
CONFIDENTIAL UP TO AND INCLUDING 01/01/2024 - DO NOT COPY, DISTRIBUTE OR MAKE PUBLIC IN ANY WAY

machine learning
Detection of plasma instabilities in tokamaks with

Academic year 2022-2023

Master of Science in Information Engineering Technology

Master's dissertation submitted in order to obtain the academic degree of

Counsellor: Jerome Alhage
Supervisor: Prof. dr. Geert Verdoolaege

Student numbers: 01804998, 01705169
Casper Haems, Mateo Van Damme



Preface

The authors give permission to make this master’s dissertation available for consultation and to copy parts of this master’s

dissertation for personal use.

In all cases of other use, the copyright terms have to be respected, in particular with regard to the obligation to state explicitly

the source when quoting results from this master dissertation.

01/01/2024

ii



Acknowledgments

We would like to express our sincere gratitude to the supervisor, Prof. Dr. Geert Verdoolaege, and the counselor, Jerome

Alhage, for their expertise in the field and their assistance and guidance in completing this master’s dissertation. Their

knowledge was essential in understanding the characteristics of Edge-localized modes (ELMs). Without their expertise, it

would not have been possible to develop accurate ELM detection methods.

Casper Haems

I would like to extend a special thanks to my colleague, Mateo Van Damme, with whom I collaborated closely on this joint

master’s dissertation. His knowledge in the field of computer vision directly translated into significant improvements in the

results.

Furthermore, I would like to thank my parents and my significant other for their continuous support throughout this study.

Without them, it would have been more challenging.

Lastly, I would like to express my gratitude to my friends and family for providing the advice and support necessary for

completing this dissertation.

Mateo Van Damme

I would like to expressmy sincere gratitude tomy colleague, Casper Haems, for our close cooperation throughout this project.

I am particularly thankful for his valuable contribution in developing a grid search algorithm that efficiently identifies the

optimal parameters for our ELM detection methods. His dedication and expertise significantly enhanced the quality of our

research.

I would also like to extend my appreciation to Complex Systems Modelling - UiT for their generosity in sharing their Decon-

volution method as an open-source implementation on GitHub.

iii



Explanation in connection with the master’s disser-
tation

This master’s dissertation is part of an exam. Any comments formulated by the assessment committee during the oral

presentation of the master’s dissertation are not included in this text.

Confidentiality Notice

Confidential up to and including 01/01/2024

Important

This master’s dissertation contains confidential information and/or confidential research results proprietary to Ghent Uni-

versity or third parties. It is strictly forbidden to publish, cite or make public in any way this master’s dissertation or any part

thereof without the express written permission of Ghent University. Under no circumstance may this master’s dissertation

be communicated to or put at the disposal of third parties. Photocopying or duplicating it in any other way is strictly prohib-

ited. Disregarding the confidential nature of this master’s dissertation may cause irremediable damage to Ghent University.

The stipulations mentioned above are in force until the embargo date.

iv



Abstract

Nuclear fusion is a promising source of energy. It has the potential to provide a clean and sustainable source of electricity for

the future. One of the most common and promising approaches is the use of a donut-shaped vessel called the ”tokamak”. A

favorablemode of operation in tokamaks is H-mode (or high confinementmode). However, the occurrence of harmful events

called edge-localized modes (ELMs) during H-mode poses a significant challenge. Understanding and therefore detecting

ELMs is a crucial part of the research and development of nuclear fusion. Simple ELM detection methods exist but do not

suffice for more difficult types of ELMs.

The objective of this master’s dissertation is to develop methods that can accurately and reliably detect multiple ELM types

based on data from real tokamak devices. This requires identifying and extracting relevant features from the data.

Mathematical transformations andmachine learning techniques are employed to identify and extract features from the data.

Noise removal techniques are utilized to filter high-frequency variations and random fluctuations while preserving essential

low-frequency information for ELM detection.

Multiple ELM detection methods are developed, each employing different approaches and having their advantages and dis-

advantages. The performance of these methods is evaluated and compared with existing methods using suitable metrics.

In conclusion, this master’s dissertation addresses ELM detection challenges in tokamak reactors by developing robust meth-

ods. Through mathematical transformations and machine learning techniques applied to real JET data, it contributes to nu-

clear fusion research. These findings pave the way for efficient ELM research, advancing the goal of fusion energy realization.
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Abstract—Nuclear fusion is a promising source of energy. It
has the potential to provide a clean and sustainable source
of electricity for the future. One of the most common and
promising approaches is the use of a donut-shaped vessel called
the ”tokamak”. A favorable mode of operation in tokamaks is
H-mode (or high confinement mode). However, the occurrence
of harmful events called edge-localized modes (ELMs) during H-
mode poses a significant challenge. Understanding and therefore
detecting ELMs is a crucial part of the research and development
of nuclear fusion.
This master’s dissertation focuses on developing a framework
for detecting ELMs with machine learning. An evaluation of this
framework shows a clear improvement over existing methods.

Index Terms—ELM detection, peak detection, data science,
machine learning, fusion

I. INTRODUCTION

This paper describes the use of various machine learning
techniques to detect edge-localized modes (ELMs) in fusion
devices.

Nuclear fusion is an alternative to nuclear fission to generate
massive amounts of energy to power our society. Unlike
fission, fusion does not produce a lot of dangerous waste
products. There is also no possibility of a runaway device
meltdown since only small amounts of fuel are used and the
fusion process will die out when not actively sustained.

To obtain a fusion reaction, hydrogen isotope gas must be
heated to extreme temperatures under high pressure, becoming
a plasma. This state of matter allows the hot atoms to be
contained by powerful magnets, protecting the donut-shaped
vessel called the “tokamak.” In the 1980s a new mode of
operation in tokamaks, H-mode, was found, with doubled
performance and better confinement. However, as a side effect,
it created periodic releases of energy (similar to a pressure
cooker’s valve releasing steam every now and then). The risk
they pose is the wear and tear to the device walls, as materials
are repeatedly exposed to short bursts of heat.

These phenomena are called edge-localized modes (ELMs),
in relation to the source of these instabilities: magnetohydro-
dynamic instabilities occurring near the edge of the plasma,
right by the vessel walls. ELMs are difficult to model based
on fundamental physics principles. Therefore, studies also rely
on empirical data from large international experiments, such as
JET (the Joint European Torus), ASDEX-Upgrade, and DIII-
D.

The Infusion group at Ghent University is specialized in
data science and contributes to fusion research and Eurofusion

projects. While studies of these ELMs typically compare a
few experiments at a time, the group is able to aggregate
all the available data, by characterizing each experiment with
statistical features extracted from the ELM signals.

A key step is therefore detecting when an ELM has oc-
curred. This relies on detecting light emission which follows
the release of energy from the plasma [1]. Simply put, when-
ever there is a peak in this light emissivity diagnostic, there
should be an ELM. As the ELM also causes the release of
energy, so the stored plasma energy diagnostic will drop. By
tracking these characteristics an algorithm can be developed
to detect ELMs.

Previously, the group developed a simple but robust algo-
rithm to set an optimal threshold and filter out noise from the
emissivity signal. Their method was successfully applied to
data from a variety of fusion machines, and several papers
were published using the results.

One recent area of interest concerns plasma configurations
that create smaller, more manageable ELMs. The emissivity
patterns which they create, however, are no longer as clear-
cut, and so the detection algorithm needs to be improved.
This leads to the goal of this master’s dissertation: to evaluate
the performance of the existing algorithm and to propose
improvements using state-of-the-art tools, such as machine
learning and artificial neural networks.

II. DETAILED DESCRIPTION OF THE DATA

A. Defining shots

Fusion reactions require extremely high temperatures and
pressures. Sustaining these conditions requires an enormous
amount of energy input. Because of this reason, tokamaks do
not run continuously but in multiple pulses, which are called
shots. The data used in this master’s dissertation was collected
from the Joint European Torus (JET). Only small sections of
shots are used, which are called areas of interest.

B. Data used for detecting ELMs

For each shot a collection of signals is captured, two of
which are used in this master’s dissertation to detect ELMs.
The first signal (EDG8/TBEO) measures the light emissivity
from the plasma, which is the line-integrated emissivity of
the Bell line looking at the outer divertor plate. The sec-
ond signal (EHTR/WP) measures the energy stored in the
plasma. In this paper and in the code, the emissivity signal
(EDG8/TBEO) will sometimes be referred to as the light



signal. The EHTR/WP signal will be referred to as the energy
or plasma energy signal. Even though the plasma energy signal
contains valuable information, it is not always available, which
is why it is important to also develop ELM detection methods
that can function without it. The original data is sampled at
10 kHz but is slightly inconsistent in its sampling. Therefore,
both signals have been re-sampled to have a constant sampling
rate of 10 kHz.

C. Output format
Detected ELMs in this work are represented using simple

intervals. Each interval consists of a beginning and an end
timestamp, effectively capturing the temporal extent of en
ELM event; This representation allows researchers to focus
their analysis on the ELMs themselves, instead of locating
them within the data.

D. Labels for training, evaluation and testing
Labeled ELM intervals were provided to act as the ground

truth for training ELM detection methods. The labeling was
done under the supervision of prof. dr. Geert Verdoolaege.
The master’s dissertation acknowledges the limitations of the
labeling provided for the ELM detection study. The available
labeling was limited in quantity and contained certain inac-
curacies, which posed challenges in accurately assessing the
performance of the proposed methods.

III. METRICS

To train and evaluate the ELM detection methods perfor-
mance metrics are needed. Finding existing metrics posed a
significant challenge because most existing metrics in the field
of machine learning are meant to be applied to classification
tasks and are not directly applicable to peaks represented as
intervals. To address this, two new sets of metrics were devel-
oped specifically for the data structure used in this work. The
IntervalMetrics employ the confusion matrix from statistical
classification to evaluate peak detection performance. On the
other hand, the GapMetrics, while similar to IntervalMetrics,
aim to provide a more intuitive and human-readable assess-
ment of the results.

IV. METHODS

This section gives a brief overview of the methods imple-
mented in the framework. A detailed description can be found
in the scription.

A. Robust Optimal Threshold
The Robust Optimal Threshold (ROT) is a method internally

developed and used by the infusion research unit at Ghent
University [2]. The main goal of the master’s dissertation is
to achieve one or more methods that are better than ROT.

B. MACD
The MACD method uses the moving average and

convergence-divergence (MACD) filter [3] to obtain a new
signal from the emission signal with less noise and distinct
features. This signal is then passed through an algorithm to
obtain peaks/ELMs.

C. Rolling Z-score

The Rolling Z-score method calculates the Z-score [4]
over a sliding window. An algorithm is then used to find
peaks/ELMs in this filtered emissivity signal.

D. LOG

The LoG method for ELM detection involves filtering
the emissivity signal using a Laplacian of Gaussian kernel.
Peaks/ELMs are obtained by thresholding the filtered signal.
[5]

E. LoGDoG

LoGDoG builds upon the LoG method. In this method, the
signal is attenuated based on the derivative of the plasma
energy signal. The derivative is obtained by filtering the
plasma energy signal with a Derivative of Gaussian kernel.
[6] As a result, peaks are detected only when there is a drop
in the plasma energy.

F. CustomKernel

The CustomKernel method detects peaks by filtering the
signal with a customized kernel. This kernel is determined
through training the method on the input signal.

