
Jackiw-Teitelboim (super)gravity, 
topological gauge theory and EOW 
branes


Belaey, Andreas C.

Student number: 01811018


Supervisor: Prof. Dr. Mertens, Thomas G.


A dissertation submitted to Ghent University in partial fulfilment of the requirements for the degree of 
Master of Science in de Fysica en de Sterrenkunde


Academic year: 2022 - 2023





In liefdevolle herinnering opgedragen aan mijn steun en toeverlaat, voor altijd

mémé Clara



Copyright

De auteur geeft de toelating deze masterproef voor consultatie beschikbaar te stellen en delen van de mas-
terproef te kopiëren voor persoonlijk gebruik. Elk ander gebruik valt onder de beperkingen van het au-
teursrecht, in het bijzonder met betrekking tot de verplichting de bron uitdrukkelijk te vermelden bij het
aanhalen van resultaten uit de masterproef.

The author grants permission to make this thesis available for consultation and to copy parts of it for
personal use. Any other usage falls under the limitations of the copyright law, in particular regarding
the obligation to explicitly mention the source when citing results from this thesis.



Words of gratitude

After some intense months of writing this thesis, I am finally in a place to reflect on the work that has been
done so far. It is safe to say that the result of this thesis would not have been possible without the help and
encouragement of those around me, all of whom I would like to share my gratitude.

On a professional level, I would like to start credit where credit is due and thank my promoter Thomas
Mertens. His input and encouragement cannot be understated, and I look up to him in many ways. He has
been my professor for the course on Quantum Field Theory in the first semester of my first Master’s year.
In a semester full of numerical modelling and solid state physics, his course was a breath of fresh air. When
I showed interest in his subject as a prospective Master’s thesis, his enthusiasm about his field during our
private conversation was inspiring.
A broad part of this thesis involved reading through the (often vast and daunting) literature and making it
my own. Almost all of the literature involved in this thesis is contributed directly by him. It really amazes
me how much he has already contributed to his field over a relatively short period of time. I would like to
thank him for giving me the opportunity to pursue my passions in the years to come and for putting his trust
in me from early on.
The original contributions of this thesis are the fruit of his encouragement throughout the year. In this
journey, it has been a pleasure to collaborate with Francesca Mariani. We could work together on a shared
topic and our shared inputs and perspectives have greatly influenced the result of this work in many ways.
It really demonstrates that science is at its core a social activity, where scientific results are often the result
of the synergy between different perspectives and opinions.
I would also like to thank a handful of professors that are most dear to me. Starting with Didar Dobur; I
would like to thank her for her enthusiasm and encouragement throughout the years. She has been a true
source of inspiration and a joy to talk to. Her persona did not facilitate the choice between theory and
experiment. Although I have chosen the path towards theoretical physics, my passions for particle physics
are still as strong as ever and I will always look back to her courses with a certain nostalgia and joy.
I would also like to thank Michal Heller. He has been my professor for specialized elective courses in the
fields of holography and quantum gravity. His passion for the field inspired me to continue in this direction.
The result is this thesis. Most importantly, his visions and perspectives on science have been really refresh-
ing. In particular, he has encouraged his students from the start to dare to think for themselves, which is
perhaps aside from the content-related material of his course, one of the most important lessons.

Op persoonlijk niveau zou ik graag mijn naasten willen bedankten. In het bijzonder mijn ouders die mij
door dik en dun zullen blijven steunen. De impact van die steun op deze thesis en andere uitdagingen kan
niet genoeg benadrukt worden. Zo ook is de steun van mijn zus onmiskenbaar.
Langs de andere kant heb ik gedurende mijn opleiding ook vele mensen moeten afgeven. De opstapeling
van verliezen op korte tijd heeft emotioneel een sterke tol geëist. De aanwezigheid van mijn ouders heeft
ook in deze verwerking een onmiskenbare rol gespeeld.
In het bijzonder zou ik mijn mémé Clara willen herinneren in dit werk. Van jongs af heeft haar aanmoedig-
ing mij telkens weer een boost gegeven om steeds het beste van mezelf te geven. Haar onconditionele liefde
en vertrouwen heeft geleid tot wie ik ben en waar ik nu sta. Het valt me dan ook zwaar dat ik dit laatste



iii

moment van afstuderen niet met haar kan delen. Hoe dan ook heb ik mij voor deze thesis keihard ingezet
om haar nog een laatste keer trots te maken.
Ik zou voorts ook mijn vrienden willen bedanken, waarvan ook hun aanwezigheid soms te vaak vanzelf-
sprekend lijkt. Hen op geregelde basis ontmoeten zorgde voor de nodige afwisseling en maakte het schrijven
van deze thesis des te aangenamer. In het bijzonder wil ik Eben en Helena vernoemen, waarmee ik vele van
mijn fijnste herinneringen koester.
Ten slotte wil ik ook Jeroen bedanken, die mij door vele ups en downs heeft geholpen dit jaar. De weten-
schap dat ik telkens op hem kon terug vallen heeft de kwaliteit van deze thesis in aanzienlijke mate beïn-
vloed.

I would also like to thank Emmy, who has invested her time in reviewing a first draft of this work and
assisted me with linguistic advice. To be clear, due to a shortage of time near the end of this semester, this
work is certainly not free of grammatical errors or unnecessary typos in the equations, for which I apologize
beforehand.

Finally, I would also like thank you, the reader, for taking the time to go through (some parts) of this exten-
sive work. I hope you enjoy it at least one bit as much as I have enjoyed investigating and writing it.

June 2023,
Andreas.



Plato: The Allegory of the Cave, from The Republic1

Socrates And now, I said, let me show in a figure how far our nature is enlightened or unenlightened: Behold!
human beings living in a underground cave, which has a mouth open towards the light and reaching
all along the cave; here they have been from their childhood, and have their legs and necks chained
so that they cannot move, and can only see before them, being prevented by the chains from turning
round their heads. Above and behind them a fire is blazing at a distance, and between the fire and the
prisoners there is a raised way; and you will see, if you look, a low wall built along the way, like the
screen which marionette players have in front of them, over which they show the puppets.

Glaucon I see.

Socrates And do you see, I said, men passing along the wall carrying all sorts of vessels, and statues and
figures of animals made of wood and stone and various materials, which appear over the wall? Some
of them are talking, others silent.

Glaucon You have shown me a strange image, and they are strange prisoners.

Socrates Like ourselves, I replied; and they see only their own shadows, or the shadows of one another, which
the fire throws on the opposite wall of the cave?

Glaucon True, he said; how could they see anything but the shadows if they were never allowed to move their
heads?

Socrates And of the objects which are being carried in like manner they would only see the shadows?

Glaucon Yes, he said.

Socrates And if they were able to converse with one another, would they not suppose that they were naming
what was actually before them?

Glaucon Very true.

Socrates And suppose further that the prison had an echo which came from the other side, would they not be
sure to fancy when one of the passers-by spoke that the voice which they heard came from the passing
shadow?

Glaucon No question, he replied.

Socrates To them, I said, the truth would be literally nothing but the shadows of the images.

Glaucon That is certain.

. . .

1This fragment is taken from the Benjamin Jowett translation (Vintage, 1991)
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Abstract

The issues regarding the non-renormalizability of the Einstein-Hilbert action can be averted in theories of
two-dimensional gravity, where the Newton’s constant is dimensionless and does not set the scale for new
physics. By formulating the theory in the context of holography, we can study quantum solutions of gravity
in this setting. A particularly attractive model is 1+1d Jackiw-Teitelboim gravity (JT), which captures the
near-horizon region of a large class of higher-dimensional nearly extremal black holes.
The amount of exact solvability in this model is unprecedented. In particular, its quantum gravitational
solutions are exact to all orders in perturbation theory. This allows to make real quantitative predictions
to long-lasting problems. Most notably, coupling the theory to matter, it is able to shed a new light on the
Hawking information paradox. By including non-perturbative corrections to the gravitational path integral,
the result is a completely unitary Page curve of the entropy of the Hawking radiation.

Important objects to model the black hole microstates in the evaporation process are the End-of-the-World
branes (EOW). These act as probe particles that follow geodesic trajectories between two points on the
boundary of a hyperbolic universe. Other topological solutions of EOW branes have also been obtained at
the neck of a Euclidean wormhole. The explicit quantum amplitudes of these objects have been obtained in
the boundary-particle formalism of JT gravity so far.
In this thesis, we complement these computations by providing an alternative perspective on these quantum
amplitudes in the framework of a sl(2,R) topological BF gauge theory. We follow the perspective of the
quantum description of JT gravity in terms of the subsemigroup SL+(2,R) of positive group elements. By
identifying the free particle action with a Wilson operator insertion, we obtain precisely the same quan-
tum amplitudes of the boundary-particle formalism in the geodesic approximation. This perspective neatly
unites the two seemingly different answers for different topologies.

We further exploit this perspective to formulate, for the first time, EOW branes in the context of N = 1 JT
supergravity (SUGRA). In particular, we work out the relevant geodesic differential geometry in superspace
and obtain an explicit expression for the extrinsic supercurvature in terms of a properly defined covariant
derivative. Using these definitions, we write down the action of EOW branes in superspace. Using reasoning
similar to the bosonic case, we solve the explicit quantum amplitudes in the group theoretical osp(1|2,R)
BF formulation of N = 1 JT SUGRA. The result again critically depends on the topology, where now also
the periodicity of the fermionic sector has to be taken into account. We find that for periodic fermions, the
spurious UV divergence of the bosonic case seizes in applications of supergravity. Thus, the incorporation
of supersymmetry cures the diverges of the bosonic case.
We end with a look towards the future for N = 2 JT supergravity.



Abstract

De problemen met betrekking tot de renormalisatie van de Einstein-Hilbert actie kunnen afgewend wor-
den in modellen van tweedimensionale zwaartekracht. In de context van holografie kunnen we kwantum
oplossingen van zwaartekracht bestuderen in deze opstelling. Een bijzonder vruchtbaar model is 1+1d
Jackiw-Teitelboim zwaartekracht (JT), dat de dynamica nabij de horizon beschrijft van een brede waaier
aan bijna extremale zwarte gaten in ons universum.
De exacte oplosbaarheid van dit model is ongezien. In het bijzonder kan men de kwantummechanische am-
plitudes exact formuleren tot op elke orde in perturbatietheorie. Dit laat toe om onopgeloste problemen van
kwantumgravitatie te herinterpreteren. Door het model te koppelen aan materie lost men de informatiepara-
dox van Hawking op door niet-perturbatieve Euclidische wormgaten in de gravitationele padintegraal te
betrekken. Het resultaat is een volkomen unitaire Page curve die de entropie van de Hawking straling
beschrijft.

Belangrijke objecten om deze evaporatie mee te modelleren zijn EOW branen die de microtoestanden van
het zwart gat beschrijven. Deze dienen als testdeeltjes die geodetische paden beschrijven tussen twee anker-
punten aan de rand van een hyperbolisch universum. Andere topologieën van deze EOW branen zijn ook
reeds bestudeerd, zoals een EOW braan dat eindigt op de nek van een Euclidisch wormgat. Deze kwantu-
mamplitudes zijn origineel beschreven in het vrije-deeltjes model van JT zwaartekracht.
In deze thesis werpen we een nieuwe blik op de kwantisatie van EOW branen in de context van een topol-
ogische sl(2,R) BF ijktheorie. We volgen de kwantumbeschrijving in termen van de halfgroep SL+(2,R).
Door de vrije-deeltjes actie te identificeren met een Wilson operator insertie, kunnen we de bekomen kwan-
tumamplitudes identificeren met deze uit het vrije-deeltjesmodel in de geodetische approximatie. Dit per-
spectief verbindt de verschillende topologische oplossingen in één gezamenlijke beschrijving.

We extrapoleren dit perspectief om voor het eerst EOW branen in de context van N = 1 JT superzwaartekracht
te definiëren en te beschrijven. In het bijzonder werken we de relevante geodetische supermeetkunde uit om
een definitie van de superextrinsieke kromming te bekomen in termen van een gepaste covariante afgeleide.
Met deze definities kunnen we uiteindelijk de actie van een EOW braan in de supermeetkunde neerschri-
jven. Gebruik makende van de groepentheoretische beschrijving van N = 1 JT superzwaartekracht in
termen van een osp(1|2,R) topologische ijktheorie, lossen we de resulterende kwantumamplitudes op. Het
resultaat hangt opnieuw af van de topologie, maar eveneens van de periodiciteit van de fermionische sector
rond de cirkel. We concluderen dat de periodieke sector zich regulier gedraagt in het UV, in tegenstelling
tot het bosonische geval.
We sluiten af met een blik naar de toekomst in de context van N = 2 supergravitatie.



Chapter 0

Content and Overview

"On the walls of the cave, only the shadows
are the truth."

Plato, The Allegory of the Cave

0.1 Orientation and motivation

Since the development of the Standard Model [1][2] as a spontaneously broken SU(2)L b U(1)Y b SU(3)c

gauge theory, physicists have been able to explain and predict almost all observable processes in experimental
high-energy experiments with unprecedented precision. The theory unifies the electromagnetic, weak, and
strong interactions in the framework of a local, Lorentz-invariant Quantum Field Theory (QFT).
It is rather disturbing that there exists a consistent description of these three fundamental forces at the level of
the path integral, while we still lack a basic framework to describe the most familiar gravitational interaction
Quantum Mechanically.

The main difficulties in defining a UV-complete quantum theory of gravity can be categorized in technical and
conceptual problems. The former includes the non-renormalizabilty of the Einstein-Hilbert action in D ą 2.
The latter are conceptual problems about how to even think about a quantized theory of gravity. The Weinberg-
Witten theorem [3] rules out the possibility that the graviton emerges as a low-energy degree of freedom in
a local, Lorentz-invariant Quantum Field Theory, analogously to how pions are emergent degrees of freedom
in QCD. More specifically, the theorem states that massless spin-2 particles, such as gravitons, cannot be pro-
duced as asymptotic states in an underlying QFT theory with interacting particles [3]. Inspired by the fact that
quantum gravity has no local observables that do not reach the boundary, the majority of modern approaches to
Quantum Gravity are being developed in the framework of the Anti-de Sitter/Conformal Field Theory duality,
often called AdS/CFT [4] for short. In this framework, spacetime itself is emergent and is an approximate,
collective description of some underlying degrees of freedom in a lower-dimensional theory without gravity.

xiv
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This is a concrete realization of a holographic universe envisioned by ’t Hooft and Susskind in the early ’90s
[5][6].

The starting point of this duality was hinted in the search for a consistent microscopic quantum description of
black holes. After the discovery of black hole evaporation by S.W. Hawking [7], it was quickly realized that
black holes are thermal systems, whose temperature leads to a thermal entropy that scales linearly with the
area of the Horizon in Planck units [8]. Quantum Mechanically, this entropy should, of course, be related to
the number of degrees of freedom of the black hole system. However, since the black hole entropy scales with
the boundary area rather than the volume, this suggests a holographic description of black holes [5][6] where
a theory of quantum gravity must secretly live in lower dimensions than our observed spacetime.
The AdS/CFT correspondence was the first concrete realization of such a duality by J. M. Maldacena in the
context of D-brane string theory [4][9]. It motivates that there exists an exact relationship between any theory
of quantum gravity in asymptotically AdS spacetimes and ordinary CFTs without gravity on a lower dimen-
sional hypersurface at the asymptotic boundary. E. Witten [10] proposed the concept of Witten diagrams, and
introduced an operational dictionary for this duality, which was independently formulated by Gubser, Kle-
banov and Polyakov [11]. It states that any physical (gauge-invariant) quantity that can be computed in one
theory can also be computed in its dual description.

A strategy to attack the first class of technical problems concerning renormalizability, would be to work in
lower dimensions. In particular, whenD = 2, the Newtons constant is dimensionless and does not set the scale
of new physics. By formulating the theory in the framework of holography, we furthermore have a preferred
anchoring point to deal with the second class of conceptual problems.
1+1d gravity is special however, since the Einsteins equations are trivially satisfied, and the Einstein-Hilbert
action is topological. Additionally coupling the theory to matter, the equations of motion can only describe the
ground state configurations. This is related to the backreaction problem raised in [12], which makes holography
in 1+1d in a sense more challenging than its higher dimensional cousins. To go beyond and investigate generic
matter excitations, Jackiw-Teitelboim gravity (JT) has proven to be a particularly fruitful gravitational model.
It belongs to the class of 2d dilaton gravity models, whose dynamical degrees of freedom are the 2d metric
field gµν and a scalar dilaton field Φ. The JT model in particular is characterized by a linear dilaton potential
U(Φ) = ´2Φ, whose corresponding Euclidean action is

IJT [g,Φ] = ´
1

16πGN

ż

M
d2x

?
gΦ(R+ 2) ´

1

8πGN

¿

BM

dτ
?
hΦbdry(K ´ 1). (1)

The last term is the familiar Gibbons-Hawking-York (GHY) boundary term, introduced in this context to yield
a proper variational problem for an action with second-order derivatives of the metric. This action was first
proposed independently by R. Jackiw [13] and C. Teitelboim [14] in the 1980s, but was rediscovered in a
holographic context in [15], where the classical equations of motion of the dilaton and the metric were de-
rived. Variation with respect to the dilaton field fixes all metric solutions to different coordinate frames of an
AdS2-manifold, while variation with respect to the metric yields equations of motion of the dilaton in terms of
(non-zero) matter sources. This procedure fixes the backreaction of the metric in terms of the variation of the
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dilaton.
Next to being a valuable model to study lower-dimensional quantum gravity, the model describes the spherical
symmetric s-wave sector in the near-horizon region of nearly extremal higher-dimensional black holes. In
particular, it captures the near-horizon throat of asymptotically flat nearly extremal higher-dimensional black
holes relevant in our universe.

In the limit of perfect AdS2, the system exhibits an exact time reparameterization symmetry, which arises as
the asymptotic symmetry of the AdS2-manifold. Since the JT model keeps the leading order correction away
from AdS2 by the presence of the dilaton, this symmetry is broken down to the isometry SL(2,R) subgroup
of the AdS2-manifold, both spontaneously (by the presence of the asymptotic boundary) and explicitly (by
UV effects). The corresponding (pseudo-) Goldstone bosons are the reparameterization modes of the thermal
circle f P diff(S1), which can be thought of as boundary gravitons. The simplest local action that measures
these boundary modes in the breaking pattern diff(S1) Ñ SL(2,R) and that is still invariant under the isometry
subgroup SL(2,R), is given by the Schwarzian boundary action:

S = ´C

ż

dt

"

tan
(
π

β
f

)
, t

*

, tF, tu ”
F3

F 1
´

3

2

(
F 2

F 1

)2

. (2)

It was shown in [16] and [17], both in real time and at the level of the Euclidean action respectively, that due
to the presence of the GHY boundary term in the JT action, one indeed recovers the Schwarzian boundary
action. The backreaction of the dilaton on injected matter controls the shape of the boundary curve of the
AdS2 universe. Therefore, the breaking of pure AdS2 by the presence of the dilaton in turn breaks the ex-
act conformal reparameterization symmetry of the boundary curve. The quantity C quantifies the amount of
conformal symmetry breaking. This resolves the tension surrounding the backreaction problem raised in [12],
by deforming the AdS2/CFT1 correspondence into a deformed Nearly AdS2/ Nearly CFT1 correspondence.
There is a large degree of universality in the quantum description of JT gravity, since it is ultimately specified
completely in terms of the specific symmetry breaking pattern diff(S1) Ñ SL(2,R).

This pattern of symmetry breaking was widely appreciated among the high-energy community since it is re-
lated to a certain limit of a class of 0+1d Sachdev-Ye-Kitaev models (SYK). These are Quantum Mechanical
systems of N 0+1d Majorana fermions satisfying the Clifford algebra, with random all-to-all q-fermion cou-
plings. This was first studied by Sachdev and Ye in 1993 [18], and rediscovered in a series of seminal talks
by Kitaev in 2015 [19]. Due to the random couplings, the SYK model can be formally identified with an
ensemble of random Hamiltonians. In particular, one can study the correlation functions in the limit of largeN
using an effective field description of the Schwinger-Dyson equations. In the low-energy limit, the correlation
functions gain a conformal reparameterization symmetry of the thermal circle, which is explicitly broken down
to SL(2,R) by UV effects. The leading order action describing the small fluctuations is again found to be the
Schwarzian action.
In this sense, the low-energy, largeN limit of 0+1d SYK models can be thought of as the boundary holographic
description of 1+1d JT gravity.
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The amount of exact solvability of many observables in JT quantum-gravity beyond leading order in perturba-
tion theory, is unprecedented. In particular, using localization arguments, Witten and Stanford proved that the
one-loop Euclidean path integral is exact to all orders in perturbation theory in [20]. The bulk-boundary corre-
lators of the holographic dictionary were first written in perturbation theory in [17], and later solved exactly in
[21], using a suitable double-scaled limit of the Virasoro algebra. The results can be summarized elegantly in
a set of pictorial rules.

Another approach has been made in [22], and independently in [23], by formulating JT gravity in its first-order
BF formulation. This is a topological gauge theory involving the sl(2,R) gauge algebra for case of JT gravity.
Although the algebra is fixed on shell to sl(2,R), the transition to the quantum description requires the pre-
cise exponentiation of the global gauge group. This involves some additional subtleties since the gravitational
density of states of JT gravity does not match with the normalization of the global SL(2,R) representation ma-
trices. In particular, this density violates the classical exponential scaling at large energies. The two approaches
of [22] and [23] arrive at the correct density of states by using a different global gauge group; the former uses
the BF description of the subsemigroup of positive group elements SL+(2,R), while the latter used an R ex-
tension of the universal covering group S̃L(2,R). More evidence was provided in favour of the former [24]
since this choice automatically excludes singular metrics in the path integral. By treating the boundary bilocal
operators in the Schwarzian perspective as boundary-anchored Wilson lines, both studies were able to obtain
the same diagrammatic rules using techniques of 2d Yang-Mills theory.
Since the bulk is topological, it is independent of the metric. This leads to a holographic description in terms
of a particle on the SL(2,R) group manifold. Under constrained conditions does this holographic description
reduce to the Schwarzian description of JT gravity. The path that we will follow in this thesis is the first order
description of JT gravity in terms of a constrained SL+(2,R) topological BF gauge theory.
Solving the gravitational path integral and holographic correlation functions exactly to all orders are tremen-
dous achievements in a gravitational context, where appropriately defining the gravitational path integral is
notoriously difficult, and where correlations functions are usually approximated by semi-classical gravity. Be-
fore the discovery of the holographic properties of the JT model, the only completely solvable models of
gravity were topological in nature. The explicit dynamics on the Nearly AdS2-boundary in the JT context
allows us to phrase and calculate open problems in quantum gravity, and sometimes even solve them exactly.

Figure 1: Partition function of a hyperbolic Eu-
clidean AdS2-universe of genus 1, with three
boundary regions of inverse temperature βi

[25].

The amount of exact solvability of JT gravity allows to deduce that JT black
holes [17] saturate the maximal bound on chaos [26], study gravitational
shockwaves at the black hole horizon and virtual black hole intermediate
states [27], et cetera.
One of the main unanswered questions in black holes physics is the infor-
mation paradox, raised by Hawking in the 70s [28]. By doing Quantum
Field Theory in a curved spacetime, black holes have been found to evap-
orate by emitting radiation [7]. This was quickly found to be inconsistent
with quantum unitarity. In the context of holography, this should be re-
solved since the dual quantum mechanical description is always unitary.
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The tension manifests itself roughly in two areas.

Firstly, since the density of states of pure JT gravity is found to be continuous, the entropy in the micro-
canonical ensemble is infinite, and information can be lost inside a black hole. Indeed, in Quantum Mechanics,
a continuous spectrum is usually associated to a non-compact target space; but in a 0+1d boundary theory,
there is no spatial dimension, and the spectrum can only be continuous if it is infinite. It was readily realized
that a continuous spectrum can arise from pure states if the boundary theory is a random matrix ensemble in
the context of SYK [29]. In a seminal paper by Saad, Shenker and Stanford [30], it was argued that JT gravity
is indeed a matrix integral, by considering a non-perturbative genus expansion of multi-boundary universes,
connected by non-trivial topologies (Euclidean wormholes, see figure 0.1). This conjecture was made by real-
izing that Mirzakhani’s topological recursion relation matches order by order with the corresponding recursion
relation of random matrices for the spectral density of JT gravity.

Secondly, coupling the theory to matter, black holes have been found to evaporate in the presence of absorbing
boundary conditions at the boundary. If the evaporation is unitary and the initial state is pure, the black hole
microstates can only purify as much as their own entropy. The von Neumann entropy of the radiation grows
steadily during evaporation, due to the entanglement with the interior black hole partners. On the other hand,
the entropy of the black hole itself decreases while evaporating, following roughly the quasi-static decreasing
Bekenstein-Hawking entropy. The Page curve is the minimum of these two entropies, and describes a unitary
evaporation process. At the Page time, the entropy description changes from the fine-grained von Neumann
entropy to the coarse-grained Bekenstein-Hawking entropy contribution. In a series of papers [31][32], a new
rule was formulated to find a unitary Page curve for the entropy of the radiation by adding island regions
behind the black hole horizon in the standard holographic prescription [33]. Later in 2019, the famous west
[34], and east coast [35] papers, named after their respective university in Stanford and Princeton, provided
a gravitational proof of this new rule by incorporating higher topologies in the gravitational path integral
calculation. One considers n replicas of the original black hole and calculates the Rényi entropy SR = Tr(ρn)
of the density matrix ρ. By putting n = 1, one recovers the original fine-grained von Neumann entropy. Before
the analog of the Page time, the dominant topology in the Rényi entropy consists of n disconnected copies.
After the Page time, the dominant topology is connected, with an n-boundary Euclidean replica wormhole,
connecting all the different replicas.

0.2 Goals of this thesis

In the last paragraph, it is mentioned how the inclusion of Euclidean wormholes in the semiclassical entropy
calculation accounts for a decreasing slope in the Page curve. In [34], one models the total system by a
maximally entangled state between the radiation and the black hole microstates. The latter are described by the
internal states of an end-of-the-world (EOW) brane. These are fictitious geodesic boundaries of the Euclidean
hyperbolic universe that are anchored on both sides to the boundary.
It is well known that eternal black holes in AdS are dual to a maximally entangled thermofield double (TFD)
state between two copies of a CFT [9]. On the gravity side, this eternal black hole couples two parallel universes
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by the presence of the black hole interior itself (ER=EPR conjecture). Half of the hyperbolic disk in Euclidean
signature prepares this dual state in Lorentzian signature.
By performing a Z2-quotient along the geodesic fixed points of the EOW brane, one mods out one entangled
pair of the solution, effectively purifying the system. In the gravity setting, the total action including these
EOW branes is formulated in [36], and extends the JT action Eq 1 with an additional free particle contribution:

IJT [g,Φ] = ´
1

16πGN

ż

M
d2x

?
gΦ(R+2) ´

1

8πGN

¿

BM

dτ
?
hΦ(K´1)´

ż

EOW
dv

?
´gvv(ΦK´µ). (3)

Here, v is an affine parameter andK is the trace of the extrinsic curvature along the EOW brane. µ is interpreted
as the mass tension of the brane. Physically, we can interpret an EOW brane as the dynamics of a probe particle
of mass µmoving along the trajectory set by the EOW brane. The disk amplitudes with an EOW brane attached
to the asymptotic boundary were calculated in the boundary-particle formalism in [34]. These are consequently
used in the computation of the Page curve. The result is pictorially denoted by:

ZEOW (β) = =

ż 8

0
dk k sinh 2πk e´βk2

22µ´2|Γ(µ´
1

2
+ ik)|2. (4)

Here, the blue boundary describes the asymptotic UV boundary of the hyperbolic disk with length β, while the
EOW particle moves between two points on the boundary along the red-shaded curve. It is only because this
amplitude can be calculated exactly in the context of JT gravity that one can obtain a quantitative solution of
the Page curve that obeys quantum unitarity.
The analysis in [36] extends this discussion to non-trivial topologies. By deforming the natural boundary con-
ditions of the time reparameterization mode to a non-trivial monodromy, one can include operational defects in
the disk partition function [37]. In particular, the class of hyperbolic defects deforms the disk partition function
to a wormhole topology, where the asymptotic boundary is connected to a geodesic boundary at the neck of a
single trumpet. In the discussion of [36], one considers EOW branes attached at the neck of this single trum-
pet amplitude. Again using the boundary-particle formalism, they have obtained the following exact quantum
amplitude:

ZEOW (β) = =

ż

dk e´βk2

ż 8

0

db

sinh(b/2) cos(kb)e´µb. (5)

Computations in the boundary-particle formalism obscure much of the immediate geometrical interpretations
of these expressions. In particular, it is not at all obvious what is the origin of the correction to the classical
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geodesic saddle e´µb in the last answer. A first hint was noted in [38], with the observation that the combination

e´µb

sinh(b/2) (6)

looks like a lowest-weight character of a discrete series module of SL(2,R). We aim to make this argument
more precise. In particular, we follow the bulk quantization perspective of [22] [24] in terms of a topological
sl(2,R) BF gauge theory. Using the arguments of [23], we note that the EOW brane action Eq 3 in the metric
formulation of JT gravity acts as the insertion of a Wilson operator in the BF path integral. This result criti-
cally depends on the topology of the Wilson operator. For open paths, the free particle path integral evaluates
to a Wilson line between two lowest weight states. This is precisely a discrete series matrix element in the
representation theory of SL(+)(2,R). A path integral over closed loops on the other hand instructs to take a
trace over all vectors in the lowest weight module, and the Wilson operator evaluates to a Wilson loop instead.
This precisely identifies with a character of SL(+)(2,R). Going beyond the analysis of [38], we note that the
extrinsic trace in the action Eq 3 vanishes due to the dilaton equations of motion. This effectively localizes
the free particle path integral to describe geodesic trajectories. The identification between a discrete series
character of SL(+)(2,R) and Eq 6 becomes exact in this limit.
In addition, we show that the matrix element of the Wilson line operator is identified exactly with the on-shell
value of the free particle path integral in the geodesic limit. Using this perspective, it is tempting to interpret
the denominator in the answer Eq 6 for closed paths as a one-loop correction to this saddle.

This perspective on the calculation of EOW brane amplitudes neatly unites the two seemingly different answers
for the disk and trumpet amplitude Eqs 4, 5 into a common framework in group theory. Furthermore, we can
extend the notion of EOW branes to theories of N = 1 JT supergravity (SUGRA). To our knowledge, these
objects have not yet been considered before in this context.

The N = 1 JT SUGRA action in superspace has been formulated in [39]:

IN=1
JT =

1

4

[
ż

Σ
d2zd2θ EΦ(R+´ + 2) + 2

ż

BΣ
dτdϑ ΦK

]
. (7)

Besides the bosonic coordinates z, z, the bulk superspace is equipped with an additional fermionic (Grass-
mann) pair θ, θ. These superspace coordinates are bundled in terms of coordinates ZM on a 2|2-dimensional
manifold. Φ, R+´, E in the bulk action serve as the superdilaton field, the supercurvature and determinant
superframe field respectively. These are expanded in a Grassmann expansion of the fermionic coordinates θ, θ.
Using the superdilaton equations of motion, the bulk term is again seen to vanish, and describes patches of the
Poincaré super upper-half plane (SUHP). The remaining dynamics is captured by the super-conformal symme-
try breaking pattern along the boundary. Essentially, the boundary curve is 1|1-dimensional and is described in
terms of a bosonic τ and fermionic ϑ affine parameter. We can image these curves as infinitesimally thickened
sheets along the fermionic ϑ-direction. The definition of the super extrinsic supercurvature K in this boundary
term is fine-tuned to yield precisely the super-Schwarzian derivative [39].
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We argue that this boundary behaviour is not readily appropriate to describe EOW branes in superspace. In-
stead, we should consider genuine 1|0-dimensional curves that are described solely in terms of a single bosonic
affine parameter s. These curves should again localize onto geodesics. Somewhat surprisingly, the mathe-
matical and physical literature on differential geometry in superspace is relatively scarce. In particular, an
appropriate definition of the extrinsic curvature along 1|0-dimensional curves is not readily available. We set
out to construct it from first principles, following the textbook development of bosonic general relativity. We
deduce an exact expression for the geodesic equations in superspace and automatically obtain the definition of
the extrinsic supercurvature in terms of the variation of the normal vector field nM along the curve:

K = ŻM ŻN∇NnM . (8)

We also define an appropriate definition of the covariant superderivative in this context. Significant care has
to be taken in the ordening of the vectors and covectors in superspace since they in general do not commute.
We find a consistent set of conventions by considering coordinate invariant contractions in the north-west -
south-east direction (NW-SE): ŻMgMN Ż

N = ŻN ŻN . The anticommutative nature of these vectors leads to
the emergence of additional sign factors compared to the bosonic answer.
We propose the following action for EOW branes in superspace, as the natural generalization of the bosonic
answer Eq 3:

IEOW =

ż

ds

b

ŻMgMN ŻN (µ´ φK) . (9)

This is one of the key results of this thesis.

To obtain explicit quantum amplitudes of the EOW branes in superspace, we rely on the group theoretical
description of N = 1 JT SUGRA in terms of a topological osp(1|2,R) BF gauge theory. In particular, we
extend the discussion of [23] and identify the path integral of a free particle in terms of a super-Wilson operator
insertion in the BF path integral.
The result again depends on the topology, and we obtain the answer for a Wilson line/loop in terms of the matrix
elements/characters of OSp+(1|2,R), determined earlier in [40]. The result for the disk-shaped amplitude
reads:

=

ż 8

0
dk cosh(2πk)e´βk2

ż 8

´8

dφ
(
K1/2+2ik(2e

φ) + ε´ε+K1/2´2ik(2e
φ)
)
e2`φ.

, in terms of the modified Bessel functions of the second kind. As an additional subtlety, the fermionic sector
of the group OSp(1|2,R) decomposes into a periodic Ramond (R) sector and an anti-periodic Neveu-Schwarz
(NS) sector for rotations around the circle. Thus, we obtain two separate answers depending on the sector for
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closed EOW brane loops:

ZNS
EOW (β) =

ż 8

0
dk e´βk2

ż 8

0
db cos(bk) e´µb

2 sinh(b/4) ,

ZR
EOW (β) =

ż 8

0
dk e´βk2

ż 8

0
db sin(bk) e´µb

2 cosh(b/4) .

Notably, the result for the R sector does not yield the spurious UV divergence for small geodesic lengths b Ñ 0

that was present in the bosonic solution Eq 5 obtained in [36].

We conclude that we have not only obtained an alternative approach on the computation of EOW brane ampli-
tudes in group theory, we have also been able to generalize the concept of EOW branes to N = 1 JT SUGRA
and obtain explicit amplitudes using this perspective.

0.3 Contents of this thesis

The contents of this thesis cover a wide range of the literature involving the classical and quantum description
of JT gravity. However, the main goal of this thesis is a thorough investigation in the quantum description of
EOW branes, for which we resort to the first-order gauge theoretical formulation of JT gravity.
Since this thesis should be accessible for wide variety of readers not directly involved in the field of quantum
gravity, a large amount of this thesis is devoted to elaborate on the existing literature involving JT gravity.
Instead of summarizing the results of different papers, I have opted to work out as much of the obscured non-
trivial derivations explicitly, which are often left open in the existing publications. I believe that this not only
increases honesty towards the reader, it also makes it more interesting for both an expert and non-expert audi-
ence.
On the other hand, this makes for a rather long thesis. To make the text more digestible, please take into ac-
count the following notes.

We start with a broad summary of the classical solutions of JT gravity in chapter 1. Although I felt it was
necessary to include it for completeness and consistency, readers who are already familiar with the basics of
JT would be forgiven if they were to skip this chapter. The chapter serves as an introduction and motivation to
study this particular gravity model.
The content covers the headaches of the backreaction problem of AdS2/CFT1 holography, and how to go
beyond by introducing a non-trivial dilaton profile. This leads automatically to a definition of the JT gravity
model. The first part also aims to explain the physical relevance of this model in the context of a dimensional
reduction of near-extremal black holes in our 3 + 1-dimensional universe. This discussion is largely based on
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[12] [41] [42], where I again work out the derivations more in detail.
The next sections involve the classical solutions of this model, after [15] and [25]. This leads to the holographic
Schwarzian description of [17] and [16]. The chapter ends with the setup of the quantum gravitational descrip-
tion of JT gravity. In particular, we derive explicitly the one-loop exact partition function in the perspective
of coadjoints orbits of the Virasoro algebra [20]. This involves a technical discussion on symplectic manifolds
and the Virasoro algebra which is averted to appendix C.
We finally study the quantum incorporation of matter via the standard holographic dictionary. For readers who
are unfamiliar with the holographic dictionary and the laws of black hole thermodynamics, I have additionally
included an appendix D which serves as a crash course with the necessary prerequisites to follow this thesis.
The content broadly covers the related course by M. P. Heller on quantum black holes [43].
As elaborated before, readers who are solely interested in the content directly related to the original research
may choose to skip this chapter and its associated appendices altogether. On the other hand, due to its very
explicit derivations, this chapter serves nicely as a convenient introduction to JT.

Chapter 2 is rather long, and covers in detail the exact quantization of JT gravity in its first order gauge the-
oretical perspective after [22], [24], [23], [44], [45] and [37]. We start by deriving the on-shell equivalence
between the action of JT gravity in its metric formulation Eq 1 and a topological sl(2,R) BF gauge theory.
We do this at the level of the action and at the level of the equations of motion. In particular, I demonstrate
explicitly that the variational solutions of the BF theory exactly coincide with those obtained in JT gravity.
We further investigate the quantum solutions of this model with multiple Wilson line insertions in the case of
a general compact gauge group, using an open channel slicing developed in [22]. In particular, taking inspira-
tion from 2d Yang-Mills [45], the topological nature of this theory allows to cover the disk partition functions
directly by a Hamiltonian evolution. This leads to a set of diagrammatic rules analogous to [21].
We finally arrive at the quantum disk amplitudes of JT gravity in terms of a constrained non-compact SL+(2,R)
gauge theory. The chapter ends with an extension to non-trivial topologies after [37], by inserting suitable op-
erational defects in the bulk. In the gauge theory, these are equivalent to insertions of suitably normalized
characters of SL(2,R).
Some technical details about the representation theory of SL(2,R) and SL+(2,R) are averted to appendix A,
by combining the analysis of [24] [22] and [40]. The main text should be followable without it. Whenever
necessary, I make reference to the appropriate equations.

Chapter 3 comes to the core essence of this thesis, where we define EOW branes and obtain quantum am-
plitudes for them directly in the gauge theoretical description of the previous chapter. For the most part, this
chapter tights together loose ends in the existing literature into a coherent story, which is in this light part of
the original work.
The chapter ends with a section 3.5 on the physical application of EOW branes in the Hawking evaporation
process. This part is a review of [34] and can be skipped according to the reader’s wishes. The rest of the thesis
does not depend on this discussion.

The first parts of chapter 4 extend the discussion of bosonic JT gravity to N = 1 JT SUGRA using the per-
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spectives of [39] and [40]. The former starts from the superspace action Eq 7 and pins down the holographic
description in terms of the super-conformal symmetry breaking pattern described by the super-Schwarzian ac-
tion at the holographic 1|1-dimensional boundary.
A recent paper by Fan et al. [40] extends the group theoretical quantization of bosonic JT gravity to the gauge
formulation of N = 1 JT SUGRA in terms of an osp(1|2,R) gauge algebra. The precise exponentiation is
again found to be the subsemisupergroup OSp+(1|2,R). The representation theory on both this superalgebra
and supergroup is averted to the appendix B.

Near section 4.6 of this chapter, we start to investigate EOW branes in superspace. We proceed by generalizing
the geodesic equations to superspace and come to the same description of [46]. We also define an appropriate
covariant derivative acting on both vectors and covectors in superspace. From this follows the definition of the
extrinsic curvature in superspace Eq 8, which allows us to write down the action of EOW branes in JT SUGRA
Eq 9.
Using an extension of the quantization perspective developed in chapter 3, we deduce the quantum amplitudes
of these objects involving various topologies.

The thesis ends with a summary and conclusion in chapter 5. In addition, we make some preliminary steps to
write down an action for EOW branes in N = 2 JT SUGRA. These results are however still preliminary and
involve recent research in the group.

To settle conventions, throughout in this thesis, I will use the east-coast signature of the metric tensor (´,+, . . . ,+),
appropriate in applications of quantum gravity. The transition to Euclidean signature proceeds by Wick rotat-
ing t Ñ ´iτ . Euclidean signature actions are usually denoted with I , while Lorentzian signature actions are
denoted S. They are connected under S = iI and LE = ´L . For more on these conventions, see D.4.



Chapter 1

Introduction to JT gravity

"Simplicity is the ultimate sophistication."

Da Vinci, Leonardo

The majority of modern approaches to Quantum Gravity are being developed in the framework of the Anti-de
Sitter/Conformal Field duality, often called AdS/CFT [4] for short, which is a concrete realization of a holo-
graphic universe envisioned by ’t Hooft and Susskind [47][6]. In the example of Jackiw-Teitelboim (JT) gravity
especially, the generic holographic dictionary is used to introduce operators in the putative nearly CFT, dual to
a massive scalar fields propagating in the bulk of a nearlyAdS2 spacetime. The generic holographic dictionary
is used to introduce operators in the putative nearly CFT, dual to a massive scalar field propagating in the bulk
of a nearly AdS2 spacetime. One of the main achievement of JT gravity is that the correlators of these dual
operators, including quantum gravity effects, do not only make sense on a perturbative level, but are exactly
solvable at all orders [21]. This is a tremendous achievement in a gravitational context, where an appropriate
definition of a gravitational path integral, and subsequent UV divergences are notoriously difficult [48]. JT
gravity furthermore allows to find clues to the doubly non-perturbative gravitational origin of the underlying
discreteness in the dual quantum mechanical theory [30] [29].

Most approaches to holography are in a sense still semi-classical in nature. In ordinary QFT, one fixes the
spacetime manifold beforehand, and path-integrates over the fields defined on it. This manifold is usually the
flat Minkowksi spacetime. In the discussion of Hawking radiation, the manifold is taken to be a black hole
instead. This ultimately leads to an observer dependent definition of the vacuum state. Here too, one fixes the
manifold and performs regular QFT calculations on this background geometry.
In quantum gravity however, we must integrate over the geometry itself. This poses some immediate difficulties
since the Einstein-Hilbert action is not renormalizable and the Euclidean path integral is unbound from below.
More often than not, one cannot actually perform the path integral, and one must restrict to the different saddles
of the classical solutions instead.
To investigate the renormalizability of the action, one can perform a dimensional analysis. The metric tensor

1
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itself has no proper dimensions in the line element ds2 = gµνdx
µdxν . Since the Ricci scalar R consists of

second order derivatives of the metric, the (Euclidean) Einstein-Hilbert action

IEH = ´
1

16πGN

ż

dDx
?
gR (1.1)

has a coupling constant GN which scales as [GN ] = LengthD´2. This is consistent to yield a dimensionless
number in the exponents of the path integral. One can only hope for this action to be renormalizable1 if the
coupling constant is dimensionless. In particular for [GN ] ą 0, the theory is non-renormalizable. This imposes
the proper spacetime dimension of D = 2. This promises a fruitful avenue to work in a lower-dimensional
setting.

1.1 Pure gravity in D = 2

Pure gravity is described by the Einstein-Hilbert action without matter sources. In D = 2, this model exhibits
no explicit dynamics. Additionally coupling this model to matter imposes the matter stress tensor to vanish
Tmµν = 0, and no energy flows can exist.
More precisely, in D-dimensional general relativity, the Einstein equations are built from the Ricci tensor
Rµν = Rρµρν . Since the geometry is ultimately determined by the full Riemann tensor, the Einstein equations
can still yield interesting dynamical solutions for the metric. In D dimensions, the number of independent
components of the Riemann tensor Rµνρσ is [50]

CD =
1

12
D2(D2 ´ 1).

For D = 2, the full Riemann tensor is completely specified by one number, which can be taken to be the value
of the Ricci scalar R = gµνRµν . Thus, in this case, there are no additional degrees of freedom and the metric
solutions are entirely fixed by the value of the Ricci tensor2.
By contracting with the metric tensor, the correct parametrization of the Riemann tensor in terms of the Ricci
scalar is

Rµνρσ =
R

2
(gµρgνσ ´ gµσgνρ). (1.2)

This is indeed the only possible parametrization of Rµνρσ in D = 2 with the correct symmetry properties that
is built entirely from the Ricci scalar, and contracts to the latter after consecutive application of gµρgνσ. In par-
ticular, every two dimensional metric is a maximally symmetric solution. Contracting with gµρ consequently
yields the Ricci tensor:

Rµν =
R

2
gµν . (1.3)

1The fact that the coupling is in the denominator is subtle. Defining 2κ2 ” 16πGN , the Einstein-Hilbert term looks similar to a gauge action
1

4g2

ş

F 2. Expanding around flat space gµν = ηµν + hµν leads to S „ 1
2κ2

ş

dDx((Bh)2 + h(Bh)2 + . . . ). Rescaling h ” κh̃ leads to

S „ 1
2

ş

dDx((Bh̃)2 + κh̃(Bh̃)2 + . . . ). The first term is a kinetic term, while all higher order interaction terms have coupling proportional to κ.
These are indeed non-renormalizable for D ą 2 [49].

2Compare this with e.g. the vacuum solutions in D = 4, where for a vanishing Ricci tensor a whole range of solutions is possible. This
includes e.g. flat Minkowski space or the Schwarzschild black hole solution.
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The Einstein equations in terms of the Einstein tensor Gµν are therefore trivially satisfied for any choice of the
metric

Gµν = Rµν ´
1

2
gµνR ” 0. (1.4)

The latter equivalence sign "”" emphasizes that this equation has no dynamical solutions, and any choice of
metric automatically satisfies it. When coupling the theory to matter, the Einstein tensor imposes Tµν ” 0, and
the metric tensor plays the role of a Lagrange multiplier enforcing this constraint [51].
The Euclidean Einstein-Hilbert action in D = 2, extended with a Gibbons-Hawking-York (GHY) boundary
term

IEH = ´
1

16πGN

ż

d2x
?
gR ´

1

8πGN

¿

ds
?
hK (1.5)

is therefore invariant under continuous variations of the metric δgµν , which leads to the trivial Einstein equa-
tions. The GHY boundary term is needed a posteriori to make sense of the model variationally on non-compact
manifolds BM ‰ 0, and consists of the induced metric hab and the extrinsic curvature Kab (more precisely its
trace K = habKab) on the boundary surface. Invariance under variations of the metric implies that the action
itself should be a topological invariant. This is captured by the Gauss-Bonnet theorem in differential geometry,
which implies that the Euclidean Einstein-Hilbert action extended with the GHY boundary term, reduces to
the Euler characteristic χ on a Riemann surface:

χ =
1

4π

ż

d2x
?
gR+

1

2π

¿

ds
?
hK. (1.6)

This is a topological invariant χ = 2 ´ 2g ´ n, with g the genus of the manifold and n the number of bound-
aries. This action still has important applications in string theory as it weights the different topologies of the
2d string worldsheet.
Including a cosmological constant, and gauge fixing the metric under diffeomorphisms to the conformal gauge,
leads to an interesting Liouville gravity model. This model has an emergent Weyl-symmetry, and can be de-
scribed in terms of a single Liouville field φ. The dynamics of the latter are described in terms of the Liouville
action. The central charge of this effective field cancels the central charges of the possible matter systems and
the bc-ghost terms. Since the central charge describes the conformal anomaly, the vanishing of the total central
charge leads to a one-loop exact quantum Liouville theory of gravity coupled to matter. For more information
on this model, I highly recommend the review note [50] and references therein.

The first part of this chapter will be devoted to introducing the alternative model of 2d Jackiw-Teitelboim (JT)
gravity, which is seen to describe the near-horizon region of near-extremal black holes. I will also discuss
the classical solutions derived from the action. This will lead to a natural holographic description of this
gravity model in terms of an effective one-dimensional theory whose only degrees of freedom are located at
the asymptotic boundary. In a later stage, we will look at how to incorporate quantum effects onto the classical
energy spectrum in perturbation theory.
The physical implications of the JT model reviewed hereunder serve both as a review and motivation for the
rest of this thesis. On the other hand, the bulk text on the quantization of JT gravity in its first order formalism,
and the subsequent group theoretic description of EOW branes, starting from chapter 2 onward, can be read
independently. Readers who are already familiar with the JT gravity model may choose to skip this chapter
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and directly avert to the subsequent chapters.

1.2 The backreaction problem in AdS2/CFT1

When embedding a model of 1+1d gravity in the framework of holography, we are guided by the large amount
of experience developed since the original proposal by Maldacena in [4]. While most discussions on quantum
gravity are limited to first order perturbation theory due to the limited knowledge on how to compute correla-
tors in strongly coupled CFTs and path integrals in quantum gravity, 2D/1D holography provides a promising
framework to go beyond. This is largely because gravitons or gauge bosons in two dimensions have no dynam-
ical bulk degrees of freedom [23].
The AdS2/CFT1 correspondence however is still an enigmatic case to study finite energy excitations on both
sides of the conjecture. In general CFT, the energy-momentum tensor of any conformal field theory has a van-
ishing trace T µ

µ = 0 [52]. The conformal anomaly that appears when quantizing the theory only turns up in
even dimensions [25]. Since we consider 0+1 dimensions, the following conclusions are universal. For a tensor
with only one index, the vanishing of the trace of the stress tensor immediately implies that the Hamiltonian
itself also vanishes, and we are only able to describe the ground states or extremal states. This can also be
argued by dimensional analysis in the CFT [53][25]. Since we consider 0+1d, there is no volume to scale with,
and the density of states in the CFT can only take the form

ρ(E) = Aδ(E) +
B

E

to yield the correct dimensionality of 1/[Energy]. A and B are dimensionless constants. The latter needs to
vanish in a well-defined theory in the IR B ” 0. We again come to the conclusion that the vacuum is the only
allowed energy eigenstate in the 0+1d CFT.
On the 1+1d AdS2-side, Maldacena argued in [12] that the backreaction from any excitation is so strong that
it destroys the asymptotic AdS2-geometry, leaving only the zero energy or extremal states.
This should be resolved sinceAdS2 is perhaps the most interesting from the point of view of black hole physics.
The subsequent subsections will review the original argumentation by Maldacena, stating that it is not possible
to take the near-horizon limit of an extremal black hole, while simultaneously keeping the charge, energy and
temperature fixed.

1.2.1 Near-horizon region of near-extremal black holes

This subsection first motivates how AdS2 turns up in the near-horizon limit of near-extremal black holes in
D = 4. I will show this in the case of the electrically charged Reissner-Nördstrom (RN) black hole.
The RN black hole solution in 3+1d describes a black hole of mass M and charge Q, whose geometry is
characterized by

ds2 = ´f(r)dt2 +
dr2

f(r)
+ r2dΩ2

2, f(r) = 1 ´
2M

r
+
Q2

r2
. (1.7)
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This solution has two horizons r˘, located at the zeros of f(r); r˘ = M ˘
a

M2 ´Q2. These zeros identify
the null surfaces at constant radius. The Hawking temperature was derived explicitly in section D.3, see Eq
D.17. When Q =M , the two horizons coincide r+ = r´ =M and the Hawking temperature vanishes.
I will work out more explicitly the derivation given in [25] to identify the near-horizon near-extremal geometry.
For E ” M ´ Q ‰ 0, the near-extremal near-horizon limit is found by introducing a small excess ρ, in the
order of magnitude ρ „ O(E1/2), such that r = Q + Q2ρ. The positions of the horizon in the near-extremal
regime E « 0 Ø Q « M are:

r˘ =M ˘
a

M2 ´Q2 =M ˘
a

(M ´Q)(M +Q) « M ˘
?
2ME.

Reparameterizing to small ρ yields:

f(r) =
(r ´ r+)(r ´ r´)

r2
„

1

Q2
(Q+Q2ρ´M ´

?
2ME)(Q+Q2ρ´M +

?
2ME)

=
1

Q2
(´E +Q2ρ´

?
2ME)(´E +Q2ρ+

?
2ME)

=
1

Q2
(E2 +Q4ρ2 ´ 2EQ2ρ´ 2ME).

Since ρ „ O(E1/2), the second term in the last line scales as Q4ρ2 „ O(E), while the third term is already
2EQ2ρ „ O(E3/2). Neglecting terms higher order than O(E), the first and third term are seen to vanish, and
we can approximate the metric by:

ds2 « ´Q2

(
ρ2 ´

2E

Q3

)
dt2 +

Q2

ρ2 ´ 2E
Q3

dρ2 +Q2dΩ2
2. (1.8)

We can identify this as a black hole patch in the pure AdS2 b S2 geometry. Rescaling distances with Q´1, the
canonical form can be written as

ds2 = ´(ρ2 ´ ρ2h)dt
2 +

dρ2

ρ2 ´ ρ2h
+ dΩ2

2 (1.9)

, with the horizon ρh =
b

2E
Q3 at finite proper distance ρ = ρh. For extremal black holes E Ñ 0, the black

hole’s horizon is shifted to ρh Ñ 0, and the near-horizon geometry is the Poincaré patch of pure AdS2 b S2

with z = 1/ρ;

ds2 = ´ρ2dt2 +
dρ2

ρ2
+ dΩ2

2 =
´dt2 + dz2

z2
+ dΩ2

2. (1.10)

The main difference between the extremal and near-extremal near-horizon limits is that the near-horizon region
of an extremal black hole is infinitely long. This is seen explicitly for the distance towards the horizon at ρ = 0

for pure AdS2 coordinates, describing the near-horizon region the extremal black hole geometry with ρh = 0:

ds =

ż ρh dρ1

ρ1
= ln ρh Ñ ´8. (1.11)
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For nearly extremal black holes with non-zero ρh, the near-horizon region ρ « ρh can be identified with a
Rindler patch instead. In this case, we have ρ2 ´ ρ2h = (ρ´ ρh)(ρ+ ρh) = 2r̃ρh, with r̃ ” ρ´ ρh

ds2 = ´2r̃ρhdt
2 +

dr2

2r̃ρh
. (1.12)

Defining dx = dr
?
2ρh

?
r̃
, we can integrate x =

b

2r̃
ρh

, and write the metric in Rindler coordinates in terms of an
angular variable θ ” ρht:

ds2 = ´x2(ρhdt)
2 + dx2 ” ´x2dθ2 + dx2. (1.13)

Upon Wick rotating θ Ñ ´iθE to Euclidean signature, we arrive at the polar coordinates of the flat Euclidean
plane. The Hawking temperature can be deduced by demanding that the Euclidean manifold is regular near
the horizon. To avoid a conical singularity, a rotation in θ of 2π should correspond to a translation in it by
β = 1/T . By consistency, the temperature is therefore T = ρh

2π . For more information on this calculational
trick, I refer to section D.3 in the appendix.
Plugging in the explicit value ρh =

b

2E
Q3 , and E ” M ´ Q, this is indeed equivalent to the near-horizon

approximation of the exact value of Hawking temperature of a RN black hole Eq D.17:

T =
r+ ´ r´

4πr2+
=

2
a

M2 ´Q2

4πQ2
=

1

2π

d

2E

Q3
”
ρh
2π
. (1.14)

1.2.2 AdS2 as the low-energy limit of magnetically charged RN black holes

An insightful low-energy limit in the discussion of AdS2 backreaction is the near-horizon limit of the four-
dimensional magnetically charged RN black hole solution. I will use the conventions due to Maldacena [12],
and introduce two dimensionful parameters of energy, being the mass M of the black hole, and the Planck
mass Mp. The latter is related to the Planck length Lp = 1/Mp, which sets the scale of the Newton’s constant
in D = 4: GN = L2

p. These are the only dimensionful parameters in the theory.
One also introduces a dimensionless number Q, which is related to the magnetic charge of the black hole
„ Q/Lp, where Q is a dimensionless constant. The energy above extremality is given by

E =M ´
Q

Lp
. (1.15)

The full magnetically-charged 3+1d black hole solution is

ds2 = ´f(r)dt2 +
dr2

f(r)
+ r2dΩ2

2 (1.16)

, with

f(r) =
(r ´ r+)(r ´ r´)

r2
.

dΩ2
2 = dθ2+ sin2 θ dφ2 is the line-element of the two-sphere. The electromagnetic two form of a magnetically

charged black hole is F = Q sin θ dφ ^ dθ, where sin θ dφ ^ dθ is the volume form of the two-sphere.
The positions of the horizons r˘ are identical to Eq D.5, and can be expressed in terms of the energy above
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extremality:

r˘ = QLp + EL2
p ˘

b

2QEL3
p + E2L4

p. (1.17)

Therefore, the main difference between the electrically charged solution is the value of the electromagnetic
two form (which in the case of the electrically charged solution is described by Frt = Q

r2 ).
The BH entropy of this solution is related to the total surface area of the horizon A = 4πr2+. Together with the
general relation with the Hawking temperature Eq D.17, we have:

SBH =
A

4GN
=
πr2+
L2
p

, TH =
r+ ´ r´

4πr2+
. (1.18)

In the extremal case E ” 0, r+ = r´ = QLp, the Hawking temperature vanishes:

TH = 0. (1.19)

One considers the near-horizon region by introducing a length parameter z as:

z =
Q2L2

p

r ´ r+
(1.20)

, and zooming in towards r+ by taking LP Ñ 0, while keeping both z and Q fixed.

Figure 1.1: Maximally extended RN black hole
Penrose diagram. The black zigzag line rep-
resents the black hole singularity. The blue
shaded region represents the geodesically con-
tinued near-horizon AdS2-patch. The dashed
region is the patch covered by Poincaré coordi-
nates Eq 1.21. Figure taken from [15].

In the extremal case, f(r) can be rewritten in terms of z:

f(r) =
(r ´ r+)(r ´ r´)

r2
„

(r ´ r+)
2

r2+
=

1

Q2L2
p

Q4L4
p

z2
=
Q2L2

p

z2
.

The limit of Lp Ñ 0 (or equivalently Mp Ñ 8) is natural from the per-
spective of the uncertainty principle, where large energies imply small dis-
tance scales. The near-horizon region of the extremal solution is (dr =

´
Q2L2

p

z2 dz):

ds2 = L2
AdS

(
´dt+ dz2

z2
+ dΩ2

2

)
(1.21)

, where we have defined a characteristic scale LAdS ” QLp of the AdS-
spacetime. This is again a product space ofAdS2bS2 (see figure 1.1). I will
further neglect the two-sphere contribution. We should however remember
that every point on the Penrose diagram in fact represents a two-sphere. The
coordinates Eq 1.21 represent the Poincaré patch of the near-horizon AdS2
region. This geometry can be geodesically continued to global coordinates,
which cover the entire near-horizon region along the causal diamonds in
the RN solution. Note that one of the timelike boundaries is just outside of
the black hole horizon, while the other is just inside. The global metric of
AdS2 is given by [41]:

ds2 = 4
L2
AdS

sin2(2z)
(´dt2 + dz2) = ´4

L2
AdS

sin2(u´ v)
dudv (1.22)
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, where the range of the timelike coordinate is decompactified, while the spacelike coordinate covers a range of
0 ă z ă π/2. In the last equation, I introduced the ingoing and outgoing lightcone coordinates u = t+ z and
v = t ´ z respectively. This is conformally identical to a region of 1+1d Minkowksi space, confined within
two infinite timelike strips. Unlike higher dimensional AdSD (D ą 2) geometries, AdS2 has two boundaries.

1.2.3 The backreaction problem

Maldacena noted in [12] that the backreaction from any excitation in AdS2 is so strong that it destroys the
asymptoticAdS2-geometry. Close to extremality E „ 0, the energy-temperature relation becomes (combining
Eqs 1.17, 1.18):

TH =
1

2π

(
2

LpQ3
E

)1/2

+O(E3/2).

Therefore, near-extremality, the energy-temperature relation is:

E 9 2π2Q3T 2
HLp. (1.23)

This energy-temperature relation necessarily pushes the energy of the excitations down to zero E Ñ 0 in the
near-horizon limit LP Ñ 0, while keeping Q fixed.
These formulas were obtained in a semi-classical analysis of black hole thermodynamics. This description
must necessarily break down when the typical energy scale above extremality E is of the order of the energy
of the radiation quanta. This is of the order of the Hawking temperature TH itself. Using the previous formula,
this breakdown happens at an energy of:

Egap »
1

Q3Lp
. (1.24)

One expects this to be the rough magnitude of the energy gap above the ground states in the microscopic
spectrum of the black hole [15]. Although this argument is rather heuristic, string theory calculations [54]
show that this is indeed of the order of the lowest-lying excitations. The near-horizon limit pushes the gap to
infinity Egap Ñ 8, and the only accessible states are the ground states E = 0. We can try to consider more
general limits that are not constrained to zero temperature and zero excitation energy.

Lp Ñ 0 with E,Q fixed

From the near-extremal energy-temperature relation Eq 1.23, this limit is particularly distributing, since the
Hawking temperature would have to diverge TH Ñ 8 in order for the energy E and Q to remain constant
in near-horizon limit Lp Ñ 0. From the general temperature expression Eq D.17, an infinite temperature
implies a microscopic dimensional black hole, with the horizon getting within Planckian distance towards the
singularity. In this regime, the general relativistic description of these relations breaks down. This is intrinsic
to the discussion of 1+1d AdS2 geometries, where the only natural length scale of the theory comes from the
Planck scale itself. For higher (p ą 0) dimensional AdS p-branes, the energy-temperature relations extracted
from the near-extremal solutions can be scaled with the volume of the regulated transverse space Vp instead.
The energy-temperature relation is then of the form E „ VpT

p+1
H , which has the correct units of energy. This
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does not involve the Planckian distance that sets the scale of the near-horizon regime, and the limit Lp Ñ 0 is
non-singular for both energy and temperature.

Lp Ñ 0 with TH , Q fixed

We may want to consider the near-horizon limit where both Q and TH are fixed to a non-zero constant. The
latter implies that the horizons do not coincide exactly. We can show that the near-horizon geometry is in-
dependent of TH at the classical level, and is still described by a patch of AdS2 spacetime. For a non-zero
temperature TH = r+´r´

4πr2+
, the near-horizon geometry (r „ QLp) is determined by:

f(r) =
(r ´ r+)(r ´ r´)

r2
=

(r ´ r+)(r ´ r+ + 4πr2+TH)

r2
„
Q2L2

p

z2
(1 + 4πzTH). (1.25)

Explicitly, the line element becomes for dr = ´
Q2L2

p

z2 dz:

ds2 =
Q2L2

p

z2

(
´(1 + 4πzTH)dt

2 +
dz2

1 + 4πzTH

)
+Q2L2

pdΩ
2
2. (1.26)

By a coordinate transformation3, this metric can be brought to the Poincaré patch of AdS2 in the transformed
coordinates, independent of TH . Therefore, we have the same qualitative features of the extremal TH = 0

regime. From the energy-temperature relation Eq 1.23 with fixed Q and TH , the near-horizon geometry pushes
the energy excitations to zero, while the energy gap Eq 1.24 is pushed towards infinity.

Lp Ñ 0, Q Ñ 8 with E, TH fixed

A different approach is to keep the energy and temperature fixed in the near-extremal energy-temperature rela-
tion Eq 1.23, while scaling the charge with the Planck lengthQ „ L

´1/3
p . In the near-horizon limit Lp Ñ 0, the

charge consequently diverges Q Ñ 8. It was argued in [55] that this limit is equivalent to a free supergravity
limit of the AdS2/CFT1 correspondence. Therefore all backreaction on matter is again suppressed.

The limits above demonstrate that pure AdS2, as the near-horizon limit of near-extremal black holes, does
not allow for finite energy excitations. On the CFT1-side, we have seen that the only consistent description
is in terms of ground states, or extremal states. This is one of the headaches in formulating an interesting
AdS2/CFT1 correspondence. Resolving the tensions around it has been one of the key successes of JT gravity,
which I will introduce in the following.

3The explicit coordinate transformation is t1 ˘ z1 = tanh
(
πTH

(
t˘ 1

4πTH
ln 1

1+4πTHz

))
[12].
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1.3 2d dilaton-gravity models of AdS2-backreaction

We look at a dimensional reduction of the Einstein-Maxwell action in D = 4 in terms of a generic 2d dilaton-
gravity model. This will allow us to consider the general backreaction of matter in terms of the dynamics of a
dilaton field. This ultimately leads to the conclusion that the presence of non-zero matter sources destroys the
asymptotic AdS2-geometry. This discussion is an explicit derivation of the argumentation in [41].

1.3.1 Dimensional reduction of the magnetically charged EM action

The Einstein-Maxwell (EM) action can be expressed in terms of the dimensional factor Lp (with G(4)
N = L2

p)
as:

SEM =
1

16πL2
p

ż

d4x
?

´g

(
R ´

L2
p

4
FµνF

µν

)
. (1.27)

Of course, this action has various families of variational solutions. We can restrict to a specific class of static,
spherically symmetric solutions with magnetic charge Q, by imposing a spherically symmetric ansatz on the
metric tensor:

ds2 = hmn(r, t)dx
mdxn + e2ψ(r,t)dΩ2

2 (i, j P tx1 = t, x2 = ru), F = Q sin θdφ^ dθ. (1.28)

dΩ2
2 = dθ2 + sin2 θ dφ2 is the line element of the two-sphere. Inserting this ansatz in the EM action yields

an action that is specified completely in terms of the dynamical variables hij(r, t) and ψ(r, t). The latter will
be related to the dilaton field. hij can be interpreted as the induced metric on the two-dimensional manifold
spanning t and r.
In general, for any warped product space ds2 = ds2(1) + e2ψds2(2), where we denote x(1) = xm and x(2) = xµ,
the total Ricci tensor R can be decomposed in terms of the Ricci tensors on both product spaces R(1) and R(2)

[56]:

R = R(1) + e´2ψ(r,t)R(2) ´ 2k∇2
(1)ψ(r, t) ´ k(k + 1)gmn∇(1)mψ(r, t)∇(1)nψ(r, t). (1.29)

k is the dimension of the ds(2)-space. In the case of Eq 1.28, this number is k = 2, and the Ricci curvature of
the two-sphere is known to be R(2) = 2.
Exploiting the fact that the electromagnetic two-form only has non-vanishing angular components, leads to a
simple parameterization of the Maxwell term in the total action:

´
L2
p

4
FµνF

µν = ´
L2
p

4
FµνFαβg

µαgνβ = ´
L2
p

2
Q2 sin2 θ

e´4ψ

sin2 θ
= ´

L2
p

2
Q2e´4ψ. (1.30)

Thus, the dependence on the angular variables is trivial in the action. The metric determinant is decomposed
into

?
´g =

?
´he2ψ sin θ. Plugging Eqs 1.29 and 1.30 into the EM action Eq 1.27, and integrating over the
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angular part yields:

SEM =
1

16πL2
p

ż

d4x
?

´g

(
R ´

L2
p

4
FµνF

µν

)

=
4π

16πL2
p

ż

d2x
?

´he2ψ

(
R(1) + 2e´2ψ ´ 4∇2

(1)ψ ´ 6hmn∇(1)mψ∇(1)nψ ´
L2
p

2
Q2e´4ψ

)
.

Next, we partially integrate the Laplacian term and use the metric postulate ∇(1)hmn = 0, to obtain:

SEM =
1

4L2
p

ż

d2x
?

´he2ψ

(
R(1) + 2e´2ψ + 8hmn∇(1)mψ∇(1)nψ ´ 6hmn∇(1)nψ∇(1)mψ ´

L2
p

2
Q2e´4ψ

)

=
1

4L2
p

ż

d2x
?

´he2ψ

(
R(1) + 2e´2ψ + 2hmn∇(1)mψ∇(1)nψ ´

L2
p

2
Q2e´4ψ

)
.

(1.31)
We have assumed that the corresponding boundary terms at flat spacelike infinity vanish. Note that this cal-
culation was simplified for the magnetically charged solution F = Q sin θdφ ^ dθ, where the quadratic form
FµνF

µν could be expressed completely in terms of the spherical part of the metric. For electrically charged
solutions, with non-vanishing Frt = Q

r2 , the quadratic form has a non-trivial dependence on the induced metric
hij .
Replacing covariant derivatives on a scalar field with ordinary derivatives, and defining a new field Φ ” e2ψ,
we obtain the following two-dimensional theory:

S =
1

4L2
p

ż

dtdr
?

´h

(
e2ψ(R(1) + 2hmnBmψBnψ) + 2 ´

L2
p

2
Q2e´2ψ

)

=
1

4G
(4)
N

ż

dtdr
?

´h

(
ΦR(1) +

hmnBmΦBnΦ

2Φ
+ 2 ´

L2
p

2Φ
Q2

)
(1.32)

=
1

16πG
(2)
N

ż

dtdr
?

´h

(
ΦR(1) +

hmnBmΦBnΦ

2Φ
+ 2 ´

L2
p

2Φ
Q2

)
. (1.33)

In the second line, I have rewritten the explicit dependence on the Newton’s constant G(4)
N = L2

p. In the four-
dimensional theory, this has dimensions of Length2. We can introduce the derived two-dimensional Newton’s
constant G(4)

N = 4πG
(2)
N . In order for the action to be dimensionless, the dilaton field Φ has dimension of

Length2.
This action is a special instance of a dimensionally reduced dilaton-gravity model

S =
1

16πG
(2)
N

ż

dtdr
?

´h

(
ΦR(1) +

hmnBmΦBnΦ

2Φ
´ U(Φ)

)
(1.34)

, paramterized in terms of a dimensionless dilaton potential U(Φ) = ´2 +
L2

p

2ΦQ
2. The classical solution

with constant value of the dilaton describes a geometry with constant sphere area according to the ansatz Eq
1.28. Its classical solution is the rigid AdS2 b S2 geometry. Allowing the dilaton to fluctuate represents the
deviations away from this extremal regime. Therefore, the dilaton model captures the near-horizon regime of
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near-extremal black holes discussed earlier.

1.3.2 General dilaton-gravity models

General dilaton-gravity models are parameterized by a set of dilaton potentials Ui(Φ) (i = 1, 2, 3):

S =
1

16πG
(2)
N

ż

d2x
?

´h (U1(Φ)R+ U2(Φ)h
µνBµΦBνΦ ´ U3(Φ)) . (1.35)

hµν is the two-dimensional metric on t, and r. We can redefine the dilaton field in order to remove the
dependence on U1(Φ): Φ Ñ U1(Φ)

´1. We have assumed U 1
1(Φ) ‰ 0 for every value of Φ, such that this

function is indeed invertible.
In string theory, the dilaton field is often present in the action as a prefactor of the Ricci scalar. In dimensions
greater than two, a local Weyl rescaling gµν Ñ g1

µν = e2ωgµν for some scalar field ω, allows one in general to
transition from the string frame to the Einstein frame, where this prefactor drops in the action ΦR Ñ R.
In 2d however, the ΦR term is an invariant combination under Weyl rescalings. Instead, this combination
transforms as [25]:

?
´hR Ñ

?
´h(R ´ 2∇2ω). (1.36)

The Laplace-Beltrami operator ∇2 is the covariantized Laplacian and can be rewritten by using the identity
∇µV

µ = 1?
´h

Bµ(
?

´hV µ) on any vector field4 V µ. Using this identity, the Laplace-Beltrami operator is
compactly written as:

∇2ω = ∇µ∇µω = ∇µBµω =
1

?
´h

Bµ(
?

´hhµνBνω).

To remove the redundancy of U2(Φ), we can specify

ω(x) = ´
1

2

ż Φ(x)

U2(Φ
1)dΦ1.

Under the Weyl rescaling g Ñ e2ωgµν , the transformation law Eq 1.36 is explicitly:

?
´hΦR Ñ

?
´hΦR ´ 2

?
´hΦ∇2ω =

?
´hΦR ´ 2ΦBµ(h

µν
?

´hBνω)

=
?

´hΦR+ΦBµ(h
µν

?
´hU2(Φ)BνΦ)

»
?

´hΦR ´
?

´hU2(Φ)h
µνBµΦBνΦ

In the last line, we have performed a partial integration in the second term under the integral. This term exactly
cancels the kinetic term of the dilaton field in Eq 1.35. In the same way, we can set the kinetic term in the
dimensionally reduced EM action Eq 1.34 to zero. Note that we are neglecting a possible contribution of a
Weyl anomaly, appropriate in the classical treatment.

4This equality follows from a combination of the definition ∇µV µ = BµV µ + Γµ
µαV

α, together with Γµ
µν = 1?

´h

(
1
2

?
´hhµαBνhµα

)
=

1?
´h

Bν
?

´h. The last identity follows from the derivative on the metric determinant δ
?

´g = 1
2

?
´ggαβBνgαβ .
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The most general 2d dilaton-gravity model is therefore:

S =
1

16πG
(2)
N

ż

d2x
?

´h (ΦR ´ U(Φ)) . (1.37)

In accordance with the tradition of string theory, the scalar field multiplying the Einstein-Hilbert term is called
the dilaton field.

1.3.3 Holographic renormalization

We have argued that the dimensional reduction of the EM action leads to the class of dilaton-gravity models
Eq 1.34, where we can remove the kinetic term associated with the dilaton field without loss of generality

S =
1

16πG
(2)
N

ż

d2x
?

´h (ΦR ´ U(Φ)) , U(Φ) = ´2 +
L2
p

2Φ
Q2. (1.38)

It turns out that there exists a large degree of universality, whereby the near-horizon near-extremal geometry of
a wide array of gravity theories with more general matter content are described by general 2d dilaton-gravity
models with a unique dilaton potential, see e.g. [57][58].
We can couple this action to some a priori specified matter action Sm, and describe the general backreaction of
theAdS2 geometry on the presence of these sources in terms of the dynamics of the dilaton field. We have seen
earlier that taking the near-horizon limit of nearly extremal RN black holes is incompatible with the presence
of finite energy-excitations. We can argue that the presence of finite energy excitations destroys the asymptotic
AdS2-geometry in terms of the blowing-up of the dilaton.
First of all, it is convenient to parameterize the 2d metric in the conformal gauge:

ds2 = ´e2ω(u,v)dudv (1.39)

, where u = t + z and v = t ´ z are the ingoing and outgoing null coordinates. It is always possible to
locally impose this gauge on every 2d metric, since we can always find local coordinate transformations of the
two spacetime coordinates that remove two of the three independent metric coordinates. We will see that the
equations of motion of the dilaton field, obtained by varying the dilaton-gravity action Eq 1.38 in the presence
some additional matter action Sm with respect to the uu-metric component guu, yields (c.f. Eq 1.63):

´e2ωBu(e
´2ωBuΦ) 9 Tmuu. (1.40)

Tmuu is the usual definition of the matter stress tensor Tmuu = ´ 2?
g
δSm

δguu . This equation is independent of the
specific form of the dilaton potential U(Φ).
We can embed this model in the class of asymptotic AdS2-geometries describing the near-horizon geometry
of the near-extremal black holes. This implies that near the asymptotic boundaries, the metric should take the
form of the global AdS2-spacetime Eq 1.22; e2ω Ñ 1

sin2(u´v) . There are two boundaries where the metric
diverges; at u = v (z = 0) and at u = v + π (z = π/2). We can specify the u direction and integrate along the
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line v = 0. The metric should therefore take the asymptotic form:

e2ω Ñ
1

u2
(u Ñ 0), e2ω Ñ

1

(u´ π)2
(u Ñ π).

Integrating the equation of motion Eq 1.40 along v = 0 yields:

ż π

0
due´2ω T+

uu9 ´ e´2ωBuΦ|uÑ0 + e´2ωBuΦ|uÑπ.

Since the LHS is non-zero for non-zero matter sources, and the metric takes the above asymptotic behaviour, it
follows that the dilaton field should diverge at least linearly near at least one of the two boundaries: Φ|uÑ0 „ 1

u

and Φ|uÑπ „ 1
u´π . Therefore, the geometry cannot be asymptotic to pure AdS2 when Tuu is non-zero.

Presence of matter sources destroy the asymptotic regions by the diverging dilaton profile.

1.3.4 Universal description of nearly extremal black holes

We have argued that the dynamics of a large class of near-extremal black holes are captured by dilaton-gravity
models Eq 1.37;

S =
1

16πG
(2)
N

ż

d2x
?

´h (ΦR ´ U(Φ)) . (1.41)

For constant sphere area, the dilaton is constant Φ(x) ” Φ0, as can be seen from the metric ansatz Eq 1.28. To
consider excitations above extremality, we take this constant to be large and consider small fluctuations around
it: Φ(x) = Φ0 + Φ̃(x), with Φ̃ ! Φ0. Here, Φ̃ represents the deviations away from the extremal limit into the
near-extremal regime. From the previous section, we expect the deformations to blow up like Φ̃ „ 1

z in the
presence of matter as we approach the boundary z Ñ 0. We therefore consider a cutoff region at z = ε Ñ 0

where Φ̃(x) = φr(x)
ε is large, but still bounded φr(x)

ε ! Φ0 to remain in the near-extremal region. Expanding
this action to first order in Φ̃ yields:

S =
1

16πG
(2)
N

(
ż

d2x
?

´h(Φ0R ´ U(Φ0)) +

ż

d2x
?

´hΦ̃(R ´ U 1(Φ0)

)
+ . . . (1.42)

The first term contains an IR divergent integral (divergence for large distances) over the total 2d spacetime
volume

´
U(Φ0)

16πG
(2)
N

ż

d2x
?

´h.

We regulate this integral by discarding it entirely. Demanding the spacetime to be AdS2 away from the bound-
ary, independent of the value of Φ̃(x), we require that variation of δΦ̃ yields:

R ´ U 1(Φ0) = ´
2

L2
´ U 1(Φ0) ” 0

ðñ U 1(Φ0) = ´
2

L2
.
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The geometry is set to describe patches of AdS2 by setting the Ricci tensor equal to RAdSD
= ´

´(D´1)D
L2

[59], which in D = 2 is indeed R = ´ 2
L2 . L is the characteristic curvature scale of the AdS solutions. In

this case, the first derivative of the dilaton potential takes the role of a cosmological constant term in the ac-
tion. Of course, one requires U 1(Φ0) ă 0 in order to describe negatively curved solutions, which is the case
for e.g. the nearly extremal RN solution Eq 1.34, whose dilaton potential has negative derivatives throughout
U 1(Φ0) = ´

L2
p

2Φ2
0
Q2. In this case, the AdS curvature scale is related to the parent space quantities as L = 2Φ0

LpQ
.

In the following, we will set this curvature scale to unity L ” 1.

To leading order, the universal dynamics of near-horizon near-extremal black holes inside the cutoff AdS2
manifold are therefore described by:

S =
Φ0

16πG
(2)
N

ż

d2x
?

´hR+
1

16πG
(2)
N

ż

d2x
?

´hΦ̃(R+ 2) + . . . (1.43)

The first term is associated to the topological Einstein-Hilbert term Eq 1.6, which in Euclidean signature
reduces to the Euler characteristic χ. This term describes the near-horizon dynamics of the leading extremal
black hole regime. The second term describes the deviations away from this extremal limit.
The total area of the near-extremal black hole in the coordinates Eq 1.28 is related to Φ(x) = Φ0+Φ̃(x), which
takes the role of the radius squared. In the regime Φ̃(x) ! Φ0, we consider the extremal Bekenstein-Hawking
entropy associated to Φ0. In the parent four-dimensional spacetime with Newton’s constant G(4)

N , we use the
general description Eq D.20:

S0 =
A

4G
(4)
N

=
4πΦ0

4G
(4)
N

. (1.44)

In terms of the reduced 2d Newton’s constant G(4)
N = 4πG

(2)
N , this can be rewritten as:

S0 =
Φ0

4G
(2)
N

. (1.45)

Therefore, from the Bekenstein-Hawking prescription, Φ0 is interpreted as the area of the extremal surface in
the 2d perspective. This is the prefactor that appears in front of the Euler characteristic of the total action,
which weights the different topologies of the 2d spacetime.
The second term in the action describing the deviations away from extremality, is called the Jackiw-Teitelboim
action and captures the universal dynamics of the near-horizon region of a large class of near-extremal black
holes inside the boundary cutoff region.

1.4 Classical equations of motion of JT gravity

The most general model of 2d dilaton-gravity is

S =
1

16πGN

ż

d2x
?

´g (ΦR ´ U(Φ)) (1.46)
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, where gµν is the metric on the the 1+1d spacetime. The dilaton coupling to the 2d Ricci tensor parameterizes
a spacetime dependent effective Newton’s coupling constant

Geff(x) =
GN
Φ(x)

. (1.47)

This is in general a dimensionless quantity, as it should be for a 2d pure gravity theory. In most applications to
2d quantum gravity, we are not a priori interested in the parent higher-dimensional theory which sets the scale
of the Newton’s constant GN and the dilaton Φ to Length2. Therefore, one often rescales both GN and Φ to
dimensionless numbers, while keeping the total action dimensionless. Unlike higher dimensions, the effective
coupling constant is dimensionless, and therefore does not set the scale of new physics.

The Jackiw-Teitelboim gravity (JT) model is a model of 2d dilaton-gravity described by a specific choice of
the dilaton potential: U(Φ) = ´2Φ.

SJT [Φ, g] =
1

16πGN

ż
M
d2x

?
´gΦ(R+ 2) + 2

¿

BM

?
´hΦb(K ´ 1)

 . (1.48)

This model was first written down by Jackiw [13] and Teitelboim [14] in the ’80s, and later used as a toy model
in 2015 [15] to model AdS2 backreaction. The latter noted that the UV geometry regulates the backreaction
on matter and allows for finite energy states.
The second term is the GHY boundary term, described by the extrinsic curvatureK and induced metric h along
the boundary BM of the spacetime. The total action is often equipped with an additional matter term Sm[φ, g],
and a pure gravity topological term, represented by a constant shift in the dilaton field Φ Ñ Φ0+Φ. All matter
fields are collectively written as φ, where we assume that the matter action does not explicitly depend on the
dilaton. This will regularize the bulk description in terms of pure AdS2, regardless of the presence of matter.
The total action, including the boundary contributions, is then:

S[Φ, φ, g] =
Φ0

16πGN

ż
M

?
´gR+ 2

¿

BM

?
´hK

+ SJT [Φ, g] + Sm[φ, g]. (1.49)

This is exactly the action that describes the leading order corrections away from AdS2 in the near-horizon
geometry of nearly extremal black holes. Note that the prefactor in front of the Euler characteristic Eq 1.6 in
the (Euclidean) Einstein-Hilbert term is exactly the extremal entropy S0 Eq 1.45.
In the following, we will look at the classical solutions, and the subsequent boundary dynamics.

1.4.1 Variation of the dilaton field

The classical solutions with respect to variation of the dilaton, fixes the manifold to a patch of AdS2:

δΦSJT [Φ, g] = 0 ðñ R = ´2 . (1.50)
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This specifies the metric completely since all manifolds in 1+1d are completely symmetric and are fixed in
terms of a single Ricci scalar. This does not allow for dynamical gravitons. Resorting to light-cone coordinates
u = t + z, v = t ´ z, we have argued previously that any metric can locally be brought to the conformal
gauge ds2 = ´e2ω(u,v)dudv. The function ω(u, v) parameterizes the Ricci tensor as R = 8e´2ωBuBvω, as can
readily be checked. The dilaton equation of motion Eq 1.50 thus reduces to the Liouville equation for the field
ω:

4BuBvω + e2ω = 0. (1.51)

In Poincaré coordinates, its solution is:

e2ω =
1

z2
=

4

(u´ v)2
ðñ ds2 = ´

4dudv

(u´ v)2
. (1.52)

Since z ą 0 in generic AdS2, the patch is limit to u ą v. This is the near-horizon geometry of extremal black
holes (c.f. Eq 1.10), which have a horizon at the end of an infinite throat that lies at an infinite proper distance
as elaborated around Eq 1.11. This horizon is located at the null surface where the metric vanishes, which
happens at u´v Ñ 8 (u Ñ +8, or v Ñ ´8). Compactifying the ranges in u and v, the diagonal boundaries
of the Penrose diagram describe the extremal black holes horizons (see figure 1.2). The boundary where the
metric blows up is conveniently located at z = 0.

Figure 1.2: Different coordinate frames of
AdS2 and their relation with the Poincaré
patch. The bold face coordinates represent the
global AdS patch, while the capital coordinates
represent the black hole frame. Figure taken
from [25].

The most general solution to Eq 1.51 is a conformal transformation of the
Poincaré patch Eq 1.52 in terms of chiral functions U(u) and V (v) that
preserve the conformal gauge:

ds2 = ´
4BuU(u)BvV (v)dudv

(U(u) ´ V (v))2
= ´

4dUdV

(U ´ V )2
. (1.53)

This allows to reach the global AdS2 frame defined in Eq 1.22:

U(u) = tan(u), V (v) = tan(v) (1.54)

, which becomes

ds2 = ´
4

sin2(u´ v)
dudv. (1.55)

These coordinate transformations are chosen such that the regions where
the metric blows up are the timelike boundaries at z = 0 and z =

π/2.

Analogously to how the Rindler transformations Eqs D.12 define a ther-
mal patch in flat Minkowksi space, we can find a thermal frame in AdS2,
defined by the coordinate transformations

U(u) =
β

π
tanh

(
π

β
u

)
, V (v) =

β

π
tanh

(
π

β
v

)
(1.56)
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, leading to the metric of the black hole patch:

ds2 = ´
π2

β2
4

sinh2(πβ (u´ v))
dudv. (1.57)

Since |tanh|ă 1, the black hole patch is contained within the Poincaré patch (that stretches to infinity). The
horizons are situated at the locus where the metric vanishes at u´ v Ñ 8. This now happens at a finite proper
distance

ş+8 dz
sinh 2π

β
z

ă 8. We may wish to bring the horizons to finite coordinate distance by compactifying

the z = (u´ v)/2 coordinate. Thereto, one introduces a radial coordinate

r = rh coth(rhz) (1.58)

with rh = 2π
β . Using (r2 ´ r2h) = r2h(coth2 2π

β z ´ 1) = r2h
sinh2 2π

β
z

and dr = r2hdz
sinh2 2π

β
z
, this allows us to rewrite

the metric as:

ds2 = ´(r2 ´ r2h)dt
2 +

dr2

r2 ´ r2h
. (1.59)

Note that this is exactly the same metric that we have encountered in the near-horizon region of a nearly
extremal black hole Eq 1.9. In particular, we can repeat the argument given around Eq 1.13, to conclude that
the temperature can be determined by demanding regularity of the solutions near the horizon:

T =
rh
2π
. (1.60)

This ensures that β = 2π/rh can indeed be identified with an inverse temperature. The same discussion allows
us to identify this temperature with the temperature of the parent nearly-extremal black hole in the near-horizon
limit.
By rewriting the black hole patch in terms of the proper distance5 dρ = 2π

β
dz

sinh2(π

β
(u´v))

, we obtain the Rindler
patch:

ds2 = ´
4π2

β2
sinh2 ρ dt2 + dρ2. (1.61)

A convenient summary of the different coordinate patches and their embeddings within the Poincaré patch is
given in figure 1.2 [25].

1.4.2 Variation of the metric

Variation of the total bulk JT action Eq 1.48 with respect to the metric leads to the equations of motion govern-
ing the backreaction of the dilaton in response to the matter sources. Let us do this calculation explicitly. We
use the identity6 δ

?
´g = ´1

2gµνδg
µν , and the Palatini identity7 δRλµσν = ∇σ(δΓ

λ
µν)´∇ν(δΓ

λ
µσ). Summing

over λ ” σ, the variation of the Ricci tensor Rµν = Rρµρν is conveniently δRµν = ∇σδΓ
σ
µν ´ ∇νΓ

σ
σµ. Varia-

5Integration yields ρ = Arcsinh
(
1/ sinh 2πz

β

)
6This is an application of the matrix identity Tr logM = log detM , which can be realized in the eigenbasis of M . Variation yields

Tr(M´1δM) = δ det M
det M . Using the chain rule for the square root in δ

?
´g = ´ 1

2
?

´g
δg, together with the variation of gµρgρν = δνµ yields the

desired identity.
7This is easiest to deduce via variation of the definition [∇σ ,∇ν ]V λ = Rλ

µσνV
µ. Using δ∇νV λ = δΓλ

ναV
α and the fact that the variation

of the torsion-free connection is a vector field with [∇σ , δ∇ν ] = ∇σ(δ∇ν), yields the desired Palatini identity.
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tion of the Ricci scalar R = Rµνg
µν is therefore δR = Rµνδg

µν +∇ρ(g
µνδΓρµν ´ gµρδΓσσµ). To proceed, we

use the key identity δΓσµν = 1
2g
σλ(∇νδgµλ+∇µδgνλ ´∇λδgµν). The derivation is straightforward, but rather

long so I skip it for brevity, see e.g. [60] [59]. Variation of the Ricci tensor is therefore explicitly:

δRµνg
µν = ∇ρ

[
gµνδΓρµν ´ gµρδΓννµ

]
= ∇ρ

[
gµν

gρλ

2
(∇νδgµλ +∇µδgνλ ´ ∇λδgµν) ´ gµρ

gνλ

2
(∇νδgµλ +∇µδgνλ ´ ∇λδgµν)

]
= ∇ρ

[
gµνgρλ∇µδgνλ ´ gµνgρλ∇λδgµν

]
.

Plugged into the bulk JT action, we obtain the following variation:

δgSJT =
1

16πGN

ż

M
d2x Φ

[?
´g (δRµνg

µν +Rµνδg
µν) + δ

?
´g (R+ 2)

]
=

1

16πGN

ż

M
d2x

?
´g

[
Φ∇ρ

(
gµνgρλ∇µδgνλ ´ gµνgρλ∇λδgµν

)
+Φ

(
Rµν ´

1

2
gµνR ´ gµν

)
δgµν

]
.

We have argued that for any 2d metric, the vacuum Einstein equations are trivially satisfied. Therefore we set
Rµν ´ 1

2gµνR ” 0. Additionally performing a double partial integration in the first term, and using the metric
postulate ∇µgνλ = 0 yields

δgSJT =
1

16πGN

ż

M
d2x

?
´g
[
δgνλ∇ν∇λΦ ´ δgµνg

µν∇2Φ ´ Φgµνδg
µν
]
+ boundary terms.

Of course, Stokes theorem produces boundary terms that do not automatically vanish for a non-constant metric
and a non-compact spacetime. A thorough analysis in appendix A of [36] deals with these boundary terms,
and shows explicitly that they are precisely compensated by variation of the GHY boundary term in the total
action Eq 1.48. Relabeling indices, and using8 gµαδg

αν = ´gανδgµα, yields:

δgSJT = ´
1

16πGN

ż

M
d2x

?
´g
[
∇µ∇νΦ ´ gµν∇2Φ+ Φgµν

]
δgµν +((((((((

boundary terms.

Adding a possible matter sector Sm[φ, g] that does not explicitly couple to the dilaton, incorporates a matter
stress tensor in the total variation Tmµν = ´ 2?

´g
δSm

δgµν . The equations of motion of the dilaton in terms of the
non-vanishing matter sources are:

δ(SJT [Φ, g] + Sm[φ, g]) = 0 ðñ ∇µ∇νΦ ´ gµν∇2Φ+ Φgµν = ´8πGNT
m
µν . (1.62)

These equations can be written more tractable in the conformal gauge ds2 = ´e2ω(u,v)dudv. Straight-
forward calculations show that the only non-vanishing Chritoffel connections are Γuuu = 2Buω(u, v) and
Γvvv = 2Bvω(u, v).
The uu (resp. vv)-components are readily worked out:

´8πGNT
m
uu = ∇uBuΦ = BuBuΦ ´ ΓuuuBuΦ = BuBuΦ ´ 2BuωBuΦ = e2ωBu(e

´2ωBuΦ).

8Taking the variation of gµαgαν = δνµ.
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The uv-component involves the non-vanishing metric contributions:

´8πGNT
m
uv = ∇uBvΦ ´ guvg

αβ∇αBβΦ+ guvΦ = BuBvΦ ´ 2guvg
uvBuBvΦ+ guvΦ

= ´BuBvΦ ´
1

2
e2ωΦ.

Summarizing, the non-vanishing dilaton equations of motion in the conformal gauge are

´e2ωBu(e
´2ωBuΦ) = 8πGNT

m
uu, (1.63)

´e2ωBv(e
´2ωBvΦ) = 8πGNT

m
vv , (1.64)

2BuBvΦ+ e2ωΦ = 16πGNT
m
uv. (1.65)

Therefore, we note that all backreaction on the presence of matter is contained within the dilaton equations of
motion, and not in the spacetime geometry itself.
We conclude that the model describes pure AdS2 in the bulk, while it gets adjusted in the UV by a non-trivial
dilaton profile. This in turn regulates the gravitational backreaction. Note that although the dilaton and metric
are now dynamical, they still have no local excitations and are completely determined by the equations of
motion in terms of an influx of matter.

Vacuum solutions

Let us start by solving the above equations of motion without matter sources: Tuu = Tvv = Tuv ” 0. In the
Poincaré patch, the metric solution is given by Eq 1.52:

e2ω =
1

z2
=

4

(u´ v)2
.

We can integrate the constraints Eqs 1.63, 1.64, to obtain an ansatz that is imposed on the equation of motion
Eq 1.65. Integrating the former yields directly:

Bu(e
´2ωBuΦ) = Bu

(
(u´ v)2

4
BuΦ

)
= 0 Ñ Φ(u, v) =

c1(v)

u´ v
+ c2(v) =

c1
1(v) + c1

2(v)u

u´ v
,

Bv(e
´2ωBvΦ) = Bv

(
(u´ v)2

4
BvΦ

)
= 0 Ñ Φ(u, v) =

c3(u)

u´ v
+ c4(u) =

c1
3(u) + c1

4(u)v

u´ v
,

in terms of chiral functions c1
1(v), c

1
2(v), c

1
3(u), c

1
4(u), playing the role of integration constants. We note that a

proper ansatz for Φ(u, v) is Φ(u, v) = M(u,v)
u´v , where M(u, v) is at most linear in both u and v. In other words,

Φ(u, v) =
a+ b u+ c v + d uv

u´ v
.

Plugging this ansatz into the equation of motion Eq 1.65, we obtain the consistency requirement:

0 ” 2BuBvΦ+ e2ωΦ = 2
b´ c

(u´ v)2
ðñ b = c.
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The most general Poincaré vacuum solution can conveniently be described in terms of three integration con-
stants:

Φ(u, v) =
a+ b(u+ v) ´ µuv

u´ v
. (1.66)

To obtain the correct dimensions for the dilaton, b is dimensionless, while a has dimensions of length, and µ
has dimensions of energy9. Since the Poincaré vacuum Eq 1.52 is PSL(2,R) invariant, we can perform such a
transformation and set b ” 0. This brings the Poincaré vacuum solution to its canonical form:

Φ(u, v) =
a´ µuv

u´ v
. (1.67)

Using the chain rule in the dilaton equations of motion, the most general metric solution is again a conformal
transformation of the Poincaré frame in terms of chiral functions U(u), V (v) Eq 1.53. Therefore, the most
general solutions to the equations of motion are the conformal transformations of Eq 1.66:

e2ω =
4BuU(u)BvV (v)

(U(u) ´ V (v))2
, Φ(u, v) =

a´ µ U(u)V (v)

U(u) ´ V (v)
. (1.68)

Note that u, v are the proper coordinates, while U, V are the Poincaré embedding coordinates. For µ = 0, the
entire AdS2 manifold is covered by transitioning to the global frame via Eq 1.54:

e2ω =
4

sin2(u´ v)
, Φ = a

cosu cos v
sin(u´ v)

. (1.69)

Solutions with matter

Since the dilaton potential for JT gravity is linear in Φ, the equations of motion remain tractable in the presence
of non-zero matter sources. We will mainly focus on conformal matter, which is characterised by the vanishing
trace condition T µ

µ = 0. In the conformal gauge, the only non-vanishing metric components are of mixed
signature, which therefore implies10 Tuv = 0. Energy conservation ∇µT

µν = 0 restricts these stress tensor
components further to chiral functions11 Tuu(u) and Tvv(v). Writing Φ = M(u,v)

U´V , and using the general AdS2
Poincaré coordinates e2ω = 4/(U ´ V )2, it can be checked that the UU (resp V V )-constraint equations Eq
1.63 (1.64) can be written as:

BUBUM(U, V ) = ´(U ´ V )8πGNTUU ,

BV BVM(U, V ) = ´(U ´ V )8πGNTV V .
(1.70)

When TUU = TV V = 0, we know that the general solution is a bilinear polynomial in U and V ; M0(U, V ) =

a + bU + cV + d UV , where we can set b = c = 0 by means of a PSL(2,R) transformation. The general
solution can be written as [15]:

M(U, V ) =M0(U, V ) ´ IU (U, V ) ´ IV (U, V ) (1.71)

9We will see how this constant can indeed be interpreted as an energy variable.
10Tµ

µ = 0 ðñ Tu
u + T v

v = 0 ðñ 2guvTuv = 0 ðñ Tuv = 0
11∇µTµν = 0 yields for the u (resp. v) component ∇uTuu = 0 ðñ ∇uTvv = 0 ðñ BuTvv = 0. Therefore Tvv(u, v) ” Tvv(v).
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, where

IU (U, V ) = 8πGN

ż +8

U
ds(s´ V )(s´ U)TUU (s),

IV (U, V ) = 8πGN

ż V

´8

ds(s´ V )(s´ U)TV V (s).

