
i

Abstract

We develop an e-voting blockchain protocol that is verifiable and ensures privacy, eligibility,
uniqueness and integrity for all practical purposes. We introduce the concept of Signature
Dilution, which is central to the protocol and enables voters to become anonymous by
means of a blockchain. An election is subdivided in five phases: the Setup phase, the
Registration phase, the Signature Dilution phase, the Commitment phase and the Voting
phase. The system includes a fork resolution protocol that relies on neither proof-of-work
nor proof-of-stake but is tailored to the specific needs of this blockchain. We conduct a
thorough theoretical analysis of the protocol in terms of the aforementioned requirements of
verifiability, privacy, eligibility, uniqueness and integrity, as well as four recommendations
of lesser importance: coercion resistance, robustness, fairness and distribution of trust. We
also implement the system and perform experiments by means of simulated elections to
measure its performance and robustness against attackers. We find that the system achieves
all five requirements for all practical purposes and it achieves the recommendations to the
extent that can be expected from an e-voting system. The current implementation however
does not achieve the ideal level of performance but we cannot conclude whether this will
be a problem in elections at a realistic scale. The implementation of the system can defend
itself well against the attackers that were tested.

ii

Abstract (Dutch)

We ontwikkelen een e-voting blockchain protocol dat verifiëerbaar is en privacy, stemgerech-
tigheid, uniekheid en integriteit garandeert voor alle praktische doeleinden. We introduc-
eren het concept Signature Dilution, dat centraal is voor het protocol en dat kiezers in staat
stelt om anoniem te worden door middel van een blockchain. Een verkiezing bestaat uit vijf
fasen: de Setupfase, de Registrationfase, the Signature-Dilutionfase, de Commitmentfase
en de Votingfase. Het systeem bevat een fork-resolutieprotocol dat noch op proof-of-work
noch op proof-of-stake gebaseerd is, maar op maat gemaakt is voor de specifieke vereisten
van deze blockchain. We voeren een grondige theoretische analyse van het protocol uit op
basis van zowel de eerdergenoemde vereisten verifiëerbaarheid, privacy, stemgerechtigheid,
uniekheid en integriteit, als vier aanbevelingen van kleiner belang: dwangbestendigheid,
robustheid, eerlijkheid en vertrouwensdistributie. We implementeren het systeem ook en
voeren experimenten uit door middel van gesimuleerde verkiezingen om zijn performantie
en robustheid tegen aanvallers te meten. We vinden dat het systeem alle vijf de vereisten
behaalt voor alle praktische doeleinden en het behaalt de aanbevelingen voor zover dit
van een e-voting systeem verwacht zou kunnen worden. De huidige implementatie behaalt
echter niet het ideale niveau van performantie, maar we kunnen niet concluderen of dit
een probleem zal zijn in verkiezingen op een realistische schaal. De implementatie van het
systeem kan zichzelf goed verdedigen tegen de aanvallers waarop we getest hebben.

iii

Extended abstract

Introduction

In the fifth century B.C. ancient Greece saw the development of a novel solution to the
problem of the tyrannical nature of its city states: democracy. The system was further
developed and refined to become the gold standard of governance in the modern age, but
it relies on elections that can be manipulated by dictators interested in pretending to be
democratic. E-voting, conducting an election by means of an electronic process, can make
this more difficult for them and it relies centrally on the concept of a Bulletin Board: a
verifiable communication channel best implemented as a blockchain.

In this thesis we develop an e-voting blockchain that can be considered secure and
fair, named Acrohalides. We base our criteria for what constitutes a secure and fair e-
voting system on international legal documents and earlier e-voting work. The system is
fundamentally based on a novel concept we introduce, called Signature Dilution, which
serves to create privacy and is well suited for a blockchain.

We design and evaluate the system on the basis of five requirements:

1. Verifiability: Anyone must be able to verify that the process was executed correctly.

2. Privacy: A third party must not be able to determine how a voter voted.

3. Eligibility: A voter must be someone who is eligible to vote.

4. Uniqueness: Only one vote per voter may be tallied.

5. Integrity: Votes must be tallied according to their content, as chosen by the voter.

We also take into account the desirable features of coercion resistance, robustness,
fairness and distribution of trust, but we consider them to be recommendations of lesser
importance than the five requirements.

Related work

E-voting has been researched thoroughly and many systems have already been proposed.
They can be roughly categorized as mixnets, blockchains or other systems that fall in
neither of those categories.

iv

Mixnets

Chaum introduced the concept of mixnets: networks of mixes, which each receive multiple
encrypted messages, decrypt them and output them in a random order [7]. Only the mix
knows which decrypted message corresponds to which original message, but if a cascade
of mixes is used, no individual mix knows the link between an original message from the
start of the cascade to the decrypted message at the end of the cascade. Chaum suggests
using a mixnet to generate digital pseudonyms for voting, but the Prêt à Voter [31], Helios
[2] and VoteAgain [24] systems use mixnets for the vote itself.

Blockchains

Blockchain is the most secure implementation of a Bulletin Board to date and as such
lends itself well to e-voting. Notable e-voting blockchains are PriScore [38], zkHawk [4]
and d-BAME [39].

Other

Several systems that do not fall in either of the above categories have been proposed, and
some also used in political elections. Proposed systems include those of Pfitzmann and
Waidner [30] and Cramer et al. [10], but the countries of Estonia [13] and Switzerland [17]
implemented their own systems.

Signature dilution

With the existence of secure distributed storage of data in the form of a blockchain, and
with the existence of modern cryptography, it is quite straightforward to implement four
out of the five requirements. If all voters each own a single asymmetric key pair, which is
publicly known to be linked to their identity, they can use these keys to digitally sign their
votes. If this communication takes place in a Bulletin Board such as a blockchain, the
process is verifiable, the eligibility of each voter is guaranteed, as well as the uniqueness of
each vote, and the integrity of the process is secured too. This comes at the cost of privacy
though: the keys are linked to the identity of the voters, and the votes are linked to the
keys.

This process can however be amended to provide privacy by means of Signature Dilution
as visualized in Figure 1. A group of N voters might be publicly registered with N old key
pairs that are linked to their identities, but when voting they use N new key pairs that
are anonymous. In order not to violate the requirements we have set out, there must be
some way to ensure the validity of these new key pairs. Otherwise voters, or even ineligible
outsiders, could create multiple new key pairs and no one would be able to distinguish
them from legitimate new key pairs.

To prevent such fraud the N voters collaborate to create a dilution block in which
they list all their new keys together. They then sign the block using their old key pairs,

v

Figure 1: An illustration of the signature dilution process. The old keys (pk1,r−1, ..., pkn,r−1)
are listed alongside the new keys (pkπ(1),r, ..., pkπ(n),r) and each old key corresponds
to one new key by means of a secret permutation π. All this data is signed with the
signatures (s1,r−1, ..., sn,r−1) of the old keys, proving that the owner of each old key
is represented by one of the new keys.

signifying that they each acknowledge that they own at least one of the new keys within
the message. If the number of new keys equals the number of signatures, we now know
that each new key must correspond to exactly one old key and thus to exactly one voter.
This again ensures verifiability, eligibility, uniqueness and integrity. However we do not
know which new key corresponds to which old key, so we obtain privacy as well.

It is not feasible for the entire electorate to dilute all its keys in a single, massive dilution
block. Voters can dilute their keys in smaller dilution pools of size k, creating a measure
of anonymity in the form of an anonymity set of size k. If multiple dilution pools of size k
do this simultaneously, the voters can subsequently carry out another round of signature
dilution by mixing between the pools of the previous round to create new pools. This will
increase the sizes of the anonymity sets exponentially: if k = 8, five rounds of signature
dilution results in anonymity sets of size 85 = 32768.

Protocol design

In the Acrohalides blockchain a number of eligible participants, who are each eligible to
vote, collaborate to carry out the process sketched in the previous section. There is however
also an election manager, who collaborates with the eligible participants but has special
capabilities necessary to keep the system functioning. The blockchain, visualized in Figure
2 consists of five phases:

1. Setup: The election manager initializes the blockchain.

vi

Figure 2: An illustration of the blockchain. The grey dotted lines represent phase changes and
the arrows represent keys: the block at the base of the arrow introduces the key
and the block at the end of the arrow uses the key. ’I’ represents the initialization
block, ’R’ represents a registration block, ’Ds’ represents a dilution start block, ’Di’
represents a dilution block, ’P’ represents a pre-depth block, ’Dp’ represents a depth
block, ’De’ represents the dilution end block, ’C’ represents a commitment block and
’Ce’ represents the commitment end block.

2. Registration: The election manager registers the initial key pairs of the eligible
participants.

3. Signature Dilution: Eligible participants registered in the previous phase collabo-
rate iteratively in Signature dilution, as explained in the previous section.

4. Commitment: Eligible participants use their last diluted key pairs to publish a
hash of their votes.

5. Voting: Eligible participants broadcast the plaintext of the votes they committed
in the previous phase, they are now known as voters.

We shall now discuss each of the five phases in more detail.

Setup

The Setup phase consists of a single block, the initialization block, which starts the blockchain.
In it, the public key of the election manager is defined, which will be repeated in all sub-
sequent blocks. This guarantees only the real election manager will be capable of carrying
out certain actions in later phases.

Registration

Eligible participants are registered during this phase by means of registration blocks. These
blocks are created by the election manager and they contain the voter ID, a string identi-
fying the eligible participant, and the public key this participant is registering.

When the registration period is over, the election manager signals this by means of a
dilution start block, which begins the next phase of the blockchain.

vii

Signature Dilution

During this phase eligible participants create the dilution blocks described in the previous
section. In order to coordinate the creation of such a block, and especially to anonymously
broadcast the new keys that should appear within it, the dilution process consists of eight
messages that are sent between the members of the dilution pool: a dilution application,
an invite, a pool response, a pool message, a pool acknowledgement, a new key message, an
unvalidated dilution block and a signature message.

They do this iteratively, using the new keys of one dilution block as old keys in another
dilution block, to increase the size of their anonymity set exponentially. If this were to
happen without any form of coordination however, this exponential increase would not
be guaranteed: eligible participants who have diluted their keys often might end up in
the same pool as eligible participants who have not yet diluted their keys. To avoid this,
participants are restricted from diluting too often too early in the phase, and this restriction
is slowly loosened by means of pre-depth blocks and depth blocks.

The phase is again ended by the election manager by means of a dilution end block.

Commitment

Voters use the key resulting from their last signature dilution to sign a commitment block.
This block contains the hash of the candidate the voter is voting for, thus ensuring that
the voter is tied to this candidate without revealing who the candidate is yet. This means
a running tally is not available while voters can still vote, a feature known as fairness.

Voting

Voters broadcast vote messages that simply reveal the candidate of a given commitment
block. This can easily be validated by recalculating the hash in the commitment block,
and the vote messages can be tallied together to calculate the result of the election.

Performance evaluation

For N total voters, diluting their keys in r rounds with pools of size k, voting for m
candidates that each have a tag string of t bytes and a description string of d bytes, the
theoretical size of the blockchain is 344+484r+m(6+ t+d)+ (776+ r(315

k
+208))N bytes

and the average voter theoretically sends (k−1
k

+ 5)r + 2 messages. Thus if N = 500000,
r = 5, k = 8, m = 10, t = 16 and d = 256, the size of the blockchain is 0.9373GiB and the
average voter sends 31.38 messages.

To test whether these numbers are achieved in practice, we run simulations of elections
and measure the length of the blockchain and the number of messages sent. Our cur-
rent implementation achieves blockchains of the ideal length, but the number of messages
broadcast per voter increases quadratically in function of the number of voters and it also
increases dramatically if the number of rounds of signature dilution increases.

viii

We also run simulations where the system is attacked in a denial-of-service attack by
outsiders who can only send invalid messages. We find that the current implementation
can defend against such attacks quite well and the impact of such attacks diminishes as
the number of voters increases.

Conclusion

All five requirements are met in the system for all practical purposes. There are theoretical
exceptions to some requirements, such as the fact that privacy can be decreased by a large
group of voters far outnumbering their victims and capable of coordinating network traffic
precisely, or the fact that senseless eligible participants might give away their ability to
vote by signing a dilution block that does not include a key they own.

Of the optional recommendations, the system achieves fairness due to the Commitment
phase and since there are no trusted third parties, distribution of trust is achieved by
default. Coercion resistance is however not achieved since it is not possible in an e-voting
system. Robustness covers a wide variety of issues and the system is mostly robust against
them to the extent that any distributed system can be expected to be. The current
implementation however does not perform as well as can be ideally expected, but it is
unclear what this means for performance of elections at a realistic scale.

ix

Extended abstract (Dutch)

Inleiding

In de vijfde eeuw V.C. werd in het oude Griekenland een nieuwe oplossing ontwikkeld voor
het probleem van de tirannieke natuur van zijn stadsstaten: democratie. Het systeem werd
verder ontwikkeld en verfijnd tot de standaard van politiek bestuur in het moderne tijdperk,
maar het is afhankelijk van verkiezingen die gemanipuleerd kunnen worden door dictators
die democratisch pretenderen te zijn. E-voting, het organiseren van een verkiezing door
middel van een elektronisch proces, kan dit moeilijker voor hun maken, en het is afhankelijk
van het concept van een Bulletin Board: een verifiëerbaar communicatiekanaal dat het best
als blockchain gëımplementeerd kan worden.

In deze masterproef ontwikkelen we een e-voting blockchain die als veilig en eerlijk
beschouwd kan worden, genaamd Acrohalides. We baseren onze criteria voor het beslissen
of een e-votingsysteem veilig en eerlijk is op internationale rechtsdocumenten en eerder
e-votingwerk. Het systeem is fundamenteel gebaseerd op een nieuw concept dat we intro-
duceren, genaamd Signature Dilution, dat privacy creëert en dat goed bij een blockchain
past.

We ontwerpen en evaluëren het systeem op basis van vijf vereisten:

1. Verifiëerbaarheid: Iedereen moet kunnen verifiëren dat het proces correct uitgevoerd
is.

2. Privacy: Een derde mag niet in staat zijn te achterhalen waarvoor een kiezer gestemd
heeft.

3. Stemgerechtigheid: Een kiezer moet iemand zijn die het recht heeft om te stemmen.

4. Uniekheid: Per kiezer mag maar één stem geteld worden.

5. Integriteit: Stemmen moeten geteld worden op basis van hun inhoud zoals deze door
de kiezer gekozen is.

We nemen ook de wenselijke eigenschappen dwangresistentie, robustheid, eerlijkheid en
vertrouwensdistributie in beschouwing, maar we zien deze als aanbevelingen van minder
belang dan de vijf vereisten.

x

Gerelateerd werk

E-voting is grondig onderzocht en veel systemen zijn al ontwikkeld. Ze kunnen ruwweg
onderverdeeld worden in mixnets, blockchains en andere systemen die in geen van beide
categoriëen vallen.

Mixnets

Chaum heeft het concept mixnets gëıntroduceerd: netwerken van mixes, die elk meerdere
versleutelde berichten ontvangen, ze vervolgens ontcijferen en in een willekeurige volgo-
rde doorgeven [7]. Enkel de mix weet welk ontcijferd bericht met welk origineel bericht
overeenkomt, maar als een cascade van mixes wordt gebruikt, weet geen individuële mix
wat de link is tussen een origineel bericht aan het begin van de cascade en ontcijferd
bericht aan het eind van de cascade. Chaum stelt voor een mixnet te gebruiken om dig-
itale pseudoniemen te genereren voor het stemmen, maar de systemen Prêt à Voter [31],
Helios [2] en VoteAgain [24] gebruiken mixnets voor de stem zelf.

Blockchains

Blockchain is op dit moment de veiligste implementatie van een Bulletin Board en is zo-
doende zeer toepasbaar op e-voting. Interessante e-voting blockchains zijn PriScore [38],
zkHawk [4] en d-BAME [39].

Andere

Een aantal systemen zijn voorgesteld die niet onder de twee bovengenoemde categoriëen
vallen, en sommige ook in politieke verkiezingen gebruikt. Voorgestelde systemen zijn
onder andere dat van Pfitzmann en Waidner [30] en Cramer et al. [10], maar Estland [13]
en Zwitserland [17] hebben beide hun eigen systeem gëımplementeerd.

Signature dilution

Veilige gedistribuëerde dataopslag in de vorm van een blockchain en moderne cryptografie
maken het zeer voor de hand liggend om vier van de vijf vereisten te implementeren.
Als alle kiezers elk één paar asymmetrische sleutels tot hun beschikking hebben, waarvan
openbaar bekend is dat deze bij hun identiteit hoort, kunnen ze deze sleutels gebruiken om
hun stemmen digitaal te ondertekenen. Als deze communicatie plaatsvindt op een Bulletin
Board zoals een blockchain, is het proces verifiëerbaar, de stemgerechtigheid van elke kiezer
wordt gegarandeerd, en daarnaast ook de uniekheid van elke stem en de integriteit van het
proces. Dit alles ten koste van privacy: de sleutels zijn gelinkt aan de identiteit van de
kiezers, en de stemmen zijn gelinkt aan de sleutels.

Dit proces kan echter aangepast worden om toch privacy op te leveren door middel
van Signature Dilution, gevisualiseerd in Figuur 3. Een groep van N kiezers kan openbaar

xi

Figure 3: Een illustratie van het signature dilution process. De oude sleutels
(pk1,r−1, ..., pkn,r−1) worden opgelijst naast de nieuwe sleutels (pkπ(1),r, ..., pkπ(n),r)
en elke oude sleutel correspondeert met één nieuwe sleutel door middel van een
geheime permutatie π. Deze data wordt allemaal ondertekend met de handtekenin-
gen (s1,r−1, ..., sn,r−1) van de oude sleutels, die bewijzen dat de eigenaar van elke oude
sleutel door één van de nieuwe sleutel wordt vertegenwoordigd.

geregistreerd worden met N oude paren sleutels die gelinkt zijn aan hun identiteiten, maar
bij het stemmen gebruiken zeN nieuwe paren sleutels die anoniem zijn. Om de vereisten die
we gestipuleerd hebben, niet te schenden, moet er een manier zijn om de geldigheid van deze
nieuwe paren sleutels te garanderen. Anders kunnen kiezers, of zelfs niet-stemgerechtigde
buitenstaanders, meerdere nieuwe paren sleutels aanmaken en niemand zou deze kunnen
onderscheiden van legitieme nieuwe paren sleutels.

Om dit soort fraude te voorkomen, werken N kiezers samen om een dilution block te
creëren waarin ze een lijst van alle nieuwe sleutels samen plaatsen. Ze ondertekenen het
blok met hun oude paren sleutels en geven daarmee aan dat ze erkennen dat ze beschikking
hebben over op zijn minst één van de nieuwe sleutels in het bericht. Als het aantal nieuwe
sleutels gelijk is aan het aantal handtekeningen, weten we dat elke nieuwe sleutel moet
overeenkomen met exact één oude sleutel en dus met exact één kiezer. Dit garandeert
opnieuw verifiëerbaarheid, stemgerechtigheid, uniekheid en integriteit. We weten echter
niet welke nieuwe sleutel overeenkomt met welke oude sleutel, dus is er ook privacy.

Het is niet haalbaar voor het hele electoraat om alle sleutels in één enkel, gigantisch
dilution block te verdunnen. Kiezers kunnen hun sleutels in kleine dilution pools van
grootte k verdunnen, waarmee ze een zekere mate van anonimiteit verkrijgen in de vorm van
een anonymity set van grootte k. Als meerdere dilution pools van grootte k dit gelijktijdig
doen, kunnen de kiezers vervolgens een tweede ronde signature dilution uitvoeren door de
sleutels van verschillende dilution pools van de vorige ronde te mengen en daarmee nieuwe
dilution pools te creëren. Dit zal de grootte van de anonymity sets exponentiëel laten
toenemen: als k = 8 resulteren vijf rondes signature dilution in anonymity sets van grootte

xii

85 = 32768.

Ontwerp van het protocol

In de Acrohalides blockchain werken een aantal eligible participants, die elk het recht
hebben om te stemmen, samen om het proces uit te voeren dat in de vorige sectie werd
geschetst. Er is echter ook een election manager, die samenwerkt met de eligible par-
ticipants maar die speciale bevoegdheden heeft die nodig zijn om het systeem te laten
functioneren. De blockchain, gevisualiseerd in Figuur 4, bestaat uit vijf fasen:

1. Setup: De election manager initialiseert de blockchain.

2. Registration: De election manager registreert de initiële paren sleutels van de eli-
gible participants.

3. Signature Dilution: Eligible participants die in de vorige fase geregistreerd zijn,
werken iteratief samen aan Signature Dilution zoals in de vorige sectie is uitgelegd.

4. Commitment: Eligible participants gebruiken hun laatst verdunde paren sleutels
om een hash van hun stemmen te publiceren.

5. Voting: Eligible participants versturen de plaintext van de stemmen die ze in de
vorige fase hebben vastgelegd, ze zijn vanaf dit moment kiezers.

We zullen nu elk van de vijf fasen in meer detail bespreken.

Setup

De Setupfase bestaat uit één enkel block, het initialization block, dat de blockchain begint.
Hierin wordt de publieke sleutel van de election manager gedefiniëerd, welke in alle hierop

Figure 4: Een illustratie van de blockchain. De grijze stippellijnen stllen faseovergangen voor
en de pijlen stellen sleutels voor: het blok aan het begin van de pijl introduceert de
sleutel en het blok aan het eind gebruikt de sleutel. ’I’ stelt het initialization block
voor, ’R’ stelt een registration block voor, ’Ds’ stelt het dilution start block voor, ’Di’
stelt een dilution block voor, ’P’ stelt een pre-depth block voor, ’Dp’ stelt een depth
block voor, ’De’ stelt het dilution end block voor, ’C’ stelt een commitment block voor
en ’Ce’ stelt het commitment end block voor.

xiii

volgende blokken herhaald zal worden. Dit garandeert dat enkel de echte election manager
in staat zal zijn om bepaalde acties in latere fasen uit te voeren.

Registration

Eligible participants worden in deze fase geregistreerd door middel van registration blocks.
Deze blokken worden door de election manager gecreëerd en ze bevatten de voter ID,
een string die de eligible participant identificeert, en de publieke sleutel die deze eligible
participant aan het registreren is.

Wanneer de registratieperiode voorbij is, geeft de election manager dit aan door middel
van een dilution start block, waarmee de volgende fase van de blockchain begint.

Signature Dilution

In deze fase creëren eligible participants de dilution blocks die in de vorige sectie werden
uitgelegd. Om de creatie van een dilution block te coördineren, en met name om de nieuwe
sleutels die erin moeten voorkomen, anoniem te versturen, bestaat het dilution process uit
acht berichten die tussen de leden van de dilution pool verstuurd worden: een dilution
application, een invite, een pool response, een pool message, een pool acknowledgement, een
new key message een unvalidated dilution block en een signature message.

Ze doen dit iteratief, waarbij ze de nieuwe sleutels van één dilution als oude sleutels in
een ander dilution block gebruiken, om zo de grootte van hun anonymity set exponentiëel
te laten toenemen. Als ze dit zonder enige vorm van coördinatie zouden doen, zou de
exponentiële groei niet gegarandeerd worden: eligible participants die hun sleutels vaak
verdund hebben, zouden in dezelfde dilution pool terecht kunnen komen als eligible par-
ticipants die hun sleutels nog niet verdund hebben. Om dit te voorkomen, worden eligible
participants belemmerd hun sleutels te vroeg en te vaak in de fase te verdunnen, en deze
restrictie wordt langzaam losgelaten door middel van pre-depth blocks en depth blocks.

De fase wordt opnieuw beëindigd door de election manager door middel van een dilution
end block.

Commitment

Kiezers gebruiken de sleutel die resulteerde uit hun laatste signature dilution om een com-
mitment block te ondertekenen. Dit blok bevat de hash van de kandidaat voor wie de
kiezer stemt, waardoor de kiezer vast zit aan deze kandidaat zonder dat bekend wordt wie
de kandidaat is. Dit betekent dat een voorlopige telling nog niet beschikbaar is zolang de
kiezers nog kunnen stemmen, een eigenschap die onder de naam eerlijkheid bekend staat.

Voting

Kiezers verzenden vote messages die simpelweg de kandidaat van een gegeven commitment
block duidelijk maken. Dit kan makkelijk gevalideerd worden door de hash in het commit-

xiv

ment block opnieuw te berekenen en de vote messages kunnen samen geteld worden om de
resultaten van de verkiezing te verkrijgen.

Evaluatie van de performantie

Voor N kiezers in totaal, die hun sleutels in r rondes verdunnen met dilution pools ter
grootte k, die stemmen op m kandidaten die elk een tag van t bytes en een beschrijving
van d bytes hebben, is theoretische grootte van de blockchain 344 + 484r+m(6 + t+ d) +
(776 + r(315

k
+ 208))N bytes en de gemiddelde kiezer verstuurt theoretisch (k−1

k
+ 5)r + 2

berichten. Als N = 500000, r = 5, k = 8, m = 10, t = 16 en d = 256, is de grootte van de
blockchain dus 0, 9363GiB en de gemiddelde kiezer verstuurt 31,38 berichten.

Om te testen of deze getallen in de praktijk behaald worden, voeren we simulaties van
verkiezingen uit en meten we de lengte van de blockchain en het aantal berichten dat wordt
verstuurd. Onze huidige implementatie behaald blockchains van ideale lengte, maar het
aantal berichten dat per kiezer wordt verstuurd, neemt kwadratisch toe in functie van het
aantal kiezers en het neemt ook dramatisch toe als het aantal rondes signature dilution
toeneemt.

We voeren ook simulaties uit waarin het systeem aangevallen wordt in een denial-of-
servie aanval door buitenstaanders die enkel ongeldige berichten kunnen versturen. We
zien dat de huidige implementatie zich goed tegen zulke aanvallen kan verdedigen en dat
de impact van zulke aanvallen afneemt als het aantal kiezers toeneemt.

Conclusie

Alle vijf de vereisten worden in het systeem behaald voor alle praktische doeleinden. Er zijn
theoretische uitzonderingen voor sommige vereisten, zoals het feit dat privacy kan afnemen
door een grote groep kiezers, veel groter dan het aantal slachtoffers, die dataverkeer door het
netwerk zorgvuldig kunnen coördineren, of het feit dat onzinnige eligible participants hun
mogelijkheid om te stemmen, weg kunnen geven door een dilution block te ondertekenen
waarin geen sleutel staat waarover ze zelf beschikken.

Van de optionele aanbevelinen, behaalt het systeem eerlijkheid vanwege de Commitment
fase en aangezien er geen vertrouwen in derden nodig is, wordt vertrouwensdistributie
overbodig. Dwangresistentie wordt niet behaald aangezien dit niet mogelijk is in een e-
votingsysteem. Robuustheid houdt een grote hoeveelheid problemen in en het systeem
is grotendeels robuust daartegen voor zover een gedistribuëerd systeem dat kan zijn. De
huidige implementatie heeft echter niet de performantie die ideaal verwacht zou worden,
maar het is onduidelijk wat dit betekent voor de performantie van verkiezingen op een
realistische schaal.

xv

Toelating tot bruikleen

De auteur geeft de toelating deze masterproef voor consultatie beschikbaar te stellen en
delen van de masterproef te kopiëren voor persoonlijk gebruik. Elk ander gebruik valt on-
der de bepalingen van het auteursrecht, in het bijzonder met betrekking tot de verplichting
de bron uitdrukkelijk te vermelden bij het aanhalen van resultaten uit deze masterproef.

Bart van de Meerendonk

24 mei 2023

CONTENTS xvi

Contents

I E-Voting Introduction 1

1 Introduction 2
1.1 Problem statement . 2
1.2 Objectives . 2
1.3 Structure . 3

2 Related work 4
2.1 Requirements . 5
2.2 Mixnets . 9

2.2.1 Prêt à Voter . 10
2.2.2 Helios Voting . 10
2.2.3 VoteAgain . 11

2.3 Blockchain . 12
2.3.1 U.S. Government . 12
2.3.2 PriScore . 13
2.3.3 zkHawk . 14
2.3.4 d-BAME . 14
2.3.5 CoinJoin . 15

2.4 Other Systems . 15
2.4.1 Pfitzmann and Waidner . 16
2.4.2 Cramer et al. 17
2.4.3 Estonia . 17
2.4.4 Switzerland . 18

II Acrohalides Design & Implementation 19

3 Protocol Overview 20
3.1 Setup . 21
3.2 Registration . 21
3.3 Signature Dilution . 22
3.4 Commitment . 24
3.5 Voting . 24

CONTENTS xvii

4 Protocol Details 25
4.1 Setup . 25
4.2 Registration . 25
4.3 Signature Dilution . 27

4.3.1 Dilution blocks . 27
4.3.2 Maximum depth . 30
4.3.3 Dilution Pools . 31
4.3.4 Dilution end block . 38

4.4 Commitment . 39
4.5 Voting . 39
4.6 Forks . 41

4.6.1 First criterion . 42
4.6.2 Third criterion . 42
4.6.3 Forks & commitment end blocks . 43

5 Protocol Implementation 44
5.1 Client . 44

5.1.1 Application Layer . 45
5.1.2 Privacy Layer . 45
5.1.3 Blockchain Layer . 47
5.1.4 Network Layer . 47

5.2 Cryptography . 48
5.3 Data structures . 48

5.3.1 Byte set . 48
5.3.2 Byte map . 48
5.3.3 Circle . 48

5.4 Blocks & messages . 50
5.5 Setup . 50
5.6 Registration . 51
5.7 Signature Dilution . 52

5.7.1 Dilution blocks . 52
5.7.2 Maximum depth . 52
5.7.3 Dilution Pools . 54
5.7.4 Dilution end block . 56

5.8 Commitment . 56
5.9 Voting . 58
5.10 Control messages . 62

III Evaluation 67

6 Evaluation preliminaries 68
6.1 Participants . 68

CONTENTS xviii

6.1.1 Honest sensible participant . 69
6.1.2 Sensible attacker . 70
6.1.3 Senseless participants . 71
6.1.4 Outside attacker: . 71

6.2 Social discourse . 71

7 Requirement Validation 72
7.1 Verifiability . 72

7.1.1 Individual verifiability . 72
7.1.2 Universal verifiability . 72
7.1.3 End-to-end verifiability . 72

7.2 Privacy . 75
7.2.1 Attacking election manager/outside attacker 75
7.2.2 Attacking eligible participant . 77
7.2.3 Colluding roles . 79

7.3 Eligibility . 79
7.4 Uniqueness . 80
7.5 Integrity . 81

8 Denial of Service 82
8.1 Invalid messages . 83
8.2 Outside attackers . 87
8.3 Attacking eligible participants . 88

8.3.1 Disenfranchisement message . 89
8.3.2 Dilution block . 89
8.3.3 Dilution application . 89
8.3.4 Invite . 90
8.3.5 Pool response . 90
8.3.6 Pool message . 91
8.3.7 Pool acknowledgement . 92
8.3.8 Blame message . 92
8.3.9 New key message . 93
8.3.10 Unvalidated dilution block message 94
8.3.11 Signature message . 94
8.3.12 Commitment block . 94
8.3.13 Conclusion . 95

8.4 Attacking election managers . 95
8.5 Conclusion . 96

9 Eclipse attacks 97
9.1 Setup phase . 97
9.2 Registration phase . 97

9.2.1 Attacking eligible participant . 98

CONTENTS xix

9.2.2 Attacking election manager . 98
9.2.3 Conclusion . 99

9.3 Dilution phase . 99
9.3.1 Victimized eligible participants . 99
9.3.2 Victimized election managers . 106

9.4 Commitment phase . 111
9.5 Voting phase . 112
9.6 Conclusion . 112

10 Blockchain forks 113
10.1 Setup phase . 114
10.2 Registration phase . 114

10.2.1 Irreflexivity . 114
10.2.2 Asymmetry . 114
10.2.3 Transitivity . 115
10.2.4 Connectedness . 116
10.2.5 Conclusion . 117

10.3 Dilution phase . 117
10.3.1 Irreflexivity . 117
10.3.2 Asymmetry . 118
10.3.3 Transitivity . 120
10.3.4 Connectedness . 123
10.3.5 Conclusion . 124

10.4 Commitment phase . 125
10.4.1 Irreflexivity . 125
10.4.2 Asymmetry . 125
10.4.3 Transitivity . 126
10.4.4 Connectedness . 128
10.4.5 Conclusion . 129

10.5 Voting phase . 129
10.6 Conclusion . 129

11 Remaining robustness issues 130
11.1 Voter accidents . 130
11.2 Network failure . 131

11.2.1 Setup . 132
11.2.2 Registration . 132
11.2.3 Dilution . 132
11.2.4 Commitment . 133
11.2.5 Voting . 133
11.2.6 Conclusion . 134

CONTENTS xx

12 Other recommendations 135
12.1 Coercion resistance . 135
12.2 Fairness . 136
12.3 Distribution of trust . 136

12.3.1 Election manager . 137
12.3.2 Eligible participant . 138
12.3.3 Conclusion . 139

13 Performance evaluation 140
13.1 Methodology . 140
13.2 Theoretical cost . 144
13.3 Results . 146

IV Conclusions & future work 149

14 Conclusion 150

15 Future work 152

1

Part I

E-Voting Introduction

INTRODUCTION 2

Chapter 1

Introduction

1.1 Problem statement

Societies need leadership but since those who would lead are human like the rest of us,
history has shown that time and time and again the authority to make political decisions
devolves into tyranny. In the sixth century BC Athenian statesman Solon laid the ground-
work for the earliest form of democracy, a system in which political decisions are ultimately
made by society as a whole by means of elections. This solution however moves the prob-
lem of tyranny over to the election process itself: if humans cannot simply be trusted to
make political decisions, then they also cannot simply be trusted to manage an election
that determines those same political decisions. Having faith in an authority organizing
an election and tallying votes without oversight is fundamentally no different from having
faith in a dictator claiming to be benevolent.

Many practical procedures to mitigate this problem were developed over the centuries:
voting booths and envelopes to keep votes anonymous, granting partisan inspectors the
ability to witness the count, keeping ballots around so they can be recounted etc. These
measures however still do not guarantee a fair election so with the advent of computers
and modern cryptography, solutions are sought in e-voting. In recent years blockchain
technology has developed, enabling decentralized storage of data that could help prevent
fraud on the part of any election authority. This however begs the questions: how should
an e-voting blockchain system be designed such that it can be considered secure and fair?

1.2 Objectives

Our primary aim is to develop an e-voting protocol that fulfils all the requirements imposed
on electronic electoral systems. We thus begin with a literature study on what these
requirements are, basing ourselves on earlier e-voting work but also on international legal
documents from the United Nations, the Inter-Parliamentary Union, the European Union
and the United States of America.

Our objective is to build our protocol around the central idea of Signature Dilution,

1.3 Structure 3

a means of generating anonymity which will be explained in Part 2 of this thesis. Since
Signature Dilution is uniquely suited to blockchain technology, we aim to design our e-
voting system as a blockchain. Our objective is to fully flesh out the Signature Dilution
process in such a way that the different participants can coordinate it together while
protecting their privacy. We also aim to maximize the opportunities provided to the
electorate to take part in this Signature Dilution process.

We aim to implement the protocol as a client application and to implement extra
functionality to simulate elections involving multiple clients. We use these simulations
to measure the performance of the system under normal circumstances, as well as its
robustness against attackers.

1.3 Structure

This thesis is divided into four parts, with this introduction being Chapter 1 of the first
part. Chapter 2 describes related work. This includes e-voting systems such as mixnets
and blockchains, but it also includes work describing the requirements an e-voting system
should meet. These requirements can be found in earlier e-voting work but we also com-
pare international legal documents to ensure e-voting requirements correspond to actual
electoral standards.

Part 2 describes our system, Acrohalides.1 It begins with a broad overview of the system
and a brief description of each of its phases, along with an explanation of the central concept
of Signature Dilution. Next we provide a detailed explanation of the protocol, and lastly
an explanation of our implementation.

Part 3 is an evaluation of the system, which mostly takes the form of a theoretical
analysis but also includes experiments. We begin with preliminaries describing the roles
of the different participants in the system and a communication channel called social dis-
course, which we assume to exist. Next is a chapter analyzing the system in terms of
the requirements we laid out in Section 2.1. We then have four chapters about issues of
robustness, respectively Denial of Service attacks, Eclipse attacks, blockchain forks and
remaining robustness issues. Next is a chapter about the three other recommendations
laid out in Section 2.1 and this part ends with a chapter about performance evaluation,
including experiments done with simulations of the system and a section about cost.

Part 4 contains the overall conclusion of the thesis, as well as a note on future work.

1“Acro-” is derived from “Aκρoπoλισ”, the designation of the seat of the democratic assembly in many
ancient Greek city states. “Halides” is derived from “αλυσισ”, the Greek word for “chain”, by means of
late onset transalphabetic dyslexia. The emphasis in “Acrohalides” is on the third syllable.

RELATED WORK 4

Chapter 2

Related work

Much has already been written on the subject of e-voting and we will discuss a selection of
e-voting schemes listed in Table 2.1. Several trends are visible. A common building block of
e-voting schemes is the bulletin board : a communication channel that anyone can read, no
one can remove data from, and all active participants can add data to their own designated
section [10]. There are also a number of schemes that can be categorized as mixnets,
while others can be categorized as blockchain-based schemes, and yet others fall in neither
category. Table 2.1 classifies the schemes we will discuss according to these two categories
as well as an “other” category. We will first look at the necessary requirements an e-voting
scheme must have and then cover individual schemes according to this categorization and
evaluate them based on these requirements: unless otherwise mentioned, this evaluation
represents our own view and our own conclusions.

Mixnets Chaum [7], Prêt à Voter [31], Helios [2],
VoteAgain[24]

Blockchains Abhirama [1], zkHawk [4], Bulut [6], Cooley
[8], U.S. [12], Govinda [16], Hanifatunnisa
[18], Hjálmarsson [21], Koç [23], Mani [25],
Patidar [29], Sadia [32], Shetty [34], Soud
[35], Srivastava [36], Wang [37], PriScore [38],
d-BAME [39]

Other Pfitzmann [30], Cramer [10], Estonia [13],
Switzerland [17]

Table 2.1: A categorization of the systems cited.

2.1 Requirements 5

2.1 Requirements

Article 25 of the International Covenant on Civil and Political Rights (a U.N. treaty binding
on 173 states) states [22]:

”Every citizen shall have the right and the opportunity [...] [to] vote and to
be elected at genuine periodic elections which shall be by universal and equal
suffrage and shall be held by secret ballot, guaranteeing the free expression of
the will of the electors”.

The Inter-Parliamentary Union distilled seven Voting and Election rights from this
principle [9]:

1. Every adult citizen has the right to vote in elections, on a non-discriminatory basis.

2. Every adult citizen has the right to access to an effective, impartial and non-discriminatory
procedure for the registration of voters.