G. RNN

The RNN method uses a combination of filters on the
emissivity and plasma energy signals, makes sequences, and
passes these through a recurrent neural network (RNN). The
predictions are then thresholded to obtain the ELMs.

H. CNN

The CNN works the same way as the RNN method but
uses a convolutional neural network (CNN) that is based on
an existing CNN [7].

I. Deconvolution

The Deconvolution method is based on the paper published
in 2023 [8]. It employs a deconvolution process to decompose
the signal into a superposition of individual pulses.

V. RESULTS

A. Overview

Table I shows a comparison between the results obtained
from the different methods. The results presented in the table
were obtained by calculating the metrics individually for each
shot and then taking the mean of each metric. Therefore, the
reported Fβ-scores are the means of the Fβ-scores calculated
for each shot, and they are not derived from the mean values
of true positives, false positives, and false negatives displayed
in the table.



TABLE I
TABLE WITH RESULTS FOR ALL METHODS. THE INTERVAL METRICS ARE

CALCULATED USING A THRESHOLD OF 0.75 FOR TP AND FN AND 0.5 FOR
THE FP AND TN. THE Fβ -SCORES ARE CALCULATED WITH A BETA VALUE

OF 0.5.

Method TP (%) FN (%) FP (%) TN (%) Fβ (%)
ROT 34.41 65.59 17.53 82.47 52.48
MACD 87.17 12.83 21.63 78.37 82.25
Rolling Z-score 89.99 10.01 16.39 83.61 87.33
LoG 86.61 13.39 12.79 87.21 87.81
LoGDoG 80.78 19.22 10.91 89.09 87.42
CustomKernel 82.97 17.03 9.39 90.61 88.62
RNN (modified) 91.95 8.05 15.90 84.10 87.07
CNN (modified) 80.01 19.99 16.63 83.37 82.66
Deconvolution 78.14 21.86 70.30 29.70 56.28

B. Discussion of the results

The results show that all methods developed in this master’s
dissertation outperform the existing ROT method. It is also
found that the deconvolution method is not suitable for the
specific characteristics of ELMs encountered in this work.

Each method exhibits its own set of advantages and disad-
vantages. For instance, the RNN and CNN models are trained
with specific parameters, which may require retraining when
applied to datasets with different parameter requirements.

The CustomKernel method receives the highest Fβ-score
and exhibits the lowest number of false positives. However, it
is surpassed by the MACD, Rolling Z-score, LoG, and RNN
methods in terms of true positive detection.

The LoGDoG method demonstrates the potential to reduce
the number of false positives compared to the LoG method.
However, its robustness using the energy signal inadvertently
leads to a decrease in the number of true positives.

Overall, these findings highlight the trade-offs and varying
performance characteristics of each method, underscoring the
importance of selecting an appropriate method based on spe-
cific application requirements and priorities.

VI. CONCLUSION

This master’s dissertation addresses ELM detection chal-
lenges in tokamak reactors by developing robust methods.
Through mathematical transformations and machine learning
techniques applied to real JET data, the research contributes
to nuclear fusion research. These findings pave the way for
efficient ELM research, advancing the goal of fusion energy
realization.
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Abstract—Nucleaire fusie is een veelbelovende energiebron.
Het heeft het potentieel om een schone en duurzame bron van
elektriciteit te leveren voor de toekomst. Een van de meest
voorkomende en veelbelovende benaderingen is het gebruik
van een donutvormige constructie genaamd de ”tokamak”. Een
gunstige bedrijfsmodus in tokamaks is H-mode (of hoge confine-
mentsmodus). Echter, het optreden van schadelijke gebeurtenis-
sen genaamd edge-localized modes (ELMs) tijdens H-mode vormt
een aanzienlijke uitdaging. Het begrijpen en dus detecteren
van ELMs is een cruciaal onderdeel van het onderzoek en de
ontwikkeling van nucleaire fusie.

Deze masterproef richt zich op het ontwikkelen van een kader
voor het detecteren van ELMs met behulp van machine learning.
Een evaluatie van dit framework toont een duidelijke verbetering
ten opzichte van bestaande methoden.

Index Terms—ELM detecte, piek detectie, data science, ma-
chine learning, fusie

I. INLEIDING

Dit artikel beschrijft het gebruik van verschillende machine
learning technieken om edge-localized modes (ELMs) te de-
tecteren in fusieapparaten.

Nucleaire fusie is een alternatief voor nucleaire splitsing
om enorme hoeveelheden energie te genereren voor onze
samenleving. In tegenstelling tot splijting produceert fusie
niet veel gevaarlijke afvalproducten. Bovendien is er geen
mogelijkheid van een onbeheersbare kernsmelting (meltdown)
van het apparaat, aangezien er slechts kleine hoeveelheden
brandstof worden gebruikt en het fusieproces vanzelf zal
uitdoven wanneer het niet actief in stand wordt gehouden.

Om een fusiereactie te verkrijgen, moet waterstofisotoopgas
tot extreme temperaturen worden verhit onder hoge druk,
waardoor het een plasma wordt. Deze toestand van materie
maakt het mogelijk om de hete atomen te bevatten met
krachtige magneten, ter bescherming van de donutvormige
constructie genaamd de ”tokamak”. In de jaren 80 werd
een nieuwe bedrijfsmodus in tokamaks ontdekt, genaamd
H-mode, met dubbele prestaties en een betere confine-
mentsmodus. Echter, als bijwerking creëerde het periodieke
energie-uitbarstingen (vergelijkbaar met het vrijkomen van
stoom via een ventiel van een snelkookpan). Het risico dat
ze vormen, is de slijtage van de wanden van het apparaat,
aangezien materialen herhaaldelijk worden blootgesteld aan
korte uitbarstingen van warmte.

Deze verschijnselen worden edge-localized modes (ELMs)
genoemd, vanwege de bron van deze instabiliteiten: magne-
tohydrodynamische instabiliteiten die optreden nabij de rand

van het plasma, vlak bij de wanden van de constructie.
ELMs zijn moeilijk te modelleren op basis van fundamentele
natuurkundige principes. Daarom vertrouwen studies ook op
empirische gegevens uit grootschalige internationale experi-
menten, zoals JET (Joint European Torus), ASDEX-Upgrade
en DIII-D.

De Infusion-groep aan de Universiteit Gent is gespe-
cialiseerd in data science en draagt bij aan fusieonderzoek en
Eurofusion-projecten. Terwijl studies van deze ELMs meestal
een paar experimenten tegelijk vergelijken, is de groep in
staat om alle beschikbare gegevens te verzamelen door elke
proef te karakteriseren met statistische kenmerken die zijn
geëxtraheerd uit de ELM-signalen.

Een belangrijke stap is daarom het detecteren wanneer een
ELM heeft plaatsgevonden. Dit berust op het detecteren van
lichtemissiviteit die volgt op de energieafgifte van het plasma
[1]. Simpel gezegd, telkens wanneer er een piek is in deze
lichtemissiviteit, zou er een ELM moeten zijn. Omdat de ELM
ook zorgt voor de energieafgifte, zal de opgeslagen plasma-
energie afnemen. Door deze kenmerken te volgen, kan een
algoritme worden ontwikkeld om ELMs te detecteren.

Eerder heeft de groep een eenvoudig maar robuust algoritme
ontwikkeld om een optimale drempelwaarde in te stellen en
ruis uit het emissiviteitssignaal te filteren [2]. Hun methode is
met succes toegepast op gegevens van verschillende fusieappa-
raten, en er zijn verschillende papers gepubliceerd met behulp
van de resultaten.

Een recent interessegebied betreft plasmaconfiguraties die
kleinere, beter beheersbare ELMs creëren. De emissiviteitpa-
tronen die ze genereren zijn echter niet langer zo duidelijk
gedefinieerd, waardoor het detectie-algoritme verbeterd moet
worden. Dit leidt tot het doel van deze masterproef: het
evalueren van de prestaties van het bestaande algoritme en
het voorstellen van verbeteringen met behulp van state-of-
the-art tools, zoals machine learning en kunstmatige neurale
netwerken.

II. GEDETAILLEERDE BESCHRIJVING VAN DE GEGEVENS

A. Definiëren van shots

Fusiereacties vereisen extreem hoge temperaturen en
drukken. Het handhaven van deze omstandigheden vereist een
enorme hoeveelheid energie-invoer. Daarom werken tokamaks
niet continu, maar in meerdere pulsen, die shots worden ge-
noemd. De gegevens die in deze masterproef worden gebruikt,
zijn verzameld vanuit de Joint European Torus (JET). Alleen



kleine secties van shots worden gebruikt, die gebieden van
interesse worden genoemd.

B. Gegevens gebruikt voor het detecteren van ELMs

Voor elke shot wordt een verzameling signalen vastgelegd,
waarvan er twee in deze masterproef worden gebruikt om
ELMs te detecteren. Het eerste signaal (EDG8/TBEO) meet
de lichtemissiviteit van het plasma, wat de lijn-geı̈ntegreerde
emissiviteit is van de Bell-lijn die naar de buitenste di-
vertorplaat kijkt. Het tweede signaal (EHTR/WP) meet de
energie die is opgeslagen in het plasma. In dit artikel en in
de code wordt het emissiviteitssignaal (EDG8/TBEO) soms
aangeduid als het lichtsignaal. Het EHTR/WP-signaal wordt
aangeduid als het energie- of plasma-energiesignaal. Hoewel
het plasma-energiesignaal waardevolle informatie bevat, is het
niet altijd beschikbaar, daarom is het belangrijk om ook ELM-
detectiemethoden te ontwikkelen die zonder dit signaal kunnen
functioneren. De oorspronkelijke gegevens zijn bemonsterd
met een snelheid van 10 kHz, maar zijn enigszins inconsistent
in hun bemonstering. Daarom zijn beide signalen opnieuw
bemonsterd om een constante bemonsteringssnelheid van 10
kHz te hebben.

C. Uitvoerformaat

Gedetecteerde ELMs in dit werk worden weergegeven met
behulp van eenvoudige intervallen. Elk interval bestaat uit een
begin- en eindtijdstempel, waarbij effectief de tijdsduur van
een ELM-evenement wordt vastgelegd. Deze representatie stelt
onderzoekers in staat zich te concentreren op de ELMs zelf,
in plaats van ze binnen de gegevens te moeten lokaliseren.

D. Labels voor training, evaluatie en testen

Gelabelde ELM-intervallen zijn verstrekt als de grond-
waarheid voor het trainen van ELM-detectiemethoden. Het
labelen werd uitgevoerd onder toezicht van prof. dr. Geert
Verdoolaege. Het proefschrift erkent de beperkingen van de
beschikbare labeling voor de ELM-detectiestudie. De beschik-
bare labeling was beperkt in hoeveelheid en bevatte bepaalde
onnauwkeurigheden, wat uitdagingen met zich meebracht
bij het nauwkeurig beoordelen van de prestaties van de
voorgestelde methoden.

