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Abstract

In (malignant) solid tumours, the Interstitial Fluid Pressure (IFP) is elevated [70, 89], which
creates an outward fluid flow away from the tumour and hence limits the amount of therapeutic
drugs that reaches the tumour centre through convection [30]. In fact, the drug distribution
is concentrated at the periphery of the tumour while 90% of the tumour volume receives very
little to no drugs [75]. IFP has therefore been shown to be a valuable marker for both diagnosis
and prognosis of many solid cancer types [33, 36].

Accurate and non-invasive measurements of the IFP would be clinically valuable for developing
patient-specific and optimized drug delivery strategies, and monitor the efficacy of treatments
designed to lower IFP over time [80]. Currently, only invasive techniques exist, limiting the
widespread use of IFP measurements in clinical practice. However, Shear Wave Elastography
(SWE) has emerged as a promising non-invasive alternative for measuring the IFP indirectly.
SWE is used currently to measure tissue stiffness based on ultrasound. Previous studies and
experiments have shown that the shear wave velocity (SWV) measured during SWE is correlated
to the IFP, and that elevated IFP increases the apparent observed tissue stiffness [1, 31, 51,
66, 88, 89]. Therefore, this work explores how the IFP affects the SWV through computational
modelling in COMSOL Multiphysics® 6.1 (COMSOL AB, Stockholm, Sweden).

Keywords- Shear Wave Elastography (SWE), Interstitial Fluid Pressure (IFP), solid tumours,
computational modelling, poroelasticity
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Abstract—The Interstitial Fluid Pressure (IFP) is elevated in solid
tumours and limits the efficacy of therapeutic agents. IFP measurements
would be clinically valuable for diagnosis, prognosis, and drug delivery
optimisation. Shear Wave Elastography (SWE) has emerged as a promis-
ing non-invasive technique for assessing the IFP indirectly. In this study,
the influence of the IFP on the Shear Wave Velocity (SWV) measured
through SWE is assessed through numerical modelling in COMSOL
Multiphysics® in a poro- and hyperelastic tissue.

Keywords— Shear Wave Elastography (SWE), Interstitial Fluid Pres-
sure (IFP), solid tumours, computational modelling, poroelasticity

I. INTRODUCTION

(Malignant) solid tumours are characterised by elevated Interstitial
Fluid Pressure (IFP) [1, 2]. Typical values from 10 to 40 mmHg
have been reported in various solid tumours, such as in head, neck,
breast, and cervical cancer, with highest recordings going up to
100 mmHg in malignant melanomas [1]. The pressure difference
with the surrounding tissue creates a fluid flow away from the
tumour, which limits the amount of therapeutic drugs that reach the
tumour centre through convection [3]. In fact, the drug distribution is
concentrated at the periphery of the tumour while 90% of the tumour
volume receives very little to no drugs [4], and IFP is therefore
indicative for diagnosis and prognosis of many solid cancers [5, 6].

Currently, only invasive techniques are used for measuring IFP in
clinical practise, limiting its widespread use. On the contrary, accurate
and non-invasive measurements of the IFP would be valuable for
optimizing drug delivery strategies and monitoring the efficacy of
treatments designed to lower IFP over time [7]. Shear Wave Elastog-
raphy (SWE) has emerged as an indirect non-invasive alternative for
measuring the IFP. Currently, the technique is used to measure tissue
stiffness based on ultrasound, but previous studies and experiments
have shown that the Shear Wave Velocity (SWV) measured during
SWE is correlated to the IFP [2, 8–12]. Therefore, this work explores
how the IFP affects the SWV through computational modelling in
COMSOL Multiphysics® 6.1 (COMSOL AB, Stockholm, Sweden).
This is done as follows. First, a material model for a poroelastic
tissue is constructed. The tissue is then pressurised, and shear waves
are generated. Post-processing allows to determine the SWV, and
subsequently, the IFP-SWV relationship.

II. MATERIALS & METHODS

A. Material Model

As the extracellular matrix consists of structural elements and the
interstitial fluid, it can be represented by a poroelastic material, where
deformation of a solid matrix induces fluid flow and vice-versa. A
poroelastic soft tissue is recreated in COMSOL Multiphysics® by
manually coupling the Solid Mechanics module to the Free and
Porous Media Flow module bidirectionally, as validated by [13].
Here, the fluid pressure (P ) governed by the Free and Porous Media
Flow module induces a body load on the solid phase, resulting in
either swelling or shrinking. Alternatively, changes in volumetric
strain (εvol) of the solid phase influence the fluid phase similarly to

a mass source. The manually added coupling factors are represented
by [8, 13, 14]:

F = −∇P (1a)

Qbr = −ρ
∂εvol
∂t

(1b)

where the volumetric body force F (units N/m3) is added to the solid
phase and the mass source Qbr (units kg/(m3 · s)) is added to the
fluid phase. Additionally, porosity and permeability should increase
or decrease with tension or compression, so they are modelled as
strain-dependent variables according to [15, 16]:

ϕ =
ϕ0 + εvol
1 + εvol

(2a)

k = k0e
Mεvol (2b)

where ϕ is the porosity (dimensionless), εvol the volumetric strain
(dimensionless), k the permeability (units m2), M an exponential pa-
rameter of the permeability (dimensionless), and subscript 0 describes
the initial configuration. These equations are also manually inserted
into COMSOL Multiphysics®.

Linear elasticity is often insufficient to adequately describe soft
biological tissues, especially at high strains. Therefore, both linear
and hyperelastic tissues are modelled. The hyperelastic tissue is
described by a first order Ogden strain energy function. An overview
of all material parameters is shown in Tab. I.

TABLE I
OVERVIEW OF MATERIAL PARAMETERS. VALUES FOR LINEAR SOLID

MATRIX AND INTERSTITIAL FLUID TAKEN FROM [8]. VALUES FOR
HYPERELASTIC SOLID MATRIX ROUGHLY FITTED TO EXPERIMENTS IN

CHICKEN BREASTS FROM [8]. VALUES FOR POROUS MEDIUM
CALCULATED FROM [17].

Linear solid matrix
Young’s modulus E = 100 kPa
Poisson’s ratio ν = 0.495
Density ρ = 945 kg/m3

Hyperelastic solid matrix
Ogden parameters µ1 = 0.15 kPa, α1 = 70
Density ρ = 945 kg/m3

Interstitial fluid
Viscosity µ = 1.5 · 10−3 Pa · s
Density ρ = 1000 kg/m3

Porous medium
(Initial) porosity ϕ = 0.51
(Initial) permeability k = 5.3 · 10−12 m2

Exponential factor M = 4.3

B. Geometry and Mesh

The Region of Interest (ROI) is a square with sides of 30 mm
and represents the tissue under investigation. A layer of 20 mm



surrounding ROI is modelled as well to prevent reflections of shear
waves within the ROI. The same material model is used throughout
complete geometry.

As the 2D geometry is simple and regular, a uniform mesh can
be obtained with quadrilateral elements (4 nodes). These elements
don’t contain sharp angles. Additionally, they are aligned with
the primary shear wave propagation and displacement directions,
reducing numerical dispersion artifacts [8, 18]. A mesh with 84100
mesh elements and a maximal element size of 0.242 mm is selected
based on a mesh sensitivity analysis.

C. Boundary Conditions and Pressurisation

The boundary conditions that are applied on the geometry are
illustrated in Fig. 1. The solid matrix is fixed at the central point of
the bottom edge, while roller constraints are placed along the entire
bottom edge. The interstitial fluid is pressurised through inlet (for
fluid inflow) and outlet (for fluid outflow) boundary conditions. Inlet
pressures ranging from 0− 120 mmHg are applied on the top and
bottom edges and an outlet pressure of 0 mmHg is applied on the
sides.

Fig. 1. Boundary conditions of healthy model. The solid matrix is fixed at
the central point of the bottom edge and roller constraints are placed along
the entire bottom edge. An inlet fluid pressure between 0 − 120 mmHg is
applied at the top and bottom boundary and an outlet pressure of 0 mmHg
at the sides.

D. Shear Wave Generation and Post-Processing

In this study, Acoustic Radiation Force Impulse (ARFI)-driven
SWE is considered, whereby a high-intensity pulse or ARF is gener-
ated at a particular tissue depth with an ultrasound (US) transducer.
This induces tissue displacements perpendicular to the transducer
surface (axial or Y direction) that propagate parallel to the transducer
surface (lateral or X direction). In the numerical model, shear waves
are generated by applying a downward time-dependent body load,
representing the ARF, of 1.5 · 106 N/m3 in the axial direction over
an area of 1 by 5 mm in the centre of the geometry. The height is
chosen as in [8]. The body load magnitude and area are set such that
realistic tissue displacements are induced (peak displacements should
be in the range of 10− 20 µm [19]).

The ARF push is represented by a rectangular load of 0.3 ms
[8] (typically 0.1 − 0.5 ms [18]) with smooth transition zones (of
20 µs) to improve convergence. The total simulation time, starting
with the application of the body load, is 3 ms. As such, the shear
waves can propagate sufficiently across models with different material
parameters to allow accurate tracking of the SWV. Similarly, the

maximal time step of the solver is constrained to 0.01 ms and the
results at every 0.01 ms are stored for post-processing.

The axial velocities of the solid phase in all mesh nodes and at all
timeframes are exported from COMSOL Multiphysics® and imported
into MATLAB R2020b (The MathWorks Inc., Natick, MA, USA) for
post-processing. During post-processing, only the values within the
ROI are extracted and interpolated onto a regular grid containing
approximately the same number of nodes as the original mesh in
the ROI. The velocity of the shear waves propagating to the left and
right is estimated using the Radon sum transform [20]. This code
was provided by Dr. Ir. Annette Caenen.

E. Simulation Pipeline

The simulation process consists of two distinct steps, followed by
post-processing to obtain the SWVs. An overview of the process is
provided in Fig. 2. Initially, the material undergoes a stationary step
where the IFP is applied, meaning that the steady-state solution after
the pressurisation is obtained. In the subsequent step, the fluid pres-
sure is maintained, shear waves are generated and their propagation
is analysed, thereby inherently requiring a time-dependent study.

For both steps, the default solver configurations of COMSOL
Multiphysics® are implemented. An ‘automatic’ nonlinear method
is used in the stationary solver and the iterative process is terminated
using a relative tolerance of 0.001 (default). For the time-dependent
step, an implicit solver is employed with a method based on BDF
(backward differentiation formula). Importantly, the maximum step
constraint is changed from ‘automatic’ to a ‘constant’ value of
0.01 ms to ensure the time steps taken by the solver don’t exceed
the time step used for post-processing.

III. RESULTS & DISCUSSION

A. Comparison to Theoretical Values

The SWV obtained through computational modelling in the non-
pressurised case can be compared to theoretical values. In a linear
elastic material, the SWV cs can be written in terms of the shear
modulus µ or Young’s modulus E [21]:

cs =

√
G

ρ
(3a)

cs =

√
E

2ρ(1 + ν)
(3b)

For a linear elastic tissue with E = 100 kPa, the theoretical SWV
is 5.95 m/s. For the first order hyperelastic Ogden model, the shear
modulus can be approximated by:

µ =
µ1α1

2
(4)

where µ1 and α1 are the first order Ogden parameters. This results in
a theoretical SWV of 2.36 m/s. By comparison, the mean SWV of
the right and left propagating shear waves in the computational model
are 6.07 m/s and 2.91 m/s in the linear and hyperelastic tissues, re-
spectively. The theoretical values are lower than the computationally
obtained values. This could be due to numerical dispersion or due to
the fact that the theoretical values are approximations. Nevertheless,
the comparison with theoretical values validates the model’s ability
to provide realistic estimates of the SWV.



Fig. 2. Overview of the simulation process.

B. SWE in Pressurised Tissues

The resulting shear wave propagation in a pressurised hyperelastic
tissue is shown in Fig. 3. It can be seen that shear waves propagate
faster when the tissue is pressurised. High (and mostly quadratic)
correlations between the IFP, stresses, and strains and the SWV are
observed, as shown in Fig. 4. The results in pressurised linear elastic
tissues are not shown here, but also show high (and mostly linear)
correlations.

Elevated IFP noticeably affects SWV in both linear and hyper-
elastic tissues. In linear elastic tissues, this could be due to the
geometric nonlinearity as noted in [22]. In hyperelastic tissues, the
shear modulus increases with strain and introduces an additional
nonlinear term.

Supplementary simulations have confirmed that the SWV is not
affected by pressurisation if the tissue is constrained, i.e., not allowed
to deform during pressurisation, as observed experimentally in [9].

IV. CONCLUSION

The model developed in this study allows to examine how the SWV
increases with the IFP. Comparison of the non-pressurised computa-
tionally obtained SWVs proved to be similar to the theoretical values,
proving that realistic values are obtained.

In the models’ current configuration, determination of the absolute
value of the IFP within a tissue is not yet possible without knowledge
of the tissue parameters, as comparison of the tumour SWV with
adjacent tissues is not sufficient to decouple the influence of tumour
stiffness and IFP. Therefore, only the variation in fluid pressure over
time can be determined currently, which would already be useful for
monitoring the efficacy of treatments designed to lower the IFP over
time that aim to improve uptake of other therapeutic drugs to the
tumour.

Fig. 3. Influence of pressurisation on shear wave propagation. SWV is
increased in the pressurised tissue (right) compared to the non-pressurised
tissue (left).



Fig. 4. Relationships between the SWV and the IFP, stresses, and strains in the centre of the model. Both linear and quadratic fits of the mean SWV are
provided for comparison.

Moreover, this model can serve as a basis to test whether additional
measurements in the time and/or frequency domain can allow to char-
acterise the tissue and fluid pressure. Finally, the model developed in
this study could also be used to study the effect of fluid pressure in
a multitude of disorders, such as oedema.
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1 Introduction

Tumours, and other biological tissues, can be described by a poroelastic material consisting of
a porous solid matrix and (interstitial) fluid between the pores. Solid tumours represent more
than 85% of all human cancers [75]. In (malignant) solid tumours, the pressure of the interstitial
fluid is elevated [70, 89]. This creates an outward fluid flow away from the tumour, which limits
the amount of therapeutic drugs that reaches the tumour centre through convection [30]. In
fact, the drug distribution is concentrated at the periphery of the tumour while 90% of the
tumour volume receives very little to no drugs [75]. The Interstitial Fluid Pressure (IFP) has
therefore been shown to be a valuable marker for both diagnosis and prognosis of many solid
cancer types [33, 36].

Accurate and non-invasive measurements of the IFP would be clinically valuable for developing
patient-specific and optimized drug delivery strategies and monitor the efficacy of treatments
designed to lower the IFP over time [80]. Currently, only invasive techniques exist. However,
Shear Wave Elastography (SWE) provides an alternative. This non-invasive technique is used
today to measure tissue stiffness based on ultrasound. By hypothesizing that the measured
tissue stiffness is not only dependent on the stiffness of the porous solid matrix but also affected
by the IFP, SWE is a promising technique to measure the IFP indirectly.

Therefore, the goal of this Master’s thesis is to explore and assess through computational
modelling in which way SWE measurements are affected by IFP. Numerical models have the
advantage of allowing to study the influence of different parameters on outcomes separately,
and may provide novel insights that would be difficult to acquire through in vivo or ex vivo
experiments. This thesis builds upon the work performed by Kristyna Holkova in her Master’s
thesis [31]. She successfully demonstrated a correlation between IFP and the Shear Wave
Velocity (SWV) measured during SWE in ex vivo experiments on a chicken breast. However,
no relationship was observed between the IFP and computationally obtained SWV. The model
for healthy biological soft tissue that she developed is improved in this thesis in order to observe
the effect of IFP on the SWV. Additionally, it is extended to include a tumour mass and examine
a more relevant clinical scenario.

1
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2 Interstitial Fluid Pressure (IFP)

2.1 The Interstitium and Interstitial Fluid

The interstitium, which is the space between cells and blood capillaries as shown in Figure 2.1,
accounts for roughly one-eight of the total body weight [8]. It consists of the extracellular matrix
(ECM), which contains the interstitial fluid and structural elements such as collagen fibres,
elastin fibres, proteoglycans and glycosaminoglycans [78]. As water binds to certain elements
in the ECM, the interstitial fluid acquires a hydrogel-like structure. Human bodies contain at
least three times more interstitial fluid volume than blood [22]. The interstitial fluid brings
oxygen and nutrients from blood capillaries to cells, removes their waste products (through
lymphatic drainage) and allows cells to exchange information through molecular signals. [22,
49, 78]

Figure 2.1: The interstitium is the space between cells and blood capillaries and contains interstitial
fluid. Adapted from [77].

2.2 Poroelasticity of Biological Tissues

As the ECM consists of structural elements and the interstitial fluid, it can be represented
by a poroelastic tissue, where deformation of a solid matrix induces fluid flow and vice-versa.
Similarly to a wet sponge, when a poroelastic material is compressed, fluid is forced out of the
material while its pores get compressed.