3. No eligible citizen shall be denied the right to vote or disqualified from registration as
a voter, otherwise than in accordance with objectively verifiable criteria prescribed
by law, and provided that such measures are consistent with the State’s obligations
under international law.

4. Every individual who is denied the right to vote or to be registered as a voter shall be
entitled to appeal to a jurisdiction competent to review such decisions and to correct
errors promptly and effectively.

5. Every voter has the right to equal and effective access to a polling station in order
to exercise his or her right to vote.

6. Every voter is entitled to exercise his or her right equally with others and to have his
or her vote accorded equivalent weight to that of others.

7. The right to vote in secret is absolute and shall not be restricted in any manner
whatsoever.

It also gives the state the responsibility to ”[ensure] the integrity of the ballot through
appropriate measures to prevent multiple voting or voting by those not entitled thereto”
and ”the integrity of the process for counting votes”.

The European Commission for Democracy through Law (the Venice Commission) has
published guidelines stating [14]:

“Electronic voting should be used only if it is safe and reliable; in particular,
voters should be able to obtain a confirmation of their votes and to correct
them, if necessary, respecting secret suffrage; the system must be transparent.”

2.1 Requirements 6

In other words: the system must not simply have integrity, but this integrity must also
be verifiable by the voter. It elaborates on the term secret suffrage, which corresponds to
the seventh Voting Right of the IPU:

“For the voter, secrecy of voting is not only a right but also a duty, non-
compliance with which must be punishable by disqualification of any ballot
paper whose content is disclosed.”

It appears to also cover voter coercion:

“Voting must be individual. Family voting and any other form of control by
one voter over the vote of another must be prohibited.”

The Venice Commission also provides guidelines for the observation of elections:

“Both national and international observers should be given the widest possible
opportunity to participate in an election observation exercise. [...] Observation
must not be confined to the election day itself, but must include the registra-
tion period of candidates and, if necessary, of electors, as well as the electoral
campaign. It must make it possible to determine whether irregularities oc-
curred before, during or after elections. It must always be possible during vote
counting.”

The Organization for Security and Cooperation in Europe’s Election Observation Hand-
book lists the practical implications of international standards for democratic elections [33]:

1. Periodic elections

2. Genuine elections

3. Free elections

4. Fair elections

5. Universal suffrage

6. Equal suffrage

7. Voting by secret ballot

8. Honest counting and reporting of results

Most of these requirements correspond verbatim to requirements mentioned in the
ICCPR, while the last requirement can be termed integrity cf. the IPU.

Similarly in the United States of America the Help America Vote Act requires that
a voting system “permit the voter to verify (in a private and independent manner) the

2.1 Requirements 7

votes selected by the voter on the ballot before the ballot is cast and counted” [20]. It also
decrees voters should be able to “change the ballot or correct any error before the ballot is
cast and counted”. One noteworthy requirement is also that there be a “single, uniform,
official, centralized, interactive computerized statewide voter registration list” (emphasis
ours). While it may seem secure to centralize the list given that this would guarantee that
the list is complete, this particular requirement may actually make the system less secure
since it requires a trusted third party.

The literature on e-voting does not give us a uniform set of requirements an electronic
election system must adhere to: some authors posit requirements that others do not, and
some authors use the same requirement under a different name. Patidar et al. for example
require that voters cannot vote for invalid candidates [29], but the Swiss system explicitly
allows for write-ins in some cantons [17] and the system tested in Emery et al. is also
assumed to allow for this [12]. Srivastava et al. require it to be public knowledge who
did and did not vote in the election [36], but this would violate the Venice Commission
guideline “The list of persons actually voting should not be published” [14]. In most cases
individual verifiability is used to refer to the ability of individual voters to verify that their
votes were counted, but Adida refers to this requirement as ballot casting assurance [2]
while Hjalmarsson et al. refer to it as transparency [21]. Privacy generally refers to the
inability of a third party to determine how a voter voted, but this is termed anonymity
in Zaghloul et al. and in Sadia et al. [39][32], while Yang et al., Soud et al. and the
Estonian government refer to it as secrecy [38][35][13]. The term also corresponds to secret
ballot/suffrage in the ICCPR and Venice Commission guidelines, and the seventh voting
right of the IPU [22][14][9].

Nonetheless there some are requirements that are listed by most authors that list re-
quirements. All five of them correspond to requirements set out by international law and
political science as explained above, and we will consider these to be the necessary require-
ments an e-voting scheme must adhere to:

1. Verifiability: This requirement is subdivided in three parts:

(a) Individual verifiability: Voters must be able to verify that their votes are
captured.

(b) Universal verifiability: Anyone must be able to verify that all captured votes
were counted.

(c) End-to-end verifiability: Anyone must be able to verify the correct execution
of any step in the process.

2. Privacy: A third party must not be able to determine how a voter voted.

3. Eligibility: A voter must be someone who is eligible to vote.

4. Uniqueness: Only one vote per voter may be tallied.

2.1 Requirements 8

5. Integrity: Votes must be tallied according to their content, as chosen by the voter.

Both verifiability and integrity correspond to the ICCPR’s call for “genuine” elections
“guaranteeing the free expression of the will of the electors” [22]. Verifiability is also
strongly related to the Venice Commission’s guidelines on election observation [14] and
the Help America Vote Act explicitly mentions voters should be able to “verify” their
votes [20]. Eligibility corresponds to the first five voting rights of the IPU. Uniqueness
corresponds to the term “equal suffrage” in the ICCPR and the sixth voting right of the
IPU [9][22].

Several less common requirements are also of note, and we will consider them to be
recommendations:

1. Coercion resistance: It should not be possible for a third party to coerce a voter
into voting a certain way.

2. Robustness: The system must continue working as intended even when someone
interacts with it in a way that does not conform to the intended usage of the system,
or when someone neglects to carry out a duty imposed by the intended usage of the
system.

3. Fairness: The running tally should not be available while voters are still able to
vote.

4. Distribution of trust: The above requirements should not rely on a single trusted
third party.

The requirement of coercion resistance is interesting since it primarily relies on privacy :
it is not possible to coerce people to vote a certain way if you cannot know that they voted
this way. Some authors however take this requirement much further: it should also not
be possible for voters to prove to the coercer how they voted [24]. Adida clearly believes
privacy is sufficient and it is voters’ personal responsibility to not reveal who they voted
for, since he adds a “Coerce Me!” button to his system in order to “make it clear that
online voting is inherently coercible” [2]. The Venice Commission appears to agree on
the matter of the voter’s personal responsibility since it stipulates it should be punishable
for voters to reveal their vote [14]. It is indeed true that, for voters to be incapable of
proving to a third party how they vote, their physical environment must be controlled1

(e.g. a voting booth where smartphones and cameras are confiscated upon entry) because
otherwise this environment could include a coercer looking over their shoulder and making
them vote right before the deadline. In the end coercion resistance is a matter of degree:
privacy provides a decent amount of protection against coercion, but as we shall see, some
e-voting schemes contain extra mechanisms to make coercion more difficult.

Another requirement of note is robustness : it is worth considering what the practical
faults are an e-voting scheme should be robust against. A malicious party may carry out

1This also implies there must be a trusted third party who controls this environment.

2.2 Mixnets 9

a denial-of-service attack to interfere with the election. It is also possible that potential
voters simply abandon their role at some point in the process (and thus do not vote),
meaning the system should be robust against imperfect turnout. 100% turnout is unheard
of in political elections, the Belgian federal election of 2019 for example had 88,70% turnout
while Belgium is one of only 21 countries where voting is compulsory [3].2

2.2 Mixnets

Chaum introduced the concept of a mixnet for various purposes, including electronic elec-
tions [7]. A mix is a server that receives encrypted messages, decrypts them and outputs
them in random order. Eavesdroppers can see who sent the encrypted message but the
random order of the output messages ensures (if each message is sent the same number of
times) that they cannot link the encrypted message to the decrypted message, ensuring
privacy from the point of view of anyone but the mix. A mixnet is a network of mixes
which allows senders to send messages through a cascade of mixes: the message is not
just encrypted once for a single mix, but instead encrypted many times for many different
mixes. It is then sent to these mixes in reverse order: the first mix will be able to decrypt
the message to an intermediate message that can be sent to the second mix, which will
be able to decrypt the intermediate message to a second intermediate message and so on.
This means that, unless all mixes in the cascade conspire, the anonymity of the sender is
protected.

For electronic elections a mixnet would be used to create a roster of digital pseudonyms,
public keys held anonymously by voters. Voters send an application message (containing
their public key) through the mixnet to an authority which decides whether the application
should be accepted and then publishes the roster of accepted pseudonyms. Voters can only
apply for one pseudonym since it would be publicly visible if they sent multiple applications
through the mixnet.

A major drawback of this system is its lack of verifiability making it vulnerable to
malicious mix servers: if a cascade of multiple mixes is used the privacy of the messages
is not compromised, but there is no protection against mix servers that actually tamper
with the messages themselves. A malicious mix server could, when included in a cascade,
replace the encrypted pseudonym applications with new pseudonym applications that it has
encrypted himself and thereby steal votes. This problem is generally addressed by zero-
knowledge proofs, such as the zero-knowledge argument proposed by Bayer and Groth
[5]. The system is not coercion-resistant beyond the level of privacy, this is not a design
consideration for the author.

2A turnout of around 90% is typical of countries with compulsory voting, with the sole exception of
North Korea where sanctions are severe and even in that case turnout in the 2019 parliamentary election
was 99,99% instead of 100% [41]. Due to its lack of anonymity and single option on ballots, we will not
consider the North Korean system as a model for an election protocol.

2.2 Mixnets 10

In Acrohalides we will also create digital pseudonyms, but this
will be done in a different manner.

2.2.1 Prêt à Voter

Ryan et al. designed the Prêt à Voter system that offers voters in a paper ballot election
the opportunity to audit the system to see if their votes are correctly processed and tallied
[31]. Voters receive a ballot with the candidates in a randomized order, associated spaces
to mark their vote and an identifier of the ballot. This identifier is in fact the permutation
of the candidates in encrypted form. Voters then choose to either audit the ballot itself
or use it to vote. If they audit the ballot they will be given a new one afterwards. In the
auditing process the ballot’s identifier is processed by the election’s mixnet to produce a
list of candidates in a specific order that should correspond to the order on the ballot, if
this is not the case the ballot is proven to be fraudulent. If they use the ballot to vote, they
mark the candidate they are voting for in the designated space and then destroy the part
of the ballot that explicitly states which candidate belongs to which space, thus making
the vote encrypted. They submit the vote by scanning it in, but keep the physical ballot as
a receipt. The vote is processed (along with all other votes) by the election’s mixnet based
on the ballot’s identifier and the space marked to decrypt the permutation and this mixnet
finally publishes a list of all decrypted votes. The voters (or anyone else) can publicly audit
every mix in the cascade based on their ballot identifier, revealing which cyphertext was
decrypted to which plaintext in that step in the process, but they cannot audit all steps
in the cascade for a single vote since that would compromise its privacy.

The ability to audit paper ballots is an elegant way to protect privacy and even coercion
resistance, but there are several drawbacks to the system. It is not clear for example
what conclusion should be drawn when a ballot is audited and is found to be fraudulent:
intuitively this would mean that the entire election is invalid, since this is the point of
auditing, but that makes the election vulnerable to a type of denial-of-service attack where
a fraudulent ballot is inserted and audited. It is tempting to say that a certain margin
of error in terms of fraudulent ballot should be accepted, but this means honest voters
must audit ballots more often and the process devolves into an auditing arms race between
honest voters and attackers inserting fraudulent ballots. Another type of denial-of-service
attack can be carried out by a fraudulent mix to hide the fact that it changed a ballot: it
can audit the ballot in every other mix in the mixnet, making it impossible for anyone to
audit the ballot in the mix where it was altered.

2.2.2 Helios Voting

Adida developed the popular Helios Voting system based on a mixnet and zero-knowledge
proofs [2]. Voters communicate their vote to the Ballot Preparation System (BPS) which
generates a random number and uses it to encrypt the vote, sending a hash of the vote back

2.2 Mixnets 11

to the voter. The voters can then choose to either audit the vote or seal it. If they audit
it, the BPS sends them the random number and the cyphertext, so they can verify that
this cyphertext and the hash are correct. They then have to start the process again and
receive a new hash they can either audit or seal. If they choose to seal, the BPS discards
the random number and after authentication by the voters, the vote cyphertext will be
written to the system’s bulletin board. The bulletin board is maintained by a trusted third
party but it can be audited. When all the votes have been written to the bulletin board,
they are processed in a mixnet based on the ElGamal cryptosystem that generates a shuffle
of the votes and a number of shadow mixes [11]. Auditors are then given the opportunity
to ask for the shadow mixes to be decrypted, which would give evidence that the shuffle
itself were correct. If they do so, a new shuffle with shadow mixes must be generated.
Only when auditors are convinced of the integrity of the mixnet, the actual shuffle itself
is decrypted and its contents are tallied. The shadow mixes may no longer be audited at
this point, since they would reveal the permutation of the shuffle and thus compromise the
privacy of the voters.

The system is based on many trusted third parties but allows auditors to verify the
behavior of all of them. This provides statistical evidence of the integrity of the election,
but no irrefutable proof. No attempt is made to create coercion resistance since the author
considers e-voting to be inherently vulnerable to coercion.

2.2.3 VoteAgain

VoteAgain was designed to mitigate the issue of coercion [24]. In the pre-election phase a
Polling Authority randomly generates a voter identifier and an initial ballot index for each
voter, but keeps these numbers a secret. In the election phase, voters cast a vote by first
requesting an ephemeral voting token from the PA including both the voter identifier and
the ballot index in encrypted form. The voters append their encrypted vote to this voting
token, sign this message and send it to the bulletin board. A voter can do this multiple
times, each time the Polling Authority increments the ballot index before encrypting it.
This means that, after being coerced, voters can overwrite their coerced vote with a new
vote. The Tally Server reads all the encrypted votes from the bulletin board and performs
a cryptographic shuffle (with a zero-knowledge proof of its validity) of the ballots after
which it decrypts all their voter identifiers and ballot indices, allowing the ballots to be
sorted by voter identifier and all but the ballot with the highest index to be filtered out.
After the shuffle coercers should be incapable of seeing which voter id belongs to the voter
they have tried to coerce, but they could still try to force a voter to vote a specific number
of times and use that number to unmask the voter after the shuffle. It is for this reason
that the TS inserts a random number of dummy ballots, of a lower index, for each voter
id before the shuffle. The encrypted, filtered votes are then sent to a mixnet of Trustees
that decrypts the votes so they can be tallied.

Hindering coercers’ ability to identify a voter by adding dummy votes is a very inter-
esting idea, but it is questionable how effective this is. If the votes are not salted before
encryption (which the authors do not mention), coercers may still create and identifiable

2.3 Blockchain 12

pattern of vote cyphertexts by coercing a voter into voting for different candidates in a
specific order. Unsalted vote cyphertexts however are an even greater risk since they allow
for brute force decryption by iterating over all candidates, so it should perhaps be assumed
that salting is implied. But this allows coercers to identify their coerced votes based on
cyphertext and therefore see if they have been overwritten by a later vote. In addition, if
the Polling Authority and the Trustees all collude together, they can break the privacy of
the voters.

2.3 Blockchain

A decentralized blockchain was introduced by Nakamoto for the purpose of financial trans-
actions [27]. Data is aggregated in a block along with the hash of the previous block,
resulting in a chain of blocks that makes it infeasible to alter data. This opens up the
possibility of using a blockchain as a Bulletin Board for electronic voting schemes.

Many e-voting blockchains are designed as a simple tallying smart contract or dedicated
blockchain with little to no consideration for either privacy or uniqueness of the vote
[35][8][21][23][25][34][16][36][1][32][29][6]. Hanifatunnisa et al. only use e-voting for the
tallying between districts, thereby circumventing the need for privacy and reducing the
problem to simple sums [18]. Wang et al. make interesting claims about properties their
system supposedly has, but it is not clear how their system makes good on these promises
[37].

We also use a blockchain to implement a Bulletin Board and
other functionality in Acrohalides.

2.3.1 U.S. Government

Emery et al. carried out a penetration test of an e-voting blockchain prototype developed
by a U.S. government organization playing an important role in U.S. national elections [12].
The prototype was not published and the organization remains anonymous.3 In the system
an Election Officer maintains a database of all registered voters and creates an election
by sending out e-mails to these voters. Voters authenticate with the Election Officer
and send back a signed plaintext vote. The signature in question is not a cryptographic
digital signature but a handwritten signature recorded on a touchscreen device such as
a smartphone. The Election Officer manually compares the signature to an image of the
voter’s signature and if they match the Election Officer logs the vote (without the signature
or any identifying information about the voter) in the blockchain.

3The prototype was to be used in a large-scale mock election in order to learn practical lessons about
E-Voting. It was not used and was never intended to be used in a real U.S. election.

2.3 Blockchain 13

There is no privacy in this system from the point of view of the Election Officer. It
is also unclear what the purpose of the handwritten signatures is: signatures are used for
authentication but the voters have already authenticated when they send the vote and
digital images are easy to copy. The system is not coercion-resistant.

2.3.2 PriScore

PriScore is a decentralized score voting system based on a blockchain and zero-knowledge
proofs [38]. At registration the voters each generate a key pair, in addition to key pairs for
each candidate (in other words, there is a key pair for each voter-candidate combination).
The voting phase is split into two steps: Commit and Vote. The tallying phase is also
split into two steps: Self-Tally and Tally. If all goes well (i.e. if every voter cooperates
throughout the entire process) only the Vote and Self-Tally steps are actually needed. The
vote consists of a ballot and a zero-knowledge proof of that ballot. The ballot consists
a.o. of gp, where g is a common base and p is the actual score the voter is voting for. In
Self-Tally all the ballots are multiplied with each other, resulting in gP where P is the sum
of all p’s and therefore the final tally, recovered by calculating the logarithm. If the ballots
were to solely consist of gp however this would compromise their privacy, so a mathematical
trick is applied to mask the vote: the voter multiplies the ballot by the public keys of all
voters with a lower index, to the power of the voter’s own private key, and divides it by
the public keys of all the voters with a higher index, again to the power of the voter’s own
private key. When the ballots are multiplied with each other these public keys all cancel
each other out and only gP is left. This system fails when one voter registers but declines
to vote, so the Vote step is preceded by a Commit step. In this step the voter encrypt gp

by multiplying it with all the public keys of the other voters, to the power of a random
number, and publishes this commitment in the blockchain. If the voter neglects to vote
afterwards, the Tally step is executed: the other voters can cooperate to decrypt the vote
from the commitment since they collectively have all the private keys corresponding to the
public keys used to encrypt the commitment, and then they can add this vote to the tally.

The Commit and Tally steps make it possible to tally if one voter abandons the process
but not if more than one voter does, so the system might not require a perfect turnout but
instead a near-perfect turnout and is therefore not robust. The presence of a Commit step
also opens up the possibility of voters abandoning the process before this step, which also
requires the process to start over and thus does not solve anything. In the Vote step itself
each voter does a linear amount of work in terms of the number of voters, which can be
large in an election. It is also important to consider the size of the digital numbers used
to represent the ballots: public and private keys must be significantly larger than regular
integers and floating point numbers to provide security, and the ballots must be a product
of a number of public keys that depends linearly on the number of voters but also on the
value of the private key. Any loss in precision results in an inaccurate tally. Since voters
are capable of divulging their private keys, the system is not coercion-resistant.

2.3 Blockchain 14

2.3.3 zkHawk

Banerjee designed an e-voting blockchain based on the zk-SNARK implementation of zCash
[4]. Voting is done by having a voter transfer one coin to the candidate, which can be done
anonymously in zCash. The final tally is done by an offchain smart contract named zkHawk
that guarantees that the sum is correct.

Leveraging zk-SNARKs and zCash in order to provide privacy in e-voting is an in-
triguing idea, but a fundamental issue in the usage of zk-SNARKs is their reliance on
a Structured Reference String which requires trusted setup, and therefore a trusted third
party. As the author suggests, this can be mitigated using an updatable zk-SNARK: voters
can “update” the SRS and thereby make themselves one of the trusted third parties who
would have to be compromised in order to compromise the election. If all voters do this,
the election is secure, but it is questionable how scalable this solution is.

2.3.4 d-BAME

Zaghloul et al. designed a blockchain-based system where electronic ballots are provided
to voters by two third parties: the registrar and the moderator [39]. They cooperate by
means of a protocol that guarantees that voter privacy is not compromised to each party
by itself: only when the two parties collude will they be able to discover which individual
corresponds to which vote. The registrar and the moderator must therefore be chosen in
such a way that they would never collude, for example by choosing two opposing candidates
in the election. Voters generate a key pair and register by providing their credentials and
their public key to the registrar, which signs the public key and provides this signature
as proof to the voters that they are registered. The registrar also secretly generates a
set of ballots (as many as there are voters) that contain random nonces and some extra
data. When the registration period is over, the registrar publishes all registered voter
public keys in the blockchain, without any information that would reveal the identity of
the voters corresponding to each public key. Voters who are disenfranchised in this step
can prove this by publishing the signature of their public key that they received from the
registrar. In the next step, voters pseudonymously request a ballot from the moderator
by authenticating with their private key. The moderator in turn requests the ballot from
the registrar by providing the public key, encrypted with a blinding factor b. The registrar
chooses another blinding factor q and uses it to encrypt the public key even further as k,
then it sends the ballot encrypted by k to the moderator, along with an encrypted version
of q that can only be decrypted by the private key of the voter. The moderator therefore
cannot decrypt the ballot, but can send the encrypted ballot to the voter along with b and
the encrypted version of q, which allows the voter to decrypt the ballot by first decrypting
q. The voter then appends the vote to the ballot and encrypts this string with the public
keys of both the registrar and the moderator and publishes it in the blockchain. When all
votes have been cast (as cyphertext) the registrar publishes all the ballots and then both
the registrar and the moderator publish their private keys so the votes can be decrypted.

The system seems completely secure under the assumption that the registrar and the

2.4 Other Systems 15

moderator do not collude. One can wonder however to what extent this can be guaranteed:
it is possible for one party to infiltrate the other and thus reveal voters’ identities via
espionage. It is also possible that two adversarial parties would collude in opposition to a
third adversarial party, especially if there is a political culture of two entrenched parties
(a “two-party system”) that is being challenged by a newcomer. At the end of the day
the fact that two parties are electoral enemies does not mean they do not have a shared
interest in uncovering voters’ identities. Voters can be coerced when they have received
their ballots.

2.3.5 CoinJoin

Maxwell designed the CoinJoin transaction style to improve privacy within the context of
BitCoin financial transactions [26]. In BitCoin a transaction consists of two parts: a set
of inputs, each with their own value, and a set of outputs, each with their own value as
well. The sum of all the values of the inputs must equal the sum of all the values of the
outputs. This means that if we take multiple transactions and add the inputs together,
this number will equal the sum of the outputs of all the transactions and therefore these
transactions can be combined into a single transaction. At this point the only possible
way of determining which inputs originally corresponded to which outputs is by comparing
their monetary value, but this information is completely lost if the outputs all have the
same value, so there is a degree of anonymity. Specifically an anonymity set is created,
which is the set of all the entities that took part in this combined transaction and therefore
the set of all possible candidate payers for any payment made.

This does not mean that CoinJoin transactions are completely secure: Goldfeder et al.
have demonstrated a cluster intersection attack which is capable of uncovering the identity
of the owner of a coin [15]. This attack relies on the fact that multiple coins can be owned
by the same entity and therefore spent together. When this happens and it becomes public
knowledge that these coins were owned by the same entity, their anonymity sets are reduced
to the intersection of the original anonymity sets, which is likely to be very small and might
even single out the owner.

While CoinJoin is specifically a financial transaction style, we
will employ a similar idea in Signature Dilution.

2.4 Other Systems

Several other systems have been proposed that do not fall neatly into categories such as
mixnets or blockchains. Some of these systems have even been used in actual political
elections.

2.4 Other Systems 16

2.4.1 Pfitzmann and Waidner

Pfitzmann and Waidner designed an election protocol based on pseudosignatures and a
Byzantine agreement protocol [30]. In the first phase, all participants {P1, ..., Pn} make a
reservation using the Dining Cryptographers protocol, where individual voters Pi broadcast
a null message for almost all authentication IDs except for one, the authentication ID
chosen by this voter, in which case they broadcasts their secret key Mi. The space of
possible authentication IDs must be sparse enough to make collisions unlikely. When
broadcasting however they obfuscate their key (or null message) by adding/subtracting
secret keys Ki,j that they have agreed upon with each other voter Pj in pairwise fashion:
they add any secret key agreed upon with a voter of lower index, and subtract any secret
key agreed upon with a voter of higher index. The result is a local sum Oi which they
broadcast and from which the actual key cannot be reconstructed.

Oi = Mi + (K1,i + ...+Ki−1,i)− (Ki+1,i + ..+Kn,i)

However when all local sums are added together, each pairwise key Ki,j is added exactly
once and subtracted exactly once and therefore only the sum of the secret keys remains,
which is assumed to be only one secret key Mi due to the aforementioned sparseness (or
simply zero in case all voters broadcast a null message for this authentication ID).

S = O1 + ...+On = M1 + ...+Mn

The order of the authentication IDs defines an order for the voters since they each
chose a different one, so after the first phase all voters knows their own position in the
order (since they know which authentication ID they chose) but not the position of any
other voter.

In phase 2 the same procedure is repeated for every voter in order, but the voters Pi

whose turn it is withhold their local sum Oi and instead broadcast random data. The result
is that the secret keys cannot be reconstructed from the publicly available information
(because S is not public data), but in each round the voter Pi whose turn it is can privately
reconstruct all the secret keys from the other voters (since this voter knows the missing
local sum Oi and therefore S), without knowing which key belongs to which voter. The
voters can then pseudosign their vote with all the secret keys they have each received and
then they can broadcast their vote using an untraceable broadcast protocol that again
relies on the DC protocol and pseudosignatures.

If there are n voters, then for every authentication ID n·(n−1)
2

pairwise keys must be
created, and this must be done for all m possible authentication IDs (where m >> n), and
in the pseudosignature phase this is done for all n voters, resulting in a complexity of O(n3 ·
m). This complexity is exacerbated by the fact that the protocol relies on completely honest
voters, so in order to take attacks into account there is an ingenious system of traps and
investigations that add even more complexity. Unsurprisingly, the authors consider their
work to be “constructive proofs of existence rather than practically applicable protocols”.

2.4 Other Systems 17

Since voters have the secret keys they use to pseudosign their vote, the system is not
coercion-resistant.

2.4.2 Cramer et al.

Cramer et al. designed a multi-authority election protocol based on the ElGamal cryp-
tosystem [10]. Voters publish their encrypted votes nonanonymously on the bulletin board
and there is a set of authorities that cooperate to tally, which they will only do at a given
time when the election is considered to be over. They cooperate by means of secret shar-
ing: each vote is encrypted with a public key and can only be fully decrypted by a secret
key composed of a subset of the individual secret keys of each authority. The fact that
only a subset is needed and not the entire set of authorities makes the scheme more robust
since it protects against malicious authorities that block the count (assuming there are
not too many malicious authorities). However, the authorities do not actually fully de-
crypt each vote, but instead they make use of the homomorphic properties of the ElGamal
cryptosystem to tally the vote within the space of the encryption, and then afterwards
they cooperate to fully decrypt this tally [11]. The encrypted votes and decrypted tally
are further guaranteed to be valid by means of zero-knowledge proof, usually requiring
interaction with independent users (“verifiers”). Since such interactions are a scalability
issue, they are instead replaced by a random oracle generating challenge messages. One
issue with this protocol is however that a malicious authority, or rather a set of malicious
authorities, might be inclined to do more than just stall the tally: voter privacy is pro-
tected by the goodwill of authorities that will only decrypt the tally and not the votes, but
a large enough subset of authorities could in principle decrypt the votes and thus compro-
mise voter privacy. The authorities can even do this in secret, since they can communicate
and conspire with each other in secret and since decryption is possible with only a subset
of the partial keys, affording the conspiring authorities plausible deniability. The system
is also not coercion-resistant since voters can divulge the plaintext of their votes.

2.4.3 Estonia

Estonia introduced nationwide electronic voting, called i-voting, in 2005 [13]. In the system
votes are processed by three government parties: the Collector, the Processor and the
Tallier. Voters cooperate with the Collector to first encrypt their vote with the public
key of the Tallier and then sign the encrypted vote with their own private key. Voters
can do this multiple times during the week before election day, each time overwriting
their previous vote, in an attempt to counter coercion. The Collector provides voters with
QR codes they can use to request their vote during this stage, verifying that the vote
was actually recorded. When the i-voting deadline passes the Collector forwards all these
signed encrypted votes to the Processor, which checks all the digital signatures and nullifies
any double votes. When the Processor has assembled its final list of signed encrypted votes
it removes the signatures and any information identifying the voters and then sends these
encrypted votes to the Tallier, which can decrypt and tally the votes.

2.4 Other Systems 18

The Estonian i-voting system, while towering above election proceedings in countries
such as neighboring Russia, is not without its faults. The privacy of the voters relies on the
assumption that the Collector, Processor and Tallier do not collude. The QR code used
to verify that a vote was recorded is of limited use since it only audits the first step in the
process: votes can still be removed by the Processor or the Tallier. To mitigate this risk
the system introduces Auditors that can repeat the work of the Processor or the Tallier
in order to verify that this was done correctly, but access to this role cannot be universal
since that would compromise the privacy of the voters. Restricting it to only designated
Auditors however reintroduces the problem of collusion. The idea that overwriting votes
prevents coercion also does not hold water since the coercion can happen immediately
before the deadline.

2.4.4 Switzerland

The Swiss state of Geneva introduced e-voting in 2003 but due to initial flaws completely
overhauled it in 2017 [17]. Central to this new version is the role of a number of election
authorities that generate the contents of voting cards and process the votes in a distributed
manner using the ElGamal cryptosystem: the election authorities cannot decrypt votes by
themselves and compromise privacy or integrity. Each election authority first generates
a secret key share they then use to collectively generate the public key. They also col-
lectively generate codes and credentials for each unique voting card that will be printed
by the printing authority and handed to a voter. In the election phase the voters encrypt
their vote with the election authorities’ collective public key and generate a non-interactive
zero-knowledge proof that this cyphertext contains a valid vote based on the voter’s voting
code. The election authorities respond by each sending shares of verification codes that
the voter can combine to create the actual verification codes that must match the ones
written on the voting card. The voter then generates a confirmation based on the confir-
mation code written on the card and sends this to the election authorities, proving that
the vote corresponds to a valid voting card. When all the votes have been cast the election
authorities use the homomorphic properties of the ElGamal cryptosystem to first calculate
an encrypted tally and then cooperate to decrypt it.

While offering a high level of security, the system assumes no collusion between the
election authorities: they can cooperate to decrypt individual ballots. Since voters can
divulge the plaintext of their votes, the system is not coercion-resistant.

19

Part II

Acrohalides Design &
Implementation

PROTOCOL OVERVIEW 20

Chapter 3

Protocol Overview

Acrohalides relies on a Bulletin Board implemented as a blockchain [10][27]. This entails
a peer-to-peer network of nodes that connect to each other as in Figure 3.1 to broadcast
messages, including the blocks in the blockchain. All nodes in the network implement
the same protocol, but during an election there is an election manager, who has special
capabilities and responsibilities in the blockchain, and a number of eligible participants.
The election manager is defined by a key pair, so it is possible for multiple nodes in the
network to act as the same election manager if they share the keys.

Verifiable decentralized voting is implemented in quite a straightforward manner by
having voters, who are eligible participants, publish their anonymously signed votes in
the blockchain, eliminating the need for a trusted third party. The main novel idea is a
Signature Dilution process that generates anonymity and therefore enables privacy of the
vote, in a manner reminiscent of CoinJoin [26]. An election consists of five phases:

1. Setup: The election manager chooses a pair of asymmetric keys and initializes the
blockchain.

2. Registration: Voters choose their initial pair of asymmetric keys and register them
in the blockchain with the help of the election manager. There is no anonymity in
this phase.

3. Signature Dilution: Registered voters work together to turn their nonanonymous
keys into anonymous keys.

4. Commitment: Voters choose who they vote for and publish a hash of their vote.

5. Voting: Voters publish the actual readable vote corresponding to their hash from
the Commitment phase.

We will discuss each of these phases briefly in order below to sketch the general idea of
the protocol. The phases are revisited with all the details of the protocol in Section 4.

3.1 Setup 21

Figure 3.1: An illustration of the network used by Acrohalides, consisting of an election manager
E and several eligible participants {P1, ..., P9} that connect to each other.

3.1 Setup

In this phase the election manager chooses the asymmetric keypair to be used for this
election. The election manager either generates a new public and private key, or reuses
one from a previous election. The election manager also generates a new 64-bit election
ID, which will be used in conjunction with the public key to uniquely identify this election.
Both the public key and the election ID will be included in all messages so they can be
distinguished from other elections, so if the public key is being reused it is very important
that the election manager choose a new election ID. This data is then included in a special
initialization block which the election manager signs and publishes, starting the blockchain.

3.2 Registration

During Registration we do not yet worry about privacy, which makes the system quite
straightforward. Voters individually generate an asymmetric key pair and then present
themselves in person at the office of the election manager where they prove their identity.
This can be done in any way the election manager sees fit, such as by means of a photo ID,
a handwritten signature or biometric data. Voters hand over their public key and provide
a guarantee that they will recognize this as their public key. This guarantee can take any
form the election manager sees fit: it could be a simple declaration with a handwritten
signature or it could be a video of the voter reading the key out loud, or something else
entirely. The election manager then publishes the public key along with the identity of the
voter in the election’s bulletin board, completing the registration process.

3.3 Signature Dilution 22

This bulletin board is best implemented by using the blockchain that was initialized in
the Setup phase so it can easily interface with the Signature Dilution phase. A registration
block then simply consists of the public key and identity of one voter and it is validated by
the signature of the election manager. Registration closes by means of a special dilution
start block, also validated by the signature of the election manager. Nevertheless it may be
decided that Registration shouldn’t happen via a blockchain, for example due to HAVA’s
insistence on a centralized registration list, in which case the election manager can simply
publish a single block including the hash of the registration list in this phase. In the
remainder of this thesis we will however assume registration is implemented within the
blockchain.

3.3 Signature Dilution

All the voters that were registered with a public key in the previous phase can now work
together to generate anonymous public keys for themselves. They do this by means of a
signature dilution process that will be explained here.

Let V = {v1, v2, ..., vn} be n eligible voters and let each voter vi have an initial asymmet-
ric key pair (pki,0, ski,0), with the public key pki,0 being publicly associated to vi’s identity.
Let vi also have another key pair (pki,1, ski,1), which we will refer to as the diluted key pair,
with the public key pki,1 not being publicly known yet and therefore not associated with
vi. If vi signs a message with the initial private key ski,0 it is proven that this message was
signed by a voter but the voter is not anonymous. If vi signs a message with the diluted
private key ski,1 there is complete anonymity but there is also no proof the signer is one
of the voters: any attacker could simply have generated a new key pair.

Let ab be the assembler of a new block b, which we will refer to as a dilution block, in
a process visualized in Figure 3.2. ab might be one of the voters but this is not necessary.
Voters vi can anonymously send their diluted public keys pki,1 to ab, who assembles the
block as a list b = {pkπ(1),1, pkπ(2),1, ..., pkπ(n),1} in a random order. ab can now broadcast b
and all voters vi can verify that their diluted public key pki,1 is listed in b and if so, they
sign it with their initial private key: si = sign(ski,0, b). They then send this signature
back to ab who collects all n signatures and publicly broadcasts b′ = (b, {s1, s2, ..., sn}).
The order of the signatures is different from the order of the diluted public keys: there is
a random permutation π which is not known to ab or anyone else. The signatures prove
that each initial public key pki,0 is associated with at least one diluted public key pki,1 in
the block so if the number of signatures is equal to the number of diluted public keys it is
proven that each pki,1 corresponds to exactly one pki,0 and therefore to an eligible voter,
but b′ does not reveal which voter, preserving the voter’s privacy. Each pki,1 is therefore
proven to belong to exactly one member of the anonymity set V . We say that all voters
have diluted their public key.

Signature dilution is similar to CoinJoin in the sense that there is a set of input-output
relations which are obscured by mixing all the input together and mixing all the output
together [26]. In CoinJoin this is done with financial transactions, where the inputs are

3.3 Signature Dilution 23

Figure 3.2: An illustration of the signature dilution process. The old keys (pk1,r−1, ..., pkn,r−1)
are listed alongside the new keys (pkπ(1),r, ..., pkπ(n),r) and each old key corresponds
to one new key by means of a secret permutation π. All this data is signed with the
signatures (s1,r−1, ..., sn,r−1 of the old keys, proving that the owner of each old key
is represented by one of the new keys.

addresses of entities spending money and the outputs are addresses of entities receiving
the same money, while in signature dilution it is public keys that replace each other.

Public keys differ from transaction inputs and outputs in that they are indivisible and
non-fungible, which means it is not necessary to agree upon a uniform output size. It also
means that the number of input public keys must be equal to the number of output public
keys (as opposed to the sum of all transaction input values and the sum of all transaction
output values in CoinJoin), which guarantees that the number of output identities is equal
to the number of input identities. Since each entity only has a single identity to dilute, the
cluster intersection attack is not possible [15].

Another difference is the expectation that monetary transactions are part of a broader
state change that is not entirely captured within the blockchain: money is paid in exchange
for goods, and these goods are handed over in the real world. This is an important difference
since it makes a cryptocurrency blockchain far more vulnerable to attacks by means of
forking than a signature dilution blockchain: attackers can double-spend because they can
undo half of the purchase, i.e. the transfer of money, while the other half, the transfer
of goods, is not reversed. This does not happen in signature dilution since orphaning a
dilution block reverses the entire state change and the affected parties can simply try again
with a new dilution block.

Assembling a dilution block for all voters in an election might lead to scalability issues,
so it is more feasible if the voters vi first dilute their public keys pki,0 within a small group
of size k, and therefore a small anonymity set, to validate pki,1. They can then dilute pki,1
once again within another group of k voters to validate a twice diluted public key pki,2,
which now has an anonymity set of size k2. If the voters vi each take part in r dilution

3.4 Commitment 24

blocks their keys’ anonymity set grows exponentially as kr.1

3.4 Commitment

Since privacy is already guaranteed by Signature Dilution, voting itself can be implemented
in a very straightforward way. Most of the systems cited in Section 2 can be appended
here, especially the ones that primarily lacked voter privacy. Nevertheless we will develop
a Voting phase that combines well with the Signature Dilution phase and the blockchain
we have been using so far, while also meeting the requirements sketched in Section 2. The
Commitment phase is a preceding phase that serves to provide the recommendation of
fairness.