III. METRIEKEN

Voor het trainen en evalueren van de prestaties van de
ELM-detectiemethoden zijn metrieken nodig. Het vinden van
bestaande metrieken vormde een aanzienlijke uitdaging omdat
de meeste bestaande metrieken op het gebied van machine
learning bedoeld zijn voor classificatietaken en niet direct
toepasbaar zijn op pieken die worden weergegeven als in-
tervallen. Om dit aan te pakken, zijn er specifiek voor de
datastructuur die in dit werk wordt gebruikt twee nieuwe
sets metrieken ontwikkeld. De IntervalMetrics maken gebruik
van de verwarringstabel uit statistische classificatie om de
prestaties van de piekdetectie te evalueren. Aan de andere kant
hebben de GapMetrics, hoewel vergelijkbaar met IntervalMet-
rics, tot doel een meer intuı̈tieve en leesbare beoordeling van
de resultaten te geven die begrijpelijk is voor mensen.

IV. METHODEN

Deze sectie geeft een beknopt overzicht van de methoden
die geı̈mplementeerd zijn in het framework. Een gedetailleerde
beschrijving is te vinden in de scriptie.

A. Robust Optimal Threshold

De Robust Optimal Threshold (ROT) is een methode die
intern ontwikkeld is en gebruikt wordt door de onderzoekseen-
heid Infusion aan de Universiteit Gent [2]. Het belangrijkste
doel van de masterproef is om één of meerdere methoden te
ontwikkelen die beter presteren dan ROT.

B. MACD

De MACD-methode maakt gebruik van het moving average
convergence/divergence (MACD) filter [3] om een nieuw sig-
naal te verkrijgen uit het emissiviteitssignaal met minder ruis
en onderscheidende kenmerken. Dit signaal wordt vervolgens
door een algoritme geleid om pieken/ELMs te verkrijgen.

C. Rolling Z-score

De Rolling Z-score-methode berekent de Z-score [4] over
een schuivend venster. Vervolgens wordt een algoritme ge-
bruikt om pieken/ELMs te vinden in dit gefilterde emis-
siviteitssignaal.

D. LOG

De LoG-methode voor ELM-detectie houdt in dat het emis-
siviteitssignaal gefilterd wordt met behulp van een Laplacian
of Gaussian-kernel. Pieken/ELMs worden verkregen door het
gefilterde signaal te thresholden. [5]

E. LoGDoG

LoGDoG bouwt voort op de LoG-methode. In deze methode
wordt het signaal afgezwakt op basis van de afgeleide van het
plasma-energiesignaal. De afgeleide wordt verkregen door het
plasma-energiesignaal te filteren met een afgeleide van Gaus-
sische kernel [6]. Hierdoor worden pieken alleen gedetecteerd
wanneer er een daling in de plasma-energie optreedt.

F. CustomKernel

De CustomKernel-methode detecteert pieken door het sig-
naal te filteren met een aangepaste kernel. Deze kernel wordt
bepaald door de methode te trainen op het invoersignaal.

G. RNN

De RNN-methode maakt gebruik van een combinatie van
filters op het emissiviteitssignaal en het plasma-energiesignaal,
maakt sequenties en leidt deze door een recurrent neuraal
netwerk (RNN). De voorspellingen worden vervolgens geth-
reshold om de ELMs te verkrijgen.

H. CNN

De CNN werkt op dezelfde manier als de RNN-methode,
maar maakt gebruik van een convolutioneel neuraal netwerk
(CNN) dat gebaseerd is op een bestaand CNN [7].



I. Deconvolution

De Deconvolution-methode is gebaseerd op het in 2023
gepubliceerde artikel [8]. Hierbij wordt een deconvolutiepro-
ces toegepast om het signaal te ontbinden in een superpositie
van individuele pulsen.

V. RESULTATEN

A. Overzicht

Tabel I toont een vergelijking tussen de resultaten die
zijn verkregen met de verschillende methoden. De resultaten
in de tabel zijn verkregen door de metrieken individueel te
berekenen voor elke shot en vervolgens het gemiddelde van
elke metriek te nemen. Daarom zijn de gerapporteerde Fβ-
scores het gemiddelde van de Fβ-scores die zijn berekend voor
elke shot, en ze zijn niet afgeleid van de gemiddelde waarden
van ware positieven, valse positieven en valse negatieven die
in de tabel worden weergegeven.

TABEL I
TABLE MET RESULTATEN VOOR ALLE METHODES MET GEBRUIK VAN

INTERVALMETRICS. DE METRIEKEN ZIJN BEREKEND MET EEN
THRESHOLD VAN 0.75 VAN TP EN FN, EN 0.5 VOOR DE FP EN TN. DE

Fβ -SCORES ZIJN BEREKEND MET EEN BETA WAARDE VAN 0.5..

Method TP (%) FN (%) FP (%) TN (%) Fβ (%)
ROT 34.41 65.59 17.53 82.47 52.48
MACD 87.17 12.83 21.63 78.37 82.25
Rolling Z-score 89.99 10.01 16.39 83.61 87.33
LoG 86.61 13.39 12.79 87.21 87.81
LoGDoG 80.78 19.22 10.91 89.09 87.42
CustomKernel 82.97 17.03 9.39 90.61 88.62
RNN (modified) 91.95 8.05 15.90 84.10 87.07
CNN (modified) 80.01 19.99 16.63 83.37 82.66
Deconvolution 78.14 21.86 70.30 29.70 56.28

B. Bespreking van de resultaten

De resultaten tonen aan dat alle methoden die in deze
masterproef zijn ontwikkeld beter presteren dan de bestaande
ROT-methode. Ook blijkt dat de deconvolutiemethode niet
geschikt is voor de specifieke kenmerken van de ELMs die
in dit onderzoek zijn aangetroffen.

Elke methode heeft zijn eigen set van voordelen en nadelen.
Zo zijn de RNN- en CNN-modellen getraind met specifieke
parameters, die mogelijk opnieuw getraind moeten worden bij
toepassing op datasets met andere parametervereisten.

De CustomKernel-methode behaalt de hoogste Fβ -score en
vertoont het laagste aantal valse positieven. Echter, het wordt
overtroffen door de MACD-, Rolling Z-score-, LoG- en RNN-
methoden wat betreft de detectie van ware positieven.

De LoGDoG-methode laat potentie zien om het aantal
valse positieven te verminderen in vergelijking met de LoG-
methode. Echter, de robuustheid van de methode met behulp
van de energie-signaal leidt onbedoeld tot een afname van het
aantal ware positieven.

Over het algemeen benadrukken deze bevindingen de
afwegingen en variërende prestatiekenmerken van elke meth-
ode, waarbij het belang van het selecteren van een geschikte

methode op basis van specifieke toepassingseisen en prior-
iteiten wordt benadrukt.

VI. CONCLUSIE

Deze masterproef adresseert de uitdagingen bij het de-
tecteren van ELMs in tokamak-reactoren door het ontwikkelen
van robuuste methoden. Door wiskundige transformaties en
machine learning technieken toe te passen op echte JET-data,
draagt het onderzoek bij aan onderzoek naar kernfusie. Deze
bevindingen banen de weg voor efficiënt ELM-onderzoek en
dragen bij aan het realiseren van het doel van fusie-energie.
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1
Introduction

This paper describes the use of variousmachine learning techniques to detect edge-localizedmodes (ELMs) in fusion devices.

Nuclear fusion is an alternative to nuclear fission to generatemassive amounts of energy to power our society. Unlike fission,

fusion does not produce a lot of dangerous waste products and the fusion device can’t be used to make nuclear bomb fuel.

There is also no possibility of a runaway device meltdown since only small amounts of fuel are used and the fusion process

will die out when not actively sustained.

To obtain a fusion reaction, hydrogen isotope gas must be heated to extreme temperatures under high pressure, becoming a

plasma. This state of matter allows the hot atoms to be contained by powerful magnets, protecting the donut-shaped vessel

called the “tokamak.” In the 1980s a new mode of operation in tokamaks, H-mode, was found, with doubled performance

and better confinement. However, as a side effect, it created periodic releases of energy (similar to a pressure cooker’s valve

releasing steam every now and then). The risk they pose is the wear and tear to the device walls, as materials are repeatedly

exposed to short bursts of heat.

These phenomena are called edge-localized modes (ELMs), in relation to the source of these instabilities: magnetohydro-

dynamic instabilities occurring near the edge of the plasma, right by the vessel walls. ELMs are difficult to model based on

fundamental physics principles. Therefore, studies also rely on empirical data from large international experiments, such as

JET (the Joint European Torus), ASDEX-Upgrade, and DIII-D.

The Infusion group at Ghent University is specialized in data science and contributes to fusion research and Eurofusion

projects. While studies of these ELMs typically compare a few experiments at a time, the group is able to aggregate all the

available data, by characterizing each experiment with statistical features extracted from the ELM signals.

A key step is therefore detecting when an ELM has occurred. This relies on detecting light emission which follows the release

of energy from the plasma [2]. Simply put, whenever there is a peak in this light emissivity diagnostic, there should be

an ELM. As the ELM also causes the release of energy, so the stored plasma energy diagnostic will drop. By tracking these

characteristics an algorithm can be developed to detect ELMs.

Previously, the group developed a simple but robust algorithm to set an optimal threshold and filter out noise from the

emissivity signal [3]. Their method was successfully applied to data from a variety of fusion machines, and several papers

were published using the results.
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1 Introduction

One recent area of interest concerns plasma configurations that create smaller, more manageable ELMs. The emissivity

patterns which they create, however, are no longer as clear-cut, and so the detection algorithm needs to be improved.

This leads to the goal of this master’s dissertation: to evaluate the performance of the existing algorithm and to propose

improvements using state-of-the-art tools, such as machine learning and artificial neural networks.

In addition to building on existing ELM detection methods, this master’s dissertation also proposes some novel approaches.

The structure of the scripture is as follows. In Chapter 2, a comprehensive description of the problem is provided, highlight-

ing the main challenges, limitations, and objectives. The subsequent chapter, Chapter 3, presents a detailed review of the

technologies and algorithms employed throughout the dissertation.

Chapter 4 explains the design of the code, describing the modular and functional development of each component. Chapter

5 describes the evaluation metrics employed for training and optimizing the proposed methods. Additionally, Chapter 6

discusses the filters investigated and regularly utilized in the algorithms of the proposed methods, encompassing their

functionality, goals, advantages, and disadvantages.

Moving forward, Chapter 7 offers a concise overview of the different methods employed. Subsequently, Chapters 8, 9, and

10 respectively delve into the implementation details of each method. The former chapter specifically focuses on methods

relying solely on filters, the middle chapter discusses methods utilizing neural networks, and the latter chapter describes a

method based on deconvolution.

Finally, Chapter 11 compares the results obtained from the aforementioned methods.
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2
Description of the problem

2.1 Background information on the problem

Nuclear fusion is a promising source of energy. It has the potential to provide a clean and sustainable source of electricity for

the future. One of the most common and promising approaches is the use of a donut-shaped vessel called the ”tokamak”. A

favorable mode of operation in tokamaks is H-mode (or high confinement mode). However, the occurrence of harmful ELMs

during H-mode poses a significant challenge. Understanding and therefore detecting ELMs is a crucial part of the research

and development of nuclear fusion.

The objective of this master’s dissertation is to develop methods that can accurately and reliably detect ELMs based on data

of real tokamak devices. This requires identifying and extracting relevant features from the data. There are multiple ways of

achieving this. Features can be extracted by applying some mathematical transformations to the data and/or using machine

learning.

Machine learning is a subfield of artificial intelligence where algorithms make predictions on data. A machine learning

algorithm learns the correct predictions by training on a training data set. The goal of machine learning is to develop

models that learn patterns and relations in data and use these patterns to make accurate predictions or classifications on

unseen data.