2.3 Transcapillary Flow

The exchange of fluid between the capillaries and the interstitium is called the transcapillary
flow. In healthy tissues, the fluid flows from the arterial end of capillaries to the interstitium
and is reabsorbed at the venous end or eliminated through lymphatic drainage [22]. The
net filtration pressure across the capillary wall is driven by the Starling forces, which are the
hydrostatic and colloid osmotic pressures in both the capillaries and the interstitial fluid [30].

Hydrostatic pressures refer to the force exerted by a fluid against a wall. In the capillaries, the
hydrostatic pressure is positive and corresponds to the blood pressure generated by the heart,
pushing fluid into the interstitium. In the interstitium, it is (generally) negative due to, e.g.,
lymphatic drainage, pushing fluid out of the interstitium and into the lymphatics. [60]

Osmotic pressures occur when two solutions with different concentrations are separated by an
impermeable membrane. The capillary wall is impermeable to plasma proteins, giving rise

3
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to a lower colloid osmotic (or oncotic) pressure in the interstitium, pulling water out of the
interstitium and into the capillaries [60].

The direction and rate of fluid exchange of the transcapillary flow is determined by a balance
between the hydrostatic pressure gradient, pushing fluid into the interstitium, and the colloid
osmotic pressure gradient, pushing fluid into the capillaries as illustrated in Figure 2.2. This
interplay can be summarised using the following equations:

Pnet = (Pc − Pif )− (Πc −Πif ) (2.1)

J = K · Pnet (2.2)

where Pnet is the net filtration pressure, P the hydrostatic pressure, Π the colloid osmotic
pressure, J the transcapillary flow, and K the vascular permeability coefficient. Subscripts c

and if refer to the capillaries and interstitial fluid, respectively. Thus, the transcapillary flow
is positive for flows into the interstitium. [30, 60]

Figure 2.2: Interplay of Starling forces that regulate transcapillary flow. [28]

Average values for the Starling forces in human capillaries and interstitium and the resulting
net filtration pressure can be found in Table 2.1. The average net filtration pressure is slightly
positive, indicating that the transcapillary flow is directed from the capillaries toward the
interstitium.

Table 2.1: Average values for the Starling forces in human capillaries and interstitium. [30]

Pnet Pc Pif Πc Πif

1 to 3 mmHg 20 mmHg −3 to −1 mmHg 28 mmHg 8 mmHg

2.4 Interstitial Fluid Pressure (IFP) in Healthy and Cancerous
Tissues

The Interstitial Fluid Pressure (IFP), previously referred to as the hydrostatic pressure of the
interstitial fluid, varies slightly depending on the location in the human body. In general, it is
a few millimetres of mercury around the atmospheric pressure [70]. Solid tumours, however,
are characterized by increased IFP [30, 70, 80]. Typical values from 10 to 40 mmHg have
been reported in various solid tumours, such as in head, neck, breast, and cervical cancer, with
highest recordings going up to 100 mmHg in malignant melanomas [70]. The tumour IFP is
distributed uniformly throughout the centre with a rapid decrease towards the edges [30].

Some of the plausible underlying processes of increased IFP in tumours are described below
and illustrated in Figure 2.3. Solid tumours require the formation of new blood vessels, i.e.,
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angiogenesis, to provide sufficient oxygen and nutrients for growth. These vessels are often
hyperpermeable (leaky), irregular, tortuous, and compressed by surrounding proliferating cells,
causing inefficient blood flow and allowing more fluid and plasma proteins to diffuse into the in-
terstitium. This reduces the capillary hydrostatic pressure and increases the IFP. Furthermore,
a lack of lymphatic vessels limits drainage of the excess fluid and proteins, and the increased
presence of inflammatory cells contributes even more to the higher tumour IFP. More precisely,
the IFP is uniformly elevated throughout the tumour, with a steep decrease in the periphery
where functional lymphatics are available. [3, 21, 30, 52, 72]

Numerical models have allowed to identify additional parameters that influence IFP, such as
tumour size and shape, tumour vascular heterogeneity, and hydraulic conductivity of the inter-
stitium. The latter represents the ease of fluid flow through the porous matrix and depends on
the tissue’s permeability, degree of saturation, fluid density, and fluid viscosity. [70]

The increased IFP cannot be (completely) compensated for through volume expansion, as the
tumour tissue is stiffer due to a denser network of collagen fibres in the ECM. This likely
explains the persistent elevated IFP. [30]

(a) Healthy tissue (b) Tumour tissue

Figure 2.3: Differences between healthy and tumour tissues that impact interstitial fluid pressure
(IFP). Blood vessels in tumours are often hyperpermeable, irregular, tortuous, and compressed by
surrounding proliferating cells, causing inefficient blood flow and allowing more fluid and plasma pro-
teins to diffuse into the interstitium. The lack of lymphatic vessels limits drainage of the excess fluid
and proteins. The tumour tissue also contains more inflammatory cells. Combined, these structural
changes increase the IFP in the tumour. The increased IFP cannot be compensated through volume
expansion, as the tumour tissue is stiffer due to a denser network of collagen fibers in the ECM. [30]

2.5 Impact of Increased Tumour IFP

Many drugs that are used in cancer therapy are comprised of compounds with high molecular
weight that cannot be transported from the bloodstream to the interstitium through diffusion.
Instead, their transportation occurs through convection. However, the increased tumour IFP
induces a pressure gradient between the tumour and the surrounding normal tissue which
creates a fluid flow away from the tumour. Therefore, a lower amount of therapeutic drugs
reach the tumour centre and drug distribution is heterogeneous within the tumour, limiting the
therapeutic efficacy. [30, 36]

Increased tumour IFP is therefore a barrier to cancer therapy and has been associated to
poor prognosis to treatment, such as chemotherapy and radiation therapy, and higher risk of
recurrence and distant metastases. Conversely, a progressive lowering of IFP in various cancer
types has been observed in patients who respond positively to therapy. Moreover, compounds



Chapter 2. Interstitial Fluid Pressure (IFP) 6

that reduce the tumour IFP have been shown to improve the efficacy and therapy by enabling
more efficient uptake of therapeutic drugs. [36, 80]

Therefore, tumour IFP has been established as a valuable diagnostic and prognostic marker,
and predictor of clinical response for various cancer types [33, 36]. For example, IFP is the
prominent prognostic indicator of survival for patients suffering from cervical cancer [21].

2.6 Clinical Importance of IFP Measurements

The aforementioned arguments highlight the clinical potential of accurate in vivo IFP measure-
ments. The measurements could be employed for [80]:

– Identifying solid tumours with high IFP.

– Designing optimized treatment plans taking into account the constraining impact of in-
creased IFP.

– Monitoring the efficacy of treatments aimed at reducing the IFP to facilitate the transport
of therapeutic drugs towards the tumour.

Additionally, IFP measurements would be valuable in other pressure-related disorders such as
hydrocephalus (build-up of cerebrospinal fluid in the ventricles of the brain [50]), stroke (im-
paired interstitial fluid drainage [2]), and oedema (excessive build-up of fluid in the interstitium
[30]) [80]. These applications are outside the scope of this thesis.

2.7 IFP Measurement Methods

Despite their clinical potential, IFP measurements have not been implemented much in oncology
practice. This is because invasive techniques (requiring needle insertion) were required until
recently. In general, these are uncomfortable for the patient, destructive to the tissue thereby
limiting the accuracy of the pressure estimation, constrained to tumours located superficially
and restricted to measurements at discrete locations [6, 36, 70, 80].

Alternatives to invasive methods, that measure pressure directly, are imaging- or elastography-
based methods. These approaches estimate the pressure indirectly. They could overcome the
limitations associated with invasive techniques and expedite the adoption of IFP measurements
for clinical decision-making in oncology, leading to improved cancer treatment and outcomes
[36].

The following sections will elaborate on both the direct and indirect methods. A more in-depth
explanation of the techniques described below is provided in [70] and an overview of their
(dis)advantages is found in Table 2.2.

2.7.1 Invasive Techniques

2.7.1.1 Wick Catheter and Wick-In-Needle

A wick catheter (illustrated in Figure 2.4) is filled with saline and contains a protruding ab-
sorbent wicking material such as nylon thread. A large cannula is necessary to insert the
catheter into the skin and a needle and plastic sheath are used to advance the wick deeper into
the tissue, after which they are retracted. A pressure transducer is connected to the catheter
and measures the equilibrium pressure between the saline and interstitial fluid. The wick-in-
needle technique (illustrated in Figure 2.4) is similar apart for the fact that the wick is now
encased within a fine needle that contains an elongated side hole to allow contact between
the wick and interstitium. These techniques have the advantage of being reproducible and are
therefore most commonly used. [6, 30, 70, 85]
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Figure 2.4: Invasive methods to measure IFP. Figures adapted from [85] (wick catheter), [22] (wick-
in-needle), [29] (implanted capsule), [9] (micropipette), [38] (transducer-tipped catheter).

2.7.1.2 Servo-Controlled Micropipette

When using a servo-controlled micropipette (illustrated in Figure 2.4), the tissue is punctured
with a sharpened saline-filled microscopic glass pipette. A servo-controlled counterpressure is
applied to the pipette in order to avoid a change in electrical impedance that occurs when
interstitial fluid enters the pipette. The counterpressure is equal to the interstitial fluid hydro-
static pressure acting on the tip of the pipette and can be gauged by a pressure transducer. The
pressure estimations of this method are more reliable compared to the wick-in needle technique,
owing to the minimal tissue damage of the technique due to the smaller tip. Nevertheless, glass
tubes are fragile and pressure assessment is limited to tissues located at a depth of up to 1 mm

from the surface. [6, 30, 70, 85]

2.7.1.3 Transducer-Tipped Catheter (Millar)

The transducer tipped catheter (illustrated in Figure 2.4) is a miniature transducer within a
needle, which can be retracted after being introduced into the tissue. Calibration of the trans-
ducer is necessary both prior to and following each use to achieve accurate IFP measurements.
Unfortunately, the technique is expensive and the reading might be biased by the solid stress
in the tissue as well. [55, 70]

2.7.1.4 Implanted Capsules

Chronic measurement methods also exist, and involve implanting hollow perforated or porous
capsules (illustrated in Figure 2.4) into the tissue of interest several weeks before measurements
can start. Subsequently, the pressure of the interstitial fluid inside the capsule is assessed using a
catheter or needle, linked to a pressure transducer. However, these methods are highly damaging
to the tissue and are restricted to superficially located tissues and non-urgent measurements.
Additionally, the accuracy of the readings is compromised because of the sensitivity to changes
in vascular pressure or the colloid osmotic pressure of the interstitial fluid. [70, 85]

2.7.2 Non-Invasive Techniques

There are two approaches for indirectly estimating the IFP: one measures fluid flow through
dynamic imaging, while the other involves elastography to assess the stiffness of the tissue [70].
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Therefore, the indirect methods measure a quantitative value first, from which the IFP can be
deduced through a scaling factor or computational algorithm [36]. These methods are still in
the research phase and are not implemented into clinical practice for IFP assessment.

2.7.2.1 Dynamic Imaging-Based

In literature, most dynamic imaging methods for IFP assessment are based on Magnetic Reso-
nance Imaging (MRI). These include Dynamic Contrast Enhanced (DCE), Diffusion Weighted
(DW), and Convection MRI. These techniques are explained briefly below, a more extended
explanation can be found in [70].

– Dynamic Contrast Enhanced MRI
In DCE MRI, a contrast agent is administered and pre- and post-injection MRI scans
are compared. The signal intensity of the contrast agent over time is related to the
tissue perfusion and can be used to estimate IFP through curve analysis or fitting to
pharmacokinetic compartment models. [70]

– Diffusion-Weighted MRI
DW MRI allows to assess quantitatively the diffusion path of water molecules and yields a
map of apparent diffusion coefficients. These values have shown to be inversely correlated
with IFP. [36, 70]

– Convection MRI
Finally, convection MRI measures interstitial fluid velocity through a specific sequence.
It can be converted to IFP through Darcy’s law. The added value is that it provides
additional information, namely, both 3D pressure and fluid-velocity maps. However, the
acquisition is slow, limiting its clinical potential. [36, 70]

2.7.2.2 Elastography-based

The last non-invasive approach, which forms the subject of this Master’s thesis, is founded on
elastography. This technique employs medical imaging modalities, such as ultrasound (US)
or MRI to obtain stiffness maps of tissues, also known as elastograms. The following chapter
describes this technique and its relevance for pressure estimations.
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Table 2.2: Comparison of methods to measure interstitial fluid pressure (IFP). Table adapted from
[70].

Technique Disadvantages Advantages
Direct methods

Servo-controlled
micropipette

Only superficial
measurements possible
(max 1 mm), fragile,
breaks easily, invasive

Minimally invasive

Wick catheter
Vulnerable to clotting,

tissue trauma due to large
cannula (invasive)

Rapid

Wick-in-needle Requires custom needles
with side holes, invasive

Rapid, minimal tissue
trauma

Capsule implantation

Considerable trauma and
wound healing response

(invasive), slow and
superficial measurements

Measures only fluid
pressure

Transducer-tipped catheter

Expensive, tend to
measure total tissue

pressure (IFP plus solid
stress), invasive

Minimal tissue trauma,
rapid and simple

Indirect methods

Dynamic contrast MRI
Requires complex models,

safety and patient
considerations, expensive

Non-invasive, measures
only fluid pressure

Convection MRI Slow acquisition, safety
and patient considerations

Non-invasive, requires less
complex models, no

contrast agent required,
measures only fluid

pressure

Diffusion-weighted MRI Uncertainty, safety and
patient considerations

Non-invasive, no contrast
agent required, measures

only fluid pressure

Ultrasound-based
elastography

Limited field of view,
uncertainty

Non-invasive, rapid and
cheap, no contrast agent

required

MR based elastography Uncertainty Non-invasive method, no
contrast agent required



3 Shear Wave Elastography (SWE)

3.1 Elastography

The stiffness of tissues has been known to be correlated to tissue pathologies and is therefore an
important biomarker. For example, the stiffness is increased in most tumours or in liver tissue
affected by liver fibrosis [73]. Assessing and quantifying changes in tissue stiffness can therefore
improve the diagnosis of certain tissue pathologies. Palpation is the oldest technique used by
clinicians to qualitatively assess changes in tissue stiffness through physical examination. [11,
56].

Today, several methods based on elastography have been developed. They are more quanti-
tative, less operator-dependent and allow to assess tissues that are not located superficially.
Elastography is a non-invasive technique employing medical imaging modalities to estimate the
stiffness of tissues. More specifically, a mechanical excitation is applied and the resulting tissue
displacement measured. Stiffer tissues will deform less for the same mechanical excitation. [11,
56]

Ultrasound (US) and Magnetic Resonance Imaging (MRI) are the main imaging modalities used
in elastography. Mechanical excitation of the tissue is generated by an actuator in Magnetic
Resonance Elastography (MRE) and through internal or external compression in Ultrasound
Elastography (USE) [70]. US-based methods generally have the advantage of being faster, less
expensive and more widely available, including at bedside, than MRE [11, 73]. On the other
hand, MRI-based methods are not limited by gas and bone and can thus be used for imaging in
e.g., the brain. They have a larger field of view, and higher repeatability and reproducability.
MRE is also able to detect tissue displacement in 3D, whereas this can only be detected in 1D,
along the direction of the US beam, in US-based methods. [11, 70]

The USE techniques and mechanics will be explained in more detail in section 3.3. Shear
Wave Elastography (SWE) is a subtype of USE and forms the the primary emphasis of this
thesis. While elastography is traditionally designed to acquire the elastic or Young’s modulus
of tissues, this thesis focuses on the indirect assessment of IFP through stiffness measurements
from USE instead. The following section describes the theory underlying this concept.

3.2 Stiffness and Total Tissue Pressure

As mentioned in the previous section, the stiffness in most tumours is elevated. The stiffness
of tissues is defined as the resistance to deformation. It is commonly described by the elastic
modulus, which is the ratio of the stress over the strain with units of N/m2 or Pa [12]. This is an
intrinsic property of the material that is not affected by its physical dimensions [70]. However,
stresses and strains are difficult to determine in clinical practice. The structural stiffness is
therefore often used instead, which is also dependent on the geometry and boundary conditions
besides the intrinsic material stiffness [12]. Stiffness is mainly influenced by the composition
and organization of the ECM. More precisely, increased collagen deposition and crosslinking
of ECM constituents in tumours lead to the densification of the ECM, which results in an
augmentation of tissue stiffness [52, 57].