In the simplest form of the Voting phase, voters vi can sign their votes wi with their
(last) diluted private key ski,r, append the public key pki,r and publish this message
(wi, sign(ski,r, wi), pki,r) in the bulletin board, i.e. the blockchain we have been using so
far. This however reveals the content of early votes before later votes have been cast, so we
do not have fairness in this system. We therefore first let the voters publish a commitment
block, which contains a signed hash of the vote: (hash(wi, z), sign(ski,r, hash(wi, z)), pki,r),
where z is a random salt chosen by the voter. The block does not reveal the content of the
vote, but it does lock the voter into it.

Double votes can be dealt with in multiple ways. It is possible to only count the
first vote and therefore the first commitment block, in which case the blockchain may
even be configured to reject commitment blocks with a signature that has already passed.
Alternatively it is possible to only count the last vote to comply more fully with the
guidelines of the Venice Commission and the Help America Vote Act [14][20]. In the
remainder of this thesis we assume the latter option.

3.5 Voting

When the Commitment phase is over, voters broadcast their votes along with the salt they
used and their public key: (wi, z, pki, r). At this point it is no longer necessary to append
this information to the blockchain: the candidates, or anyone else, can simply listen for
votes being broadcast and include them in their tally. It is in the individual candidates’
interest to include all the votes for themselves in the tally, so if they all listen and tally we
can expect every vote to be counted.

The vote wi itself can be any kind of data the election manager allows. If there is a
fixed set of candidates or choices they can each be associated with a dedicated bit string,
but it is also possible to define a format for a structured message for, e.g., score voting, or
to allow for write-ins in ASCII format. In the remainder of this thesis we will assume a
fixed set of candidates or choices.

1If there are eight voters in a block and the voters take part in five blocks, their keys will be diluted
among 32768 voters, which is larger than the population of 509 of Belgium’s 581 municipalities.

PROTOCOL DETAILS 25

Chapter 4

Protocol Details

This section describes the five phases of the protocol in more detail. The Setup phase is
covered in Section 4.1, the Registration phase in Section 4.2, the Dilution phase in Section
4.3, the Commitment phase in Section 4.4 and the Voting phase in Section 4.5. Section
4.6 describes the resolution of forks in the blockchain, which relies on the chain score of
each block that is detailed in the following sections.

4.1 Setup

The election c is initiated by the election manager mc, who must first generate an asym-
metric keypair (pkmc , skmc). This keypair can be reused by mc between different elections,
but for each election a new 64-bit identifier IDc must be generated. The pair (pkmc , IDc)
uniquely identifies the election. To start the blockchain, mc broadcasts an initialization
block as shown in Figure 4.1, signing it with the private key skmc . This ends the Setup
phase and starts the Registration phase.

4.2 Registration

A voter vi generates the initial keypair (pki, ski) and has it registered with a string IDvi

of length 128 in ASCII format. mc creates a registration block and signs it as shown in
Figure 4.2.

The chain score of a registration block is one more than the chain score of its predecessor.
If its predecessor is an initialization block, its chain score is assumed to be 0 and therefore
the registration block will have a chain score of 1.

All voters are registered with registration blocks during this phase and they can even
do so multiple times: the last registration overwrites the rest if IDvi is the same. This
phase ends with a dilution start block shown in Figure 4.4.

4.2 Registration 26

Description

Prefix ASCII-encoded string “Initializa-
tion block - ”

pkmc Public key of the election man-
ager

IDc Index of the election

smc Signature of the election manager

Figure 4.1: Contents of an initialization block

Description

Prefix ASCII-encoded string “Registra-
tion block - ”

pkmc Public key of the election man-
ager

IDc Index of the election

IDb Index of the block within the
blockchain

hash(bIDb−1) Hash of the previous block in the
blockchain

Cb The chain score at this block.

IDvi Bytestring uniquely identifying
the voter vi

pki,0 The public key vi registers

smc Signature of the election manager

Figure 4.2: Contents of a registration block

4.3 Signature Dilution 27

Description

Prefix ASCII-encoded string “2 disen-
franchised - ”

Registration block The registration block containing
the disenfranchised voter

Figure 4.3: Contents of a disenfranchisement message

The chain score of a dilution start block is equal to the chain score of its predecessor.
In the unlikely case that its predecessor is an initialization block, its chain score is assumed
to be 0 and therefore the dilution start block’s chain score is also 0.

If a registration block was orphaned due to a fork, it is the election manager’s duty to
append it later. If this does not happen and a voter is disenfranchised, this voter can use the
data of the orphaned block to prove this. This happens by means of a disenfranchisement
message, which is simply a prefix followed by the contents of the registration block as
shown in Figure 4.3.

Since the election manager is the only one appending blocks in this phase (even though
the manager might consist of multiple government employees using the same key), it should
be possible to avoid forks with some coordination.

4.3 Signature Dilution

The Signature Dilution phase employs a number of different blocks and a greater number
of auxiliary messages, all necessary to coordinate the process. This section explains the
process and is divided into several smaller sections: Section 4.3.1 covers the dilution blocks
themselves, Section 4.3.2 covers the concept of maximum depth and the associated depth
block and pre-depth block, and Section 4.3.3 covers the dilution pools that are necessary to
create a dilution block, and the way their membership is negotiated. Section 4.3.4 describes
the dilution end block used to end this phase and list the candidates that can be voted for.

4.3.1 Dilution blocks

Signatures are diluted in a dilution block with a layout as in Figure 4.5. It contains nb

old public keys that must be diluted and therefore also nb new public keys that are the
result of this dilution. If the old public keys are listed in an order {1, ..., nb}, the new
public keys are listed as a permutation π of that order: {π(1), ..., π(nb)}. π is not fully
known to anyone, the voters vi will each only be able to identify their own place π(i) in
the permutation. The block is signed with nb signatures, each signature corresponding to
an old public key and these signatures are listed in the same order {1, ..., nb}.

4.3 Signature Dilution 28

Description

Prefix ASCII-encoded string “dilution
start block - ”

pkmc Public key of the election man-
ager

IDc Index of the election

IDb Index of the block within the
blockchain

hash(bIDb−1) Hash of the previous block in the
blockchain

Cb The chain score at this block.

smc Signature of the election manager

Figure 4.4: Contents of a dilution start block

The chain score Cbj of a dilution block depends on δbj : the number of distinct anonymity
sets being diluted in this block bj. δbj is added to the chain score of the previous block and
then decremented:

Cbj = Cbj−1
+ δbj − 1

The chain score thus tends to increase with the length of the blockchain, but if the
blocks do not dilute much the chain score only increases slowly. If all its public keys
already belonged to the same anonymity set, the chain score does not increase at all.

The depth db of a dilution block is defined as such:

db = 1 +max
pk∈b

db′ : ∃sk : (sk = pk−1 ∧ ∃s : s = sign(sk, b′))

It is one greater than the largest depth of one of the old public keys that are being
diluted. The depth of each of these keys corresponds to the depth of either the dilution
block they originated in, or zero if they originated in a registration block. This depth is
important because it is not allowed to be too high, as will be explained in Section 4.3.2.

The anonymity set Ab is a number and it is also defined recursively:

Ab = min
pk∈b

Ab′ : ∃sk : (sk = pk−1 ∧ ∃s : s = sign(sk, b′))

It is the smallest anonymity set number of each of the blocks that created a signature
to be diluted in this block, where the anonymity set of a registration block is simply the
public key being registered, interpreted as a number. Keeping track of the anonymity set

4.3 Signature Dilution 29

Description

Prefix ASCII-encoded string “Dilution
block - ”

pkmc Public key of the election man-
ager

IDc Index of the election

IDb Index of the block within the
blockchain

hash(bIDb−1) Hash of the previous block in the
blockchain

Cb The chain score at this block.

IDP The identifier of the pool that is
being formed

pkab Public key of block assembler ab

IDbpkab
Index of the block in which ab’s
public key originated

db Depth of the dilution block

Ab Anonymity set of the new public
keys

nb Number of public keys that are
diluted

pk1,r−1 Old public key of voter v1

Repeated
nb times

IDbpk1,r−1
Index of the block in which v1’s
old public key originated

...

pknb,r−1 Old public key of voter vnb

IDbpknb,r−1
Index of the block in which vnb

’s
old public key originated

pkπ(1),r New public key of voter vπ(1)
Repeated
nb times...

pkπ(nb),r New public key of voter vπ(nb)

s1,r−1 Signature of voter v1 with the old
private key sk1,r−1 Repeated

nb times
...

snb,r−1 Signature of voter vnb
with the old

private key sknb,r−1

Figure 4.5: Contents of a dilution block

4.3 Signature Dilution 30

Description

Prefix ASCII-encoded string “1 Pre-
depth block - ”

pkmc Public key of the election man-
ager

IDc Index of the election

IDb Index of the block within the
blockchain

hash(bIDb−1) Hash of the previous block in the
blockchain

Cb The chain score at this block.

smc Signature of the election manager

Figure 4.6: Contents of a pre-depth block

in this way allows users to see which blocks, and therefore which signatures, belong to the
same anonymity set and so calculate the dilution factor in constant time.

4.3.2 Maximum depth

In order to avoid public keys with a higher depth being diluted alongside public keys with
a lower depth (which would negatively impact the ideal exponential growth of anonymity
sets), we maintain a maximum depth Dc of a blockchain. The depth of each block is
not allowed to exceed this maximum depth, which is initially one. The election manager
increments Dc periodically by means of a pre-depth block and a depth block with shown
in Figures 4.6 and 4.7 respectively. The two layouts are identical apart from their prefix.
In both blocks the chain score is 16 plus the chain score of its predecessor.

The reason there are two distinct blocks used for incrementing Dc is the presence of
leftover voters: if voters are only allowed to dilute their signatures once before the next
depth block, it is possible that some voters are unable to find anyone to dilute their
signature with in this round. In theory this can only be a single voter, since multiple
voters should still be able to dilute their signatures with each other, but in practice there
might end up being multiple voters who have not diluted their keys. An intuitive way of
solving this problem would be to divide the electorate beforehand into groups in such a
way that no one is left out, but this would require everyone to participate and is therefore
not robust. The risk of having leftover voters simply cannot be avoided, but fortunately
for them there are multiple rounds and it is extremely unlikely that they will be leftover
in other rounds as well.

4.3 Signature Dilution 31

Description

Prefix ASCII-encoded string “0 Depth
block - ”

pkmc Public key of the election man-
ager

IDc Index of the election

IDb Index of the block within the
blockchain

hash(bIDb−1) Hash of the previous block in the
blockchain

Cb The chain score at this block.

smc Signature of the election manager

Figure 4.7: Contents of a depth block

The pre-depth block however gives them an extra edge to allow them to avoid this
situation. After the pre-depth block is published, blocks with a higher depth are allowed but
only if there is at least one old public key with a lower depth in the block, giving preferential
treatment to voters who were leftover in the previous round of Signature Dilution. When
the depth block is published, this precondition is dropped and all blocks with a higher
depth are allowed. The pre-depth blocks and depth blocks thus alternate in the signature
dilution phase, with many dilution blocks in between. Other voters are incentivized to work
together with these leftover voters because if they can dilute early, they know they won’t
be leftover themselves in this round. Leftover voters therefore have ample opportunity to
avoid being leftover again, they need only take this opportunity.

4.3.3 Dilution Pools

It is possible to start the process of assembling a dilution block by having the voters simply
broadcast their new public keys anonymously and wait until an assembler includes them.
This can lead to many overlapping blocks however and when voters are included in multiple
competing blocks, it is in their own best interest to only sign one of them since they would
otherwise spoil the privacy the blocks are supposed to give them.1 If all voters choose
randomly though they are unlikely to choose blocks in a way that is completely compatible

1It does not matter that only one of the competing blocks will end up in the blockchain, since an
attacker can still listen for signatures that are being broadcast even if those signatures will be discarded
by the protocol.

4.3 Signature Dilution 32

Description

Prefix ASCII-encoded string “Applica-
tion - ”

pkmc Public key of the election man-
ager

IDc Index of the election

pki,r−1 Old public key of voter vi

IDbpki,r−1
Index of the block in which vi’s
old public key originated

si,r−1 Signature of voter vi with the old
private key ski,r−1

Figure 4.8: Contents of a dilution application

and network traffic will descend into chaos, particularly if attackers decide to exploit this
weakness and use it in a denial-of-service attack.

It is therefore advisable for voters and block assemblers to first negotiate their mem-
bership in a dilution pool that will be used to assemble the block. There are eight types of
messages used before the full dilution block itself can be broadcast:

1. Dilution application message: voters broadcast this message to signal their avail-
ability.

2. Invite: ab sends this to each voter to start forming the dilution pool.

3. Pool response: voters send this message to ab to signal that they chose this pool
to participate in.

4. Pool message: ab sends this to each voter to inform them of all the other voters
and allow them to communicate anonymously within the pool.

5. Pool acknowledgement: voters acknowledge that the pool message was correct

6. New key message: voters send this message containing their new public key to ab.

7. Unvalidated dilution block message: ab assembles a dilution block without sig-
natures and sends this to each voter to have it signed.

8. Signature message: voters send their signature for the dilution block to ab.

4.3 Signature Dilution 33

Description

Prefix ASCII-encoded string “invite - ”

pkmc Public key of the election man-
ager

IDc Index of the election

pki,r−1 Old public key of voter vi

IDbpki,r−1
Index of the block in which vi’s
old public key originated

IDP The identifier of the pool that is
being formed

sDilutionApplication Signature of the dilution applica-
tion, listed as si,r−1 in its layout.

pkab Public key of block assembler ab

IDbpkab
Index of the block in which ab’s
public key originated

sab Signature of assembler ab with the
private key skab

Figure 4.9: Contents of an invite

For their r-th dilution block, voters vi first broadcast a dilution application message
signed with their private key ski,r−1 as shown in Figure 4.8.

The block assembler ab listens for these messages and chooses k voters to invite, ab will
prefer to choose them in such a way that the dilution factor will be high to make sure the
whole process isn’t in vain. ab generates a pool identifier IDP which, in combination with
ab’s public key, uniquely identifies this pool. The assembler then sends a signed invite to
vi, the layout of which is shown in Figure 4.9.

If the voters vi choose this dilution pool they each send a signed pool response back
with a layout as shown in Figure 4.10.

If the assembler ab has received enough responses to form a block, ab chooses an asym-
metric session keypair (pkP , skP) and forms a pool message with a layout as in Figure 4.11.
This message contains the session public key pkP and a list of all the members of the pool.
For each member vi the session private key skP is also included, encrypted with vi’s old
public key pki,r−1. The signature in the message is calculated over everything that comes
before it.

The pool members each check if the encrypted session private key actually corresponds
to the session public key. If so, each pool member vi sends a pool acknowledgement (Figure

4.3 Signature Dilution 34

Description

Prefix ASCII-encoded string “response -
”

pkmc Public key of the election man-
ager

IDc Index of the election

pkab Public key of block assembler ab

IDbpkab
Index of the block in which ab’s
public key originated

IDP The identifier of the pool that is
being formed

pki,P Pool public key of voter vi

si,P Signature of voter vi,r−1 with the
private key ski,r−1 for the pool
public key pki,P

sDilutionApplication Signature of the dilution applica-
tion, listed as si,r−1 in its layout.

sInvite Signature of the invite, listed as
sab in its layout.

pki,r−1 Old public key of voter vi

IDbpki,r−1
Index of the block in which vi’s
old public key originated

si,r−1 Signature of voter vi,r−1 with the
private key ski,r−1

Figure 4.10: Contents of a pool response

4.13) acknowledging the pool message. If not, vi publishes the pool private key ski,P in
a blame message (Figure 4.14) with the associated pool message, proving ab has acted in
bad faith.

If all pool members have broadcast a pool acknowledgement however, they subsequently
broadcast their new public key pki,r signed with the session key in a new key message with
a layout as in Figure 4.15.

After receiving all the new keys, ab can start assembling the block b itself. Specifically
ab can create everything except for the signatures used to validate the block. ab can then

4.3 Signature Dilution 35

Description

Prefix ASCII-encoded string “Pool mes-
sage - ”

pkmc Public key of the election man-
ager

IDc Index of the election

pkab Public key of block assembler ab

IDbpkab
Index of the block in which ab’s
public key originated

IDP The identifier of the pool that is
being formed

pkP Session public key of this pool

nb Number of members in the pool,
and therefore the number public
keys that are diluted

Pool Member1 Pool member item of voter v1, de-
tailed in Figure 4.12 Repeated

nb times
...

Pool Membernb
Pool member item of voter vnb

,
detailed in Figure 4.12

sab Signature of the block assembler
ab with the private key skab

Figure 4.11: Contents of a pool message

send an unvalidated dilution block message shown in Figure 4.16. The signature at the end
is calculated over everything up to and including the unvalidated block itself.2

When vi receives a valid unvalidated dilution block message with both vi’s old key and
new key in it, vi will sign the dilution block inside and broadcast it as a signature message
with a layout as in Figure 4.17. The signature is calculated over the unvalidated dilution

2The signature is not strictly necessary from the perspective of the integrity of the signature dilution
process, but without it attackers could mount a denial-of-service attack where they send a false unvalidated
dilution block message (with some incorrect new keys) to a pool member to have it signed. The pool
member will quickly discover the mistake when the real unvalidated dilution block message arrives, but at
that point the new key must be discarded because signing two different blocks that both contain this new
key would compromise its anonymity. As a result the entire pool fails and the process must start anew.

4.3 Signature Dilution 36

Description

pk1,r−1 Old public key of voter vi

IDbpki,r−1
Index of the block in which vi’s
old public key originated

pki,P Pool public key of voter vi

si,P Signature of voter vi,r−1 with the
private key ski,r−1 for the pool
public key pki,P

sDilutionApplication,i Signature of the dilution applica-
tion of voter vi,r−1, listed as si,r−1

in its layout.

sInvite,i Signature of the invite of voter
vi,r−1, listed as sab in its layout.

sPoolResponse,i Signature of the pool response of
voter vi,r−1, listed as si,r−1 in its
layout.

Epki,P (skP) Session private key, encrypted
with vi’s pool public key

Figure 4.12: Contents of a pool member item in a pool message

Description

Prefix ASCII-encoded string “4 pool ac-
knowledgement - ”

i Index of the pool member who ac-
knowledges the pool

Pool message Full contents of the pool message
being acknowledged

si,r−1 Signature of the voter vi with the
private key ski,r−1

Figure 4.13: Contents of a pool acknowledgement

4.3 Signature Dilution 37

Description

Prefix ASCII-encoded string “Blame - ”

i Index of the pool member who re-
ceived a fake private key

ski,P The pool private key of vi

Pool message Full contents of the fraudulent
pool message

Figure 4.14: Contents of a blame message

Description

Prefix ASCII-encoded string “New key
message - ”

pki,r New public key of voter vi

Pool Message Full contents of the pool message
of this pool

sP Signature with the session private
key skP

Figure 4.15: Contents of a new key message

Description

Prefix ASCII-encoded string “Unvali-
dated - ”

Dilution block Dilution block without signatures

sab Signature with the assembler’s
private key skab

Figure 4.16: Contents of an unvalidated dilution block message

4.3 Signature Dilution 38

Description

Prefix ASCII-encoded string “Signature
- ”

IDP The identifier of the pool that is
being formed

pkab Public key of block assembler ab

IDbpkab
Index of the block in which ab’s
public key originated

pki,r−1 Old public key of voter vi

IDbpki,r−1
Index of the block in which vi’s
old public key originated

si,r−1 Signature with the voter’s private
key ski,r−1

Dilution block Dilution block without signatures

sUnv Signature of the unvalidated di-
lution block message with the as-
sembler’s private key skab , listed
as sab in it

Figure 4.17: Contents of a signature message

block inside the message.
When ab has received signature messages from all members, ab can publish the fully

validated dilution block as given in Figure 4.5.

4.3.4 Dilution end block

The Signature Dilution phase is ended by a dilution end block as shown in Figure 4.18. It
contains a candidates formatted message that specifies exactly what votes are allowed in
the following two phases. The chain score is 32 more than the chain score of the preceding
block: it must be significantly higher than the chain score of a dilution block in order to
allow the election manager to be authoritative in ending the Signature Dilution phase, but
at the same time it should not be so high that it could enable the election manager to
undo a significant amount of signature dilution.

4.4 Commitment 39

Description

Prefix ASCII-encoded string “end block
- ”

pkmc Public key of the election man-
ager

IDc Index of the election

IDb Index of the block within the
blockchain

hash(bIDb−1) Hash of the previous block in the
blockchain

Cb The chain score at this block.

Candidates A formatted message detailing
the possible voting options for
this election.

smc Signature of the election manager

Figure 4.18: Contents of a dilution end block

4.4 Commitment

In this phase voters vi commit their votes with a commitment block, the layout of which
is given in Figure 4.20. It contains a salted hash of the vote: due to the size of the salt z
it is not feasible to brute-force the vote itself. The vote content of this commitment block
is locked in due to the hash and it is linked to the public key of the voter contained in
the block as well, ensuring that only one voter per voter is tallied. Its chain score depends
on whether there was already a commitment block for the same public key: if so, the
chain score is equal to the chain score of the predecessor block; if not, the chain score is
incremented.

The Commitment phase ends with a commitment end block as shown in Figure 4.20.

4.5 Voting

This phase does not add any new blocks to the blockchain. Voters simply broadcast a vote
message (Figure 4.21) referencing the commitment block that was used for this voter’s final
vote. The vote message also contains the voter’s public key and the content of the vote w
and the salt z, allowing anyone to verify that this vote corresponds to the hash in the

4.5 Voting 40

Description

Prefix ASCII-encoded string “Commit-
ment block - ”

pkmc Public key of the election man-
ager

IDc Index of the election

IDb Index of the block within the
blockchain

hash(bIDb−1) Hash of the previous block in the
blockchain

Cb The chain score at this block.

hash(w, z) Salted hash of the vote w of the
voter v

pkv Public key of the voter v

IDbpkv
Index of the block in which v’s
public key originated

spkv Signature of the voter v

Figure 4.19: Contents of a commitment block

commitment block.

4.6 Forks 41

Description

Prefix ASCII-encoded string “3 Com-
mitment end block - ”

pkmc Public key of the election man-
ager

IDc Index of the election

IDb Index of the block within the
blockchain

hash(bIDb−1) Hash of the previous block in the
blockchain

Cb The chain score at this block.

smc Signature of the election manager

Figure 4.20: Contents of a commitment end block

Description

Prefix ASCII-encoded string “vote - ”

pkmc Public key of the election man-
ager

IDc Index of the election

w Content of the vote

z Salt

pkv Public key of the voter v

IDbhashw,z
Index of the commitment block

Figure 4.21: Contents of a vote message

4.6 Forks

When a fork occurs in the blockchain it is resolved on the basis of three criteria. The
criteria are applied in the order listed: the second criterion only applies if the first criterion
is inconclusive and the third criterion only applies if the first two criteria are inconclusive.
The criteria are:

4.6 Forks 42

1. The types of the two blocks that start each branch of the fork: in some cases this is
enough to determine that one branch wins.

2. If the above was not enough, the chain scores of the two blocks that end each branch
of the fork: the highest chain score wins.

3. If the chain scores are equal, there is a final criterion which again depends on the
types of the two blocks that start each branch of the fork.

We will now discuss the first and third criteria in more detail, followed by a note on
forks and commitment end blocks.

4.6.1 First criterion

Depending on the types of the two blocks that start each branch of the fork the protocol
might immediately decide which branch wins, or it might be inconclusive and the second
and possibly the third criterion have to be taken into account. Figure 4.22 shows which
block loses to which other block according to the first criterion: the block at the base of
each arrow loses and the block at the tip of each arrow wins. If no arrow exists between
two blocks, the first criterion is inconclusive. The first criterion is always inconclusive if
the blocks have the same type.

4.6.2 Third criterion

If the first criterion was inconclusive and the chain scores of both branches are equal, the
fork is resolved according to a third criterion. If both blocks were commitment blocks, the
branch with the highest length wins. If the chain lengths are equal however, or if the blocks
were of the same type but not commitment blocks, the fork is resolved by calculating the
block priority of each block bj:

pbj = valuebj − valuebj−1

A value valuebj−1
from the previous block, interpreted as a number, is subtracted from

the corresponding value valuebj of the current block, again interpreted as a number, within
a finite group. The block with the lowest priority wins. Performing the calculation within
the finite group ensures that blocks with higher values are not stuck in livelock.

The specific value and finite group used depends on the block type:

• Registration block: The value is the voter ID IDvb in the finite group 21024. If the
voter IDs are equal, the public key is used in the finite group 2512.

• Dilution block: The value is the first public key to be diluted pk1,b in the finite
group 2512. If the two public keys compared are equal, the block with the lowest key
origin index for the first public key IDbpk1,b

wins. If those indices are equal too, the

second public key of each block is used, and then its key origin block index, and then

4.6 Forks 43

Figure 4.22: The blocks that lose and win a fork according to the first criterion.

Figure 4.23: The blocks that lose and win a fork according to the third criterion.

the third etc. If all public keys of the block with the fewest are equal to the first
public keys of the other block as well as their indices, the block with the most public
keys wins. If all public keys to be diluted and their indices are equal and there is
an equal number of public keys, the first new public key originating in the blocks
is used, and then the second etc. If all new public keys are the same, as well as all
keys to be diluted and their origin block indices, then the public key of the block
assembler is used. Lastly, if the block assembler is the same as well as all the new
keys and the old keys along with their origin indices, the pool identifier is used.

• Dilution end block: The value is the hash of the entire block hash(b) in the finite
group 2512. If the hashes are equal, the smallest block wins. If the blocks are the
same size, the value used for the block priority is the entire content of the block.

• Commitment block: The value is the public key pkv of the voter v in the finite
group 2512. If the public keys are equal, the block with the lowest key origin index
IDbpkv

wins. If those indices are equal too, the value is the hash of the vote hash(w, z).

For blocks with differing types but equal chain scores, forks are decided in the way
shown in Figure 4.23. The block at the base of each arrow loses and the block at the tip
of each arrow wins.

4.6.3 Forks & commitment end blocks

The election manager is not allowed to create two commitment end blocks for the same
election (which would mean two branches of a fork both end in a commitment end block).
It is also not allowed to create a commitment end block before the deadline of election
day. If either of these things can be shown to have occurred, the election is invalid and the
election manager is blamed for fraud.

PROTOCOL IMPLEMENTATION 44

Chapter 5

Protocol Implementation

This chapter details our implementation of the protocol and the client that uses it. Section
5.1 describes the client we have implemented, Section 5.2 lists cryptographic standards
used, Section 5.3 describes several data structures and Section 5.4 details all the messages
used by the protocol and their sizes. The code of our implementation can be found at
https://github.com/bartvandemeerendonk/acrohalides.

5.1 Client

All nodes in the network run the same client application, whether they function as election
managers or eligible participants. We have implemented the client application in the Java
language, using Bouncy Castle for all cryptography. Figure 5.1 shows an overview of an
Acrohalides client at a high level of abstraction. Similar to the Enterprise Ethereum client
architecture, the Acrohalides client consists of four layers: the Application Layer, the
Privacy Layer (combining functionality of the Tooling and 3 P’s layers of the Enterprise
Ethereum client), the Blockchain Layer and the Network Layer [28]. Table 5.1 shows the
number of source lines of Java code for each of the implemented layer classes. Figure 5.2
shows an example network with the layered structure of each client application. There is
one election manager and there are three eligible participants, but they all run the same
client application with the same layers.

Layer SLoC count

Application Layer 299

Privacy Layer 502

Blockchain Layer 3773

Network Layer 230

Table 5.1: Java Source-Lines-of-Code count of the implemented layers.

5.1 Client 45

Figure 5.1: A high level overview of the layered structure of the implemented client.

5.1.1 Application Layer

Users interface with the Application Layer, which keeps track of the most abstract data of
the elections they interface with: a set of Election objects for the elections they participate
in, and a set of ElectionManagerRole objects for every key pair they can use in the capacity
of an election manager. The key pairs used by voters do not exist in this layer, instead
they are each simply represented by an identity index, an integer indexing the collection
of key pairs this client has at its disposal.

5.1.2 Privacy Layer

The Application Layer interfaces with the Privacy Layer, which uses an IdentityStore
object to keep track of the Identity objects for every voter key pair this client controls.
Besides the public and private key, Identity object keep track of the block indices of the
blocks where their public keys were introduced and the blocks where their public keys were
invalidated.

This layer’s primary purpose it to translate the indices of these Identity objects into
their associated public keys and signatures. This layer also translates the Election objects
from the Application Layer into the public keys and identifier bytestrings used by the
protocol, and it captures vote messages from the Blockchain Layer and tallies the results
of an Election object.

5.1 Client 46

Figure 5.2: An example network consisting of an election manager and three eligible partic-
ipants, shown with the four layers of the client. Each user interfaces with the
Application Layer and the clients connect to each other via the Network Layer.

5.1 Client 47

5.1.3 Blockchain Layer

The Privacy Layer interfaces with the Blockchain Layer, which primarily models the
blockchain and the dilution processes. It uses Blockchain objects to keep track of the
various election blockchains this client is currently following, each one defined by the pub-
lic key of its election manager and its identifier bytestring.

For each blockchain, it also keeps track of the dilution processes that this client is a part
of, the processes it is managing and a limited set of processes that it is simply observing in
order to monitor other clients’ behavior. If the layer has broadcast a dilution application,
it times out after a while and then it sends another one. If the layer is attempting to start
a dilution pool and has invited potential members, these also time out after a while and
then the layer invites other potential members.

It does neither of these things indefinitely however: it randomly switches between
broadcasting dilution applications and attempting to start dilution pools. Switching from
broadcasting dilution applications to attempting to start dilution pools happens based
on the maximum switch counter from applications sa: if the layer has sent fewer than
sa dilution applications, there is a 1

sa
chance that it switches to attempting to start a

dilution pool any time a dilution application times out. If the layer has sent sa dilution
applications, it automatically switches to attempting to start a dilution pool. A similar
strategy is employed for switching from attempting to start a dilution pool to sending
dilution applications, but this is based on the maximum switch counter from pools sp.

In this layer all messages sent through the network are created, validated and processed.
When blockchain forks arise, they are resolved in this layer using the associated Blockchain
object.

5.1.4 Network Layer

The Blockchain Layer interfaces with the Network Layer, which interfaces with the net-
work used to communicate the blockchain. This layer keeps track of adjacent nodes in
the network by means of their NetworkInterface, identified by their IP address and port
number.

The layer uses a flooding protocol to forward all the anonymous broadcast messages it
receives, after first validating the messages by interfacing with the Blockchain Layer. Note
that this means that, in our current implementation, the anonymous broadcast messages
are not fully anonymous, since nodes can track from which side of the network the messages
are coming. This can be mitigated by implementing onion routing, but we have not
included this in the implementation since it is no longer new research.

The Network Layer also uses unicast messages to make and respond to requests of its
adjacent nodes. This can be a request for the last block of a blockchain or the predecessor
of a block. These messages are not flooded, the receiving node simply answers by sending
the requested block.

5.2 Cryptography 48

5.2 Cryptography

We have implemented all the cryptographic functionality we use by means of the Bouncy
Castle library. All asymmetric encryption is implemented using Elliptic Curve Cryptog-
raphy with public keys of 64 bytes and private keys of 32 bytes, using the named curve
secp256r1. Digital signatures are implemented using the Elliptic Curve Digital Signature
Algorithm with the SHA256 hash function and public key encryption is implemented using
the Elliptic Curve Integrated Encryption Suite.

Block hashes are calculated using the SHA512 hash function, but vote hashes are gen-
erated using the BCrypt password hash function with a salt of 16 bytes and a cost of 10.
This is because the purpose of vote hashes is that they should not be feasible to crack by
brute force.

5.3 Data structures

In order to efficiently access data in the Blockchain Layer, we have developed several data
structures that enable fast lookup and LIFO buffer functionality.

5.3.1 Byte set

A byte set is a set of bytestrings. Since bytestrings are stored by reference in Java, a normal
hash set cannot look up bytestrings by value in sublinear time: two bytestring objects with
the same value still have a different reference and thus a different hash.

Byte sets do provide this functionality by storing the data in a tree structure: each
node has a hash set with a limited size where bytestrings are initially stored. In this case
the node is a leaf node of the tree. If this hash set overflows, the contents are split up on
the basis of the byte at the index of the depth of this node in the tree structure. For each
distinct byte, a new child node is created that receives all of the associated bytestrings.
The original node is now no longer a leaf node, so the initial hash set is replaced by a hash
map that matches bytes by value to child nodes.

5.3.2 Byte map

A byte map is a map in which the keys are bytestrings. It implements the same tree
structure as byte sets to enable lookup by value in sublinear time, as opposed to linearly
iterating over the keys of a hash map. The difference between a byte map and a byte set
is that the leaf nodes in a byte map store a hash map with bytestrings as keys, as opposed
to a hash set.

5.3.3 Circle

A circle combines the functionality of a LIFO buffer with fast lookup and removal by
content. It is implemented as a linked list with a maximum size: whenever the buffer

5.3 Data structures 49

overflows, the first element is removed. To enable content-based lookup and removal, it
also maintains a byte map mapping content to elements in the linked list. The first element
can always be popped from the circle. Based on the type of content that is stored inside the
circle, several variants exist with slightly different functionality: the hash circle, the blame
circle, the blockchain circle, the dilution application circle and the background dilution
process circle.

Hash circle

A hash circle keeps track of hashes of larger messages. The flooding protocol in the Network
Layer uses this to store hashes of messages that passed recently, so it can avoid resending
them ad infinitum through cycles in the network. The elements in the hash circle contain
the hash as a bytestring of a fixed size.

Blame circle

A blame circle keeps track of public keys that look like they are sabotaging dilution pro-
cesses, so nodes can avoid getting into a new dilution process with them because they fear
it will be sabotaged as well. The elements in the blame circle contain the public key that
is blamed as a bytestring, as well as the index of its origin block and the pool identifier
of the sabotaged pool as a bytestring. The blame circle provides functionality to count
the number of elements for a given public key, which corresponds to the number of failing
dilution pools this key has been a part of and thus the likelihood that this key was the
culprit.

Blockchain circle

A blockchain circle is used for keeping track of alternative branches of the blockchain, so
they can be used by the fork resolution protocol. Each element contains a reference to a
blockchain and the content based lookup and removal works by means of the hash of the
predecessor of the first block: when this predecessor block arrives at the Blockchain Layer,
it can thus easily find the branch to prepend it to.

Dilution application circle

A dilution application circle keeps track of the dilution applications that were broadcast.
Each element contains a reference to the dilution application and the content based lookup
and removal works by means of the public key bytestring inside the dilution application.
When popping an element from the dilution application circle, a blame circle can be given
as a parameter to indicate which public keys to avoid. This means that the first element
will not be popped if it is part of a large number of failing dilution pools, but instead a
later element that is not part of a large number of failing dilution pools might be popped.

5.4 Blocks & messages 50

Description Size (B)

Prefix ASCII-encoded string “Initializa-
tion block - ”

23

pkmc Public key of the election man-
ager

64

IDc Index of the election 8

lsmc
Size in bytes of the following sig-
nature

1

smc Signature of the election manager lsmc

Figure 5.3: Layout of an initialization block

Background dilution process circle

A background dilution process circle keeps track of dilution processes that the node itself is
not a part of. This way the node can monitor which dilution processes fail and thus which
public keys were part of a failing dilution process, which will then be kept in a blame circle
that is used to pop dilution applications from the dilution application circle.

Each element in the linked list contains a reference to a dilution process object and the
content based lookup and removal is based on the public key of the block assembler of the
dilution process and its pool identifier.

5.4 Blocks & messages

This section details the full layout of each block and each message used in the protocol
along with the sizes of individual fields within the blocks and messages as well as the sizes of
the blocks and messages themselves. Blocks and messages are listed in their own sections
according to the phase to which they belong. Section 5.10 describes control messages
necessary to enable communication between the nodes in the network.

5.5 Setup

To start the blockchain, mc broadcasts an initialization block of roughly 167 bytes in the
format shown in Figure 5.3, where the signature is calculated over the first 95 bytes.

5.6 Registration 51

Description Size (B)

Prefix ASCII-encoded string “Registra-
tion block - ”

21

pkmc Public key of the election man-
ager

64

IDc Index of the election 8

IDb Index of the block within the
blockchain

8

hash(bIDb−1) Hash of the previous block in the
blockchain

64

Cb The chain score at this block. 8

IDvi Bytestring uniquely identifying
the voter vi

128

pki,0 The public key vi registers 64

lsmc
Size in bytes of the following sig-
nature

1

smc Signature of the election manager lsmc

Figure 5.4: Layout of a registration block

Description Size (B)

Prefix ASCII-encoded string “2 disen-
franchised - ”

20

Registration block The registration block containing
the disenfranchised voter

366 + lsmc

Figure 5.5: Layout of a disenfranchisement message

5.6 Registration

Registration blocks used to register voter vi and the initial keypair (pki, ski) consist of
roughly 437 bytes and have a layout as shown in Figure 5.4. The signature is calculated
over the first 365 bytes.

5.7 Signature Dilution 52

Description Size (B)

Prefix ASCII-encoded string “dilution start block -
”

23

pkmc Public key of the election manager 64

IDc Index of the election 8

IDb Index of the block within the blockchain 8

hash(bIDb−1) Hash of the previous block in the blockchain 64

Cb The chain score at this block. 8

lsmc
Size in bytes of the following signature 1

smc Signature of the election manager lsmc

Figure 5.6: Layout of a dilution start block

The Registration phase ends with a dilution start block with a layout as in Figure 5.6.
It is 247 bytes in size and its signature is calculated over the first 175 bytes.

A voter whose registration block was orphaned can send a disenfranchisement message
(Figure 5.5) of roughly 457 bytes.

5.7 Signature Dilution

This section details the implementation of all the blocks and messages sent during the
Dilution phase.

5.7.1 Dilution blocks

Signatures are diluted in a dilution block with a layout as in Figure 5.7. It contains nb old
public keys that must be diluted and therefore also nb new public keys that are the result
of this dilution. If the old public keys are listed in an order {1, ..., nb}, the new public keys
are listed as a permutation π of that order: {π(1), ..., π(nb)}. The block is signed with
nb signatures, each signature corresponding to an old public key and these signatures are
listed in the same order {1, ..., nb}. The block is roughly 315 + nb · 208 bytes in size and
the signatures are calculated over the first 315 + nb · 136 bytes.

