to train drivers and to learn more about the car in 

order to set them up as best as possible to optimize performance. Similar to F1 racing data, 

analyzing the simulation data could provide valuable insights into the behavior of the drivers. 

The main advantage of using F1 simulation data over racing data is that the data is cleaner, 

since many confounding factors are excluded in these simulations. Simulation data could 

therefore also be used to rule out that our findings reflect an influence of other factors, such as 

traffic, tire management or weather conditions. Additionally, with simulation data, adaptations 

following errors which normally prevent drivers to continue racing, such as crashes, can also be 

investigated. By exploring these different data types, researchers can gain a more 

comprehensive understanding of post-error behavior in F1 racing and uncover insights that may 

not be revealed from analyzing lap times alone. However, obtaining these different types of data 

would require a collaboration with F1 teams. 

 All suggestions and analyses above focused solely on racecar drivers. However, in 

addition to the drivers, F1 pit stop teams play a crucial role as well during an F1 race. Pit stop 

times can significantly impact a driver’s race performance, making it important to understand 

the adaptations that occur following bad vs. good pit stops. Analyzing these adaptations using 

racing data is challenging due to the limited number of pit stops during a race and the fact that 



 

 

29 

they are spread by multiple laps. Therefore, a more useful approach might be to investigate the 

adaptations following a pit stop during pit stop practices. During these practices, multiple pit 

stops can be performed more closely to each other, providing more suitable data for the 

analyses of post-error behavioral adaptations. Knowledge on how pit stop teams adapt, can 

help to improve pit stop trainings and provide insights into pit stop strategies, which ultimately 

can help to enhance overall race performance. 

 

Conclusion 

The present study used online available data on lap times set in F1 races from 2016 to 

2021 to investigate the post-error behavioral adaptations of F1 drivers. The meta-analytical 

results revealed a negative effect following errors, meaning that when drivers slowed down on 

a lap, they speed up again on the next lap. No significant meta-analytical adaptation was 

observed following a lap on which drivers sped up. Additionally, the results revealed that there 

was no significant interaction between these effects and performance in a race. However, 

further exploration of the standard deviations of the difference in lap time with a preceding lap, 

revealed that smaller standard deviations are correlated with better performance in a race, as 

well as better performance two to seven years later. This research adds to the limited research 

on post-error processes in sports by investigating data from real-life sport performances in a 

different sport than basketball. We highlighted the difference between the results in both sports 

and concluded that research in various other sports is needed to identify which contextual 

factors or dimensions determine the adaptations that take place in a sport. Studies in sports 

might in turn inform general research on post-error behavior, where theoretical discussions 

persist. Furthermore, research on errors in sports has applied relevance as it can provide 

valuable insight for the world of sports on how to enhance performance and select or train 

athletes. In conclusion, this study sheds light on the post-error behavioral adaptations of F1 

drivers and emphasizes the need for research across various sports in order to determine the 

factors and dimensions that shape adaptive behavior in sports and to provide actionable insights 

for the world of sports. 

 

Data Availability Statement 

The race results, pit stop, lap time and driver information datafiles were retrieved from 

https://ergast.com/mrd/. The remaining datafiles and R-scripts can be found on 

https://osf.io/g6qn5/?view_only=7c53aa2dbf7b48cab86deaf01906516b.  

 

  

https://ergast.com/mrd/
https://osf.io/g6qn5/?view_only=7c53aa2dbf7b48cab86deaf01906516b


 

 

30 

References 

Aversa, P., Furnari, S., & Haefliger, S. (2015). Business model configurations and performance: 

A qualitative comparative analysis in Formula One racing, 2005–2013. Industrial and 

Corporate Change, 24(3), 655-676. https://doi.org/10.1093/icc/dtv012  

Axerio-Cilies, J. (2012). Predicting Formula 1 tire aerodynamics: sensitivities, uncertainties and 

optimization. Stanford University.  

Azmi, A., Sapit, A., Mohammed, A., Razali, M., Sadikin, A., & Nordin, N. (2017). Study on airflow 

characteristics of rear wing of F1 car. IOP Conference Series: Materials Science and 

Engineering,  

Baur, H., Müller, S., Hirschmüller, A., Huber, G., & Mayer, F. (2006). Reactivity, stability, and 

strength performance capacity in motor sports. British journal of sports medicine, 40(11), 

906-910; discussion 911. https://doi.org/10.1136/bjsm.2006.025783  

Bell, A., Smith, J., Sabel, C. E., & Jones, K. (2016). Formula for success: Multilevel modelling 

of Formula One Driver and Constructor performance, 1950–2014. Journal of 

Quantitative Analysis in Sports, 12(2), 99-112. https://doi.org/doi:10.1515/jqas-2015-

0050  

Bernardi, G., Cecchetti, L., Handjaras, G., Sani, L., Gaglianese, A., Ceccarelli, R., Franzoni, F., 

Galetta, F., Santoro, G., Goebel, R., Ricciardi, E., & Pietrini, P. (2014). It's not all in your 

car: functional and structural correlates of exceptional driving skills in professional 

racers. Frontiers in human neuroscience, 8, 888. 

https://doi.org/10.3389/fnhum.2014.00888  

Bocskocsky, A., Ezekowitz, J., & Stein, C. (2014). The Hot Hand : A New Approach to an Old 

Fallacy.  

