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SAMENVATTING

Hoewel biodiversiteit belangrijk is voor duurzame en gezonde voeding, is het
nog onduidelijk welke biodiversiteitsindex het meest geschikt is voor voed-
ing en hoe deze index samenhangt met gezondheid. De Hill-getallen zijn
eenvoudige indices, die vergelijking tussen groepen mogelijk maken en nog
niet zijn toegepast op voedselinnamegegevens. H0, H1, H2 en H∞
werden berekend op basis van voedselinnamegegevens (ingedeeld op soort-
niveau) van de European Prospective Investigation into Cancer and Nutrition

studie (n=476 768; 9 landen). De indices werden op zowel energiebasis als
gewichtsbasis bepaald en correlaties werden onderzocht. De associaties
van biodiversiteitsindices met totale sterfte werden beoordeeld met behulp
van Cox proportional hazards modellen. Hoewel H∞ alleen gebaseerd is
op het aandeel van de meest geconsumeerde soort, terwijl H2 de pro-
porties van alle soorten omvat, waren zij sterk gecorreleerd: de Pearson-
correlatiecoëfficiënt was 0.89 op energiebasis en 0.93 op gewichtsbasis. Het
gebruik van gewicht of energie als eenheid leidde tot significant verschil-
lende waarden voor H1, H2, en H∞ bij dezelfde persoon. De hazard

ratio’s wezen op een omgekeerd verband tussen de indices en de totale
sterfte. Wanneer de laagste (referentie) en hoogste kwintielen vergeleken
werden, waren de hazard ratio’s 0.66 en 0.65 voor H0, 0.82 en 0.80 voor
H1, 0.84 en 0.84 voor H2, en 0.86 en 0.90 voor H∞ wanneer de in-
dexen respectievelijk op gewichts- of energiegebaseerde gegevens berek-
end waren. In het algemeen tonen de bekomen resultaten aan dat H∞
een eenvoudige en relevante index is voor de beoordeling van biodiversiteit
en gezondheid.
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SUMMARY

Although food biodiversity is important for sustainable healthy diets, it is still
unclear which biodiversity index is most appropriate to measure food biodi-
versity based on food intake data, and how this index might be associated
with health outcomes. The Hill numbers are simple diversity indices that
allow comparison between different groups, but they have not yet been ap-
plied to diets. The H0, H1, H2, and H∞ indices were calculated using
food intake data from the European Prospective Investigation into Cancer
and Nutrition (n=476,768; 9 countries). The indices were described (using
both weight-based and energy-based species proportions) and their corre-
lations were analysed. The associations of biodiversity indices with total
mortality were assessed using Cox proportional hazards models. Although
H∞ is based only on the proportion of the most abundant species in the
diet while H2 includes all proportions, they were strongly correlated: Pear-
son correlation coefficient of 0.89 using energy-based data and 0.93 using
weight-based data. Using weight or energy as a unit resulted in significantly
different values of H1, H2, and H∞ for the same diet. Hazard ratios
indicated an inverse relationship between these indices and total mortality
for this dataset. Comparing the lowest (reference) and highest quintiles, the
hazard ratios were 0.66 and 0.65 for H0, 0.82 and 0.80 for H1, 0.84 and
0.84 for H2, and 0.86 and 0.90 for H∞ when the indices were based on
weight or energy units, respectively. Overall, the results show that H∞ is a
simple and relevant index for assessing biodiversity and health.
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1. INTRODUCTION

The Origin of Species by Charles Darwin contains only one illustration: the
Tree of Life. It illustrates how all living species evolved from the same an-
cestor to different species over time. Millions of years of evolution have
created rich biodiversity. Unfortunately, the rate of biodiversity loss, one
of the nine planetary boundaries (Figure 1.1), is alarming, and humans are
responsible for accelerating extinction rates by a thousand times their nat-
ural background rates (Barnosky et al., 2012; Pimm et al., 2014; Rockström
et al., 2009).

Figure 1.1: The nine planetary boundaries defined by Rockström et al. (2009), indi-
cating biodiversity loss is occurring at an alarming rate. 1: climate change, 2: ocean
acidification, 3: stratospheric ozone depletion, 4a: nitrogen cycle, 4b: phosphorus
cycle, 5: freshwater use, 6: change in land use, 7: biodiversity loss, 8: atmospheric
aerosol loading (not yet quantified) and 9: chemical pollution (not yet quantified).
Adapted from Rockström et al. (2009).
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Massive agricultural land expansions and technical evolutions made it pos-
sible to produce more calories than ever before (Ramankutty et al., 2018).
But this remarkable achievement has come at a steep price. Intensification
negatively impacts the diversity of cultivated crops (Antonelli et al., 2020)
and domesticated farm animal breeds (Commission on Genetic Resources
for Food and Agriculture [CGRFA], 2015a), which plays a crucial role in en-
suring food security.

The International Union for the Conservation of Nature Red List of Threat-
ened Species serves as the most reliable indicator of the conservation status
of global biodiversity. At the agricultural level, the biodiversity of the world
is rapidly declining: 17% of the world’s farm animal breeds (CGRFA, 2015a)
and 11% of edible plants (Antonelli et al., 2020) are now threatened with
extinction.

Declining food biodiversity, which is the variety of consumed species, im-
plies a loss of genetic diversity in species (Food & Agriculture Organization
of the United Nations and Bioversity International [FAO] & Bioversity Interna-
tional, 2017). As a result, there is a reduction in the adaptability of species to
different environmental conditions, making them more susceptible to pests,
diseases, and a changing climate (Intergovernmental Science-Policy Plat-
form on Biodiversity and Ecosystem Services [IPBES], 2019). Therefore, this
genetic diversity is crucial to guarantee food security in the future, which
for more than 2.3 billion people is not guaranteed at this time (FAO et al.,
2022).

Food biodiversity is crucial not only for future food security but also for meet-
ing current nutrient requirements. Approximately 1.6 billion people, includ-
ing toddlers and non-pregnant women of childbearing age, experience defi-
ciencies in at least one of the three essential micronutrients (iron, zinc, and
vitamin A for children; iron, zinc, and folic acid for women), with the actual
global population affected by these deficiencies likely exceeding this num-
ber (Stevens et al., 2022). Improving dietary diversity (i.e., eating more food
groups) has a positive association with micronutrient intake (Arimond et al.,
2010; Gómez et al., 2020; Kennedy et al., 2007).

To monitor and improve food biodiversity in the future, it is important to be
able to quantify it. This can be achieved by using diversity indices. Despite
being well-established in ecology, and their clear potential for application,
species diversity indices have not yet been used widely in the context of
nutrition and its associations with health consequences (Hanley-Cook et al.,

2



1. Introduction

2022). In this thesis, the goal is to quantify food biodiversity using ecological
diversity indices.

The following research questions will be considered:

• What is the best suitable index to quantify food biodiversity in a Euro-
pean population in a simple way?

• How does a higher food biodiversity score of an individual in a European
population correlate with overall mortality rates?

• What is the influence of using weight-based compared to energy-based
species proportions on the index?

Quantifying food biodiversity has previously been studied by Hanley-Cook
et al. (2021) and Lachat et al. (2018). Together with the narrative review
of different food biodiversity indices by Hanley-Cook et al. (2022), these
studies formed the starting point for this thesis.

The indices are calculated based on the dietary questionnaires of 476,768
people from of nine countries enrolled in the European Prospective Investi-
gation into Cancer and Nutrition study (EPIC). EPIC is a prospective cohort
study that is coordinated by the International Agency for Research on Can-
cer (IARC) and includes information on mortality and disease risk in Europe.
(IARC, 2023)1

The thesis begins by providing an introduction to various definitions of food
biodiversity in the literature review (Chapter 2). Subsequently, the litera-
ture review covers the benefits, current status, and reasons for the decline
in food biodiversity. Additionally, it discusses current policies related to food
biodiversity, along with suggestions for policy improvement. The thesis then
moves on to explain indices and their application, accompanied by exam-
ples of their use by other researchers. In Chapter 3, the methodology and
dataset used for the study are described in detail. Chapter 4 presents the
study results, followed by a detailed discussion of the findings. In Chapter 5,
recommendations for further research are given. The thesis concludes with
a summary of the entire work in Chapter 6.

1Citing sources after the period is employed to signify that the source covers all the
preceding sentences in the paragraph (Pollefliet, 2022, p.71).
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2. LITERATURE REVIEW

To start the literature review it is important to explain some definitions of
food biodiversity (Section 2.1). Understanding the significance of food bio-
diversity is essential, as it plays a vital role in sustainable healthy diets (Sec-
tion 2.2.1). As its current state is worrisome (Section 2.2.2), addressing the
causes of its decline is critical for improvement (Section 2.2.3). To achieve
this, policy measures can be crucial (Section 2.2.4).

2.1 Definitions

Food biodiversity is a component of agricultural biodiversity, which, in turn,
is encompassed within the broader concept of biodiversity (Figure 2.1). Bio-
diversity is defined by the Convention on Biological Diversity as the variety
of all living organisms found in all ecosystems (Convention on Biological Di-
versity, 2006). Agricultural biodiversity (i.e., agrobiodiversity) is a subset of
it. According to FAO and Bioversity International (2017), it encompasses the
diversity of organisms (animals, plants, and microorganisms) that are used
either directly or indirectly (i.e., soil microorganisms, predators and pollina-
tors) in agriculture or food. Food biodiversity focuses only on the plants,
animals, and other species that are actually consumed (FAO & Bioversity
International, 2017).

Within food biodiversity, scientists can focus on different levels: food groups,
species or variety. Food group diversity (indicated by a dietary diversity
score) leads to a higher probability of meeting dietary nutrient requirements
(Arimond et al., 2010; Gómez et al., 2020; Kennedy et al., 2007). However,
within food groups (e.g., fruits and vegetables), there are also large differ-
ences in nutritional composition between species or varieties. For example,
the vitamin A content of carrots is almost seven times higher than for mango
(Aremu & Nweze, 2017), while depending on the variety of banana the vita-
min A level varied by a factor of 10,000 (Burlingame et al., 2009).

5



Figure 2.1: Different levels of biodiversity with respect to human consumption of
food. Images provided via PowerPoint.

2.2 Food biodiversity at a glance

2.2.1 The benefits of food biodiversity

As stated in the introduction, improving food biodiversity is a new approach
to help combat biodiversity loss. Food biodiversity plays a role in achieving
sustainable healthy diets, which are both beneficial for the environment and
human health (FAO & World Health Organization, 2019).

Each crop plays a unique role in the agroecosystem and combining them
can have ecological as well as nutritional benefits. To explain this, the ‘three
sisters’, which are corn, squash, and beans, are given as an example. By
combining these three plants and taking advantage of their mutual support
during growth, land use can be optimised, leading to increased yields (Risch
& Hansen, 1982). Nutritionally, corn contains high proportions of carbo-
hydrates and some amino acids, beans provide additional essential amino
acids, and squash is rich in vitamin A, so that none of these plants alone can
meet all nutritional requirements (Declerck et al., 2011). So, this example
highlights that food biodiversity can lead to synergistic effects.

6



2. Literature review

Environmental benefits

Food biodiversity boosts resilience of agrifood systems by reducing the pres-
sure on a single species, increasing food security. In fact, the more diverse
the plants and animals in an agrifood system, the more likely they are to sur-
vive challenging conditions. Agrobiodiversity enhances crop breeding pos-
sibilities by providing access to a diverse range of genes (Thrupp, 2000).
Additionally, it contributes to the functionality of agricultural systems, since
different crops can have different functions in the field, such as weed sup-
pression (Bilalis et al., 2010). Unfortunately, with current production meth-
ods combined with soil depletion, declining resources, and climate change,
food security cannot be guaranteed in the future (Khoury et al., 2014).

Genetic variability underpins the resilience of food systems, as stated by the
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem
Services (IPBES, 2019). Unfortunately, the selection of the best-adapted
varieties by farmers and plant breeders to maximise yield has resulted in
a declining trend in genetic variability. As these selected species are so
adapted to local conditions, they are unlikely to survive climate change.
Therefore, enhanced genetic variability by food biodiversity ensures greater
food security. (IPBES, 2019)

Conservation of diverse plants can be positively impacted by improving agri-
cultural biodiversity. The opposite approach of targeting agricultural biodi-
versity is monocropping, which involves growing only one crop over a large
area. However, pollinators find it harder to obtain their required nutrients in
a less diverse agricultural environment (Aizen et al., 2019). Given that three
out of four crops depend on pollination, these pollinators play a crucial role
in the continued growth of these plants in the future (IPBES, 2019). Pollina-
tion services are important for food security and a 50% reduction could lead
to 700,000 excess deaths annually from micronutrient deficiencies (Global
Panel on Agriculture and Food Systems for Nutrition, 2020). Consequently,
agricultural intensification, which involves a greater reliance on monocul-
tures, can have both direct (due to the cultivation of only one crop) and
indirect negative effects (the destruction of pollinators) on food biodiversity.