2.2 Detailed description of the data

Fusion reactions require extremely high temperatures and pressures. Sustaining these conditions requires an enormous

amount of energy input. Because of this reason, tokamaks do not run continuously but in multiple pulses, which are called

shots. The data used in this master’s dissertation was collected from the Joint European Torus (JET).

At the start of each pulse, there is a startup phase in which the plasma conditions are not stationary. Experimentalists

design pulses under operating conditions to search for regions of high performance under stationary plasma conditions.

Experimentalists marked these as areas of interest, which will be used throughout this master’s dissertation. However, this

is not to say that there are no challenging parts in the data set used. When a particular area of interest is mentioned in this

work it will often be described in the following format: ’Shot 94776-0’. This means ’area of interest 0 of the pulse with an

assigned number of 94776’.
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2 Description of the problem

For each shot a collection of signals is captured, two of which are used in this master’s dissertation to detect ELMs. The

first signal (EDG8/TBEO) measures the light emissivity from the plasma, which is the line-integrated emissivity of the Bell

line looking at the outer divertor plate. [4] The second signal (EHTR/WP) measures the energy stored in the plasma. In this

scription and in the code, the emissivity signal (EDG8/TBEO) will sometimes be referred to as the light signal. The EHTR/WP

signal will be referred to as the energy or plasma energy signal. Even though the plasma energy signal contains valuable

information, it is not always available, which is why it is important to also develop ELM detection methods that can function

without it. The original data is sampled at 10 kHz but is slightly inconsistent in its sampling. Therefore, both signals have

been re-sampled to have a constant sampling rate of 10 kHz.

Detected ELMs in this work are represented using simple intervals. Each interval consists of a beginning and an end times-

tamp, effectively capturing the temporal extent of an ELM event. This representation allows researchers to focus their

analysis on the ELMs themselves, instead of locating them within the data.

Labeled ELM intervals were provided to act as the ground truth for training ELM detection methods. The labeling was done

under the supervision of prof. dr. Geert Verdoolaege. The master’s dissertation acknowledges the limitations of the labeling

provided for the ELM detection study. The available labelingwas limited in quantity and contained certain inaccuracies, which

posed challenges in accurately assessing the performance of the proposed methods. Also, note that the labeling of these

ELMs was slightly subjective because the person that labeled the data had access to both the emissivity and the plasma

energy signals and did the labeling in order to pursue a scientific goal. These two circumstances lead to some bias in the

labels.

2.3 Challenges and limitations in ELM detection

One significant challenge is the noise in the data. As shown in Figure 2.1, a lot of high-frequency noise and random variations

occur in the data. In chapter 6, a few filters will be discussed to remove the noise and retain the low-frequency information

that is useful for ELM detection.

Figure 2.1: High-frequency noise and random variations in the emissivity and energy signals.

Another challenge is the diversity of ELM types, which can make it challenging to capture the full range of ELMs. This can

potentially limit the effectiveness of the detection methods. For example, some ELMs stand on their own, but other ELMs

are merged into what is called a compound ELM [2]. Both types of ELMs will be discussed in Section 2.6.
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2 Description of the problem

Furthermore, there are also limitations to the data itself. Some types of ELMs can only be differentiated from each other

using other signals, which are not available for this master’s dissertation. This provides only a limited view of the plasma

behavior and prevents capturing the full complexity of ELM events.

Finally, the ELM detection methods described in this paper assume that the time series data has a constant sampling fre-

quency in a single signal. In reality, this is not always the case but this assumption was made to reduce the complexity of

the ELM detection methods.

2.4 Other work related to ELM detection

Previously, the research unit Nuclear Fusion (infusion) at Ghent University developed a method for ELM detection called

Robust Optimal Threshold (ROT) [3]. This method is able to detect Type I ELMs but can struggle with detecting ELMs of other

types. In Section 8.1.3 the implementation is discussed and in Chapter 11 the method’s output is compared with the output

of methods proposed by this master’s dissertation.

2.5 Research questions and objectives

The primary aim of this master’s dissertation is to develop reliable and accurate methods for detecting ELMs in tokamaks,

using light emissivity and energy time series data. The research questions that guide this study are as follows:

1. Research question: What technology and algorithms are suitable for ELM detection in tokamaks?

Objective: Investigate and evaluate various technologies and algorithms that can be employed throughout the dis-

sertation for efficient and effective ELM detection. Consider both traditional signal processing techniques, such as

filters, and explore other potential methods for feature extraction and detection.

2. Research question: How can relevant features be extracted from the data to facilitate ELM detection?

Objective: Explore different approaches to extracting meaningful features from the light emissivity and energy time

series data. Explore mathematical and machine learning techniques that can effectively extract and represent the

distinguishing characteristics of ELMs in the data.

3. Research question: What methods can be employed to detect ELMs using the extracted features?

Objective: Develop and compare different algorithms and methodologies for detecting ELMs based on the extracted

features. Evaluate the performance of traditional algorithms, such as threshold-based approaches, in detecting ELMs.

Additionally, explore the use of machine learning algorithms, to detect ELMs and compare their effectiveness with

the traditional approaches.

4. Research question: How to evaluate ELM detection methods?

Objective: Develop evaluationmetrics specifically designed for assessing the performance of peak and ELM detection

methods that output detected peaks as intervals.
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2 Description of the problem

2.6 Comprehensive description of ELM characteristics required for detection

Determining what qualifies as an ELM and what does is unfortunately not a completely objective task. Different experts

might disagree and there are many edge cases. After consulting with industry experts and consulting existing papers [2] [5],

the following guidelines were established to guide the development of detection methods.

• An ELM is always paired with a spike in the emissivity signal. However, the amplitude of the spike can vary greatly.

Generally, the start of the spike is a sudden increase and the tail end of the spike is a more gradual decrease. In

Figure 10.2 a typical ELM shape is illustrated.

• An ELM should be in general accompanied by a drop in the plasma energy. The amplitude of this drop, however, can

be minuscule. Conversely, no ELMs can occur if the plasma energy is increasing.

There are additional guidelines that apply specifically to the detection of compound ELMs.

• If detected ELMs are close together and the energy signal is dropping continuously throughout this region (meaning

no intermittent increases in energy) it is an argument for classifying them as a single compound ELM.

• If the emissivity signal does not fall back to the baseline between two ELMs but instead stays at an elevated level it

is an argument to group the peaks together in a compound ELM.

It is important to note here that the second compound rule was only introduced towards the end of themaster’s dissertation,

together with a new set of labels. As a result, not all methods respond equally well to this rule.

Figure 2.2 shows a manually labeled shot. Interesting areas are marked with a letter and are explained below.

Figure 2.2: Shot 94321-0 with manually labeled ELMs marked in green.

• Simple: These are examples of normal ELMs. They correspond with a peak in amplitude of the emissivity signal and

a drop in the plasma energy signal. Note that the drop in the plasma energy signal can be minuscule, as is the case

in the first ELM marked with a S.

• Compound: Areas marked with this letter are examples of compound ELMs. They are classified as such because the

emissivity signal remains at an elevated level during the entire interval.

• Minor: This region contains many small peaks that are not considered ELMs. This is because there is no corresponding

drop in plasma energy.
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2 Description of the problem

Finally, it is important to note that there are many edge cases. Examples of edge cases are the many small peaks in the

M region and the first peak marked with an S. The amplitudes are small, and it is difficult to assess if there is a sufficient

energy drop present. Experts in the field will have differing opinions on which of these edge cases should be classified as

ELMs. Luckily, these edge cases are less important to the physicists, more important ELMs will often have amore pronounced

signature.
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3
Technology review

In this chapter, a few essential pieces of technology are explained, which are used throughout the master’s dissertation.

3.1 Introduction to machine learning: algorithms, models and training

An important subfield of artificial intelligence (AI) is machine learning (ML) [6]. It focuses on developing algorithms and

methods that let machines learn to execute tasks based on data. The machine learning field has many applications, like

SPAM filtering for emails, object recognition in computer vision, and in the case of this master’s dissertation, detecting ELMs.

The main advantage of machine learning is that it can have the ability to learn directly from data. This allows the discovery

of complex patterns, which could be hard for humans to manually define in a program.

Often, this is done by developing a model. Which is a mathematical representation of a system, able to provide the desired

results from a set of input data. Take for example a SPAM filter: the model takes the header and body of an email and returns

whether the mail server should flag it as SPAM or not. Going back to the master’s dissertation, the models here are able to

detect ELMs from light and energy data, captured by sensors in a tokamak device.

A model first has to learn what the desired results are. This is done by a process called training. Here two data sets are

supplied. A training data set and a validation data set. The process works by iteratively adjusting the model’s parameter

based on the training data set and evaluating its performance using the validation data set. During training, the model

analyzes the input, makes a prediction, and compares it with the desired output. The model gradually improves itself by

iteratively minimizing errors it makes through the training iterations. Typically, this involves adjusting the model’s internal

weights. The quality of the data and the labels used during training determines the performance of the resulting model.[7]

3.2 Convolution operation and its properties

Convolution is a fundamental mathematical operation used in various domains, including machine learning and computer

vision. It involves applying a filter or kernel to an input signal, resulting in a convolved signal. This operation plays a pivotal

role in tasks such as feature extraction, image processing, and signal analysis, enabling the transformation andmanipulation

of data. Multiple ELM detection methods described in this master’s dissertation rely on the convolution operation and its

properties.
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The behavior of the convolution operation under this specific condition has proven especially useful: propose that a signal

is constant for an unspecified amount of units of n that is larger than the length of the convolution kernel. The convolution

operation reduces to the following:

(f ∗ h)[n] =
∞∑

m=−∞
h[m] · f [n−m]

If the kernel has a finite length ’s’ this function can be rewritten as:

(f ∗ h)[n] =
s−1∑
m=0

h[m] · f [n−m]

If the input signal doesn’t change and has a constant amplitude ’c’ during a period >s units, the function is equal to the

following only in that region:

(f ∗ h)[n] =
s−1∑
m=0

h[m] · c

Consequently, the constant can be brought outside the summarization and the output of the function is equal to the integral

of the kernel multiplied by c. Again this only applies in the region where the input signal is constant.:

(f ∗ h)[n] = c ·
s−1∑
m=0

h[m]

This has two interesting consequences:

• If the integral of the kernel is equal to 1, the input and output functions will be equal. This means that filtering with

a Gaussian PDF function, which has an integral equal to 1, does not change the amplitude of the input signal.

• If the kernel has an integral equal to 0, the output signal will be 0 as long as the input signal is zero. This means

that if all values in the input signal are shifted by a large number, it will have no impact on regions where the input

signal is constant.

3.2.1 Correlation operation

The correlation operation is intricately linked to the convolution operation, with a single distinction: the flipping of the kernel.

Unlike convolution, where the kernel is flipped, correlation retains the original orientation of the kernel. Consequently,

correlation and convolution yield identical results when the kernel is symmetrical.
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In the context of this work, when an asymmetrical kernel is used, it will be explicitly specified whether the convolution or

correlation operation is employed.

3.3 Filters in signal processing and machine learning

In the context of signal processing and machine learning, filters are mathematical operations or algorithms applied to data.

In chapter 6, multiple filters will be discussed.

Traditional signal processing filters aim to modify the input data by applying specific mathematical operations. With the

goal to extract specific features, reduce noise and enhance certain characteristics, such as smoothing neighboring values to

reduce noise, convolving with a kernel and more.