5.7.2 Maximum depth

The election manager incrementsDc periodically by means of a pre-depth block and a depth
block with layouts as in Figures 4.6 and 4.7 respectively. The two layouts are identical

5.7 Signature Dilution 53

Description Size (B)

Prefix ASCII-encoded string “Dilution block - ” 17

pkmc Public key of the election manager 64

IDc Index of the election 8

IDb Index of the block within the blockchain 8

hash(bIDb−1) Hash of the previous block in the blockchain 64

Cb The chain score at this block. 8

IDP The identifier of the pool that is being formed 8

pkab Public key of block assembler ab 64

IDbpkab
Index of the block in which ab’s public key
originated

8

db Depth of the dilution block 1

Ab Anonymity set of the new public keys 64

nb Number of public keys that are diluted 1

pk1,r−1 Old public key of voter v1 64

Repeated
nb times

IDbpk1,r−1
Index of the block in which v1’s old public
key originated

8

...

pknb,r−1 Old public key of voter vnb
64

IDbpknb,r−1
Index of the block in which vnb

’s old public
key originated

8

pkπ(1),r New public key of voter vπ(1) 64
Repeated
nb times

...

pkπ(nb),r New public key of voter vπ(nb) 64

ls1,r−1 Size in bytes of the following signature 1

Repeated
nb times

s1,r−1 Signature of voter v1 with the old private key
sk1,r−1

ls1,r−1

...

lsnb,r−1 Size in bytes of the following signature 1

snb,r−1 Signature of voter vnb
with the old private

key sknb,r−1

lsnb,r−1

Figure 5.7: Layout of a dilution block

5.7 Signature Dilution 54

Description Size (B)

Prefix ASCII-encoded string “1 Pre-depth block - ” 20

pkmc Public key of the election manager 64

IDc Index of the election 8

IDb Index of the block within the blockchain 8

hash(bIDb−1) Hash of the previous block in the blockchain 64

Cb The chain score at this block. 8

lsmc
Size in bytes of the following signature 1

smc Signature of the election manager lsmc

Figure 5.8: Layout of a pre-depth block

Description Size (B)

Prefix ASCII-encoded string “0 Depth block - ” 16

pkmc Public key of the election manager 64

IDc Index of the election 8

IDb Index of the block within the blockchain 8

hash(bIDb−1) Hash of the previous block in the blockchain 64

Cb The chain score at this block. 8

lsmc
Size in bytes of the following signature 1

smc Signature of the election manager lsmc

Figure 5.9: Layout of a depth block

apart from their prefix, the pre-depth block is roughly 244 bytes in size and its signature
is calculated over the first 174 bytes, while the depth block is roughly 240 bytes in size and
its signature is calculated over the first 168 bytes.

5.7.3 Dilution Pools

The layout of a dilution application message is shown in Figure 5.10 and it consists of
roughly 230 bytes, with the signature being calculated over the first 158 bytes.

5.7 Signature Dilution 55

Description Size (B)

Prefix ASCII-encoded string “Application - ” 14

pkmc Public key of the election manager 64

IDc Index of the election 8

pki,r−1 Old public key of voter vi 64

IDbpki,r−1
Index of the block in which vi’s old public
key originated

8

lsi,r−1
Size in bytes of the following signature 1

si,r−1 Signature of voter vi with the old private key
ski,r−1

lsi,r−1

Figure 5.10: Layout of a dilution application

Description Size (B)

Prefix ASCII-encoded string “invite - ” 9

pkmc Public key of the election manager 64

IDc Index of the election 8

pki,r−1 Old public key of voter vi 64

IDbpki,r−1
Index of the block in which vi’s old public
key originated

8

IDP The identifier of the pool that is being formed 8

lsDilutionApplication
Size in bytes of the following signature 1

sDilutionApplication Signature of the dilution application, listed
as si,r−1 in its layout.

lsDilutionApplication

lsab Size in bytes of the following signature 1

sab Signature of assembler ab with the private
key skab

lsab

Figure 5.11: Layout of an invite

An invite consists of roughly 305 bytes with a signature calculated over the first 161
bytes, its layout is shown in Figure 5.11.

5.8 Commitment 56

If the voters vi choose this dilution pool they each send a signed pool response back with
a layout as shown in Figure 5.12. In order to do this, vi needs to generate an ephemeral
asymmetric keypair (pki,P , ski,P) and include pki,P (vi’s pool public key) and a signature
calculated over this new key with pki,r−1. This key will be used to encrypt the session key
in the pool message. The pool response has a size of roughly 587 bytes and its signature
is calculated over the first roughly 515 bytes.

After receiving enough responses, ab forms a pool message with a layout as in Figure
4.11. The message contains roughly 304+nb ·496 bytes and its signature is calculated over
everything that comes before that signature, roughly 232 + nb · 496 bytes.

The pool members broadcast their new public key pki,r signed with the session key
in a new key message with a layout as in Figure 4.15. The message consists of roughly
458 + nb · 496 bytes and the signature is calculated over the first 386 + nb · 496 bytes.

After receiving all the new keys, ab can create the dilution block except for the signatures
used to validate it, so the first 315 + nb · 136 bytes of the layout in Figure 5.7. ab can then
send an unvalidated dilution block message, the layout of which is given in Figure 4.16.
The signature at the end is calculated over the first 329 + nb · 136 bytes (everything up to
and including the unvalidated block itself).

vi signs the dilution block inside the unvalidated dilution block message and broadcasts
it as a signature message with a layout as in Figure 5.19. It is 623 + nb · 136 bytes in
size and the signature is calculated over the unvalidated dilution block inside the message,
which is the last 235 + nb · 136 bytes.

5.7.4 Dilution end block

A dilution end block (Figure 5.20) contains a candidates formatted message that specifies
exactly what votes are allowed in the following two phases. The chain score is 32 more than
the chain score of the preceding block: it must be significantly higher than the chain score
of a dilution block in order to allow the election manager to be authoritative in ending
the Signature Dilution phase, but at the same time it should not be so high that it could
enable the election manager to undo a significant amount of signature dilution.

5.8 Commitment

A commitment block (Figure 5.22) most importantly contains a hash of the vote w along
with a salt z. It is important that w cannot be cracked by brute force, so we use the
password hashing function Bcrypt with cost 10 and we generate a random 128-bit salt z
that will not be published during this phase. The block contains roughly 339 bytes and
the signature is calculated over the first 267 bytes.

5.8 Commitment 57

Description Size (B)

Prefix ASCII-encoded string “response -
”

11

pkmc Public key of the election man-
ager

64

IDc Index of the election 8

pkab Public key of block assembler ab 64

IDbpkab
Index of the block in which ab’s
public key originated

8

IDP The identifier of the pool that is
being formed

8

pki,P Pool public key of voter vi 64

lsi,P Size in bytes of the following sig-
nature

1

si,P Signature of voter vi,r−1 with the
private key ski,r−1 for the pool
public key pki,P

lsi,P

lsDilutionApplication
Size in bytes of the following sig-
nature

1

sDilutionApplication Signature of the dilution applica-
tion, listed as si,r−1 in its layout.

lsDilutionApplication

lsInvite
Size in bytes of the following sig-
nature

1

sInvite Signature of the invite, listed as
sab in its layout.

lsInvite

pki,r−1 Old public key of voter vi 64

IDbpki,r−1
Index of the block in which vi’s
old public key originated

8

lsi,r−1
Size in bytes of the following sig-
nature

1

si,r−1 Signature of voter vi,r−1 with the
private key ski,r−1

lsi,r−1

Figure 5.12: Layout of a pool response

5.9 Voting 58

Description Size (B)

Prefix ASCII-encoded string “Pool mes-
sage - ”

15

pkmc Public key of the election man-
ager

64

IDc Index of the election 8

pkab Public key of block assembler ab 64

IDbpkab
Index of the block in which ab’s
public key originated

8

IDP The identifier of the pool that is
being formed

8

pkP Session public key of this pool 64

nb Number of members in the pool,
and therefore the number public
keys that are diluted

1

Pool Member1 Pool member item of voter v1, de-
tailed in Figure 5.14

lPool Member1

Repeated
nb times

...

Pool Membernb
Pool member item of voter vnb

,
detailed in Figure 5.14

lPool Membernb

lsab Size in bytes of the following sig-
nature

1

sab Signature of the block assembler
ab with the private key skab

lsab

Figure 5.13: Layout of a pool message

5.9 Voting

A vote message (Figure 5.24) most importantly contains the vote content w and the salt
z used to hash it in the Commitment phase, as well as the public key of the voter v and
the index of the commitment block where the hash was committed. Its length in bytes is
168 + lw, the latter being the length of the vote content itself.

5.9 Voting 59

Description Size (B)

pki,r−1 Old public key of voter vi 64

IDbpki,r−1
Index of the block in which vi’s
old public key originated

8

pki,P Pool public key of voter vi 64

lsi,P Size in bytes of the following sig-
nature

1

si,P Signature of voter vi with the pri-
vate key ski,r−1 for the pool public
key pki,P

lsi,P

lsDilutionApplication,i
Size in bytes of the following sig-
nature

1

sDilutionApplication,i Signature of the dilution applica-
tion of voter vi, listed as si,r−1 in
its layout.

lsDilutionApplication,i

lsInvite,i
Size in bytes of the following sig-
nature

1

sInvite,i Signature of the invite of voter vi,
listed as sab in its layout.

lsInvite,i

lsPoolResponse,i
Size in bytes of the following sig-
nature

1

sPoolResponse,i Signature of the pool response of
voter vi, listed as si,r−1 in its lay-
out.

lsPoolResponse,i

lEpki,r−1
(skP) Length in bytes of the following

encrypted session private key
1

Epki,P (skP) Session private key, encrypted
with vi’s pool public key

lEpki,P
(skP)

Figure 5.14: Layout of a pool member item in a pool message

5.9 Voting 60

Description Size (B)

Prefix ASCII-encoded string “Blame - ” 8

i Index of the pool member who received a fake
private key

1

ski,P The pool private key of vi 32

Pool Message Full contents of the fraudulent pool message lPool Message

Figure 5.15: Layout of a blame message

Description Size (B)

Prefix ASCII-encoded string “4 pool acknowledge-
ment - ”

25

i Index of the pool member who acknowledges
the pool

1

Pool message Full contents of the pool message being ac-
knowledged

lPool Message

si,r−1 Signature of the voter vi with the private key
ski,r−1

lsi,r−1

Figure 5.16: Layout of a pool acknowledgement

Description Size (B)

Prefix ASCII-encoded string “New key message - ” 18

pki,r New public key of voter vi 64

Pool Message Full contents of the pool message of this pool lPool Message

lsP Size in bytes of the following signature 1

sP Signature with the session private key skP lsP

Figure 5.17: Layout of a new key message

5.9 Voting 61

Description Size (B)

Prefix ASCII-encoded string “Unvali-
dated - ”

14

Dilution block Dilution block without signatures 315 + nb · 136

lsab Size in bytes of the following sig-
nature

1

sab Signature with the assembler’s
private key skab

lsab

Figure 5.18: Layout of an unvalidated dilution block message

Description Size (B)

Prefix ASCII-encoded string “Signature
- ”

12

IDP The identifier of the pool that is
being formed

8

pkab Public key of block assembler ab 64

IDbpkab
Index of the block in which ab’s
public key originated

8

pki,r−1 Old public key of voter vi 64

IDbpki,r−1
Index of the block in which vi’s
old public key originated

8

lsi,r−1
Size in bytes of the following sig-
nature

1

si,r−1 Signature with the voter’s private
key ski,r−1

lsi,r−1

Dilution block Dilution block without signatures 315 + nb · 136

sUnv Signature of the unvalidated di-
lution block message with the as-
sembler’s private key skab , listed
as sab in it

lsUnv

Figure 5.19: Layout of a signature message

5.10 Control messages 62

Description Size (B)

Prefix ASCII-encoded string “end block
- ”

12

pkmc Public key of the election man-
ager

64

IDc Index of the election 8

IDb Index of the block within the
blockchain

8

hash(bIDb−1) Hash of the previous block in the
blockchain

64

Cb The chain score at this block. 8

Candidates A formatted message detailing
the possible voting options for
this election.

lCandidates

lsmc
Length in bytes of the following
signature

1

smc Signature of the election manager lsmc

Figure 5.20: Layout of a dilution end block

5.10 Control messages

Communication between the nodes in the network requires a number of control messages.
When a node wants to begin tracking a blockchain, it first needs to receive the entire
blockchain as it exists at that moment. The node sends out a chain request (Figure 5.25)
containing the public key of the election manager and the index of the election. Any node
that tracks this blockchain responds by sending the last block in the chain.

When a node receives a block for a blockchain that it is tracking, but it does not have
the block’s predecessor (either because the index of the block is higher than the length
of the chain or because the hash of the predecessor according to the new block does not
correspond to the hash of the predecessor the node has) it must request this predecessor
from the node it received the current block from. This happens by means of a block
request (Figure 5.26) that contains information about the blockchain and the block that is
requested. The other node responds with a requested block message (Figure 5.27), which
most importantly contains the contents of the block that was requested but also some
details indicating that it was the response to a previous block request.

5.10 Control messages 63

Description Size (B)

lt Size in bytes of the tag of each
candidate

1

t1 Tag of the first candidate lt

Repeated
m times

lDescription1 Length of the following descrip-
tion

1

Description1 Descriptive name of the first can-
didate in ASCII

lDescription1

Electable1 Whether the candidate can be
elected or not

1

p1 Index of the parent of the first
candidate

4

...

tm Tag of the last candidate lt

lDescriptionm Length of the following descrip-
tion

1

Descriptionm Descriptive name of the last can-
didate in ASCII

lDescriptionm

Electablem Whether the candidate can be
elected or not

1

pm Index of the parent of the last
candidate

4

Figure 5.21: Layout of the candidates message, part of a dilution end block

5.10 Control messages 64

Description Size (B)

Prefix ASCII-encoded string “Commit-
ment block - ”

19

pkmc Public key of the election man-
ager

64

IDc Index of the election 8

IDb Index of the block within the
blockchain

8

hash(bIDb−1) Hash of the previous block in the
blockchain

64

Cb The chain score at this block. 8

hash(w, z) Salted hash of the vote w of the
voter v

24

pkv Public key of the voter v 64

IDbpkv
Index of the block in which v’s
public key originated

8

lspkv Size in bytes of the following sig-
nature

1

spkv Signature of the voter v lspkv

Figure 5.22: Layout of a commitment block

5.10 Control messages 65

Description Size (B)

Prefix ASCII-encoded string “3 Com-
mitment end block - ”

25

pkmc Public key of the election man-
ager

64

IDc Index of the election 8

IDb Index of the block within the
blockchain

8

hash(bIDb−1) Hash of the previous block in the
blockchain

64

Cb The chain score at this block. 8

lsmc
Size in bytes of the following sig-
nature

1

smc Signature of the election manager lsmc

Figure 5.23: Layout of a commitment end block

Description Size (B)

Prefix ASCII-encoded string “vote - ” 7

pkmc Public key of the election man-
ager

64

IDc Index of the election 8

lw length of w 1

w Content of the vote lw

z Salt 16

pkv Public key of the voter v 64

IDbhashw,z
Index of the commitment block 8

Figure 5.24: Layout of a vote message

5.10 Control messages 66

Description Size (B)

Prefix ASCII-encoded string “chain - ” 8

pkmc Public key of the election man-
ager

64

IDc Index of the election 8

Figure 5.25: Layout of a chain request

Description Size (B)

Prefix ASCII-encoded string “block - ” 8

pkmc Public key of the election man-
ager

64

IDc Index of the election 8

IDb Index of the requested block b 8

hash(b) Hash of the requested block b 64

Figure 5.26: Layout of a block request

Description Size (B)

Prefix ASCII-encoded string “answer - ” 9

hash(b) Hash of the requested block b 64

b Full contents of the requested
block b

lb

Figure 5.27: Layout of a requested block message

67

Part III

Evaluation

EVALUATION PRELIMINARIES 68

Chapter 6

Evaluation preliminaries

This part provides for a theoretical evaluation of the protocol of Acrohalides. It includes
formal proofs as well as calculations of several aspects of the system. The current chapter
outlines some preliminaries we will refer back to in the rest of the evaluation. Section 6.1
describes the roles of the different possible participants in the system, both honest and
attackers. Section 6.2 describes a secondary communication channel that we assume to
exist, called social discourse. It is necessary for some of the proofs to work and we consider
it to be common sense. Chapter 7 evaluates the system according to the five requirements
set out in Section 2.1. Sections 7.1 through 12.3 evaluate the system according to the five
requirements and the four recommendations set out in Section 2.1. Section 13.2 calculates
the size of the blockchain and the number of messages that need to be sent.

6.1 Participants

We refer to anyone involved in the system as a participant. Participants are further subdi-
vided according to their capabilities: eligible participants are individuals with the right to
vote, listed on the electoral roll, the election manager creates the election blockchain and
fulfils the election manager role as described in the protocol, and an outsider is anyone
who is neither an eligible participant nor an election manager. We also distinguish between
sensible participants, who will never carry out actions that are obviously harmful to their
goals, and senseless participants, who might carry out such actions. Finally we also make
a distinction between honest participants, who intend to participate in a free and fair elec-
tion, and attackers, who have any other goal. When discussing outsiders, we do not make
the distinction between sensible and senseless outsiders since it is not meaningful in their
case, and we only consider outside attackers: honest outsiders have nothing to do with the
election so they will not interact with the system. The different roles are discussed in more
detail below, and the specifics of honest sensible behavior are elaborated upon.

6.1 Participants 69

6.1.1 Honest sensible participant

Honest participants are people who interact with the blockchain with the intention of
participating in an election and without the intention to violate any of the requirements
or recommendations set out in Section 2. Honest sensible participants will not carry out
actions that are obviously harmful to this goal. This has very specific implications based
on the different capabilities of the participants.

Honest sensible election manager: An honest sensible election manager is the election
manager of a blockchain who is attempting to hold a free and fair election, and thus the
honest sensible election manager is also an honest sensible participant. The honest sensible
election manager can consist of a group of people that are all attempting to hold a free and
fair election. There is a public key associated with the honest sensible election manager
and it is used in each message as part of the identification of the blockchain. All the
members of this group possess the private key associated with this public key, but no one
else does: sharing the private key with anyone else would obviously be harmful to the
election manager’s goals, so it is not sensible. When registering an eligible participant in
a registration block, the honest sensible election manager obtains proof that the eligible
participant chose to register the public key in it.

Honest sensible eligible participant: Honest sensible eligible participants are honest
sensible participants who are eligible to vote. They each have a unique voter ID that is
publicly linked to their identity. They will never carry out an action that obviously disen-
franchises themselves since this would not be sensible. Honest sensible eligible participants
will follow a number of steps in order, but they might abandon the process at any point
and will in that case not carry out the last steps. Thus it is possible for an honest sensible
eligible participant to carry out only the first two steps and then abandon the process, or
alternatively to carry out steps 1, 2, 3, and 4 and then abandon the process, but it is not
possible to carry out only steps 1 and 4 since this means skipping steps 2 and 3. These are
the steps they carry out:

1. They create a key pair. They will keep both the public and the private key in their
possession to the best of their abilities and they will not reveal their private key to
anyone else unless coerced to do so.

2. They register the public key along with their voter ID with the election manager who
creates a registration block containing this information in the blockchain. They keep a
copy of the registration block and if they notice at the end of the Registration phase
that it has been orphaned, they use it to broadcast a disenfranchisement message
proving that they were disenfranchised.

3. During the Dilution phase, they dilute their keys at least twice. They keep the public
and private keys resulting from each round of signature dilution in their possession
to the best of their abilities and they will reveal neither to anyone else unless coerced

6.1 Participants 70

to do so. For each round of signature dilution they participate in, they first attempt
to dilute their keys before the pre-depth block of that round is published and only
when they fail to do so will they dilute their keys after the pre-depth block has
been published as leftover voters. They attempt to have each dilution block they
participate in remain a part of the winning branch of the blockchain and they attempt
to be part of an anonymity set that is as large as possible given the number of rounds
of signature dilution they participate in and the number of members in each dilution
pool.

4. During the Commitment phase, they choose the candidate they wish to vote for and
create a commitment block that is tied to their vote for this candidate, and append
this block to the blockchain.

5. During the Voting phase, they broadcast the vote message associated with the com-
mitment block they appended in the previous phase, so it can be included in the
tally.

Honest sensible voter: Honest sensible voters are honest sensible eligible participants
who vote, i.e., they carry out the same steps as all other honest sensible eligible participants
and they do not abandon the process at any point.

6.1.2 Sensible attacker

Sensible attackers interact with the blockchain with the intention of violating some of the
requirements and recommendations set out in Section 2, but they do their best to pretend
to be honest participants and so will never carry out an action that reveals they are not.

Sensible attacking election manager: A sensible attacking election manager is the
election manager of a blockchain and is masquerading as an honest sensible election man-
ager but is secretly attempting to violate one or more of the requirements and recommen-
dations. Sensible attacking election managers will never carry out an action revealing that
they are not honest sensible election managers. They will therefore also obtain proof that
an eligible participant chose to register a public key when creating the registration block
containing that public key and the voter ID of that eligible participant.

Sensible attacking eligible participant: Sensible attacking eligible participants are
people who are eligible to vote, like honest sensible eligible participants, and as such they
also have a unique voter ID that is publicly linked to their identity. They do not necessarily
want to follow the same steps as honest sensible eligible participants and instead attempt
to violate one or more of the requirements and recommendations set out in Section 2. They
will however never carry out an attack that enables the victim to publicly prove that they
are guilty of this attack, where the proof actually reveals the identities of the attackers.

6.2 Social discourse 71

6.1.3 Senseless participants

Senseless participants could be honest and intend to participate in a free and fair election,
or they could be attackers trying to violate the system’s requirements, but their intentions
do not really matter since they might carry out actions that are obviously harmful to their
goals. It is easy to see that honest senseless participants are not protected by the system
because they might for example use a public key that they do not have the private key to
and therefore be unable to do anything else: participants are not protected from their own
stupidity. We can categorize senseless participants according to their capabilities:

Senseless election manager: A senseless election manager is the election manager of a
blockchain but might carry out actions that a sensible election manager would not. Since
election managers that try their best to manage a free and fair election are honest sensible
election managers, and election managers that do not do that behave like attackers, the
main difference between a senseless election manager and a sensible attacking election
manager is the latter’s attempt to masquerade as an honest sensible election manager:
senseless election manager can carry out an action that obviously sabotages the election.

Senseless eligible participant: Senseless eligible participants are on the electoral roll
and can thus register a public key and subsequently dilute it, but they might register a
public key without possessing the corresponding private key, or they might broadcast such
a public key as a new key in the dilution process, or they might sign a dilution block that
does not include any public key they have broadcast. They might also abuse the messages
sent during the dilution process, causing it to fail.

6.1.4 Outside attacker:

Outside attackers are neither election managers nor eligible participants within the given
election but they still attempt to violate the requirements and recommendations. Never-
theless they might try to masquerade as any participant in the process.

6.2 Social discourse

We assume that there exists a secondary communication channel that we refer to as social
discourse. The global state of the election is relayed via this channel and all participants
have the ability to both send and listen for messages on this channel. The global state
includes the final tally when it becomes available. It also includes the phase the blockchain
is currently in and this information is updated within this channel so often that all par-
ticipants know the phase soon enough to be able to make full use of it. Social discourse
can in practical reality take the form of media such as television or the world wide web, or
word of mouth between people using the system.

REQUIREMENT VALIDATION 72

Chapter 7

Requirement Validation

7.1 Verifiability

7.1.1 Individual verifiability

This requirement is defined as: Voters must be able to verify that their votes are captured.
Acrohalides completely satisfies this requirement.
Proof: A voter vi casts a vote in the Commitment phase and the Voting phase. During the
Commitment phase, vi appends a commitment block bi to the blockchain and this can be
verified by simply looking at the blockchain. During the Voting phase, vi broadcasts the
vote wi corresponding to bi. If the vote is captured it is included in the tally. All tallies
are published with all the vote messages tallied in them, therefore vi can trivially verify
that wi is in this list and thus that it was captured.

7.1.2 Universal verifiability

This requirement is defined as: Anyone must be able to verify that all captured votes were
counted. Acrohalides completely satisfies this requirement.
Proof: With each tally, all the captured votes w counted are published. It is trivial to
recalculate the tally and therefore verify that all captured votes have been counted.

7.1.3 End-to-end verifiability

This requirement is defined as: Anyone must be able to verify the correct execution of
any step in the process. Acrohalides satisfies this requirement when it comes to sensible
participants. Senseless eligible participants can however disenfranchise themselves and
transfer their vote to another person, and senseless election managers can openly sabotage
the election, publicly showing that they are senseless.
Proof: If in each phase the correct execution of all steps can be verified by anyone, then the
correct execution of any steps in the entire process can be verified by anyone. Therefore

7.1 Verifiability 73

we shall prove that the correct execution of all steps with respect to sensible participants
in each phase can be verified by anyone.

Setup phase: The only thing that happens during this phase is the generation of an
initialization block, which is correct if it was created by the election manager owning the
key pair containing the public key listed in the block. The block is signed with a digital
signature corresponding to this key pair and therefore the correctness of this phase can be
verified by anyone by verifying the signature, assuming a sensible election manager who
by definition knows the private key corresponding to the public key.

Registration phase: During this phase eligible participants are registered by means of
registration blocks. This is correct if each registration block contains a voter ID belonging
to a person eligible to vote and if its public key was chosen by this person for the purpose
of including it in a registration block. The first requirement can be verified by looking up
this voter ID in the electoral roll and the second requirement is verifiable if the election
manager has obtained proof that the person eligible to vote chose to register the public
key, which a sensible election manager will always do.

Senseless election managers might create a registration block containing the voter ID
of an eligible participant who did not agree to this, but this participant can easily see this
by looking at the blockchain and then challenge the election manager, who will be unable
to prove that the eligible participant chose to register the key in this block. The election
manager is then exposed as being senseless.

Senseless eligible participants might also register a public key without possessing the
corresponding private key, with the result being that they disenfranchise themselves.
This phase ends with a dilution start block, which is correct if none of the participants
registered have their registrations annulled. Registrations can only be annulled if the
corresponding registration block is orphaned.

If this does happen, the sensible disenfranchised participants publish a disenfranchise-
ment message containing the registration block. The registration block itself can be verified
since it is signed by the election manager, and the only other requirement for the disenfran-
chisement to be correct is that the eligible participant was not registered with a different
public key during the registration phase. It is trivial to verify this by looking at the blocks
in the blockchain.
Besides the creation of registration blocks, dilution start blocks and disenfranchisement
messages, nothing else happens in this phase. Therefore any step in this phase can be
verified by anyone.

Dilution phase: During this phase eligible participants dilute their public keys in dilu-
tion blocks, meaning they repeatedly replace their old key pair with a new key pair. This
is correct if for every dilution block and for each participant in it, there is exactly one
old public key being invalidated and exactly one new public key introduced, and if the
participant owns the key pairs of both the old and new public key. The dilution block is

7.1 Verifiability 74

signed with the signatures corresponding to the old public keys, so if the participant did
not own the old public key it would not be computationally feasible for this participant to
create this signature. If the participant did not own the key pair belonging to at least one
of the new keys, signing the block would obviously disenfranchise this participant, which
honest sensible eligible participants will never do by definition.

Senseless eligible participants can however disenfranchise themselves by signing a di-
lution block that does not contain a new public key corresponding to a private key they
possess, allowing other people to insert their new keys into the block. Therefore each sen-
sible participant taking part in this dilution process owns at least one of the new keys in
the block, while senseless eligible participants can disenfranchise themselves and transfer
their ability to vote to another person. Since the number of participants taking part in
this dilution process equals the number of old keys which equals the number of new keys,
this means each of the participants taking part in this dilution process owns exactly one
of the new keys, unless there are senseless eligible participants in the dilution pool. Dilu-
tion blocks are therefore correct, with the exception that senseless eligible participants can
disenfranchise themselves and transfer their ability to vote to another person, when the
signatures are correct, and this is trivial to verify.
Depth blocks and pre-depth blocks do not change which keys belong to which participants,
so these blocks are always correct as well.
The phase ends with a dilution end block, which does not in itself change which keys belong
to which participants. It is still possible for a dilution end block to be appended in such
a way that dilution blocks are orphaned, but since we have already proven that there is
a one-on-one correspondence between the keys being invalidated and the new keys being
introduced when all participants behave sensibly, orphaning a dilution block does not make
the process incorrect.
Besides the dilution process creating dilution blocks, the creation of pre-depth blocks,
depth blocks and the dilution end block, nothing else happens in this phase. Since we have
shown that the correct execution of all four of these steps can be verified, the correct ex-
ecution of the entire Dilution phase can be verified for sensible eligible participants, while
senseless eligible participants can disenfranchise themselves and transfer their ability to
vote to another person.

Commitment phase: During this phase eligible participants add commitment blocks to
the blockchain in order to commit their votes. This is correct if each commitment block was
created by the participant listed in it, and if the hash listed in it was also generated by this
participant. Since the participant signs the block, it is trivial to verify that commitment
blocks are correct. Nothing else happens during this phase so the correct execution of the
Commitment phase can be verified.

Voting phase: During this phase voters send vote messages corresponding to the last
commitment block they published in the blockchain during the Commitment phase. Such a
vote message is correct if the vote and salt in it correspond to the hash in the commitment

7.2 Privacy 75

block, which is trivial to verify, and if the participant of the commitment block did not
create a new commitment block later, which is again trivial to verify. The vote messages
are tallied and each tally is published alongside the set of votes it took into consideration.
It is thus trivial to verify that the tally is correct by recalculating it. When two different
tallies are published and they were both calculated correctly, this means the votes taken
into consideration were different. This can happen when two nodes each receive a different
subset of the total set of vote messages. This contradiction can be resolved trivially by
forming the union of the two sets of voters and recalculating the tally on the basis of this
union.
Nothing else happens in this phase and therefore the correct execution of the Voting phase
can be verified.

7.2 Privacy

This requirement is defined as: A third party must not be able to determine how a voter
voted. We will not consider cases where voters willingly cooperate to reveal their votes
since these are covered in Section 12.1 as coercion. Privacy thus refers to determining how
voters voted without their cooperation. We cannot prove that this requirement is satisfied
because there is a way of violating it, but we can evaluate the system to determine the
conditions that must be met for the requirement to be violated.

When we consider a third party trying to determine how a voter voted, we make a
distinction between the different kinds of attackers: the attacking election manager, the
attacking eligible participant and the outside attacker. It turns out that the attacking
election manager has the same capabilities as the outside attacker, so we will cover them
first together, followed by the attacking eligible participant.

7.2.1 Attacking election manager/outside attacker

We can prove that attacking election managers and outside attackers are unable to deter-
mine how an honest sensible voter voted.
Proof: The content of the vote is contained entirely in the vote message and its associated
commitment block, there are no other messages in the protocol that contain this informa-
tion in any form. Therefore if the attacker is unable to determine which voter corresponds
to a commitment block and its associated vote message, then the attacker is unable to
determine how the voter voted. The only information in the commitment block and vote
message that is related in any way to the voter’s identity is the public key and the index
of the block in which it originated. This block can be either a registration block or a
dilution block, but voters who vote with a key originating in a registration block do not
dilute their keys. Since this contradicts the definition of an honest sensible voter we will
not consider such voters and therefore we know that the key originated in a dilution block.
Therefore if the attacker is unable to determine which new key originating in a dilution
block corresponds to a voter, the attacker is unable to determine how that voter voted if

7.2 Privacy 76

it is a sensible voter.
The only information in a dilution block that is related in any way to the voters’

identities is their old keys and the associated signatures. Therefore if the attacker is unable
to determine which old key and signature corresponds to which new key, the attacker is
unable to determine how a voter voted. In the dilution block itself, the order of the new
keys is completely independent of the order of the old keys because the block assembler is
unable to figure out from each new key message what the old key is to which it corresponds.
There is also no extra data within the block that could serve to link the two. Therefore
the attacker cannot determine which old key corresponds to which new key by looking at
the dilution block alone.

There are however nine types of other messages associated with each dilution block: the
dilution application, the invite, the pool response, the pool message, the pool acknowledge-
ment, the blame message, the new key message, the unvalidated dilution block message
and the signature message.

In order for the attacker to determine which old key and signature correspond to which
new key, the attacker must make use of a message containing a new key.

The first such message in the dilution process is the new key message. This message
also contains:

• A prefix

• The contents of the pool message of this dilution process

• A signature using the session key of this dilution pool

The prefix and the contents of the pool message are common to all members of the
dilution pool, so they cannot be used to discover which old key corresponds to the new
key. The signature is generated using a session private key that was listed in encrypted form
in the pool message. Each old key has its own session private key cyphertext in the pool
message, but in order to link the new key message to this session private key cyphertext,
the session private key itself must also be different. There is only one session public key in
the pool message and all pool members check that their session private key corresponds to
this session public key, and send a pool acknowledgement if this is the case. The new key
messages are only sent after all pool acknowledgements were sent, which means the session
private keys of all pool members correspond to the session public key and therefore they
are all the same. It is thus not possible for an attacking election manager or an outside
attacker to determine which old key and signature corresponds to the new key message.

The next message in the dilution process that contains a new key is the unvalidated
dilution block message. This message is the same as a dilution block, except it does not
contain the signatures of the old keys, but it does contain an extra prefix and a signature
of the block assembler. Neither the prefix nor the signature serve to link any of the old
keys to any of the new keys, therefore since the attacker is unable to determine which
new key corresponds to which old key in a dilution block, it is also unable to do so in an
unvalidated dilution block message.

7.2 Privacy 77

The last message in the dilution process that contains a new key before the dilution
block is appended to the blockchain is the signature message. This message contains:

• A dilution block with signatures

• A prefix

• Information identifying the dilution pool and its block assembler

• One of the old public keys

• The signature associated to this old public key

The prefix and the information identifying the dilution pool and the block assembler
cannot be used to link any of the old keys to any of the new keys. The signature and the
associated old public key are intended to identify a single voter, but it is not possible to link
this voter to any of the new keys listed in the message since there is nothing that would
single out one of the new keys. An attacking election manager or an outside attacker
is therefore also unable to determine which new key corresponds to which old key in a
signature message.

7.2.2 Attacking eligible participant

Eligible participants have an extra capability that allows them to compromise the privacy of
another participant. In a single dilution block with N members, N−1 conspiring members
can compromise the privacy of the remaining member: if they all create a joint alternative
signature dilution message with their old keys and new keys and sign this message with
both their old keys and their new keys, only one old key and one new key will be left and
these must thus also correspond to each other. Fewer than N − 1 conspiring participants
cannot do this since there would be more than one old key and more than one new key left
unidentified.

Since participants dilute their keys in multiple rounds and multiple dilution blocks,
attackers must repeat this process for every round. At the end of each round the members of
the dilution pool all belong to the same anonymity set, so since honest eligible participants
attempt to be part of an anonymity set that is as large as possible given the number of
rounds of signature dilution they participate in and the number of members in each dilution
pool, each round must involve N −1 new and different attackers with N −1 different keys.
If voters dilute their keys in r rounds with N participants per pool, this means r(N − 1)
participants must conspire in order to compromise the privacy of a single participant, and
they must coordinate communication across the network perfectly in order to funnel the
targeted participant into each dilution pool every round.

The conspiring participants may however target multiple participants in parallel: in
the first round N − 1 conspiring members are necessary per targeted participant, and it
is possible that there is only one targeted participant, as shown above. In every following

7.2 Privacy 78

round, each pool will contain the targeted participant plus conspiring members from N−1
anonymity sets that do not correspond to the targeted participant’s anonymity set. Each of
them may come from an anonymity set in which they are already compromising the privacy
of another participant, but this means the minimum number of targeted participants is N
times the minimum number of targeted participants in the previous round. Therefore, in
order to keep the ratio of N − 1 conspiring participants per targeted participant during
r rounds of signature dilution, it is necessary for N r−1 participants to be targeted by
(N − 1)N r−1 conspiring participants.

It should be noted that such an attack in the first round means the attackers create
proof that they are guilty of perpetrating this attack, which contradicts the definition of an
attacking eligible participant. This means that if the attackers want to target a victim in
the first round, they need the victim to be a leftover participant that they target with their
keys of depth 1. There would then have to be N r−1 leftover participants and since r ≥ 2
according to the definition of the honest eligible participant this means at least N2−1 = N
leftover participants. N leftover participants could however have formed a dilution pool
before the pre-depth block and avoided being leftover, so according to the definition of the
honest eligible participant there must be fewer than N leftover participants. The ratio of
N − 1 conspiring participants per targeted participant can therefore not be maintained.

The only possible scenario is therefore this: nl leftover participants are targeted after
the first round by N − 1 attackers each, which results in nl(N − 1) attackers in total.
In the next round, all these attackers reshuffle so that each leftover participant is in a
dilution pool with N − 1 attackers that were in different dilution pools during the first
round. If nl < N they cannot form dilution pools of size N in the second round with the
nl(N − 1) attackers in the first round since they would have to include attackers from the
same anonymity set, which means the pool will not create an anonymity set that is as large
as possible and this is something honest eligible voters avoid by definition. Each pool in
the second round must therefore be supplemented with N − nl attackers that have so far
not participated in the attack. Therefore the number of attackers necessary for the first
two rounds is:

nl(N − 1) + nl(N − nl) = nl(2N − 1− nl)

After the second round these attackers have all become part of the same anonymity set,
which means that none of them can attack the victims anymore in any of the following
rounds. For every following round and for every victim there must therefore be N − 1
attackers that have so far not participated in the attack, which amounts to nl(N−1)(r−2)
new attackers and the total number of attackers is:

nl(2N − 1− nl) + nl(N − 1)(r − 2) = nl(r(N − 1) + 1− nl)

The ratio of attackers per victim is:

nl(r(N − 1) + 1− nl)

nl

= r(N − 1) + 1− nl

This is minimized when nl is the maximum value of N − 1:

r(N − 1) + 1− (N − 1) = (r − 1)(N − 1) + 1

7.3 Eligibility 79

It should be noted that, if the nl(N − 1) attackers in the last round do not dilute their
keys any further just like the victim, it will be clear which commitment blocks and vote
message correspond to these attackers and they might be punished by disqualifying their
votes. If they do dilute their keys further, they must find nl(N − 1)(N − 1) eligible
participants who will dilute their keys at least one round further than the victim, and
this number is multiplied by N − 1 for every additional round. Since these participants
have nothing to do with the attack, they might decide to mount a counterattack where
they use the same strategy as the attackers to expose which new key corresponds to the
attacker’s old key. There is no guarantee the participants will do this, but besides the fact
that honest participants are incentivized to see the election be conducted properly, they
are also incentivized to see the attackers being punished by disqualification if they vote
differently. The honest voters who do not vote differently from the attackers have no such
incentive, but they also do not provide any effective privacy since they reveal what the
attacker has voted for.

Therefore the only way of violating voter privacy is for a group of nl(r(N − 1)+1−nl)
attackers to attack nl < N victims, where they have to carefully coordinate communication
across the network so the victims all become leftover participants in the first round and so
they funnel the victims into the dilution pools of the attackers in each round, where the
victims participate in relatively few dilution rounds and where the attackers potentially
expose themselves to disqualification of their votes.