7



Nutritional and health benefits

Two effects describe the relationship between food biodiversity and nutri-
tional benefits: the complementarity effect and the sampling effect. The
complementarity effect suggests that combinations of foods can provide a
more nutrient-sufficient diet due to the interactions of nutrients (Declerck
et al., 2011). For example, vitamin C (e.g., in broccoli) enhances the absorp-
tion of nonheme iron from another food product (e.g., lentils) (Lynch & Cook,
1980). The sampling effect suggests that as the number of foods consumed
by a person increases, the probability that one of these foods will be high in
a particular ingredient also increases. Therefore, due to the sampling effect,
the chances of consuming sufficient essential nutrients are greater when
different types of food are consumed (Declerck et al., 2011). In addition, al-
ternating different food items reduces the risk of eating food products with
high concentrations of certain toxic substances.

Dietary diversity is associated with several health benefits. For example, di-
ets that excluded multiple food groups were associated with higher mortality
risk, according to Kant et al. (1993). Moreover, this dietary diversity score
is a significant predictor of micronutrient intake in specific groups like non-
breastfed children (Kennedy et al., 2007), and also in women (Arimond et al.,
2010; Gómez et al., 2020). In addition to the dietary diversity score, Lachat
et al. (2018) showed that species richness (total number of species con-
sumed) showed positive associations with micronutrient adequacy. Lastly,
the Women’s Dietary Diversity Project developed a new indicator: Minimum
Dietary Diversity for Women indicator, which focuses on the count of con-
sumed food groups (FAO & FHI 360, 2017). According to them, the consump-
tion of at least five out of the ten specified food groups serves as a useful
proxy for ensuring micronutrient adequacy among women of reproductive
age.

On the other hand, some studies have shown that dietary diversity can also
have negative effects on health status. Zhang et al. (2017) concluded that a
higher dietary diversity score is associated with excessive energy consump-
tion and obesity. In addition, Bezerra and Sichieri (2011) reported a positive
correlation between dietary diversity and the consumption of unhealthy food
groups.

8



2. Literature review

Other benefits

In addition to the environmental and nutritional benefits, food biodiversity
offers a range of other advantages. These include income security for farm-
ers and enhanced culinary experiences.

As agrobiodiversity ensures more resilience and food security, diversification
also provides more certainty of income for farmers. In case of bad weather
conditions, low market prices for certain products and outbreaks of diseases,
farmers can rely on the sales of other crops (Zimmerer, 2015).

Furthermore, food biodiversity is linked to cultural eating habits. Traditional
dishes are often made with species typically for a region. So, experimenting
with different cuisines can increase the diversity of the consumed species.
Moreover, diversity on a plate increases food experience. Antoni Aduriz,
recognised by two Michelin stars, even has a recipe with more than one
hundred ingredients (Spence et al., 2017).

2.2.2 The status of food biodiversity

An increasing number of people consume the same few species. This is
because the food supply between countries is becoming more similar over
time. Of 52 crops investigated in a study, all crops except cotton seeds
increased in geographical spread between 1961 and 2009 (Khoury et al.,
2014). Moreover, there is increasingly less variation between the diets of
different people, as most of their energy intake now originates from only a
few species. Worldwide, 60% of the energy intake from food comes from
rice, wheat, and maize, as reported by Loftas (1995). In Europe, 45% of
our energy intake comes from wheat and potatoes, combined with beef and
pork (Hanley-Cook et al., 2021).

Status of plants

The number of species consumed is not necessarily driven by species loss.
There are many more edible plants than are currently consumed. Willett et
al. (2019) mention 14,000 edible plants, of which only 150-200 of them are
eaten. Antonelli et al. (2020) provide smaller estimates but highlight a sim-
ilar phenomenon: they suggest there are 7039 edible plants, of which 417
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are consumed. In particular, 30% of these 7039 plants examined are on the
Red List of Threatened Species of The International Union for Conservation
of Nature.

Status of animals

Figure 2.2: Global map with threat status of livestock breeds. From CGRFA (2015b).

Figure 2.2 shows a map of the number of animal breeds per country and
risk status per continent (CGRFA, 2015b). In general, few terrestrial animal
species, namely 38 domesticated birds and mammals, are used in agricul-
ture and food production (CGRFA, 2015a). According to them, 17% of farm
breeds worldwide are at risk of extinction, but this could be an underestima-
tion as 58% of them had an unknown risk status. However, their study also
mentions that there are many more animal species than those domesticated
for food today: only 10% of animal species are currently raised for human
consumption, and an even lower proportion of avian species, only 0.1%.

In addition to plants and terrestrial animals, fish are also frequently con-
sumed in human diets. But only 10 of the 600 farmed species in aquacul-
ture account for more than 50% of overall productivity (FAO, 2020). Due
to increasing demand, fishing has had the greatest impact on the biodiver-
sity of marine ecosystems in the last 50 years, according to IPBES (2019). To
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meet this growing demand, an increasing area of the ocean has been fished,
and an increasing number of fish have been or are being overfished. IPBES
mentions that, currently, more than 55% of the oceans are fished on a large
scale. In addition, of all marine fish stocks, 7% are underfished, 33% are
overexploited, and the rest are maximally sustainably fished. Next to the
loss of biodiversity, overfishing also has an impact on the fish itself: they
mature much faster to increase their reproduction rates (IPBES, 2019). Fur-
thermore, global warming has caused local marine biodiversity to change,
as fish move to colder areas (Hannesson, 2007), also affecting food security.

2.2.3 The causes of declining food biodiversity

There are several causes of declining food biodiversity, but most are linked
to the growing world population. As the population grows exponentially (Fig-
ure 2.3), the demand for food also increases. Increasing the supply leads to
more specialisation and deforestation. Both factors drive deterioration in
food biodiversity, and are discussed in more detail below.

First, government subsidies have stimulated higher production yields. On
the one hand, this has helped to meet the increased demand. On the other
hand, this has also forced farmers to specialise in a few crops and to stop
the production of more diverse and resilient local varieties. (Antonelli et
al., 2020) Moreover, this has discouraged the production of foods that do
not receive the same level of support, like fruits and vegetables (FAO et
al., 2022). Therefore, some species became more affordable, compared to
others, resulting in a nutrition gap (Ramankutty et al., 2018).

Second, to meet rising demand, the biodiversity of the environment is being
sacrificed. Almost 90% of global deforestation is due to agriculture: almost
50% is for planting crops and 38.5% is for grazing (FAO, 2022). Deforesta-
tion has a major irreversible impact on biodiversity, because it enormously
reduces both wildlife and suitable habitat, but also on the available wild
foods which are important for several communities and for increasing re-
silience (Antonelli et al., 2020).
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Figure 2.3: The trend of the exponentially growing world population. From Antonelli
et al. (2020).

2.2.4 Food biodiversity policies

Although food consumption and production play a central role in the cli-
mate and biodiversity crises, little attention has been paid to them in the
global policy agenda, according to EAT-Lancet Commission (2020). This re-
port states that “food has so far not been considered central to global pol-
icy agendas such as the Paris Agreement, Sustainable Development Goals
(SDGs), or Convention on Biological Diversity” (EAT-Lancet Commission, 2020,
p.7), which means there is still room for improvement. In the following para-
graphs, the role of food in the SDGs and the Convention on Biological Diver-
sity is explained.
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Current policy

With the introduction of 17 SDGs, the United Nations has attempted to set
targets by 2030 to improve sustainable living conditions on Earth. The tar-
gets relevant to improving food biodiversity are as follows:

• SDG 2 aims for improvement in food security and sustainable agricul-
ture;

• SDG 12 aims for sustainable consumption and production and less food
loss;

• SDG 13 aims to strengthen resilience to combat climate change;

• SDG 14 aims to end overfishing and restore fish stocks;

• SDG 15 aims to limit deforestation due to land conversion. (General
Assembly of the United Nations, 2015)

Unfortunately, according to IPBES (2019), many of the SDGs related to bio-
diversity will not be reached by 2030 if we continue to live as we currently
do.

The Convention on Biological Diversity set Aichi biodiversity targets that
align well with the SDGs. These 20 targets were planned to be met by 2020.
Unfortunately, none of the targets was fully met. In their vision by 2050,
the Convention of Biological Diversity wants to commit to a shift in food
production so that food can be provided in a sustainable way for all people.
Unfortunately, we are also not on track to achieve the goals by 2050 either.
(Secretariat of the Convention on Biological Diversity, 2020)

Improvements in policy

Governments and other organisations can help slow down food biodiversity
loss. For example, subsidies can be shifted from focusing on mass produc-
tion to sustainable and healthy food production (Secretariat of the Conven-
tion on Biological Diversity, 2020). To improve food biodiversity and food
security, farmers must increase the genetic diversity of their crops and an-
imals (IPBES, 2019). Furthermore, more attention can be paid to both wild
and locally grown crops which are now underutilised, such as bulbous chervil

13



(Chaerophyllum bulbosum) (Antonelli et al., 2020). Finally, efforts to prevent
food losses (e.g., improving technology) can be improved, as this reduces
the pressure on production (Secretariat of the Convention on Biological Di-
versity, 2020).

Reducing food waste can be a solution to meet this rising demand with-
out sacrificing biodiversity. According to United Nations Environment Pro-
gramme (2021), approximately 931 million tons of food (17% of total pro-
duction) is lost globally. Interestingly, this study reveals that waste per per-
son within a household is similar between different country income groups.
This challenges previous narratives that emphasised the significance of con-
sumer food waste mainly in high-income countries. The results of United
Nations Environment Programme suggest that actions to reduce consumer
food waste are relevant in all countries, regardless of their income level.

2.3 Quantifying food biodiversity

Indices are essential to monitor and evaluate the state of food biodiversity,
and to guide policies. They quantify food biodiversity and allow us to deter-
mine which diets are most biodiverse. This quantification is useful to make
comparisons between people, as well as to measure change over time.

2.3.1 Components of food biodiversity

Biodiversity indices are based on one or more components of food biodiver-
sity (Section 2.3.1). Food biodiversity is subdivided into three components:
richness, evenness, and disparity. In Figure 2.4 the concept is illustrated.

Richness is defined as the total number of elements (e.g., species) in a diet,
so it is independent of the proportion of each element. To make determina-
tion possible, it is important to know what to consider as a single element.
For instance, counting can be performed on the basis of food groups like for
the Minimum Dietary Diversity for Women index (Food & Agriculture Orga-
nization of the United Nations & FHI 360, 2016), but also more specifically
on the species level. It should be noted that this statement is not always
straightforward: for example, ecologically, beef and milk belong to the same
species, but in nutrition belong to different functional food groups (i.e., flesh
foods vs dairy) (Hanley-Cook et al., 2022).
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Figure 2.4: Three components of food biodiversity: richness, evenness, and dispar-
ity.

In contrast to richness, evenness is based on the proportion of elements in
a diet. Evenness reflects the distribution of these proportions in the diet:
the more food items that are consumed in equal amounts, the more even
the diet will be. However, from a nutritional perspective, it is not always
advantageous to consider equal amounts as a better diet. For example,
looking at food groups as elements, the Flemish Food Triangle points out that
meat has to be consumed in smaller amounts than fruits and vegetables.

Disparity compares different foods according to their composition, while in
the other components nutritional differences in the other components are
not explicitly considered. Depending on the research objectives, different
functional traits of foods (e.g., iron content) can be used to compare differ-
ent food products.

There exist many indices that measure one or more of these components in
an ecological setting. However, there are important differences between
ecological and nutritional contexts, as mentioned in the preceding para-
graphs. Therefore, attention should be paid to the fact that these indices
were not originally developed with nutrition in mind.
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2.3.2 Notation

S, p and  are the parameters commonly used to calculate food biodiversity.

S represents the total number of species. In food data, composite products
(e.g., pancakes) are traced back to their ingredients (e.g., flour, milk, and
eggs) to determine the total number of species.

The vector p combines the proportions of S food elements. Each element,
denoted as p, takes a value between 0 and 1. Therefore, the elements
of p always sum up to 1. These elements can be calculated, for example,
energy-based and weight-based. On an energy basis, p is determined as
the energy of species  relative to the total energy of all consumed species,
whereas p on a weight basis is equal to the weight of species  divided by
the total weight consumed.

S and p are common to all indices, but some indices have additional param-
eters, for example, a sensitivity parameter  in the Hill numbers, which de-
fines if the emphasis is placed on species with high or with low abundances
(Section 2.3.3).

2.3.3 Hill numbers

The Hill numbers are a family of indices that contain (transformations of)
most classical diversity indices. These classical indices do not include dis-
parity, which means that they consider each food item to be equally dif-
ferent from another food item. Hill numbers include richness indices and
heterogeneity indices. The latter method combines richness and evenness.
These indices are discussed in Section 2.3.4.

The general formula to calculate the Hill numbers is shown in Equation 2.1
(Hill, 1973).

H =

� S
∑

=1

p


�

1
1−

(2.1)

The sensitivity parameter  is adjusted according to the index that is calcu-
lated. The higher the value of , the more emphasis is placed on the food
items present in large proportions in the diet and vice versa. (Hill, 1973)
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The output of H is a number of effective species S′, which represents the
number of different species consumed if the diet were to be perfectly uni-
form (Hill, 1973). If a person’s diet has a Hill number equal to , then this
would mean that their diet is as diverse as another person’s diet who con-
sumed  different species in exactly the same proportions. The number of
effective species can therefore be calculated by substituting every propor-
tion with 1/S′ (Heip et al., 1998).

Conversion to a number of effective species means that it is possible to
compare Hill numbers as they have the same unit, regardless of the value
of . An ecology forum held by Ellison (2010) suggests that even if the aim is
to describe the diversity of a single person’s diet, using number of effective
species is still the best diversity measure.