Tensile and compressive forces are present in the tumour. These solid stresses are determined
by the solid components of the tumour, such as the ECM, cancer cells, collages fibres, and
hyaluronan acid gel. Solid stress is increased in many tumours, due to cell proliferation, matrix
deposition, cell contraction, and abnormal growth. Therefore, it can be influenced by both the
ECM and cells, whereas the tumour stiffness is predominantly affected by solely the ECM. [52,
57]

10
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Besides the solid stress (SS), the tissue is also affected by the IFP for reasons mentioned in
section 2.4. The total tissue pressure (TTP) in a tumour is therefore the sum of the solid stress
(SS) and interstitial fluid pressure (IFP) [36, 70]:

TTP = SS + IFP (3.1)

Importantly, the IFP and matrix stiffness are tightly linked and interdependent: an increase
in IFP results in tissue deformation, a modification in strain distribution, and an elevation in
stiffness [70]. As highlighted in [40], the contribution of IFP to the tumour stiffness might
resemble the effect of the air pressure within a basketball, which feels harder when it is more
inflated. The growth of tumours results in an elevation of both solid and fluid pressures, with
the latter contributing more significantly to the overall tissue pressure. As a result, the tissue
undergoes deformation, leading to a change in stiffness proportional to the total tissue pressure.
This principle has led to the development of elastography-based techniques that enable the
estimation of tumour IFP. [70]

The effect of IFP on drug delivery was already discussed in section 2.5. The elevated solid
stress and stiffness also influence drug delivery, as summarised in Figure 3.1.

Figure 3.1: Mechanisms in tumours that lead to altered drug delivery. [52]

3.3 Ultrasound Elastography (USE)
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3.3.1 Physics

3.3.1.1 Hooke’s Law

Hooke’s law describes elasticity in materials that are linearly elastic and experience deformations
that are not influenced by time (i.e., no poroelasticity or viscoelasticity):

σ = Γ · ε (3.2)

where σ is the stress or force per unit area (in units of N/m2 or Pa), ε is the strain or expansion
per unit length (dimensionless) and Γ is the elastic modulus that correlates the stress and strain
(in units of N/m2 or Pa). Materials possessing a higher elastic modulus will exhibit greater
resistance to deformation and thus enhanced stiffness.

Three different elastic moduli can be defined dependent on the method of deformation: the
Young’s modulus (E), shear modulus (G), and bulk modulus (K). The Young’s modulus is
used to relate normal stresses (σn) and strains (εn), the normal being perpendicular to the
surface, and is measured during uniaxial loading. The shear modulus relates shear stresses (σs)
and strains (εs), shear being tangential to the surface, and is measured during simple shear
loading. Finally, the bulk modulus is used when a normal inward force or pressure (σB) results
in a bulk strain or change in volume εB [12, 73]. This is summarised in the following equations
and Figure 3.2 [12]:

σn = E · εn (3.3a)

σs = G · εs (3.3b)

σB = K · εb (3.3c)

Figure 3.2: Deformation models in USE. Hooke’s law relates the stress and strain through the elastic
modulus in linearly elastic materials and time-independent deformations. Depending on the type of
deformation, different elastic moduli can be defined. [73]

3.3.1.2 Wave Propagation

Different types of waves can be distinguished in US. The longitudinal and shear waves are
described here and are illustrated in Figure 3.3. In a longitudinal wave, particle displacement
occurs in the same direction as the wave propagation. Shear waves, on the other had, propagate
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perpendicularly to the particle displacement. The velocity of the longitudinal (cl) and shear
(cs) wave propagation are described by the following equations:

cl =

√
K + 4

3G

ρ
(3.4a)

cs =

√
G

ρ
(3.4b)

where ρ is the material density (in units of kg/m3), cl is the longitudinal wave velocity (≈
1540 m/s in soft tissues), and cs the shear wave velocity (≈ 1− 10 m/s in soft tissues) [73].

Figure 3.3: In a longitudinal wave, particle displacement occurs in the same direction as the wave
propagation. Shear waves, on the other had, propagate perpendicularly to the wave propagation. [11]

The Young’s and shear modulus are related to each other through the dimensionless Poisson’s
ratio (ν):

E = 2(1 + ν)G (3.5)

By substituting the previous equation in Equation 3.4b, the relationship between the Young’s
modulus and shear wave velocity can be obtained:

cs =

√
E

2ρ(1 + ν)
(3.6)

In case of an incompressible material, ν = 0.5, and the previous equation can be simplified to:

cs =

√
E

3ρ
(3.7)

The equations presented in this section serve as the foundation for stiffness estimation in elas-
tography.

3.3.1.3 Advantage of Shear Wave Analysis

The variation of bulk and shear moduli across different tissues in the human body is depicted
in Figure 3.4. Notably, the shear modulus exhibits a much broader range of values than the
bulk modulus, as it spans several orders. Consequently, imaging of the shear wave propagation,
which is determined by the shear modulus through Equation 3.4b, enables better differentiation
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Figure 3.4: Variation in bulk and shear modulus for different tissues in the body. The shear moduli
in the body span over a much larger range than the bulk moduli. [59]

between different tissue types compared to longitudinal wave propagation, which is governed
by the bulk modulus through Equation 3.4a. Additionally, as explained in the previous section,
shear waves propagate much slower than longitudinal waves. For this reason, shear wave analysis
can be conducted with a smaller field of view and/or lower frame rate. [11]

3.3.2 Techniques

3.3.2.1 Classification Methods

As mentioned in the introduction on elastogrpahy in section 3.1, elastography-based techniques
measure the displacement resulting from a mechanical excitation on the tissue. This excitation
can be either (quasi-)static, involving a constant compressive stress on the tissue, or dynamic,
where time-varying (transient) or oscillatory (harmonic) forces excite the tissue. Moreover, the
excitation can be external, where a compression force is applied on top of the skin, or internal,
which results from either physiological (e.g., cardiovascular or respiratory) motion or a forced
internal motion induced by remote palpation (i.e., an acoustic radiation force). [11]

Two main USE types can be distinguished by considering the measured physical quantity:
strain imaging (qualitative) and shear wave imaging (quantitative)[11]. By taking into account
the method of excitation, both techniques can be subdivided again. An overview of USE
classification is given in Figure 3.5 and examples of elastograms in clinical applications are
shown in Figure 3.6. For a more comprehensive analysis of the various types of USE, the reader
is referred to [11].

Strain imaging allows for the qualitative assessment of tissue stiffness by directly estimating
the changes in strains observed in the tissue before and after the mechanical excitation. In
contrast, shear wave imaging enables the quantitative evaluation of tissue stiffness, such as the
elastic or shear modulus, by indirect estimations from reconstructions that take into account
the tissue properties. [11]

3.3.2.2 Strain Imaging

Both Strain Elastography (SE) and Acoustic Radiation Force Impulse (ARFI) are types of
strain imaging techniques. SE applies external manual compression on the tissue using the US
transducer or utilizes internal physiological motion for the mechanical excitation. The former
can only be used for superficially located regions such as the breast or thyroid.

In both cases, tissue displacement parallel to the excitation is measured, which allows to esti-
mate the strain. An elastogram can be created by superimposing the strain measurements as
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Ultrasound Elastography
(USE)

Strain Imaging
(qualitative)

Strain
Elastography

(SE)

Acoustic Radia-
tion Force Impulse

(ARFI)

Shear Wave Imaging
(quantitative)

Point Shear Wave
Elastography

(pSWE)

2D Shear Wave
Elastography
(2D-SWE)

1D Transient
Elastography

(1D-TE)

Figure 3.5: Classification of USE.

Figure 3.6: Examples of elastograms obtained through strain imaging (top) and shear wave imaging
(bottom). Strain imaging provides qualitative results (e.g., soft in red and hard in blue). Shear
wave imaging provides quantitative results (e.g., shear wave velocity or estimates of elastic modulus).
Illustrations from [81], elastograms adapted from [47] (thyroid), [87] (prostate), [82] (liver), [90] (breast).

a semitransparant color map on top of the conventional US B-mode image. Regions with lower
strains compared to the strains in a reference tissue region are characterized by higher stiffness.
The strain ratio therefore provides a qualitative stiffness map, for which the applied force does
not need to be known, in contrast to quantitative stiffness estimations using Equation 3.3a.
[56, 73]

ARFI internally excites the tissue by generating an Acoustic Radiation Force (ARF) with the
US transducer. The ARF is a short (0.1 − 0.5 ms) and high-intensity pulse (i.e., impulsive)
that displaces the tissue. Peak tissue displacements are approximately 10 − 20 µm [53]. The
qualitative elastogram is created in the same way, where stiffer regions are represented by lower
strains. [11, 73]

3.3.2.3 Shear Wave Imaging

Three approaches can be distinguished in shear wave imaging: Point Shear Wave Elastography
(pSWE), 2D Shear Wave Elastography (2D-SWE), and 1D Transient Elastography (1D-TE).
As the names suggest, pSWE provides an average stiffness value at a certain region or point
of the tissue, whereas 2D-SWE generates a 2D elastogram of the tissue. They both use an
ARF to excite the tissue and measure the shear waves propagating perpendicularly to the
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excitation. 1D-TE, on the other hand, excites the tissue with a dynamic mechanical stress that
is generated by a vibrating device that is integrated into the US transducer. The waves parallel
to the excitation are measured, and decoupling of the longitudinal and shear waves is possible
due to the marked difference in propagation velocities between both [45]. [11, 73]

These approaches measure the velocity of the shear wave propagation directly, and by assuming
the material is linearly elastic, isotropic, incompressible and the deformation independent on
time, it can be converted to a stiffness estimation using Equation 3.7. An overview of the three
approaches and their characteristics are represented in Table 3.1.

Table 3.1: Summary of shear wave imaging methods. Table adapted from [73].

pSWE 2D-SWE 1D-TE
Excitation method

Dynamic stress by ARFI,
perpendicular to the
transducer surface, in a
single focal location.

Dynamic stress by ARFI,
perpendicular to the
transducer surface in
multiple focal zones.

Dynamic stress by a
mechanical vibrating
device.

Shear wave measurement plane

Shear waves measured
perpendicular to plane of
excitation.

Shear waves measured
perpendicular to ARFI
application.

Waves measured parallel to
excitation and decoupling
of longitudinal and shear
waves [45].

Stiffness estimation

Shear wave speed (cs)
reported or converted in
Young’s modulus (E) to
provide quantitative
estimate of tissue elasticity.

A near cylindrical shear
wave cone is created,
allowing real-time
monitoring of shear waves
in 2D for measurement of
SWV or E and generation
of quantitative
elastograms.

Stiffness estimated along
ultrasonic A-line, in a fixed
region, neither user
adjustable nor image
guided.

Visualization

Operator can use B-mode
US to directly visualize
and select ROI.

Operator is guided by both
anatomical and tissue
stiffness information, has
real-time visualization of a
color box; quantitative
elastogram superimposed
on a B-mode image
stiffness information.

Operator selects imaging
area using time-motion
ultrasound, based on
multiple A-mode lines in
time at different proximal
locations forming low
quality image. The same
probe uses A-mode US to
measure SWV and E is
calculated.

Remarks
Can be performed on
conventional US machine
using standard ultrasound
probe. Became available in
2008.

Currently newest shear
wave imaging method.

First system commercially
available. The most widely
used and validated
technique for assessment of
liver fibrosis.

Advantages [56]
Low operator dependency
and strong quantification,
less influenced by obesity,
ROI can be selected.

Low operator dependency
and strong quantification,
ROI can be adjusted.

Short exam duration
(< 5min), easy to perform,
highly reproducible.
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3.4 Shear Wave Elastography (SWE)

Shear waves propagate perpendicularly to the direction of particle displacement, in contrast to
longitudinal waves (see Figure 3.3). They can arise from harmonic or impulsive (< 1 ms) ARF
[11]. This thesis will focus on the latter: ARFI driven SWE or SWE in short. This technique
can be summarised as follows and is also illustrated in the corresponding Figure 3.7) [11]:

1. Using a conventional ultrasound transducer, a high-intensity pulse or ARF is focused
at a particular tissue depth. This induces displacement of the tissue in the direction
perpendicular to the transducer surface primarily.

2. The US transducer is then switched into an imaging mode, containing low-intensity acous-
tic pressure pulses, to measure the resulting tissue displacement. The tissue motion prop-
agates in all directions, away from the focal point. The motion that is perpendicular to
the transducer surface with a propagation parallel to the surface, corresponds to the shear
waves.

3. A quantitative elastogram, is generated from the shear wave propagation velocity using
Equation 3.7. Shear waves propagate faster in stiffer tissues.

One benefit of this method is that conventional US transducers can generate the ARF, without
requiring specialized equipment and thus facilitating the incorporation of this technique into
clinical practice [11].

Today, SWE is the golden standard for non-invasive detection of liver fibrosis [1]. Furthermore,
it is employed in various other clinical applications such as the detection and characterization
of lesions in the breast, thyroid, liver, and prostate, and tendon imaging [56, 58].

Figure 3.7: Steps in impulsive ARF-driven SWE. Adapted from [11].

3.5 Limitations

A few limitations are associated to USE and US-based systems in general. First, US cannot
pass through gas and bone, so MRE has to be used instead for e.g., elastography applications
in the brain. Image artifacts, related to shadowing, reverberation, and cluttering also occur
in US imaging and free-hand US systems are susceptible to operator-dependent variability.
Additionally, accuracy can be compromised in obese patients and deeper lying tissues, as the
ultrasound signal is attenuated as a function of depth. Finally, standardization across manu-
facturer systems and standardization protocols of USE settings and parameters is required to
enable comparison between different USE systems and measurements in longitudinal studies.
[73]



4 SWE for Assessing IFP

In conventional SWE, the shear wave velocity (SWV) is converted to the Young’s modulus
using Equation 3.7. In order to apply this equation, the imaged tissue is assumed to have a
single solid phase, be linearly elastic, isotropic, incompressible, and bulky (see subsection 3.3.1).
Linear elasticity, however, often fails to adequately describe many soft tissues [61]. Additionally,
they often consist of a solid and fluid phase, i.e., they are poroelastic.

In literature, laboratory phantom experiments revealed that both porosity and fluid viscos-
ity must be taken into account to convert SWV to elasticity in soft porous materials more
accurately [1]. Moreover, significant differences have been found in the estimation of the elas-
tic modulus between ex vivo indentation tests and in vivo SWE measurements in malignant
tumours, strongly suggesting that IFP is a crucial factor influencing SWE in solid tumours [89].

The focus of this thesis is to use computational modelling to examine how the SWV is affected
by IFP. Therefore, this chapter investigates various aspects related to the IFP-SWV relationship
and poroelasticity.

4.1 Poroelasticity in Soft Biological Tissues

As mentioned in section 2.2, the ECM consists of structural elements and the interstitial fluid.
As such, it can be represented by a poroelastic material. The poroelastic or biphasic theory was
first developed by Biot in 1941 for soil mechanics [62], and later extended to include anisotropy
and viscoelasticity [7].

4.1.1 Governing Equations - Linear Isotropic Poroelasticity

The poroelastic theory described below relies on certain assumptions about the material and
its stress-strain relationship [42, 62]. The material is assumed to be isotropic, homogeneous
(i.e., requiring sufficiently small pore size to obtain a homogeneous macroscopic behaviour),
and to have fully saturated pores (i.e., no presence of gas and infinite supply of fluid), a
fully connected pore space and an incompressible solid and fluid phase. Small strains are also
assumed, as well as a stress-strain relationship that is linear (described by Hooke’s law) and
reversible at equilibrium. Finally, gravitational terms are neglected1.

Under these assumptions, the poroelastic material is governed by three laws [74]: Hooke’s law,
Darcy’s law, and the law of mass conservation. Hooke’s law was described in section 3.3.1.1.
It relates the stresses in a linear elastic material to the strains through the Young’s modulus.
Darcy’s law describes the fluid flow through a porous medium, driven by a pressure gradient:

q = −k

µ
∇P (4.1)

where q is the fluid flow (units m/s), k the tissue permeability2(units m2), µ the fluid dynamic
viscosity (units Pa · s or kg/(m · s)), and ∇P the gradient of the fluid pressure. Bold symbols
denote tensors. The permeability describes how easily the fluid can flow through the medium.
It depends on the microstructure of the porous solid, such as the porosity, tortuosity, and pore
interconnections [24, 42]. In literature, the hydraulic conductivity or permeability K = k/µ

(units m4/(N ·s)) is sometimes used instead. It is important to distinguish it from the intrinsic
tissue permeability k [76].

1For very soft porous solids, such as certain hydrogels, gravity effects cannot be neglected [23].
2If the permeability is anisotropic, k is a tensor. This work considers isotropic permeability, so k is a scalar.