(1.72)

We can check explicitly that these integral equations indeed satisfy Eq 1.70:

BUBUIU (U, V ) = 8πGNBU

[
´(U ´ V )(U ´ U)TUU (U) +

ż +8

U
ds(s´ V )(´BU (U))TUU (s)

]
= 8πGN (U ´ V )TUU (U),

BV BV IV (U, V ) = 8πGNBV

[
(V ´ V )(V ´ U)TV V (V ) +

ż V

´8

ds(s´ U)(´BV (V ))TV V (s)

]
= 8πGN (U ´ V )TV V (V ).

Furthermore, the cross-term vanishes

BUBUIV (U, V ) = ´8πGNBU

ż V

´8

ds(s´ V )TV V (s) = 0

, and the solution indeed satisfies Eq 1.70:

BUBUM(u, v) = ´8πGN (U ´ V )TUU .

The general solution of the dilaton field in the presence of matter is therefore

Φ(u, v) =
a

U ´ V

(
1 ´

µ

a
UV ´

1

a
(I+(u, v) + I´(u, v)

)
. (1.73)

If we start with the Poincaré vacuum solution with µ = 0, the vacuum solution Eq 1.67 interpolates between
pureAdS2 at large z and a UV modification near the boundary z „ 0, where the dilaton diverges. The physical
interpretation is more transparent when looking at the parent higher-dimensional theory. We have seen how the
near-horizon geometry of a large class of near-extremal black holes is described by the JT gravity model, by
shifting Φ Ñ Φ0+Φ̃. Since the near-horizon region is AdS2, there are no curvature singularities. On the other
hand, taking this Φ0 ” 1, the geometry has a singularity where the total dilaton field Φ = 1+Φ̃ vanishes. Since
the dilaton describes the transverse area of the higher-dimensional black hole, this is a curvature singularity of
the parent higher-dimensional spacetime, where the Ricci tensor of the two-sphere blows up R = 1/Φ Ñ 8.
In terms of the 2d target space, this is manifested in the blowing up of the effective Newton’s coupling constant
Eq 1.47.
In the case under consideration (µ = 0), the dilaton

Φ(u, v) = 1 +
a

u´ v

goes to zero in the complementary Poincaré patch, which is the mirroring image z Ñ ´z̃. Indeed, the locus of
Φ = 1 ´ a/2z̃ ” 0 has a non-vanishing solution for z̃ ą 0. The singularity is displayed as a red line in figure
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1.3, together with the Poincaré patch in green.

Figure 1.3: Embedding of the Poincaré
patch and black hole patch after cre-
ation of black hole, where z increases
to the left. After the influx of the energy
pulse, a naked singularity emerges in
the Poincaré patch. Taken from [15].

We can throw in a pulse of energy from the boundary along the U -null line
TV V (V ) = Eδ(V ). By application of Eq 1.73, the only non-vanishing com-
ponent is IV (V ) = 8πGN EUV θ(V ), and the solution is:

Φ(U, V ) = 1 +
a´ 8πGNEθ(V )UV

U ´ V
” 1 +

a´ µθ(V )UV

U ´ V
(1.74)

, where µ ” 8πGNE. Starting with µ = 0 at times V ă 0, the influx
of matter from the boundary creates a vacuum solution with non-vanishing
µ = 8πGNE. In Poincaré coordinates, a singularity is found at the zeros of
the dilaton (U + 1

µ)(V ´ 1
µ) = 1

µ(a ´ 1
µ). The subsequent computations were

performed explicitly in [15].
Qualitatively, the singularity remains timelike when µ ă 1/a and a second sin-
gularity appears at the boundary z = 0. For µ ą 1/a, the singularity becomes
spacelike. In terms of the energy, there is a timelike singularity for energies be-
low some critical value E ă Ec = 1/8πGNa, and a spacelike singularity for
E ą Ec = 1/8πGNa.
We can interpret the influx of matter from the boundary as the creation of a black
hole, which produces a naked singularity in the Poincaré patch for E ą Ec

at t =
a

a/µ (c.f. Eq 1.77). This singularity is always shielded in the black

hole frame U(u) =
b

a
µ tanh

b

µ
au, V (v) =

b

a
µ tanh

b

µ
av, which explicitly

yields:

Φ(u, v) = 1 +
a´ µU(u)V (v)

U(u) ´ V (v)
= 1 +

a´ a tanh
a

µ/au tanh
a

µ/av
a

a/µ(tanh
a

µ/au´ tanh
a

µ/av)

= 1 +
?
aµ

coth
a

µ/av coth
a

µ/au´ 1

coth
a

µ/av ´ coth
a

µ/au

= 1 +
?
aµ coth

(
a

µ/au´
a

µ/av
)
= 1 +

?
aµ coth(

a

µ/a2z)

= 1 +
a

2
r

, with r defined in Eq 1.58. Within the Poincaré patch, these coordinates are restricted to U, V ă
a

a/µ. In
retrospect, this is the physical frame that describes the exterior of the black hole created after the pulse, and
shields the naked singularity. The Hawking temperature near the horizon is given by Eq 1.60, yielding:

β

π
=

c

a

µ
ðñ T =

1

π

c

µ

a
=

1

π

c

8πGNE

a
. (1.75)
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Black hole shockwave

We can generalize this black hole solution to include the effect of an additional infalling matter pulse, where
we start from a black hole solution with massM = E at time t = t1, and send in another massless particle with
δE = h̄ω1. This increases the black hole mass to Ẽ = E+δω1. Writing

a

a/µ =
a

2C/E with C := a
16πGN

,
this modifies the dilaton profile and the black hole patch coordinates u Ñ ũ. At time t = t1, there should be a
continuous transition of the latter:

c

2C

E
tanh

(
c

E

2C
(u´ t1)

)
=

c

2C

Ẽ
tanh

d

Ẽ

2C
(ũ´ t1)

 . (1.76)

Figure 1.4: Creation of a new black
hole frame in an original black hole af-
ter the injection of a pulse with energy
δE = h̄ω1. Figure taken from [16]

This will cover a smaller triangular black hole area in the original black hole
frame (see figure 1.4), where the shift u´ ũ at late times is equal to [16]:

u´ ũ =
h̄ω1

8

c

2C

E3
e2

a

E/2C(u´t1).

This represents a classical black hole shockwave since the outgoing signals in the
original black hole frame along the null line u = t2 (t2 ą t1), reach the boundary

at a later coordinate time ũ = t̃2 given by δt2 = h̄ω1

8

b

2C
E3 e2

a

E/2C(t2´t1), with

a maximal Lyapunov exponent λL =
a

2E/C = 2πT , saturating the bound on
chaos [61].

Backreaction in AdS2

The general vacuum solution with matter

Φ = 1 +
a´ µ uv

u´ v

has a strong coupling singularity for Φ = 0 at

t = ˘

d

a+ 2z + µz2

µ
(1.77)

, which reaches the boundary z = 0 at t = ˘
a

a/µ. Thus the singularity remains shielded in the black hole

frame U(u) =
b

a
µ tanh

b

µ
au for which |U(u)| ď

b

a
µ (respectively |V (v)| ď

b

a
µ ). On the other hand,

when a = 0, no region on the boundary remains and the past and future singularities meet at t = 0.

Similarly, for any pulse thrown into the a = 0, µ = 0 solution, there is an instant divergence in the dilaton
profile at the boundary, where now suddenly µ ą 0 and Φ Ñ 8. We should therefore always keep a ą 0 and
allow for solutions where the dilaton always diverges at the boundary to avoid a runaway backreaction in the
dilaton profile. This is again a manifestation that AdS2 does not allow for non-zero energy excitations, and
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one needs to consider UV modifications near the boundary by introducing a diverging dilaton profile.

1.5 Conformal symmetry breaking in nearly AdS2

Figure 1.5: The Euclidean disk, parameterized in
terms of a radial coordinate and the Poincaré time
(denoted here by t) -or the black hole time τ coordi-
nates. Figure taken from [17].

We have seen pure AdS2 to be inconsistent with the existence of finite
energy excitations above the AdS2 vacuum. Furthermore, pure gravity
in D = 2 is topological and does not allow for dynamical gravitons.
In the putative dual CFT1, the backreaction problem is translated to
the vanishing of the trace, which for a one-component tensor implies
the vanishing of the Hamiltonian. In a 1d CFT, the conformal symme-
tries are all the reparametrizations at the timelike asymptotic boundary
t Ñ t̃(t). This reparametrization symmetry is spontaneously broken by
the presence of the asymptotic boundary down to PSL(2,R). The lat-
ter is the isometry group of the AdS2 metric, which we can treat as a
gauge redundancy. The Nambu-Goldstone modes of this spontaneous
symmetry breaking are all the Fourier modes of this reparametrization
symmetry and describe the zero modes of the associated spontaneous
symmetry breaking pattern. Since the bulk manifold is topological away
from the boundary, all remaining dynamics are encoded by the bound-
ary reparametrization modes, which we can interpret as boundary gravi-
tons.

In section 1.3.4, we have argued that the leading order corrections away from the extremal pure AdS2-regime
are described by the presence of a dilaton field, which blows up near the boundary. This leading order correc-
tion deforms the manifold at the boundary from pure AdS2 to nearly (N)AdS2. In a sense, all backreaction
to matter is encoded by the dynamics of the dilaton field, and the different spacetimes are characterized by
different renormalized dilaton fields. The backreaction of the dilaton also controls the shape of the bound-
ary curve completely. This correction breaks the conformal symmetry at the boundary explicitly down to the
PSL(2,R) subgroup. The boundary reparametrization modes are weighted by an action under this explicit
symmetry breaking, which is still invariant under the PSL(2,R) isometry subgroup. The simplest candidate
that is PSL(2,R) invariant and contains the least amount of derivatives, is the 0+1d Schwarzian boundary ac-
tion. This section argues how this action turns up directly from the total Euclidean JT action [17] and at the
level of the equations of motion [16].

1.5.1 Spontaneous symmetry breaking in pure AdS2

We will henceforth denote the Poincaré lightcone coordinates with capital letters U(u), V (v), where u = t+ z

and v = t ´ z denote the proper coordinates. In terms of the temporal F and spatial Z coordinate, they are
defined as U = F + Z, V = F ´ Z. In what follows, we will consider the Euclidean variant of the AdS2
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Figure 1.6: The hyperbolic disc, and an arbitrary cutoff geometry near the boundary. All these geometries have the same topology and share the same leading
order Einstein-Hilbert action. Figure taken from [17].

spacetime, by Wick rotating the Lorentzian time coordinate FLorentz Ñ ´iFEuclid. The Euclidean version of
AdS2 is the Poincaré upper half plane, which can be compactified to the 2d hyperbolic disk by adding a point
at infinity, see figure 1.5. Both the Poincaré and black hole coordinates describe the same patch in Euclidean
signature:

ds2 =
dF 2 + dZ2

Z2
, ds2 = dρ2 +

4π2

β2
sinh2 ρdτ2 (1.78)

, where now the black hole time coordinate τ is periodic in β, while the Euclidean Poincaré coordinate covers
´8 ă F ă +8.
The low-energy contribution of the Wick rotated total action Eq 1.49 is the Euclidean Einstein-Hilbert action,
which describes pure AdS2:

I[g] = ´
Φ0

16πGN

ż
M

?
´gR+ 2

¿

BM

?
´hK

 . (1.79)

In Euclidean signature, the Gauss-Bonnet theorem dictates that this action can be identified with the topolog-
ical Euler characteristic I[g] = ´S0χ. The prefactor S0 = Φ0

4G describes the leading extremal entropy of the
ambient higher-dimensional black hole (c.f. Eq 1.45). Since the action depends only on the topology of the
manifold M, there is a huge degree of degeneracy. In particular, the lowest energy states have a disk-shaped
topology (with χ = 2 ´ 2g ´ n = 1). Therefore, all deformations of the disk share the same action.

We imagine that we cut off the hyperbolic disk along some boundary curve (F (τ), Z(τ)), below which the IR
theory is described byAdS2. τ is the β-periodic Euclidean boundary time coordinate that is well-defined in the
UV and parameterizes the asymptotic boundary curve. In order to compare the different geometries, we need
to gauge-fix their asymptotic behaviour. To proceed, we move the boundary slightly inwards z = u´v

2 „ ε,
and choose to describe the different cutoff geometries by fixing the effective metric along the boundary curve
gbdry = gττ = 1

ε2 . This implies that the boundary curves have large proper length as ε Ñ 0:

ż

ds =

ż β

0

dτ

ε
=
β

ε
Ñ 8.
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This fixes the asymptotic length of the boundary curves, but leaves the freedom for reparametrizations with

1

ε2
= gττ =

F 1(τ)2 + Z 1(τ)2

Z2(τ)
. (1.80)

This in turn controls the shape of the boundary curveZ ” ε
a

F 1(τ)2 + Z 1(τ)2 „ εF 1(τ)+O(ε). To first order,
all boundary curves are described by a single function F (t), whose Fourier modes are the boundary gravitons,
which are generated by the asymptotic symmetries of AdS2: ζF BF = ε(τ), ζZBZ = Zε1(τ), corresponding to
shifts in F (τ) = τ + ε(τ). Since the Euler characteristic only depends on the topology of the disk, all cutoff
spaces of the hyperbolic disk share the same action. The infinite asymptotic reparametrization modes are all
the zero-modes of this degeneracy.
There is still a redundancy in the description since the EuclideanAdS2-manifold is invariant under the isometry
group SO(2, 1) » SL(2,R)/Z2 ” PSL(2,R). This is the same isometry group of Lorentzian AdS2. It is a
projective group that relates the representation matrices with minus itself, and acts on the reparametrization
modes along the boundary as a Möbius transformation:

F (τ) Ñ
aF (τ) + b

cF (τ) + d
, ad´ bc = 1. (1.81)

We can see this by writing the Euclidean Poincaré plane in terms of the complex coordinate w = F + iZ and
its conjugate:

ds2 =
dwdw

(=w)2
= ´4

dwdw

(w ´ w)2

, where the PSL(2,R) symmetry acts as12 w Ñ aw+b
cw+d , with ad´ bc = 1. The transformation rule for F along

the boundary curve follows directly by noting that Z is subleading in ε. The different cutoff spaces are simply
translated and rotated in the hyperbolic geometry under this subgroup, and do not correspond to new cutoff
geometries. We should therefore simply mod the group of all reparametrization symmetries by this underlying
isometry subgroup. Thus, the physical asymptotic symmetries of the Einstein-Hilbert term are spontaneously
broken down to equivalence classes under PSL(2,R).

1.5.2 Explicit symmetry breaking in NAdS2

The Einstein-Hilbert action is only capable of describing the extremal and ground state entropy. Its topological
nature is translated in a full conformal reparametrization symmetry at the asymptotic boundary.
The leading-order correction in the universal action Eq 1.49 breaks this reparametrization symmetry explicitly
and associates with every cutoff disk a unique action up to an identification of isometry related PSL(2,R)
cutoff disk geometries. The true vacuum symmetry is broken explicitly down to PSL(2,R), and is no longer
degenerate. We have a situation in mind where the very near-horizon region of the parent extremal black hole
enjoys a full reparametrization symmetry, which is broken explicitly by moving away from the horizon.
The action weighting the different cutoff surfaces should effectively be one-dimensional and should depend
only on the asymptotic reparametrization modes of the boundary curve. Furthermore, it should still be invariant

12Explicitly, we work out dw Ñ a dw
cw+d

´ aw+b
(cw+d)2

cdw = dw
(cw+d)2

since ad ´ bc = 1, and analogously for w. Furthermore, it acts on =w as

(w ´ w) Ñ aw+b
cw+d

´ aw+b
cw+d

= w´w
(cw+d)(cw+d)

. This leaves ds2 = ´4 dwdw
(w´w)2

invariant.
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under the PSL(2,R) isometry subgroup. The simplest such action is the Schwarzian boundary action:

S „

ż

dτtF (τ), τu, with tF, τu ”
F3

F 1
´

3

2

(
F 2

F 1

)2

=

(
F 2

F 1

)1

´
1

2

(
F 2

F 1

)2

. (1.82)

To see how this effective action emerges from the Euclidean Jackiw-Teitelboim model, we need to fix the
boundary conditions of the dilaton and the metric. We again choose to regularize the asymptotic boundary
curves to a fixed length gττ = 1

ε2 . We have also seen that the metric equations of motion impose the dilaton
to blow up near the boundary as Φ „ 1

z . This regulates the backreaction of matter completely in terms of a
diverging dilaton profile. We choose to parameterize the asymptotic behaviour of dilaton near ε „ 0 in terms
of a regularized dilaton field φr(τ):

Φ =
φr(τ)

2ε
. (1.83)

This regularized dilaton field completely determines the different UV modifications to pure AdS2. Note that
we cut off the space at 1

ε ! Φ0, in order to remain in the near-extremal regime.
The Euclidean Jackiw-Teitelboim action, equipped with a GHY boundary term is:

IJT [Φ, g] = ´
1

16πGN

ż
M
d2x

?
gΦ(R+ 2) + 2

¿

BM

?
hΦ(K ´ 1)

 . (1.84)

The equation of motion of the dilaton immediately sets the on-shell bulk term to zero (R + 2 = 0). This is a
clear manifestation that the bulk is topological, and all dynamics are encoded at the asymptotic boundary. Using
the asymptotic behaviour of the metric and dilaton field reduces the total JT action to an effective boundary
description:

IJT [Φ, g] Ñ ´
1

16πGN

¿

BM

dτ

ε2
φr(τ)(K ´ 1). (1.85)

To calculate the extrinsic curvature, we parameterize the tangent and normal vectors along the boundary curve
(F (τ), Z(τ)) as Tµ = (F 1(τ), Z 1(τ)), respectively nµ = 1

Z(τ)
a

(F 1(τ))2+(Z1(τ))2
(Z 1(τ),´F 1(τ)). Using the

hyperbolic metric, these are indeed seen to be orthogonal nµTµ = 0. Furthermore, nµ is properly normalized
nµn

µ = 1. The extrinsic curvature along the boundary curve is defined as [42]:

K =
TµT ν∇µnν
gµνTµT ν

(1.86)

, where gµν is the metric of the hyperbolic disk and Tµ act as pullback vectors along the boundary curve. Note
that the standard definition of the extrinsic curvature K = gµν∇µnν reduces to the latter by replacing the
metric by projectors on directions orthogonal to nµ:

K = gµν∇µnν = (gµν ´ nµnν)∇µnν ”
TµT ν

T 2
∇µnν .

This follows from the normalization constraint nµnµ = 1. The non-vanishing Christoffel connections of the
hyperbolic metric are ΓFFZ = ΓZZZ = ´ 1

Z and ΓZFF = 1
Z . The normalization gµνTµT ν is simply:

gµνT
µT ν =

F 12 + Z 12

Z2
. (1.87)
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The derivative along the asymptotic time coordinate τ is taken from the Poincaré coordinates via the chain
rule; df(τ)

dF = f 1(τ)
F 1(τ) , df(τ)dZ = f 1(τ)

Z1(τ) . Using the definition of the extrinsic curvature, we eventually obtain [42]
[25]:

K =
F 1(F 12 + Z 12 + ZZ2) ´ ZZ 1F 2

(F 12 + Z 12)3/2
. (1.88)

Expanding the extrinsic curvature along the curve (F (τ), εF 1(τ)), the leading order correction is captured
precisely by the Schwarzian derivative defined in Eq 1.82:

K = 1 + ε2tF, τu +O(ε4). (1.89)

Inserted in Eq 1.85, the JT gravity model indeed reduces to an effective one-dimensional boundary action of
the reparametrization modes:

ISchw[Φ, g] = ´
1

16πGN

ż

dτφr(τ)tF, τu (1.90)

This is the Schwarzian boundary action that captures entirely the holographic description of bulk JT gravity.
Unlike the novel example of AdS/CFT concerning an equivalence between a type IIB superstring theory on
AdS5bS5 and an SU(N) SUSY Yang-Mills theory inD = 4, this is an example of holography where the dual
description is obtained by integrating out the bulk degrees of freedom, leading to a dual theory that actually
describes the remaining degrees of freedom that live on the boundary.
It is a generic statement that for holographic dualities where this property holds, one obtains a boundary action
in terms of effective boundary fields, by integrating out the bulk fields. These effective boundary fields are con-
strained only by a predefined choice of asymptotic boundary conditions. Inside the path integral, the integral
over the bulk fields can be seen as preparing an operator insertion in the remaining boundary path theory. In
all other examples of holography, most notably Maldacena’s version of AdS/CFT [4], the dual theory should
instead be considered everywhere, all at once.

The Schwarzian action explicitly breaks the degenerate vacua and associates with the Nambu Goldstone modes
a non-zero action. Of course, the solutions associated to this action should correspond to the solutions deter-
mined from the bulk JT action. In particular, the equations of motion for the dilaton obtained by variation of
the metric, should be recovered from the boundary action by variation with respect to the reparametrization
modes; hence motivating the nomenclature boundary gravitons. Variation of the Schwarzian derivative yields:

δtF (τ), τu =
(δF )3

F 1
´

F3

(F 1)2
(δF )1 ´ 3

F 2

F 1

(
(δF )2

F 1
´

F 2

(F 1)2
(δF )1

)
.

Successive partial integration yields:

φr(u)δtF, τu „

[
´

(
φr(τ)

F 1

)3

+

(
φr(τ)

F3

(F 1)2

)1

´ 3

(
φr(τ)

F 2

(F 1)2

)2

´ 3

(
φr(τ)

(F 2)2

(F 1)3

)1
]
δF

= ´

(
1

F 1

(
(F 1φr)

1

F 1

)1)1

δF.
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This is readily integrated in terms of three integration constants a, b, µ:

φr(τ) =
a+ bF (τ) ´ µF (τ)2

F 1(τ)
. (1.91)

Dividing both sides by ε, this is the analogue of the dilaton solution Eq 1.66 at the boundary curve (F (τ), Z(τ) =
εF 1(τ)) to leading order:

Φ(τ) „
φr(τ)

ε
=
a+ b(U + V ) ´ µUV

Z(τ)
(1.92)

, with (U + V )/2 = F , (U ´ V )/2 = Z, and dilaton profile Φ „ φr/ε. To leading order, we also have
U(τ) = V (τ) ” F (τ).

It might seem odd at first to have an interpretation of gravitons in terms of reparametrization modes, when
general relativity is fundamentally a theory of diffeomorphism invariance. While it is true that GR is locally
diffeomorphism invariant, it is not invariant under diffeomorphisms that reach the boundary. The local diffs
can be interpreted as gauge redundancies that do not have associated conserved charges, while symmetries
that reach the boundary are true symmetries of the system13. In the case of the latter, it is understood that
states are mapped to different states by symmetries that reach the boundary. This is already present in classical
GR, where the bulk Hamiltonian vanishes and the true energy is encoded completely in terms of an ADM
Hamiltonian at the boundary [62].
In most practical applications, we take the renormalized field to be constant φr(τ) ” a. The constant a now
determines the different UV completions of the theory. The Schwarzian boundary action Eq 1.90 becomes:

IJT [Φ, g] = ´C

ż

dτtF, τu , C ”
a

16πGN
. (1.93)

The parameter C ” a
16πGN

is the effective 1d coupling constant. Note that unlike the bulk JT Newton’s
constant, this effective coupling constant has the proper dimension of Length. From dimensional analysis, this
signals quantum effects might become important in the UV, although we will see that most quantum effects are
tamed beyond one-loop order. The classical solutions are simplified to

δtF, τu „ ´

(
1

F 1

(
F 2

F 1

)1)1

δF (1.94)

= ´
tF, tu1

F 1
δF.

At the classical saddle, the Schwarzian equation of motion becomes:

d

dt
tF, τu ” 0. (1.95)

We will see how this can be related to the notion of energy conservation in the next section.

13Diffs on a scalar density along a vector field ζµ act with a Lie derivative. On the gravitational Lagrangian δζ(
?
gL ) = Lζ(

?
gL ) = Bµ(L ζµ)

[62]. Inserted in the action, the diffs only act on the boundary
ş

M δζ(
?
gL ) =

ş

BM dxµζµL .
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Symmetries of the Schwarzian action

The Schwarzian action has the desired properties of the symmetry breaking pattern. More precisely, it is
PSL(2,R) invariant; that is two functions F and G related by a Möbius transformation G = aF+b

cF+d have the
same associated action tF, τu = tG, τu. Conversely, any two functions with the same Schwarzian action are
associated by a PSL(2,R) transformation. This is easily seen from the composition law [25]:

tF (G(τ)), τu = tG(τ), τu +G1(τ)2tF (G), Gu (1.96)

, which tells us that tF,Gu = 0 when tF, τu = tG, τu. The solution to the latter is in general a Möbius trans-
formation, since we know that F (G) = aG+b

cG+d with ad ´ bc = 1 is a solution. Since tF (G), Gu = 0 is a third
order differential equation which requires three integration constants, this is indeed the most general solution.
This implies that two cutoff geometries have the same associated action iff they are related by a hyperbolic
isometry PSL(2,R).

To interpret the symmetries of the action in terms of conserved charges, we need to look at the real-time
Lorentzian rotation. This is obtained by Wick-rotating the Euclidean geometry back to Lorentzian signature
tEuclid Ñ itLorentz , FEuclid Ñ iFLorentz . The Schwarzian transforms as LEuclid Ñ ´LLorentz , while the
action transforms as I Ñ ´iS. This is the correct interpretation from the general discussion on the Euclidean
path integral in section D.4. From the chain rule, it indeed follows that the Euclidean Schwarzian derivative
transforms to the Lorentzian Schwarzian derivative as tF, τu Ñ ´tF, tu. Including the measure factor dτ , the
Lorentzian Schwarzian action has the same form as its Euclidean counterpart,

S = iI = ´C

ż

dttF (t), tu. (1.97)

The PSL(2,R) transformations act on the Lorentzian Poincaré time as:

F (t) Ñ
aF (t) + b

cF (t) + d
, ad´ bc = 1. (1.98)

This is a global symmetry of the Lorentzian action. The infinitesimal transformations determine the Noether
charges. More precisely, PSL(2,R) is generated by three zero modes ln = ´Fn+1BF for n = ´1, 0,+1 [52],
that act as

F (t) Ñ F (t) + εnlnF (t). (1.99)

They are found to span the sl(2,R) Lie algebra [lm, ln] = (m´ n)ln+m, and act on the configuration space as
respectively F Ñ F ´ ε´1, F Ñ (1 ´ ε0)F , and F Ñ F ´ ε2F

2. These transformations combine to a finite
Möbius transformation.
The PSL(2,R) transformations act infinitesimally on the Schwarzian action as δS » C

ş

tF,tu1

F 1 δF . For each
generator, there exists a conserved charge determined by the action on the configuration space that leaves the
action invariant. This is the content of the Noether theorem:

0 ”

ż

tF, tu1

F 1
δnF „

ż

d

dt
Qn. (1.100)
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Taking δ´F = ε, δ0F = εF , δ+F = εF 2, it is straightforward to check that the time derivative of the
following charges satisfies the requirement Eq 1.100:

Q´ = C

(
F3

F 12
´
F 22

F 13

)
,

Q0 = C

(
F3F

F 12
´
FF 22

F 13
´
F 2

F 1

)
,

Q+ = C

(
F3F 2

F 12
´
F 2F 22

F 13
´ 2

FF 2

F 1
+ 2F 1

)
.

(1.101)

These PSL(2,R) diffeomorphisms do not generate a new cutoff geometry. As elaborated earlier, they move the
same geometry around in AdS2 space. We should therefore not include them as pseudo-Goldstone modes, but
treat them as a gauge symmetry instead. Gauge symmetries have in general zero associated Noether charges
[63], and we should impose this constraint on the charges above. However, the coordinate transformation
F = eω (appropriate for Lorentzian finite temperature computations) shows that [17]:

Q´ = Ce´ω

(
ω3

ω12
´
ω22

ω13
+
ω2

ω1

)
,

Q0 = C

(
ω3

ω12
´
ω22

ω13
´ ω1

)
,

Q+ = Ceω
(
ω3

ω12
´
ω22

ω13
´
ω2

ω1

)
.

(1.102)

As a consequence, a solution with non-zero ω1 cannot have zero charges. However, real-time AdS2 describes
a two sided thermofield double (TFD) state. This is a maximally entangled state between two causally discon-
nected universes. The PSL(2,R) isometry acts on the entire thermofield double state, such that the total charge
across the two patches should only be zero. Focusing on one state, the charge can be any predefined value.
The only constraint is that the charges on either side should be equal and opposite: QaL = −QaR. Treating
PSL(2,R) as a gauge symmetry implies that the pseudo-Goldstone modes associated to these charges cannot
be further excited. Their excitation is set by amount determined by their predefined conserved value.

The Hamiltonian associated to the Schwarzian action is determined by the Noether charge corresponding to
time translations t Ñ t + a of the Lagrangian; dL = dL

dt dt « dL
dt a »

d(´CtF,tu)
dt a. This vanishes on-shell due

to Eq 1.95, dL ” 0. We can therefore associate the Schwarzian derivative with the Hamiltonian of the system:

H ” ´CtF, tu =
1

2C

[
Q2

0 ´
1

2
tQ+, Q´u

]
. (1.103)

Inserting the explicit forms of the Noether charges Eqs 1.101, one shows that this is the quadratic Casimir
associated to representations of sl(2,R) [25]. The identification of the total energy present in the system with
the Schwarzian Lagrangian itself E = ´CtF, tu, agrees with the ADM energy given in terms of the boundary
values of the fields. This was already shown at a classical level in [15].
An important note is that while the conformal reparametrization mode of the Poincaré time coordinate F (t) is
broken down to PSL(2,R), the Schwarzian action breaks the conformal symmetry associated to the physical
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boundary t coordinate down to U(1), where it is easy to see that the Schwarzian tF (t), tu is only invariant
under constant shifts t Ñ t + a. This symmetry is protected by the Killing vector ζµ = εµνBνΦ, which is
always a Killing vector14 from the classical equations of motion Eq 1.62.

1.5.3 Finite-temperature solutions

The most natural frame to describe finite-temperature solutions in a Euclidean setting is obtained by transform-
ing the Euclidean Poincaré time coordinate to a β-periodic time variable f(τ):

F (τ) := tan π
β
f(τ), f 1(τ) ě 0. (1.104)

The solution depends on the temperature through the condition that f(τ) winds around once along the thermal
circle for translations in τ Ñ τ + β:

f(τ + β) ” f(τ) + β.

This effectively determines a map between the zero-temperature frame (´8 ă F ă +8), and a finite time
interval ´β/2 ă f ă β/2 (c.f. figure 1.5). The pseudo-Goldstone modes of the finite-temperature solutions
are the reparametrization modes of the thermal boundary circle f P diff(S1). The pattern of explicit symmetry
breaking of the Schwarzian theory is therefore:

diff(S1) Ñ PSL(2,R).

Considering another preserved symmetry group leads to the insertion of operational defects in the disk par-
tition function [37]. The composition law Eq 1.96 allows us to write the Schwarzian in terms of the f -
reparametrization modes:

I = ´C

ż

dτtF (τ), τu = ´C

ż

dτ

[
tf(τ), τu + f 1(τ)2

"

tan
(
π

β
f

)
, f

*]
= ´C

ż

dτ

[
tf(τ), τu +

2π2

β2
f 1(τ)2

]
. (1.105)

The classical saddles have a constant Schwarzian derivative: tF (τ), τu1 = 0. The interesting saddles are the
linear reparametrization modes f(τ) ” τ . Indeed, for this solution, the Schwarzian tf(τ), τu vanishes and
2π2

β2 f 1(τ)2 remains constant.
Transforming back to real-time coordinates τ Ñ it, the corresponding Poincaré modes Eq 1.104 are precisely
the black hole solutions Eq 1.56, up to an unobservable proportionality factor that is part of the PSL(2,R)
subgroup. In the saddle-point approximation, we already know how to deduce the associated ground state
entropy and energy. The Euclidean action is associated with the thermal partition function Eq D.31: Z(β) =
e´I . The on-shell solutions determine the action:

logZ = ´I =
2π2C

β2

ż β

0
dτ =

2π2C

β
= 2π2CT. (1.106)

14This is a quick check from ∇µζν +∇νζµ = 0.
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The classical thermodynamic relations Eqs D.27 D.28 lead to a linear growth of the entropy with temperature:

S = (1 ´ βBβ) logZ = 4π2CT, E = ´Bβ logZ = 2π2CT 2. (1.107)

The extremal entropy contribution Eq 1.45 is implemented by adding a purely topological term to the action:

´I0 =
Φ0

8πGN

ż

dτ
2π

β
f 1(τ) =

Φ0

4GN
.

These thermodynamic relations can also be deduced by working directly in the real-time black hole frame
Eq 1.56. In this context, the temperature of the black hole was found by periodically identifying the time
coordinate in the near-horizon region, which resulted in T = rh

2π . In the discussion on the dilaton equations

of motion, this was related to (c.f. 1.75) T = 1
π

b

µ
a . Solving the energy for the black hole solution F (t) =

tanh π
β t = tanh

b

µ
a t leads to:

E(t) = ´CtF, tu =
µ

8πGN
.

Identifying with the temperature T = 1
π

b

µ
8πGN

1
2C leads to the same relation between the energy and temper-

ature:
E(T ) = 2π2CT 2. (1.108)

From BS
BE = 1

T , the entropy also agrees with Eq 1.107:

S(E) = S0 + 2π
?
2CE = S0 + 4π2CT. (1.109)

This insightful argument demonstrates yet again that the bulk JT action leads to the same quantitative conclu-
sions as those obtained from the Schwarzian boundary perspective.

1.6 Real-time derivation of the Schwarzian boundary action

Starting from the Euclidean JT action is the most geometrically intuitive method to derive the Schwarzian
boundary action. It is also the most convenient way to generalize the setup to higher genus surfaces, and to
use it directly in the Euclidean path integral. However, as with many applications in Euclidean settings, it
obscures many of the physical real-time properties of the conformal symmetry breaking pattern. Using the
same boundary conditions, we should be able to derive this description directly from the equations of motion
[16].

In parallel to the geometric derivation in the previous section, we fix the boundary asymptotics to describe a
cutoff of AdS2. We will relate the proper real-time coordinates of the Poincaré patch (u = t+ z, v = t´ z)

ds2 =
´dt2 + dz2

z2
= ´4

dudv

(u´ v)2
(1.110)
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to different parametrizations in terms of chiral functions U(u) and V (v). To leading order in z Ñ 0 near the
boundary u = v ” t, these should be identified U(t) = V (t) ” F (t) in order to preserve the asymptotic form
of the metric Eq 1.110.
To regularize the effective boundary dynamics, we again introduce an infinitesimal regulator ε and move the
boundary slightly inwards z Ñ ε. To leading order in ε, the reparametrizations near the boundary can be
expanded to:

1

2
(U(t+ ε) + V (t´ ε)) = F (t),

1

2
(U(t+ ε) ´ V (t´ ε)) = εF 1(t). (1.111)

These are indeed the conformal reparametrization degrees of freedom that preserve the asymptotic form of
the induced metric Eq 1.80. The boundary condition of the dilaton field is again a diverging profile near the
boundary Φ(r) = a

2ε .
The boundary curves define a cutoff of the pure AdS2 geometry consistent with the asymptotic symmetries.
The 1d conformal invariance of pure AdS2 relates these cutoff surfaces. In nearly "NAdS2", the presence
of the dilaton field regulates the reparametrization of the boundary curve in terms of the backreaction on the
matter sources. This breaks explicitly the conformal invariance near the boundary, and deforms it into a nearly
conformal field theory "NCFT ".
We directly see from the equations of motion of the dilaton that equating Φ in Eq 1.73 with the asymptotic
boundary condition Φ = a

2ε leads to:

Φ(t) =
a

2εF 1(z)

(
1 ´

1

a
(I+[F (t)] + I´[F (t)])

)
”

a

2ε
.

This leads to an integro-differential equation that determines the shape of the boundary curve (F (t), εF 1(t)) in
terms of the influx of matter:

F 1(t) = 1 ´
1

a
(I+[F (t)] + I´[F (t)]) . (1.112)

I+[F (t)] and I´[F (t)] are understood to be functionals of the shape of the boundary curve to leading order in
ε:

I+[F (t)] = 8πGN

ż +8

F (t)
ds(s´ F (t))(s´ F (t))TUU (s), (1.113)

I´[F (t)] = 8πGN

ż F (t)

´8

ds(s´ F (t))(s´ F (t))TV V (s). (1.114)

Since the shape of the boundary curve is fixed by the equations of motion, this procedure manifestly breaks
the conformal invariance. We can apply the same series of derivatives as Eq 1.94 to Eq 1.112, to obtain the
equation of motion regulating the boundary reparametrization mode F (t) [25]:

´C
dtF, tu

dt
= (TV V (t) ´ TUU (t))F

12|BM = Tvv(t) ´ Tuu|BM. (1.115)

Using the expression of the energy Eq 1.103 E = ´CtF, tu, we can interpret this as an energy conserva-
tion law, in terms of the influx Tvv and outflux Tuu of matter from the asymptotic boundary. Again using
ş

dt δtF, tu = ´
ş

dt tF,tu1

F 1 δF , these are the equations of motion determined from the Schwarzian boundary
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action with an additional matter contribution [64]:

S = ´C

ż

dttF, tu +

ż

dFdZLm(φ, BFφ) (1.116)

» ´C

ż

dttF, tu +

ż

dtdZF 1Lm(φ, BFφ). (1.117)

The matter term is minimally coupled to the boundary graviton modes F . Variation of the matter action with
respect to the pseudo Goldstone mode yields (using BFφ = Btφ

F 1 ):

δ

ż

dtdZF 1Lm(φ, BFφ) =

ż

dtdZδF 1Lm +

ż

dtdZF 1 BLm

BBFφ

(
´

1

F 12
δF 1

)
Btφ

=

ż

dtdZ
d

dt

(
BFφ

BLm

BBFφ
´ Lm

)
δF

, where we recognise the general form of the Hamiltonian Hm =
ş

dZ
(

BFφ
BLm

BBFφ
´ Lm

)
. Combined with

the variation of the Schwarzian leads to:

´C
d

dt
tF, tu = F 1dHm

dt
= F 12dHm

dF
” (TV V ´ TUU )F

12|BM. (1.118)

The last identity simply expresses energy conservation of the matter sector dHm

dF = TV V ´ TUU |BM.
This indeed demonstrates that the Schwarzian perspective can be derived directly from the equations of motion.

1.6.1 Hamiltonian formulation

Since the Schwarzian derivative itself is third order in derivatives, solving the Schwarzian equation of motion
d
dttF (t), tu = 0 requires in general four integration constants. An alternative formulation involves a first order
derivative action, yielding two second order derivative equations of motion [16][21].
Consider the Schwarzian action without matter S = ´C

ş

dttF, tu. We define a new dynamical variable ϕ by
identifying eϕ = F 1(t). This is always possible since F 1 ą 0. The Schwarzian derivative can be rewritten as:

tF, tu = ´
1

2
(Btϕ)

2 + B2
tϕ, ϕ ” logF 1. (1.119)

Plugged into the action, the total derivative term vanishes and we can write its contribution in the Schwarzian
action as a free massless boson:

S =

ż

dt
C

2
(Btϕ)

2 ´ λeϕ + λF 1. (1.120)

The additional dynamical field λ is introduced as a Lagrange multiplier, imposing the constraint eϕ = F 1

directly in the action. The action of the ϕ-field corresponds to the 1D Liouville action. Its equations of motion
are:

CB2
tϕ+ λeϕ = 0, eϕ = F 1. (1.121)
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This is a manipulated form of the original equation of motion Eq 1.112, obtained by differentiating twice with
respect to F :

1

2

d2F 1

dF 2
+

8πGN
a

(P+ ´ P´) = 0, ðñ C
d2F 1

dF 2
+ (P+ ´ P´) = 0

, with P+ :=
ş+8

F dsTUU (s) and P´ := ´
şF

´8
dsTV V (s). Further using the chain rule d

dF = 1
F 1

d
dt , we can

relate this to:

C
1

F 1

d

dt

(
1

F 1

d

dt

(
dF

dt

))
+ (P+ ´ P´) = 0

ðñ C
d

dt

(
d

dt
logF 1

)
+ (P+ ´ P´)F

1 = 0.

Identifying eϕ = F 1 and (P+ ´ P´) = λ trivially leads to Eq 1.121.

To transition to a Hamiltonian formulation, we write the first order Lagrangian in terms of four canonical phase
space variables (ϕ, πϕ) and (F, πF ):

L = πϕBtϕ+ πF BtF ´H (1.122)

, where the Hamiltonian is specified as

H ”
1

2C
π2ϕ + eϕπF . (1.123)

Integrating out πϕ via its equation of motion indeed yields the Lagrangian Eq 1.120, where we identify πF ” λ:

L =
C

2
(Btϕ)

2 ´ πF e
ϕ + πFF

1.

Integrating out πF leads to the Schwarzian, while integrating out F yields the 1d Liouville action L = C
2 ϕ

12 ´

πF e
ϕ.

The first order Hamiltonian equations of motion corresponding to the first order Lagrangian 1.122 are readily
deduced (q̇ = dH

Bπq
, π̇q = ´dH

dq ):

Btϕ =
1

C
πϕ, BtF = eϕ, Btπϕ = ´eϕπF , BtπF = 0. (1.124)

These equations reproduce the equations of motion Eqs 1.121 upon plugging the first into the third equation

Btπϕ = CB2
tϕ = ´eϕπF

, and setting again πF = λ.
The usual commutation relations are [ϕ, πϕ] = i and [F, πF ] = i. Using these commutation relations, the set
of generators

l´1 = πF , l0 = FπF + πϕ, l1 = F 2πF + 2Fπϕ ´ 2Ceϕ (1.125)

are found to satisfy the sl(2,R) algebra [16]:

[l0, l˘1] = ¯il˘1, [l1, l´1] = 2il0. (1.126)
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Canonically quantizing πq = ´iBq identifies the action on F with Eq 1.99.
Using these charges, one can verify that the first order Hamiltonian Eq 1.123 is just the definition of the sl(2,R)
quadratic Casimir Eq 1.103 [16]:

H =
1

2C

(
l20 ´

1

2
tl+1, l´1u

)
. (1.127)

1.7 Gravitational path integral

Having discussed the finite-temperature black hole solutions of JT gravity in terms of the classical saddle
points of the Schwarzian boundary action in section 1.5.3, the next step would be to include the quantum
corrections on this spectrum by doing the full path integral. In section D.4.2, the gravitational path integral
is defined along the lines of the original Gibbons-Hawking prescription in [65]. Performing the path integral
in Euclidean signature over all metric- and matter fields with asymptotic boundary conditions on the thermal
circle is postulated to result in the thermal partition function. However, more often than not, defining a proper
measure for a fluctuating metric is not readily obvious. Furthermore, there is the omnipresent issue of the
unstable conformal mode, making the action unbound from below and the path integral to diverge. We will
see how both issues are resolved for the path integral over the JT action. A spectacular property is that the full
path integral can be solved exactly to all orders in perturbation theory. This was first observed in a paper by
Stanford and Witten [20]. By using a fermionic localization argument, they were able to prove that the path
integral is in fact one-loop exact. Coupling the theory to matter, the matter bilocal operators in the Schwarzian
holographic perspective can likewise be solved exactly to all orders [21][22]. This makes JT gravity more than
an attractive toy model to study the effects of AdS2-backreaction along the lines of [15], but makes it one of
the most valuable laboratories to study the effects of quantum gravity as a whole.
The thermal disk partition function is the gravitational path integral Eq D.29 of the full Euclidean JT action
over all metric and dilaton field configurations, subject to the prescribed disk topology and boundary condition
of fixed inverse temperature β:

Z(β) = eS0

ż

DgDΦ e
1

16πGN

[ş
M Φ(R+2)+2

ş

BM Φb(K´1)
]
. (1.128)

Note that in most of this thesis, we will assume a topologically trivial disk manifold, with one boundary and
no holes (χ = 1).
On a classical level, we have seen that the equations of motion of the dilaton field fix the bulk geometry
to patches of pure AdS2. This in turn reduces the bulk JT action to a holographic Schwarzian boundary
description. In the full path integral, one integrates over all off-shell values of the dilaton, and we cannot
a priori use the on-shell equivalence between the boundary description. However, since the dilaton appears
linear in the action, it acts as a Lagrange multiplier in the path integral, fixing the constraint R(x) + 2 = 0

also off-shell. This is readily seen by noting that the linear dilaton term in the action is of Gaussian type.
Performing the full Gaussian path integral is, in general, equivalent to inserting its on-shell value. A more
direct way to realize this, is to note that the path integral over the dilaton is the functional counterpart of the
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integral representation of the Dirac delta function:

δ(x) =

ż

dDx

(2π)D
eik¨x ðñ δ[f ] =

ż

Dλ exp(i
ż

dDxλ(x)f(x))

, the latter imposing the constraint15 f(x) ” 0.
By integrating along an imaginary contour for the dilaton field, the bulk JT action vanishes off-shell, and the
discussion in section 1.5.2 continues to hold. In particular, the bulk dynamics are fixed to describe patches of
AdS2. The remaining degrees of freedom are the pseudo-Goldstone reparametrization modes of the thermal
boundary circle f P diff(S1). These describe the cutoff geometries of the Euclidean disk with fixed asymptotic
boundary length β/ε. The action that weights these reparametrization modes stems again from the GHY
boundary term. The latter reduces to the Schwarzian boundary action by imposing fixed length boundary
conditions on the metric, and blowing up boundary conditions on the dilaton Φb = a/2ε. a is an inverse energy
scale, labeling the different asymptotic nearly-(N)AdS2 regimes. The resulting action is invariant under the
(P)SL(2,R) Ă diff(S1) reparametrization subgroup16. This is the isometry group of the NAdS2 space and
does not generate new geometries. These parametrization modes can be thought of as gauge redundancies, and
should not be included in the path integral, in accordance with the Faddeev-Popov path integral procedure over
gauge fields. The natural integration space is therefore diff(S1)/SL(2,R), where one mods out SL(2,R) into
equivalence classes of reparametrization modes. The Euclidean JT path integral Eq 1.128 reduces to a path
integral over the reparametrization modes, weighted by the Schwarzian action:

Z(β) = eS0

ż

DgDΦ e
1

16πGN

[ş
M Φ(R+2)+2

ş

BM Φb(K´1)
]

= eS0

ż

diff(S1)/SL(2,R)
[Df ] eC

şβ

0
dτ

!

tan πf(τ)

β
,τ
)

(1.129)

I have indicated the measure factor over the Schwarzian reparameterization modes in brackets [Df ] since
the measure is not a priori clear. I note again that this a particular example of quantum holography where
the dual path integral is obtained by integrating out all bulk fields, leaving a path integral over boundary
fields compatible with the prescribed boundary conditions. Dual operators are obtained in the same way, by
integrating over the bulk fields in the path integral insertion. This procedure of holography is general for
theories where the dual description actually lives on the boundary.
The constant C = a

16πGN
is an emergent dimensionful scale in the boundary description, quantifying the

coupling strength of the Schwarzian modes.

1.7.1 Evaluation of the path integral to one-loop order

To actually do gravitational path integral, we need an appropriate measure factor. In most applications of
quantum gravity, this is not readily available, and we are restricted to the on-shell approximation. How-
ever, in the case of JT quantum gravity, the measure is the natural volume form over the integration space
diff(S1)/SL(2,R) of the dual Schwarzian description. The Schwarzian derivative is probably most familiar

15The proper normalization factors are absorbed in the abstract measure Dλ.
16In the following, I will often simply refer to PSL(2,R) as SL(2,R).
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from 2d CFT, where it describes the anomalous transformation property of the Virasoro stress tensor. The
latter is a coadjoint vector of the Virasoro algebra. It turns out that the right quotient space diff(S1)/SL(2,R)
is actually a coadjoint orbit of an identity element under the action of the Virasoro group. Unlike pure diff(S1),
this is also a symplectic manifold and possesses a natural symplectic integration measure. This measure is then
related to the volume form in the path integral by exponentiation. Since these facts are not readily obvious, I
have written an extensive appendix C on coadjoint orbits of the Virasoro group and the symplectic measure,
combining the perspectives of [66] [20] and [67]. I had the ambition to be as pedagogical as possible and work
out the derivations in as much detail as possible. At the end of the appendix, we note that the Schwarzian action
is actually the generator of a U(1)-subgroup. By the Duistermaat-Heckman theorem [68], this implies that the
first order correction to the classical saddle is in fact the final answer, quantifying all quantum corrections [20].
This is a strong statement, since a priori, one would expect the partition function to be dominated by large
fluctuations around the saddle for large gravitational coupling GN (small C). In the main text, we will now
simply use the result for the symplectic measure, and evaluate the Schwarzian integral to first order.

It turns out that the symplectic measure associated to the Schwarzian reparametrization modes f is given by
Eq C.16:

ω =

ż 2π

0
dτ

[
df 1(τ) ^ df2(τ)

f 1(τ)2
´ df(τ) ^ df 1(τ)

]
. (1.130)

Here, d is an abstract exterior derivative that works only on the fields f(τ) and formally commutes with Bτ .
Since exterior derivatives anticommute in the wedge product, we can consider df as fermionic variables. We
show in the appendix that this is the natural measure inherited on the Virasoro coadjoint orbits. It is seen to
be both closed and antisymmetric. It is also non-degenerate on the integration space diff(S1)/SL(2,R) (c.f.
C.20). This verifies that the two-form ω is indeed a symplectic measure and confirms the integration space to
be a symplectic manifold. The symplectic measure defines the volume form in the path integral Eq 1.129, in
terms of the Pfaffian of the former Eq C.21:

[Df ] = Pf(ω) Df (1.131)

, with Pf(ω) =
a

det(ω) defined in Eq C.22. It is convenient to write the Pfaffian associated with Eq C.16 as
a Gaussian integral over Grassmann fields ψ(τ) = df(τ) (c.f. Eq C.23):

Pf(ω) =
ż

Dψ exp
[
1

2

ż 2π

0
dτ

(
ψ1ψ2

f 12
´ ψψ1

)]
. (1.132)

Once we know the appropriate measure associated with the reparametrization modes over diff(S1)/SL(2,R),
the evaluation of the path integral17 Eq 1.129 to first order in perturbation theory is trivial. Using the canonical

17Imagine neglecting the extremal contribution eS0 for now.
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action Eq C.2 yields

Z(β) =

ż

DgDΦ e
1

16πGN

[ş
M Φ(R+2)+2

ş

BM φb(K´1)
]

=

ż

diff(S1)/SL(2,R)
[Df ] e

2πC

β

ş2π

0
dτ

 

tan f

2
,τ
(

=

ż

diff(S1)/SL(2,R)
Df Pf(ω) e

2πC

β

ş2π

0
dτ

 

tan f

2
,τ
(

=

ż

diff(S1)/SL(2,R)
DfDψ exp

[
ż 2π

0
dτ

(
2πC

β

"

tan f
2
, τ

*

+
1

2

(
ψ1ψ2

f 12
´ ψψ1

))]
. (1.133)

In the last line, I have rewritten the natural symplectic measure Eq C.16 in terms of a Gaussian path integral
over these fermionic variables. We first expand the reparametrization mode around its saddle: f(τ) = τ+ε(τ),
and expand the Schwarzian derivative to first order in ε:

"

tan f
2
, τ

*

= tf, τu +
1

2
f 12 =

f3

f 1
´

3

2

f22

f 12
+

1

2
f 12

=
ε3

1 + ε1
´

3

2

ε22

(1 + ε1)2
+

1

2
(1 + ε1)2

» ε3 ´ ε3ε1 ´
3

2
ε22(1 ´ 2ε1) +

1

2
+ ε1 +

ε12

2

=
1

2
+ (ε1 + ε3) +

(
1

2
ε12 ´

1

2
ε22 ´ (ε2ε1)1

)
+O(ε3). (1.134)

Note that in order for f(τ + 2π) = f(τ) + 2π, we should have ε(τ + 2π) = ε(τ), and all orbits of ε close
after a rotation in 2π. The first factor of

!

tan f
2 , τ

)

= 1
2 is associated with the classical saddle, which from Eq

C.2 has an associated action ´I = 2πC
β

ş2π
0

dτ
2 = 2π2C

β . This coincides with the finite-temperature solution in
section 1.5.3. Further expanding the action associated with the Pfaffian, leads to:

ψ1ψ2

f 12
´ ψψ1 = ψ1ψ2 ´ 2ψ1ψ2ε1 ´ ψψ1 +O(ε2). (1.135)

It is convenient to perform a redefinition ε Ñ

(
β

2πC

)1/2
ε, and obtain an action to first order in β

2πC . This factor
is associated with the gravitational coupling strength, and determines an effective coupling of the boundary
gravitons. Dropping all total derivatives, the action then becomes

´I =
2π2C

β
´

1

2

ż 2π

0
dτ

[(
ε22 ´ ε12

)
´ (ψ1ψ2 ´ ψψ1) +O

(
β

2πC

)1/2
]
. (1.136)

The quadratic action in ε and ψ is associated with the one-loop propagators, and is independent of the effective
coupling strength. It can be exactly integrated with the rules of Gaussian path integrals [69], and yields a(

β
2πC

)1/2
-independent prefactor. However, the redefinition ε Ñ

(
β

2πC

)1/2
ε has an associated redefinition in

the measure of the path integral: Πτdε(τ) Ñ Πτ

(
β

2πC

)1/2
dε(τ). Therefore, the path integral has an infinite

product over
(

β
2πC

)1/2
-dependent factors. In any regularization scheme, this dependence should drop out, and
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the product over all modes n should yield a β-independent factor
ś

nPZ

(
β

2πC

)1/2
Ñ 1. However, since we

are gauge-fixing 3 modes associated with the SL(2,R) zero-modes, we should divide this infinite product by(
β

2πC

)3/2
, and obtain:

Z(β) 9

(
2πC

β

)3/2

exp
(
2π2C

β

)
(1.137)

The exponential factor is associated with the classical saddle, while the β-dependent prefactor is associated
with the one-loop determinant correction on this saddle point. Reinstating the extremal contribution, and using
zeta function regularization of the infinite product, yields the explicit prefactor [25] [30]:

Z(β) =
eS0

4π2

(
2πC

β

)3/2

exp
(
2π2C

β

)
. (1.138)

Note that if we had restricted the stabilizer subgroup determining the coadjoint orbits to U(1) instead of
SL(2,R), there would have only been one zero mode, and the one loop determinant would have had an expo-
nential factor of 1/2 instead. This is exactly what happens in some modifications of the Schwarzian theory that
will become important later on.
As already noted before, [20] demonstrated that the one-loop answer is in fact the full answer to all orders
in perturbation theory. Section C.3 reviews this argument starting from the fact that the integration space is a
symplectic manifold that is U(1)-invariant, and that the Schwarzian action is the generator of particular U(1)

transformations. Using fermionic localization arguments, we can add a term to the action with an arbitrary
large prefactor, without changing the integral. This additional term has the effect of rendering all higher order
corrections in the perturbative expansion arbitrary small, leaving only the one-loop determinant.

1.7.2 Holographic interpretation of the partition function

In the context of holography, the partition function should be recovered in the dual field theory as a partial trace
of the modular Hamiltonian H over the states of a Hilbert space spanning the black hole microstates HBH ;

Z(β) = TrHBH
[e´βH ] =

ż

ρ(E)e´βEdE. (1.139)

In the last equality, this is rewritten in terms of an integral over the density of states ρ(E). Using the exact
expression of the thermal partition function, we obtain an expression of the density of states using an inverse
Laplace transform [25];

ρ(E) =
C

2π2
eS0 sinh(2π

?
2CE) . (1.140)

This is the famous density of states corresponding to bosonic JT gravity. An immediate issue that arises is that
the latter does not correspond to a sum of delta functions ρ(E) =

ř

n δ(E ´ En). A continuous spectrum in
quantum mechanics is usually associated with an infinite spatial volume. However a 0+1d boundary theory
has no associated spatial direction, and a continuous spectrum implies that the entropy of the micro-canonical
ensemble is actually infinite. This has the immediate implication that information can be lost within a black
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hole. The tension can be resolved by considering the boundary theory as a random matrix ensemble [29] [30].
A qualitative feature of Eq 1.140 is that for large energies E " 1/C, we can approximate the hyperbolic sine
by ρ(E) 9 eS0e2π

?
2CE . Using the classical energy-temperature relation Eq 1.108 E = 2π2CT 2, this exactly

coincides with the density of states deduced from the classical saddle entropy Eq 1.109 S = 4π2CT . Quantum
effects on this saddle only become important at low energies E ! 1/C, where now ρ 9 eS0

?
2CE, due to the

one-loop determinant factor. Unlike the classical presumption that ρ Ñ eS0 as E Ñ 0, quantum effects lead to
a vanishing ground state degeneracy as E Ñ 0. In this sense, it is actually wrong to think of eS0 as an extremal
entropy once quantum effects are turned on.

1.8 Quantum JT gravity coupled to matter

When coupling JT gravity to matter, the Gibbons-Hawking prescription of section D.4.2 instructs us to perform
a path integral over the gravitational and matter fields (collectively denoted by resp. g, and φ) of an extended
action I[g, φ], describing the matter fields coupled to gravity;

Z(β) =

ż

DgDφ e´I[g,φ] (1.141)

The boundary conditions should describe an asymptotic AdS2-universe with periodic time identification.
As a sufficiently simple example, most approaches consider a free scalar field φ(t, z) of mass m, propagating
in the background of a Euclidean JT black hole geometry. The Euclidean matter action is given by the Klein-
Gordon action, minimally coupled to gravity:

Im[φ, g] = ´

ż

d2x
?
g

[
1

2
gµνBµφBνφ+

1

2
m2φ2

]
. (1.142)

The holographic dictionary, elaborated in the appendix D.5, argues that the boundary values of fields propagat-
ing in the gravitational bulk act as sources in the generating functional for the dual operators O(t). Concretely,
we recall that the full fledged quantum gravitational path integral over all bulk fields subject to the boundary
condition φ(t, z)|z=0 = φb(t), acts as a generating functional for the dual boundary operators (c.f. Eq D.33):

xe
ş

dt φb(t)O(t)y = Zgrav [φ(t, z)|z=0 = φb(t)] . (1.143)

Calculating the boundary matter correlators involves taking functional derivatives of this generating functional
with respect to these sources and evaluating them to zero at the end:

Tr[e´βHO1(t1)O2(t2) . . .On(tn)] = xO1(t1)O2(t2) . . .On(tn)y

=
δn

δφ1b δφ
2
b . . . δφ

n
b

Zgrav [φ(t, z)|z=0 = φb(t)]|φi
b=0.

(1.144)
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In the case of a scalar field propagating in the gravitational bulk, we have argued that the correct boundary
condition is given by (c.f. Eq D.41 with18 d = 1):

φ(t, z)|z=0 = z1´∆φ̃b(t), z Ñ 0. (1.145)

∆ corresponds to the conformal scaling dimension of the dual quasi-primary operator O, which was argued to
be related to the mass m2 (c.f. Eq D.39):

∆ =
1

2
+

c

1

4
+m2. (1.146)

The Jackiw-Teitelboim gravitational path integral coupled to a scalar field is obtained by adding the minimally
coupled matter action to the JT action, and additionally integrating over all matter fields consistent with the
above boundary conditions,

Z(β, φb) = eS0

ż

DgDΦ e
1

16πGN

[ş
M Φ(R+2)+2

ş

BM Φb(K´1)
] ż

Dφ e´Im[φ,g]. (1.147)

Since the matter action is considered to be independent of the dilaton, the latter still acts as a Lagrange mul-
tiplier enforcing the gravitational degrees of freedom to a patch of AdS2. We eventually obtain a holographic
matter path integral coupled to the Schwarzian reparameterization degrees of freedom:

Z(β, φb) = eS0

ż

diff(S1)/SL(2,R)
Df eC

şβ

0
dτ

!

tan πf(τ)

β
,τ
)
ż

Dφ e´Im[φ,f ]. (1.148)

1.8.1 Free field generating functional

To rewrite the minimally coupled scalar field action Im[g, φ] in a holographic context, we work out the free
field generating functional. This is a generic exercise of the holographic dictionary, and is often the starting
point in much of the literature on quantum JT. However, let me work this out explicitly along the lines of [70],
and motivate why this is appropriate in the JT context.
In most semi-classical approximations, the gravitational background of the matter fields is fixed to the saddle
point value of the Einstein-Hilbert action. In many applications of AdSD/CFTd, this bulk geometry is not
pureAdSD but contains a non-trivial black hole geometry in its bulk, although it should asymptote toAdS near
the boundary. The isometry subgroup is therefore smaller than SO(D ´ 1, 2) (Lorentzian) or SO(D, 1) (Eu-
clidean), and usually contains only the subgroup of rotations and translations. In case the saddle corresponds
to pure AdS, the geometry is additionally invariant under inversions. The dual field theory of the latter is fully
conformally invariant, and retains the symmetry under inversions. The generic two-point correlation functions
between two quasi-primary operators O∆(x) of scaling dimension ∆ should therefore be proportional to:

xO∆(x)O∆(y)y 9
1

(x´ y)2∆
. (1.149)

18Conform the convention in the appendix, I denote D as the dimension of the bulk theory, and d = D ´ 1 as the dimension of the dual
boundary theory.
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In the case of JT gravity, this analysis is exact quantum mechanically since the bulk contains no dynamical
gravitational degrees of freedom anyway, and the geometry is fixed to AdS2. To find the generating functional
corresponding to the generalized free fields, we consider the matter action Eq 1.142 in the Poincaré patch of
AdS2, and place a cutoff at z = ε. The corresponding equations of motion obtained by varying the action, take
the following form (c.f. Eq D.37 with D = 2):

B2
zφ+ B2

t φ =
1

z2
m2φ (1.150)

, subject to the boundary condition φ(ε, t) = ε1´∆φ̃b. We can integrate the bulk action Im[φ, g] by parts, and
write the action in terms of a bulk term and a non-trivial lower boundary term at z = ε:

Im[φ, g] =
1

2

ż

d2x
?
gφ(z, t)

[
l ´m2

]
φ(z, t) ´

1

2

ż

dt φ(ε, t)[Bzφ(z, t)]|z=ε. (1.151)

l is the covariantized Klein-Gordon operator l = 1?
gBµ(

?
ggµνBν). In the following, we consider the

Poincaré patch of AdS2. Since the bulk action is quadratic in the fields, its contribution in the Gaussian
path integral over φ is exact. Integrating it out yields the one-loop determinant, which we can reabsorb in
an overall normalization. The remaining boundary term has no dynamical degrees of freedom, and is fixed
completely by the boundary conditions of the fields at z = ε. To find the solution, we transform to momentum
space [59]

φ(z, t) =

ż

dp

2π
eiptφ(z, p) (1.152)

to rewrite the equation of motion Eq D.37 as:[
z2B2

z ´ (p2z2 +m2)
]
φ(z, p) = 0, φ(ε, p) = ε1´∆φ̃b(p). (1.153)

The unique exponentially damped solution in the bulk corresponds to the Bessel function z1/2Kν(pz), where
ν = ∆ ´ 1/2. We choose the normalized solution

φ(z, p) =
z1/2Kν(pz)

ε1/2Kν(pε)
ε1´∆φ̃b(p) (1.154)

, to obtain the correct boundary value in Eq 1.153. The boundary action in momentum space becomes

Im = ´
1

2

ż

dp

2π

ż

dq

2π

ż

dt ei(p+q)tφ(ε, q)[Bzφ(z, p)]|z=ε = ´
1

2

ż

dp

2π

ż

dq

2π
2πδ(p+ q)φ(ε, q)[Bzφ(z, p)]|z=ε

= ´
1

2

ż

dp

2π
φ(ε,´p)[Bzφ(z, p)]|z=ε = ´

ε2(1´∆)

2

ż

dp

2π
φ̃b(´p)

d

dε
log
(
ε1/2Kν(pε)

)
φ̃b(p).

To investigate the limit ε Ñ 0, we need the asymptotic properties of the Bessel functions [71]. For non-integer
ν, these are:

Kν(u) = u´ν(a0 + a1u
2 + . . . ) + uν(b0 + b2u

2 + . . . ), a0 = 2ν´1Γ(ν), b0 = ´2´ν´1Γ(1 ´ ν)/ν.
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Computing the logarithmic derivative yields:

d

dε
log
(
ε1/2Kν(pε)

)
=

1

ε

[
1

2
´ ν(1 + c2(εp)

2 + . . . ) +
2νb0
a0

(εp)2ν(1 + d2(εp)
2 + . . . )

]
. (1.155)

Returning to position space, the first bracket is a series in integer powers of p2. This produces singular contact
terms δ(x ´ y), lδ(x ´ y), . . . . We renormalize these singular terms by neglecting them entirely. The
physically relevant term corresponds to the first non-integer power in p. The others are subleading in ε as
ε Ñ 0. Using ν = ∆ ´ 1/2, and the explicit coefficients of a0, b0, this can be written as:

d

dε
log
(
ε1/2Kν(pε)

)
= ε2(∆´1) 2νb0

a0
p2ν = ´ε2(∆´1)(2ν)

Γ(1 ´ ν)

Γ(1 + ν)

(p
2

)2ν
(1.156)

Inserted in the action, we take the inverse Fourier transform of φ̃b(´p), φ̃b(p):

Im[φ̃b, g] =
2νΓ(1 ´ ν)

2Γ(1 + ν)

ż

dt1 φ̃b(t1)

ż

dt2 φ̃b(t2)

ż

dp

2π

(p
2

)2ν
eip(t1´t2). (1.157)

We need the basic transform of a non-integer power law [59]:

1

2π

ż

dp eipxp2ν =
22ν

π1/2
Γ(∆)

Γ(´ν)

1

x2∆
(1.158)

, where again ν = ∆ ´ 1/2 is used. Finally,

Im[φ̃b, g] =
νΓ(1 ´ ν)Γ(∆)

?
πΓ(´ν)Γ(1 + ν)

ż

dt1

ż

dt2 φ̃b(t1)
1

(t1 ´ t2)2∆
φ̃b(t2). (1.159)

Using Γ(1 + x) = xΓ(x),

Im[φ̃b, g] = ´
(∆ ´ 1/2)Γ(∆)
?
πΓ(∆ ´ 1/2)

ż

dt1

ż

dt2 φ̃b(t1)
1

(t1 ´ t2)2∆
φ̃b(t2) . (1.160)

This indeed has the correct scaling behaviour expected from both the inversion symmetry of theAdS2-manifold
and the conformal symmetry of dual correlation functions.

To turn on the effects of quantum gravity, we should couple the matter fields to the reparametrization modes.
An effective way to do this, is to modify the renormalized scalar field φ̃b, by incorporating the wiggle boundary
curve in Poincaré coordinates (F (τ), Z = εF 1(τ)):

φ(ε, F ) = Z1´∆φ̃(F )b = ε1´∆F 11´∆(τ)φ̃b(F ) ” ε1´∆φb(τ) (1.161)

, where φb(τ) = φb(F (τ)) ” F 11´∆(τ)φ̃b(F (τ)). The above generating functional can therefore be rewritten
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in terms of φb(τ) [72]:

Im[φb, f ] = ´D

ż

dF1

ż

dF2
1

(F1 ´ F2)2∆
φ̃b(F1)φ̃b(F2)

= ´D

ż

dτ1

ż

dτ2

(
F 1(τ1)F

1(τ2)

(F (τ1) ´ F (τ2))2

)∆

φb(τ1)φb(τ2) (1.162)

, where D = (∆´1/2)Γ(∆)
?
πΓ(∆´1/2)

. It is often more natural to work in terms of the thermal reparametrization mode
f(τ), via F (τ) = tan π

β f(τ):

Im[φb, f ] = ´D

ż

dτ1

ż

dτ2

 f 1(τ1)f
1(τ2)(

β
π sin

[
π
β (f(τ1) ´ f(τ2))

])2


∆

φb(τ1)φb(τ2). (1.163)

The effects of quantum gravity are now encoded in the fluctuations of the Schwarzian boundary mode f . Note
that the scalar fields, although originating from a free field theory, interact with each other due to the coupling
to gravity. Indeed, they create a non-trivial dilaton profile which gives rise to non-trivial interactions due to
their backreaction on the wiggly boundary curve. It is remarkable how simple this coupling to quantum gravity
is accounted for in this model. From now on, it will be convenient to absorb the constant prefactor into a
redefinition of the boundary fields φb(τ) Ñ φb(τ)/

?
2D.

The total generating functional of JT gravity coupled to free scalar fields is therefore:

Z(β, φb) = eS0

ż

Df eC
şβ

0
dτ

!

tan πf(τ)

β
,τ
)

e

1

2

ş

dτ1
ş

dτ2

(
f 1(τ1)f 1(τ2)(

β
π

sin
[
π
β

(f(τ1)´f(τ2))
])2
)∆

φb(τ1)φb(τ2)

. (1.164)

1.8.2 Correlation functions

Correlation functions are obtained by functionally differentiating the above generating functional with respect
to the boundary matter sources, and evaluating them to zero (see Eq 1.144). This leads to the two-point
function:

xO(τ1)O(τ2)y =
δ

δφb(τ1)

δ

δφb(τ2)
Z(β, φb)|φbÑ0

= eS0

ż

Df eC
şβ

0
dτ

!

tan πf(τ)

β
,τ
)

 f 1(τ1)f
1(τ2)(

β
π sin

[
π
β (f(τ1) ´ f(τ2))

])2


∆

. (1.165)

We may interpret the quantity within brackets as a bilocal operator in the Schwarzian theory

O∆(τ1, τ2) =

 f 1(τ1)f
1(τ2)(

β
π sin

[
π
β (f(τ1) ´ f(τ2))

])2


∆

(1.166)
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, which leads to the two point correlation function:

xO(τ1)O(τ2)y = xO∆(τ1, τ2)y = . (1.167)

We can consider this operator as the two-point function of some 1d matter CFT at finite temperature coupled
to the Schwarzian theory, or as the boundary-to-boundary propagator of a bulk matter field coupled to the 2d
dilaton-gravity theory in a classical black hole background, as indicated by the above Witten diagram. Note that
this operator is invariant under the SL(2,R)-isometries of the AdS2-manifold that act on the reparametrization
mode F (τ) as a Möbius transformation Eq 1.81. This implies that the bilocal operator O∆(τ1, τ2) commutes
with the Hamiltonian, which we argued is identified to the quadratic Casimir Eq 1.103;

[H,O∆(τ1, τ2)] = 0. (1.168)

This implies that the bilocal operators are diagonal between energy eigenstates, and the energy is conserved
at each node at the boundary. Using Euclidean propagation in the Heisenberg picture O(τ) = eτHO(0)e´τH ,
one expects to find an expansion of this amplitude of the form

xO(τ1)O(τ2)y = TrHBH

[
e´βHO(τ2)O(τ1)

]
= TrHBH

[
e´βHeτ2HOe´τ2Heτ1HOe´τ1H

]
=

ż

dE1ρ(E1)

ż

dE2ρ(E2)e
´τE2e´(β´τ)E1 | xE1 | O | E2y |2 (1.169)

, where τ = τ2 ´ τ1. Since the presence of matter does not affect the density of states to leading order, we
can take ρ(E) to be the result for pure gravity Eq 1.140. The factor e´τE represents a propagation of energy
E along a boundary slice of length τ . Its complement is a propagation over β ´ τ . The operator-insertion
| xE1 | O | E2y | is the matrix element of the bilocal operator at the boundary. Exact expressions for this vertex
operator have been obtained using various techniques in the literature, e.g. using a suitable double-scaling limit
of a 2d Virasoro CFT [21], using a free-particle approach [73], or a geometric interpretation of JT gravity in its
first order BF formulation [22] [23].
One can take higher order derivatives to obtain n-point functions. Since the generating functional is quadratic
in the sources, Wick’s theorem [69] is appropriate in this context, and the correlation function is obtained by
summing over all possible pairings between the different boundary points. For example, assuming the cyclic
ordening τ1 ă τ2 ă τ3 ă τ4, the four-point function can be written as:

xO(τ1)O(τ2)O(τ3)O(τ4)y = xO∆(τ1, τ2)O∆(τ3, τ4)y + xO∆(τ1, τ4)O∆(τ2, τ3)y

+ xO∆(τ1, τ3)O∆(τ2, τ4)y .
(1.170)
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= + +

Since the bilocal operators commute with the Hamiltonian, the same energy eigenstate appears in each sector
of the bulk separated by the bilocal operators. E.g. the region between τ2 Ø τ3 and τ1 Ø τ4 in the first
diagram, and τ2 Ø τ1 and τ3 Ø τ4 in the second diagram. Finally, the third diagram has no opposite region
of equal energies, since the two bilocal operators cross in the bulk, and we refer to it as an out-of-time-ordered
(OTO) 4-point function. Here, one has to take into account the effect of the two crossing legs in the diagram,
which leads to scattering amplitudes of particles. These describe gravitational shockwaves in the AdS2 black
hole background of the bulk description [21].
A first approach to obtain the disk amplitudes with matter is obtained by Schwarzian perturbation theory, by
expanding the reparameterization modes around the classical saddle: f(τ) = τ + ε(τ). This is sufficient to
investigate the effect of quantum chaos. In particular, one finds that it saturates the maximal bound on chaos set
in [61]. The connection between JT gravity and quantum chaos is one of the main applications and motivations
to study this model more thoroughly.
In the next chapters however, we will solve the disk amplitudes directly in the bulk theory via the gauge
theoretical perspective [22]. This comes to the core of this thesis, where we will obtain the exact quantum
amplitudes of end-of-the-world (EOW) branes in various topologies using this perspective.



Chapter 2

First order quantization of JT gravity

"In the middle of difficulty lies opportunity."

Einstein, Albert

The tractability of quantum gravitational calculations in lower dimensions stems from the fact that they are
perturbatively equivalent to topological gauge theories. The gravitons in the corresponding gravity theory have
no propagating degrees of freedom. A particular example has been known since the results of Witten for 2+1d
gravity, which in the presence of a negative cosmological constant can be rewritten in terms of a Chern-Simons
gauge theory based on an SL(2,R) ˆ SL(2,R) gauge group, see [74] [75] [76].
In this chapter, I will review the bulk quantization of JT gravity in its first order formalism. This will provide
an efficient tool to gain geometric intuition on quantum-gravitational amplitudes involving EOW branes later.
Specifically, one rewrites the path integral of the second-order bulk JT action in terms of an integration over
a gauge triplet A involving frame fields ea and spin connections ωab, and an auxiliary B-triplet involving the
scalar fields associated with the dilaton field. These can be packaged together in terms of an sl(2,R) topolog-
ical BF gauge theory. This approach was used in [22] and [23] to obtain the same diagrammatic expressions
for boundary correlation functions of [21]. However, both studies considered a different global structure of the
gauge group and of the precise form of the boundary action. Although the on-shell gauge algebra corresponds
in both cases to sl(2,R), the global structure needed to capture JT gravity at a quantum level is not readily
obvious. Indeed, the density of states corresponding to pure SL(2,R) does not match with the Schwarzian
density of states, derived in Eq 1.140. Matching results have been found by using the semigroup SL+(2,R)
in [22], while [23] used an extension of the universal covering group S̃L(2,R) by R. Over the years, more
evidence has been provided in favour of the former [64]. Among others, this choice naturally excludes singular
geometries in the path integral.
Furthermore, the bulk BF theory yields a topologically trivial theory, consistent with Dirichlet boundary condi-
tions on the frame fields and spin connections. Therefore, the role of the boundary action is to yield interesting
dynamics that reduces to the boundary Schwarzian theory in its second order formalism. The former uses
the natural boundary action obtained by dimensionally reducing 3D Chern-Simons theory. The latter uses a

50
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boundary-changing defect to switch the natural Dirichlet boundary conditions to those needed to reproduce the
Schwarzian dynamics. Both approaches use boundary-anchored Wilson lines to describe bilocal operators in
the Schwarzian theory. Correlation functions of these Wilson operators in the gauge theory match with those
of the bilocal operators obtained in the Schwarzian theory. It was noted in [23] that these Wilson lines are
equivalent to propagating probe particles between two distinct points on the boundary.
In this chapter, I will largely follow the approach taken by [22], after explaining the on-shell equivalence be-
tween the bulk JT action and a topological BF theory. This approach will then be used in the subsequent chapter
to provide an alternative perspective on the quantum amplitudes involving the end-of-the-world (EOW) brane
amplitudes of [34] and [36]. Consequently, the BF framework will then be extended to describe N = 1 JT
supergravity amplitudes along the lines of [40] in the chapter thereafter. This thesis then culminates near the
end of that chapter by giving an effective description of EOW branes in superspace using the same techniques.
As far as we know, these amplitudes have not yet been considered in the literature before, demonstrating the
fruitfulness of this approach.

2.1 First-order formulation of general relativity

Frame field
1 InD-dimensional GR, the metric tensor gµν has Lorentzian signature (´,+, . . . ,+). Linear algebra provides
a tool to diagonalize the metric gµν by an orthogonal transformation (O´1) a

µ = Oaµ [59]

gµν(x) = Oaµ(x)Λab(x)O
b
ν(x)

, where Λab = diag(´λ0, λ1, . . . , λD´1) contains the positive eigenvalues λa ą 0. This property holds since
the metric is non-degenerate throughout. Furthermore, the sign of the eigenvalues is preserved under general
coordinate transformations. We may therefore define frame fields eaµ(x) ”

a

λa(x)Oaµ(x) that determine
completely the non-trivial spacetime dependence of the metric tensor

gµν(x) = eaµ(x)ηabe
b
ν(x) . (2.1)

ηab is the flat Minkowksi metric. By definition of the Minkowksi metric, this identity is preserved under
the group of proper Lorentz transformations SO(D ´ 1, 1) that leave the Minkowksi line element invari-
ant ΛacηabΛ

b
d ” ηcd. Therefore, all geometric quantities related by equivalent frame field configurations

e1a
µ (x) = Λab(x)e

b
µ(x) should be identified. These local Lorentz-transformations are allowed to differ at each

point x, and act only on the local Lorentz indices a. In contrast, the frame fields transform under general coor-
dinate transformations as a covariant vector e1a

µ (x
1) = Bxν

Bx1µ eaν(x). Since the metric is invertible, the frame fields
are also invertible, and one can define the inverse frame field eµa(x), which satisfies eaµe

µ
b = δab and eµaeaν = δµν .

Any contravariant vector field V µ(x) can be expanded in the local basis eµa(x) as V µ(x) = V a(x)eµa(x), where
V a(x) = V µ(x)eaµ(x) are the local Lorentz components with respect to eaµ. The latter are invariant under gen-
eral coordinate transformations, and transform under local Lorentz transformations as V a1(x) = Λab(x)V

b(x).
Likewise, covariant tensors Wµ(x) may be expanded in the eaµ(x) basis as Wµ(x) =Wa(x)e

a
µ(x).

1This section is largely based on [59]. See also e.g. [60].
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The frame fields thereby define a transition from the basis of one-forms on the spacetime manifold to a basis
of one-forms on the local Lorentz manifold

ea ” eaµ dx
µ (2.2)

This transition is dual to the change of basisvectors on the tangent space: Ea ” eµa(x)
B

Bxµ . It acts on the
Levi-Civita tensor densities [60] as:

εµ1µ2...µD
” e´1εa1a2...aD

ea1
µ1
ea2
µ2
. . . eaD

µD
, εµ1µ1...µD ” eεa1a2...aDeµ1

a1
eµ2
a2
. . . eµD

aD
(2.3)

, by definition of the determinant e ” det(eaµ). Using gµν = eaµe
b
νηab, the latter is related to the determinant

of the metric by e =
?

´g. εa1a2...aD
is the completely antisymmetric Levi-Civita symbol in local Lorentz

coordinates, and is naturally invariant under general coordinate transformations.
This defines a natural volume form on the spacetime manifold that reduces to the definition of the second order
volume form dV =

?
´g dDx:

dV ” e0 ^ e1 ^ ¨ ¨ ¨ ^ eD´1 (2.4)

=
1

D!
εa1...aD

ea1 ^ ¨ ¨ ¨ ^ eaD =
1

D!
eεµ1...µD

dxµ1 ^ ¨ ¨ ¨ ^ dxµD

=
?

´g dDx.

Spin-connection

We have seen that geometric quantities are covariant under local Lorentz transformations of the frame field.
However, this symmetry is locally anomalous since the derived two-form dea transforms non-covariantly

de1a = d(Λabe
b) = Λabde

b + dΛab ^ eb.

The situation is resolved by gauging the local Lorentz symmetry, and introducing an anti-symmetric one-form
gauge connection ωab = ωabµ dxµ = ´ωbaµ dx

µ. This cures local Lorentz covariance of the torsion vector T a,
defined as

dea + ωab ^ eb ” T a (2.5)

, when ωab transforms as an SO(D ´ 1, 1) Yang-Mills gauge field

ω1a
b = Λac dΛ

´1c
b + Λac ω

c
d Λ

´1d
b.

Equation 2.5 is known as the first Cartan structure equation, and defines the torsion two-form T a in terms of the
spin-connection ωab. The torsion is often taken to be zero in most application of general relativity. A non-zero
torsion tensor ultimately leads to a non-symmetric Christoffel connection, which often appears in supergravity
theories coupled to matter fields. For now, we simply define T a ” 0. ωab is called the spin-connection of
the first-order formalism, in resemblance to its application in supergravity. In local coordinates, we write the
coordinate transformation as ω1a

µ b = ΛacBµΛ
´1c

b + Λacω
c
µ dΛ

´1d
b. This allows us to introduce covariant

derivatives on Lorentz-vectors and -covectors

DµV
a = BµV

a + ωaµ bV
b, DµWa = BµWa ´Wb ω

b
µ a. (2.6)
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The combinations DµV
a and DµVa now transform covariantly under local Lorentz transformations:

V a1(x) = Λab(x)V
b(x), V 1

a(x) = Λ b
a (x)Vb(x) = Vb(x)(Λ

´1)ba. (2.7)

Applied to the Minkowksi metric, the metric postulate reads: Dµηab = ´ηcbω
c
µ a´ηacω

c
µ b = ´ωµ,ba´ωµ,ab ”

0. The spin-connection is consistently an antisymmetric Lorentz tensor ωab = ´ωba such that ηab indeed
satisfies the metric postulate.
The conventional covariant derivative on a spacetime manifold is defined as ∇µV

ν ” eνaDµV
a. Written out

explicitly;
∇µV

ν = eνaDµV
a = eνaDµ(e

a
ρV

ρ) = BµV
ν + eνa(Bµe

a
ρ + ω a

µ be
b
ρ)V

ρ.

The affine connection derived from it is Γρµν = eρa(Bµe
a
ν + ωaµ be

b
ν). Using the definition of the torsion-free

spin-connection, this is seen to transform anomalously under general coordinate transformations, and reduces
to the definition of the Christoffel connection in terms of the metric [59]. We can take it as the definition of the
Christoffel connection, and rewrite it as the frame field postulate:

∇µe
a
ν = Bµe

a
ν + ωaµ be

b
ν ´ Γσµνe

a
σ = 0. (2.8)

Curvature two-form

A corresponding field strength is associated with any Yang-Mills gauge connection. In the case of the SO(D´

1, 1) local Lorentz symmetry, the field strength Rµνab is constructed from the commutator of two Lorentz-
covariant derivatives:

[Dµ, Dν ]V
a = R a

µν bV
b. (2.9)

Written in terms of the spin-connections;

Rµνab = Bµωνab ´ Bνωµab + ωµacω
c
ν b ´ ωνacω

c
µ b. (2.10)

From the antisymmetry in [µν], we can define the curvature two-form

ρab =
1

2
R ab
µν (x) dxµ ^ dxν (2.11)

, to rewrite the field strength defined above in terms of the second Cartan structure equation

dωab + ωac ^ ωcb = ρab . (2.12)

The curvature two-form is related to the Riemann tensor R ρ
µν σ = Rµνab e

aρebσ, such that

[∇µ,∇ν ]V
ρ = R ρ

µν σV
σ. (2.13)

This can readily be checked using the frame field postulate Eq 2.8, and the definition of the covariant derivative
∇µV

ν ” eνaDµV
a;

[∇µ,∇ν ]V
ρ = ∇µ(e

ρ
aDνV

a) ´ ∇ν(e
ρ
aDµV

a) = eρa[Dµ, Dν ]V
a ” eρaR

a
µν cV

c = R a
µν ce

ρ
ae
c
λV

λ.
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In the second identity, I have used the symmetry of the torsionless Christoffel symbols. Equating both defini-
tions yields the desired equivalence between the Riemann tensor and the curvature two-form.

2.2 BF formulation of JT gravity

We can now proceed to formulate 2d JT gravity in its first order formalism using the geometric structures
above. In a Euclidean setting, we define frame fields ea = eaµdx

µ that diagonalize the metric in terms of the
Euclidean metric δab:

gµν(x) = eaµ(x)δabe
b
ν(x). (2.14)

Note that in flat 2d Euclidean space, frame indices are raised and lowered by the flat Euclidean metric δab, so
there is no material difference between up and down in this context.
As a consequence of the antisymmetry of the spin connection of the internal Euclidean SO(2) » U(1) sym-
metry, they are specified by only one independent component. We write this in terms of the 2d Levi-Civita
symbol ωab = εabω, with ε01 ” 1. This, in turn, leads to a simplification of the curvature two-form in the
second Cartan structure equation Eq 2.12:

ρab = dωab + ωac ^ ωcb = dωab.

The last identity holds in 2d from the commutation of [ωµ, ων ] = 0, leading to ωac ^ ωcb = ´δabω ^ ω = 0.
We can relate this to the Riemann tensor via Eq 2.11. We also recall from Eq 1.2 that 2d spaces are maximally
symmetric Rµνρσ = R

2 (gµρgνσ ´ gµσgνρ), such that:

dωab = dωεab =
1

2
eaρe

σ
bR

ρ
µν σ(x) dx

µ ^ dxν =
R

4
eaρe

σ
b (δ

ρ
µgνσ ´ gµσδ

ρ
ν)dx

µ ^ dxν

=
R

4
(ea ^ eb ´ eb ^ ea) =

1

2
R ea ^ eb =

1

2
R e0 ^ e1 εab. (2.15)

Furthermore, we still have the appropriate volume form Eq 2.4;

e0 ^ e1 =
?
gd2x. (2.16)

This allows us to identify dω = 1
2R

?
gd2x, and to rewrite the first-order bulk JT action over a compact

(BM = 0) manifold M (c.f. Eq 1.48) entirely in terms of frame fields and spin connections;

1

4

ż

M
d2x

?
gφ(R+ 2) »

1

2

ż

M
[φ(dω + e0 ^ e1) ´ φa(de

a + εabω ^ eb)] . (2.17)

The last terms are sums over so(2) » u(1) Lorentz indices a = 0, 1, where the scalar fields φa act as Lagrange
multipliers enforcing the no-torsion constraint. We can combine the scalar fields φa, φ, and the gauge fields
ea, ω into sl(2,R) triplets according to:

BI = (´φa, φ), AI = (ea, ω), B = BIPI , A = AIPI (2.18)
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, where I use boldface letters throughout to distinguish between the gauge field components, and a vector in
the algebra. Note that the indices of BI in the definition are lowered, while those of AI are raised. P0, P1, P2

are the generators satisfying the sl(2,R) algebra;

[PI , PJ ] = εIJKP
K , Tr(PIPJ) =

1

2
ηIJ . (2.19)

, where ε012 ” ´1, and I, J,K P t0, 1, 2u. ηIJ = diag(1, 1,´1) is the Cartan-Killing metric deduced from
the normalization of the generators PI . The algebra indices are raised and lowered with respect to this metric.
Explicitly, the algebra reads:

[P0, P1] = P2, [P0, P2] = P1, [P1, P2] = ´P0. (2.20)

One can relate this basis to the more familiar Cartan-Weyl basis of the sl(2,R) algebra for generatorsH,E´, E+

P0 = ´H, P1 =
1

2
(E´ + E+), P2 =

1

2
(E´ ´ E+). (2.21)

, satisfying the known sl(2,R) algebra [77]:

[H,E˘] = ˘E˘, [E+, E´] = 2H. (2.22)

A particular realization of the algebra above is by the traceless 2 ˆ 2-matrices:

P0 =
1

2

(
´1 0

0 1

)
, P1 =

1

2

(
0 1

1 0

)
, P2 =

1

2

(
0 ´1

1 0

)
(2.23)

H =
1

2

(
1 0

0 ´1

)
, E´ =

(
0 0

1 0

)
, E+ =

(
0 1

0 0

)
. (2.24)

We readily check that they satisfy both the algebra and the normalization condition. We will interpret the
one-form A triplet as the sl(2,R) gauge connection, and the B zero-form as the triplet containing the auxiliary
fields, along the lines of [78] [79]. With any gauge connection, we associate a field strength according to
F = dA + A ^ A. Written out in components using the algebra commutation relations yields:

FCPC = dACPC +
1

2
AA ^AB[PA, PB] = dACPC +

1

2
AA ^ABεABCP

C

Ø FC = dAC +
1

2
AA ^ABεABDη

DC . (2.25)

Explicitly distinguishing the a and 2-components (taking in mind εab2 = ´εab from the definition ε012 = ´1)
yields:

F a = dAa +
1

2
ε a
AB AA ^AB = dea +

1

2
ε a
2b ω ^ eb +

1

2
ε a
b2 eb ^ ω = dea + εabω ^ eb,

F 2 = dA2 ´
1

2
εAB2A

A ^AB = dω +
1

2
εabe

a ^ eb = dω + e0 ^ e1.

(2.26)
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Using the normalization of the generators, we take the inner product between B and F:

Tr(BF) = 1

2
BAFAηAB =

1

2
BaF a ´

1

2
B2F 2

= ´
1

2
φa(de

a + εabω ^ eb) +
1

2
φ(dω + e0 ^ e1)

, with B2 = ´φ raised by the Cartan-Killing metric ηAB . The RHS exactly coincides with the first order JT
action Eq 2.17. It is thus possible to write the bulk JT action in terms of a BF (Background Field) gauge theory
over a topologically trivial 2d manifold M:

1

4

ż

M
d2x

?
gφ(R+ 2) =

ż

M
Tr(BF) . (2.27)

Since the volume form of the BF action does not explicitly depend on the metric, the observables are topologi-
cal in the bulk. As in Chern-Simons theory for example [80], these are topological knot observables, including
Wilson loops and surfaces associated to both fields A and B. Hence, the Hamiltonian of BF theory only has
support on the boundary, where all interesting dynamics take place. Note that this is of course very similar to
the second order JT formulation, which fixes the metric in the bulk, and reduces the dynamics to the boundary
reparametrization modes.

An often underappreciated derivation to establish the on-shell equivalence between an sl(2,R) BF theory and
the bulk JT action, is to check that the equations of motion coincide with those obtained in section 1.4. In
particular, variation with respect to the auxiliary B-fields readily imposes the connections to be flat F = 0.
Unpacking the different components Eq 2.26, F a = 0 imposes the no-torsion constraints, while F 2 forces the
manifold to have negative curvature throughout R = ´2, using Eqs 2.15, 2.16.
Variation with respect to the gauge connections on the other hand should reproduce the vacuum dilaton equa-
tions of motion Eq 1.62:
ż

M
Tr((BδF) =

ż

M
Tr(B(dδA + A ^ δA + δA ^ A))

= ´

ż

M
Tr(dB ^ δA ´ BA ^ δA ´ BδA ^ A) +

ż

BM
Tr(BδA|B)

= ´

ż

M
Tr(dB ^ δA ´ BA ^ δA ´ δA ^ AB))

= ´
1

2

ż

M
Tr((BµBδAν ´ BνBδAµ ´ BAµδAν + BAνδAµ ´ δAµAνB + δAνAµB)dxµ ^ dxν)

= ´
1

2

ż

M
Tr((BµB + AµB ´ BAµ)δAνdx

µ ^ dxν + . . . ).

(2.28)
In the first line, I have used the commutativity of δA^A = A^δA, derived from δA^A ” 1

2 [δAν ,Aµ]dx
ν ^

dxµ = ´1
2 [δAν ,Aµ]dx

µ ^ dxν = 1
2 [Aµ, δAν ]dx

µ ^ dxν = A ^ δA. In the second line, I have used partial
integration, keeping in mind that the Leibnitz product rule of the exterior derivative between a wedge product
of a p- and q-form is modified to d(ω(p) ^ ω(q)) = dω(p) ^ ω(q) + (´)pω(p) ^ dω(q). In this case, B is a zero-
form, such that the standard Leibnitz rule applies. Partial integration yields a boundary term, which vanishes
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on compact surfaces BM = 0. When placing the theory on a disk with BM ‰ 0, we can neglect it for now by
imposing Dirichlet boundary conditions on the gauge fields δAτ = 0. In the third line, I have used the cyclicity
of the trace in the last term. In the fourth line, I have written out the wedge product explicitly, keeping only the
term corresponding to δAν in the last.
The equations of motion corresponding to variation of δAν are simply

DµB = BµB + [Aµ,B] = 0. (2.29)

These can be unpacked by writing out the components explicitly B = BIPI , A = AIPI , where BI =

BJη
IJ = (´φa,´φ), and AI ” (ea, ω),

Bµ(´φP2 ´ φ0P0 ´ φ1P1) + [e0P0 + e1P1 + ωP2,´φP2 ´ φ0P0 ´ φ1P1] = 0.

Using the sl(2,R) algebra Eq 2.20, the equations corresponding to the P2, P0, P1 components are respectively:

Bµφ = e1µφ
0 ´ e0µφ

1 (2.30)

Bµφ
0 = e1µφ´ ωµφ

1 (2.31)

Bµφ
1 = ´e0µφ+ ωµφ

0. (2.32)

We can now take an additional Bν derivative of the first equation

BνBµφ = Bνe
1
µφ

0 + e1µBνφ
0 ´ Bνe

0
µφ

1 ´ e0µBνφ
1. (2.33)

Subtracting ΓανµBαφ = Γανµ(e
1
αφ

0 ´ e0αφ
1), we can write the LHS in terms of a covariant derivative

∇νBµφ = φ0(Bνe
1
µ ´ Γανµe

1
α) ´ φ1(Bνe

0
µ ´ Γανµe

0
α) + e1µBνφ

0 ´ e0µBνφ
1. (2.34)

Using Eqs 2.31, 2.32, we rewrite the last two terms:

∇νBµφ = φ0(Bνe
1
µ ´ Γανµe

1
α) ´ φ1(Bνe

0
µ ´ Γανµe

0
α) + e1µe

1
νφ+ e0µe

0
νφ´ e1µωνφ

1 ´ e0µωνφ
0. (2.35)

From the definition of the metric tensor, we write gµν = eaµe
b
νδab = e0µe

0
ν + e1µe

1
ν . The first two terms contain

respectively Bνe
1
µ ´ Γανµe

1
α ´ ωνe

0
µ, and Bνe

0
µ ´ Γανµe

0
α + ωνe

1
µ. Using the antisymmetry property in 2d ωab =

ωεab, these two terms vanish from the frame field postulate Eq 2.8: ∇µe
a
ν = Bµe

a
ν + ωaµ be

b
ν ´ Γσµνe

a
σ = 0.

Therefore, the equations of motion obtained from varying with respect to the gauge connections yield:

∇ν∇µφ = gµνφ (2.36)

, where I have used that any covariant derivative on a scalar field reduces to the ordinary partial derivative
∇ν∇µφ = ∇νBµφ.
We can massage the equation of motion of the dilaton Eq 1.62, obtained from varying the second order JT
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action with respect to the metric, to this form by contracting with the inverse metric gµν (and gµνgµν = 2):

gµν(∇µ∇νφ´ gµν∇2φ+ φgµν) = 0

Ø ´∇2φ+ 2φ = 0.