2.3.4 Classical cardinal indices

Suppose two people each eat two species per day. One eats everything
in equal amounts (i.e., the vector of relative abundances is given by p =
(0.5,0.5)), while for another person the relative abundances of the species
in the diet are given by p = (0.9,0.1). Are these then equally diverse? No,
because both evenness and richness are important parameters for assess-
ing diversity. (Peet, 2003)

Heterogeneity indices take proportions as well as species number into ac-
count and therefore represent both richness and evenness. According to Ri-
cotta (2005), there is a ‘jungle’ of these indices. In the following paragraphs,
only three of them are discussed: the Shannon, Simpson, and Berger-Parker
indices. These indices are chosen based on their previous applications to
quantify food biodiversity (Hanley-Cook et al., 2022).

Hill number with  = 0 and the richness index

Richness is a cardinal index that represents the number of objects in a
dataset. In the case of dietary species richness, it counts the number of
unique species in a diet. Hanley-Cook et al. (2021) showed that dietary
species richness is inversely associated with the total risk of mortality rates
in nine European countries.
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Richness can be derived from the formula for the Hill numbers by setting 

equal to 0, but the value of the index is of course just equal to S by definition
(Hill, 1973):

R = H0 =

� s
∑

=1

p0


�
1

1−0

= S (2.2)

Hill number with  = 1 and the Shannon index

The Hill number with  = 1 is equivalent to the exponent of the Shannon in-
dex HSh (Equation 2.3) (Hill, 1973). Expressing this index in effective species
makes it easier to interpret, as the Shannon index has nats or bits as a unit
(Heip et al., 1998).

exp(HSh) = H1 = lim
→1





� S
∑

=1

p


�

1
1−


 = exp

�

−
S
∑

=1

p ln (p)

�

(2.3)

The Shannon index was originally created to estimate how many yes/no
questions are needed to guess the next letter in a word when the frequency
of a letter is known. It measures entropy and is expressed in bits if the base
of the logarithm is 2 and in nats if the natural log is calculated. (Shannon,
1948) In dietary data, it could be described as an index that determines how
many yes/no questions are needed to reconstruct the order of a person’s
diet if it is known how much of each species is consumed. Currently, the
Shannon index is the most widely used diversity index in food supply studies
(Hanley-Cook et al., 2022).

Remans et al. (2014) used the Shannon diversity index to measure food
production and supply diversity at the national level, finding significant re-
gional differences in food production diversity and supply diversity. Addi-
tionally, they observed an inverse relationship between the Shannon index
based on food supply and the prevalence of child stunting, wasting, and
being underweight. Gustafson et al. (2016) developed a new sustainable
nutrition security assessment methodology that incorporates the Shannon
index based on national food production data to holistically evaluate food
system performance across multiple domains, including nutrition, environ-
ment, economic, social, resilience, safety, and waste. Tian et al. (2017)
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used individual food consumption data to compare the diversity of food con-
sumed by men and women and found that dietary diversity was positively
associated with overweight in men.

Hill number with  = 2 and the Simpson index

Another way to define biodiversity is using the Simpson index (HS). The
indicator is based on the probability of randomly selecting two items from
a diet that are of the same food species, which equals p2


(Equation 2.4).

These probabilities are calculated and summed for all species. The explana-
tion above shows that a more diverse diet, which has a lower probability of
selecting the same species twice in a row, causes a lower index.

HS =
S
∑

=1

p2


(2.4)

As the Simpson index is lower for a more diverse diet, the Gini-Simpson
index (= 1 − HS) or the Simpson-dominance index (= 1/HS, Equation 2.5)
are more logical to interpret and therefore are often used (Daly et al., 2018;
Heip et al., 1998).

1

HS
= HSmpson domnnce = H2 =

� S
∑

=1

p2


�

1
1−2

=
1
∑S

=1 p
2


(2.5)

The Gini-Simpson index is used by de Oliviera Otto et al. (2015) to calculate
the diversity of food items using food intake data based on food frequency
questionnaires. In their study, higher diversity was weakly positively asso-
ciated with dietary quality. According to Lachat et al. (2018), richness has a
stronger positive association micronutrient adequacy compared to the Gini-
Simpson index, using food intake data of several African and Asian countries.

Katanoda et al. (2006) proposed a new index for food biodiversity called
Quantitative Index for Dietary Diversity (HQUANTDD) (Equation 2.6). It is
based on the complement of the Simpson index, but the index is calculated
for n food groups rather than S species. Therefore, p is equal to the relative
abundance of a food group. Furthermore, it is normalised by dividing by
the maximum value that can be reached, so when p is equal to 1/n. The
authors used the index on Japanese consumption data with the proportions
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based on energy intake as well as on the amount of food intake and found
that the value for HQUANTDD increased from the 1960s to the 1970s, which
was a period of rapid economic growth in Japan.

HQUANTDD =
1 −
∑n

=1 p
2


1 − 1/n
(2.6)

Hill number with  =∞ and the Berger-Parker index

The final index to be discussed is the Berger-Parker index (HBP), which equals
the Hill number with  =∞ (Equation 2.7). Along with the Simpson index and
Shannon index, this index is also widely used to describe food biodiversity
(Hanley-Cook et al., 2022). This simple index only takes into account the
prevalence of the most abundant species. Thus, a considerable amount of
information is omitted from the diversity estimation, but data collection is
easier as it can be restricted to a sample of regularly consumed species.

HBP = H∞ = lim
→+∞





� S
∑

=1

p


�

1
1−


 =
1

mx (p)
(2.7)

The Berger-Parker index was used to define diversity based on national food
supply data by Khoury et al. (2014). Their findings indicated a global decline
in this index from 1961 to 2009.

2.3.5 Drawbacks of classical indices

Unfortunately, there are still problems with quantification. First, there is still
no consensus on the definition of species diversity (Moreno & Rodríguez,
2010). In addition, while indices are translated from ecology to food, they
were not originally created to describe food biodiversity. Two examples of
clear differences are the units (i.e., number of species in ecology versus
weight or energy of the species contributing to the diet) and data collec-
tion (i.e., investigation of species in a certain geographical area in ecology
versus dietary questionnaires for food). Third, there exist many biodiversity
indices, each having different calculation methods and potentially having
other units. As a result, researchers frequently choose different indices for
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similar research objectives, making it difficult or even impossible to compare
studies in the existing literature (Hanley-Cook et al., 2022).

Consider the following example to illustrate the drawbacks of using the
most common food biodiversity indices: richness, Shannon index, and Gini-
Simpson index (Hanley-Cook et al., 2022). Suppose that person A eats 25
species in equal amounts, person B eats 50 species in equal amounts and
person C eats also 25 species, but unevenly divided:

p = (0.4,0.2,0.1,0.05,0.05,0.01,0.01, · · · ,0.01).

The values of the indices for these three diets are shown in Table 2.1.

Table 2.1: Example of richness, Shannon and Gini-Simpson index using two diets
with evenly divided species for person A and B and unevenly divided species for
person C. The units of the Shannon index are nats, and the Gini-Simpson index is a
probability.

Richness Shannon Gini-Simpson

Person A 25 3.22 0.96

Person B 50 3.91 0.98

Person C 25 2.14 0.78

The first conclusion is that it is difficult to compare different indices as differ-
ent units are used. Moreover, there is clearly an issue due to the nonlinearity
of the indices: although intuitively person A has a diet twice as diverse as
person B, this is not reflected by the Shannon or Gini-Simpson indices (Daly
et al., 2018). Another problem with the Shannon index is that it is difficult
to estimate if 3.91 or any value is ‘good’ in terms of diversity, since its units
do not have an intuitive interpretation.

Calculating food biodiversity in terms of Hill numbers can solve these prob-
lems. In Table 2.2, the Hill numbers (H0, H1, H2, and H∞) are shown.

Table 2.2: Example of Hill numbers using two diets with evenly divided species for
person A and B and unevenly divided species for person C. The units of the Hill
indices are effective number of species.

H0 H1 H2 H∞

Person A 25 25 25 25

Person B 50 50 50 50

Person C 25 8.49 4.61 2.5

21



According to the data presented in Table 2.2, it is evident that person A’s
diet is twice as diverse as person B’s, regardless of the chosen Hill number.
It is worth noting that the Hill indices all have identical values because the
species in the diet are perfectly evenly distributed, although this is rarely
the case in practical scenarios. Person C, on the other hand, shares the
same H0 value as person A, but their values diverge for other Hill num-
bers. As the value of  increases, the corresponding Hill indices of person
C decrease. This can be attributed to the presence of numerous species
in small proportions: with lower values of , greater emphasis is placed on
rare species, and vice versa. This explains why the values are larger for H0
than for H∞.

2.3.6 Leinster-Cobbold index

To take into account all three components of biodiversity (richness, even-
ness, and disparity), the Hill numbers do not suffice, since they do not incor-
porate disparity. In the Leinster-Cobbold index this extra element, called a
similarity matrix, is included. (Leinster & Cobbold, 2012)

D =

� S
∑

=1

p (Zp)−1


�

1
1−

, (2.8)

(Zp) =
S
∑

j=1

Zjpj (2.9)

The similarity matrix Z is a SS matrix that combines all similarities between
different species. An element of the matrix, Zj, is a normalised distance that
is based on the parameters chosen according to the research objectives
(e.g., fibres, vitamin A, carbohydrates and iron). Zj is equal to 1 if species
 is completely similar to species j and equal to 0 if they are completely
different. In the formula for the Hill numbers, a similarity value of zero is
assigned to each pair of different species, so the similarity matrix is equal
to the identity matrix. (Leinster & Cobbold, 2012)

The significance of (Zp) is the probability that a random species is similar
to the th species (Equation 2.9). Therefore, it measures the ordinariness
of a species, which is higher when there are more species similar to the th
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species. This ordinariness is at least equal to the abundance of the species.
(Leinster & Cobbold, 2012)

As (Zp) signifies ordinariness, the average ordinariness is given
∑S

=1 p (Zp).
This measure, referred to as concentration, has a high value when the ma-
jority of the diet is concentrated in a small number of closely related species.
Although the average ordinariness is inversely related to diversity, the neg-
ative exponent in the Leinster-Cobbold index allows it to serve as a measure
of diversity. (Leinster & Cobbold, 2012)

2.3.7 Distances for calculating the Leinster-Cobbold
index

Based on some selected food traits, it is possible to incorporate a similarity
matrix into diversity indices. In this way, the Leinster-Cobbold index, can
take into account that, for example, lettuce and cucumber are nutritionally
less diverse than chicken and cucumber.

In order to define a similarity matrix, the distance metric must be deter-
mined. There are different options for this, and two of them will be discussed
below: the Euclidean distance and the Jaccard distance.

Note that to determine the similarity matrix, the distances have to be con-
verted from dissimilarity to similarity measures. This can be done by taking
the complement of the dissimilarity value.

First, an example is introduced to illustrate (Table 2.3). Suppose iron and fi-
bre are used as characteristics, so that the iron value is plotted on the -axis
and fibre on the y-axis. For each species in the diet, the relative amount of
iron and fibre is calculated by dividing by the maximum amount of iron in
one of the species. These are thus all relative amounts of a nutrient and are
now between 0 and 1 and unitless.

Table 2.3: Example of iron and fibre content of two theoretical species.

species iron fibre relative relative
(mg/100g) (mg/100g) iron fibre

 0.5 0 1 0

j 0.25 2.5 0.5 1
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The Euclidean distance is a simple measure to compare two different food
products based on their characteristics. Each characteristic is plotted on
a different axis. Then, the food products are represented by dots based
on their characteristics. The Euclidean distance between the two points
represents the dissimilarity.

The Euclidean distance dj is given by the following formula:

dj =
r

(ron − jron)2 +
�

ƒ bre − jƒ bre
�2 = 1.11 (2.10)

For n characteristics, the traits of all species are plotted in an n-dimensional
space and the distance between two species would be calculated as follows:

dj =

√

√

√

√

n
∑

k=1

(k − jk)2 (2.11)

Another measure of distances that can be used with food data is the Jaccard
distance (Hanley-Cook et al., 2022; Wang et al., 2021). The Jaccard distance
is calculated by dividing the unique share (US) of two food products by the
sum of the unique and the common share (CS) (Wang et al., 2021). The
‘common share’ refers to the amount of the nutrient or component that
is present in both food products, while the ‘unique share’ is the (excess)
amount present in one of the food products compared to the other one.

Suppose the same example as above:

CS =mx(, j)ron +mx(, j)ƒ bre = 2 (2.12)

US =mx(, j)ron −min(, j)ron +mx(, j)ƒ bre −min(, j)ƒ bre = 1.5 (2.13)

dj =
US

CS
= 0.75 (2.14)

For n characteristics, for all species, the minimum and maximum of all n
characteristics would be determined and used to calculate the Jaccard dis-
tance (Wang et al., 2021):

dj = 1 −

∑n
k=1mn(, j)k
∑n

k=1m(, j)k
(2.15)
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2.3.8 Similarity-sensitive indices

A similarity-sensitive index used in food data is called Rao’s quadratic diver-
sity index (Ro) (Hanley-Cook et al., 2022). To write this diversity index in
terms of the Leinster-Cobbold index, the reciprocal of the complement of it
is used (Equation 2.16) (Leinster & Cobbold, 2012).