Chueh, T. Y., Huang, C. J., Hsieh, S. S., Chen, K. F., Chang, Y. K., & Hung, T. M. (2017). Sports 

training enhances visuo-spatial cognition regardless of open-closed typology. PeerJ, 5, 

e3336. https://doi.org/10.7717/peerj.3336  

Damaso, K., Williams, P., & Heathcote, A. (2020). Evidence for different types of errors being 

associated with different types of post-error changes. Psychonomic bulletin & review, 

27(3), 435-440. https://doi.org/10.3758/s13423-019-01675-w  

Danielmeier, C., Eichele, T., Forstmann, B. U., Tittgemeyer, M., & Ullsperger, M. (2011). 

Posterior medial frontal cortex activity predicts post-error adaptations in task-related 

visual and motor areas. The Journal of neuroscience : the official journal of the Society 

for Neuroscience, 31(5), 1780-1789. https://doi.org/10.1523/JNEUROSCI.4299-

10.2011  

Danielmeier, C., & Ullsperger, M. (2011). Post-Error Adjustments. Frontiers in Psychology, 2, 

233. https://doi.org/10.3389/fpsyg.2011.00233  

https://doi.org/10.1093/icc/dtv012
https://doi.org/10.1136/bjsm.2006.025783
https://doi.org/doi:10.1515/jqas-2015-0050
https://doi.org/doi:10.1515/jqas-2015-0050
https://doi.org/10.3389/fnhum.2014.00888
https://doi.org/10.7717/peerj.3336
https://doi.org/10.3758/s13423-019-01675-w
https://doi.org/10.1523/JNEUROSCI.4299-10.2011
https://doi.org/10.1523/JNEUROSCI.4299-10.2011
https://doi.org/10.3389/fpsyg.2011.00233


 

 

31 

Desmet, C., Imbo, I., De Brauwer, J., Brass, M., Fias, W., & Notebaert, W. (2012). Error 

adaptation in mental arithmetic. Quarterly journal of experimental psychology (2006), 

65(6), 1059-1067. https://doi.org/10.1080/17470218.2011.648943  

Eben, C., Vermeylen, L., Chen, Z., Notebaert, W., Ivanchei, I., & Verbruggen, F. (2023). When 

Response Selection Becomes Gambling: Post-error Slowing and Speeding in Self-

paced Colour Discrimination Tasks. Collabra: Psychology, 9(1), 73052. 

https://doi.org/10.1525/collabra.73052  

Eichenberger, R., & Stadelmann, D. (2009). Who Is The Best Formula 1 Driver? An Economic 

Approach to Evaluating Talent. Economic Analysis and Policy, 39(3), 389-406. 

https://doi.org/10.1016/S0313-5926(09)50035-5  

Gay-Rees, J., Martin, P., & Todd, S. (2022, 11 March 2022). Gloves Are Iff (Season 4, Episode 

9). Formula 1: Drive to Survive. Netflix. 

Gilovich, T., Vallone, R., & Tversky, A. (1985). The hot hand in basketball: On the misperception 

of random sequences. Cognitive Psychology, 17(3), 295-314. 

https://doi.org/10.1016/0010-0285(85)90010-6  

Guest, R., Tran, Y., Gopinath, B., Cameron, I. D., & Craig, A. (2016). Psychological distress 

following a motor vehicle crash: A systematic review of preventative interventions. Injury, 

47(11), 2415-2423. https://doi.org/10.1016/j.injury.2016.09.006  

Haggard, P. (2017). Sense of agency in the human brain. Nature Reviews Neuroscience, 18(4), 

196-207. https://doi.org/10.1038/nrn.2017.14  

Hajcak, G., & Simons, R. F. (2008). Oops!.. I did it again: An ERP and behavioral study of 

double-errors. Brain and cognition, 68(1), 15-21. 

https://doi.org/10.1016/j.bandc.2008.02.118  

Henderson, J. C., Foo, K., Lim, H., & Yip, S. (2010). Sports events and tourism: The Singapore 

formula one grand prix. International Journal of Event and Festival Management.  

Jenkins, M. (2010). Technological discontinuities and competitive advantage: A historical 

perspective on Formula 1 motor racing 1950–2006. Journal of Management Studies, 

47(5), 884-910.  

Jenkins, M., & Floyd, S. (2001). Trajectories in the evolution of technology: A multi-level study 

of competition in Formula 1 racing. Organization studies, 22(6), 945-969.  