Plugging this form of the Laplace-Beltrami operator back in the original equation of motion, reduces the latter
to

∇µ∇νφ´ gµνφ = 0 (2.37)

, which exactly coincides with the equation of motion obtained in the BF theory above.
These basic facts establish a complete on-shell equivalence between the bulk JT action in the second order
metric formulation, and a topological sl(2,R) BF theory in the first order form. Note that many different
authors can use different isomorphisms of the sl(2,R) algebra and the explicit form of the triplet fields. In
particular, we have used some slight modifications of the conventions compared to [40].
Infinitesimal gauge transformations parameterized by a parameter Θ = ΘIJI act on the corresponding gauge
connections as transformations in the fibre bundle of sl(2,R): A Ñ A + dΘ+ [A,Θ] = A +DΘ, while they
act on B as an element of the adjoint representation B Ñ B + [B,Θ]. When the gauge connection is flat with
F = 0, infinitesimal gauge transformation are related to diffeomorphisms generated by a vector fields ξµ, that
act on the metric as δgµν = ∇µξν +∇νξµ as Θa „ eaµ(x)ξ

µ(x), Θ0 „ ωµ(x)ξ
µ(x) [23].

Note that our conventions fix the form of the covariant derivative, introduced in Eq 2.29, symbolically as:

D = d+ A. (2.38)

In local coordinates, it acts on adjoint vectors asDµB = BµB+[Aµ,B]. This ensures that e.g. the combination
DµB transforms in the adjoint representation; δ(DµB) = [DµB,Θ]. Indeed,

δ(DµB) ” δ(BµB + [Aµ,B]) = BµδB + [δAµ,B] + [Aµ, δB]

= [BµB,Θ] + [B, BµΘ] + [BµΘ,B] + [[Aµ,Θ],B] + [Aµ, δB]

= [BµB,Θ] + [Aµ, [Θ,B]] ´ [Θ, [Aµ,B]] + [Aµ, δB].

To obtain the last line, I have used the Jacobi identity, written conveniently as [[Aµ,Θ],B] = [Aµ, [Θ,B]] ´

[Θ, [Aµ,B]]. Using again the form of the transformation δB = [B,Θ] yields

δ(DµB) = [BµB,Θ] + [[Aµ,B],Θ] ´ [Aµ, δB] + [Aµ, δB] = [DµB,Θ].

This allows to express the field strength as the covariant derivative acting on the gauge field A;

F = DA = dA + A ^ A (2.39)

, or in local coordinates F = 1
2Fµνdxµ^dxν as the commutator of two covariant derivatives acting on a field ψ

in the fundamental representation (for which the covariant derivative acts on the field as Dµψ = Bµψ +Aµψ);

Fµνψ = [Dµ, Dν ]ψ = (BµAν ´ BνAµ + [Aµ,Aν ])ψ. (2.40)
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2.2.1 General dilaton-gravity models

It is important to realize that the BF formalism of JT gravity is only one datapoint of a more general equiva-
lence between general 2d dilaton-gravity models, and topological gauge theories. The latter are the Poisson-
sigma models, studied e.g. in [81] [82]. The Poisson sigma models, like the non-linear 2d sigma models,
are defined on an ambient two-dimensional manifold M , whose target space N is endowed with a set of
bosonic coordinates BI . In this case, the target space is a Poisson manifold, equipped with a Poisson struc-
ture P = P IJ d

dBI ^ d
dBJ , where P IJ are anticommuting bilinear Poisson structure constants that satisfy the

Jacobi identity and generate a Poisson bracket on N : tf, gu = P IJ Bf
BBI

Bg
BBJ [83]. We have seen that the most

general model of 2d dilaton-gravity Eq 1.46 is parameterized by a single dilaton potential U(φ). In Euclidean
signature,

I = ´
1

16πGN

ż

M
d2x

?
g(φR ´ U(φ)). (2.41)

Again using the basic relations Eqs 2.15, 2.16, and introducing Lagrange multipliers φa enforcing the no-
torsion constraint, we can repeat the steps leading up to Eq 2.17, to obtain the dilaton-gravity action in its first
order formulation:

1

4

ż

M
d2x

?
g(φR ´ U(φ)) »

1

2

ż

M
[

(
φdω ´

U(φ)

2
e0 ^ e1

)
´ φa(de

a + εabω ^ eb)]. (2.42)

We again introduce a triplet of gauge connections AI = (ea, ω) and a triplet of auxiliary fields BI = (´φa, φ)

(I = 0, 1, 2 and a = 0, 1), to rewrite the action in terms of the antisymmetric Poisson brackets tBI , BJuP ”

PIJ(B). The form of these triplets coincides with the choice made for pure JT gravity above. Since the Poisson
brackets satisfy the Jacobi identity BLP

[IJ |PL|K] = 0, they span an algebra called the Poisson sigma algebra.
We can rewrite the first order action as [25]:

1

4

ż

M
d2x

?
gφ(R ´ U(φ)) »

1

2

ż

M

(
AI ^ dBI +

1

2
PIJ(B) AI ^AJ

)
(2.43)

, where the Poisson brackets are defined as

P01 = tB0, B1uP = ´
U(B2)

2
, Pa2 = tBa, B2uP = εabBb. (2.44)

This can readily be checked by inserting the proper values of BI , AI , and the explicit antisymmetric Poisson
bracket relations:

ż

M

(
A2 ^ dB2 +Aa ^ dBa +

1

2
P01A

0 ^A1 +
1

2
P10A

1 ^A0 +
1

2
Pa2A

a ^A2 +
1

2
P2aA

2 ^Aa
)

=

ż

M

(
dA2B2 + dAaBa + P01A

0 ^A1 + Pa2A
a ^A2

)
=

ż

M

(
dωφ´ deaφa ´

U(φ)

2
e0 ^ e1 ´ εabφ

bea ^ ω

)
=

ż

M

(
dωφ´ deaφa ´

U(φ)

2
e0 ^ e1 ´ εabφ

aω ^ eb
)
.
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This form coincides with Eq 2.42. In the second line, I have used the antisymmetry of both the Poisson
brackets and wedge product, and have implemented a partial integration, taking into account that the AI gauge
connections are one-forms in the general Leibnitz rule d(ω(p) ^ ω(q)) = dω(p) ^ ω(q) + (´)pω(p) ^ dω(q).
We note that in the case of JT gravity, the form of the dilaton potential U(φ) = ´2φ reduces the non-linear
Poisson sigma algebra Eq 2.44 exactly to the sl(2,R) algebra of Eq 2.20. In this case, we can expend the
triplets into generators of the sl(2,R) algebra B = BIJ

I , A = AIJI , normalized in the same way Tr(JIJI) =
δ J
I /2. Since the algebra is in this case just linear, we define a field strength and expand it into generators

F = dA + A ^ A = dA + 1
2ε

K
IJ PKA

I ^ AJ . Partially integrating the first term in the Poisson sigma action
Eq 2.43 immediately recovers the BF action:

I „
1

2

ż

M
BIF

I =

ż

M
Tr(BF). (2.45)

2.2.2 Quantum BF theory

Although the similarity between topological gauge theories and gravity allows to gain deeper structural under-
standing on the quantization of boundary correlators, there exist profound structural differences between the
full non-perturbative solutions of gravity and gauge theory. These subtleties were already noted in the context
of 3d gravity [84]. Therefore, before I go over to the full quantum solutions, I list some of these subtleties here
already.
First of all, B acts as a Lagrange multiplier in the BF path integral, enforcing the constraint F = 0 also off-shell.
The resulting path integral consequently calculates the volume of the moduli space of flat connections. Within
the moduli space, regular gauge connections can correspond to singular geometries in the gravity theory. For
example, A = 0 corresponds to a non-invertible metric in 3d Chern-Simons theory. One should therefore
restrict the integration space to smooth geometries only. In 2d SL(2,R) gravity, it turns out that the subset
of smooth geometries corresponds to the Teichmüller subspace T (Σ) of connected hyperbolic components in
the moduli space of flat gauge connections on any given Riemann surface Σ. We will see that this effectively
restricts the description of the full SL(2,R) gauge group to the subsemigroup SL+(2,R).
Furthermore, gravity contains large diffeomorphisms that are invisible within the gauge transformations of the
BF description. These are the diffeomorphisms of the modular group SL(2,Z) of the torus [52]. In general,
we must quotient the Teichmüller space by the mapping class group MCG(Σ) of discrete transformations
corresponding to large diffeomorphisms.
It is also not a priori clear that the natural measure corresponding to BF theory translates to the measure that
we have found earlier to describe the Schwarzian path integral. However, we will show along the lines of [30]
that the natural symplectic measure of BF theory reproduces the measure at the asymptotic boundary encoding
the Schwarzian dynamics. This general definition furthermore reproduces the Weil-Peterson measure on hy-
perbolic surfaces.
Finally, one should realize that the gravitational path integral naturally contains a sum over spacetime topolo-
gies, consistent with the prescribed boundary conditions. For a predefined number of boundaries, this is a
genus expansion of non-trivial Euclidean wormholes. In contrast, gauge theory is defined on a fixed manifold
with a predefined genus. For example on a 2d Riemann surface, the constrained path integral of pure Einstein
gravity is restricted to sum over metric tensors with fixed Euler characteristic determined by the Gauss-Bonnet
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theorem.
The higher topological contributions are non-perturbative corrections to the disk correlation functions obtained
in the gauge theory, and should be added by hand. These important effects give rise to the notion of ensemble
averaging [30], and a unitary Page curve in the black hole evaporation process [35] [34].

2.3 Recovering the Schwarzian boundary action

2.3.1 Boundary conditions of the BF action

One of the attractive features of the gauge BF formulation of JT gravity, is the ability to derive the symplectic
form of the boundary Schwarzian reparametrization modes directly from the bulk theory. The symplectic form
was derived along the lines of [20] in Eq C.15 as the natural symplectic form on the space of coadjoint orbits
of the Virasoro algebra. Here, I will review the argument of [30], including the proper boundary conditions to
obtain the Schwarzian action in holography.
Since the bulk BF action is topological, we need to include a boundary term that correctly reproduces the
Schwarzian boundary action of Eq 1.93. This action is readily obtained in the second order form from the total
JT action upon including the natural GHY boundary term. The required boundary conditions are isometric
boundary lengths for the induced boundary metric, and a diverging dilaton backreaction profile:

gττ =
1

ε2
, φ =

a

2ε
, for ε Ñ 0. (2.46)

To study JT gravity on a disk in the first order form, we need to add an appropriate boundary action. Restoring
the prefactor in Eq 2.27, one usually studies:

IJT = ´
1

4πG

ż

M
Tr(BF) + 1

8πG

ż

BM
Tr(BA). (2.47)

One can also motivate the presence of this boundary term by realizing that we get precisely this term when
dimensionally reducing 3d Chern-Simons theory to the 2d BF model [25]. The analogous boundary condition
on the auxiliary field to Eq 2.46 would be to fix (γ = a

2 )

B|B = γA|B (2.48)

, since the metric along the boundary gττ is second order in the frame fields comprising A „ 1/ε. In most
cases, I will indicate the boundary value of the gauge triplet as the one-form A|B = Aτdτ .
Imposing this boundary condition makes for a well-defined variational problem, since the form of the boundary
term compensates the boundary term present in the variation of the bulk action (Eq 2.28). In that case, the
boundary term turned up due to partial integration in the variations of the bulk gauge fields. With the addition
of the boundary term in Eq 2.47, varying both A and B leads to:

δI 9 ´

ż

M
(bulk e.o.m.) ´

1

2

ż

BM
Tr(BδA|B ´ AδB|B). (2.49)
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Imposing the boundary condition Eq 2.48 on the physical boundary fields indeed leads to a vanishing boundary
term. In this sense, the boundary term can also be understood as the natural GHY boundary term in the total
BF action on non-compact surfaces (BM ‰ 0) that changes the boundary condition from Dirichlet to Eq 2.48.
We might rescale B Ñ 4πGB to obtain a more natural BF action without loss of generality;

IBF » ´

ż

M
Tr(BF) + 1

2

ż

BM
Tr(BA) . (2.50)

The rescaled boundary condition Eq 2.48 then becomes:

B|B =
γ

4πG
A|B = 2CA|B ” A|B (2.51)

, where C = a
16πGN

is defined as in chapter 1 (c.f. Eq 1.93). In the last identity, I have defined C ” 1/2,
using conventional notation of e.g. [21]. This is a choice which will simplify a lot of the final expressions.
In this section, I leave it explicit though, to establish full equivalence with earlier notations of the Schwarzian
boundary action. On shell, the variation with respect to B forces F = 0, and the bulk term vanishes. Inserting
the boundary conditions above sets

IJT » C

ż

BM
Tr(A|2B). (2.52)

We now aim to reproduce the Schwarzian boundary action, which is most convenient in Rindler coordinates Eq
1.61. Properly rescaling the periodic time coordinate, and switching to Euclidean signature θ = it, the thermal
patch is given by

ds2 = dr2 + sinh2 r dθ2. (2.53)

Here, we interpret θ(τ) as the temporal black hole coordinate labeling the reparametrization modes in terms
of the proper time τ . The spatial limit ε Ñ 0 is equivalent to r going to infinity. In this limit, we approximate
sinh2 r Ñ 1

4e
2r + . . . . Denoting the first order correction in τ as S(τ), we approximate the metric along the

boundary as:

ds2 = dr2 +

(
1

4
e2r ´ S(τ) + . . .

)
dτ2. (2.54)

To first order in large r Ñ 8, the Ricci scalar is indeed R = ´2. Calculating the extrinsic trace of a constant
r hypersurface yields

K =
e2r

e2r ´ 4S(τ)
Ñ 1 + 4e´2rS(τ) + . . . (2.55)

S(τ) can therefore be interpreted as a function that captures the leading order correction away from AdS2

in the GHY boundary term of Eq 1.48. However, we have not yet shown that it actually coincides with the
Schwarzian derivative until we know its transformation behaviour under arbitrary reparametrizations.
Now, we would like to translate this dynamics to the BF theory. This requires an additional constraint on the
asymptotic gauge fields A|B in order to recover the asymptotic behavior of the metric Eq 2.54 in its second-
order form. First of all, the frame fields of the diagonal asymptotic metric Eq 2.54 can be readily read off:

e0 = dr, e1 =

(
1

2
er ´ S(τ)e´r +O(e´2r)

)
dτ. (2.56)



2.3. RECOVERING THE SCHWARZIAN BOUNDARY ACTION 63

The corresponding spin connections are found from the no-torsion constraint dea + ωab ^ eb = 0, which in
local coordinates reads Bµe

a
ν dx

µ ^ dxν + ωaµ be
b
ν dx

µ ^ dxν = 0. We check that

ω = ´

(
1

2
er + S(τ)e´r

)
dτ (2.57)

satisfies these equations. a = 0 is trivially satisfied for ε01 = 1 with e1r = 0 and ωr = 0. For a = 1, we verify
(ε10 = ´1)

Br

(
1

2
er ´ S(τ)e´r

)
dr ^ dτ +

(
1

2
er + S(τ)e´r

)
dτ ^ dr = 0.

These one-forms form an sl(2,R) triplet A = AIPI , where PI (I = 0, 1, 2) are the generators satisfying the
sl(2,R) algebra Eq 2.20 and AI = (e0, e1, ω) as before. Using the fundamental representation matrices Eq
2.23, the asymptotic behaviour of the gauge connection is given by

A =
1

2

(
´e0 e1 ´ ω

e1 + ω e0

)
=
dr

2

(
´1 0

0 1

)
+
dτ

2

(
0 er

´2S(τ)e´r 0

)
. (2.58)

The last term defines the leading order boundary action in the asymptotic region r Ñ 8. Fixing the asymptotic
form of the gauge fields will lead to the coset boundary conditions later. Plugging in this explicit form in the
BF boundary action Eq 2.52, we obtain:

I = C

ż

BM
Tr(A2) = ´C

ż

dτS(τ). (2.59)

Therefore, identifying the leading asymptotic S(τ) correction with the Schwarzian derivative immediately
yields the identification of the BF boundary term with the Schwarzian theory. This identification follows from
studying its behaviour under reparameterizations.
The general diffeomporhisms of the metric tensor are equivalent to gauge transformations on the frame fields
of the sl(2,R)-triplet A. Parameterized by an infinitesimal parameter Θ(τ), these transform in the fibre bundle
under local transformations as:

A Ñ A + dΘ+ [A,Θ]. (2.60)

The exterior derivative acts only on the proper boundary τ -coordinate. Since the gauge transformations reach
the boundary, they corresponds to real physical symmetries of the action. The constrained gauge transforma-
tions should still obey the asymptotic boundary condition on A (Eq 2.58) for large r Ñ 8. It can readily be
checked using e.g. Mathematica, that the most general gauge transformations which leave the coset boundary
condition invariant, are parameterized by [30]:

Θ(τ, r) =

(
1
2ε

1(τ) 1
2e
rε(τ)

´e´r(S(τ)ε(τ) + ε2(τ)) ´1
2ε

1(τ)

)
(2.61)

, in terms of an infinitesimal degree of freedom ε(τ). This transformation preserves the asymptotic form Eq
2.54, but induces a transformation of the first order correction:

S(τ) Ñ S(τ) + ε3(τ) + ε(τ)S1(τ) + 2ε1(τ)S(τ). (2.62)
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This is the same transformation law of the Schwarzian derivative
!

tan f(τ)
2 , τ

)

under f(τ) Ñ f(τ + ε(τ)),
thereby confirming the identification:

S(τ) ”

"

tan f(τ)
2

, τ

*

. (2.63)

2.3.2 Deriving the symplectic form in the BF perspective

It is interesting that the construction above allows us to derive the symplectic form of the coadjoint orbits of
the Virasoro algebra Eq C.15 directly from the bulk BF perspective [30].

Path integrating out B constrains the integration space to flat F = 0 connections only, which admit the natural
antisymmetric symplectic form [30] [85]:

ω(δ1A, δ2A) = 2

ż

M
Tr(δ1A ^ δ2A) (2.64)

, where δ1A, δ2A are one-forms on the tangent space of gauge fields that parameterize infinitesimal variations
in A. The tangent space is defined by infinitesimal gauge fields δA, such that A+δA is still flat to linear order;

d(δA) + A ^ δA + δA ^ A = 0. (2.65)

Up to possible boundary terms, the symplectic measure is naturally invariant under infinitesimal gauge trans-
formations labeled by Θ. These act on the space of one-forms as δ2A Ñ δ2A + dΘ + [A,Θ]. Up to possible
boundary terms, we have indeed;

2

ż

Tr(δ1A ^ (dΘ+ [A,Θ])) = 2

ż

Tr(δ1(dA)Θ + δ1A ^ AΘ ´ δ1A ^ ΘA)

= 2

ż

Tr(δ1(dA)Θ + δ1A ^ AΘ+ A ^ δ1AΘ) = 0.

This vanishes from the definition of the tangent space of flat gauge connections. In the last term, I have
used cyclicity of the trace: Tr(δ1A ^ ΘA) = Tr(δ1AµΘAν) dx

µ ^ dxν = Tr(Aνδ1AµΘ) dxµ ^ dxν =

´Tr(Aνδ1AµΘ) dxν ^ dxµ = ´Tr(A ^ δ1AΘ).
It is also closed on the tangent space of flat gauge connections, where using the general Leibnitz rule yields:

dω = 2

ż

Tr(δ1dA ^ δ2A ´ δ1A ^ δ2dA) = 2

ż

Tr(δ1dA ^ δ2A ´ δ1dA ^ δ2A) = 0.

In the second line, I have performed a partial integration, again using the generalized Leibnitz rule on forms.

For flat gauge connections, we can start from A = 0, and take the most general tangent element to be a pure
gauge transformation that has the limiting form Eq 2.61. The tangent space therefore consists of pure gauge
fields, labeled by
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δiA = dΘi + [A,Θi]. We can work out the symplectic form in this case:

ż

M
Tr(δ1A ^ δ2A) =

ż

M
Tr((dΘ1 + [A,Θ1]) ^ (dΘ2 + [A,Θ2]))

=

ż

M
Tr(dΘ1 ^ (dΘ2 + [A,Θ2]) + [A,Θ1] ^ (dΘ2 + [A,Θ2]))

=

ż

BM
Tr(Θ1 ^ (dΘ2 + [A,Θ2]))

+

ż

M
Tr(´Θ1d[A,Θ2] + [A,Θ1] ^ dΘ2 + [A,Θ1] ^ [A,Θ2]).

Working out the last term explicitly:

Tr([A,Θ1] ^ [A,Θ2]) = Tr(((((((AΘ1 ^ AΘ2 ´ Θ1A ^ AΘ2 ´ AΘ1 ^ Θ2A +((((((
Θ1A ^ Θ2A)

= ´Tr(Θ1A ^ AΘ2 + AΘ1 ^ Θ2A) (2.66)

, where Tr(AΘ1 ^ AΘ2 + Θ1A ^ Θ2A) = 0, since the last term can be rewritten as Tr(Θ1A ^ Θ2A) =

Tr(Θ1AµΘ2Aν)dx
µ ^ dxν = Tr(AνΘ1AµΘ2)dx

µ ^ dxν = ´Tr(AΘ1 ^ AΘ2).
Furthermore d[A,Θ2] = [dA,Θ2] ´ [A^, dΘ2], with ´Tr(Θ1[dA,Θ2]) = ´Tr(Θ1dAΘ2 ´ Θ1Θ2dA) =

´Tr(Θ2Θ1dA ´ Θ1Θ2dA). Using F = dA + A ^ A = 0,

´Tr(Θ1[dA,Θ2]) = Tr(Θ2Θ1A ^ A ´ Θ1Θ2A ^ A).

This term cancels with Eq 2.66

´Tr(Θ1[dA,Θ2])+Tr([A,Θ1]^[A,Θ2]) = Tr(((((((
Θ2Θ1A ^ A´((((((

Θ1Θ2A ^ A)´Tr(((((((
Θ1A ^ AΘ2+((((((AΘ1 ^ Θ2A).

Using the same techniques, we work out

Tr(Θ1[A^, dΘ2]) = Tr(((((((Θ1A ^ dΘ2 +((((((Θ1dΘ2 ^ A)

Tr([A,Θ1] ^ dΘ2) = Tr(((((((AΘ1 ^ dΘ2 ´((((((Θ1A ^ dΘ2).
(2.67)

The indicated term vanishes upon adding both terms in the total symplectic form. Therefore, we see that all
bulk terms mutually cancel, and only the boundary term due to partial integration survives,

ω(δ1A, δ2A) = 2

ż

M
Tr(δ1A ^ δ2A) = 2

ż

BM
Tr(Θ1(dΘ2 + [A,Θ2])). (2.68)

Inserting the asymptotic coset behaviour of Aτ Eq 2.58 and the restricted gauge parameter Eq 2.61, it is readily
checked with Mathematica that the symplectic measure boils down to:

ω(δ1A, δ2A) = ´

ż β

0
dτ
[
2ε1(τ)ε

1
2(τ)S(τ) + ε1(τ)ε2(τ)S

1(τ) + ε1(τ)ε
3
2 (τ)

]
=

ż β

0
dτ
[
ε1
1(τ)ε

2
2(τ) ´ S(τ)

(
ε1(τ)ε

1
2(τ) ´ ε1

1(τ)ε2(τ)
)]

(2.69)

, assuming that all functions are periodic on [0, β]. Introducing an abstract exterior derivative that works only
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the ε(τ) fields and that formally commutes with Bτ , this is written more suggestively as:

ω(δ1A, δ2A) =
1

2

ż β

0
dτ
(
dε1(τ) ^ dε2(τ) ´ 2S(τ)dε(τ) ^ dε1(τ)

)
. (2.70)

This is the same symplectic measure that was derived in Eq C.15 in the context of the coadjoint orbits of the
Virasoro algebra.

2.4 Exact solutions of 2d Yang-Mills theory

It is well known that generic SU(N) Yang-Mills (YM) theories might be dual to string theories in the limit
of large N . In fact, the very genesis of string theory was to formulate a theory of the strong interaction. Un-
fortunately, it is in general difficult to write down the correct string analogue of YM in anything other than
a phenomenological approach. The motivations on how to proceed are that the weak coupling, large N di-
agrammatic expansion of ’t Hooft planar diagrams connects with large N matrix theories of string theory.
Furthermore, the natural variables in YM are Wilson loops of holonomy variables. These Wilson loops create
rings of glue that make up the Hilbert space of string states. It is in this discussion that 2d Yang-Mills materi-
alized, where the loop variables can be defined precisely and exact expressions of the amplitudes exist.
In the context of JT gravity, we will take inspiration of 2d YM to calculate the exact quantum amplitudes, and
identify JT gravity as a constrained non-compact generalization of the well known story for 2d YM.

2.4.1 YM2 action and sDiff invariance

For now, let us consider a compact simple Lie group G (these may be the classical Lie groups (S)U(N),
(S)O(N) orUSp(2N)), and its associated Lie algebra g. For simple Lie algebras, the generators can be chosen
to be trace orthogonal with respect to the Cartan-Killing metric κ(Ta, Tb)/2 = κab/2 = Tr(TaTb) = Nδab.
N denotes an a priori fixed normalization constant. The classical Yang-Mills action on a two-dimensional
manifold M equipped with metric gµν reads, in local coordinates:

I[A] = ´
1

4e2

ż

M
d2x

?
g Tr(FµνFµν). (2.71)

For the compact groups, the invariant quadratic form Tr can simply be taken as the trace in the fundamental
representation of G. F is the curvature two-form associated with the gauge field A. These fields reside in the
algebra. Introducing a Hodge star operation acting on the frame fields as (p+ q = D):

˚ea1 ^ . . . eap ”
1

q!
eb1 ^ ¨ ¨ ¨ ^ ebqε

a1...ap

b1...bq
(2.72)
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induces a duality transformation between a p-form ω(p) = 1
p!ωa1...ap

ea1 ^ ¨ ¨ ¨ ^ eap and a q-form Ω(q) =
1
q!Ωb1...bqe

b1 ^ . . . ebq as Ω(q) = ˚ω(p), where the frame field components transform as:

Ωb1...bq = (˚ω)b1...bq =
1

p!
ε

a1...ap

b1...bq
ωa1...ap

. (2.73)

For Euclidean manifolds, this operation satisfies the important involutive property2 ˚( ˚ω(p)) = (´)pqω(p).
This means that for D = 2, the Hodge star transforms a 2-form into a 0-form, whose action is involutive
(˚˚ = 1). The definition implies that the star operation on 1 is:

˚1 =
1

D!
εa1...aD

ea1 ^ ¨ ¨ ¨ ^ eaD = e0 ^ ¨ ¨ ¨ ^ eD =
?
gdDx. (2.74)

Using the identities Eq 2.3, one can readily translate the star duality transformation to the coordinate basis
˚(dxµ1 ^ ¨ ¨ ¨ ^ dxµp) = 1

q!eg
µ1ρ1 . . . gµpρpdxν1 ^ ¨ ¨ ¨ ^ dxνqεν1...νqρ1...ρp , acting on the components as:

( ˚ω)µ1...µq
=

1

p!
eεµ1...µqρ1...ρpg

ν1ρ1 . . . gνpρpων1...νp . (2.75)

Furthermore, using eb1 ^ ¨ ¨ ¨ ^ ebq ^ ec1 ^ ¨ ¨ ¨ ^ ecp = εb1...bqc1...cp
?
gdDx, we have (see footnote 2):

ż

˚ω(p) ^ ω(p) =

ż

dDx
?
g

(p!)2q!
ε

a1...ap

b1...bq
εb1...bq c1...cpωa1...ap

ωc1...cp =
1

p!

ż

dDx
?
g ωµ1...µp

ωµ1...µp . (2.76)

Therefore, the 2d Yang-Mills action (YM2) may be written more conveniently as:

I[A] = ´
1

2e2

ż

M
Tr(˚F ^ F ) . (2.77)

Using ˚1 =
?
gd2x, we write the top-form F = 1

2Fµνdx
µ ^ dxν in D = 2 in terms of a scalar zero-form f

Fµν ” ( ˚f)µν =
?
gεµνf (2.78)

, allowing us to write F = 1
2Fµνdx

µ ^ dxν as F = µf , where µ ”
?
gd2x is the canonical volume form.

Using the involutive property of the Hodge star on two-forms, the latter can be inverted to:

F = µf Ø f = ˚F. (2.79)

The action Eq 2.77 may therefore be rewritten as [45]:

I[A] = ´
1

2e2

ż

M
µ Tr(f2). (2.80)

We see that the action only depends on the metric through the volume element µ. The gauge symmetry
is augmented to the group of area-preserving diffeomorphisms sDiff(M). This makes it almost generally

2Using the generalized Levi-Civita identity in Euclidean signature εa1...apb1...bq ε
a1...apc1...cq = p!q!δ

c1...cq
b1...bq

, with δ
c1...cq
b1...bq

the antisymmetric

q-index Kronecker Kronecker delta, defined as δ
c1...cq
b1...bq

” δ
[c1
b1

. . . δ
cq ]

bq
, where antisymmetrization with weight one is understood.
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covariant, and makes the theory almost topological. This will be exact in the limit of vanishing coupling
constant e. To see this, we write YM2 in terms of a topological BF gauge theory, in the presence of a defect:

I[A,B] = ´

ż

M
Tr(BF ) +

e2

2

ż

M
µTr(B2) (2.81)

, whereB is a field in algebra g. Using the on-shell equations of motion of the background fieldB (F = e2µB)
in the action, yields again the YM2 action,

I[A,B] = ´
1

2

ż

Tr
(
F 2

e2µ

)
= ´

1

2e2

ż

µTr(f2).

This relation is exact also off-shell since the action is of Gaussian type. Since the BF action is purely topo-
logical, we see that this is broken by an amount proportional to e2. From the action Eq 2.81, we see that
the coupling constant e2 and the area A =

ş

µ appear together, such that a vanishing area (A Ñ 0) limit is
functionally equivalent to a weak coupling limit. In this limit, the action becomes fully topological. Hence, the
small area limit must reproduce the results of a topological field theory.

2.4.2 Hilbert space on S1

We first consider the Hilbert space on a spatial circle S1, acting as one of the boundaries of the cylinder. The
space is equipped with the flat space metric ds2 = dt2 + dx2, where x is periodic in L. Since there is only one
spatial direction, the field strength has no magnetic components. Further fixing to the temporal gauge At ” 0,
the only non-vanishing component of the field strength is associated to Ftx ” E, where E ” Ȧx, and the
dot represents the derivative with respect to the temporal coordinate. The Gauss-law constraint is obtained by
varying the action 2.71 with respect to A0, yielding D1F10 = 0, with D the covariant derivative in the adjoint
representation of G. In the flat space metric, the YM2 Lagrangian in temporal gauge is simply

L = ´
1

2e2
Tr(E2) = ´

N

2e2
(EaEb)δab, a P (1, . . . , dim(g)) (2.82)

, with the Gauss law constraint D1F10 = 0 imposed a posteriori. The conjugate momenta associated to the
gauge fields Aa for the Lagrangian above are simply

Πa =
BL

BȦa
= ´

N

e2
Ea = ´

N

e2
Ȧa. (2.83)

In the canonical quantization of YM2 in the temporal gauge on the circle, one promotes these fields to operators
(Aa(x) Ñ Âa(x), Πa(x) Ñ Π̂a), satisfying the canonical commutation relations [Âa, Π̂b(y)] = δab δ(x ´ y).
The commutation relations are realized as Π̂a(x) = ´ δ

δAa(x) . The eigenstates are |A(x)y, whose overlap with
arbitrary |Ψy determine the wave functionals Ψ[A] = xA(x) | Ψy. The Gauss law constraint is imposed on the
physical states by demanding ˆDxE |physicaly = 0. The Hamiltonian H ” ΠaȦ

a ´ L associated to Eq 2.82
is:

H = ´
N

2e2
ÊaÊa = ´

e2

2N

δ

δAa(x)

δ

δAa(x)
. (2.84)
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The Gauss law constraint becomes an operator identity acting on the wave functionals Ψ[A(x)]:(
D̂x

δ

δA(x)

)
a

Ψ[A(x)] = 0. (2.85)

This constraint may be solved by realizing that the operator (DxE)a generates gauge transformations under
A Ñ A +DxΘ [86], where the associated Noether charge is:

Q ”

ż L

0
dx

(
BL

BȦa
δAa

)
= ´

N

e2

ż L

0
dx Tr(E(DxΘ)) »

N

e2

ż L

0
dx Tr((DxE)Θ).

Note that we could perform a partial integration in the second line since the covariant derivative is taken in the
adjoint representation. Therefore, after quantization, the Gauss law constraint on physical wave functionals
demands that they are gauge invariant. Demanding invariance under x-independent gauge transformations
shows that they can only depend on the conjugacy class of U = P exp(´

ű

A) = P exp(´
şL
0 dxAx), where P

denotes the path-ordening operation;

Ψ[A(x)] ” Ψ

[
P exp

(
´

ż L

0
dxAx

)]
. (2.86)

The physical Hilbert space of states therefore consists of square-integrable L2 class functions of G [45], de-
noted as H = L2(A/G). These satisfy the property Ψ(U) = Ψ(g(x)Ug´1(x)), for every g P G and some
boundary point x on the circle. E.g., these are functions defined up to conjugacy class equivalence. Since this
is by definition a finite gauge transformation on the gauge group G, the class functions Ψ are indeed gauge
invariant.

U describes the holonomy around some closed loop embedded in M. The Hilbert space of class functions
around the holonomy U of a compact group is spanned by an orthonormal basis of characters tχR(U)u of U
around S1, evaluated as the trace in the unitary irreducible representations R of G.
We can associate them with wavefunctions corresponding to the overlap of the representation basis t|Ryu with
the holonomy elements t|Uyu:

xU | Ry = χR(U) ” Tr(R(U)). (2.87)

The Haar measure on the space of conjugacy class group elements of a compact group G constitutes a natural
positive definite inner product on the space of square integrable class functions H

ż

dU f(U´1)h(U) = xf | hy . (2.88)

This also defines a completeness and normalization relation of the holonomy elements:
ż

dU |Uy xU | = 1, xU | U 1y = δ(U ´ U 1) (2.89)

, where the square integrable class functions determine the overlap with the state vectors |fy P H:

xU | fy = f(U), xf | Uy = f(U´1). (2.90)
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The wavefunctions tχR(U)u indeed form a complete basis on H by virtue of the grand-orthogonality theorem
and the Peter-Weyl theorem [23]:

ż

dU χR1(U´1)χR(U) = δR1R,
ÿ

R

χR(U)χR(U
1´1) = δ(U ´ U 1) . (2.91)

δ(U ´ U 1) denotes the delta function imposing U ” U 1 on the Lie group with respect to the Haar measure
dU , normalized to 1. These relations respectively constitute an orthogonality, and completeness relation on the
representation basis, in the sense that:

xR1 | Ry = δR1R,
ÿ

R

|Ry xR| = 1. (2.92)

Note that the Hilbert space requirement xU | Ry = xR | Uy
˚ restrict the traces to the subset of unitary repre-

sentations: χR(U)˚ = χR(U
´1).

The HamiltonianH =
şL
0 dxH associated to the YM2 Lagrangian (in temporal gauge) Eq 2.84, is diagonalized

by acting on the representation basis, since by definition of the holonomy U = P exp(´
ű

A) around the circle

δ

δAa
χR(U) = ´χR(TaU), Ñ HχR(U) = e2LC2(R)χR(U)

, where C2(R) = ´TaTa/(2N) is our definition of the quadratic Casimir defined in general as:

C2 = ´κabTaTb . (2.93)

κab is the inverse of the Cartan-Killing metric defined earlier as Tr(TaTb) = κab/2. In the case at hand, the
generators are normalized according to Tr(TaTb) = Nδab, leading to the Cartan-Killing metric κab = 2Nδab,
and its inverse κab = δab

2N . I will continue to use this convention of the quadratic Casimir throughout this thesis.

2.4.3 Exact amplitudes of YM2

We first consider the YM2 Euclidean path integral on an extended cylinder that computes the propagation
amplitude from boundary holonomy U to W . In the Hamiltonian formulation, we can interpret the path
integral as the evolution operator between these two states

xW | e´βH |Uy =

ż W

U
DBDA e´IYM2

[B,A] =

W

U

β (2.94)
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We may diagonalize the Hamiltonian on slices of S1 in the representation basis using the completeness relation
Eq 2.92 and the definition of the character wavefunctions:

Zcyl(β,W,U) = xW | e´βH |Uy =
ÿ

R

χR(W )χR(U
´1)e´e2LβC2(R) . (2.95)

The exponent is the heat kernel of the group G [85], weighted by the combination of the coupling strength and
the total propagated area3: e2a = e2βL. Although one has to choose a preferred temporal coordinate in the
canonical quantization to define the Hamiltonian, the partition function only depends on the surface area as a
whole. This is what we expect from the sDiff invariance. Due to this property, we can take the general ansatz
for the heat kernel to be

e´e2aC2(R) (2.96)

, independent of the topology of M. Note that in the limit of vanishing e2a Ñ 0, the heat kernel goes to
the identity and the theory Eq 2.81 becomes completely topological. In this limit, the completeness property
Eq 2.91 demands U ” W as expected for a theory with only flat F = 0 connections that cannot change the
boundary holonomy by an infinitesimal amount.

A novel property of YM2 is the ability to glue partition functions together along a common holonomy element,
as a consequence of the orthogonality of the characters [45]:
ż

dg Zcyl(β1, U, g)Zcyl(β2, g,W ) =
ÿ

RR1

χR(U)χR1(W´1)e´e2Lβ1C2(R)e´e2Lβ2C2(R1)

ż

dg χR(g
´1)χR1(g)

= Zcyl(β1 + β2, U,W ).

The cutting and gluing technique allows to solve more general YM2 amplitudes using a surgery approach. In
this way, we can obtain the disk amplitude with area a by gluing a cap wavefunction Γ(0, U) on one side of
the cylinder,

Zdisk(a, U) =

ż

dg Zcyl(a, U, g)Γ(0, g).

This cap amplitude can be considered in the limit of vanishing area. Since this limit is equivalent to the
topological limit, the gauge connection is again restricted to A Ñ 0. This in turn restricts the holonomy on one
side of the cylinder to W = exp(´

ű

A) = 1. Since the character of the identity element by definition yields
the dimension of the representation χR(1) ” dim(R), the cap amplitude for vanishing surface area a Ñ 0

reads:
Γ(0, g) =

ÿ

R

dim(R)χR(g) = δ(g ´ 1). (2.97)

The last identity is a consequence of the Peter-Weyl theorem Eq 2.91. Gluing this cap along one outer boundary

3We denote the area with small letter a to avoid confusion in notation with the gauge connection A.
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Figure 2.1: Gluing two different plaquettes together along the boundary group element Ul. Taken from [45].

holonomy of the cylinder yields the partition function at finite area a:

Zdisk(a, U) =
ÿ

R

dim(R)χR(U)e´e2aC2(R) . (2.98)

Using the area-preserving sDiff invariance, the amplitude above is equivalent to the disk partition function by
flattening the cone area to a disk shape.

Cutting and gluing axioms

We may now consider the disk amplitude as the fundamental plaquette amplitude Zdisk(a, U) ” Γ(a, U)

that constitutes more general higher-genus manifolds M. These can be constructed by gluing together the
plaquettes along the boundary edges. We consider the plaquette amplitude with edges (denoted by L) and
vertices (denoted by V ) [86]. We can decompose the total boundary holonomy U into different segments
Ul P G along l P L. These are constrained by group multiplication to yield the total holonomy U =

ś

l Ul

along the plaquette. We may use the segment Ul to parallel transport the vertex x P V to y P V along l:
y = Ulx = P exp(´

ş

lA)x. A finite gauge transformation acts on Ul as Ul Ñ g(y)Ulg(x)
´1. Parallel

transport in the opposite direction is defined as U´1
l .

Decomposing the area of the manifold M into a cell decomposition of plaquettes Γ(ap, Up) with a =
ř

p ap,
the total partition function along M is defined by gluing along the coincident boundary holonomy segments
UL = tUlu;

Z =

ż

ź

UlPUL

ź

pPP

Γ(ap, Up). (2.99)

As an example in figure 2.1, we glue two plaquettes of area a1 and a2 along the boundary group element U .
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The arrows indicate the direction of the group element U . The resulting partition function is given by:
ż

dUΓ(a1, V U)Γ(a2, U
´1W ) =

ÿ

RR1

dim(R)dim(R1)e´e2a1C2(R)e´e2a2C2(R1)

ż

dUχR(V U)χR1(U´1W )

=
ÿ

R

dim(R)χR(VW )e´e2aC2(R) = Z(a, V W )

, with a = a1+a2 the total area. In the last identity, I have used the generalized character orthogonality relation

ż

dUχR1(V U)χR(U
´1W ) = δRR1

χR(VW )

dim(R)
. (2.100)

We may also consider more general partition functions on a topologically non-trivial manifold M. Take e.g.
M = T 2 = S1 ˆ S1 a genus one torus. We may construct its amplitude from the plaquette amplitude by
decomposing the boundary holonomy as UV U´1V ´1 , and gluing along V and U as demonstrated below

Z(a) =

ż

dUdV U

V

U´1

V ´1

=

ż

dUdV Γ(a, UV U´1V ´1).

To proceed, we use the identity

ż

dU χR(UV U
´1W ) =

χR(V )χR(W )

dim(R)
(2.101)

, to write

Z(a) =
ÿ

R

e´e2aC2(R)

ż

dV χR(V )χR(V
´1) =

ÿ

R

e´e2aC2(R)

where we again made use of the grand orthogonality theorem Eq 2.91.

It is a general result in topology that any compact orientable genus g manifold M can be decomposed in a sim-
ilar fashion by considering a 4g polygon, and writing the boundary holonomy as U1W1U

´1
1 W´1

1 U2 . . .W
´1
g

[86]. This leads to 2g pairs of edges that should be identified. Using Eq 2.101 to perform the first 2g ´ 1 in-
tegrals generates a factor dim´(2g´1)(R). For the last integral, we should use the grand orthogonality theorem
instead. Together with the factor dim(R) in the plaquette partition function 2.98 leads to the general expression
of the partition function on an arbitrary orientable genus g surface

Zg(a) =
ÿ

R

(dim(R))χ e´e2aC2(R) (2.102)

, where χ = 2 ´ 2g is the Euler characteristic on a compact genus g surface. Note that this amplitude is also
valid for a spherical (χ = 2) topology, although this requires different techniques from the ones explained
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above. In particular, one obtains the spherical topology by simply gluing two disk partition functions of area
a1 and a2 together, while smoothly deforming the total surface area to a spherical geometry with a total surface
area a = a1 + a2.

2.5 BF- and Particle-on-a-group theory

We may exploit the machinery of YM2 to derive the exact quantum amplitudes of a BF theory Eq 2.50 over a
non-compact manifold M and compact gauge group G with the specific boundary condition Eq 2.51, which I
repeat here for convenience;

IBF = ´

ż

M
Tr(BF) + 1

2

ż

BM
dτTr(BA), B|B = 2CA|B ” A|B. (2.103)

I again set C = 1/2 for convenience in notation. The boundary term was added to obtain a proper varia-
tional problem, or as argued in [22], is the natural result when dimensionally reducing 3d Chern-Simons with
a boundary to 2d. In [23], the boundary term was interpreted as a defect that changes the natural Dirichlet
boundary condition of BF to the one needed to reproduce the Schwarzian. The defect takes the form above
along the boundary loop BM parameterized by F (τ) in terms of the proper time τ . The only restriction on
the loop is for it to have a total renormalized length β. This requires the reintroduction of a metric along the
boundary.
Since the metric is fixed inside the bulk for flat connections, the bulk is completely topological, and all dy-
namics take place on the boundary. An alternative perspective why all dynamics take place at the boundary
proceeds by introducing a 1d metric γττ along the boundary curve [22], which changes the natural boundary
condition to B|B = γττA|B. The energy-momentum tensor is calculated directly by varying the action with
respect to the metric using the standard dictionary [22]:

Tττ =
2

?
γ

δS

δγττ
= Tr(B2) = Tr(A2) (2.104)

, setting γττ = 1 back at the end. For A|B = gBτg
´1 pure gauge, this Hamiltonian is indeed proportional to the

quadratic Casimir after canonical quantization on the particle-on-a-group manifold. Therefore, the dynamical
observables split into topological Wilson loops in the bulk, and quasi-topological Wilson lines anchored to
the boundary. Although YM2 is only quasi-topological (the topological defect proportional to the coupling
parameter extends along the entire bulk, c.f. Eq 2.81), while pure BF is fully topological in the bulk, they
share the same class of observables. This is due to the lack of propagating degrees of freedom in YM2. In
particular, the number of on-shell degrees of freedom of massless gauge bosons is D ´ 2 [59]. Therefore,
the lack of transversal degrees of freedom for D = 2 renders the bulk of YM2 free of local dynamics. The
interesting gauge-invariant observables are therefore only defined globally, and are e.g. the Wilson loops along
some closed path I in M;

W I
R(A) = χR

P(exp ´

¿

I

A)

 . (2.105)
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In a topologically trivial theory, all Wilson loops that do not intersect or encircle a defect are contractible and
do not exhibit interesting dynamics. In the present context, we will mainly be interested in boundary-anchored
Wilson lines instead, where both endpoints are located at the boundary. In the context of holography, these are
in one-to-one relation with bilocal operators in the Schwarzian particle-on-a-group theory.
Restoring the factor 2C, we may insert the boundary conditions back into the boundary action and obtain a
theory that is structurally very similar to YM2 in Eq 2.81,

IBF = ´

ż

M
Tr(BF) + 1

4C

ż

BM
Tr(B2). (2.106)

In particular, both theories share an identical Hilbert space structure on the thermal circle, determined by the
Peter-Weyl theorem.
The Hilbert space consists of square-integrable class functions, spanned by a complete set of characters
tχR(U)u determined by the overlap of the representation basis on the holonomy basis: χR(U) ” xU | Ry =

Tr(R(U)). The only difference is the spatial extension of the topological defect from the entire bulk in the
case of YM2 to the boundary circle BM for BF theory. Nonetheless, as argued in [23], we can consider the
BF theory with the boundary defect as a continuous gluing of e2 = 0 radial concentric YM2 slices inside the
boundary changing defect, and a YM2 theory of charge e2 = 1/2C along the defect loop BM. This effectively
yields the same general amplitudes of YM2, where the dependence on area a is replaced with a dependence on
proper length β of the boundary circle.
The general BF disk amplitude with a boundary holonomy U is readily obtained from the general result Eq
2.98 by substituting e2a Ñ β/2C (compare Eq 2.81 and Eq 2.106), leading to:

Zdisk(β, U) =
ÿ

R

dim(R)χR(U) e´
βC2(R)

2C = (2.107)

2.5.1 Open channel approach

To compute correlators with the insertion of a boundary-anchored Wilson line, it will be more convenient
to employ an open channel slicing, developed in [22]. In particular, in the closed channel approach of the
previous section, we have covered the disk amplitude using radially outgoing concentric circles. These circles
eventually end on the boundary holonomy U . This slicing is rather inconvenient when quantizing the theory
on an interval for Wilson lines anchored at the boundary4. The following section will largely reformulate the
arguments of sections 2 and 3 in the aforementioned paper [22], where working out the derivations in detail
required making some modifications for consistency.
In an open slicing approach, one splits the boundary holonomy into two intervals, characterized by two group
states |gy, |hy, such that the holonomy upon encircling the boundary is given by |Uy = |g ¨ h´1y. Instead of

4See [23] for a quantization with boundary-anchored Wilson lines in a circular slicing approach. In this context, one considers the Wilson lines
as Wilson loops extending to the boundary, where they set the gauge fields to zero at the boundary A|B = 0.
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considering a basis of holonomy elements that are invariant under conjugation, we define a basis of genuine
group elements |gy. This serves as the configurational basis on the Hilbert space of square integrable functions
|fy P L2, whose overlap with the group elements |gy defines the wavefunction f(g):

xg | fy = f(g), xf | gy = f(g´1). (2.108)

The inner product on square integrable functions defines a completeness relation of the configuration basis of
group elements |gy:

xf | hy =

ż

dgf(g´1)h(g), Ñ

ż

dg |gy xg| = 1. (2.109)

dg is the Haar measure on the group manifold, normalized by the group volume. The natural basis conjugate
to the basis of group elements are the representation matrices |R, aby, whose normalized overlaps are:

ψRab(g) = xg | R, aby ”
a

dim(R)Rab(g). (2.110)

Rab(g)δRR1 = xR, a | g | R1, by is the matrix element of g evaluated in the representation R.
The representation matrices span a complete basis by virtue of the Peter-Weyl theorem, satisfying an orthogo-
nality and completeness relation:

ż

dg Rab(g)R
1
cd(g

´1) =
δRR1

dim(R)
δadδbc,

ÿ

R,m,n

dim(R) Rmn(g1)Rnm(g
´1
2 ) = δ(g1 ´ g2) . (2.111)

Note that this orthogonality theorem is compatible with the corresponding orthogonality theorem for characters
Eq 2.91, by setting a = b, c = d, and taking the sum over a, c. The completeness relation on representation
matrices is a specific rewriting of the completeness relation of the characters, by noting that χR(1) = dim(R),
and

ř

mnRmn(g1)Rnm(g
´1
2 ) = χ(g1g

´1
2 ).

Writing the normalized overlap as xg | R, aby =
?

dim(R)Rab(g) and xR, ab | gy =
?

dim(R)Rba(g´1), these
relations are written more suggestively as:

xR, ab | R1,mny = δRR1δamδbn,
ÿ

R,mn

|R,mny xR,mn| = 1. (2.112)

Note that defining a Hilbert space structure is again only valid if xg | R,mny = xR,mn | gy
˚. This in turn

implies Rnm(g´1) = Rmn(g)
˚, which restricts the representation matrices to be unitary.

The class wavefunctions of the closed channel approach xU | Ry = χR(U) can be decomposed into matrix
elements of the open channel approach according to χR(U) =

ř

iRii(U). Similarly, the representation states
|Ry of the closed channel can be decomposed into states |R, iiy of the open channel. The holonomy elements
|Uy „ |g ¨ U ¨ g´1y of the closed channel decompose into all group elements in its conjugacy class in the open
channel.
We can now compute the disk partition function by vertically propagating |hy along a boundary of length β, and
computing its overlap with |gy. The Hamiltonian governing the evolution is again proportional to the quadratic
Casimir, diagonalized by the representation matrices: H(R) = C2(R). Inserting a completeness relation of the
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representation basis, we diagonalize the Hamiltonian:

Zdisk(g, h) = xg | e´βH | hy =

=
ÿ

R,ab

xg | R, a, by xR, a, b | hy e´βC2(R) =
ÿ

R,ab

dim(R) Rab(g)Rba(h
´1)e´βC2(R). (2.113)

Performing the sum over ab, and recognizing that
ř

R,abRab(g)Rba(h
´1) = Tr(R(U)) for U = gh´1, we

arrive at the original closed slicing amplitude Eq 2.107. Additionally showing that the amplitude of the cylinder
agrees with that of the radial slicing proves full equivalence between the two perspectives by virtue of the
cutting and gluing axioms.
We arrive at the cylinder partition function by splitting g into multiple boundary segments g = gA ¨ gB ¨ gC ,
and using the defining property of the representation matrices Rab(g) =

ř

x,y Rax(gA)Rxy(gB)Ryb(gC). This
yields an intermediate rectangular amplitude:

Zrect(gA, gB, gC , h) =
ÿ

R,a,b,x,y

dim(R) Rax(gA)Rxy(gB)Ryb(gC)Rba(h
´1)e´βC2(R).

Gluing the opposite ends gB = h together using the orthogonality theorem yields the amplitude of the cylinder
with boundary holonomy elements gA, gC of Eq 2.95:

Zcyl(gA, gC) =
ÿ

R,ab

χR(gA)χR(gC)e
´βC2(R). (2.114)

Physical boundary amplitudes are characterized by trivial holonomies along the boundary g, h Ñ 1. Since the
representation matrices are normalized according toRab(1) ” δab, the thermal disk partition function Eq 2.113
simply becomes:

Zdisk =
ÿ

R

(dim(R))2e´βC2(R) . (2.115)

An alternative, perhaps more insightful Hilbert space slicing to calculate the disk amplitude, is the point-defect
channel developed in [64] [22]. In this case, the boundary states are associated with point-like defects instead
of being smeared along the entire boundary. The calculation of the disk amplitude is precisely the same as
before [24]:

Zdisk(g, h) = xg | e´βH | hy = . (2.116)

Intuitively, the timeflow of the Cauchy slices in the bulk corresponds to a physical propagation along the
boundary with length β. The calculation is identical and proceeds by inserting a complete set of eigenstates in
the representation basis that end on either side of the physical boundary.
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The so-called angular slicing [24] defines yet another Hilbert-space slicing to cover the disk partition function.
Here, one covers the disk into Cauchy slices that extend from the asymptotic boundary to a single point in
the bulk. The representation matrices Rab(g) where a, b label the points at the boundary and in the bulk
respectively, constitute a complete basis on this Hilbert space slicing. Consequently, one covers the entire disk
by propagating these slices clockwise over a distance β. These slices start from the unit group element 1, and
eventually pick up a total holonomy U along the boundary. Concretely, the Hamiltonian is diagonalized by
inserting a completeness relation,

xU | e´βH | 1y =
ÿ

R,a,b

dim(R)Rab(U)Rba(1)e´βC2(R) = . (2.117)

The radial- Eq 2.107, as well as the open- Eq 2.113, point-defect- Eq 2.116, and angular slicings Eq 2.117 all
have matching results.

2.5.2 Boundary-anchored Wilson lines

Single Wilson line insertion

We consider the matrix element of a single Wilson line from boundary point τi to τf , evaluated in representation
R:

WR,nm(τ1, τ2) = P exp
(

´

ż τ2

τ1

dτ R(A)

)
nm

. (2.118)

Note that reading the operator identity from right to left, m is associated with the initial time τ1, while n is
associated with the final time τ2. This is a distinction that will become important when considering correlation
functions of multiple Wilson line insertions. We may construct the amplitude of a single Wilson line insertion
in the Euclidean Path integral between boundary group elements h and g by an open-channel Hamiltonian
evolution [22]:

xWR,nm(τi, τf )yhÑg =

ż g

h
DBDA WR,nm(τ1, τ2) e

´IBF [B,A]

= xg | e´βHWR,nm(τ1, τ2) | hy =

ż

df . (2.119)
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The amplitude above may be solved by inserting a completeness integral over group elements f along the
Wilson line, which diagonalizes the Wilson line operator into its representation matrix elements;

WR,nm(τ1, τ2) =

ż

df Rnm(f) |fy xf | . (2.120)

We can interpret this in terms of the cutting and gluing techniques of YM2. In particular, gluing two half disks
with boundary lengths β1 = |τ2 ´ τ1| and β2 = β ´ |τ2 ´ τ1| respectively along the joint group element f
yields, after diagonalizing in the representation basis:

xg | e´βHWR,nm | hy =

ż

df xg | e´β1H | fyRnm(f) xf | e´β2H | hy (2.121)

=
ÿ

Ri,ni,mi

dim(R1)dim(R2) R1,n1m1
(g)R2,m2n2

(h´1)e´β1C2(R1)e´β2C2(R2)

ˆ

ż

df R1,m1,n1
(f´1)Rnm(f)R2,n2m2

(f). (2.122)

We can compute the integral by using the Clebsch-Gordan decomposition of a tensor product of representation
matrices |R1,m1y b |R2,m2y =

ř

R3,m3
CR3,m3

R1,R2,m1,m2
|R3,m3y:

R1,n1m1
(g)R2,n2m2

(g) ” xR1, n1| b xR2, n2| g |R1,m1y b |R2,m2y

=
ÿ

R3,R1
3,n3,m3

CR3,n3

R1,R2,n1,n2
C
R1

3,m3

R1,R2,m1,m2
xR3, n3 | g | R1

3,m3y

”
ÿ

R3,n3,m3

CR3,n3

R1,R2,n1,n2
CR3,m3

R1,R2,m1,m2
R3,n3m3

(g)

, using the definition of the representation matrices xR3, n3 | g | R1
3,m3y = R3,n3m3

(g)δR3R1
3

in the last line.
The group integral over 3 representation matrices can therefore be evaluated by virtue of the grand orthogonal-
ity theorem;
ż

df R1,m1,n1
(f´1)Rnm(f)R2,n2m2

(f) =
ÿ

R3,n3,m3

CR3,n3

R,R2,n,n2
CR3,m3

R,R2,m,m2

ż

dfR1,m1,n1
(f´1)R3,n3,m3

(f)

=
CR1,n1

R,R2,n,n2
CR1,m1

R,R2,m,m2

dim(R1)
.

The Clebsch-Gordan coefficients are alternatively defined in terms of the 3j-symbols,

CR1,n1

R,R2,n,n2
” (´)R2´R´n1

a

dim(R1)

(
R R2 R1

n n2 ´n1

)
Ñ

a

dim(R1)

(
R R2 R1

n n2 n1

)
(2.123)

, where we absorbed the minus signs into the definition of the 3j-symbol to streamline notation. These have
a number of attractive symmetry properties, e.g. they are invariant under cyclic permutations of the columns.
Alternatively, this serves as a definition for the 3j-symbols

ż

df R1,m1,n1
(f´1)Rnm(f)R2,n2m2

(f) ”

(
R R2 R1

n n2 n1

)(
R R2 R1

m m2 m1

)
. (2.124)
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Note that the order of the indices of the matrix element corresponding to f´1 is flipped with respect to the other
pair of representation matrices. After imposing a trivial boundary holonomy h = g = 1 (R1,n1m1

(1) = δn1m1
,

R2,n2m2
(1) = δn2m2

), the Wilson-line amplitude Eq 2.122 may finally be written as:

xg | e´βHWR,nm | hy|g,hÑ1 =
ÿ

Ri,ni

dim(R1)dim(R2)

(
R R2 R1

n n2 n1

)(
R R2 R1

m n2 n1

)
e´β1C2(R1)e´β2C2(R2).

(2.125)

We represent the procedure above pictorially by gluing two asymptotic patches to the Wilson line along a
common group element f . We will take the direction of the Wilson line to define the direction of the group
element. For a trivial holonomy along the boundary, the different asymptotic patches are half disks with
boundary lengths β1 ă β:

Z(f) = = xf | e´β1H | 1y =
ÿ

R,n

dim(R)e´β1C2(R)Rnn(f). (2.126)

For β1 = β/2, this is the thermofield double state (TFD) preparing the vacuum [24]:

|TFDy =
ÿ

R,a

a

dim(R)e´β/2 C2(R) |R, a, ay =
ÿ

R,a,b

e´βC2(R)/2 |R, a, by |R, b, ay (2.127)

, where using the definition of the representation matrices xg1 ¨ g2 | R, a, ay =
ř

b
1

a

dim(R)
xg1 | R, a, by xg2 | R, b, ay

yields the last equality. This demonstrates that the purification of a thermal ensemble of states |R, a, by can be
obtained by cutting a two-sided geometry on the horizon.

Anyway, note that when gluing two asymptotic states together, just like for YM2, the order between the differ-
ent patches is important. In particular, a group element f is glued to its inverse f´1, indicated by the direction
of the arrows with respect to the Wilson line.

=

ż

df =

ż

df Z1(f
´1)Rnm(f)Z2(f)

= δnm
ÿ

R1,R2,n1,n2

dim(R1)dim(R2)e
´β1C2(R1)e´β2C2(R2)

(
R1 R R2

n1 n n2

)2

(2.128)

In the last line, I have used the current conservation of the Clebsch-Gordan coefficients, imposing that the
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indices of the Clebsch-Gordan coefficients CR,nR1,R2,n1,n2
are additive5, yielding n = m = n1 + n2.

Diagrammatic rules

From the previous discussion, we may identify generic diagrammatic rules for calculating the general disk
amplitude with any number of non-intersecting Wilson line insertions.

We start from the disk that represents the bulk geometry on which the gauge group G lives, and divide it into
n different segments cut off by the Wilson lines. These Wilson lines are labeled by a predefined representation
R and associated labels m,n. To every bulk sector, we assign an irrep Ri with a corresponding weight factor
dim(Ri), which contributes in the final amplitude. At the boundary of each section, we assign a label mi of the
irrep Ri. Eventually both the labels Ri and mi at the boundary have to be summed over in the final partition
function.

To each boundary segment i corresponding to representation Ri, we assign a Hamiltonian proportional to
the quadratic Casimir of the representation H(Ri) = C2(Ri). This generates an evolution along a boundary
distance βi = |τi+1 ´ τi| via the Hamiltonian propagation factor

= exp (´β1C2(R)) . (2.129)

Eventually, the final boundary segment n closes the boundary circle with length βn = β ´ |τ1 ´ τn|, where β
is the total length of the boundary circle.

At every boundary intersection with a Wilson line, a 3j-symbol quantifies the overlap between the representa-
tion matrices along the boundary and the matrix element of the Wilson line;

=

(
R1 R2 R

m1 m2 m

)
. (2.130)

These rules are exact to all orders in perturbation theory, unlike the more familiar Feynman rules in ordinary
QFT. This is a consequence of the topological nature of the theory at hand.

5Note that this answer may be simplified further using the full orthogonality identity Eq 2.141. However, no such factorization appears for
higher-point function, and the former is the fundamental answer.
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Non-intersecting Wilson lines

The example of two non-intersecting Wilson lines clarifies these rules, where we take τ1 ă τ2 ă τ3 ă τ4:

=
ÿ

R1,R2,R3,R4

4
ź

i=1

dim(Ri) e
´β1C2(R1)e´β2C2(R3)e´β3C2(R2)e´(β´|τ1´τ4|)C2(R3)

ˆ
ÿ

m1,m2,m3,m1
3

(
R1 RA R3

m1 mA m3

)(
R1 RA R3

m1 m1
A m1

3

)(
R2 RB R3

m2 mB m1
3

)(
R2 RB R3

m2 m1
B m3

)
.

(2.131)
Note that in general, one usually does not pay much attention to the relative sign factors due to interchanging
columns in the 3j-symbols. These can always be reabsorbed in an appropriate definition of the 3j-symbols.
In accordance with the general discussion in section 1.8.2, the energy along the opposite boundary segments
τ2 ´ τ3 and τ4 ´ τ1 in the region bounded by the two Wilson lines is the same as a consequence of energy
conservation.

Intersecting Wilson lines

The diagrammatic rules above exclude the case of non-intersecting Wilson lines. These may be calculated
by splitting the disk into distinct patches, bounded in the interior by the neighboring Wilson lines, and gluing
along a common group element. In particular, consider the case of two Wilson linesRA, RB , intersecting in the
interior. These separate four different patches, which may be glued to a Wilson line segment along the group
elements g1, g2, g3, g4 (as indicated in the figure below). Assuming a trivial holonomy along the boundary, the
amplitudes within each patch can again be calculated using the open-slicing approach.
We obtain a pie-shaped region from the half disk Eq 2.126 by splitting the group element f into two group
elements h ¨ g at the intersection. Reading from right to left in the matrix element according to the direction of
the arrows, and using the definition of representation matrices yields

Z(h ¨ g) = =
ÿ

R,m

dim(R) e´βiC2(R)Rmm(h ¨ g)

=
ÿ

R,m,α

dim(R) e´βiC2(R)Rmα(h)Rαm(g). (2.132)

m labels the points at the boundary, while α labels the bulk intersection points. We may also split the Wilson
lines at the intersection into different parts connected to the boundary:
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RA,mA,m1
A
(g3g

´1
1 ) =

ř

γ RA,mAγ(g3)RA,γm1
A
(g´1

1 ), andRB,mB ,m1
B
(g4g

´1
2 ) =

ř

γ RB,mBγ(g4)RB,γm1
B
(g´1

2 ),
where both Wilson lines point from m1

i to mi. Note that by making this specific choice for the composition
of the group elements, the orientation of the group elements on the figure below is automatically fixed by the
direction indicated on the Wilson line. Within this convention, all group elements on the Wilson lines radially
point outwards from the bulk intersection point. The final amplitude may be found by gluing the different
patches together along the common group element, taking into account the direction relative to the orientation
on the Wilson line;

=

ż

ź

i

dgi (2.133)

=

ż

ź

i

dgi Z4(g1g
´1
4 )Z3(g4g

´1
3 )Z2(g3g

´1
2 )Z1(g2g

´1
1 )RA,mA,m1

A
(g3g

´1
1 )RB,mB ,m1

B
(g4g

´1
2 ).

This choice is necessary since the gluing procedure should involve one oppositely oriented group element in
the group integral Eq 2.124. Inserting the pie-shaped amplitudes of the different patches, we find explicitly

ÿ

Ri,mi,αi,γi

ż

ź

i

dgi

(
dim(Ri)e

´βiC2(Ri)
)
R1(g2)m1α1

R1(g
´1
1 )α1m1

R2(g3)m2α2
R2(g

´1
2 )α2m2

R3(g4)m3α3

ˆR3(g
´1
3 )α3m3

R4(g1)m4α4
R4(g

´1
4 )α4m4

RA(g3)mAγ1RA(g
´1
1 )γ1m1

A
RB(g4)mBγ2RB(g

´1
2 )γ2m1

B
.

The integrals can be performed using the definition of the 3j-symbols Eq 2.124, yielding:

ÿ

Ri,ni,αi,γi

ź

i

dgi

(
dim(Ri)e

´βiC2(Ri)
)(R4 R1 RA

m4 m1 m1
A

)(
R4 R1 RA

α4 α1 γ1

)(
R1 R2 RB

m1 m2 m1
B

)(
R1 R2 RB

α1 α2 γ2

)

ˆ

(
R2 R3 RA

m2 m3 mA

)(
R2 R3 RA

α2 α3 γ1

)(
R3 R4 RB

m3 m4 mB

)(
R3 R4 RB

α3 α4 γ2

)
.

We find that performing the integrals yields eight 3j-symbols; four of which are labeled at the bulk intersection
point, while the other four are related to the physical boundary. Summing over the four 3j-symbols along the
intersection yields the 6j-symbol, defined in this context as;

#

RB R1 R4

RA R3 R2

+

=
ÿ

αi,γi

(
R4 R1 RA

α4 α1 γ1

)(
R1 R2 RB

α1 α2 γ2

)(
R3 R4 RB

α3 α4 γ2

)(
R2 R3 RA

α2 α3 γ1

)
(2.134)
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This leads to the final amplitude for the bulk-crossing of two Wilson lines:

=
ÿ

Ri,mi

ź

i

dgi

(
dim(Ri)e

´βiC2(Ri)
)#RB R1 R4

RA R3 R2

+

(2.135)

ˆ

(
R4 R1 RA

m4 m1 m1
A

)(
R1 R2 RB

m1 m2 m1
B

)(
R2 R3 RA

m2 m3 mA

)(
R3 R4 RB

m3 m4 mB

)
.

Within the diagrammatic rules, one has to account for the presence of bulk crossings by incorporating an
additional 6j-symbol:

=

#

RB R1 R4

RA R3 R2

+

. (2.136)

One can check that with these diagrammatic rules, the Wilson lines can be freely deformed and moved through
each other in the bulk, as long as the boundary anchored points remain fixed [22]. This is to be expected from
a purely topological theory in the bulk.

2.5.3 Particle-on-a-group theory

Alternatively, one may arrive at these amplitudes directly from the boundary perspective, without resorting to
the holographic bulk. In the present context, the holographic dual of BF theory is the 1d particle-on-a-group
theory [64] [22]. In particular, one starts from the total BF action, and integrates out B in the bulk. This renders
A flat (F = 0) and restricts its form to a pure gauge transformation6: A|B = ´dgg´1. Since the bulk term
vanishes in the path integral, the remaining dynamics are completely determined by the boundary term, which
reduces to the particle-on-a-group action when inserting the boundary condition B|B = A|B:

I[g] =
1

2

ż

dτ Tr(A2
τ ) =

1

2

ż

dτ Tr((gBτg
´1)2). (2.137)

Notice that the structure of this reduction is very similar to the way that the Schwarzian theory is obtained from
the bulk JT action. In fact, the duality between JT gravity and Schwarzian mechanics is but an application
of the duality between BF and particle-on-a-group theory, as we will see shortly. The duality between 2d BF
theory and 1d quantum mechanics on a group is an example of holography where correlators in the boundary
theory are obtained by path integrating out the bulk fields, leaving an integral over the remaining boundary

6Starting from A = gdg´1 = ´dgg´1, and the definition of the field strength (F = dA+A^A), we readily obtain F = dg^dg´1+dgg´1 ^

dgg´1. Using dgg´1 = ´gdg´1 (from d(gg´1) = 0), F = dg ^ dg´1 ´ dg ^ dg´1 = 0.



2.5. BF- AND PARTICLE-ON-A-GROUP THEORY 85

configurations compatible with some predefined boundary conditions. The degrees of freedom more generally
include the inequivalent asymptotic configurations compatible with these boundary conditions. The path in-
tegral over bulk fields then essentially prepares an operator insertion in the boundary field theory. The latter
should of course still be compatible with the prescribed boundary conditions. This pattern should hold for any
holographic duality where the dual theory actually lives at the asymptotic boundary of the higher dimensional
theory7.

In the case at hand, the dynamical boundary variables are the periodic group elements g (with g(τ+β) ” g(τ))
that make up the loop group LG. There is, however, still a redundancy in the definition of flat Aτ = gBτg

´1

for g „ Ug, with U a constant group element. The integration space of the particle-on-a-group action is there-
fore defined over the loop group modulo constant functions LG/G. Note that modding by G should give an
additional factor of 1/vol(G) in the partition function. This would normally destroy a genuine Hilbert space
interpretation of this path integral. However, as noted in [24], we will interpret this factor as a contribution to
the zero-temperature entropy, and absorb it in an overall normalization.
The wavefunctions on this group manifold are the square-integrable functions on LG/G. The Hamiltonian of
this system is identical to Eq 2.104, and is described in terms of the quadratic Casimir. The measure in the
path integral over flat connections is related to the natural BF measure defined in section 2.3.2, which implies
the Haar measure for these boundary degrees of freedom. We have seen that this can be related to the natural
symplectic measure of the Schwarzian reparametrization modes Eq C.15.

Quantum amplitudes have been studied in [64] by dimensionally reducing the known WZW results. Alterna-
tively, one may arrive at the partition function by simply taking the thermal trace in the quantum-mechanical
theory [22]. For example, the disk partition function may be calculated directly along the boundary by taking
the trace in configuration space and diagonalizing the Hamiltonian in the representation basis:

Tr(e´βH) =

ż

dg xg | e´βH | gy =
ÿ

R,m,n

e´βC2(R)

ż

dg Rmn(g)Rnm(g
´1) =

ÿ

R,m,n

e´βC2(R)

=
ÿ

R

dim(R)2e´βC2(R).

Particle-on-a-group theory also sheds a new light on the boundary anchored Wilson lines Eq 2.118, which we
can describe in terms of bilocal operators at the boundary. In particular, one identifies the Wilson line in the
bulk with a bilocal operator at the boundary:

WR,mn(τ1, τ2) » OR,mn(τ1, τ2) ” Rmn(g(τ2)g
´1(τ1)). (2.138)

This again leads to the understanding that, reading the operator identity from right to left, the left label m
is associated to the boundary time τ2, while the right label n is associated to τ1. One might argue for this
identification by noting that in a topological bulk theory, we can freely deform any Wilson line operator while
still preserving both endpoints at the boundary. Therefore, we expect them only to depend on the boundary

7This should be contrasted to the novel holographic duality between N = 4 D = 4 SUSY Yang-Mills theory and type IIB superstring theory
on AdS5 b S5.
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degrees of freedom. Furthermore, both expressions Eqs 2.118 and 2.138 are solutions to the same differential
equation (using the definition Eq 2.118 in the first equation and Aτ = ´Bτgg

´1 in the second):

d

dτ2
WR,mn(τ1, τ2) = ´

ÿ

α

R (Aτ (τ2))mαWR,αn(τ1, τ2) (2.139)

d

dτ2
OR,mn(τ1, τ2) = ´

ÿ

α

R (Aτ (τ2))mαOR,αn(τ1, τ2) (2.140)

The identification is settled by noting that they also satisfy the same boundary conditions W(τ1, τ1) = 1 and
O(τ1, τ1) = 1.

Boundary anchored Wilson lines in the BF theory are simply bilocal operators in particle-on-a-group theory,
whose correlation functions are readily computed using the thermal trace. As an instructive example, consider
the expectation value of a single bilocal operator, which should be dual to a single Wilson line insertion in the
bulk;

Tr(e´βHRmn(g2g
´1
1 )) =

ÿ

α

Tr(e´βHRmα(g2)Rαn(g
´1
1 ))

=
ÿ

α

ż

dh1dh2 xh1 | e´β1H | h2yRmα(h2) xh2 | e´β2H | h1yRαn(h
´1
1 )

=
ÿ

R1,R2,α,mi,ni

ż

dh1dh2 dim(R1)dim(R2)e
´β1C2(R1)e´β2C2(R2)R1,m1n1

(h1)R1,n1m1
(h´1

2 )Rmα(h2)

R2,m2n2
(h2)R2,n2m2

(h´1
1 )Rαn(h

´1
1 )

=
ÿ

R1,R2,α,mi,ni

dim(R1)dim(R2)e
´β1C2(R1)e´β2C2(R2)

(
R R2 R1

α n2 n1

)2(
R R2 R1

n m2 m1

)(
R R2 R1

m m2 m1

)

Using the following identity on the first 3j-symbol [22]

dim(R)
ÿ

n1,n2

(
R R2 R1

α n2 n1

)(
R1 R2 R1

α1 n2 n1

)
= δRR1δαα1 (2.141)

, the two-point function of a bilocal operator in particle-on-a-group theory indeed reduces to the result of a
boundary-anchored Wilson line Eq 2.125. Non-intersecting Wilson lines in the bulk in Eq 2.131 are dual to
time-ordered correlation functions of bilocal operators (for τ1 ă τ2 ă τ3 ă τ4)

Eq 2.131 = xORA,mA,m1
A
(τ1, τ2)ORB ,mB ,m1

B
(τ3, τ4)y . (2.142)

, while bulk crossings of Wilson lines are dual to correlation functions of the form

Eq 2.135 = xORA,mA,m1
A
(τ1, τ3)ORB ,mB ,m1

B
(τ2, τ4)y . (2.143)

The exact derivation of the higher order correlation functions directly from particle-on-a-group theory, can be
found in appendix D of [22], where the subtleties involving higher order correlation functions are discussed in
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the context of networks of Wilson lines.

2.6 JT gravity as a constrained BF theory

Having studied the dictionary to describe generic correlators in BF theory, we can now try to use this framework
to study quantum correlation functions in JT gravity. This would allow us to quantize JT gravity directly in its
bulk description, without resorting to theories related to its holographic Schwarzian dual. In section 2.2, it was
argued how JT gravity is equivalent to a topological BF theory in its first order formalism. More precisely, we
have argued how the action of the two theories is equivalent on-shell. The gauge algebra at hand was found
to locally correspond to (some isometry of) the sl(2,R) algebra. However, it was already pointed out at the
end of that section that such an equivalence is not readily obvious at a quantum mechanical level. This would
require an identification at the level of the Euclidean path integral:

ż

DBDA e´SBF [B,A] »

ż

DgDΦ e´SJT [g,Φ]. (2.144)

Such an identification depends on the contour of choice in each of the integrals, which in turn relies on the
global embedding of the group elements in the exponentiation of the algebra.

There exist multiple groups whose linearized generators obey the same algebra. In general, for any Lie alge-
bra g, the universal covering group of the algebra is a simply connected8 Lie group G̃, whose Lie algebra is
isomorphic with g [77]. This is uniquely determined up to local analytic isomorphisms. One can reach the
universal covering group by exponentiating vectors in the Lie algebra. In general, other connected Lie groups
G with the same algebra (up to possible isomorphisms) can be reached from the universal covering group by
a surjective homomorphism that mods out an invariant subgroup D of G̃: G = G̃/D. Both groups share the
same algebra upon linearization, but obey another global structure. This story is well known when considering
SU(2) versus SO(3). Both groups have an isomorphic algebra su(2) » so(3). However, only SU(2) is simply
connected and serves as the universal covering group. One reaches SO(3) by modding over its center Z2:
SO(3) = SU(2)/Z2.

Anyway, this implies that there exist different sensible quantum theories whose classical action is given by an
sl(2,R) BF theory; many of which do not correspond to the correlation functions found for JT gravity in [21].
Different suggestions on the precise group structure of JT gravity have been proposed, including the subsemi-
group SL+(2,R) [24] or a central extension of the universal covering group of S̃L(2,R) by R [23].
To briefly recapitulate the arguments in section 2.2, many smooth gauge configurations correspond to singular
metrics. These should be avoided in the contour of choice for JT gravity. In contrast, the constraint of metric
invertibility is not present in a classical first-order rewriting. Furthermore, it is not immediate how to incor-

8With simply connected, I mean that each curve between 2 points can be continuously deformed to any other, or equivalently that any
connected curve can be continuously shrunk to a point. This is e.g. the case on a 2-sphere, but not on a 2-torus This definition is to be
distinguished with connected manifolds, where all points can be continuously deformed to all other points. Of course, for a manifold to be simply
connected is a stronger constraint.
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porate zero metrics or topological changes in the gravitational path integral. One can prove however [24] [44]
that the equivalence between JT gravity and BF theory does hold on a quantum level if one restricts the flat
sl(2,R) connections to hyperbolic conjugacy class elements of the moduli space, to exclude singular metrics
[87]. One should further mod by the mapping class group of the moduli space. One other essential aspect in
the identification of JT quantum gravity to BF theory is to show that the natural measure of both theories are
related, which we did explicitly in section 2.3.2.
Note that these subtleties do not turn up in perturbative quantum calculations around the classical saddle.
These saddles are already characterized by some smooth configurations of the metric with fixed topology.
Consequently, we are only considering slight changes away from this smooth saddle.
For now, we consider the full path integral on some fixed disk-shaped topology. However, a sensible theory of
2d quantum gravity is only unitary when we also consider a non-perturbative genus expansion of the spacetime
[30].

2.6.1 Particle on SL(2,R)

In section 2.3.1, I have reviewed the boundary conditions of the BF theory that eventually lead to the emer-
gence of the Schwarzian theory in the first order perspective. An important takeaway is that additionally to
the constraint Eq 2.51, one must impose the asymptotic behaviour of the metric leading to the Schwarzian
theory directly on the gauge fields (c.f. Eqs 2.54, 2.58). The remaining gauge degrees of freedom can then be
identified with the asymptotic boundary reparametrization modes. In this way, we recover the dynamics on the
integration space diff(S1)/SL(2,R).
However, in the context of identifying the holographic dual of sl(2,R) BF theory, this is not what we want.
Instead, we want to identify the boundary dynamics as a particle on SL(2,R). The integration space in this
context is thus over the larger loop group L(SL(2,R))/SL(2,R). Clearly, pure particle on SL(2,R) dynamics
does not correspond to Schwarzian quantum mechanics. To arrive at the latter, we will need an analogous coset
constraint on the asymptotic boundary conditions, leading to the fixed behaviour of the gauge field A|B in Eq
2.58. I will present the coset boundary conditions in a rephrased version of [44] [22] [21].

Let us first consider an unconstrained holographic SL(2,R) particle-on-a-group theory, whose action Eq 2.137
is given in terms of free particles on the thermal disk g(τ + β) = g(τ):

S[g] =
1

2

ż

dτTr
(
(gBτg

´1)2
)
. (2.145)

Next, we introduce the following 2 ˆ 2 realization of the sl(2,R) algebra, which we will use throughout from
here on

iJ0 =
1

2

(
´1 0

0 1

)
, iJ´ =

(
0 0

1 0

)
, iJ+ =

(
0 1

0 0

)
(2.146)

, satisfying an isomorphism of the sl(2,R) algebra:

[J0, J˘] = ˘iJ˘, [J+, J´] = 2iJ0. (2.147)
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The Gauss parametrization covers a section of the SL(2,R) group manifold in terms of three real parameters
φ, γ´, γ+;

g´1 = eγ´iJ´ eφ2iJ0 eγ+iJ+ =

(
1 0

γ´ 1

)(
e´φ 0

0 eφ

)(
1 γ+

0 1

)
. (2.148)

This parametrization covers the Poincaré patch of the SL(2,R)-manifold, with a metric determined by:

ds2 =
1

2
Tr((gdg´1)2) = dφ2 + e´2φdγ´dγ+. (2.149)

This is the natural metric inherited on the target space of the particle-on-a-group model Eq 2.145. The Haar
measure on the SL(2,R) group manifold is deduced from the volume form corresponding to this metric:

dg =
a

|det(g)| dφdγ´dγ+ = e´2φ dφdγ´dγ+. (2.150)

More on the representation theory of the SL(2,R) and SL+(2,R) groups can be found in appendix A.

Within this realization, the trace in Eq 2.145 is the sum of the diagonal elements of the 2 ˆ 2 matrices. Since
gBτg

´1 is Lie algebra valued, we can expand it into the generators of Eq 2.146:

gBτg
´1 ” J = 2J 0iJ0 + J ´iJ´ + J +iJ+ (2.151)

, where J a are scalar current components. Working out explicitly using the Gauss parameterization, we can
check that the components satisfy

J 0 = φ1 + γ+γ
1
´e

´2φ, J ´ = γ1
´e

´2φ, J + = γ1
+ ´ 2γ+φ

1 ´ γ2+γ
1
´e

´2φ. (2.152)

It can be checked that using Eq 2.151 leads to the following particle-on-SL(2,R) action

S[φ, γ´, γ+] =

ż

dτ
(
φ12 + γ1

´γ
1
+e

´2φ
)
. (2.153)

This is a non-linear sigma model on the target space of the SL(2,R) manifold. The conjugate momenta are
deduced in the usual way from the Lagrangian L: πq = BL

Bq1 , giving:

πφ = 2φ1, π+ = γ1
´e

´2φ, π´ = γ1
+e

´2φ. (2.154)

Canonical quantization proceeds by promoting the fields into operators and imposing the commutation relations
on the group manifold [q, πq] = 1 in Euclidean signature [88].
We now consider a dynamical system where the Hamiltonian is specified by H = φ12+π+π´e

2φ, which leads
to the canonical Lagrangian L:

L = πφφ
1 + π+γ

1
+ + π´γ

1
´ ´H (2.155)

Ø L = φ12 + π+γ
1
+ + π´γ

1
´ ´ π+π´e

2φ . (2.156)
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This reduces to the particle-on-SL(2,R) Lagrangian, by inserting either the explicit identities for the conjugate
momenta πq, or by using their on-shell equations of motion γ1

+ ´ π´e
2φ = 0, γ1

´ ´ π+e
2φ = 0:

L = φ12 + γ1
´γ

1
+e

´2φ . (2.157)

Likewise, we can rewrite the currents in phase space coordinates (q, πq) as:

J 0 =
πφ
2

+ γ+π+, J ´ = π+, J + = e2φπ´ ´ γ+πφ ´ γ2+π+. (2.158)

After quantization ([q, πq] = 1), the currents become operators that satisfy an isomorphism of the sl(2,R)-
algebra

[J 0,J ´] = π+ = J ´

[J 0,J +] =
1

2
[πφ, e

2φ]π´ ´ γ+[π+, γ+]πφ ´ γ2+[γ+, π+]π+ ´ γ+[π+, γ
2
+]π+ = ´J +

[J ´,J +] = πφ + 2γ+π+ = 2J 0.

Compared to the sl(2,R) algebra of Eq 2.147, we may identify:

iJ ´ Ø J+, iJ + Ø J´, iJ 0 Ø J0. (2.159)

Alternatively, the action exhibits another set of generators from T = Bτgg
´1, which commute with J a and

upon quantization satisfy the sl(2,R) algebra. Explicitly, these currents are parameterized in phase space by
[44]:

T 0 =
πφ
2

+ γ´π´, T ´ = π´, T + = e2φπ+ ´ γ´πφ ´ γ2´π´. (2.160)

The theory thus exhibits a two-folded symmetry, whose spectrum is organized in unitary representations of
SL(2,R) ˆ SL(2,R).
The Hamiltonian Eq 2.155 is of course equivalent to the Hamiltonian derived in Eq 2.104 in terms of the
quadratic Casimir:

H = Tr(A|2B) = Tr(JJ ) = Tr(T T ) = C2. (2.161)

Since the currents J a, T a become operators working on the group labels φ, γ˘, the different representation
wavefunctions ψi(φ, γ+, γ´) can be solved in terms of a differential equation of the quadratic Casimir C2 by
imposing

C2 ψj(φ, γ+, γ´) = ´j(j + 1) ψj(φ, γ+, γ´) (2.162)

in either realization of the algebra (see appendix F of [22]). Here j is a (possibly complex) number that labels
the representation. To label the representations uniquely, we should consider a maximal set of commuting
operators in the set tC2,J a, T au. We find that J a and T b commute for any a, b. Therefore, a proper choice
would be to diagonalize both C2, J ´, T +, and to label the eigenstates in the Hilbert space in terms of the
eigenvalues under these operators |j, s, ry. These are simultaneous eigenvectors under

C2 |j, s, ry = ´j(j + 1) |j, s, ry , J + |j, s, ry = s |j, s, ry , T ´ |j, s, ry = r |j, s, ry . (2.163)
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Another basis is the set of group elements |gy, parameterized by the parameters of the group manifold. Since
e.g. J + works diagonally on |j, s, ry while it also acts as a differential operator on |gy yielding the represen-
tation matrices, we can argue for the identification xg | j, r, sy » Rj,r,s(g) by considering the matrix element
xg | J a | R, s, ry [44]. This immediately confirms the proposed Hilbert space structure in terms of the Peter-
Weyl theorem for the case of SL(2,R).

Minisuperspace Liouville Hamiltonian

To be more concrete, the currents above T , J are related to the left and right regular realizations of the
sl(2,R) algebra respectively. Using the identifications Eq 2.159, and canonical quantization πq Ñ ´Bq, the
right regular representation constructed from J is:

iJ+ = B+, iJ´ = e2φB´ ´ γ+Bφ ´ γ2+B+, iJ0 =
1

2
Bφ + γ+B+. (2.164)

We compute the quadratic Casimir in this realization following the usual definition (c.f. Eq A.7):

C2 = (J0)
2 +

1

2
(J+J´ + J´J+) = ´

1

4
B2
φ +

1

2
Bφ ´ e2φB+B´. (2.165)

Parameterizing j = ´1
2 + ik for unitary representations (c.f. Eq A.13), the Casimir eigenvalue problem Eq

2.162 is specified by:

C2χ(φ, γ´, γ+) =

(
1

4
+ k2

)
χ(φ, γ´, γ+). (2.166)

We will see shortly that gravitational solutions are constrained under right coset conditions π+ ” 1 (B+ = ´1).
These are complemented by the left coset boundary condition π´ = ´1 (B´ = 1), yielding matrix elements of
mixed parabolic type. Defining a new function χ = eφψ(φ) independent of γ˘, the sl(2,R) Casimir eigenvalue
equation is equivalent to the minisuperspace limit of the Liouville eigenvalue equation;(

´
1

4
B2
φ + e2φ

)
ψ(φ) = k2ψ(φ). (2.167)

Its normalized solutions are well-known, and are determined in terms of modified Bessel functions [50] [22]

Rk(φ) = eφψ(φ) = eφK2is(e
φ) . (2.168)

This directly determines the representation matrices of the principal series representation of SL(2,R). Given
the exponential slope of the Liouville potential, these are the only surviving normalizable solutions for positive
energies. This procedure is known as the harmonic analysis of SL(2,R) representation theory.
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2.6.2 Coset boundary conditions

Of course, the two-folded SL(2,R) particle-on-a-group theory above does not correspond to the Schwarzian
theory. To see how the latter emerges, we look back at the Hamiltonian formulation of the Schwarzian theory in
terms of a four dimensional phase space (ϕ, πϕ), (F, πF ), discussed in section 1.6.1. There, we demonstrated
that the zero-temperature Schwarzian theory can be obtained in a Hamiltonian formulation by integrating out
the auxiliary field πϕ in the total Lagrangian

L = πϕBtϕ+ πF BtF ´H (2.169)

, where the Hamiltonian is given in the current convention of C = 1/2 as

H = π2ϕ + eϕπF . (2.170)

Plugging in the equation of motion for πϕ: πϕ = ϕ1

2 after path integrating over πϕ, the above can be written as:

L =
1

4
(ϕ1)2 ´ πF e

ϕ + πFF
1. (2.171)

Interpreting πF as a Lagrange multiplier enforcing the constraint eϕ = F 1, we arrive at exactly the Lagrangian
of the Schwarzian theory up to a total derivative and a constant prefactor, where

tF, tu = ´
1

2
(Btϕ)

2 + B2
tϕ, ϕ ” logF 1. (2.172)

Abusing notations to connect to the current section, we may reformulate the Lagrangian in terms of ϕ ” 2φ,
(F, πF ) ” (γ´, π´):

L = (φ1)2 + π´γ
1
´ ´ π´e

2φ . (2.173)

Therefore, integrating out π´ should lead to the Schwarzian derivative in terms of γ´. In section 1.6.1, we
have also seen that integrating out γ´ and setting π´ ” µ leads to the 1d Liouville equation

L = φ12 ´ µe2φ . (2.174)

On the other hand, the Lagrangian Eq 2.173 itself can be obtained from the Lagrangian Eq 2.156 by integrating
out γ+, and setting π+ ” 1. Ultimately, integrating out π+ and π´ in 2.156 leads to the desired particle-
on-SL(2,R) Lagrangian Eq 2.157.
This set of relations is quite involved, so I summarize them in table 2.1.

The conclusion is that in order to obtain Schwarzian quantum mechanics as the holographic dual of a bulk
BF theory, we have to impose an additional boundary condition to A|B = B|B; namely the coset boundary
condition:

A|B = B|B, J ´ = π+ = 1. (2.175)

The coset boundary condition should be fixed on all states of the Hilbert space reaching the boundary where
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Particle-on-SL(2,R): L = φ12 + π+γ
1
+ + π´γ

1
´ ´ π+π´e

2φ Integrate out π+, π´

ÝÝÝÝÝÝÝÝÝÝÝÑ L = φ12 + γ1
´γ

1
+e

´2φ

§

§

đ
Integrate out γ+, π+ ” 1

Schwarzian: L = (φ1)2 + π´γ
1
´ ´ π´e

2φ Integrate out π´

ÝÝÝÝÝÝÝÝÝÑ L » tγ´, τu

Table 2.1: Overview of different models with underlying SL(2,R) symmetry.

the Schwarzian theory lives: π+ |ψy = |ψy. This fixes the labels of the representation matrices schematically
to |j, s, ry ” |j, sy. Fixing one of the currents breaks the two-fold SL(2,R) symmetry, leaving only the left-
invariant charge algebra T a intact, since these generators in general commute with J ´. On the other hand,
since the remaining generators in J a do not commute with J ´, we cannot additionally constrain them simul-
taneously.

In terms of the Gauss parametrization Eq 2.152, we can write the coset constraint as fixing

γ1
´ e´2φ ” 1. (2.176)

Imposing this constraint directly on the action Eq 2.153 yields:

S[γ´, γ+] =

ż

dτ

(
1

4

γ2
´
2

γ12
+ γ1

+

)
. (2.177)

Writing the Schwarzian as tγ´, τu =
(
γ2

´

γ1
´

)1

´ 1
2

(
γ2

´

γ1
´

)2
, we can immediately identify the action up to a total

derivative with the Schwarzian boundary action:

S[γ´, γ+] = ´
1

2

ż

dτ tγ´, τu. (2.178)

The field γ+ is a free field that should be integrated out in the action. Likewise, we can impose a well-chosen
gauge constraint. One possibility would be to fix:

γ+ = ´φ1 = ´
1

2

γ2
´

γ1
´

. (2.179)

This choice conveniently puts J 0 ” 0, and yields for J +:

J + = γ1
+ + γ2+ = ´

1

2

(
γ2

´

γ1
´

)1

+
1

4

(
γ2

´

γ1
´

)2

» ´
1

2
tγ´, τu. (2.180)

The coset boundary condition J ´ ” 1, together with this choice of gauge (leading to J 0 = 0, J + =
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´1
2tγ´, τu), allows us to write the total current as:

A|B = J ´iJ´ + J +iJ+ ” iJ´ ´
1

2
T (τ)iJ+ =

(
0 ´1

2T (τ)

1 0

)
(2.181)

, with T (τ) ” tγ´, τu. Inserted in the particle-on-a-group action I = 1
2

ş

dτTr(J 2) directly leads to the
Schwarzian boundary action:

I = ´
1

2

ż

dτT (τ) = ´
1

2

ż

dτ tγ´, τu. (2.182)

Of course, the choice of gauge for γ+ is arbitrary, and any choice will lead to this conclusion. However, it
will turn out to be useful to fix this gauge immediately to deduce the holographic interpretation of boundary
anchored Wilson lines later.
This settles the interpretation of the Schwarzian boundary action as a constrained particle on the SL(2,R)
manifold9. Being the holographic dual of bulk JT gravity, we may also interpret JT gravity as a constrained
version of sl(2,R) BF theory.
Imposing the coset boundary condition on the natural SL(2,R) volume form Eq 2.150 also leads to the
Schwarzian symplectic volume form Eq C.25. Indeed, the functional volume form at every τ is:

Dg =
ź

τ

e´2φdφdγ+dγ´ =
ź

τ

dγ´

γ1
´

, after writing φ in terms of γ´ via e´2φγ1
´ = 1, and gauge-fixing γ+, thereby leaving only dependence on

dγ´. This provides a holographic perspective on the bulk BF measure of section 2.3.2.

2.7 Generalized BF theory

The embedding of JT amplitudes within the quantum mechanical BF framework requires making two obvious
modifications to the latter. First of all, as we have seen in the previous section, we need to fine-tune the
boundary conditions to account for the dynamics on cosets.
Secondly, the discussion of BF quantization in the last section has been restricted to the well-known compact
case. Since JT gravity is ultimately described by (some modification) of SL(2,R), we need to extend this
discussion to include non-compact groups as well. For a Lie-group to be compact means that any infinite
series of points contains a part that converges to a point on the manifold [77]. Note that the underlying Lie
algebra of any compact group G is automatically a compact real form g, described soley in terms of anti-
Hermitian generators. On the contrary, only if a Lie algebra is both semisimple and compact, then we known
that its universal covering group is a compact manifold. Concretely, the parameters of a compact Lie group
span only a finite range10, while some (sub)parameters of non-compact groups span an infinite range. The main
difference in the Peter-Weyl decomposition to compact groups is that there might appear irreps with continuous
irrep labels, as well as infinite-dimensional modules of discrete representations.

9[24] finetunes this interpretation later for the subsemigroup SL+(2,R).
10The textbook example being the compact (S)U(N), (S)O(N) groups, as part of the unitary and orthogonal groups, parameterized in terms

of compact parameters describing rotations.
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2.7.1 Quantum amplitudes on the coset G/H

The extension of BF amplitudes to cosets over G/H was rigorously established in [24]. Here, the standard
boundary conditions B|B = A|B are generalized to:

Aa|B = Ba|B, Ab|B = Bb|B ” 0 (2.183)

for some subset of generators labeled by b, spanning a proper subalgebra h Ă g. In fact, the standard boundary
conditions are in a sense the least restrictive ones. In the quantum theory, additionally constraining Abτ =

(gBτg
´1)b = J b ” 0 leads to a constrained particle moving on the right coset G/H:

I[g] =
1

2

ż

dτ Tr(gBτg
´1)2|G/H . (2.184)

At the extremal end, when H = G, this leads to A|B = B|B ” 0. Since the boundary term is linear in B, this
destroys any dynamics on the boundary, and the net-result is a topological BF theory inside the bulk, for which
the only natural observables are knots and Wilson loops.
In the Peter-Weyl theorem, functions on the coset G/H are restricted by right-invariance under H: f(g) =

f(g ¨H). These may be expanded in the representation basis Ra0(g)

Ra0(g) = xR, a | g | R, 0y ” xR, a | g ¨H | R, 0y (2.185)

, where the label 0 implies right-invariance under H:

h |R, 0y = |R, 0y , h P H. (2.186)

Expanding the group elements in terms of infinitesimal generators implies that all right-invariant basis states
|R, ay are annihilated by the generators under h:

J b |R, 0y = 0. (2.187)

This is exactly the content of the coset boundary restriction Eq 2.183, written in terms of the quantized gen-
erators on the boundary Abτ = gBτg

´1 = J b. It can be shown [24] that for homogeneous spaces (which any
sensible modification of SL(2,R) falls under), there is only one basis vector |R, 0y that is invariant under H
for each irrep R. The Hilbert space of right-invariant functions on G/H is thus spanned by so-called spherical
functions

φR0a(g) = xR, a | g | R, 0y = xg | R, a, 0y (2.188)

=
a

dim(R) Ra0(g). (2.189)

Since the generators are only restricted at the boundary, the states |R, 0y label points at the boundary, while
|R, ay label points in the bulk. The natural slicing to cover the disk partition function on G/H is, in this case,
the angular slicing of Eq 2.117. Concretely,



96 CHAPTER 2. FIRST ORDER QUANTIZATION OF JT GRAVITY

xU | e´βH | 1y =
ÿ

R,a

φR0a(U)φRa0(1)e´βC2(R) =
ÿ

R,a

dim(R) R0a(U)Ra0(1)e´βC2(R) = .