1

1 − Ro
= D2 =

� S
∑

=1

p (Zp)2−1


�

1
1−2

=
1

�

∑S
=1 p (Zp)
� (2.16)

Green et al. (2021) used the Rao’s quadratic diversity index to determine
food biodiversity based on worldwide food supply data of FAO of 2020 using
the Euclidean distance. They found that the values of this index were lower
in Europe than for other regions with similar incomes. Furthermore, Wang
et al. (2021) defined nutritional redundancy (NR) in an individual’s dietary
intake assessment as the portion of their food diversity, calculated by the
Gini-Simpson index (1 − HS), that cannot be explained by their nutrient di-
versity, calculated by Ro using the Jaccard distance. This results in the
equation NR = 1−HS−Ro. They observed that nutritional redundancy and
nutrient diversity tend to be similar across different dietary studies.

2.3.9 Drawbacks of similarity-sensitive indices

The major drawback of using the Leinster-Cobbold index is the inconsistency
of the similarity measure between different studies. This similarity matrix
can namely be different in every study because the researcher determines
the traits and the distance measure. On the other hand, this also means that
the index is versatile and can focus on different objectives (e.g., functional
or phylogenetic differences). Another drawback is the computational load.
To compare the diets of two persons based on the species they consumed,
the distances between every two species must be calculated.

2.4 Conclusion

Food biodiversity, which focuses on the diversity of the crops, animals,
and other species that are consumed, is crucial for attaining a sustainable
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healthy diet. Food biodiversity enhances food security by promoting ade-
quate nutrient intake now and guaranteeing food supply in the future.

Although there are many edible species, an increasing number of people
consume the same few species. Communication about the advantages and
implementing food biodiversity in the global policy agenda will help to tackle
food biodiversity loss.

Quantifying food biodiversity is an important step in addressing biodiver-
sity loss and guiding policies. While several indices have been developed
to measure biodiversity, most of them have been designed for ecological
settings, and it may be worth using them for food data as well. As shown in
Table 2.4, these indices vary significantly in terms of the biodiversity com-
ponents they measure, their data needs and their mathematical behaviour.
Hence, careful interpretation is needed when applying them to food data
and the impact of diverse diets on human health can be used for validation.

In this thesis, the focus will be on determining the best-suited index for
quantifying the diversity of diets in a simple way using food intake data.
One approach is the use of the Hill numbers that can take into account
both species richness and evenness. Some researchers have already inves-
tigated the performance of other indices, such as the Shannon or Simpson
indices, using food intake, production or supply data, but to our knowledge,
the Hill numbers have never been used to quantify the diversity of diets us-
ing food intake data before. The Hill numbers are particularly well-suited for
quantifying food biodiversity as the data needed, calculation method and
interpretation are quite simple compared to other indices. Although these
biodiversity indices offer a few conceptual advantages, empirical evaluation
on real diets remains necessary, which presents research challenge that will
be tackled in the next chapters.
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2. Literature review

Table 2.4: Overview of the characteristics of possible food biodiversity indices.
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Food biodiversity components

Richness + + + + + + +

Evenness + + - + + + +

Disparity - - - - - - +

Comparability with other research

Frequently used in literature + + + - - - -

Uniformity of calculation + + + + + + -

Use of index

Easy interpretation of unit - - + + + + +

Avoids nonlinearity issues - - + + + + +

Easy interpretation of calculation - + + - + + -

Use of data

Simplicity of data collection - - + - - + - -

Independence of details questioned + + - + + + -

Biased towards . . .

Common species + + - - + + depends

Rare species - - + - - - depends
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3. METHODOLOGY

3.1 Research goals

As outlined in the literature review, the Hill numbers show promise for quan-
tifying food biodiversity. This thesis aims to evaluate the applicability of four
Hill numbers to food intake data. Specifically, H0 (richness), H1 (the ex-
ponential of the Shannon index), H2 (the reciprocal of the Simpson index),
and H∞ (the Berger-Parker index) will be examined. Additionally, a newly
created index, J, will be tested on the data.

The food intake data used in this research is sourced from the European
Prospective Investigation into Cancer and Nutrition study, provided by the
International Agency for Research on Cancer (IARC, 2023). This dataset com-
prises food intake information collected between 1992 and 2000 as part of
the EPIC study. Furthermore, by using this dataset, it is possible to explore
the correlation between indices and health, specifically by examining overall
mortality rates.

By using real food intake data, deeper insights can be gained into the prac-
tical suitability of the indices that have shown promise in the literature.

3.2 Data collection within the European

Prospective Investigation into Cancer

and Nutrition study

The European Prospective Investigation into Cancer and Nutrition study is a
continuing prospective cohort study (IARC, 2023). The EPIC study examines
the associations between lifestyle, dietary, environmental, and metabolic
variables and cancer and other chronic diseases. Local ethics committees
and the Internal Review Board of the International Agency for Research on
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Cancer approved the study, and all participants gave their written informed
consent.

The EPIC study includes more than 500,000 volunteers (between 25 and
70 years old) enrolled between 1992 and 2000 in 23 administrative centres
in 10 different countries: Denmark, France, Germany, Greece, Italy, the
Netherlands, Norway, Spain, Sweden, and the United Kingdom. Most of the
participants are chosen from the general population in a particular region,
but the exceptions were the cohorts from:

• France: female participants in a health insurance programme for school
personnel;

• Utrecht in the Netherlands: attendees at breast cancer screenings;

• Ragusa in Italy: blood donors and their spouses;

• Oxford in the United Kingdom: mainly vegetarian and healthy eaters.

Data collection, recruitment, and study design details have previously been
published (Ferrari et al., 2008; Riboli et al., 2002; Riboli & Kaaks, 1997).

3.2.1 Baseline data collection

Each participant was subjected to a detailed characterisation before par-
ticipation. Sociodemographic data, educational level, personal and fam-
ily medical history, lifestyle factors (such as smoking, alcohol consump-
tion, and physical activity), and menstrual and reproductive histories of
women were collected using questionnaires. In each centre, anthropometric
measurements, such as height, weight, and waist and hip circumferences,
were taken, but in France, Oxford, and Norway self-reported data were used
(Haftenberger et al., 2002). When self-reported measurements were not
available, average values based on centre, age, and gender were used.

3.2.2 Dietary data collection

Validated dietary questionnaires (DQ) were used to assess the diet over the
preceding year of each participant at enrolment. The method was based
on food frequency questionnaires (FFQs) and varied per study centre with
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3. Methodology

an estimation of individual average portions or with the same standard por-
tion assigned to all participants, as well as questionnaires combining an
FFQ and 7-day dietary records (Table 3.1). Extensive quantitative dietary
questionnaires were used in Germany, northern Italy (including Florence,
Turin, and Varese), and the Netherlands to estimate individual average por-
tions. In France, Ragusa (Italy), and Spain, these quantitative dietary ques-
tionnaires were structured by meals. Semiquantitative FFQs were used in
Denmark, Naples (Italy), Norway, Umeå (Sweden), and the UK. FFQs were
combined with a 7-day dietary record in the UK and with a 14-day record
on hot meals in Malmö (Sweden). With the exception of Ragusa and Naples
(Italy), and Spain, where face-to-face interviews (FTF) were conducted, the
DQs were self-administered (SA) in most locations. (Riboli et al., 2002) Us-
ing established techniques (such as breaking down recipes into their com-
ponent parts), post-harmonisation of DQ data was carried out to produce a
standardised food list whose degree of information is comparable between
centres.

The foods registered in the FFQ (e.g. recipes, drinks, composite food) were
converted into species using the FoodEx2 classification of the European Food
Safety Authority (Hanley-Cook et al., 2021). Food that could not be classified
into a single species was classified with the detailed EPIC food classifica-
tion system (NCLASS). Minced meat is an example of an NCLASS group and
could not be classified because it can theoretically consist of, for example,
chicken, beef, pig or even a mixture of these.

3.2.3 Vital status and cause of death follow-up

Most countries used connections to health boards and population-based can-
cer, health insurance, pathology, and mortality registers to acquire data on
vital status and death. In contrast, Germany used unattended follow-up
mailings and subsequent enquiries to municipality registries, regional health
departments, physicians, or hospitals to identify deceased individuals. In
France, the national death index and the school employee health insurance
database were used to retrieve data on people who had passed away. De-
pending on the country, the study’s end of follow-up/closure dates ranged
from 2009 to 2014.
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Table 3.1: Data collection of EPIC participants (Riboli et al., 2002). FFQ: food fre-
quency questionnaire, FTF: face-to-face and SA: self-administered.

Country Centre Method

Denmark Aarhus FFQ: semi-quantitative SA

Denmark Copenhagen FFQ: semi-quantitative SA

France France FFQ: structured by meals SA

Germany Heidelberg FFQ: individual average portions SA

Germany Potsdam FFQ: individual average portions SA

Italy Ragusa FFQ: structured by meals FTF

Italy Florence FFQ: individual average portions SA

Italy Turin FFQ: individual average portions SA

Italy Varese FFQ: individual average portions SA

Italy Naples FFQ: semi-quantitative FTF

Netherlands Bilthoven FFQ: individual average portions SA

Netherlands Utrecht FFQ: individual average portions SA

Norway Tromsø FFQ: semi-quantitative SA

Spain Granada FFQ: structured by meals FTF

Spain Murcia FFQ: structured by meals FTF

Spain Navarra FFQ: structured by meals FTF

Spain San Sebastian FFQ: structured by meals FTF

Spain Asturias FFQ: structured by meals FTF

Sweden Malmö FFQ: non-quantitative SA

+ 14-day record on hot meals

Sweden Umeå FFQ: semi-quantitative SA

United Kingdom Cambridge FFQ: semi-quantitative SA

+ 7-day record

United Kingdom Oxford FFQ: semi-quantitative SA

+ 7-day record

Greece Excluded
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3. Methodology

3.3 Data processing

The analysis was performed using R (R Core Team, 2022), RStudio (Posit
team, 2023), and several packages. All scripts are made available via
https://github.com/jidygers/ThesisFoodBiodiversity.

3.3.1 Exclusion of data

In this thesis, the dietary data of 476,768 participants is used to calculate
the selected biodiversity indices. The analyses included 451,390 partici-
pants (with 46,627 recorded deaths between 1992 and 2014) to determine
mortality risk ratios. The exclusion criteria are summarised in Figure 3.1.

Figure 3.1: Flowchart of exclusion of the data obtained from the EPIC study.

To facilitate communication, the term "full dataset" will be used to refer to
the group of the 476,768 individuals used for calculating the food biodiver-
sity indices. On the other hand, the term "overall mortality dataset" will
be used to denote the subset of 451,390 participants specifically used for
determining the hazard ratios related to overall mortality.

3.3.2 Collaboration with IARC

Detailed food intake data of the EPIC study of IARC was used to calculate the
selected biodiversity indices. Due to data protection regulations, the dietary
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intake data of all individuals could not be shared outside of IARC and its data
servers. Instead, I was permitted to write scripts that were then sent to IARC
for their staff to perform the analysis using the protected dataset.

As a first step, a small test dataset was created and shared with me, com-
promising the dietary intake of 93 randomly selected people, for the purpose
of allowing me to understand the data structure and content. The term "test
dataset" will be used to refer to this. Based on these data, I wrote scripts in
R to calculate food biodiversity indices and calculate the average amount of
each species consumed.

Then, these scripts were sent to IARC where they were executed by the data
analysts using the full dataset (n=476,768), and the results were returned to
me for further analysis. These outputs included the calculated indices along
with the country of origin, age at recruitment, gender, and body mass index
(BMI) for each individual. Furthermore, multivariable-adjusted Cox propor-
tional hazards regression models were run by IARC data scientists, and the
results, including hazard ratios, were returned to me for further analysis.
Only for these models, I did not personally write scripts. Additionally, I cre-
ated graphs based on the provided outputs and data to visualise the results
and support further analysis and interpretation.

3.3.3 Food biodiversity calculation

The food biodiversity indices chosen for this thesis were based on the most
suitable indices identified in the literature (Section 2.3). Specifically, Hill
numbers with  = {0,1,2,∞} were calculated using dietary intake data of
the EPIC study to estimate the number of effective species in individuals’
diets.

H0 = S (3.1)

H1 = exp

�

−
S
∑

=1

p ln (p)

�

(3.2)

H2 =
1
∑S

=1 p
2


(3.3)
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3. Methodology

H∞ =
1

mx (p)
(3.4)

In the equations above, S represents the total number of species in an indi-
vidual’s diet, and p is the proportion of species  in that person’s diet. p is
calculated in two different ways: based on both the diet expressed in terms
of weight (g/day) and energy (kcal/day), allowing comparison between these
two units. On an energy basis, p is determined as the energy contribution
of species  relative to the total energy of all species consumed. On a weight
basis, p is calculated as the weight of species  divided by the total weight
consumed by the individual. All values of the Hill numbers are expressed in
effective species.

Moreover, a new index named J was proposed, which is based on H∞.
The purpose of J is to incorporate multiple data points while minimising
the requirement for detailed diet proportions. Specifically, J is calculated
as the inverse of the average abundance of the  most abundant species in
the diet. It can therefore be thought of as an extension of H∞, by consid-
ering not one but  species. By varying the value of  and comparing the
results with other indices, insights can be gained into the optimal number of
species to include in the index calculations.