On the other hand, there are also filters that are designed specifically for machine learning tasks. They aim to transform the

raw input data in a way that improves the performance and convergence of the machine learning model. Typically, these

filters help with normalizing, scaling, and encoding the input data to ensure compatibility with the requirements of the

machine learning model.

3.4 Introduction to neural networks

A neural network (NN) [6] is a type of machine learning model that is inspired by the human brain. It is composed of nodes

called artificial neurons or ”units”, organized in layers. The connections between the units of connecting layers have weights,

which require to be trained.

3.4.1 Pattern recognition using convolutional neural networks

Convolutional neural networks (CNNs) are built around the concept of convolution layers. These layers apply a convolution

operation to the input data and produce a convoluted output. In the context of CNNs, this operation involves applying a set

of learnable filters, also known as kernels, to the input data. Each filter is a small matrix of weights that are adjusted during

the training process. The purpose of these filters is to detect localized patterns and features within the input

The initial convolution layers in a CNN typically capture low-level features, while deeper layers learn to combine these low-

level features to form higher-level representations. This hierarchical layering of multiple convolution layers allows CNNs

to effectively extract and represent complex patterns. To enhance the robustness of the network, CNN architectures often

incorporate additional layers, such as pooling layers, to reduce spatial dimensions and extract the most salient information.

3.4.2 Capturing dependencies across variable-length sequences using recurrent neural networks

Recurrent neural networks (RNNs) are specifically designed to handle sequential data, making themwell-suited for tasks in-

volving time series analysis in this master’s dissertation. RNNs differ from other neural network architectures by introducing

a feedback mechanism that enables information to persist and be shared across different time steps.
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The distinctive feature of RNNs is their ability to maintain an internal state, often referred to as memory, which is imple-

mented as a layer within the network. This memory layer takes into account the current input as well as the output from the

previous time step to update its internal state. The updated state is then passed to the next time step, allowing the network

to incorporate information from previous steps when making predictions.

Multiple types ofmemory layers exist, such as long short-termmemory (LSTM) and gated recurrent unit (GRU). These variants

introduce specialized memory cells and gating mechanisms, enabling RNNs to capture and retain long-term dependencies

more effectively.

Themain benefit of RNNs is the possibility tomodel and capture dependencies across variable-length sequences. This makes

them particularly suitable for tasks that involve analyzing and generating sequential data, where context and temporal

relationships play a crucial role.

3.5 Hyperparameter tuning for machine learning algorithms using gridsearch

Gridsearch is a technique used to tune the hyperparameters of algorithms. This involves systematically going through a

predefined set of hyperparameters, to identify the combination with the best results. Just like with the training of a machine

learning model, a training set is required to find which hyperparameters yield results that are the closest to the desired

output. Again, the quality of the training data is very important for the resulting performance of the algorithm.

Gridsearch will be used throughout the chapter 8.

3.6 Keypoint detection and description in computer vision using the SIFT algorithm

SIFT is a computer vision algorithm for keypoint detection and keypoint description. The aim of keypoint detection is to

find recognizable points in an image of an object that can be found in other images of the same object. If for example two

pictures are taken of the same object but from a different angle the same keypoint should be found in both images. The goal

of keypoint description is to describe the keypoints in such a way that keypoints in one image can be mapped to keypoints in

another image if the images are of the same object. Some of the applications for SIFT are object detection, object recognition,

image stitching and many others. [8]

3.6.1 Keypoint detection

Because SIFT is able to detect the same keypoints regardless of varying levels of illumination it is said that the SIFT keypoint

detector is ”invariant” to changes in illumination. A good keypoint detector is strongly invariant to as many properties as

possible which means that as long as two pictures are of the same object it will find the same keypoints. It is equally impor-

tant that if a keypoint is not detected in a certain region of the original image, the corresponding region in the transformed

image is also not detected as a keypoint. In practice being completely invariant is impossible, for example, if two pictures are

taken of the same object, but one picture is taken from the opposite side it’s impossible to find the same keypoints because

the points on the object are occluded by the object itself. The figure below illustrates the different SIFT invariances using a

mock-up of detected keypoints:
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Figure 3.1: 5 types of SIFT invariances. Keypoints are marked with a red cross

The central picture represents the original image with a car as the subject. The SIFT keypoint detection algorithm was able

to find two keypoints corresponding with the two visible wheels of the car. The five other pictures contain the same object

but with some transformation applied to it. In all five examples SIFT should ideally find the same keypoints.

3.6.2 Simplified explanation of SIFT keypoint detection

In this section, a simplified version of the SIFT keypoint detection algorithm is presented. The purpose of this simplified

algorithm is to provide a basic demonstration of the underlying principles of the SIFT algorithm. The original SIFT algorithm

involves filtering the image using Gaussian kernels at various scales. By subtracting the filtered images from each other,

distinct bright and dark blobs are extracted. From these blobs, robust keypoints are then generated.

In the simplified keypoint algorithm presented here, certain modifications have beenmade. Instead of employing the Differ-

ence of Gaussian technique, a Laplacian of Gaussian (LoG) kernel is utilized. Although computationally slower, this approach

offers enhanced accuracy, as supported by the documentation of the SciKit-image image processing framework, which offers

both solutions for blob detection [9]. Additionally, only dark blobs are detected by the simplified algorithm. In Figure 3.2

12



3 Technology review

below, the different steps of the simplified algorithm are illustrated:

Figure 3.2: Keypoint detection steps, using an image of a sunflower field [1] as an example

Each panel contains a separate step in the custom algorithm:

1. First the image is loaded in memory and converted to grayscale.

2. A convolution is appliedwith a two-dimensional Laplacian of Gaussian (LoG) kernel. The dark hearts of the sunflowers

now show up as white blobs. The resulting image is normalized

3. Binary thresholding is applied. The pixels with a value above a constant value are set to white and the others become

black.

4. Finally, the centroids of the white blobs are calculated. These are the keypoints and are displayed on top of the

original image as red crosses.

In Figure 3.3 below, two kernels are visualized by mapping the values to grayscale values. The left-hand image is the kernel

used in the example from Figure 3.2 to detect the dark hearts of the sunflowers. It features a dark center with a bright ring

around it. This kernel detects blobs that are darker than their immediate surroundings. The right-hand kernel is not used in

Figure 3.2 but could be used to detect bright blobs on a darker background. It is created by multiplying every value in the

kernel that detects dark blobs by -1.
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Figure 3.3: LoG kernels for image filtering in Figure 3.2.

The convolution step is responsible for complete illumination, translation and rotation invariance:

• Translation invariance is inherent to convolution.

• Rotation invariance: Because the kernel is symmetric in all directions complete rotational invariance is achieved.

• Illumination invariance: Because the kernel has an integral equal to zero the background brightness is normalized

to zero in the convolved image and only the blobs remain. (Whether these are dark or bright blobs depends on the

kernel).

SIFT is moderately invariant to affine transformations because blobs in images are often still recognizable from an angle.

Finally, SIFT accomplishes scale invariance by running the blob detection multiple times at different scales. In this simplified

algorithm, keypoint detection was only performed at one scale and as a result, some flowers at the top of Figure 3.2 are not

detected as blobs because the kernel is too big.

3.7 Reusing code in Python through multiple inheritance with mixins

In Python, a mixin [10] is a technique for reusing code in multiple classes. A mixin is implemented as a separate class that

provides a specific set of methods or attributes. By inheriting from a mixin, a class can incorporate the mixin’s functionality

into its own implementation. Unlike regular inheritance, inheriting from a mixin does not imply an ”is-a” relationship. A

mixin is not intended to be used as a standalone class. Instead, it is meant to be combined with other classes that provide

the main functionality. Through multiple inheritance, a class can inherit from both the mixin and other relevant classes,

incorporating the mixin’s functionality while maintaining a flexible class hierarchy.

This approach avoids creating a deep class hierarchy and provides a flexible way to extend the functionality of different

classes. The usage of mixins allows organizing and sharing common code in a modular manner, enhancing code reuse and

maintainability. It promotes the separation of concerns and allows for greater flexibility in class design.

An example of mixin usage in this master’s dissertation is demonstrated in Figure 4.1.
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4.1 Project Repositories: elms-detection, peaks, and dbtools

The project consists of three repositories. The main one is called elms-detection. The other two repositories, peaks and

dbtools, are loaded within the main repository as submodules.

The elms-detection repository and its submodules can be found at: https://github.ugent.be/infusion/elms-detection. Infor-

mation about how to run each method can be found in the README.md file of this repository.

Up until the embargo date of this master’s dissertation, access is restricted on all repositories. After the embargo date, only

the dbtools repositorywill have restricted access. To request access, contact J. Alhage by e-mail using jerome.alhage@ugent.be.

4.1.1 Distinction between ELMs-detection and peak detection

For broader applicability of this master’s dissertation, a distinction is made between ELM detection methods and peak de-

tection methods. The former are implemented in the main elms-detection repository under the ’elms-detection/methods’

directory, while the latter are implemented in the peaks repository under the directory ’/elms-detection/peaks/methods’.

ELM detection methods often rely on peak detection techniques for their operation, which will be explained further in Sec-

tion 4.1.3. However, it is possible to use all peak detection algorithms separately on other non-ELM-related data, albeit with

different hyperparameters.

4.1.2 Modular peak detection and evaluation methods in the peaks repository

The peaks repository is a significant component of the elms-detection project, dedicated to detecting peaks from data. It

encompasses a modular architecture that enables the implementation of multiple peak detection and evaluation methods.

The repository consists of several key directories and files, each serving a specific purpose in the overall functionality of the

system.

A prominent directory within peaks is the filters module. This directory houses a collection of filters implemented as mixins,

see Section 3.7 and Chapter 6 for more information. They are easily integrated into other classes, enabling the seamless

incorporation of various filtering operations within the peak detection process. By using mixins, the filters can be shared

across different classes, promoting code reuse and maintainability.
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The most crucial directory within the peaks repository is the methods module. This directory contains a collection of peak

detection methods, each implemented as a separate class. These methods are implemented using carefully designed algo-

rithms, with each having its own advantages and limitations. All peak detection methods derive from a common abstract

base class, which is found in the file ”PeakDetection.py”, within the same directory. This base class provides a standardized

interface for accessing and utilizing the detection functionality. This allows straightforward interchangeability between the

different peak detection methods and facilitates comparative analysis. Parameters used to tune a method are supplied with

the constructor but can be updated after construction.

Figure 4.1 presented below illustrates various peak detection methods and their utilization of mixins.

Figure 4.1: UML diagram illustrating the utilization of mixins in the peaks repository. Some attributes and classes are omitted

to maintain clarity

The repository also contains an evaluation module, which plays a vital role in training and assessing the performance of the

detectionmethods. It contains the necessary code to evaluate and compare the results obtained using the differentmethods.

This provides valuable insights into the strengths andweaknesses of each detectingmethod, aiding in the selection and fine-

tuning of the most suitable approach for specific applications. Multiple evaluation metrics have been developed, which are

discussed in chapter 5.

4.1.3 Modular ELM detection methods in the elms-detection repository

The elms-detection repository is the main repository used for this master’s dissertation. It contains the utilities and note-

books used for the dissertation, but also the code made specifically for detecting ELMs from time series data. It is designed

to provide a comprehensive framework for ELM detection, incorporating various methods and techniques for accurate and
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reliable identification of these phenomena. Like the peaks repository, elms-detection follows a modular architecture that

facilitates flexibility and extensibility.