Klarica, A. J. (2001). Performance in motor sports. British journal of sports medicine, 35(5), 290-

291. https://doi.org/10.1136/bjsm.35.5.290  

Larson, M. J., LeCheminant, J. D., Carbine, K., Hill, K. R., Christenson, E., Masterson, T., & 

LeCheminant, R. (2015). Slow walking on a treadmill desk does not negatively affect 

executive abilities: an examination of cognitive control, conflict adaptation, response 

inhibition, and post-error slowing. Frontiers in Psychology, 6. 

https://doi.org/10.3389/fpsyg.2015.00723  

https://doi.org/10.1080/17470218.2011.648943
https://doi.org/10.1525/collabra.73052
https://doi.org/10.1016/S0313-5926(09)50035-5
https://doi.org/10.1016/0010-0285(85)90010-6
https://doi.org/10.1016/j.injury.2016.09.006
https://doi.org/10.1038/nrn.2017.14
https://doi.org/10.1016/j.bandc.2008.02.118
https://doi.org/10.1136/bjsm.35.5.290
https://doi.org/10.3389/fpsyg.2015.00723


 

 

32 

Minoyama, O., & Tsuchida, H. (2004). Injuries in professional motor car racing drivers at a racing 

circuit between 1996 and 2000. British journal of sports medicine, 38(5), 613-616. 

https://doi.org/10.1136/bjsm.2003.007674  

Moore, J. W. (2016). What Is the Sense of Agency and Why Does it Matter? [Review]. Frontiers 

in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.01272  

Musco, M. A., Zazzera, E., Paulesu, E., & Sacheli, L. M. (2023). Error observation as a window 

on performance monitoring in social contexts? A systematic review. Neuroscience & 

Biobehavioral Reviews, 147, 105077. https://doi.org/10.1016/j.neubiorev.2023.105077  

Neiman, T., & Loewenstein, Y. (2011). Reinforcement learning in professional basketball 

players. Nature communications, 2, 569. https://doi.org/10.1038/ncomms1580  

Notebaert, W., Houtman, F., Opstal, F. V., Gevers, W., Fias, W., & Verguts, T. (2009). Post-

error slowing: an orienting account. Cognition, 111(2), 275-279. 

https://doi.org/10.1016/j.cognition.2009.02.002  

Notebaert, W., & Verguts, T. (2011). Conflict and error adaptation in the Simon task. Acta 

Psychologica, 136(2), 212-216. https://doi.org/10.1016/j.actpsy.2010.05.006  

Patil, A., Kshirsagar, S., & Parge, T. (2014). Study of front wing of formula one car using 

computational fluid dynamics. International Journal of Mechanical Engineering and 

Robotics Research, 3(4), 282.  

Phillips, A. J. K. (2014). Uncovering Formula One driver performances from 1950 to 2013 by 

adjusting for team and competition effects. Journal of Quantitative Analysis in Sports, 

10(2), 261-278. https://doi.org/10.1515/jqas-2013-0031  

Potkanowicz, E. S., & Mendel, R. W. (2013). The case for driver science in motorsport: a review 

and recommendations. Sports medicine (Auckland, N.Z.), 43(7), 565-574. 

https://doi.org/10.1007/s40279-013-0040-2  

Potter, J. M. (2011). Estimating the Offsetting Effects of Driver Behavior in Response to Safety 

Regulation: The Case of Formula One Racing. Journal of Quantitative Analysis in 

Sports, 7(3). https://doi.org/10.2202/1559-0410.1276  

Prat, L. I. (2018). Study of the aerodynamics of the Formula 1 rear wheels Universitat Politècnica 

de Catalunya].  

Rao, J. (2010). Experts' Perceptions of Autocorrelation: The Hot Hand Fallacy Among 

Professional Basketball Players.  

Rind, E., & Hu, Z. W. (2007). Aerodynamics of F1 car side mirror.  

Schmidt, R. A., & Wrisberg, C. A. (2008). Motor learning and performance: A situation-based 

learning approach. Human kinetics.  

Schroder, H., & Moser, J. (2014). Improving the study of error monitoring with consideration of 

behavioral performance measures. Frontiers in human neuroscience, 8, 178. 

https://doi.org/10.3389/fnhum.2014.00178  

https://doi.org/10.1136/bjsm.2003.007674
https://doi.org/10.3389/fpsyg.2016.01272
https://doi.org/10.1016/j.neubiorev.2023.105077
https://doi.org/10.1038/ncomms1580
https://doi.org/10.1016/j.cognition.2009.02.002
https://doi.org/10.1016/j.actpsy.2010.05.006
https://doi.org/10.1515/jqas-2013-0031
https://doi.org/10.1007/s40279-013-0040-2
https://doi.org/10.2202/1559-0410.1276
https://doi.org/10.3389/fnhum.2014.00178


 

 

33 

Steinhauser, M., & Kiesel, A. (2011). Performance monitoring and the causal attribution of 

errors. Cognitive, affective & behavioral neuroscience, 11(3), 309-320. 

https://doi.org/10.3758/s13415-011-0033-2  

Themanson, J. R., & Hillman, C. H. (2006). Cardiorespiratory fitness and acute aerobic exercise 

effects on neuroelectric and behavioral measures of action monitoring. Neuroscience, 

141(2), 757-767. https://doi.org/10.1016/j.neuroscience.2006.04.004  

Themanson, J. R., Pontifex, M. B., & Hillman, C. H. (2008). Fitness and action monitoring: 

evidence for improved cognitive flexibility in young adults. Neuroscience, 157(2), 319-