(2.190)
The red boundary indicates the locus where the coset boundary restriction holds. Restricting to a trivial holon-
omy along the disk U ” 1, the novel difference compared to the generic disk amplitudes Eq 2.115 is that there
is only one free parameter a in the sum, leading to a different exponent of the measure dim(R):

Zdisk|G/H =
ÿ

R

dim(R)e´βC2(R). (2.191)

The remaining measure factor dim(R) is reminiscent of the normalization of the complete set of spherical
wavefunctions. a denote the free labels in the bulk that are not affected by the coset condition on the boundary.
On the contrary, when we consider a Hilbert space on an interval that ends at either side on the physical
boundary, one should expand in doubly constrained zonal wavefunctions

φR(g) = xg | R, 0, 0y =
a

dim(R)R00(g) (2.192)

, where R00(g) ” xR, 0 | g | R, 0y. This restricts the Hilbert space along the interval to be both left-and-right
invariant under H . Concretely, since the particle moves on the holonomy of g = g´1

1 ¨ g2 (with g1 and g2 the
location of the boundary particle on a group at two different time instances), the restriction above indicates that
it actually travels on the right coset G/H (g1 » g1 ¨ h1, g2 » g2 ¨ h2): R00(g) = R00(h

´1
1 ¨ g ¨ h2). Thus it

should be both left and right invariant.
Evaluating the disk partition function with a radial slicing restricts the character on the boundary to the a
predefined weight χ(U) = R00(U), yielding manifestly the same amplitude as before [24]:

xU | e´βH | 1y =
ÿ

R

χR(1) χR|00(U)e´βC2(R) =
ÿ

R

dim(R) R00(U)e´βC2(R) = .

(2.193)
Imposing the coset restriction on both endpoints of the Hilbert space also allows an open slice covering of the
disk partition function in terms of the zonal wavefunctions:

Zdisk|G/H = xg | e´βH | hy =
ÿ

R

φR(g)φR(h´1)e´βC2(H) =
ÿ

R

dim(R) R00(g)R00(h
´1)e´βC2(H).

(2.194)
This is manifestly equal to the radial and angular slicing on the coset boundaries since
R00(U) = R00(g)R00(h

´1). In any case, restricting the physical boundaries to g = h = 1 yields up to some
R-independent prefactor: R00(1) Ñ 1. In all slicings, the dimension of the weight dim(R) is lowered by one
compared to the free particle.
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Using the zonal matrix elements, the Hilbert space expansion of the asymptotic state Eq 2.126 does not involve
a summation over the indices:

Z(f) = = xf | e´βH | 1y =
ÿ

R

dim(R)e´β1C2(R)R00(f). (2.195)

The coset boundary restriction at the physical boundary also restricts the free indices on the Wilson line matrix
element WR,nm. Indeed, we saw in section 2.5.2 that gluing two asymptotic half-disks along a Wilson line
involves the Clebsch-Gordan coefficients

ż

df R1,m1,n1
(f´1)Rnm(f)R2,n2m2

(f) „ CR1,n1

R,R2,n,n2
CR1,m1

R,R2,m,m2
. (2.196)

It is a standard property of the Clebsch-Gordan coefficients CR1,m1

R,R2;m,m2
= xR1,m1 | R,R2;m,m2y that they

are only non-zero if the currents are conserved J 1 = J + J 2. Therefore, if both currents of the asymptotic
states J 1 and J 2 are constrained to a predefined weight, the weight of the Wilson line under J is constrained
to zero. The matrix elements of the latter should therefore be evaluated in the lowest-weight states:

WR ” WR,00. (2.197)

Gluing the asymptotic states together along a Wilson line
ş

df Z1(f
´1)R00(f)Z2(f) now leads to the modified

boundary correlation function:

=
ÿ

R1,R2

dim(R1)dim(R2)e
´β1C2(R1)e´β2C2(R2)

(
R1 R R2

0 0 0

)2

. (2.198)

The bulk crossing of two Wilson lines involves 6j-symbols, which are obtained as a sum over 3j symbols
in the bulk. We have come to this conclusion by splitting the asymptotic half-disk amplitude into pie-shaped
amplitudes at the bulk intersection point. In this case, we can likewise split the zonal matrix elements into
spherical matrix elements along a free parameter a at the bulk intersection point:

R00(g ¨ h) =
ÿ

a

R0a(g)Ra0(g). (2.199)

This decomposition makes it clear that a is still a free index, unconstrained by the coset conditions at the
boundary. Therefore, the sum over 3j-symbols at the intersection still produces the same 6j-symbol of the
ambient G space.
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2.7.2 Non-compact generalization

As opposed to the well-studied compact BF theory, non-compact generalizations have remained relatively
unexplored. In fact, by matching the amplitudes in the BF description of JT gravity with the previously estab-
lished results in e.g. [21], Blommaert et al. [22] not only provided a Wilson line perspective on Schwarzian
correlators, but also proved that calculations in constrained SL+(2,R) BF theory are structurally equivalent to
those of their compact relatives.
The novel difference is to include both infinite-dimensional and continuous labeled representations in the
Peter-Weyl theorem. We assume that the square-integrable functions on the group manifold L2(G) can still be
decomposed in the representation basis

f(g) =
ÿ

k,a,b

ck,ab Rk,ab(g), f P L2(G), g P G.

In this notation, the sum represents an integral if k, a, b assume continuous values11: "
ř

k,a,b Ñ
ş

dkdadb".
In the case of the latter, one usually speaks of the Plancherel decomposition in the representation basis. The
delta-regularized orthogonality relation for continuous representations is:

ż

dgRk,ab(g)Rk1,cd(g
´1) =

δ(k ´ k1)

ρ(k)
δadδbc (2.200)

, where dg = e´2φdγ+dγ´dφ is the natural Haar measure. This defines the Plancherel measure ρ(k) of the
representation k, which takes over the role of dim(k) for continuous irreps. The relation above defines an
orthonormal basis of representation wavefunctions:

ψksr(g) = xg | k, s, ry ” ρ(k)1/2Rk,sr(g), ψkrs(g
´1) = xk, s, r | gy ” ρ(k)1/2Rk,rs(g

´1). (2.201)

The Hilbert space structure xg | R, s, ry
˚ = xR, s, r | gy again constrains the representation matrices to the

class of unitary irreducible representations. Note that the Plancherel measure derived from the orthogonality
theorem, is independent of the choice of basis. Restricting to continuous representations, the disk partition
function is readily generalized to:

xg | e´βH | hy =

ż

ds

ż

dr

ż

dk ψksr(g)ψrs(h
´1)e´βC2(k) =

ż

dk ρ(k)χk(g ¨ h´1)e´βC2(k) (2.202)

, with an obvious definition of the character evaluated in continuous representations χk(g) =
ş

ds Rk,ss(g).
This in turn provides an alternative definition of the Plancherel measure χk(1) = ρ(k), such that on a physical
boundary with U = g = h = 1:

Z(β) =

ż

dk ρ(k)2e´βC2(k). (2.203)

11One should be a little more careful in the overall normalization of this relation. In particular, summation over irreps has to transform contra-
grediently to the Kronecker delta, leading to an overall volume factor on the space of conjugacy classes. I will graciously ignore these subtleties.
See appendix C of [24].
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Restricting to coset boundary conditions of course strips off the integral over the labels r, s, resulting in the
disk amplitude

Z(β)|G/H =

ż

dk ρ(k)e´βC2(k) . (2.204)

In the case of SL(2,R), the unitary irreps have all been thoroughly studied. As always, states are labeled by
the irreps and the eigenvalues of one of the generators. In the basis tJ 0,J ˘ = J 1 ˘ iJ 2u, J 2 generates
a compact subgroup. Diagonalizing J 2 defines the elliptic basis [22]. Its eigenvalues are denoted by integer
values m. Diagonalizing either J ˘ defines the (mixed) parabolic basis with continuous eigenvalues ν˘. The
(continuous or discrete) label j is related to the eigenvalue of the quadratic Casimir C2(j) = ´j(j + 1) and
labels the representation. This classifies the collection of square-integrable unitary irreducible representations:

• Principal Continuous series representation Ck with j = ´1
2 + ik for k P R

• (highest and lowest-weight) Discrete series representation D˘
j with j = N andm = ˘j,˘(j+1),˘(j+

2), . . .

All other unitary irreps are not in L2(SL(2,R)). The general Plancherel decomposition of any function f(g) P

L2(SL(2,R)) in the elliptic basis is then [22]:

f(g) =

ż 8

0
dk k tanh(πk)

ÿ

m,nPZ
ck,m,n R´ 1

2
+ik,mn(g) +

+8
ÿ

l=0

˘8
ÿ

m,n=˘l

(
l +

1

2

)
cl,m,nR

˘
l,mn(g). (2.205)

From the first term, we read off the Plancherel measure of the principal continuous representation ρ(k) „

k tanh(πk).

2.8 Gravitational amplitudes of JT gravity

To proceed, we need a fair amount of the specific representation theory of SL(2,R) and of SL+(2,R). Since
the original work of this thesis builds on this representation theory, I have included an extensive appendix A
covering these two topics. I have mostly summarized the approaches of [22], [24] and [40] while working out
much of the calculational details explicitly. A convenient summary is given hereunder.

2.8.1 Representation theory of SL(2,R)

This section serves as a summary of the appendix A to which the reader is heartily redirected for more concrete
derivations.
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We start from the defining realization of SL(2,R) in terms of 2 ˆ 2 matrices g P SL(2,R):

g =

(
a b

c d

)
, ad´ bc ” 1. (2.206)

Upon imposing the determinant constraint ad´ bc = 1, this leaves a three-dimensional group manifold.
As demonstrated in Eq A.3, the conjugacy classes of this matrix are categorized in terms of the value of its
trace, according to:
elliptic: Tr(g) ă 2, parabolic: Tr(g) = 2, and hyperbolic: Tr ą 2.
Expanding the group elements into generators g = 1 + iεaJa, the constraint det g ” 1 is translated to the
ambient sl(2,R) algebra as the vanishing of the trace of the 2 ˆ 2 matrices Tr(iJa) ” 0.
This leaves a three dimensional algebra, spanned in terms of the fundamental generators Eq 2.146:

iJ0 =
1

2

(
´1 0

0 1

)
, iJ´ =

(
0 0

1 0

)
, iJ+ =

(
0 1

0 0

)
(2.207)

These satisfy an isomorphism of the sl(2,R) algebra:

[J0, J˘] = ˘iJ˘, [J+, J´] = 2iJ0 . (2.208)

The Cartan-Killing metric is defined from the normalization of the generators:

κab = 2Tr[(iJa)(iJb)] =

1 0 0

0 0 2

0 2 0

 . (2.209)

Generator indices are (raised) and lowered using this (inverse) metric. The inverse Cartan-Killing metric
defines the quadratic Casimir:

C2 = ´κabiJaiJb = J2
0 +

1

2
tJ+, J´u ” ´j(j + 1) . (2.210)

This is seen to commute with all generators of the sl(2,R) algebra, and labels the representation unambiguously
by its eigenvalue C2(j) = ´j(j + 1). The possibly complex number j is called the spin of the representation.
It is readily seen that the fundamental generators Eq 2.207 span a spin-1/2 representation

To go beyond the defining spin-1/2 representation, more general spin-j representations can be projected on the
real number line in terms of a square integrable function f jν (x) = xx | j, νy P L2(R), where |xy is introduced
as a complete set of states in configuration space, defined in terms of the inner product on L2(R):

xjν | lµy =

ż

R
dx xjν | xy xx | lµy = δjl

ż

R
f jν (x)

˚f lµ(x). (2.211)
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On the space of square integrable functions, one introduces the principal series action of SL(2,R) Eq A.9:

xx | g | jνy = (g ¨ f jν )(x) = ((T̂j(g))f
j
ν )(x) = |bx+ d|2jf jν

(
ax+ c

bx+ d

)
. (2.212)

The action on L2(R) is denoted as

xjν | g | lνy = δjl

ż

R
f jν (x)

˚(g ¨ f lµ)(x). (2.213)

Infinitesimally expanding into generators g = 1+iεaJa defined in Eq 2.207, leads to the Borel-Weil realization
of the sl(2,R) algebra:

iJ´ = Bx, iJ0 = ´xBx + j, iJ+ = ´x2Bx + 2jx (2.214)

, for which the quadratic Casimir yields explicitly C2(j) = ´j(j + 1) (c.f. Eq A.12).
The generators Ja are hermitian with respect to the inner product on L2(R) if we constrain the value of the
representation label to Eq A.13:

j = ´
1

2
+ ik, k P R . (2.215)

This defines the unitary principal continuous series representation, labeled by the real parameter k.

The generators iJ0, iJ˘ may be exponentiated to elements of SL(2,R) according to:

e2φiH =

(
e´φ 0

0 eφ

)
, h´(γ´) = eiJ

´γ´ =

(
1 0

γ´ 1

)
, h+(t) = eiJ

+γ+ =

(
1 γ+

0 1

)
. (2.216)

From the general inequality eφ+ e´φ ě 2, we see that e2φiH parameterizes the hyperbolic group elements. On
the other hand, h˘ label parabolic group elements. The Gauss parameterization covers the Poincaré patch of
the SL(2,R) manifold:

g = eγ´iJ´ eφ2iJ0 eγ+iJ+ =

(
1 0

γ´ 1

)(
e´φ 0

0 eφ

)(
1 γ+

0 1

)
. (2.217)

The Haar measure on this group manifold is given by the natural volume form Eq 2.150:

dg = e´2φdφdγ+dγ´. (2.218)

The action of the left-parabolic group element h´

xx | h´(t) | fkν´
y = (h´(t) ¨ fkν´

)(x) = fkν´
(x+ t) (2.219)
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is readily diagonalized by the plane wave basis. We denote this state on L2(R) as:

xx | ν´y = eiν´x (2.220)

, which has the associated continuous eigenvalue J´ = ν´: (h´(t) ¨ fkν´
)(x) = eiν´tfkν´

(x).
The action of h+(t) on the carrier space is given by:

xx | h+(t) | fkν y = (h+(t) ¨ fkν+)(x) = |tx+ 1|2jf jν+

(
x

tx+ 1

)
(2.221)

, which is diagonalized by the right parabolic eigenvectors

xx | ν+y = |x|2jeiν+/x = |x|2ik´1eiν+/x . (2.222)

Its associated continuous eigenvalue is labeled by J+ = ν+:

(h+(t) ¨ fkν+)(x) = eiν+t(|x|2ik´1eiν+/x). (2.223)

The eigenvectors are transformed into each other by application of ω P SL(2,R):

ω =

(
0 1

´1 0

)
, Ñ ω |ν´y = |´ν+y . (2.224)

We can consider the matrix element of a general Gauss-parameterized group element

g(φ, γ´, γ+) = eγ´iJ´ eφ2iJ0 eγ+iJ+ (2.225)

evaluated between a left and right parabolic eigenvector. Being eigenvectors of respectively J˘, we can write
directly (using the hermiticity of J´)

xν´ | g(φ, γ´, γ+) | ν+y = eiγ´ν´eiγ+ν+ xν´ | e2iφJ0 | ν+y . (2.226)

The matrix element diagonalizes up to the hyperbolic matrix element xν´ | e2iφJ0 | ν+y, which we call the
Whittaker function. The left- and right parabolic eigenstates are called Whittaker vectors. We calculate the
total matrix element in terms of the modified Bessel functions of the second kind (c.f. Eq A.28):

xν´ | g(φ, γ´, γ+) | ν+y = eiγ´ν´eiγ+ν+ eφ cosh(πk)
(
ν+
ν´

)ik
K2ik

(
?
ν´ν+e

φ
)
. (2.227)

From the orthogonality relation Eq A.29

ż 8

0

dx

x
K2ik(x)K2ik1(x)˚ =

ż +8

´8

dφK2ik(e
φ)K2ik1(eφ)˚ =

π2

8k sinh(2πk)δ(k ´ k1) (2.228)
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, the Plancherel measure of the continuous series representation is given by Eq A.31:

ρ(k) = k tanh(πk) . (2.229)

We could also have chosen to diagonalize the hyperbolic group element g(t) = e2itJ0 . The eigenvectors in this
case are Eq A.33:

fks (x) = xx | s,˘y =
1

?
2π

(˘x)is´1/2, xs,˘ | xy =
1

?
2π

(˘x)´is´1/2, ˘x ą 0. (2.230)

, with eigenvalue iJ0 = i(k ´ s). This hyperbolic basis naturally decomposes into a basis of states associated
to either R˘. Furthermore, the states |s,˘y are complete and orthogonal on both half-lines R˘. This allows us
to write generic matrix elements as a 2 ˆ 2 matrix in terms of the components K˘˘

s1s2(g) ” xs1,˘ | g | s2,˘y:

K(g) =

(
K++ K+´

K´+ K´´

)
(2.231)

This matrix composes under group multiplication in terms of matrix multiplication K(g1 ¨ g2) = K(g1)K(g2)

[22], and has as its inverse K(g´1) = K(g)´1 [24].

2.8.2 Representation theory of SL+(2,R)

Group elements g P SL+(2,R) are still represented by sets of 2 ˆ 2 matrices with unit determinant Eq 2.206
with the additional restriction that all matrix entries are strictly positive a, b, c, d ą 0. This satisfies both
closure, the existence of the identity element and associativity, but has no proper inverse. This defines a semi-
group. The inverse is however well defined from the parent SL(2,R) manifold, such that we refer to it as a
subsemigroup.

The carrier space of the principal series representation is now over the square integrable functions on the
positive half line L2(R+), whose inner product is constrained to x ą 0:

xjν | lµy =

ż

R+

dx xjν | xy xx | lµy = δjl

ż

R+

f jν (x)
˚f lµ(x). (2.232)

We again define the principal continuous series representation of SL+(2,R) on L2(R+) in terms of the Borel-
Weil action, but restricted to positive x ą 0:

xx | g | jνy = (g ¨ f jν )(x) = |bx+ d|2jf jν

(
ax+ c

bx+ d

)
, x ą 0. (2.233)

The corresponding infinitesimal generators iJ0, iJ˘ of sl(2,R) are still given by the Borel-Weil generators
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Eq 2.214. The Gauss parameterization now has the convenient property that it covers the entire SL+(2,R)
subsemigroup manifold by limiting γ+, γ´ ą 0.

The left and right parabolic states on R+, corresponding to eigenfunctions of iJ´ and iJ+ with the complex
eigenvalues J´ = iν´ and J+ = iν+, are given by Eqs 2.220, 2.222 in the region x ą 0, by shifting the
eigenvalues under J˘: ν´ Ñ iν´, ν+ Ñ iν+

xx | ν´y = f jν´
(x) = e´ν´x, xx | ν+y = f jν+(x) = x2ik´1e´ν+/x. (2.234)

The imaginary shift to exponentially damped basis states is a more natural choice than the plane wave basis,
since the latter is strictly speaking not even in L2(R+).
Using the adjoint of J´, the mixed parabolic matrix elements are readily computed using the Gauss parametriza-
tion. This matrix element again diagonalizes up to the Whittaker function Eq A.49

Rk,ν´ν+(g) = xν´ | g(φ, γ+, γ´) | ν+y = eν´γ´e´ν+γ+ xν´ | e2iφJ0 | ν+y (2.235)

, which is calculated explicitly as Eq A.51:

Rk,ν´ν+(g) = eν´γ´e´ν+γ+eφ
(
ν+
ν´

)ik
K2ik(

?
ν´ν+e

φ) . (2.236)

Normalized with respect to the Haar measure dg = e´2φdφ, the Plancherel measure is calculated as Eq A.52:

ρ(k) » k sinh(2πk) . (2.237)

An additional subtlety is that the parabolic states do not constitute a complete delta-normalizable basis on
SL+(2,R). This property is reserved for the hyperbolic basis Eq A.41:

fks (x) = xx | sy =
1

?
2π

xis´1/2, fks (x)
˚ = xs | xy =

1
?
2π
x´is´1/2. (2.238)

The corresponding matrix elements on R+ are now restricted to K++
s1,s2(g):

K++
s1s2(g) = xs1 | g | s2y =

1

2π

ż +8

0
dx x´is1´1/2(g ¨ xis2´1/2) (2.239)

since for positive g ą 0, the action of g on f P L2(R2) cannot change the sign in the integral. As a conse-
quence, the overlaps vanish in this case xs1,˘ | g | s2,¯y ” 0 [44].
The matrix composition law K(g1 ¨ g2) = K(g1)K(g2) is now constrained to K++, and yields a proper repre-
sentation of irreps on SL+(2,R):

K++
ab (g1 ¨ g2) =

ż +8

´8

ds K++
as (g1)K

++
sb (g2).
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2.8.3 SL+(2,R) subsemigroup structure of JT gravity

An obvious issue regarding a (constrained) SL(2,R) BF description of JT quantum gravity is the fact that the
partition function over the coset Eq 2.204 with Plancherel measure given in Eq A.31 ρ(k) = k tanh(πk) does
not match the direct calculation in the Schwarzian theory perspective Eq 1.140. In particular, by defining a
momentum variable E ” k2/2C, we would expect the density of states ρ(E)dE = ρ(k)dk to be given by

ρ(E) = sinh(2π
?
2CE) (2.240)

, while SL(2,R) BF theory predicts an asymptotically flattening slope ρ(E) = tanh(π
?
2CE). At high en-

ergies E " 1/C, the latter violates the Cardy-scaling of the classical solution Eq 1.107 ρ(E) 9 e2π
?
2CE .

Therefore, an SL(2,R) description cannot predict the black hole entropy due to a lack of microstates. With the
classical regime, one means the regime where the relevant energies are much larger than the Newton’s constant.

The specific exponentiation of the sl(2,R) algebra is not a priori obvious. The subsemigroup SL+(2,R) was
first proposed in [22], by noting that the corresponding Plancherel measure Eq A.52 ρ(k) = k sinh(2πk)
matches precisely with the JT density of states. However, different exponentiations might lead to the same
desired Plancherel measure. In particular, [23] investigated the same amplitudes using a suitable limit of the
universal covering group of SL(2,R).
An insightful argument showcasing the discrepancy between BF gauge theory and gravity was given in [40].
Here, it was argued that the transition from SL(2,R) BF theory to SL+(2,R) stems from another global con-
straint on the physical gravity solutions. In particular, constrained SL(2,R) BF theory describes Schwarzian
mechanics on the gravitational coset

I = ´
1

2

ż β

0
dτ tF (τ), τu (2.241)

, where we restrict F to satisfy the trivial monodromy constraint F (τ + β) = F (τ) in terms of a boundary
reparametrization mode f(τ): F (τ) = tan π

β f(τ). However, there exists an infinite family of solutions f(τ +
β) = f(τ) + nβ (n P N) satisfying this constraint, leading to the over-complete partition function:

Z(β) =
8
ÿ

n=1

ż

f(τ+β)=f(τ)+nβ
Df e

1

2

şβ

0
dτ

!

tan π

β
f(τ),τ

)

=
8
ÿ

n=1

(´)n´1n

(
π

β

)3/2

e
π2

β
n2

.

The negative modes are taken into account in the one-loop evaluations of the Schwarzian partition functions.
Performing an inverse Laplace transform leads to the density of states12

Z(β) =

ż 8

0
dk

(
2

8
ÿ

n=1

(´)n´1k sinh(2πnk)

)
e´βk2

=

ż

dk(k tanhπk)e´βk2

(2.242)

, where we indeed recognize the Plancherel measure of pure SL(2,R) Eq A.31. However, this cannot be the
physical gravitational answer, since every n ą 1 corresponds to a replicated solution with a conical singularity
of 2πn. Restricting to smooth geometries thereby additionally constrains the global structure to n ” 1, whose

12Making use of the regularized q Ñ 0 limit of 2
ř8

n=1(´)n´1e´2πqnk sinh(2πnk) = k sinh(2πk)
cosh(2πq)+cosh(2πk)

.



106 CHAPTER 2. FIRST ORDER QUANTIZATION OF JT GRAVITY

dynamics are that of the gravitational coset on SL+(2,R). The constraint n = 1 naturally implements the
restriction in the integration range of the path integral to smooth geometries in Teichmüller space.
In [24], the argument in favour for the subsemigroup SL+(2,R) was fine-tuned further by noting that quan-
tum mechanics on SL+(2,R) automatically excludes non-singular metrics. This choice is again not a priori
imposed in the path integral, but should hold for any sensible theory of quantum gravity. Thereby, restricting
to SL+(2,R) directly leads to the correct consistency requirements.
Let me elaborate more on this fact; a non-trivial holonomy in the closed slicing might persist due to defect
insertions. On the gravity side, these defects are related to non-trivial monodromies when traveling around
the thermal boundary circle. These have all been studied and classified in [37], where it was found that the
three different classes of character insertions hyperbolic (Tr(U) ą 2), parabolic (Tr(U) = 2) and elliptic
(Tr(U) ă 2) (c.f. Eq A.3) lead to wormhole geometries, cusp- and conical singularities respectively. Only the
former has a smooth behaviour in the metric. Therefore, if we are only interested in smooth invertible geome-
tries, we have to exclude both parabolic and elliptic conjugacy classes. The restriction to the subsemigroup,
where all matrix entries a, b, c, d in the group element g Eq A.1

g =

(
a b

c d

)
, ad´ bc = 1, a, b, c, d ą 0 (2.243)

are strictly positive naturally implements this restriction, since the constraint ad ´ bc = 1 leads to d ą 1/a

due to b, c ą 0. Therefore, Tr(U) = a + d ą a + 1/a ě 2 automatically constrains to the regular hyperbolic
conjugacy class elements.

From the BF perspective, integrating over B reduces the path integral to the volume of the moduli space of
flat connections F = 0. Since each flat connection is specified by its holonomy around a non-trivial cycle,
the moduli space is divided by the conjugacy classes of SL(2,R). The restriction to smooth configurations
(hyperbolic component) specializes the moduli space to the Teichmüler space. A choice which as we just saw
is naturally implemented by the subsemigroup. This result implies that the subsemigroup description is a suffi-
cient condition to exclude geometries that contain conical singularities (elliptic) or cusps (parabolic). However,
this does not necessarily imply that this restriction is also necessary in the sense that all smooth geometries
are captured by flat SL+(2,R) connections. In [24], argumentation in favour of this claim was provided by
looking at the three-holed sphere.

A structural argument in favour of the subsemigroup concerns the dimensional reduction of 3d gravity, which
itself is governed by the representation theory of the quantum group SL+

q (2,R) [24] [89]. [24] checked that
the Plancherel decomposition of the latter in the classical limit indeed reduces to the one corresponding to
SL+(2,R) JT gravity. A particularly attractive feature of restricting to the subsemigroup is that only the
principal continuous series representation matrices Pk appear in the Plancherel decomposition:

L2(SL+(2,R)) =
ż

‘

dkk sinh(2πk) Pk b Pk. (2.244)

This is unlike the argument of the central extension of the universal covering group S̃L(2,R) by R of [23],
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where the discrete series representation matrices also appear in the Plancherel decomposition. To effectively
localize on the continuous series, the authors had to consider an analytically continued limit of the discrete
series representation label to suppress the spurious contribution of the latter.
In the following, I will consider the approach of the subsemigroup. This structure naturally generalizes to the
osp(1|2,R) BF description of JT supergravity, whose quantum amplitudes can also be described by restricting
to the positive subsemisupergroup OSp+(1|2,R) [40].

2.8.4 Gravitational coset boundary conditions

With the representation theory presented in sections A.1, A.2, we are equipped to study quantum mechanics
on the SL+(2,R) subsemigroup. In particular, using the generalized set-up of section 2.7.2, we may write the
propagator between two asymptotic states:

xg | e´βH | hy =

ż

ds1

ż

ds2

ż

dk ψks1s2(g)ψs2s1(h
´1)e´βC2(k)

, with the normalized continuous series matrix elements in the hyperbolic basis defined in Eq A.42,

ψksr(g) = xg | k, s, ry ”
a

k sinh(2πk)K++
k,s1s2

(g). (2.245)

However, we run into difficulties when considering the inverse ψs2s1(h´1), since h P SL+(2,R) has no natural
inverse on SL+(2,R). However, we should think of SL+(2,R) as a subsemigroup of SL(2,R). Thus, although
the inverse is not contained in SL+(2,R), it is well-defined.
More precisely, Eq A.36 states that the hyperbolic basis of SL(2,R) naturally decomposes into a basis of states
associated to either the positive or negative half-line R˘, which we represent by a 2 ˆ 2 matrix

K(g) =

(
K++ K+´

K´+ K´´

)
.

This matrix composes under matrix multiplication K(g1 ¨ g2) = K(g1)K(g2), and has as its inverse K(g´1) =

K(g)´1.
On SL+(2,R), |s,+y forms a complete set of basis states, and the matrix element is restricted to K++

s1s2(g) =

xs1,+ | g | s2,+y (c.f. Eq A.42). Using the fact that K˘¯
s1s2(g) = 0 for positive g [90], K is a diagonal matrix

whose inverse is the inverse of the diagonal entries. Specifically,

K++
s1s2(g)

´1 = K++
s1s2(g

´1). (2.246)

Thus, the inverse representation matrix is naturally defined on SL+(2,R) from the parent SL(2,R) manifold.
Since the matrix elements can be shown to be unitary K++

βα (g)˚ = K++
αβ (g)´1 [24], this leads to

K++
αβ (g)˚ = K++

αβ (g´1). (2.247)
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Furthermore using K˘¯
s1s2(g) = 0, matrix multiplication of K directly yields the composition law:

ż

ds1ds2K
++
s1s2(g)K

++
s2s1(h

´1) =

ż

dsK++
ss (gh´1) = χk(g ¨ h´1). (2.248)

More generally, we have the composition between SL(2,R) and SL+(2,R) valued elements [24]:

ż

dsK++
s1s (g)K

++
ss2 (h) = K++

s1s2(g ¨ h), h P SL+(2,R), g P SL(2,R). (2.249)

This leads to the final disk partition function

xg | e´βH | hy =

ż

dk ρ(k)χk(g ¨ h´1)e´βC2(k) (2.250)

, with the continuous hyperbolic character determined below in Eq 2.323.
However, this is not the end of the story, since we have argued that JT gravity is in fact described as a coset on
SL+(2,R) with constrained boundary conditions Eq 2.175 J ´ = π+ ” 1. Using the identifications Eq 2.159,
they are part of the parabolic eigenbasis with eigenvalue J+ ” i,

J+ = iJ ´ ” i. (2.251)

The eigenstates of J+ are given in Eq A.48 by the right Whittaker vector (with eigenvalue J+ = iν+):

xx | ν+y = f jν+(x) = x2ik´1e´ν+/x.

The constraints on the conjugate state readily follow from the adjoint action of J+ (deduced from the parent
SL(2,R)):

x1+| J+ = (J+ |1+y): = (i |1+y): = ´i x1+| .

Thereby, the adjoint state is constrained by the eigenvalue of J+ = ´i acting on the right. Following the
discussion in section 2.7.1, states on an interval reaching the boundary on either side should be expanded in
terms of wavefunctions with the fixed labels ingrained:

Rk,´1+1+
(g) = xk,´1+ | g(φ, γ+, γ´) | k, 1+y . (2.252)

Using the Gauss decomposition of g Eq A.40, it rewards to work in a mixed parabolic basis by writing the
group element as g ” ω ¨ g1, with ω defined as in Eq A.20. This is always possible in the integral, since the
Haar measure is invariant under shifts g Ñ ωg. Since ω acts on the states as ω |ν+y = |´ν´y, this mixes the
right parabolic basis into the left parabolic basis. We hence consider matrix elements in the mixed parabolic
basis. Combined with the natural coset boundary conditions, the matrix elements under consideration are:

Rk,1´1+
(g) = xk, 1´ | g | k, 1+y . (2.253)
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Matrix elements in the mixed parabolic basis with eigenvalues determined by the coset constraint transform
covariantly under both eγ´iJ´ and eγ+iJ+ (c.f. Eq A.49):

Rk,1´1+
(g) = xk, 1´ | g | k, 1+y = eγ´´γ+ xk, 1´ | e2iφJ0 | k, 1+y . (2.254)

The term within brackets is called the Whittaker function and is determined in Eq A.51:

Rk,1´1+
(g) = eγ´´γ+ eφK2ik(e

φ) (2.255)

, normalized with Plancherel measure Eq A.52:

ρ(k) = k sinh(2πk). (2.256)

The answer for the continuous series matrix elements should be compared to the normalizable Liouville min-
isuperspace solutions of the Casimir eigenvalue equation with constrained coset boundary conditions in Eq
2.168. Since the matrix elements are diagonal in γ˘, and the Haar measure Eq 2.4 dg = e´2φdφdγ+dγ´ is
parametrically independent of their values, their dependence will drop in the total integral over dγ˘, yield-
ing an irrelevant constant. We can therefore strip off their dependence immediately and consider the properly
normalized wavefunctions in the Hilbert space determined by the Peter-Weyl theorem:

xφ | ky =
a

k sinh(2πk) Rk,1´1+
(φ) =

a

k sinh(2πk) eφK2ik(e
φ) . (2.257)

The vectors |ky constitute the representation basis in the Peter-Weyl theorem (c.f. Eq 2.201), while the hyper-
bolic group elements |φy take the role of the configurational group elements.

2.8.5 Thermal partition function

Having established JT gravity as a constrained SL+(2,R) BF theory, we may finally calculate some explicit
amplitudes, along the lines of section 2.5. To avoid repeating myself, I will not go over the details again.
We write the disk partition function as the Hamiltonian propagation between two asymptotic states:

Zdisk(φi, φf ) = xφf | e´βH | φiy . (2.258)

We diagonalize the Hamiltonian in the coset formalism by inserting a complete set of representation states in
the mixed parabolic basis:

Zdisk(φi, φf ) =

ż 8

0
dk xφf | ky xk | φiy e

´βC2(k) =

ż 8

0
dkρ(k) Rk,1´1+

(φf )Rk,1´1+
(φi)

˚e´βC2(k).

The quadratic Casimir is defined in terms of the quantum number j in Eq A.7. Inserting j = ´1
2 + ik for

unitarity (c.f. Eq A.13) yields:

C2(k) = ´j(j + 1) =
1

4
+ k2.
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The factor 1/4 may be dropped in the expectation values when normalizing the partition function [22]. Of
course, the fact that we identify the Hamiltonian of our system with the quadratic Casimir in the context of JT
is no coincidence, since this was already established at the classical level in Eq 1.103.

Physical boundary segments are ultimately characterized by a trivial holonomy. In the mixed parabolic basis,
we cannot simply set g = 1 in the expectation values since xk, 1´ | 1 | k,+y = xk, 1´ | k, 1+y yields a non-
trivial overlap Eq A.26. Instead, the identity element is given by the matrix ω´1 that interchanges left and
right eigenstates (c.f. Eq A.20). In terms of the Gauss decomposition, its locus is parameterized by φ Ñ +8,
γ´ = ´γ+ = eφ, as can readily be checked using the explicit parameterization Eq A.40. Using the asymptotics
of the modified Bessel function [90] in this limit Rk,1´1+

(φ) Ñ 1 (up to some immaterial constant), the final
disk amplitude is given by:

Zdisk(β) =

ż 8

0
dk k sinh(2πk)e´βk2

. (2.259)

This not only matches with the classical large c-limit of the torus partition function of the Virasoro algebra
[21], but also matches with the one-loop exact partition function obtained in Eq 1.138, up to some irrelevant
constant that depends on the scheme of renormalization.
Alternatively, we end up with this result by gluing two asymptotic half disks (c.f. Eq 2.126) along a common
group element. In the gravitational context, these are often refered to as Hartle-Hawking states preparing the
vacuum:

ZHartle(φ, β
1) = = xφ | e´β1H | 1y =

ż 8

0
dk k sinh 2πk eφK2ik(e

φ)e´β1k2

. (2.260)

Due to the orthogonality theorem

ż +8

´8

dφe´2φRk1,1´1+
(φ)Rk2,1´1+(φ)

˚ =
1

k1 sinh 2πk1
δ(k1 ´ k2) (2.261)

, we obtain the disk partition function by gluing along φ with the Haar measure Eq 2.150 dg = e´2φdφ:

Zdisk(β1 + β2) =

ż +8

´8

dφ e´2φZHartle(φ, β1)ZHartle(φ, β2)
˚. (2.262)

This is equivalent to inserting a complete set of group elements 1 =
ş

dφ e´2φ |φy xφ| in Eq 2.258.
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2.8.6 Wilson line insertion

Wilson lines in JT gravity are evaluated in the lowest-weight discrete series representation of SL+(2,R), where
the object WR,nm(τ1, τ2) is defined as Eq 2.118:

WR,nm(τ1, τ2) = P exp
(

´

ż τ2

τ1

dτ R(A)

)
nm

. (2.263)

In section 2.5.3, we have interpreted these objects in holography as the bilocal operators Eq 2.138 OR,nm(τ1, τ2) =

Rnm(g(τ2)g
´1(τ1)) in the particle-on-a group theory.

Using the constrained set-up of section 2.6.2, we can show that by choosing the discrete series representation
with j = ´`, the bilocal operator in constrained SL+(2,R) particle-on-group can be identified with the holo-
graphic Schwarzian bilocal operator determined in Eq 1.166.
The usual coset boundary restriction J ´ ” 1 can be rephrased in coordinates as Eq 2.176 e´2φγ1

´ = 1. As
elaborated in section 2.183, a convenient way to obtain the Schwarzian derivative directly from particle-on-a-
group is to additionally gauge fix γ+ = ´1

2

γ2
´

γ1
´

, leading to Eq 2.181:

Aτ = gBτg
´1 = J ” iJ´ ´

1

2
T (τ)iJ+ =

(
0 ´1

2T (τ)

1 0

)
(2.264)

with T = tγ´, τu the Schwarzian derivative. Inserted in the particle-on-a-group action automatically yields
the Schwarzian derivative:

I =
1

2

ż

Tr(JJ ) = ´
1

2

ż

dτT (τ) = ´
1

2

ż

dτ tγ´, τu. (2.265)

This leads to an interpretation of the Schwarzian reparametrization mode F in terms of the SL+(2,R) group
coordinate γ´ ” F . In hindsight, we may rephrase the coset and gauge constraints as:

γ´ = F, e´φ =
1

?
F 1
, γ+ = ´

1

2

F 2

F 1
. (2.266)

Alternatively, this identification may be found directly by considering the ansatz Eq 2.264, and parameterizing

g´1 =

(
A B

C D

)
, leading to the Hill’s equations:

A2 +
1

2
T (τ)A = 0, B = A1

C2 +
1

2
T (τ)C = 0, D = C 1

(2.267)

, along with the SL(+)(2,R) constraint AC 1 ´A1C = 1. The unique solutions, up to Möbius transformations,
are:

A =
1

?
F 1
, C =

F
?
F 1
. (2.268)
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with F the solution to tF, τu = T (τ), as can readily be checked. Identifying these parameters with the Gauss
parametrization of

g´1 = eγ´iJ´ eφ2iJ0 eγ+iJ+ =

(
e´φ e´φγ+

e´φγ´ eφ + e´φγ+γ´

)
(2.269)

leads to the same solutions Eq 2.266.

A lowest-weight discrete series module is constructed by acting on the lowest-weight state defined as

xx | `, 0y =
1

x2`
, x´`, 0 | xy = δ(x). (2.270)

The weight under iJ0 defined from the Borel-Weil realization of sl(2,R) Eq A.11

iJ´ = Bx, iJ0 = ´xBx + j, iJ+ = ´x2Bx + 2jx (2.271)

reads j = ´`. A lowest-weight module is created by acting on the lowest-weight state with the raising13

operators iJ´. I will comment on the discrete series representation theory in more detail in the next chapter.
From the discussion on Wilson lines in the context of cosets in section 2.7.1, current conservation imposes
that the only relevant states that reach the boundary are in fact the lowest-weight states. Indeed, sand-
wiched between two asymptotic states with constrained eigenvalue under J ´, the Clebsch-Gordan coefficients
CR1,1
R,R2;m,1

= xR1, 1 | R,R2;m, 1y appearing in integrals like Eq 2.196 only yield a non-vanishing result for
m,n ” 0. Evaluated in a mixed parabolic basis, this is WR ” WR,00. In the holographic interpretation,
the bilocal operators are evaluated by inserting a complete set of states in configuration space, and using the
specified lowest-weight configurations

O`(τ1, τ2) = x´`, 0 | g(τ2)g
´1(τi) | `, 0y =

ż

dx δ(x)

(
g(τ2)g

´1(τ1) ¨
1

x2`

)
. (2.272)

The eigenvalue of the adjoint lowest-weight state is ´`, as dictated by the anti-hermiticity of iJ0.
This matrix element can be solved by writing out explicitly the Gauss decomposition Eq 2.148
g´1 = eγ´iJ´ eφ2iJ0 eγ+iJ+ in terms of the reparametrization mode F :

g´1 =

(
e´φ e´φγ+

e´φγ´ eφ + e´φγ+γ´

)
=

1
?
F 1

(
1 ´1

2
F 2

F 1

F F 1 ´ 1
2
F 2

F 1 F

)
(2.273)

g =

(
eφ + e´φγ´γ+ ´e´φγ+

´e´φγ´ e´φ

)
=

(?
F 1 ´ 1

2
F 2

(F 1)3/2F
1
2
F 2

F 13/2

´ F?
F 1

1?
F 1

)
. (2.274)

The spin j = ´` principal series action Eq A.9 generated by the sl(2,R) Borel-Weil generators Eq A.11 yields:

1

x2`
g´1(τ1)
ÝÝÝÝÑ

F 1(τ1)
`

(x+ F (τ1))2`
g(τ2)
ÝÝÝÑ

F 1(τ1)
`F 1(τ2)

`(
F (τ1) ´ F (τ2) +

(
F 1(τ2) +

F (τ1)
2

F 2(τ2)
F 1(τ2)

´
F (τ2)

2
F 2(τ2)
F 1(τ2)

)
x
)2` .

Inserted in Eq 2.272 sets x = 0, yielding exactly the Schwarzian bilocal operator Eq 1.166 with the character-

13This is not a typo. Contrary to intuition, the sl(2,R) algebra encountered in Eq 2.147 treats iJ´ as the raising operator and iJ+ as the
lowering operator.
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istic 1d conformal scaling:

O`(τ1, τ2) =
F 1(τ1)

`F 1(τ2)
`

(F (τ1) ´ F (τ2))
2`
. (2.275)

The discrete series label ` = ´j is identified with the conformal scaling dimension ∆ of the bilocal operator
Eq 1.166 when we parameterize the uniformizing coordinate F in terms of the reparameterization mode of the
thermal circle f P diff(S1): F (τ) = tan

(
π
β f(τ)

)
.

Moreover, since there exist no infinite energy configurations T (τ) ă 8, F 1 cannot change sign. Choosing
F 1 ą 0 identifies the integration space with diff(S1)/SL(2,R). This proves the complete holographic equiva-
lence between Schwarzian bilocal operators and Wilson lines in the holographic bulk evaluated in the discrete
series representation of SL+(2,R). The group theoretic perspective now allows for a quantization of the latter
directly in the bulk BF description.

Correlation functions may be calculated along the lines of section 2.5.2. In particular, starting from a Hamil-
tonian propagation between two asymptotic states with coset boundary conditions J+ = i in the presence of a
Wilson line, and inserting a complete set of representation states to diagonalize the Hamiltonian, the calcula-
tion is equivalent to gluing two Hartle Hawking states and the Wilson line insertion W`(φ) = R`,00(φ) along
a common group element

xW`(τ1, τ2)y = x1 | e´βHW`,00 | 1y =

ż

dφ e´2φZHartle(φ, β1)
˚ZHartle(φ, β2)R`,00(φ) (2.276)

, with β1 ” |τ2 ´ τ1|, β2 = β ´ |τ2 ´ τ1|. This involves an integral of the type

ż +8

´8

dφ e´2φRk11+1+
(φ)R`,0+0+

(φ)Rk21+1+
(φ)˚ =

(
k1 ` k2

1 0 1

)2

, in terms of the 3j-symbols defined Eq 2.123. It again rewards switching to a mixed parabolic basis by shifting
g Ñ ω ¨ g. The integral itself remains unchanged since the Haar measure is invariant under shifts in ω;

ż +8

´8

dφ e´2φRk11´1+
(φ)R`,0´0+

(φ)Rk21´1+
(φ)˚ =

(
k1 ` k2

1 0 1

)2

. (2.277)

To proceed, we need an explicit expression for the lowest-weight matrix element in the discrete series repre-
sentation of SL+(2,R), evaluated in the mixed parabolic basis. It turns out that the diagonal states are given
by modified Bessel functions of the first kind [90] [22], given by (ν ą 0):

R`,ν´ν+(φ) = eφI2`´1(νe
φ). (2.278)

Using the asymptotics of the Bessel function Iα(x) „ x|α| as x Ñ 0, the lowest-weight is found in the limit of
ν Ñ 0 for ` ą 1/2 to be,

R`,00(φ) = e2`φ . (2.279)
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To evaluate the 3j symbol, we need the asymptotic states Eq 2.255, and the integral identity [22]

ż +8

´8

dφ e2`φK2ik1(e
φ)K2ik2(e

φ)˚ =
Γ(`˘ ik1 ˘ ik2)

Γ(2`)
(2.280)

, where we understand Γ(` ˘ ik1 ˘ ik2) to be a product of six gamma functions of all possible signs. The
3j-symbol is then determined as:

(
k1 ` k2

1 0 1

)
=

d

Γ(`˘ ik1 ˘ ik2)

Γ(2`)
. (2.281)

Using the asymptotics of the physical boundary states (φ Ñ 8 : eφK2ik(e
φ) Ñ 1), the correlation function is

readily obtained as the constrained continuous analogue of Eq 2.128

xW`(τ1, τ2)y =

ż 8

0
dk1k1 sinh(2πk1)e´β1k2

1

ż 8

0
dk2k2 sinh(2πk2)e´β2k2

2
Γ(`˘ ik1 ˘ ik2)

Γ(2`)
(2.282)

, with β1 + β2 ” β. This is the structurally anticipated result in Eq 1.169, where we have now obtained the
explicit matrix elements | xE1 | O|E2y | from first principles.
We can see how this result is consistent by taking the ` Ñ 0 limit, which should correspond to the disk par-
tition function. Splitting Γ(` ˘ ik1 ˘ ik2) = Γ(` ˘ (ik1 + k2))Γ(` ˘ (ik1 ´ k2)), and using the identity
lim`Ñ0

Γ(`˘i(k1´k2)))
Γ(2`) = 2πδ(k1 ´k2) on the second gamma factor leads to a single k1-integral over Γ(˘2ik1).

Using the identity Γ(˘2ik1) =
π

2k sinh 2πk removes one of the Plancherel measures, and recovers Eq 2.259.

As a final example, we should consider the bulk crossing of two Wilson lines. The set-up is essentially the same
as in section 2.5.2, where we split the Hartle-Hawking states at the intersection point using the defining feature
of representation matrices (c.f. RA,mA,m1

A
(g3g

´1
1 ) =

ř

β RA,mAβ(g3)RA,βm1
A
(g´1

1 ), andRB,mB ,m1
B
(g4g

´1
2 ) =

ř

β RB,mBβ(g4)RB,βm1
B
(g´1

2 )) to obtain pie-shaped amplitudes. In the constrained set-up of SL+(2,R), the
intermediate bulk labels are free from the boundary constraints and can take any arbitrary value. A subtlety
is that they are necessarily evaluated in the hyperbolic basis since this is the only complete set of states on
SL+(2,R), as elaborated in section A.2. For example, we decompose the mixed parabolic states along the
hyperbolic parameter s:

Rk,1´1+
(g1 ¨ g2) =

ż +8

´8

ds Rk,1´s(g1)Rk,s1+
(g2). (2.283)

Gluing along four group elements in Eq 2.133 again leads to four 3j-symbols at the bulk intersection, and four
3j-symbols labeled at the constrained boundary. Integrating along the continuous hyperbolic labels at the bulk
intersection leads to the Schwarzian 6j-symbol [22]

#

RB R1 R4

RA R3 R2

+

=

ż

ź

i

dsi

(
R1 R2 RA

s1 s2 sA

)(
R2 R3 RB

s2 s3 sB

)(
R3 R4 RA

s3 s4 sA

)(
R4 R1 RB

s1 s2 sB

)
.

Using the classical limit of the q-deformed result by Ponsot and Teschner [89], the relevant 6j-symbol was
recovered in [22] in terms of the Wilson function defined in [21]. Barring the details, the explicit expression
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can be found in the aforementioned papers.
This concludes the discussion on the exact amplitudes of bilocal operators in JT gravity in terms of the exact di-
agrammatic expressions defined in section 2.5.2. The latter only needs trivial modifications for the constrained
continuous case at hand, and I summarize them here below.

Diagrammatic expressions

• To each region of the disk, we assign a label ki of the continuous series representation of SL+(2,R),
where each region contributes a weight ρ(k) = k sinh(2πk). This may be interpreted as the momentum
flow along the boundary of length β1 = |τ2 ´ τ1|, generated by the quadratic Casimir C2(k) = k2:

= e´β1k2

(2.284)

• A Wilson line is represented in the lowest-weight discrete series representation of SL+(2,R) with j =

´`. Here, ` is the conformal scaling of the associated bilocal operator. Each intersection of the Wilson
line with the boundary constitutes a 3j-symbol between two continuous series representation matrices
and a discrete series representation matrix in the mixed parabolic basis:

=

d

Γ(`˘ ik1 ˘ ik2)

Γ(2`)
(2.285)

• To each bulk crossing of two Wilson lines, we associate a 6j-symbol over SL+(2,R) hyperbolic states

=

#

k1 `1 k2

k3 `2 k4

+

(2.286)

• Eventually, all momentum labels should be integrated over.

2.9 Defects in JT gravity

Before moving on, we need one additional rule on how to deal with defects insertions in the bulk geometry.
These will be essential to describe higher topological solutions, which form the core of the next few chapters. In
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the bulk BF perspective, these correspond to "magnetic monopoles" that implement a non-trivial monodromy
of the gauge field around it. In the second order JT perspective, these may either be microscopic punctures cor-
responding to conical defects, or macroscopic tubes which open up to Euclidean wormholes. In the Schwarzian
perspective, this has the effect of changing the natural integration manifold from diff(S1)/SL(2,R) to other
coadjoint orbits of the Virasoro algebra diff(S1)/H , labeled by a distinct stabilizer subgroup H . These have
all been classified and thoroughly studied in [37].

Let us first investigate the insertion of defects in a gauge-theoretical perspective. In a BF theory with compact
gauge group G, these are labeled by punctures with non-trivial holonomy z = e´2πλ. λ = λaiJa represents
an element in the Cartan subalgebra, where we restrict iJa to the set of maximally commuting generators
(a = 1, . . . , rank). Using a closed slicing propagation, we imagine propagating from holonomy z in the bulk
to holonomy U at the boundary, yielding the general cylinder partition function Eq 2.114. Setting U ” 1 at the
physical boundary readily yields:

Zλ(β) =
ÿ

R

χR(1)χR(z)e´βC2(R) =
ÿ

R

dim(R)χR(z)e
´βC2(R). (2.287)

Compared to the disk partition function Eq 2.115, we see that the effect of this deformation is to insert a
suitably normalized character of the group element z in the region of the disk with representation R,

Dµ =
χR(z)

dim(R)
, z = e´2πλ, λ = λaiJa (2.288)

, where z is defined in terms of the holonomy of a Wilson loop z = exp(´
ű

A). Within the coset boundary
set-up relevant for JT, we have seen that the additional boundary restriction sets the character at the boundary to
its lowest-weight matrix element χR(1)|00 = R00(1). Properly normalizing the representation matrix elements
sets R00(1) = 1. On the contrary, the interior is not restricted by the coset boundary conditions. Therefore,
the effect of the coset set-up is to essentially strip off an additional factor of dim(R) in the partition function,
yielding [24]:

Zλ(β) =
ÿ

R

χR(z)e
´βC2(R) =

ÿ

R

dim(R)Dλ(z)e
´βC2(R) = . (2.289)

Within the BF path integral, a z-holonomy is created by inserting a local puncture evaluated in the representa-
tion labeled by the weight vectors (λa) of λ [37]:

Pλ(y) = Trλ(e2πB(y)). (2.290)

Inserted in the path integral, we can bring the trace into the action by integrating out microscopic "color"
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degrees of freedom in the path integral [37]:
ż

DBDATrλ(e2πB(y)) e
ş

Tr(BF) =

ż

DBDA
ż

dw e´2πTr(λw´1Bw)e
ş

Tr(BF). (2.291)

It is possible to absorb the w-dependence completely by making a suitable global G-transformation B Ñ

wBw´1, F Ñ wFw´1. Including the boundary term, we end up with an action of the form

I = ´

ż

M
[Tr(BF) ´ 2πδ(x´ y)

?
gd2xTr(λB)] +

1

2

ż

BM
Tr(BA). (2.292)

Integrating out B renders F = 0, up to a local puncture at location y:

F(x) = 2πλδ(x´ y)
?
gd2x. (2.293)

Since the bulk is independent of the metric, the precise location of y is arbitrary, and we may set y ” 0 w.l.o.g.
Taking the Cartan algebra along P2 defined in Eq 2.23, we may perform a G-transformation to put the defect
parallel to the curvature F 2: λ = λP2, leading to

F 2 = dω + e0 ^ e1 = 2πλδ(x)e0 ^ e1 Ñ R = ´2 + 4π(1 ´ θ)δ(x) (2.294)

, for some constant angle θ = 1 ´ λ that is related to a conical singularity in the gravity solution. To reach the
second equality, we have used the general relation between the first and second order forms Eqs 2.15, 2.16.
To make a more insightful argument, we can show that the puncture indeed creates a holonomy when we
restrict to the Abelian case, for which F = dA. Integrating along some region Σ that encloses the point y, and
using the divergence theorem, we see that the holonomy along the boundary curve BΣ is given by:

ż

Σ
F =

¿

BΣ

A = 2πλ. (2.295)

The second equality follows from the puncture Eq 2.293. Therefore, the insertion of a puncture fixes the
holonomy around it as z = e´

ű

A = e´2πλ, confirming the claim that the puncture Pλ Eq 2.290 creates a
holonomy z around it. In the radial slicing, these are the eigenstates of the Hilbert space whose character turns
up in the partition function. Writing the flat field ansatz A = gdg´1 = ´dgg´1, the integral Eq 2.295 is readily
performed for group elements satisfying

g(τ + β) = g(τ) e´2πλ. (2.296)

We can argue for this in the Abelian case by diagonalizing the matrix g, leading to the informal manipulation:
¿

BΣ

A = ´

¿

BΣ

dgg´1 » ´ ln g|β0 = 2πλ. (2.297)

The generalization to the non-Abelian case is technically not straightforward and requires knot-theoretic con-
siderations [80]. However, the qualitative features remain the same. That is, parameterizing Aτ = gBτg

´1,
and using the Hill’s equations Eq 2.267, the most general solution has a non-trivial monodromy depending on
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M = e´2πλ as [37]:
g(τ + β) = g(τ) ¨M. (2.298)

Since the equation Aτ = gBτg
´1 is redundant under constant shifts g „ g ¨ S with S P SL(2,R), this leads to

dependence only on the conjugacy classes of the monodromies;

M „ S ¨M ¨ S´1. (2.299)

Writing g´1 =

(
A B

C D

)
, the equation gBτg

´1 = Aτ with constrained asymptotic behaviour for Aτ Eq 2.264

leads to the Hill’s equations Eq 2.267. Since the equations are symmetric under A Ø C and B Ø D, we may
characterize the general solution Eq 2.268 as:

A =
F

?
F 1
, C =

1
?
F 1
. (2.300)

Here, F defines the Schwarzian reparameterization mode as the projective coordinate:

F (τ) =
A

C
. (2.301)

Parameterizing the (inverse) monodromy matrix as M´1 =

(
a b

c d

)
, the monodromy of the group elements

Eq 2.298 is realized as g´1(τ + β) =M´1g´1(τ):(
A B

C D

)
τ+β

=

(
a b

c d

)(
A B

C D

)
τ

. (2.302)

This acts projectively on the uniformizing coordinate F (τ) = A/C as

F (τ + β) =
aF (τ) + b

cF (τ) + d
. (2.303)

Note that it is, in general, not possible to reach every SL(2,R)-valued matrix M by tuning S, since all S
satisfying [S,M ] = 0 preserve this matrix M . These are elements of the stabilizer subgroup S P H of M , and
label the conjugacy classes unambiguously. Therefore, the natural integration space diff(S1)/SL(2,R) should
be modified to diff(S1)/H .
According to Eq A.3, the conjugacy classes of SL(2,R) are labeled as elliptic (Tr(M) ă 2), parabolic
(Tr(M) = 2), and hyperbolic (Tr(M) ą 2), depending on the value of the trace.
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Elliptic orbits

Taking λ = ´λP2 along the Cartan element defined in 2.23, the monodromy M = e´2πλ is readily exponen-
tiated to:

M´1 =

(
cosπλ sinπλ

´ sinπλ cosπλ

)
P SL(2,R). (2.304)

We verify that this indeed corresponds to the elliptic monodromy class by taking the trace and noting | cosπλ| ă

1. Since this is just a rotation matrix, the stabilizer subgroup in this case is another SO(2) » U(1)λ transfor-
mation. The integration space is therefore naturally realized as diff(S1)/U(1)λ.
The monodromy induces the following transformations on F :

F (τ + β) =
F (τ) + tanπλ
1 ´ F (τ) tanπλ. (2.305)

In terms of the reparametrization mode of the thermal circle f(τ + β) = f(τ) + β, the monodromy is realized
by:

F (τ) = (F ˝λ f)(τ) ” tan
(
π

β
λf(τ)

)
(2.306)

, as a consequence of the tangent addition rule

tan
(
π

β
λf(τ + β)

)
= tan

(
πλ

β
f(τ) + πλ

)
=

tan
(
πλ
β f(τ)

)
+ tan(πλ)

1 ´ tan
(
πλ
β f(τ)

)
tan(πλ)

.

We can extrapolate the boundary description into the bulk by choosing the conformal gauge Eq 1.53, and
continuing the reparametrization mode into U(u) = F (u), V (v) = F (v). This leads to the metric14

ds2 =
4π2λ2

β2
dτ2 + dz2

sinh2 2π
β λz

. (2.307)

Note that for λ = 1, the transformation of F (τ) becomes the usual thermal reparametrization mode F (τ) =
tan(πβ f(τ)). The corresponding monodromy M » 1 commutes with every SL(2,R) transformation, and we
end up with the usual integration space diff(S1)/SL(2,R). Close to the horizon z Ñ 8, we may approximate
sinh2 2π

β λz Ñ e4πλz/β

4 . Defining a new variable through dx = 4πλ
β

dz
e2πθz/β (x = ´ 2

e2πλz/β ), we can approximate
the metric as:

ds2 = x2
(
d

(
2πλτ

β

))2

+ dx2.

Interpreting this patch in polar coordinates, we readily see that one revolution in τ Ñ τ + β corresponds to a
rotation in 2πλ ” 2π(1´α). Therefore, this type of defect is holographically described as a conical singularity
in the bulk geometry. This was already anticipated from the Ricci curvature Eq 2.294. The singularity only
seizes in pure JT gravity, for which λ = 1.

14A subtlety; the solution Eq 1.53 is written in real-time coordinates. Continuing the monodromy to real-time coordinates, we have U(u) =

tanh π
β
λu, V (v) = tanh π

β
λv, yielding ds2 = ´4 BuUBvV

(U´V )2
dudv = ´ 4π2λ2

β2
dt2´dz2

sinh2
(

πλ
β

(u´v)
) . Identifying u ´ v = 2z, and going back to

Euclidean time leads to Eq 2.307.
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Hyperbolic orbits

The previous example has little value in JT gravity. In fact, the whole premise of choosing the subsemigroup
SL+(2,R) was to avoid the singular geometries in the path integral. A structurally more interesting class of
observables are the hyperbolic defects, obtained by choosing the Cartan element in the hyperbolic conjugacy
class. An efficient trick to obtain the corresponding monodromy transformation is by shifting λ Ñ iλ, leading
to:

F ˝λ f = tanh
(
π

β
λf

)
, M´1 =

(
cosh(πλ) sinh(πλ)
sinh(πλ) cosh(πλ)

)
P SL(2,R) (2.308)

, for which indeed Tr(M) ą 2. The geometry Eq 2.307 is shifted to:

ds2 = 4

(
πλ

β

)2 dτ2 + dz2

sin2 2π
β λz

. (2.309)

This is a non-contractible Euclidean geometry, hence there is no horizon. Instead, at its minimal extend (for
which sin 2π

β λz = 1 at z = β
4λ ), it has a geodesic of circumference b =

ş

ds = 2πλ
β

ş

dτ = 2πλ.

As argued around Eq 2.289, the insertion of a defect in the partition function is achieved by inserting a suitably
normalized character of the holonomy z = e´2πλ around the puncture, evaluated in the appropriate represen-
tation that characterizes the region of the disk. In the case of JT gravity, we use the constrained result Eq 2.289,
with the continuous series representation labeled by k:

Z(β, b) =
ÿ

R

χR(z)e
´βC2(R) Ñ

ż +8

0
dk χk(z)e

´βk2

. (2.310)

For hyperbolic defects, we choose the Cartan element to lie along the hyperbolic generator iJ0: z = e´2πλ(iJ0).
The appropriate hyperbolic character for SL(2,R) is calculated in the next subsection ( Eq 2.323) for a general
class element g = e2iφJ0 :

χk(g) = cos(´2kφ). (2.311)

In [24], it was noted that this is also the appropriate character to use in the case of SL+(2,R), since any
SL(2,R) character can be expressed in the complete hyperbolic basis (c.f. Eq A.36) according to:

χj(U) = Tr(K++(U)) + Tr(K´´(U)). (2.312)

It can be proven thatK++(U) = K´´(U) [90], thereby identifying the characters of SL+(2,R) and SL(2,R),
up to an overall prefactor.
φ now takes over the role of λ up to some fixed normalization. Written in terms of the geodesic length b = 2πλ,
identifying z = e´2πλ(iJ0) and z = e2iφJ0 leads to a relation between the hyperbolic group parameter and the
geodesic length:

2φ = ´b (2.313)
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, which allows us to write the partition function as:

Z(β, b) = =

ż +8

0
dk cos(kb)e´βk2

=
1

2

(
π

β

)1/2

e´ b2

4β . (2.314)

One usually refers to this integral as the trumpet partition function.
A few notes perhaps before I continue. First of all, compared to the one-loop exact disk partition function Eq
1.138, the exponent in the coupling (π/β) is lowered from 3/2 to 1/2. This is a consequence of the reduction
of the number of zero modes in the stabilizer subgroup of the integration manifold (3 for SL(2,R) vs 1 for
U(1)).
Secondly, I have stripped off the denominator of the character insertion compared to Eq 2.323. The reason
is that the characters are class functions; i.e. they are only orthogonal if we mod out the redundancy under
conjugacy transformations g „ cgc´1, where c P SL(2,R). This is achieved by modifying the usual Haar
measure dg to the Weyl integration measure dg∆, where ∆ is the Jacobian under this transformation. [40]
finds that the general solution for bosonic groups is given in terms of its root vectors α:

∆ =
ź

α

|eα ´ 1|. (2.315)

Exponentiating the algebra to Ad(t´1)Xα = t´1Xαt = e´α(t)Xα defines these root vectors α(t). Within
the hyperbolic conjugacy classes, the relevant group elements are Xα ” e2iHφ. From the algebra relation
[iH, iE˘] = ¯iE˘, the roots are given by:

eα(iE˘) = e¯2φ.

This yields the Weyl integration measure (where in the computation of the character we restricted to positive
lengths φ ă 0):

∆ = (e´2φ ´ 1)(1 ´ e2φ) = 4 sinh2(´φ). (2.316)

We readily see that the hyperbolic characters Eq 2.323 are orthogonal with respect to this measure. Therefore,
we can directly take the numerator of the character Eq 2.311 orthogonal with respect to the flat integration
measure dφ. Also, it was argued in [85] that the character without the denominator is in fact the essential
object required for gravity, where we choose the measure obtained from the classical limit of 3d Chern-Simons
theory [44]. In this case, the measure on the space of conjugacy class elements is essentially the flat one.
Another argument in favour of stripping off the denominator is by thinking from the Schwarzian theory per-
spective. [20] argues that the Schwarzian path integral of F (τ) = tanh

(
π
βλf(τ)

)
over the modified integra-

tion space diff(S1)/U(1) is again one-loop exact. We may therefore immediately write down the answer by
considering the number of zero modes (one for U(1)) and the on-shell action. An inverse Laplace transform
consequently yields the hyperbolic character, up to the denominator:

ż

diff(S1)/U(1)
Df e

1

2

şβ

0
dτ ttanh π

β
λf(τ),τu =

1

2π

(
π

β

)1/2

e´ b2

4β =

ż +8

0
dk

cos(2πλk)
π

e´βk2

. (2.317)
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2.9.1 Evaluation of the hyperbolic character

We have argued that hyperbolic characters of the continuous series representation of SL(2,R) are used to insert
operational defects in the gravitational amplitudes, and to create higher-genus surfaces when gluing along the
class elements in Techmüller space. The calculation for SL(2,R) closely parallels section 7.8.2 of [90], and
[40] for the OSp(1|2,R) supergroup case.
The character of a finite-dimensional representation is simply given by the trace of the representation matrices.
For representations with continuous labels, this sum is in general divergent. In order to regularize this result,
let us represent the action of a spin-j representation on f P L2(SL(2,R)) in the form of an integral operator
with a kernel:

(T̂j(g)f)(x) =

ż +8

´8

K(x, y; g, j)f(y)dy. (2.318)

In terms of the principal series action of SL(2,R) on the space of square integrable functions L2(R) Eq A.9,
the kernel is given by:

K(x, y; g, j) = |bx+ d|2jδ

(
ax+ c

bx+ d
´ y

)
. (2.319)

The regularized character is now given by the trace of the kernel in configuration space

χj(g) ”

ż

dx K(x, x; g, j) =

ż

dx |bx+ d|2jδ

(
ax+ c

bx+ d
´ x

)
. (2.320)

The character evaluates to the sum of all fixed points of the group action on the real number line. We may
simplify the calculation by noting that the character is a class function, thereby depending only on the conju-
gacy class elements of SL(2,R). For the latter, these split into elliptic Tr(g) ă 2, parabolic Tr(g) = 2, and
hyperbolic Tr ą 2 class elements. The relevant case in gravitational applications will be the hyperbolic class
elements. The matrix elements with unit determinant in the hyperbolic conjugacy class are all parameterized
in terms of a single parameter φ (c.f. Eq A.23):

g =

(
e´φ ε

0 eφ

)
» e2iφJ0 (2.321)

, where Tr(g) = e´φ + eφ ą 2 automatically holds for any φ. The parabolic class is only included with
measure zero in the hyperbolic class, and is therefore irrelevant in the current discussion. ε is introduced as an
infinitesimal regulator along the lines of [40], since the number of fixed points changes discontinuously near
ε « 0. Inserted in the kernel, the regularized character is worked out as:

χj(φ) =

ż

dx |εx+ eφ|2j δ

(
e´φx

εx+ eφ
´ x

)
.

As always, the delta function can be written in terms of an expansion in its zeros: δ(f(x)) =
ř

i
δ(x´xi)
|f 1(xi)|

. In
this case, the zeros are given by x = 0, (e´φ ´ eφ)/ε. Assuming φ ă 0 in the following, we find:

δ

(
e´φx

εx+ eφ
´ x

)
=

δ(x)

e´2φ ´ 1
+
δ(x´ e´φ´eφ

ε )

1 ´ e2φ
.
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The character is now readily evaluated as:

χj(φ) =
e2jφ

e´2φ ´ 1
+

e´2jφ

1 ´ e2φ
=

e(2j+1)φ

2 sinh(´φ) +
e´(2j+1)φ

2 sinh(´φ)

=
cosh(2j + 1)φ

sinh(´φ) . (2.322)

Parameterized for unitary representations j = ´1
2 + ik (c.f. Eq A.13), we finally obtain:

χk(φ) =
cos(´2kφ)

sinh(´φ) . (2.323)

Note that the character of elliptic elements vanishes as there turn out to be no fixed points on the real number
line [40]. A formal definition of the elliptic character is to analytically continue the result for the hyperbolic
case to imaginary φ Ñ iφ. Parabolic characters are of no relevance since they have associated zero measure.

2.9.2 From monodromies to coadjoint orbits

This section aims to materialize the connection between monodromies, and the coadjoint orbits of the Virasoro
algebra defined in the appendix C, along the lines of [37]. There, we have labelled the symplectic manifold
diff(S1)/SL(2,R) as the coadjoint orbit of a particular coadjoint identity element in Eq C.12. In particular,
denoting T (τ) = ttan π

β f(τ), τu as the Schwarzian derivative, we have found that this action is generated by
the coadjoint orbit of the representative element φ0 = ´ b

48π under variations of f :

Ad˚
f´1(´

b

48π
) = ´

b

24π

"

tan f(τ)
2

, τ

*

.

Since the Schwarzian derivative is invariant under the projective action of SL(2,R) on f , this orbit is stabilized
by the zero modes of SL(2,R).
More generally, the requirement for a coadjoint element T (τ)dτ2 to remain invariant under infinitesimal trans-
formations f(τ) = τ + ε(τ) is given by Eq C.9:

δεT = 2(Bτ ε)T + εBτT ´
b

24π
B3
τ ε = 0.

The stabilizers of T (τ) in turn label the orbit under ε. For T (τ) a more general Schwarzian action, the solu-
tions above label the possible stabilizers ε(τ) P H , and thereby the coadjoint orbit diff(S1)/H . One can readily
check that if ψ1(τ) and ψ2(τ) are two independent solutions of the Hill’s equations B2

τψi =
12π
b T (τ)ψi, the

most general solution ε(τ) P H is given by a linear combination of ψi(τ)ψj(τ), i, j = 1, 2. As mentioned in
the previous subsection, the conformally non-equivalent solutions of Hill’s equation are labeled by the conju-
gacy classes of the monodromy of ψ. Therefore, the problem of labeling coadjoint orbits is one-to-one related
to the possible monodromy solutions of the Hill’s equation.

For example, the constant identity representative φ = ´ b
48πλ

2 generates a coadjoint orbit that is (in general)
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only invariant under constant shifts f(τ) = τ + c. This generates the elliptic orbits diff(S1)/U(1). The
corresponding monodromy is given in Eq 2.304. For λ = 1, this becomes the representative of the Schwarzian
derivative, enhancing the symmetry to diff(S1)/SL(2,R). For general λ ” n P Z, the representative φ =

´ b
48πn

2 generates the orbits diff(S1)/SLn(2,R).
Shifting λ Ñ iλ, the representative becomes φ = b

48πλ
2, leading to hyperbolic orbits diff(S1)/U(1) with

monodromy Eq 2.308.
An intermediate case is for the representative φ = 0, labeling parabolic orbits. The parabolic monodromy with
Tr(M) = 2, is given by:

M =

(
1 q

0 1

)
, F ˝0 f ” f.

for q = ˘1 [37]. Gravitationally, it corresponds to a cusp-like singularity, identifiable as thermal AdS2 in
Poincaré coordinates [25].
We could also consider coadjoint orbits without constant representative elements. However, it can be proven
that such orbits admit no solutions to the classical equation of motion [40] (c.f. Eq 1.95):

BτtF (τ), τu = 0. (2.324)

Therefore, the restriction to constant representative orbits only spans those defects that have a classical saddle
interpretation.



Chapter 3

EOW branes in JT gravity

"Imagination is more important than
knowledge."

Einstein, Albert

3.1 Motivation: pure states and end-of-the-world branes

So far, we have studied JT gravity on the Euclidean hyperbolic disk. In [9], Maldacena proposed that the
Thermofield double state |TFDy =

ř

n e´βEn/2 |EnyL b |EnyR is dual to an eternal black hole in Lorentzian
signature. This is in fact a maximally entangled state between two copies of the CFTs dual to each side of
the eternal Lorentzian black hole. Formulated in the operator formalism of AdS/CFT, the gravity partition
function on a manifold M depicting the eternal black hole equals the CFT partition function living on the
boundary BM = Σ: Zgrav[M ] = ZCFT [BM = Σ]. The Euclidean path integral that prepares a TFD is a path
integral1 on an interval Σ = Intervalβ/2 ˆ Sd´1, where d is the number of spatial dimensions.
Gravitationally, the boundary conditions of Σ are precisely those of the Euclidean disk with boundary length
β cut in half. Therefore, starting from half of the Euclidean disk at time t = τ = 0, and continuing in real time
prepares the holographic dual of the TFD state. Pictorially;

Ñ

1Explicitly, this path integral has two open cuts at both sides of the interval, representing pure states. Projecting onto them yields [62]
xφ1| e´βH/2 |φ˚

2 y, where |φ˚
2 y is the adjoint of xφ2|. Inserting a complete set of energy eigenstates ¨ ¨ ¨ =

ř

n e
´βEn/2 xφ1 | Eny xφ2 | Eny

yields precisely a projection on both sides of the TFD state ¨ ¨ ¨ = xφ1| xφ2 | TFDy.

125
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In the Lorentzian continuation, the horizontal direction indicates Euclidean time, while the vertical direction
is the analytically continued Lorentzian time direction. Each point on the diagram represents a Sd´1-sphere.
Thus, propagating β/2 in Euclidean time brings you to the other side of the Lorentzian-signature black hole.
The entanglement between the two copies of the CFT is materialized in gravity by an Einstein-Rosen bridge
(the black hole interior itself) connecting the two causally disconnected sides. This is the idea of the ER=EPR
conjecture raised by Maldacena and Susskind [91].

Pure states on the right subsystem are created by left projecting on a particular state. In [92], this was modelled
by inserting a local heavy operator acting on the left subsystem in the context of SYK. In the low-energy limit,
they considered the dual nearly-AdS2 gravity configurations, where the operator insertion creates an end-of-
the-world (EOW) brane. Intuitively, these branes are massive particles of mass µ on which the spacetime
ends. These are generated by performing a Z2-quotient along a line in the Penrose diagram. This mods out
one side of the solution; effectively purifying the system. The massive particle is constrained to sit along the
Z2-invariant points. As the mass of this particle increases, the end-of-the-world brane is moved deeper into the
left side of the purified black hole geometry.
In the boundary particle formalism, we can describe the wiggly boundary curve as the motion of a particle in
rigid AdS2. This boundary particle emits a massive EOW particle and reabsorbs it at some later time. The
classical solutions are found from energy conservation, where each of the particle’s trajectory is specified in
terms of their SL(2,R) charge. Energy-momentum conservation then requires the total charge to be zero. See
[92] for the explicit calculations.

Qualitatively, the boundary particle moves along trajectories that look like circles in Euclidean space. The
centers of these circles are the positions of the bifurcation point of the Lorentzian black hole after modding by
Z2. The massive particle on the other hand moves along a geodesic trajectory. At each scattering vertex, the
boundary particle recoils, displacing the natural circular trajectory, as shown in the figures above. The mass
of the EOW branes is imagined to increase from left to right in these figures. The heavier the EOW brane
particle, the further the two boundary trajectories are displaced. Demanding that the two circles are not disjoint
constrains the mass of the EOW particle to µ ă 2m, where m is the mass of the boundary particle. After
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performing a Z2-operation along the geodesic EOW brane trajectory in red, we generate the gravity dual of a
pure state. The analytic continuation to Lorentzian time consequently yields a geometry with a single horizon
that shields the EOW brane for every value of µ ą 0. The horizontally dotted line indicates the moment of time
reflection symmetry that is used to connect the Euclidean and Lorentzian solutions. The EOW brane trajectory
still gives a geodesic in the ambient Lorentzian AdS2 spacetime. For increasing values of µ, the geodesic
approaches the left boundary.
At the point where µ Ñ 2m, the two Euclidean circles are almost tangential, inducing an almost localized
EOW particle in the Euclidean picture. In the Lorentzian picture, it behaves like a shockwave behind the hori-
zon. In [92], the localized point particle in this limit is interpreted as a UV-like boundary changing defect that
acts as a projection operator onto pure states.

More recently, EOW branes have been used in [34] to describe pure states in a simple toy model of the black
hole evaporation process, leading to a unitary Page curve. Their setup is very general, but only in the context
of JT gravity coupled to EOW branes are they able to make real quantitative calculations. These are based on
the exact quantum EOW brane amplitudes that have been calculated before in the boundary particle formalism
[93] [94]. The same formalism has also been used to model closed loops of EOW branes in [36]. Although
this perspective provides a nice gravitational interpretation of the physical Hilbert space, it should be noted
that this technique is in general cumbersome to perform explicit calculations with.
The original work in this chapter aims to provide an alternative perspective on the quantization of JT gravity
in the presence of EOW branes, using the methods of an SL+(2,R) BF gauge theory, defined in the previous
chapter. In particular, we will see that this framework naturally describes the Euclidean disk ending on an EOW
brane studied in [34], and the higher topological solutions of [36]. The framework also generalizes naturally
to the supergroup structure of JT supergravity studied in [40], which will be the content of the next chapter.

3.2 Setup of the model

EOW branes are defined starting from the action (written here in Lorentzian signature) [36]:

S =
1

2

ż

Φ
a

|g|(R+ 2) +

ż

AdS
du Φ

?
´guu(K ´ 1) +

ż

EOW
dv

?
´gvv(ΦK ´ µ) . (3.1)

1
8πG ” 1 by convention. u and v represent two affine parameters along theAdS2 boundary and the EOW brane
respectively. µ denotes the mass tension along the EOW brane, while K denotes the extrinsic curvature along
the EOW brane.
Various quantum amplitudes have been obtained using the boundary-particle formalism. The results greatly
depend on the topology. [34] obtained quantum amplitudes of EOW branes attached to the disk partition
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function. The result can be written as:

ZEOW (β) = =

ż +8

´8

db ZHartle(β, b)e
´µb (3.2)

, where ZHartle(β, b) denotes the Hartle-Hawking state preparing the vacuum with a geodesic of length b and an
asymptotic boundary of length β. We may already guess the appearance of the EOW brane wavefunction e´µb

from the classical on-shell approximation of the action Eq 3.1. These are precisely the pure state amplitudes
obtained by performing a Z2-quotient along the fixed points of an EOW brane in the Euclidean black hole
depicted above.

More recently, [36] have obtained the quantum amplitude of an EOW loop attached to the neck of a single
trumpet:

ZEOW (β) = =

ż 8

0
db Ztrumpet(β, b)

e´µb

2 sinh(b/2) . (3.3)

As opposed to the disk partition function, this result exhibits an interesting correction to the classical saddle in
the denominator of the EOW brane wavefunction. In particular, there appears to be a spurious UV divergence
of this amplitude near b Ñ 0. The form of this denominator is not readily obvious from the boundary particle
formulation in [36]. It was noted briefly afterwards in [38] that the form of this wavefunction coincides with a
discrete series character of SL(2,R).
In this chapter, we aim to make this argument more precise, and obtain a generic method to arrive at both
amplitudes within the framework of the BF formulation of JT gravity. The main motivation will be to extend
this framework to EOW branes in theories of JT supergravity in the next chapter. As far as I known, this has
not been considered so far, and an analogous action of Eq 3.1 for EOW branes in N = 1 JT supergravity has
yet to be defined.

3.3 Wilson lines as probe particles

A crucial identity to interpret EOW branes in a gauge theoretic formulation is the equivalence between Wilson
loops (lines) and point-probe particles in the second order metric formulation. Intuitively, we can understand
this relation by realizing that Wilson lines are the gravitational duals to Schwarzian bilocal operators, which in
turn descend from the free field generating functional of JT gravity coupled to matter. This was demonstrated
very explicitly in section 1.8.1. According to the diagrammatic rules established in the previous chapter, each
insertion of a bilocal operator changes the energy between the two adjacent boundary sectors separated by the
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bilocal operator, conform energy conservation.
Therefore, we can interpret Wilson lines holographically as an energy injection in the bulk that propagates
between the two boundary points. Each time a bilocal insertion is crossed, the Wilson line acts as a probe
particle that carries energy away from the boundary into the gravitational bulk at one point, only to be removed
again at the second point of the bilocal operator. This can be visualised according to the example given in
section 1.4.2, which discusses the injection of matter pulses from the boundary into the bulk.
We might therefore be tempted to propose the following equivalence between a Wilson line in representation
j = ´` along the path Cτ1τ2 (Eq 2.118), and the path integral of a massive probe particle along all paths x(s)
diffeomorphic to Cτ1τ2 , weighted by the standard point particle action:

Wj,nm(Cτ1,τ2) »

ż

paths„Cτ1τ2

Dx e´m
ş

Cτ1τ2
dv

a

gαβ ẋαẋβ

. (3.4)

To each endpoint τ1, τ2, we associate a label m, respectively n of the representation matrix labeled by j.

Remember that Wilson lines in the context of JT gravity are evaluated in a lowest-weight j = ´` discrete series
representation of SL+(2,R), where ` P N is identified with the conformal weight of the bilocal operator in Eq
2.275. From generic AdS/CFT argumentations, the conformal weight of a quasi-primary operator is related to
the mass of the dual scalar field by Eq 1.146,

` =
1

2
+

c

1

4
+m2, Ñ m2 = `(`´ 1). (3.5)

In terms of the representation label j = ´`, this is related to the eigenvalue of the quadratic Casimir Eq A.7

m2 = j(j + 1) = ´C2. (3.6)

As intuitive as this argumentation might seem, there are still some subtleties that go along with it. For exam-
ple, it is not immediately clear where the dependence on the weight labels resides on the right-hand side of the
proposed equivalence Eq 3.4. Furthermore, the right-hand side is only dependent on the diffeomorphism class
of Cτ1τ2 , while the left-hand side depends on its exact trajectory.

3.3.1 Formal identification

The exact relation has been proven rigorously in appendix E of [23], which itself was based on earlier consid-
erations in the context of writing 3D gravity as an SL(2,R) ˆ SL(2,R) Chern-Simons theory, see e.g. [95]
[96]. Let me outline the proof given in [23], while reformulating it slightly in the present context.
As an intermediate step, we rewrite the Wilson line, as a path integral over maps g(v) : R Ñ SL(2,R) in a
theory that is minimally coupled to the gauge fields. The gauge fields Av(v) take values in sl(2,R), and are
parameterized along the curve Cτ1τ2 : Av(v) = Aµ(x(v))ẋ

µ(v) (with ẋµ = dxµ

dv ). We can think of v as the
affine parameter labeling the path Cτ1τ2 of the free particle.
We first solve an intermediate problem and rewrite a Wilson loop over all closed paths C, evaluated in a lowest-
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weight representation j = ´`, as a path integral over paths g(s) P SL(2,R) after [23]:

Trj

[
P exp

(
´

ż

C
A
)]

=

ż

C
Dgα e´Sα[g,A]. (3.7)

Here, Sα[g,A] denotes the coadjoint orbit action of the representation j coupled to A, and is given by:

Sα[g,A] = ´

ż

Cτ1τ2

dv Tr(αg´1DAg) =

ż

Cτ1τ2

dv
(
´Tr(αg´1Bvg) ´ Tr(αg´1Avg)

)
. (3.8)

DA is the covariant derivative D = d + A defined in Eq 2.38, and transforms in such a way that the action
Sα[g,A] is gauge-invariant under left multiplication of g by elements of SL(2,R). α is a vector in sl(2,R) and
can be expanded into generators. To choose a specific basis, we opt for the familiar sl(2,R) generators (Pa,
a P t0, 1, 2u) defined in Eq 2.23:

[P0, P1] = P2, [P0, P2] = P1, [P1, P2] = ´P0. (3.9)

This choice allows us to make contact with the metric formulation of JT gravity as demonstrated in section 2.2.
The gauge field in particular is expanded into generators in terms of the frame fields and spin one-forms (c.f.
Eq 2.18):

A = AaPa, Aa = (e0, e1, ω). (3.10)

We take the length of the vector α = αaPa to be constrained by the eigenvalue of the quadratic Casimir:

´
1

2
Tr(α2) = ´

1

4
κabα

aαb ” C2(j) . (3.11)

κab = 2Tr[(Pa)(Pb)] denotes the Cartan-Killing metric following the usual conventions (c.f. Eq A.6). For the
case at hand, the Cartan-Killing metric is in fact the flat space metric (c.f. Eq 2.19)):

Tr(PaPb) =
ηab
2
, with ηab = diag(1, 1,´1). (3.12)

As usual, indices are raised and lowered with respect to this metric. The restriction to a = 0, 1 coincides with
the local Lorentz metric in Euclidean signature δab. Without loss of generality, I will continue to denote the
metric as κab since the following discussion is a priori independent of the choice of generators.

It looks as though the integration space is over the entire SL(2,R) group manifold. However, a closer look at
the integrand in Eq 3.8 shows that all group elements obtained by right-multiplying g with a constant group
element that belong in the same orbit of gαg´1, share the same action. Therefore, the natural phase space is
over the coadjoint orbits of the Lie-algebra valued element α instead [23];

C Ñ tgαg´1 | g P SL(2,R)u.

This redundantly parameterizes the orbit of α under the adjoint action of SL(2,R) as the gauge group modulo
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the stabilizer subgroup. This is the meaning of the measure Dαg. The Hilbert space of the theory is thus to
be identified with functions that are invariant under the right group actions that stabilize α. One such function
is the quadratic Casimir Eq 3.11 that labels the representation. Therefore, the Hilbert space itself forms an
irreducible representation labeled by j = ´`.

To prove the equivalence Eq 3.7, we resort to the standard Gibbons-Hawking prescription. Concretely, we aim
to interpret the path integral as an operator that generates the Hamiltonian evolution along the path Cτ1τ2 .
To this end, we should identify the conjugate momenta along the path xa: πa = δL

δẋa and write the Lagrangian
in Eq 3.8 as L = πaẋ

a ´ H . Parameterizing the curve g(v) P SL(2,R) in terms of the left action of g(v) =
e´xa(v)Pag(v0) ” U(v)g(v0), we readily deduce the conjugate momenta

πa = Tr(Pagαg´1) = (gαg´1)bTr(PaPb) = (gαg´1)b
κab
2

=
(gαg´1)a

2
. (3.13)

In the quantum theory, these become the generators of the left SL(2,R) action on g Ñ U(v)g along the path
x(v). After expanding Av into generators Av = AavPa, we may identity:

H = Tr(αg´1Avg) = AaτTr(Pagαg´1) = Aavπa. (3.14)

In the quantum theory, the conjugate momenta become operators that statisfy the (Euclidean) commutation
relations

[π̂a(s), x
b(t)] = ´δbaδ(s´ t) (3.15)

, and are realized as π̂a(s) = ´ δ
δxa(s) . These act on the Hilbert space of functions that are invariant under

the global right action that stabilizes the orbit of α, and are left-parameterized by g(s) = e´xa(s)Pag(s0).
The Hamiltonian is thus diagonalized on the elements of g(s) by the expansion of A in terms of the matrix
generators Pa;

H g = AavPa g. (3.16)

The Casimir associated to these operators is found from the inverse of the Cartan-Killing metric κab:

C2 = ´κabπaπb = ´
κab

4
(gαg´1)a(gαg

´1)b = ´
κab
4

(gαg´1)a(gαg´1)b

= ´
1

2
Tr(PaPb)(gαg´1)a(gαg´1)b = ´

1

2
Tr(gα2g´1) = ´

1

2
Tr(α2) (3.17)

, where the indices are lowered and raised using the metric and inverse metric respectively. This is of course
compatible with the initial constraint Eq 3.11.
Wilson loops that do not reach the boundary are effectively unconstrained by the the coset boundary conditions.
Moreover, functionally integrating over a closed contour g(v) : C Ñ SL(2,R) results in a trace over the Hilbert
space, yielding a Wilson loop operator in the interior (c.f. Eq 3.7) according to the general Gibbons-Hawking
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prescription Eq D.26:

Wj(C) = Trj

P exp ´

¿

C

A

 =

¿

C

Dgα e´Sα[g,A]. (3.18)

On the other hand, for paths Cτ1τ2 that reach the boundary, the path integral calculates an evolution from
one asymptotic state to another. The Hilbert space that spans the representation j = ´` on the boundary
is constrained by the coset boundary condition Eq 2.251 J ´ = 1 on each asymptotic state. As argued in
section 2.8.4 (more precisely Eq 2.253), this effectively constrains the wavefunctions on either end to (mixed)
parabolic type Rj,1´1+

(g) = xj, 1´ | g | j, 1+y. By current conservation of the Clebsch-Gordan coefficients
CR1,1
R,R2;m,1

= xR1, 1 | R,R2;m, 1y, the Wilson line itself is constrained to its lowest-weight state Wj,00. The
Hamiltonian evolution in the physical Hilbert space can thus be identified as (c.f. Eq D.23):

Wj(Cτ1τ2) = xj, 0´ | P exp

(
´

ż

Cτ1τ2

A
)

| j, 0+y =

ż

Cτ1τ2

Dgα e´Sα[g,A] (3.19)

, proportional to the Wilson line Wj(Cτ1τ2). The novelty features are again the coset conditions that define
JT gravity, which constrain the Wilson line in the j-representation to a predefined weight. On the other hand,
while these boundary conditions feel like a natural choice in the constrained setup of JT gravity, it is not clear
by now how this information on the weight states is incorporated in the evaluation of the path integral. Pre-
sumably the boundary conditions of the probe g(s) should be compatible with these sates. [96] sheds further
light on this in the context of rotated Ishibashi states in asymptotic negatively curved 3d gravity. Since this
procedure makes explicit use of the two copies of the SL(2,R)ˆ SL(2,R) Chern-Simons theory, it is not clear
whether this procedure is readily applicable in our constrained BF setup. Note that this difficulty does not turn
up for closed loops g(s) that prepare a Wilson loop instead. The only requirement in this case is that the probe
g(s) should be single valued around the circle.

Since the adjoint action of SL(2,R) is transitive on all Lie algebra elements of a given length, we can include in
the definition a functional integral over all elements of the form α(v) = αa(v)(Pa). Furthermore, to establish
the equivalence between the free particle action and a Wilson line operator, we impose the additional constraint

1

2
Tr(α2) =

κabα
aαb

4
” m2 . (3.20)

This fixes the Hilbert space to a predefined representation according to Eq 3.11. We may expand the vector α
without loss of generality [40]

α(v) = α0P0 + α1(v)P1 (3.21)

, without writing the component related to the spin ω in the P2-direction. Indeed, the bulk path integral imposes
flatness of the gauge field, which implements the no-torsion constraints. This expresses ω as a function of the
frame fields eaµ, such that the direction along P2 is not independent from the other directions. The fact that we
include an integral over a sub vector space of the algebra does not pose a problem, as long as its total length is
still constrained by Eq 3.20.
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We implement this constraint by functionally integrating over a Lagrange multiplier Θ:

Wj(Cτ1τ2) „

ż

DαaDgαDΘ e´Sα[g,A,Θ]. (3.22)

The total action is then given by:

Sα[g,Θ,A] =

ż

Cτ1τ2

dv [´Tr(αg´1DAg) +
i

4
Θ(κabα

aαb ´ 4m2)]. (3.23)

Θ and α appear Gaussian in the integrand. Denoting Tr(αg´1DAg) =
κab

2 α
a(g´1DAg)

b, we can perform the
Gaussian integral over α by substituting the on-shell solution. Exploiting the symmetry of the Cartan-Killing
metric, this is found to be equal to:

δ

[
´
κab
2
αa(g´1DAg)

b +
i

4
Θκabα

aαb ´ iΘm2

]
= 0

Ø

[
´
κab
2

(g´1DAg)
b +

i

2
Θκabα

b

]
δαa = 0

´
i

Θ
(g´1DAg)

b = αb.

Inserted in the action readily gives:

Sα[g,Θ,A] =

ż

Cτ1τ2

dv

[
i

2Θ
κab(g

´1DAg)
a(g´1DAg)

b ´
i

4Θ
κab(g

´1DAg)
a(g´1DAg)

b ´ iΘm2

]
= i

ż

Cτ1τ2

dv
[κab
4Θ

(g´1DAg)
a(g´1DAg)

b ´ Θm2
]
. (3.24)

Choosing the saddle

Θ =
i

2m

b

κab(g´1DAg)a(g´1DAg)b

ultimately yields:

Sα[g,Θ,A] = m

ż

Cτ1τ2

dv
b

κab(g´1DAg)a(g´1DAg)b (3.25)

, where we have switched the real contour of Θ into the positive imaginary plane. Note that while this equiv-
alence is exact on-shell, one should modify the natural integration measure to make the action in Eq 3.24
Gaussian in Θ [97].

In the remaining directions P0,1, the Cartan-Killing metric κab = ηab is identified with the Kronecker delta:
κab = δab, a, b = 0, 1, and we may write

Sα[g,Θ,A] = m

ż

Cτ1τ2

dv
b

δab(g´1DAg)a(g´1DAg)b. (3.26)

The action is manifestly invariant under gauge transformations that act on the left g Ñ U(s)g when the gauge
field transforms accordingly. However, such gauge transformations in general mix the components of the field



134 CHAPTER 3. EOW BRANES IN JT GRAVITY

strength and spin connection. To partially gauge fix the choice Eq 3.21, we set g ” 1 along the curve Cτ1τ2 by
applying a gauge transformation U(v) = g´1(v) at every point along the curve. This gauge can be smoothly
extended into the entire bulk. Expanding the gauge fields into their components along the curve Cτ1τ2 :

Av(v) ” e0µ(v)ẋ
µ(v)P0 + e1µ(v)ẋ

µ(v)P1 (3.27)

, the action simply becomes the action of a free particle coupled to gravity by the definition of the covariant
derivative DA = d+ A:

Sα[g,Θ,A] = m

ż

Cτ1τ2

dv
b

δabeaµe
b
ν ẋ

µẋν . (3.28)

In the second order formalism, we may write the metric tensor in terms of the frame fields and the local Lorentz
metric as gµν = δabe

aeb along the lines of section 2.1. This demonstrates the on-shell equivalence:

Sα[g,Θ,A] = m

ż

Cτ1τ2

dv
a

gµν ẋµẋν . (3.29)

To finish the proof, we ought to show that the functional integral over A in the presence of the bulk BF action is
equivalent to integrating over all paths diffeomorphic to Cτ1τ2 . First of all, remember that the bulk BF integral
over the auxiliary field B renders A flat. As noted before in section 2.2, infinitesimal gauge transformations
on flat gauge fields are equivalent to infinitesimal diffeomorphisms in the gravity theory. Therefore, inside
the path integral, gauge transformations on the frame fields eaµ Ñ ẽaµ that leave the gauge connection flat are
equivalent to diffeomorphisms of the worldline Cτ1τ2 Ñ C̃τ1τ2 , in the sense that the action simply transforms
as:

m

ż

Cτ1τ2

dv
b

δabẽaµẽ
b
ν ẋ

µẋν Ñ m

ż

C̃τ1τ2

dv
b

δabeaµe
b
ν ẋ

µẋν .