The repository contains a directory called compound, which included methods dedicated to detecting compound ELMs. The

methods within the compound module allow for the combination or removal of specific ELMS from a given list, enabling

more precise results. As with the filters in the peaks repository, the compound methods are implemented as mixins, see

Section 3.7.

Another notable directory in the elms-detection repository is the methods folder. Similar to the methods module in the

peaks repository, this module includes an abstract base class called ElmDetection and derived classes representing different

ELM detection methods, which implement the methods of the abstract base class. These classes leverage the peak detection

results obtained from the peak detection methods and treat the detected peaks as potential ELMs.

ELM detection method may internally call peak detection methods if desired. Within these ELM detection methods, there are

cases where the input data undergoes transformations using filters from the peaks repository or is passed through a neural

network before being processed by the peak detection method. It should be noted that this preprocessing step is not always

necessary, as in some cases, one of the signals may be passed directly to the peak detection method without any further

transformation.

After receiving the output from the peak detection method, the ELM detection method can then implement additional logic

and algorithms to refine and correct the detected ELMs, such as by using the compoundmixins from the ”compound” directory.

This modular design allows for easy creation, implementation, and integration of different ELM detection methods and

promotes flexibility in selecting the most suitable approach for a given data set.

4.1.4 Utility functions for data loading and resampling in the dbtools repository

This repository is separate from the rest of the codebase. Its purpose is to provide functionality for tasks such as loading and

resampling the input data specific to JET. Therefore ”dbtools” is only used in utility files and notebooks. It is not integrated

with the inner workings of the other repositories. This allows the ELM detection methods to work with other sources too.

4.2 Continuous integration and continuous delivery

During the development, unit tests were created to ensure the correct functioning of the code. Additionally, code was de-

veloped to apply methods to a predefined set of shots, assess their performance, and store snapshots of the results on disk.

This enables tracking the performance of the methods over time to ensure that no changes are made that unexpectedly

lower their performance.

Initially, an attempt was made to automate this process using a CI/CD pipeline. However, this approach proved to be im-

possible due to data safety restrictions and Ghent University policy. Firstly, it is not allowed to upload any signal data from

the JET repository on servers not hosted by the university, even on a private repository. Secondly, the CI/CD feature is not

supported on the GitHub Enterprise server of Ghent University for cost-saving measures.
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Due to these limitations, compromises had to be made. The user can manually run the code that stores snapshots of the

performance over time to prevent degraded performance. Additionally, a script was created to run all the unit tests in the

repository automatically. These two approaches automate some of themost tedious tasks without relying on CI/CD pipelines.
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To train and evaluate the ELM detection methods performance metrics are needed. Finding existing metrics posed a signifi-

cant challenge because most existing metrics in the field of machine learning are meant to be applied to classification tasks

and are not directly applicable to peaks represented as intervals.

For this reason, new metrics were created that are compatible with the data structure for peaks used in this work. The new

metrics should be grounded on existing metrics in the ML field, mathematically sound, and easy to understand intuitively.

For brevity the manually labeled peaks that are regarded as the ground truth are called ”real peaks” from now on. ELMs that

are automatically detected by one of the ELM detection methods are called ”automatic peaks”.

5.1 Imbalanced datasets

Due to the nature of ELM signals, it is more likely that an ELM event is not occurring at any given time. In the dataset

utilized for this master’s dissertation, approximately one-fifth of the total labeled time corresponds to ELM events, while

the remaining four-fifths represent non-ELM periods. As a result, the majority of the signal consists of negatives or gaps

between peaks, while positives occupy only a small portion. However, when considering peaks and gaps as individual units,

the situation changes. There can be, at most, one more gap than the number of peaks. Therefore, in signals with multiple

ELMs, the ratio is typically close to 50%.

Another challenge arises from the varying lengths of peaks. Compound ELMs, discussed in Section 2.6, can be considerably

longer than their normal counterparts. It is crucial that metrics do not allow compound ELMs to disproportionately affect

the overall score.

To address these challenges, metrics should focus on capturing the fraction of overlap between peaks and gaps, rather than

solely considering the actual time of overlap.

5.2 Interval Metrics

These metrics apply the confusion matrix from statistical classification to peak detection. To do this they look at the interval

of both the real and automatic peaks.
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5.2.1 True Positive

The true positive metric examines how many of the real peaks are also detected by the automatic method. The result is

presented as a fraction e.g. ”5/10 real peaks were detected”. This metric is represented symbolically as:

TP(automatic peaks, real peaks)

To calculate this the method first iterates over the intervals of all real peaks. It calculates what fraction of the interval of

the real peak is also detected by one or more automatic peaks. A configurable threshold is used to create a pass/fail grade.

After doing this for all real peaks the metric outputs what fraction of real peaks passed.

5.2.2 False negative

The false negative metrics look at howmany real peaks were missed in the list of automatic peaks. Because of this, it can be

calculated by taking the complement of the fraction returned by the previousmetric, e.g. if the true positivemetric was equal

to ”4/10 real peaks detected” it means that the false negative is ”6/10 real peaks missed”. The false negative is represented

symbolically as:

FN(automatic peaks, real peaks) = 1− TP(automatic peaks, real peaks)

5.2.3 False positive

The false positive metric describes what fraction of the automatic peaks do not exist, meaning that they have no correspond-

ing real peaks. This metric is calculated by iterating over all automatic peaks instead of the real peaks as the true positive

metric did. Per automatic peak, it is calculated what fraction of its interval is not present in any real peaks. If this value is

greater than a configurable threshold the automatic peak is counted as a false positive. After iterating over all automatic

peaks the metric returns the end result as a fraction e.g. ”3/10 automatic peaks are false positives”.

This metric can also be calculated using the existing true positive metric by swapping the arguments:

FP(automatic peaks, real peaks) = 1− TP(real peaks, automatic peaks)

By applying the true positive metric with the automatic peaks as the first argument and the real peaks as the second ar-

gument, it calculates the fraction of automatic peaks detected in the list of real peaks, instead of the usual fraction of real

peaks detected in the list of automatic peaks. Complementing this fraction gives the ratio of automatic peaks that are not

detected in the list of real peaks, representing the false positive metric.
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5.2.4 True Negative

In statistical classification, the true negativemetric explains howmany non-peaks are correctly identified as non-peaks by an

ELM detection algorithm. At first glance, it seems like this method requires looking at the intervals between peaks. However,

when adhering to the definition in statistical classification the true negatives are the complement of the false positives, e.g.

when 3/10 actual negatives were incorrectly classified as false positives 7/10 actual negatives must be true negatives.

TN(automatic peaks, real peaks) = 1− FP(automatic peaks, real peaks)

When substituting the definition of false positives obtained in section 5.2.3

FP(automatic peaks, real peaks) = 1− TP(real peaks, automatic peaks)

the final definition of true negatives becomes the following:

TN(automatic peaks, real peaks) = TP(real peaks, automatic peaks)

This intuitively makes little sense which is why this metric is only listed for the sake of completeness. For a more intuitive

definition of true negative that does take into account the space between intervals see the next section 5.3.

Figure 5.1 shows a series of examples where the real peak intervals are marked in green and the automatic peaks in red. At

the top of each example the true positive, false negative, false positive, and true negative scores are displayed assuming a

threshold of 0.5.
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Figure 5.1: Custom Interval Metric - Examples

5.3 Gap Metrics

Gap Metrics are similar to the Interval Metrics discussed previously. The implementation for the true positive and false

negative is entirely the same but the false positive and true negative are calculated differently as explained in the sections

below.

5.3.1 False Positive

The false positive now gives the fraction of gaps between real peaks that are falsely detected as real peaks. The metric first

converts the list of ground truth peaks to a list of gaps between and around the peaks. The gaps are considered as negatives

compared to the peaks which are the positives. Then themetric uses the true positive implementation from 5.2.1 to find what
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fraction of gaps or negatives are falsely detected by automatic peaks. Again a configurable threshold is taken into account

to adjust how sensitive the metric is. This method can be represented symbolically as:

FP(automatic peaks, real peaks) = TP(automatic peaks, real gaps)

Note that even though there could bemore automatic peaks than gaps the false positive can atmost be equal to one because

the true positive method iterates only over the second argument which are the gaps in this case.

5.3.2 True Negative

The true negative calculates what fraction of gaps between real peaks is correctly not detected as peaks or positives. The

true negative is equal to the complement of the false positive fraction.

5.3.3 Conclusion

Defining the false positive to look at the gaps has two advantages. The first is that a negative is clearly defined as a gap

between peaks. The positives and negatives intervals add up to the total time in the shot. The second advantage is that the

definition of false positives and especially true negatives becomes more intuitive to understand.

In spite of these advantages, this metric should not be used for training for the current dataset. As discussed in Section

5.1, the gaps between peaks last much longer than the peaks themselves. This means that an automatic peak placed in the

middle of a gap is very unlikely to result in a false positive.

To illustrate this problem a grid search was performed on the LogDoG ELM detection method (Section 8.5) using an Fβ-score

(b=0.5) calculated from the true positive and false positive metrics provided by Gap Metrics with a threshold of 0.75 or 75%.

Thismeans that 75% of a real peak needs to be detected by automatic peaks in order to count. Similarly, 75% of a gap between

real peaks needs to be falsely detected in order to count as a false positive. In Figure 5.2 the trained method is applied to a

shot with large gaps. Multiple automatic peaks are falsely detected in the gaps between the real peaks.

Figure 5.2: LogDoG ELM detection method trained with Gap Metrics applied to shot 94776-0. Note: This figure is based on

the old labels

This figure clearly demonstrates that the method has not learned to avoid false positives. The reason why is explained using

the following table which compares the Gap and Interval Metrics. The gap metrics find three gaps between and around the
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Table 5.1: Comparison between the results of the Gap Metric and Interval Metric for shot 94776-0

TP FN FP TN

Gap 0/2 2/2 0/3 3/3

Interval 0/2 2/2 18/26 8/26

two real peaks. None of which are more than 50% detected by real peaks, so no false positives are detected in the entire

shot. In contrast, interval metrics do detect 18 false positives.

Adjusting the threshold for the false positives to a very low number ( 10%) would remedy this problem, but it would lead

to many false positives when the peaks are close together. In that scenario covering 10% of a small gap between peaks can

happen easily even with a good ELM detection method. In other words, this would lead to too many false positives in the

case of small gaps between peaks and not enough false positives when the gaps are bigger.

Because of these shortcomings, it is not recommended to use GapMetrics for training, instead, it is opted to use IntervalMet-

rics. However, both GapMetrics and IntervalMetrics are used for evaluating the methods in the results chapter 11.

5.4 Precision

Precision, also known as the positive predictive rate, is a metric that measures the accuracy of positive predictions and is

defined as follows:

Precision =
TP

TP + FP

5.5 Recall

Recall, also known as the true positive rate or sensitivity, measures the rate of TP predicted out of all positive instances.