7.2.3 Colluding roles

The attack that can be carried out by eligible participants would not be helped further by
collusion with the election manager or outside attackers since they are not involved in the
dilution process. There are no extra dangers to privacy when an election manager or an
outside attacker conspires with an attacking eligible participant.

7.3 Eligibility

This requirement is defined as: A voter must be someone who is eligible to vote. Acro-
halides satisfies this requirement for honest sensible voters, while senseless eligible partici-
pants are able to transfer their ability to vote to another person.
Proof: A voter is someone who creates a commitment block and sends an associated vote
message. The voter must control a keypair that is considered valid within the blockchain
at the moment the commitment block is added because the voter would not be able to sign
the block otherwise. There are only two reasons why a key would be considered valid for
voting: it was either registered in a registration block or it was one of the new keys of a
dilution block.

If the key was registered in a registration block, it belongs to an eligible participant since
by definition the creation of a registration block takes place during a registration process
that provides the election manager with proof that the participant chose to register this

7.4 Uniqueness 80

key.
If the key originates in a dilution block, it replaces another key that is made invalid

by this dilution block and that belongs to the same participant if the participant is a
sensible honest eligible participant because sensible honest eligible participants do not
disenfranchise themselves. It is however possible that a senseless eligible participant owns
the key that is replaced and chooses to sign the dilution block anyway: the participant
is thereby disenfranchised and the dilution block can contain one additional new key that
may belong to anyone.

Therefore if the old key belongs to a sensible honest eligible participant, the new key
belongs to a sensible honest eligible participant as well (because it is the same participant).
In order for the dilution block to be valid, this old key that is replaced must be valid at the
time the dilution block is added. By virtue of induction this means any key originating in
a dilution block belongs to an honest eligible participant with the exception that senseless
eligible participants can disenfranchise themselves and transfer their ability to vote to
another person.

7.4 Uniqueness

This requirement is defined as: Only one vote per voter may be tallied. Acrohalides satisfies
this requirement with the exception that senseless eligible participants can disenfranchise
themselves and transfer their ability to vote to another person.
Proof: Tallying is done completely in the open on the basis of the public keys used in
commitment blocks and their associated vote messages. Since the protocol specifies that
only the last commitment block of a public key can be tallied, and since each commitment
block only represents a single vote, only one vote per public key is tallied.

This means that, in order for a single voter to have multiple votes that are tallied,
this voter must own multiple public keys that are still valid in the blockchain during
the Commitment phase. There are two places where the public keys can originate: in a
registration block or in a dilution block.

If a public key is registered for a participant in a registration block, the protocol dictates
that all public keys that were registered for this participant in earlier registration blocks
are no longer valid. It is therefore only possible for a participant to have at most one key
originating in a registration block that is still valid.

In a dilution block each sensible eligible participant that is a member of the dilution
pool receives one new valid key, but the participant must also make one old key invalid.
Thus, in the absence of senseless eligible participants, a sensible eligible participant always
gains one valid key in a dilution block but loses another and therefore the number of valid
keys a sensible eligible participant owns remains constant with each dilution block.

Senseless eligible participants are only different in the sense that they can sign a dilution
block with their old keys even when they do not possess the private key corresponding to
any of the new public keys and thereby disenfranchise themselves and transfer their ability
to vote to another person. It is thus not possible for a participant to own multiple keys that

7.5 Integrity 81

are still valid, and therefore only at most one vote per voter is tallied, with the exception
that senseless eligible participants can disenfranchise themselves and transfer their ability
to vote to another person.

7.5 Integrity

This requirement is defined as: Votes must be tallied according to their content, as chosen
by the voter. Acrohalides completely satisfies this requirement.
Proof: The protocol specifies that votes are tallied according to their content w as listed in
the vote message. The vote message also contains a salt z, and w and z are hashed together
to form hash(w, z), which is included in the commitment block. Votes are therefore tallied
according to their content as committed in the commitment block. The commitment block
is signed with the valid key of the voter, making it infeasible for anyone other than the
voter to create the commitment block or alter its contents. Therefore the commitment
block’s hash hash(w, z) represents the vote content as chosen by the voter and the vote is
tallied according to this content.

DENIAL OF SERVICE 82

Chapter 8

Denial of Service

One danger the system should be robust against is the danger of denial of service attacks:
attackers can attempt to sabotage the system by sending large numbers of messages to
honest participants and forcing them to process them, wasting time and resources. The
messages could be either valid or invalid.

Zargar et al. [40] provide a classification of DDoS attacks with two main categories:
network/transport level DDoS flooding attacks and application level DDoS flooding at-
tacks. Even though Acrohalides is an application layer protocol, it is actually the net-
work/transport level DDoS flooding attacks that are relevant to it, because Acrohalides is
a peer-to-peer networking protocol as opposed to a client-server protocol. There are four
types of network/transport level DDoS flooding attacks:

1. (Plain) flooding attacks: attackers simply send a large number of messages to the
victim. The messages are not necessarily valid.

2. Protocol exploitation flooding attacks: attackers send a large number of mes-
sages to the victim, where each message is actually valid and causes the victim to
allocate resources to initiate a process, but the attackers subsequently break the
process off and the victim has wasted the allocated resources.

3. Reflection-based flooding attacks: attackers do not send messages directly to
the victim, but instead to a third party: the messages are valid and cause the third
party to send messages to the victim.

4. Amplification-based flooding attacks: attackers exploit services to send a large
number of messages to the victim. The attackers send messages to these services
that are significantly smaller in size or number than the messages that the services
send to the victim.

Zargar et al. categorize defense mechanisms according to four broad categories: source-
based mechanisms, destination-based mechanisms, network-based mechanisms and hybrid
mechanisms. This classification is however tailored to networks consisting of core and edge

8.1 Invalid messages 83

routers, used by client-server applications. For a peer-to-peer network such as Acrohalides
many of the defense mechanisms cannot be implemented as is, but some can be modified
slightly to fit and sometimes the distinction between two mechanisms is blurred.

Ingress/egress filtering can be applied to any network. IP Traceback mechanisms, Hop-
count filtering, Path Identifiers, Route-based Packet filtering and History-based IP filtering
could all be implemented by modifying the protocol, but these mechanisms are detrimental
to privacy. The mechanism of detecting and filtering malicious routers can however be
easily modified to apply to nodes in the Acrohalides network instead of routers: when
node A discovers that node B is sending malicious traffic, node A can block messages
coming from node B. The Management Information Base is founded in the idea that
certain statistical assumptions about the proper flow of messages can be made, and that
traffic deviating from these assumptions can thus be assumed to be malicious. We can
apply this same idea to Acrohalides, reasoning about the frequency of certain messages.

The degree to which it is possible to send valid messages is heavily dependent on the
capabilities and therefore the role of the attacker. We will therefore structure this section
according to message validity and the different attacker roles: first we will cover invalid
messages coming from any sender in Section 8.1, then valid messages from outside attackers
in Section 8.2, followed by attacking eligible participants in Section 8.3 and finally attacking
election managers in Section 8.4.

8.1 Invalid messages

Messages can be validated upon arrival and subsequently ingress filtering can be applied:
invalid messages will not be processed afterwards. This limits the impact of plain flooding
attacks by sending large numbers of invalid messages, but validation itself will still take
time and resources so it is important to evaluate its impact.

Blocks created by election manager

The initialization block contains the public key of the election manager and is signed with
the signature corresponding to that public key. Validation thus consists of verifying the
signature over the message.

The registration block, dilution start block, pre-depth block, depth block, dilution end
block and commitment end block contain the public key of the election manager, the block
index, the hash of the previous block and the chain score, and they are signed with the
signature corresponding to the public key of the election manager. Validation thus consists
of verifying the signature over the message, verifying that the hash of the previous block
corresponds to the hash of the block with an index that directly precedes the block index of
this block, and verifying that the chain score is increased correctly compared to the chain
score of the preceding block. All of this can be done in constant time with respect to the
number of blocks.

8.1 Invalid messages 84

Blocks created by eligible participant

The dilution block contains a number of old public keys to be diluted and a number of new
public keys to replace them. The block is invalid if the number of old keys does not equal the
number of new keys, which is trivial to verify. It is also signed with signatures corresponding
to all the old public keys, so these signatures must be checked when validating and this
can be done in constant time with respect to the number of blocks. These keys must also
still be valid at this point in the blockchain however. This can trivially be verified in linear
time by, for every key pki,r, iterating over all the blocks in the chain to see whether there
is a block where pki,r originates and whether there is no subsequent block where pki,r is
used and thus made invalid. However, with a little extra memory it can also be verified in
constant time: each key is listed alongside the index of the block in which it originates, so
this can be verified by simply checking the block at that index. Each node can also store,
for every key originating in a block, the index of the block in which it is used and made
invalid, thus allowing verification that a key was not yet used in constant time. The node
must of course update these indices whenever a new block arrives that makes use of a key
in an older block, but this can also be done in constant time.

The dilution block also contains an anonymity set which must be the lowest from
among the anonymity sets of all the blocks where the old keys originated, and each of
these anonymity sets can be found by looking at their blocks, which is possible in constant
time. The block also contains a depth, which must be one higher than the highest depth
from among the depths of all the blocks where the old keys originated. These again can be
found by looking at their blocks in constant time. Finally the block also contains a block
index, hash of the previous block and chain score, which can be found in constant time
with respect to the number of blocks.

The commitment block contains the block index, hash of the previous block and chain
score, which can all be easily verified by comparing the previous block known to the node.
It contains the public key of voter vi and the salted hash of the vote wi, along with a
signature corresponding to vi’s public key. If the signature is valid, the block is valid. Note
that it is possible for the salted hash to be gibberish and not correspond to any vote wi,
but we still consider the commitment block to be valid in this case.

Messages sent by eligible participant

The disenfranchisement message contains a registration block, which must be valid in order
for the disenfranchisement message to be valid. If it is valid, the absence of the block in
the blockchain must be confirmed, which can be done in constant time by reading the
block index and comparing the block at that index in the chain. If it is indeed absent,
the absence of the voter ID in any registration block in the blockchain must be verified.
This can trivially be done in linear time by looking at all the blocks from the start of
the chain to the dilution start block, but it can also be done in near constant time with
respect to the number of blocks if a hashmap is kept mapping voter IDs to the indices of
their registration blocks. The size of each entry in this hashmap is smaller than the size

8.1 Invalid messages 85

of the corresponding registration block, since it contains only the voter ID and the block
index, both of which are also contained in the registration block. The hashmap is therefore
smaller than the total number of registration blocks in the chain and thus smaller than the
blockchain itself.

The dilution application is signed by the public key listed in it, which can be easily
verified. The public key must however also still be valid and its depth must be consulted,
all of which can be done in constant time with respect to the number of blocks, as we have
shown above. When the depth has been consulted, it must be compared to the maximum
depth currently allowed in the chain, which can be done trivially in linear time by iterating
over all the blocks and counting the (pre-)depth blocks. A node may however also keep
track of the maximum depth, allowing it to make the comparison in constant time.

The invite is signed by the public key of the block assembler listed in it, which can thus
be easily verified. The public key of the block assembler must still be valid however and
its depth must be allowed, but we have shown in the above that it is possible to check this
in constant time. Finally the invite must correspond to a dilution application, but all the
data within the application is also contained within the invite, as well as its signature, so
the dilution application can be reconstructed and validated in constant time.

The pool response is signed by the public key of the invitee listed in it, which can thus
be easily verified. The pool key within it is also separately signed by the same public
key, which can therefore also be easily verified. The pool response must correspond to a
valid invite, but all of its information, including it signature, is contained within the pool
response. It is therefore trivial to reconstruct the invite and validate it.

The pool message is signed by the public key of the block assembler pkab listed in it,
which can thus be easily verified. In addition to this key it also contains the public keys
of all the invited members, which must all still be valid and at an acceptable depth, but
we have shown above that this can be verified in constant time. Each key also has a pool
key which is signed by the public key itself and thus trivial to verify. The pool message
must correspond to a number of pool responses in order to be valid, but it contains all
the data necessary to reconstruct those pool responses along with their signatures, so this
can easily be verified. Lastly the pool message contains a session public key pkP as well
as cyphertexts of the corresponding skP , each encrypted by the pool public key of one of
the members vi as Epki,P (skP). Each of these cyphertexts must therefore, when decrypted,
contain the right private key, but this cannot be verified using only the cyphertext. It is
thus possible for Epki,P (skP) to contain an invalid skP and only vi would know since no
one else can decrypt the cyphertext. vi is however expected to respond with either a pool
acknowledgement indicating that Epki,P (skP) is valid, or a blame message proving that it
is invalid. It must thus be assumed that, if the validation checks mentioned earlier in
this paragraph succeed, the pool message is valid until a blame message proves otherwise,
at which point nodes can hold the block assembler ab accountable by giving priority to
messages not coming from ab, in a manner similar to the mechanism of detecting and
filtering malicious routers. A pool message can therefore be validated in constant time
with respect to the number of blocks in the chain, for all purposes not covered by the pool
acknowledgement and blame message.

8.1 Invalid messages 86

The pool acknowledgement contains a pool message as well as the index of the pool
member vi acknowledging that the message is valid, along with a signature corresponding
to vi’s public key pki,r−1. The pool acknowledgement is valid if the pool message is valid,
if the index is within the range of the members of the pool, and if the signature is valid,
which can all be verified in constant time with respect to the number of blocks in the chain.

The blame message also contains a pool message as well as the index of the pool member
vi claiming that Epki,P (skP) encrypts an invalid session private key skP , alongside the pool
private key ski,P . This private key can be used to decrypt Epki,P (skP) and thus verify that
the pool message was indeed invalid, which means the blame message is valid.

The new key message contains a new public key and a pool message, which can be
validated as described in the above, and it is signed by the session private key skP com-
municated via cyphertext in that pool message. The signature can thus be easily verified,
proving that the message is valid.

The unvalidated dilution block message mostly contains the same data as the dilution
block, but it is signed with a signature corresponding to the key of the block assembler
pkab instead of the keys of all of the pool members. The signature is easy to verify, proving
that the message is valid.

The signature message contains the contents of the dilution block with a signature
of one of the pool members. In order to verify that the signature message is valid, the
signature must be verified. The signature message must also correspond to an earlier
unvalidated dilution block message, but it contains the signature of that message and all
the data necessary to reconstruct it, so this can be verified by validating the signature.

The vote message contains the index of the commitment block and the corresponding
vote wi and salt zi which make it trivial to recompute the hash in the commitment block.
If the recomputed hash is equal to the actual hash in the block, the vote message is valid.

Control messages

The chain request does not contain any signature or anything that can be validated, but it
is possible that a node receives a chain request for a blockchain that it does not track itself.
It is not really useful to mix nodes tracking different blockchains in the same network, so
when this occurs the node can choose to consider such a message to be invalid. This already
severely limits the number of chain requests that can be sent to other nodes.

The block request also does not contain any signature, but it does contain the index of
a block within the blockchain and the hash of the block. They can thus be validated by
looking up that block in the blockchain in constant time, and then comparing the hash.
This decision does however impact the concept of validation in the case of forks in the
network: a node that tracks one branch of the fork will consider a block request invalid
if it refers to a block in the other branch. This should not be a problem though if nodes
send out block requests wisely: they only have a reason to send out a block request if they
receive a block that they do not have the predecessor of from another node, so it makes
sense to send the block request to that node since it is obviously tracking the right branch
if it is honest.

8.2 Outside attackers 87

The requested block message simply contains a block with its hash and an additional
prefix. The block can be validated as described in Sections 8.1 and 8.1. Validation of
the message can however be taken one step further: this message is only supposed to be
sent in response to a chain request or a block request, so there is no reason for nodes to
consider random requested block messages to valid. Instead they limit the requested block
messages they validate to the ones that they sent a chain request or block request for.

Conclusion

All the messages that are sent can therefore be validated in constant time with respect to
the number of blocks in the blockchain, often by verifying digital signatures. This makes
the impact of invalid messages low, but if the numbers are great enough, they can still
cause a problem. It is possible to prevent such denial-of-service attacks from a single node
by muting it after it sends a number of invalid messages within a short period of time.
This does not prevent distributed denial of service attacks, but they can be prevented
by limiting the number of new connections a node makes and prioritizing older, trusted
connections, applying the same principle as history-based IP filtering.

8.2 Outside attackers

If outside attackers can create valid messages, this allows those messages to move beyond
validation and be processed. This would open up the possibility of protocol exploitation
flooding attacks, reflection-based flooding attacks and amplification-based flooding attacks.
It is therefore important to consider each type of message to see if outside attackers are
capable of creating valid versions of them.

The initialization block, the registration block, the dilution start block, the pre-depth
block, the depth block, the dilution end block and the commitment end block are all signed
with the signature of the election manager. Since outside attackers do not know the
private key of the election manager, it is not feasible for them to create any of these blocks
validly. The dilution block, dilution application, invite, pool response, pool message, pool
acknowledgement, unvalidated dilution block message, signature message and commitment
block are all signed with a signature corresponding to an eligible participant’s key that
originated somewhere in the blockchain. Outside attackers do not know the private keys
of these eligible participants, therefore it is also not feasible for them to create any of these
blocks or messages validly.

A blame message contains a pool message, which must have been created by the block
assembler since the signature must be valid, and it contains the index of the pool member
who supposedly received a fake private key and the pool private key of this participant.
The pool private key can be used immediately to decrypt the fraudulent private key and
thus verify that the blame message is valid. A valid blame message proves that the block
assembler is an attacker, so even if there is a large number of valid blame messages, the
blame messages themselves cannot be considered to be an attack: they are exposing an

8.3 Attacking eligible participants 88

attack.
A vote message contains the public key of the election manager, index of the election,

public key of the voter and the index of the commitment block, which all serve to identify
the commitment block that this vote message corresponds to. The vote message also
contains the content of the vote w and the salt z, which can be verified by hashing them
and comparing the result to hash(w, z) in the commitment block. Therefore it is easy to
verify that a vote message is valid if the commitment block it corresponds to is valid, and
we have already shown that it is easy to verify this as well. In order for outside attackers to
be able to create vote messages, they must discover the vote w and salt z that was hashed
in a commitment block, and then create a vote message that contains these values. Even
if it were feasible for attackers to discover these values, it cannot be considered an attack
since they only end up broadcasting vote messages that should be broadcast and tallied
anyway.

A chain request simply contains a prefix, the public key of the election manager and
the index of the election. It is perfectly possible for an outside attacker to send such a
message. However, the prefix is invariant and the other two valuables are only considered
valid for blockchains the recipient tracks itself (see Section 8.1), so the number of such
messages that can be sent is actually severely limited.

A block request contains a prefix, the information identifying the election and the index
and hash of the block that is requested. For it to be considered valid, the election must
be one that the recipient is tracking, and the hash must corresponding to the block at the
given index in the blockchain. This limits the number of possible valid block requests one
node can send to another, to the size of the blockchain. Sending block requests for all the
blocks in the blockchain can however hardly be considered to be a denial-of-service attack,
since it is in fact expected behavior for any new node joining the network. Nonetheless
this is an avenue for a distributed denial-of-service attack, since a large number of attacker
nodes can connect to a victim node, request the entire blockchain, and then do nothing.
This can be mitigated if the victim node simply does not accept an unlimited number
of connections from other nodes: it is not a server serving requests, it is a node in a
peer-to-peer network.

A requested block message must contain a valid block and its hash and be sent in
response to a chain request or a block request. The only feasible way to respond with
a valid message to such requests is by sending the exact message that the recipient is
requesting, which cannot be considered an attack.

In conclusion, it is not possible for an outside attacker to carry out a denial-of-service
attack using valid messages.

8.3 Attacking eligible participants

Attacking eligible participants are capable of creating many more valid messages than
outside attackers and it is thus important to see if each of them can be used in a pro-
tocol exploitation flooding attack, reflection-based flooding attack or amplification-based

8.3 Attacking eligible participants 89

flooding attack.

8.3.1 Disenfranchisement message

Eligible participants can create disenfranchisement messages if their registration block
has been orphaned. They can however only create one disenfranchisement message per
orphaned registration block, making it impossible for them to create large numbers of
disenfranchisement messages unless the election manager orphans large numbers of their
registration blocks. This is however only possible if those registration blocks exist at all,
which is not realistic since the number must be large enough to cause problems for a node to
process, but small enough so the election manager can register these participants off-chain.
It also presupposes an attack by the election manager, who orphans registration blocks. It
is thus not feasible to carry out a denial-of-service attack by means of disenfranchisement
messages.

8.3.2 Dilution block

During the Dilution phase, eligible participants create dilution blocks, but they do not do
this individually: they cooperate with each other to create the block in a dilution process.
A single participant can thus not create a large number of dilution blocks since a single
participant cannot create a single dilution block. Multiple conspiring participants can
however create a large number of dilution blocks and append them one after the other. As
long as the participants are actually unifying anonymity sets though, the blocks are useful
and cannot reasonably be considered to be an attack: there is actual signature dilution
taking place. Conspiring participants might however create a large string of dilution blocks
one after the other by diluting the keys of the same participants over and over again. They
only unify anonymity sets in the first block, afterwards all the keys to be diluted come
from the same anonymity set and therefore the chain score does not increase. This means
all these dilution blocks could easily be orphaned in a fork, so nodes can safely just ignore
dilution blocks if they notice a large number of them that do not increase the chain score,
and thereby protect themselves from a denial-of-service attack.

If the participants within a dilution pool are not all conspiring, some of the members
might carry out a denial-of-service attack against the others by means of the messages sent
in the dilution process. We must therefore look at each of these messages to determine the
actual risk:

8.3.3 Dilution application

Dilution applications contain the key that is to be diluted, and they are signed with that
key. Eligible participants who only possess a single valid key pair can only broadcast one
dilution application. In order to send large numbers of dilution applications, they would
therefore have to possess large numbers of valid key pairs and we have shown in Section

8.3 Attacking eligible participants 90

7.4 that this is not possible. On the other hand it is possible that an eligible participant
broadcasts a dilution application but does not respond to all invites that follow: this is
expected behavior so we do not consider this to be a denial-of-service attack.

8.3.4 Invite

Invites contain:

• The public key of the participant that is invited

• An identifier of the pool IDP

• The key of the block assembler

• The signature of the dilution application

They are signed with a signature that must correspond to the key of the block assembler.
Due to the signature it would not be feasible for an eligible participant to send a large
number of invites with different block assemblers in each one of them, but it is definitely
possible for an eligible participant to send a large number of invites with different invitees
and different pool identifiers. To exclude invites for fake dilution applications, the dilution
application of the invitee can be reconstructed (using the public key of the invitee and the
fixed prefix) and the signature can be checked to see if there actually was a real dilution
application. This limits the number of possible invites, but it is still possible that there are
a lot of invitees if there are a lot of dilution applications that have not yet been included
in a dilution block. It can hardly be considered an attack to invite them all though, since
this situation means that it is urgently needed for a block assembler to do so.

It is however suspicious to see the same block assembler send out invites with multiple
different pool identifiers: honest block assemblers are most likely trying to dilute their own
keys in a block and are thus not likely to be forming multiple dilution pools at the same
time. It is thus very suspicious to see the same block assembler send invites with different
pool identifiers shortly after each other. It is not suspicious to see invites with different
invitees, since a block will contain multiple keys anyway and not all invitees respond.
Nevertheless, inviting a large number of invitees in a very short time span is still suspi-
cious, since one can only send an invite in good faith if one waits to see what the response is.

8.3.5 Pool response

Pool responses contain:

• The key of the block assembler

• The pool identifier

8.3 Attacking eligible participants 91

• The pool public key

• The old public key of the participant

• A signature of the pool public key

• The signature of the dilution application

• The signature of the invite

• The signature of this pool response

Due to the signatures, a participant can only send a pool response when an earlier invite
exists and thus it is not possible to send large numbers of pool responses all with different
old public keys, block assemblers and pool identifiers. It is however possible to send large
numbers of pool responses with different pool public keys, since this is new information
introduced by the pool response. It is however trivial for nodes to spot such an attack,
since an invitee has no good reason to send multiple pool responses with different pool
public keys for the same pool identifier one after the other.

8.3.6 Pool message

Pool messages contain:

• The key of the block assembler

• The pool identifier

• The session public key

• The old public key of every member

• The pool public key of every member, with signature

• The signature of the dilution application of every member

• The signature of the invite of every member

• The signature of the pool response of every member

• The session private key, encrypted by each member’s pool public key

• A signature of this message by the block assembler

8.3 Attacking eligible participants 92

Due to the signatures, this message can only be created by the block assembler that
sent the invites, and the dilution applications, invites and pool responses can all be re-
constructed and validated. It is thus not possible to create a pool message for members
that did not apply and send pool responses. It is however possible that the session private
key encrypted for one of the members does not correspond to the session public key listed
in the message. Only the member can tell because no one else can decrypt the session
private key, so it is possible for a block assembler to send a fake pool message containing
the wrong session private keys. The member can then however send a blame message in
order to prove this malicious behavior the part of the block assembler, who can then be
punished by the network.

There is also a possibility of a protocol exploitation attack here when the block assem-
bler refuses to create a pool message after receiving all the necessary pool responses. The
pool will then fail and its members will have wasted time and resources. The network can
however punish the block assembler: nodes can randomly decide to monitor the messages
of other dilution pools and thus see that all the pool responses of a pool were sent, but
the pool message was not. They can then decide to deprioritize this block assembler as a
partner in signature dilution.

8.3.7 Pool acknowledgement

Pool acknowledgements contain:

• The index of the member who acknowledges the pool message

• The pool message being acknowledged

• The signature of the member who acknowledges the pool message

The signature ensures that only the acknowledging member can create the pool ac-
knowledgement, and it is ensured to be a response to a valid pool message since it is
contained inside the acknowledgement as well.

Similar to the pool message, there is a possibility of a protocol exploitation attack here
when the member refuses to send a pool acknowledgement even if the pool message was
valid. However if other nodes see neither a pool response nor a blame message from a given
pool member, they can conclude that that pool member is carrying out such an attack and
again deprioritize this member as a partner in signature dilution.

8.3.8 Blame message

Blame messages contain:

• The index i of the member vi who received a fake session private key

8.3 Attacking eligible participants 93

• The pool private key of vi

• The pool message that was fraudulent

Using the index and the pool private key, anyone can decrypt the session private key
within the pool message and thus verify that it is indeed fraudulent. Similar to the dis-
enfranchisement message, it is not possible to mount a denial of service attack with many
valid blame messages since this presupposes that there exist so many fraudulent pool mes-
sages that they would constitute a denial of service attack in and of themselves.

8.3.9 New key message

New key messages contain:

• The new public key of the pool member

• The pool message

• The signature corresponding to the session public key of this pool

The signature guarantees that an actual member of the pool sent this message, and
there must be an earlier pool message since it is contained within this message. It is nev-
ertheless possible for one of the members in the pool to send a large number of new key
messages and thus mount a denial of service attack. However, it is easy to spot such an
attack since the number of new key messages that are to be sent for a single pool is known:
it must be equal to the number of old public keys listed in the pool message. If more
new key messages are sent, the dilution process is going to fail even if it is not a denial of
service attack, so it is perfectly reasonable to simply consider the pool to be invalid when
too many new key messages are sent. This in turn however opens up the possibility of
protocol exploitation attack: the attacker does not need to send a really large number of
messages, but can simply sabotage a dilution pool by sending too many new key messages
or none at all. It is not possible for observers to spot which pool member is sabotaging
the process here, since the protocol is set up in such a way that new key messages are
sent anonymously. Other nodes can however conclude that someone in the pool is an at-
tacker and thus collectively punish them all by deprioritizing them as partners in signature
dilution: if this happens once, the deprioritized participant will not suffer much, but if
the same participant is deprioritized by multiple failed pools, this will accumulate and the
participant will be very unlikely to be part of another dilution pool soon. It is likely that
the participant is an attacker in this case, since the participant was the common element
in all of these failing dilution pools.

8.3 Attacking eligible participants 94

8.3.10 Unvalidated dilution block message

Unvalidated dilution block messages contain the data of a dilution block without its signa-
tures, but they also contain the signature of the block assembler. There is nothing inside
them to prove that the earlier messages in the dilution process were actually sent: it is
possible the block assembler simply created an unvalidated dilution block message for pool
members who never agreed and who will thus not sign it either. Nodes can however quickly
notice this by seeing the same block assembler broadcasting multiple unvalidated dilution
block messages one after the other. The block assembler can then be deprioritized as a
partner in signature dilution.

8.3.11 Signature message

Signature messages contain:

• The identifier of the pool and the key of its block assembler

• The old public key of vi, who will sign the block

• The signature of the block, corresponding to the public key of vi

• The dilution block without signatures

The maximum number of valid signature messages that can be sent is the number of
members in the pool: a signature message corresponding to a key not in the pool will
simply be considered invalid. It is thus not possible to send a large number of signature
messages, but it is possible to neglect to send a signature message and thus sabotage the
dilution process in a protocol exploitation attack. Outside observers cannot distinguish
between the situation where a malicious pool member refuses to send a signature message,
the situation where a malicious block assembler did not include the key of an honest pool
member who then refuses to send a signature message, and the situation where an honest
block assembler did not include the key of an honest pool member because another pool
member, who is malicious, sent two new key messages. They must therefore collectively
punish all members of the pool in the same way as they would when an incorrect number
of new key messages is broadcast.

8.3.12 Commitment block

Commitment blocks contain:

• The salted hash of the vote wi of voter vi

• The public key of voter vi

8.4 Attacking election managers 95

• A signature corresponding to the public key of vi

The signature ensures that the block was created by vi, but this still allows vi to create
a large number of commitment blocks one after the other. Since only the first commitment
block will contribute to the chain score, it is quite reasonable for nodes to ignore a large
number of commitment blocks coming from the same public key: they can be orphaned
anyway.

8.3.13 Conclusion

There are thus a lot of messages that cannot be used in a denial-of-service attack, but
some are. In some of these cases it is obvious that the blame falls on the shoulders of one
particular participant, but in others (such as the new key message) it is unclear who is to
blame. In those cases the only option is to blame all members in the pool equally: the
innocent members will suffer a little bit but if a participant is part of many different failing
pools, it is likely that this participant is the one to blame in reality.

8.4 Attacking election managers

Election managers create initialization blocks, dilution start blocks, dilution ends blocks and
commitment end blocks. All of these blocks can only be appended in their specific phase,
and they also end that phase, meaning they can no longer be appended after they have
been appended once. Therefore it is not possible to use these blocks in a denial-of-service
attack.

Election managers also create registration blocks, but they need to be able to back these
up with an off-chain attestation of this registration (e.g. a declaration signed by the eligible
participant). Election managers cannot add registration blocks of non-existent participants
since the registration block would contain a voter ID that is not on the electoral roll, and
if it adds a large number of fraudulent registration blocks of eligible participants the last
registration blocks of these participants (and therefore the ones considered valid) will not be
backed up by an attestation. This means the eligible participants can point out that they
have been disenfranchised and the election manager does not have the attestation to prove
them wrong. The result is that the attacking election manager can no longer masquerade
as an honest election manager, which means sensible attacking election managers will not
carry out such an attack. The system however is vulnerable to senseless attacking election
managers.

The election manager also creates pre-depth blocks and depth blocks. It is not possible to
create a large number of pre-depth blocks all at once or a large number of depth blocks all
at once, since the two have to alternate. It is however possible to create a long sequence of
alternating pre-depth blocks and depth blocks and thereby impede the normal functioning
of the Dilution phase. It will be very obvious to any observer though that attacking
election managers are doing this, meaning they can no longer masquerade as honest election
managers, but this is again a possibility for senseless attacking election managers.

8.5 Conclusion 96

Any denial-of-service attack will therefore prevent attacking election managers from
masquerading as honest election managers, which means they will only carry them out if
they are senseless.

8.5 Conclusion

Denial-of-service attacks are possible with the protocol as described in Chapter 4, but nodes
can utilize various strategies to defend against them. Senders of large numbers of invalid
messages can be muted and the number of new connections a node receives can be limited.
In the Dilution phase, attacking eligible participants can carry out protocol exploitation
attacks by engaging in a dilution process but abandoning it before the dilution block is
created and signed. This can however be mitigated by blaming all the pool members
of the dilution process and seeing how the blame accumulates: eligible participants who
participate in a lot of failing dilution processes are likely to be attackers. Attacking election
managers have extra capabilities of carrying out a denial-of-service attack, but these reveal
their culpability so they can no longer masquerade as honest election managers.

ECLIPSE ATTACKS 97

Chapter 9

Eclipse attacks

Another type of attack the system should be robust against is the eclipse attack. ”In an
eclipse attack, the attacker monopolizes all of the victim’s incoming and outgoing connec-
tions, thus isolating the victim from the rest of its peers in the network ... [and filters] the
victim’s view of the blockchain.” [19] Any communication network that is not a complete
graph is vulnerable to an eclipse attack: if there are two nodes v1 and v2 that are not
adjacent, then they can be isolated from each other by all the nodes that are adjacent to
v1. The success of an eclipse attack greatly depends on whether the victim realizes that
the attack is taking place: victims who know this can attempt to break the eclipse by
connecting to new nodes. In order to evaluate how robust the system is against eclipse
attacks, we must look at the impact of eclipse attacks in each of the five phases of an
election:

9.1 Setup phase

During the Setup phase only the initialization block is created. Since this is the first block,
any node in the network must have this block in order to be able to have any view of
the blockchain at all. The only possible eclipse attack in this phase is therefore an attack
where victims know that they are being denied access to the blockchain. The victims can
therefore keep searching for new nodes to connect to until they receive the initialization
block.

9.2 Registration phase

During the Registration phase only the election manager creates blocks: the registration
block and the dilution start block. We shall first consider eclipse attacks targeting these
blocks from attacking eligible participants and outside attackers, and then we consider
eclipse attacks by attacking election managers.

9.2 Registration phase 98

9.2.1 Attacking eligible participant

Since the election manager creates the initialization block, the registration block and the
dilution start block, no network communication is necessary for the election manager to
have a full view of the blockchain up to the dilution start block if the election manager
consists of a single node. If the election manager consists of multiple nodes, they can be
isolated from each other if they are not adjacent, but it is trivial for the election manager
to prevent this: the election manager knows which nodes it consists of, and can just make
sure that these nodes are all directly connected to each other. The election manager will
thus have a complete view of the blockchain when it creates the dilution start block and
therefore this block will be appended to the full blockchain.

This means that any other participant who receives and validates this block must
also have received all the preceding blocks. An eclipse attack during this phase targeting
these blocks and participants who are not the election manager will therefore result in
these participants being stuck in the Registration phase. We have however stipulated the
existence of a communication channel called social discourse, that will make it obvious
to the victims that they are stuck in the Registration phase when it should already have
ended, which allows the victims to start searching for other nodes until they see the eclipse
has ended.

9.2.2 Attacking election manager

An attacking election manager however has more options: the election manager can create
a fork in the Registration phase and direct the view of each branch to a different subgraph
of the network. There are two possibilities from this point onward: either at some point the
isolation ends and the fork is resolved, or the isolation and the fork persist forever. In the
latter case, the election will proceed to the Dilution phase, the Commitment phase and the
Voting phase with multiple blockchain branches each viewed by different subgraphs of the
network and each resulting in a different tally. Since we have assumed a communication
channel called social discourse exists that communicates the tallies, the discrepancy will
be discovered. In such a situation one of the tallies must be chosen as authoritative and
therefore its branch must be communicated to everyone, which breaks the isolation and
then the fork will be resolved anyway.

If the fork is resolved, at least one branch is orphaned and it is possible that this branch
contains registration blocks that do not exist on the other branch. It is also possible that
the resolution of the fork happens after the Registration phase has ended, which means it
is possible for a participant to be disenfranchised. The participant can however use the
orphaned registration block to create a disenfranchisement message proving this and thus
discrediting the election manager. If the fork does not disenfranchise the participant it can
still keep the participant busy on the wrong branch for so long that the participant can
no longer make proper use of the Dilution phase, except the definition of social discourse
specifies that it is updated often enough to allow the participant to make full use of the
Dilution phase.

9.3 Dilution phase 99

9.2.3 Conclusion

Victims of an eclipse attack in the Registration phase can therefore either escape the attack
soon enough to make it useless or prove that the election manager has disenfranchised them.

9.3 Dilution phase

The Dilution phase is complex and it is the only phase in which both the election manager
and the eligible participants create multiple blocks. We will cover eclipse attacks in this
phase based on the role of the victim: first we cover eclipse attacks on eligible participants
in Section 9.3.1, followed by eclipse attacks on election managers in Section 9.3.2.

9.3.1 Victimized eligible participants

During this phase a large number of blocks are created, but also an even larger number of
other messages is sent. We will consider eclipse attacks filtering blocks first, followed by
eclipse attacks filtering other messages.

Filtering blocks

During the Dilution phase the dilution block, pre-depth block, depth block and dilution
end block are created. Eligible participants cannot create the pre-depth block, the depth
block or the dilution end block. If they are block assemblers, they can create a dilution
block. The only effective block-based eclipse attack on eligible participants can therefore be
in preventing these blocks going to the participants, or preventing a dilution block coming
from a block assembler. There will not be a fork but the participants will have a view of
the blockchain in an earlier state.

This can affect the signature dilution process in the following way: a difference in state
of the blockchain between a state S0 and a state S1, where both S0 and S1 are in the
Dilution phase, means there have been a number of blocks appended to the blockchain in
state S0. Adding a block changes the length and chain score of the blockchain and also
the last block (and thus its hash), but depending on the block there are also other state
changes. The only blocks that can be appended in this phase without ending the phase
are the dilution block, pre-depth block and depth block. The dilution block causes some
keys to become invalid and some other keys to become valid, the pre-depth block increases
the maximum depth and adds a condition limiting which keys can validly be in a dilution
block, and the depth block removes such a condition. Therefore the possible state changes
between S0 and S1 are:

1. The length of the blockchain changes.

2. The chain score of the blockchain changes.

3. The last block of the blockchain changes.

9.3 Dilution phase 100

4. A key becomes valid.

5. A key becomes invalid.

6. The maximum depth changes.

7. A condition limiting which keys can validly be in a dilution block is added.

8. A condition limiting which keys can validly be in a dilution block is removed.

We will now consider the effects of these state changes on any of the messages sent
during the dilution process.

Dilution application: When a participant sends out a dilution application it only con-
tains a prefix, information identifying the blockchain, the key the participant wishes to
dilute and a signature corresponding to that key. Only the status of the key (and by ex-
tension the signature) can be affected by any of the possible state changes: a key might
become usable in a dilution pool or it might become unusable in a dilution pool.