18
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From the fluid flow, the fluid velocity vf (units m/s) can be obtained by considering the porosity
ϕ (dimensionless), as only a limited portion of the total volume is available for fluid flow [4]:

vf =
q

ϕ
(4.2)

Finally, the law of mass conservation (assuming incompressible constituents) ensures that the
amount of fluid flowing in or out of the boundaries is met with the appropriate variation of
fluid content within the material [42]:

∂θ

∂t
+∇ · q = 0 (4.3)

θ = tr(ε) = εvol (4.4)

where θ is the variation in fluid content per unit volume of porous media and ε the strain tensor
[19]. θ is also referred to as the volumetric strain εvol, and reflects the dilation or contraction
of the porous matrix [16]. In case of an incompressible solid and fluid phase, the variation of
fluid content is equal to the variation of pore volume (or porosity):

θ = ϕ− ϕ0 (4.5)

in which ϕ and ϕ0 are the current and initial porosity, respectively. Therefore, Equation 4.3
becomes:

∂ϕ

∂t
+∇ · q = 0 (4.6)

4.1.2 Extension to Brinkman Equation

Darcy’s law (Equation 4.1) does not consider inertial effects and is only suitable to describe slow
flows [16, 41]. Moreover, the non-negligible friction that occurs when the viscous interstitial
fluid moves through the interstitium is not taken into account [75]. Therefore, the law can be
extended to the Brinkman equation to include additional terms and take into account inertial
and viscous forces:

ρ
∂vf

∂t
+ ρvf · ∇vf = −∇P− ϕµ

k
vf +∇(µeff∇vf ) (4.7)

where µeff is the effective viscosity and depends on the dynamic viscosity, but also on the
porosity and tortuosity [35]. The left-hand side of the equation represents the inertial forces
(due to local acceleration and convection) and the right-hand side the forces acting on the fluid.
The first term on the right-hand side is the pressure gradient, the second term a resistance force
and the third term is a viscous force (to account for the dissipation of kinetic energy by viscous
shear). Body forces such as gravity are neglected. [16, 20, 27, 83]

4.1.3 Extension to Non-Linear Elasticity

Linear elasticity is often insufficient to adequately describe soft biological tissues, especially
at large strains. Instead, hyperelastic models are often used to describe these tissues and are
defined by a strain energy function W . This function represents the energy that is stored by
the material when it undergoes deformation. It thereby relates the displacement and resulting
stresses in the tissues and is a scalar function per unit of reference volume. [84]
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Different hyperelastic models exist, but only the Ogden model will be described here. It is a
simple model considering a homogeneous, isotropic, incompressible material and has shown to
fit experimental data of human breast tissue well [84]. The Ogden strain energy function can
be defined as follows, taking into account the principal stretches3 λi [84]:

WOgden =

N∑
k=1

µk

αk
(λαk

1 + λαk
2 + λαk

3 − 3) (4.8)

where N is the order of the polynomial, µk is the infinitesimal shear modulus4 (units Pa), and
αk a stiffening parameter (dimensionless). Thus, at higher strains, the material becomes stiffer.
The initial shear modulus µ of the material is [84]:

µ =

N∑
k=1

µkαk

2
(4.9)

4.1.4 Strain-Dependent Permeability and Porosity

In the context of small strains, constant porosity and permeability of the porous material are
often considered. However, this assumption may not hold true when examining soft biological
tissues, particularly in scenarios such as confined compression experiments, involving the com-
pression of the material between permeable plates. By contrast, a more accurate representation
would be to consider the porosity and permeability as strain-dependent variables, wherein their
values are influenced by the deformation of the solid skeleton. Specifically, when subject to
compression, the porous material exhibits a reduction in pore size, resulting in a decreased
porosity and diminished permeability.

In biomechanics, cartilage is the most investigated biological poroelastic material [37] and
literature about strain-dependency in these tissues is also mainly orientated to articular cartilage
[5, 13, 32, 39, 43, 44, 63, 79, 86]. These studies seem to propose different models for the
implementation of the strain-dependency in porous media, but they can all be referred back to
the formulation originally developed in [39] and later extended in [32]. The strain-dependent
porosity and permeability can therefore be written as follows:

ϕ =
ϕ0 + εvol
1 + εvol

(4.10a)

k = k0e
Mεvol (4.10b)

where ϕ0 is the initial porosity, εvol the volumetric strain (or fluid content variation), k0 the
initial permeability and M an exponential parameter of the permeability. Strain-dependent
permeability can be written in terms of the strain, porosity, or hydration. These formulations
are mathematically equivalent, but only the formulation with strain can be extended from a
scalar to a tensor to include anisotropy and is therefore used here to facilitate the incorporation
of anisotropy in future models [32].

Tumour tissues contain more cells and therefore have different porosities and permeabilities
compared to their healthy counterparts. In [64], the authors characterised the strain-dependent
permeability of healthy and cancerous breast tissue. In cancerous breast tissues, they observed a
decrease in the permeability of 40−70% compared to healthy breast tissue. The obtained initial
porosity, permeability, and exponential parameter for the tissue specimens are summarized in
Table 4.1.

3As the strain energy function is defined in function of the principal stretches, the Ogden model is a stretch-
based model. Alternative models are based on the invariants of the Cauchy deformation tensor.

4The shear modulus µ is different from the dynamic viscosity µ.
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Table 4.1: Characterisation of strain-dependent porosity and permeability in breast tissue. A sum-
mary is provided of the initial porosity ϕ0, initial hydraulic permeability K0, and exponential parameter
of the average values within the healthy (H) and cancerous (C) breast tissue specimens. ∆ represents
the difference between the healthy and tumoral tissue within one specimen. Note that the characteri-
sation was performed using compressive strain, so the opposite of M should be taken when considering
the volumetric strain as in Equation 4.10b. Values calculated from [64].

ϕ0 (%) K0 (10−10 m4/(Ns)) M (-)
H C ∆ H C ∆ H C

Mean 51.5 43.9 8.0 35.6 14.5 24.3 -4.3 -4.1
Median 47.0 42.5 6.5 18.9 10.1 11.0 -4.2 -4.2
Max 71.2 65.1 19.2 187.8 46.4 144.5 -2.9 -1.4
Min 40.0 23.7 -1.5 4.4 0.3 0.9 -5.9 -6.8
Stdev 10.4 9.8 6.1 42.1 12.7 34.4 0.7 1.1

4.2 IFP-SWV Relationship

4.2.1 Our Previous Experimental Work

As mentioned in the introduction (chapter 1), this thesis builds upon the research Kristyna
Holkova performed in her Master’s thesis [31] last year. In order to explore the correlation
between the IFP and SWV, SWE experiments were performed on chicken breasts. These are
briefly outlined below.

The experimental setup is illustrated in Figure 4.1. A chicken breast tissue was selected due to
its isotropic poroelastic structure. To ensure complete saturation of the tissue, it is immersed
in water, while the absorbing US rubbers on the bottom serve to minimise reflections. Two
closely positioned needles are inserted into the tissue. One needle is connected to a syringe for
controlled fluid insertion, thereby increasing the IFP. The second needle is used for evaluating
the resulting pressure. Finally, SWE measurements are performed by placing the US transducer
close to the injection point.

Figure 4.1: Experimental setup for SWE measurements on a chicken breast.

The results of one of the experiments on a chicken breast is shown in Figure 4.2. As can
be observed from the figures, a high linear correlation (R = 0.95) exists between the IFP and
SWV. The SWV was determined through the Radon transformation, which will be explained in
section 5.4, and slightly overestimated the SWV compared to manual tracking, showing SWVs
in the range of 2.01− 6.47 m/s. The analysis of other chicken breast experiments can be found
in [31].

4.2.2 Effect of Deformation
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Figure 4.2: Results of a SWE experiment on a chicken breast performed in [31]. Water is injected
into the tissue to increase the IFP. The resulting IFP and SWV are measured.

4.2.2.1 Ex Vivo Experiments

Increasing stiffness estimations with pressure suggest a nonlinear, e.g., hyperelastic, stress-strain
relationship of the tissue. Therefore, shear wave experiments were performed on pressurised
hepatic tissue in [66]. The results are shown in Figure 4.3. An increase in SWV with fluid
pressure was observed, but only in the unconstrained case, i.e., when the tissue was allowed
to expand during pressurization. This indicates that tissue deformation is crucial to observe
stiffening with increasing pressure and that a hyperelastic material model can be used for
studying this relationship. [66]

(a) (b)

Figure 4.3: Relationship and correlation between the shear wave speed (SWS) and pressure of hepatic
tissue during experiments performed by [66]. During pressurization, the tissue is allowed to deform
in the unconstrained case and is not allowed to deform in the constrained case. A clear correlation
between the SWS and pressure is observed in the unconstrained case. [66]

4.2.2.2 Analytical model

The conventional acoustoelastic theory postulates that the propagation speed in a solid is
influenced by prestress, but this theory does not explain the observed phenomenon in the
experiments described above. An analytical model was thus derived in [51] for the SWV in an
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incompressible isotropic poroelastic material, in which an arbitrary strain function is suitable
to describe the solid phase, as long as the decoupled formulation (containing a volumetric and
isochoric/volume-preserving contribution) is not used. The resulting formula for the SWV (cs)
is dependent on tissue expansion [51]:

cs =

√
µ̃

ρ̃
(4.11a)

µ̃ = 2
W1

Λ
+ 2ΛW2 (4.11b)

ρ̃ = ρeff,0 − ρf0
iωτ

1 + iωτ
(4.11c)

ρeff = (1− ϕ)ρs + ϕρf (4.11d)

τ =
ρf0K
(ϕ0)2

(4.11e)

in which Λ is the isotropic stretch due to the pressurisation, µ̃ is similar to a shear modulus
and dependends on the stretch, ρeff the effective density, ϕ is the porosity, ρs the density
of the solid, ρf the density of the fluid, ω the pulsation of the wave, and K the hydraulic
permeability. The subscript 0 denotes quantities that are assessed in the static pressurised
state. For ωτ << 1, the last term in Equation 4.11c can be neglected. When ωτ = O(1),
ρ̃ becomes a complex number and quantifies the dissipation that occurs as the fluid moves
relatively to the solid matrix. At much larger ωτ , ρ̃ ≈ ρs0. [51]

The solid phase is hyperelastic and is characterised by a strain energy density function W , in
which Wi = ∂W

∂Ii
and Ii are the invariants of the left Cauchy-Green strain tensor. Note the

similarity between Equation 4.11a and Equation 3.4b. The change in SWV can also be derived:

c2s
c2s,0

=
W1(Λ) + Λ2W2(Λ)

Λ
(
W1(1) +W2(1)

) (4.12)

in which cs,0 is the SWV when no strain is present (Λ = 1). More information concerning
the formulas and derivations can be found in [51]. As noted in [65], this analytical model is
adequate for large, but purely volumetric deformations under constant pressurisation. The
model can therefore be extended by splitting the principal stretches λi in a pure isotropic
dilation component (with isotropic stretch Λ) and isochoric deformation components (with
principal stretches λ̃i). The corresponding deformation gradient F is [65]:

F =

λ1 0 0

0 λ2 0

0 0 λ3

 =

Λ 0 0

0 Λ 0

0 0 Λ


λ̃1 0 0

0 λ̃2 0

0 0 λ̃3

 (4.13)

The plane shear wave velocity with propagation direction in line with the principle axis of λ2

and polarization direction5 in line with the principle axis of λ1 can be derived (see [65]). The
initial and final equations are shown here:

ρc2s = J−1λ2
2

λ1
∂W
∂λ1

− λ2
∂W
∂λ2

λ2
1 − λ2

2

= 2
λ̃2
2

Λ
W1 + 2Λλ̃−2

1 W2 (4.14)

where J = det(F) is the Jacobian.

5The polarization direction corresponds the direction of particle motion induced by the ARF [23].
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Figure 4.4: Relationship between the IFP (p) and the SWV (cs) derived from a biomechanical model
of a porous, hyperelastic, and unconfined tumour. ρ0 is the initial density of the solid matrix of the
tumour. The K is parameter denoting volumetric deformation, the material is incompressible when
K = 0. [89]

4.2.3 Biomechanical Model

In [89], the authors developed a biomechanical model to quantitatively assess the influence of
IFP on SWV in a confined solid tumour. More specifically, the model considers porous and
hyperelastic tissues, and takes into account tumour growth and confinement. The analytical
derivation of their biomechanical model shows that high IFP significantly increases the SWV.
This strong correlation suggests that SWE can serve as a non-invasive technique for estimating
the IFP in vivo. [89]

Determination of the absolute IFP requires knowledge of the shear modulus, which is difficult
to obtain in vivo. However, the variation of IFP can be assessed instead through, for example,
SWV measurements in the tumour before and after treatment. When considering an unconfined
tumour with an incompressible solid phase, the relationship between the IFP and SWV (cs)
becomes [89]:

∆IFP = ∆(ρ0c
2
s) (4.15)

where ρ0 is the effective tumour density in the static pressurised state. The relationship is
shown in Figure 4.4. This equation is independent of the tumour constitutive parameters if
the strain energy function W is dependent on I1 only. For a general isotropic strain energy
function, the equation becomes [89]:

∆IFP = ∆(ρ0c
2
s) + ∆(2W2Λ) +∆(2W3Λ

3) (4.16)

where Λ is the stretch factor due to the interstitial fluid pressure.
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5 Simulation Setup

The primary objective of this thesis is to examine how shear wave velocity (SWV) is affected
by changes in the interstitial fluid pressure (IFP) through computational modelling. Thus, a
numerical poroelastic model that mimics human soft tissues needs to be constructed. In this
regard, two different models are developed. The first model, referred to as the ‘healthy model’
(chapter 6), serves to investigate the influence of various parameters on the modelling results.
The second model, referred to as the ‘tumour model’ (chapter 7), is constructed to study a
more realistic and relevant clinical scenario by incorporating a tumour mass.

The healthy and tumour models are 2-Dimensional (2D). They contain porous materials, with
either constant or strain-dependent porosity and permeability. The solid phase of the materials
is characterized by either linear elasticity or hyperelasticity. The simulation setup is explained
in the following sections. All modelling is performed using COMSOL Multiphysics® 6.1 (COM-
SOL AB, Stockholm, Sweden), while the post-processing of results is carried out in MATLAB
R2020b (The MathWorks Inc., Natick, MA, USA).

5.1 Geometry

In both the healthy and tumour model the tissue is represented by a square with sides of 70mm.
This is larger than the Region Of Interest (ROI), which lies in the central square with sides
of 30 mm and represents the tissue under investigation.The modelled tissue is larger than the
ROI to prevent reflection of shear waves within the ROI.1

5.2 Poroelastic Modelling in COMSOL Multiphysics

5.2.1 Coupling of Fluid and Solid Phase

A poroelastic interface is available in COMSOL Multiphysics® that couples the Solid Mechanics
module (describing the behaviour of the solid matrix) to the Darcy’s Law interface (describing
fluid behaviour) [16]. Poroelastic coupling with the Brinkman equation (see subsection 4.1.2),
however, is not possible within this multiphysics model.

Therefore, a poroelastic model was recreated manually using the Free and Porous Media Flow
module (for the fluid phase) and the Solid Mechanics module (for the solid phase) as validated
by [74]. The Free and Porous Media Flow module is used as it is governed by the Navier-Stokes
equations in the fluid domain (computing both fluid velocity and pressure) and Brinkman
equations in the porous domain and is adequate for free and fast flow [41].

Both modules are coupled bidirectionally to ensure poroelastic deformation. The fluid pressure
governed by the Free and Porous Media Flow module induces a body load on the solid phase,
resulting in either swelling or shrinking. Alternatively, changes in volumetric strain of the solid
phase influence the fluid phase similarly to a mass source. The coupling factors are represented
by the following contributions:

F = −∇P (5.1a)

Qbr = −ρ
∂εvol
∂t

(5.1b)

where the volumetric body force F (units N/m3) is added to the solid phase and the mass
source Qbr (units kg/(m3 · s)) is added to the fluid phase. [16, 31, 74]

1A perfectly matched layer (PML), which is an absorbing domain for waves, can be used instead to prevent
reflections at the boundaries [18, 58] and was used in [31]. However, PMLs don’t efficiently absorb the evanescent
waves in the time domain [18], and were therefore not implemented in this model. Low-reflecting boundaries
could be used instead in the time-dependent analyses but were not tested in this study [17].
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5.2.2 Strain-Dependent Porosity and Permeability

Additionally, porosity and permeability are modelled as either constant or strain-dependent
variables as explained in subsection 4.1.4. Modelling of the strain-dependency is essential in
simulations involving high strains, such as confined compression experiments. In these situa-
tions, simulations will not converge if the strain-dependency is not modelled. This arises from
the fact that the solid and fluid phase are (nearly) incompressible, and the only means of effec-
tively compressing the poroelastic medium is through fluid outflow accompanied by a reduction
in porosity.

Therefore, the present study will assess the influence of strain-dependent poroelasticity within
the context of the application of this thesis. The strain-dependent porosity and permeabil-
ity are modelled according to Equations 4.10 and were manually inserted into COMSOL
Multiphysics®.