The index is also expressed in terms of effective species, which can be
demonstrated by considering a scenario where S′ species are divided equally
(p = 1/S′). In this case, the resulting value of the index would be equivalent
to the number of species present in the diet:

J =
1
∑

=1 1/S
′



= S′ (3.5)

The indices are calculated using the hillR package (Li, 2018) and R base
functions.

3.3.4 Comparison and visualisation of indices

Pearson and Spearman correlation coefficients were calculated to compare
the different indices and to compare the values based on weight and energy.
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Furthermore, the associations between the indices based on quintiles were
examined.

Quintiles, which divide a population distribution into five equal parts, are
commonly used in large data sets to facilitate the drawing of conclusions.
Given the noise in the data collected, percentiles between different indices
are unlikely to match. Working with a less detailed categorisation, such
as quintiles, allows indices to be compared while taking account of natural
variability.

In cases where strong correlations exist between two indices, preference
can be given to the index that has a simpler calculation method, since this
thesis prioritises the practical application of biodiversity indices to dietary
intake data, rather than the indices’ mathematical behaviour.

The mortality hazard ratios calculated by IARC (by generating multivariable-
adjusted Cox proportional hazards regression models) were used to validate
the relation between the indices and health outcomes. One criterion for the
food biodiversity index is that it should exhibit a negative correlation with
overall mortality. For these models, the data were stratified by gender, age
and study centre and adjusted for smoking status, educational level, marital
status, physical activity, alcohol intake and total energy intake, Mediter-
ranean diet score, red and processed meat intake, and fibre intake. The
stratification and adjustment variables were chosen according to the article
of Hanley-Cook et al. (2021). Moreover, the absolute number of deaths per
10,000 person-years without adjustment and stratification was calculated
to compare the indices. The absolute number of deaths per 10,000 person-
years can be understood as the average number of individuals expected to
die within a one-year observation period if a population of 10,000 people is
monitored (Tenny & Boktor, 2022).

Based on all outcomes, various graphs were created using the ggplot2 pack-
age (Wickham, 2016) and the GGally package (Schloerke et al., 2021) for
analysis and visualisation.
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3. Methodology

3.4 Polishing text and improving word

variation

To improve the readability of the written content of this thesis, ChatGPT, a
language model developed by OpenAI, was used. The goal of using ChatGPT
was to improve the self-written text by refining sentence structure, improv-
ing grammar and introducing broader vocabulary.

The use of ChatGPT in refining the text encouraged critical thinking, since
ChatGPT also introduced alternative perspectives and rephrased sentences
that deviated from the original intention. This required careful review and
evaluation of the revised text to ensure that the intended message was
conveyed correctly.
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4. RESULTS AND DISCUSSION

In this chapter the food biodiversity indices, calculated using the EPIC dataset
described in the previous chapter, are visualised and discussed. The indices
considered are as follows: H0 (richness), H1 (exponential of the Shannon
index), H2 (reciprocal of the Simpson index), H∞ (Berger-Parker index),
and J. All these indices are expressed in effective species. A detailed ex-
planation of the formulas for these indices was provided in Section 2.3 and
Section 3.3.3.

4.1 Overview of index distributions

4.1.1 Overview

Figure 4.1 provides an overview of the distributions of the four calculated
indices based on the data obtained from the EPIC dietary questionnaires.

Figure 4.1: Overview of the distribution of the weight- and energy-based indices
using the full dataset (n=476,768). The graphs of H0,grm and H0,kc coincide.
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The graphs of H0,grm and H0,kc coincide. This equivalence between
the distributions of H0,grm and H0,kc is due to the fact that H0 is not
affected by the proportions of the foods, making it unit independent (Sec-
tion 4.5). The distributions of H1, H2 and H∞ are remarkably smoother
and closer to a skewed normal distribution than H0, for both weight-based
and energy-based indices.

In addition, the distributions of the indices using energy-based data are
shifted to the right, with the exception of H0. This implies that the values
of the food biodiversity indices are on average higher when calculated using
energy-based data than when using weight-based data. The observed right-
ward shift in the distribution of weight-based indices compared to energy-
based indices can be attributed to the more even distribution of the latter.

Moreover, the number of effective species between the different indices
is significantly different. The absolute values of a food biodiversity index
cannot be interpreted in isolation; reference values for determining what is
considered ‘good’ or ‘bad’ are necessary to properly interpret the values.
Instead, the focus of this section is on identifying differences between in-
dices of the same type, assessing the correlation between different indices,
and comparing the classification of individuals based on different indices. It
is important to note that comparisons are only valid when made between
individuals using the same index or when comparing different indices for a
single person, but not when comparing two different indices for two different
individuals.

4.1.2 Respondent characteristics

The four indices were each plotted against four distinct respondent charac-
teristics: country of residence, gender, age, and BMI. Analysis of the plots
revealed noticeable variations in H0 values across different countries, as
demonstrated in Figures 4.2 and 4.3. On the contrary, no apparent differ-
ences were observed for the other characteristics and indices of the respon-
dent, as depicted in the Appendix (Figures A1, A2, A3, A4, A5 and A6). This
means, for example, that at the population level, comparisons of H∞ val-
ues between individuals of different weight classes can be made without the
need to take gender differences into account.
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4. Results and discussion

Figure 4.2: Association between weight-based indices and respondent’s country of
residence using the full dataset (n=476,768). Fr: France, It: Italy, Sp: Spain, UK:
United Kingdom, Ne: The Netherlands, Ge: Germany, Sw: Sweden, De: Denmark
and No: Norway.

Figure 4.3: Association between energy-based indices and respondent’s country of
residence using the full dataset (n=476,768). Fr: France, It: Italy, Sp: Spain, UK:
United Kingdom, Ne: The Netherlands, Ge: Germany, Sw: Sweden, De: Denmark
and No: Norway.
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H0 could be heavily influenced by the level of detail included in the food
frequency questionnaire: the higher the level of detail, the higher the cor-
responding richness. As the food frequency questionnaires in EPIC differed
between the participating countries (Riboli et al., 2002), this could explain
the differences (Section 4.6). On the other hand, it can also be assumed
that the consumption profiles varied between countries, which is why the
distribution of H0 varied. However, if this statement is true, this is not
visible in other indices.

4.2 Comparison of the Hill numbers

One index can provide an identical conclusion or an interpretation of the
data as another index, although its calculation may be simpler or requires
fewer data. Comparing of different Hill numbers for the same input data
provides information on whether using different indices to compare people’s
diets in terms of food biodiversity would give the same results.

4.2.1 Correlation between the indices

Figures 4.4 and 4.5 give an overview of the correlation between the calcu-
lated indices. The lower triangle of the figures shows two-dimensional den-
sity plots that visualise the relationships between each index pair, while the
upper triangle displays the corresponding Pearson correlation coefficients.
The diagonal of the figures illustrates the density plots of each individual
index. Based on these figures, several observations can be made.

First, the two-dimensional density plots in the lower triangle representing
H0 as a function of other Hill numbers exhibit clear groupings. This is due
to the expression of richness in natural numbers while the other Hill numbers
have continuous-valued outputs.

Secondly, in the case of weight-based calculations, the correlation between
H0 and the other indices is notably low: ranging from 0.039 to 0.239. On
the other hand, the correlation between the other indices is substantially
higher, with values ranging from 0.788 to 0.931.

For the energy proportion-based indices, the correlation between H0 and
the other indices is slightly higher: ranging from 0.146 to 0.404. In con-
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4. Results and discussion

Figure 4.4: Relationships between weight-based Hill numbers and Pearson correla-
tion coefficient (Corr) using the full dataset (n=476,768).

Figure 4.5: Relationships between weight-based Hill numbers and Pearson correla-
tion coefficient (Corr) using the full dataset (n=476,768).
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trast, the correlation between H1 and H2 is slightly lower for the energy
proportion-based indices: 0.680. Meanwhile, the correlations between H2
and H1, and H2 and H∞ are similar to the weight-based indices: about
0.9.

It is worth noting that, based on the results, the Spearman correlation co-
efficients are similar to the Pearson correlation coefficients for each pair of
indices (Appendix Table A1). This implies a strong monotonic relationship
where there is a strong linear relationship.

In addition to Figures 4.4 and 4.5, the associations between the indices
based on quintiles were examined. In this case, people were classified into
quintiles and each pair of indices was compared to determine whether some-
one is classified in the same quintile based on different indices (Figure 4.6).

Figure 4.6: Comparative analysis of quintile divisions for different indices using the
full dataset (n=476,768). The colour code represents the percentage of the whole
cohort classified in a given quintile for the index on the x-axis and a given quintile
for the index on the y-axis.

In this context, if a person’s food biodiversity score is classified within the
same quintile or differs by only one quintile for both calculation methods,
it is considered acceptable. However, if the classification of their scores
differs by more than one quintile, they are considered to be mismatched.
A summary of the percentage of people mismatched is given in Table 4.1,
where the upper triangle represents the weight-based indices, and the lower
triangle represents the energy-based indices.
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4. Results and discussion

Comparison of H0 with the other indices revealed a higher percentage of
mismatches for the weight-based indices, ranging from 42% to 47%, com-
pared to energy-based indices which had a relatively lower range of 34%
to 43%. On the contrary, for the other indices, the energy-based indices
exhibited higher percentages of mismatches than the weight-based indices.
The indices that displayed the most consistent classification were H1 com-
pared to H2 and H2 compared to H∞, with percentages of mismatches
ranging between 1.4% and 5.5%.

Table 4.1: Total percentages of mismatches in quintiles based on the different Hill
numbers using the full dataset (n=476,768). A mismatch is defined as the classifi-
cation of a person’s Hill numbers deviating by more than one quintile. Upper trian-
gle represents the weight-based indices and lower triangle represents the energy-
based indices.

H0 H1 H2 H∞

H0 42% 47% 47%

H1 34% 2.2% 13%

H2 42% 5.5% 1.4%

H∞ 43% 20% 4.0%

Feasibility of division in quintiles

Since Figures 4.2 and 4.3 show that there is a difference in the distribution
between European countries, it is helpful to examine whether the bound-
aries of each quintile are sufficiently far apart to divide the population into
quintiles. If not, it is possible that small changes in diet, or small changes in
estimates of the amount of food consumed could have large effects on a per-
son’s quintile classification. To examine this possibility, Figure 4.7 visualises
the quintile cut-off points per person and index.

The absolute distance between the two points indicates the feasibility of
classifying the population into quintiles: the greater the absolute distance,
the easier it will be to categorise. From this graph, it can be deduced that
the range between different cut-offs in the same country is quite similar for
the indices and there are small variations between the countries. Overall,
the boundaries for each index and each country are far enough apart to
allow a meaningful quintile-based classification of the data.
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Figure 4.7: Boundaries of the quintiles per index and per country using the full
dataset (n=476,768). Fr: France, It: Italy, Sp: Spain, UK: United Kingdom, Ne: The
Netherlands, Ge: Germany, Sw: Sweden, De: Denmark and No: Norway.

4.2.2 H1 compared to the other Hill numbers

Due to the strong correlation demonstrated between H1 and H2, along
with the low number of mismatches, the results shown here indicate that
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4. Results and discussion

these indices can be used almost interchangeably to compare different di-
ets in terms of their biodiversity scores. On one hand, H1 is widely used
because of its exceptional capacity to weigh items accurately according to
their frequency without favouring either rare or common elements (Jost,
2006). On the other hand, higher-order Hill numbers can typically be es-
timated with greater confidence, since lower-order Hill numbers tend to
overemphasise the presence of rare species, where the sampling process
is more uncertain (Daly et al., 2018). Furthermore, within the Hill numbers
calculated in this thesis, the calculation of H1 is more complex, as it is
based on logarithmic and exponential factors, while H2 is determined by
a simpler function (Section 3.3.3). Therefore, H2 is preferred over H1 for
practical applications to dietary intake data, as there is less uncertainty and
it is easier to interpret the calculation (Daly et al., 2018; Heip et al., 1998).

Whereas H1 does not favour common or rare species, both H0 and H∞
are heavily influenced by rare and common species, respectively. However,
assigning more weight to rare or common species is not necessarily nega-
tive, but this bias should be kept in mind when using this index and align
with the specific research objectives. Due to ease of calculation and simple
data collection of H0 and H∞, they are preferred over H1 in this thesis.

4.2.3 H2 compared H0 and H∞

Figures 4.4, 4.5 and 4.6 provide valuable insights into the relationships be-
tween different Hill numbers as measures of food biodiversity. Analysis re-
vealed similar classification profiles and a strong correlation between H2
and H∞, with a Pearson correlation coefficient of approximately 0.9 for
both weight- and energy-based data. These results suggest that the two
indices can be used almost interchangeably for comparing different diets
in terms of their biodiversity scores, since the conclusions drawn from one
index would be similar to those drawn from the other. Consequently, if a
simple and efficient measure of food biodiversity is desired, H∞ may be
preferred over H2, as it only requires the abundance of the most common
species to be determined, whereas H2 needs the proportions of all species
in the diet (Hill, 1973).
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4.2.4 Comparison H0 and H∞

Despite the strong correlation between H2 and H∞, the analysis shown
here also indicated a lack of correlation between H0 and either of the other
two indices. This suggests that H0 may not be used interchangeably with
the other indices. Logically, the correlation is less pronounced, as this in-
dex does not capture the underlying patterns of species evenness in the
diet (Hanley-Cook et al., 2022). As both H0 and H∞ are simple and effi-
cient measures of food biodiversity, the advantages and disadvantages are
discussed in the next section.