Recall =
TP

TP + FN

5.6 F-score

The F-score is a measure of accuracy, that combines precision and recall. The F1-score, traditionally used, is calculated using

the harmonic mean, defined in the following formula:

F1 = 2× precision× recall

precision+ recall
=

2× TP

2× TP + FP + FN

However, a more general F-score, known as the Fβ-score, can be employed. The Fβ-score allows for different weights be-

tween precision and recall. It is calculated as follows:

Fβ = (1 + β2)× precision× recall

β2 × precision+ recall
=

(1 + β2)× TP

(1 + β2)× TP + β2 × FN + FP
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5 Metrics For Evaluating Peak Detection Methods

In essence, β controls the relative importance of precision and recall. A higher value of β makes recall more important,

while lower values place more emphasis on precision. Notice that if β is equal to one, the Fβ-score can be reduced to the

F1-score.

The ability to configure the metric to prioritize between precision and recall offers a configurable preference between false

negatives (FN) and false positives (FP). By adjusting the metric its priority between precision and recall, the prioritization

of ELM detection methods can be indirectly influenced. Because of this flexibility, the Fβ-score metric is used in Section 3.5

and the machine learning methods described in Chapter 9. A β value of 0.5 was chosen to make the methods more precise.

5.6.1 Other metrics

Furthermore, a host of othermetrics from statistical classification can be calculated based on the true positive, false positive,

false negative, true negative obtained either with IntervalMetrics or GapMetrics. Examples of implemented metrics are:

• False Negative Rate

• False Positive Rate

• True Negative Rate

• Positive Likelihood Ratio

• Negative Likelihood Ratio

• Diagnostic Odds Ratio

• Threat Score

• Positive Predictive Value

• False Omission Rate

• False Discovery Rate

• Negative Predictive Value

• Balanced Accuracy

• Fowlkes-Mallows Index

• Markedness

• Matthews Correlation Coefficient
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6
Signal Processing Filters

Filters are fundamental tools used in signal processing and machine learning to preprocess, transform and enhance data.

They enable the extraction of specific features, reduction of noise, enhancement of certain characteristics, and the training

of machine learning models. Ultimately this leads to more accurate analysis, predictions, and insights.

The peak detection modules for this master’s dissertation are written in a modular way so components can be shared be-

tween methods. This in part accomplished through the use of filters implemented as Mixins in Python. See system architec-

ture 4.1.2 and the technology review 3.7 for more information about this.

A filter takes a signal as an input and applies a certain operation to it. Examples of operations are applying amoving average,

noise removal with Gaussian Blur, or normalizing the signal.

Some applications of filters are discussed. Firstly, the baseline of the signal is not always centered around zero, this can

be remedied with a filter that detrends the signal. Secondly, the data is characterized by significant noise, which can be

mitigated by filters that effectively reduce noise levels while preserving relevant peaks. Finally, the employment of filters

facilitates trend analysis of the data.

6.1 Noise removal using the moving average

The moving average [11] is a method used to smooth data by calculating the average value within a sliding window. The

window represents a fixed number of consecutive data points. It is shifted along the time axis, creating overlapping sections.

Each section is then averaged, resulting in a smoothed data series. For example, with a window size of 5, the moving average

is calculated by averaging the first 5 values, then shifting to the next section, and so on. This process reduces noise while

preserving important trends in the data. The implementation using SciPy [12] of the moving average is straightforward and

can be achieved in a single line of code as seen in Code Fragment 6.1.

scipy.signal.convolve(data, np.ones(span), "same") / span

Code Fragment 6.1: Moving average using SciPy

To apply convolution as a kernel on the input data, an array of ones with a length of ’span’ is created. The convolution

operation involves sliding this kernel along the input array and computing the sum of the element-wise products within the

26



6 Signal Processing Filters

span. The resulting sum array is then divided by the span to obtain the average value.

However, a limitation of this approach is that it produces an output with a shorter length than the input data. This occurs

because the convolution operation is performed only when the kernel is fully contained within the input data, leading to

data loss at the edges.

To address this issue, padding is applied using NumPy [13]. Which is shown in Code Fragment 6.2. In this case, the array is

extended at the front with ’span’ times the first value and at the back with ’span’ times the last value. This padding, known

as ’same’ padding, ensures that the original input length is maintained after the convolution. The padding is subsequently

removed, resulting in the desired output length.

data = np.insert(data, 0, np.repeat(data[0], span))
data = np.append(data, np.repeat(data[-1], span))
scipy.signal.convolve(data, np.ones(span), "same") / span)[span:-span]

Code Fragment 6.2: Improved moving average using SciPy and Numpy

In Figure 6.1 below, the input data is plotted together with the output of the previous code fragments. Two different spans

are applied to clarify the effect of the parameter. If the span is set to big, too much information in the signal is removed. On

the other hand, if the span is too small, not enough noise will be removed.

Figure 6.1: Removing noise from a signal using the moving average filter.

6.2 Noise removal using the exponential moving average

The exponential moving average (EMA) [14], as seen in Figure 6.2, is a variant of the moving average. Here, more weight is

given to the values closer to the end of the subset. A decay α is calculated based on the span: α = 2/(span+ 1). This
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has the advantage of still keeping some important features of the input that otherwise would have been smoothed away.

Depending on the span, more or fewer features and noise are removed. Careful consideration is needed when selecting the

span width.

Figure 6.2: Comparing the moving average against the exponential moving average.

6.3 Noise removal using the Wiener filter

The Wiener filter [15], plotted in Figure 6.3, is yet another method for removing noise from data. The filter tries to determine

how the signal and the noise are related by analyzing both. This works by estimating the power spectral density (PSD) of the

date and the noise. Then it derives a filter that minimizes the mean-squared error (MSE) between the original signal and

the filtered signal. This filter is specifically designed to maximize the signal-to-noise ratio of the output signal.

The minimization of the MSE makes it an effective technique for enhancing the quality of noisy signals.
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Figure 6.3: Applying multiple Wiener filters to the same input. Each filter has a different size parameter.

6.4 Noise removal using the Hann window

The Hann window [16] is used to reduce spectral leakage compared to the previously discussed noise removal filters. It does

this by tapering the edges of the signal to zero. This means that it gradually reduces the amplitude of the signal window

towards its edges or endpoints. This reduces abrupt discontinuities at these edges, which could cause spectral leakage and

result in a much smoother signal. The difference with the moving average filter is shown in Figure 6.4.
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Figure 6.4: Comparing the moving average filter against the Hann filter.

6.5 Detect changes and anomalies using the difference filter

The difference filter [16] [17] can be used to detect changes and anomalies in a signal. This allows applications like edge

detection in image processing, feature extraction in audio processing, and trend analysis in time series.

The difference filter calculates the discrete first-order derivative of a signal. This technique involves calculating the differ-

ence between two adjacent values. By doing this for every value in the given input array, a new signal is achieved. The main

weakness of the difference filter is that high-frequency noise and small fluctuations are amplified in the output. Figure 6.5

shows the difference filter applied on a signal.
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Figure 6.5: Applying the difference and gradient filters to a signal.

6.6 Detect changes and anomalies using the gradient filter

The gradient filter [18] describes the rate of change of an input array using NumPy’s gradient function. In the context of time

series data, the gradient filter provides an estimate of the slope or, as mentioned, the rate of change of the input array. This

continuous estimate provides amore nuanced output compared to the difference filter. Figure 6.5 show the small smoothing

effect that the gradient has on the 1-dimensional input array compared to the difference.

6.7 Noise removal, change and anomaly detection using the Savitzky-Golay filter

The Sovitzky-Golay (Savgol) filter [19] is a mathematical method for removing noise from data. The filter works by fitting

a polynomial function to a window of the input data. This polynomial function is then used to estimate the value for the

center of this window. By moving the window along the data, and continually refitting the function, a new set of values is

calculated.

Compared with a moving average, it does not give an average within a window but an approximation computed from a

polynomial function. This unique property can provide a more accurate and precise approximation to the original input but

without noise. The difference between these two approaches only becomes clear when greater windows are used, as seen

in 6.6.
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Figure 6.6: Removing noise from data using the Sovitzky-Golay filter compared to the moving average filter.

The SciPy implementation of the Savitzky-Golay filter offers an additional feature: support for derivatives. By utilizing the

filter with a derivative order of one, an output similar to the difference and gradient filters will be achieved. Additionally,

depending on the window size, the filter leverages its polynomial fitting approach to effectively remove noise from the

signal. This negates the effect where a difference filter would amplify small fluctuations from high-frequency noise. Figure

6.7 compares the Savitzky-Golay filter with the difference filter and shows the noise removal property.
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Figure 6.7: Removing noise from the first derivative of a signal using the Sovitzky-Golay filter prevents the amplification of

small fluctuations caused by high-frequency noise in the input data.

6.8 Detect changes and anomalies using the rolling Z-score

A standard score or Z-score [20] is a statistical measure that quantifies how many standard deviations a value is from the

mean of the data set. The rolling Z-score is frequently used in the financial market to detect outliers or anomalies.

The Z-score is calculated using the following formulaZ = (X − µ)/σ. In this formula, X is the data set. µ is the mean

of the data set. σ is the standard deviation of the data set.

A rolling Z-score is a variation on the Z-score, where a rollingwindow is used over the data set to get an output set of Z-scores.

The effect of the Z-score on a signal can be seen in Figure 6.8. The sudden rise in the input results in a sharp peak when

passed through the rolling Z-score filter. Note that the rolling Z-score also amplifies small peaks caused by high-frequency

noise.
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Figure 6.8: Applying multiple rolling Z-score filters to the same input. Each filter has a different size parameter.

6.9 Noise removal, change and anomaly detection using the MACD filter

The Moving average convergence/divergence (MACD) [21] is a popular indicator for technical analysis of the stock market.

By comparing exponential moving averages with different span widths, changes in stock trends can be indicated. It works

by calculating the difference between two EMAs with different spans. Two commonly selected span widths are 12 and 26

in the financial sector. The one with the greater span is subtracted from the EMA with the smaller span. The result of this

operation is a signal that is centered around zero, as seen in Figure 6.9.

An exponential moving average of the MACD can also be calculated. This is called the signal line. Typically, a span width of

9 is used for this EMA in the financial sector. When subtracting the signal line from the MACD, a new zero-centered signal

is achieved. Which is called the divergence line or just divergence. A convergence is happening when the divergence line

is moving closer to zero. A divergence is happening when the line is moving away from zero. Whenever the divergence is

positive, the input signal is increasing. Whenever the divergence is negative, the input signal is decreasing.
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Figure 6.9: MACD with EMA 12 and EMA 26, calculated from the input. The signal line is an EMA 9 applied on the MACD.

It is important to note that MACD can be interpreted as a low-pass filter. The high-frequency noise is removed and only the

important features are retained. Additionally, the signal is zero-centered, which makes it easy for detecting peaks using a

simple threshold mechanism.

Finally, note that the MACD indicator is a lagging indicator. This means that the output signals always lag behind the current

trend. Peak detection methods should take this into account.

Compared with the difference filter, where input noise is amplified in the output, the MACD can provide more nuanced

information about the trend and momentum of the data. However, implementation is a bit more complex to comprehend.

6.10 Custom Kernel filter for executing convolutions

This filter convolves the input signal with a user-supplied kernel. Different convolution filters that will be discussed below

all use this filter to execute the convolution. The filter allows for the use of different convolution implementations from

OpenCV [22], SciPy [12], and NumPy [13]. Before the convolution is applied the amount of items in the kernel is checked to

be uneven. If this is not the case the filter returns an error. This is done to ensure consistent behavior because kernels with

an even amount of items are treated differently in some implementations.