5.3 Shear Wave Generation

The shear wave is generated by applying a downwards time-dependent body load, representing
the ARF (see Figure 5.1a), of 1.5 · 106 N/m3 in the axial direction over an area of 1 by 5 mm

in the centre of the geometry. In [31], a height of 5 mm was chosen as the resulting shear wave
propagation is similar to the one observed in the chicken breast experiments (subsection 4.2.1).
Although the shear wave propagation velocity is not dependent on the magnitude of the applied
force, it is important for the load to be sufficiently high to differentiate the resulting tissue
displacements from numerical noise. Therefore, the body load and width over which it is
exerted were increased with respect to [31]. Additionally, they also allow for more realistic
tissue displacements, with peak displacements being in the range of 10− 20 µm [53].

Typically, the duration of an ARF push is 0.1 − 0.5 ms [58]. In the simulations, the load is
sustained for a duration of 0.3ms, similar to the experimental settings during the measurements
on chicken breasts performed in [31]. It is represented by a rectangular load in time, with
smooth transition zones (of 20 µs) to improve convergence. This is illustrated in Figure 5.1b.
The total simulation time, starting with the application of the body load, is 3 ms for the healthy
model and 4 ms for the tumour model. As such, the shear waves can propagate sufficiently
across models with different material parameters and boundary conditions to allow (accurate)
tracking of the SWV. Similarly, the maximal time step of the solver is constrained to 0.01 ms.
The results at every 0.01 ms are stored for post-processing. [31]

5.4 Shear Wave Post-Processing

The velocities of the solid phase in the axial direction (direction of the ARF pulse) at all
mesh nodes and all timeframes are exported from COMSOL Multiphysics® and imported into
MATLAB® for post-processing. During post-processing, only the values within the ROI are
extracted and interpolated onto a regular grid containing approximately the same number of
nodes as the original mesh in the ROI. The velocities of the shear waves propagating to the left
and right (e.g., see Figure 5.2 (top)) are estimated using the Radon sum transform, which is
widely used for shear wave elastography to obtain the shear wave trajectory and velocity [34].

The main shear wave propagation occurs perpendicularly to the ARF, along the horizontal
line through the centre of the area on which the ARF was applied. Along this path, the axial
velocities can be represented in function of time. Various linear spatiotemporal trajectories can
be defined for the shear wave propagation by considering a fixed starting point (xstart,tstart)
and different end positions (xend,tend). The Radon transform calculates the sum of the axial
velocities along all of these trajectories. The true shear wave trajectory (e.g., see Figure 5.2
(bottom)) is characterised by the largest axial displacements or velocities, and its Radon sum
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(a) (b)

Figure 5.1: (a) Physical representation of the body load: is is the acoustic radiation force (ARF)
induced by the ultrasound (US) transducer. (b) Applied body load in function of time to generate
shear waves.

will thus be maximal. The corresponding SWV (cs) is the slope between the start- and endpoint
[11, 68]:

cs =
xend − xstart

tend − tstart
(5.2)

The code for the SWV estimation was provided by Dr. Ir. Annette Caenen. It is recommended
to select the starting point outside of the lateral excitation beam width to avoid diffraction
effects [68], meaning that the data from the nodes on which the ARF is applied and the
timeframes during the ARF application should be neglected. In this study, the starting time
was therefore set to tstart = 0.3 ms (skipping the first 30 timeframes). However, the number of
nodes within the area of body load application is dependent on the mesh size. In order to keep
post-processing consistent across different meshes, no nodes were neglected (xstart = 0 mm).

5.5 Simulation Outline

The simulation process consists of two distinct steps, followed by post-processing to obtain the
SWVs. Initially, the material undergoes a stationary step where the IFP is applied, meaning
that the steady-state solution after the pressurisation is obtained. The healthy and tumour
model are pressurised in different ways, as will be explained in sections 6.1 and 7.2. A station-
ary step has the advantage of being faster than time-dependent studies and does not include
transient effects. Subsequently, in the second step, shear waves are generated and their prop-
agation is analysed, thereby inherently requiring a time-dependent study. An overview of the
simulation process is provided in Figure 5.3.

For both steps, the default solver configurations of COMSOL Multiphysics® are implemented.
An ‘automatic’ nonlinear method is used in the stationary solver, which enables the solver to
automatically detect whether a linear solver approach is applicable [15]. The iterative process
is terminated using a relative tolerance of 0.001 (default). For the time-dependent step, an
implicit solver is employed2. A method based on BDF (backward differentiation formula) is

2Note that explicit solvers are generally more computationally efficient for transient models such as shear
wave propagation models [58].



Chapter 5. Simulation Setup 29

Figure 5.2: Example of shear wave processing. (top) Shear wave propagation at different timeframes.
(bottom) Trajectory of shear waves propagating to the left along the central horizontal line. The SWV
is the slope of the trajectory.

used with a minimal and maximal order of 1 and 2, respectively. Importantly, the maximum
step constraint is changed from ‘automatic’ to a ’constant’ value of 0.01 ms to ensure the time
steps taken by the solver don’t exceed the time step used for post-processing (section 5.3).

Figure 5.3: Overview of the simulation process applied to one of the healthy models.



6 Healthy Model - Default Configuration

6.1 Boundary Conditions

The boundary conditions that are applied on the geometry (see section 5.1) are illustrated
in Figure 6.1. In the default model, the solid matrix is fixed at the central point of the
bottom edge, while roller constraints are placed along the entire bottom edge. A roller is used
instead of a fixed edge as in [31] to prevent singularities in the corners. The interstitial fluid is
pressurised through inlet (for fluid inflow) and outlet (for fluid outflow) boundary conditions.
Inlet pressures ranging from 0 − 120 mmHg are applied on the top and bottom edges and
an outlet pressure of 0 mmHg is applied on the sides. This leads to a symmetric pressure
distribution (Figure 6.2a), in contrast to the models presented in [31], and an elevated pressure
within the ROI (Figure 6.2b). As mentioned in chapter 5, the fluid phase is pressurised during
the steady state step and maintained in the subsequent step during the shear wave propagation.

Figure 6.1: Boundary conditions of healthy model. The solid matrix is fixed at the central point of
the bottom edge and roller constraints are placed along the entire bottom edge. An inlet fluid pressure
is applied at the top and bottom boundary and an outlet pressure of 0 mmHg at the sides.

(a) (b)

Figure 6.2: Example of obtained pressure distributions on the whole model (a) and central horizontal
line (b) when a fluid inlet pressure of 60 mmHg is applied at the top and bottom boundary and and
outlet fluid pressure of 0 mmHg at the sides.

6.2 Material Parameters

Both a linear elastic and hyperelastic solid matrix are simulated to analyse their influence.
In the linear elastic material, a Young’s modulus of 20 kPa and Poisson’s ratio of 0.495 are
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used as in [31], representing healthy soft (nearly incompressible) biological tissue, including
breast tissue [25]. A stiffer linear elastic material with E = 100 kPa is also modelled. The
first order Ogden hyperelastic parameters (subsection 4.1.3) are roughly fitted to the chicken
breast experiments (subsection 4.2.1) by trial and error to obtain realistic SWVs, resulting in
an infinitesimal shear modulus µ1 = 0.15 kPa and stiffening coefficient α1 = 70. The density
was set to 945 kg/m3, representing the mean breast density [71].

The interstitial fluid is modelled with a viscosity of 1.5 ·10−3 Pa ·s and a density of 1000 kg/m3

as in [31]. The default porous matrix is characterised by a porosity of 0.51 and permeability
of 5.3 · 10−12 m2 when constant poroelasticity is assumed, and an additional exponential factor
of 4.3 when strain-dependency is modelled instead (subsection 4.1.4). These values represent
the mean poroelastic values in healthy breast tissue as shown in Table 4.11. An overview of all
material parameters is provided in Table 6.1.

Table 6.1: Overview of material parameters for the healthy model.

Property Value
Linear solid matrix

Young’s modulus E = 20 kPa or 100 kPa
Poisson’s ratio ν = 0.495
Density ρ = 945 kg/m3

Hyperelastic solid matrix
Ogden parameters µ1 = 0.15 kPa, α1 = 70
Density ρ = 945 kg/m3

Interstitial fluid
Viscosity µ = 1.5 · 10−3 Pa · s
Density ρ = 1000 kg/m3

Porous medium
(Initial) porosity ϕ = 0.51
(Initial) permeability k = 5.3 · 10−12 m2

Exponential factor M = 4.3

For visualisation purposes, the curves for the strain-dependent porosity and permeability are
shown in Figure 6.3 and the hyperelastic stress-strain relationship in Figure 6.4. The former
two are obtained in confined simulations, where roller constraints are applied at the sides and
bottom of the geometry and a prescribed displacement is applied on the top boundary. The
resulting porosity, permeability, and strain of the central point are plotted. The latter graph
is obtained during the stationary step of the healthy model at different inlet pressures. The
resulting stresses and strains in the central point are plotted.

6.3 Mesh & Mesh Sensitivity Analysis

As the 2D geometry is simple and regular, a uniform mesh is obtained with quadrilateral ele-
ments (4 nodes). An example is shown in Figure 6.5. By default, COMSOL Multiphysics® uses
elements with full integration. In contrast to triangular elements (3 nodes) that are used more
often for complex geometries, quadrilateral elements don’t contain sharp angles, thereby miti-
gating numerical dispersion artifacts [58]. Additionally, the obtained mesh elements are aligned
with the the primary shear wave propagation and displacement directions, reducing numerical
dispersion artifacts even more [31].

The optimal mesh, balancing accuracy and computational time, is selected based on a mesh
sensitivity analysis. To this end, meshes with different sizes were created. The settings that

1The hydraulic permeability is shown in the table, and has to be multiplied by the fluid viscosity in order
to obtain the intrinsic permeability as explained in subsection 4.1.1
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(a) (b)

Figure 6.3: The porosity (a) and permeability (b) in function of strain, obtained during confined
compression simulations in which the sample is confined in between permeable plates and a compression
displacement is applied on the top edge.

Figure 6.4: Resulting stress-strain relationship of the poro- and hyperelastic material.

Figure 6.5: Example of a quadrilateral mesh of the geometry.

were used to create the meshes are summarised in Table 6.2. For all of these meshes, simulations
are performed with an inlet pressure of 60 mmHg (resulting in a pressure of approximately
35 mmHg in the center of the ROI) and strain-dependent porohyperelasticity with the material
parameters provided in Table 6.1. As such, the mesh sensitivity analysis is performed on the
‘most complicated’ model.

The selected parameters for the mesh sensitivity analysis are the estimated SWV, axial (Y)
velocity, axial (Y) displacement, fluid pressure, and axial (YY) second Piola-Kirchhoff (2PK)
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stress. They are analysed along the central horizontal line (within the ROI) at various time-
points. Conversely, they are also examined in function of time at different X-coordinates along
the aforementioned line (see Figure 6.1). For a comprehensive comparison of the parameter
values across the different meshes, their maximum absolute values are compared. Specifically,
the relative change of the parameter of interest x with respect to the previous mesh can be
defined:

%change =

∣∣∣∣∣xprevious − xcurrent

xprevious

∣∣∣∣∣ · 100% (6.1)

Table 6.2: Characteristics of the meshes used in the mesh sensitivity analysis for the healthy model.
The minimal element size in all meshes was kept to 0.02 mm and the quality of all mesh elements in
all meshes is 1 (‘perfect’). The selected mesh is indicated in blue.

Mesh Max. element size [mm] # elements
1 1 4900
2 0.7 10000
3 0.5 19600
4 0.35 40000
5 0.28 62500
6 0.242 84100
7 0.2 122500
8 0.175 160000

The results of the mesh sensitivity analysis are presented in Figures 6.6-6.102. The waveforms
of the axial (Y) velocities at certain X-coordinates in function of time and at certain timeframes
in function of the X-coordinates are shown in the Appendix, Figure B.1. The displacement,
fluid pressure, and solid stress are minimally influenced (less than 0.1%) by the mesh size.
The axial velocities are impacted more by the mesh size, and converge within a threshold of
5% at approximately 800000 mesh elements. At this mesh size, estimated SWVs have already
converged within a threshold of 1%. Therefore, the final mesh was chosen to be the one with
84100 elements as indicated in blue in Table 6.2.

Figure 6.6: Estimated SWVs of the shear waves propagating to the left and right (top) and the
change with respect to the previous mesh (bottom) for the healthy model.

2A comparison of the computation times could not be provided as simulations were performed on different
computers. However, for reference, the model with a mesh of 84100 element ran during approximately four
hours on a computer with an 11th Gen Intel(R) Core i7 (2.80 GHz) and 16 GB of RAM.
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Figure 6.7: Maximal absolute velocity at multiple x-coordinates along the central horizontal line (left)
and multiple timepoints (right). The relative changes with respect to the previous mesh are shown in
the bottom plots.

Figure 6.8: Maximal absolute displacement at multiple x-coordinates along the central horizontal
line (left) and multiple timepoints (right). The relative changes with respect to the previous mesh are
shown in the bottom plots.

6.4 Overview of Simulations

Multiple simulations are performed to study the influence of different parameters on the results.
They are explained in more detail in chapters 8 and 9, but an overview is presented here:

– The influence of the permeability is assessed with the default boundary conditions of the
model, i.e., fixed inlet pressure.
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Figure 6.9: Maximal absolute fluid pressure at multiple x-coordinates along the central horizontal
line (left) and multiple timepoints (right). The relative changes with respect to the previous mesh are
shown in the bottom plots.

Figure 6.10: Maximal absolute second Piola-Kirckhhoff stress at multiple x-coordinates along the
central horizontal line (left) and multiple timepoints (right). The relative changes with respect to the
previous mesh are shown in the bottom plots.

– The influence of the permeability is assessed with adapted boundary conditions, i.e., fixed
inlet flow.

– The influence of the porosity is assessed with the default boundary conditions.

– The influence of strain-dependent permeability and porosity are assessed with the default
boundary conditions.

– The influence of the intrinsic stiffness and hyperelasticity is assessed in the non-pressurised
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state, i.e., with adapted boundary conditions (no steady state and no inlet/outlet pres-
sures).

– The influence of confinement in pressurised tissues is assessed, i.e. with adapted boundary
conditions (constrained).

– The influence of pressurisation on SWV is assessed with the default boundary conditions.

6.5 Remarks

The models presented in this chapter were built up starting from the ‘poroelastic numeri-
cal model with shear wave interaction’ developed last year in the Master’s thesis of Kristyna
Holkova [31]. A summary of the changes and improvements that are implemented in this model
is provided here:

– Hyperelasticity and strain-dependent porosity and permeability were introduced.

– Material parameters were adapted to be more similar to breast tissue.

– The body load for the shear wave generation, as well as the area on which it is applied,
were increased in order to obtain more realistic tissue displacement magnitudes.

– The boundary conditions were adapted in order to obtain a symmetric pressure distri-
bution across the ROI. Additionally, the fixed constraint at the bottom boundary was
replaced by a roller (and one fixed point) in order to prevent singularities at the bottom
boundary and convergence issues.

– The pressure was applied in a stationary step instead of time-dependent step as only the
steady-state response is of interest in the model, avoiding transient effects and reducing
computation time.

– Smaller timesteps were used in the step analysing the shear wave propagation to obtain
a more accurate wave speed estimation.

– Post-processing was improved through interpolation of the nodes in the ROI into a regular
grid. This avoids the artifacts that were present in [31] and are shown in Figure 6.11.

– The Perfectly Matched Layer (PML) was removed as it is not efficient in the time domain
as explained in footnote 1.

Figure 6.11: Example of artifacts in spatiotemporal plot due to absent interpolation of values during
post-processing. [31]



7 Tumour Model - Proof of Concept

The healthy model described in the previous chapter mainly serves to analyse how IFP affects
SWV. The tumour model described in this chapter serves to visualise its clinical implementation,
as illustrated in Figure 7.1. The tumour model is a ‘proof-of-concept’ and is not fully elaborated.
However, important aspects related to the tumour model are still discussed and analysed.

Figure 7.1: Illustration of SWE in a tissue including a tumour mass. [89]

7.1 Geometry and Mesh

For the tumour model, a square with sides of 70 mm is kept as in the previous model (sec-
tion 5.1). A tumour mass is now added and is represented by a circle with radius 8 mm

(corresponding to stage I breast cancer [48]). The center of the circle is shifted 10 mm to the
right with respect to the centre of the square. This is visualised in Figure 7.2a. Note that the
circle is made up of two layers, this is to facilitate the inclusion of a necrotic core (with different
material parameters) in future models, even though the same material properties were applied
throughout the whole tumour in this model. Note also that the geometry has been split up
using additional lines. This is to allow different kinds of meshes to be used in each domain, as
explained below.