4.3 Trade-offs of H0 and H∞

4.3.1 Need for a common unit

Calculating species richness does not require the selection of a unit for quan-
tifying the portions in the diet, as it is not based on abundance of species.
This is an advantage of H0 over H∞, as H∞ has substantial differences
in the outcome based on the selected unit. This will be discussed later in
Section 4.5.

4.3.2 Data requirements

On one hand, H0 is more advantageous than H∞ because it does not re-
quire the collection of proportions of species consumed, which is challenging
to obtain (Rathje & Murphy, 2001; Smith et al., 1991; Thiébaut et al., 2007).
Although proportions of species in the diet are not necessary, an extensive
food frequency questionnaire is crucial to accurately predict the number of
species consumed.

On the other hand, the most significant advantage of H∞ is that it requires
only one datapoint, which is the proportion of the most abundant species
in a person’s diet. However, the prediction of this is difficult, which means
that more than one data point will be required to determine H0 more ac-
curately. Nevertheless, unlike H0, the questionnaire could be limited to
species that are likely to be commonly consumed by a given population.
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4. Results and discussion

However, this requires a preparatory step to identify the most commonly
consumed species.

Note that for both H0 and H∞, decomposition using standard recipes is
crucial to determine the outcome more accurately. For more information on
the challenges regarding data collection, see Section 4.6.

4.3.3 Robustness to errors in the data

When calculating H∞, errors in the collection of data of the most abun-
dant species have clear and significant effects on the values. However, the
chance of a participant in the EPIC study being classified in the lowest quin-
tile instead of the highest quintile is rather small, since the consumption of
the one or two most consumed species needs to be reduced by about 540
grams or 370 kcal on average to go from the first quintile to the fifth quin-
tile (Table 4.2). Similarly, the most consumed species in the diet should be
reduced by 360 grams or 230 kcal to classify someone in the first quintile
instead of the fifth. Therefore, it is unlikely that one is mismatched in the
first instead of in the fifth quintile or vice versa.

Table 4.2: Difference between first and fifth quintile for H∞ investigated on the
test dataset (n=93).

Q1 −→ Q5 Q5 −→ Q1

Proportion of pm Decrease Increase

Average change [standard deviation] (grams) 539 [289] 372 [120]

Average change [standard deviation] (kcal) 357 [145] 232 [93]

In contrast to H∞, errors in the recorded data of abundant species have
less impact on the values of H0. With an average of 63 and a standard
deviation of 16 species, adding one extra species has minimal impact.

4.3.4 Respondent characteristics

As stated in Section 4.1.2, the differences between countries are only visi-
ble for H0, so if the goal is to compare diets between countries, this index
is preferred. However, differences in the food frequency questionnaires or
in the cohorts (e.g., a higher proportion of vegetarian and healthy eaters in
Oxford compared to other cities) could also explain the observed differences
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in the distributions of the values of H0. Therefore, further research is re-
quired to identify the drivers of these differences between the distributions.

4.3.5 Validation based on mortality rates

Hazard ratios are used to validate the relationship between the indices and
health outcomes. It is expected that a higher food biodiversity score would
correspond to lower overall mortality rates. In other words, an increase
in the food biodiversity index should be associated with a reduced risk of
mortality. Figure 4.8 shows graphs that visually represent the relationship
between mortality hazard ratios and quintiles for both H0 and H∞ using
the overall mortality dataset (n=451,390). For each quintile, the mortality
hazard ratio is compared to a reference, which is the quintile with the highest
probability of mortality. Thereby, the first quintile is equal to the reference
in this case. The horizontal error bars show the 95% confidence intervals.
Similar graphs for H1 and H2 are given in Appendix (Figure A7).

Figure 4.8: Mortality hazard ratios for H0 and H∞ using the overall mortality
dataset (n=451,390).The horizontal error bars show the 95% confidence intervals.

There is a clear inverse relationship for H0: the higher the quintile, the
lower the hazard ratio, i.e., the lower the risk of mortality. On the contrary,
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this trend is less clear for H∞. However, there is still a significant difference
between the first quintile and the others.

Apparently, the hazard ratios for H0 are lower than for H∞ in the highest
quintile, reflecting people with the highest score for food biodiversity. There-
fore, if the focus is on reducing the population’s probability of dying, H0 is
the best index according to these results.

The absolute number of deaths per 10,000 person-years without adjustment
or stratification for H0,grm, H0,kc, H∞,grm, and H∞,kc is given in
the Appendix (Table A2). The outcomes of the first/fifth quintiles are 76/49,
76/50, 79/44, and 63/65 deaths per 10,000 person-years, respectively. The
fifth quintile has a reduced mortality compared to the first quintile for all
indices, except for H∞,kc, where the outcomes are similar to those for
the first quintile.

Interestingly, when considering weight-based indices, conclusions regarding
their association with mortality differ between relative hazard ratios and ab-
solute number of deaths. When comparing the first and fifth quintile, it is
observed that H0,grm exhibits a stronger reduction in hazard ratios com-
pared to H∞. Conversely, H∞ shows a greater reduction in the absolute
number of deaths. This discrepancy can be attributed to the corrections
applied in the hazard ratio model, such as adjustment for physical activity
(Section 3.3.4).

Unfortunately, the absolute number of cases of death per 10,000 person-
years is not yet clear, as there are some discrepancies in the results for
hazard ratios in this thesis and those in the article by Hanley-Cook et al.
(2021). Further research in collaboration with IARC should provide insight
into why these analyses do not yield the same results.

4.4 Creating a new index: J

The observed correlation between H2 and H∞ is notable, but there is
room for improvement. Evidence suggests that individuals are consuming
a significant amount of the same species, as reported by Loftas (1995) and
Hanley-Cook et al. (2021).

In the small test dataset (n=93), an interesting finding emerged when analysing
the dietary composition. Specifically, when the proportions of the 20%
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most consumed species (on average 13 species) in an individual’s diet are
summed up, it was found that these species accounted for a significant por-
tion, approximately 82%, of the energy or weight distribution within the diet.

The pattern, where a relatively small number of species contribute substan-
tially to the overall diet, aligns with the well-known Pareto principle, often
referred to as the 80:20 rule. According to this principle, it is hypothesised
that approximately 80% of outcomes (e.g. weight or energy in the diet)
can be attributed to just 20% of the components (e.g. species). Numer-
ous other examples of the Pareto principle can be found across different
scientific disciplines, and here a similar effect in the EPIC dataset has been
demonstrated.

Furthermore, the distribution of the ten most abundant species in the diet
was investigated using the small test dataset (n=93) (Figure 4.9).

Figure 4.9: Abundance of the ten most abundant species per person using the test
dataset (n=93).

According to Figure 4.9, the two or three most abundant species play a major
role in the diet, and the other species are present in much smaller propor-
tions (smaller than around 10%). Therefore, the calculation of a new index,
J, was tested by extending H∞ with maximum four extra species and
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considering their average proportion. Specifically, J is equal to the in-
verse of the average of the  most abundant species in the diet. Following
promising results on the test dataset, the J index was applied to the full
dataset (n=476,768). Subsequently, the Pearson correlation coefficient be-
tween J and H2 was calculated for  ranging from one (equalling H∞)
to five (J5) (Figure 4.10). Note that the Spearman correlation coefficients
are similar (Appendix A1), indicating a strong monotonic and linear relation-
ship.

Figure 4.10: Pearson correlation coefficients between H2 and H∞ (reference) and
between H2 and a newly created index J using the full dataset (n=476,768).

Figure 4.10 shows that the correlation coefficients of the values for H2 with
the outputs of both J2,grm and J3,kc are the highest. So, if the goal is
to align the index output with H2, the inverse of the two (weight-based) or
three (energy-based) most abundant species is the best option. However, a
consensus based on other research will be needed on the value of , so that
the indices between different studies can be compared.

In conclusion, the application of the Pareto principle, along with the obser-
vation that two or three species contribute significantly to the overall diet,
explain why H∞ and J can provide good estimates of food biodiversity
even though they only take the few most abundant species as input.
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4.5 Impact of selected dietary unit

To perform calculations for most food biodiversity indices, a unit for food
data must be selected, such as weight or energy. In the present study, H0
is the exception, as it is not based on the proportions of food in the diet.

Figure 4.11 compares the indices according to the different units used for
the calculation. The Pearson correlation coefficients between weight-based
and energy-based food biodiversity scores for H0, H1, H2 and H∞ are
1.00, 0.42, 0.23, and 0.13, respectively. In this case, the Spearman correla-
tion coefficients are similar to the Pearson correlation coefficients (Appendix
Table A1). Therefore, a strong monotonic relationship exists, where there is
a strong linear relationship.

Figure 4.11: Energy-based compared to weight-based Hill numbers, represented
by quintiles using the full dataset (n=476,768). The colour code represents the
percentage of the whole cohort classified in a given quintile for the index on the
x-axis and a given quintile for the index on the y-axis.

The classification in quintiles based on H0,grm and H0,kc is nearly iden-
tical because the proportions of species are not taken into account. While
a perfect correlation is expected, there is a small difference between the
values for H0,grm and H0,kc due to the data coding. There is one
NCLASS food group, which includes water and additives, where the weight
is counted but the energy is set to zero. As a result, a significant number
of people scored higher for H0,grm than for H0,kc. However, some in-
dividuals may still be classified in a lower quintile for H0,grm because the
upper boundary of the first quintile is higher for this index (48) compared to
H0,kc (47).

In contrast, for the other indices, the choice of unit is found to strongly
influence the outcome of the index. This means that some individuals are in
the highest quintile for the weight-based data and are in the lowest quintile
for the energy-based data, and vice versa. Similarly, from the food supply
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data used by Khoury et al. (2014), it can be derived that there is a noticeable
difference between H∞,grm and H∞,kc.

Consequently, the choice of the unit has a clear impact on the conclusions
drawn regarding food biodiversity. Therefore, it is essential for researchers
to keep in mind the mismatch between indices based on different units and
to select the appropriate unit that aligns with their research objectives.

The standard deviations, as computed for each index, are presented in Ta-
ble 4.3. Standard deviations for H0 are similar, while for the other indices,
the weight-based food biodiversity scores tend to have greater variability
compared to the energy-based scores. This discrepancy suggests that to
achieve an equivalent standard error, a larger sample size will be required
for the weight-based food biodiversity indices in comparison to the energy-
based indices. This implies differences in data collection protocols will be
required, depending on the dietary unit that will be used.

Table 4.3: Standard deviations of the Hill numbers using the full dataset
(n=476,768).

Index Weight-based Energy-based

H0 16.04 16.11

H1 5.05 4.21

H2 3.39 2.84

H∞,kc 1.47 1.29

4.5.1 Using energy-based data

Energy-based data can be advantageous for studies focused on nutrition
since energy intake is regulated by the human body: a person will consume
about as much energy as he uses (Hall et al., 2012). Using energy-based
data for food biodiversity indices was also proposed by Jones et al. (2021)
and used by de Oliviera Otto et al. (2015). However, it is difficult to deter-
mine through FFQs the exact amount of energy consumed due to factors
such as food variety (Hazo & Yirgalem, 2022; Lasek et al., 2020), ripeness
(Phillips et al., 2021), and processing (Barr & Wright, 2010). Moreover, some
researchers disagree with the currently used Atwater factors that calculate
energy values for foods, as they may not accurately reflect the energy avail-
able for the human body. For example, almonds actually have lower energy
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values than predicted with Atwater factors due to the fact that significant
amounts of the macronutrients cannot be digested (Novotny et al., 2012).

4.5.2 Using weight-based data

Weight-based data and energy-based data can diverge significantly from
one another. For example, sweet potatoes and cucumbers have almost the
same weight, but the energy-density (kcal/100g) of the sweet potatoes is al-
most eight times higher (Nubel, 2023). To calculate food biodiversity based
on consumption, food supply or food production data, researchers often use
weight-based data (Borkotoky et al., 2018; Gustafson et al., 2016; Lachat et
al., 2018; Remans et al., 2014; Tian et al., 2017). Therefore, using weight-
based data makes it easier to compare with such established studies. Fur-
thermore, quantities are easier to measure than the energy content of foods.

In the present study, drink consumption, such as tea and wine, had a sig-
nificant impact on the calculation of weight-based food biodiversity indices.
However, it is important to note that not all drinks necessarily reflect high
food biodiversity. While tea is made from only a few tea leaves and does
not contribute significantly to environmental diversity, wine is made from
grapes and a significant number of grape plants are required to produce it.
Therefore, it is important to consider factors such as juice yield and dilution
when referring to environmental diversity.

In conclusion, further research is needed on the selection of the right dietary
unit in different contexts.