328. https://doi.org/10.1016/j.neuroscience.2008.09.014  

UKGamblingSites. (2022, 10 march 2022). How Often Do F1 Drivers Crash? Retrieved 18 

march 2022 from https://www.ukgamblingsites.com/sports-betting/f1/how-often-do-f1-

drivers-crash/ 

Van der Borght, L., Desmet, C., & Notebaert, W. (2016). Strategy Changes After Errors Improve 

Performance [Original Research]. Frontiers in Psychology, 6. 

https://doi.org/10.3389/fpsyg.2015.02051  

van Leeuwen, P. M., de Groot, S., Happee, R., & de Winter, J. C. F. (2017). Differences between 

racing and non-racing drivers: A simulator study using eye-tracking. PloS one, 12(11), 

e0186871. https://doi.org/10.1371/journal.pone.0186871  

Verbruggen, F., Chambers, C. D., Lawrence, N. S., & McLaren, I. P. L. (2017). Winning and 

losing: Effects on impulsive action. Journal of Experimental Psychology: Human 

Perception and Performance, 43(1), 147-168. https://doi.org/10.1037/xhp0000284  

Wang, C.-H., Chang, C.-C., Liang, Y.-M., Shih, C.-M., Chiu, W.-S., Tseng, P., Hung, D. L., 

Tzeng, O. J. L., Muggleton, N. G., & Juan, C.-H. (2013). Open vs. Closed Skill Sports 

and the Modulation of Inhibitory Control. PloS one, 8(2), e55773. 

https://doi.org/10.1371/journal.pone.0055773  

Wessel, J. R. (2018). An adaptive orienting theory of error processing. Psychophysiology, 55(3), 

e13041. https://doi.org/10.1111/psyp.13041  

Wessel, J. R., Danielmeier, C., Morton, J. B., & Ullsperger, M. (2012). Surprise and Error: 

Common Neuronal Architecture for the Processing of Errors and Novelty. The Journal 

of Neuroscience, 32(22), 7528. https://doi.org/10.1523/JNEUROSCI.6352-11.2012  

Williams, P., Heathcote, A., Nesbitt, K., & Eidels, A. (2016). Post-error recklessness and the hot 

hand. Judgment and Decision Making, 11, 174-184.  

Yıldırım-Yenier, Z., Vingilis, E., Wiesenthal, D. L., Mann, R. E., & Seeley, J. (2016). 

Relationships between thrill seeking, speeding attitudes, and driving violations among a 

sample of motorsports spectators and drivers. Accident Analysis & Prevention, 86, 16-

22. https://doi.org/10.1016/j.aap.2015.09.014  

https://doi.org/10.3758/s13415-011-0033-2
https://doi.org/10.1016/j.neuroscience.2006.04.004
https://doi.org/10.1016/j.neuroscience.2008.09.014
https://www.ukgamblingsites.com/sports-betting/f1/how-often-do-f1-drivers-crash/
https://www.ukgamblingsites.com/sports-betting/f1/how-often-do-f1-drivers-crash/
https://doi.org/10.3389/fpsyg.2015.02051
https://doi.org/10.1371/journal.pone.0186871
https://doi.org/10.1037/xhp0000284
https://doi.org/10.1371/journal.pone.0055773
https://doi.org/10.1111/psyp.13041
https://doi.org/10.1523/JNEUROSCI.6352-11.2012
https://doi.org/10.1016/j.aap.2015.09.014


 

 

34 

Yu, C. C., Muggleton, N. G., Chen, C. Y., Ko, C. H., & Liu, S. (2021). The comparisons of 

inhibitory control and post-error behaviors between different types of athletes and 

physically inactive adults. PloS one, 16(8), e0256272. 

https://doi.org/10.1371/journal.pone.0256272  

Zuckerman, M. (2015). Sensation Seeking: Behavioral Expressions and Biosocial Bases. In J. 

D. Wright (Ed.), International Encyclopedia of the Social & Behavioral Sciences (Second 

Edition) (pp. 607-614). Elsevier. https://doi.org/10.1016/B978-0-08-097086-8.25036-8  

Zuckerman, M. S. (1979). Sensation Seeking : Beyond the Optimal Level of Arousal.  

  

https://doi.org/10.1371/journal.pone.0256272
https://doi.org/10.1016/B978-0-08-097086-8.25036-8


 

 

35 

Appendix A: Scatterplots Lap Time Data  

Figure A1 

Scatterplots of the Lap Time Difference Scores for the 2016 Japanese GP. 

Figure A2 

Scatterplots of the Lap Time Difference Scores for the 2017 Abu Dhabi GP. 
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Figure A3 

Scatterplots of the Lap Time Difference Scores for the 2018 Russian GP. 

Figure A4 

Scatterplots of the Lap Time Difference Scores for the 2019 Hungarian GP. 
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Figure A5 

Scatterplots of the Lap Time Difference Scores for the 2020 Hungarian GP. 

Figure A6 

Scatterplots of the Lap Time Difference Scores for the 2020 70th Anniversary GP. 
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Figure A7 

Scatterplots of the Lap Time Difference Scores for the 2020 Spanish GP. 

Figure A8 

Scatterplots of the Lap Time Difference Scores for the 2021 Monaco GP. 
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Figure A9 

Scatterplots of the Lap Time Difference Scores for the 2021 French GP. 