This proves the identification Eq 3.4 between the path integral of a free particle in the metric formulation of JT
gravity and a Wilson line operator inside the path integral of BF theory. More precisely, over closed paths C,
the free particle path integral is equivalent to a Wilson loop insertion:

ż

DADB Wj(C)e´IBF =

ż

DgDΦ

¿

paths„C

Dx e´m
ű

C dv
a

gµν ẋµẋν

e´IJT (3.30)

, while the free particle path integral over a curve anchored at the proper boundary points τ1, τ2 is equivalent
to a Wilson line insertion evaluated in its lowest-weight state:

ż

DADB Wj,0´0+
(Cτ1τ2)e´IBF =

ż

DgDΦ

ż

paths„Cτ1τ2

Dx e´m
ş

Cτ1τ2
dv

a

gµν ẋµẋν

e´IJT . (3.31)

The equality in Eq 3.4 should therefore be thought of as an operator identity that only holds as an operator
insertion in a path integral over flat gauge connections.

The Wilson operator insertion is evaluated in the lowest-weight discrete representation j, determined by the
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eigenvalue of the quadratic Casimir. In order for the action of the Wilson line and the free particle to coincide,
the mass m of the particle should be related to the length Tr(α2) according to Eq 3.20, which itself is con-
strained by the eigenvalue of the quadratic Casimir by Eq 3.11. Combining both constraints relates the mass
m to the Casimir eigenvalue;

m2 = ´C2. (3.32)

We can determine an explicit expression for the quadratic Casimir in terms of the generators Pa from the
general definition of the inverse Cartan-Killing metric κab = κab = ηab = diag(1, 1,´1). The general
definition that has been used throughout is given by Eq 2.93:

C2 = ´κabPaPb = ´P 2
0 ´ P 2

1 + P 2
2 . (3.33)

In the previous chapter, we have labeled the irreducible representations of SL(+)(2,R) in terms of the eigen-
value of the quadratic Casimir acting on the generators in the Borel-Weil realization Eq A.11: iJa (a =

0,+,´). We may relate both realizations of the algebra by the transformation

P0 = iJ0, P1 =
1

2
(iJ´ + iJ+), P2 =

1

2
(iJ´ ´ iJ+). (3.34)

The quadratic Casimir corresponding to the Pa-generators can be expressed in terms of the Borel-Weil gener-
ators iJa

C2 = ´P 2
0 ´ P 2

1 + P 2
2 = J2

0 +
1

2
(J´J+ + J+J´) = ´j(j + 1) (3.35)

, whose eigenvalue j is determined in Eq A.12. Accordingly, the mass of the free particle is related to the label
j as

m2 = j(j + 1) . (3.36)

This is the expected relation between the mass and the conformal dimension from generic AdS/CFT consider-
ations in Eq 3.6.

3.3.2 Geodesic description of EOW branes

According to the previous discussion along the lines of [23], the free part of the EOW brane action defined in
Eq 3.1 is related to a Wilson line insertion in the BF path integral. Written in Euclidean signature, the total
action of the EOW particle is:

I =

ż

C
dv

?
gvv(µ´ ΦK). (3.37)

We relate the induced metric gvv of the affine parameter v along the boundary curve in terms of the metric in
the bulk gαβ according to:

ds2|C = gvvdv
2 = gαβ

dxα

dv

dxβ

dv
dv2.

The first term in the action therefore corresponds to the free particle action in the path integral Eq 3.4. In this
context, the mass µ is often denoted as the tension along the brane.
To deal with the second term involving the extrinsic curvature K, we consider its classical equation of motion.
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Crucially, the dilaton field is unconstrained by Dirichlet boundary conditions. Inserted in the path integral, it
acts as a Lagrange multiplier, enforcing its classical equation motion as an off-shell constraint on the particle’s
trajectory

K = 0 . (3.38)

We will now show that the vanishing of the extrinsic curvature along the trajectory severely restricts its degrees
of freedom. In particular, it is well known that all geodesic trajectories satisfy K = 0. On the other hand,
K = 0 is also a sufficient condition to describe geodesic trajectories.
Indeed, let us demonstrate this by starting from the geodesic equation of xµ(v) labeled by an affine parameter
along the curve v, and rewrite it more suggestively:

d2xµ

dv2
+ Γµαβ

dxα

dv

dxβ

dv
= 0 (3.39)

Ø Uα∇αU
µ = 0. (3.40)

Uµ ” dxµ

dv denotes the tangent vector along the path C. The second identity follows from the chain rule applied
to the covariant derivative. The normal vector nµ is required to be orthogonal to the tangent vector along the
entire curve:

nα(v)U
α(v) ” 0. (3.41)

Applying the generalized Leibnitz rule for covariant derivatives on this definition readily yields a relation
between the variation of the tangent vector and the variation of the normal vector:

nα∇µU
α = ´Uα∇µnα. (3.42)

The geodesic equation follows from the variational solution of the free particle action along the curve. Since
the variation in any direction can be decomposed into its tangential and normal direction, we may characterize
the general variation entirely along δxµ = nµ:

δI „

ż

dv δxµ(U
α∇αU

µ) „

ż

dv nµ(U
α∇αU

µ) = ´

ż

dv UµUα∇αnµ.

The last equality follows from the orthogonality of the normal vector with Uµ. Here, we recognize the defini-
tion of the pulled back extrinsic curvature along the curve Eq 1.86;

K = UµUα∇αnµ. (3.43)

The variation of the action is therefore completely specified by the value of the extrinsic curvature:

δI „

ż

dv K. (3.44)

Hence, on every curve for which K ” 0, the variation in the normal direction vanishes, constraining it to
solutions of the geodesic equation.
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Inserted in the JT path integral, we schematically have:
ż

paths„C
Dx e´

ş

C dv
?
gvv(µ´ΦK) Integrate over Φ

ÝÝÝÝÝÝÝÝÑ

ż

geodesics„C
Dx e´µ

ş

C dv
a

gαβ ẋαẋβ

. (3.45)

To evaluate the path integral over geodesics, we use a method of steepest descent to localize along geodesics.
The path integral effectively localizes on those classical solutions, including its one-loop determinant, in the
limit where µ " 1. Note that this does not impose any additional constraints on the value of µ. If we were to
reintroduce an effective scale h̄ into the theory, the localization requirement would simply require µ " h̄. We
can therefore take µ to be very large by simply tuning the relative scales in the theory.
Anyway, to make contact with the previous section, we know that the free particle path integral is equivalent to
a Wilson operator insertion in the BF theory, whose mass tunes the representation label according to Eq 3.36.
In the limit where we localize along geodesics, we may neglect the linear term and identify:

µ2 « j2 . (3.46)

3.3.3 Geometric interpretation of the hyperbolic group parameter

To make contact with the calculation in the boundary particle formalism, we need a structural link between the
group theoretical variables (such as the parameters of the Gauss parametrization Eq 2.148) and geometric vari-
ables (such as the geodesic length). Since we are working in the mixed parabolic basis that diagonalizes eγ´iJ´

and eγ+iJ+ with eigenvalues determined by the coset constraints, the only relevant variable is the hyperbolic
parameter φ (c.f. Eq. 2.254, and the discussion thereafter):

Rk,1´1+
(g) = xk, 1´ | g | k, 1+y = eγ´´γ+ xk, 1´ | e2iφJ0 | k, 1+y . (3.47)

In the context of hyperbolic defects giving rise to the trumpet partition function, we have already established
the identification Eq 2.313:

2φ = ´b. (3.48)

This follows from calculating the metric associated to the monodromy M in the presence of a defect insertion
z = e´2πλ(iJ0) along the Cartan element iJ0, and comparing with the generic Gauss parametrization of the
hyperbolic group element z = e2iφJ0 . For the metric at hand (Eq 2.309), the geodesics at the neck of the
trumpet have length b = 2πλ, which immediately yields the former identification.

Geodesics in Euclidean hyperbolic geometry

We are interested whether this identification also holds for Wilson lines anchored to the asymptotic boundary.
Thereto, let us calculate general geodesic lengths within the Poincaré upper half plane (Z ą 0, ´8 ă T ă

+8) of a Euclidean AdS2-patch:

ds2 =
dT 2 + dZ2

Z2
. (3.49)
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Geodesic trajectories C parameterized by the affine coordinate v are given by maps (Z(v), T (v)) satisfying the
geodesic equation Eq 3.39.
The non-vanishing Christoffel symbols are given by ΓZZZ = ΓTZT = ΓTTZ = ´ 1

Z , ΓZTT = 1
Z , yielding the

geodesic equations for Z, respectively T :

Z2 +
1

Z
T 1T 1 ´

1

Z
Z 1Z 1 = 0, T 2 ´

2

Z
T 1Z 1 = 0. (3.50)

Multiplying the second equation by Z 1

2Z 12 ´ ZZ 1T
2

T 1
= 0

we may use the identity for Z 12 in the first equation to obtain:

Z 12 + T 12 + ZZ2 ´ ZZ 1T
2

T 1
= 0.

After dividing by T 1, we may write the geodesic equations in terms of a total derivative

Z 1Z 1

T 1
+
ZZ2

T 1
´
ZZ 1

T 12
T 2 + T 1 =

(
ZZ 1

T 1
+ T

)1

= 0. (3.51)

This is easily integrated in terms of some constant C:

ZZ 1 + (T ´ C)T 1 = 0 (3.52)

, which itself can be integrated to the locus of a circles of radiusR, shifted along the timelike axis across (C, 0)

Z2 + (T ´ C)2 = R2. (3.53)

Figure 3.1: Geodesics divide the Eu-
clidean hyperbolic disk into congruent
triangles, where each of the indicated
triangles has an angle of respectively
π/2, π/3, π/7. Figure taken from [98].

Therefore, the collection of geodesics in the Poincaré upper half plane are the set
of half-arcs in the region Z ą 0. This is the same conclusion reached in [99].
The general solution is given by the circular trajectories (T = C +R cos θ, Z =

R sin θ) for θ P [0, 2π[. These circles can likewise be visualized on the Euclidean
disk by making T periodic from ´8 to +8. The geodesic trajectories then
divide the hyperbolic disk into congruent triangles, as shown in figure 1. This
has been known for a long time (see e.g. the famous drawings by M.C. Escher in
hyperbolic geometries). By parameterizing the geodesics in terms of the angular
parameter θ, the general line element ds deduced from the hyperbolic metric is
simply ds = dθ

sin θ , allowing us to integrate the total length from a point P = (T =

C+R cos θP , Z = R sin θP ) to a pointQ = (T 1 = C+R cos θQ, Z 1 = R sin θQ)
with (θQ ą θP ) along a geodesic trajectory labeled by the same parameters R,C
[99]:

b(P,Q) =

ż

C
ds =

ż θQ

θP

dθ

sin θ = log
(
1 + cos θP

sin θP
1 ´ cos θQ

sin θQ

)
. (3.54)
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This identity is obtained using the standard integral identity
ş

dθ dθ
sin θ = log

(
sin θ

2

)
´log

(
cos θ2

)
= log

(
sin θ

2

cos θ

2

)
,

together with 1 + cos θP = 2 cos2 θP2 and 1 ´ cos θQ = 2 sin2 θQ
2 , yielding:

log
(
1 + cos θP

sin θP
1 ´ cos θQ

sin θQ

)
= log

(
2 cos2 θP2

sin θP
2 sin2 θQ

2

sin θQ

)
= log

(
cos θP2
sin θP

2

sin θQ
2

cos θQ2

)
.

An insight from [99] was to write this final expression in terms of an isometric invariant δ(P,Q) of AdS2:

b(P,Q) = 2Arcsinh(δ(P,Q)), δ(P,Q) =

c

(Z ´ Z 1)2 + (T ´ T 1)2

4ZZ 1
. (3.55)

Indeed, using the definition Arcsinh(x) = log(x+
?
x2 + 1), and expressing the Poincaré coordinates in terms

of the angular variable θ, we may write:

2Arcsinh(δ(P,Q))

= 2 log

[d
(sin θP ´ sin θQ)2 + (cos θP ´ cos θQ)2

4 sin θP sin θQ
+

d

(sin θP + sin θQ)2 + (cos θP ´ cos θQ)2
4 sin θP sin θQ

]

= 2 log

[d
1 ´ sin θP sin θQ ´ cos θP cos θQ

2 sin θP sin θQ
+

d

1 + sin θP sin θQ ´ cos θP cos θQ
2 sin θP sin θQ

]

= 2 log

[d
1 ´ cos(θP ´ θQ)

2 sin θP sin θQ
+

d

1 ´ cos(θP + θQ)

2 sin θP sin θQ

]

= 2 log

[
´ sin((θP ´ θQ)/2) + sin((θP + θQ)/2)

a

sin θP sin θQ

]
= 2 log

[
2 cos(θP /2) sin(θQ/2)

a

sin θP sin θQ

]

= log
[
(1 + cos θP )(1 ´ cos θQ)

sin θQ sin θP

]
.

This coincides with the goniometric expression in Eq 3.54. Close to the asymptotic boundary at Z Ñ 0, we
may approximate the Arcsinh by a logarithm:

b(P,Q) « 2 log(δ(P,Q)). (3.56)

Coupled to gravity, we turn on the wiggly reparametrization modes of the asymptotic boundary curve (T =

F (τ), Z = εF 1(τ)) Eq 1.111 in terms of a proper time variable τ . The geodesic length between two end points
P,Q along the boundary curve can therefore be written as:

b(P (τ), Q(τ)) « 2 log(δ(P (τ), Q(τ))) = log

(
(FP ´ FQ)

2

4ε2F 1
PF

1
Q

)

= log

(
(FP ´ FQ)

2

F 1
PF

1
Q

)
´ log(4ε2). (3.57)
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Hyperbolic group parameter

Matrix elements for Wilson line operators W`,00(τ1, τ2) have been evaluated in section 2.8.6, both in gravity
and in holography. In particular, it was argued that the gravitational coset constraints only require the lowest-
weight matrix element due to current conservation. In the mixed parabolic basis, the matrix element of the
lowest-weight discrete series representation is given by Eq 2.279:

R`,00 = e2`φ. (3.58)

In terms of holography, the Wilson line operator in the lowest-weight discrete series is equivalent to the
Schwarzian bilocal operator O`(τ1, τ2) due to Hill’s equations, Eq 2.275. Concretely, we have the identifi-
cation:

O`(τ1, τ2) =
F 1(τ1)

`F 1(τ2)
`

(F (τ1) ´ F (τ2))2`
” R`,00 = e2`φ (3.59)

The expression of the bilocal operator matches, up to a regularization factor, with the geodesic length Eq 3.57.
Identifying both expressions relates the hyperbolic group parameter φ to the geodesic length b:

b = ´2φ . (3.60)

Unsurprisingly, this is the same identification for geodesics at the neck of a trumpet Eq 3.48. This gives
a physical interpretation for the hyperbolic group parameter of a Wilson line connecting two points on the
boundary, in terms of the shortest distance between these two points. Since EOW branes effectively localize
onto geodesics, this is exactly the distance of the path described by the Wilson line in this case. Of course, this
path is not unique in the path integral since the boundary conditions are unspecified on the wiggly boundary
curve. This quantum feature requires an integration over all possible geodesic lengths connecting two boundary
points.

3.4 Gravitational amplitudes involving EOW branes

3.4.1 Half-moon gravitational amplitudes

We start by calculating the gravitational amplitude associated to an EOW brane attached to the asymptotic
boundary curve of the Euclidean disk, which I will denote half-moon amplitudes from here on due to their
suggestive shape. These are essentially the same amplitudes discussed in the introduction of this chapter that
purify the TFD state in Lorentzian signature. The explicit amplitudes have been used before to model pure
states during black hole evaporation in [34], using the boundary-particle formalism. Here, we work entirely in
group theory, extending the discussion of the previous chapter.

We start again from the total action involving an EOW brane Eq 3.1, and insert it into the gravitational path
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integral. Due to the operator identity Eq 3.31, we may formally write:
ż

DBDA W`,00(Cτ1τ2)e´IBF [B,A] =

ż

DgDΦ

ż

geodesics„Cτ1τ2

Dx e
´µ

ş

Cτ1τ2
dv

b

gαβẋαẋβ
e´IJT [g,Φ] (3.61)

, where Cτ1τ2 is the path along the EOW brane. We have integrated out the dilaton, yielding the identification
µ2 « `2:

µ „ `, µ " 1. (3.62)

As will be elaborated further, we are interested in lowest-weight discrete series modules for which ` ą 0. From
the positivity of µ, we are required to take the plus sign in the square root of this relation.
Since the Wilson line on the disk is sandwished between two asymptotic states on the coset boundary, current
conservation restricts the evaluation of the Wilson line between two mixed parabolic lowest-weight states:

R`,0´,0+
(φ) = x`, 0´ | P exp

(
´

ż

Cτ1τ2

A
)

| `, 0+y . (3.63)

The diagonal matrix element is given in general by the modified Bessel functions of the first kind Eq 2.278:

R`,ν´,ν+(φ) = eφI2`´1(νe
φ). (3.64)

Evaluated in the lowest-weight state, the limit ` Ñ 0 yields an exponential behaviour in the group label φ Eq
2.279:

R`,0´0+
(φ) „ e2`φ. (3.65)

On the other hand, it is interesting to note that any other (diagonal) mixed parabolic state yields this result (up
to a φ-independent prefactor) in the geodesic approximation. Indeed, using the geodesic approximation Eq
3.62, together with the asymptotics of the Bessel function for ` Ñ 8 [100]:

I2`´1(z) „
1

a

2π(2`´ 1)

(
ez

2(2`´ 1)

)2`´1

(3.66)

, we find that in the geodesic approximation, all diagonal states evaluate to R`,ν´ν+(φ) „ e2`φ up to a φ-
independent prefactor.
Anyway, written in terms of geodesic length b = ´2φ and mass tension µ, this implies that the geodesic
approximation of the free particle path integral is one-loop exact (inside a path integral over b):

Rµ,0´0+
(b) =

ż

paths„Cτ1τ2

Dx e´µ
ş

ds » e´µb (3.67)

, where the RHS is obtained from both the above large `-limit of Wilson line operators, or by simply taking
the on-shell (geodesic) approximation of the full path integral, while approximating the length element by the
geodesic length

ş

ds « b.
Using the open channel formalism reviewed in section 2.5.1, we have found the precise amplitude of a two-
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sided Euclidean black hole with a Wilson line insertion Eq 2.276, which we pictorially denote as:

= x1 | e´βHW`,00 | 1y =

ż 8

´8

dφ e´2φ x1 | e´β2H | φyR`,00(φ) xφ | e´β1H | 1y .

(3.68)
dg = e´2φdφ is the usual Haar measure. The result is essentially equivalent to inserting a complete set of
group elements in the disk partition function, diagonalizing the Wilson line to its lowest-weight discrete series
matrix element:

W`,00 =

ż 8

´8

dφ e´2φR00(φ) |φy xφ| . (3.69)

xφ | e´β1H | 1y is the Hartle-Hawking state preparing the vacuum Eq 2.260, where the physical boundary
segment is characterized by a trivial group element 1:

= xφ | e´β1H | 1y =

ż 8

0
dk k sinh 2πk eφK2ik(e

φ)e´β1k2

. (3.70)

Performing a Z2-quotient along the geodesic EOW brane fixed points essentially removes one Hartle-Hawking
state, yielding:

ZEOW (β) = =

ż 8

´8

dφ e´2φR`,00(φ) xφ | e´βH | 1y . (3.71)

Note that it is important to constrain the EOW brane trajectory to the geodesic fixed points of the doubled
Euclidean geometry in order to perform this Z2-quotient. The remaining integral over the group element φ
makes sense since it is related to the geodesic length along the EOW brane. Since the group label along the
EOW is undetermined by the gravitational wiggly boundary conditions along the UV boundary, we ought to
perform an integral over all possible lengths. Inserting the explicit value of the Hartle-Hawking state finally
yields:

ZEOW (β) =

ż 8

0
dk k sinh 2πk e´βk2

ż 8

´8

dφ e´φe2`φK2ik(e
φ). (3.72)

Written in terms of the gravitational geodesic length 2φ = ´b, and the tension ` = µ, we have up to an overall
factor:

ZEOW (β) =

ż 8

0
dk k sinh 2πk e´βk2

ż 8

´8

db e

(
1

2
´µ
)
b
K2ik(e

´ b

2 ). (3.73)

The integral over b has been evaluated in [34] in the free particle context, and describes the overlap between
the matrix elements of the continuous, and discrete series representations (interpreted in a different context in
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that reference):
ż 8

´8

db e

(
1

2
´µ
)
b
K2ik(e

´ b

2 ) =
22µ

4
|Γ(µ´

1

2
+ ik)|2. (3.74)

The result coincides with Eq 3.2, obtained in [34]:

ZEOW (β) =

ż 8

0
dk k sinh 2πk e´βk2

22µ´2|Γ(µ´
1

2
+ ik)|2 . (3.75)

3.4.2 Trumpet gravitational amplitudes

As mentioned in Eq 3.30, an EOW brane along a closed loop C in the interior is not constrained by the
gravitational coset boundary conditions. The path integral over the closed contour generates a Wilson loop
W`(C). This evaluates to a trace of the holonomy of A around this contour, evaluated in a discrete series
representation ´j = ` « µ.
Since the trumpet amplitude is constructed by inserting a hyperbolic defect, the holonomy associated to an
EOW loop at the neck of the trumpet will be evaluated by a hyperbolic class function labeled by the Gauss
parameter φ. The trace of the holonomy will therefore be evaluated by a hyperbolic character of the discrete
series representation.

Discrete series representation: revisited

We construct the discrete series representation in the momomial realization, where we choose a basis that
diagonalizes iJ0, and denote its eigenvalue as the weight under iJ0. In the Borel-Weil realization of the algebra
Eq A.11, the generator associated to iJ´, iJ+ is associated to a raising and lowering operator respectively, in
the sense that (c.f. A.5)

[iJ0, iJ˘] = ¯iJ˘. (3.76)

Note that one should be aware of this perhaps misleading notation. To construct a highest-weight module, we
start from a highest-weight state and apply successive lowering operators iJ+ on the highest-weight state.
Highest-weight states themselves are annihilated by the raising operator iJ´ = Bx.

ψHW (x) = 1. (3.77)

The associated weight is simply:

iJ0ψHW (x) = (´xBx + j)ψHW (x) = j.

A highest-weight module is generated by acting with iJ+. E.g., the first excited state is

iJ+ψHW (x) = (´x2Bx + 2jx)ψHW (x) = 2jx



144 CHAPTER 3. EOW BRANES IN JT GRAVITY

, for which we indeed find that the weight is lowered by one: iJ0(2jx) = (´xBx + j)(2jx) = (j ´ 1)(2jx).

Lowest-weight modules are defined by applying successive raising operators iJ´ to some lowest-weight state

ψLW (x) = x2j (3.78)

, whose weight under iJ0 is
iJ0ψLW (x) = ´jψLW (x).

This state is annihilated by the lowering operator iJ+ as one can check explicitly.
Finite-dimensional representations are constructed by taking 2j P N in the lowest-weight state, where it is
readily seen that successive application of iJ´ on ψLW (x) eventually vanishes after 2j operations. On the
other hand, infinite dimensional lowest-weight modules are constructed by taking2 j ” ´` ă 0. This defines
the lowest-weight module, defined in the context of Wilson lines Eq 2.270:

ψLW (x) =
1

x2`
. (3.79)

There is a further restriction to 2` P N for SL(2,R) that I neglect in the current treatment. Generalizations to
2` R N are a priori harder to make sense of in genuine SL(2,R) (or SL+(2,R)). This restriction is lifted in the
universal covering group S̃L(2,R) [40]. Since the tension along the EOW brane is a priori any real number,
we will resort our attention to the these lowest-weight modules, and imagine that we analytically continue the
results of discrete ` to their universal covering value. This lowest-weight is indeed annihilated by the lowering
operator iJ+ for j = ´`:

iJ+ψLW (x) = (´x2Bx + 2jx)
1

x2`
= 2`x2

1

x2`+1
+ 2j

1

x2`´1
” 0.

Furthermore, its weight under iJ0 is:

iJ0 ψLW (x) = (´xBx ´ `)
1

x2`
= 2`x

1

x2`+1
´ `

1

x2`
= `

1

x2`
. (3.80)

Using the sl(2,R) algebra [iJ0, iJ´] = iJ´, we know that the next consecutive state will have a weight of
(`+ 1) (which can also be checked explicitly by application of the differential operator).

The hyperbolic character is defined in analogy with the continuous series representation in section A.1.2. How-
ever, this representation was realized on functions of L2(R), whose eigenvalues under iJa span a continuous
range. In the present context, the eigenvalues under iJ0 increase in discrete steps, and are ultimately annihi-
lated by some iJ˘ at one side of the infinite module.
The evaluation of a discrete series character therefore proceeds differently from the calculation in the princi-
pal series representation in Eq 2.323. The latter involves taking the (continuous) trace of the representation
matrices. Characters in a lowest-weight discrete series module labeled by j on the other hand, are defined as

2We could also start from j = R+/N. However, we want to include the natural numbers since these represent the conformal dimension of
Wilson line operators.
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functions on the weight space [77]:
χj(µ) =

ÿ

λ

multj(λ)e(λ,µ) (3.81)

, where λ denotes a weight vector in the lowest-weight discrete series module. (λ, µ) = λiG
ijµj represents

the inner product between the two weights with respect to the (inverse) of the restriction of the Cartan-Killing
metric to the Cartan subalgebra Gij = κ(iHi, iHj). multj(λ) denotes the dimension of the vector space Vj(λ)
of each weight λ in the representation j, defined by:

Vλ = tvλ P V | Rj(iHi)vλ = λivλu. (3.82)

iHi in general denote the elements in the Cartan subalgebra, and λ ” (λi) denote the weight vector with
respect to the Cartan subalgebra.

Since the multiplicity of each weight of the sl(2,R) algebra is simply one, and the weight vectors contain
only a single component with respect to the Cartan subalgebra iH = iJ0, the inner product on the weight
space simply amounts to taking a product (µ, λ) = µλ. Calculating the character of a Gauss parameterized
hyperbolic group element g = e2φiJ0 (c.f. Eq A.23) in a lowest-weight module now involves taking a sum over
(an a priori natural) ` (and analytically continuing the result towards continuous `):

χ`(φ) = Tr(e2φiJ0) ”

8
ÿ

n=`

e2nφ (3.83)

, where we have used that the eigenvalue under iJ0 is `+N. The sum may be worked out as a geometric series:

χl(φ) =
e2`φ

1 ´ e2φ
=

e2`φ´φ

2 sinh(´φ) . (3.84)

Written in terms of the geodesic length 2φ = ´b, and using the geodesic approximation µ « ` " 1, we may
neglect the additional term in the exponent:

χµ(b) =
e´µb

2 sinh b
2

. (3.85)

This limit can also be interpreted as the on-shell approximation of the free-particle path integral (c.f. Eq 3.67)
with an additional one-loop determinant that is a priori hard to determine from a gravitational perspective.
Note that in order for the geometric series Eq 3.83 to converge, we must constrain the regime of integration to
positive lengths b ą 0 only.

Gluing along the trumpet partition function

The amplitude of an EOW brane attached to the neck of a single trumpet can now be readily deduced from the
usual cutting and gluing axioms. As a first step, one should introduce a hyperbolic defect in the bulk, creating
a non-trivial monodromy along the thermal boundary circle. The procedure was explained in section 2.9 and
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shall not be repeated. The essential takeaway is to introduce a (normalized) character into the constrained disk
partition function:

Dk(φ) =
cos(´2kφ)

k sinh 2πk
=

cos(kb)
k sinh 2πk

. (3.86)

In a closed channel approach, the interior itself is unconstrained by the gravitational coset conditions, and the
Wilson loop evaluates to the discrete series hyperbolic character derived above Eq 3.85. Gluing along positive
b finally yields the same partition function Eq 3.3 derived by [36] in the boundary particle formalism;

ZEOW (β) = =

ż 8

0
db Ztrumpet(β, b)

e´µb

2 sinh(b/2) . (3.87)

Here, we have derived it completely from first principles in group theory. This opens up a way to extrapolate
the notion of EOW branes to more exotic theories of JT supergravity that have not yet been considered before
in the literature.

A subtlety is that we glue the hyperbolic character of the discrete series representation corresponding to the
EOW brane on the trumpet with the flat integration measure over geodesic lengths, while group theory instructs
us to use the Weyl integration measure corresponding to class elements instead (c.f. Eq 2.316). We argue that
the correspondence between JT gravity and group theory is only formally applicable and that the single trumpet
partition function is obtained from only the numerator of the hyperbolic continuous character Eq 2.323. After
all, it is only the numerator that appears directly from the holographic perspective in Eq 2.317. On the other
hand, we have proven that the free particle integral coincides exactly with the insertion of a discrete series
character (c.f. Eq 3.30). Therefore, it is important to keep both the numerator and denominator in the full
quantum amplitude.

3.5 Physical application: Black Hole evaporation process

Within the holographic duality, a powerful tool to calculate the entanglement entropy is the Ryu-Takayanagi
formula [33]. Here, the entropy of a boundary region is calculated from the generalized Bekenstein-Hawking
entropy over an extremal surface in the bulk. Recently, this rule was modified in the context of black hole
evaporation [32] [31] by adding the contribution of some island region I in the bulk. Explicitly, the rule states
that the actual fine-grained (von Neumann) entropy of the Hawking radiation S(R) is given by [34]:

S(R) = min
[

extI

(
Area(BI)
4GN

+ Sbulk(I YR)

)]
(3.88)

, where Sbulk(I Y R) calculates the semiclassical entropy of the island and the Hawking radiation. This rule
involves searching for all extremal surfaces of the island I that minimize the entropy in the spatial direction
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but maximize it in the time direction. Finally, we take the minimal value among all the extremal contributions.
The resulting plot of the fine-grained entropy over time yields a unitary Page curve of the Hawking radiation in
the black hole evaporation process. In particular, since we know that the black hole starts out in a unitary state,
the central dogma of quantum gravity requires the final state to remain pure after evaporation. This would
imply that in the early stages of evaporation, the entropy of the radiation should rise as a consequence of the
entanglement between the interior black hole microstates. However, as more and more radiation comes out,
there should be a unitary Page transition where the entropy decreases proportional to the area of the black hole
horizon. A lot more is to be said about this Page curve. However, for brevity and to avoid shifting the main
focus (EOW brane calculations), I redirect the reader to the extensive literature on this subject (in particular
the excellent recent review notes [101] [25]).

The crux of the matter is thus to derive the island rule directly from gravitational path integral calculations,
without resorting to the boundary holographic considerations of [32] [31]. Since the classical Ryu-Takayanagi
formula can be derived from gravitational path integral calculations involving replicas, one suspects that the
island prescription describing the generalized entropy should also be derivable by considering multiple copies
of the evaporating black hole.
Clearly, one needs to go beyond the semiclassical calculation of the gravitational path integral and consider
non-perturbative corrections to the latter. A series of seminal papers [35] and [34] demonstrated how the Page
transition is achieved by including Euclidean wormholes connecting the different replica contributions. [34]
especially will be the most relevant in the subject of this thesis. They considered a simple toy model of an
evaporating black hole in JT gravity, where the Hawking radiation in some auxiliary reference system R is en-
tangled with the black hole microstates. These interior partners are modelled precisely by EOW branes behind
the BH horizon. The relevant gravitational amplitudes are precisely the half-moon disk amplitudes that we
have calculated from an alternative perspective in group theory Eq 3.75.
One first calculates the Rényi entropy SR = Tr(ρn) by replicating the quantum system into n independent
copies, and considering its total gravitational amplitude. Analytically continuing this result in n and taking
the smooth limit n Ñ 1 recovers the standard von Neumann entanglement entropy ρvN = ´Tr(ρ log ρ). We
will see how the exact gravitational path integral can be obtained by performing a resummation of the exact
planar quantum amplitudes obtained before, consistent with the prescribed boundary conditions. To recover
the analogue of the Page curve, we will see that before the Page time, the dominant contribution consists of a
disconnected topology with n separate replicas. After the Page time however, the dominant topology transi-
tions to an n-boundary connected Euclidean wormhole solution. This will turn out to be consistent only if we
reinterpret the path integral as an ensemble average of quantum theories, reminiscent of the analysis of random
matrices in [30].

The starting point is to consider a black hole in JT gravity with an EOW brane anchored behind the BH horizon,
for which the total action is given in Eq 3.1. Reintroducing the purely topological Einstein-Hilbert term and
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the proper prefactors, the precise action (in Euclidean signature) is given by (c.f. Eq 1.49):

I = ´
S0
4π

[
ż

M

?
g R+

ż

AdS

?
guuK

]
´

1

16πGN

[
ż

Φ
?
g(R+ 2) +

ż

AdS
du Φ

?
guu(K ´ 1)

]
+

ż

EOW
dv

?
gvv(µ´ ΦK). (3.89)

S0 denotes the extremal entropy contribution of the parent nearly extremal black hole Eq 1.45 S0 = Φ0/(4GN )

in terms of the extremal value of the dilaton field. The EOW branes are located behind the BH horizon in
Lorentzian signature if we restrict the range of the tension parameter to µ ě 0 [36]. Performing a Z2-quotient
along the EOW brane fixed points purifies the doubled solution in Lorentzian signature.

We will henceforth be interested in the regime where the EOW brane describes a very large number k of
possible internal states. Thus, we model the pure black hole internal states in terms of the possible microstates
of the EOW brane, which we will denote by |ψiyB . The subscript B denotes the pure states behind the BH
horizon. The overlaps xψi | ψjy compute the relevant gravitational amplitudes, which we represent by [34]:

Z1(β) = xψi | ψjy = . (3.90)

The black boundary represents the asymptotic AdS2 boundary, while the blue line represents the EOW brane
connecting the pure states labeled by i and j. As always, the time direction flows from the ket |ψjy to the bra
xψi|, indicated by the direction of the arrow. These are precisely the half-moon amplitudes calculated earlier.
For now, we will assume that these are simply orthogonal such that xψi | ψjy « δij .
Now, we imagine that we maximally entangle these pure states with an auxiliary quantum system R describing
the early radiation states |iyR:

|Ψy =
1

?
k

k
ÿ

i=1

|ψiyB |iyR . (3.91)

Here, |Ψy represents the whole purified quantum state of the BH and the radiation.

A crude application of the island formula Eq 3.88 demonstrates the validity of this procedure. If we first take
the island to be the empty set, then the area term vanishes and the result simply evaluates to the entangle-
ment entropy SvN = ´Tr(ρ log ρ) between the early radiation and the BH interior. The density matrix ρ is
constructed by summing over the internal BH states ρ = TrB(|Ψy xΨ|), which results in:

ρR =
1

k

k
ÿ

ij

|jy xi|R xψi | ψjyB (3.92)

«
1

k

k
ÿ

i

|iy xi|R . (3.93)
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Simple application of the von Neumann entropy formula yields SvN = ´Tr(ρ log ρ) = log k. On the
other hand, taking the island region over the whole BH interior, the semiclassical entanglement entropy term
SvN (R Y I) vanishes (since the radiation and BH states together form a pure state). From the total action Eq
3.89, we infer the remaining area term of the island:

Area(BI)
4G

Ñ S0 +
Φ

4G
. (3.94)

This simply evaluates to the coarse-grained entropy of the black hole SBH from the Bekenstein-Hawking
prescription. The extremization in the island conjecture amounts to putting the boundary of the island at an
extremal point of the dilaton field, which in this case lies at the bifurcation point of the Euclidean black hole.
Thus, during evaporation, the island conjecture predicts that the entropy of radiation will exhibit a continuous
transition between these two extremal cases:

S(R) = min(SBH , log(k)). (3.95)

[34] obtained this result directly from a gravitational calculation using the replica trick. One starts from the
standard replica prescription to compute the von Neumann entropy of the radiation SR from the Rényi entropy
in the limit n Ñ 1:

SR = ´Tr(ρR log ρR) = ´ lim
nÑ1

1

n´ 1
log Tr(ρnR) (3.96)

This identity is readily verified by the rule of ’l Hôpital. We compute Tr(ρn) by summing over all possible
geometries with an n-boundary configuration. As an example, consider the related purity Tr(ρ2R). Leaving
xψi | ψjyB explicit in Eq 3.92, we calculate

Tr(ρ2R) =
1

k2

k
ÿ

ij

xψi | ψjyR xψj | ψiyR =
1

k2

k
ÿ

ij

| xψi | ψjyR |2. (3.97)

We compute the gravitational amplitude by summing over all possible topologies compatible with a two-
boundary configuration. To simplify the calculations, we assume that only planar geometries contribute in this
discussion. The relevant contributions are a completely disconnected and a completely connected geometry
[34]:

| xψi | ψjyR |2 = . (3.98)

The connected geometry is achieved by a Euclidean wormhole linking the two asymptotic boundaries. We
denote this geometry by Z2(β). More general connected n-boundary replicated geometries with asymptotic
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lengths β are denoted Zn(β). Using this notation, the purity is readily represented by:

Tr(ρ2R) =
1

Z2
1

(
Z2
1

k
+ Z2

)
=

1

k
+
Z2

Z2
1

(3.99)

, where one normalizes the solution by an overall Z2
1 . The first term represents the first geometry, where the

EOW branes connect the two different labels i and j. In the sum Eq 3.97, this yields a factor k which is
compensated by the k2 in the overall normalization. On the other hand, both EOW branes in the Euclidean
wormhole geometry connect to the same labels i and j. Summing yields a factor k2, which is absorbed com-
pletely in the normalization of the denominator.

Retaining only dependence on the topological Einstein-Hilbert term in the total action Eq 3.89, the gravita-
tional amplitudes scale only with the Euler characteristic eχS0 . This is a topological invariant that is specified
completely by the genus g and number of boundaries n: χ = 2´ 2g´n. For disk-shaped amplitudes, both Z1

and Z2 are proportional to eS0 with χ = 1. Thus schematically;

Tr(ρ2R) =
1

k
+

1

eS0
. (3.100)

Loosely interpreting k as a time variable, we see that for small k, the disconnected geometry dominates in the
purity with „ 1/k. When k becomes of the order of the black hole entropy eS0 , there appears an interchange in
dominance, and the connected replicated geometry starts to dominate. This will purify the purity by a constant
e´S0 . This interchange in dominance is the main mechanism behind the Page transition.

Considering the more general Rényi entropy SR = Tr(ρnR), we again fill up the boundary conditions with all
possible (planar) geometries consistent with the prescribed n-boundary boundary conditions. Normalizing the
solution by Zn1 , the completely disconnected phase has only a single k-loop, yielding [34]:

Tr(ρnR) Ą
kZn1
knZn1

=
1

kn´1
. (3.101)

Using the general prescription to calculate the von Neumann entropy Eq 3.96, the entanglement entropy in this
phase of matter is characterized by:

SR = log(k). (3.102)

On the other hand, when k " eSBH , the completely connected geometry dominates. In this geometry, the n
EOW branes always connect to the same index, yielding

Tr(ρnR) Ą
knZn
knZn1

=
Zn
Zn1

. (3.103)

Performing a Zn-quotient and continuing n Ñ 1, this simply becomes the unreplicated geometry for which
the von Neumann entropy is given by the coarse-grained black hole entropy Eq 3.94

SR = S0 +
Φh
4G

(3.104)
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, where the value of the dilaton at the horizon Φh represents the fixed point of the Zn quotient. In this phase,
the answer yields the thermodynamical entropy of the black hole expected at late times in a unitary evaporation
process.
Thus, transitioning between geometries, we obtain a discontinuous version of the result predicted by the Island
formula Eq 3.95.

Of course, this result is not consistent in the strict quantum mechanical interpretation, since on the one hand
we assume

xψi | ψjy « δij (3.105)

, while on the other hand

| xψi | ψjy |2 = δij +
Z2

Z2
1

. (3.106)

However if we assume that the true amplitude is in fact a random variable xψi | ψjy = δij + e´S0/2Rij , where
Rij has mean zero, then one should interpret the gravitational path integral as calculating a coarse-grained
average instead [34] :

xψi | ψjy = δij , | xψi | ψjy |2 = δij +
Z2

Z2
1

. (3.107)

In this case, the Euclidean wormhole calculates the variance of this random variable. In fact, a whole branch
of recent investigation in JT gravity studies the relation between Euclidean wormholes and random matrices,
see e.g. [30] [29].

To obtain a smooth transition between these two regimes in the Page curve, one needs to be less schematic and
study the exact correlators in JT gravity and sum over all possible planar geometries connecting the different
boundary regions. The former task was already achieved in section 3.4. To investigate the latter, [34] used
the technique of planar resummation. First of all, note that we can indeed constrain to planar geometries
by assuming eS0 and k to be large. In this regime, higher topological corrections will be suppressed in the
gravitational amplitudes by e´2S0 for adding handles (χ = 2 ´ 2g ´ n) or by 1/k2 for introducing crossings.
A property familiar from random matrix theories involves the resolvent matrix Rij(λ) of ρR:

Rij(λ) =

(
1

λ1 ´ ρR

)
ij

. (3.108)

This matrix contains the eigenvalues of ρR at the location of its poles in λ. Using a geometric series, we expand
this quantity in a perturbation series in 1/λ:

Rij(λ) =
1

λ
δij +

8
ÿ

n=1

1

λn+1
(ρnR)ij . (3.109)
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[34] denotes this pictorially as:

.

(3.110)
Here, the dashed index lines denote the free indices i, j on the left and right side respectively. We interpret
these lines as bare propagators that come with a factor 1/λ. The arrows on the other hand come with factors
1/(kZ1) in the normalization of the density matrix. The shaded regions that fill up the boundary conditions
with all possible planar diagrams, denote the proper gravitational amplitudes. An efficient way to fill up the
boundary conditions with all possible geometries, is to use an iterative perturbation in the resolvent matrix
itself [34]:

.

(3.111)
Using the diagrammatic rules, the explicit amplitude is:

Rij(λ) =
1

λ
δij +

1

λ

8
ÿ

n=1

Zn
(kZ1)n

R(λ)n´1Rij(λ) (3.112)

, where R(λ) represents the trace of the resolvent matrix: R(λ) =
řk
i Rii(λ). Taking the trace yields a

relatively simple expression [34]:

λR(λ) = k +
8
ÿ

n=1

Zn
R(λ)n

knZn1
. (3.113)

To proceed, we need the explicit gravitational amplitude of an n-boundary Euclidean wormhole geometry
connected by a collection of n EOW branes, represented by a pinwheel geometry [34]:

(3.114)

Here, red lines denote geodesic boundaries, while blue lines denote EOW branes as usual. We may relatively
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straightforwardly generalize the half-moon amplitudes in section 3.4 to the pinwheel geometry by gluing n
Hartle-Hawking states Eq 3.70 and n states associated to the EOW brane (Wilson line) Eq 3.65 to a cap
wavefunction with 2n geodesic boundaries. The latter is specified by an overlap xφ1, . . . , φ2n | 1y in the closed
radial slicing with coset boundary conditions (c.f. 2.193 in the limit of vanishing β):

I2n(φ1, . . . , φ2n) =

ż 8

0
dk k sinh(2πk) eφ1K2ik(e

φ1) . . . eφ2nK2ik(e
φ2n). (3.115)

Gluing with the appropriate Haar measure factor e´2φ along the hyperbolic group elements yields the general-
ization of the half-moon amplitude3:

Zn = eS0

ż +8

´8

dφ1 . . . dφ2n e
´2φ1 . . . e´2φ2nI2n(φ1, . . . , φ2n) x1 | e´βH | φ1y e2φ2` . . . (3.116)

ˆ x1 | e´βH | φ2n´1y e2φ2n`.

Specifying to the geodesic approximation µ « ` and using the gravitational identification Eq 3.60 b = ´2φ,
there are n orthogonality integrations involving the asymptotic Hartle-Hawking states Eq 2.261:

ż 8

´8

db K2ik(e
´b/2)K2ik1(e´b/2) =

δ(k ´ k1)

k1 sinh 2πk1
(3.117)

This removes the remaining Plancherel measure in the asymptotic Hartle-Hawking states. The remaining n
integrals over the EOW brane wavefunctions are evaluated using the integral identity Eq 3.74

ż 8

´8

db e

(
1

2
´µ
)
b
K2ik(e

´ b

2 ) =
22µ

4
|Γ(µ´

1

2
+ ik)|2. (3.118)

This finally yields the factorized result:

Zn = eS0

ż

dkk sinh 2πk y(k)n, y(k) = e´βk2

22µ´2|Γ(µ´
1

2
+ ik|2. (3.119)

I should note again that this amplitude was obtained from the boundary particle perspective instead in [34].
This factorization gravely simplifies the expression of the resolvent Eq 3.113 by performing a geometric series
under the integral:

λR(λ) = k +
8
ÿ

n=1

ZnR(λ)
n

knZn1
= k + eS0

ż

dk sinh 2πk
8
ÿ

n=1

(
R(λ)y(k)

kZ1

)n
= k + eS0

ż

dk sinh 2πk
R(λ)y(k)

kZ1 ´R(λ)y(k)
. (3.120)

From this resolvent, one can find the density of eigenvalues of the density matrix ρR(λ) by analytically con-
tinuing the definition Eq 3.108 into the complex plane and taking the discontinuity along the positive real

3The factor eS0 resembles the extremal entropy contribution from the Einstein-Hilbert action, for which the disk geometry always has χ = 1.
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Figure 3.2: Exact von Neumann entropy calculated in the planar approximation using different numerical techniques (plotted for β = 3 and large µ). As a
function of k, this exhibits a smoothed version of the Page transition around log(k) „ SBH .

axis:

1

2πi
(R(λ´ iε) ´R(λ+ iε)) =

1

2πi

ÿ

j

(
1

(λ´ λj) ´ iε
´

1

(λ´ λj) + iε

)
=

1

2πi

ÿ

j

2iε

(λ´ λj)2 + ε2

This last expression is precisely the Cauchy distribution ε
(λ´λi)2+ε2

= πδ(λ´ λi), yielding the spectral distri-
bution of the density matrix:

1

2πi
(R(λ´ iε) ´R(λ+ iε)) = ρR(λ), ρR(λ) =

ÿ

j

δ(λ´ λj). (3.121)

The von Neumann entropy follows directly from the definition

SR = ´

ż

dλρ(λ)λ log(λ). (3.122)

Numerically calculating the distribution of R(λ) from the exact planar expression Eq 3.120, [34] finds a
smoothed out version of the qualitatively expected Page curve Eq 3.95 (figure 3.2). We conclude that the
gravitational calculations involving EOW branes are able to shed a new light on the black hole evaporation
process, and seem to produce explicitly a unitary Page transition.



Chapter 4

EOW branes in JT supergravity

"The most beautiful thing we can experience
is the mysterious. It is the source of all true
art and all science."

Einstein, Albert

4.1 Metric formulation of N = 1 JT supergravity

Much of the current exploration in JT gravity investigates whether some of its generic lessons generalize to
other related models of lower-dimensional dilaton gravity. By the time of writing this thesis, considerable
amount of attention is devoted to understanding the supersymmetric extensions of the JT supergravity model.
By introducing a boundary term analogous to [17], Forste et al. [39] showed that the dynamics of JT SUGRA
in superspace is holographically described by a superanalogue of the Schwarzian boundary theory. Both the
one-loop exact solution of the partition function, and the dual matrix ensemble have been generalized to JT
supergravity, see [20] and [102] respectively. The boundary correlators have also been obtained for N = 1

supergravity by exploiting its exact relation to 2d Liouville superconformal theory [21] [64]. More recently,
its gauge theoretic description in terms of an OSp(1|2,R)-supergroup BF model was exploited to obtain a bulk
interpretation of the bilocal operators in the super-Schwarzian theory in terms of super-Wilson line insertions
[40], along the lines of the previous chapters based on [22] [24]. This study demonstrates that the constrained
subsemigroup setup of the global supergroup persists in the supersymmetric extension.

A natural question to ask is whether we can generalize the group theoretic description of the EOW branes to the
supergroup model. As a first step, we should start from the action of an EOW brane in superspace, analogous
to the bosonic case in Eq 3.1, and reinvestigate its relation to Wilson line insertions in the supersymmetric path
integral. Although the action of a free particle in 2d superspace has already been formulated in [46], there

155
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does not seem to be an appropriate action available in the current literature that captures the entire geodesic dy-
namics. We therefore define an appropriate supersymmetric analogue of the extrinsic curvature in superspace,
and make an educated guess for the appearance of the boundary action. The most interesting results are again
obtained for the quantum amplitudes of an EOW brane at the neck of a supersymmetric trumpet. Due to the
global structure of the OSp(1|2,R)-supergroup, we find two disconnected sectors depending on the periodicity
of the fermionic coordinates around the thermal boundary circle. We find that the periodic Ramond sector does
not yield the spurious UV divergence for b Ñ 0 of the bosonic case. This resembles how UV divergences in
bosonic string theory are cured in superstring theory, see e.g. [103].

To arrive at these results, I will first review the supergroup structure of the N = 1 JT SUGRA model, along the
lines of [40]. This implies formulating the first order action in superspace in terms of a topological osp(1|2,R)
BF theory. Using this identification, we obtain the exact quantum amplitudes in terms of the positive sub-
semisupergroup formulation of OSp+(1|2,R). This again restricts the integration space to the smooth hyper-
bolic component of the moduli space. The reader might enjoy the close resemblance to the development of
the bosonic case in the previous chapters. To emphasize this resemblance, I use an isomorphism of the algebra
compared to [40], to fit as much as possible with the conventions of the bosonic algebra of the previous chap-
ters. As opposed to the structure of the thesis so far, I have deliberately stripped down the first parts of this
review on the metric formulation and superconformal symmetry to its core essence. However, without going
into too much of the calculational details, I have still tried to be as concrete as possible.

We start by formulating the action of N = 1 JT supergravity (including its natural boundary term as formulated
in [39], up to a total factor of ´1/4πG) in superspace as:

IN=1
JT =

1

4

[
ż

Σ
d2zd2θ EΦ(R+´ + 2) + 2

ż

BΣ
dτdϑ ΦK

]
(4.1)

, where Φ denotes the supersymmetric dilaton field, R+´ the Ricci supercurvature, and E the frame field de-
terminant in superspace. Note the striking resemblance between the action formulated in superspace and the
bosonic JT gravity action in Eq 1.48.
The bulk term spans the 2|2-dimensional supermanifold Σ, while the boundary curve BΣ is infinitesimally
thickened in its fermionic coordinate to co-dimension 1|1.
In general, we locally parameterize the N = 1 superspace by a pair of bosonic and fermionic coordinates
zm, θµ (m = 0, 1, µ = 0, 1) respectively. The latter satisfy the anti-commutative Grassmann algebra1

tθµ, θνu = 0. Along the lines of [104], the 2|2-dimensional supergeometry is easy to describe by a pair
of holomorphic and anti-holomorphic coordinates

ZM = (zm, θµ) = (z, z, θ, θ). (4.2)

Due to the anticommutative nature of the fermionic partners, care has to be taken when swapping two super-

1In [40], the authors also used the order preserving convention of complex conjugation of Grassmann numbers (θµθν)˚ = θµθν .
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space coordinates2 (or its differentials) [40]

ZMZN = (´)MNZNZM , dZM ^ dZN = ´(´)MNdZN ^ dZM , dZMZN = (´)MNZNdZM . (4.3)

We imagine the numbers M,N in the exponent (´)MN to be Z2-valued (0,1), and are either even or odd if the
respective coordinate is bosonic or fermionic.

Since any theory of supergravity is equipped with spinor fields whose transformation rule is defined in terms of
the Lorentz group, we again introduce a set of local U(1) Lorentz indices A = (a, α). a = 0, 1 are the bosonic
frame indices and are raised and lowered by the flat Euclidean metric δab. Upper and lower for the bosonic
frame indices are therefore immaterial. In general D dimensions, the dimensionality of the Clifford matrices
is 2[D/2], where [D/2] denotes the integer part of D/2 [59]. Therefore in D = 2, the spinors have two free
labels α = +,´. The fermionic indices are raised and lowered with respect to the Levi-Civita tensor εαβ (with
conventionally ε+´ = ´1). We collectively denote the local metric for both fermionic and bosonic entries by
κAB , with:

κab = δab, καβ = εαβ, κaα = καa = 0. (4.4)

A general feature is that the local metric is always block diagonal and is antisymmetric in the fermionic block.
We denote this property as:

κAB = (´)ABκBA = (´)AκBA = (´)BκBA. (4.5)

The last identities hold since the Cartan-Killing metric is block-diagonal and the pair A,B always shares the
same parity. Since the fermionic entries anticommute, we have in general

VAW
A = (´)AWAVA ‰ WAVA. (4.6)

Note that local Lorentz indices are collectively denoted by capital letters at the beginning of the alphabet, while
superspace coordinates are labeled by capital letters in the middle of the alphabet.
To transition between the two frames, we again introduce a superframefield EA = dZME A

M and its inverse
E M
A , satisfying:

E M
B E A

M = δAB, E A
N E M

A = δMN . (4.7)

Lorentz vectors and covectors are defined by their transformation under local Lorentz transformations

δV A = LABV
B, δVA = ´VBL

B
A (4.8)

, where the local Lorentz group in 2d is determined in terms of a single bosonic number L:

LAB = LEAB. (4.9)

2We can expand any number in superspace in a Grassmann expansion z = z0 + z1θ + z2θ + z3θθ, where due to the Grassmann algebra,
any term is at most linear in the Grassmann variables θ, θ. We call the purely bosonic piece z0 the body of the supernumber. The remainder
is dubbed the soul, and can have both odd and even parity. Positivity of a supernumber is defined as z = z˚. It can be proven [40] that any
supergroup number is positive iff its body is positive: z ą 0 Ø z0 ą 0. The intuition is that Grassmann combinations are expanded to linear
order in the Taylor expansion. As such, their value can be thought of as infinitesimal compared to the bosonic body, and has no effect on the
positivity.
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EAB is the generalized Levi-Civita symbol3, defined in terms of the Levi-Civita symbol εab, and the γ5-matrix
of the 2d Clifford algebra [40]:

Eab = εab, Eαb = Eaβ = 0, Eαβ = ´
1

2
(γ5)

α
β. (4.10)

The gamma matrices in D = 2 satisfy the Clifford algebra

tγa, γbu = 2δab, γ5 = ´γ0γ1 (4.11)

, leading to tγa, γ5u = 0, γ25 = ´1. As opposed to the entries of the gamma matrices, we imagine the
entries of the spinors terms ψαm to be Grassmann valued. In D = 2, we are free to choose both γ0 and γ1 to
be symmetric. From the Clifford algebra, this implies that γ5 is antisymmetric. In any case, the generalized
Levi-Civita symbol EAB is antisymmetric in both the bosonic and fermionic blocks:

LAB = ´L A
B . (4.12)

Since the matrix of infinitesimal Lorentz transformations LAB contains no Grassmann entries, this property
ensures that Lorentz bilinears are invariant under local Lorentz transformations Eq 4.8 in both orderings:

δ(VAW
A) = δVAW

A + VAδW
A

= ´VBL
B
AW

A + VAL
A
BV

B = 0 (4.13)

δ(V AWA) = δV AWA + V AδWA

” LABV
BWA ´ V AWBL

B
A

= ´V BL A
B WA + V AL B

A WB = 0. (4.14)

We lower the spinor index of the Majorana conjugate with respect to the metric in the NW-SE direction (north-
west - south-east) [59]:

ψα = ψβCβα, Ø ψ = ψTC (4.15)

, where Cαβ = εαβ in 2d. Thus spinor contactions in the inner product ψαεαβψβ are defined SW-NE:

ψαεαβψ
β = ψ̄βψ

β = ψ̄ψ. (4.16)

For Majorana spinors, both the definition of the Majorana and Dirac conjugate ψ = ψ:γ0 are in fact equivalent
[59]. Note that we need to fix these conventions beforehand since the metric is antisymmetric in its fermionic
block:

VAW
A = V BκBAW

A = (´)BV BWAκAB = (´)BV BWB ‰ V AWA (4.17)

In 2d, the definitions Eqs 4.8 imply the correct transformation rules for spinors and conjugate spinors under

3Mind the difference between the generalized Levi-Civita symbol and the super frame fields.
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infinitesimal local Lorentz transformations:

δψα = ´
1

2
Lγα5 βψ

β, δψα =
1

2
Lψβ(γ5)

β
α. (4.18)

In any number of dimensions, the spinor bilinear ψχ is Lorentz-invariant using the infinitesimal form of the
Lorentz transformation above. Its symmetry properties, however, vary for every dimension4. The simple form
of C in 2d allow us to readily deduce the correct symmetry properties

ψχ = χψ, ψγaχ = ´χγaψ, ψγ5χ = ´χγ5ψ. (4.19)

In parallel to the first-order formalism discussed in section 2.1, we define a spin connection ΩAB that transforms
inhomogeneously under local Lorentz transformations, and acts as its local gauge field:

δΩAB = LACΩ
C
B ´ ΩACL

C
B ´ dLAB. (4.20)

d = dZMBM acts as the exterior derivative in superspace5. This defines a Lorentz-covariant derivative:

DV A = dV A +ΩAB ^ V B, DVA = dVA ´ ΩBA ^ VB (4.21)

, which does transform covariantly under local Lorentz transformations in superspace:

δ(DV A) = d(δV A) + δΩABV
B +ΩABδV

B

=�����
dLABV

B + LABdV
B + LACΩ

C
BV

B ´������
ΩACL

C
BV

B ´�����
dLABV

B +������
ΩABL

B
CV

C

= LAB (dV B +ΩBCV
C).

Due to the simplification in 2d (Eq 4.9), the spin connection can also be written in terms of the generalized
Levi-Civita symbol:

ΩAB = ΩEAB (4.22)

, where Ω = dZMΩM is a single one-form in superspace. We likewise denote the covariant exterior derivative
as D = dZMDM . This e.g. defines a bosonic Lorentz-covariant derivative on the bottom component ψαm of
Eαm;

Dmψ
1
n = Bmψ

1
n ´

1

2
ωmγ5ψ

1
n, with ωm the bottom component of Ωm. (4.23)

The definitions of torsion and curvature two-forms in terms of the first and second Cartan structure equations
Eqs 2.5, 2.12 naturally generalize to the definitions of the supertorsion and supercurvature respectively:

TA = DEA = dEA +ΩAB ^ EB =
1

2
TABCE

B ^ EC , (4.24)

RAB = dΩAB +ΩAC ^ ΩCB =
1

2
RABCDE

C ^ ED. (4.25)

4See [59] chapter 3 for a detailed discussion
5We define the Grassmann derivative acting from the left.
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These are readily checked to satisfy the generalized Bianchi-identities

DTA = RAB ^ EB, DRAB = 0. (4.26)

In 2d, the definition of the supercurvature simplifies considerably since Ω ^ Ω = 0, leading to:

RAB = FEAB, where F ” dΩ. (4.27)

Returning to the first order JT supergravity action in superspace Eq 4.1, we can unpack the dilaton superfield
φ in supercoordinates in terms of a real dilaton field φ, the dilatino λ, and a scalar auxiliary field F ;

Φ = φ+ θλ+ θθF. (4.28)

[40] formulates the supergeometry in the Wess-Zumino gauge. This gauge fixes the components of the super-
torsion, leaving only a non-zero T aβγ .
Within this gauge, all geometrical quantities can be expressed in terms of the spin-1 frame field eam, the spin-3/2
gravitino ψαm, and an auxiliary scalar field A that serves as the bottom component of R+´. Within the super-
space expansion, eam and ψαm correspond to the bottom components (lowest order in the Grassmann expansion)
of Eam, and Eαm respectively. The integral over the dilaton superfield localizes the integration contour of the
path integral to surfaces of negative supercurvature R+´ = ´2.

Denoting E = sdet(EAM ) as the superdeterminant, one can show that within this gauge, the top component of
EΦ(R+´ + 2) is given by [40] [105]:

eθθ

(
F (A+ 2) +

1

2
φ

(
R ´A´

1

2
εmnψmγ5ψn

)
+ λεmnDmψn +

1

2
λεmnγmψn

)
(4.29)

, where R = 2εmnBmωn is the scalar curvature corresponding to the bottom component ωm of the super-
spinconnection Ωm. A and e denote the bottom components of R+´ and E respectively. In the current gauge,
this is in turn constrained by the torsion constraints to [40]:

ωm = ´εn`eamBne
a
` +

1

2
ψmγ

nγ5ψn. (4.30)

The constraint Eq 4.30 descends from the component-wise torsion constraints [40]:

T amn| = B[me
a
n] + εabω[me

b
n] ´

1

4
ψ[mγ

aψn] ” 0. (4.31)

The bar indicates the bottom component, and the brackets denote antisymmetrization with weight one.
Integrating over the dilaton superfield imposes

A = ´2, R =
1

2
εmnψmγ5ψn ´ 2. (4.32)

Using the normalized integral over Grassmann fields
ş

d2θ θθ = 2, and the constraint for A = ´2, we may
plug the top component Eq 4.29 in the superspace action and obtain the JT supergravity action at the level of
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the components:

IN=1
JT =

1

2

ż

Σ
d2ze

[
1

2
φ

(
R+ 2 ´

1

2
εmnψmγ5ψn

)
+ λεmnDmψn +

1

2
λεmnγmψn

´ φa

(
εmnBme

a
n + εabε

mnωme
b
n ´

1

4
εmnψmγ

aψn

)]
.

(4.33)

The last term introduces a set of auxiliary Lagrange multipliers φa, enforcing the torsion constraints Eq 4.31
in the current gauge. Using the general form identities [40] ξ ^ ξ1 = ξmξ

1
ne
m
a e

b
nε
abed2z = d2ze εmnξmξ

1
n =

e0 ^ e1εmnξmξ
1
n, and dξ = d2ze εmnBmξn = e0 ^ e1εmnBmξn, together with the definition of the scalar

curvature R = 2εmnBmωn, leads to dω = 1
2e

0 ^ e1R = 1
2d

2ze R. Inserted in the action yields the equivalent
first order form of the action in components [40]:

IN=1
JT =

1

2

ż

Σ

[
φ

(
dω + e0e1 ´

1

4
ψγ5ψ

)
+ λDψ +

1

2
λeaγaψ ´ φa

(
dea + εabωe

b ´
1

4
ψγaψ

)]
.

(4.34)
Following [40], I omitted writing wedge products ^ explicitly, to avoid an awkward double notation with
gamma matrices in between. One can check that the N = 1 local supersymmetry transformations [40] [105]

δξe
a =

1

2
ξγaψ, δξω =

1

2
ξγ5ψ, δξψ

α = Dξα +
1

2
ea(γa)

α
βξ
β

δξφ
a = ´

1

2
ξγaλ, δξφ = ´

1

2
ξγ5λ, δξλ

α = ´
1

2
φa(γa)

α
βξ
β +

1

2
φ(γ5)

α
βξ
β.

(4.35)

leave this action invariant: δξIN=1
JT = 0, using an appropriate Fierz rearrangement. Dξα denotes the bottom

component of the Lorentz covariant derivative Eq 4.21; Dξα = dξα ´ 1
2ω ^ (γ5ξ)

α.
Although this first order component formulation is less transparent than its superspace counterpart Eq 4.1, it
will allow us to transition to the osp(1|2,R) BF formulation later.

4.2 Superconformal symmetry breaking and the Super-Schwarzian

The previous section has been quite abstract, where generic supergravity calculations at the level of the compo-
nents necessarily require a lot of non-trivial algebra that I omitted for clarity in this discussion. In this section,
we return to the superspace formulation of JT SUGRA (Eq 4.1), and focus on the boundary term. As well
known by now, the dynamics of pure JT gravity is equivalently described by an effective Schwarzian boundary
action that weights the different boundary reparametrization modes. Chapter 1 reviewed among others the
well-known mechanism of the conformal symmetry breaking [17], in which the dilaton equation of motion
imposes the metric to describe patches of pure AdS2 in the bulk, while the remaining degrees of freedom in
the conformal gauge can be translated to the reparametrization modes of the boundary cut-off in Poincaré coor-
dinates. The bulk action vanishes on-shell, while the extrinsic curvature along the boundary curve is described
in terms of the Schwarzian derivative.
Forste et al. [39] generalize this setup to JT supergravity, and come to the conclusion that N = 1 JT SUGRA
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is holographically described by the super-Schwarzian action along a 1|1-dimensional wiggly boundary curve.
Let me rephrase their argument in the current setup.

4.2.1 Asymptotic superconformal reparametrization symmetries

In the superconformal gauge, one fixes the metric to

ds2 = dzMgMNdz
N ” e2Σdz b dz̄ (4.36)

, for some bosonic superfield Σ. dz is the length element in superspace, defined as dz = dz + θdθ. This gauge
fixes the value of the scalar curvature to [40]

R+´ = 2e´ΣDDΣ (4.37)

, where D ” Bθ + θBz and D = Bθ + θBz are the 2d holomorphic and anti-hololorphic superderivatives
respectively. Intuitively, the superderivative is the square root of the partial derivative Bz , in the sense thatD2 =

Bz . The dilaton equations of motion set R+´ ” ´2, leading to the super-Liouville equation in superspace

DDΣ+ eΣ = 0. (4.38)

Its solutions are well-known [104] [40]:

eΣ =
Dθ1D̄θ̄1

(z1 ´ z1 ´ θ1θ
1
)

(4.39)

for some parametrized holomorphic and anti-holomorphic bosonic z1(z, θ), z1(z, θ), and fermionic θ1(z, θ),
θ

1
(z, θ) superfields. These are additionally constrained by the superconformal constraints:

Dz1 = θ1Dθ1, Dz1 = θ
1
D̄θ̄1. (4.40)

We should think of z1 and z1 as the superanalogues of the respective lightcone coordinates U(u) and V (v)

defined in chapter 1. The constraint Dz1 = θ1Dθ1 and its complex conjugate imply that (z1, θ1) and (z̄1, θ̄1) are
(anti)-holomorphic superconformal transformations. These can be solved explicitly in terms of a bosonic F (z)
and fermionic η(z) reparametrization mode:

z1(z, θ) ” A(z, θ) = F (z + θη(z)), (4.41)

θ1(z, θ) ” α(z, θ) =

b

Ḟ (z)

(
θ + η(z) +

1

2
θη(z)η̇(z)

)
(4.42)

, where the dot denotes partial integration with respect to z. We can check this explicitly by expanding the
bosonic field F to linear order in the Grassmann variables θ and η: z1(z, θ) = F (z) + Ḟ (z)θη, leading to:

Dz1(z, θ) = Ḟ (z)η + θḞ (z).
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Similarly, applying the superderivative to θ1 leads to:

Dθ1 =

(
a

Ḟ +

a

Ḟ

2
ηη̇

)
+ θ

(
F̈

2
a

Ḟ
η +

a

Ḟ η̇

)

θ1Dθ1 =
a

Ḟ θ

(
a

Ḟ +

a

Ḟ

2
ηη̇

)
+ Ḟ η + Ḟ ηθη̇ +

1

2
Ḟ θηη̇ = Ḟ θ + Ḟ η = Dz1.

Of course, we can likewise define an antiholomorphic bosonic F̄ (z̄) and fermionic θ̄(z̄) reparametrization
mode, solving the anti-holomorphic constraint Dz1 = θ

1
D̄θ̄1.

The isometry group of the metric Eq 4.39 consists of the group of super-Möbius OSp(1|2,R)-transformations,
acting projectively on the coordinates as

z1 Ñ
az1 ´ c´ βθ1

´bz1 + d+ δθ1
, θ1 Ñ

αz1 ´ γ + eθ1

´bz1 + d+ δz1
(4.43)

, and analogously for the anti-holomorphic parts. The entries are chosen from the OSp(1|2,R) matrices defined
in Eq B.1:

g =

 a b α

c d γ

β δ e

 (4.44)

, where the Greek letters denote Grassmann valued entries and roman letters denote bosonic entries. These
entries satisfy the OSp(1|2,R)-constraints [40]

α = ˘(aδ ´ bβ), γ = ˘(cδ ´ dβ), e = ˘(1 + βδ), ad´ bc = 1 + δβ (4.45)

, for either sign ˘. More on the definition of the OSp(1|2,R) supergroup can be found in appendix B and later
on in the main text.
The general length element is denoted as dz ” dz+θdθ. Using the constraintDz1 = θ1Dθ1, we readily deduce
that (Dθ1)2 = D2z1 + θ1D2θ1 = ż1 + θ1θ̇1. Under general superconformal transformations, we see that the
length element transforms as dz1 = (Dθ1)2dz [40]. The most general line element is therefore a superconformal
transformation of the Poincaré super-upper half-plane (SUHP) metric:

ds2 = e2Σdz b dz̄ =
(Dθ1)2(D̄θ̄1)2

|z1 ´ z̄1 ´ θ1θ̄1|2
|dz + θdθ|2 =

|dz1 + θ1dθ1|2

|z1 ´ z̄1 ´ θ1θ̄1|2
. (4.46)

In terms of the real bosonic fields τ 1, y1, we write

z1 = τ 1 + iy1, z1 = τ 1 ´ iy1 (4.47)

, where we think of y and τ as the spatial and temporal coordinates respectively. This showcases the analogy
between the lightcone coordinates U = T + Z and V = T ´ Z in bosonic JT gravity.
In super-Poincaré coordinates, the 1|1-dimensional boundary lies at z ” z, θ ” θ. The former is equivalent to
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y = 0. To regularize divergences, we again place the holographic boundary inwards:

y = ε, θ = θ ” ϑ, ε ą 0. (4.48)

τ and ϑ are the natural coordinates that parameterize the 1|1-dimensional boundary curve, whose effective
metric in Poincaré SUHP coordinates is given by:

ds2 =
|dz1 + θdθ1|2

|z1 ´ z1 ´ θ1θ
1
|2

=
dτ2 + 2ϑdϑdτ

4ε2
. (4.49)

Reflecting the bosonic case, the most general solution of the boundary curve is again given by a super-
conformal reparametrization of the solution in preferred coordinates Eq 4.48, that preserves the asymptotic
length element Eq 4.49. This leads to the constraint equation:

z1 ´ z1 ´ θ1θ
1

” 2iεDθ1D̄θ̄1 +O(ε2) . (4.50)

The single bosonic constraint can readily be solved using the reparametrization modes Eqs 4.41, 4.42 (to
leading order in ε) [40]:

τ 1 =
1

2
(z1 + z̄1) =

1

2
(A(τ + iε, ϑ) +A(τ ´ iε, ϑ)) » F (τ + ϑη(τ))

y1 =
1

2i
(z1 ´ z̄1) =

1

2i
(A(τ + iε, ϑ) ´A(τ ´ iε, ϑ)) » εBτA = εD2A = εD(αDα) = ε((Dα)2 ´ αD2α)

θ1 = α(τ + iε, ϑ) = α+ iεBτα = α+ iεD2α

θ
1
= α(τ ´ iε, ϑ) = α ´ iεBτα = α ´ iεD2α

(4.51)
, where in the second line we have used the constraint DA = αDα. These boundary reparametrizations are of
course the superspace analogues of the bosonic reparametrization behaviour (F (τ), εF 1(τ)), and parameterize
the asymptotic behaviour of the wiggly 1|1-dimensional boundary curve. Note that the boundary curve is
infinitesimally thickened in the fermionic ϑ-direction, as opposed to genuine 1|0-dimensional curves. We may
readily verify that this asymptotic behaviour indeed obeys the correct bosonic constraint Eq 4.50:

z1 ´ z1 ´ θ1θ
1
= 2iy1 ´ θ1θ

1
= 2iε((Dα)2 ´ αD2α) ´ (α+ iεD2α)(α ´ iεD2α)

= 2iε((Dα)2 ´ αD2α) ´ (´iεαD2α ´ iεαD2α)

= 2iε(Dα)2 = 2iε(Dθ1)(D̄θ̄1)

, again up to first order in ε. Given the reparameterization modes (F (τ), η(τ)) of the boundary curve, we can
choose a metric Eq 4.46 that smoothly extrapolates this behaviour into the entire bulk. The bottom component
of this metric is the familiar bosonic Poincaré submetric, in terms of the bosonic reparametrization mode F (z):

ds2 =
BF (z)B̄F (z̄)

(F (z) ´ F (z̄))2
dzdz. (4.52)
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4.2.2 Super-Schwarzian boundary action

To deduce an effective boundary action weighting the different reparametrization modes, we rewrite the super-
Poincaré metric in natural coordinates Eq 4.49 in terms of the first order superframe fields (c.f. Eq 4.280):

ds2 =
dτ2 + 2ϑdϑdτ

4ε2
= dZME1

M dZNE1
N (4.53)

, where we choose the non-vanishing coordinates of the flat space metric as κ11̄ = κ1̄1 = 1/2. We may readily
infer the frame fields corresponding to the super-Poincaré metric in conformal gauge as

E1
θ = ´θ1eΣ, E1

z = eΣ (4.54)

, together with their complex conjugates. Indeed,

ds2 = (dz1eΣ ´ dθ1θ1eΣ)(dz1eΣ ´ dθ̄1θ̄eΣ) = e2Σ|dz1 + θ1dθ1|2.

Using the constraint Eq 4.53 and the first order frame fields, we can verify that the remaining superconformal
reparametrization degrees of freedom along the boundary curve should satisfy the superconformal constraint
Dz = θDθ and Dz = θDθ. Indeed, expanding the RHS, we calculate:

|dz1 + θ1dθ1|2 =
(
θ1dθ1 + dz1

) (
θ

1
dθ

1
+ dz1

)
=

(
θ1

(
dτ

Bθ1

Bτ
+ dϑ

Bθ1

Bϑ

)
+ dτ

Bz1

Bτ
+ dϑ

Bz1

dϑ

)(
θ

1

(
dτ

Bθ
1

Bτ
+ dϑ

Bθ
1

Bϑ

)
+ dτ

Bz1

Bτ
+ dϑ

Bz1

dϑ

)

=

(
dτ

(
θ1 Bθ1

Bτ
+

Bz1

Bτ

)
+ dϑ

(
´θ1 Bθ1

Bϑ
+

Bz1

Bϑ

))
ˆ

(
dτ

(
θ

1 Bθ
1

Bτ
+

Bz1

Bτ

)
+ dϑ

(
´θ

1 Bθ
1

Bϑ
+

Bz1

Bϑ

))

=

ˇ

ˇ

ˇ

ˇ

ˇ

θ1 Bθ1

Bτ
+

Bz1

Bτ

ˇ

ˇ

ˇ

ˇ

ˇ

2

dτ2

+

[(
θ1 Bθ1

Bτ
+

Bz1

Bτ

)(
θ

1 Bθ
1

Bϑ
´

Bz1

Bϑ

)
+

(
θ1 Bθ1

dϑ
´

Bz1

Bϑ

)(
θ

1 Bθ
1

Bτ
+

Bz1

Bτ

)]
dτdϑ.

Notice the ordering (NW-SE) in which we take the fermionic chain rule.
This expression can only be compatible with the metric in preferred coordinates Eq 4.53 if the ratio between
the two components is compatible:

θ
1 Bθ

1

Bϑ ´ Bz1

Bϑ

θ
1 Bθ

1

Bτ + Bz1

Bτ

+
θ1 Bθ1

dϑ ´ Bz1

Bϑ

θ1 Bθ1

Bτ + Bz1

Bτ

” 2ϑ.
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This constraint is trivially satisfied if both the holomorphic and anti-holomorphic coordinates are superconfor-
mal reparametrizations of the preferred coordinates with

Dz1 ” θ1Dθ1, Dz1 ” θ
1
Dθ

1
(4.55)

, where D = B
Bϑ + ϑ B

Bτ denotes the superderivative along the boundary. Indeed, we can show explicitly that
the first conformal restriction solves the second term:

θ1 Bθ1

dϑ ´ Bz1

Bϑ

θ1 Bθ1

Bτ + Bz1

Bτ

=
ϑBz1

Bτ ´ θ1ϑBθ1

Bτ
Bz1

Bτ + θ1 Bθ1

Bτ

= ϑ.

The other constraint follows from complex conjugation.

Path integrating over the dilaton superfield Φ in the total superaction Eq 4.1 restricts the bulk supermetric to
patches of super-AdS2 with R+´ + 2 = 0. Thereby, the bulk term vanishes and the only remaining degrees of
freedom are the conformal reparametrization modes at the asymptotic boundary:

IN=1
JT »

1

2

ż

BΣ
dτdϑΦK . (4.56)

In [39], an appropriate definition for the first order extrinsic curvature along the 1|1-dimensional boundary
curve is given by:

K =
TADTnA
TATA

. (4.57)

TA = BZM

Bτ EAM denotes the tangent vector along the boundary curve (ZM ) in local Lorentz coordinates. nA is
the normal vector along the boundary, defined by the orthogonality relation:

nAT
A = 0. (4.58)

This definition of the extrinsic curvature is the natural generalization of the bosonic definition T νTµ∇µnν =

T ν∇Tnν in its first order form (using the identification ∇µV
ν ” eνaDµV

a). The covariant superderivative
along the 1|1-dimensional boundary is given in terms of the spin connections [39]:

DTnA = DnA + nA
BZM

Bϑ
ΩM + nAϑ

BZM

Bτ
ΩM . (4.59)

To begin, we calculate the holomorphic component of the tangent vector

T 1 =
BZ 1M

Bτ
E1
M = eΣ

(
Bz1

Bτ
+ θ1 Bθ1

Bτ

)
(4.60)

= eΣ(Dθ1)2. (4.61)

In the last line, we again made use of the constraint equation Dz1 = θ1Dθ1, leading to Bz1

Bτ = D2z1 = (Dθ1)2 ´

θ1D2θ1 = (Dθ1)2 ´ θ1 Bθ1

Bτ . The conformal factor in the metric Eq 4.46, together with the constraint equation
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along the wiggly boundary Eq 4.50, is given by:

e2Σ =
1

|z1 ´ z̄1 ´ θ1θ̄1|2
=

1

4ε2|Dθ1Dθ̄1|2
(4.62)

, leading to:

T 1 =
1

2ε

Dθ1

Dθ̄1
. (4.63)

T 1 is readily obtained by complex conjugation. The normal vector nA is defined by its orthogonality Eq 4.58
and choice of normalization n1n1 = 1/4 [39]:

n1 =
i

2

Dθ̄1

Dθ1
. (4.64)

The first contribution to the extrinsic curvature is therefore:

TADnA

T 1T 1̄
= 4ε

i

4

(
Dθ1

Dθ̄1

D2θ̄1

Dθ1
´
Dθ1

Dθ̄1

D2θ1Dθ̄1

(Dθ1)2
´
Dθ̄1

Dθ1

D2θ1

Dθ̄1
+
Dθ̄1

Dθ1

D2θ̄1Dθ1

(Dθ̄1)2

)
= 4ε=

(
D2θ1

Dθ1

)
.

Note that in general the chain rule of fermionic derivatives works as an operator on the left. Here, the combi-
nation Dθ is bosonic either way. In terms of the leading order reparametrization Eq 4.51, we find to leading
order:

TADnA

T 1T 1̄
= 4ε2

(
D4α

Dα
´
D2αD3α

(Dα)2

)
. (4.65)

Calculating the terms proportional to the spin connection in the covariant superderivative requires explicit
knowledge of the relation between the spin connections and local rotations. I quote the result of [39], which
itself was based on [106]:

T 1n1
|T 1|2

(
BZM

Bϑ
ΩM + ϑ

BZM

Bτ
ΩM

)
= ´4ε2

D2αD3α

(Dα)2
(4.66)

Added in the covariant superderivative Eq 4.59, the result can be written in terms of the super-Schwarzian
derivative

K = 4ε2tF, α; τ, ϕu, with tF, α; τ, ϕu =

(
D4α

Dα
´ 2

D2αD3α

(Dα)2

)
(4.67)

, subject to the constraint DF = αDα. The super-Schwarzian derivative is a purely fermionic superfield, and
may be expanded to linear order in ϑ in terms of a fermionic TF (τ) and bosonic TB(τ) field, related to the
boundary reparametrization modes F (τ), η(τ) (c.f. Eqs 4.41, 4.42) as [39] [40]:

tF, α; τ, ϕu ” ´TF (τ) ´ ϑTB(τ) (4.68)

TB(τ) =
1

2

(
tF, τu + ηB3

τη + 3BτηB2
τη ´ tF, τuηBη

)
(4.69)

TF (τ) = B2
τη +

1

2
ηBτηB2

τη +
1

2
ηtF, τu. (4.70)

This can be interpreted as a redefinition (TB, TF ) Ñ (F, η). Plugged into the action Eq 4.56, the holographic
description of JT supergravity is described by the super-Schwarzian boundary action that weights explicitly
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the super-conformal reparametrization modes of the 1|1-dimensional boundary curve

IN=1
JT »

ż

dτdϑ Φr(τ, ϑ)tF, α; τ, ϕu (4.71)

, in terms of the super-Schwarzian derivative and a renormalized dilaton superfield Φr(τ, ϑ). This action breaks
explicitly the full conformal reparametrization symmetry, up to a super-Möbius ambiguity of the OSp(1|2,R)
supergroup, acting as:

τ 1 Ñ
aτ 1 ´ c´ βθ1

´bτ 1 + d+ δθ1
, θ1 Ñ

ατ 1 ´ γ + eθ1

´bτ 1 + d+ δθ1
. (4.72)

Since this is the isometry group of the underlying Poincaré SUHP metric, these modes are interpreted as the
zero modes of an underlying gauge symmetry. In particular, one should identify configurations differing only
by such transformations. The entries of this projective action are taken from the general g P OSp(1|2,R) group
element Eq B.1, satisfying the OSp(1|2,R) constraints Eq B.3.
One restricts to one of the signs in these constraints in the projective subgroup OSp(1|2,R)/Z2 of super-
Möbius transformations.

In the following, we imagine the dilaton field to diverge as Φ „ a
ε , in terms of a single bosonic constant a.

Decomposing the super-Schwarzian derivative using Eq 4.68, and integrating out the fermionic superpartner ϑ
by the standard Grassmann integral

ş

dϑ ϑ = 1,
ş

dϑ = 0, yields the effective Schwarzian boundary action

IN=1
Sch » ´

¿

dτ TB(τ) . (4.73)

By Eq 4.69, we see that this depends on the standard Schwarzian derivative of the bosonic reparametrization
mode F (τ), supplemented by corrections proportional to the fermionic superpartner η.

4.3 BF formulation of N = 1 JT supergravity

4.3.1 On-shell equivalence

Using the component formulation of the N = 1 JT SUGRA action (Eq 4.34), I will follow the conventions of
[40] leading to an equivalent gauge theoretic BF description. This section largely generalizes the discussion of
section 2.2.
We recall the traceless 2 ˆ 2 PI -matrices defined in Eq 2.23, satisfying the sl(2,R)-algebra. Following [40],
we denote them as (in the ordening +,´):

Γ0 =

(
´1 0

0 1

)
, Γ1 =

(
0 1

1 0

)
, Γ2 =

(
0 ´1

1 0

)
(4.74)
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, and embed them in the osp(1|2,R)-valued PI -matrices:

PI =

(
1
2ΓI 02ˆ1

01ˆ2 0

)
. (4.75)

In the following, I will continue to denote the STr operation of a supermatrix g =

(
A B

C D

)
as

STr(g) = Tr(A) ´ Tr(D) (4.76)

This has the convenient property that it is still symmetric under cyclic permutations of fermionic superma-
trices. Using the explicit form of the PI -matrices above, we recall that they satisfy the sl(2,R)-algebra and
normalization defined in Eq 2.19:

[PI , PJ ] = εIJKP
K , STr(PIPJ) =

1

2
ηIJ , ε012 = ´1, ηIJ = diag(1, 1,´1). (4.77)

The osp(1|2,R)-algebra is spanned by two additional supermatrices6

Q´ =
1

2

 0 0 0

0 0 1

´1 0 0

 , Q+ =
1

2

 0 0 1

0 0 0

0 1 0

 (4.78)

, satisfying the normalization

STr(QαQβ) =
1

2
εαβ, ε+´ = ´1. (4.79)

Note that although the Q˘ matrices are the generators of the fermionic subgroup, they contain only bosonic
numbers. Indices are raised and lowered with respect to the appropriate Cartan-Killing matrices ηIJ and εαβ .
One can check that the representation matrices above satisfy the complete osp(1|2,R)-algebra, here defined
as7:

[PI , PJ ] = εIJKP
K , [PI , Qα] =

1

2
(ΓI)

β
αQβ, tQα, Qβu = ´

1

2
(CΓI)αβPI (4.80)

, with C the Majorana conjugate matrix Cαβ = εαβ , defined in Eq 4.15 (in the ordening t+,´u):

C =

(
0 ´1

1 0

)
. (4.81)

The algebra commutation relations may be formulated more transparently by defining different linear combi-
nations [107] [40]:

P0 = iH, P1 =
1

2
(iE´ + iE+), P2 =

1

2
(iE´ ´ iE+), Q´ = ´iF´, Q+ = iF+. (4.82)

6As opposed to genuine supermatrices, the entries in the off-diagonal fermionic blocks are commutative numbers instead of Grassmann
numbers. Within the algebra osp(1|2,R), their expansion are necessarily Grassmann-valued.

7Note that in the last anticommutation relation, the bosonic index CΓI is also raised with the metric ηIJ .
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We collectively denote these new combinations as iJI , which are found to satisfy (an isomorphism of) the
osp(1|2,R)-superalgebra

[H,E˘] = ˘iE˘, [E+, E´] = 2iH, [H,F˘] = ˘
1

2
iF˘,

[E˘, F¯] = iF˘, tF+, F´u =
1

2
iH, tF˘, F˘u = ¯

1

2
iE˘.

(4.83)

The restriction to iH, iE˘ satisfies the familiar bosonic sl(2,R)-algebra of Eq A.5. This set of generators is
used in the general discussion on the osp(1|2,R) algebra and subsequent representation theory in section B.1.2
of the appendix.

Returning to the original PI -generators, we group the gauge and auxiliary fields into osp(1|2,R)-valued vectors
with respect to the PI -generators, whose restriction to sl(2,R) agrees with Eq 2.18;

BI = (´φa, φ), AI = (ea, ω), B = BIPI + λαQα, A = AIPI + ψαQα. (4.84)

Both the dilatino λα and the gaugino ψα entries are Grassmann-valued. In matrix notation, both the auxiliary-
and gauge vector read:

B =
1

2

 φ0 ´φ1 + φ λ+

´φ1 ´ φ ´φ0 λ´

´λ´ λ+ 0

 , A =
1

2

 ´e0 e1 ´ ω ψ+

e1 + ω e0 ψ´

´ψ´ ψ+ 0

 . (4.85)

Note that we have raised the BI indices using the Cartan-Killing metric ηIJ . The osp(1|2,R)-valued vectors
comprise both diagonal bosonic and off-diagonal fermionic blocks.
Using the general definition F = dA + A ^ A, we can explicitly derive the field strength:

F = dAIPI + dψαQα +
1

2
AI ^AJ [PI , PJ ] +

1

2
ψα ^AI [Qα, PI ] +

1

2
AI ^ ψα[PI , Qα] +

1

2
ψα ^ ψβtQα, Qβu

=

(
dAI +

1

2
εIJKAJ ^AK ´

1

4
ψα ^ (CΓI)αβψ

β

)
PI + dψαQα +

1

2
AI ^ (ΓI)

β
αψ

αQβ.

The anticommutator in the last term readily follows from the anticommutative nature of the spinors entries ψα

and the wedge product between them. This ensures that the wedge product between spinor entries ψα ^ ψβ is
symmetric (c.f. Eq 4.3), thus

ψαQα ^ ψβQβ =
1

2
ψα ^ ψβtQα, Qβu +

1

2
ψα ^ ψβ[Qα, Qβ] =

1

2
ψα ^ ψβtQα, Qβu.

Also note that theQα-matrices defined in Eq 4.78 are bosonic, and commute with the Grassmann spinor entries
above. Absorbing the antisymmetric matrix C into the definition of the Majorana conjugate, and introducing
an so(2, 1)-covariant derivative

Dψα ” dψα +
1

2
AI ^ (ΓI)

α
βψ

β (4.86)
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, we may rewrite the field strength more conveniently as:

F =

(
F I ´

1

4
ψα ^ (ΓIψ)α

)
PI +DψαQα. (4.87)

F I is the usual definition of the sl(2,R)-valued field strength, appearing in Eq 2.25;

F I = dAI +
1

2
εIJKAJ ^AK . (4.88)

The Clifford algebra tγa, γbu = 2δab1 is explicitly realized in D = 2 by the set of Pauli sigma matrices [59]

γ0 =

(
1 0

0 ´1

)
, γ1 =

(
0 1

1 0

)
, γ2 =

(
0 ´i

i 0

)
. (4.89)

Since we need only two linearly independent (symmetrical) gamma matrices in two dimensions, we find that
the restriction

ΓI = (γa, γ0γ1 = ´γ5), γ5 =

(
0 ´1

1 0

)
, (a = 0, 1) (4.90)

satisfies the Clifford algebra. In this basis, the γa are symmetric, while γ5 is antisymmetric.
Contracting B and F eventually yields:

STr(BF) = 1

2
BIF JηIJ ´

1

8
BIψα ^ (ΓJψ)αηIJ +

1

2
λαDψβεαβ (4.91)

=
1

2

(
dAI +

1

2
εIJKAJ ^AK

)
BI ´

1

8
Baψα ^ (γaψ)

α +
1

8
B2ψα ^ (γ5ψ)

α +
1

2
λαDψα

, since STr(JIQα) = STr(QαJI) = 0 are orthogonal. Inserting the proper entries of AI = (ea, ω), AI =

AJηJI = (ea,´ω) and BI = (´φa, φ), BI = BJη
IJ = (´φa,´φ) yields:

STr(BF) = ´
1

2
φa

(
dea + εabω ^ eb ´

1

4
ψα ^ (γaψ)α

)
+

1

2
φ

(
dω + e0 ^ e1 ´

1

4
ψα ^ (γ5ψ)

α

)
+

1

2
λαDψ

α +
1

4
λαe

a(γaψ)
α

(4.92)

, using that εab2 = ´εab2 = εab (from the convention ε012 = ´1). Furthermore, using the relation between
the ΓI and γa matrices Eq 4.90, we have used that the so(2, 1)-covariant derivative expands into the Lorentz
covariant derivative defined in Eq 4.21 plus a correction term;

Dψα = dψα ´
1

2
ω ^ (γ5ψ)

α +
1

2
ea(γa)

α
βψ

β = Dψα +
1

2
ea(γa)

α
βψ

β. (4.93)

Specifying to the bottom component of the Lorentz covariant derivative 4.21, together with the spinor compo-
nent of the generalized Levi-Civita symbol Eq 4.10 indeed yields the proper Lorentz covariant derivative on
spinors:

Dψα = dψα ´
1

2
ω(γ5)

α
βψ

β.

The action obtained by integrating over the superspace volume Σ exactly coincides with the N = 1 super
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JT action in the first order metric formulation (Eq 4.34); thereby identifying N = 1 JT supergravity with an
osp(1|2,R) gauge BF theory

IN=1
JT =

ż

Σ
STr(BF) . (4.94)

Infinitesimal gauge transformations with a fermionic supercurrent ε = ξαQα are equivalent to the N = 1 local
SUSY transformations Eq 4.35. Indeed, local gauge transformations act on the gauge fields A and on the fields
in the adjoint representation B according to the conventions of section 2.2:

δA = dε+ [A, ε], δB = [B, ε]. (4.95)

Using the supercurrent ε = ξαQα, and the decomposition Eq 4.84, the transformations of the gauge field are:

δ(AIPI + ψαQα) = dξαQα + [AIPI + ψαQα, ξ
βQβ] = dξαQα +AIξα[PI , Qα] + ψαξβtQα, Qβu

= dξαQα +
1

2
AI(ΓI)

β
αξ

αQβ +
1

2
ξΓIψPI

, leading to the local infinitesimal transformations

δξA
I =

1

2
ξΓIψ, δεψ

α = Dξα. (4.96)

Of course, the same transformations on the adjoint vector B lead to:

δξB
I =

1

2
ξΓIλ, δξλ

α =
1

2
BI(ΓI)

α
βξ
β. (4.97)

InsertingBI = (´φa, φ) andAI = (ea, ω) recovers the component-wise local SUSY transformations Eqs 4.35
that preserve the N = 1 JT SUGRA action, establishing complete on-shell equivalence between the metric
and BF formulation of JT supergravity.

4.3.2 Recovering the Super-Schwarzian boundary action

We will now exploit the equivalence between the holographic particle-on-SL(2,R) and Schwarzian theory of
the bosonic case (c.f. sections 2.5.3, 2.6.1, 2.183) to consider the analogous boundary action and boundary
condition to the otherwise completely topological osp(1|2,R) BF theory (c.f. Eq 2.103), along the lines of
[40]:

IN=1
JT =

ż

M
STr(BF) ´

1

2

¿

BM

dτ STr(BAτ ), B|BM = Aτ |BM. (4.98)

τ is the affine bosonic coordinate along the boundary, tangential to BM. This matches with Eq 2.103 up to
a total sign factor since the total JT action itself was formulated up to a factor of ´1/4πG in 4.1 instead
of 1/4πG, following the conventions of [40]. The boundary term may again be motivated by dimensionally
reducing the full 3d Chern-Simons theory, or by simply demanding a proper variational principle, along the
lines of Eq 2.49.
One recovers the boundary-on-OSp(1|2,R) theory by path integrating over B, yielding a vanishing F = 0.
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Inserting the mixed boundary condition yields:

I[g] = ´
1

2

¿

BM

dτ STr(A2
τ ). (4.99)

The remaining configurational degrees of freedom are again the boundary group elements g P OSp(1|2,R),
which render Aτ flat:

Aτ |BM = gBτg
´1 = ´Bτgg

´1. (4.100)

The Schwarzian boundary action cannot be recovered from pure particle-on-OSp(1|2,R) theory. Instead, we
have to constrain the dynamics by the coset boundary conditions, analogous to the bosonic case. A natural
generalization of Eq 2.181 to the supersymmetric case are the Brown-Henneaux boundary conditions [108]:

Aτ =

 0 TB(τ) TF (τ)

1 0 0

0 TF (τ) 0

 (4.101)

, in terms of the bosonic TB(τ) and fermionic TF (τ) Schwarzian fields8 Eqs 4.69, 4.70 with TB(τ + β) =

TB(τ) and TF (τ + β) = ˘TF (τ). Computing the STr readily yields the super-Schwarzian boundary action
encountered in Eq 4.73:

IN=1
Sch = ´

¿

BM

dτ TB(τ). (4.102)

We may again use Eqs 4.69, 4.70 to express the super-Schwarzian action in terms of the boundary reparametriza-
tion mode F (τ) and its superpartner η(τ). The integration space is still over the loop group
L(OSp(1|2,R))/OSp(1|2,R), but care has to be taken since the group OSp(1|2,R) decomposes into two dis-
tinct sectors, depending on the periodicity of the fermionic superpartner TF (τ+β) = ˘TF (τ) while traversing
the thermal boundary circle. The periodic sector is called the Ramond (R) sector, while the anti-periodic sector
is called the Neveu-Schwarz (NS) sector, resembling the nomenclature from superstring theory.
Using the constrained boundary behaviour of Aτ in Eq 4.101, the periodicity of TF (τ) is implemented on the
gauge field by means of the sCasimir operator (´)F ” diag(1, 1,´1);

(NS) : Aτ (τ + β) = (´)FAτ (τ)(´)F

(R) : Aτ (τ + β) = Aτ (τ).
(4.103)

A general discussion on the different sectors of the OSp(1|2,R) supergroup is differed to section B.1.1 in the
appendix.

8Note that this analysis does not a priori require to define the bosonic TB and fermionic field TF as in Eqs 4.69, 4.70, since it is a general
fact [40] that any single fermionic superfield TF (τ) + ϑTB(τ) may be written in terms of a super-Schwarzian derivative of two new superfields
A(τ, ϑ) and α(τ, ϑ):

TF (τ) + ϑTB(τ) = ´
D4α

Dα
+

2D3αD2α

(Dα)2
= ´tA,α, τ, ϑu.

A and α are bosonic, respectively fermionic fields satisfying the constraint DA = αDα. In this way, we recover a posteriori Eq 4.68.
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4.4 Super-gravitational amplitudes

The previous section motivates the local description of N = 1 JT SUGRA in terms of an osp(1|2,R) BF theory.
Along the lines of the previous chapter, the full quantum dynamics are described by a suitable exponentiation
of this algebra. To begin, we need to understand the representation theory governing the orthosymplectic
group OSp(1|2,R) in a similar fashion to the representation theory of SL(2,R) described in appendix A. The
purpose of the publication [40] was in fact two-folded. On the one hand, the main goal was to understand
the group-theoretic structure governing the quantum amplitudes of N = 1 JT SUGRA. As opposed to the
extensive mathematical literature existing on the representation theory of SL(2,R), there seemed to be no
comprehensive treatment for the case of OSp(1|2,R) available. Therefore, the second goal was to develop the
representation theory from first principles along the lines of the development of SL(2,R) in [90].
Since I will need some of these results in the development of EOW brane amplitudes in superspace, I review
the necessary ingredients in the appendix B. In particular, the definition and representation theory of the sub-
semisupergroup OSp+(1|2,R) is reviewed in section B.2. Note that I will use slightly different conventions
compared to [40] in order to match with the bosonic case for clarity. Besides summarizing the appendix of
[40], I have worked out a lot of the calculational steps in detail for extra clarity. I summarize the conventions
and results hereunder.