4.6 Challenges of collecting food data

Collecting food data is often challenging and no dietary intake questionnaire
is capable of capturing the complete variability of the species consumed.
Similarly, the food intake data provided by IARC has some important limita-
tions in quantifying food biodiversity.
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4.6.1 Overview of food data in the EPIC study

An overview of the food data is provided in Figures 4.12 and 4.13 by showing
the most commonly consumed species and their average contribution to the
diets of the persons in the full dataset (n=476,768). It is evident that some
species make a significant contribution, while the majority are present in
smaller quantities. This pattern was also observed when investigating the
people’s individual diet (Section 4.4).

Figure 4.12: Abundance curve of average amount that the twenty most abundant
species contributed to the diet of a person using the full dataset (n=476,768).

When examining the abundance graph based on weight (Figure 4.12), the
most abundant species are coffee beans, bovine meat, ‘not applicable’ (i.e.,
water consumption included), tea leaves, and common wheat. Conversely,
for energy-based proportions (Figure 4.13), the most abundant species are
bovine meat, wheat, pig meat, and potatoes, as already described by (Hanley-
Cook et al., 2021). Notably, the decline in the abundance of species is
steeper in the energy-based graph.

It should be noted that foods were classified according to species, which
implies that milk and beef belong to the same species (i.e., Bovine fresh
meat), despite their nutritional differences. In this way, diversity indices are
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Figure 4.13: Abundance curve of the average energy that the twenty most abun-
dant species contributed to the diet of a person using the full dataset (n=476,768).

calculated through the lens of ‘biodiversity conservation’. (Hanley-Cook et
al., 2021)

4.6.2 Remarks on food data of EPIC

There are some limitations in the dataset used that affect the accuracy of
the calculation of the food biodiversity index. Firstly, the EPIC data are not
fully broken down by species and still include NCLASS food groups, such as
"pastries, sweet cakes, cakes and puddings". However, these could be fur-
ther divided into individual ingredients according to standard recipes: flour,
sugar, butter, and eggs (i.e., species: wheat, sugar beet, cow, and chicken).
Using the small dataset, on average, 20% of the total species consumed,
based on energy content, fall into these NCLASS food groups, while this pro-
portion is 11% when calculated based on weight. On the other hand, by
decomposition of the recipes, assumptions have to be made: it is unknown
whether some ingredients (e.g., herbs) are actually used by the participant,
which also has an impact on the accuracy of the calculated indices.
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Second, drinks are included in the dataset (e.g., wine consumption repre-
sented by ‘table grapes’), whereas Jones et al. (2021) removed all alcoholic
beverages. Also, non-alcoholic drinks, for instance, coffee, tea and water
(represented by ‘not applicable’) are in the top five most consumed species
in the data by weight (Figure 4.12). Therefore, drinks can have a major
impact on food biodiversity indices, such as the H∞ index, as stated in
Section 4.5.

Moreover, the EPIC study collected the data using food frequency question-
naires, meaning a questionnaire was prepared in advance to obtain infor-
mation on intake. FFQs are widely used in research to record dietary habits
due to their ability to capture seasonal changes in food consumption over
long periods (Carroll et al., 2012; van der Toorn et al., 2020). However, ac-
cording to Smith et al. (1991), episodic memory of the diet deteriorates as
time passes and people tend to rely on general knowledge about foods to
reconstruct their past diet. They also state that these general knowledge-
based reconstructions of past diets are likely based on individuals’ beliefs,
and possibly even their hopes, about their habitual diet. Therefore, FFQs are
biased, affecting the accuracy of the data. For example, people tend to over-
estimate their consumption of healthy foods and underestimate their con-
sumption of unhealthy foods, which is known as the "lean cuisine syndrome"
(Rathje & Murphy, 2001). Additionally, people often report consuming less
of the foods that they actually eat frequently and vice versa, referred to as
the "flattened slope phenomenon" (Thiébaut et al., 2007). These limit the
usefulness of FFQs for accurate measurements of dietary intake.

The Commission on Genetic Resources for Food and Agriculture recognises
the need for more information on composition and intake, such as those of
wild and under-used animal breeds and species, to assess the value of food
biodiversity for nutrition and food security (FAO, 2016). Multiple 24-hour
recalls can provide more accurate and detailed information (e.g., variety)
on the specific products consumed (Carroll et al., 2012). However, the cost
in terms of time and money of collecting 24-hour recalls is high, making
FFQs preferred for large cohort studies (Kolodziejczyk et al., 2012).

Lastly, the data are outdated: FFQs were conducted around 1990 and con-
sumption patterns have already changed over the years (Dokova et al.,
2022). Consequently, obtaining more up-to-date information on food con-
sumption is essential to achieve a more accurate understanding of the cur-
rent state of food biodiversity.
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However, the EPIC data also have clear strengths. With a vast and diverse
sample size encompassing multiple European countries, EPIC provides a ro-
bust foundation for research and analysis. The validated food frequency
questionnaires encompassed the assessment of usual diet intake, which
makes them suitable for various studies. Furthermore, the longitudinal de-
sign of EPIC allows investigation of dietary factors and their impact on health
outcomes over time.

4.6.3 Suggestions for food data collection

Several key considerations are essential to obtain accurate food biodiversity
measurements. First, it is important to ensure that the data used are up to
date, as the diets of people constantly evolve (Dokova et al., 2022). One
useful approach for collecting data from large populations is to use mobile
applications to gather multiple 24-hour recalls (Cade, 2017). Alternatively,
if FFQs are preferred because they reflect longer time periods, the number
of questions can be reduced when using H∞ or J indices. This is be-
cause these indices only require information on the most abundant species,
making it sufficient to query the most commonly consumed species in a
particular population over a certain period.

Secondly, it is critical to ensure that food intake data are converted to the
species level as accurately and as specifically as possible. Emerging tech-
nologies such as artificial intelligence can help convert food intake data into
species data (Lee et al., 2022). Additionally, it is important to clearly dis-
tinguish between alcoholic, non-alcoholic drinks and solid foods in the data
collection to ensure accurate analysis.

Third, the number of participants in the study can be reduced to achieve a
good estimate of food biodiversity. This will depend on the population being
studied, the objectives of the research and the index chosen, as explained
by the standard deviations in Section 4.5.

4.7 Ecology versus food

Most biodiversity indices were originally created to quantify biodiversity in
ecology. While there are clear overlaps between ecological and food bio-
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diversity, there are also distinct differences. These similarities and dissim-
ilarities will be discussed based on the three components of biodiversity:
richness, evenness, and disparity (Section 2.3.1).

4.7.1 Richness

Richness is important both in food and ecology because a higher number of
species in a certain area or a diet result in a higher diversity (Hanley-Cook
et al., 2021). However, there exist indices in ecology based on richness,
such as those correcting for sample size, which cannot be applied to food
data. In ecology, larger samples of organisms in a certain area increase the
probability of having a higher number of species (a feature known as the
sampling effect). Similarly, a hypothesis regarding food data could suggest
that higher daily energy or weight intake may be associated with greater
richness. This hypothesised relationship is investigated in Figure 4.14 using
the full dataset of EPIC.

Figure 4.14: H0,grm and H0,kc based on total consumption using the full
dataset (n=476,768).

However, from these graphs it can be deduced that there is no clear rela-
tionship between richness and total food consumed in this case. This can
be illustrated with the following example: a low-calorie salad may have high
species richness, while a high-calorie snack like chips may have low species
richness. So, indices based on this principle, like the Menhinick index (Men-
hinick, 1964), Margalef index (Margalef, 1957/1973) and Odum, Cantlon,
and Kornicker index (Odum et al., 1960), cannot be used for food data.

It should also be noted that there is no clear relationship between H1, H2,
and H∞ and the total consumption (Appendix Figure A8).
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4.7.2 Evenness

While evenness is not taken into account in H0, it is incorporated into
the calculation of the other calculated indices. Focusing on the EPIC data,
energy-based abundances lead to higher evenness values than weight-based
abundances (Section 4.1.1).

Although evenness is important in the context of ecology, the connection
between evenness in a diet and environmental biodiversity is unclear. On
one hand, higher evenness in the consumption of worldwide species im-
proves biodiversity in the environment, by ensuring that a few species are
not consumed to an excessive degree (Jones et al., 2021). On the other
hand, evaluating food biodiversity at the individual level, as done in this
thesis, may not accurately reflect agrobiodiversity. For example, a group
of ten individuals may have a high food biodiversity score, but their diet
may still be predominantly based on the same species. Conversely, a group
of ten individuals with a low biodiversity score, but consuming all distinct
species, may enhance genetic diversity and resilience.

Furthermore, the relationship between diet evenness and health is unclear.
The dietary guidelines recommend different amounts for each food group,
such as less meat compared to vegetables (Cámara et al., 2021). Although
food group evenness is not recommended, the uniformity of species con-
sumption may be associated with better health outcomes. For instance,
since the species diversity of meat (CGRFA, 2015a) is lower compared to
fruits and vegetables (Antonelli et al., 2020; Willett et al., 2019), consum-
ing equal amounts of different species may result in higher consumption of
fruits and vegetables and align with the recommended food group intake.
However, in this thesis, Hill numbers with more emphasis on evenness (i.e.,
H2 and H∞) are associated with higher hazard ratios compared to lower
Hill numbers (i.e., H0), which focus on richness (Section 4.3.5). Whether
this relationship is due to evenness, or some other factor needs further in-
vestigation.

4.7.3 Disparity

Lastly, incorporating disparity in a uniform index is challenging in the con-
text of both food and ecology. For example, there are infinite options to
compare foods using a combination of different food traits, such as vita-
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min A content, fibre content, or energy content. This also complicates the
comparison between studies. Therefore, the analysis of indices that include
disparity was beyond the scope of this thesis (Section 4.8.2).

4.8 Other possible indices

As stated in the literature review, there is a wide variety of options for in-
dices to quantify biodiversity. This thesis focused on the Hill numbers, as
the interpretation of the outcome and the calculation method was feasible
on the large dataset provided by IARC. In the next paragraphs, other possible
indices are discussed and briefly compared to the Hill numbers. Figure 4.15
shows all indices that have been proposed for use with dietary data in the
context of this thesis. The reasons why the Margalef index, the Menhinick
index and the Odum, Cantlon and Kornicker index were not suitable for cal-
culating food biodiversity are discussed in Section 4.7.2.

Figure 4.15: All possible indices in this thesis represented by Venn diagram based
on the components of biodiversity they incorporate.

4.8.1 Interpretation of the outcome

For a measurement to be used on large scales by people of different back-
grounds, the interpretation of the result must be easy. All Hill numbers and
the Leinster-Cobbold indices are expressed in effective species, represent-
ing the number of different species consumed, if the diet were perfectly
uniform (Hill, 1973; Leinster & Cobbold, 2012). Since all Hill numbers have
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the same unit, they can be easily compared. Even if the goal is to describe
the diversity of a single person’s diet, equivalent species are still the best
diversity measure, according to an ecology forum held by Ellison (2010).

Currently, the Shannon index is the most widely used diversity index in food
supply studies (Hanley-Cook et al., 2022). This index was used, for exam-
ple, by Remans et al. (2014) to measure food production and supply diver-
sity at the national level. However, this index is expressed as nats or bits
of information (Shannon, 1948) and nonlinearity makes interpretation and
comparison difficult (Daly et al., 2018). The Gini-Simpson index is also often
used as a diversity index (Heip et al., 1998), but the problem of nonlinearity
is even more pronounced for this index (Daly et al., 2018).

4.8.2 The ratio of difficulty of the index versus useful
information

As the goal of this research is to provide a simple index, the complexity of
the index is an important parameter. Of all the indices considered as pos-
sible options in this thesis, the Leinster-Cobbold index is the most complex.
However, unlike most other indices, the Leinster-Cobbold index can reflect
disparity, along with richness and evenness (Leinster & Cobbold, 2012).

This means that food items can be compared on the basis of their nutritional
traits. On one hand, nutritional diversity, which is an important element in
food biodiversity, can be incorporated in the analysis. On the other hand,
this implies that this index requires a substantial amount of data and a high
computational effort to determine the result, because the proportion and
selected nutritional characteristics of all species are required. Furthermore,
voluntary selection of characteristics and the calculation method to compare
food products is a second bottleneck, because they can differ significantly
between studies (Green et al., 2021; Wang et al., 2021). Consequently,
a standardised approach is lacking, and comparisons between studies are
difficult to establish.
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4.9 Feasibility in practice

In this section, the feasibility of using H∞ and J indices in practical ap-
plications will be discussed, in particular several important decision points
that researchers must consider in the context of their own specific study.

First, while the calculations and data processing of the indices themselves
are straightforward and do not require specialised software, there is one
contextual choice that the researcher needs to make: the value of  for the
J index. Further research is needed to determine the optimal value of 
for different data and study settings. Based on the specific findings of this
thesis, it is recommended to use  = 2 for weight-based data and  = 3 for
energy-based data.

Second, the process of collecting dietary intake data and converting it into
a species-based format can pose significant design challenges. Quantitative
food frequency questionnaires are commonly used to assess dietary intake.
Several factors need to be determined when designing these questionnaires,
including the choices of the dietary unit, the time frame, the formulation of
questions, and the number of questions. For example, the choice of dietary
unit, such as grams or kilocalories, can be tailored to the specific research
objectives. In addition, selecting a suitable time frame is crucial, as a longer
duration (e.g., 1 year versus 1 week) increases the likelihood of obtaining
a higher food biodiversity index but also increases the chances of biases in
the responses (Smith et al., 1991).