As the tumour model is a proof of concept and not meant to study the influence of the IFP and
material parameters on the estimated stiffness in detail, only a moderately fine mesh is used.
The circle is meshed with free triangular elements. A small square surrounding the circle is
meshed with free quadrilateral elements to obtain a transition towards a mapped (structured)
mesh. As explained in section 6.3, the structured mesh is aligned with the primary shear wave
propagation and displacement directions, which reduces numerical dispersion artifacts.

A maximal element size of 0.4 mm is used for all three types of meshes. Similarly to the
previous model, the skewness factor of the elements in the structured mesh is 1 (‘perfect’). But
this is not the case for the elements in the circle and surrounding small square, see Figure 7.2d.
The minimal skewness factor is 0.6.

7.2 Boundary Conditions

Similarly to the previous model, the bottom boundary is fixed at the centre and roller constraints
are applied throughout the entire bottom boundary (section 6.1). Pressurisation of the tumour
mass has to be done differently now, as an inlet pressure can only be used on outer boundaries
and the pressure distribution within the tissue should be elevated in the centre of the tumour,
with a high pressure drop towards the edges, and a low pressure within the healthy tissue
surrounding the tumour. Two different boundary conditions can be used instead for the inlet:
the pressure point constraint or mass source.

The pressure point constraint fixes the pressure level of a certain point and is used in cases
where the pressure level cannot be defined on an outer boundary, in contrast to the inlet

37
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(a) (b)

(c) (d)

Figure 7.2: Geometry and mesh of tumour model. (a) Geometry. (b) Complete mesh. (c) Close-up
of mesh around tumour inclusion. (d) Close-up of element skewness around tumour inclusion.

pressure boundary condition [16]. As the name suggests, the pressure can only be fixed at a
certain point, not over an area. The resulting pressure distribution shows a sharp peak in the
centre of the tumour where the constraint was defined, an example is shown in Figure 7.3. Even
though it is convenient to define a pressure in the centre of the model, the resulting pressure
distribution is not realistic due to the sharp peak. Therefore, a mass source constraint is used
instead and is combined with an open boundary condition, through which fluid can enter and
leave the domain, on the four outer boundaries.

A mass source can represent the injection of fluid (mass) per volume over time. The equation
for mass conservation (defined in Equation 4.6) therefore becomes:

Qm =
∂ϕ

∂t
+∇ · q (7.1)

where Qm is a mass source with units kg/(m3 · s). This formulation is less convenient to
use, as the pressure cannot be defined directly. The resulting pressure (drop) is dependent on
the magnitude and radius of the mass source, as well as the porous material properties. The
influence of these parameters is discussed in chapter 10.

7.3 Overview of Material Parameters

The material parameters of the healthy tissue are kept as in section 6.2. For the tumour
tissue, the same material model is used but with different material parameters. As explained in
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(a) (b)

Figure 7.3: (a) Example of a pressure distribution along the central horizontal line if a pressure
point constraint is used. (b) Example of different (dimensionless) pressure distributions along the
(dimensionless) radius of a tumour [75].

subsection 4.1.4, the porosity and permeability in tumour tissues is often lower and the tissue
is stiffer.

Table 7.1: Overview of material parameters for the healthy model.

Property Healthy tissue Tumour tissue
Linear solid matrix

Young’s modulus E = 20 kPa E = 100 kPa
Poisson’s ratio ν = 0.495 ν = 0.495
Density ρ = 945 kg/m3 ρ = 945 kg/m3

Interstitial fluid
Viscosity µ = 1.5 · 10−3 Pa · s µ = 1.5 · 10−3 Pa · s
Density ρ = 1000 kg/m3 ρ = 1000 kg/m3

Porous medium
(Initial) porosity ϕ = 0.51 ϕ = 0.44
(Initial) permeability k = 5.3 · 10−12 m2 k = 1 · 10−12 m2

Exponential factor M = 4.3 M = 4.1

Close to the tumour edge, the permeability of the tumour changes smoothly to the permeability
of the healthy tissue with a transition zone of 1 mm and two continuous derivatives. The change
in permeability and resulting permeability distribution in the tissue are shown in Figure 7.4.

7.4 Overview of Simulations

The same simulation setup is used as for the healthy model and described in chapter 5. The
only difference is that the simulation time of the second step is extended to 4 ms to ensure
sufficient propagation of the shear waves within the tumour mass. The different simulations
that are performed are summarised below:

– The influence of the mass source magnitude, mass source radius, and tumour permeability
on the pressure distribution wihtin the model are assessed.

– The influence of the tumour inclusion on the SWV is evaluated by considering an identical
hyperelastic tissue but different permeability than the surrounding healthy tissue.

– The influence of the tumour inclusion on the SWV is evaluated by considering a stiffer
hyperelastic tissue than the surrounding healthy tissue with identical permeability.

– The combined influence of the tumour stiffness and permeability on the SWV is evaluated.
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(a) (b)

Figure 7.4: Permeability change between healthy and tumour tissue. (a) Smooth step that was
used for the change in permeability between the healthy and tumour tisse. (b) Resulting permeability
distribution in the complete model.
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8 Parametric Study - Healthy Model

In this chapter, the influence of different poroelastic properties on the fluid and solid phase
are analysed. In general, the values of the material properties shown in section 6.2 are used.
When different values are used, it is mentioned in the text. Additionally, when no time frame
is mentioned, it means that the results after the stationary step (i.e., after pressurisation) are
provided.

8.1 Effect of Permeability

8.1.1 Fixed Inlet Pressure

The influence of the permeability is studied in simulations with a linear elastic or hyperelastic
material model and strain-dependent porosity and permeability. As can be seen from Table 8.1,
changes in orders of magnitude of the permeability have a negligible effect (<< 1%) on the
solid matrix (stresses and strains). However, the permeability has a pronounced effect on the
fluid flow. As expected from Darcy’s Equation 4.1 (or Brinkman’s Equation 4.7), a higher
permeability increases the magnitude of the fluid flow. From this law, we’d also expect the
permeability to influence the pressure drop. However, in these simulations the pressure at the
in- and outlets is fixed through the boundary conditions. The influence of the permeability
in the case that an inlet flow is defined instead of an inlet pressure, is discussed the following
section.

8.1.2 Fixed Inlet Flow

At the top and bottom boundary, an inlet flow of 0.001 m/s is now applied instead of an inlet
pressure. The outlet pressure is still kept to 0 mmHg and only the hyperelastic case is analysed
here. Results are provided in Table 8.2 and the resulting pressure distributions in the complete
model are shown in Figure 8.11. The influence of the permeability on the magnitude of the fluid
flow is more limited compared to the previous case. However, marked differences in pressures
can be observed. As the fluid phase is coupled to the solid phase via the pressure gradient
(Equation 5.1), the solid matrix (stresses, strains, and displacements) is affected as well.

1Note that a smaller range of permeability values is used here due to convergence issues.

42
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Table 8.1: Influence of the permeability with inlet pressure of 40 mmHg. Y denotes the axial direction and X the lateral direction. k is the intrinsic permeability, ε
the strain, εvol the volumetric strain, S the second Piola-Kirchhoff stress, ∆ the displacement, and q the fluid flow.

Linear (E = 100 kPa) - Influence of permeability - Fixed inlet pressure
k [m2] εY Y [-] εXX [-] εvol [-] SY Y [kPa] SXX [kPa] ∆Y [m] ∆X [m] IFP [mmHg] qY [m/s] qX [m/s]

Values at central point x = 0 mm
1.00e-14 -0.04036 0.04035 -1.228e-05 -2.740 2.658 -0.001475 -3.438e-16 22.28 -4.479e-08 3.905e-20
1.00e-12 -0.04036 0.04035 -1.229e-05 -2.740 2.658 -0.001475 -3.299e-16 22.28 -4.479e-06 -1.141e-18
1.00e-10 -0.04042 0.04041 -1.355e-05 -2.749 2.658 -0.001471 -2.161e-16 22.29 -4.466e-04 1.508e-16

Values at x = 10 mm
1.00e-14 -0.04059 0.04052 -7.669e-05 -2.969 2.456 -0.001477 3.811e-04 20.50 -4.552e-08 3.173e-07
1.00e-12 -0.04059 0.04052 -7.670e-05 -2.969 2.456 -0.001477 3.811e-04 20.50 -4.552e-06 3.173e-05
1.00e-10 -0.04065 0.04057 -7.758e-05 -2.976 2.457 -0.001473 3.816e-04 20.51 -4.538e-04 3.173e-03

Maximal values along central line x = [−15 mm, 15 mm]
1.00e-14 -0.04036 0.04065 -1.226e-05 -2.740 2.658 -0.001475 5.725e-04 22.28 -4.479e-08 4.772e-07
1.00e-12 -0.04036 0.04065 -1.227e-05 -2.740 2.658 -0.001475 5.725e-04 22.28 -4.479e-06 4.772e-05
1.00e-10 -0.04042 0.04069 -1.353e-05 -2.749 2.658 -0.001471 5.732e-04 22.29 -4.466e-04 4.772e-03

Minimal values along central line x = [−15 mm, 15 mm]
1.00e-14 -0.04081 0.04035 -1.569e-04 -3.249 2.199 -0.001479 -5.725e-04 18.27 -4.556e-08 -4.772e-07
1.00e-12 -0.04081 0.04035 -1.569e-04 -3.249 2.199 -0.001479 -5.725e-04 18.27 -4.556e-06 -4.772e-05
1.00e-10 -0.04085 0.04041 -1.574e-04 -3.253 2.201 -0.001475 -5.732e-04 18.27 -4.542e-04 -4.772e-03

Hyperelastic - Influence of permeability - Fixed inlet pressure
k [m2] εY Y [-] εXX [-] εvol [-] SY Y [kPa] SXX [kPa] ∆Y [m] ∆X [m] IFP [mmHg] qY [m/s] qX [m/s]

Values at central point x = 0 mm
1.00e-14 -0.04939 0.05371 4.324e-03 -2.644 2.773 -1.837e-03 4.123e-16 23.09 -5.626e-08 -4.295e-20
1.00e-12 -0.04939 0.05371 4.324e-03 -2.643 2.773 -1.837e-03 -3.397e-16 23.09 -5.626e-06 2.656e-18
1.00e-10 -0.04940 0.05372 4.323e-03 -2.648 2.774 -1.836e-03 -2.154e-16 23.10 -5.620e-04 -1.813e-17

Values at x = 10 mm
1.00e-14 -0.04961 0.05352 3.902e-03 -2.890 2.564 -1.843e-03 4.968e-04 21.33 -5.768e-08 3.206e-07
1.00e-12 -0.04961 0.05352 3.902e-03 -2.890 2.564 -1.843e-03 4.968e-04 21.33 -5.768e-06 3.206e-05
1.00e-10 -0.04963 0.05353 3.901e-03 -2.894 2.565 -1.842e-03 4.969e-04 21.33 -5.763e-04 3.206e-03

Maximal values along central line x = [−15 mm, 15 mm]
1.00e-14 -0.04939 0.05371 4.324e-03 -2.644 2.773 -1.837e-03 7.442e-04 23.09 -5.626e-08 4.839e-07
1.00e-12 -0.04939 0.05371 4.324e-03 -2.643 2.773 -1.837e-03 7.441e-04 23.09 -5.626e-06 4.839e-05
1.00e-10 -0.04940 0.05372 4.323e-03 -2.648 2.774 -1.836e-03 7.443e-04 23.10 -5.620e-04 4.839e-03

Minimal values along central line x = [−15 mm, 15 mm]
1.00e-14 -0.04988 0.05325 3.373e-03 -3.195 2.299 -1.851e-03 -7.442e-04 19.10 -5.801e-08 -4.839e-07
1.00e-12 -0.04988 0.05325 3.372e-03 -3.195 2.299 -1.851e-03 -7.441e-04 19.10 -5.801e-06 -4.839e-05
1.00e-10 -0.04990 0.05327 3.372e-03 -3.199 2.301 -1.850e-03 -7.443e-04 19.11 -5.797e-04 -4.839e-03
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Table 8.2: Influence of the permeability with inlet flow of 0.001 m/s. Y denotes the axial direction and X the lateral direction. k is the intrinsic permeability, ε the
strain, εvol the volumetric strain, S the second Piola-Kirchhoff stress, ∆ the displacement, and q the fluid flow.

Hyperelastic - Influence of permeability - Fixed inlet flow
k [m2] εY Y [-] εXX [-] εvol [-] SY Y [kPa] SXX [kPa] ∆Y [m] ∆X [m] IFP [mmHg] qY [m/s] qX [m/s]

Values at central point x = 0 mm
1.00e-13 -0.1014 0.1286 2.725e-02 -1.833e+02 2.338e+02 -3.388e-03 -2.625e-15 2.032e+03 7.421e-17 -9.228e-05
1.00e-12 -0.0790 0.0862 7.214e-03 -2.213e+01 2.305e+01 -2.859e-03 -8.220e-17 1.873e+02 -1.324e-18 -6.782e-05
1.00e-11 -0.0458 0.0497 3.865e-03 -1.989e+00 2.169e+00 -1.662e-03 -7.775e-17 1.640e+01 2.917e-17 -3.500e-05

Values at x = 10 mm
1.00e-13 -0.1046 0.1247 2.009e-02 -1.802e+02 2.204e+02 -3.457e-03 1.072e-03 1.912e+03 2.360e-04 -9.537e-05
1.00e-12 -0.0787 0.0849 6.187e-03 -2.154e+01 2.124e+01 -2.850e-03 7.612e-04 1.725e+02 2.678e-04 -6.406e-05
1.00e-11 -0.0451 0.0487 3.606e-03 -1.963e+00 1.978e+00 -1.639e-03 4.597e-04 1.497e+01 2.549e-04 -3.246e-05

Maximal values along central line x = [−15 mm, 15 mm]
1.00e-13 -0.1014 0.1286 2.725e-02 -1.758e+02 2.338e+02 -3.388e-03 1.590e-03 2.032e+03 3.492e-04 -9.228e-05
1.00e-12 -0.0783 0.0862 7.214e-03 -2.078e+01 2.305e+01 -2.839e-03 1.135e-03 1.873e+02 3.932e-04 -5.896e-05
1.00e-11 -0.0442 0.0497 3.865e-03 -1.936e+00 2.169e+00 -1.610e-03 6.841e-04 1.640e+01 3.721e-04 -2.917e-05

Minimal values along central line x = [−15 mm, 15 mm]
1.00e-13 -0.1085 0.1196 1.112e-02 -1.833e+02 2.032e+02 -3.539e-03 -1.590e-03 1.757e+03 -3.492e-04 -9.737e-05
1.00e-12 -0.0790 0.0832 4.921e-03 -2.213e+01 1.900e+01 -2.859e-03 -1.135e-03 1.543e+02 -3.932e-04 -6.782e-05
1.00e-11 -0.0458 0.0474 3.278e-03 -1.989e+00 1.744e+00 -1.662e-03 -6.841e-04 1.323e+01 -3.721e-04 -3.500e-05

(a) (b) (c)

Figure 8.1: Influence of the permeability on the pressure distribution within a hyperelastic tissue when an inlet flow of 0.001 m/s is applied. (a) k = 1 · 10−13 m2, (b)
k = 1 · 10−12 m2 (a) k = 1 · 10−11 m2. Note the different color scales in each figure. The deformation of the tissue is also shown on the figures.
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8.2 Effect of Porosity

The results of simulations with different porosities are shown in Table 8.3. A hyperelastic
material model is used with inlet pressure of 40 mmHg and strain-dependent porosity and
permeability. As can be seen from the table, the porosity has no noticeable effect on the results
(only the fluid velocity vf = q

ϕ is affected). This is also the case in a linear elastic material
model and when an inlet flow is defined (not shown). Estimated shear wave velocities in a
linear elastic material with inlet pressure 20 mmHg and porosities of 0.15, 0.51, and 0.85 all
show a left and right SWV of 2.94 m/s. This behaviour can be explained by analysing the
governing equations in more detail, as explained below.

The time derivative of the porosity appears in the law of mass conservation (Equation 4.6). As
the strain-dependent porosity barely changes during the simulations (explained in section 8.3),
this term is negligible2. If Brinkman’s Equation 4.7 is rewritten in terms of the fluid flow ⨿
instead of fluid velocity vf , the effective viscosity is approximated by the fluid viscosity µ, and
the term with the time derivative of the velocity is set to zero (steady state is considered), the
equation can be rewritten to:

ρf

ϕ2
q · ∇q = −∇P− µ

k
q+

µ

ϕ
∇2q (8.1)

In this equation, the porosity appears in two terms: the convective and viscous term. As the
results explained above suggest that the porosity does not influence the pressure or fluid flow,
it would mean that these terms are negligible. For clarity, the terms in Brinkman’s equation
are calculated with an example. The values for the fluid flow, pressure, and their gradients are
taken at coordinates (10, 0) mm in the simulation of a hyperelastic tissue and inlet pressure
of 40 mmHg. In the model, the standard configuration for the porosity (0.51), permeability
and viscosity are used (Table 6.1)3. Simulations with porosities of e.g., 0.01 and 0.99 would
not converge, but nevertheless the theoretical Brinkman’s terms can still be calculated. The
results are shown in Table 8.4. It can be seen that the convective (a) and viscous (d) terms
are a few orders of magnitude smaller compared to the the pressure gradient (b) and fluid flow
term (c). Even though the relative contributions of the convective and viscous terms increase
with decreasing porosity, they are still negligible compared to the other terms. Therefore,
Brinkman’s equation can be reduced to Darcy’s law in this simulation.