4.4.1 Overview of the OSp(1|2,R) representation theory

The general linear supergroup GL(1|2,R) consists of all invertible 3 ˆ 3 matrices comprised of five bosonic
variables a, b, c, d, e and four fermionic Grassmann variables α, β, γ, δ, separated into bosonic diagonal and
fermionic off-diagonal blocks

g =

 a b α

c d γ

β δ e

 . (4.104)

The subgroup OSp(1|2,R) Ă GL(1|2,R) that preserves the orthosymplectic form gstΩg = Ω with

Ω =

 0 ´1 0

1 0 0

0 0 1

 (4.105)

defines the group OSp(1|2,R), where the supertranspose is defined as(
A B

C D

)st

=

(
AT ´CT

BT DT

)
. (4.106)

This operation is not an involution, but is of order four: st4 = 1. The embedding of OSp(1|2,R) in GL(1|2,R)
leads to the defining OSp(1|2,R) constraints Eq B.3:

ad´ bc´ δβ = 1, ´aγ + cα ´ βe = 0, e2 + 2γα = 1, ´αd+ bγ + eδ = 0. (4.107)
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These can be solved by imposing ad´ bc´ δβ = 1 and parameterizing (c.f. Eq B.4):

α = ˘(aδ ´ bβ), γ = ˘(cδ ´ dβ), e = ˘(1 + βδ). (4.108)

These relations lead to the natural inverse element of g P OSp(1|2,R):

g´1 =

 d ´b ´δ

´c a β

γ ´α e

 . (4.109)

The Berezinian or superdeterminant of an invertible GL(1|2,R) matrix M =

(
A B

C D

)
is defined as [40]:

Ber(M) = det(A´BD´1C) det(D)´1. (4.110)

Taking into account the anticommutativity between the fermionic blocks B and C, the definition of the
Berezinian is naturally invariant under the supertranspose st operation Ber(M st) = Ber(M). For OSp(1|2,R),
the Berezinian can take either of the two signs Ber(g) = ˘1, related to the sign in the relations Eq 4.108.
The group OSp(1|2,R) naturally decomposes into two disconnected sectors, depending on the sign of the
Berezinian. Both sectors are related by applying the sCasimir operator (´)F = diag(1, 1 | ´1).
Just as for SL(2,R), the different conjugacy class elements are labeled according to the value of the supertrace
STr(g), defined in Eq 4.76. Choosing either sign ˘ in Eq 4.108 leads to

STr(g) = a+ d´ (˘(1 + βδ)). (4.111)

Choosing the NS-sector (´), group elements with |STr(g)| ą 3, |STr(g)| = 3, |STr(g)| ă 3 are called hyper-
bolic, parabolic and elliptic respectively.
In the R-sector (+), the conjugacy classes are instead: |STr(g)| ą 1, |STr(g)| = 1, |STr(g)| ă 1, correspond-
ing to hyperbolic, parabolic and elliptic respectively.

The generators iJI (= iH, iE˘, iF˘) of the osp(1|2,R) superalgebra are defined in Eq 4.82. Written out
explicitly, the 3 ˆ 3 supermatrices comprise the defining representation of osp(1|2,R):

iH =
1

2

 ´1 0 0

0 1 0

0 0 0

 , iE´ =

 0 0 0

1 0 0

0 0 0

 , iE+ =

 0 1 0

0 0 0

0 0 0


iF´ =

1

2

 0 0 0

0 0 ´1

1 0 0

 , iF+ =
1

2

 0 0 1

0 0 0

0 1 0

 .

(4.112)

Note that the fermionic generators contain only bosonic entries. These generators satisfy the known osp(1|2,R)-



176 CHAPTER 4. EOW BRANES IN JT SUPERGRAVITY

algebra Eq 4.83:

[H,E˘] = ˘iE˘, [E+, E´] = 2iH, [H,F˘] = ˘
1

2
iF˘,

[E˘, F¯] = iF˘, tF+, F´u =
1

2
iH, tF˘, F˘u = ¯

1

2
iE˘.

(4.113)

The Cartan-Killing metric is defined from the normalization of the generators with respect to the STr operation:

STr((iJI)(iJJ)) ”
κIJ
2
. (4.114)

We again label the representations by the simultaneous eigenvalue of the quadratic Casimir, defined in terms
of the inverse Cartan-Killing metric C2 = ´iJIκ

IJ iJJ ” ´j(j + 1/2). This is given by Eq B.13:

C2 = ´κIJ iJIiJJ = H2 +
1

2
(E+E´ + E´E+) ´ (F+F´ ´ F´F+) ” ´j(j + 1/2) (4.115)

and is seen to commute with all generators of the algebra. The eigenvalue is again built from a spin label j.
The defining generators Eq 4.112 constitute a spin-1/2 representation.

We can also consider operators that commute with all bosonic generators, while anticommuting with all
fermionic generators. For OSp(1|2,R), this operation is given by the sCasimir Q:

Q = (iF+)(iF´) ´ (iF´)(iF+) +
1

8
= ´F+F´ + F´F+ +

1

8
=

(
j

2
+

1

8

)
(´)F (4.116)

, where (´)F = diag(12j+1 | ´12j) is the operator that commutes with all bosonic generators, while an-
ticommuting with the fermionic generators. This operator is in turn related to the quadratic Casimir by its
square:

Q2 ´
1

64
= ´

1

4
H2 ´

1

8
(E+E´ + E´E+) +

1

4
(F+F´ ´ F´F+) = ´

1

4
C2 =

j(j + 1/2)

4
. (4.117)

To construct more general spin-j representations, we look at the action on the square integrable functions on
the superline R1|1. The space of square integrable functions L2(R1|1) on the superline is equipped with an
inner product

xF | Gy =

ż

R
dx

ż

dϑ F ˚(x, ϑ)g(x, ϑ) (4.118)

This defines a complete set of configurational sates |x, ϑy

ż

R
dx

ż

dϑ |x, ϑy xx, ϑ| = 1 (4.119)

, whose overlap with vectors in L2(R1|1) is given by: xx, ϑ | F y = F (x, ϑ).
The (spherical) projective action of OSp(1|2,R) on the space of square integrable functions is given by Eq
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B.21 [40]:

xx, ϑ | g | fy = (g ¨ f)(x, ϑ) =
|bx+ d+ δϑ|2j

sgn(e)1/2sgn(bx+ d+ δϑ)1/2
f

(
ax+ c+ βϑ

bx+ d+ δϑ
,´

αx+ γ ´ eϑ

bx+ d+ δϑ

)
.

(4.120)
where the entries are taken from the general g P OSp(1|2,R) group element. This action composes naturally
under group multiplication, and defines the principal series representation of OSp(1|2,R).
Restricting the value of j leads to the unitary continuous series representation Eq B.23:

j =
ik

2
´

1

4
k P R. (4.121)

Exponentiating the fundamental spin-1/2 generators leads to the corresponding group elements in OSp(1|2,R):

e2φiH =

 e´φ 0 0

0 eφ 0

0 0 1

 , eγ
´iE´ =

 1 0 0

γ´ 1 0

0 0 1

 , eγ
+iE+ =

 1 γ+ 0

0 1 0

0 0 1


e2θ

´iF´ =

 1 0 0

0 1 ´θ´

θ´ 0 1

 , e2θ
+iF+ =

 1 0 θ+

0 1 0

0 θ+ 1


(4.122)

Linearizing their respective principal series action leads to the spin-j Borel Weil generators of osp(1|2,R):

iH = ´xBx ´
1

2
ϑBϑ + j, iE´ = Bx, iE+ = ´x2Bx ´ xϑBϑ + 2jx

iF´ =
1

2
(Bϑ + ϑBx), iF+ = ´

1

2
xBϑ ´

1

2
xϑBx + jϑ.

(4.123)

We find that they satisfy the osp(1|2,R) algebra up to a sign in the anticommutators Eq B.34:

[H,E˘] = ˘iE˘, [E+, E´] = 2iH, [H,F˘] = ˘
1

2
iF˘,

[E˘, F¯] = iF˘, tF+, F´u = ´
1

2
iH, tF˘, F˘u = ˘

1

2
iE˘.

(4.124)

This is consistent with the fact that the fermionic Borel-Weil generators are genuine Grassmann valued, while
the fundamental generators contain only bosonic entries. This should be taken into account in the definition of
the sCasimir Eq B.35:

Q = (iF´)(iF+) ´ (iF+)(iF´) +
1

8
=

(
1

8
+
j

2

)
(1 ´ 2ϑBϑ). (4.125)

This is consistent with the earlier spin-j definition of the sCasimir Eq 4.116 upon recognizing that (´)F =

(1 ´ 2ϑBϑ) commutes with bosonic functions, while it anticommutes with purely fermionic functions.
The Gauss parametrization of the OSp(1|2,R) supergroup manifold is characterized in terms of three bosonic
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φ, γ+, γ´ and two fermionic θ+, θ´ parameters:

g(φ, γ´, γ+ | θ´, θ+) = e2θ
´iF´eγ

´iE´e2φiHeγ
+iE+e2θ

+iF+ . (4.126)

Using the explicit exponentiations Eq B.26 yields:

g(φ, γ´, γ+ | θ´, θ+) =

 e´φ γ+e´φ e´φθ+

γ´e´φ eφ + γ´γ+e´φ ´ θ´θ+ γ´e´φθ+ ´ θ´

e´φθ´ γ+e´φθ´ + θ+ 1 + e´φθ´θ+

 . (4.127)

This covers only the Poincaré patch of the OSp(1|2,R) supergroup manifold, which should be taken into
account in the derivation of the Plancherel measure [40].
One determines the Haar measure on this group manifold from the natural volume form of the metric on the
particle-on-OSp(1|2,R) target space:

ds2 =
1

2
STr((g´1dg)2) (4.128)

This leads to the Haar measure Eq B.43:

dg =
1

2
e´φ[dφdγ´dγ+ | dθ´dθ+] . (4.129)

To deduce the Plancherel measure on OSp(1|2,R), one considers a generalization of the orthogonality theorem
Eq A.30 to functions defined on the superline R1|1:

ż

dg Rkx|α,y|β(g)
˚ Rk

1

x1|α1,y1|β1(g) ”
δ(k ´ k1)δ(x´ x1)δ(y ´ y1)δ(α ´ α1)δ(β ´ β1)

ρ(k)
. (4.130)

The fermionic delta function evaluates to its argument as elaborated later in footnote 9.
For gravitational applications, we consider the mixed parabolic basis. The matrix expressions are worked out
in detail in appendix B to which the reader is averted.
The main takeaway is the resulting Plancherel measure on OSp(1|2,R) Eq B.66:

ρ(k) =
1

16π2
cosh(πk)

1 + cosh(πk) . (4.131)

4.4.2 Representation theory of OSp+(1|2,R)

The subsemisupergroup in the defining representation consists of all OSp(1|2,R)-matrices (Eq 4.104) whose
bosonic entries take only positive values a, b, c, d ą 0, with no further constraints on the fermionic Grassmann
entries since positivity of a supernumber is determined entirely by its body (see footnote 2).
This property is preserved under group multiplication g1 ¨ g2, for which the explicit composition law is written
in Eq B.22. We see that each entry remains positive if the bosonic entries of both g1 and g2 are constrained to
positive values. On the other hand, OSp+(1|2,R) contains no natural inverse although it is well-defined from
the parent OSp(1|2,R) group.
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The entire (semi)supergroup manifold is covered by the single Poincaré patch in the Gauss decomposition

g(φ, γ´, γ+ | θ´, θ+) = e2θ
´iF´eγ

´iE´e2φiHeγ
+iE+eγ

+iE+e2θ
+iF+ (4.132)

, where we only need to constrain γ+, γ´ ą 0. The Haar measure in any case is the same as OSp(1|2,R).

The principal series representation of OSp+(1|2,R) now acts projectively on the half superline R+1|1 =

t(x|ϑ) : x ą 0u defined by the positive bosonic coordinate. The principal series action of a group ele-
ment g P OSp+(1|2,R) on a square integrable function f P L2(R1|1) is defined as Eq B.21 but without the
additional sign factors and absolute values:

xx | g | fy = (g ¨ f)(x, ϑ) = (bx+ d+ δϑ)2j f

(
ax+ c+ βϑ

bx+ d+ δϑ
,´

αx+ γ ´ eϑ

bx+ d+ δϑ

)
. (4.133)

The infinitesimal action defines a spin-j representation of the opposite osp(1|2,R) superalgebra Eq B.32 in the
anticommutators.

The principal continuous series representation on OSp+(1|2,R) is both unitary and irreducible [40]. In partic-
ular, one again requires the spin label to be constrained to:

j = ´
1

4
+
ik

2
, with k P R. (4.134)

The explicit expressions for the parabolic eigenstates and the mixed parabolic matrix elements are derived in
appendix B and shall not be repeated here. One eventually deduces the Plancherel measure on OSp+(1|2,R):

ρ(k) = cosh(πk) (4.135)

4.4.3 OSp+(1|2,R) structure of JT supergravity

To calculate the exact quantum gravitational amplitudes of N = 1 JT SUGRA, we resort to its first-order
osp(1|2,R) BF formulation. Once we know the proper exponentiation of the algebra, all gravitational ampli-
tudes are fixed by the relevant representation theory in terms of the constrained BF quantization of the previous
chapters.
To arrive at the correct exponentiation, the Plancherel measure should match with the gravitational density of
states. The correct density of states was first considered in [20] using the one-loop exact result of the super-
Schwarzian theory. The derivation proceeds in parallel to the bosonic result. In particular, the classical solution
turns off all the fermions. Therefore, the classical term in the partition function is the same as in the bosonic
model: I » ´π2

β (c.f. Eq 1.106 with C = 1/2, β = 1/T ). Since the total action is invariant under the class
of super-conformal OSp(1|2,R) transformations, we need to divide by a number of bosonic and fermionic
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zero-modes. Since the fermionic one-loop determinant is proportional to the Gaussian Grassmann path inte-
gral, whilst the scalar one-loop determinant is inversely proportional to a Gaussian path integral, one argues
directly that we are in fact quotienting by (β1/2)nB´nF , where nF are the number of fermionic modes and nB
are the number of bosonic modes. In the case of OSp(1|2,R), we know that there are three bosonic generators
iH, iE˘, and two fermionic iF˘ generators.
Since the super-Schwarzian emerges from a particular coadjoint orbit of the super-Virasoro algebra, the result
is again one-loop exact, and we may write immediately:

Z(β) 9
1

β1/2
eπ

2/β =

ż

dE ρ(E)e´βE . (4.136)

The inverse Laplace transform readily yields [20]:

ρ(E) »
1

?
E

cosh(2π
?
E) . (4.137)

This profile has the same characteristic exponential growth at large energies of the bosonic density of states
ρ(E)

Eąą1
ÝÝÝÝÑ e2π

?
E . This is as expected since the classical solution turns off the presence of the fermions

in the path integral. On the other hand, the N = 1 density has a singular pole ρ Ñ 1/
?
E towards low

energies E Ñ 0. Translating this behaviour to a momentum variable E = k2, the gravitational density of
states ρ(k)dk = ρ(E)dE readily reads:

ρ(k) » cosh(2πk). (4.138)

This has a regular behaviour under k Ñ 0. This result matches with the Plancherel measure of the subsemisu-
pergroup Eq B.82 under a shift of the continuous representation label k Ñ 2k. Noticeably, there is a complete
mismatch with the Plancherel measure of the full group OSp(1|2,R) Eq B.66, whose classical limit has a
power-law behaviour ρ(E)

Eąą1
ÝÝÝÝÑ 1/

?
E instead of the expected exponential growth. This hints to again

consider the subsemisupergroup BF description.

A technical argument in favour of the subsemisupergroup is that only the principal continuous series represen-
tation matrices turn up in the Plancherel decomposition of unitary irreducible representations, reminiscent of
the bosonic case for SL+(2,R) [40]:

L2(OSp+(1|2,R)) =
ż

‘

dk cosh(πk) Pk b Pk. (4.139)

Therefore, regions inside the disk are labeled solely by the continuous k-label of the principal series represen-
tation.

A physical argument in favour of the subsemisupergroup is that this choice naturally restricts the entire moduli
space of all flat connections on an arbitrary 2d super-Riemann surface to the subset of hyperbolic conjugacy
class elements in super-Teichmüller space. Just like in the bosonic case, this restricts the metric on the Riemann
surface to a smooth class of configurations only. The elliptic and parabolic holonomy classes necessarily lead
to a singular (respectively conical, and cusp-like) behaviour. The different holonomies of a supergroup element
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g are characterized by the value of its STr according to Eq B.8. Following [40], we may label the different
sectors as ε = 0 for NS and ε = 1 for R, where using a, b, c, d ą 0 in the subsemisupergroup perspective, and
ad´ bc = 1 + δβ as the natural OSp(1|2,R) constraint Eq B.3, leads to:

|STr(g)| = |a+ d+ (´)ε(1 + βδ)| ě 2 + (´)ε (4.140)

, by the fact that positivity of a supernumber is determined entirely by its body (footnote 2). Therefore,
the restriction to the subsemisupergroup immediately leads to a restriction to the hyperbolic conjugacy class
elements for both the R (STr(g) ą 1) and NS (STr(g) ą 3) sectors.

4.4.4 Thermal partition function

The thermal partition function can be re-derived purely from bulk considerations along the lines of section 2.8.5
of the bosonic theory. In particular, we cover the disk by boundary anchored Cauchy slices and propagate them
from an initial asymptotic state labeled by |φiy, to a final state labeled by |φf y using Hamiltonian evolution
factor e´βH :

Zdisk(φi, φf ) = xφf | e´βH | φiy . (4.141)

The Hamiltonian is proportional to the quadratic Casimir, which labels the representation. The latter is there-
fore diagonalized in the representation basis, which for OSp(+)(1|2,R) reads (Eq B.13):

C2 = ´j(j + 1/2) =
1

16
+
k2

4
(4.142)

, where we inserted the unitarity constraint j = ´1
4 + ik

2 of the continuous principal series representation Eq
B.23. To relate the continuous representation label k with the momentum label in gravity, we again rescale
k Ñ 2k, and obtain up to a constant shift:

C2(k) » k2. (4.143)

The Cauchy slices that diagonalize the Casimir operator are the representation matrices that reach the boundary.
This open-channel Hilbert space is spanned by the representation eigenstates |j, ν´, ε´; ν+, ε+y, whose overlap
with the configurational group eigenstates |gy determine the complete set of wavefunctions:

xg | j, ν´, ε´; ν+, ε+y =
a

ρ(k) xj, ν´, ε´ | g | j, ν+, ε+y

”
a

ρ(k)Rkν+,ε+;ν´,ε´
(φ). (4.144)

The eigenfunctions of the Hilbert space are normalized with respect to the Plancherel measure of OSp+(1|2,R):

ρ(k) = cosh(2πk) (4.145)

, conform the normalization in the Peter-Weyl theorem Eq 2.111.
The principal series eigenstates |j, ν´, ε´; ν+, ε+y furnish a complete set of states on the Hilbert space due to
the Peter-Weyl theorem in the restriction to the subsemisupergroup. Parameterizing the general group element
g P OSp+(1|2,R) in the Gauss decomposition Eq B.67, the matrix element diagonalizes up to the hyperbolic
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group element e2iφH . This matrix element is precisely the Whittaker functions derived in Eq B.79:

Rkν+,ε+;ν´,ε´
(φ) = xν´, ε´ | e2φiH | ν+, ε+y

=
1

πi

(ν+)
1

4
+ ik

2

(ν´)
´ 1

4
+ ik

2

eφ
(
ε´K 1

2
+ik(2e

φ?
ν´ν+) + ε+K 1

2
´ik(2e

φ?
ν´ν+)

)
.

(4.146)

The irrelevant prefactors corresponding to the eigenvalues of the parabolic group elements in the total matrix
element can be absorbed in the choice of normalization.

Since this Hilbert space slicing reaches the asymptotic boundary, it is constrained by the coset boundary con-
ditions that define JT supergravity. Just as in the bosonic case, this constrains the representation labels to
ν´ = ν+ ” 1. We indeed realize the Schwarzian theory with constrained entry J ´ = 1 in the expansion Eq
4.101: Aτ = gBτg

´1 = J aiJa. Using similar reasoning to section 2.6.2 of the bosonic case (in particular the
identification iJ ´ = J+), the eigenvalue under (here) E+ is E+ = i. For the right parabolic eigenstates Eq
B.74, this corresponds to fixing ν+ = 1. This also fixes ν´ = 1 according to the reasoning in section 2.8.4.
In the constrained setup, the representation eigenstates carry no additional labels and are simply specified by
the representation label k. This coset setup leads to a weight one in the exponent of the Plancherel measure
(c.f. Eq 2.204):

Zdisk(φi, φf ) =

ż 8

0
dk xφf | ky xk | φiy e

´βC2(k) =

ż 8

0
dk cosh(2πk)e´βk2

Rk(φi)
˚Rk(φf ). (4.147)

Physical boundaries are characterized by a trivial holonomy for which φi = φf Ñ 8. Within this limit
Rk(φ) Ñ 1, and we readily obtain

Zdisk =

ż +8

0
dk cosh(2πk)e´βk2

. (4.148)

This coincides with the one-loop exact super-Schwarzian amplitude Eq 4.136.

Just as in the bosonic case, we may consider the Hartle-Hawking states preparing the vacuum, obtained by
propagating the asymptotic state onto some boundary state labeled by |φy:

ZHartle(φ, β
1) = = xφ | e´β1H | 1y =

ż 8

0
dk cosh(2πk)e´β1k2

xφ | ky xk | 1y . (4.149)

Using the asymptotic state xk | 1y = Rk(1)˚ Ñ 1, and the explicit mixed parabolic matrix element Eq B.79
with coset boundary conditions ν´ = ν+ ” 1 leads to:

ZHartle(φ, β
1) =

1

πi

ż 8

0
dk cosh(2πk)e´β1k2

eφ
(
K1/2+2ik(2e

φ) + ε´ε+K1/2´2ik(2e
φ)
)
. (4.150)

Using the orthogonality of the continuous series representation Eq B.81, the thermal partition function with
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boundary length β = β1+β2 is readily obtained by gluing two asymptotic Hartle-Hawking states with boundary
lengths β1 and β2 along a common group label φ. After all, this is equivalent to inserting a complete set of
states

ş

e´φ

2 |φy xφ| into the total disk amplitude;

Z(β) = x1 | e´βH | 1y =

ż +8

´8

(
e´φ

2

)
x1 | e´β1H | φy xφ | e´β2H | 1y

=

ż 8

´8

(
e´φ

2

)
ZHartle(φ, β

1)˚ZHartle(φ, β
2).

The relevant Haar measure for the OSp(1|2,R) supergroup is determined in Eq B.43 using similar techniques
of section 2.6.1 for a particle-on-SL(1|2,R):

dg =
1

2
e´φ dφ (4.151)

4.4.5 Super-Wilson line insertion

Holographic description

We identify boundary-anchored Wilson lines in holography to bilocal operators in the particle-on-a-group
theory, in parallel to the discussion of section 2.8.6 of the bosonic case. In particular, a Wilson line operator in
superspace is defined as:

Wj(τ1, τ2) = P exp
[

´

ż τ2

τ1

dτ Rj(A)

]
(4.152)

, which forms a dim(R) ˆ dim(R)-dimensional matrix.
On the other hand, JT supergravity is a constrained BF theory whose dual description leads to the super-
Schwarzian theory. The specific constraint that reduces the full particle-on-a-group to the super-Schwarzian
theory is the Brown-Henneaux boundary parametrization Eq 4.101, satisfying Aτ = gBτg

´1.
To parameterize the boundary group element g´1, one introduces two bosonic superfields ψi = ψi,bot +ϑψi,top

(i = 1, 2), and one fermionic superfield ψ3 = ψ3,bot + ϑψ3,top. These fields specify

g´1 =

 ψ1,bot ψ1
1,bot ψ1,top

ψ2,bot ψ1
2,bot ψ2,top

ψ3,bot ψ1
3,bot ψ3,top

 . (4.153)

The constraint equation Aτ = gBτg
´1

 ψ1,bot ψ1
1,bot ψ1,top

ψ2,bot ψ1
2,bot ψ2,top

ψ3,bot ψ1
3,bot ψ3,top


 0 TB(τ) TF (τ)

1 0 0

0 TF (τ) 0

 =

 ψ1
1,bot ψ2

1,bot ψ1
1,top

ψ1
2,bot ψ2

2,bot ψ1
2,top

ψ1
3,bot ψ2

3,bot ψ1
3,top

 (4.154)
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leads to the three coupled differential equations:

ψ1,bot TB(τ) + ψ1,top TF (τ) = ψ2
1,bot, ψ1,bot TF (τ) = ψ1

1,top,

ψ2,bot TB(τ) + ψ2,top TF (τ) = ψ2
2,bot, ψ2,bot TF (τ) = ψ1

2,top,

ψ3,bot TB(τ) + ψ3,top TF (τ) = ψ2
3,bot, ψ3,bot TF (τ) = ψ1

3,top.

(4.155)

This set of equations coincides with the supersymmetric Hill’s equation [40]

(D3 ´ V)ψ = 0 (4.156)

, where D ” Bϑ + ϑBτ is the 1d superderivative, and V = TF (τ) + ϑTB(τ) is a single fermionic superfield
that captures both the bosonic and fermionic super-Schwarzian fields TB , resp. TF . Using D2 = Bτ and
D3 = BτBϑ + ϑB2

τ , we can solve for both the top and bottom components of the Hill’s equation(
BτBϑ + ϑB2

τ ´ TF ´ ϑTB
)
(ψb + ϑψt) = 0

Ø ψ1
t ´ TFψb + ϑ

(
ψ2
b ´ ψtTF ´ TBψb

)
= 0

, which indeed coincide with the above set of gravitational equations for each variableψi. Writing the superfield
V as a general super-Schwarzian derivative

V(τ, ϑ) = ´
D4α

Dα
+

2D3αD2α

(Dα)2
= ´tA,α, τ, ϑu (4.157)

, the solutions of the Hill’s equation are captured entirely by the super-conformal reparametrization modes
τ 1(τ, ϑ), θ1(τ, ϑ) in terms of the two bosonic superfields ψi (i = 1, 2), and one fermionic superfield ψ3 [40]:

ψ1 = (Dθ1)´1, ψ2 = τ 1(Dθ1)´1, ψ3 = ´θ1(Dθ1)´1. (4.158)

These fields are again constrained by the super-conformal constraintDτ 1 = θ1Dθ1. One can furthermore prove
that the fields above are well-defined on OSp(1|2,R), and that they satisfy the defining constraints Eq B.3. In
terms of the Gauss parametrization (γ˘ ą 0) Eq B.67

g´1 = e2θ
´iF´eγ

´iE´e2φiHe2θ
+iF+ =

 e´φ γ+e´φ e´φθ+

γ´e´φ eφ + γ´γ+e´φ ´ θ´θ+ γ´e´φθ+ ´ θ´

e´φθ´ γ+e´φθ´ + θ+ 1 + e´φθ´θ+


, we may readily identify:

e´φ = ψ1,bot, γ+ =
ψ1
1,bot

ψ1,bot
, γ´ =

ψ2,bot

ψ1,bot
, θ´ =

ψ3,bot

ψ1,bot
, θ+ =

ψ1,top

ψ1,bot
. (4.159)

Analogous to the bosonic case, the super-bilocal operator is represented by a matrix element in the lowest-
weight discrete series representation on the superline R1|1, whose representation label is j = ´`. We will
see momentarily that ` coincides with the conformal weight of the super-bilocal operator (for 2` P N). The
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lowest-weight state, and its adjoint are given by:

xx, ϑ | j = ´`, 0y = x2j =
1

x2`
, x´j = `, 0 | x, ϑy = δ(x, ϑ). (4.160)

Using the general identification between Wilson lines and bilocal operators in particle-on-a-group Eq 2.138,
the super-Wilson line is represented by:

x´j = `, 0 | g(τ2)g
´1(τ1) | j = ´`, 0y =

ż

dxdϑ δ(x, ϑ)g(τ2)g
´1(τ1)x

´2`. (4.161)

Using the action of the principal series representation Eq B.68 under g´1(τ1) specified in Eq 4.153, we readily
have:

x´2` g´1(τ1)
ÝÝÝÝÑ (ψ1,bot(τ1)x+ ψ2,bot(τ1) + ψ3,bot(τ1)ϑ)

´2` . (4.162)

The action under g(τ2) is specified by its inverse (c.f. Eq B.6)

g(τ2) =

 ψ1
2,bot ´ψ1

1,bot ´ψ1
3,bot

´ψ2,bot ψ1,bot ψ3,bot

ψ2,top ´ψ1,top ψ3,top

 (4.163)

, leading to:

g(τ2)
ÝÝÝÑ

(
ψ1,bot(τ1)(ψ2,bot(τ2)

1x´ ψ2,bot(τ2) + ψ2,top(τ2)ϑ) + ψ2,bot(τ1)(´ψ1,bot(τ2)
1x+ ψ1,bot(τ2) ´ ψ1,top(τ2)ϑ)

+ ψ3,bot(τ1)(ψ3,bot(τ2)
1x´ ψ3,bot(τ2) + ψ3,top(τ2)ϑ)

)´2`

=
(
(ψ1,bot(τ1)ψ2,bot(τ2)

1 ´ ψ2,bot(τ1)ψ1,bot(τ2)
1 + ψ3,bot(τ1)ψ3,bot(τ2)

1)x

+ (ψ1,bot(τ1)ψ2,top(τ2) ´ ψ2,bot(τ1)ψ1,top(τ2) + ψ3,bot(τ1)ψ3,top(τ2))ϑ

´ ψ1,bot(τ1)ψ2,bot(τ2) + ψ2,bot(τ1)ψ1,bot(τ2) ´ ψ3,bot(τ1)ψ3,bot(τ2)
)´2`

.

Taking the delta function in Eq 4.161 amounts to setting x = ϑ = 0. Within this limit, we may write directly

x´j = `, 0 | g(τ2)g
´1(τ1) | j = ´`, 0y = (´ψ1(τ1)ψ2(τ2) + ψ2(τ1)ψ1(τ2) ´ ψ3(τ1)ψ3(τ2))

´2`|bot (4.164)

, where the vertical bar indicates that we consider the bottom component. Relating the superfields ψi to the
solutions of the Hill’s equation Eq 4.158 directly yields:

W`,00(τ1, τ2) = x´j = `, 0 | g(τ2)g
´1(τ1) | j = ´`, 0y =

(
D1θ

1
1 D2θ

1
2

τ 1
1 ´ τ 1

2 ´ θ1
1θ

1
2

)2`
∣∣∣∣∣
bot

(4.165)

This can be identified directly to the OSp(1|2,R)-invariant super-bilocal operator in the super-Schwarzian
theory. In the holographic bulk, this is to be identified with a lowest-weight Wilson operator insertion, to
which we turn next.
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Operator insertion

Within the super-gravitational amplitudes, a Wilson line is represented by a matrix element in the lowest-weight
discrete series representation with j = ´`. Up to some normalization, these are determined as solutions to the
Casimir eigenvalue equation in terms of the Bessel functions of the first kind [40]:

Rj,ν´ν+(φ) = eφJ2j+1

(
2
?

´ν´ν+e
φ
)
, eφJ2j

(
2
?

´ν´ν+e
φ
)
. (4.166)

These states label the bottom and top components respectively. For now, we specialize to the bottom compo-
nent. Within the super-gravitational amplitudes, these serve as operator insertions anchored to the holographic
boundary. Just as in the bosonic case, their weight is constrained by the coset boundary conditions as a con-
sequence of the current conservation property of the Clebsch-Gordan coefficients. In particular, sandwiched
between two asymptotic states with ν´ = ν+ = 1, the weight of the operator insertion is fixed to the lowest-
weight state ν´ = ν+ = 0. Taking the lowest-weight module with j = ´`, and using the asymptotics of the
Bessel functions of the first kind Jα(x) „ x|α| for x Ñ 0, the bottom component asymptotes to (up to some
φ-independent normalization):

Rj=´`,00(φ) „ eφ e|´2`+1|φ. (4.167)

In the discretized theory, ` is constrained to 2` P N. Taking ` ą 1/2, we identify

Rj=´`,00(φ) „ e2`φ . (4.168)

The calculation proceeds along the lines of section 2.5.2. In particular, we obtain the super-gravitational
amplitude of a Wilson line insertion by gluing two asymptotic Hartle-Hawking states along the Wilson line
with common group label φ:

=

ż

dφ =

ż 8

´8

dφ

(
1

2
e´φ

)
ZHartle(φ)

˚ (R´`,00(f))ZHartle(φ)

The arrows indicate the orientation of the group element with respect to the Wilson line. Using the specified
form of the Hartle-Hawking states in Eq 4.150, the integral over the group label φ leads to the 3j-symbol of
N = 1 JT supergravity [21] [40]:

ż 8

´8

dφ
eφ

2π2

(
K1/2´2ik1(2e

φ) + ε´ε+K1/2+2ik1(2e
φ)
)
e2`φ

(
K1/2+2ik2(2e

φ) + ε´ε+K1/2´2ik2(2e
φ)
)

=
Γ(12 + `˘ i(k1 + k2))Γ(`˘ i(k1 ´ k2)) + Γ(12 + `˘ i(k1 ´ k2))Γ(`˘ i(k1 + k2))

π2 Γ(2`)
(4.169)
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, for any sign of ε´ε+. This leads to the final bottom component of the disk partition function with a single
boundary anchored Wilson line insertion, up to some normalization (compare to Eq 2.282);

xW`(τ1, τ2)y =

ż 8

0
dk1 cosh(2πk1)e´β1k2

1

ż 8

0
dk2 cosh(2πk2)e´β2k2

2

ˆ
Γ(12 + `˘ i(k1 + k2))Γ(`˘ i(k1 ´ k2)) + Γ(12 + `˘ i(k1 ´ k2))Γ(`˘ i(k1 + k2))

Γ(2`)
(4.170)

, with β1 + β2 = β.

4.5 Defects in JT supergravity

Defects in JT supergravity are again classified according to solutions of the supersymmetric Hill’s equation.
In particular, depending on TB and TF , the solutions can have non-trivial monodromies around the thermal
boundary circle. Demanding the correct periodicity of the asymptotic gauge field Aτ for both sectors Eq
4.103, the most general solutions to g(τ)Bτg´1(τ) = Aτ are classified according to:

(NS) : g(τ + β) = (´)F g(τ)M

(R) : g(τ + β) = g(τ)M.
(4.171)

M P OSp(1|2,R) labels the monodromy matrix. Since the solutions to the Hill’s equation gBτg
´1 = Aτ are

redundant under the equivalence relation g „ gS, for some constant S P OSp(1|2,R), the monodromies are
parameterized by the different conjugacy class elements of OSp(1|2,R):

M „ SMS´1. (4.172)

This leads to the existence of stabilizer subgroups that preserve the monodromy matrices within each conjugacy
class:

H = tS P OSp(1|2,R) | MS = SMu. (4.173)

The different monodromy matrices and their stabilizers within each conjugacy class and spin sector have been
thoroughly studied in [40], which was based on earlier accounts in [102]. Just as in the bosonic case [37], the
classification of the different monodromies and their stabilizer is closely related to the classification of the coad-
joint orbits of the super-Virasoro group. Within each coadjoint orbit, the super-Schwarzian pair (TB(τ), TF (τ))
is contained by acting with the super-Virasoro group on some constant representative element (TB, TF ). The
stabilizer subgroups of the different monodromies consequently preserve the value of the super-Schwarzian
derivative within each orbit. This hence classifies the different super-Virasoro orbits directly according to the
solutions of the super-Hill’s equations.

Perhaps more interestingly in the current discussion are the gravitational implications of each non-trivial mon-
odromy. Thereto, one should relate the structure of the monodromy matrices to the super-reparametrization
fields (F, η). According to the general solutions of the Hill’s equation Eq 4.158, these are related to the pro-
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jective action of M on τ 1(τ, ϑ) = ψ2/ψ1, and θ1(τ, ϑ) = ´ψ3/ψ1. Using the parametrization of the inverse
group element g´1 Eq 4.153, and the inverse monodromy matrixM´1, one writes the monodromy equivalence
relation as

g´1(τ + β) =M´1g´1(τ) =

 M11 M12 0

M21 M22 0

0 0 M33


 ψ1,bot ψ1

1,bot ψ1,top

ψ2,bot ψ1
2,bot ψ2,top

ψ3,bot ψ1
3,bot ψ3,top

 . (4.174)

The monodromy matrix is bosonic block diagonal, and M33 = ˘1 [40]. Splitting the reparametrized super-
fields τ 1, θ1 into their bottom and top components τ 1(τ, ϑ) = τ 1

B(τ) + ϑτ 1
F (τ), θ

1(τ, ϑ) = θ1
F (τ) + ϑθ1

B(τ),
one can show that the action of the monodromy is projectively realized as [40]:

τ 1
B(τ + β) =

M21 +M22τ
1
B(τ)

M11 +M12τ 1
B(τ)

, θ1
B(τ + β) =

M33θ
1
B(τ)

M11 +M12τ 1
B(τ)

(4.175)

τ 1
F (τ + β) =

τ 1
F (τ)

(M11 +M12τ 1
B(τ))

2
, θ1

F (τ + β) =
M33θ

1
F (τ)

M11 +M12τ 1
B(τ)

. (4.176)

Its constrained solutions are again given in terms of the reparametrization modes (F (τ), η(τ)) Eqs 4.41, 4.42:

τ 1(τ, ϑ) = F (τ + ϑη(τ)), θ(τ, ϑ) =

b

Ḟ (τ)

(
ϑ+ η(τ) +

1

2
ϑη(τ)Bτη(τ)

)
. (4.177)

The non-trivial monodromy is implemented as [40]:

F (τ) = tan π
β
Θf(τ), F (τ) = tanh π

β
Λf(τ) (4.178)

, for the elliptic and hyperbolic conjugacy classes respectively. f represents the reparametrization mode of the
thermal boundary circle satisfying f(τ + β) = f(τ) + β, while η(τ + β) = ˘η(τ) specifies the spin structure
of either R (+) or NS (´). Parabolic defects on the other hand are specified by F (τ + β) = F (τ) + β, with
the same (anti)periodicity of η as before.
Using the bosonic submetric Eq 4.52, we may readily extrapolate these monodromy relations into the bulk
using similar reasoning of section 2.9, and conclude that elliptic monodromies with parameter Θ correspond to
conical singularities with conical deficit angle 2πΘ. Integer values of n correspond to replicated geometries,
although there is a subtlety between even and odd values of n since the stabilizer subgroup is different in both
cases [40]. Parabolic monodromies again correspond to singular geometries with a cusp near the horizon.
The only regular non-trivial geometries are the hyperbolic monodromy classes. These correspond to wormhole
geometries, ending on a geodesic boundary of length 2πΛ.

4.5.1 Defect insertion and hyperbolic characters

To implement a non-trivial monodromy in the BF perspective, we insert a suitably normalized principal series
character in the disk, associated to a defect with holonomy U . The technical details are explained in section
2.9 (recall in particular Eq 2.289 for a coset scenario). Since we will be interested in EOW branes ending at
the neck of a trumpet, we consider the insertion of a hyperbolic character.
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Hyperbolic character in the principal series representation

Characters of hyperbolic conjugacy class elements evaluated in the principal series representation, can be
calculated along the lines of section 2.9.1 for SL(2,R). The specific representation theory was considered in
[40], which itself was based on a generalization of [90] for SL(2,R). To start, wavefunctions corresponding to
the state vectors |fy in configuration space f(x, ϑ) = xx, ϑ | fy transform as:

f(x, ϑ) =

ż

dx1dϑ1 K(x, ϑ | x1, ϑ1)f(x1, ϑ1). (4.179)

K(x, ϑ | x1, ϑ1) denotes the kernel of the representation. In the principal series representation Eq B.21, the
latter is specified as9:

K(x, ϑ | x1, ϑ1) =
|bx+ d+ δϑ|2j

sgn(e)1/2sgn(bx+ d+ δϑ)1/2
δ

(
ax+ c+ βϑ

bx+ d+ δϑ
´ x1

)
δ

(
´αx´ γ + eϑ

bx+ d+ δϑ
´ ϑ1

)
(4.181)

, where the fermionic delta function is defined in footnote 9. The principal series character of a group element
g in representation j is consequently computed by the continuous trace of the kernel function:

χj(g) =

ż

dxdϑ K(x, ϑ | x, ϑ)

=

ż

dxdϑ
|bx+ d+ δϑ|2j

sgn(e)1/2sgn(bx+ d+ δϑ)1/2
δ

(
ax+ c+ βϑ

bx+ d+ δϑ
´ x

)
δ

(
´αx´ γ + eϑ

bx+ d+ δϑ
´ ϑ

)
.

(4.182)

The delta function is evaluated by expanding in the zeros on the superline R1|1. Since the character is a class
function, the calculation simplifies considerably by parameterizing the most general hyperbolic group element
in the Gauss parametrization:

g(φ) = e2φiH »

 e´φ ε 0

0 eφ 0

0 0 ˘1

 (4.183)

, for the different sectors R (+) and NS (´). The infinitesimal factor ε again regularizes the behaviour near
x = 0. Due to e´φ + eφ ě 2, the STr of the different sectors is guaranteed to correspond to the hyperbolic
conjugacy class for both sectors (up to the inclusion of parabolic class elements with measure zero)

(R) : STr(g) ě 1

(NS) : STr(g) ě 3.
(4.184)

In both cases, the parameter ε serves as an infinitesimal regulator to fix the number of fixed points at ε = 0.
In appendix E of [40], the character was derived explicitly for the R sector. To complement this calculation, I

9 The definition of the delta function on Grassmann variables is subtle. In fact, any delta function imposing ϑ = ϑ1 is simply expressed as the
argument inside the delta function: δ(ϑ´ϑ1) = ϑ´ϑ1. This is a consequence of the linear Taylor expansion of any function in ϑ: (f(ϑ) = a+ϑb),
and the defining integral identities

ş

dϑ = 0,
ş

dϑϑ = 1, where now indeed

ż

dϑ δ(ϑ ´ ϑ1)f(ϑ) =

ż

dϑ δ(ϑ´ ϑ1)(a+ ϑb) ”

ż

dϑ (ϑ ´ ϑ1)(a+ ϑb) = a+ ϑ1b. (4.180)
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work out the specific case for the NS sector hereunder.
First of all, specifying to (´) in g(φ) and negative φ ă 0, the Borel-Weil action of g(φ) is translated to the
kernel

χNS
j (φ) =

ż

dxdϑ
|εx+ eφ|2j

i
δ

(
e´φx

εx+ eφ
´ x

)
δ

(
´ϑ

εx+ eφ
´ ϑ

)

, where we choose the upper branch in sgn(´1)1/2 = i. Due to the general identity δ(g(x)) =
ř

i
g(xi)

|g1(xi)|
, the

bosonic delta function decomposes into:

δ

(
e´φx

εx+ eφ
´ x

)
=

δ(x)

e´2φ ´ 1
+
δ
(
x´ e´φ´eφ

ε

)
1 ´ e2φ

.

The fermionic delta function on the other hand is just the argument of that function (see footnote 9):

δ

(
´ϑ

εx+ eφ
´ ϑ

)
= ´ϑ

1 + εx+ eφ

εx+ eφ
.

Performing the Grassmann integral over ϑ, and consequently integrating over x leads to:

χNS
j (φ) = i

e2jφ

e´2φ ´ 1

1 + eφ

eφ
+ i

e´2jφ

1 ´ e2φ
1 + e´φ

e´φ

= i
(e´φ/2 + eφ/2)e2jφ+φ/2

e´φ ´ eφ
+ i

(eφ/2 + e´φ/2)e´2jφ´φ/2

e´φ ´ eφ

= ´2i
cosh (φ/2)

sinhφ cosh
(
2jφ+

φ

2

)
= ´i

cosh(ikφ)
sinh(φ/2) (4.185)

, where sinhφ = 2 sinh(φ/2) cosh(φ/2), and the unitarity constraint j = ´1/4 + ik/2 were used in the last
line. We finally obtain:

χNS
k (φ) = i

cos(´kφ)
sinh(´φ/2) . (4.186)

Similar reasoning for the R sector leads to [40]:

χR
k (φ) = i

sin(´kφ)
cosh(´φ/2) . (4.187)

It is interesting to note that the NS character can be decomposed as:

cosh(´(4j + 1)φ/2)

sinh(´φ/2) =
cosh(´(2j + 1)φ)

sinh(´φ) +
cosh(´2jφ)

sinh(´φ) (4.188)

, which is the sum of two hyperbolic characters in the principal series representation of SL(2,R) (Eq 2.323)
with spin j and j´1/2 respectively. This is consistent with the direct sum decomposition Eq B.33, since it is a
general fact that the character of the direct sum of irreducible representations equals the sum of the characters
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evaluated in each representation. While it is true that both representations of SL(2,R) are irreducible, they are
however not unitary since that would require j = ´1

2 + ik, whereas we have <(j) = ´1
4 .

Within each sector, the characters should be orthogonal with respect to the proper measure on the space of
conjugacy class elements. The latter can be derived from the Weyl integration formula, where the bosonic
result Eq 2.315 is generalized to the supergroup for each spin structure to [40]:

∆R(t) =

ś

αP∆B
|eα(t) ´ 1|

ś

αP∆F
(eα(t) ´ 1)

, ∆NS(t) =

ś

αP∆B
|eα(t) ´ 1|

ś

αP∆F
(eα(t) + 1)

. (4.189)

∆B and ∆F denote the collection of bosonic and fermionic roots respectively. The roots are determined as the
eigenvectors of the generators with respect to the commutator with the Cartan element iH:

[iH, iE˘] = ¯iE˘, [iH, iF˘] = ¯
1

2
iF˘. (4.190)

This determines the root system of the algebra. Exponentiating the algebra to Ad(t´1)Xα = t´1Xαt =

e´α(t)Xα defines the root vectors α(t). Within the hyperbolic conjugacy class, the relevant group elements are
Xα ” e2iHφ, and we find two bosonic and two fermionic roots, corresponding to the generators iE˘ and iF˘:

eαB(iE˘) = e¯2φ, eαF (iF˘) = e¯φ. (4.191)

Focusing on φ ă 0, it is straightforward to deduce the correct measure on each hyperbolic conjugacy class:

∆NS(t) =
(e´2φ ´ 1)(1 ´ e2φ)

(e´φ + 1)(eφ + 1)
= 4 sinh2(´φ/2), (4.192)

∆R(t) =
(e´2φ ´ 1)(1 ´ e2φ)

(e´φ ´ 1)(eφ ´ 1)
= 4 cosh2(´φ/2). (4.193)

The measures are fine-tuned to give precisely the anticipated character orthogonality:

1

2

ż

dφ 4 sinh2(´φ/2)χNS
k (φ)χNS

k1 (φ)˚ = 2

ż

dφ cos(´kφ) cos(´k1φ) = 2πδ(k ´ k1), (4.194)

1

2

ż

dφ 4 cosh2(´φ/2)χR
k (φ)χ

R
k1(φ)˚ = 2

ż

dφ sin(´kφ) sin(´k1φ) = 2πδ(k ´ k1). (4.195)

A common practice is to strip off the Weyl-denominator of the characters immediately, and glue along a
flat conjugacy class measure dφ on the supergroup. A more structural motivation why only the numerators
of the characters are the essential objects to consider in the context of defect insertions, is the Schwarzian
limit of super-Virasoro modular S-matrices. For example, one can relate the defect insertions in the bulk as
topologically deformed Verlinde loop operators in the Schwarzian theory [37]. The latter are obtained in a
b Ñ 0 limit of the super-Virasoro modular S-matrix SPs with s = ´φ/2πb and P = bk. In particular, for the
NS sector, its limit reproduces the continuous series character only up to the Weyl denominator [40]

lim
bÑ0

SPs = lim
bÑ0

cos(4πsP ) = cos(´2φk). (4.196)

This suggests that we should indeed constrain our attention to the numerator of the character when we consider
the gravitational defect insertions as the fundamental objects. Note that, just as for SL(2,R), the elliptic
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character vanishes since there are no fixed points on the superline R1|1. However, in the interest of classifying
defects, one analytically continues the character in the hyperbolic conjugacy class to the elliptic conjugacy
class by simply replacing φ Ñ iφ. This leads to the character insertion cosh(´φk) for elliptic defects in the
NS sector, and sinh(´φk) in the R sector.

Hyperbolic defect insertions

To relate the group theoretic character to gravity, we should again shift the continuous series label to the
momentum label k Ñ 2k. The single trumpet amplitudes within each sector are readily obtained by inserting
the respective suitably normalized characters Eqs 4.186, 4.187 within the disk partition function, and stripping
off the Plancherel measure due to the coset boundary constraints. The result is:

ZNS
trumpet(β, φ) =

ż 8

0
dk cos(´2φk)e´βk2

=
1

2

c

π

β
e´φ2/β, (4.197)

ZR
trumpet(β, φ) =

ż 8

0
dk sin(´2φk)e´βk2

= ´
1

?
β
D+(φ/

a

β). (4.198)

The last function denotes the Dawson integral, defined as the one-sided Fourier-Laplace transform of the sine
function with respect to the Gaussian kernel:

D+(x) = e´x2

ż x

0
dt et

2

=
1

2

ż 8

0
dt e´t2/4 sin(xt). (4.199)

The integral
şx
0 e

t2dt is proportional to the analytically continued error function erfi(x) = ´ierf(ix), defined
as:

erf(x) =
2

?
π

ż x

0
e´t2dt (4.200)

, normalized as limxÑ8 erf(x) = 1. The R trumpet is therefore related to the NS trumpet up to a correction by
the error function:

ZR
trumpet(β, φ) » ZNS

trumpet(β, φ) ˆ erfi
(

´
φ

?
β

)
. (4.201)

The origin of this error function is less clear from a one-loop exact super-Schwarzian perspective. In particular,
there is a mismatch between the analysis of the R sector trumpet calculated directly in this perspective in [102].
However, this calculation was done entirely from one-loop argumentation in the super-Schwarzian perspective.
The amplitude of the Ramond trumpet suggests that the result is not one-loop exact, and this argumentation is
not applicable anyway. In many ways, the perspective provided from topological gauge theory should be exact
to all orders in perturbation theory. We may therefore use the Taylor-Maclaurin expansion of the error function
in the argument z = φ/

?
β:

erfi(z) =
2

?
π

8
ÿ

n=0

z2n+1

n!(2n+ 1)
=

2
?
π

(
z +

z3

3
+
z5

10
+
z7

42
+

z9

216
+ . . .

)
(4.202)
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, and treat the Ramond trumpet amplitude as the full perturbative answer to the gravitational path integral in
increasing orders of the coupling 1/β;

ZR
trumpet(β, φ) = ´

(
φ

β
+

φ3

3β2
+

φ5

10β3
+

φ7

42β4
+ . . .

)
e´φ2/β. (4.203)

Further investigation should reveal how this is related to the answer of [102].

4.6 Geodesic description of EOW branes in superspace

Our ambition is now to formulate an equivalent boundary action, in the likes of Eq 3.1, that captures the
geodesic dynamics of EOW branes in superspace, and thereby extend the discussion of the previous chapter to
applications of JT supergravity. First of all, we recapitulate the JT supergravity action in superspace (Eq 4.1)
with the appropriate boundary term of [39];

IN=1
JT =

1

4

[
ż

Σ
d2zd2θ EΦ(R+´ + 2) + 2

ż

BΣ
dτdϑ ΦK

]
. (4.204)

The extrinsic curvature along the UV boundary curve is defined in the first order form in Eq 4.57;

K =
TADTnA
TATA

(4.205)

, in terms of a covariant derivative that acts as a superderivative in superspace, equipped with the first order spin
connections (c.f. Eq 4.59). An important realization is that the boundary curves are in fact 1|1-dimensional
sheets that are infinitesimally thickened in the fermionic ϑ-direction. I.e., the boundary curve is parameterized
in terms of a bosonic τ - and fermionic ϑ-affine coordinate. In Poincaré SUHP coordinates discussed in section
4.2, the boundary curve covers the 1|1-dimensional sheet in the parametrization

τ 1(τ, ϑ), y1(τ, ϑ), θ1(τ, ϑ), θ̄1(τ, ϑ) (4.206)

, with z1 ” τ 1 + iy1 and z̄1 = τ 1 ´ iy1. However, we aim to describe EOW branes as geodesic curves
in superspace. These are genuine 1|0-dimensional curves in the 2|2-dimensional superspace, describing the
trajectory

z1(s), z̄1(s), θ1(s), θ̄1(s) (4.207)

in terms of a single bosonic affine parameter s, which we may take to be the proper length along the curve. A
nice visual representation was given in [40] (figure 4.1), where a 1|0-dimensional geodesic is anchored to the
1|1-dimensional wiggly boundary in Poincaré SUHP coordinates.

Surprisingly, the relevant differential geometry on superspace does not seem to be available in the existing
literature. We therefore construct it from first principles, following the textbook development of bosonic GR.
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Figure 4.1: 1|0-dimensional geodesic is anchored to the 1|1-dimensional wiggly boundary in Poincaré SUHP coordinates (z1, z1, θ1, θ
1). Figure taken from

[40].

4.6.1 Free particle action in superspace

A natural first step is to add to the JT supergravity action a term containing the free-particle action in super-
space, labeled in terms of this bosonic affine parameter s:

I = ´µ

ż

EOW
ds
(
ŻMgMN Ż

N
)1/2

. (4.208)

ZM (s) =
(
z(s), z(s), θ(s), θ(s)

)
labels the trajectory in superspace, and the dot indicates differentiation with

respect to the affine parameter. gMN denotes the metric in superspace. This has a bosonic block for (M +N)

mod 2 = 0, and a fermionic block for (M + N) mod 2 = 1, with M,N Z2-valued indices labeling the
bosonic (0) or fermionic (1) parity of the superfield. We define an inverse metric tensor gMN , satisfying

gNCgCM = gMCg
CN = δ NM . (4.209)

This definition is non-trivial since in general one picks up additional sign factors when commuting two objects
in superspace, depending on the bosonic or fermionic parity

gNCg
CM = (´)C(1+M)+N(M+C)gCMgNC . (4.210)

For consistency, we take the conventions

gMC = (´)MC gCN , and gCN = (´)CN+C+NgNC . (4.211)

Concretely, this means that both the fermionic (MN+M+N = 1) and doubly fermionic (MN+M+N = 3)
block of the metric tensor gCN are antisymmetric with respect to interchanges in the indices. In contrast, only
the doubly fermionic block of the inverse metric gMC is antisymmetric. Within these conventions, the natural
definition gMCgCN = δMN implies directly:

gNCg
CM = (´)C(1+M)+N(M+C)gCMgNC = (´)N(M+1)gMCgCN = (´)N(M+1)δ NM » δ NM .



4.6. GEODESIC DESCRIPTION OF EOW BRANES IN SUPERSPACE 195

The last identity holds since if the delta function imposes N ” M , then the phase factor is always one:
(´)N(M+1) » (´)N+N = 1. Thus, the definition of the inverse metric is compatible in both ordenings Eq
4.209. This should not conflict earlier definitions of the metric in this chapter. In particular, it will turn out to
be compatible with the definition of the supermetric in terms of the superframe fields in Eq 4.53.
Since the line element ds2 = dZMgMNdZ

N is by definition coordinate invariant, we define a covariant vector
according to:

ŻM ” gMN Ż
N . (4.212)

Contractions are thereby defined in the NW-SE (north-west - south-east) convention:

ŻNgNM Ż
M = ŻM ŻM . (4.213)

Considering the fermionic derivative as an operator, we define a coordinate transformation from the left

Ż 1
M ”

BZN

BZM 1
ŻN (4.214)

, where coordinate invariant contractions again appear in the NW-SE ordening. The transformation rule on
covectors Eq 4.214 is consistent with the coordinate transformation of a gradient in superspace BM , where the
(fermionic) chain rule acts also from the left (c.f. Eq 4.218):

BM Ñ B1
M =

BZN

BZM 1
BN . (4.215)

This property is not immediately obvious. Consider a function of one fermionic variable f(θ). This can always
be expanded in a Taylor series to first order in θ: f(θ) = α + θβ = f(0) + θ B

Bθf(0). Note that we need to
expand with θ on the left if B

Bθ is a Grassmann derivative acting on the left. The definition of the latter being:

B

Bθ
f(θ) = lim

∆θÑ0

1

∆θ
(f(θ +∆θ) ´ f(θ)) . (4.216)

The Grassmann parity of ∆θ is the same as that of θ. Let now f(θ) = g(θ1(θ)), then under the same definition:

B

Bθ
f(θ) = lim

∆θÑ0

1

∆θ

(
g(θ1(θ +∆θ)) ´ g(θ1(θ)

)
. (4.217)

We expand in the same way θ1(θ +∆θ) = θ1 +∆θ1, leading to:

B

Bθ
f(θ) = lim

∆θ1Ñ0, ∆θÑ0

∆θ1

∆θ

1

∆θ1

(
g(θ1 +∆θ1) ´ g(θ1)

)
=

Bθ1

Bθ

Bg

Bθ1
. (4.218)
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This is structured NW-SE. Simple examples confirm this rule10.

Due to the coordinate invariant (NW-SE) structure, a coordinate transformation acts on a contravariant vector
ŻM from the right:

ŻM 1 = ŻN
BZM 1

BZN
. (4.220)

BZM 1

BZN is defined as the inverse of BZN

BZM 1 within the NW-SE structure:

BZM 1

BZA
BZB

BZM 1
= δAB. (4.221)

Note that these agreements need to be fixed beforehand since the structure UMVM is not mutually coordi-
nate invariant if UMVM has been fixed beforehand due to the appearance of the relative sign factors in the
summation:

UMV
M = gMNU

NVM = (´)N(1+M)UNgMNV
M = (´)MUNgNMV

M ‰ UMVM (4.222)

We also have e.g.
UMV

M = (´)MVMUM ‰ (´)MVM 1U 1
M .

10We convince ourselves with a simple yet general example for two variables. Take f(θ1, θ2) a bosonic function of two fermionic variables
θ1
1, θ

1
2:

f(θ1
1, θ

1
2) = αθ1

1 + βθ1
2 +mθ1

1θ
1
2

, with α, β constant fermionic variables and m a scalar constant. This leads to:

Bf

Bθ1
1

= ´α+mθ1
2,

Bf

Bθ1
2

= ´β ´mθ1
1.

Next we consider a transformation to two new fermionic variables θ1, θ2

θ1
1(θ1, θ2) = a θ1 + bθ2 + µθ1θ2, θ1

2(θ1, θ2) = c θ1 + dθ2 + νθ1θ2.

a, b, c, d should be bosonic, while µ, ν should be fermionic to obey the fermionic parity of both θ1, θ2 and θ1
1, θ

1
2. This leads to:

Bθ1
1

Bθ1
= a´ µθ2,

Bθ1

Bθ2
= b+ µθ1,

Bθ1
2

Bθ1
= c ´ νθ2,

Bθ1
2

Bθ2
= d+ νθ1

, and
f(θ1, θ2) = aαθ1 + bαθ2 + αµθ1θ2 + βcθ1 + βdθ2 + βνθ1θ2 +madθ1θ2 +mbcθ2θ1.

We can consider the derivative with respect to θ1:

Bf

Bθ1
= ´aα+ αµθ2 ´ βc+ βνθ2 +madθ2 ´ mbcθ2. (4.219)

On the other hand, we can consider this result from the NW-SE chain rule:

Bf

Bθ1
=

Bθ1
1

Bθ1

Bf

Bθ1
1

+
Bθ1

2

Bθ1

Bf

Bθ1
2

= (a´ µθ2)(´α+mθ1
2) + (c´ νθ2)(´β ´ mθ1

1)

= ´aα+ am (��cθ1 + dθ2 +���νθ1θ2) + µθ2α ´����µθ2mcθ1 ´ cβ ´ mc (��aθ1 + bθ2 +���µθ1θ2) + νθ2β +����mνθ2aθ1.

Taking into account the appropriate Grassmann parities, this result indeed coincides with Eq 4.219. The same conclusion holds for the derivative
with respect to θ2.
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In particular, once these conventions are fixed, we cannot define a covector from ŻN ‰ ŻMgMN despite
earlier intuition.
On the other hand, interchanging UM and VM within the NW-SE structure in the inner product UMVM , is
manifestly invariant due to the antisymmetric convention of Eq 4.211;

UMVM = UMgMNV
N = V N (´)NUMgMN = V N (´)N+M+MNgMNU

M

= V NgNMU
M = V NUN .

4.6.2 Geodesics in superspace

EOW branes are ultimately defined in terms of their geodesic trajectory. In the bosonic action Eq 3.1, the dila-
ton field acts as a Lagrange multiplier enforcing the constraint K ” 0, which we have argued to be equivalent
to an extremal geodesic solution in section 3.3.2. We should therefore add a similar term to the free particle
action that fixes the free particle action to describe geodesic trajectories in superspace. Somewhat surprisingly,
the mathematical and physical literature on geodesics in superspace is relatively scarce. For example, the def-
inition of the extrinsic curvature in superspace is not immediately clear. We could opt to choose the same K
appearing in the boundary action Eq 4.204. However, this is defined in terms of a superderivative acting on
a 1|1-dimensional sheet, whereas we consider a proper 1|0-dimensional curve. Compared to the former, the
analysis is facilitated due to the single bosonic affine parameter, whose proper derivative conveniently acts
as a bosonic "time" derivative along the curve. We opt to be pragmatic and define the extrinsic curvature a
posteriori, with the soul purpose of localizing onto geodesics.
A natural choice would be to simply generalize the definition of the bosonic extrinsic curvature directly to
superspace Eq 3.43:

K = UµUα∇αnµ Ñ K = UMUN∇NnM ,

(
UM ” ŻM =

dZM

ds

)
(4.223)

, not the least because the contractions appear in the natural NW-SE structure. We define the normal vector in
superspace nM (s) as the normal vector field along the entire tangent vector field UM (s) = ŻM at every point
described by s, by analogy to the bosonic case:

UM (s) nM (s) ” 0. (4.224)

However, it is not immediately clear if this definition is consistent with the geodesic equations of motion in
superspace, and which choice of the covariant derivative in superspace naturally preserves coordinate-invariant
structures. To resolve these issues, we develop the relevant different geometry in superspace by hand, and
generalize the familiar development of geodesics in general relativity to (super)geodesics in superspace.
We start by writing the free particle action in superspace symbolically as

I = µ

ż

ds

b

ŻAgABŻB = µ

ż

a

dZAgABdZB (4.225)
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, by formally absorbing the measure of the affine parameter ds inside the square root. This is only possible
by virtue of the bosonic nature of s. Consequently varying the action should yield the classical equations of
motion in superspace;

δI = µ

ż

δ
(
a

dZAgABdZB
)

= µ

ż

1

2
a

dZAgABdZB

(
δdZA gABdZ

B + dZA δgAB dZB + dZA gAB δdZB
)

=
µ

2

ż

ds
(
(δŻA) gABŻ

B + ŻA δgAB ŻB + ŻAgAB (δŻB)
)
.

We have used the standard chain rule in the bosonic line element ds =
a

dZAgABdZB . Furthermore, accord-
ing to standard practice in supergravity, the variation δ obeys the bosonic product rule in the convention that it
acts from the left11. In the third line, we have reintroduced the affine line element ds due to its appearance in
the denominator, and we have used the commutativity between δ and d

ds .
Due to our choice Eq 4.211, the first and last term are in fact equal:

ŻAgAB (δŻB) = (´)B+A+AB(δŻB) gABŻ
A = (δŻB) gBAŻ

A

Furthermore, using the natural chain rule within the NW-SE convention, we may write δgAB = δZCBCgAB;

δI = µ

ż

ds

(
(δŻA) gABŻ

B +
1

2
ŻA δZC BCgABŻ

B

)
= µ

ż

ds

(
(δŻA) gABŻ

B + (´)A(1+B) 1

2
δZC BCgABŻ

AŻB
)

» ´µ

ż

ds

(
δZA gABZ̈

B + δZA ŻCBCgABŻ
B ´ (´)A(1+B) 1

2
δZC BCgABŻ

AŻB
)

, where we have partially integrated in the last line in the bosonic derivative with respect to s. Separating out
δZAgAB , and using our definition of the inverse metric gABgBC = δ CA ;

δI = ´µ

ż

ds δZAgAB

(
Z̈B + gBCŻMBMgCN Ż

N ´
1

2
(´)M(1+N)gBCBCgMN Ż

M ŻN
)

= ´µ

ż

ds δZAgAB

(
Z̈B +

1

2
gBC

(
2(´)M(1+C)BMgCN ´ (´)MBCgMN

)
ŻN ŻM

)
.

Symmetrizing the first term within brackets;

2(´)M(1+C)BMgCN Ż
N ŻM = (´)M(1+C)BMgCN Ż

N ŻM + (´)N(1+C)BNgCM Ż
M ŻN

=
(
(´)M(1+C)BMgCN + (´)N(1+C+M)BNgCM

)
ŻN ŻM

11We imagine that we transmute every term in a product to the left first, and consequently apply a variation δ to the first term. By transmuting
the variational term back to its original position in the product reabsorbs all minus encountered in the original transmutation. E.g. consider the
variation of the metric:

δg
(
dZAgABdZ

B
)
= (´)A(1+B)δg

(
gABdZ

AdZB
)
= (´)A(1+B)

(
δgABdZ

AdZB
)
= dZAδgABdZ

B .
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, eventually yields:

δI = ´µ

ż

ds δZAgAB

(
Z̈B

+
1

2
gBC

(
(´)M(1+C)BMgCN + (´)N(1+C+M)BNgCM ´ (´)MBCgMN

)
ŻN ŻM

)
” ´µ

ż

ds δZAgAB

(
Z̈B + ΓBMN Ż

N ŻM
)
. (4.226)

In the last line, we introduced an appropriate definition of the Christoffel symbol in superspace:

ΓAMN ”
1

2
gAC

(
(´)M(1+C)BMgCN + (´)N(1+C+M)BNgCM ´ (´)MBCgMN

)
. (4.227)

This definition of the Christoffel symbol matches with the one introduced in a different context in [46]. As a
consistency check, it reduces to the familiar definition in bosonic GR by taking all Z2-sign labels to zero. We
can write the last line in a more suggestive coordinate invariant NW-SE ordered way;

δI = ´µ

ż

ds
(
Z̈B + ΓBMN Ż

N ŻM
)
(´)BδZAgAB = µ

ż

ds
(
Z̈B + ΓBMN Ż

N ŻM
)
(´)B+A+ABgAB δZ

A

= ´µ

ż

ds
(
Z̈A + ΓAMN Ż

N ŻM
)
gAB δZ

B

= ´µ

ż

ds
(
Z̈A + ΓAMN Ż

N ŻM
)
δZA (4.228)

, by our definition of the metric tensor Eq 4.211, and the covector Eq 4.212.
To proceed, we rewrite the geodesic equation more compactly by introducing a covariant derivative in super-
space in terms of the superspace Christoffel symbol. Acting on a contravariant vector UB , we propose

∇AU
B ” BAU

B + (´)A(B+1) ΓBACU
C (4.229)

, and check that this is indeed consistent:

UA∇AU
B = U̇B + ΓBACU

CUA. (4.230)

In the first term, we have used the natural NW-SE chain rule for the (possibly) Grassmann derivative12:
UABAU

B = ŻABAU
B = d

dsU
B = U̇B . Since this involves a chain rule with respect to a bosonic param-

12We prove that this is the correct ordening for Grassmann derivatives by a proof of induction. Take a function of two Grassmann variables
θ1(s), θ2(s) that describe a trajectory in superspace. The most general fermionic function can be expanded in terms of four bosonic numbers:

F (θ1(s), θ2(s))(s) = a+ bθ1(s) + cθ2(s) + d θ1(s)θ2(s).

Since the chain rule obviously works on functions of one Grassmann variable: d
ds

(θ1(s)) = θ̇1(s) ” θ̇1(s)
Bθ1
Bθ1

, we refrain our attention to the

function involving the product of Grassmann numbers G2(s) = θ1(s)θ2(s). Since BG2
Bθ1

= θ2 and BG2
Bθ2

= ´θ1, this is again consistent with the
chain rule acting on the left:

d

ds
G2 =

d

ds
(θ1(s)θ2(s)) = θ̇1θ2 + θ1θ̇2 = θ̇1

BG2

Bθ1
´

BG2

Bθ2
θ̇2

= θ̇1
BG2

Bθ1
+ θ̇2

BG2

Bθ2
.
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eter, this requires a separate proof, which we demonstrate in footnote 12 by the rule of induction (c.f. Eq
4.231). We may therefore write the variation of the action more suggestively as:

δI = ´µ

ż

ds
(
UB∇BU

A
)
δZA (4.232)

, where all contractions appear in a manifestly coordinate-invariant NW-SE ordening. Since the free particle
action that we started from is manifestly coordinate invariant, its variation should obey this same property.
This unambiguously fixes the transformation of ∇AU

B under general coordinate transformations in order to
preserve this structure,

∇BU
A Ñ ∇1

BU
A1 =

BZC

BZ 1B

(
∇CU

D
) BZ 1A

BZD
. (4.233)

In this sense, our definition of the covariant derivative is consistent. Moreover, it reduces to the standard trans-
formation rule in bosonic GR when all fermions are turned off. Note that this trick allows us to deduce the
transformation rule under general coordinate transformations without actually calculating the explicit transfor-
mations of the Christoffel symbols.

4.6.3 Extrinsic curvature in superspace

We generalize the construction in section 3.3.2 and introduce an appropriate definition of the extrinsic curvature
in superspace. In particular, since any variation can be decomposed into its tangential and normal direction,
we may characterize the general variation entirely along the normal vector field δZA = nA;

δI = ´µ

ż

ds
(
UB∇BU

A
)
nA. (4.234)

We introduce a covariant derivative acting on covectors by demanding that the covariant derivative acting on a
scalar structure reduces to the standard (possibly Grassmann) derivative: ∇AX ” BAX . Acting on the scalar
product UAnA, it should obey the standard product rule:

∇B

(
UAnA

)
” BB

(
UAnA

)
=
(
BBU

A
)
nA + (´)ABUA (BBnA) . (4.235)

Since the chain rule seems to work on functions of one and two Grassmann variables, we can prove that it also works on functions with an
arbitrary number of Grassmann variables by the rule of induction. Take Gn+1(s) a function of n + 1 fermionic variables that describe a curve
in superspace: Gn+1(s) = θ1(s) . . . θn(s)θn+1(s) = Gn(s)θn+1(s). If the chain rule works on functions of n fermionic variables Gn, it must
also work on the function of n+ 1 fermionic variables:

d

ds
Gn+1 =

d

ds
(θ1(s) . . . θn(s)θn+1(s)) =

d

ds
(θ1 . . . θn) θn+1 + (θ1 . . . θn) θ̇n+1.

The first term already has the correct structure by the premise that functions of n fermionic variables Gn(s) satisfy the natural chain rule. To
check the second term, we need to take into account the Grassmann parity of Gn: d

dθn+1
(Gnθn+1) = (´)nGn, to obtain

d

ds
Gn+1 = θ̇1

dGn+1

dθ1
+ ¨ ¨ ¨ + θ̇n

dGn+1

dθn
+ (´)n

dGn+1

dθn+1
θ̇n+1

= θ̇1
dGn+1

dθ1
+ ¨ ¨ ¨ + θ̇n

dGn+1

dθn
+ θ̇n+1

dGn+1

dθn+1
. (4.231)

In the last line, we have used that the Grassmann parity of Gn coincides with the Grassmann parity of dGn+1

dθn+1
.
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On the other hand, we define the covariant derivative on covectors such that it obeys a similar product rule;

∇B

(
UAnA

)
”
(
∇BU

A
)
nA + (´)ABUA (∇BnA) (4.236)

=
(

BBU
A + (´)B(A+1) ΓABCU

C
)
nA + (´)ABUA (∇BnA) . (4.237)

Compared to the previous line Eq 4.235, this fixes the covariant derivative on a general covector nA:

∇BnA ” BBnA ´ (´)B(1+C)+A(1+C) ΓCBAnC (4.238)

in terms of the Christoffel symbol Eq 4.227. Since the LHS in Eq 4.237 and the first term on the RHS are
manifestly covariant under the NW-SE convention, the transformation rule of the covariant derivative acting
on covectors under general coordinate transformations is a posteriori fixed to:

∇BnA Ñ ∇1
Bn

1
A =

BZD

BZ 1B
∇D

(
BZE

BZ 1A
nE

)
” (´)D(E+A) BZD

BZ 1B

BZE

BZ 1A
∇DnE (4.239)

This transformation is fine-tuned to keep the second term invariant in Eq 4.236;

(´)ABUA (∇BnA) Ñ (´)AB+D(E+A)UG
BZ 1A

BZG
BZD

BZ 1B

BZE

BZ 1A
∇DnE

=(´)EBUG
BZ 1A

BZG
BZE

BZ 1A

BZD

BZ 1B
∇DnE = (´)EBUE

BZD

BZ 1B
∇DnE

=(´)ED
BZD

BZ 1B
UE∇DnE . (4.240)

As a consistency check, the definition of the covariant derivative acting on covectors again reduces to the
bosonic case for soley bosonic sign factors.

Since the normal vector field is defined to be orthogonal to the tangent vector at all times UAnA ” 0, we may
take the covariant derivative on both sides of this equation to characterize the variation of the tangent vector
equivalently in terms of the variation of the normal vector

∇M

(
UAnA

)
= ∇MU

A nA + (´)AMUA (∇MnA) ” 0

Ø ∇MU
A nA = ´(´)AMUA ∇MnA. (4.241)

Inserted in the action Eq 4.234 yields

δI = ´µ

ż

ds
(
UB∇BU

A
)
nA = µ

ż

ds (´)ABUBUA∇BnA (4.242)

, where we acknowledge that the last structure is coordinate invariant due to the transformation rule Eq 4.240.
We may absorb the relative minus signs by swapping UB and UA, and obtain:

δI = µ

ż

ds UAUB∇BnA ” µ

ż

ds K. (4.243)
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We have defined the extrinsic curvature along the 1|0-dimensional curve as:

K = UAUB∇BnA (4.244)

This characterizes completely the variation of the free particle action in superspace, and reduces naturally to
the definition of the pulled-back extrinsic curvature in bosonic GR. It furthermore admits the natural NW-SE
structure, and is thereby a proper coordinate scalar. This is indeed the anticipated result Eq 4.223, where we
have now also unambiguously defined the covariant derivative acting on nA in Eq 4.238 and its transformation
rule. In any case, by imposing

K ” 0 (4.245)

along the curve, the variation of the free particle vanishes δI = 0, and the curve should follow its classical
geodesic trajectory in superspace.

4.6.4 Ends of the World in superspace

We may finally write down the total Euclidean action of N = 1 JT supergravity in the presence of an EOW
brane:

IN=1
JT =

1

4

[
ż

Σ
d2zd2θ EΦ(R+´ + 2) + 2

ż

BΣ
dτdϑ ΦK

]
+

ż

EOW
ds

b

ŻMgMN ŻN (µ´ φK)

(4.246)
, where φ is defined as the bottom component of the dilaton superfield Eq 4.28. This is the natural generalization
of the bosonic action Eq 3.1 written in [36]. We stress again that, although both denoted by K, the extrinsic
curvature along the AdS-boundary is different to the extrinsic curvature along the EOW brane. The former is
defined along the 1|1-dimensional boundary curve Eq 4.205 in [39], while we have defined the latter along the
1|0-dimensional brane in Eq 4.244.
Also note that we did not need to specify the number of superspace coordinates to define both the extrinsic
curvature and the free particle action. We may thus suspect that this appearance naturally generalizes to theories
of JT supergravity involving any number of supercurrents. However, we will see in section 5.1.1 that this
argument still needs some fine-tuning.

4.7 Wilson lines as probe particles in superspace

To calculate the full-fledged free-particle path integral, we need an analogous identification between Wilson
lines in the OSp(1|2,R) BF theory, and the free particle path integral (c.f. 3.4). A first attempt was already
established in [40], using the same reasoning of [23] for the bosonic case. Let me work it out more in detail
within the current conventions. The derivation is nearly identical to section 3.3.1, with only minor modifica-
tions for the additional spin structure.
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We start by introducing a gauge field, and expand it into osp(1|2,R)-generators in terms of the first order
superframe fields and super spin connection,

AM = E A
M JA +ΩMP2, A = 0, 1,+,´ (4.247)

, where now letters at the beginning of the alphabet denote Lorentz frame indices, while letters in the middle
of the alphabet denote Einstein superspace indices. The osp(1|2,R)-generators JA are defined in section
4.3.1, where JA = PA, (A = 0, 1, 2) denote the bosonic generators Eq 4.75, while Jα = Qα denote the
fermionic generators Eq 4.78. We summarize their normalization in terms of the Cartan-Killing metric κIJ
(I, J = 0, 1, 2,+,´):

STr(JAJB) =
κAB
2
, κAB = ηAB, (A,B = 0, 1, 2), καβ = εαβ, (α, β = +,´, ε+´ = ´1)

(4.248)
, with ηAB = diag(1, 1,´1). We note that the restriction of the Cartan-Killing metric to the directions A =

0, 1,+,´ coincides with the local Lorentz metric Eq 4.4. Adopting the conventions of [40] for consistency
with the developments from earlier in this chapter, spinor-indices are contracted in the SW-NE (south-west
- north-east) convention: ψ̄αχα ” ψβεβαχ

α, with the Majorana conjugate spinor defined as ψ̄α = ψβεβα.
Note that due to the Majorana flip symmetry in 2d (Eq 4.19), one encounters no relative minus signs for
spinor interchanges in this ordening: ψχ = χψ. The covector for both fermionic and bosonic Lorentz frame
coordinates is therefore defined as (compare to Eq 4.212 for the definition of the covector in Einstein indices,
where the metric acts on the left):

UA = UBκBA. (4.249)

This fixes the raising of Lorentz covectors by acting with the inverse Cartan-Killing metric from the right:

UB = UAκ
AB. (4.250)

The Cartan-Killing metric contains no Grassmann entries for both the fermionic- or bosonic blocks, and we
may freely commute the Cartan-Killing metric through the spinor entries. The antisymmetry properties of the
Cartan-Killing metric are summarized as:

κAB = (´)ABκBA = (´)AκBA = (´)BκBA (4.251)

, where the last two identities hold since the Cartan-Killing metric is block diagonal. The latter ensures that both
Lorentz indices always share the same Grassmann parity. This antisymmetry property should be contrasted to
the second-order metric that may itself contain Grassmann entries Eq 4.211. The Majorana flip symmetry can
be combined with the bosonic symmetry to:

VAW
A = V BκBAW

A = (´)ABWAκBAV
B =WAκABV

B =WBV
B. (4.252)

In contrast, we have Eq 4.6:
VAW

A = (´)AWAVA ‰ WAVA. (4.253)
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, and Eq 4.17:

VAW
A = V BκBAW

A = (´)BV BWAκAB = (´)BV BWB ‰ V AWA. (4.254)

On the other hand, we have demonstrated in Eqs 4.13, 4.14 that both structures VAWA and V AWA are Lorentz
invariant given the specific form of the Lorentz transformation rule in 2d (see Eq 4.8), which is specified in
terms of a single bosonic number L. This is not the case for general coordinate contractions ŻMẆM since the
form of the coordinate transformations Eqs 4.220 and 4.214 might contain fermionic entries.

Using similar reasoning to section 3.3.1, we write a Wilson loop in the discrete series representation labeled
by j as a path integral over the first order action Sα[g,A] (c.f. Eq 3.7);

Wj(C) =
ż

Dαg e´Sα[g,A]. (4.255)

The first order action is minimally coupled to a gauge field in superspace AM = AAMJA (c.f. Eq 3.8):

Sα[g,A] = ´

ż

C
ds STr

(
αg´1DAg

)
(4.256)

with the covariant derivative defined symbolically as:

DA = Bs + As. (4.257)

The gauge field along the curve is defined as As = ŻMAM (Z(s)). This ensures that the action is invariant
under left multiplication by elements of OSp(1|2,R). α is the highest-weight vector of the spin-j representation
in the osp(1|2,R)-algebra13:

α = αaPa + ΞαQα, a = 0, 1. (4.258)

Note that the P2-component is omitted in the summation, since the P2-component is not independent from the
P0,1-components due to the torsion constraints [40].
g(s) are maps C Ñ OSp(1|2,R) that parameterize the orbit of α in the algebra. To fix the representation on
the left- and right-hand side of the identity Eq 4.255, the length of the highest-weight vector α is constrained
by the eigenvalue of the quadratic Casimir upon combining the constraints in Eqs 3.11 and 3.20:

1

2
STr

(
α2
)
=

1

4
αIκIJα

J =
1

4

(
αaηabα

b + ΞαεαβΞ
β
)
=

1

4

(
αaα

a + ΞΞ
)

” ´C2(j) = j(j + 1/2) ” m2 (4.259)

, where the eigenvalue of the quadratic Casimir is defined in Eq B.13: C2(j) = ´j(j + 1/2).

We argue for this identification by parameterizing the left action of g(s) : C Ñ OSp(1|2,R) along the curve C

13Remember that the osp(1|2,R) generators, defined in section 4.3.1 contain only bosonic entries.
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in local coordinates:
g(s) Ñ e´ZA(s)PAg(s0) ” U(s)g(s0). (4.260)

Since we consider the STr operation, supermatrices with fermionic entries can be cyclically permuted14, thus
´STr(αg´1DAg) = ´STr(DAg αg

´1). Writing this Lagrangian as L = πAŻ
A ´ H , the derivative term

contains the conjugate momentum15:

πA = (´)A
BL

BŻA
= (´)ASTr(PAgαg´1). (4.261)

Expanding gαg´1 = (gαg´1)BJB;

πA = (´)A(gαg´1)BSTr(JAJB) = (´)A(gαg´1)B
κAB
2

=
(gαg´1)BκBA

2
=

(gαg´1)A
2

. (4.262)

In the quantum theory, the conjugate momenta become the generators of the left action of g along the curve
g(s) Ñ U(s)g(s0). The additional sign factors ensure that the Lagrangian can indeed be written as:

L = πAŻ
A ´H = (´)A(gαg´1)B

κAB
2
ŻA ´H = ŻASTr(PAPB)(gαg´1)B ´H

= STr(ŻAPA gαg´1) ´H

= ´STr(Bsg αg´1) ´H (4.263)

, from which we identify the Hamiltonian upon comparison with the total Lagrangian Eq 4.256:

H = STr(Agαg´1) = AA(gαg´1)BSTr(JAJB) = (´)A(gαg´1)B
κAB
2
AA

= (gαg´1)B
κBA
2
AA = πAA

A = A. (4.264)

In the quantum theory, the conjugate momenta become operators that statisfy the (Euclidean) commutation
relations

[π̂B(s), Z
A(t)]˘ = ´(´)ABδBAδ(s´ t) (4.265)

, where we take an anti-commutator for fermionic indices and commutator for bosonic indices. These relations
are realized as π̂A(s) = ´(´)AB δ

δZA(s) . These act on the Hilbert space of functions that are invariant under

the global right action that stabilizes the orbit of α, and are left-parameterized by g(s) = e´ZA(s)PAg(s0).
The Hamiltonian is thus diagonalized on the elements of g(s) by the expansion of A in terms of the matrix
generators PA;

H g = AAv PA g. (4.266)

The identification of the path integral over closed loops g(s) with the trace of a Hamiltonian evolution operator
Eq D.26

Trj(e´βH) »

¿

Dφ e´I[φ] (4.267)

settles the identification between the first order path integral over the configurational fields g(s) and the Wilson

14The generators of the supermatrices JA with only bosonic entries cannot be cyclically permuted in the STr!
15The extra sign factor is present from the SW-NE convention in the first order Lagrangian: πA = (´)A B

BŻA (πAŻ
A ´H) = (´)A BL

BŻA .
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loop Eq 4.255.

To identify the quadratic Casimir, we start from the definition of the opposite osp(1|2,R) algebra Eq B.34. This
is because, just like the Borel-Weil generators, the fermionic generators πA along the path C are themselves
fermionic (as opposed to the fermionic generators Q˘ which contain solely bosonic entries). The definition
of the quadratic Casimir follows from the inverse Cartan-Killing metric Eq B.13 with the additional flip in the
sign of the fermionic block generators:

C2 = ´(´)AπAκ
ABπB = ´πAπBκ

BA. (4.268)

Inserting the explicit form of the generators πA Eq 4.262, and raising and lowering the Lorentz index in the
first and second factor respectively according to the rules Eqs 4.250, 4.249, we obtain:

C2 = ´
(gαg´1)A(gαg

´1)Bκ
BA

4
= ´

(gαg´1)BκBA(gαg
´1)A

4
. (4.269)

Using the definition of the Cartan-Killing metric according to the normalization of the JA-generators
STr(JAJB) = κAB/2:

C2 = ´
1

2
(gαg´1)BSTr(JBJA)(gαg´1)A = ´

1

2
STr(α2)

= ´
1

4
αAκABα

B. (4.270)

This proves the identification between the Casimir eigenvalue and the length of the adjoint vector α Eq 4.259.
By fixing the length of this vector, we fix the representation unambiguously to:

1

4
αIκIJα

J = ´C2(j) = j(j + 1/2) = m2. (4.271)

For a lowest-weight module with ` = ´j, the relation between mass and conformal weight is equivalent to:

`(`´ 1/2) = m2. (4.272)

Since the adjoint action of OSp(1|2,R) is transitive on all Lie algebra-valued vectors α with the same length
constraint, we introduce a functional integral over the latter

ż

DαDΘDαg e
´Sα[g,A] (4.273)

, where Θ is a scalar bosonic Lagrange multiplier enforcing the constraint (αaαa+ΞΞ) ” 4m2 (c.f. Eq 3.23):

Sα[α, g,A,Θ] =

ż

C
ds

[
´STr(αg´1DAg) +

i

4
Θ(αaα

a + ΞΞ ´ 4m2)

]
. (4.274)

Note that we again integrate over adjoint elements αA that live in a sub vector space of the algebra, by exclud-
ing the P2-spin component in the expansion Eq 4.258. This does not pose a problem as long as the total length
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of the vector is still constrained by Eq 4.259.

We fix the gauge redundancy in g, which amounts to right multiplying g by the stabilizer of α in OSp(1|2,R),
by setting g ” 1 along the entire curve C and smoothly extending this gauge into the bulk. This expresses the
Lagrangian in terms of the expansion coefficients of the gauge field (Eq 4.247) with:

g´1DAg = As = ŻM (E A
M JA). (4.275)

The total action thus becomes:

Sα[α, g,A] =
1

2

ż

C
ds

[
´αAŻ

ME A
M +

i

2
Θ(αaα

a + ΞΞ ´ 4m2)

]
. (4.276)

As a consequence of the general Majorana flip symmetry in 2d (Eq 4.252), the equations of motion with respect
to αA are convenient to deduce from the variations that act on the left:

´δαAŻ
ME A

M +
i

2
ΘδαAα

A +
i

2
ΘαAδα

A = δαA

(
´ŻME A

M + iΘαA
)

” 0

Ø αA = ´
i

Θ
ŻME A

M .

Inserted in the total action yields:

Sα[α, g,A] = i

ż

C
ds

[
1

4Θ
ŻNE A

N κABŻ
ME B

M ´ Θm2

]
. (4.277)

Consequently integrating out the Lagrange multiplier Θ, and choosing the upper branch solution of Θ

Θ =
i

2m

b

ŻNE A
N κABŻME B

M (4.278)

gives (c.f. Eq 3.25):

Sα[α, g,A] = m

ż

C
ds

b

ŻNE A
N κABŻME B

M . (4.279)

While this is exact off-shell, we should again modify the integration measure to make this a proper Gaussian
integral in Θ [97].

We characterize the metric tensor in terms of the frame fields as:

gNM = (´)ME A
N κAB EBM . (4.280)

, where the restriction of the Cartan-Killing metric κIJ Eq 4.248 to the P0,1 and fermionic Q˘ directions
coincides with the local Lorentz metric Eq 4.4. This definition is in particular compatible with Eq 4.53. Note
that we took the transpose of the second frame matrix in this definition. It turns out that this matrix should be
antisymmetric in its double fermionic block to obey the required symmetries:

E B
M = (´)MBEBM . (4.281)
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This is conform with the antisymmetry properties in our definition of the metric tensor in Eqs 4.211, 4.251:

gMN = (´)NE A
M κAB EBN

= (´)N+NM+AB+BM+ANEBNκABE
A

M

= (´)N+NM (´)A(N+M)+B(N+M)E B
N κBAE

A
M

= (´)N+NM+M (´)ME B
N κBAE

A
M

= (´)N+M+NMgNM .

The first line is our definition of the metric gMN . In the second line, I have interchanged the frame matrices
E A
M and E B

N . Essentially, since the Cartan-Killing metric contains no Grassmann entries, there are no
additional sign switches when pulling the frame fields through the Cartan-Killing metric. In the third line, I
have used the antisymmetry in the frame matrices and the Cartan-Killing metric. These yield an overall sign
factor (´)(A+B)(N+M). This factor essentially vanishes in our case since the Cartan-Killing metric is block
diagonal in the fermionic and bosonic entries. Therefore, if A has an odd parity, so does B and vice versa.
In the fourth line, I have isolated a factor (´)M and recognized the definition of the metric gNM up to the
required sign factors defined in Eq 4.211.
The inverse frame fields Eqs 4.7 E M

A E B
M = δBA , E

A
N E M

A = δMN , define the inverse metric according to:

gMN = EMAκ
BAE N

B . (4.282)

This choice satisfies the required antisymmetry property Eq 4.211:

gNM = ENAκ
BAE M

B

= (´)AB+MN+BN+AME M
B κBAENA

= (´)MN+M(A+B)+N(A+B)EMAκ
BAE N

B

= (´)MNgMN .

Crucially, we needed that κAB is block diagonal in the fermionic and bosonic entries. TherebyA andB always
share the same parity, and (´)M(A+B)+N(A+B) = 1. It is also the orthogonal partner to gMN defined in Eq
4.280:

gMNgNP = (´)PEMAκ
BAE N

B E C
N κCDE

D
P

= (´)PEMAκ
BAκBDE

D
P

= (´)P+AEMAκ
ABκBDE

D
P

= (´)P+AEMAE
A
P

= (´)P+AP+AM+MPEAPE
M
A

= (´)P+MPE A
P E M

A

” (´)P+MP δMP » δMP .

, again since the Killing metric is block diagonal κAB = (´)ABκBA = (´)AκBA.
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Using these definitions of the spacetime metric, the term inside the square root of the action Eq 4.279 is simply
the line element defined in the action of the EOW branes Eq 4.246:

ŻNE A
N κABŻ

ME B
M = (´)M+MBŻNE A

N κABE
B

M ŻM = (´)M ŻNE A
N κABE

B
M Ż

M

= ŻNgNM Ż
M .

Recognizing that flat field gauge transformations in the BF path integral are equivalent to superdiffeomor-
phisms in the metric formulation finally proves the equivalence between a Wilson loop operator insertion in
the BF path integral, and the free-particle path integral in the metric formulation:

Wj(C) »

ż

C
DZ e´m

ş

C ds

b

ŻMgMN ŻN

. (4.283)

Note that we should interpret the equality as an operator equivalence inside the BF path integral to account for
the superdiffeomorphic symmetries.

We distinguish two separate cases; when either the path Cτ1τ2 connects two points at the asymptotic boundary
with fixed proper time, or when C forms a closed loop inside the bulk. In the case of the latter, there are no
further restrictions on the probe field g(s) except that it should be single valued around the circle. Taking
periodic boundary conditions for the fermions, taking a (super)trace over closed paths associated to the probe
yields after gauge fixing the previously established result:

Wj(C) = STrj

P exp ´

¿

Cτ1τ2

A

 =

¿

C

DZ e´m
ş

C ds

b

ŻMgMN ŻN

. (4.284)

The evaluation amounts to taking a character in the spin-j lowest-weight discrete-series module.

In the case of the former, the path integral over a probe with both endpoints anchored to the thermal disk at
proper times τ1 ´ τ2 prepares an evolution operator between two states on the boundary. Both the right and
left parabolic labels of the asymptotic Hartle-Hawking states are constrained by the coset boundary conditions
to a predefined weight ν´ = ν+ = 1. By current conservation of the Clebsch-Gordan coefficients, the Wilson
line operator is constrained to the lowest-weight states ν´ = ν+ = 0. This boundary data should be incor-
porated in the boundary conditions of the probe field g(s) in the evaluation of the path integral. The precise
implementation is yet to be figured out. We thus have the following identification:

Wj,00(Cτ1τ2) = xj, 0´ | P exp

(
´

ż

Cτ1τ2

A
)

| j, 0+y =

ż

Cτ1τ2

DZ e´m
ş

C ds

b

ŻMgMN ŻN

. (4.285)
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4.8 Super-Gravitational amplitudes involving EOW branes

Having the correct boundary action Eq 4.246 in hand, the procedure is identical to the bosonic case. Path
integrating over the dilaton field imposes the extrinsic supercurvature to vanish:

K ” 0. (4.286)

By construction of the extrinsic supercurvature, the free particle path integral localizes onto geodesics;

ż

paths„C
DZ e´

ş

C ds

b

ŻMgMN ŻN (µ´ΦK) Integrate over Φ
ÝÝÝÝÝÝÝÝÑ

ż

geodesics„C
DZ e´µ

ş

C ds

b

ŻMgMN ŻN

. (4.287)

This localization is achieved by taking µ to be large (compared to the underlying Planck scale). Equivalently,
due to the relation between the tension parameter µ and the conformal weight `, the geodesic approximation
instructs us to identify `2 « µ2, leading to

` « µ (4.288)

, where we took the plus sign in the root since discrete lowest-weight modules are defined for ` ą 1/2 as we
will see momentarily.

To relate the gravitational to the group theoretical solutions, we ought to relate the relevant group parameters to
geometrical quantities (such as geodesic length). The latter are calculated in [46], which expresses the bosonic
solution Eq 3.57 into OSp(1|2,R)-invariant quantities. They have computed the geodesic distance between
two endpoints (τ1, ϑ1) and (τ2, ϑ2) on the boundary of the super-Poincaré-upper-half-plane (SUHP) metric
(Eq 4.46) to be:

cosh d = 1 +
|τ 1
1 ´ τ 1

2 ´ θ1
1θ

1
2|2

2(z1
1 ´ z1

1 ´ θ1
1θ

1

1)(z
1
2 ´ z1

2 ´ θ1
2θ

1

2)
. (4.289)

Coupled to the holographic wiggly boundary curve, the endpoints satisfy the single bosonic constraint Eq 4.50.
To leading order in ε, we write

cosh d = 1 +
|τ 1
1 ´ τ 1

2 ´ θ1
1θ

1
2|2

´8ε2|Dθ1
1|2|Dθ1

2|2
(4.290)

, which approximates to:

d « log |τ 1
1 ´ τ 1

2 ´ θ1
1θ

1
2|2

|Dθ1
1|2|Dθ1

2|2
´ log(´8ε2) (4.291)

in the asymptotic regime ε Ñ 0. This is the OSp(1|2,R)-invariant equivalent form of Eq 3.57, whose bottom
component b exactly coincides with the latter (c.f. Eq 4.52).
To proceed, we relate the bottom component of the lowest-weight super-Wilson line insertion Eq 4.168 to the
holographic description in terms of a bilocal operator in the super-Schwarzian theory Eq 4.165. Using the
explicit expression of the geodesic length in SUHP coordinates, we readily relate the bosonic geodesic length
b to the hyperbolic group parameter φ :

b = ´2φ . (4.292)

This is the same identification for the bosonic case 3.60, which is unsurprising since the bosonic submetric of
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both cases coincides.