Figure A10 

Scatterplots of the Lap Time Difference Scores for the 2021 Dutch GP. 
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Appendix B: Standard Deviations and Means of the ‘Difference in Lap Time with the 

Previous Lap’ and Performance Measures per Race  

Note. Ordered from small to large SDs 

Table B2 

Overview of the Standard Deviation (SD), Mean and Performance Measures of Each Driver in the 2017 

Abu Dhabi GP. 

 

Note. Ordered from small to large SDs 

Table B1 

Overview of the Standard Deviation (SD), Mean and Performance Measures of Each Driver in the 2016 

Japanese GP. 

 Surname
SD 

(ms)

Mean 

(ms)

Starting 

Pos.

Finishing 

Pos.

Pos. 

Difference
# R # C # W # P

Career

Points

# Points 

/ R

Bottas 323,18 0,76 11 10 1 204 0 10 67 1791 8,78

Verstappen 387,62 67,98 3 2 1 167 2 37 81 2104,5 12,6

Vettel 403,55 142,86 6 4 2 299 4 53 122 3098 10,36

Rosberg 404,84 73,21 1 1 0 206 1* 23 57 1594,5 7,74

Hamilton 449,91 49,95 2 3 -1 314 7 103 192 4453,5 14,18

Ricciardo 452,13 52,51 4 6 -2 232 0 8 32 1311 5,65

Massa 467,20 38,50 12 9 3 269 0 11 41 1167 4,34

Grosjean 614,76 105,77 7 11 -4 179 0 0 10 391 2,18

Button 619,67 59,29 22 18 4 306 1 15 50 1235 4,04

Pérez 653,98 45,33 5 7 -2 239 0 6 29 1288 5,39

Ericsson 667,41 0,49 18 15 3 97 0 0 0 18 0,19

Hülkenberg 677,50 21,00 9 8 1 179 0 0 10 391 2,18

Magnussen 741,41 14,51 17 14 3 145 0 0 1 184 1,27

Alonso 814,82 52,67 15 16 -1 359 2 32 101 2121 5,91

Palmer 828,58 -1,93 16 12 4 35 0 0 0 9 0,26

Kvyat 829,55 37,83 13 13 0 110 0 0 3 202 1,84

Ocon 845,48 63,62 20 21 -1 115 0 1 2 368 3,2

Räikkönen 850,61 57,60 8 5 3 349 1 21 103 1873 5,37

Wehrlein 870,93 92,36 21 22 -1 39 0 0 0 6 0,15

Nasr 909,52 -32,98 19 19 0 39 0 0 0 29 0,74

Sainz 1027,22 -4,05 14 17 -3 166 0 1 15 816,5 4,92

Gutiérrez 1539,99 80,88 10 20 -10 59 0 0 0 6 0,1

Surname
SD 

(ms)

Mean 

(ms)

Starting 

Pos.

Finishing 

Pos.

Pos. 

Difference
# R # C # W # P

Career

Points

# Points 

/ R

Vettel 242,83 -68,60 3 3 0 299 4 53 122 3098 10,36

Hülkenberg 251,57 -77,42 7 6 1 179 0 0 10 391 2,18

Räikkönen 284,35 -35,08 5 4 1 349 1 21 103 1873 5,37

Hamilton 288,83 -0,56 2 2 0 314 7* 103 192 4453,5 14,18

Pérez 335,63 -56,44 8 7 1 239 0 6 29 1288 5,39

Bottas 354,65 -55,29 1 1 0 204 0 10 67 1791 8,78

Ocon 376,76 -47,65 9 8 1 115 0 1 2 368 3,2

Verstappen 439,72 -50,27 6 5 1 167 2 37 81 2104,5 12,6

Alonso 741,36 -51,09 11 9 2 359 2 32 101 2121 5,91

Ericsson 775,95 -174,23 19 17 2 97 0 0 0 18 0,19

Wehrlein 789,07 -79,40 18 14 4 39 0 0 0 6 0,15

Massa 823,00 -70,64 10 10 0 269 0 11 41 1167 4,34

Hartley 848,86 -64,77 20 15 5 25 0 0 0 4 0,16

Stroll 867,26 84,46 15 18 -3 126 0 0 3 221 1,75

Grosjean 888,39 -88,74 16 11 5 179 0 0 10 391 2,18

Vandoorne 902,40 -77,51 13 12 1 41 0 0 0 26 0,63

Gasly 2719,58 -69,19 17 16 1 112 0 1 2 336 3
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Table B4 

Overview of the Standard Deviation (SD), Mean and Performance Measures of Each Driver in the 2019 

Hungarian GP. 

 

Table B3 

Overview of the Standard Deviation (SD), Mean and Performance Measures of Each Driver in the 2018 

Russian GP. 

 

Note. Ordered from small to large SDs 

Note. Ordered from small to large SDs 

Surname
SD 

(ms)

Mean 

(ms)

Starting 

Pos.

Finishing 

Pos.

Pos. 