The influence of the viscosity was not analysed in this thesis. The relative contribution of the
viscous term (d) could increase for increasing viscosity, even though the relative contribution
of the resistance term (d) would increase as well. The influence of the porosity at higher flows
(e.g., due to high inlet flow boundary condition that is not necessarily physiological), was also
not analysed.

2The term becomes more important in e.g., confined compression experiments.
3In this case, the equality of Brinkman’s Equation 4.7 does not hold. This is because a source term needs to

be added to the equation to account for the fluid inflow resulting from the boundary conditions. The difference
between the right- and left-hand side of the equation is related to the source term. Still, the example can provide
some clarity concerning the relative contributions of each term.
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Table 8.3: Influence of the porosity with inlet pressure of 40 mmHg. Y denotes the axial direction and X the lateral direction. k is the intrinsic permeability, ε the
strain, εvol the volumetric strain, S the second Piola-Kirchhoff stress, ∆ the displacement, and q the fluid flow.

Hyperelastic - Influence of porosity
ϕ [-] εY Y [-] εXX [-] εvol [-] SY Y [kPa] SXX [kPa] ∆Y [m] ∆X [m] IFP [mmHg] qY [m/s] qX [m/s]

Values at central point x = 0 mm
0.05 -0.04939 0.05371 0.004323 -2.645 2.773 -0.001836 -3.829e-16 23.09 9.937e-18 -2.981e-05
0.50 -0.04939 0.05371 0.004324 -2.644 2.773 -0.001837 -3.417e-16 23.09 6.045e-18 -2.982e-05
0.95 -0.04939 0.05371 0.004324 -2.643 2.773 -0.001837 -3.425e-16 23.09 1.491e-17 -2.982e-05

Values at x = 10 mm
0.05 -0.04962 0.05352 0.003901 -2.892 2.564 -0.001843 4.969e-04 21.33 1.699e-04 -3.057e-05
0.50 -0.04961 0.05352 0.003902 -2.890 2.564 -0.001843 4.968e-04 21.33 1.699e-04 -3.057e-05
0.95 -0.04961 0.05352 0.003902 -2.890 2.564 -0.001843 4.968e-04 21.33 1.699e-04 -3.057e-05

Maximal values along central line x = [−15 mm, 15 mm]
0.05 -0.04939 0.05371 0.004323 -2.645 2.773 -0.001836 7.442e-04 23.09 2.565e-04 -2.981e-05
0.50 -0.04939 0.05371 0.004324 -2.644 2.773 -0.001837 7.441e-04 23.09 2.565e-04 -2.982e-05
0.95 -0.04939 0.05371 0.004324 -2.643 2.773 -0.001837 7.441e-04 23.09 2.565e-04 -2.982e-05

Minimal values along central line x = [−15 mm, 15 mm]
0.05 -0.04989 0.05326 0.003371 -3.197 2.300 -0.00185 -7.442e-04 19.10 -2.565e-04 -3.074e-05
0.50 -0.04988 0.05325 0.003372 -3.195 2.299 -0.001851 -7.441e-04 19.10 -2.565e-04 -3.075e-05
0.95 -0.04988 0.05325 0.003372 -3.195 2.299 -0.001851 -7.441e-04 19.10 -2.565e-04 -3.075e-05

Table 8.4: Example of terms calculated in Brinkman’s equation (units Pa/m) at coordinates (10, 0) mm in a hyperelastic material with inlet pressure of 40 mmHg.

Term
a b c d

ρf

ϕ2 q · ∇q −∇P −µ
k
q µ

ϕ
∇2q

ϕ X Y X Y X Y X Y
0.01 2.93e+01 5.27e+00 4.75e+04 -8.36e+03 -4.81e+04 8.65e+03 5.36e-11 -8.70e-12
0.51 1.13e-02 2.03e-03 4.75e+04 -8.36e+03 -4.81e+04 8.65e+03 5.36e-11 -8.70e-12
0.99 2.99e-03 5.38e-04 4.75e+04 -8.36e+03 -4.81e+04 8.65e+03 5.36e-11 -8.70e-12
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8.3 Effect of Strain-Dependent Porosity and Permeability

The difference between constant and strain-dependent porosity and permeability are studied on
a linear elastic and hyperelastic material. The resulting porosity and permeability distributions
in the linear case are shown in Figure 8.2. The resulting porosity and permeability ranges, as
well as the SWVs, are provided in Table 8.5. As can be seen from the figures and table, the
strain-dependent porosity and permeability only change slightly after pressurisation and don’t
(significantly) affect the SWV. The compression as a result from the inlet pressure is thus
mainly compensated through lateral expansion of the tissue, which can be seen in the figures,
instead of a reduction in pore volume and permeability. Therefore, the solid matrix and SWV
are not affected significantly by the strain-dependency of the porosity and permeability in
these simulations. However, as mentioned before, implementation of the strain-dependency
becomes crucial in cases such as confined compression experiments, where compression cannot
be compensation by lateral expansion.

Figure 8.2: Resulting porosity and permeability distribution within a linear elastic tissue (E =
20 kPa) for a model with an inlet pressure of 40 mmHg and constant (left) or strain-dependent (right)
poroelastic model. The deformation and initial geometry are shown as well.

Table 8.5: Influence of strain-dependent porosity and permeability on SWV in linear elastic and
hyperelastic tissue. The complete geometry is considered for the porosity and permeability values.

Elasticity Linear (E = 20kPa) Hyperelastic
Inlet pressure [mmHg] 40 60

Poroelasticity Constant Strain-
dependent Constant Strain-

dependent
Porosity [-] 0.510 0.508− 0.512 0.51 0.509− 0.516

Permeability [·10−12 m2] 5.30 5.19− 5.41 5.30 5.23− 5.58

Left SWV [m/s] 3.13 3.13 6.52 6.50

Right SWV [m/s] 3.13 3.13 6.51 6.51
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Table 8.6: Influence of strain-dependent porosity and permeability and confinement on hyperelastic model with inlet pressure of 40 mmHg. Y denotes the axial
direction and X the lateral direction. ϕ is the porosity, k is the intrinsic permeability, ε the strain, εvol the volumetric strain, S the second Piola-Kirchhoff stress, ∆ the
displacement, and q the fluid flow. The maximal and minimal values on the central horizontal line within the ROI (X = [−15 mm, 15 mm]) and the values in the central
point (X = 0 mm) and a point on the right(X = 0 mm) are given.

Hyperelastic - 60 mmHg inlet pressure
εY Y [-] εXX [-] εvol [-] SY Y [kPa] SXX [kPa] ∆Y [m] ∆X [m] IFP [mmHg] qY [m/s] qX [m/s] ϕ [-] k [m2]

Constant poroelasticity - Unconstrained
Centre -0.0550 0.06005 5.054e-03 -4.056e+00 4.129e+00 -2.054e-03 -7.861e-17 34.84 -4.877e-05 3.364e-18 0.510 5.30e-12
Right -0.0553 0.05976 4.431e-03 -4.424e+00 3.821e+00 -2.064e-03 5.505e-04 32.20 -5.025e-05 2.504e-04 0.510 5.30e-12
Max -0.0550 0.06005 5.054e-03 -4.056e+00 4.129e+00 -2.054e-03 8.242e-04 34.84 -4.877e-05 3.786e-04 0.510 5.30e-12
Min -0.0557 0.05939 3.653e-03 -4.877e+00 3.431e+00 -2.076e-03 -8.242e-04 28.86 -5.075e-05 -3.786e-04 0.510 5.30e-12

Strain-dependent poroelasticity - Unconstrained
Centre -0.0549 0.06009 5.160e-03 -3.990e+00 4.180e+00 -2.052e-03 -1.494e-16 35.28 -4.993e-05 1.181e-17 0.513 5.42e-12
Right -0.0553 0.05981 4.539e-03 -4.358e+00 3.873e+00 -2.062e-03 5.509e-04 32.65 -5.145e-05 2.548e-04 0.512 5.40e-12
Max -0.0549 0.06009 5.160e-03 -3.990e+00 4.180e+00 -2.052e-03 8.247e-04 35.28 -4.993e-05 3.853e-04 0.513 5.42e-12
Min -0.0557 0.05943 3.761e-03 -4.812e+00 3.484e+00 -2.074e-03 -8.247e-04 29.31 -5.196e-05 -3.853e-04 0.512 5.39e-12

Strain-dependent poroelasticity - Constrained
Centre -0.0028 0.00283 6.709e-05 -1.525e-02 5.731e-02 4.883e-18 5.958e-18 30.49 9.467e-18 -3.513e-18 0.510 5.30e-12
Right -0.0028 0.00215 -6.077e-04 -3.532e-01 -2.985e-01 2.787e-18 2.595e-05 27.80 1.894e-17 2.520e-04 0.510 5.29e-12
Max -0.0027 0.00283 6.709e-05 -1.525e-03 5.731e-02 4.948e-18 3.466e-05 30.49 4.799e-16 3.749e-04 0.510 5.30e-12
Min -0.0028 0.00128 -1.450e-03 -7.916e-01 -7.438e-01 4.522e-19 -3.466e-05 24.46 -5.180e-16 -3.749e-04 0.509 5.27e-12
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8.4 Conclusions

The analyses of this chapter have allowed to assess the influence of different parameters on
the solid matrix of the material. The solid phase is coupled to the fluid phase through a
body force dependent on the pressure gradient, so parameters that affect the pressure gradient
significantly also affect the solid phase. It was shown that using the default configuration of
the model, Brinkman’s equation could be reduced to Darcy’s law due to negligible convective
and viscous terms. As a result, porosity did not affect the fluid flow, pressure gradient or solid
matrix, but only the fluid velocity (through Equation 4.2).

In the default configuration, the permeability significantly affected the fluid flow but not the
pressure drop. It was shown that this was due to the choice of boundary conditions, and that
when an inlet flow is applied instead of an inlet pressure, the pressure drop is influenced as
well. Furthermore, incorporation of strain-dependent porosity and permeability had a negligible
effect on the pressurised tissues, as compression was mainly compensated by lateral expansion
of the tissue instead of a reduction in porosity and accompanying reduction in permeability.



9 IFP-SWV Relationship - Healthy Model

The previous chapter mainly analysed the influence of certain parameters on the solid and
fluid phase after pressurisation. This chapter examines how the SWV is affected by the fluid
pressure.

9.1 Comparison to Theoretical Values - No Pressurisation

In order to ensure that the model is realistic, the estimated SWVs can be compared to the
theoretical values. For the linear elastic material model with E = 20 kPa, ν = 0.495, and
ρs = 945 kg/m3 the theoretical SWV obtained with Equation 3.6 is 2.66 m/s. For a linear
elastic material model with E = 100 kPa, the theoretical value is 5.95 m/s. For the Ogden
hyperelastic material model, the initial shear modulus is calculated with Equation 4.9 and using
Equation 3.4b, a theoretical SWV of 2.36 m/s is obtained.

The values that are obtained in the computational model when the tissue is not pressurised
are shown in Figure 9.1. In these simulations the steady state step (i.e., pressurisation step)
is removed and the inlets and outlets replaced by an ‘open boundary’ through which fluid can
enter and leave the tissue [16]. In the hyperelastic non-pressurised case (Figure 9.1c) oscillations
are observed that are not present in the linear elastic cases or hyperelastic cases with higher
pressures. These oscillations are also visible in Figure 9.5b. This could be induced due to
numerical instabilities and results in an inaccurate estimation of the SWV.

And overview of the theoretically calculated and computationally obtained values is provided
in Table 9.1. As can be seen from the table, the theoretical values are consistently a bit lower
than the computationally obtained values. The higher values could be due to numerical dis-
persion or poroelastic dispersion. In the linear case, the difference between the theoretically
and computationally obtained values are around 2%. This is higher than the 1% threshold
that was used in the mesh sensitivity study (section 6.3). However, the mesh sensitivity study
was performed with a hyperelastic material model and a pressurized tissue. In the hyperelastic
case, the difference is greater (≈ 19%). The discrepancy could be due to the fact that the the-
oretical values are approximations and/or due to the inaccuracies resulting from the numerical
instability explained above. Nevertheless, the comparison with the theoretical values validates
the model’s ability to provide realistic estimates of the SWV.

Table 9.1: Comparison of the theoretically calculated SWVs and the SWVs obtained through different
models.

SWV Linear (E = 20 kPa) Linear (E = 100 kPa) Hyperelastic
Theoretical [m/s] 2.66 5.95 2.36
Left [m/s] 2.73 6.06 2.90
Right [m/s] 2.71 6.07 2.91

9.2 SWV in Pressurised Tissue

In Figures 9.2, 9.3, and 9.4, the influence of pressurisation on the SWV is visualised. More
specifically, the relationships between the estimated SWVs and values of the fluid pressure,
stresses, and strains in the central point of the model are analysed. A linear (y1) and quadratic
y2 fit of the mean SWVs (left and right) and the correlation factors (R) with the fitted data are
also included in the figures. Not all plots require quadratic fits. When the correlation factor of
the linear fit is already approximately equal to one or the first coefficient of the quadratic fit
close to zero, a linear relationship can be assumed. Still, it is interesting to include both fits as
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(a) Linear (E = 20 kPa)

(b) Linear (E = 100 kPa)

(c) Hyperelastic

Figure 9.1: Estimated SWVs in non-pressurised linear and hyperelastic tissues.

they vary across the material models. Figures of the propagation at different timeframes and
pressures can be found in Figure 9.5.

The SWV is dependent on the IFP in both the linear elastic and hyperelastic models. However,
a hyperelastic material model is required to observe greater differences in SWVs during pres-
surisation similarly to the chicken breast experiments (subsection 4.2.1). Recall that the SWV
is a measure for the tissue stiffness. In the linear elastic material, the elevated IFP therefore
increases the apparent stiffness of the tissue, but not the intrinsic Young’s modulus of the solid
matrix as mentioned in [14]. A possible explanation for this nonlinear behaviour in a linear
elastic material is the nonlinear geometry, i.e., the quadratic term of the strain tensor, as noted
in [23]. In the simulations performed in this thesis, the material is not subjected to uniaxial
strain in contrast to [23], so it is difficult to compare the SWV to the equations presented in
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[23]. Nevertheless, it is interesting to discuss. They observe that when the tissue is compressed
in the same direction as the displacement caused by the ARF pulse, the shear wave velocity is
related to the shear modulus µ through the relationship ρsc2s = µ, i.e., there is no nonlinear-
ity. However, when the tissue is compressed in the direction parallel to the transducer surface
(and shear wave propagation also occurs in that direction), the relationship becomes ρsc2s = µ,
where σ is the uniaxial compression stress. In the simulations, a compressive stress is induced
by the inlet pressure in the same direction of the displacement caused by the ARF pulse (axial
or Y direction), but a tensile stress in the direction of the shear wave propagation (lateral or
X direction) is also present. Therefore, the lateral stress could explain the linear relationship
between stress in lateral direction and the shear wave velocity observed in the linear elastic
materials.

Hyperelastic tissues show a stiffening behaviour at higher stress, so an additional nonlinear term
is present. The results in the hyperelastic case show a slight concave quadratic relationship with
the IFP, whereas a linear relationship was observed in the chicken breast experiments (subsec-
tion 4.2.1), a convex quadratic relationship in other ex vivo experiments (and corresponding
analytical derivation) from literature (discussed in subsection 4.2.2)1, and a concave quadratic
relationship in the biomechanical model (discussed in subsection 4.2.3)2.

The discrepancy between the relationship obtained from the numerical model and the chicken
breast experiments could be due to different factors: the pressure range in the chicken breast
experiments was maybe not sufficiently large to observe a quadratic relationship, the pressure
and/or SWV measurements in the experiments were not accurate enough, or that the material
model of the simulations does not correspond adequately to the chicken breast tissue. The
discrepancy between the numerical results and experiments explained in subsection 4.2.2 could
be caused by the different material models or material parameters. More specifically, a stretch-
based strain energy function was used to describe the hyperelastic (Ogden) breast tissue in the
numerical model (subsection 4.1.3) and an invariant-based strain energy function was used to
describe hepatic tissue in subsection 4.2.2.

In the linear elastic models, and more so in the softer one, the worst fit is obtained when the
volumetric strain is considered. A possible explanation could be that the softer linear elastic
material deforms much more at higher inlet pressures, and small strains can definitely not be
assumed anymore. In contrast, the hyperelastic tissue shows a stiffening behaviour at larger
inlet pressures and therefore deforms less.