Therefore eclipsed participants, thinking the blockchain is in state S0 while it is actually
in state S1, might send dilution applications with an unusable key and refrain from sending
dilution applications with a usable key and thus never have a key diluted.

Eclipsed block assemblers, when receiving a dilution application, might incorrectly con-
clude that the key within it is unusable and therefore refrain from including this key in
their dilution pools, which limits their prospects and therefore makes it more difficult to
create a dilution block. Conversely they might receive a dilution application from an at-
tacker with a key that is no longer usable in state S1 but still usable in state S0 and thus
be tricked into forming a dilution pool that can never lead to a valid dilution block. This
again makes it more difficult to create a dilution block.

Invite: When a participant receives an invite from a block assembler it contains a prefix,
information identifying the blockchain, the key the participant wishes to dilute, the signa-
ture of its dilution application, the pool identifier, the key of the block assembler and a
signature corresponding to the latter key. Here again only the status of the keys (both of
the participant and of the block assembler, and by extension the signature) can be affected
by any of the possible state changes: one of the keys might become usable or unusable in
a dilution pool.

Participants will only react however to invites they receive concerning a dilution appli-
cation they have earlier sent out, which means the key in the dilution application must be
identical to the participant’s key in the invite. This means an honest eligible participant
and an honest block assembler must both consider the participant’s key to be usable in
order for the invite to exist at all.

No such limitation exists for the key of the block assembler though: it is perfectly pos-
sible that honest block assemblers consider their keys to be usable, knowing the blockchain
is in state S1, while honest (eclipsed) participants consider these keys to be unusable,

9.3 Dilution phase 101

thinking the blockchain is in state S0. The same problem arises when block assemblers
are eclipsed: they might honestly consider their keys to be usable, thinking the blockchain
is in state S0, even though the other honest participants consider them to be unusable,
knowing the blockchain is in state S1. This limits the number of invites the participant
will react to and therefore makes it more difficult for eligible participants to have a key
diluted and for block assemblers to create a dilution block.

Worse still the block assembler could collude with the attackers and send an invite
using a key that is no longer usable in state S1 but still usable in state S0, tricking the
participant into reacting to an invite that cannot lead to a valid dilution block. The effect
is again that it makes it more difficult for participants to have a key diluted. Eclipsed
block assemblers can also be tricked into sending an invite using a key that is no longer
usable to a colluding participant, who then wastes the block assembler’s time and makes
it more difficult to create a dilution block.

Pool response: When an eligible participant sends out a pool response it contains a
prefix, information identifying the blockchain, the key of the block assembler, the pool
identifier, the pool public key of the participant, the key the participant wishes to dilute,
the signatures of the dilution application and invite and two signatures corresponding to
the key to be diluted. Once again only the status of two of the keys (both of the participant
and of the block assembler, and by extension the two signatures) can be affected by any of
the possible state changes: one of the keys might become usable or unusable in a dilution
pool. The pool public key is always usable.

The only risks concerning this message in a block-based eclipse attack are therefore the
risks of the participant’s key or the block assembler key being incorrectly deemed usable or
unusable, but since these two keys correspond to the keys used in the dilution application
and the invite, these risks are limited to the risks already discussed in the previous two
paragraphs.

Pool message: When a participant receives a pool message it contains a prefix, infor-
mation identifying the blockchain, the key of the block assembler, the pool identifier, the
session public key of the pool, the number of members in the pool, the keys the participants
wish to dilute, the signatures of their dilution application, invite and pool response, the
pool public keys of the participants (with the signature provided in the pool response), the
session private key encrypted with each of the participants’ public keys, and a signature
corresponding to the key of the block assembler. The session public key is always consid-
ered valid and participants only check the session private key encrypted by their own public
keys, which correspond to the public keys used in the previous messages and therefore the
participants and the block assembler agree that these are usable. After decryption the
session private key is checked for validity by comparing it to the session public key, this
does not depend on the state of the blockchain.

Only the status of the keys of the participants and the block assembler can be affected
by the any of the possible state changes: again one of the keys might become usable or

9.3 Dilution phase 102

unusable in a dilution pool. The block assembler and one of the participants’ keys must
correspond to the keys used in the earlier messages sent between that participant and
the block assembler, but this is not the case for the other participants’ keys. There is a
risk that one of the keys is usable in state S1 but not in state S0, which would lead the
eclipsed participant to reject a perfectly valid pool message and consequently make it more
difficult to have a key diluted. An eclipsed block assembler might also include a key from
a participant who colludes with the attackers, resulting in the other participants rejecting
the pool message. This will make it more difficult for the block assembler to create a
dilution block.

There is also a risk that a dishonest block assembler might include a key that is usable
in state S0 but not in state S1, which would lead eclipsed participants to react to a pool
message that is actually invalid and can never lead to a valid dilution block, thus wasting
these participants’ time and again making it more difficult for them to have a key diluted.

Pool acknowledgement: A pool acknowledgement contains a prefix, the index of the
acknowledging member’s key in the pool message, the contents of the pool message, and a
signature corresponding to the member’s key. None of this data can be affected by any of
the possible state changes except for the pool message, which was already covered in the
above, and indirectly the signature, because it depends on the pool message. Therefore
there are no extra risks from block-based eclipse attacks on this message.

Blame message: A blame message contains a prefix, the index of the participant within
the pool message, the fake private key and the contents of the pool message. The contents
of the pool message can at this point no longer be affected by state changes since all
the plaintext data in it must be considered valid by both the participant and the block
assembler before the blame message can be sent. The prefix, index and fake private key
are also not affected by any state changes, so there are no extra risks from block-based
eclipse attacks on this message.

New key message: When a participant sends a new key message it contains a prefix,
a new key, the contents of the pool message and a signature corresponding to the session
private key. The contents of the pool message can at this point no longer be affected
by state changes since all the plaintext data in it must be considered valid by both the
participant and the block assembler before the new key message can be sent. The new
key does not depend on the state of the blockchain since it is introduced here, and neither
the prefix nor the signature depend on the state. Therefore there are no extra risks from
block-based eclipse attacks on this message.

Unvalidated dilution block message: When a participant receives an unvalidated
dilution block message it contains two prefixes, information identifying the blockchain, the
hash of the previous block, the chain score at this block, the pool identifier, the key of the

9.3 Dilution phase 103

block assembler, the depth of this block, the anonymity set and both the old and new keys
of all the participants.

The information identifying the blockchain, the pool identifier, the key of the block
assembler and the old keys of the participants were all already featured in the pool message
and both the participant and the block assembler must have considered it to be valid in
order for this message to have been sent. The new keys originate in the block that is about
to be made so they are not affected by the state of the blockchain up until now.

The hash of the previous block and the chain score are however affected by the state:
they might be accurate in state S1 but not in state S0, which means the eclipsed participant
will refuse to sign the dilution block even though it is valid, or an eclipsed block assembler
might send an unvalidated dilution block that is not valid. Alternatively a dishonest block
assembler might send an unvalidated dilution block message with a hash and chain score
that are inaccurate in state S1 but accurate in state S0, making the participant sign a
block that will not be valid and thus waste time. An eclipsed block assembler might also
send an unvalidated dilution block with an inaccurate hash and chain score to attacking
participants, who will sign the block and again waste time. In all these cases the risk is
that it becomes more difficult for the participant to have a key diluted and for the block
assembler to create a dilution block.

Signature message: When a participant sends a signature message it contains a prefix,
the pool identifier, the key of the block assembler, the key of the participant and a signature
corresponding to this key, and the contents of the dilution block. Besides the prefix and
the signature, all of this data was already featured in earlier messages in this process and
thus considered valid by both the participant and the block assembler. The prefix does not
depend on the state of the blockchain and the signature must correspond to the key that is
already considered valid by both the participant and the block assembler. Therefore there
are no extra risks from block-based eclipse attacks on this message.

Conclusion: There is a risk that an eclipse attack might filter dilution blocks and thus
sabotage dilution applications, invites, pool messages and unvalidated dilution blocks. This
makes it more difficult for eclipsed eligible participants to have a key diluted, and when
they notice this can break through the eclipse by connecting to new nodes.

Filtering other messages

Besides the blocks created in the Dilution phase, the messages sent during the dilution
process can also be blocked in an eclipse attack. When considering the risks of an eclipse
attack on honest eligible participants we must therefore consider the risk of each of these
messages being blocked.

Dilution application: These messages allow block assemblers to begin a dilution process
by responding with an invite. If eclipsed participants are unable to send their dilution

9.3 Dilution phase 104

applications, no block assembler will invite them to a dilution pool and therefore it is more
difficult for them to have a key diluted. If eclipsed block assemblers are unable to receive
dilution applications, they have fewer participants to invite and it becomes therefore more
difficult for them to create a dilution block.

Invite: These messages allow the invited participants to take part in a dilution process. If
eclipsed participants are unable to receive invites they cannot respond with pool responses
and proceed to dilute their keys, therefore it is more difficult for them to have a key diluted.
If eclipsed block assemblers are unable to send invites, no one will take part in the dilution
pools they create and therefore it becomes more difficult for them to create a dilution
block.

Pool response: These messages allow the block assembler to know that the invitees are
willing to take part in this dilution pool and they communicate the necessary information
to create a pool message. If eclipsed participants are unable to send pool responses,
block assemblers will not be able to send the pool message and dilute the participants’
keys, therefore it becomes more difficult for them to have a key diluted. If eclipsed block
assemblers are unable to receive pool responses, they can never create a pool message and
dilute any keys, therefore it becomes more difficult for them to create a dilution block.

Pool message: These messages allow the members of the dilution pool to securely send
their new key to the block assembler. If eclipsed participants are unable to receive pool
messages, they cannot send a new key to a block assembler, therefore it becomes more
difficult for them to have a key diluted. If eclipsed block assemblers are unable to send
pool messages, no one will take part in the dilution pools they create and therefore it
becomes more difficult for them to create a dilution block.

Pool acknowledgement: These messages allow the members of the dilution pool to
know that the pool message was correct and that they can send a new key message with-
out their privacy being compromised. If eclipsed participants are unable to send pool
acknowledgements, the other members of the pool cannot send their new key messages
and therefore the dilution pool cannot dilute any keys. It thus becomes more difficult for
eclipsed participants to have a key diluted. If eclipsed participants are unable to receive
pool acknowledgements, they cannot respond with new keys messages and therefore the
dilution pool cannot dilute any keys. Therefore it again becomes more difficult for eclipsed
participants to have a key diluted. Block assemblers do not do anything with pool acknowl-
edgements if they are not also members of the dilution pool, in which case they will treat
pool acknowledgements the same way as regular members of the dilution pool. Therefore
there are no extra risks for block assemblers regarding pool acknowledgements.

Blame message: These messages allow the members of the dilution pool to prove that
the block assembler has acted in bad faith, by sending a pool message that does not deliver

9.3 Dilution phase 105

the same session private key to all members. This in turn allows senders of blame messages
to shift the blame of the dilution processes failing from themselves to the block assembler.
If eclipsed participants are unable to send blame messages, other participants will be more
likely to blame them for failing dilution processes and therefore it becomes more difficult for
them to have a key diluted. If eclipsed participants are unable to receive blame messages,
they will assign the blame of a failing dilution process to the wrong participant and be
more likely to take part in a dilution process with a participant acting in bad faith, which
will again make it more difficult for them to have a key diluted.

New key message: These messages allow the members of the dilution pool to anony-
mously send their new keys to the block assembler. If eclipsed participants are unable to
send new key messages, they cannot dilute the new keys in them and the dilution pool will
fail. Therefore it becomes more difficult for them to have a key diluted. If eclipsed block
assemblers are unable to receive new key messages, they cannot create the dilution block of
the dilution pool. Therefore it becomes more difficult for them to create a dilution block.

Unvalidated dilution block message: These messages allow the block assembler to
broadcast the dilution block of the dilution pool so the members can sign it. If eclipsed
participants are unable to receive unvalidated dilution block messages, they cannot sign the
dilution block and the dilution pool will fail. Therefore it becomes more difficult for them
to have a key diluted. If eclipsed block assemblers are unable to send unvalidated dilution
block messages they cannot procure the signatures necessary to validate the dilution block
of the dilution pool and the pool will fail. It is therefore more difficult for them to create
a dilution block.

Signature message: These messages allow the members of the dilution pool to provide
the block assembler with the signatures the dilution block needs. If eclipsed participants
are unable to send signature messages, they cannot validate the dilution block and the
dilution pool will fail. Therefore it becomes more difficult for them to have a key diluted.
If eclipsed block assemblers are unable to receive signature messages, they cannot add the
necessary validation to the dilution block of the dilution pool. Therefore it becomes more
difficult for them to create a dilution block.

Conclusion: An eclipse attack in the Dilution phase targeting an eligible participant can
therefore make it more difficult for the participant to have a key diluted or to create dilution
blocks. Since participants can see their success or failure in these two areas reflected in the
responses they get to their messages and the state of the blockchain, they might conclude
from repeated failure that they are likely to be eclipsed and thus connect to new nodes in
order to break the eclipse.

9.3 Dilution phase 106

9.3.2 Victimized election managers

If the election manager is eclipsed there will be no effect as long as the election manager
does not create a new block: election managers do not base their actions on which keys
are and are not valid during the Dilution phase. Once the election manager does create a
new block, the result might be that it is appended to a block that is actually not the last
block in the chain.

This creates a fork which will not be resolved by the first criterion: since this is the
Dilution phase the competing block is either a dilution block, a pre-depth block or a depth
block and in all those cases the chain score of the branches is used to resolve the fork.
The competing branch contains only dilution blocks, since the other three blocks that
are created in this phase are created by the election manager and therefore knowledge of
them cannot be withheld from the election manager, and the blocks in subsequent phases
cannot be appended since it is the election manager who ends the phase and thus must
have knowledge that the phase has ended.

There are now two possibilities: either the election manager’s branch wins the fork, and
the dilution blocks on the other branch are orphaned, or the election manager’s branch
loses the fork, and the manager’s block is orphaned. We will cover each of these two cases
in their owns sections, followed by a section calculating the maximum amount of signature
dilution that can be undone due to such a fork.

Manager losing fork

If the manager’s block loses the fork, the effects depend on what kind of block the manager’s
block is: if it is a pre-depth or depth block, eligible participants will simply continue creating
dilution blocks on the winning branch. If the election manager receives these blocks, the
eclipse is broken. If not, the election manager will notice a conspicuous lack of dilution
blocks, which is curious since the pre-depth and depth blocks actually serve to enable
participants to dilute their keys further. Election managers can thus guess that they are
being eclipsed, allowing them to break the eclipse by connecting to new nodes.

If the manager’s losing block is a dilution end block, the Dilution phase is not ended
yet. The election manager however thinks that the phase has been ended, since that is the
case according to the branch of the blockchain that includes the dilution end block. Since
we assumed the existence of social discourse though the election manager will be aware
that the consensus of all nodes is that the Dilution phase has not yet ended. Eclipsed
election managers can thus become aware of the eclipse and break it by connecting to new
nodes, and end the Dilution afterwards by appending a dilution end block to the actual
last block of the blockchain. The effects of an eclipse attack are thus limited to a minor
inconvenience for the election manager.

Manager winning fork

If the branch of the election manager wins the fork, the effects again depend on what
kind of block the manager’s block is: if it is a pre-depth block or a depth block, the

9.3 Dilution phase 107

members of the associated dilution pool can immediately create a new dilution block that
is functionally the same and thus negate any effects of the eclipse attack. If it is a dilution
end block however, a certain amount of signature dilution is undone, negatively impacting
the privacy of some eligible participants.

The Dilution phase ends now, so the effects of an eclipse during this phase will be
limited to this single fork. (There may still be effects of an eclipse during the two following
phases, but they are covered in their respective paragraphs below.) The dilution end block
increases the chain score by 32 and its branch wins the fork according to the third criterion,
i.e. in case the chain scores of the two branches are equal. Therefore the branch of the
dilution block wins if the dilution blocks on the competing branch together increase the
chain score by at most 32, and it loses if they increase the chain score by more than 32.
The amount by which these dilution blocks increase the chain score is equal to the sum of
their δ, the number of distinct anonymity sets that is diluted in each block, minus one per
block:

Cbl − Cbm =
l∑

j=m+1

δbj − 1 = (
l∑

j=m+1

δbj)− (l −m)

Where m is the index of the last block before the fork occurs and l is the length of
the competing chain, and thus the index of the last block in it. Therefore (l −m) is the
number of dilution blocks on the competing branch. If the chain score increases by at most
32, this means:

Cbl − Cbm = (
l∑

j=m+1

δbj)− (l −m) ≤ 32

This does not impose any limit on the number of dilution blocks: the δ of a dilution
block can be 1 and such a block does not increase the chain score at all. Such a block is
however useless in terms of signature dilution, so all useful dilution blocks have a δ of 2
or higher. If we maximize the sum of the δ of all useful dilution blocks on the orphaned
branch, we must maximize the number of useful dilution blocks and minimize the δ of each
dilution block to 2:

(
l∑

j=m+1

δbj)− (l −m) =
l∑

j=m+1

2)− (l −m) = 2(l −m)− (l −m) = l −m = 32

In this case there are 32 dilution blocks that each doubled an anonymity set.
We can also maximize the average δ of all useful dilution blocks on the orphaned branch.

Since the average is the sum divided by the number of blocks l − m, it increases as the
sum increases and decreases as the sum decreases, but it also increases as l −m decreases
and decreases as l − m increases. We know that the difference of the sum and l − m is
a constant number 32 if we are maximizing and thus if a value is added to one term, the

9.3 Dilution phase 108

same value must be added to the other term. Since we are attempting to maximize the
quotient of these two terms, that means the smallest of the two terms must be minimized.
The smallest term is l −m since δ is at least 2 and therefore the sum is at least 2(l −m),
and the smallest number of blocks on a branch is 1, therefore:

(
l∑

j=m+1

δbj)− (l −m) =
m+1∑

j=m+1

δbj)− 1 = δbm+1 − 1 = 32

δbm+1 = 33

δbm+1

l −m
=

33

1
= 33

Maximum anonymity set increase

The factor 33 is in fact also the maximum factor δbranch by which the average anonymity
set that existed at the point of the fork and that was diluted afterwards, can be diluted
in a branch where the chain score increases by Cbranch = 32. In general for a branch
where the chain score increases by Cbranch the factor by which the average anonymity set
that existed at the point of the fork and that was diluted afterwards, can be diluted, is
δbranch ≤ Cbranch + 1, as we shall prove by (strong) induction.
Proof:
If Cbranch = 1 the only possible useful dilution block is a single block b with δb = 2, where
two anonymity sets are diluted: a block with a single anonymity set would not be useful,
and a block with two anonymity sets already increases the chain score by 1 on its own.
Since the branch only consists of this block, all anonymity sets that existed at the start of
the branch and are diluted in the branch, must be diluted in this block and therefore:

δbranch = δb = 2 = 1 + 1 = Cbranch + 1

Therefore in the base case where Cbranch = 1 it is true that δbranch ≤ Cbranch + 1.
We shall now prove that, under the hypothesis:

∀x ∈ {1, ..., L} : Cbranch = x => δbranch ≤ Cbranch + 1

... the following holds:

Cbranch = L+ 1 => δbranch ≤ Cbranch + 1

The existence of dilution blocks that are not useful since they only use a single anonymity
set as input, does not contribute anything to either the chain score Cbranch or the factor
δbranch. For all practical purposes a branch containing such a dilution block is the same
as a branch without this block. We shall therefore only consider branches in which those
dilution blocks do not exist and extend the proof of such branches to all branches where
those dilution blocks do exist.

9.3 Dilution phase 109

Among the anonymity sets Abranch that existed at the start of the branch and are diluted
during it, there are two subsets: the anonymity sets Aend that are directly or indirectly
diluted by the last block bend in the chain, and the anonymity sets Aearly that are not
diluted either directly or indirectly by bend. “Indirectly diluting” here has the following
meaning: a block b indirectly dilutes an anonymity set a if and only if it directly dilutes a
dilution set a′, which originates in a block b′ that itself dilutes a either directly or indirectly.
Blocks in Abranch must fall in either category, so Aend ∪Aearly = Abranch. The sets in Aearly

are not diluted by bend but they must be diluted, directly or indirectly, in some blocks
Bearly in the branch. We can form a superset of Bearly called Bearly+: this set also includes
all blocks in the branch that output an anonymity set that any block in Bearly+ uses as
input. Bearly+ is a proper subset of the branch, since it can only contain blocks that are in
the branch but does not contain the last block in the branch. The last block in the branch
bend dilutes at least 2 anonymity sets and must therefore contribute at least 1 to Cbranch.
The blocks Bearly+ therefore contribute less than Cbranch = L + 1 to the chain score. We
shall refer to this contribution as Cearly+.

If all blocks that are not in Bearly+ are removed from the branch, we still have a valid
branch since we included all the blocks in the branch that form an anonymity set that is
used as input in any other block in Bearly+. Their contribution to the chain score is Cearly+

and there are no other blocks to contribute anything to the chain score in this branch,
so this is a branch where the chain score increases by Cearly+ < Cbranch = L + 1 and
so we know by the induction hypothesis that the factor by which the average anonymity
set that is diluted in this branch, is diluted, is δearly+ ≤ Cearly+ + 1 < L + 2 and thus
δearly+ ≤ L+ 1 = Cbranch.

The blocks diluting Aend form a subset Bend of the branch since they can only contain
blocks in the branch by definition, but this is not necessarily a proper subset of the branch
since Bearly may be empty. Since they include all blocks diluting the anonymity sets in
the last block bend both directly and indirectly, they include all blocks in the branch that
output an anonymity set that any block in Bend uses as input and therefore they form
a valid branch as well. We shall name the amount by which this branch increases the
chain score Cend and since we know that this is the contribution of a subset of the branch,
we know that Cend ≤ Cbranch = L + 1. We can create a subset of Bend by removing the
last block bend and name this subset Bbefore end. The blocks in this subset form a valid
branch since they come from a set Bend that forms a valid branch and only the last block
is removed. We name the contribution of this branch to the chain score Cbefore end and we
get:

Cend = δbend
− 1 + Cbefore end ≤ L+ 1

δbend
+ Cbefore end ≤ (L+ 1) + 1 = Cbranch + 1

If Bbefore end is the empty set, its contribution Cbefore end = 0 and the above formula
becomes:

9.3 Dilution phase 110

δbend
+ Cbefore end = δbend

+ 0 = δbend
≤ Cbranch + 1

Since Bbefore end is the empty set, Bend only consists of bend and thus:

δBend
= δbend

≤ Cbranch + 1

We shall now consider the case where Bbefore end is not the empty set. Since bend is a
useful dilution block we know δbend > 1 and therefore:

δbend
+ Cbefore end > 1 + Cbefore end

Combined with the above this gives us:

Cbefore end + 1 ≤ L+ 1

Cbefore end ≤ L

Combined with the induction hypothesis we now know:

δbefore end ≤ Cbefore end + 1

δbefore end − 1 ≤ Cbefore end

δbend
+ δbefore end − 1 ≤ Cbranch + 1

The δbefore end anonymity sets are diluted down to a fewer number of anonymity sets,
but this cannot be fewer than 1 if Bbefore end is not the empty set. These sets must be
diluted by bend by the definition of Bbefore end, which means that at least one of the δbend
anonymity sets that bend dilutes must originate in one of the blocks in Bbefore end. This
means:

δBend
< δbend

+ δbefore end

δBend
≤ δbend

+ δbefore end − 1 ≤ Cbranch + 1

Therefore no matter whether Bbefore end is empty or not, we know:

δBend
≤ Cbranch + 1

We can take the following two propositions we have proven:

δearly+ ≤ Cbranch

δBend
≤ Cbranch + 1

Each δ is an average statistic over a set of blocks. An average statistic over a union of
two sets can never be larger than the same average statistic over both of the two sets, so
we know:

9.4 Commitment phase 111

δearly+∪Bend
≤ Cbranch + 1

We know that Aearly ⊆ Aearly+ and Aearly∪Aend = Abranch, therefore Abranch ⊆ Aearly+∪
Aend. Both Aearly+ and Aend are subsets of Abranch, so we know Aearly+ ∪ Aend ⊆ Abranch

and thus Aearly+ ∪ Aend = Abranch. This means:

δbranch ≤ Cbranch + 1

Therefore δbranch is at most Cbranch + 1 = 33 when the branch is orphaned due to the
election manager being eclipsed. The effects of an eclipse attack targeting the election
manager during the Dilution phase are therefore that a small amount of signature dilution
can be undone.

Conclusion

When election managers are eclipsed, this can lead to some minor inconveniences for them
but also to an amount of signature dilution being undone. The maximum average factor
by which anonymity sets increase during this undone signature dilution is 33.

9.4 Commitment phase

During the Commitment phase, eligible participants create commitment blocks and ap-
pend them to the blockchain. If eclipsed participants are unable to send a commitment
block, they cannot use that commitment block to create a vote message in the Voting
phase and therefore they are disenfranchised. If eclipsed participants are unable to receive
commitment blocks, they likely cannot append their own commitment blocks to the last
block in the chain which again results in them being disenfranchised.

It is worth considering why a participant might be eclipsed in this phase: since the only
effect is disenfranchisement, the attackers must be aiming for this. The attackers however
do not know who the participant is they are disenfranchising, nor do they know the content
of the vote since it is hashed, so they only know they are lowering the turnout without
knowing in which direction they are steering the result.

Depending on the implementation of the anonymous broadcast channel the participants
use however, the commitment blocks may be sent in encrypted form from the geographical
location of the participants, which allows attackers to eclipse encrypted messages origi-
nating at certain geographical locations. Attackers could use this information to estimate
the content of the vote and therefore use the eclipse attack to steer the election away
from candidates they do not support. For this to work however the victim node must be
adjacent only to nodes that estimate the victim node will vote for a candidate they do
not support. This becomes significantly less likely if the victims makes sure to connect
to nodes affiliated with all candidates: their preferred candidate must incorrectly estimate

9.5 Voting phase 112

that the victims will vote for someone else, while the other candidates correctly estimate
that the victims do not voter for them, and at the same time all candidates are carrying
out an eclipse attack.

No matter how unlikely this scenario may be, it is still possible. In this case however
the victims will notice that their commitment blocks are not appended to the chain and
they can connect to more nodes to break the eclipse.

9.5 Voting phase

During the Voting phase, voters broadcast the content of their vote using vote messages.
The content must correspond to the hash they published in their commitment blocks. If
eclipsed voters are unable to send their vote messages, they will not be included in the tally
and thus the voters are disenfranchised. Voters will however notice that their own tally
differs from the tally communicated in the communication channel stipulated in assumption
1 and thus realize they are being targeted in an eclipse attack. They can then connect to
new nodes to break the eclipse and allow their votes to be tallied.

9.6 Conclusion

The effects of eclipse attacks are very limited. Eligible participants can be disenfranchised
in the Registration phase, but this requires the election manager to be one of the attackers
and the disenfranchised eligible participants can prove this. Signature dilution can be made
more difficult by an eclipse attack, but if this problem becomes too big the victims will
simply notice they are being attacked and break the eclipse. When the election manager
is eclipsed, a small amount of signature dilution can be undone. This negatively impacts
privacy of voters but they can compensate in advance by diluting their signatures further
than they really need to. Eclipse attacks in the Commitment phase are extremely unlikely
and will be noticeable to the victims, who can then break the eclipse. The same applies to
the Voting phase.

BLOCKCHAIN FORKS 113

Chapter 10

Blockchain forks

In a blockchain, forks may arise and the protocol must be able to resolve these to ensure
the consistency of the blockchain. This can be considered a form of robustness. When
a fork exists in the blockchain, it means there is an initial part of the chain {b1, ..., bf}
that is undisputed and ends in bf , the first block before the fork, followed by a finite set
of n branches B = {β1, ..., βn}. Each branch βi consists of the latter part of the chain
{bf+1,βi

, ..., blβi ,βi
}, with lβi

being the length of the blockchain according to this branch
which is lβi

> f . The initial part of the chain is defined as being as long as possible, that is
to say that bf is the last undisputed block in the chain of undisputed blocks. This means
that, given two branches β1 and β2 the first blocks of each branch bf+1,β1 and bf+1,β2 must
always be different. In order for the blockchain to function, there must be a consensus
mechanism that resolves forks: for each fork and its associated finite set of branches B,
if B is not the empty set there must be one branch βwin that is in that set and that is
deterministically chosen by the consensus mechanism from each subset of B that includes
βwin. We can show that this is the case by constructing a strict total order over all the
branches that can exist for any given fork: a strict total order over a finite non-empty set
S defines exactly one maximum element emax in S and it will be the maximum element of
any subset of S that includes emax. The consensus mechanism then chooses emax to resolve
the fork.

We will now prove that the fork resolution protocol is such a consensus mechanism by
showing that, for every possible bf , the fork resolution protocol defines a strict total order
where the maximum element is chosen to resolve the fork. A strict total order on a set S
is defined by a relationship < between every a, b, c ∈ S where:

1. Not a < a. (Irreflexivity)

2. If a < b then not b < a. (Asymmetry)

3. If a < b and b < c then a < c. (Transitivity)

4. If a ̸= b then a < b or b < a. (Connectedness)

10.1 Setup phase 114

The relationship < we use to define the strict total orders used in the resolution is
the relationship where a < b means b wins the fork against a: this means the maximum
element is a branch that wins the fork against every other branch. The last block before
the fork bf can be categorized according to the phase the election is in immediately after
bf and we will construct a strict total order for each of these phases:

10.1 Setup phase

This phase only consists of the initialization block, which ends this phase and is not
preceded by any other block. It is thus not possible to find a block bf for which it is
true that the blockchain is in the Setup phase immediately after bf , so we do not need to
prove that a strict total order exists in this phase.

10.2 Registration phase

10.2.1 Irreflexivity

First we shall prove that for every branch β it is true that: Not β < β. If β < β were
true, the protocol should resolve a fork between β and itself using any of the three criteria
listed in 4.6. The first criterion can only resolve forks between branches that start with a
block bf+1 of a different type, but β cannot start with a different block than itself so the
first criterion does not resolve a fork between β and itself. The second criterion can only
resolve forks between branches that have different chain scores, but β has the exact same
chain score as itself so the second criterion does not resolve a fork between β and itself.

The third criterion can resolve blocks between blocks of the same type if they are
registration blocks, dilution blocks, dilution end blocks or commitment blocks. Of those
four types of blocks only registration blocks can be appended in this phase. The third
criterion uses the voter IDs of the blocks to resolve the fork only if the two blocks have
unequal voter IDs, but β must necessarily have the same voter ID as itself. The third
criterion alternatively uses the public keys of the blocks to resolve the fork, but β contains
the same public key as itself so this cannot resolve the fork either. Therefore the protocol
cannot resolve a fork between β and itself in the Registration phase and thus β < β is not
true.

10.2.2 Asymmetry

We shall now prove that for every two branches β1, β2: if β1 < β2 then not β2 < β1. There
are two types of blocks in this phase: the registration block and the dilution start block.
Given bf , all contents of a dilution start block are fixed and thus there is only one possible
dilution start block. The dilution start block always wins a fork against a registration
block in the first criterion and we have shown in the preceding paragraph that it cannot
win or lose a fork against itself, so if β1 < β2 we know that bf+1,β1 cannot be a dilution

10.2 Registration phase 115

start block and must therefore be a registration block. This leaves two possibilities: either
bf+1,β2 is a dilution start block or it is a registration block as well.

If bf+1,β2 is a dilution start block and bf+1,β1 a registration block, the fork is resolved
according to the first criterion and β2 wins, therefore β2 < β1 is not true.

If bf+1,β2 and bf+1,β1 are both registration blocks, the fork is not resolved according to
the first criterion, so it must be resolved by either the second or the third criterion.

If it is resolved according to the second criterion, the chain scores of the branches must
be different and β1 < β2 means the chain score of β2 is higher than that of β1. Since the
chain score is an integer and the “higher than” relationship defines a strict total order over
the integers, this means the chain score of β1 cannot be higher than that of β2 and thus
β2 < β1 cannot be true.

If the fork is resolved according to the third criterion, either the voter ID of bf+1,β1

and bf+1,β2 is used to resolve the fork or not. If the voter ID is used, it is interpreted as a
number and again a strict total order over the numbers is defined. This means that, since
β1 < β2, the voter ID of bf+1,β1 must be higher than the voter ID of bf+1,β2 and thus the
voter ID of bf+1,β1 cannot be lower than the voter ID of bf+1,β2 , so β2 < β1 cannot be true.

If the voter ID is not used to resolve the fork, the only other way to resolve the fork is
using the public keys of bf+1,β1 and bf+1,β2 and again interpreting them as a number and
seeing which is lower. This is once again a strict total order, so we know if the public key
of bf+1,β1 is higher than the public key of bf+1,β2 , it cannot be true that the public key of
bf+1,β1 is lower than the public key of bf+1,β2 and thus β2 < β1 cannot be true.

Therefore there is no case where β − 1 < β2 is true but β2 < β1 is also true.

10.2.3 Transitivity

We shall now prove that for every three branches β1, β2, β3: if β1 < β2 and β2 < β3 then
β1 < β3. The first block of each of these branches is either a registration block or a dilution
start block. We have shown in the above that a branch starting with a dilution start block
cannot lose a fork, so since we know β1 < β2 and β2 < β3, we know that bf+1,β1 and bf+1,β2

are registration blocks.
This leaves two possibilities: either bf+1,β3 is a dilution start block or bf+1,β3 is a reg-

istration block. If it is a dilution start block, it wins all forks against registration blocks
according to the first criterion, so since we know bf+1,β1 is a registration block we know
β1 < β3. If bf+1,β3 is a registration block, then the fork between β2 and β3 must be resolved
either by the second or the third criterion.

If it is resolved by the second criterion, the chain score of β3 is higher than the chain
score of β2. The fork between β1 and β2 is also resolved by either the second or the third
criterion. If it is resolved by the second criterion, the chain score of β2 is higher than
the chain score of β1. Since the chain score is a number and therefore a strict total order
applies, this means that the chain score of β3 is higher than the chain score of β1 and thus
β1 < β3. If the fork between β1 and β2 is resolved by the third criterion, the chain scores
of β1 and β2 must be equal. Since we already know that the chain score of β2 is lower than
the chain score of β3, this means the chain score of β1 is lower than the chain score of β3

10.2 Registration phase 116

and therefore β1 < β3. Therefore if the fork between β2 and β3 is resolved according to the
second criterion, we know β1 < β3.

If the fork between β2 and β3 is resolved according to the third criterion, the chain scores
of β2 and β3 are equal. The fork between β1 and β2 is again resolved either according to
the second or the third criterion. If it is resolved according to the second criterion, the
chain score of β1 is lower than the chain score of β2, which we know to be equal to the
chain score of β3. Therefore we know that the chain score of β1 is lower than the chains
core of β3 and thus β1 < β3. If the fork between β1 and β2 is resolved according to the third
criterion, then the voter ID of bf+1,β1 is either equal to the voter ID of bf+1,β2 or higher.
The voter ID of bf+1,β2 must also be either equal to or higher than the voter ID of bf+1,β3 .
If the voter ID of bf+1,β1 is higher than the voter ID of bf+1,β2 , it will also be higher than
the voter ID of bf+1,β3 since it is equal to or lower than the voter ID of bf+1,β2 , and thus
we know that β1 < β3.

If the voter ID of bf+1,β1 is equal to the voter ID of bf+1,β2 , and the voter ID of bf+1,β2

is equal to the voter ID of bf+1,β3 , the voter ID of bf+1,β1 is equal to the voter ID of bf+1,β3 .
In this case the public key of bf+1,β1 must be higher than the public key of bf+1,β2 , and the
public key of bf+1,β2 must be higher than the public key of bf+1,β3 , which means the public
key of bf+1,β1 must be higher than the public key of bf+1,β3 due to the public keys being
interpreted as numbers which are strictly totally ordered. Therefore the third criterion
resolves this fork as β1 < β3.

Therefore for all possible branches in the Registration phase we know that: if β1 < β2

and β2 < β3 then β1 < β3.

10.2.4 Connectedness

We shall now prove that for every two branches β1, β2: if β1 ̸= β2 then β1 < β2 or β2 < β1.
By definition of the fork we know that bf+1,β1 ̸= bf+1,β2 , so they cannot both be dilution
start blocks since there is only one possible dilution start block if its predecessor is already
defined.

It is however possible that one of the two is a dilution start block and the other a
registration block, in which case the dilution start block wins the fork according to the
first criterion. If bf+1,β1 is the dilution start block then β2 < β1, and if bf+1,β2 is the
dilution start block then β1 < β2. Therefore whenever one of the two branches starts with
a dilution start block we know β1 < β2 or β2 < β1.

If both bf+1,β1 and bf+1,β2 are registration blocks the fork cannot be resolved according
to the first criterion, so we have to see if the second or third criterion can resolve it. If the
chain scores of the two branches are different, this will resolve the fork: if the chain score
of β2 is higher than that of β1 then β1 < β2, and if the chain score of β1 is higher than that
of β2 then β2 < β1.

If the chain scores are equal however the second criterion is inconclusive and only the
third criterion could possibly resolve the fork. When comparing two registration blocks,
the third criterion initially compares the voter IDs of each registration block and resolves
the fork if these voter IDs are different: if the voter ID of bf+1,β1 , interpreted as a number,

10.3 Dilution phase 117

is lower than the voter ID of bf+1,β2 , interpreted as a number, then β2 < β1. If the voter
ID of bf+1,β2 , interpreted as a number, is lower than the voter ID of bf+1,β1 , then β1 < β2.
Therefore if the two voter IDs are not equal, then either β1 < β2 or β2 < β1.

If bf+1,β1 and bf+1,β2 have the same voter ID, then the protocol cannot use it to resolve
the fork and instead uses the public keys of bf+1,β1 and bf+1,β2 : if the public key of bf+1,β1 ,
interpreted as a number, is lower than the public key of bf+1,β2 , interpreted as a number,
then β2 < β1. If the public key of bf+1,β2 , interpreted as a number, is lower than the public
key of bf+1,β1 , then β1 < β2. Therefore if the public keys are not equal, then either β1 < β2

or β2 < β1.
Therefore the only case that cannot be resolved is the case where the first blocks of

both branches are registration blocks with the same voter ID and the same public key.
They must also have the same prefix since this does not change and they must have the
same information identifying the blockchain, index, predecessor hash and chain score, so
all the data the signature is calculated over is the same. The signature must also be the
same since it is the signature of the election manager, so all the data in the two blocks is
the same and therefore the two blocks are the same, which contradicts the definition of the
fork.

Therefore if β1 ̸= β2 then β1 < β2 or β2 < β1.

10.2.5 Conclusion

The fork resolution protocol therefore satisfies all four requirements to be a strict total
order in the Registration phase.