4.8.1 Half-moon super-gravitational amplitudes

The super-gravitational calculation of half-disks ending on an EOW brane proceeds in complete parallel to the
discussion in section 3.4.1, to which I refer for a more in-depth discussion.
In particular, we use an open Cauchy slicing of the Hilbert space anchored on both sides to the asymptotic
boundary. Since the free particle path integral of a probe field moving between two proper time coordinates on
the boundary Cτ1τ2 is ultimately identified with a boundary-anchored Wilson line, we have the identification in
superspace:

ż

DBDA W`(Cτ1τ2)e´I
osp(1|2,R)
BF [B,A] =

ż

DgDΦ

ż

geodesic„Cτ1τ2

Dx e´µ
ş

Cτ1τ2
ds

b

ŻMgMN ŻN

e´IN=1
JT [g,Φ]

(4.293)
, where path integrating over the dilaton along the EOW brane fixes the regime

µ „ `, µ " 1. (4.294)

Anchored to the asymptotic boundary, we have argued that the free particle path integral evaluates to a lowest-
weight Wilson line insertion:

R`,0´,0+
(φ) = x`, 0´ | P exp

(
´

ż

Cτ1τ2

A
)

| `, 0+y . (4.295)

Specifying to the bottom component of the diagonal super-Wilson line matrix element in the lowest-weight
representation specified by j = ´`, we know the solution in the regime ` ą 1/2 (Eq 4.166) in terms of the
modified Bessel function of the first kind, defined as Jα(iz) » Iα(z)

Rj,ν´ν+(φ) = eφJ2j+1

(
2

?
´ννeφ

)
9 eφI|´2`+1|(2νe

φ) = eφI2`´1(2e
φ). (4.296)

Note that as an operator insertion, we do not in general care about normalization factors independent of the
group label. This is the same form of the bosonic Wilson line insertion Eq 2.278. Specifying to the lowest-
weight yields the exponential behaviour Eq 2.279:

Rj=´`,00(φ) „ e2`φ. (4.297)

On the other hand, within the geodesic approximation, any diagonal mixed parabolic state will yield the same
amplitude up to some φ-independent prefactor due to the asymptotic approximation Eq 3.66:

Rj=´`,ν´ν+(φ) „ e2`φ. (4.298)

Using the group parameter identification Eq 4.292, and irrep identification µ « `, this matrix element is written
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gravitationally as:
Rµ,0´0+

(b) = e´µb. (4.299)

We recognize this form as the on-shell (geodesic) approximation of the bottom component of free-particle path
integral in superspace:

ż

paths„Cτ1τ2

Dx e´µ
ş

Cτ1τ2
ds

« e´µb. (4.300)

Of course, this identity holds only inside the path integral, resulting in an integration over geodesic lengths b,
since the boundary data is unspecified on the wiggly boundary curve. This demonstrates consistency between
the gravitational and the group theoretic approach since we a priori expect the geodesic approximation of the
free particle path integral to be one-loop exact in this limit. On the one hand, we can immediately write down

Eq 4.300 as the on-shell approximation of the free particle path integral e´µ
ű

C ds

b

ŻMgMN ŻN

« e´µb. On the
other hand, we see that by taking a suitable limit of the exact answer obtained in group theory leads to the same
result.

The EOW brane amplitude is calculated from the doubled Euclidean solution with the insertion of a Wilson
line Eq 4.169:

= x1 | e´βHW`,00 | 1y =

ż 8

´8

dφ

(
e´φ

2

)
x1 | e´β2H | φyR´`,00(φ) xφ | e´β1H | 1y

=

ż 8

´8

dφ

(
1

2
e´φ

)
ZHartle(φ, β1)

˚ (R´`,00(f))ZHartle(φ, β2). (4.301)

Performing a Z2-quotient along the geodesic EOW brane fixed points removes one asymptotic Hartle-Hawking
state. Inserting the explicit amplitude of the remainder (Eq 4.150) yields:

=

ż 8

´8

dφ

(
e´φ

2

)
Rj=´`,0´0+

(φ) xφ | e´βH | 1y

»

ż 8

0
dk cosh(2πk)e´βk2

ż 8

´8

dφ
(
K1/2+2ik(2e

φ) + ε´ε+K1/2´2ik(2e
φ)
)
e2`φ.

(4.302)

We may interpret this result as the supergravitational amplitude of a pure state in Euclidean signature.
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4.8.2 Trumpet gravitational amplitudes

The result for boundary-anchored EOW branes does not teach us much about the underlying group-theoretic
structure since the matrix element is, by consistency, just the on-shell geodesic saddle of the full free-particle
path integral. EOW branes that do not reach the asymptotic boundary, but describe a closed loop at the neck
of a supersymmetric trumpet are structurally more interesting. This is because the closed loops can contribute
one-loop corrections to the classical saddle, which can be easily pinned down by group-theoretical considera-
tions.
In particular, Eq 4.284 demonstrates that the full-fledged path integral is the character evaluated in a lowest-
weight discrete series representation module labeled in terms of the tension parameter µ, by the relation Eq
4.288. For Wilson lines in the lowest-weight discrete series representation, this is the character of some hyper-
bolic class element.

Discrete series representation

The lowest-weight discrete series representations of OSp(1|2,R) are constructed in much the same way as
those of SL(2,R) [40]. For OSp(1|2,R), basis states are constructed with respect to the Borel-Weil generators
Eq B.32. These should diagonalize the Cartan element iH = ´xBx ´ 1

2ϑBϑ + j. The eigenvalue under iH is
called the weight of the eigenstate. As a consequence of the osp(1|2,R)-algebra Eq B.34, weights are raised
and lowered by application of the pairs iF´, iE´ and iF+, iE+ respectively16. In particular applying iE´,
iE+ to a basis state with weight j raises, respectively lowers the eigenvalue by one unit under the commutation
relations:

[iH, iE´] = iE´, [iH, iE+] = ´iE+. (4.303)

On the other hand, the osp(1|2,R) algebra is equipped with fermionic generators iF´, iF+ that raise, respec-
tively lower the weight by 1/2 under the commutation relations:

[iH, iF´] =
1

2
iF´, [iH, iF+] = ´

1

2
iF+. (4.304)

Highest-weight modules are constructed by acting indefinitely with the lowering operator iF+ = ´1
2xBϑ ´

1
2xϑBx + jϑ on some highest-weight state ψHW . This highest-weight state should be annihilated under the
raising operator iF´ = 1

2(Bϑ+ϑBx). Its weight under iH is called the weight of the highest-weight module. We
realize the discrete representation on the superline R1|1 by the monomial representation. The highest-weight
state is the constant function

ψHW (x, ϑ) = 1 (4.305)

, whose weight under iH is simply j. The successive application of iF+ on this highest-weight state generates
an entire module j, j ´ 1

2 , j ´ 1, . . .

Lowest-weight representations are constructed by acting successively with the raising operator iF´ on some

16Beware again the perhaps misleading notation of the generators. P.S. [40] uses throughout an isomorphism of the osp(1|2,R) that is
structurally more intuitive. On the other hand, I have opted to match the conventions used in the bosonic case as much as possible for clarity.
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lowest-weight state ψLW . This state should be annihilated by the lowering operator iF+. On R1|1, one chooses

ψLW (x, ϑ) = x2j (4.306)

, whose weight under iH is iH = ´j. When 2j P N, the representation becomes finite for some j ă 8. We
therefore introduce a positive ` ą 1/2 with j = ´`, consistent with 2` P N. The lowest-weight state in this
case is:

ψLW (x, ϑ) =
1

x2`
(4.307)

, with corresponding weight iH = `. Successive action of iF´ generates an infinite module j, j+ 1
2 , j+1, . . . .

Also note that within the universal covering group ˜OSp(1|2,R), the weights 2j are not necessarily constrained
to integer values, and can admit a continuous range.

Note that in both lowest- and highest-weight modules, all states are simultaneous eigenvalues of the sCasimir
(´)F = 1 ´ 2ϑBθ (Eq B.35), since both the lowest- and highest-weight states are bosonic with eigenvalue
(´)F = 1. Successive application of the fermionic raising and lowering operators alternates the Z2 eigenvalue
(+,´) under (´)F [40].

Since we imagine the EOW loops at the neck of a supergravitational trumpet, the relevant group elements
are part of the hyperbolic conjugacy class. In the Gauss parametrization, the hyperbolic class elements are
parameterized by the single group element g(φ) = e2φiH , labeled by the hyperbolic group parameter φ (c.f.
Eq 4.183):

g(φ) = e2φiH =

 e´φ 0 0

0 eφ 0

0 0 ˘1

 . (4.308)

The character in the NS sector (´) is simply given by the value of the STr (since the definition of the STr
compensates the minus sign for e = ´1). The lowest-weight discrete series representation j = ´` reads:

χNS
` (φ) = STr

(
e2φiH

)
=

8
ÿ

n=2`

enφ. (4.309)

Note that in order for the geometric series to converge, we need φ = ´ b
2 ă 0, and we should therefore con-

strain to positive geodesic lengths. The novel difference between the evaluation of the hyperbolic SL(2,R)
character (c.f. Eq 3.83) is that we take the sum in steps of 1/2 instead of single units.

Also note that the multiplicity of each state is still unity in the general definition Eq 3.81, although it might
seem that linearly independent states with the same integer weight might be created by either raising in integer
steps iE´, or with doubly as many half-integer steps iF´. However, the algebra anticommutation relation
tiF´, iF´u = 1

2 iE´ demonstrates that the successive action of iF´ squares to iE´, and that these sates are
not linearly independent. In any case, the multiplicity of each weight is still one.
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A geometric series immediately learns:

χNS
` (φ) =

e2`φ´φ/2

2 sinh (´φ/2)
. (4.310)

Modulo different conventions, this result coincides with the result of [40].

Within the R sector, the hyperbolic matrix should first be multiplied by the sCasimir (´)F in the evalua-
tion of the STr to generate a genuine trace [40]. Since every successive state alternates between (´)F =

1,´1, 1,´1, . . . , starting with 1 for the lowest-weight state, the evaluation of the lowest-weight hyperbolic
group character in the R sector is readily achieved by adding an additional sign factor (´)n´2`:

χR
` (φ) = STr

(
(´)F e2φiH

)
=

8
ÿ

n=2`

(´)´2`+n enφ (4.311)

In order for the geometric series to converge, we again require φ = ´ b
2 ă 0, thereby constraining the regime

to positive geodesic lengths. The result is readily worked out:

χR
` (φ) =

e2`φ´φ/2

2 cosh(´φ/2) (4.312)

, which again coincides with [40] up to the current conventions.

Gluing along the trumpet partition function

The identity Eq 4.284 instructs us to identify the free particle path integral over closed loops superdiffeo-
morphic to C with a discrete series character insertion in the BF path integral. According to the familiar
cutting-and-gluing axioms, we simply glue the relevant discrete series character along the geodesic ends of
the single trumpet amplitude in superspace. Since the trumpet geometry is achieved by inserting a hyperbolic
character of the continuous series representation in the disk partition function, we glue along the hyperbolic
characters in the discrete series representation derived above.

The transition from the group theoretical language to gravity is achieved by replacing 2φ Ñ ´b, (where b
corresponds to the bottom component of the geodesic length). This is true for Wilson lines attached to the
boundary, but also holds for the geodesic at the neck of the trumpet. Indeed, according to the discussion of sec-
tion 4.5, we extrapolate the monodromy relations of a defect insertion into the bulk by using the same bosonic
submetric corresponding to defects in bosonic JT gravity in section 2.9. We may therefore immediately ex-
trapolate the bosonic identification 2φ = ´b (Eq 2.313) to the bottom component of the geodesic length in
superspace.



216 CHAPTER 4. EOW BRANES IN JT SUPERGRAVITY

We further identify the mass tension µ « ` " 1 with the weight of the discrete series representation, and
identify the closed loop path integral in each of the different spin structures with the character insertions Eqs
4.310 4.312 inside the total path integral:

NS

¿

C

DZ e´µ
ű

C ds

b

ŻMgMN ŻN

»
e´µb

2 sinh(b/4) , (4.313)

R

¿

C

DZ e´µ
ű

C ds

b

ŻMgMN ŻN

»
e´µb

2 cosh(b/4) . (4.314)

Within the geodesic approximation, we have neglected the linear terms in the exponent. It is interesting to
note that the denominator can be interpreted as a one-loop correction to the classical saddle (geodesic) approx-
imation. Gluing the free particle amplitudes along the geodesic length (φ ă 0 Ñ b ą 0) at the neck of the
relevant spin-structured trumpets (Eqs 4.197, 4.198) finally yields:

ZNS
EOW (β) =

ż 8

0
dk e´βk2

ż 8

0
db cos(bk) e´µb

2 sinh(b/4) , (4.315)

ZR
EOW (β) =

ż 8

0
dk e´βk2

ż 8

0
db sin(bk) e´µb

2 cosh(b/4) . (4.316)

An immediate realization is that the spurious UV divergence of the bosonic result Eq 3.87 for small b Ñ 0 is
only present in the NS sector. On the other hand, the R sector is perfectly regular in the UV.
In accordance with the bosonic solution [36], we keep the Weyl denominator of the discrete series character
since the free particle path integral evaluates to a genuine character in group theory. In contrast, the hyperbolic
defect of the gravitational trumpet is only formally identified with only the numerator of the continuous series
character.



Chapter 5

Outlook and Future Developments

5.1 Future developments

5.1.1 EOW branes in N = 2 JT supergravity

We can try to generalize this further to N = 2 supersymmetry and higher. JT supergravity with two super-
charges is characterized by the breaking SL(1, 1|1) Ą SL(2,R) ˆ U(1). The global super-conformal group
SU(1, 1|1) » OSp(2|2,R) » SL(1|2,R) is 4|4-dimensional with four bosonic and four fermionic generators.
The former are labeled by H,Z,E˘, the latter by F˘, F˘.
The sl(1|2,R) » osp(2|2,R) algebra is realized in the fundamental representation by the a set of 8 2|2 ˆ 2|2-
dimensional supermatrices [109]:

H =


1
2 0 0 0

0 ´1
2 0 0

0 0 0 0

0 0 0 0

 , E+ =


0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , E´ =


0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , Z =


0 0 0 0

0 0 0 0

0 0 0 i
2

0 0 ´ i
2 0

 ,

F+ =


0 0 1

2 ´ i
2

0 0 0 0

0 1
2 0 0

0 ´ i
2 0 0

 , F̄+ =


0 0 1

2
i
2

0 0 0 0

0 1
2 0 0

0 i
2 0 0

 , F´ =


0 0 0 0

0 0 ´1
2

i
2

1
2 0 0 0

´ i
2 0 0 0

 ,

F̄´ =


0 0 0 0

0 0 1
2

i
2

´1
2 0 0 0

´ i
2 0 0 0

 .

(5.1)

217



218 CHAPTER 5. OUTLOOK AND FUTURE DEVELOPMENTS

These satisfy the sl(1|2,R) » osp(2|2,R) superalgebra [109]:

[H,E˘] = ˘E˘, [H,F˘] = ˘
1

2
F˘, [H, F̄˘] = ˘

1

2
F̄˘,

[Z,H] = [Z,E˘] = 0, [Z,F˘] =
1

2
F˘, [Z, F̄˘] = ´

1

2
F̄˘,

[E˘, F˘] = [E˘, F̄˘] = 0, [E˘, F¯] = ´F˘, [E˘, F̄¯] = F̄˘,

tF˘, F˘u = tF̄˘, F̄˘u = 0, tF˘, F¯u = tF̄˘, F̄¯u = 0, tF˘, F̄˘u = E˘,

[E+, E´] = 2H, tF˘, F̄¯u = Z ¯H.

(5.2)

The Cartan subalgebra now consists of two commuting operators H,Z, whose eigenvalues j and b label the
distinct representations. Typical irreducible representations labeled by j and b are denoted by Rj,b, and can be
decomposed into the bosonic sl(2,R) ‘ u(1) subalgebra according to the Branching rule [109]:

Rj,b » (j, b) ‘ (j ´
1

2
, b´

1

2
) ‘ (j ´

1

2
, b+

1

2
) ‘ (j ´ 1, b). (5.3)

Due to a modification of the conventions of the bosonic sl(2,R) subalgebra in Eq 5.2 with respect to Eq A.5,
the definition of the corresponding Borel-Weil sl(2,R)-generators is modified to

H = xBx ´ j, E+ = ´x2Bx + 2jx, E´ = Bx. (5.4)

Instead of lowest-weight modules, the monomial |j, 0y = x2j correspond to a highest-weight state, for which
the successive action of E´ generates an entire highest-weight module. Explicitly, we know that the relevant
highest-weight state of sl(2,R) is constructed by acting with H = xBx ´ j on x2j , producing a weight under
H of H = j. This state is also annihilated by the raising operator E+ = ´x2Bx + 2jx. Due to the sl(2,R)-
algebra relation [H,E´] = ´E´, an infinite module of weights j ´ N is generated. Since the multiplicity
of each weight is one, the highest-weight character of a hyperbolic class element is readily calculated using a
geometric series:

χ
sl(2,R)
j (e2φH) =

j
ÿ

n=´8

e2φn =
eφ+2φj

2 sinhφ. (5.5)

The corresponding u(1) character is the exponential

χ
u(1)
b (θ) = e2ibθ. (5.6)
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Using the Branching rule Eq 5.3, the highest-weight N = 2 character of the hyperbolic class element g =

e2Hφe2iθZ , evaluated in representation (j, b), is readily:

χ
osp(2|2)
j,b (φ, θ) = Trj,b(e2Hφe2iθZ) (5.7)

=
eφ(1+2j)

2 sinhφ e
2ibθ +

eφ(´1+2j)

2 sinhφ e2ibθ ´
e2jφ

2 sinhφe
2i(b´1/2)θ ´

e2jφ

2 sinhφe
2i(b+1/2)θ

= e2jφe2ibθ
(

coshφ´ cos θ
2 sinhφ

)
=

e2jφe2ibθ
a

∆(φ, θ)
. (5.8)

The minus signs are for fermionic states, which in the supertrace automatically get a minus sign. The denomi-
nator

a

∆(φ, θ) corresponds to the Weil-denominator of the group OSp(2|2,R) [109]:

∆(φ, θ) =
sinh2 φ

(coshφ´ cos θ)2 . (5.9)

For gravitational applications, we restrict to highest-weight states characterized by a negative j = ´` ă 0,
with the corresponding character

χ
osp(2|2,R
j=´`,b (φ, θ) =

e´2`φe2ibθ
a

∆(φ, θ)
. (5.10)

In the same way, we may find the hyperbolic character corresponding to the principal series representations.
The continuous series sl(2,R) character of spin j is given by Eq 2.322. Taking into account the modified
bosonic sl(2,R) subalgebra in Eq 5.2 we simply shift φ Ñ ´φ:

χ
sl(2,R)
j (φ) =

cosh(2j + 1)φ

sinhφ . (5.11)

We deduce the relevant osp(2|2,R) character using again the branching rule 5.3:

χN=2
j,b (φ, θ) (5.12)

=
cosh(2j + 1)φ

sinhφ e2ibθ ´
cosh(2j)φ

sinhφ e2i(b´1/2)θ ´
cosh(2j)φ

sinhφ e2i(b+1/2)θ +
cosh(2j ´ 1)φ

sinhφ e2ibθ

=
2 cosh (2jφ) (coshφ´ cos θ)e2ibθ

sinhφ =
2 cosh (2jφ) e2ibθ

a

∆(φ, θ)
(5.13)

, with cosh(2j + 1)φ = cosh 2jφ coshφ + sinh 2jφ sinhφ and cosh(2j ´ 1)φ = cosh 2jφ coshφ ´

sinh 2jφ sinhφ. Now finally setting j = ik for unitarity [109], we obtain the principal series character:

χN=2
k,b (φ, θ) =

2 cos (2kφ) e2ibθ
a

∆(φ, θ)
. (5.14)

This is again manifestly orthogonal with respect to the Weil denominator Eq 5.9. The numerator serves as a
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hyperbolic defect insertion to obtain a single trumpet amplitude between an asymptotic boundary of length β
and a geodesic with length related to φ:

Ztrump(φ, θ) =

ż

dkdqe´β(k2´q2) cos(2kφ)e2iqθ. (5.15)

The quadratic Casimir in the propagator is given by C2 = k2 ´ b2. In contrast to the N = 1 case, there are no
two disconnected solutions depending on the periodicity sector of the gravitinos around the circle. Instead, all
periodicity sectors are continuously connected by the θ degree of freedom, for which the fermions pick up the
u(1) phase factor eiθ upon travelling around the circle. For θ = 0 this is the periodic R sector, while θ = π

corresponds to the antiperiodic NS sector.

Denoting the collection of all generators JI , we may calculate the Cartan-Killing metric associated to these
states following the usual definition:

STr(JIJJ) =
κIJ
2
. (5.16)

In the order tH,Z,E+, E´, F+, F´, F̄+, F̄´u, we readily calculate the metric to be:

κIJ =



1 0 0 0 0 0 0 0

0 ´1 0 0 0 0 0 0

0 0 0 2 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 ´2

0 0 0 0 0 0 ´2 0

0 0 0 0 0 2 0 0

0 0 0 0 2 0 0 0


. (5.17)

Indices are raised and lowered with respect to this metric. Its inverse is given by

κIJ =



1 0 0 0 0 0 0 0

0 ´1 0 0 0 0 0 0

0 0 0 1/2 0 0 0 0

0 0 1/2 0 0 0 0 0

0 0 0 0 0 0 0 1/2

0 0 0 0 0 0 1/2 0

0 0 0 0 0 ´1/2 0 0

0 0 0 0 ´1/2 0 0 0


. (5.18)

This leads to the definition of the quadratic Casimir:

C2 = κIJJIJJ (5.19)

= H2 ´ Z2 +
1

2

(
E+E´ + E´E+

)
+

1

2

(
F+F̄´ + F´F̄+

)
´

1

2

(
F̄+F´ + F̄´F+

)
. (5.20)
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Using the algebra relations Eq 5.2, this readily reduces to:

C2 = H2 ´ Z2 + E´E+ +H +
1

2

(
Z ´H ´ F̄´F+ + F´F̄+

)
´

1

2

(
Z +H ´ F´F̄+ + F̄´F+

)
= H2 ´ Z2 + E´E+ ´ F̄´F+ + F´F̄+.

The eigenvalue of the quadratic Casimir is again parameterized by the eigenvalues j, b as [109]:

C2 = j2 ´ b2. (5.21)

We would now like to repeat the usual analysis of section 3.3, and obtain an action of an EOW brane whose
quantum amplitude is described by precisely a Wilson loop. Thereto, we again define linear combinations of
the bosonic generators Eq 2.21:

P0 = ´H, P1 =
1

2
(E´ + E+), P2 =

1

2
(E´ ´ E+) (5.22)

, and expand the gauge field A as
A = EAPA +ΩJ2. (5.23)

PA denote all the remaining OSp(2|2,R) generators except J2. We may therefore embed the frame fields into
a 3|4-dimensional Lorentz manifold. By metric invertibility, this is translated into a 3|4-dimensional Einstein
manifold.
By the same arguments around Eq 4.255, we write a Wilson loop, evaluated in a highest-weight discrete series
representation labeled by j and b as a path integral in the BF theory:

Wj,b(C) =
ż

Dαge
´Sα[g,A] (5.24)

, where the first order action is given by:

Sα = ´

ż

C
ds Tr(αg´1DAg). (5.25)

α P osp(2|2,R) is a vector in the osp(2|2,R) algebra whose length is constrained by the eigenvalue of the
quadratic Casimir:

C2 =
1

2
Tr(α2) = j2 ´ b2 ” m2. (5.26)

The last equality associates the quadratic Casimir of the representation with the total energy m2. However, this
does not fix the representation unambiguously since the Cartan subalgebra contains two commuting elements
Z and H . To fix the representation, we also need to fix the eigenvalue of the cubic Casimir, defined in terms of
the cubic Killing form [95]:

STr(JIJJJK) =
hIJK
8

. (5.27)
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This tensor determines the cubic Casimir1;

C3 = hIJKJ
IJJJK . (5.28)

Using the conjugate momenta defined in Eq 4.261, the cubic length of the vector α is constrained by the value
of the cubic Casimir (c.f. Eq 4.259):

STr(α3) =
1

8
hIJKα

IαJαK = C3 ”
1

8
Q3. (5.29)

We fix the cubic Casimir by a numerical charge Q, whose relation with the representation labels j, b is yet to
be determined.
We may enforce these constraints directly in the path integral by introducing two scalar Lagrange multipliers
Θ1, Θ2, and functionally integrating over a family of vectors α P osp(2|2,R) whose quadratic and cubic
lengths are constrained according to the above prerequisites:

α = αAPA. (5.30)

We again neglect the spin component corresponding to J2 in the sum over the generators.

Wj,b(C) =
ż

DαDΘ1DΘ2Dαg e
´Sα[α,g,A,Θ1,Θ2]. (5.31)

The appropriate first order action is

Sα[α, g,A,Θ1,Θ2] =

ż

C
ds

[
´STr(αg´1DAg) +

i

4
Θ1(αAα

A ´ 4m2) + iΘ2(hABCα
AαBαC ´Q3)

]
.

(5.32)

Fixing the gauge redundancy in g by setting g = 1 along the entire curve amounts to setting g´1DAg = As =

ŻM (E A
M JA), leading to:

1

2

ż

C
ds

[
´αAŻ

ME A
M +

i

2
Θ1

(
αAα

A ´ 4m2
)
+ 2iΘ2(hABCα

AαBαC ´Q3)

]
. (5.33)

The action integral is now non-Gaussian in the αA vector. On the other hand, integrating out Θ2 leads to the
same integrand corresponding to the free particle action Eq 4.276. The constraint αAαBαChABC = Q3 is now
implicit in the domain of integration.
To make this constraint visible in the second order form, we define the inverse frame fields Eq 4.7, satisfying:

E M
A E B

M = δBA , E A
N E M

A = δMN . (5.34)

We now define the conjugate momenta and metric from the frame fields and α-components:

kM ”
BL

BŻM
= ´

1

2
(´)AMαAE

A
M = ´

1

2
αAE

A
M (5.35)

1This is the SUSY version of the cubic Casimir in [95]. It is not clearly settled by now if this definition naturally generalizes to the osp(2|2,R)
superalgebra.
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, where I have used the frame field transpose property. We isolate αA from kM by contracting kM with E M
A :

αA = ´(´)A2E M
A kM = (´)AE M

A αBE
B
M = (´)A+MBE M

A αBE
B

M (5.36)

= (´)A+BE M
A E B

M αB » (´)A+BδBAαB » αA.

Indices of the Lorentz vectors are lowered from the right with respect to the Cartan-Killing metric: αA =

αBκBA. By consistency, indices are raised from the right αB = αAκ
AB . Explicitly:

αB = αAκ
AB = ´(´)A2E M

A kMκ
AB = ´(´)A2κABE M

A kM

= ´2κBAE M
A kM (5.37)

, again using that κAB = (´)AκBA. Remember that the Cartan-Killing metric contains no fermionic entries,
and therefore commutes freely to the left.
The first constraint αAαA may therefore be recast in the metric formalism as:

αAα
A = (´)A4E M

A kMκ
ABE N

B kN = (´)A+AB+AN4E N
B κABE M

A kMkN

= (´)A+AB+BN4E N
B κABE M

A kMkN = (´)A+AB4ENBκ
ABE M

A kMkN

= 4gNMkMkN = 4kMkM (5.38)

, where we have used that the Cartan-Killing metric is fermionic block diagonal, thereby identifying the Grass-
mann parity of A and B. In the last line, I have used the definition of the inverse metric Eq 4.282 and
(´)A+AB = 1. Remember that opposed to Lorentz indices, Einstein indices are raised and lowered from
the left. The first constraint αAαA = 4m2 therefore physically constrains the total energy of the probe via the
conjugate momenta:

kMkM ” m2. (5.39)

In the same way, we can cast the second constraint in terms of the conjugate momenta:

hABCκ
ADE M

D kMκ
BEE N

E kNκ
CFE P

F kP ” ´
1

8
Q3. (5.40)

The physical interpretation of this constraint in the second order metric formulation is much less clear than the
quadratic constraint, and we leave it open for now. We may therefore write a Wilson line in terms of a path
integral over the second order action:

Sα[g,Θ1,Θ2, k] ”

ż

C
ds

[
ŻMkM + iΘ1(k

MkM ´m2)

+ iΘ2(κ
ADE M

D kMκ
BEE N

E kNκ
CFE P

F kP hABC +
1

8
Q3)

]
(5.41)

The first two terms agree with the first order metric formulation of the free particle action on the world-line C.
The third term makes the integral non-Gaussian, and we cannot cast it in the closed second order form. The
action of an EOW brane in superspace for N = 2 and higher should thus be formulated in the first order form
over the phase space coordinates ZM and kM , with suitable constraints on the conjugate momenta. The first
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being just the Einstein relation between energy and mass. The physical origin of the second is still unclear by
the time of writing.
The free particle path integral with these extra constraints thus prepares a Wilson loop in the bulk, evaluated
in a highest-weight representation (j = ´`, b). These parameters are related to the physical EOW tension
and charge parameters µ,Q, whose explicit dependence is left implicit for now. Using the explicit form of the
N = 2 trumpet partition function Eq 5.15 and that of the highest-weight OSp(2|2,R) discrete series character
Eq 5.10 we readily deduce:

ZN=2
EOW (`, b) =

ż

dkdqe´β(k2´q2)

ż

dφdθ cos(2kφ)ei2qθ coshφ´ cos θ
sinhφ e´2`φe2ibθ . (5.42)

In accordance with the bosonic solution of the boundary particle formalism [36], we keep the Weyl denomina-
tor of the discrete series character since the full free particle path integral evaluates to a genuine character in
group theory. In contrast, the hyperbolic defect preparing the gravitational trumpet is only formally identified
with the numerator of the continuous series character.
Note that these results are still preliminary. In particular, the precise interpretation of Eq 5.40 is not yet under-
stood in gravity. Furthermore, we still have to obtain the precise form and eigenvalue of the cubic Casimir in
OSp(2|2,R). Additionally, it has been quite a puzzle to obtain consistent definitions for the geometric quanti-
ties in superspace. Further puzzling might reveal some more elegant set of conventions.
To obtain the amplitudes of an EOW brane anchored to the asymptotic boundary, we should still work out the
Hartle-Hawking states starting from the mixed parabolic Whitakker functions of the OSp+(2|2,R) supergroup.

5.2 Summary and results

Starting from the total action of JT gravity in the presence of an end-of-the-world (EOW) brane Eq 3.1:

S =
1

2

ż

Φ
a

|g|(R+ 2) +

ż

AdS
du Φ

?
´guu(K ´ 1) +

ż

EOW
dv

?
´gvv(ΦK ´ µ) (5.43)

, [34] and [36] have obtained various quantum amplitudes involving EOW branes in different topologies us-
ing the boundary particle formalism. The former [34] considered EOW branes anchored to the holographic
boundary, resulting in:

ZEOW (β) = =

ż 8

0
dk k sinh 2πk e´βk2

22µ´2|Γ(µ´
1

2
+ ik)|2. (5.44)
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The latter [36] considered EOW loops attached to the neck of a single trumpet amplitude, characterized by:

ZEOW (β) = =

ż

dk e´βk2

ż 8

0

db

sinh(b/2) cos(kb)e´µb. (5.45)

In both cases, β denotes the length along the asymptotic boundary, while µ denotes the tension along the brane.
The first amplitude corresponds to a purification of the Euclidean disk, and has been used to model pure states
in the black hole evaporation process in [34]. This argument is reviewed in section 3.5.
In this thesis, we have obtained these amplitudes using the first-order gauge theoretic formulation of JT quan-
tum gravity, by linking the missing pieces of the puzzle that were largely present throughout the literature.
To start, section 1.5 reviews the discussion due to Maldacena et al. [17], pinning down the holographic de-
scription of JT gravity in terms of the Schwarzian boundary theory. In particular, by path integrating over
the dilaton field in the bulk term of the action Eq 5.43, the bulk contribution vanishes and the geometry is
described by patches of pure AdS2. The remaining degrees of freedom are captured completely in terms of the
conformal reparameterization modes of the wiggly boundary curve. The pulled-back extrinsic curvature along
the boundary curve is in this case equivalent to the Schwarzian derivative (c.f. Eq 1.88). The one-loop exact
partition function has been obtained by Stanford et al. [20], while the exact quantum amplitudes of multiple
bilocal operator insertions in the Schwarzian perspective are calculated by Mertens et al. [21].

Blommaert et al. [22] have obtained the same disk amplitudes of JT gravity with multiple Wilson line in-
sertions in the gauge theoretical BF perspective. Wilson lines in the bulk can consequently be regarded as
the bulk duals to bilocal operators of the Schwarzian boundary theory. The disk amplitudes with Wilson line
insertions match precisely with the holographic Schwarzian correlators of bilocal operators. The result is a set
of diagrammatic rules Eqs 2.284, 2.285, 2.286 that are exact to all order in perturbation theory. This was the
first approach towards an exact quantization of JT gravity directly from the bulk perspective, complementing
quantization approaches in the dual Schwarzian perspective.
Although the on-shell equivalence between JT gravity and an sl(2,R) BF theory had already been established
before [78], [79], the exact quantization requires explicit knowledge of the precise exponentiation of the alge-
bra. Blommaert et al. [22] argue that JT gravity is described in terms of the subsemigroup SL+(2,R). The
quantum amplitudes with multiple Wilson line insertions follow directly from an open-channel perspective that
is found to be in harmony with the closed channel perspective of YM2. The holographic particle-on-a-group
description of the BF formulation reduces to the holographic Schwarzian description of JT gravity in a con-
strained setup. The precise constraints are the coset boundary conditions reviewed in section 2.183.
Blommaert et al. [24] fine-tuned the equivalence between JT gravity and a constrained SL+(2,R) BF theory
further, by demonstrating that this choice naturally constrains to smooth geometries in the path integral. On a
technical level, a motivation in favour of the subsemigroup is that the continuous series representations are the
only ones appearing in the Plancherel decomposition.

Using a modification of the analysis of Iliesiu et al. [23], we have related the free particle action in the second
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order metric formulation along paths diffeomorphic to C to a Wilson line (loop) insertion in the path integral
(c.f. Eqs 3.31, 3.30). This relates the full-fledged path integral of a free particle with mass m to a group the-
oretical operator insertion evaluated in a lowest-weight discrete series representation of spin-`. The mass and
representation label (related to the conformal dimension of the dual bilocal operator) are related according to
the standard holographic dictionary 3.5.
When C is anchored on both sides to the asymptotic boundary, the boundary coset restrictions apply Eq 3.63,
and we evaluate the free particle path integral as the preparation of a Wilson line between two lowest-weight
states. For C describing closed loops in the interior, the weight labels are unconstrained and the general
Gibbons-Hawking prescription of thermal QFT instructs us to take a trace over the holonomy instead.

We further note that the extrinsic curvature in Eq 5.43 vanishes along the entire trajectory by integrating over
the dilaton field, which acts as a Lagrange multiplier in the total path integral. Using the variation of the free
particle action Eq 3.44, we argue that this effectively constrains all possible paths in the path integral to the
collection of geodesic trajectories Eq 3.45 between two points. Since the boundary conditions on the wiggly
boundary are non-unique, we still consider a remaining integration over all possible geodesic lengths.
To effectively localize on geodesics, we ought to take µ large compared to the effective quantum scales in
the underlying theory. This identifies the tension one-to-one with the representation label Eq 3.46. Using the
identification between the hyperbolic group label φ and the geodesic length b Eq 3.60, the boundary-anchored
EOW brane path integral with coset boundary conditions in the geodesic limit is, by consistency, identified
with the on-shell approximation of the free particle path integral (c.f. Eq 3.67). This is to be expected since the
free particle path integral is one-loop exact.

We obtain the half-moon amplitude of an EOW brane attached to the asymptotic boundary by considering the
standard result of the two-sided Euclidean black hole with the insertion of a Wilson line Eq 2.276. Performing
a Z2-quotient removes one asymptotic Hartle-Hawking state and identifies the remaining amplitude with the
result of [34] (Eq 5.44). Interestingly, we may interpret the Gamma function in the latter as an overlap between
matrix elements of the discrete- and continuous series representation.
On the other hand, an EOW brane attached to the neck of a single trumpet partition function exhibits an in-
teresting correction to the classical saddle. First of all, the single trumpet partition function is achieved by
inserting a hyperbolic defect in the disk partition function [37]. In the BF formulation, this is equivalent to
inserting a suitably normalized continuous series character of a hyperbolic conjugacy class element (c.f. Eq
2.289). We have calculated the relevant continuous series hyperbolic character in SL(2,R) representation the-
ory in analogy to the techniques of [90] [40] (c.f. 2.323). Earlier calculations in the holographic Schwarzian
perspective Eq 2.317 instruct us to consider only the numerator of this character. By removing the denomina-
tor, we consequently glue with a flat integration measure in Teichmüller space.
The EOW brane itself is equivalent to a Wilson loop attached to the neck of this trumpet. The equivalence be-
tween the free particle path integral and a Wilson loop insertion instructs us to consider the hyperbolic character
of an SL(2,R) lowest-weight discrete series module. Within the geodesic approximation, the correction to the
on-shell geodesic approximation Eq 3.85 coincides exactly with the EOW wavefunction of the free-particle
formalism [36] (c.f. 5.45).
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Although obtaining the EOW brane amplitudes from a group theory perspective might obscure some of the
immediate gravitational features of the free particle perspective, it does allow us to generalize the notion of
EOW branes directly to applications of JT supergravity, whose action in 2|2-dimensional superspace is given
by [39] (c.f. Eq 4.1):

IN=1
JT =

1

4

[
ż

Σ
d2zd2θ EΦ(R+´ + 2) + 2

ż

BΣ
dτdϑ ΦK

]
. (5.46)

Essentially, the holographic description is given by the super-Schwarzian theory in terms of the superconformal
reparametrization modes of the 1|1-dimensional asymptotic boundary curve. The latter being infinitesimally
thickened in the fermionic ϑ-direction. In its first order form, the extrinsic curvature along the asymptotic
curve is defined in terms of the superderivative with the additional spin connections (c.f. Eq 4.57).
The procedure to obtain the holographic equivalence with the super-Schwarzian theory, is again to path inte-
grate over the superdilaton field, which cancels the bulk term and imposes the bulk metric to describe patches
of the super Poincaré upper-half plane. The remaining degrees of freedom are located entirely along the
asymptotic boundary, and should preserve the asymptotic form of the metric (c.f. Eq 4.53). This leads to a
wiggly boundary curve parameterized in terms of a single bosonic and fermionic proper time coordinate (c.f.
Eq 4.50). Along this wiggly boundary curve, the definition of the extrinsic curvature reduces to the definition
of the super-Schwarzian derivative (c.f. Eq 4.67), establishing full off-shell equivalence between N = 1 JT
SUGRA and the super-Schwarzian boundary theory. The partition function and quantum amplitudes with in-
sertions of bilocal operators in the boundary perspective have been obtained in [20] and [21] respectively.

One can also prove the on-shell equivalence between N = 1 JT SUGRA and an osp(1|2,R) BF theory (c.f.
section 4.3.1). Fan et al. [40] generalized the discussion of Blommaert et al. [22] [24] to obtain the same
quantum amplitudes from this bulk first order perspective. First of all, only in a constrained setup does the
holographic particle-on-a-group theory reduce to the super-Schwarzian theory, as demonstrated in section 4.3.2
(see in particular the Brown-Henneaux boundary condition Eq 4.101). By again constraining to the subsemisu-
pergroup OSp+(1|2,R), the Plancherel measure matches precisely with the gravitational density of states Eq
4.137. Moreover, only the continuous series representation appears in the Plancherel decomposition Eq 4.139.
The precise quantum amplitudes follow from the open-channel slicing developed for the bosonic case in [22].
The insertion of a hyperbolic defect leads to the creation of a single trumpet amplitude. In particular, from
a group-theoretical perspective, the insertion of a hyperbolic defect is equivalent to inserting a hyperbolic
character evaluated in the continuous series representation of OSp(1|2,R). Since the group structure for the
fermionic coordinates is disconnected into a periodic Ramond (R) and an anti-periodic Neveu-Schwarz (NS)
sector, the hyperbolic class elements are characterized by different values of the supertrace STr (c.f. Eq 4.184).
The calculation proceeds slightly differently in both cases, leading to two different spin-structured hyperbolic
characters Eqs 4.186, 4.187. One can argue that the Weyl denominator is again irrelevant in a gravitational
setting. This leads to two different spin structured single-trumpet amplitudes in each sector Eqs 4.197, 4.198.
As a follow up to [40], we argue that the NS trumpet is one-loop exact, while the R trumpet is only exact in a
proper perturbative expansion in increasing order of the inverse coupling 1/β (c.f. Eq 4.203).

An important realization to extend the notion of EOW branes to superspace is that the geodesics describe
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proper 1|0-dimensional curves in the 2|2-dimensional superspace manifold Eq 4.207, as opposed to the holo-
graphic 1|1-dimensional UV boundary curves. Therefore, we cannot readily use the definition of the extrinsic
supercurvature along the 1|1-dimensional boundary curve given in Eq 5.46. We set out to find it from first prin-
ciples following the textbook development of bosonic GR. To obtain a natural coordinate invariant definition,
we have opted to consider NW-SE invariant contractions in superspace. We deduce that this necessarily fixes
the definition of the (inverse) metric, covector and coordinate transformations to respectively Eqs 4.211, 4.212,
4.214, 4.220.
Within these conventions, a consistent coordinate-invariant definition of the free-particle Lagrangian is given
by:

L = ŻMgMN Ż
N (5.47)

, where ZM label the collection of bosonic and fermionic coordinates in superspace. Variation of the action
leads to the classical geodesic equations of motion Eq 4.228 with a modified Christoffel symbol in superspace
Eq 4.227. The novel difference between the bosonic Christoffel symbols is the appearance of Z2-sign factors
that take into account the Grassmann parity of the superspace coordinates. By writing the geodesic equation
manifestly coordinate-covariant, the Christoffel symbols readily define a super covariant derivative according
to Eq 4.229. Its coordinate transformation rule is fixed by demanding that the variation of the coordinate in-
variant action Eq 5.47 should remain coordinate invariant after variation. By additionally demanding that the
covariant derivative on a scalar reduces to an ordinary (possibly Grassmann) derivative, the covariant deriva-
tives on covectors are also fixed by imposing the natural fermionic Leibnitz rule to hold, according to Eq 4.238.
Their correct transformation rule is also fixed under this definition.
We may then use a trick to characterize the variation of the tangent vector field in terms of the variation of
the normal vector field, to obtain a proper definition of the pulled-back extrinsic supercurvature along the
1|0-dimensional EOW brane Eq 4.244:

K = ŻM ŻN∇NnM . (5.48)

Since this procedure did not need to specify the number of fermionic coordinates on the supermanifold, this is
the correct definition in any number of supersymmetry. By construction, a vanishing extrinsic curvature along
the EOW brane localizes onto geodesic trajectories in superspace.
We propose that using this definition for the extrinsic supercurvature, the total Euclidean action of an EOW
brane in superspace is given by:

IEOW =

ż

ds

b

ŻMgMN ŻN (µ´ φK) . (5.49)

φ serves as the bottom component of the dilaton superfield.

Using a generalization of the set-up in [23], we obtain an operator equivalence between the free particle action
in superspace and a Wilson operator insertion in the N = 1 BF path integral, conform with our earlier con-
ventions of the metric. The result Eq 4.283 again depends on the topology of the EOW brane. Anchored to the
asymptotic boundary, the coset restrictions apply and by consistency, we find that the exact quantum operator
reduces to the on-shell value of the free-particle path integral in the geodesic approximation (c.f. Eq 4.300).
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This leads to the final half-moon amplitude Eq 4.302:

»

ż 8

0
dk cosh(2πk)e´βk2

ż 8

´8

dφ
(
K1/2+2ik(2e

φ) + ε´ε+K1/2´2ik(2e
φ)
)
e2`φ.

Once again, we find that the trumpet partition functions are structurally more interesting. For closed loops
of EOW branes in the interior, the identity Eq 4.283 instructs us to consider the lowest-weight discrete series
character of a hyperbolic class element. We again find two disconnected sectors depending on the periodicity
of the fermionic coordinates around the circle Eq 4.310, 4.312, leading to a correction to the classical saddle
in the total path integral Eqs 4.313, 4.314. Gluing along the respective single trumpet amplitudes immediately
leads to a generalization of the bosonic results Eqs 4.315, 4.316 to N = 1 JT SUGRA Eq 5.45:

ZNS
EOW (β) =

ż 8

0
dk e´βk2

ż 8

0
db cos(bk) e´µb

2 sinh(b/4) ,

ZR
EOW (β) =

ż 8

0
dk e´βk2

ż 8

0
db sin(bk) e´µb

2 cosh(b/4) .

Notably, the result for the R sector does not yield the spurious UV divergence for small geodesic lengths b Ñ 0.

In section 5.1.1, we have made some first steps to extend this discussion to applications of N = 2 JT SUGRA.
The analysis is slightly more complicated since the relevant osp(2|2,R) superalgebra contains two commuting
Cartan generators that label the representations. Thus, apart from fixing the quadratic Casimir, we also have
to fix the cubic Casimir in the identification between the free particle action and the Wilson operator insertion.
The resulting integral is non-Gaussian, and cannot be reduced to the standard form Eq 4.246.
On the other hand, we have rewritten the Wilson operator in terms of a first order metric formulation in Eq
5.41. This is formulated in terms of the configurational ZM and adjoint momentum kM coordinates. The
quadratic Casimir constraint is translated in terms of the energy-momentum relation kMkM = m2. The cubic
Casimir constraint is translated in terms of an a priori undetermined relation in gravity Eq 5.40. It would be
very interesting to shed further light on this in future work.

Preliminary results in the representation theory of the OSp(2|2,R) determine the continuous series and highest-
weight discrete series character of a hyperbolic group element Eqs 5.14, 5.10 in terms of the Branching rule
of the bosonic subalgebra Eq 5.3. It is interesting to note that this group does not decompose into two discon-
nected subgroups depending on the periodicity of the fermionic coordinates. Instead, all periodicity states are
connected by spectral flow.
Using the hyperbolic continuous series character as an operational defect, we obtain the N = 2 single trumpet
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partition function Eq 5.15. Using the equivalence between a Wilson loop operator in the BF path integral and
an N = 2 EOW brane, we obtain the partition function of an EOW loop attached to the neck of this single
trumpet amplitude [109]:

ZN=2
EOW (`, b) =

ż

dkdqe´β(k2´q2)

ż

dφdθ cos(2kφ)ei2qθ coshφ´ cos θ
sinhφ e´2`φe2ibθ. (5.50)

To deduce the half-moon amplitudes of a single EOW brane anchored to the holographic boundary, we should
still find the mixed parabolic Whitakker matrix elements from first principles. This would directly lead to a
description of the asymptotic Hartle-Hawking states.

For now, we take comfort in the fact that we have not only obtained an alternative perspective on the bosonic
EOW brane quantum amplitudes of both [34] and [36] via group theory, we have also been able to exploit this
perspective and extrapolate the notion of EOW branes directly to superspace. This yields the explicit quantum
amplitudes in N = 1 JT supergravity. The above preliminary results seem promising to extend this to N = 2

supergravity (and higher).

To be continued



Appendix A

Representation theory of SL(2,R)

A.1 Representation theory of SL(2,R)

In this appendix, I will delve deeper in the representation theory of SL(2,R) and SL+(2,R). This will closely
follow the approaches of [24] [22] [40], which itself was based largely on [90].

A.1.1 Borel-Weil realization on L2(R)

To develop the representation theory of SL(2,R), we use a realization of the group elements in terms of 2 ˆ 2

matrices, satisfying the constraint det g = 1;

g =

(
a b

c d

)
, ad´ bc ” 1. (A.1)

The eigenvalues λ of a generic element g P SL(2,R) are determined by the characteristic equation

(a´ λ)(d´ λ) ´ bc = 0

Ø λ2 ´ Tr(g)λ+ 1 = 0 (A.2)

, where we used the defining relation ad ´ bc = 1 and Tr(g) = a + d. The eigenvalues are thereby given by
the roots

λ˘ =
Tr(g) ˘

a

Tr(g)2 ´ 4

2
. (A.3)

Since the eigenvalues are preserved under conjugation, we discriminate three conjugacy classes depending on
the sign of the discriminant:
elliptic: Tr(g) ă 2, parabolic: Tr(g) = 2, and hyperbolic: Tr ą 2.
Infinitesimally expanding the group elements into the generators g = 1 + iεaJa, the constraint det g ” 1 is
translated to the ambient sl(2,R) algebra as the vanishing of the trace of the 2ˆ2 matrices Tr(iJa) ” 0. Of the
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four free parameters, this leaves a three dimensional algebra, spanned in terms of the fundamental generators
Eq 2.146:

iJ0 =
1

2

(
´1 0

0 1

)
, iJ´ =

(
0 0

1 0

)
, iJ+ =

(
0 1

0 0

)
(A.4)

, satisfying the sl(2,R) algebra1 Eq 2.147:

[J0, J˘] = ˘iJ˘, [J+, J´] = 2iJ0 . (A.5)

The Cartan-Killing metric is defined as before (in the order 0,´,+):

κab = 2Tr[(iJa)(iJb)] =

1 0 0

0 0 2

0 2 0

 . (A.6)

Indices are raised and lowered using this metric. However, in the following, I will mostly restrict to the
lower indices. Taking the inverse of the Cartan-Killing metric κab defines the quadratic Casimir in Eq 2.93:
C2 = ´κabiJaiJb. We construct representations by diagonalizing one of the generators iJa and the quadratic
Casimir2, which we can work out explicitly as:

C2 = ´κabiJaiJb = J2
0 +

1

2
tJ+, J´u ” ´j(j + 1) . (A.7)

The ansatz ´j(j + 1) defines the eigenvalues of the quadratic Casimir in terms of a ( possibly complex) pa-
rameter j. This label is often denoted as the spin of the representation in analogy to SU(2).
The eigenvalues of the generator to choice are denoted as Ja = νa. We readily calculate the quadratic Casimir
of the above matrix generators Eq A.4 to form a fundamental spin-1/2 representation.

Apart from other finite-dimensional representations, more general spin-j representations can be projected on
the real number line in terms of a square integrable function f jν (x) = xx | j, νy P L2(R), where |xy is intro-
duced as a complete set of states in configuration space, defined in terms of the inner product on L2(R):

xjν | lµy =

ż

R
dx xjν | xy xx | lµy = δjl

ż

R
f jν (x)

˚f lµ(x). (A.8)

1A word of caution; when inserting the imaginary unit in the commutation relations, we obtain [iJ0, iJ˘] = ¯iJ˘, [iJ´, iJ+] = 2iJ0. This
is the familiar sl(2,R) algebra, with the understanding that iJ+ corresponds to a lowering operator, while iJ´ corresponds to a raising operator,
despite their notation. This should not pose any difficulties, but should be kept in mind.

2The quadratic Casimir commutes with all generators of the algebra. Indeed, the Cartan-Killing metric satisfies the important invariance
property κ([iJa, iJb], iJc) = κ(iJa, [iJb, iJc]). We define the structure constants of the algebra as [iJa, iJb] = f c

ab iJc. From the commutator,
these are anti-symmetric in the first pair of indices (not necessarily in all three indices!). In terms of the structure constants, the invariance property
becomes f d

ab κdc = f d
bc κad. Lowering indices with respect to the Cartan-Killing metric fabc = fbca, we see that they are completely anti-

symmetric for all indices lowered. The quadratic Casimir is now readily seen to commute with all generators: [C2, iJc] = ´κab[iJaiJb, iJc] =

´κab(iJaf d
bc iJd + f d

ac iJdiJb) = ´iJb(fbcd + fdcb)iJ
d = 0. From antisymmetry of the lowered generators the commutator vanishes.
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The action of the SL(2,R) matrices Eq A.1 on L2(R) is defined as:

xx | g | jνy = (g ¨ f jν )(x) = ((T̂j(g))f
j
ν )(x) = |bx+ d|2jf jν

(
ax+ c

bx+ d

)
. (A.9)

The above realization of SL(2,R) on L2(R) is refered to as the principal series representation3. It acts pro-
jectively by its transpose as XT g, with XT = (x z). Taking the transpose ensures that the group action
composes naturally under group multiplication. We will see that it defines a representation on the group ele-
ments, acting on the space of square integrable functions L2(R):

T̂j : g P SL(2,R) ÞÑ T̂j(g).

We can interpret the coefficients xx | g | jνy as the Fourier components corresponding to the action of g P

SL(2,R) on f P L2(R), according to:

xjν | g | lνy = δjl

ż

R
f jν (x)

˚(g ¨ f lµ)(x). (A.10)

Infinitesimally expanding into the generators according to g = 1 + εaiJa leads to the Borel-Weil realization of
the sl(2,R) algebra4 [24]:

iJ´ = Bx, iJ0 = ´xBx + j, iJ+ = ´x2Bx + 2jx . (A.11)

We readily check that the above generators actually correspond to a spin-j representation by calculating ex-
plicitly the quadratic Casimir;

C2 ” J2
0 +

1

2
tJ+, J´u = ´(´xBx + j)(´xBx + j) ´

1

2
Bx(´x

2Bx + 2jx) ´
1

2
(´x2Bx + 2jx)Bx

= ´xBx ´ x2B2
x + xjBx ´ j2 + xBx +

x2

2
B2
x ´ j +

x2

2
B2
x ´ jxBx

= ´j(j + 1). (A.12)

They furthermore satisfy the algebra Eq A.5. Last but not least, the Borel-Weil realization on SL(2,R) satisfies
the defining property of representation matrices R(g1 ¨ g2) = R(g1)R(g2) for g1, g2 P SL(2,R). This can be

3Note that the above realization is in fact a realization of the projective group PSL(2,R), where the results are invariant under g Ñ ´g. I will
continue to denote it SL(2,R) however.

4For example, working out iJ0 explicitly, we know that the group action g = 1 + εiJ0 =

(
1 ´ ε/2 0

0 1 + ε/2

)
leads to the projective action

on fj(x) Ñ |1 + ε/2|2jfj
(

(1´ε/2)x
1+ε/2

)
= (1 + ε/2)2jf ((1 ´ ε)x). Taylor expanding gives fj(x) Ñ fj(x) + ε

(
jfj(x) ´ xBxfj(x)

)
, from

which we identify iJ0 = j ´ xBx.
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verified explicitly by calculating the action of two subsequent 2 ˆ 2 SL(2,R) matrices Eq A.1 on L2(R):

xx | g1 ¨ g2 | fy = g1 ¨

(
|b2x+ d2|2j f

(
a2x+ c2
b2x+ d2

))
, g2 =

(
a2 b2

c2 d2

)

= |b1x+ d1|2j
ˇ

ˇ

ˇ

ˇ

b2
a1x+ c1
b1x+ d1

+ d2

ˇ

ˇ

ˇ

ˇ

2j

f

(
a2

a1x+c1
b1x+d1

+ c2

b2
a1x+c1
b1x+d1

+ d2

)
, g1 =

(
a1 b1

c1 d1

)

= |x(a1b2 + b1d2) + (d1d2 + b2c1)|
2j f

(
x(b1c2 + a1a2) + (c2d1 + a2c1)

x(a1b2 + b1d2) + (c1b2 + d1d2)

)
.

Of course, the latter is precisely the transformation law of f under the composition

g1g2 =

(
a1 b1

c1 d1

)(
a2 b2

c2 d2

)
=

(
a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

)
.

Unitary of the group representations further constrains the allowed values of j. Indeed, unitary of the rep-
resentation matrices demands the generators iJa to be anti-Hermitian (operators Ja Hermitian): g:g = (1 ´

iεJ:)(1 + iεJ) ” 1. Checking the anti-hermiticity of iJ0 on the inner product of L2(R) yields:

ż

R
dx f(x)˚(´xBx + j)g(x) =

ż

R
dx g(x)Bx(xf(x)

˚) + jg(x)f(x)˚

=

ż

R
dx g(x)f(x)˚ + g(x)xBxf(x)

˚ + jg(x)f(x)˚ ” ´

(
ż

R
dx g(x)˚(´xBx + j)f(x)

)˚

, where we assumed that the relevant functions decay fast enough as |x| Ñ 8 to ignore the contribution from
possible boundary terms. The last equality is just the definition of an anti-Hermitian inner product. It is readily
seen that in order for both lines to be consistent, we should have that j + 1 ” ´j˚, or:

j = ´
1

2
+ ik k P R. (A.13)

This defines the principal continuous series representation.
Changing variables to x = x1d´c

´bx1+a shows that the adjoint action is given by g´1 [40]:

ż

R
dx f(x)˚|bx+ d|2jg

(
ax+ c

bx+ d

)
Ñ

ż

R
dx1

(
| ´ bx1 + a|2jf

(
dx1 ´ c

´bx1 + a

))˚

g(x1)

, where we recognize

g´1 =

(
d ´b

´c a

)
. (A.14)

Indeed, the Jacobian under the transformation above is given by5 dx = dx1

|´bx1+a|2
, while the prefactor transforms

as |bx+ d|2j Ñ 1
|´bx1+a|2j

. Using j + 1 = ´j˚ readily yields the above result. Therefore, the adjoint action is
indeed obtained by the inverse group element iff j + 1 ” ´j˚ or j = A.13.
A more pragmatic approach to construct the unitary principal series representation on SL(2,R), is to show that

5Using the SL(2,R) constraint ad ´ bc = 1.
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the non-compact picture descends from a normalized induced representation by a parabolic subgroup. This
representation will then automatically be contained within the left regular representation of the group. More
details for the case of both SL(2,R) and OSp(1|2,R) can be found in appendix E of [40].

A.1.2 Principal Series Representation

Matrix elements and the Plancherel measure

Focusing on the principal continuous series representation for now with j = ´1
2 + ik, we would like to

calculate the Plancherel measure using the orthogonality of the matrix elements in the grand-orthogonality
theorem Eq 2.200. To this end, we should specify a basis of the k-representation, obtained by diagonalizing
one of the generators iJa. Ultimately, this choice is arbitrary in the Peter-Weyl decomposition. However, with
the gravitational coset constraints in mind, we choose to diagonalize the mixed parabolic basis of iJ´, iJ+.
Specifically, the group element corresponding to iJ˘ is obtained by exponentiating h˘ = exp(itJ˘), yielding
respectively:

h´(t) =

(
1 0

t 1

)
, h+(t) =

(
1 t

0 1

)
. (A.15)

The action of h´(t) on fkν´
(x) is:

xx | h´(t) | fkν´
y = (h´(t) ¨ fkν´

)(x) = fkν´
(x+ t). (A.16)

The action is readily diagonalized in terms of a plane wave basis fkν´
(x) = eiν´x, with the associated eigenvalue

under J´ = ν´: (h´(t) ¨ fkν´
)(x) = eiν´tfkν´

(x). We denote this state on L2(R) as:

xx | ν´y = eiν´x . (A.17)

On the other hand, the action of h+(t) on the carrier space is given by:

xx | h+(t) | fkν y = (h+(t) ¨ fkν+)(x) = |tx+ 1|2jf jν+

(
x

tx+ 1

)
. (A.18)

This is readily diagonalized in terms of functions fkν+(x) = |x|2ik´1eiν+/x, with eigenvalue J+ = ν+. Indeed,
using j = ´1

2 + ik yields the action on fkν+ :

(h+(t) ¨ fkν+)(x) = |tx+ 1|2j
ˇ

ˇ

ˇ

ˇ

x

tx+ 1

ˇ

ˇ

ˇ

ˇ

2j

e
iν+

x
(tx+1)

= eiν+t(|x|2ik´1eiν+/x).

The corresponding state vector on L2(R) is:

xx | ν+y = |x|2jeiν+/x = |x|2ik´1eiν+/x . (A.19)
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The eigenstates of iJ˘ are not independent, and one can transform an iJ´ eigenstate into an iJ+ eigenstates
and vice versa by applying the following SL(2,R) transformation

ω =

(
0 1

´1 0

)
(A.20)

, where we see from xx | ω | ν´y = |x|2je´iν´/x = xx | ´ν+y that:

ω |ν´y = |´ν+y . (A.21)

Matrix elements in the mixed parabolic basis xν´ | g(φ, γ´, γ+) | ν+y are convenient to parameterize in the
Gauss decomposition in terms of real parameters φ, γ+, γ´ (c.f. Eq 2.148):

g(φ, γ´, γ+) = eγ´iJ´ eφ2iJ0 eγ+iJ+ .

Being eigenvectors of respectively J˘, we can write directly (using the hermiticity of J´)

xν´ | g(φ, γ´, γ+) | ν+y = eiγ´ν´eiγ+ν+ xν´ | e2iφJ0 | ν+y . (A.22)

The matrix element in the mixed parabolic basis diagonalizes up to the evaluation of the hyperbolic matrix
element. The eigenvectors |ν˘y are the so-called the Whittaker vectors, while the hyperbolic matrix element is
called the Whittaker function.
Since the generator iJ0 defined as Eq A.4 is diagonal, it readily exponentiates to:

e2iφJ0 =

(
e´φ 0

0 eφ

)
. (A.23)

This always resides in the hyperbolic conjugacy class by the standard inequality e´φ + eφ ě 2. This has an
action on fkν+(x) in terms of:

fkν+(x) Ñ (g ¨ fkν+)(x) = |eφ|2jfkν+

(
e´2φx

)
= |eφ|2j |e´2φx|2jeiν+e

2φ/x. (A.24)

The overlap xν´ | ν+y can be calculated by inserting a complete set of states 1 =
ş

R dx |xy xx| and splitting
the integral over R´ and R+:

xν´ | ν+y =

ż +8

´8

dx |x|2ik´1e´iν´xeiν+/x =

ż +8

0
dx x2ik´1eiν´xe´iν+/x +

ż +8

0
dx x2ik´1e´iν´xeiν+/x.

We use the integral representation of the modified Bessel function of the second kind (for ν˘ ą 0) [24]:

ż +8

0
dx x2ik´1e´ν´xe´ν+/x =

(
ν+
ν´

)ik
K2ik

(?
ν´ν+

)
. (A.25)

Analytically continuing ν´ Ñ ´iν´, ν+ Ñ iν+ in the above integral identity to yield the first integral and
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ν´ Ñ iν´, ν+ Ñ ´iν+ to yield the second integral, eventually gives [24]:

xν´ | ν+y =

((
eiπ/2

e´iπ/2

)ik
+

(
e´iπ/2

eiπ/2

)ik)(
ν+
ν´

)ik
K2ik

(?
ν´ν+

)
» cosh(πk)

(
ν+
ν´

)ik
K2ik

(?
ν´ν+

)
. (A.26)

The Whittaker function is then conveniently calculated from this overlap by considering the action of the
hyperbolic group element Eq A.24 and shifting x Ñ eφx in the integral:

xν´ | e2iφJ0 | ν+y =

ż

R
dx e´iν´x|eφ|2j |e´2φx|2jeiν+e

2φ/x Ñ eφ
ż

R
dx e´iν´eφx|x|2jeiν+e

φ/x. (A.27)

This is the same matrix element as the overlap xν´ | e2iφJ0 | ν+y = eφ xν´e
φ | ν+e

φy, yielding the total
SL(2,R) matrix element in the mixed parabolic basis, up to normalization:

xν´ | g(φ, γ´, γ+) | ν+y = eiγ´ν´eiγ+ν+ eφ cosh(πk)
(
ν+
ν´

)ik
K2ik

(
?
ν´ν+e

φ
)
. (A.28)

From the orthonormality relation [40]

ż 8

0

dx

x
K2ik(x)K2ik1(x)˚ =

ż +8

´8

dφK2ik(e
φ)K2ik1(eφ)˚ =

π2

8k sinh(2πk)δ(k ´ k1) (A.29)

, and the Fourier representation of the delta function 1
2π

ş+8

´8
dγ´ ei(ν´´ν1

´)γ´ » δ(ν´ ´ ν 1
´), we conclude that

up to some k-independent prefactor,

ż

dg xkν´ | g | kν+y xk1ν 1
´ | g | k1ν 1

+y
˚

»
δ(k ´ k1)

ρ(k)
δ(ν´ ´ ν 1

´)δ(ν+ ´ ν 1
+) (A.30)

with

ρ(k) =
k sinh(2πk)
cosh2(πk)

» k tanh(πk) . (A.31)

We may identify ρ(k) with the Plancherel measure in the grand-orthogonality theorem Eq 2.200. The measure
dg in the integral is the usual Haar measure dg = e´2φdφdγ´dγ+, deduced in Eq 2.150.
There is a subtlety however, since the Gauss decomposition only covers the Poincaré patch and not the en-
tire SL(2,R) manifold, where in general exp(γ´iJ´ + 2iφJ0 + γ+iJ+) ‰ eγ´iJ´ eφ2iJ0 eγ+iJ+ due to the
Campbell-Baker-Hausdorff formula. It turns out that the entire SL(2,R) manifold is covered by four patches,
obtained by shifting the Poincaré matrix element by either

g(φ, γ´, γ+) Ñ g(φ, γ´, γ+) ¨ ˘ω

Ñ g(φ, γ´, γ+) ¨ (˘1).

In the PSL(2,R) representation theory, these are two-by-two the same. Summing the contributions of all
patches gives a factor of four [24], yielding up to normalization the same Plancherel measure as before.
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Hyperbolic basis

We could have also constructed eigenfunctions in the hyperbolic basis, associated to diagonalizing iJ0. More
specifically, since iJ0 in Eq A.4 is diagonal, the group element obtained by exponentiating g = exp(2itJ0) is
immediately:

g =

(
e´t 0

0 et

)
. (A.32)

The properly normalized eigenvectors on R˘ are (with s P R):

fks (x) = xx | s,˘y =
1

?
2π

(˘x)is´1/2, xs,˘ | xy =
1

?
2π

(˘x)´is´1/2, ˘x ą 0. (A.33)

Its eigenvalue under g is given by considering the group action:

(g ¨ fks )(x) =
1

?
2π
e2jt|e´2tx|is´1/2 =

1
?
2π
e2jtete´2ist|x|is´1/2.

Inserting j = ´1
2 + ik, the eigenvalue under iJ0 is iJ0 = i(k ´ s). They are orthogonal on either R+, R´

from the delta function identity [40]

xs1,˘ | s2,˘y = ˘

ż ˘8

0
dx xs1,˘ | xy xx | s2,˘y =

1

2π

ż ˘8

0

dx

x
(˘x)´i(s1´s2) = δ(s1 ´ s2) (A.34)

, and are complete in the sense that

xx | x1y =

ż +8

´8

ds xx | s,˘y xs,˘ | x1y =
1

2π

ż +8

´8

ds(˘x)is´1/2(˘x1)´is´1/2 = δ(x´ x1). (A.35)

Therefore, the hyperbolic basis naturally decomposes into a basis of states associated to either R˘. This allows
us to write generic matrix elements as a 2 ˆ 2 matrix

K(g) =

(
K++ K+´

K´+ K´´

)
(A.36)

, whose components are defined as:

K˘˘
s1s2(g) ” xs1,˘ | g | s2,˘y . (A.37)

This matrix composes under group multiplication in terms of matrix multiplication K(g1 ¨ g2) = K(g1)K(g2)

[22], and with inverse K(g´1) = K(g)´1 [24].
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A.2 Representation theory of SL+(2,R)

The representation theory of SL+(2,R) is very similar to the one developed for SL(2,R), so I will be brief.
Group elements g P SL+(2,R) are still represented by sets of 2 ˆ 2 matrices with unit determinant:

g =

(
a b

c d

)
, det(g) = 1 (A.38)

, with the additional restriction that all matrix entries are strictly positive a, b, c, d ą 0. This satisfies clo-
sure, the existence of the identity element and associativity. However, there exists no proper inverse in
SL+(2,R), therefore lacking the requirements of a proper group structure. One therefore refers to SL+(2,R)
as a semigroup. Despite the lack of an inverse in SL+(2,R), we can define the inverse g´1 for every g P

SL+(2,R) from the parent SL(2,R) manifold. The latter contains SL+(2,R) as a subset, and hence a better
nomenclature would be to refer to it as a subsemigroup.
Either way, the algebra corresponding to the infinitesimal expansion into generators g = 1 + iεaJa still corre-
sponds to the conventional sl(2,R) algebra Eq A.5.
We again define the principal series representation of SL+(2,R) on L2(R+) in terms of the Borel-Weil action
Eq A.9, but restricted to positive x ą 0:

xx | g | jνy = (g ¨ f jν )(x) = |bx+ d|2jf jν

(
ax+ c

bx+ d

)
, x ą 0. (A.39)

The corresponding infinitesimal generators iJ0, iJ˘ are still given by Eq A.11. The action of this representation
is closed on R+ due to the positivity of the matrix entries, and therefore well-defined. An attractive feature
of restricting to SL+(2,R) is that the Gauss parametrization Eq 2.148 (with γ˘ ą 0) now covers the entire
manifold [22], and we may generically write for every g P SL+(2,R):

g = eγ´iJ´ eφ2iJ0 eγ+iJ+ =

(
1 0

γ´ 1

)(
e´φ 0

0 eφ

)(
1 γ+

0 1

)
, γ+, γ´ ą 0. (A.40)

Note that there is no restriction on φ since the hyperbolic group element is strictly positive for any φ.
An important distinction however, is that the inner product on the carrier space L2(R+) is restricted to x ą 0:
xf | gy =

ş8

0 dx f(x)˚g(x). Therefore, only the hyperbolic generator iJ0 is anti-hermitian on R+, since the
power of x in iJ˘ either grows too fast or too slow as x Ñ 0 and x Ñ +8 [40]. As a consequence, only the
hyperbolic vectors furnish a complete orthogonal basis on SL+(2,R). Restricting to x ą 0, these are Eq A.33:

fks (x) = xx | sy =
1

?
2π

xis´1/2, fks (x)
˚ = xs | xy =

1
?
2π
x´is´1/2. (A.41)

The corresponding matrix elements on R+ are now restricted to K++
s1,s2(g):

K++
s1s2(g) = xs1 | g | s2y =

1

2π

ż +8

0
dx x´is1´1/2(g ¨ xis2´1/2) (A.42)
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, since for positive g ą 0, the action of g on f P L2(R2) cannot change the sign in the integral. As a conse-
quence, the overlaps vanish in this case xs1,˘ | g | s2,¯y ” 0 [44].
The matrix composition law K(g1 ¨ g2) = K(g1)K(g2) is now constrained to K++, and yields a proper repre-
sentation of irreps on SL+(2,R):

K++
ab (g1 ¨ g2) =

ż +8

´8

ds K++
as (g1)K

++
sb (g2).

Matrix elements can be evaluated by inserting a complete set of states on R+:

K++
s1s2(g) = xs1 | g | s2y =

1

2π

ż +8

0
dx x´is1´1/2(g ¨ xis2´1/2). (A.43)

Again parameterizing the group manifold in terms of the Gauss decomposition 2.148
g(φ, γ+, γ´) = eiγ´J´e2iφJ0eiγ+J+ , we may calculate each constituent individually, and take the continuous
matrix product6

K++
s1,s2(g) =

1

2π

ż

R
ds1ds2K++

s1s1(γ´)K
++
s1s2(φ)K++

s2s2
(γ+). (A.47)

In [24], it was shown that the matrix elements obtained in Eq A.47 are in fact unitary, meaning that
ż

R
ds K++

s1s (g)K
++
s2s (g)

˚ = δ(s1 ´ s2).

6For the sake of completeness, let me work them out explicitly. Using Eq A.9, we readily evaluate

K++
s1s2 (φ) =

1

2π

ż 8

0
dx x´is1´1/2e2jφe´2φ(is2´1/2)xis

2´1/2 =
1

2π
e2iφ(k´s2)

ż 8

0

dx

x
xi(s

2´s1)

, after inserting j = ´ 1
2
+ ik. Using again the delta function identity Eq A.34, this readily becomes

K++
s1s2 (φ) =

1

2π
e2iφ(k´s2)δ(s1 ´ s2) (A.44)

On the other hand, evaluating K++
s1s1 (γ´) and K++

s1s1 (γ+) requires the relation of the Euler beta-function [40] with the Euler Gamma functions

β(x, y) =

ż 8

0

tx´1

(1 + t)x+y
=

Γ(x)Γ(y)

Γ(x+ y)

Using the action of g(γ´) ¨ f(x) = f(x+ γ´), and after substituting x = γ´t;

K++
s1s1 (γ´) =

1

2π

ż 8

0
dx x´is1´1/2(x+ γ´)is

1´1/2 =
1

2π
γ
i(s1´s1)
´

ż 8

0

t´1/2´is1

(1 + t)1/2´is1

=
1

2π
γ
i(s1´s1)
´

Γ(1/2 ´ is1)Γ(is1 ´ is1)

Γ(1/2 ´ is1)
(A.45)

Using the action of g(γ+) ¨ f(x) = |γ+x+ 1|2jf
(

x
γ+x+1

)
, and substituting t = x/γ+ similarly leads to

K++
s2s2

(γ+) =
1

2π

ż 8

0
dx x´is2´1/2 (γ+x+ 1)´1+2ik

(γ+x+ 1)is2´1/2
xis2´1/2 =

1

2π
γ
i(s2´s2)
+

ż 8

0
dt

ti(s2´s2)´1

(1 + t)1/2´2ik+is2

=
1

2π
γ
i(s2´s2)
+

Γ(i(s2 ´ s2)Γ(1/2 ´ 2ik + is2)

Γ(1/2 ´ 2ik + is2)
(A.46)
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In gravitational applications, we will mainly be interested in mixed parabolic matrix elements. The eigenvec-
tors |ν´y, respectively |ν+y of J˘ are still well-defined; rather they do not constitute a basis since they are not
complete nor orthogonal. The left and right parabolic states on R+, corresponding to eigenfunctions of J´ and
J+, with eigenvalue J´ = iν´, and J+ = iν+ respectively, are given by Eqs A.17, A.19 in the region x ą 0

by shifting the eigenvalues under J˘: ν´ Ñ iν´, ν+ Ñ iν+:

xx | ν´y = f jν´
(x) = e´ν´x, xx | ν+y = f jν+(x) = x2ik´1e´ν+/x. (A.48)

The eigenstates above are again refered to as Whittaker vectors. The eigenvalue under the right action of iJ´

on the adjoint state xν´ | xy is deduced from the adjoint of J´ (deduced from the parent SL(2,R)):

xν´ | xy iJ´ = (´iJ´ xx | ν´y)˚ = ν´ xν´ | xy .

The imaginary shift to exponentially damped basis states is a more natural choice than the plane wave basis,
since the latter is strictly speaking not even in L2(R+). However, note that both the plane-wave, as well as
the exponentially damped states are neither complete nor orthogonal on R+. However, we can expand them
in a complete basis of hyperbolic states |ν˘y =

ş

R ds xs | ν˘y |sy. The overlaps describe the analogue of the
transition from Minkowski to Rindler coordinates, and are worked out explicitly in [24].

Matrix elements in the mixed parabolic basis are readily computed using the Gauss parametrization:

Rk,ν´ν+(g) = xν´ | g(φ, γ+, γ´) | ν+y = eν´γ´e´ν+γ+ xν´ | e2iφJ0 | ν+y . (A.49)

The matrix element is again diagonalized up to the hyperbolic Whittaker function. Again shifting x Ñ xeφ,
the result can be found immediately without having to split the integral in two parts along the positive and
negative axis:

xν´ | e2iφJ0 | ν+y =

ż

R+

dx e´ν´x(eφ)2j(e´2φx)2je´ν+e2φ/x Ñ eφ
ż

R+

dx e´ν´eφxx2je´ν+eφ/x. (A.50)

Inserting j = ´1/2 + ik, and using the integral identity Eq A.25 yields:

Rk,ν´ν+(g) = eν´γ´e´ν+γ+eφ
(
ν+
ν´

)ik
K2ik(

?
ν´ν+e

φ) . (A.51)

The result is normalized with respect to the Haar measure dg = e´2φdφdγ´dγ+ defined in Eq A.29. The cor-
responding the Plancherel measure is readily deduced from the normalization identity of the Bessel functions
Eq A.29:

ρ(k) » k sinh(2πk) . (A.52)

Both the evaluation of the matrix elements and the Plancherel measure on SL+(2,R) considerably simplify
with respect to the previous evaluation for SL(2,R) since the integral identities do not need to be split along
the positive and negative real axis.



Appendix B

Representation theory of OSp(1|2,R)

The following two sections summarize the representation theory of the orthosymplectic supergroup OSp(1|2,R)
and of the subsemisupergroup OSp+(1|2,R), after the broad discussion in appendix E of [40]. Besides sum-
marizing this source, I have worked out a lot of the non-trivial steps in detail for clarity. I HAVE also used
an isomorphism of the osp(1|2,R) algebra compared to [40], to fit with the bosonic conventions as much as
possible.

B.1 Representation theory of OSp(1|2,R)

B.1.1 Defining the OSp(1|2,R) supergroup

To begin, the general linear supergroup GL(1|2,R) consists of all invertible 3 ˆ 3 matrices comprised of
five bosonic variables a, b, c, d, e and four fermionic Grassmann variables α, β, γ, δ, separated into bosonic
diagonal and fermionic off-diagonal blocks

g =

 a b α

c d γ

β δ e

 . (B.1)

The subgroup OSp(1|2,R) Ă GL(1|2,R) that preserves the orthosymplectic form Ω, defines the group OSp(1|2,R):

gstΩg =

 a c ´β

b d ´δ

α γ e


 0 ´1 0

1 0 0

0 0 1


 a b α

c d γ

β δ e


=

 0 bc´ ad´ βδ ´aγ + cα ´ βe

ad´ bc´ δβ 0 ´bγ + αd´ δe

´αc+ aγ + eβ ´αd+ bγ + eδ ´αγ + γα+ e2

 ”

 0 ´1 0

1 0 0

0 0 1

 .

242
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Here and below, the supertranspose of an even dimensional supermatrix is defined as(
A B

C D

)st

=

(
AT ´CT

BT DT

)
. (B.2)

We directly infer the OSp(1|2,R)-constraints:

ad´ bc´ δβ = 1, ´aγ + cα ´ βe = 0, e2 + 2γα = 1, ´αd+ bγ + eδ = 0. (B.3)

Note that the st operation is not an involution, but is of order four: st4 = 1. Imposing the constraint ad´ bc ”

1 + δβ, the other constraints are solved by parameterizing1

α = ˘(aδ ´ bβ), γ = ˘(cδ ´ dβ), e = ˘(1 + βδ). (B.4)

A general g P OSp(1|2,R) matrix can therefore be parameterized as

g =

 a b ˘(aδ ´ bβ)

c d ˘(cδ ´ dβ)

β δ ˘(1 + βδ)

 , ad´ bc = 1 + δβ. (B.5)

Note that for vanishing fermionic entries, ad´ bc = 1 is the defining SL(2,R)-constraint. Thereby, the group
OSp(1|2,R) has the non-compact bosonic subgroup Sp(2,R) » SL(2,R) with bosonic entries a, b, c, d. Due
to the OSp(1|2,R) constraints, the inverse matrix is written transparently as:

g´1 =

 d ´b ´δ

´c a β

γ ´α e

 =

 d ´b ´δ

´c a β

˘(cδ ´ dβ) ¯(aδ ´ bβ) ˘(1 + βδ)

 . (B.6)

The Berezinian or superdeterminant of an invertible GL(1|2,R) matrix M =

(
A B

C D

)
is defined as [40]:

Ber(M) = det(A´BD´1C) det(D)´1. (B.7)

Taking into account the anticommutativity between the fermionic blocks B and C, the definition of the
Berezinian is naturally invariant under the supertranspose st operation. Applied to the OSp(1|2,R) matrix

1Explicitly; cα´aγ´βe = 0 reads ˘(acδ´bcβ)¯(acδ´adβ)¯β = ˘(ad´bc)β¯β = 0, upon imposing the constraint ad´bc´δβ = 1.
Analogously, ´dα + bγ + eδ = ¯(adδ ´ bdβ) ˘ (cbδ ´ bdβ) ˘ δ = ¯(ad ´ bc)δ ˘ δ = 0. Furthermore, e2 + 2γα = (1 + βδ)2 + 2(cδ ´

dβ)(aδ ´ bβ) = 1 + 2βδ ´ 2(ad´ bc)βδ = 1.
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g, we readily work out;

BD´1C =
1

˘(1 + βδ)

(
˘(aδ ´ bβ)

˘(cδ ´ dβ)

)(
β δ

)
=

(
aδβ bδβ

cδβ dδβ

)

Ø det(A´BD´1C) det(D)´1 =
1

˘(1 + βδ)
det

(
a(1 + βδ) b(1 + βδ)

c(1 + βδ) d(1 + βδ)

)

= ˘
(ad´ bc)(1 + 2βδ)

1 + βδ
= ˘(ad´ bc)(1 ´ δβ) = ˘1.

The group OSp(1|2,R) naturally decomposes into two disconnected sectors, depending on the sign of the
Berezinian, where both sectors are related by applying the sCasimir operator (´)F = diag(1, 1 | ´1). Re-
stricting to either sign leads to the projective supergroup OSp1(1|2,R) = OSp(1|2,R)/Z2.
Just as for SL(2,R), the different conjugacy class elements are labeled by the value of the supertrace STr(g),
defined in Eq 4.76. Choosing either sign ˘ in Eq B.5;

STr(g) = a+ d¯ (1 + βδ). (B.8)

Choosing the NS-sector in Eq B.5 (´), group elements with |STr(g)| ą 3, |STr|(g) = 3, |STr(g)| ă 3 are
called hyperbolic, parabolic and elliptic respectively.
In the R-sector of Eq B.5 (+), the conjugacy classes are instead: |STr(g)| ą 1, |STr|(g) = 1, |STr(g)| ă 1,
corresponding to hyperbolic, parabolic and elliptic respectively.

B.1.2 Defining the osp(1|2,R) superalgebra

The generators iJI (= iH, iE˘, iF˘) of the osp(1|2,R) superalgebra are defined in Eq 4.82. Written out
explicitly, the 3 ˆ 3 supermatrices comprise the defining representation of osp(1|2,R):

iH =
1

2

 ´1 0 0

0 1 0

0 0 0

 , iE´ =

 0 0 0

1 0 0

0 0 0

 , iE+ =

 0 1 0

0 0 0

0 0 0


iF´ =

1

2

 0 0 0

0 0 ´1

1 0 0

 , iF+ =
1

2

 0 0 1

0 0 0

0 1 0

 .

(B.9)

We readily check that these matrices indeed satisfy the known osp(1|2,R)-algebra Eq 4.83:

[H,E˘] = ˘iE˘, [E+, E´] = 2iH, [H,F˘] = ˘
1

2
iF˘,

[E˘, F¯] = iF˘, tF+, F´u =
1

2
iH, tF˘, F˘u = ¯

1

2
iE˘.

(B.10)
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The Cartan-Killing metric is defined from the normalization of the generators with respect to the STr operation:

STr((iJI)(iJJ)) ”
κIJ
2
. (B.11)

For the generators at hand, we deduce (in the order iH, iE+, iE´, iF+, iF´):

κIJ =


1 0 0 0 0

0 0 2 0 0

0 2 0 0 0

0 0 0 0 1

0 0 0 ´1 0

 . (B.12)

We again label the representation by the simultaneous eigenvalue of the quadratic Casimir, defined in terms of
the inverse Cartan-Killing metric C2 = ´iJIκ

IJ iJJ ” ´j(j + 1/2). Explicitly,

C2 = ´κIJ iJIiJJ = H2 +
1

2
(E+E´ + E´E+) ´ (F+F´ ´ F´F+) ” ´j(j + 1/2). (B.13)

This operator is seen to commute with all the generators in the osp(1|2,R)-algebra. Using the explicit form of
the generators in the defining representation Eq B.9, we readily check that they form a spin-1/2 representation.
We can also consider operators that commute with all bosonic generators, while anticommuting with all
fermionic generators. For OSp(1|2,R), this operation is given by the sCasimir Q:

Q = (iF+)(iF´) ´ (iF´)(iF+) +
1

8
= ´F+F´ + F´F+ +

1

8
=

(
j

2
+

1

8

)
(´)F (B.14)

, where (´)F = diag(12j+1 | ´12j) is the operator that commutes with all bosonic generators, while anticom-
muting with the fermionic generators. As a consequence, this operation transforms between the two discon-
nected components of OSp(1|2,R). The sCasimir has the important property that its square is proportional to
the quadratic Casimir2:

Q2 ´
1

64
= ´

1

4
H2 ´

1

8
(E+E´ + E´E+) +

1

4
(F+F´ ´ F´F+) = ´

1

4
C2 =

j(j + 1/2)

4
. (B.15)

2Using the superalgebra relations Eq B.10:

Q2 ´
1

64
= F+F´F+F´ ´ F+F´F´F+ ´ F´F+F+F´ + F´F+F´F+ +

1

4
F´F+ ´

1

4
F+F´

= ´
1

4
iF+E´F+ +

1

4
iF´E+F´ +

1

2
iHF+F´ ´ F´F+F+F´ +

1

2
iHF´F+ ´ F+F´F´F+ +

1

4
F´F+ ´

1

4
F+F´

= ´
1

4
iF+F+E´ +

1

4
iF´F´E+ ´

1

4
H2 +

1

4
iF´E+F´ ´

1

4
iF+E´F+

= ´
1

4
H2 ´

1

16
E+E´ ´

1

16
E´E+ ´

1

4
F´F+ +

1

4
iF´F´E+ +

1

4
F+F´ ´

1

4
iF+F+E´

= ´
1

4
H2 ´

1

8
(E+E´ + E´E+) +

1

4
(F+F´ ´ F´F+).
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B.1.3 Principal series representation

Next to the finite-dimensional representations, one can construct the principal series representation, whose
carrier space are the square-integrable functions on R1|1. The principal series representation on SL(2,R) (c.f.
Eq A.9) is realized as the transpose projective action of a group element g on elementsX of a two-dimensional
vector space: XT Ñ XT g:

g =

(
a b

c d

)
, X =

(
y

z

)
, XT Ñ XT g =

(
ay + cz by + dz

)
.

This acts projectively on x ”
y
z as x Ñ ax+c

bx+d . In the case of OSp(1|2,R), the group acts projectively via the st
operation defined in Eq B.2 on a 2|1-dimensional vector space3;

g =

 a b α

c d γ

β δ e

 , X =

yz
θ

 ,

Xst =
(
y z | ´ θ

)
Ñ Xstg =

(
ay + cz + βθ by + dz + δθ | yα+ zγ ´ eθ

)
. (B.17)

This now acts projectively on (x = y
z , ϑ = θ

z ) as:

x Ñ
ax+ c+ βϑ

bx+ d+ δϑ
, ϑ Ñ ´

xα+ γ ´ eϑ

bx+ d+ δϑ
. (B.18)

To construct a unitary representation, one needs to induce a left-regular representation by a parabolic subgroup.
The generalization of the method of parabolic induction of SL(2,R) to OSp(1|2,R) has been worked out in
[40]. Barring the details, the (spherical) projective action of OSp(1|2,R) on the space of square integrable
functions4 L2(R1|1) on the superline is given by:

xx, ϑ | g | fy = (g ¨ f)(x, ϑ) =
|bx+ d+ δϑ|2j

sgn(e)1/2sgn(bx+ d+ δϑ)1/2
f

(
ax+ c+ βϑ

bx+ d+ δϑ
,´

αx+ γ ´ eϑ

bx+ d+ δϑ

)
.

(B.21)
The action of the group OSp(1|2,R) on L2(R1|1) is called the principal series representation. Up to the ap-
pearance of the sign factors, this is the natural generalization of the result for SL(2,R) (Eq A.9). A transparent

3Since the st operation is not an involution, but has order four (st4 = 1), this action is written equivalently according to:

X Ñ gst3X. (B.16)

4The space of square integrable functions L2(R1|1) on the superline is equipped with an inner product

xF | Gy =

ż

R
dx

ż

dϑ F˚(x, ϑ)g(x, ϑ) (B.19)

This defines a complete set of configurational sates |x, ϑy

ż

R
dx

ż

dϑ |x, ϑy xx, ϑ| = 1 (B.20)

, whose overlap with vectors in L2(R1|1) is given by: xx, ϑ | F y = F (x, ϑ).
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argument to demonstrate that the above action on L2(R1|1) indeed defines a representation, is to compute the

successive action of two group elements g1 =

 a1 b1 α1

c1 d1 γ1

β1 δ1 e1

, g2 =

 a2 b2 α2

c2 d2 γ2

β2 δ2 e2

 on f(x, ϑ). The

action of g2 on f(x, ϑ) is given by Eq B.21:

(g2 ¨ f)(x) =
|b2x+ d2 + δ2ϑ|2j

sgn(e2)1/2sgn(b2x+ d2 + δ2ϑ)1/2
f

(
a2x+ c2 + β2ϑ

b2x+ d2 + δ2ϑ
,´

α2x+ γ2 ´ e2ϑ

b2x+ d2 + δ2ϑ

)
.

Successive application of g1 gives:

(g1 ¨ (g2 ¨ f))(x) =
|x(a1b2 + d2b1 + α1δ2) + (b2c1 + d1d2 + γ1δ2) + (b2β1 + d2δ1 + e1δ2)ϑ|2j

sgn(e1e2)1/2 sgn(x(a1b2 + d2b1 + α1δ2) + (b2c1 + d1d2 + γ1δ2) + (b2β1 + d2δ1 + e1δ2)ϑ)1/2

ˆ f
((a1a2 + α1β2 + c2b1)x+ (c1a2 + d1c2 + γ1β2) + (a2β1 + c2δ1 + e1β2)ϑ

x(a1b2 + d2b1 + α1δ2) + (b2c1 + d1d2 + γ1δ2) + (b2β1 + d2δ1 + e1δ2)ϑ
,

´
(α2a1 + b1γ2 + e2α1)x+ (α2c1 + γ2d1 + e2γ1) ´ (β1α2 + δ1γ2 + e1e2)ϑ

x(a1b2 + d2b1 + α1δ2) + (b2c1 + d1d2 + γ1δ2) + (b2β1 + d2δ1 + e1δ2)ϑ

)
.

This is the same action of the composite group element

g1 ¨ g2 =

 a1a2 + b1c2 + α1β2 a1b2 + b1d2 + α1δ2 a1α2 + b1γ2 + e2α1

c1a2 + d1c2 + γ1β2 c1b2 + d1d2 + γ1δ2 c1α2 + d1γ2 + e2γ1

a2β1 + c2δ1 + e1β2 b2β1 + d2δ1 + e1δ2 β1α2 + δ1γ2 + e1e2

 . (B.22)

A subtlety resides in the sign factor sgn(e1e2) = sgn(β1α2 + δ1γ2 + e1e2). The two factors are in fact equal
since positivity of a supernumber is determined entirely by its body (see footnote 2).

2j is the spin label of the representation. Remember that in the Peter-Weyl theorem, we restrict to unitary
transformations only. In order for the projective action to realize a unitary representation with respect to the
inner product Eq B.19, the spin label should be constrained to the form

j =
ik

2
´

1

4
k P R. (B.23)

We can check this by verifying if indeed
ż

dxdϑ F (x, ϑ)˚(g ¨G)(x, ϑ) =

ż

dxdϑ(g´1 ¨ F )(x, ϑ)˚G(x, ϑ). (B.24)

Anticipating that the inverse group element is given by Eq B.6, we make a change of variables

x =
du´ c+ γθ

´bu+ a´ αθ
, ϑ =

δu´ β + eθ

´bu+ a´ αθ
.

This transformation has an easy action on

bx+ d+ δϑ =
ad´ bc´ δβ + (γb´ αd+ eδ) θ

´bu+ a´ αθ
=

1

´bu+ a´ αθ
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, using both the first and last constraint in Eq B.3. Expanded to linear order in the fermionic variable θ:

x =
du´ c

´bu+ a
+
u(dα ´ bγ) + aγ ´ cα

(´bu+ a)2
θ =

du´ c

´bu+ a
+ e

δu´ β

(´bu+ a)2
θ =

du´ c

´bu+ a
+ sgn(e)

δu´ β

(´bu+ a)2
θ

ϑ =
´β + uδ

a´ bu
+

B

Bθ

(
(δu´ β + eθ)

1

´bu+ a´ αθ

) ˇ

ˇ

ˇ

ˇ

ˇ

θ=0

θ

=
´β + uδ

a´ bu
+

(
e

´bu+ a
´ (δu´ β)

B

Bθ

1

´bu+ a´ αθ

ˇ

ˇ

ˇ

ˇ

ˇ

θ=0

)
θ

=
´β + uδ

´bu+ a
+

(´bu+ a)(e¯ βδ)

(´bu+ a)2
θ =

´β + uδ

´bu+ a
+ sgn(e)

θ

´bu+ a

, using again the defining OSp(1|2,R)-relations Eq B.4. The transition in the first line from e to sgn(e) is
due to the action of the Grassmann numbers β and δ on e = ˘(1 + βδ). In the last line, we have used
(δu´ β)α = ˘(δu´ β)(aδ ´ bβ) = ¯(´bu+ a)βδ.
This transformation leads to the super-Jacobian:(

A B

C D

)
=

(
Bx
Bu

Bϑ
Bu

Bx
Bθ

Bϑ
Bθ

)
=

(
ad´bc

(´bu+a)2 + α+sgn(e)(δu´β)b
(´bu+a)3 θ sgn(e) α+bθ

(´bu+a)2

sgn(e) ´δu+β
(´bu+a)2 sgn(e) 1

´bu+a

)
(B.25)

, leading to the Berezinian Eq B.7:

(A´BD´1C)D´1 = sgn(e)
(
ad´ bc

´bu+ a
+
α+ sgn(e)(δu´ β)b

(´bu+ a)2
θ ´ sgn(e)

α+ bθ

(´bu+ a)2
(´δu+ β)

)
= sgn(e)

(
ad´ bc

´bu+ a
+

αθ

(´bu+ a)2

)
´

α

(´bu+ a)2
(´δu+ β)

= sgn(e)
(

1

´bu+ a
+

δβ

´bu+ a
+

αθ

(´bu+ a)2

)
¯

(aδ ´ bβ)(´δu+ β)

(´bu+ a)2

= sgn(e)
(

1

´bu+ a
+

δβ

´bu+ a
+

αθ

(´bu+ a)2

)
¯

(´bu+ a)δβ

(´bu+ a)2

= sgn(e)
(

1

´bu+ a
+

αθ

(´bu+ a)2

)
=

sgn(e)
´bu+ a´ αθ

, using that ¯δβ = ´sgn(e)δβ. The Berezinian of the super-Jacobian leads to the correct transformation rule:

dxdϑ = dudθ
sgn(e)

´bu+ a´ αθ
= dudθ

sgn(e)sgn(´bu+ a´ αθ)

| ´ bu+ a´ αθ|
.

Using that (sgn(e)1/2)˚ = (sgn(e))´1/2, and (sgn(´bu + a ´ αθ)1/2)˚ = (sgn(´bu + a ´ αθ))´1/2, this
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transformation acts as:
ż

dxdϑ F (x, ϑ)˚(g ¨G)(x, ϑ)

=

ż

dudθ

(
| ´ bu+ a´ αθ|´2j˚´1

sgn(e)1/2sgn(´bu+ a´ αθ)1/2
F

(
du´ c+ γθ

´bu+ a´ αθ
,
δu´ β + eθ

´bu+ a´ αθ

))˚

G(x, ϑ).

We see that indeed the adjoint action is given by the group inverse iff 2j = ´2j˚ ´ 1 or j = B.23. This
procedure also demonstrates the necessity to introduce the additional sign factors in the definition Eq B.21.