Table 9.2: SWV for different inlet pressures in linear elastic tissues.

Linear (E = 20 kPa) Linear (E = 100 kPa)
IFP inlet [mmHg] 0 10 20 30 40 0 15 30 45
IFP centre [mmHg] 0 6 13 22 32 0 9 16 25
Left SWV [m/s] 2.73 2.83 2.94 3.02 3.13 6.06 6.17 6.25 6.36
Right SWV [m/s] 2.71 2.83 2.94 3.02 3.13 6.07 6.17 6.26 6.40

Table 9.3: SWV for different inlet pressures in hyperelastic tissue.

Hyperelastic
IFP inlet [mmHg] 0 10 20 40 60 120
IFP centre [mmHg] 0 5 11 23 35 73
Left SWV [m/s] 2.90 3.61 4.41 5.61 6.52 8.57
Right SWV [m/s] 2.91 3.60 4.44 5.60 6.51 8.60

1Another study used the same analytical model as derived in [51] (that was fitted to the experimental results
discussed in subsection 4.2.2), but obtained a concave quadratic relationship [88]. This is shown in the appendix,
Figure B.2.

2In Figure 4.4, a linear relationship can be seen between the IFP and the square of the SWV. This results
in a concave quadratic relationship between the IFP and SWV.
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Figure 9.2: Relationship between the SWV and the IFP, strains, and stresses in the centre of the
model of a linear elastic (E = 20 kPa) material. A linear and quadratic fit of the mean of the right
and left SWV is provided.
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Figure 9.3: Relationship between the SWV and the IFP, strains, and stresses in the centre of the
model of a linear elastic (E = 100 kPa) material. A linear and quadratic fit of the mean of the right
and left SWV is provided.
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Figure 9.4: Relationship between the SWV and the IFP, strains, and stresses in the centre of the
model of a hyperelastic material. A linear and quadratic fit of the mean of the right and left SWV is
provided.
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Figure 9.5: Shear wave propagation in pressurised and non-pressurised linear elastic (a) and hyperelastic (b) tissues for three different timeframes. The IFP in the
centre is shown.
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9.3 Effect of Confinement - After Pressurisation

As the experiments mentioned in subsection 4.2.2 observed an increase in SWV with IFP, but
only if the tissue was unconstrained, this influence is also examined on the numerical model.
Constrained simulations are performed, where rollers are placed on all four boundaries. In
Table 9.4, the resulting SWVs are compared to the unconstrained and non-pressurised cases.
Certain values for the stresses, strains, and displacement in the constrained and unconstrained
pressurised hyperelastic tissue can be found in Table 8.6.

In the linear case, it can indeed be observed that the SWV is equivalent to the non-pressurised
velocity, whereas higher SWVs are recorded in the pressurised and unconstrained model. In
the hyperelastic case, a substantial difference between the pressurised constrained and uncon-
strained cases are observed. In the constrained case, the SWV is similar to the non-pressurised
state but slightly lower, which could be due to the numerical instabilities mentioned in sec-
tion 9.1. Therefore, it is confirmed that the fluid pressure itself is not sufficient to observe an
increase in SWV with IFP, and that stresses and/or strains need to be taken into account as
well.

Table 9.4: Comparison of the SWVs in constrained and unconstrained simulations. Measures given
at centre

Linear (E = 20 kPa)
Deformation Unconstrained Unconstrained Constrained
Inlet pressure [mmHg] 0 40 40
Left SWV [m/s] 2.73 3.12 2.72
Right SWV [m/s] 2.71 3.13 2.71
IFPcentre [mmHg] 0 32 32

Hyperelastic
Deformation Unconstrained Unconstrained Constrained
Inlet pressure [mmHg] 0 60 60
Left SWV [m/s] 2.90 6.52 2.78
Right SWV [m/s] 2.91 6.51 2.73

9.4 Conclusions

This chapter was mainly focused on analysing the computationally obtained SWVs. First and
foremost, the comparison of the SWVs in non-pressurised tissues to theoretical SWVs allowed
to confirm that realistic values can be obtained with the model for both linear elastic and
hyperelastic tissues. Secondly, elevated IFP noticeably affected the SWV and this effect was
compared to experimental values and analytical models defined in literature. More specifically,
IFP increased the apparent stiffness of the tissue. In the linear elastic material, geometric
nonlinearity could explain this behaviour. In hyperelastic tissues, an additional nonlinear term
is introduced due to the stiffening behaviour (i.e., nonlinear shear modulus). Mostly linear
relationships were observed between the SWV and the IFP, stresses, and strains in the linear
elastic material. Conversely, mostly quadratic relationships were observed in the hyperelastic
tissue. Finally, numerical experiments confirmed that the effect of IFP is limited in constrained
tissues.



10 Clinical Implementation - Tumour Model

The objective of this thesis was to analyse the relationship between the IFP and SWV, which
was done in the previous chapter. In this chapter, a supplementary model is evaluated. This
model includes a tumour mass surrounded by healthy tissue, and allows to study the combined
and separate influence of the IFP and stiffness. The analyses are performed on linear elastic
tissues to avoid the numerical instabilities discussed in the previous chapter.

10.1 Pressurisation

A mass source in the fluid domain is comparable to an inlet flow. Therefore, the mass source
(magnitude and radius) and tissue permeability influence the pressure as discussed in a previous
chapter (section 8.1). These parameters can be changed to obtain realistic pressures and pres-
sure distributions within the model. Their influence on the pressure is visualised in Figure 10.1.
It can be seen that the tumour permeability mainly influences the pressure drop within the tu-
mour, and not the pressure distribution within the healthy tissue. More specifically, fluid flow
through the tumour pores is hindered at lower permeabilities, increasing the pressure drop.

On the other hand, the mass source magnitude and radius affect both the pressure drop within
the tumour as the pressure within the healthy tissue. As expected, an increasing magnitude or
radius increases the fluid flow and thus also the pressure within the model. In the subsequent
simulations, the following values are selected as ‘default’ configuration: mass source magnitude
of 300 kg/(m3s) with radius of 6 mm, tumour permeability of 1 ·10−12 m2, and linear elasticity
(E = 100 kPa). The resulting pressure, stress, and strain distributions after pressurisation are
shown in the Appendix, Figure B.3.

10.2 Shear Wave Propagation

The shear wave propagation in the tumour model is analysed in three different cases, as sum-
marised in Table 10.1. The influence of a pressurised less permeable and non-pressurised stiffer
tumour are assessed separately first, and then their combined effect is analysed. The estimated
SWVs and propagation plots for the three different cases in the tumour model are shown in Fig-
ures 10.2 and 10.3. In the less permeable case, the shear wave traversing the tumour (i.e., right
shear wave) propagates faster as expected from the previous chapter, but no marked difference
in the waveform is be observed. This is different in the stiffer case. As expected, the shear wave
propagates faster in the stiffer tissue, and this is clearly visible in Figure 10.2b (right) due to
the discontinuity in the blue trajectory when the tumour tissue is reached. But additionally,
shear waves are reflected when they reach the stiffer tissue.

Finally, the SWV in the healthy tissue in the combined case slightly higher than in ‘stiffer’
case, as the pressure is slightly elevated throughout the healthy tissue and drops to zero at the
borders as explained in the previous section. The SWV in the tumour is now lower than in the
pressurised (less permeable) case, but this is due to the discontinuity in the blue trajectory at
the intersection of the healthy and tumour tissue. If the healthy tissue in the right propagating
shear wave is discarded, a similar SWV is obtained (as shown in the Appendix, Figure B.4).

10.3 Conclusions

The feasibility of including a tumour mass was examined in this chapter. It was shown that
a mass source within the tumour could be employed to obtain an elevated pressure within the
tumour and that the mass source magnitude, mass source radius, and tumour permeability can
be adapted to obtain a desired pressure distribution in the healthy and tumour tissue. Finally,
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(a) Influence of mass source magnitude.

(b) Influence of mass source radius.

(c) Influence of tumour permeability.

Figure 10.1: Influence of the mass source magnitude (a), mass source radius (b), and tumour per-
meability (c) on the pressure distribution within the central horizontal line of the model. The default
values during the analysis are a mass source magnitude of 300 kg/(m3s), mass source radius of 6 mm,
and tumour permeability of 1 · 10−12 m2. A linear elastic (E = 100 kPa) is used throughout the
complete geometry.
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Table 10.1: Overview of cases in linear tumour model. The magnitude and radius of the mass sources
are, respectively, 300 kg/(m3s) and 6 mm.

Property Healthy tissue Tumour tissue
Case 1 - Less permeable

Young’s modulus [kPa] 100 100
Permeability [m2] 5.3 · 10−12 1 · 10−12

Mass source N/A Yes
Case 2 - Stiffer

Young’s modulus [kPa] 20 100
Permeability [m2] 5.3 · 10−12 5.3 · 10−12

Mass source N/A No
Case 3 - Combined

Young’s modulus [kPa] 20 100
Permeability [m2] 5.3 · 10−12 1 · 10−12

Mass source N/A Yes

the shear wave propagation was analysed in the tumour model. Both the pressurisation and
tissue stiffness increase the shear wave velocity, which was already the case in the previous
chapter. Additionally, it was observed that a difference in tissue stiffness causes reflections.
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(a) Less permeable

(b) Stiffer

(c) Combination

Figure 10.2: SWVs of left and right propagating shear waves in tumour model. The tumour tissue
starts at 17 mm. In the ‘less permeable’ case, the tumour and healthy tissue have the same linear
elastic properties (E = 100 kPa), but the tumour has a permeability of 1 · 10−12 m2 and the healthy
tissue a permeability of 5.3 · 10−12 m2. In the ‘stiffer’ case, the linear elastic properties of the tumour
(E = 100 kPa) are different from the healthy tissue (E = 20 kPa), but both tissues have the same
permeability. In the ‘combined’ case, the tumour is stiffer and less permeable.
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Figure 10.3: Shear wave propagation in linear elastic tumour model at different timeframes. The
tumour geometry is indicated. In the ‘less permeable’ column, the tumour and healthy tissue have the
same linear elastic properties (E = 100 kPa), but the tumour has a permeability of 1 · 10−12 m2 and
the healthy tissue a permeability of 5.3 · 10−12 m2. In the ‘stiffer’ column, the linear elastic properties
of the tumour (E = 100 kPa) are different from the healthy tissue (E = 20 kPa), but both tissues
have the same permeability. In the ‘combined’ column, the tumour is stiffer and less permeable.



11 General Conclusions

The objective of this thesis was to study the relationship between the IFP and SWV. In this
regard, a poroelastic tissue was manually implemented into COMSOL Multiphysics® as vali-
dated by [74]. The material model was further extended to include hyperelasticity and strain-
dependent porosity and permeability. The influence of the strain-dependency during pressuri-
sation turned out to be limited in these models, but would be crucial in other applications
involving higher strains.

The fluid and solid phase are related to each other through the fluid pressure gradient and
solid volumetric strain. Pressurisation was obtained through different boundary conditions.
Inlet pressures and mass sources were mainly discussed in this thesis. When fixed pressures
were applied, permeability had a limited impact on the solid matrix properties as the pressure
gradient was fixed. This changed when a fluid mass source was used instead. Higher perme-
abilities increased the pressure drop within tissues in this case. The porosity showed to have an
insignificant effect on the solid matrix or on the pressure drop as convective and viscous terms
were negligible. In these cases, Brinkman’s equation reduces to Darcy’s law.

The healthy model has proven to produce realistic estimates of the SWV in non-pressurised
tissues compared to theoretical values. Numerical instabilities did occur in the hyperelastic
tissue at zero or low IFP, and this should be resolved in future models to enable more accurate
SWV estimation. Furthermore, clear correlations between the IFP and SWV were obtained
in both linear and hyperelastic tissues. More specifically, elevated IFP increases the apparent
stiffness of the tissue. Moreover, the tissue has to be unconstrained or order to observe the
correlation.

Finally, a tumour mass was included in the model and allowed to compare the influence of
pressurisation and intrinsic stiffness in both healthy and tumour tissues.

11.1 Limitations and Perspectives

In the models’ current configuration, determination of the absolute value of the IFP within
a tissue is not yet possible without knowledge of the tissue parameters, as comparison of the
tumour SWV with adjacent tissues is not sufficient to decouple the influence of tumour stiffness
and IFP. Therefore, only the variation in fluid pressure over time can be determined in a
first stage, which would already be useful for monitoring the efficacy of treatments designed
to lower the IFP over time that aim to improve uptake of other therapeutic drugs to the
tumour. Moreover, the variation in fluid pressure could also be assessed in other pressure-
related disorders, such as oedema.

In a second stage, the models developed in this thesis can serve as a basis to test whether
additional measurements in the time and/or frequency domain can allow to characterise the
tissue and fluid pressure. For example, Gennisson et al. [23] found that it is possible to charac-
terise the nonlinear shear elasticity in one single shear wave experiment using different applied
uniaxial stresses, instead of three different shear wave experiments with different polarisation
directions. Similarly, supplementary tests adapted to the models could allow for additional
parameters to be assessed.

11.2 Future Work

Future work can be divided in multiple phases: (1) limiting numerical dispersion and instabil-
ities in the current models, (2) analysing the influence of additional parameters on the SWV
in the current models, and (3) extending the models’ complexity to encompass other clinical
applications. In the first phase, the mesh in the tumour should be optimised through a mesh
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sensitivity study and numerical instabilities in the hyperelastic tissue should be resolved. The
second phase can analyse the influence of poroelastic and viscoelastic dispersion [1, 89] (which
requires modelling in the frequency domain and inclusion of viscoelasticity), an increased fluid
viscosity, and a compressible solid matrix [89] on the SWV. Finally, the models can be ex-
tended to 3D and anisotropic tissues to, amongst others, examine irregularly-shaped (tumour)
geometries and IFP in tendinopathies.
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A Appendix - Ethical Considerations

A.1 Ethical aspects directly related to the work done in the thesis

No in vivo or ex vivo experiments were performed during this thesis. Numerical results were
compared to data of ex vivo experiments on chicken breasts performed in [31] and to results
available in literature [66]. Material parameters were mainly taken from literature, and focused
on (female) breast tissue. However, the material parameters don’t have to be sex-specific and
can be adapted easily.

A.2 Reflection about the potential (future) impact of study results

The impact of the work performed in this thesis could potentially allow for SWE to be used in a
clinical context for assessment of the IFP, and improve diagnosis and treatment of tumours, as
current techniques for the assessment of IFP are invasive and therefore not widely implemented
into clinical practise. Besides its applications in oncology, non-invasive assessment of IFP
could also be used in other clinical fields and pathologies, such as oedemas and tendinopathies.
Moreover, as IFP affects the apparent tissue stiffness, estimation of this property could be
improved by considering the effect of IFP on the SWV.

SWE can be performed with conventional ultrasound transducers, as long as they allow for
high-energy burst transmission, high-frame rate data acquisition, and dispose of the adequate
software (which requires an additional cost) [10]. This equipment and additional cost might
be difficult to cover in low-resource settings. However, ultrasound-based techniques are still
cheaper than MRI-based techniques.

On another note, the strain-dependent poroelastic model developed in this thesis can also be
adapted to enable modelling of other soft (biological) tissues in COMSOL Multiphysics®.

A.3 Scientific integrity

Information retrieved from literature was consistently followed or preceded by the appropriate
reference. For figures and tables that were sourced from literature, the corresponding reference
was provided in the caption. If the figure or table was adapted, this was also mentioned in the
caption. When no reference was included in the caption of a figure or table, it was created from
scratch.

This thesis is a continuation of the master’s thesis of Kristyna Holkova [31]. The models that
she developed were provided by her and subsequently improved and adapted in this thesis. The
code for the shear wave velocity estimation from 2D data was provided by Dr. Ir. Annette
Caenen and adapted to fit the data obtained from the computational model.

No numerical results were omitted in this thesis, but results that provided no additional infor-
mation than what was already discussed, were not always included. For example, the results
of all three linear (E = 20 kPa and E = 100 kPa) and hyperelastic cases for each part of the
parameteric study were not always shown, instead, priority was given to one or two of these
cases.

The literature study, discussions with knowledgeable researchers (e.g., counsellor Dr. Ir. An-
nette Caenen), and personal experience with modelling all contributed to the work performed
in this thesis.
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Figure B.1: Y velocities at different x-coordinates and timeframes for the different meshes of sec-
tion 6.3.

Figure B.2: IFP-SWV relationship obtained by [88]. The dashed pink line (third in the legend)
employs the same analytical model as derived in [51] and discussed in subsection 4.2.2. [88]
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Figure B.3: Resulting pressure, stress, and strain distribution in the default tumour model.

Figure B.4: Right SWV in the tumour model case 3 if the healthy tissue is not considered.
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