10.3 Dilution phase

In the Dilution phase, four types of blocks exist: the dilution block, the pre-depth block,
the depth block and the dilution end block. Given bf , all contents of a pre-depth block
are fixed and thus there is only one possible pre-depth block. The same logic applies to
depth blocks. Furthermore the initial part of the chain {b1, ..., bf} determines whether
it is even possible to append a pre-depth block or a depth block: the two are in fact in
complementary distribution. The forking protocol treats the two blocks the same as well:
the first criterion does not do anything, the second criterion simply compares the chain
scores, and according to the third criterion both these blocks win against a dilution block
but lose against a dilution end block. We can thus group these two types of blocks together
as a (pre-)depth block and reason on the basis of this abstract type.

10.3.1 Irreflexivity

First we shall prove that for every branch β it is true that: Not β < β. If β < β were true,
the protocol should resolve a fork between β and itself using any of the three criteria listed
in 4.6. The first criterion cannot resolve forks in the Dilution phase. The second criterion

10.3 Dilution phase 118

can only resolve forks between branches that have different chain scores, but β has the
exact same chain score as itself so the second criterion does not resolve a fork between β
and itself.

The third criterion can resolve blocks between blocks of the same type if they are
registration blocks, dilution blocks, dilution end blocks or commitment blocks. Of those
four types of blocks only dilution blocks and dilution end blocks can be appended in this
phase.

If β’s first block is a dilution block the third criterion uses the first old public key of
each block to resolve the fork only if the two blocks have unequal first old public keys, but
bf+1,β must necessarily have the same first old public key as itself.

The third criterion then looks at the indices of the origin blocks of these keys, but bf+1,β

must again have the same index as itself. The third criterion then attempts the same with
the second old public key and its origin block index and continues with all the other old
public keys until one is found that is different (or its origin block index is different), which
is not the case since bf+1,β is compared to itself. The number of public keys in the blocks
is then compared, but bf+1,β has the same number of public keys as itself so this does not
resolve the fork either.

The third criterion subsequently proceeds to compare the new public keys in the same
way as the old public keys were compared, so this cannot resolve the fork for the same
reason: the list of new public keys in bf+1,β is the same as itself. Then the third criterion
compares the block assembler of the blocks to be compared, but bf+1,β must have the same
block assembler as itself.

Finally the third criterion compares the pool identifiers of the blocks to be compared,
but bf+1,β must have the same pool identifier as itself. The protocol can thus not resolve
a fork between β and itself if bf+1,β is a dilution block.

If bf+1,β is a dilution end block the third criterion compares the hash of the block to
itself, which will be inconclusive. It then compares the size of the block to itself, which
will also be inconclusive. Lastly it compares the entire content of the block to itself, which
will again be inconclusive and thus the protocol cannot resolve a fork between β and itself
if bf+1,β is a dilution end block either.

Therefore the protocol cannot resolve a fork between β and itself in the Dilution phase
and thus β < β is not true.

10.3.2 Asymmetry

We shall now prove that for every two branches β1, β2: if β1 < β2 then not β2 < β1.
The fork between these two branches cannot be resolved according to the first criterion
since this is the Dilution phase, so it is either resolved according to the second criterion or
according to the third criterion.

If it is resolved according to the second criterion, the chain scores of the branches must
be different and β1 < β2 means the chain score of β2 is higher than that of β1. Since the
chain score is an integer and the “higher than” relationship defines a strict total order over

10.3 Dilution phase 119

the integers, this means the chain score of β1 cannot be higher than that of β2 and thus
β2 < β1 cannot be true.

If it is resolved according tot the third criterion, either the two blocks are of the same
type or they are of a different type. If they are of a different type, bf+1,β2 cannot be a
dilution block since it loses to all other types, and bf+1,β1 cannot be a dilution end block
since it wins against all other types. This leaves three possibilities: either bf+1,β1 is a
dilution block and bf+1,β2 is a (pre-)depth block, in which case β2 < β1 cannot be true,
or bf+1,β1 is a dilution block and bf+1,β2 is a dilution end block, in which case β2 < β1
also cannot be true, or bf+1,β1 is a (pre-)depth block and bf+1,β2 is a dilution end block, in
which case β2 < β1 again cannot be true. Therefore when the two blocks have different
types, β2 < β1 cannot be true.

If the two blocks have the same type, the fork resolution depends on which type it is.
It cannot be a (pre-)depth block since there is only one possible (pre-)depth block for a
given bf , so there would not be a fork in this case. The two blocks must therefore either
be dilution blocks or dilution end blocks.

If they are dilution blocks, either one of the old public keys is used to resolve the fork
or not. If one of the old public keys is used, it is interpreted as a number and again a strict
total order over the numbers is defined. This means that, since β1 < β2, the old public
key of bf+1,β1 at a given index i must be higher than the old public key of bf+1,β2 at index
i and thus the old public key of bf+1,β1 at index i cannot be lower than the old public key
of bf+1,β2 at index i, so β2 < β1 cannot be true.

If no old public key is used to resolve the fork, the index of the origin block of one of
the old public keys is used if it differs. Since this is a number a strict total order is defined,
and since β1 < β2 the origin index of β1 at index i must be higher than the origin index of
β2 at index i, so the origin index of β2 at index i cannot be higher than the origin index
of β1 at index i and therefore β2 < β1 cannot be true.

If the indices of the origin blocks of all old public keys of the two blocks are the same,
the number of old public keys is used if it is different: bf+1,β1 must have fewer old keys than
bf+1,β2 , so bf+1,β1 cannot have more old keys than bf+1,β2 and therefore β2 < β1 cannot be
true.

If the number of old keys is the same, and the old keys and their origin indices are also
the same in every case, the third criterion attempts to resolve the fork by using the new
public keys: unless all the new public keys are the same, the new public key of bf+1,β1 at a
given index i must be higher than the new public key of bf+1,β2 at index i because β1 < β2,
and thus the new public key of bf+1,β1 at index i cannot be lower than the new public key
of bf+1,β2 at index i, so β2 < β1 cannot be true.

If the new keys are all the same, the block assemblers of bf+1,β1 and bf+1,β2 are compared:
if they are not the same, the block assembler of bf+1,β1 must be higher than the block
assembler of bf+1,β2 , which means it cannot be lower than the block assembler of bf+1,β2

and thus β2 < β1 cannot be true.
Lastly if all else is the same, the pool identifiers of the two blocks are compared: since

β1 < β2, the pool identifier of bf+1,β1 must be higher than the pool identifier of bf+1,β2 , so
β2 < β1 cannot be true. It is thus not possible for β2 < β1 to be true if β1 < β2 is true and

10.3 Dilution phase 120

the initial blocks of the branches are dilution blocks.
It the two initial blocks of the branches are dilution end blocks, the third criterion first

compares the hashes of the two blocks: if they are not equal, the hash of bf+1,β1 must be
higher than the hash of bf+1,β2 when interpreted as a number, since β1 < β2, so the hash of
bf+1,β1 cannot be lower than the hash of bf+1,β2 when interpreted as a number and therefore
β2 < β1 cannot be true.

If the hashes are the same, the size of the blocks is compared: if the size is different,
bf+1,β1 must be larger than bf+1,β2 , so bf+1,β1 cannot be smaller than bf+1,β2 and therefore
β2 < β1 cannot be true. Lastly if both the hashes and the sizes are equal, the entire contents
of each block is compared, interpreted as a number: since β1 < β2 we know bf+1,β1 must be
higher than bf+1,β2 , so bf+1,β1 cannot be lower than bf+1,β2 and therefore β2 < β1 cannot
be true.

Therefore there is no case where β1 < β2 is true but β2 < β1 is also true.

10.3.3 Transitivity

We shall now prove that for every three branches β1, β2, β3: if β1 < β2 and β2 < β3 then
β1 < β3. Since this is the Dilution phase, all three of these forks must be resolved according
to either the second or the third criterion. This means the chain score of β1 must be lower
than or equal to the chain score of β2, and the chain score of β2 must be lower than or equal
to the chain score of β3, which in turn means the chain score of β1 is lower than or equal
to the chain score of β3.I f it is lower, the fork is resolved according to the second criterion
and β1 < β3. If the chain scores are equal, all three forks must be resolved according to
the third criterion.

The resolution of the third criterion depends on whether the blocks are of the same type
or not. If the first blocks of all three branches have different types, then bf+1,β2 cannot be a
dilution block, since it needs to win against bf+1,β1 and dilution blocks lose against all other
types, but it also cannot be a dilution end block, since it needs to lose against bf+1,β3 and
dilution end blocks win against all other types. Therefore bf+1,β2 is a (pre-)depth block.
This means bf+1,β1 must be a dilution block, since this is the only type that loses against
a (pre-)depth block, and bf+1,β3 must be a dilution end block, since this is the only type
that wins against a (pre-)depth block. A dilution end block wins against a dilution block
according to the third criterion, so β1 < β3 is true.

If bf+1,β1 and bf+1,β2 are of the same type but bf+1,β3 is of a different type, then β2 < β3

automatically means β1 < β3 since the fork is resolved according to block types. If bf+1,β1 is
of a different type but bf+1,β2 and bf+1,β3 are of the same type, then β1 < β2 automatically
means β1 < β3 since, again, the fork is resolved according to block types. It is not possible
that bf+1,β1 and bf+1,β3 are of the same type while bf+1,β2 is of a different type, since that
would mean the former type both loses and wins against the latter type. Therefore the
only other option is that the three blocks are all of the same type.

They cannot be (pre-)depth blocks in this case, since there is only one possible (pre-
)depth block for a given bf , so they have to be either dilution blocks or dilution end blocks.
If they are dilution blocks, initially the old public keys are compared between the blocks.

10.3 Dilution phase 121

The lists of old public keys of the blocks start with i− 1 ≥ 0 public keys that are identical
in all three blocks, where the key origin block index of each block is identical in all three
blocks as well. It is possible that this covers the entire list of old public keys in the block
with the shortest list, but if not, there is an index i where at least one of the three blocks
has a different old public key or key origin block index.

If the old public key in bf+1,β1 is different from the old public key in the other two, it
must be higher, when interpreted as a number, than the old public key in bf+1,β2 , when
interpreted as a number, since β1 < β2. The old public key in bf+1,β2 , when interpreted
as a number, must be equal to or higher than the old public key in bf+1,β3 , since β2 < β3.
Therefore it is also true that β1 < β3 due to the strict total order of numbers.

If the old public key in bf+1,β3 is different from the old public key in the other two,
it must be lower, when interpreted as a number, than the old public key in bf+1,β2 , when
interpreted as a number, since β2 < β3. The old public key in bf+1,β2 , when interpreted
as a number, must be lower than or equal to the old public key in bf+1,β1 , since β1 < β2.
Therefore it is also true that β1 < β3 due to the strict total order of numbers.

If the old public key of bf+1,β2 is different from the other two, the other two must also
be different from each other since otherwise the key in bf+1,β2 would have to be both higher
and lower than the key in the other two at the same time. The case where the three old
public keys are all different has already been covered twice in the above.

Therefore the only case that is left to be covered is where all three old public keys are
the same: in this case the fork must be decided on the basis of the key origin block index.
The index in bf+1,β1 must be higher than or equal to the index in bf+1,β2 , since β1 < β2. If
it is higher, the index in bf+1,β2 must be higher than or equal to the index in bf+1,β3 , since
β2 < β3, and therefore the index in bf+1,β1 must be higher than the index in bf+1,β3 and
thus β1 < β3.

If the index in bf+1,β1 is equal to the index in bf+1,β2 , the latter must be higher than
the index in bf+1,β3 , since β2 < β3, and thus the index in bf+1,β1 is higher than the index in
bf+1,β3 and therefore β1 < β3. Therefore in all cases where not the entire list of old keys in
the block with the shortest list is equal to the beginning of the list in the other two blocks,
we know β1 < β3.

If the entire list of old keys in the block with the shortest list is equal to the beginning
of the list in the other two blocks, the length of the list is compared: bf+1,β1 must have
a list that is shorter than or equal in length to the list in bf+1,β2 , which must have a list
that is shorter than or equal in length to the list in bf+1,β3 . Since the length is a natural
number, which is strictly totally ordered, we know that bf+1,β1 must have a list that is
shorter than or equal in length to the list in bf+1,β3 . If it is shorter, we know that β1 < β3.
If it is equal in length, all three blocks have the same number of old public keys and they
are all identical as well. In this case the only way the forks can be resolved anymore is
by comparing the new public keys. The lists of new public keys of the blocks start with
j − 1 ≥ 0 public keys that are identical in all three blocks.

If this does not cover the entire list, at least one of the three blocks must have a different
new key at index j in the list. If bf+1,β1 has a different new key at index j than the other
two, it must be higher than the new key in bf+1,β2 when both are interpreted as a number,

10.3 Dilution phase 122

since β1 < β2. The new key in bf+1,β2 must be higher than or equal to the new key in
bf+1,β3 , since β2 < β3. Therefore the new key in bf+1,β1 is higher than the new key in bf+1,β3

due to the strict total order of the numbers, and thus β1 < β3.
If the new key in bf+1,β1 is equal to the new key in bf+1,β2 , then bf+1,β3 must have a new

key that is lower than the new key in bf+1,β2 when interpreted as a number, since β2 < β3.
Therefore the new key in bf+1,β2 must also be higher than the new key in bf+1,β3 and thus
β1 < β3.

If all new keys in the list are the same amongst all three blocks, then the block assem-
blers are interpreted as numbers and compared: if the block assembler of bf+1,β1 is higher
than the block assembler of bf+1,β2 , we know the block assembler of bf+1,β2 must be higher
than or equal to the block assembler of bf+1,β3 and therefore the block assembler of bf+1,β1

is higher than the block assembler of bf+1,β3 .
If the block assembler of bf+1,β1 is the same as the block assembler of bf+1,β2 , then the

block assembler of bf+1,β2 is either same as the block assembler of bf+1,β3 or higher: if it is
higher, then so is the block assembler of bf+1,β1 and thus β1 < β3. If it is the same, then
the block assemblers of all three blocks are the same.

In this case the pool identifier is used to resolve the fork: the pool identifier of bf+1,β1

must be higher than or equal to the pool identifier of bf+1,β2 , and the pool identifier of
bf+1,β2 must be higher than or equal to the pool identifier of bf+1,β3 , then the pool identifier
of bf+1,β1 must be higher than or equal to the pool identifier of bf+1,β3 due to the strict
total order of numbers. If it is higher, then β1 < β3, and if it is equal the pool identifiers
of all three blocks are identical.

In that case the three blocks are identical: they have the same old keys and therefore
also the same anonymity set, depth and signatures, and they have the same new keys,
block assembler and pool identifier, and they also have the same prefix and information
identifying the blockchain. Therefore if the first blocks of all three branches are dilution
blocks, we know that, if β1 < β2 and β2 < β3 then β1 < β3.

If the first blocks of all three branches are dilution end blocks, the third criterion initially
compares the hashes of the blocks: since β1 < β2, the hash of bf+1,β1 must be higher than
or equal to the hash of bf+1,β2 , when interpreted as numbers. Since β2 < β3, the hash of
bf+1,β2 must be higher than or equal to the hash of bf+1,β3 , when interpreted as numbers.
Therefore the hash of bf+1,β1 must be higher than or equal to the hash of bf+1,β3 . If it is
higher, then β1 < β3. If it is equal, then the hashes of all three blocks are the same and
instead the sizes of the blocks are compared. Since β1 < β2, bf+1,β1 must be larger than
bf+1,β2 or the same size, and since β2 < β3, bf+1,β2 must be larger than bf+1,β3 or the same
size. Therefore bf+1,β1 is larger than bf+1,β3 or the same size.

If it is larger, then β1 < β3. If it is the same size, all three blocks are the same size
and the full contents of each block is compared, interpreted as a number. Since β1 < β2,
bf+1,β1 must be higher than bf+1,β2 or equal, and since β2 < β3, bf+1,β2 must be higher than
bf+1,β3 or equal. Therefore bf+1,β1 must be higher than bf+1,β3 or equal. If it is higher, then
β1 < β3. If it is equal, the full contents of all three blocks are equal and thus there is no
fork.

Therefore for all possible branches in the Dilution phase: if β1 < β2 and β2 < β3 then

10.3 Dilution phase 123

β1 < β3.

10.3.4 Connectedness

We shall now prove that for every two branches β1, β2: if β1 ̸= β2 then β1 < β2 or β2 < β1.
The chain score of β1 is either lower than the chain score of β2, higher or equal. If it is
lower, then β1 < β2 is true, and if it is higher, then β2 < β1 is true.

If the chain scores are equal, the third criterion is used to resolve forks. In this case
the two initial blocks of each chain, bf+1,β1 and bf+1,β2 are compared to each other. They
either have the same type or they have a different type.

If one is a dilution block and the other a (pre-)depth block, the (pre-)depth block wins.
If bf+1,β1 is the dilution block, β1 < β2 is true. If bf+1,β2 is the dilution block, β2 < β1 is
true.

If one is a dilution block and the other a dilution end block, the dilution end block wins.
If bf+1,β1 is the dilution block, β1 < β2 is true. If bf+1,β2 is the dilution block, β2 < β1 is
true.

If one is a (pre-)depth block and the other a dilution end block, the dilution end block
wins. If bf+1,β1 is the (pre-)depth block, β1 < β2 is true. If bf+1,β2 is the (pre-)depth block,
β2 < β1 is true.

If the blocks have the same type, they are either both dilution blocks, (pre-)depth
blocks or dilution end blocks. By definition of the fork we know that bf+1,β1 ̸= bf+1,β2 , so
they cannot both be (pre-)depth blocks since there is only one possible (pre-)depth block
if its predecessor is already defined.

If they are both dilution blocks, it is either true that all the public keys to be diluted
and their associated origin block indices in the block with the smallest number of public
keys are equal to those in the other block, or it is not true. If it is not true, there must be
an index i ≥ 1 at which either the old public key in bf+1,β1 is different from the old public
key in bf+1,β2 , or the key origin block index in bf+1,β1 is different from the key origin block
index in bf+1,β2 , while the old public keys and key origin block indices are the same in both
blocks for every index below i. If the old public keys are different, then the old public key
at index i in bf+1,β1 , when interpreted as a number, is either higher or lower than the old
public key at index i in bf+1,β2 , when interpreted as a number. If it is higher, then β1 < β2

is true. If it is lower, then β2 < β1 is true. If the two public keys are the same, the key
origin block index must be different: if the key origin block index of bf+1,β1 is higher than
the key origin block index of bf+1,β2 , then β1 < β2 must be true. If the key origin block
index of bf+1,β1 is lower than the key origin block index of bf+1,β2 , then β2 < β1 must be
true.

If it is true that all the public keys to be diluted and their associated origin block
indices in the block with the smallest number of public keys are equal to those in the other
block, then there are two possibilities: either both blocks have the same number of keys
or they do not. If they do not have the same number of keys, then either bf+1,β1 has fewer
keys, in which case β1 < β2 is true, or bf+1,β2 has fewer keys, in which case β2 < β1 is true.

10.3 Dilution phase 124

If they do have the same number of keys, all the old keys and their associated block origin
indices are the same, in which case the new keys must be compared.

It is either true that all the new keys in the two blocks are the same, or it is not true.
If it is not true, there must be an index i ≥ 1 at which the new public key in bf+1,β1 is
different from the new public key in bf+1,β2 , so the new public key at index i in bf+1,β1 ,
when interpreted as a number, is either higher or lower than the new public key at index i
in bf+1,β2 , when interpreted as a number. If it is higher, then β1 < β2 is true. If it is lower,
then β2 < β1 is true.

If all the new keys are the same, the public key of the block assembler in each block is
compared: if they are different, then the block assembler in bf+1,β1 , when interpreted as a
number, is either higher or lower than the block assembler in bf+1,β2 , when interpreted as
a number. If it is higher, then β1 < β2 is true, and if it is lower, then β2 < β1 is true. If
the two block assemblers are the same, only the pool identifiers are left to compare.

If the pool identifier in bf+1,β1 , when interpreted as a number, is higher than the pool
identifier in bf+1,β2 , when interpreted as a number, then β1 < β2 is true. If it is lower, then
β2 < β1 is true.

If the pool identifier is the same the blocks are identical: they have the same old keys
and therefore also the same anonymity set, depth and signatures, and they have the same
new keys, block assembler and pool identifier, and they also have the same prefix and
information identifying the blockchain. Therefore a fork is not possible.

Thus we know that, if the branches start with dilution blocks, if β1 ̸= β2 then β1 < β2

or β2 < β1.
If the branches start with dilution end blocks, the hashes of the blocks are compared:

they are either the same, or the hash of bf+1,β1 , when interpreted as a number, is higher or
lower than the hash of bf+1,β2 , when interpreted as a number. If it is higher, then β1 < β2,
and if it is lower, then β2 < β1. If it is the same, the size of the blocks is compared: if bf+1,β1

is larger than bf+1,β2 , then β1 < β2, if it is larger, then β2 < β1. If the blocks are the same
size, the full contents of each block are interpreted as a number and compared: if bf+1,β1 ,
when interpreted as a number, is higher than bf+1,β2 , when interpreted as a number, then
β1 < β2. If it is lower, then β2 < β1. If they are equal, the two blocks are the same, which
contradicts the definition of a fork.

Therefore no matter the chain scores of the branches or the blocks they start with, for
every two branches β1, β2: if β1 ̸= β2 then β1 < β2 or β2 < β1.

10.3.5 Conclusion

The fork resolution protocol satisfies all four requirements to be a strict total order in the
Dilution phase.

10.4 Commitment phase 125

10.4 Commitment phase

10.4.1 Irreflexivity

First we shall prove that for every branch β it is true that: Not β < β. If β < β were true,
the protocol should resolve a fork between β and itself using any of the three criteria listed
in 4.6.

The first criterion can only resolve forks between branches that start with a block bf+1

of a different type, but β cannot start with a different block than itself so the first criterion
does not resolve a fork between β and itself.

The second criterion can only resolve forks between branches that have different chain
scores, but β has the exact same chain score as itself so the second criterion does not
resolve a fork between β and itself.

The third criterion can resolve blocks between blocks of the same type if they are
registration blocks, dilution blocks, dilution end blocks or commitment blocks. Of those
four types of blocks only commitment blocks can be appended in this phase. The third
criterion first looks at the length of the chains being compared in case both branches start
with a commitment block, but the length of β is equal to itself so the fork cannot be
resolved this way. The third criterion subsequently uses the voter public keys of the blocks
to resolve the fork only if the two blocks have unequal voter public keys, but bf+1,β must
necessarily have the same voter public key as itself. The third criterion then looks at the
indices of the origin blocks of these keys, but bf+1,β must again have the same index as
itself. The third criterion alternatively uses the vote hashes of the blocks to resolve the
fork, but bf+1,β contains the same vote hash as itself so this cannot resolve the fork either.

Therefore the protocol cannot resolve a fork between β and itself in the Commitment
phase and thus β < β is not true.

10.4.2 Asymmetry

We shall now prove that for every two branches β1, β2: if β1 < β2 then not β2 < β1. There
are two types of blocks in this phase: the commitment block and the commitment end
block.

Given bf , all contents of a commitment end block are fixed and thus there is only one
possible commitment end block. The commitment end block always wins a fork against
a commitment block in the first criterion and we have shown in the preceding paragraph
that it cannot win or lose a fork against itself, so if β1 < β2 we know that bf+1,β1 cannot
be a commitment end block and must therefore be a commitment block. This leaves two
possibilities: either bf+1,β2 is a commitment end block or it is a commitment block as well.

If bf+1,β2 is a commitment end block and bf+1,β1 a commitment block, the fork is resolved
according to the first criterion and β2 wins, therefore β2 < β1 is not true.

If bf+1,β2 and bf+1,β1 are both commitment blocks, the fork is not resolved according
to the first criterion, so it must be resolved by either the second or the third criterion. If
it is resolved according to the second criterion, the chain scores of the branches must be

10.4 Commitment phase 126

different and β1 < β2 means the chain score of β2 is higher than that of β1. Since the
chain score is an integer and the “higher than” relationship defines a strict total order over
the integers, this means the chain score of β1 cannot be higher than that of β2 and thus
β2 < β1 cannot be true.

If the fork is resolved according to the third criterion, either the length of the two
branches is the same or it is not the same. If the length is not the same, the longest branch
wins and thus β2 must be longer than β1. Since the length is a natural number and thus
strictly totally ordered, this means β1 cannot be longer than β2 and thus β2 < β1 cannot
be true.

If the length is the same, either the voter public key of bf+1,β1 and bf+1,β2 is used to
resolve the fork or not. If the voter public key is used, it is interpreted as a number and
again a strict total order over the numbers is defined. This means that, since β1 < β2, the
voter public key of bf+1,β1 must be higher than the voter public key of bf+1,β2 and thus the
voter public key of bf+1,β1 cannot be lower than the voter public key of bf+1,β2 , so β2 < β1

cannot be true.
If the voter public key is not used to resolve the fork, the index of the origin block

of the voter public key is used if it differs. Since this is a number a strict total order is
defined, and since β1 < β2 the origin index of β1 must be higher than the origin index of
β2, so the origin index of β2 cannot be higher than the origin index of β1 and therefore
β2 < β1 cannot be true.

If the indices of the origin blocks of the public keys of the two blocks are the same,
the only other way to resolve the fork is using the vote hashes of bf+1,β1 and bf+1,β2 and
again interpreting them as a number and seeing which is higher. This is once again a strict
total order, so we know if the vote hash of bf+1,β1 is higher than the vote hash of bf+1,β2 ,
it cannot be true that the vote hash of bf+1,β1 is lower than the vote hash of bf+1,β2 and
thus β2 < β1 cannot be true.

Therefore there is no case where β − 1 < β2 is true but β2 < β1 is also true.

10.4.3 Transitivity

We shall now prove that for every three branches β1, β2, β3: if β1 < β2 and β2 < β3 then
β1 < β3. The first block of each of these branches is either a commitment block or a
commitment end block. We have shown in the above paragraph that a branch starting
with a commitment end block cannot lose a fork, so since we know β1 < β2 and β2 < β3, we
know that bf+1,β1 and bf+1,β2 are commitment blocks. This leaves two possibilities: either
bf+1,β3 is a commitment end block or bf+1,β3 is a commitment block.

If it is a commitment end block, it wins all forks against commitment blocks according
to the first criterion, so since we know bf+1,β1 is a commitment block we know β1 < β3.

If bf+1,β3 is a commitment block, then the fork between β2 and β3 must be resolved
either by the second or the third criterion. If it is resolved by the second criterion, the
chain score of β3 is higher than the chain score of β2. The fork between β1 and β2 is also
resolved by either the second or the third criterion. If it is resolved by the second criterion,
the chain score of β2 is higher than the chain score of β1. Since the chain score is a number

10.4 Commitment phase 127

and therefore a strict total order applies, this means that the chain score of β3 is higher
than the chain score of β1 and thus β1 < β3. If the fork between β1 and β2 is resolved by
the third criterion, the chain scores of β1 and β2 must be equal. Since we already know
that the chain score of β2 is lower than the chain score of β3, this means the chain score of
β1 is lower than the chain score of β3 and therefore β1 < β3. Therefore if the fork between
β2 and β3 is resolved according to the second criterion, we know β1 < β3.

If the fork between β2 and β3 is resolved according to the third criterion, the chain scores
of β2 and β3 are equal. The fork between β1 and β2 is again resolved either according to
the second or the third criterion. If it is resolved according to the second criterion, the
chain score of β1 is lower than the chain score of β2, which we know to be equal to the
chain score of β3. Therefore we know that the chain score of β1 is lower than the chains
core of β3 and thus β1 < β3. If the fork between β1 and β2 is resolved according to the
third criterion, the length of the chain of β1 is either equal to the length of the chain of β2

or not.
If the lengths are not equal, the length of β1 must be lower than the length of β2 since

the longest chain wins. Since we know the fork between β2 and β3 is also resolved according
to the third criterion, we know that the chain of β3 cannot be shorter than the chain of β2

since it wins the fork. Therefore we know that β2 is shorter than β2 which is at least as
short as β3, so we know β1 is shorter than β3 because length is a natural number and thus
strictly totally ordered. Therefore we have β1 < β3. If β1 is of equal length to β2, then
either β3 is longer or also of equal length. If β3 is longer than β2, which is of equal length
to β1, we know that β3 is also longer than β1 and thus we know β1 < β3.

If the lengths of all three branches are the same, then the voter public key of bf+1,β1

is either equal to the voter public key of bf+1,β2 or higher. The voter public key of bf+1,β2

must also be either equal to or higher than the voter public key of bf+1,β3 . If the voter
public key of bf+1,β1 is higher than the voter public key of bf+1,β2 , it will also be higher
than the voter public key of bf+1,β3 since it is equal to or higher than the voter public key
of bf+1,β2 , and thus we know that β1 < β3. If the voter public key of bf+1,β1 is equal to the
voter public key of bf+1,β2 , and the voter public key of bf+1,β2 is equal to the voter public
key of bf+1,β3 , the voter public key of bf+1,β1 is equal to the voter public key of bf+1,β3 .

In this case the key origin block indices of the blocks is used to resolve the fork: since
β1 < β2 the key origin block index of bf+1,β1 must be higher than or equal to the key origin
block index of bf+1,β2 , and since β2 < β3 the key origin block index of bf+1,β2 must be
higher than or equal to the key origin block index of bf+1,β3 . Therefore the key origin block
index of bf+1,β1 must be higher than or equal to the key origin block index of bf+1,β3 . If
it is higher, we know that β1 < β3. If it is equal, the vote hash of bf+1,β1 must be higher
than the vote hash of bf+1,β2 , and the vote hash of bf+1,β2 must be higher than the vote
hash of bf+1,β3 , which means the vote hash of bf+1,β1 must be higher than the vote hash
of bf+1,β3 due to the vote hashes being interpreted as numbers which are strictly totally
ordered. Therefore the third criterion resolves this fork as β1 < β3.

Therefore for all possible branches in the Commitment phase we know that: if β1 < β2

and β2 < β3 then β1 < β3.

10.4 Commitment phase 128

10.4.4 Connectedness

We shall now prove that for every two branches β1, β2: if β1 ̸= β2 then β1 < β2 or
β2 < β1. By definition of the fork we know that bf+1,β1 ̸= bf+1,β2 , so they cannot both
be commitment end blocks since there is only one possible commitment end block if its
predecessor is already defined.

It is however possible that one of the two is a commitment end block and the other a
commitment block, in which case the commitment end block wins the fork according to
the first criterion. If bf+1,β1 is the commitment end block then β2 < β1, and if bf+1,β2 is the
commitment end block then β1 < β2. Therefore whenever one of the two branches starts
with a commitment end block we know β1 < β2 or β2 < β1.

If both bf+1,β1 and bf+1,β2 are commitment blocks the fork cannot be resolved according
to the first criterion, so we have to see if the second or third criterion can resolve it. If the
chain scores of the two branches are different, this will resolve the fork: if the chain score
of β2 is higher than that of β1 then β1 < β2, and if the chain score of β1 is higher than that
of β2 then β2 < β1.

If the chain scores are equal however the second criterion is inconclusive and only the
third criterion could possibly resolve the fork. When comparing two commitment blocks,
the third criterion initially compares the lengths of the chains of the two branches: the
branch with the longest chain wins. If β1 has the longest chain, then β2 < β1 is true. If β2

has the longest chain, then β1 < β2 is true. Thus we know that either β1 < β2 or β2 < β1

is true if the lengths are different.
If the lengths are the same, the third criterion compares the voter public keys of each

commitment block and resolves the fork if these voter public keys are different: if the voter
public key of bf+1,β1 , interpreted as a number, is lower than the voter public key of bf+1,β2 ,
interpreted as a number, then β2 < β1. If the voter public key of bf+1,β2 , interpreted as a
number, is lower than the voter public key of bf+1,β1 , then β1 < β2. Therefore if the two
voter public keys are not equal, then either β1 < β2 or β2 < β1.

If bf+1,β1 and bf+1,β2 have the same voter public key, then the protocol cannot use them
to resolve the fork and instead uses the key origin block indices of the two blocks: if the
key origin block index of bf+1,β1 is lower than the key origin block index of bf+1,β2 , then
β2 < β1. If the key origin block index of bf+1,β2 is lower than the key origin block index of
bf+1,β1 , then β1 < β2.

If the key origin block indices of the two blocks are equal, the protocol uses the vote
hashes of bf+1,β1 and bf+1,β2 : if the vote hash of bf+1,β1 , interpreted as a number, is lower
than the vote hash of bf+1,β2 , interpreted as a number, then β2 < β1. If the vote hash
of bf+1,β2 , interpreted as a number, is lower than the vote hash of bf+1,β1 , then β1 < β2.
Therefore if the vote hashes are not equal, then either β1 < β2 or β2 < β1.

Therefore the only case that cannot be resolved is the case where the first blocks of
both branches are commitment blocks with the same voter public key and the same vote
hash. They must also have the same prefix since this does not change and they must have
the same information identifying the blockchain, index, predecessor hash and chain score,
so all the data the signature is calculated over is the same. The signature must also be the

10.5 Voting phase 129

same since it is the signature corresponding to the voter public key, so all the data in the
two blocks is the same and therefore the two blocks are the same, which contradicts the
definition of the fork.

Therefore if β1 ̸= β2 then β1 < β2 or β2 < β1.

10.4.5 Conclusion

The fork resolution protocol therefore satisfies all four requirements to be a strict total
order in the Commitment phase.

10.5 Voting phase

There are no blocks in this phase so no branches can exist: any hypothetical branch β
could not satisfy the requirement lβ > f . Therefore the set of branches is the empty set
and thus all propositions are true for every branch in the set.

10.6 Conclusion

The fork resolution protocol therefore resolves forks in all phases, and thus it is a valid
consensus mechanism.

REMAINING ROBUSTNESS ISSUES 130

Chapter 11

Remaining robustness issues

Robustness is a broad topic since there are many possible ways someone might interact
with a system in a way that was not intended by the designer of the system. Denial-of-
service attacks, eclipse attacks and blockchain forks were important dangers the system
should be robust against and have been analyzed in the previous chapters. This chapter
will look at a number of remaining issues the system should be robust against. Section
11.1 covers voter accidents and Section 11.2 covers network failure.

11.1 Voter accidents

There are two kinds of accidents we can consider: accidents where eligible participants
lose access to the data they need to vote, and accidents where eligible participants lose the
right to vote. 1

If eligible participants completely lose access to the data they need to vote (their key
pairs) during the Registration phase, they can simply register a new key pair. If they lose
access to their key pairs when they have already diluted them, they cannot register a new
key pair anymore. There is no one to help them recover their keys because that information
does not exist elsewhere. They can also not ask for their public key to be disabled in order
to get a new key pair since no one knows which public key corresponds to them due to
voter privacy.

The same logic applies to eligible participants who lose the right to vote: if this happens
during the Registration phase, or before the first round of signature dilution they partici-
pate in, it is known which public keys correspond to them and these could be invalidated.
However when signature dilution has happened, this results in an anonymity set and thus
it is no longer possible to invalidate someone’s key since it is not clear which key that is.

The system is therefore robust against some voter accidents but definitely not all of

1The law might disenfranchise eligible participants when for example convicted for a felony, but partic-
ipants might also lose the right to vote by dying: the dead participants themselves are obviously no longer
able to vote, but if they divulge their keys to someone else before they die, the other person can vote on
behalf of a dead person.

11.2 Network failure 131

them. It should be noted that this is in fact a necessary risk: giving people control means
giving people responsibility. The requirement of eligibility demands that certain actions,
such as voting, must be restricted to certain people. An e-voting system consists entirely
of the communication of data and as such the only way to restrict access for people is by
requiring that they possess a piece of data. Therefore if authorized people lose this data,
they lose the ability to vote. This could be mitigated by giving them another piece of
data that also authorizes them to vote, but the requirement of uniqueness entails that each
person can at most possess one piece of data authorizing the vote. This in turn means
that, when a new piece of data is given, either the eligible person must prove that the old
data is lost, or the system must invalidate this old data. Eligible participants will not be
able to prove that they do not possess data since this requires proving a negative, and for
the system to invalidate the data it must know which data within the system determines
the validity of this lost piece of data uniquely. This means that a certain piece of data in
the system is linked to the identity of the eligible participant. This piece of data must be
used when determining the validity of the participant’s vote, which means the vote can be
linked to the identity of the eligible participant. This in turn violates the requirement of
privacy.

11.2 Network failure

Without the internet no e-voting system can work and if part of the electorate has no access
to the internet, that part cannot make use of the system. Nevertheless, some systems might
allow for participants to be temporarily disconnected from the network and still participate
to the full extent of the system’s possibilities, while others might require that participants
are connected at a very specific time or even for the entire duration of the election. The
former can be said to be more robust against network failure than the latter.

Since Acrohalides is a blockchain-based system, we can first look at the robustness of
blockchains in general against network failure. The core functionality of a blockchain can
be summarized as follows: one of the nodes in the network creates a new block, appending
it to the chain, and broadcasts it to the other nodes in the network, who each update their
own view of the chain.

Network failure can prevent nodes from broadcasting blocks, in which case the state
of the blockchain will not be updated. If the network failure is resolved after a while,
the nodes can broadcast their blocks after all. In the meantime the blockchain has either
grown or it has not: if it has not there is no problem at all, but if it has, a fork arises
which will be resolved through the fork resolution protocol. If the network failure persists
indefinitely, the blocks will never be broadcast.

Network failure can also prevent nodes from receiving blocks, in which case they cannot
see the current state of the blockchain. If the network failure is resolved after a while, the
nodes can request the last block of the chain and subsequently request all the other blocks
they have missed, and thus they will eventually have the entire blockchain. Thus the
dangers of temporary network failure for a blockchain can be summarized as: participants

11.2 Network failure 132

may be temporarily unable to see the state of the blockchain and change the state of the
blockchain, and they may be outcompeted when changing the state due to forks.

We can look at the effects network failure has on the different roles of participants
in the system, specifically the honest participants. We will not consider network failure
affecting attackers as a problem, since this is arguably even a desirable outcome. We will
look at network failure during all five phases of the election.

11.2.1 Setup

The only thing that happens in this phase, is the creation of the initialization block by
the election manager. When election managers cannot connect to the internet, they must
simply wait until they can and then broadcast the initialization block. Eligible participants
do not need to be connected at this moment, since they do not create any blocks and they
can retrieve the chain afterwards, when they are connected.

11.2.2 Registration

During this phase, election managers create registration blocks and eventually a dilution
start block. No one else creates blocks in this phase. If the election manager is discon-
nected from the internet, this phase is stalled until the connection is reestablished. Eligible
participants can only create a disenfranchisement message during this phase, but this can
actually also be done in a later phase. Thus if they are disconnected and their registration
blocks are orphaned in a fork, they can still prove this after the phase has ended.