Borel-Weil realization of the (opposite) algebra

Exponentiating the generators in the defining representation of Eq B.9 yields [40]:

e2φiH =

 e´φ 0 0

0 eφ 0

0 0 1

 , eγ
´iE´ =

 1 0 0

γ´ 1 0

0 0 1

 , eγ
+iE+ =

 1 γ+ 0

0 1 0

0 0 1


e2θ

´iF´ =

 1 0 0

0 1 ´θ´

θ´ 0 1

 , e2θ
+iF+ =

 1 0 θ+

0 1 0

0 θ+ 1


(B.26)

in terms of three scalar Gauss parameters φ, γ´, γ+ and two Grassmann parameters θ´, θ+. The corresponding
group action is readily read off using Eq B.21;

(e2φiH ˝ f)(x, ϑ) = e2jφf(e´2φx, e´φϑ) (B.27)

(eγ
´iE´ ˝ f)(x, ϑ) = f(x+ γ´, ϑ) (B.28)

(eγ
+iE+ ˝ f)(x, ϑ) = sgn(γ+x+ 1)´1/2|γ+x+ 1|2jf

(
x

γ+x+ 1
,

ϑ

γ+x+ 1

)
(B.29)

(e2θ
´iF´ ˝ f)(x, ϑ) = f(x+ θ´ϑ, ϑ+ θ´) (B.30)

(e2θ
+iF+ ˝ f)(x, ϑ) = |1 + θ+ϑ|2jf

(
x

1 + θ+ϑ
,
ϑ´ θ+x

1 + θ+ϑ

)
. (B.31)

We derive the infinitesimal action of the generators on the space L2(R1|1) by linearizing with respect to the
Gauss parameters. This leads to the Borel-Weil realization of osp(1|2,R):

iH = ´xBx ´
1

2
ϑBϑ + j, iE´ = Bx, iE+ = ´x2Bx ´ xϑBϑ + 2jx

iF´ =
1

2
(Bϑ + ϑBx), iF+ = ´

1

2
xBϑ ´

1

2
xϑBx + jϑ.

(B.32)

Acting on purely bosonic entries, the osp(1|2,R) differential operators coincide with the spin-j Borel-Weil re-
alization of sl(2,R) (c.f. Eq A.11). Acting on a purely fermionic function ϑf(x), the action of the osp(1|2,R)
Borel-Weil operators inherits a spin-(j´ 1/2) sl(2,R) representation. In particular, the action of iH on ϑf(x)
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yields:

iH(ϑf(x)) = ´ϑxBxf(x) ´
1

2
ϑf(x) + jϑf(x) = ϑ

(
´xBxf(x) +

(
j ´

1

2

)
f(x)

)
.

This coincides with the spin-
(
j ´ 1

2

)
sl(2,R) action of iH on f(x). Therefore, a spin-j representation of

osp(1|2,R) may be decomposed into a direct sum of irreducible representations of sl(2,R) according to:

R
osp(1|2,R)
j = R

sl(2,R)
j ‘R

sl(2,R)
j´1/2 . (B.33)

The irreducible representations in sl(2,R) are however not unitary, since this would require j = ´1
2 + ik.

Calculating the full commutation relations, one finds that they indeed satisfy the osp(1|2,R)-algebra Eq 4.83,
up to a sign factor in the anticommutators [40];

[H,E˘] = ˘iE˘, [E+, E´] = 2iH, [H,F˘] = ˘
1

2
iF˘,

[E˘, F¯] = iF˘, tF+, F´u = ´
1

2
iH, tF˘, F˘u = ˘

1

2
iE˘.

(B.34)

This is consistent with the fact that the generators in the Borel-Weil realization are represented by anticom-
muting Grassmann differential operators, whereas the entries in the fermionic generators of the matrixrepre-
sentation Eq B.9 are real numbers. In accordance with [40], we denote the algebra satisfied by the Borel-Weil
generators the opposite osp(1|2,R)-superalgebra.
To account for the opposite algebra, one makes a slight modification in the definition of the sCasimir compared
to Eq B.14,

Q = (iF´)(iF+) ´ (iF+)(iF´) +
1

8

=
1

2
(Bϑ + ϑBx)(´

1

2
xBϑ ´

1

2
xϑBx + jϑ) ´

1

2
(´

1

2
xBϑ ´

1

2
xϑBx + jϑ)(Bϑ + ϑBx) +

1

8

= ´
�

�
�1

4
xBx +

�
����1

4
xϑBϑBx +

j

2
´
j

2
ϑBϑ ´

1

4
ϑBϑ ´

�
����1

4
xϑBϑBx +

�
�
�1

4
xBx ´

�
����1

4
xϑBϑBx +

�
����1

4
xϑBxBϑ ´

j

2
ϑBϑ +

1

8

=

(
1

8
+
j

2

)
(1 ´ 2ϑBϑ). (B.35)

For any supernumber, it is readily seen that (´)F = (1´2ϑBϑ) changes sign when acting on a fermionic entry,
while acts as the identity on any bosonic entry. This agrees with the general definition of the sCasimir, acting
on a spin-j representation Eq B.14.
Due to unitarity of the principal series representation, all bosonic generators H,E˘ are hermitian with re-
spect to the measure dxdϑ. Due to tF˘, F˘u = ˘1

2 iE
˘, the fermionic generators cannot be hermitian (e.g.

(F+F+): = ¯i14(E
+): = ¯i14E

+ ‰ F+F+). However, the combination of the fermionic generators with
their respective Grassmann group variables θ˘ are hermitian in the usual sense (the fermionic generators do
not square to an anti-hermitian generator anymore; instead [θ1˘F˘, θ

˘F˘] = ¯1
2 i θ

1˘θ˘ E˘).
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B.1.4 Gauss parametrization of the OSp(1|2,R) supergroup manifold

To proceed, it is useful to introduce the Gauss parametrization of the OSp(1|2,R) group manifold, analogously
to the Gauss parametrization of SL(2,R) (c.f. Eq 2.148). In particular, the group manifold is characterized in
terms of φ, γ+, γ´, θ+, θ´:

g(φ, γ´, γ+ | θ´, θ+) = e2θ
´iF´eγ

´iE´e2φiHeγ
+iE+e2θ

+iF+ . (B.36)

Using the explicit exponentiations Eq B.26;

g(φ, γ´, γ+ | θ´, θ+) =

 e´φ γ+e´φ e´φθ+

γ´e´φ eφ + γ´γ+e´φ ´ θ´θ+ γ´e´φθ+ ´ θ´

e´φθ´ γ+e´φθ´ + θ+ 1 + e´φθ´θ+

 . (B.37)

One can calculate the Haar measure on the Gauss manifold using similar reasoning of section 2.6.1. In partic-
ular, one considers the metric on OSp(1|2,R) (c.f. Eq 2.149):

ds2 =
1

2
STr((g´1dg)2) = gijdx

idxj . (B.38)

This leads to the natural volume form on the supergroup manifold equipped with the metric gij : dg =
a

sdet(g)dx1 ^ ¨ ¨ ¨ ^ dxn. n is the dimension of the osp(1|2,R)-algebra. After a lengthy, but otherwise
straightforward calculation (preferably on Mathematica), we verify [40]:

g´1dg =
(
2dφ´ 2γ+e´2φdγ´ ´ 2

(
e´φθ+ + γ+e´2φθ´

)
dθ´

)
iH (B.39)

+
(
2γ+dφ´ γ+2e´2φdγ´ + dγ+ ´ (γ+2e´2φθ´ + 2γ+e´φθ+)dθ´ ´ θ+dθ+

)
iE+

+
(
e´2φdγ´ + e´2φθ´dθ´

)
iE´

+
(
2θ+dφ´ 2γ+e´2φθ+dγ´ + 2(γ+e´φ + 2γ+θ´θ+)dθ´ + 2dθ+

)
iF+

+
(

´2e´2φθ+dγ´ + 2(e´φ + e´2φθ´θ+)dθ´
)
iF´. (B.40)

One writes this in terms of g´1dg =
ř

ij(iJi)I
i
jdx

j for a transformation matrix

Ii j =


2 ´2γ+e´2φ 0 ´2

(
e´φθ+ + γ+e´2φθ´

)
0

2γ+ ´γ+2e´2φ 1 ´(γ+2e´2φθ´ + 2γ+e´φθ+) ´θ+

0 e´2φ 0 e´2φθ´ 0

2θ+ ´2γ+e´2φθ+ 0 2γ+e´φ + 2γ+θ´θ+ 2

0 ´2e´2φθ+ 0 2e´φ + 2e´2φθ´θ+ 0

 (B.41)

, where the rows label the generators in the ordening (iH, iE+, iE´, iF+, iF´), while the columns label the
group parameters in the ordening (φ, γ´, γ+, θ´, θ+). Using the definition of the Cartan-Killing metric, the
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metric on the supergroup manifold is:

gijdx
idxj =

1

2
STr(g´1dg)2) =

1

2
Ii jI

l
mSTr(iJiiJl)dxjdxm =

1

4
Ii jI

l
mκildx

jdxm (B.42)

, where κij is the Cartan-Killing metric defined in Eq B.12 with sdet(κij) = 4. Taking the superdeterminant
on both sides leads to sdet(I)2 = sdet(g). The natural volume form on the supergroup manifold is therefore in
one-to-one relation with the superdeterminant of the transition matrix I defined above. Using the definition of
the Berezinian Eq B.7, we compute:

sdet(I) =
det(A´BD´1C)

det(D)
=

´2e´2φ ´ 2e´3φθ´θ+
´4e´φ ´ 4e´2φθ´θ+

=
1

2
e´φ

, leading to the volume form

dg =
1

2
e´φ[dφdγ´dγ+ | dθ´dθ+] . (B.43)

The brackets denote an integration form on the supermanifold.

B.1.5 Mixed parabolic matrix element and the Plancherel measure

Left-parabolic eigenfunction

To deduce the Plancherel measure on OSp(1|2,R), [40] used a generalization of the orthogonality theorem Eq
A.30 to functions defined on the superline R1|1:

ż

dg Rkx|α,y|β(g)
˚ Rk

1

x1|α1,y1|β1(g) ”
δ(k ´ k1)δ(x´ x1)δ(y ´ y1)δ(α ´ α1)δ(β ´ β1)

ρ(k)
. (B.44)

In principle, we can use any suitable basis to obtain the Plancherel measure. For physical applications, I review
the results in the mixed parabolic basis.
The parabolic basis diagonalizes the parabolic group elements iE˘, iF˘. To deduce the eigenfunctions of the
left group elements, we take inspiration from the harmonic functions on SL(2,R) (c.f. Eq A.17). The harmonic
modes constitute a Fourier basis of the square-integrable functions on R. The analogous normalized5 super-
Fourier modes on R1|1 are defined as: [40]:

xx, ϑ | ν´, βy =
1

?
2π
eiν´x´βϑ =

1
?
2π

(1 ´ βϑ)eiν´x (B.47)

5These modes are normalized in the sense that

xν1
´, β

1 | ν´, βy =
1

2π

ż

R
dxei(ν´´ν1

´)x
ż

dϑϑ (β ´ β1) = δ(ν´ ´ ν1
´)δ(β ´ β1) (B.45)

, where we needed that β is a purely imaginary Grassmann number. Using the same reasoning, we see that they form a complete set of states
in the sense that:

ż

R
dν´

ż

dα |ν´, αy xν´, α| = 1 (B.46)
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, for any imaginary Grassmann number β˚ ” ´β. We readily see that these are eigenfunctions of the commut-
ing operators iE´ = Bx with eigenvalue iν´, and Bϑ with eigenvalue β. The latter follows from

Bϑ xx, ϑ | ν´, βy =
β

?
2π
eiν´x = β xx, ϑ | ν´, βy .

Although these vectors diagonalize iE´, they are not eigenfunctions of the fermionic operator iF´, since one
can prove that there exists only one (in this case Bϑ) simultaneously diagonalizable fermionic operator. On the
other hand, this might not be a problem, since the basis does not necessarily need to diagonalize all generators
in the Plancherel decomposition. One can calculate the adjoint action of the left group elements e2θ

´iF´eγ
´iE´

on xν´, β| to be:

xν´, β | e2θ
´iF´eγ

´iE´ | x, ϑy =
1

?
2π
eiν´γ´

(1 + θ´β + (β + iν´θ
´)ϑ)e´iν´x (B.48)

, where ν´ is the eigenvalue under E´. This follows from the adjoint action of (iF´)
: = ´1

2(Bϑ + ϑBx) on
the bosonic eigenmode xx, ϑ | ν´, βy (with fermionic top component!), whereby

ż

dxdϑ xx, ϑ | ν´, βy
˚ (Bϑ + ϑBx) xx, ϑ | ν´, βy = ´

ż

dxdϑ((Bϑ + ϑBx) xx, ϑ | ν´, βy)˚ xx, ϑ | ν´, βy .

Since the representation is unitary, the generator iE´ is anti-hermitian (E´ is hermitian) in the usual sense:
(iE´)

: = ´iE´. Using the Borel-Weil representation, the action of (iF´)
: and (iE): on f(x, ϑ) is

((e2θ
´iF´): ¨ f)(x, ϑ) = f(x´ θ´ϑ, ϑ´ θ´) (B.49)

((eγ
´iE´): ¨ f)(x, ϑ) = f(x´ γ´, ϑ). (B.50)

Acting on xx, ϑ | ν´, βy, we have:

xx, ϑ | ν´, βy =
1

?
2π

(1 ´ βϑ)eiν´x e2θ
´(iF´):

ÝÝÝÝÝÝÑ
1

?
2π

(
1 ´ βϑ+ βθ´

)
eiν´(x´θ´ϑ) (B.51)

e´γ´iE´

ÝÝÝÝÝÑ
1

?
2π

(
1 ´ βϑ+ βθ´

)
eiν´(x´γ´´θ´ϑ) (B.52)

=
1

?
2π

(
1 + βθ´ ´ (β + iν´θ

´)ϑ
)
eiν´xe´iν´γ´

. (B.53)

Using that β is a purely imaginary Grassmann number and that the fermionic order is preserved under complex
conjugation, the complex conjugate is readily verified to reproduce Eq B.48:

xν´, β | e2θ
´iF´eγ

´iE´ | x, ϑy = xx, ϑ | e´γ´iE´e2θ
´(iF´):

| ν´, βy
˚

=
1

?
2π
eiν´γ´ (

1 ´ βθ´ + (β + iν´θ
´)ϑ

)
e´iν´x.
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Right-parabolic eigenfunction

The generalization of the right eigenvector Eq A.19 to the superline is given by the super-Fourier-inverse [40]:

xx, ϑ |, ν+, αy =
1

?
2π

|x|2jeiν+/xeαϑ/x =
1

?
2π

(
1 +

αϑ

x

)
|x|ik
?
x
eiν+/x (B.54)

, using j = ´1
4 +

ik
2 and α˚ = ´α. These are eigenmodes of both iE+ and xBϑ. We readily see that the latter

has eigenvalue ´α. To realize the former, we consider the Borel-Weil action6 of the matrix element eγ
+iE+ on

xx, ϑ |, ν+, αy;

xx, ϑ | eγ
+iE+ | ν+, αy =

1
?
2π
eiν+γ

+

(
1 +

αϑ

x

)
|x|ik
?
x
eiν+/x (B.55)

, with eigenvalue γ+ under E+. It is however not an eigenvector under iF+, as can be readily checked.
The composite action is:

xx, ϑ | ν+, αy
e2θ

+iF+

ÝÝÝÝÝÑ
1

?
2π

(
1 +

α(ϑ´ θ+x)

x

)
|x|ik
?
x
ei

ν+

x
(1+θ+ϑ)

=
1

?
2π

(
1 + θ+α+

αϑ

x
+
iν+
x
θ+ϑ

)
|x|ik
?
x
eiν+/x

=
1

?
2π

(
1 + θ+α+

(α+ iν+θ
+)ϑ

x

)
|x|ik
?
x
eiν+/x (B.56)

eγ
+iE+

ÝÝÝÝÑ
1

?
2π
eiν+γ

+

(
1 + θ+α+

(α+ iν+θ
+)ϑ

x

)
|x|ik
?
x
eiν+/x. (B.57)

Mixed-parabolic matrix element

The Borel-Weil action of the hyperbolic element e2φiH on f(x, ϑ) is:

(e2φiH ˝ f)(x, ϑ) = e´(1/2´ik)φf
(
e´2φx, e´φϑ

)

6In general, the action on any function f(x, ϑ) is (B.27):

(eγ
+iE+ ¨ f)(x, ϑ) =

|γ+x+ 1|2j

sgn(γ+x+ 1)1/2
f

(
x

γ+x+ 1
,

ϑ

γ+x+ 1

)
=

|γ+x+ 1|ik

(γ+x+ 1)1/2
f

(
x

γ+x+ 1
,

ϑ

γ+x+ 1

)
(e2θ

+iF+ ¨ f)(x, ϑ) = |1 + θ+ϑ|´1/2+ikf

(
x

1 + θ+ϑ
,
ϑ´ θ+x

1 + θ+ϑ

)
.
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This allows us to calculate a general Gauss-parameterized matrix element in the mixed parabolic basis, by
inserting the identity

ş

dxdϑ |x, ϑy xx, ϑ| = 1:

xν´, β | e2θ
´iF´eγ

´iE´e2φiHeγ
+iE+e2θ

+iF+ | ν+, αy

=

ż 8

´8

dxdϑ xν´, β | e2θ
´iF´eγ

´iE´ | x, ϑy e2φiH xx, ϑ | eγ
+iE+e2θ

+iF+ | ν+, αy

= e´(1/2´ik)φ

ż 8

´8

dxdϑ xν´, β | e2θ
´iF´eγ

´iE´ | x, ϑy xe´2φx, e´φϑ | eγ
+iE+e2θ

+iF+ | ν+, αy

= e(1/2+ik)φ
ż 8

´8

dxdϑ xν´, β | e2θ
´iF´eγ

´iE´ | eφx, ϑy xe´φx, e´φϑ | eγ
+iE+e2θ

+iF+ | ν+, αy

, where in the last line we shifted x Ñ eφx. Plugging in the explicit wavefunctions determined above yields:

=
1

2π
eiν+γ

+

eiν´γ´

eφ
ż 8

´8

dx

(
(β + iν´θ

´)(1 + θ+α) + (1 ´ βθ´)
(α+ iν+θ

+)

x

)
|x|ik
?
x
eie

φν+/xe´iν´eφx

(B.58)

, where we immediately integrated out the fermionic superpartner ϑ, leaving only the coefficients of the terms
linear in ϑ. Next, we split the integral into the positive and negative real axis, and make use of the Bessel
integral representation (ν+, ν´ ą 0) [40]

ż 8

0
dx x2j´1e˘(iν´eφx´iν+eφ/x) = 2e˘(iπj)

(
ν+
ν´

)j
K2j(2e

φ?
ν´ν+). (B.59)

Considering the first term, we have

1

2π
eiν+γ

+

eiν´γ´

eφ(β + iν´θ
´)(1 + θ+α)

(
ż 8

0
dx
xik´1/2

i
e´ieφν+/xe+iν´eφx +

ż 8

0
dx xik´1/2eie

φν+/xe´iν´eφx

)

, whose terms are evaluated from the Bessel integral representation with spin j = ik
2 + 1

4

=
1

2π
eiν+γ

+

eiν´γ´

eφ(β + iν´θ
´)(1 + θ+α)

(
ν+
ν´

) ik

2
+ 1

4

Kik+ 1

2
(2eφ

?
ν´ν+)

(
2e

iπ

2
(ik´ 1

2
) + 2e´iπ

2
(ik+ 1

2
)
)

=
2

π
eiν+γ

+

eiν´γ´

eφ(β + iν´θ
´)(1 + θ+α)

(
ν+
ν´

) ik

2
+ 1

4

Kik+ 1

2
(2eφ

?
ν´ν+)e

´ iπ

4 cosh
(
πk

2

)
.

Considering the second term in Eq B.58, we evaluate it in the Bessel integral representation with spin j = ik
2 ´ 1

4

due to the additional x in the denominator;

1

2π
eiν+γ

+

eiν´γ´

eφ(1 ´ βθ´)(α+ iν+θ
+)

(
ż 8

0
dx
xik´3/2

´i
e´ieφν+/xe+iν´eφx +

ż 8

0
dx xik´3/2eie

φν+/xe´iν´eφx

)

=
1

π
eiν+γ

+

eiν´γ´

eφ(1 ´ βθ´)(α+ iν+θ
+)

(
ν+
ν´

) ik

2
´ 1

4

Kik´ 1

2
(2eφ

?
ν+ν´)

(
e

iπ

2
(ik+ 1

2
) + e

iπ

2
(´ik+ 1

2
)
)

=
2

π
eiν+γ

+

eiν´γ´

eφ(1 ´ βθ´)(α+ iν+θ
+)

(
ν+
ν´

) ik

2
´ 1

4

Kik´ 1

2
(2eφ

?
ν+ν´)e

iπ/4 cosh
(
πk

2

)
.
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Summarized, the total mixed-parabolic matrix element is given by:

xν´, β | g | λ+, αy (B.60)

=
2

π
eiν+γ

+

eiν´γ´

eφ cosh
(
πk

2

)(
(1 ´ βθ´)(α+ iν+θ

+)

(
ν+
ν´

) ik

2
´ 1

4

eiπ/4Kik´ 1

2
(2eφ

?
ν+ν´)

+ (β + iν´θ
´)(1 + θ+α)

(
ν+
ν´

) ik

2
+ 1

4

e´ iπ

4 Kik+ 1

2
(2eφ

?
ν´ν+)

)
.

(B.61)

The Plancherel measure is deduced from the orthogonality relation

ż

dg xν´, β | g | ν+, αy
˚
k1

xν 1
´, β

1 | g | ν 1
+, α

1y
k1

=
δ(k1 ´ k2)δ(α ´ α1)δ(β ´ β1)δ(ν´ ´ ν 1

´)δ(ν+ ´ ν 1
+)

ρ(k)
(B.62)

, with repspect to the Haar measure Eq B.43. Using the analytically continued orthogonality identities of the
Bessel functions [40]

ż 8

0
dx
(
K 1

2
+ik(x)K 1

2
+ik1(x) +K 1

2
´ik(x)K 1

2
´ik1(x)

)
=

π2

coshπkδ(k + k1) (B.63)
ż 8

0
dx
(
K 1

2
+ik(x)K 1

2
´ik1(x) +K 1

2
´ik(x)K 1

2
+ik1(x)

)
=

π2

coshπkδ(k ´ k1) (B.64)

, it is a straightforward but rather lengthy calculation to deduce the correct Plancherel measure. The details can
be found in [40], leading to:

ρ(k) =
1

4π2
cosh(πk)

cosh2
(
πk
2

) =
1

2π2
cosh(πk)

1 + cosh(πk) . (B.65)

Reminiscent to SL(2,R), this is not the end of the story since the full OSp(1|2,R)-supergroup manifold is
actually covered by eight disconnected patches. Using similar arguments to [24], [40] finds that each patch
has the same weight, and summing over the different patches leads simply to a factor eight in the total inner
product. The final Plancherel measure on OSp(1|2,R) is therefore:

ρ(k) =
1

16π2
cosh(πk)

1 + cosh(πk) . (B.66)

B.2 Representation theory of OSp+(1|2,R)

In [40], it was argued that the relevant representation theory for gravity is in fact the subsemisupergroup
OSp+(1|2,R), analogous to the story for bosonic JT quantum gravity.
The subsemisupergroup in the defining representation consists of all OSp(1|2,R)-matrices (Eq B.1) whose
bosonic entries take only positive values: a, b, c, d ą 0, with no further constraints on the fermionic Grass-
mann entries, since the positivity of a supernumber is determined entirely by its body (see footnote 2). This
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property is preserved under group multiplication g1 ¨ g2, for which the explicit composition is written in Eq
B.22. We see that each entry remains positive if the bosonic entries of both g1 and g2 are constrained to positive
values.
This time however, the entire (semi)supergroup manifold is covered by a single patch in the Gauss decompo-
sition g(φ, γ´, γ+ | θ´, θ+) = e2θ

´iF´eγ
´iE´e2φiHeγ

+iE+eγ
+iE+e2θ

+iF+ , where we only need to constrain
γ+, γ´ ą 0:

g(φ, γ´, γ+ | θ´, θ+) =

 e´φ γ+e´φ e´φθ+

γ´e´φ eφ + γ´γ+e´φ ´ θ´θ+ γ´e´φθ+ ´ θ´

e´φθ´ γ+e´φθ´ + θ+ 1 + e´φθ´θ+

 . (B.67)

One constructs the principal series representation as the projective action of the subsemisupergroup on the
target space of square integrable functions L2(R+1|1) on the positive superline R+1|1 = t(x|ϑ) : x ą 0u.
Again, since positivity of a supernumber is determined entirely by its body, positivity is preserved under the
projective action of an element of OSp+(1|2,R), which maps the bosonic coordinate x to ax+c+βϑ

bx+d+δϑ .
More concretely, the principal series action of a group element g P OSp+(1|2,R) on a square integrable
function f P L2(R1|1) is defined as Eq B.21, without the additional sign factors and absolute values:

xx | g | fy = (g ¨ f)(x, ϑ) = (bx+ d+ δϑ)2j f

(
ax+ c+ βϑ

bx+ d+ δϑ
,´

αx+ γ ´ eϑ

bx+ d+ δϑ

)
. (B.68)

This defines a spin-j representation of the osp(1|2,R) algebra, whose infinitesimal action is given by the Borel-
Weil realization of the opposite superalgebra Eq B.32 in the anticommutators. This is again consistent with the
fact that the fermionic first order differential operators are represented by Grassmann operators, rather than the
defining bosonic matrices. The principal continuous series representation on OSp+(1|2,R) is both unitary and
irreducible [40]. In particular, one again constrains the spin label to:

j = ´
1

4
+
ik

2
, with k P R. (B.69)

Within the subsemisupergroup, [40] motivates that the only relevant irreducible representations in the Plancherel
decomposition are in fact the principal continuous series representation, upon considering the Casimir eigen-
value problem in the relevant positive subsector of the entire supergroup manifold. It is noted that within this
subsector only the principal series wavefunctions appear in the harmonic analysis. In particular, the discrete
series representations do not appear in the Casimir eigenfunctions for the subsemigroup.



258 APPENDIX B. REPRESENTATION THEORY OF OSp(1|2,R)

B.2.1 Gravitational matrix elements in the mixed parabolic basis

Left gravitational eigenstates

Having the gravitational coset boundary conditions in mind, one calculates the explicit matrix element in
a mixed parabolic basis. This allows us to deduce directly the Plancherel measure on OSp+(1|2,R). As
opposed to the state vectors of OSp(1|2,R), one considers eigenfunctions of iE+ and iE´ with a bosonic
top component. This allows to streamline the diagonalization procedure, as demonstrated bellow. For these
modified eigenstates |ν+, ε+y, |ν´, ε´y, we consider the matrix element

xν´, ε´ | g | ν+, ε+y = xν´, ε´ | e2θ
´iF´eγ

´iE´e2φiHeγ
+iE+e2θ

+iF+ | ν+, ε+y

=

ż 8

0
dxdϑ xν´, ε´ | x, ϑy e2θ

´iF´eγ
´iE´e2φiHeγ

+iE+e2θ
+iF+ xx, ϑ | ν+, ε+y .

In particular, the left parabolic eigenfunction of iE´ are given by:

xx, ϑ | ν´, ε´y =
1

?
2π

e´ν´x+iε´

?
ν´ϑ =

1
?
2π

(e´ν´x + iε´

?
ν´ϑe

´ν´x) (B.70)

, where ε´ = t´1, 1u is a Z2-phase factor for consistency. Acting with iE´ = Bx demonstrates that the
eigenvalue under E´ is iν´ (eigenvalue of iE´ = ´ν´). We are hence working with exponentially damped
eigenmodes on R+1|1 with imaginary eigenvalue under E´, instead of the harmonically oscillating modes on
R1|1 with real eigenvalue under E´. This should of course be compared to the restriction to the subsemigroup
SL+(2,R) (c.f. Eq A.48) in the bosonic case. Since the combination (iE´) is anti-hermitian, the adjoint action
is:

xν´, ε´ | x, ϑy (iE´) = ((iE´)
: xx, ϑ | ν´, ε´y): = ν´ xν´, ε´ | x, ϑy . (B.71)

The generator iF´ = 1
2(Bϑ + ϑBx) is not simply anti-hermitian with respect to the measure dxdϑ. Instead,

partially integrating on a square integrable function with a bosonic top and bottom component yields the adjoint
action (Bϑ)

: = Bϑ and (ϑBx)
: = ´ϑBx. The adjoint action is thus characterized by7 (iF´)

: = 1
2(Bϑ ´ ϑBx).

Its action on xx, ϑ | ν´, ε´y is readily given by:

(iF´)
: xx, ϑ | ν´, ε´y =

1

2
(Bϑ ´ ϑBx)

1
?
2π

(e´ν´x + iε´

?
ν´ϑe

´ν´x)

=
1

?
2π

(
iε´

?
ν´

2
e´ν´x +

ϑ

2
ν´e

´ν´x

)
=
iε´

?
ν´

2

1
?
2π

(
e´ν´x ´ iε´

?
ν´ϑe

´ν´x
)
.

This leads exactly to the adjoint action of (iF´)
: on xx, ϑ | ν´, ε´y;

(iF´)
: xx, ϑ | ν´, ε´y =

iε´
?
ν´

2
xx, ϑ | ν´,´ε´y . (B.72)

As argued before, the states xx, ϑ | ν´, ε´y cannot be simultaneous eigenvectors of both iE´ and iF´. Instead,
we see that the action of (iF´)

: maps the states xx, ϑ | ν´, ε´y to its opposite xx, ϑ | ν´,´ε´y under Z2.

7This should be contrasted with the adjoint action on functions with fermionic top component discussed in the previous section.
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The mutual "eigenvalue" under (iE´)
: and (iF´)

: indeed constrains the value of the bosonic top component
ε´. Indeed, due to the anti-commutation relation tF´, F´u = ´

iE´

2 , the fermionic generator squares to the
anti-hermitian generator iE´: (iF´)

:(iF´)
: = ´

iE´

4 . Acting on xx, ϑ | ν´, ε´y:

iE´ xx, ϑ | ν´, ε´y = ´4(iF´)
:(iF´)

: xx, ϑ | ν´, ε´y = ´4
iε´

?
ν´

2
(iF´)

: xx, ϑ | ν´,´ε´y

= ´ε2´ ν´ xx, ϑ | ν´, ε´y .

On the other hand, the eigenvalue under iE´ was established to be iE´ xx, ϑ | ν´, ε´y = ´ν´ xx, ϑ | ν´, ε´y.
This therefore indeed restricts the bosonic parameter to Z2-sign factor ε˘ P t´1,+1u.
On the other hand, the fermionic generator (iF´) is always accompanied by a Grassmann variable θ´. Trans-
muting θ´ to the left, then taking the hermitian conjugate yields a flip under Z2 in the order-preserving complex
conjugation convention:

xν´, ε´ | x;ϑy θ´(iF´) = (θ´(iF´)
: xx, ϑ | ν´,´ε´y): =

(
´
iε´

?
ν´

2
θ´ xx, ϑ | ν´, ε´y

):

=
iε´

?
ν´

2
θ´ xν´, ε´ | x, ϑy . (B.73)

Right gravitational eigenstates

The right parabolic eigenstates are given by:

xx, ϑ | ν+, ε+y =
1

?
2π
x2je´ν+/x´iε+

?
ν+ϑ/x =

1
?
2π

(x2je´ν+/x ´ iε+
?
ν+ϑx

2j´1e´ν+/x) . (B.74)

For consistency, we again take ε+ to be a Z2-valued sign factor ε+ P t´1, 1u. Using similar reasoning to Eq
B.55, the Borel-Weil action of eγ

+iE+ directly leads to the eigenvalue under E+ of E+ = iν+. On the other
hand, we find the action of (iF+) by explicitly calculating

iF+ xx, ϑ | ν+, ε+y =
1

?
2π

(´
1

2
xBϑ ´

1

2
xϑBx + jϑ)(x2je´ν+/x ´ iε+

?
ν+ϑx

2j´1e´ν+/x)

=
1

?
2π

(
iε+

?
ν+

2
x2je´ν+/x ´

2j

2
������
x2jϑe´ν+/x ´

ν+
2
x2j´1ϑe´ν+/x +������

jϑx2je´ν+/x

)
=

1
?
2π

iε+
?
ν+

2

(
x2je´ν+/x + iε+

?
ν+ϑx

2j´1e´ν+/x
)

=
iε+

?
ν+

2
xx, ϑ | ν+,´ε+y .

Again, we see that the action of iF+ transforms xx, ϑ | ν+, ε+y into its opposite xx, ϑ | ν+,´ε+y under Z2.
Due to the algebra relation tF+, F+u = iE+

2 , the parameter ν+ is also restricted to a Z2-phase factor ε+ P

t´1, 1u. Accompanied by the Grassmann parameter θ+, the "eigenstate" xx, ϑ | ν+,´ε+y transforms back
when transmuting θ+ to the right:

θ+(iF+) xx, ϑ | ν+, ε+y =
iε+

?
ν+

2
xx, ϑ | ν+, ε+y θ+. (B.75)
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Using the (adjoint) action of the left- and the right-parabolic group elements on respectively xν´, ε´ | x, ϑy

and xx, ϑ | ν+, ε+y, the mixed parabolic matrix element is given entirely by the action of the hyperbolic group
element:

xν´, ε´ | g | ν+, ε+y = xν´, ε´ | e2θ
´iF´eγ

´iE´e2φiHeγ
+iE+eγ

+iE+e2θ
+iF+ | ν+, ε+y

=
(
1 + iε´

?
ν´θ

´ + iε+
?
ν+θ

+ ´ ε´ε+
?
ν´ν+θ

´θ+
)
eγ

´ν´´γ+ν+ (B.76)
ż

dxdϑ xν´, ε´ | x, ϑy e2φiH xx, ϑ | ν+, ε+y .

Thereby only the hyperbolic group parameter e2φiH is relevant in the integral. Resembling the nomenclature
of SL(+)(2,R), we call the eigenvectors Eqs B.70 and B.74 the left and right Whittaker vector respectively.
The matrix element inside the integral xν´, ε´ | e2φiH | ν+, ε+y is called the Whittaker function. We readily
compute it by integrating over ϑ, and by using the integral identity [40]:

ż 8

0
dx x2j´1e´ν´x´ν+/x = 2

(
ν+
ν´

)j
K2j(2

?
ν´ν+). (B.77)

We first realize the action of e2φiH on xx, ϑ | ν+, ε+y by virtue of the Borel-Weil realization Eq B.68
xx, ϑ | e2φiH | ν+, ε+y = e2jφ xe´2φx, e´φϑ | ν+, ε+y, leading to:

xν´, ε´ | e2φiH | ν+, ε+y =
1

2π

ż 8

0
dx

ż

dϑ(e´ν´x ´ iε´

?
ν´ϑe

´ν´x)

ˆ e2jφ
(
e´4jφx2je´ν+e2φ/x

´ iε+
?
ν+e

´φϑe´2(2j´1)φx2j´1e´ν+e2φ/x
)

=
1

2π

ż 8

0
dx
(

´iε´

?
ν´e

´2jφx2je´ν+e2φ/x´ν´x ´ iε+
?
ν+e

´(2j´1)φx2j´1e´ν+e2φ/x´ν´x
)

=
1

πi

(
ε´

?
ν´e

´2jφ

(
e2φ

ν+
ν´

)j+1/2

K2j+1(2e
φ?

ν´ν+) + ε+
?
ν+e

´(2j´1)φ

(
e2φ

ν+
ν´

)j
K2j(2e

φ?
ν´ν+)

)

=
1

πi

ν
j+1/2
+

νj´
eφ
(
ε´K2j+1(2e

φ?
ν´ν+) + ε+K2j(2e

φ?
ν´ν+)

)
, which combined with the prefactor proportional to the parabolic group elements, leads to the total mixed
parabolic matrix element (j = ´1

4 + ik
2 ):

xν´, ε´ | g | ν+, ε+y =
(
1 + iε´

?
ν´θ

´ + iε+
?
ν+θ

+ ´ ε´ε+
?
ν´ν+θ

´θ+
)
eγ

´ν´´γ+ν+

ˆ
1

πi

(ν+)
1

4
+ ik

2

(ν´)
´ 1

4
+ ik

2

eφ
(
ε´K 1

2
+ik(2e

φ?
ν´ν+) + ε+K 1

2
´ik(2e

φ?
ν´ν+)

)
.

(B.78)

The symmetry of the Bessel function Kik´ 1

2
(x) = K 1

2
´ik(x) was used to obtain the second term [40].
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B.2.2 Plancherel measure on OSp+(1|2,R)

For future purposes, we can basically neglect the parabolic prefactor in front of the Whittaker function, since
the integral over the supergroup parameters θ˘ yields an irrelevant overall constant. The resulting matrix
element is simply the Whittaker function, and depends only on the hyperbolic group element:

Rkν+,ε+;ν´,ε´
(φ) = xν´, ε´ | e2φiH | ν+, ε+y

=
1

πi

(ν+)
1

4
+ ik

2

(ν´)
´ 1

4
+ ik

2

eφ
(
ε´K 1

2
+ik(2e

φ?
ν´ν+) + ε+K 1

2
´ik(2e

φ?
ν´ν+)

)
.

(B.79)

To derive the Plancherel measure, we consider the group integral over the hyperbolic parameter φ with respect
to the Haar measure Eq B.43;

ż +8

´8

(
1

2
e´φ

)
Rkν+,ε+;ν´,ε´

(φ)˚Rkν+,ε+;ν´,ε´
(φ) ”

δ(k ´ k1)

ρ(k)
(B.80)

, for which one uses the integral identity [40]

ż 8

´8

dφ

(
eφ

2

)(
K 1

2
´ik(2

?
ν´ν+e

φ) + ε´ε+K 1

2
+ik(2

?
ν´ν+e

φ)
)

ˆ

(
K 1

2
+ik1(2

?
ν´ν+e

φ) + ε´ε+K 1

2
´ik1(2

?
ν´ν+e

φ)
)
=

π2δ(k ´ k1)

4
?
ν´ν+ cosh(πk) . (B.81)

This holds for any sign of ε´ε+. Inserting the prefactor of the Whitakker function Eq B.79, one directly obtains
up to normalization, the proper Plancherel measure:

ρ(k) = cosh(πk) . (B.82)

The evaluation is significantly simplified compared to the discussion of OSp(1|2,R), since we only cover the
positive superline and tberefore do not need to split the integral representation of the Bessel function along
positive and negative values. The supergroup manifold is furthermore covered by only a single patch.



Appendix C

Virasoro Coadjoint Orbits and the
Symplectic measure

We start from transforming the finite-temperature Schwarzian action for reparameterization modes of the
Poincaré time F = tan π

β f(τ) to reparameterization modes of the thermal circle f(τ) (Eq 1.105):

I = ´C

ż β

0
dτ tF (τ), τu = ´C

ż β

0
dτ

[
tf(τ), τu +

2π2

β2
f 1(τ)2

]
. (C.1)

It is convenient to redefine the reparametrization mode f(τ) Ñ
β
2πf(

2π
β τ) into a 2π periodic mode: f(τ +

2π) = f(τ)+2π. Using that the Schwarzian derivative is invariant under dilations, and further using the chain
rule, we may equivalently write:

I = ´
2πC

β

ż 2π

0
dτ

"

tan f
2
, τ

*

= ´
2πC

β

ż 2π

0
dτ

[
tf, τu +

1

2
f 12

]
(C.2)

=
πC

β

ż 2π

0
dτ

(
f22

f 12
´ f 12

)
. (C.3)

The last definition is a convenient rewriting of the finite-temperature Schwarzian action, obtained by partially
integrating the Schwarzian derivative

tf(τ), τu ”
f3(τ)

f 1(τ)
´

3

2

(
f2(τ)

f 1(τ)

)2

=

(
(f2(τ)

f 1(τ)

)1

´
1

2

(
f2(τ)

f 1(τ)

)2

» ´
1

2

(
f2(τ)

f 1(τ)

)2

.

As elaborated before, the integration space is the orbit of a particular constant coadjoint vector under the
Virasoro group. Coadjoint orbits are symplectic manifolds, which inherit a natural symplectic form. Therefore,
as a first step to understand the integration measure deduced from the symplectic form, we should understand
how the integration space is related to the Virasoro algebra.

262
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C.1 Virasoro algebra and coadjoint vectors

The Lie algebra of the group of diffeomorphisms of the thermal circle diff(S1) (without a central extension)
consists of vector fields V ” V (τ) B

Bτ , defined on S1 where τ P [0, 2π]. It is a general fact that the variation of
a vector along a vector field W =W (τ) B

Bτ is given by the Lie derivative1 of V along W ;

δWV (τ) = LWV (τ) = [W (τ)
B

Bτ
, V (τ)

B

Bτ
] = (WV 1 ´ VW 1)

B

Bτ
.

The coadjoint vector2 is defined as the quadratic differential φ(τ)(dτ)2 [66], which pairs with the adjoint
vectors via the inner product xφ | V y =

ş2π
0 dτφV . Upon requiring that the inner product is invariant under

infinitesimal transformations of δWV , the variation of the coadjoint vector is δWφ = 2W 1φ+Wφ1, such that
indeed:

δW

(
ż

dτφV

)
=

ż

dτ [(δWV )φ+ V (δWφ)] =

ż

dτ
[
WV 1φ´ VW 1φ+ 2W 1V φ+ VWφ1

]
= 0.

This can be seen trivially by partially integrating the last term.

The Virasoro group is the infinite dimensional Lie group obtained as the universal central extension of the
group of reparametrizations of the circle diff(S1). The corresponding Virasoro Lie algebra is isomorphic to the
unique central extension of the Witt algebra, and obeys the Lie algebra:

[Lm, Ln] = (m´ n)Lm+n +
c

12
m(m2 ´ 1)δm,´n (C.4)

, where the eigenvalue of c is the central charge of the central extension. An equivalent, more practical form is
obtained by shifting L0 Ñ L0 +

c
24 ,

[Lm, Ln] = (m´ n)Lm+n +
c

12
m3δm+n . (C.5)

We imagine the generators to be the complete set of functions Lm = ieimτ B
Bτ , defined on the thermal circle

τ ” τ + 2π. The Virasoro algebra is realized3 on this set of functions with the central extended Lie bracket:

[V (τ)
d

dτ
,W (τ)

d

dτ
] = (VW 1 ´WV 1)

d

dτ
+

ic

48π

ż 2π

0
dτ (VW3 ´ V 3W ). (C.6)

1Consider the variation of Uµ(x) along a vector field ξµ(x) to x1µ = xµ ´ ξµ(x). This results in δξUµ ” U 1µ(x) ´ Uµ(x) = U 1µ(x1) +

ξν(x)BνU 1µ(x1) ´ Uµ(x) = Bx1µ

Bxν U
ν(x) ´ Uµ(x) + ξν(x)BνU 1µ(x1) » ξν(x)BνUµ(x) ´ Bνξµ(x)Uν(x) ” LξU

µ(x)
2A more formal definition of the coadjoint representation starts by considering a Lie group G and its Lie algebra g. The adjoint representation

of the action of the Lie algebra is a homomorphism of the Lie algebra on itself: Rad : g Ñ gl(g), x ÞÑ adx, where adx is a linear function on the
algebra g, defined by adx(y) = [x, y], for any y P g. By the Jacobi identity on g, this map is a homomorphism that preserves the commutation
relations Rad(x) ˝ Rad(y) ´ Rad(y) ˝ Rad(x) = Rad([x, y]). By considering the Cartan-Killing metric on the Lie algebra xg | hy, one defines
the coadjoint representation Ad˚ : g Ñ gl(g˚) as the dual space of the adjoint representation, defined by xad˚

xµ | yy ” xµ | ´adx(y)y =
xµ | ´[x, y]y, for x, y P g and µ P g˚. The coadjoint orbit of µ P g˚ is defined as the orbit Ad˚

Gµ of µ under the action of coadjoint action of G,
or as the quotient space G/Gµ, for the isotropy subgroup Gµ of µ with respect to the coadjoint action of G. The coadjoint orbit admits a natural
symplectic structure defined by the closed, non-degenerate, G-invariant 2-form ων(ad˚

xν, ad
˚
y ν) ” xν | [x, y]y for x, y P g, ν P Ad˚

G(µ).
3Explicitly; [Lm, Ln] = (´in+ im)ei(n+m)τ B

Bτ
+ ic

48π

ş2π
0 dτ

[
in3ei(n+m)τ ´ im3ei(n+m)τ

]
= (m´n)Lm+n + c

12
m3δm+n, from the

orthogonality 1
2π

ş2π
0 ei(m+n)τdτ = δm+n.
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A general element of the Virasoro adjoint representation is labeled by a pair (V, a), representing V (τ) B
Bτ ´ iac,

with V an adjoint vector and a a real number related to the central extension. We can expand this vector into
generators of the Virasoro algebra Lm, plus a multiple of the central element. The Lie bracket determines the
infinitesimal change in (V, a) under a vector W

δW (V, a) =

(
WV 1 ´W 1V,

1

48π

ż 2π

0
dτ (W3V ´ V 3W )

)
. (C.7)

The quadratic differentials of coadjoint elements are extended with a dual central element c̃ that acts on the
central element of the adjoint vectors c such that c̃(c) = 1. The coadjoint vectors are labeled by pairs (φ, b),
representing φ(τ)dτ2 + ibc̃. By analogy to the centerless diff(S1), we define the inner product between an
adjoint vector (V, a) and a coadjoint vector (φ, b) by:

x(φ, b) | (V, a)y ”

ż 2π

0
dτ (V (τ)φ(τ)) + ab (C.8)

We take b to be a constant in the coadjoint pair. Since the variation of V contains a term WV 1 ´ W 1V , we
know from the centerless diff(S1) that the coadjoint variation contains 2W 1φ +Wφ1 Ă δW f . The additional
term should compensate the variation in the center of Eq C.7:
ż

dτ δWφV +
1

48π

ż

dτ (VW3 ´ V 3W )b =

ż

dτ δWφV +
1

24π

ż

dτ V W3b Ă δW (x(φ, b) | (V, a)y)

Therefore, in order for the inner product to be invariant under infinitesimal variation of W , the correct trans-
formation rule is

δWφ(τ) = 2W 1φ+Wφ1 ´
W3b

24π
, δW b = 0. (C.9)

The coadjoint orbit Wβ of a coadjoint vector β = (φ0(θ), t) consists of all coadjoint vectors into which β can
be transformed by the action of the Virasoro group. Since this is a homogeneous space, every γ in Wβ can
be obtained from β by a reparametrization of the thermal circle τ Ñ f(τ). The orbit of an element β under
the Virasoro group may also be defined as the quotient of the Virasoro group and the isotropy subgroup whose
infinitesimal action leaves the coadjoint element invariant. In this case, the action of certain reparametrization
elements f(τ) leaves the point β invariant, and corresponds to the stabilizer of β. The action on a coadjoint
vector preserves the central element b, which is a constant that characterizes the orbit.
One can show [66] [20] that the integrated form of Eq C.9 transforms the quadratic differential φ0 to:

φ̃(τ) ” Ad˚
f´1(φ0(τ)) = f 1(τ)2φ0(f(τ)) ´

b

24π
tf(τ), τu (C.10)

, while leaving b invariant. For infinitesimal transformations f(τ) Ñ τ +W , the variation of the Schwarzian
derivative to first order is:

tf(τ), τu =
f3

f 1
´

3

2

(
f2

f 1

)2

Ñ
W3

1 +W 1
´

3

2

W 22

(1 +W 1)2
= W3 +O(W 2)

Together with the variation of f 1(τ)2φ0(f(τ)) = (1 +W 1)2φ0(τ +W ) = φ0 +2W 1φ0(τ) +Wφ1
0 +O(W 2),
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this reproduces Eq C.9 to first order in W . From the finite transformation law of a coadjoint vector, we may
interpret φ0 as a stress tensor in a 2d CFT. This is the context in which the Schwarzian derivative naturally
shows up.
The finite transformation of an initial φ0 defines a coadjoint orbit Ad˚

f´1(φ0(τ)) under the Virasoro group f .
The corresponding orbit of the adjoint element (v(τ), a) in the Virasoro algebra is consequently:

Adf´1(V (τ), a) =

(
V (f(τ))

f 1(τ)
, a+

1

24π

ż 2π

0
dτ

V (f(τ))

f 1(τ)
tf(τ), τu

)
. (C.11)

It is readily seen that this leaves the inner product x(φ, b) | (v, a)y invariant:

x(φ, b) | (V, a)y =

ż 2π

0
dτ f 1(τ)(V (f(τ))φ(f(τ)) + ab =

ż 2π

0
dτ V (τ)φ(τ) + ab.

The finite transformation Eq C.10 represents the coadjoint orbit of the coadjoint vector φ0(τ), obtained by
continuously transforming φ0(τ) by varying f . Some of the coadjoint vectors may be invariant under the
action for some f -configurations. Note that any generic constant element φ0 is invariant under the U(1) action
of f(τ) = τ + ε for a constant ε; Ad˚

f´1(φ0) = φ0. Therefore, the natural coadjoint orbit of the latter is the
quotient space diff(S1)/U(1).
In the case of interest for the Schwarzian boundary theory, we choose a particular identity coadjoint vector
φ0 = ´ b

48π . The coadjoint orbit, obtained by continuously varying f , is the finite-temperature Schwarzian
derivative:

Ad˚
f´1(´

b

48π
) = ´

b

24π

[
tf(τ), τu +

f 1(τ)2

2

]
= ´

b

24π

"

tan f(τ)
2

, τ

*

. (C.12)

In this case, the stabilizer corresponds to the projective SL(2,R) transformations on F (τ) ” tan f(τ)
2 , that

leave the Schwarzian derivative invariant:

´
b

24π

"

aF + b

cF + d
, τ

*

= ´
b

24π
tF (τ), τu .

Therefore, we come to the conclusion that the diff(S1)/SL(2,R) integration space of the Schwarzian path
integral corresponds to the coadjoint orbit of a particular identity element under the action of the Virasoro
group. The Hamiltonian corresponds to time translations τ Ñ τ + ε, generated by L0. The latter corresponds
to a constant adjoint vector. The associated group action is obtained by pairing the coadjoint orbit Ad˚

f´1 with
this constant vector. This is just the Schwarzian action:

I = xAd˚
f´1 , ctey 9

ż 2π

0
dτ

"

tan f
2
, τ

*

. (C.13)

C.2 Symplectic structure of coadjoint orbits

A symplectic manifold (M,ω) is a manifold M , equipped with a non-degenerate closed two-form ω, which is
called the symplectic form [67]. In local coordinates, we can write ω = 1

2ωµνdx
µ^dxν . The factor 1

2 prevents
overcounting in the antisymmetric indices. This defines an antisymmetric matrix ωµν . The condition that this
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is additionally closed requires the exterior derivative to vanish dω = 0. By non-degeneracy, there exists an
inverse matrix ωµρωρν = δνµ. Note that this requires the manifold to be even dimensional, since it must contain
an invertible antisymmetric matrix. This follows from taking the determinant on both sides of this identity.
As an example of a symplectic manifold, consider the cotangent bundle T ˚M on a manifold M . This requires
the introduction of base coordinates xi and fibre coordinates pi, for which one can introduce the one-form
θ ” pidx

i. The symplectic form on this manifold is constructed by taking the exterior derivative on this
one-form ω ” dθ = dpi ^ dxi. This has a nice interpretation in classical mechanics, where xi are the configu-
rational coordinates on a manifold, and pi its momenta.
Every differentiable function H :M Ñ R determines a vector field Xµ

H = ωµνBνH that generates a symplec-
tomorphism in the sense of:

LXH
ω = 0.

Since it is often awkward to work with the inverse symplectic matrix, we can write this equivalently in terms
of an interior derivative: Xµ

H = ωµνBνH Ø iXH
ω = dH . This defines a vector field XH under which the

symplectic form is invariant;

LXH
ω ” iXH

dω + d(iXH
ω)

= d2H = 0

In the first identity, I used the equivalent definition of the Lie derivative [59], and the closure property of the
symplectic form. Furthermore, d2 ” 0 by commutation of the derivatives. Note that converse is also true
(locally). Any generator of a symplectomorphism comes with a Hamiltonian vector field. This follows from
the Poincaré lemma [59] that states that any closed form is locally exact. We call H the Hamiltonian and XH

a Hamiltonian vector field. Canonical transformations in classical mechanics are the symplectomorphisms of
ω ” dθ = dpi ^ dxi. This defines the Poisson bracket on the symplectic manifold:

tf, gu ”
Bf

Bxµ
ωµν(x)

Bg

Bxν
Ñ LXH

(g) = tg,Hu.

Any coadjoint orbit of the Virasoro group is a symplectic manifold that carries a natural symplectic structure,
defined by the two-form (see footnote 2 for a more precise definition):

ω(u, v) = x(φ̃(τ), c) | [(u, 0), (v, 0)]y (C.14)

, where (φ̃(τ), b) is an element in the coadjoint orbit of φ0 = ´ b
48π , and u, v are elements of the adjoint

representation. This is obviously antisymmetric, f -invariant (by construction of the inner product), and will be
shown to be closed dω = 0. Using the explicit commutation relation Eq C.6, we obtain:

[(u, 0), (v, 0)] =

(
uv1 ´ vu1,´

1

48π

ż 2π

0
dτ (uv3 ´ vu3)

)
The commutation between two centerless adjoint vectors yields an anomalous central element. Working out
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the inner product with the explicit form of an element in the coadjoint orbit of φ0 (Eq C.10) yields:

ω(u, v) =

ż 2π

0
dτ (uv1 ´ vu1)

(
´

b

48π
f 1(τ)2 ´

b

24π
tf(τ), τu

)
´

b

48π

ż 2π

0
dτ (uv3 ´ vu3)

» ´
b

24π

ż 2π

0
dτ (uv1 ´ vu1)

(
tf(τ), τu +

1

2
f 1(τ)2

)
+

b

48π

ż 2π

0
dτ (u1v2 ´ v1u2)

=
b

48π

ż 2π

0
dτ

[
(u1v2 ´ v1u2) ´ 2(uv1 ´ vu1)

"

tan f(τ)
2

, τ

*]
.

Elements in the adjoint vector space correspond to infinitesimal changes of the inverse group elements f´1.
Since they parameterize the tangent space to the coadjoint orbits, we can likewise treat them as differentials
u(τ) = v(τ) = d(f´1) = df

f 1 . A more natural way to write the symplectic form is by interpreting these
differentials as one-forms, and by using the antisymmetric wedge product. Up to a constant prefactor, this is:

ω =

ż 2π

0
dτ

[(
df(τ)

f 1(τ)

)1

^

(
df(τ)

f 1(τ)

)2

´ 2

"

tan f(τ)
2

, τ

*(
df(τ)

f 1(τ)

)
^

(
df(τ)

f 1(τ)

)1]
. (C.15)

A lengthy, but otherwise straightforward calculation shows that this can be also be written as [20]:

ω =

ż 2π

0
dτ

[
df 1(τ) ^ df2(τ)

f 1(τ)2
´ df(τ) ^ df 1(τ)

]
(C.16)

Note that d is the abstract exterior derivative that acts only on the fields f , and not on the coordinate τ .
Therefore, it commutes with Bτ : df 1 = Bτdf . From the antisymmetry of the wedge product between one-forms,
we can neglect the explicit notation of ^, and view the coordinates df as fermionic partners of f , satisfying
the Grassmann algebra. Using the commutation between the exterior derivative d and Bτ , and (df 1)2 = 0, the
symplectic form is readily

ω =

ż 2π

0
dτ

[(
df 1

f 1

)
Bτ

(
df 1

f 1

)
´ dfBτdf

]
. (C.17)

Since we can write
(
df 1

f 1

)
= d log f 1, the above notation of the symplectic measure is indeed manifestly closed

dω ” 0.
The left action of the Virasoro group on f by an infinitesimal diff(S1) transformation δτ = α(τ) acts by the
Lie bracket δf(τ) = LV f = α(τ)f 1(τ). For α = 1, this transformation is associated with a time translation
symmetry δf = f 1. In this case, this is a Killing vector field V = f 1, corresponding to transformations
of f Ñ f + δf . This in turn generates an associated Hamiltonian from the general definition iV ω = dH .
We can prove that this Hamiltonian is associated with the Schwarzian derivative by explicitly computing the
interior derivative4 on the two-form ω. We replace one copy of df by Bτf while taking into account the
anticommutativity of between iV and df :

iV ω =

ż 2π

0
dτ

[(
Bτf

1

f 1

)
Bτ

(
df 1

f 1

)
´

(
df 1

f 1

)
Bτ

(
Bτf

1

f 1

)
´ BτfBτdf + dfB2

τf

]
.

4The interior derivative maps a p form into a (p ´ 1)-form by replacing one copy of dxµ by V µ; iV ω(p) = 1
(p´1)!

ωµν...λV
µdxν ^ dxλ
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Partially integrating yields:

iV ω =

ż 2π

0
dτ

[
2

(
Bτf

1

f 1

)
Bτ

(
df 1

f 1

)
´ 2BτfBτdf

]
=

ż 2π

0
dτ

[
2

(
f2

f 1

)
Bτ

(
df 1

f 1

)
´ 2f 1df 1

]
.

Using that Bτ

(
df 1

f 1

)
= df2

f 1 ´
df 1

(f 1)2 f
2 = d

(
f2

f 1

)
, we readily note that the Hamiltonian for which iV ω = dH , is

given by:

H =

ż 2π

0
dτ

[(
f2

f 1

)2

´ (f 1)2

]
(C.18)

Comparing this with Eq C.3, we deduce that the Hamiltonian associated to time translations τ Ñ τ + ε, with
the left action on f(τ) Ñ f(τ) + εf 1(τ) is associated to the Schwarzian action, up to a factor of πCβ :

H = ´2

ż 2π

0
dτ

"

tan f
2
, τ

*

(C.19)

In order for ω to be a proper symplectic measure, it needs to be non-degenerate. However, expanding the
reparametrization mode into its Fourier components f(τ) = τ +

ř

n e
inτun, we see that the two-form Eq C.17

vanishes for certain n. Indeed, at5 un = 0;

ω =

ż 2π

0

[(
df 1

f 1

)
Bτ

(
df 1

f 1

)
´ dfBτdf

]
=

ż 2π

0

[(
ÿ

n

ineinτdun

)
Bτ

(
ÿ

m

imeimτdum

)
´
ÿ

n

dune
inτ

ÿ

m

imeimτdum

]

=
ÿ

nm

[
ż 2π

0

(
´inm2ei(n+m)τdundum ´ idundumme

i(n+m)τ
)]

= ´2πi
ÿ

n

(n3 ´ n)dundu´n. (C.20)

Therefore, the measure vanishes for n = ´1, 0,+1. The action associated with these zero-modes spans pre-
cisely the sl(2,R) subalgebra in Eq C.5. Therefore, the two-form ω is non-degenerate on the restriction of the
integration space to the right quotient space diff(S1)/SL(2,R). Here, we modded out over the right action
f(τ) Ñ g(f(τ)), which acts δf = g(τ) =

ř

n gne
inτ . The quotient diff(S1)/SL(2,R) still admits an invari-

ant action under diff(S1), which descends from the left action of diff(S1) on itself; f(τ) Ñ f(g(τ)), and acts
as δf(τ) = g(τ)Bτf . Therefore, ω is still diff(S1) invariant, and takes the same form everywhere.
Any 2n-dimensional symplectic manifold admits a natural integration volume form, obtained by exponentiat-
ing the two-form ω by n: dV = 1

n!ω
n, where ωn is non-zero from the non-degeneracy of the symplectic form.

5Since ω is diff(S1) invariant, the same conclusion is true everywhere.
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The Pfaffian is defined in this context by6

dV =
1

n!
ωn =

1

n!

1

2n
ωi1i2 . . . ωi2n´1i2nεi1i2...i2n´1i2ndx

0 ^ dx1 ^ ¨ ¨ ¨ ^ dx2n´1

” Pf(ω) dx0 ^ dx1 ^ ¨ ¨ ¨ ^ dx2n´1. (C.21)

This is related to the determinant of the 2nˆ 2n-antisymmetric matrix ωµν [110];

Pf(ω) =
a

det(ω). (C.22)

The Pfaffian Pf(ω) is related to a Gaussian integral over 2n Grassmann variables7 θi;

ż

d2nθe
1

2
θiωijθj =

ż

d2nθ
1

2nn!
ωi1i2 . . . ωi2n´1i2nθi1θi2 . . . θi2n´1

θi2n = Pf(ω) (C.23)

, where I used the unique Taylor expansion of the Grassmann exponential, and used that only the terms linear in
the distinct Grassmann fields survive. The generalization to a continuous function ω(f, g) is trivial by defining
Grassmann functions θ(τ) and performing a Gaussian path integral instead.
Rewriting the volume form as a fermionic Gaussian integral allows us to define Grassmann variables η = df(τ)

f 1(τ) ,
and to write down the volume form associated with Eq C.15 as:

dV =
ź

τ

η(τ)

ż

Dη η(0)η1(0)η2(0) exp
[
1

2

ż

dτ

(
η1η2 ´ 2

"

tan f
2
, τ

*)
ηη1

]
. (C.24)

The infinite product in front of the integral is due to the change of fermionic variables from df to ψ. The
factors η(0)η1(0)η2(0) are introduced to gauge fix the SL(2,R) zero-modes, and to make the path integral
non-trivial over a periodic time interval [20]. It looks like this measure is non local in f(τ). Remarkably,
the path integral turns out to be independent of f(τ), as shown in [20]. They evaluated the path integral
by canonically quantizing the fields, and representing it as a trace over a Hamiltonian, along the lines of Eq
D.26. This allows to solve the Schrödinger equation associated with the induced Hamiltonian H(τ), and to
compute the periodic operator U(2π) = Pe´

ş2π

0
H(τ)dτ . The latter turns out to be U(2π) = ´1. The fact

that the operator that describes time evolution around the circle is independent of f(τ) makes the path integral
in Eq C.24 independent of the reparametrization mode f(τ). This basic fact allows us to write the measure
completely in terms of the local variables f(τ);

dV =
ź

τ

η(τ) =
ź

τ

df(τ)

f 1(τ)
. (C.25)

C.3 One-loop exactness of the Schwarzian theory

We have argued that the integration space diff(S1)/SL(2,R) is a symplectic manifold. The U(1) time transla-
tions τ Ñ τ+α with δτ = α act on the reparametrization elements as f(τ) Ñ f(τ)+δf(τ) = f(τ)+αf 1(τ),

6The additional factor 1
n!

prevents overcounting in the n-th exponentiated wedge product.
7When introducing n independent "complex conjugates" θi, one can relate this to the determinant of an n ˆ n matrix Aij instead;

ş

dnθdnθeθiAijθj = detA.
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with an associated Killing vector field V = f 1. The Hamiltonian of this transformation (iV ω = dH) was ar-
gued to correspond precisely the Schwarzian action, up to a constant factor Eq C.19. Furthermore, the classical
solutions f(τ) = τ are U(1) invariant, since we consider the quotient space under SL(2,R), whose action
acts as a gauge redundancy under constant shifts τ Ñ τ + c. Under this gauge redundancy, we only consider
equivalence classes of the subgroup U(1). These basic facts allow us to utilize the Duistermaat-Heckman [68]
theorem on supersymmetric localization.
If we wish to evaluate the integral over a symplectic manifold (xn) on which the action acts as the generator of
a U(1) symmetry xn Ñ xn + vn with vn = ´ωnmBmH , we can introduce Grassmann variables ψn and write
the associated Pfaffian of the symplectic measure as a Gaussian integral. It turns out that the integral

ż

DxPf(ω) eH =

ż

DxDψ exp
[
H +

1

2
ψmωmnψn

]
(C.26)

is one loop exact around the classical saddle point. For this, we consider a supersymmetry transformation:

Qxn = ψn, Qψn = vn = ωnmBmH (C.27)

, such that Q2(xn) = vn is the generator of the U(1) symmetry associated with H . It follows that the total
action is Q-invariant using dω = 0;

Q(ω +H) =
1

2
Q(ψmωmnψn) + (Qxn)BnH =

1

2
vmωmnψn ´

1

2
ψmωmnv

n + ψnBnH

= ´
1

2
BaHω

amωmnψn +
1

2
ψmωmnBaHω

an + ψnBnH = 0.

It also follows that we can add a Q-exact U(1)-invariant term to the action sQV with Q2V = 0 without
changing the integral, where s is a continuous parameter;

d

ds

ż

Z =

ż

DxDψ QV exp
[
H +

1

2
ψmωmnψn + sQV

]
(C.28)

=

ż

DxDψ Q
(
V exp

[
H +

1

2
ψmωmnψn + sQV

])
(C.29)

Assuming that the Q-symmetry is not anomalous, and the volume element is invariant, the last identity is zero,
and the path integral is independent of s [111].

We are in this situation, since the action in the path integral Eq 1.133 can be written in the form of Eq C.26

under a redefinition of ψ. For the case at hand, we also rewrite f(τ) = τ +
(

β
2πC

)1/2
ε, and take the fermionic

symmetry to be [20];
Qε = ψ, Qψ = ε1. (C.30)

This generates a U(1) symmetry corresponding to d
dτ . We add the termQ-exact term sQV = s

ş

dτ(ε12+ψ1ψ)

to the path integral, which is found to be additionally U(1)-invariant;

Q2V =

ż

dτ(2ε1ψ1 + ε2ψ ´ ψ1ε1) »

ż

dτ(2ε1ψ1 ´ ε1ψ1 ´ ψ1ε1) = 0.
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Although this changes the integrand, it does not change the integral, as elaborated before. Since term sQV has
the form of one-loop propagators, we can consider s Ñ 8. By the above Duitsermaat-Heckman theorem, the
value of the integral is independent of s. On the classical saddles of sQV , this term vanishes, and we retain
the original classical saddle point value. On the other hand, this renders the two-point propagators arbitrary
small, and suppresses higher order corrections to the one-loop determinant. Therefore, the result Eq 1.138 is
the entire answer to all orders.



Appendix D

Classical laws of Black Hole
thermodynamics

"Black holes are where God divided by zero."

Einstein, Albert

This appendix will cover the basics of the classical laws of hole thermodynamics in 3+1d. Black holes are es-
sentially the simplest solutions of General Relativity. One might disagree on a conceptual basis, but in contrast
to other astrophysical objects, they are just vacuum solutions described by only a few parameters (their mass,
charge, and angular momentum for a Kerr-Newman BH). The no-hair theorem then essentially implies that any
black hole, regardless of how complicated the initial forming conditions might have been, is just described by
these parameters. The process of hairloss is described by quasinormal ringing. Therefore, the system will equi-
librate to a state that is described unambiguously by a finite set of parameters. The classical laws that follow
from Einstein’s equations indeed imply black holes to obey laws that look familiar to the laws of classical ther-
modynamics. Historically, these laws were discovered before Hawking’s result on black hole evaporation [7].
Initially, the thermodynamics that seemed to describe black holes was thought to be an accidental similarity.
The temperature and entropy could, moreover, only be identified up to a proportionality constant. Hawking’s
result, however, proved these laws to be more than a formal coincidence. Instead black holes were identified
to be systems in thermal equilibrium with a heat bath at infinity with a definite temperature. In quantum grav-
ity, the laws of black hole thermodynamics are manifestations of the true UV descriptions of the black hole
microstates. In holography, these degrees of freedom can be described in the dual quantum field theory. The
first black hole microstate counting was a string theory calculation by Strominger and Vafa [112]. Strominger
also proved in [113] that the BTZ black hole entropy in AdS3 is one-to-one related to the Cardy formula in
the dual CFT2. The Cardy formula counts microstates in statistical mechanics, and by the holographic dual-
ity, they must be microstates of quantum gravity in AdS3 as well. These results proved unambiguously that
the thermodynamics from black holes are manifestations of true quantum microstates, and not some "magic"
analogy.

272



D.1. THE REISSNER-NORDSTRÖM BLACK HOLE 273

D.1 The Reissner-Nordström black hole

Let us first consider the Reissner-Nordström solutions (RN) of the coupled Einstein-Maxwell equations, de-
scribing charged black holes. Consider the Einstein-Maxwell (EM) action in 3+1d. This is a specific case of
the Einstein-Hilbert action coupled to a Maxwell matter sector [51]

SEM =
1

16πGN

ż

d4x
?

´g R ´
1

4

ż

d4x
?

´gFµνF
µν . (D.1)

The first term is the Einstein-Hilbert action, and is the simplest local action one can write down that is composed
of second order derivatives of the metric. In a variational context, one imposes Dirichlet boundary conditions
for the metric. These boundary conditions require at least second order derivatives to obtain non-trivial dy-
namics. Although non-trivial, it is a standard exercise in general relativity to obtain the Einstein equation from
the variational solutions, see e.g. [60][59]. Fµν is the field strength, Fµν ” ∇µAν ´ ∇µAµ = BµAµ ´ BνAµ,
with covariant derivative ∇µAν = BµAν ´ ΓαµνAα. The Maxwell-term is minimally coupled to the metric:
FµνF

µν = FµνFαβg
µαgνβ . Writing R = Rµνg

µν , and using the identity δ
?

´g = ´1
2

?
´ggµνδg

µν , the
variation of the total action leads to the coupled Einstein-Maxwell equations;

Rµν ´
1

2
gµνR = 8πGTµν , ∇µF

µν = 0. (D.2)

The term proportional to δRµν = ∇ρδΓ
ρ
µν ´ ∇µδΓ

ρ
νρ vanishes1 since it is a total derivative. The stress tensor

Tµν is defined as the variation of the matter action SM with respect to the metric

Tµν = ´
2

?
´g

δSM
δgµν

= ´
1

4
gµνF

2 + gρσFµρFνσ. (D.3)

The solution for a black hole with mass M and electric charge Q is

ds2 = ´f(r)dt2 +
dr2

f(r)
+ r2dΩ2

D´2, with f(r) = 1 ´
2GM

r
+
GQ2

4πr2
. (D.4)

The electromagnetic field is related to the charge Q as Aµdxµ = ´
Q
4πrdt, or Fr0 = Q

4πr2 . In the asymptotic
regime r Ñ 8, g00 Ñ ´(1 ´ 2GM

r ), such that M can indeed be identified with the mass M of the black hole.
It is often more convenient to decompose f(r) in terms of its zeros r´ and r+:

f(r) =
1

r2
(r ´ r+)(r ´ r´), with r˘ = GM ˘

c

G2M2 ´
GQ2

4π
. (D.5)

r+ is the event horizon, while r´ is the Cauchy horizon. A horizon is generally a Cauchy surface with a null
normal vector. For constant r slices (dr = 0), this implies g00 Ñ 0. The coordinate system breaks down
at either horizon, while the true geometry and field strength remain smooth. There is a curvature singularity
however at r = 0. At the event horizon r = r+, the coordinate r becomes timelike, while t becomes spacelike.
When dr

dt ă 0 at the horizon, the natural direction is inwards. However, once we reach the Cauchy horizon,
t becomes timelike again, and r spacelike. One can therefore reverse their direction outwards dr

dt ą 0, and

1A priori, this argument only works for a compact spacetime BΩ = 0. For non-compact spacetimes, one requires a suitable Gibbons-Hawking-
York (GHY) boundary term in order to obtain a well-defined variational problem with a second order derivative action S „ O(B2g)
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escape from the interior. Once we reach the Cauchy horizon r = r´, the causal properties again reverse, and
the natural direction is outwards until they reach r = r+. The causal structure is summarized in the Penrose
diagram in figure D.1. One requires Q2 ď 4πGM2 in order to have r´ ď r+. When the Cauchy horizon
coincides with the event horizon r´ = r+, or Q2 = 4πGM2, the black hole is extremal, and has a net zero
interaction energy. Q2 ą 4πGM2 is prohibited from the cosmic censorship principle, since the curvature
singularity at r = 0 would not be shielded by a zero of g00.

D.2 Laws of black hole thermodynamics

First law: conservation of energy

Figure D.1: Penrose-Carter diagram of the Reinssner-Nordström black
hole. i0, t˘ and I˘ are the spacelike, past and future timelike, and
past and future lightlike infinity respectively. Possible timelike curves,
and the curvature singularity at r = 0 are indicated. [60]

It was noticed in the 1970s that small changes in the black
hole geometry are described by equations closely paral-
lel to the laws of thermodynamics [114][115]. This be-
comes very transparent for the RN solutions. Since the
metric at the horizon r = r+ is ds2 = r2+dΩ

2
2, the area

is

A = 4πr2+ = 4π

(
GM +

c

G2M2 ´
GQ2

4π

)2

.

Variation of this area term yields:

δA = 8πr+

(
Br+
BM

δM +
Br+
BQ

δQ

)
=

16πGr+
r+ ´ r´

(
r+δM ´

Q

4π
δQ

)
(D.6)

This is reminiscent of the first law of thermodynamics,
where the heatQ transferred to a system equals the change
in internal energy ∆E = Q. For quasistatic changes
among equilibria, we have δQ = TdS. In the presence
of an electrical potential Φ, the first law becomes

TdS = dE ´ ΦdQ (D.7)

We can identify the potential at the horizon Φ = Q
4πr+

, and the mass M with the energy E. If we further
interpret the entropy to be proportional with the area of the horizon S „ A, then the coefficient in front is
related to the temperature T „

r+´r´

r2+
. Of course to identify the entropy and temperature correctly, one should

know the exact proportionality factor of at least one of the former quantities. This was only possible after
Hawking’s calculation of black hole radiation. T is related to the surface gravity of the black hoke, which is
defined physically as the acceleration due to gravity near the horizon times a redshift factor. It can be shown
that this is constant everywhere on the horizon of a stationary black hole. This makes an analogy with the
zeroth law of thermodynamics, where in equilibrium, the temperature is constant.
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Second law: entropy never decreases

Hawking showed in 1971 that the black hole horizon can never decrease classically [116]. Therefore, identi-
fying the entropy with the area of the horizon (up to a proportionality factor) is a natural thing to do. The fact
that black holes carry entropy is required to salvage the second law of thermodynamics. Indeed, if black holes
did not carry any intrinsic entropy, the entropy of the universe could decrease by throwing matter into a black
hole. To salvage the second law, one imposes that next to the entropy associated to the matter Sm, the black
hole carries entropy themselves SBH , such that in a closed system δ(S+SBH) ě 0. Since only the sum of the
entropy should increase, one often talks about the generalized second law of thermodynamics.
In a stronger statement, Sm does not only include classical matter, but also includes gravitons outside the black
hole and a vacuum contribution from the quantum fields [117]. The generalized entropy, including this quan-
tum term, is also found to obey the second law of thermodynamics, giving further evidence that it is really
an entropy [118]. This result is stronger than the classical area theorem because it also covers phenomena
like Hawking radiation, when the area decreases but the generalized entropy increases due to the entropy of
Hawking radiation.

D.3 Hawking radiation

To deduce the correct relation between entropy and area via the thermodynamic relations, one first has to know
an exact expression of the black hole temperature. This calculation was famously done by Hawking in [7].
By using a quantum field in a fixed black hole background, Hawking was able to predict the existence of a
heat bath of thermal radiation in the black hole spacetime. One should stress, however, that this calculation
is still semiclassical in nature; one only considers quantum fields in a fixed spacetime, the spacetime itself
is not allowed to fluctuate. The calculation relies on the equivalence principle; in a black hole spacetime, a
free falling observer is in a locally flat spacetime. Observers hovering at a constant radius near the horizon
will need a constant acceleration to overcome the gravitational pull of the black hole. Their natural coordinate
system will therefore be the Rindler spacetime. Their vacuum is, of course, not the Minkowksi vacuum state.
Minkowksi modes are expanded in Minkowksi plane waves, with their own creation and annihilation operators
a:

i , ai respectively. Each creation/annihilation operator is associated with a specific energy eigenvalue ωi, such
that schematically a scalar field φ can be expanded in this basis;

φ =
ÿ

i

(ai e
´iωit + a:

i e
iωit).

Sate vectors will be created by applying creation operators, and will be energy eigenvectors of the Hamiltonian.
Since the Hamiltonian Ht is the generator of time evolution for Heisenberg operators O: i

h̄ [Ht, O] = BtO, a
different time coordinate will be associated to different energy eigenmodes, which in turn define the vacuum
state via ai |0y = 0, for all i. Since Rindler observers have a different choice of time coordinate, their notion
of energy is different, and with it, the notion of the vacuum. Since either set of modes forms a complete set,
one can indeed show that the Minkowski vacuum corresponds to a thermal spectrum by expressing the Rindler
modes in terms of Minkowksi modes via a linear Bogoliubov transformation. This is the Unruh effect of a
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Rindler observer. By the equivalence principle, stationary observers near the horizon will detect this thermal
spectrum, which can be extrapolated to distant regions by incorporating a redshift factor. The redshifted tem-
perature will asymptotically approximate the Hawking temperature.

A more thorough analysis of Hawking radiation can be found in the excellent lecture notes by Jacobson [119].
By linearly expanding the creation/annihilation modes corresponding to different time coordinates via a Bo-
goliubov transformation, one has a clear intuiting about the physics governing Hawking radiation. However,
this procedure becomes technically difficult rather quickly.
An often useful calculational trick is to express Lorentzian spacetime in a Euclidean manifold by performing
a Wick transformation. The derivation of the Hawking temperature is then just a consistency condition on the
manifold. This, however, obscures any physical intuition that one has about Hawking temperature.

Most discussions on this subject start with the Schwarzschild geometry. However, to make contact with the
previous section, we start again from the RN black hole solution Eq D.4, and ignore the angular dependence
which will not be relevant in the following discussion

ds2 = ´
(r ´ r+)(r ´ r´)

r2
dt2 +

r2

(r ´ r+)(r ´ r´)
dr2 +����

r2dΩ2. (D.8)

The Schwarzschild geometry can be simply obtained by putting Q = 0. To obtain a non-zero temperature,
consider a sub-extremal black hole r+ ą r´. The outer event horizon r = r+ determines the size of the black
hole. To zoom in on the event horizon, introduce ρ ” r ´ r+, and take ρ ! r+. In this approximation, the
metric becomes

ds2 = ´
ρ2(r+ ´ r´)

r2+
dt2 +

r2+
ρ(r+ ´ r´)

dρ2. (D.9)

Define now an additional radial coordinate in terms of dw ”
r+

a

ρ(r+´r´)
dρ. One can integrate this to the

explicit relation w = 2
r+

?
ρ

?
r+´r´

. Inserted in the metric, this becomes;

ds2 = ´
w2

4

(r+ ´ r´)
2

r4+
dt2 + dw2. (D.10)

By defining the temporal Rindler coordinate τ ”
(r+´r´)

2r2+
t, the manifold near the black hole horizon indeed

becomes a patch of the 1+1d Rindler spacetime, added with an angular dependence Ri2 ‘ S2

ds2 = ´w2dτ2 + dw2. (D.11)

This is equivalent to the Minkowksi space R1,1 ds2 = ´(dx0)2 + (dx1)2 for accelerating observers with
acceleration a = 1/w;

x1 = w cosh τ, x0 = w sinh τ. (D.12)

As such, these coordinates will only cover the right Rindler wedge: x1 ą 0,
ˇ

ˇx0
ˇ

ˇ ă x1. The causal structure of a
collapsing star and the near horizon region are displayed in figure D.2. One recognises the early-time geometry
to be the Penrose diagram of flat Minkwoski spacetime, while the late-time geometry after the gravitational
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collapse is described by the Schwarzschild Kruskal coordiantes instead. The near horizon region of a static
observer is described by a patch of Rindler spacetime.

Figure D.2: Left: Penrose diagram of a black hole formed by gravitational collapse. Right: Near horizon region of a constantly accelerating observer, described
by a Rindler patch [101].

The Euclidean Black Hole

To derive the Hawking temperature from the near horizon region, we first note that QFT at finite temperature
T is periodic in imaginary time with periodicity t „ t+ iβ, where β ” 1/T .

By applying a Wick rotation t = itE on the black hole spacetime, one finds the Euclidean black hole geometry
with Euclidean signature metric (+,+,+,+) at r ě r+:

ds2 =
(r ´ r+)(r ´ r´)

r2
dt2E +

r2

(r ´ r+)(r ´ r´)
dr2 + r2dΩ2. (D.13)

The Wick-rotated time coordinate is periodic and describes a time circle that shrinks down to zero at the
horizon. Behind the horizon, r ă r+, the geometry does no longer posses a Euclidean signature. Therefore,
Euclidean black hole geometries are only well defined outside the horizon. Graphically, the geometry is called
the Euclidean cigar, shown in figure D.3
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Figure D.3: The Euclidean black hole "cigar" geometry. The geometry is contractible at the horizon r = rs [101].

In general, any geometry with a contractible time circle describes a black hole manifold. The origin is a smooth
point and corresponds to the Euclidean horizon.

By applying a Wick rotation in the near horizon region x0E = it, τ = iθ, the Minkowski manifold ds2 =

´(dx0)2 + (dx1)2 Ñ ds2E = (dx0E)
2 + (dx1)2 is identified with the flat Euclidean plane. The Rindler

coordinate transformations Eq D.12 become the standard polar coordinate transformations

x0E = w sin θ, x1 = w cos θ

that describe the Euclidean plane

ds2E = (dx0E)
2 + (dx1)2 = w2dθ2 + dw2. (D.14)

Since the black hole geometry is non-singular near the horizon, the plane should not contain a conical singu-
larity. To avoid a conical singularity, the phase angle θ should be periodic in 2π. At a distance w near the
horizon, the proper time τ of a Rindler observer is related to dτ = w dθ. Since the periodic Euclidean time
coordinate is related to the inverse temperature, we can identify one rotation of θ in 2π with a translation of τ
in β = 1/T , or:

Tproper =
1

2πw
=

a

2π
(D.15)

, where in the second line, the Rindler distance was related to the acceleration w = 1/a. This is the proper
temperature felt by an observer, and diverges near the horizon ρ = 0. This factor tracks the redshifting of
photons as they climb the gravitational potential [101]. The Unruh temperature associated to the Rindler time
θ undoes the redshift factor

TU =
1

2π
. (D.16)

In Eq D.11, the temporal coordinate is identified with the phase angle by θ ”
(r+´r´)

2r2+
tE . A rotation in

θ : 0 Ñ 2π should corresponds with a translation in t : 0 Ñ β = 1/T . This identification allows one to
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deduce directly the Hawking temperature TH of the RN black hole T = 1/β;

2π ”
(r+ ´ r´)

2r2+
β

ðñ TH =
(r+ ´ r´)

4πr2+
. (D.17)

Note that this is not a "derivation" of the Hawking temperature; rather it is a necessary and sufficient condition
for the Hawking temperature that needs to be obeyed in order to yield a regular solution to the Einstein equa-
tions. The physical intuition is that the temperature needs to be T = TH = 1/β to define a canonical ensemble
in thermal equilibrium with a heath bath at infinity. At T ‰ TH , the black hole is not in equilibrium with the
heat bath, which translates into the development of a conical singularity.
One notes that extremal black holes r´ = r+ have zero temperature, which is often the defining feature of
extremal black holes in practice. For the Schwarschild solution with Q = 0, one finds directly from Eqs D.5

TH =
1

8πGM
. (D.18)

The precise identification of the Hawking temperature allows to derive the thermal entropy from Eq D.6.
When identifying E = M , the latter can be rewritten in the form of an exact thermodynamic relation TdS =

dM ´ ΦdQ
1

4π

(
r+ ´ r´

r2+

)
d

(
A

4GN

)
= dM ´

Q

4πr+
dQ

ðñ T d

(
A

4GN

)
= dM ´ ΦdQ.

(D.19)

We can therefore identify the Bekenstein-Hawking entropy [8] as

SBH =
A

4GN
. (D.20)

D.4 Euclidean Path Integral

The Wick rotation [50] is a procedure that allows to replace a Lorentzian metric by a Euclidean metric, by
analytically continuing from real to complex coordinates t Ñ ´iτ . This may avoid complications in the former
case due to the fact that the metric is not positive-definite. Under this transformation, the metric transforms as

ds2 = gµνdx
µdxν = ´dt2 + dÝÑx 2 Ñ ds2E = δµνdx

µdxν = dτ2 + dÝÑx 2.

The combination
?

´gdDx is a tensor density, and is therefore invariant under oriented (complex) coordinate
transformations;

?
´gdDx =

?
´gEd

DxE . I denoted xE and gE as the Euclidean Wick-rotated coordinates
and metric respectively. The volume element itself transforms dDx = ´idDxE . Therefore,

?
´g = i

?
´gE .

To yield a positive-definite metric, we use the branch
?

´1 = ´i to obtain
?

´g =
?
gE .
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Therefore, the action transforms as

S =

ż

dDx
?

´gL = ´i

ż

dDxE
?
gEL = i

ż

dDxE
?
gELE .

LE = ´L is the positive-definite Lagrangian, which is in turn related to the energy-momentum tensor. One
can therefore identify I =

ş

dDxE
?
gELE , and S = iI . In the following, I will always denote the Euclidean

action as I , to distinguish from the Lorentzian signature action S.
As elaborated by the Hawking-Gibbons prescription in [65], the real time path integral is a rewriting of the
transition function between two states xφ2, t2 | φ1, t1y in terms of a functional integral over all configurations
φ with fixed boundary conditions φ1 at t1 and φ2 at t2, weighted by the action S[φ];

xφ2, t2 | φ1, t1y =

ż

[dφ] eiS[φ]. (D.21)

The overlap can be written in terms of the real time propagator

xφ2, t2 | φ1, t1y = xφ2| e´iH(t2´t1) |φ1y .

By applying a Wick rotation τ ” i(t2 ´ t1), the Euclidean action transforms as S[φ] Ñ iI[φ]. The Euclidean
path integral measures the transition from |φ1y to |φ2y. If these states are defined on a plane, we can give it a
graphical representation [62]:

xφ2| e´βH |φ1y =

ż φ(τ=β)=φ2

φ(τ=0)=φ1

[dφ]e´I[φ] =

φ1

φ2

β (D.22)

If these states are defined on a sphere, the path integral has the topology of a cylinder instead:

xφ2| e´βH |φ1y =

ż φ(τ=β)=φ2

φ(τ=0)=φ1

[dφ]e´I[φ] =

φ2

φ1

β (D.23)

The thermal density matrix ρ = e´βH on a plane is likewise identified as a rectangle, without predefined
boundary states φ1,2;

e´βH = β (D.24)

This just represents that the matrix element xφ2 | ρ | φ1y is computed by the path integral with boundary
conditions φ1,2.
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D.4.1 Thermal partition function

The thermal partition function Tr(e´βH) =
ř

φ xφ | e´βH | φy is obtained from the thermal density matrix
ρ = e´βH Eq D.24 by gluing the opposite ends together

Z(β) = Tr(e´βH) =
ÿ

φ

xφ | e´βH | φy . (D.25)

The path integral is now taken over all fields which are periodic in imaginary time β;

Z(β) = Tr(e´βH) =

¿

[dφ]e´I[φ] tE „ tE + β. (D.26)

Since the left-hand side is just the partition function of a canonical ensemble consisting of fields at temperature
T = 1/β, one can use the path integral over periodic fields to obtain thermodynamic quantities. Recall
that in ordinary thermodynamics the free energy F is derived from the partition function: Z = e´βF , with
F = E ´ TS. Therefore, the most relevant derivations are the entropy S and energy E;

S = (1 ´ βBβ) lnZ(β), (D.27)

E = ´Bβ lnZ(β). (D.28)

D.4.2 Gravitational path integral

In quantum gravity, the manifold on which the fields are defined is allowed to fluctuate itself. The only
restriction on the manifold in the thermal partition function Z(β) are the periodic boundary conditions of
the timelike coordinates near infinity: g00 Ñ 1, tE „ tE + β. Separating the dynamical field configurations
into matter fields φ and the metric g, the Euclidean path integral is given by [65];

Z(β, φb) =

ż

DgDφe´I[g,φ]. (D.29)

I[g, φ] specifies the Euclidean action due to gravity and matter fields. This is usually a sum of the pure-gravity
Einstein-Hilbert action and matter fields minimally coupled to gravity. More often than not, we do not know
how to properly define this integral, or how to perform perturbative calculations. Furthermore, there is the
problem that the gravitational action is often unbound from below, making the path integral to diverge.
In the semiclassical analysis, one presumes that the dominant contribution to the path integral comes from
the metric g and matter fields φ near the on-shell background solutions g = g0 + δg, φ = φ0 + δφ. By
expanding the action into a Taylor series around the background solutions I[g, φ] = I[g0, φ0] + I2[δg] +

I2[δφ] + higher order corrections, the path integral can be written as

lnZ = ´I[g0, φ0] + ln
ż

[dg]e´I2[δg] + ln
ż

[dφ]e´I2[δφ]. (D.30)
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I2 are the quadratic contributions in the fluctuations, which lead to one-loop determinants. In the saddle-point
approximation, one further neglects the background fluctuations and writes

Z(β) = e´I[g0,φ0]. (D.31)

As will be explained in the following section, the semiclassical approximation is often useful to calculate
correlators in the dual strongly coupled field theory.

D.5 The holographic dictionary: field/operator correspondence

The holographic duality is a duality between a theory of gravity in D dimensions, and a theory without gravity
in d = D ´ 1 dimensions. More precisely, the novel example is the AdS5/CFT4 conjecture of Maldacena
which can be formulated as:

N = 4 SUSY Yang-Mills is dual to type IIB superstring theory on asymptotically AdS5 b S5

This correspondence was first argued by Maldacena in [4] by looking at the low energy excitations ofD-branes
in a closed type IIB string background in different regimes of ’t Hooft coupling constant. The low energy
spectrum describes two decoupled sectors in both theories, one of which are always the background type IIB
excitations. It makes sense to identify the other sectors in both theories, which are exactly the excitations of
N = 4 SUSY Yang-Mills theory and type IIB string theory on AdS5 b S5. By the UV/IR duality, the 3+1d
field theory is placed at the asymptotic boundary of the AdS5-universe.
The path integral on AdS5 b S5 is determined by integrating over all possible fluctuations in the string theory
in the bulk, weighting each contribution with the respective gravitational action Sgrav[g, φ0];

Z[g, φ0] =

ż

DgDφ eiSgrav[g,φ0]. (D.32)

This should be related to the generating function of correlation functions in the dual field theory.
In the holographic dictionary, Witten [10], Gubser, Klebanov and Polyakov [11] proposed that the relation
between the two path integrals uses the boundary values of the bulk fields (generically denoted φ0(xµ) =

φ(xµ, z)|z=0) at the holographic boundary z = 0 as coupling constants of corresponding operators O(xµ) in
the field theory:

xe
ş

dD´1dxµ φ0(xµ)O(xµ)y = Zstring [φ(x
µ, z)|z=0 = φ0(x

µ)] « Zgrav[φ0(x
µ)] = eiSgrav[φ0] . (D.33)

In most cases, there is no known technique to actually evaluate the path integral D.32. In the semiclassical
approximation, the right-hand side of the identity corresponds to passing from the gauge-string to the gauge-
gravity duality in the appropriate limit of large ’t Hooft coupling N Ñ 8, g2N Ñ 8.
This limit localizes the fields in the bulk to the on-shell solutions of the classical supergravity action with ap-
propriate boundary conditions. The equivalence essentially implies that the classical gravity action effectively
serves as a generating functional for correlation functions of gauge-invariant operators O in the dual gauge
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theory. In this limit, the gauge theory is necessarily strongly interacting.
In the bottom up approach to holography, one usually takes the holographic dictionary as a given and assumes
that we have a CFT dual to higher-dimensional gravity.

The duality is most convenient in a Euclidean setting, where one Wick-rotates the time coordinate to obtain a
Euclidean signature manifold. The Euclidean version ofAdS has the topology of a ball. Calculating correlators
in a Minkowski setting is more subtle, and is resolved in [120][121].

In a Euclidean setting, the on-shell solution Zgrav[φ0] « eiSgrav[φ0] transforms to

Zgrav[φ0] « e´I[φ0]

, and acts as the generating functional for the gauge theory correlators. The correlators are computed in the
usual way [62], where the boundary values of the on-shell gravity fields act as sources of the corresponding
operators in the boundary theory;

xO1(x
µ
1 )O2(x

µ
1 ) . . .On(x

µ
1 )y „

δn

δφ10 δφ
2
0 . . . δφ

n
0

e´I[φ0]|φi
0=0 (D.34)

Each differentiation brings down an operator insertion O that sends a φ-particle into the bulk. This can be
visualized via Witten diagrams (see figure D.4):

Figure D.4: Tree-level contributions to four-point correlation functions. The interior and boundary of each disk denote the interior and boundary of the AdS
geometry. The boundary points are the points in flat Euclidean space where field theory operators are inserted. The four boundary points denote four-point
correlation contribution. [122]

The semiclassical limit turns off quantum corrections, such that only the tree-level diagrams of the gravity the-
ory contribute. In the context of JT gravity, these diagrams can be calculated exactly on a quantum mechanical
level.
The correspondence between fields on AdS and operators in the field theory is very general. However, as a
concrete and relevant example in the main text (c.f. section 1.8), consider a scalar field in an AdS background
φ(xµ, z). Since the equations of motion in AdS are second order, we usually need to specify two boundary
conditions in order to find a unique solution. One is the regularity of the bulk fields at the center of the ball. The
correct boundary condition at the asymptotic boundary (z = 0) is a separation of variables between the radial
z and asymptotic xµ coordinates; φ(xµ, z) = f(z)φ̃(xµ). The specific form of f(z) is obtained by solving the
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equation of motion in the bulk AdS-space. The Euclidean Poincaré patch corresponds to:

ds2 =
L2

z2
(dz2 + dx20 + dÝÑx 2). (D.35)

Taking L = 1, the Klein-Gordon action corresponding to a massive scalar in Euclidean AdSD is

S „

ż

dDx
?
g(gµνBµφBνφ+m2φ2) =

ż

dzddx
1

zD
(z2(Bzφ)

2 + z2(Bµφ)
2 +m2φ2). (D.36)

d = D´1 is the dimesnion of the dual field theory. The radius can be reintroduced in the final result by simple
dimensional analysis. The equations of motion, obtained by varying the action, yield

Bz

(
1

zD´2
Bzφ

)
+
ÿ

µ

Bµ

(
1

zD´2
Bµφ

)
=

1

zD
m2φ. (D.37)

A solution generically takes the form φ(xµ, z) = f(z)φ̃(xµ), where we choose Bµ

(
1

zD´2 Bµφ̃(x)
)
= 0. The

boundary condition then takes the form

zDBz(z
2´DBzf(z)) = m2f(z).

The generic solution is readily seen to be a power law ansatz f(z) „ z∆
1

. Under a dilation z Ñ λz, xµ Ñ λxµ,
∆1 is seen to be the scaling dimension of the field. This will indeed be related with the conformal dimension
of the (quasi-)primary field in the dual CFT O(xµ).
Inserting the ansatz in the wave equation, the scaling dimension is fixed in terms of the mass m of the scalar
field as:

m2 = ∆1(∆1 ´D + 1). (D.38)

This obeys two solutions

∆1
˘ =

D ´ 1

2
˘

c

(D ´ 1)2

4
+m2. (D.39)

We call the largest solution ∆ := ∆1
+. Then, the other solution is ∆1

´ = D ´ 1 ´ ∆. Denoting d = D ´ 1 the
dimension of the conformal field theory, the general solution near the boundary z = 0 can be written as:

φ(xµ, z) „ zd´∆φ̃0(x
µ) + z∆φ̃1(x

µ) (at z « 0). (D.40)

Since the scaling dimension ∆ is related to the conformal dimension of the primary field, it has to satisfy the
unitary bound ∆ ě (d ´ 2)/2. However, the easiest approach is to restrict to the range to ∆ ą d/2. In that
case, the solution corresponding to φ̃1 is regular at the center but vanishes at the boundary. To retain interesting
dynamics near the boundary, we consider only the solution corresponding to φ̃0, which diverges near z Ñ 0.
[123][124] generalizes this to the range d

2 ě ∆ ě d´2
2 .

In the case of the former, the correct boundary condition of the field reaching the boundary is

φ(xµ, z) „ zd´∆φ̃0(x
µ). (D.41)
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In the range ∆ ą d/2, the norm of this solution is not normalizable

ż

dzdxµ
?
g |φ(xµ, z)|2 „

ż

dzdxµ
1

zd+1
z2d´2∆ Ñ 8.

To deal with the divergence, one introduces a cut-off parameter at the boundary z = 0 Ñ ε, φ „ εd´∆φ̃0 and
eventually takes ε Ñ 0 in the final expressions.
Once the value of φ̃0(xµ) is specified, we have a unique regular solution that extends to all of AdS space.
In particular, φ̃1(xµ) will be determined as a functional of φ̃0(xµ) by imposing the equations of motion and
regularity at the center.

We can now present a heuristic argument why ∆ should indeed correspond to the conformal dimension in
the field theory. From the Klein-Gordon action Eq D.36, we see that the total field φ(xµ, z) should be di-
mensionless. From Eq D.41, this implies that φ̃0(xµ) should scale with Length∆´d. This boundary value will
eventually couple in the term

ş

dD´1dxµ φ̃0(x
µ)O(xµ) in the generating function of the holographic dictionary

Eq D.33. Since the action should be dimensionless, this in turn demands the conformal primary O associated
with the field φ, to have the conformal scaling dimension of ∆.
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