Difference
# R # C # W # P

Career

Points

# Points 

/ R

Leclerc 397,94 -46,54 7 7 0 106 0 5 25 896 8,45

Räikkönen 418,96 -30,85 4 4 0 349 1 21 103 1873 5,37

Verstappen 477,92 -87,59 19 5 14 167 2 37 81 2104,5 12,6

Hamilton 526,35 -89,74 2 1 1 314 7* 103 192 4453,5 14,18

Ericsson 580,24 -27,10 10 13 -3 97 0 0 0 18 0,19

Alonso 689,89 -54,31 16 14 2 359 2 32 101 2121 5,91

Bottas 751,27 -91,04 1 2 -1 204 0 10 67 1791 8,78

Vettel 761,98 -59,93 3 3 0 299 4 53 122 3098 10,36

Ricciardo 778,14 -60,20 18 6 12 232 0 8 32 1311 5,65

Magnussen 815,46 -102,80 5 8 -3 145 0 0 1 184 1,27

Stroll 871,42 3,96 14 15 -1 126 0 0 3 221 1,75

Ocon 976,01 -64,78 6 9 -3 115 0 1 2 368 3,2

Pérez 1101,62 -113,87 8 10 -2 239 0 6 29 1288 5,39

Sirotkin 1146,70 35,18 13 18 -5 21 0 0 0 1 0,05

Sainz 1329,74 -57,93 11 17 -6 166 0 1 15 816,5 4,92

Vandoorne 1389,95 -11,95 15 16 -1 41 0 0 0 26 0,63

Grosjean 1491,66 -89,44 9 11 -2 179 0 0 10 391 2,18

Hülkenberg 1509,25 -95,71 12 12 0 179 0 0 10 391 2,18

Surname
SD 

(ms)

Mean 

(ms)

Starting 

Pos.

Finishing 

Pos.

Pos. 

Difference
# R # C # W # P

Career

Points

# Points 

/ R

Gasly 392,00 -38,87 6 6 0 112 0 1 2 336 3

Vettel 437,20 21,59 5 3 2 299 4 53 122 3098 10,36

Verstappen 480,96 14,50 1 2 -1 167 2 37 81 2104,5 12,6

Sainz 525,66 -33,19 8 5 3 166 0 1 15 816,5 4,92

Hamilton 531,95 33,92 3 1 2 314 7* 103 192 4453,5 14,18

Leclerc 539,90 51,71 4 4 0 106 0 5 25 896 8,45

Räikkönen 639,32 -43,73 10 7 3 349 1 21 103 1873 5,37

Hülkenberg 639,86 -31,13 11 12 -1 179 0 0 10 391 2,18

Kvyat 714,70 -48,20 13 15 -2 110 0 0 3 202 1,84

Magnussen 759,58 -82,90 14 13 1 145 0 0 1 184 1,27

Norris 784,52 -51,74 7 9 -2 86 0 0 6 438 5,09

Ricciardo 838,95 -64,32 20 14 6 232 0 8 32 1311 5,65

Stroll 912,50 3,19 18 17 1 126 0 0 3 221 1,75

Albon 915,27 -62,95 12 10 2 63 0 0 2 202 3,21

Pérez 960,96 -27,06 16 11 5 239 0 6 29 1288 5,39

Russell 1108,91 -17,44 15 16 -1 86 0 1 9 322 3,74

Giovinazzi 1124,68 -8,80 17 18 -1 62 0 0 0 21 0,34

Kubica 1461,05 -34,38 19 19 0 99 0 1 12 274 2,77
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Table B6 

Overview of the Standard Deviation (SD), Mean and Performance Measures of Each Driver in the 2020 

70th Anniversary GP. 

Table B5 

Overview of the Standard Deviation (SD), Mean and Performance Measures of Each Driver in the 2020 

Hungarian GP. 

 

Note. Ordered from small to large SDs 

Note. Ordered from small to large SDs 

Surname
SD 

(ms)

Mean 

(ms)

Starting 

Pos.

Finishing 

Pos.

Pos. 

Difference
# R # C # W # P

Career

Points

# Points 

/ R

Verstappen 401,90 -3,92 8 2 6 167 2 37 81 2104,5 12,6

Stroll 638,40 -108,44 4 4 0 126 0 0 3 221 1,75

Hamilton 651,25 -107,60 2 1 1 314 7* 103 192 4453,5 14,18

Giovinazzi 684,80 23,39 18 17 1 62 0 0 0 21 0,34

Albon 742,53 -168,20 14 5 9 63 0 0 2 202 3,21

Norris 833,84 -31,14 9 13 -4 86 0 0 6 438 5,09

Ricciardo 857,26 -88,25 12 8 4 232 0 8 32 1311 5,65

Vettel 920,44 -94,20 6 6 0 299 4 53 122 3098 10,36

Bottas 952,27 -170,69 3 3 0 204 0 10 67 1791 8,78

Kvyat 989,19 -184,72 17 12 5 110 0 0 3 202 1,84

Ocon 1021,11 -79,98 15 14 1 115 0 1 2 368 3,2

Russell 1034,72 -32,07 13 18 -5 86 0 1 9 322 3,74

Räikkönen 1039,32 -114,97 19 15 4 349 1 21 103 1873 5,37

Magnussen 1131,57 -265,71 1 10 -9 145 0 0 1 184 1,27

Sainz 1142,65 -177,22 10 9 1 166 0 1 15 816,5 4,92

Leclerc 1241,73 -162,45 7 11 -4 106 0 5 25 896 8,45

Pérez 1304,14 -198,47 5 7 -2 239 0 6 29 1288 5,39

Grosjean 1670,37 -233,11 1 16 -15 179 0 0 10 391 2,18

Latifi 2914,96 -79,23 16 19 -3 61 0 0 0 9 0,15

Surname
SD 

(ms)

Mean

(ms)

Starting 

Pos.