This will however not be possible if the network failure caused them to be unable to
receive the registration block in the first place: then they cannot create the disenfran-
chisement message at all. If eligible participants have their registration blocks orphaned,
they cannot vote using this system. It is however also trivial to prove this, which makes it
possible for a fallback paper ballot system to allow them to vote anyway.

11.2.3 Dilution

During this phase, eligible participants create dilution blocks. If they are temporarily not
connected, they are temporarily unable to dilute their keys and they may be outcompeted
when they try. In order to create dilution blocks however, eligible participants also send
a number of messages to each other. If they are temporarily not connected, they cannot
send and receive these messages in that time, which makes it more difficult for them to
dilute their keys. If this persists for an entire round of signature dilution, this will however
make them leftover and they will be given preferential treatment after the pre-depth block.

It is possible though that network failure persists for so long that the eligible partic-
ipants have no opportunity to dilute their keys and therefore they have no privacy when
voting afterwards. Since it is trivial to prove this, it is again possible for a fallback paper
ballot system to allow them to vote in an alternative way. Besides these messages, they

11.2 Network failure 133

also cannot send a blame message when not connected, meaning an attacker might tem-
porarily avoid being exposed. Election managers do not do anything with these messages,
so if they are temporarily disconnected and cannot see them, this has no effect. If election
managers do not see dilution blocks due to a temporary network failure, this will only serve
to temporarily make it more difficult for them to append blocks.

Election managers create pre-depth blocks, depth blocks and eventually a dilution end
block in this phase. These blocks all serve to change the phase, or part of the phase, of
the election. When election managers cannot connect to the internet, they must simply
wait until they can and then change the (part of the) phase. If eligible participants do
not receive a pre-depth or depth block due to network failure, this makes it more difficult
for them to take part in a dilution process. This however requires an internet connection
anyway, so this risk is covered entirely in the preceding paragraph. If eligible participants
do not receive a dilution end block due to network failure, they will be unaware that the
blockchain is in the Commitment phase until they eventually do receive the block. In this
case they will not be able to do anything in the Dilution phase anymore, since that requires
an internet connection, so the only real effect is they are temporarily unable to take part
in the Commitment phase. This is equivalent to network failure during the Commitment
phase, which we will cover in the paragraph below.

11.2.4 Commitment

During this phase, eligible participants create commitment blocks committing their votes.
If they are temporarily not connected, they are temporarily unable to commit their votes.
They are however not affected by missing other participants’ commitments apart from the
effects of network failure in a blockchain, as discussed above. This means that eligible par-
ticipants can simply create their commitment blocks when they reconnect to the internet,
assuming this happens during the Commitment phase. If however they experience network
failure throughout the entire phase, they are disenfranchised. Election managers do not
do anything with the contents of commitment blocks, so if they cannot receive them due
to network failure, the only effects are the effects of network failure in a blockchain, as
discussed above.

Election managers only create the commitment end block in this phase. If they cannot
broadcast it due to network failure, the phase will continue until the network failure is
resolved.

11.2.5 Voting

During this phase, voters broadcast their vote messages, allowing their votes to be tallied.
If network failure prevents voters from broadcasting their vote messages, their votes will
not be included in the tally until the network failure is resolved. After that the voters can
broadcast their vote messages anyway, and the tally can be updated to include them. If
network failure prevents participants from receiving vote messages, they will not include
them in the tally as long as the network failure persists. When the network failure is

11.2 Network failure 134

resolved however, they can request other participants’ tallies when they notice their tally
results in a different outcome of the election. Since tallies are published with the vote
messages that were counted, these will now be known to the participants who experienced
network failure as well.

11.2.6 Conclusion

The system is not protected against persistent network failure because no distributed
system is, but due its nature as a blockchain it can mostly recover from the effects of
temporary network failure. In the worst case scenario, network failure in the first three
phases or the last phase can lead to voters being unable to participate in the system.
Since this will be publicly visible, they can fall back to a paper ballot. Network failure
throughout the entire Commitment phase is however more severe, since the affected eligible
participants can be disenfranchised.

OTHER RECOMMENDATIONS 135

Chapter 12

Other recommendations

Besides robustness, three other recommendations were mentioned in Section 2.1. We will
cover coercion resistance in Section 12.1, fairness in Section 12.2 and distribution of trust
in Section 12.3.

12.1 Coercion resistance

This recommendation is defined as: It should not be possible for a third party to coerce a
voter into voting a certain way.

Coercion resistance relies entirely on the knowledge the coercer has over the way the
voter voted: if the coercer knows how the voter voted, the coercer can coerce the voter; if
the coercer does not know how the voter voted, the coercer cannot coerce the voter. The
coercer may try to obtain this knowledge either with or without the cooperation of the
voter and these represent two levels of coercion resistance. At the first level the coercer is
unable to obtain this knowledge without the cooperation of the voter. This is equivalent
to privacy and was already evaluated in Section 7.2.

At the second level the coercer should not be able to obtain this knowledge even with
the cooperation of the voter. This level of resistance cannot be achieved with e-voting
since it is possible for participants to let coercers look over their shoulders every step of
the way. There is a general problem combining this with individual verifiability: on the
one hand voters should be able to see proof that their votes are counted according to the
content they chose, but on the other hand they should be unable to share this proof with
anyone else. In Acrohalides specifically this level of coercion is possible because voters
can divulge which key they used to vote and they can prove ownership of this key via a
challenge-response mechanism or even just divulging the private key.

The system can be amended to achieve this second level of coercion resistance however
by turning it from an e-voting system into a hybrid system. The specific changes that would
have to be made include voting booths with voting machines where voters are first searched
and all their cameras, smartphones and other recording equipment are confiscated. It is
not necessary for the voters’ identities to be checked and they may enter the voting booth

12.2 Fairness 136

multiple times. They must carry out all steps in the Dilution, Commitment and Voting
phases from within the voting booth on the voting machine and they can be forced to do
so by adding the signature of a key stored within the voting machine to all messages in
these phases.

In order to prevent the voters from divulging which keys belong to them the link
between their private and public keys must be obfuscated. In ECDSA this can be done by
replacing the private key dA by a product of two private keys dA,v · dA,m. The voter only
knows dA,v because dA,m is stored in secure memory of the voting machine. This makes it
impossible for voters to sign anything with their private keys outside of the voting booth
since they do not have dA in full.

It should be noted that, beside the practical limitations of requiring all voters to be
in voting booths simultaneously for every step in the last three phases, this solution also
introduces a trusted third party that controls access to the voting booth. It is therefore
offered merely as a theoretical exercise showing what is necessary to achieve coercion
resistance, and not included in the protocol proposed by this thesis.

12.2 Fairness

This recommendation is defined as: The running tally should not be available while voters
are still able to vote. This recommendation can be violated if a secondary communication
channel exists where all voters willingly broadcast the contents of their votes.

This would have to happen during the Commitment phase since a running tally can
only exist after the first commitment block was added and voters are unable to change their
votes after the commitment end block was added. Voters could broadcast w and z along
with their public keys to prove how they voted. If all voters do this an accurate running
tally can be calculated, the fewer voters participate the less accurate the tally becomes.
Such an attack can probably be mitigated by making it illegal for voters to disclose their
vote during the Commitment phase.

If voters do not broadcast w and z during the Commitment phase, then only hash(w, z)
is publicly known during this time. It is not feasible to derive w and z from this hash and
therefore a tally cannot feasible be calculated until the Commitment phase ends and voters
are no longer able to vote.

12.3 Distribution of trust

This recommendation is defined as: the above requirements should not rely on a single
trusted third party. Acrohalides satisfies this recommendation because none of the re-
quirements rely on any trusted third party. We will look at the two roles in the system:
Section 12.3.1 covers election managers and Section 12.3.2 covers eligible participants.

12.3 Distribution of trust 137

12.3.1 Election manager

Election managers are a single third party, but they are not trusted: we have covered
potential attacks by election managers in the above and they are not able to forge votes
or violate voter privacy. We shall look at each of the five phases of the election to see in
more detail to what extent trust in the election manager is required.

Setup phase

In this phase, election managers create an initialization block. This includes their public
key and the election ID, and it is signed with the private key corresponding to their public
key. There is therefore no way to do this the wrong way if the intialization block is valid.

Registration phase

In this phase, election managers create registration blocks for eligible participants. In isola-
tion this would require trust, since it is the election managers that certify that certain keys
correspond to certain eligible participants. The need for this trust is however removed by
having an off-chain process where election managers obtain proof that eligible participants
chose to register their keys. Election managers could also disenfranchise eligible partici-
pants by orphaning their registration blocks, but those participants then have recourse to
disenfranchisement messages so there is no need for trust in the election manager.

Dilution phase

In this phase, signatures are diluted to create anonymity, but election managers are com-
pletely uninvolved with the dilution process. They only increment the maximum depth of
dilution blocks by adding pre-depth and depth blocks, but no trust is needed here since it
is plainly visible whether they do this or not. They also end the phase by adding a dilution
end block which includes the candidate information, but this is again plainly visible and
thus requires no trust.

Commitment phase

In this phase, voters commit their vote hashes but election managers do not do anything,
so no trust in them is needed.

Voting phase

In this phase, voters broadast their votes in plaintext but again election managers do not
do anything, so no trust in them is needed.

12.3 Distribution of trust 138

12.3.2 Eligible participant

Single eligible participants are a single party, but they are again not trusted because we
have covered attacks by eligible participants in the above. They can frustrate the proper
functioning of the protocol by disenfranchising themselves in various ways, but this does
not negatively impact other eligible participants. We shall look at each of the five phases of
the election to see in more detail to what extent trust in an eligible participant is required.

Setup phase

In this phase, eligible participants do not do anything so no trust in them is required.

Registration phase

In this phase, eligible participants do not do anything within the blockchain. They do
however participate in the off-chain registration process, registering their keys and creating
proof that they did so. It is possible for them to frustrate this process by creating proof
that they registered a public key, when in reality they do not possess its corresponding
private key, but this only serves to disenfranchise themselves.

They can also create disenfranchisement messages when their registration blocks are
orphaned, but this requires no trust in them since the disenfranchisment messages are
validated by checking if the registration block they cite actually has the valid signature of
the election manager.

Dilution phase

In this phase, eligible participants work together to create dilution blocks. The signatures
on the dilution blocks serve to indicate that the dilution is correct and none of the par-
ticipants can be disenfranchised without their own cooperation. None of the participants
can, by themselves, discover the identity of the other participants because the new key
message is signed with a pool session key that is shared among all the members of the
pool. Therefore no trust is required in any of the eligible participants in this phase.

Commitment phase

In this phase, eligible participants commit their vote hashes in commitment blocks. These
commitment blocks are signed by their keys and so it is proven that they were created
by the right eligible participant, but the vote hashes are not checked to see if they truly
correspond to a vote. It is thus possible for eligible participants to publish a false vote
hash, but they only harm themselves this way. Therefore no trust is required in any of the
eligible participants.

12.3 Distribution of trust 139

Voting phase

In this phase, eligible participants publish the plaintext votes corresponding to the vote
hashes they have published during the previous phase. Anyone can verify that these
plaintext votes truly correspond to the vote hash, so no trust is required.

12.3.3 Conclusion

Therefore neither election managers nor eligible participants are required to be trusted in
any of the phases of the election. Since these are the only two roles in the system, there is
no trusted third party.

PERFORMANCE EVALUATION 140

Chapter 13

Performance evaluation

This chapter evaluates the memory consumption and the number of messages sent during
an Acrohalides election. We measure this experimentally in simulations using the client
we introduced in Section 5.1, but we also cover theoretical calculations of the size of the
blockchain in bytes and the number of messages that need to be sent. Section 13.1 describes
the experimental setup in terms of the algorithm of the simulations that we run and the
parameters we set, Section 13.2 describes formulae for the theoretical cost of an election in
terms of the length and size of the blockchain and the number of messages broadcast per
voter and Section 13.3 details the results of our simulations.

13.1 Methodology

We implement the client described in Section 5.1 and we run simulations of elections using
these clients. In each simulation, first the client of the election manager mc is instantiated.
Next a number N of voter clients {v1, ..., vN} is instantiated, and possibly a number na of
attackers {α1, ..., αna}, and they are connected with each other and the election manager
in a randomized connected graph G. The graph is constructed using Algorithm 1 to ensure
its connectivity.

We base the number of attackers na on the number of voters N by the factor o = na

N
.

During each iteration, each attacker broadcasts 1000 messages to simulate a denial-of-
service attack. Since none of these attackers are registered in the Registration phase, they
are all outside attackers who send invalid messages. For each message there is a probability
of 0.5 that it consists of random bytes and a probability of 0.5 that it is designed to look
like a message that could be sent during this phase, but it fails a thorough validation check.

After the network graph is constructed, we run Algorithm 2, which makes use of Algo-
rithms 3 and 4. Besides the election manager mc and the voters V , Algorithm 2 uses the
following parameters:

• A propagation delay πdelay = 5 that allows each message to propagate through the
network before the next message is sent.

13.1 Methodology 141

Input: an election manager mc, a set of voters V = {v1, ..., vN}
Output: a connected graph G in which the vertices are mc and all elements of V

1 G← {mc};
2 for vi ∈ V = {v1, ..., vN} do
3 pick a random vertex vj in G;
4 add vi to G;
5 add the edge (vi, vj) to G;

6 end
7 for αi ∈ {α1, ..., αna} do
8 pick a random vertex vj in G;
9 add αi to G;

10 add the edge (αi, vj) to G;

11 end
12 return G;

Algorithm 1: ConstructNetwork(mc, {v1, ..., vN})

• A depth increase interval Idepth = 1000 that determines after how many iterations in
the Dilution phase mc broadcasts a depth block.

• A pre-depth interval Ipre−depth = 100 that determines how many iterations in advance
the pre-depth block is broadcast. In other words, after the last depth block was
broadcast, 900 iterations later the new pre-depth block is broadcast.

During the simulation’s Dilution phase, the participants simply try to dilute their
signatures in pools of size k = 2.

We simulate with different maximum switch counters from both applications and pools
(sa and sp, described in Section 5.1.3), both varying between 5, 10 and 20. We vary the
number of voters N between 4, 8, 16 and 32 and have them participate in r = 1 or r = 2
rounds of signature dilution. In these simulations we have o = 0 and thus there are no
attackers. We run 10 simulations for each combination of parameters.

We also run simulations where o = 0.5 to simulate the situation where there are half as
many attackers as voters. This means that, when N = 16, there are 16 voters 8 attackers
and 1 election manager, and thus 25 nodes in the network. In these simulations we keep
both sp = 10 and sa = 30 constant. We compare the results of these simulations side
by side with the results of simulations where o = 0, again keeping sp = 10 and sa = 30
constant. Again we run 10 simulations for each combination of parameters.

For each batch of 10 simulations, we measure the average length of the blockchain, the
average number of anonymous broadcasts sent per voter, the average number of anonymous
broadcasts received per voter and the average number of unvalidated messages passing
through each voter node.

13.1 Methodology 142

Input: an election manager mc, a set of voters V = {v1, ..., vN}
1 π = 0;
2 R← Copy(V);
3 C ← Copy(V);
4 while phasec! = V oting do
5 PhaseIteration(mc, V = {v1, ..., vN}, π, πdelay, R, C, Idepth, Ipre−depth);
6 let mc update its network layer and handle all its messages;
7 for vi ∈ V do
8 let vi update its network layer and handle all its messages;
9 end

10 for αi ∈ {α1, ..., αna} do
11 let αi update its network layer and handle all its messages;
12 end
13 for vi ∈ V do
14 let vi update its blockchain layer, possibly rebroadcasting dilution

applications or invites;

15 end
16 for αi ∈ {α1, ..., αna} do
17 let αi broadcast 1000 invalid messages;
18 end

19 end
20

Algorithm 2: Simulate(mc, V = {v1, ..., vN})

13.1 Methodology 143

Input: an election manager mc, a set of voters V = {v1, ..., vN}, a propagation
counter π, a propagation delay πdelay, a set of voters R that still need to
be registered, a set of voters C that have not committed their vote yet

1 if π > 0 then
2 decrement π;
3 end
4 else if mc has not started election then
5 let mc create initialization block;
6 π = πdelay;

7 end
8 else if R is not empty then
9 pick and remove random voter vi from R;

10 let mc create registration block for vi;
11 π = πdelay;

12 end
13 else if election is in Registration phase then
14 let mc create dilution start block;
15 π = πdelay;

16 end
17 else if ∃vi ∈ V : vi has not yet diluted keys for r rounds or more then
18 DilutionPhaseSimulationRound(mc, V = {v1, ..., vN}, dilution counter, Idepth,

Ipre−depth);
19 π = πdelay;

20 end
21 else if election is in Dilution phase then
22 let mc create dilution end block;
23 π = πdelay;

24 end
25 else if C is not empty then
26 pick and remove random voter vi from C;
27 let vi create commitment block;
28 π = πdelay;

29 end
30 else if election is in Commitment phase then
31 let mc create commitment end block;
32 π = πdelay;

33 end
Algorithm 3: PhaseIteration(mc, V = {v1, ..., vN}, π, πdelay, R, C, Idepth, Ipre−depth)

13.2 Theoretical cost 144

Input: an election manager mc, a set of voters V = {v1, ..., vN}, a dilution
counter, a depth increase interval Idepth, a pre-depth interval Ipre−depth

1 pick a random voter vi ∈ V that has not yet diluted keys for Dc rounds or more;
2 if vi is not currently either in a dilution process, broadcasting a dilution

application or trying to start a dilution process as a block assembler then
3 if random choice then
4 let vi broadcast a dilution application;
5 end
6 else
7 let vi try to start dilution process as block assembler;
8 end

9 end
10 increment dilution counter;
11 if dilution counter = Idepth − Ipre−depth then
12 let mc create pre-depth block;
13 end
14 if dilution counter = Idepth then
15 let mc create depth block;
16 end
Algorithm 4: DilutionPhaseSimulationRound(mc, V = {v1, ..., vN}, dilution counter,
Idepth, Ipre−depth)

13.2 Theoretical cost

We can calculate the size of the blockchain in bytes and the number of messages each voter
has to send on the basis of several variables.

If N voters each register their keys, dilute their signatures in r rounds with dilution
pools of size k to generate an anonymity set of size kr and subsequently commit their vote
hashes once, with m candidates that each have a tag of length t and a description of length
d, the total blockchain will consist of:

1. 1 initialization block (95 bytes).

2. N registration blocks (437 bytes each).

3. 1 dilution start block (247 bytes).

4. Nr
k

dilution blocks with k old keys, new keys and signatures (315+208k bytes each).

5. r − 1 pre-depth blocks (244 bytes each).

6. r − 1 depth blocks (240 bytes each).

7. 1 dilution end block (237 +m(6 + t+ d) bytes).

13.2 Theoretical cost 145

8. N commitment blocks (339 bytes each).

9. 1 commitment end block (249 bytes).

The total number of blocks is thus:

lc = 1 +N + 1 +
Nr

k
+ (r − 1) + (r − 1) + 1 +N + 1 = 2 + 2N +

Nr

k
+ 2r

This amounts to a total size in bytes of:

95+437N+247+
Nr

k
(315+208k)+244(r−1)+240(r−1)+237+m(6+t+d)+339N+249

= 344 + 484r +m(6 + t+ d) + (776 + r(
315

k
+ 208))N

The messages the average voter has to send, are:

1. r(k−1)
k

dilution applications.

2. r(k−1)
k

invites.

3. r(k−1)
k

pool responses.

4. r
k
pool messages.

5. r pool acknowledgements.

6. r new key messages.

7. r
k
unvalidated dilution blocks.

8. r(k−1)
k

signature messages.

9. r
k
dilution blocks.

10. 1 commitment block.

11. 1 vote message.

This amounts to a total number of messages per voter:

4
r(k − 1)

k
+ 3

r

k
+ 2r + 2

= (
k − 1

k
+ 5)r + 2

13.3 Results 146

If N = 500000, roughly the size of Belgium’s most populous municipality Antwerp, the
number of rounds is r = 5, the size of each pool is k = 8, the number of candidates is
m = 10 and they each have a tag of length t = 16 and a description of length d = 256, this
amounts to a blockchain of size 1.006GB = 0.9373GiB and 31.38 messages per voter.

For the parameters that we mentioned we would test in Section 13.1 this means a
blockchain length and a number of messages as shown in Table 13.1.

N r k lc nbroadcast nreceived nmessages

4
1

2

14 7.5 22.5 30

2 18 13 39 52

8
1 24 7.5 52.5 60

2 30 13 91 104

16
1 44 7.5 112.5 120

2 54 13 195 208

32
1 84 7.5 232.5 240

2 102 13 403 416

Table 13.1: Theoretical blockchain length and number of messages broadcast per voter.

13.3 Results

Table 13.2 shows the blockchain length lc, number of messages each voter broadcasts
nbroadcast, number of messages each voter receives nreceived and the number of unvalidated
messages each voter handles nmessages, averaged over maximum switch counters from pools
of 5, 10 or 20 and maximum switch counters from applications of 5, 10, 20, or 30, and for
each combination of parameters we average over 10 runs. In other words, every measured
number in the table is the mean of 3 · 4 · 10 = 120 values.

There appears to be a quadratic increase in nbroadcast as N increases. This is reflected as
a cubic increase in nreceived and nmessages, which is to be expected since each node should
receive the messages broadcast by all other nodes. The most significant effect however
appears to be an increase in r: nbroadcast increases by roughly 90 messages. It is likely that
this is due to participants sending dilution applications after they have already diluted
their keys in a vain attempt to find leftover participants during the pre-depth phase.

Table 13.3 shows lc, nbroadcast, nreceived and nmessages for different maximum switch
counters from pools and Table 13.4 shows the same values for different maximum switch
counters from applications. Varying the maximum switch counter from pools does not
appear to have much influence, but a maximum switch counter from applications of 30

13.3 Results 147

seems to be optimal. Nevertheless, the effect is much smaller than the effects of increasing
N or r.

N r k lc nbroadcast nreceived nmessages

4
1

2

14.00 9.100 36.39 45.49

2 18.00 89.26 356.9 446.2

8
1 24.00 9.295 74.11 83.40

2 30.09 96.81 755.6 852.4

16
1 44.00 10.11 160.3 170.4

2 53.99 96.05 1530 1626

32
1 83.99 13.70 420.7 434.4

2 102.0 107.0 3381 3489

Table 13.2: Measured average blockchain length and number of messages broadcast per voter.

sp lc nbroadcast nreceived nmessages

5 46.27 53.71 831.9 885.7

10 46.26 53.68 842.1 895.9

20 46.25 54.36 844.2 898.6

Table 13.3: Measured average blockchain length and number of messages broadcast per voter
for different maximum switch counters from pools.

sa lc nbroadcast nreceived nmessages

5 46.26 57.43 899.9 957.5

10 46.28 54.52 853.7 908.4

20 46.26 52.14 808.0 860.2

30 46.25 51.58 795.9 847.6

Table 13.4: Measured average blockchain length and number of messages broadcast per voter
for different maximum switch counters from applications.

13.3 Results 148

N r k
lc nbroadcast nreceived nmessages

o = 0 o = 0.5 o = 0 o = 0.5 o = 0 o = 0.5 o = 0 o = 0.5

4
1

2

14.00 14.00 9.500 10.44 37.96 54.58 47.46 65.02

2 18.00 18.00 85.64 84.34 342.6 364.7 428.2 449.1

8
1 24.00 24.00 8.944 9.556 71.40 111.9 80.34 121.5

2 30.00 30.00 88.37 89.69 705.5 761.5 793.9 851.2

16
1 44.00 44.00 10.58 10.12 167.8 223.9 178.4 234.1

2 53.80 54.20 93.64 99.56 1482 1690 1576 1789

32
1 83.90 84.00 14.65 14.21 457.5 560.8 472.2 575.0

2 102.0 101.9 98.95 101.2 3142 3401 3241 3503

Table 13.5: Measured average blockchain length and number of messages broadcast per voter
for networks without outside attackers compared to networks where there are half
as many outside attackers as voters.

Table 13.5 shows lc, nbroadcast, nreceived and nmessages for different numbers of voters N
and different numbers of rounds r, comparing the situation where there are no attackers
(o = 0) to the situation where there are half as many attackers as voters (o = 0.5). In all
cases sp = 10 and sa = 30. We see the length of the blockchain lc is not affected while
the number of messages broadcast per voter nbroadcast increases on average by 1. Both
nreceived and nmessages however increase by a much higher number, and this number is not
constant but increases as both N and r increase. It is less than a linear increase however,
and the higher nreceived and nmessage get, the smaller the percentual increase caused by the
attackers: for nmessages = 47.46 it increases by 37% and for nmessages = 3241 it increases
by 8%.

149

Part IV

Conclusions & future work

CONCLUSION 150

Chapter 14

Conclusion

Acrohalides satisfies the requirements of verifiability, privacy, eligibility, uniqueness and
integrity for all practical purposes. Verifiability is ensured with the theoretical exception
that senseless participants might disenfranchise themselves and thereby enable another
person to take their ability to vote. Privacy is guaranteed after signature dilution except
in the unlikely event that a group of conspiring voters, far outnumbering the victims they
target, carefully direct network traffic to funnel the victims into the right dilution pools and
subsequently bust their anonymity within these pools. This will however expose them as
attackers to roughly the same extent as they expose the identity of the victim, presumably
proving that they broke the law. Eligibility and uniqueness are both guaranteed, again with
the theoretical exception that senseless participants might disenfranchise themselves and
transfer their ability to vote to another person. The requirement of integrity is completely
proven.

Of the four recommendations, coercion resistance, robustness, fairness and distribution
of trust, some are satisfied but others are not. The system is not coercion resistant because
it is an e-voting system. Fairness is achieved however as long as the electorate does not
collectively circumvent it, and distribution of trust is achieved by default since no trust is
needed.

The system is robust against denial-of-service attacks in the sense that nodes have
various strategies at their disposal to defend against these attacks. The strategy to defend
against outside attackers, who are not identified as members of the electorate, was tested
experimentally with success: the number of messages handled by each node does not
increase dramatically when attackers are present and the impact is lessened even further
if the number of voters increases.

The system is as robust to eclipse attacks as a distributed system can be: if nodes are
persistently isolated, the system is sabotaged, but if it is only temporary the system can
recover. An eclipse attack on the election manager can undo a small amount of signature
dilution, but voters can easily compensate for this risk by diluting their signatures one
round further than they think strictly necessary.

When forks occur in the blockchain, they will be resolved since the fork resolution
protocol has been proven to be valid.

CONCLUSION 151

If voters lose their keys while they have already diluted them, but before committing
their vote, they are disenfranchised. This is a necessary consequence of using a digital
system without a trusted third party. It is thus very important for voters to ensure that
they will never lose their keys. It is not advisable to implement the system on a smartphone
or another device that can easily be lost, but instead a PC should be used and voters should
create backups of their keys that they can use in case they lose access to the data on the
PC.

Robustness against network failure is similar to robustness against eclipse attacks: if the
failure persists, the system cannot work because no distributed system can work without
the internet. If the failure is temporary however, the system can mostly recover. If network
failure causes voters to be unable to dilute their keys, they can fall back on a paper
ballot. Network failure that persists during the entire Commitment phase however can
disenfranchise voters, so it is important that care is taken that this phase lasts long enough
and the internet works throughout the electoral precinct. In essence this issue is the digital
counterpart of the possibility that some voters in a paper ballot election are unable to reach
the polling station on election day.

The size of the blockchain is very manageable if elections are subdivided by munici-
pality or electoral precinct, and there is no reason not to do this since anonymity beyond
the electoral precinct is not expected. Voters theoretically only send a small number of
messages that does not depend on the total number of voters but does depend linearly
on the dilution rounds. In practice however the current implementation sees a quadratic
increase in the number of messages broadcast as the number of voters increases, but more
importantly there is a very high increase in the number of messages as the number of dilu-
tion rounds increases. The size of this increase does not appear to depend on the number of
voters, but it is not clear whether the increase depends linearly on the number of dilution
rounds, or by any other function. Therefore it is not clear if the increase will be dramatic
if signature dilution takes place to a degree that creates decently sized anonymity sets.

Overall we can say that the protocol satisfies all the requirements to the extent that
can be reasonably expected from an e-voting system, while it is unclear if the current
implementation is ideal.

FUTURE WORK 152

Chapter 15

Future work

It is important to carry out more simulations at a larger scale to measure the performance
of the system in more realistic settings. It is of particular importance to increase the
number of rounds of signature dilution during these simulations to see if the effects are an
issue. It is also important to vary the number of members in each dilution pool, since all
simulations used dilution pools of size 2. The effect of an increase in the number of voters
can also be further tested to see if problems arise at the level of an electoral precinct.

It is also possible to see if the implementation of the client application can be improved
upon to mitigate the effects of an increase in number of voters or number of dilution
rounds. It is possible that the current strategy of randomly simply responding to any
dilution application with an invite is not ideal for participants trying to start a dilution
pool. Maybe it is more efficient for participants to judge dilution applications by looking at
certain bits within their keys and prioritizing those where the value of these bits are equal
to the value of the same bits in their own keys. This heuristic can be expected to naturally
sort the participants and avoid conflicting network traffic. If the current strategy causes
dramatic performance issues as the number of rounds of signature dilution increases, it
may be advisable for the client application to be more judicious about sending out dilution
applications after a pre-depth block is sent.

Robustness against attackers can also be further studied via simulations: the system
was found to be robust against outside attackers sending invalid messages, but Chapter 8
also described attacks from eligible participants and strategies to defend against them. It
is important to test the efficacy of these strategies as well.

The protocol can also be amended to account for different types of elections. In the
current form, elections with multiple rounds are treated as separate elections that each
require a new blockchain and thus a new Registration phase. It is possible to amend the
protocol such that the last three phases can be repeated as a cycle, for each round of
an election. For example there might be one Setup phase and one Registration phase,
followed by a Dilution phase, a Commitment phase and a Voting phase for a round with
all candidates, followed by another Dilution phase, Commitment phase and Voting phase
for a runoff between the two winners of the previous round.

In Section 7.2.2 we described the possibility of eligible participants counterattacking

FUTURE WORK 153

against a group of eligible participants that attack someone’s privacy. It is possible to
further study this idea to develop a protocol for eligible participants to actually carry out
such a counterattack.

FUTURE WORK 154

Acknowledgements

In the first place I would like to thank my promotor prof. dr. ir. Bjorn De Sutter, whose
constant feedback and evaluation has been invaluable in my work. Additionally I would
like to thank prof. dr. Leo Storme and prof. dr. ir. Eric Laermans, both members of the
commission evaluating this thesis. I would also like to thank prof. Bart Preneel for his
help in searching for related work and establishing the current state of the art of e-voting,
as well as prof. Kristof Van Assche and prof. dr. Carl Devos for their help in finding the
international legal context of e-voting and elections in general.

BIBLIOGRAPHY 155

Bibliography

[1] A.V. Abhirama. “BLOCKCHAIN: ITS USES IN CRYPTOCURRENCYAND ELEC-
TION SYSTEM”. In: International Research Journal of Modernization in Engineer-
ing Technology and Science (2021), pp. 1571–1577.

[2] Ben Adida. “Helios: Web-based Open-Audit Voting”. In: USENIX security sympo-
sium. Vol. 17. 2008, pp. 335–348.

[3] Federal Public Services Home Affairs. Official Results: 2019 Belgian Federal Election.
2019. url: https://elections2019.belgium.be/en/results-figures?el=CK&
id=CKR00000.

[4] Aritra Banerjee. “A Fully Anonymous e-Voting Protocol Employing Universal Zk-
SNARKS and Smart Contracts”. In: International Congress on Blockchain and Ap-
plications. 2021, pp. 349–354.

[5] Stephanie Bayer and Jens Groth. “Efficient Zero-Knowledge Argument for Correct-
ness of a Shuffle”. In: Advances in Cryptology – EUROCRYPT 2012. Ed. by David
Pointcheval and Thomas Johansson. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 263–280. isbn: 978-3-642-29011-4.

[6] Rumeysa Bulut et al. “Blockchain-Based Electronic Voting System for Elections in
Turkey”. In: 2019 4th International Conference on Computer Science and Engineer-
ing (UBMK). 2019, pp. 183–188.

[7] David L. Chaum. “Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms”.
In: Communications of the ACM 24.2 (1981).

[8] Rafer Cooley, Shaya Wolf, and Mike Borowczak. “Blockchain-Based Election In-
frastructures”. In: 2018 IEEE International Smart Cities Conference (ISC2). 2018,
pp. 1–4.

[9] Inter-Parliamentary Council. Declaration on Criteria for Free and Fair Elections.
1994. url: https://www.ipu.org/our-impact/strong-parliaments/setting-
standards/declaration-criteria-free-and-fair-elections.

[10] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. “A Secure and Opti-
mally Efficient Multi-Authority Election Scheme”. In: Advances in Cryptology —
EUROCRYPT ’97. Ed. by Walter Fumy. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1997, pp. 103–118. isbn: 978-3-540-69053-5.

BIBLIOGRAPHY 156

[11] Taher ElGamal. “A Public-Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms”. In: IEEE Transactions on Information Theory 4 (31 1985),
pp. 469–472.

[12] Shawn M. Emery, C. Edward Chow, and Richard White. “Penetration Testing a US
Election Blockchain Prototype”. In: Sixth International Joint Conference on Election
Voting – E-Vote-ID 20221. 2021, pp. 82–97.

[13] State Electoral Office of Estonia. “General Framework of Electronic Voting and Im-
plementation thereof at National Elections in Estonia”. In: (2017). url: https:
//www.valimised.ee/sites/default/files/uploads/eng/IVXV- UK- 1.0-

eng.pdf.

[14] Council of Europe - European Commission for Democracy through Law (Venice
Commission). Electoral Law. 2013.

[15] Steven Goldfeder et al. “When the cookie meets the blockchain: Privacy risks of web
payments via cryptocurrencies”. In: (2017). url: https://arxiv.org/pdf/1708.
04748.pdf.

[16] H.S. Govinda et al. “Implementation of Election System Using Blockchain Technol-
ogy”. In: 2021 International Conference on Innovative Computing, Intelligent Com-
munication and Smart Electrical Systems (ICSES). 2021, pp. 1–9.

[17] Rolf Haenni et al. “CHVote System Specification Version 3.0”. In: IACR Cryptol.
ePrint Arch. 2017 (2017), p. 325.

[18] Rifa Hanifatunnisa and Budi Rahardjo. “Blockchain Based E-Voting Recording Sys-
tem Design”. In: 11th International Conference on Telecommunication Systems Ser-
vices and Applications (TSSA). 2017, pp. 1–6.

[19] Ethan Heilman et al. “Eclipse attacks on bitcoin’s peer-to-peer network”. In: 24th
USENIX Security Symposium (USENIX SECURITY 15). 2015, pp. 129–144.

[20] Help America Vote Act. 2002.

[21] Fririk . Hjálmarsson et al. “Blockchain-Based E-Voting System”. In: 2018 IEEE 11th
international conference on cloud computing (CLOUD). 2018, pp. 983–986.

[22] International Covenant on Civil and Political Rights. 1966.

[23] Ali Kaan Koç et al. “Towards Secure E-Voting Using Ethereum Blockchain”. In:
2018 6th International Symposium on Digital Forensic and Security (ISDFS). 2018,
pp. 1–7.

[24] Wouter Lueks, Iñigo Querejeta-Azurmendi, and Carmela Troncoso. “VoteAgain: A
scalable coercion-resistant voting system”. In: 29th USENIX Security Symposium
(USENIX SECURITY 20). 2020, pp. 1553–1570.

[25] Aanchal Mani et al. “College Election System using Blockchain”. In: ITM Web Con-
ferences. 2022, pp. 1–5.

BIBLIOGRAPHY 157

[26] Gregory Maxwell. CoinJoin: Bitcoin privacy for the real world. 2013. url: https:
//bitcointalk.org/?topic=279249.

[27] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”. In: (2008).
url: www.bitcoin.org.

[28] Chaals Nevile et al. Enterprise Ethereum Alliance Client Specification v6. 2020. url:
https://entethalliance.org/wp-content/uploads/2020/11/EEA_Enterprise_

Ethereum_Client_Specification_v6.pdf.

[29] Kriti Patidar and Swapnil Jain. “Decentralized E-Voting Portal Using Blockchain”.
In: 2019 10th International Conference on Computing, Communication and Network-
ing Technologies (ICCCNT) (2019), pp. 1–4.

[30] Birgit Pfitzmann and Michael Waidner. “Unconditionally Untraceable and Fault-
tolerant Broadcast and Secret Ballot Election”. In: Communications of the ACM
21.21 (1992), pp. 7–8.

[31] Peter Y.A. Ryan et al. “The Prêt à Voter Verifiable Election System”. In: IEEE
Transactions on Information Forensics and Security 4.4 (2009), pp. 662–673.

[32] Kazi Sadia et al. “Blockchain-Based Secure E-Voting with the Assistance of Smart
Contract”. In: IC-BCT 2019. Blockchain Technologies (2019), pp. 161–176.

[33] Organization for Security and Cooperation in Europe. Election Observation Hand-
book. 2010.

[34] Shehan Shetty, Vishal Thakur Adhij Vartak, and Shraddha Dabhade. “Election Por-
tal Using Blockchain”. In: SJCEM Journal of Engineering Sciences 3 (1 2021),
pp. 22–25.

[35] Majd Soud et al. “TrustVote: on elections we trust with distributed ledgers and smart
contracts”. In: 2nd Conference on Blockchain Research Applications for Innovative
Networks and Services (BRAINS). 2000, pp. 176–183.

[36] Ishaan Anand Srivastava et al. “Secure and Transparent Election System for India
using Block chain Technology”. In: 2018 IEEE Punecon. 2018, pp. 1–6.

[37] Baocheng Wang et al. “Large-scale Election Based On Blockchain”. In: Procedia
Computer Science (219 2018), pp. 234–237.

[38] Yang Yang et al. “PriScore: Blockchain-Based Self-Tallying Election System Support-
ing Score Voting”. In: IEEE Transactions on Information Forensics and Security 16
(2021), pp. 4705–4720.

[39] Ehab Zaghloul, Tongtong Li, and Jian Ren. “d-BAME: Distributed Blockchain-Based
Anonymous Mobile Electronic Voting”. In: IEEE Internet of Things Journal 8.22
(2021), pp. 16585–16597.

[40] Saman Taghavi Zargar, James Joshi, and David Tipper. “A survey of defense mecha-
nisms against distributed denial of service (DDoS) flooding attacks.” In: IEEE com-
munications surveys tutorials 4 (15 2013), pp. 2046–2069.

BIBLIOGRAPHY 158

[41] Colin Zwirko. “Kim Jong Un left off list of officials elected to 14th Supreme People’s
Assembly”. In: NK News (2019). url: https://www.nknews.org/2019/03/kim-
jong-un-left-off-list-of-officials-elected-to-14th-supreme-peoples-

assembly/.