Third, to determine the value of H∞ or J, it is important to focus on
the most frequently consumed species. However, it should be noted that
the most consumed species may not always correspond directly to the most
consumed foods, due to processing. For example, wheat grain is used in
cookies, bread, pasta, and various other food products. The focus on the
most frequently consumed species allows for a limited number of questions
based only on these particular species, compared to the number of ques-
tions needed to determine all species that were consumed, as other indices
require. For the formulation of the questions, it is necessary to identify the
species that are most commonly consumed in a particular region, which can
be obtained through literature research, questionnaires, or analysis of food
supply data.
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Finally, proportions, which are required to calculate the indices, need to be
estimated using information on a person’s total energy or weight intake.
This estimation can be achieved using average values, such as 2000 kcal for
women and 2500 kcal for men, but this average can vary substantially from
the true value for different individuals (Lam & Ravussin, 2017; Schoeller,
1995).

4.10 Reflection on the sustainability of

increasing food biodiversity in Europe

Although promoting food biodiversity can be beneficial for human health
and the planet, this also influences the entire food chain, as it may require
other farming methods and processing steps. In this section, some critical
remarks are made on the sustainability of improving food biodiversity scores
of people’s diet in terms of their impact on people, planet, and profit.

4.10.1 People

This thesis revealed an inverse correlation between high values of various
food biodiversity indices and overall mortality, indicating the significance of
improved food biodiversity for human health (Section 4.3.5). In addition to
health, food biodiversity is also important from a cultural and gastronomical
perspective (Spence et al., 2017). Increasing consumer awareness of the
benefits of food biodiversity can contribute to higher food biodiversity scores
(FAO, 2016). However, food choices are also influenced by other factors such
as market availability and individual preferences for certain foods (Bioversity
International, 2017). Food preferences play a decisive role, as individuals
tend to consume what they like the most and avoid what they dislike (Ahern
et al., 2013). Furthermore, market availability affects food biodiversity, as
limited diversity in stores reduces the chances of consuming a wide range
of species (Kalaitzis et al., 2007, April 23–25; Siegel et al., 2014).

4.10.2 Planet

Considering market availability, certain regions may not be suitable for cul-
tivating specific crops due to soil nutrients (Dhakal & Lange, 2021) and
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temperature (Sheehy et al., 2006). In such cases, importing food crops
becomes a solution to enhance food biodiversity. Unfortunately, increased
importation has an adverse impact on greenhouse gas emissions (Neira et
al., 2016). When promoting food biodiversity, other crucial factors to con-
sider are avoiding either deforestation (FAO, 2022) or excessive pressure
on certain species, such as overfished fish (IPBES, 2019). On the other
hand, emphasising forgotten and underutilised species like bulbous chervil
(Chaerophyllum bulbosum) can be a viable solution (Antonelli et al., 2020).
In conclusion, while food biodiversity improves food security and resilience
to climate change, it should be implemented with caution to prevent prob-
lem shifting.

4.10.3 Profit

Improving food biodiversity requires making different foods affordable for
consumers and viable for producers. Limited affordability of certain species
negatively impacts biodiversity scores, as demonstrated by the focus on
energy-rich crops during the Green Revolution, which widened the nutrition
gap by making them more affordable while leaving others unattainable (Ra-
mankutty et al., 2018). Similarly, exclusive delicacies like truffles are only
accessible to the wealthy, posing a challenge in diversifying affordable food
options.

Currently, profit-driven investments tend to favour specific, non-diverse value
chains. However, diverse food systems are crucial for risk diversification,
mitigating potential hazards like infections and conflicts. Promoting the in-
clusion of other species to enhance food biodiversity has wide-ranging im-
pacts on the entire food chain and the individuals involved in its production.
Therefore, it is crucial to emphasise fair trade practices and provide financial
support to facilitate this transition.

To conclude, increasing food biodiversity has significant effects on people,
the planet, and profit. However, it is essential to conduct further research to
comprehensively understand and document all the advantages and disad-
vantages of this transition in practice. It is important to note that there are
important trade-offs between these dimensions, and a thorough risk-benefit
analysis is necessary to make informed decisions and ensure the sustain-
ability of such initiatives.
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5. SUGGESTIONS FOR FURTHER

RESEARCH

This thesis provides a first insight into quantifying food biodiversity, but
more research is needed. Conducting more research would allow the results
to be compared between studies in various regions.

Therefore, more advanced technology could improve the collection of di-
etary information for a large number of people, but to enjoy all the bene-
fits of emerging technology, high-quality, verified systems will be required
(Cade, 2017). A study by Lee et al. (2022) created an artificial intelligence
model that allows users to enter the name of a meal and serving size to as-
sess the nutrients consumed. They also highlighted that this model may be
used in all nations and circumstances, thanks to the user’s capacity to mod-
ify the recipes. Similarly, an artificial intelligence model can be developed
to assess information on the species consumed.

As mentioned above, further research is also needed on the indices them-
selves, for example:

• Is there a clear correlation between H∞ and H2 in other studies (e.g.,
low-income countries, more recent data) based on FFQs, dietary recall
data or food production data?

• Is there a difference between food biodiversity indices based on datasets
with foods and drinks treated as separate groups, compared to the ones
where food and drinks are combined? What is the best option to take?

• What is the actual relationship to health? This must be further explored,
as there is discordance between the results presented in this thesis and
those presented in the paper of Hanley-Cook et al. (2021), although the
same data are used.

• What is the relationship between the Hill numbers and other indices,
such as the Minimum Dietary Diversity for Women (FAO & FHI 360,
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2016), the Mediterranean diet score (Buckland et al., 2009), the Healthy
Eating Index, and the Dietary Approaches to Stop Hypertension score
(de Oliviera Otto et al., 2015)?

• What is the link between food biodiversity and other environmental
aspects, such as biodiversity, greenhouse gas emissions, and water
and land use?

• Is there an association between food biodiversity and socio-economic
status?

Food biodiversity is an interesting parameter as it reflects the diversity of the
species consumed in a specific region, which may differ from the species
produced locally. For example, pears are exported from Belgium and ba-
nanas are imported. Nicholson et al. (2021) state that Europe exhibits the
largest disparity between crop imports and production compared to other
regions. However, according to a meta-analysis conducted by Powell et al.
(2015), low-income countries often demonstrate a positive association be-
tween dietary diversity and agrobiodiversity. Consequently, comparing food
biodiversity and agrobiodiversity in a certain region can give interesting re-
sults.

Finally, the absolute values of a food biodiversity index still cannot be inter-
preted in isolation. More research is needed to establish reference values
for the food biodiversity indices that can define what is considered ‘good’
or ‘bad’ in terms of a healthy sustainable diet. In this thesis, the indices
can only be compared, which means that people can be grouped according
to their food biodiversity score. In the future, it will be necessary to know
which value has to be reached, for example, on a country level, to have a
sufficient level of biodiversity in order to achieve a specific goal or purpose.
Jones et al. (2021) has already attempted to assess food biodiversity using
the Shannon index. Reference values would be helpful to governments in
implementing measures to improve biodiversity.
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6. CONCLUSION

6.1 Summary

Food biodiversity plays a crucial role in addressing current and future food
security challenges by meeting nutrient requirements and increasing re-
silience to environmental changes. However, global policy agendas do not
yet prioritise food biodiversity. To set clear targets therein, food biodiversity
needs to be easily quantified, and research on these methods is still limited.

In this study, the potential of using Hill numbers, derived from ecological
diversity indices, to quantify food biodiversity was investigated based on
food intake data of 476,768 people from nine different European countries.
Of the four Hill numbers examined (H0, H1, H2, and H∞), H1 and
H2 theoretically emerged as the most appropriate indices because they
take into account the proportion of all species in an individual’s diet. Unlike
H1 and H2, the H∞ index requires only one data point: the proportion of
the most consumed species in the diet. Due to a strong correlation between
H∞ and H2 in the present study (Pearson correlation coefficient of 0.93
for H∞,grm and 0.89 for H∞,kc), H∞ may be an equivalent indicator
as H2 measuring food biodiversity.

Furthermore, no significant variations were observed in the values of H∞
across different European countries, age groups, genders, body mass index
classes, and quantities consumed. This implies that, for example, compar-
isons of H∞ values between individuals of different weight classes can
be made without the need to account for gender differences in the overall
population analysis. A notable, inverse relationship was observed between
H∞ and hazard ratios for total mortality stratified by gender, age, and
study centre and adjusted for smoking status, educational level, marital sta-
tus, physical activity, alcohol intake, and total energy intake, Mediterranean
diet score, red and processed meat intake, and fibre intake. When individ-
uals were divided into quintiles, the relative risk was reduced to 0.86 for
H∞,grm and 0.9 for H∞,kc in the fifth quintile compared to the first
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quintile. In the model without corrections, it resulted in an absolute overall
mortality of 79/44 for H∞,grm, and 63/65 for H∞,kc deaths per 10,000
person-years in the first/fifth quintile.

In addition, this study examined the relationships between energy-based
and weight-based indices, highlighting the influence of the chosen unit of
measurement on outcomes. Energy-based indices are suitable for assessing
nutritional aspects, whereas weight-based data is generally easier to obtain
compared to energy-based data. Overall, it is essential for researchers to
keep in mind the mismatch between indices based on different units and to
select the appropriate unit that aligns with their research objectives.

To address the limitation of relying solely on the proportion of one species
in the diet, a new indicator, J, was proposed. J represents the inverse
of the mean abundances of the  most commonly consumed species and
this showed an even stronger correlation with H2, specifically a Pearson
correlation coefficient of 0.96 for J2,grm and 0.96 for J3,kc.

6.2 Limitations

The study encountered several limitations. Firstly, the dietary intake data
were collected using a single food frequency questionnaire that covered a
one-year period. While this approach takes into account seasonal variations
in dietary habits, it may not capture long-term changes in dietary patterns
that can occur over several years. Additionally, self-reported dietary intake
is prone to biases.

Secondly, the data was not fully categorised at the species-level, and the
impact of subspecies on food biodiversity could not be analysed with the
available data.

Thirdly, due to data protection regulations, sharing the data beyond IARC
was restricted, resulting in limited analysis performed by the data scientists
of IARC, based on the scripts I provided. Moreover, discrepancies with the
findings of (Hanley-Cook et al., 2021) raise the need for further collabora-
tive research with IARC to clarify associations with mortality. Additionally,
since the study participants exhibited generally more health-conscious be-
haviours, the obtained values and their relationship with overall mortality
may not be representative of the entire European population.
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6. Conclusion

Furthermore, it should be recognised that neither H∞ nor J can capture
the full complexity of food diversity. Nevertheless, these are practical and
simple indices that can be used to good effect. For example, they can pro-
vide an estimate of an individual’s food biodiversity score based on a food
frequency questionnaire with a limited number of questions on the most
consumed species in a given region. Future research should then focus on
determining the optimal number of questions and further checking and val-
idating the choice of index, and its behaviour across different datasets.

6.3 Overall conclusion

Overall, this study contributes to understanding and providing a framework
for assessing food biodiversity scores. By including H∞ or J in research
initiatives and later in policy agendas, we can work to promote sustainable
food systems and safeguard the well-being of current and future genera-
tions.
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APPENDIX

Figure A1: Association between weight-based indices and gender using the full
dataset (n=476,768).

Figure A2: Association between energy-based indices and gender using the full
dataset (n=476,768).
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Figure A3: Association between weight-based indices and age at recruitment using
the full dataset (n=476,768).

Figure A4: Association between energy-based indices and age at recruitment using
the full dataset (n=476,768).
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Figure A5: Association between weight-based indices and body mass index (BMI)
using the full dataset (n=476,768).

Figure A6: Association between energy-based indices and body mass index (BMI)
using the full dataset (n=476,768).
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Table A1: Pearson and Spearman correlation coefficients between different Hill
numbers and J indices using the full dataset (n=476,768).

Correlation coefficient between Pearson Spearman

H0,kc & H0,grm 1.00 1.00

H1,kc & H1,grm 0.42 0.39

H2,kc & H2,grm 0.23 0.21

H∞,kc & H∞,grm 0.13 0.12

H0,grm & H1,grm 0.24 0.22

H0,grm & H2,grm 0.07 0.06

H0,grm & H∞,grm 0.04 0.04

H1,grm & H2,grm 0.93 0.93

H1,grm & H∞,grm 0.79 0.79

H2,grm & H∞,grm 0.93 0.93

H0,kc & H1,kc 0.40 0.40

H0,kc & H2,kc 0.20 0.20

H0,kc & H∞,kc 0.15 0.15

H1,kc & H2,kc 0.9 0.89

H1,kc & H∞,kc 0.68 0.68

H2,kc & H∞,kc 0.89 0.89

H2,grm & J2,grm 0.97 0.98

H2,grm & J3,grm 0.97 0.96

H2,grm & J4,grm 0.95 0.93

H2,grm & J5,grm 0.93 0.90

H2,kc & J2,kc 0.95 0.96

H2,kc & J3,kc 0.96 0.96

H2,kc & J4,kc 0.94 0.93

H2,kc & J5,kc 0.91 0.89
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Figure A7: Hazard ratios for the Hill numbers using the overall mortality dataset
(n=451,390).
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Figure A8: Weight-based and energy-based Hill numbers based on total consump-
tion per day (n=476,768).
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