Finishing 

Pos.

Pos. 

Difference
# R # C # W # P

Career

Points

# Points 

/ R

Verstappen 237,85 -80,62 4 1 3 167 2 37 81 2104,5 12,6

Sainz 332,29 -51,07 12 13 -1 166 0 1 15 816,5 4,92

Vettel 333,64 -69,14 11 12 -1 299 4 53 122 3098 10,36

Stroll 350,60 -28,52 6 6 0 126 0 0 3 221 1,75

Kvyat 355,38 -74,55 16 10 6 110 0 0 3 202 1,84

Hülkenberg 365,49 -31,10 3 7 -4 179 0 0 10 391 2,18

Norris 424,80 -91,62 10 9 1 86 0 0 6 438 5,09

Leclerc 442,63 14,78 8 4 4 106 0 5 25 896 8,45

Gasly 448,59 -76,90 7 11 -4 112 0 1 2 336 3

Ocon 467,42 -96,42 14 8 6 115 0 1 2 368 3,2

Hamilton 515,67 62,17 2 2 0 314 7* 103 192 4453,5 14,18

Bottas 557,78 44,50 1 3 -2 204 0 10 67 1791 8,78

Albon 605,43 -49,93 9 5 4 63 0 0 2 202 3,21

Russell 620,26 6,55 15 18 -3 86 0 1 9 322 3,74

Giovinazzi 732,79 -33,15 19 17 2 62 0 0 0 21 0,34

Grosjean 761,52 -50,61 13 16 -3 179 0 0 10 391 2,18

Latifi 801,75 -36,71 18 19 -1 61 0 0 0 9 0,15

Räikkönen 911,85 -48,82 20 15 5 349 1 21 103 1873 5,37

Ricciardo 1770,95 -0,08 5 14 -9 232 0 8 32 1311 5,65
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Table B8 

Overview of the Standard Deviation (SD), Mean and Performance Measures of Each Driver in the 2021 

Monaco GP. 

 

Table B7 

Overview of the Standard Deviation (SD), Mean and Performance Measures of Each Driver in the 2020 

Spanish GP. 

 

 

Note. Ordered from small to large SDs 

Note. Ordered from small to large SDs 

Surname
SD

(ms)

Mean

(ms)

Starting 

Pos.

Finishing 

Pos.

Pos. 

Difference
# R # C # W # P

Career

Points

# Points 

/ R

Verstappen 399,23 -2,05 3 2 1 167 2 37 81 2104,5 12,6

Hamilton 417,19 -39,71 1 1 0 314 7* 103 192 4453,5 14,18

Bottas 421,25 14,96 2 3 -1 204 0 10 67 1791 8,78

Stroll 538,27 17,55 5 4 1 126 0 0 3 221 1,75

Latifi 594,30 29,61 19 18 1 61 0 0 0 9 0,15

Ocon 628,33 -83,34 15 13 2 115 0 1 2 368 3,2

Pérez 637,94 12,90 4 5 -1 239 0 6 29 1288 5,39

Russell 651,12 33,53 18 17 1 86 0 1 9 322 3,74

Kvyat 699,76 43,69 12 12 0 110 0 0 3 202 1,84

Sainz 710,42 -41,24 7 6 1 166 0 1 15 816,5 4,92

Magnussen 768,16 -32,72 16 15 1 145 0 0 1 184 1,27

Vettel 784,74 -12,55 11 7 4 299 4 53 122 3098 10,36

Grosjean 787,31 26,87 17 19 -2 179 0 0 10 391 2,18

Albon 800,19 4,16 6 8 -2 63 0 0 2 202 3,21

Gasly 847,78 -1,16 10 9 1 112 0 1 2 336 3

Norris 858,11 -64,71 8 10 -2 86 0 0 6 438 5,09

Giovinazzi 917,20 20,58 20 16 4 62 0 0 0 21 0,34

Ricciardo 1065,16 -111,29 13 11 2 232 0 8 32 1311 5,65

Räikkönen 1186,65 21,85 14 14 0 349 1 21 103 1873 5,37

Surname
SD

(ms)

Mean

(ms)

Starting 

Pos.

Finishing 

Pos.

Pos. 

Difference
# R # C # W # P

Career

Points

# Points 

/ R

Verstappen 370,42 -25,58 1 1 0 167 2* 37 81 2104,5 12,6

Sainz 391,39 -7,58 3 2 1 166 0 1 15 816,5 4,92

Vettel 409,59 -44,44 7 5 2 299 4 53 122 3098 10,36

Norris 420,13 -23,83 4 3 1 86 0 0 6 438 5,09

Gasly 494,03 -74,27 5 6 -1 112 0 1 2 336 3

Pérez 511,08 -84,62 8 4 4 239 0 6 29 1288 5,39

Giovinazzi 583,48 0,70 9 10 -1 62 0 0 0 21 0,34

Hamilton 613,80 -60,78 6 7 -1 314 7 103 192 4453,5 14,18

Stroll 743,27 -72,71 12 8 4 126 0 0 3 221 1,75

Ocon 805,96 -46,80 10 9 1 115 0 1 2 368 3,2

Latifi 885,46 -14,10 17 15 2 61 0 0 0 9 0,15

Alonso 907,20 -23,33 16 13 3 359 2 32 101 2121 5,91

Tsunoda 979,66 -50,66 15 16 -1 46 0 0 0 46 1

Ricciardo 1174,74 -30,74 11 12 -1 232 0 8 32 1311 5,65

Räikkönen 1194,30 -82,74 13 11 2 349 1 21 103 1873 5,37

Russell 1414,30 -63,51 14 14 0 86 0 1 9 322 3,74

Mazepin 1700,56 -63,76 18 17 1 21 0 0 0 0 0

Schumacher 1918,05 -163,74 19 18 1 43 0 0 0 12 0,28
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Table B10 

Overview of the Standard Deviation (SD), Mean and Performance Measures of Each Driver in the 2021 

Dutch GP. 

 

Table B9 

Overview of the Standard Deviation (SD), Mean and Performance Measures of Each Driver in the 2021 

French GP. 

 

Note. Ordered from small to large SDs 

Note. Ordered from small to large SDs 

Surname
SD

(ms)

Mean

(ms)

Starting 

Pos.

Finishing 

Pos.

Pos. 

Difference
# R # C # W # P

Career

Points

# Points 

/ R

Hamilton 419,61 3,74 3 2 1 314 7 103 192 4453,5 14,18

Stroll 434,33 -76,15 20 10 10 126 0 0 3 221 1,75

Verstappen 440,69 8,63 2 1 1 167 2* 37 81 2104,5 12,6

Gasly 440,90 -13,28 7 7 0 112 0 1 2 336 3

Ricciardo 522,19 -30,26 11 6 5 232 0 8 32 1311 5,65

Pérez 615,40 -33,76 5 3 2 239 0 6 29 1288 5,39

Mazepin 631,33 -36,76 19 20 -1 21 0 0 0 0 0

Giovinazzi 636,44 -24,13 14 15 -1 62 0 0 0 21 0,34

Russell 638,46 -73,11 15 12 3 86 0 1 9 322 3,74

Norris 683,42 -84,74 9 5 4 86 0 0 6 438 5,09

Sainz 743,77 1,63 6 11 -5 166 0 1 15 816,5 4,92

Bottas 754,44 8,98 4 4 0 204 0 10 67 1791 8,78

Latifi 757,99 -100,67 17 18 -1 61 0 0 0 9 0,15

Ocon 782,48 -17,69 12 14 -2 115 0 1 2 368 3,2

Alonso 804,14 -50,11 10 8 2 359 2 32 101 2121 5,91

Vettel 826,98 -82,33 13 9 4 299 4 53 122 3098 10,36

Tsunoda 841,67 -19,09 1 13 -12 46 0 0 0 46 1

Räikkönen 1003,25 4,78 18 17 1 349 1 21 103 1873 5,37

Leclerc 1100,73 57,10 8 16 -8 106 0 5 25 896 8,45

Schumacher 1847,68 -51,02 16 19 -3 43 0 0 0 12 0,28

Surname
SD

(ms)

Mean

(ms)

Starting 

Pos.

Finishing 

Pos.

Pos. 

Difference
# R # C # W # P

Career

Points

# Points 

/ R

Gasly 430,43 12,42 5 4 1 112 0 1 2 336 3

Verstappen 454,95 10,98 2 1 1 167 2* 37 81 2104,5 12,6

Leclerc 474,09 -5,50 6 5 1 106 0 5 25 896 8,45

Ricciardo 573,16 -38,58 11 11 0 232 0 8 32 1311 5,65

Bottas 584,11 35,84 4 3 1 204 0 10 67 1791 8,78

Ocon 602,35 -4,17 9 9 0 115 0 1 2 368 3,2

Hamilton 612,93 47,45 3 2 1 314 7 103 192 4453,5 14,18

Alonso 623,77 -33,30 10 6 4 359 2 32 101 2121 5,91

Sainz 710,84 -20,11 7 7 0 166 0 1 15 816,5 4,92

Giovinazzi 769,22 -36,07 8 14 -6 62 0 0 0 21 0,34

Norris 810,40 -38,38 14 10 4 86 0 0 6 438 5,09

Stroll 896,47 -1,63 13 12 1 126 0 0 3 221 1,75

Kubica 905,34 37,63 17 15 2 99 0 1 12 274 2,77

Pérez 958,28 109,90 1 8 -7 239 0 6 29 1288 5,39

Latifi 1059,03 62,73 1 16 -15 61 0 0 0 9 0,15

Vettel 1634,90 -31,40 16 13 3 299 4 53 122 3098 10,36

Schumacher 1938,75 39,66 18 18 0 43 0 0 0 12 0,28
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