Convolutions can be executed extremely quickly in parallel on a GPU but most libraries require the kernel and input arrays

to have a certain data type. Examples of frameworks that allow GPU-accelerated convolutions are OpenCV [22] and CuPy

35



6 Signal Processing Filters

(NumPy and SciPy for GPU) [23].

6.11 Gaussian filter for noise removal

The Gaussian filter is a convolution with a kernel which contains a Gaussian probability density function or (Gaussian PDF).

The operation is commonly used in image processing to remove white noise where each pixel has been changed by a random

deviation from its original value. An example of this can be found in the ’GaussianBlur’ function of OpenCV. [22]

When applied to a time series signal the convolution replaces each value by a weighted average of the nearest values where

closer values have a larger weight and impact on the result. [24] In the figure below the Gaussian filter is applied to an

artificial signal and the result is normalized, so the amplitude is equal to 1:

Figure 6.10: Example of the Gaussian filter

To execute the convolution a Gaussian kernel is required. This kernel consists of a NumPy array containing the Gaussian PDF

as defined by Formula 6.1 below.

e−
1
2(

x
s )

2

s ·
√
2 π

(6.1)

The Gaussian PDF function is displayed in Figure 6.11 below.

Figure 6.11: Gaussian PDF function
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When the standard deviation s becomes larger the maximum amplitude of the PDF decreases. This is because the integral

of a PDF function is always equal to 1. This is it means that for large values of s the values in the kernel become very small.

As an example when s is equal to 5 the maximum amplitude has already decreased to 0.08, when s is equal to 100 the

maximum is only 0.004. This make plotting the kernels and debugging difficult. To rectify this the formula is normalized,

so the peak of the function is always equal to one regardless of the standard deviation s. This has the additional benefit of

simplifying the formula. The modified Formula 6.2 is presented below:

e−
1
2(

x
s )

2

(6.2)

One negative consequence of normalizing the kernel is that the convolved signal has to be scaled afterwards to match the

amplitude of the original. This is because the integral of the new kernel isn’t equal to one anymore. If the kernel was

created with the original PDF scaling wouldn’t be necessary. See Section 3.2. In practice this isn’t an issue because the result

of convolutions are always normalized in the codebase.

6.11.1 Mixin usage

The user of the filter specifies the interval over which the kernel is active and the resolution of the signal. A kernel is created

automatically based on these parameters. The amount of items in the array is proportional to the supplied resolution and

inversely proportional to the resolution. See Section 8.4.2. The figure below shows the kernel that was used to create the

convolved signal seen in Figure 6.10.

Figure 6.12: Normalized Gaussian kernel used in Figure 6.10

6.12 Derivative of Gaussian for obtaining a robust derivative of the signal

This filter is a convolution with a Derivative of Gaussian (DoG) kernel. This filter derives the input signal and smooths it with

a Gaussian blur in one convolution step. The smoothing aspect makes it less susceptible to noise compared to only deriving

the signal. [25]
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It is worth noting that the acronym ”DoG” is also used in image processing context to describe the Difference of Gaussians,

this is an approximation of the Laplacian of Gaussian used to speed up computation, see [9]. Unless explicitly mentioned,

DoG will always refer to Derivative of Gaussian in this work.

Figure 6.13: Example of the DoG filter.

The filtered signal is similar to a normal derivative, but sudden changes in amplitude don’t cause an excessive spike in the

convolved signal. The Derivative of Gaussian (DoG) kernel used for the filter is created using Formula 6.3. The formula is

obtained by deriving the Gaussian PDF Formula 6.1 used for the Gaussian filter.

−xe−
1
2(

x
s )

2

s3 ·
√
2 π

(6.3)

Figure 6.14: DoG formula obtained by deriving the Gaussian PDF

The function is normalized for the reasons explained in section6.11 so the maximum amplitude is 1 regardless of the standard

deviation. This results in Formula 6.4:

−
√
e

s
x e−
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x
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2

(6.4)
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It is important to note that the integral of the function is still equal to zero. This is important for reasons outlined in

Section 3.2. The figure below contains the normalized kernel used for the filtering operation from Figure 6.13:

Figure 6.15: Normalized derivative of Gaussian kernel

6.13 Laplacian of Gaussian for detecting peaks in the signal

This filter is a convolution with a Laplacian of Gaussian (LoG) kernel. Filtering with a LoG kernel is commonly done in image

processing for blob detection. The most known use case of this is the SIFT computer vision algorithm described in Section

3.6. When applied to a one dimensional signal it is a robust way to detect peaks that is invariant to changes in amplitude.

Figure 6.16: Example of the LoG filter

The Laplacian is a mathematical operator that gives the divergence of the gradient of a scalar function in Euclidean space.

A scalar function requires one or more input variables and returns one output variable. The gradient of a scalar function in

Euclidean space is a vector that represents the rate of change in all directions. It is calculated by deriving the scalar function

in all directions. Divergence is a concept that measures the rate at which a vector field ”spreads out” or ”converges” at a

given point. It is calculated by taking the partial derivatives for all variables and adding them together.

∇2f =
∂2f

∂x2
+

∂2f

∂y2
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When applied to a univariate function the Laplacian is equal to the second-order derivative of that function:

∇2f =
∂2f

∂x2

The Laplacian of Gaussian function is the Laplacian operator applied to the Gaussian distribution:

(
x2 − s2

)
e

−1
2 (x

s )
2

s5 ·
√
2π

(6.5)

Figure 6.17: Laplacian of the Gaussian formula

The total integral of this new function is again equal to zero which is important for reasons outlined in Section 3.2. If a

convolution was preformed with a kernel created using Formula6.5 the output signal would exhibit a spike when there is

a dip in the input signal. This is because the second order derivative is high when the first order derivative is changing at

the top of the peak. Given that ELMs often correspond with a spiking light emissivity signal, it is desirable for the filter’s

output signal to exhibit spikes when there are peaks in the input signal. To achieve this, the formula is vertically inverted.

This effect is also mentioned in 3.6.2, albeit in a two-dimensional context rather than one-dimensional. Finally, the formula

is scaled so that the maximum value of the inverted function becomes one.

(
s2 − x2

)
e

−1
2 (x

s )
2

s2
(6.6)

Figure 6.18 below shows the kernel used for the convolution shown in Figure 6.16

40



6 Signal Processing Filters

Figure 6.18: LoG kernel used in figure 6.16
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ELM detection methods

This chapter provides a general overview of the ELM detection methods present in this work, as well as some desirable prop-

erties that should be present in ELM detection methods. Each ELM detection method uses a set of hyperparameters of which

the optimal values are determined by a gridsearch. For each method, the used hyperparameters along with their optimal

value will be illustrated in a table along with their explanation. The introduction of Chapter 4 gives a short explanation of

where to find the code related to these methods.

7.1 Method overview

Table 7.1 provides an overview of ELM detection and peak detection methods, which are discussed in Chapters 8, 9 and 10.

Name Purpose Principle Invariance Execution

Time per 100

shots

Input

Simple threshold Peak Thresholding R 10 s Light

ROT ELM Thresholding A/T/R 10 s Light

MACD Peak + ELM Filter A/T 10 s Light + optionally energy

Rolling Z-score Peak + ELM Filter A/T 10 s Light + optionally energy

LoG Peak + ELM Filter A/T/R 10 s Light + optionally energy

LoGDoG ELM Filter A/T/R 10 s Light + energy

CustomKernel Peak + ELM Filter A/T/R 10 s Light

Deconvolution Peak + ELM Deconvolution A/T 1 min Light

RNN ELM NN A/T 15 min Light + energy

CNN ELM NN A/T 15 min Light + energy

Table 7.1: ELM and Peak Detection methods overview. The different types of invariances are: A - Amplitude invariant, T -

Translation invariant, R - Resolution invariant. The execution time is measured by using the method to extract ELMs for each

shot in the data set.

The ’purpose’ column highlights whether the method is applicable to peaks, ELMs or both. The ’principle’ column mentions
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the underlying working principle of the method. The ’execution time’ column is meant to give an indication of what the

method could be used for. Real-time applications are for example constrained to methods with a lower execution time.

Finally, the ’input’ signal explains which input signals the method need to work. Some methods use only the emissivity

signal, but others also require the energy to work. Both categories are needed because the plasma energy signal is often

not available as explained in Section 2.2.

7.2 Peak detection invariances

To ensure robust peak detection methods that are widely applicable inspiration is taken from keypoint detection in image

processing. Although SIFT is used for 2D images some of the SIFT invariances are very desirable in peak detection as well.

The invariances that are applicable to peak detection are demonstrated using the figure below. Keep in mind that a blob is

now a 2D peak and a region in an image is now a time interval in the time series signal.

Figure 7.1: Different invariances that are applicable to peak detection in a time series signal
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• Translation invariance: If a peak is found at a certain timestamp in a signal the same peak shape should also be

detected if it occurred at a different timestamp in the same signal or with a different baseline. Similarly, if no peak

is found in a certain interval no peak will be detected if the same shape occurred later or earlier in the signal. The

equivalent in SIFT is that the same keypoint should be detected regardless of the position on the image.

• Amplitude invariance: At any point in time a time series signal has a certain amplitude. The average amplitude of

the signal around the peak should have no effect on if the peak is detected or not. Only the amplitude of the peak

itself compared to the surrounding signal is relevant. The counterpart in images is illumination: A blob should only

be brighter or darker relative to its surroundings. The overall light level is irrelevant.

• Resolution invariance: The sampling resolution of a signal should have no effect on which peaks are detected. In SIFT

the size of the blob should not influence how likely it is to be detected.

The other SIFT invariances (rotation invariance and affine transformation invariance) have no meaning in 1D time series

signals and are thus not required for peak detection.

Although almost all ELM detection methods discussed in this master’s dissertation are strongly translation and amplitude

invariant some are not resolution invariant meaning that the sampling rate has to be 10kHz. In resolution invariant methods

like LoG 8.4 and LoGDoG peaks can be detected at any resolution as long as the resolution is specified beforehand. Addition-

ally, lower sampling resolutions (higher sampling frequency) will allow more accurate peak start and end times. Finally, if

the resolution is increased dramatically peaks might disappear from the data in which case they can not be detected even

by a resolution invariant method. However, if an ELM detection method is able to perform at all sampling rates without loss

in performance it means the underlying peak detection method is more widely applicable.
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8.1 Basic thresholding methods

To establish a baseline performance and facilitate method development, it is valuable to employ some ELM detection meth-

ods that are easy to implement and comprehend. These base methods serve as reference points for evaluating the effective-

ness of more advanced techniques, while also providing building blocks for the creation of more complex methods described

later in this chapter.

8.1.1 Simple threshold

This method uses binary thresholding to find peaks. Everything above a configurable threshold is considered a peak and

everything below the threshold is not a peak. The same logic can be applied to ELM detection by looking at the light signal.

This method is used within the algorithm of many other methods, often after some data preprocessing such as the Average,

LoG, LoGDoG, CustomKernel, RNN and CNN methods.

8.1.2 Average threshold method

To illustrate the Simple threshold method, the average method has been developed. It uses the average of the signal as the

threshold in the simple threshold method. This method can be applied to both peak detection and ELM detection. In figure

8.1, the results of this method can be seen when used on a simple case, where the light emissivity is used as the signal.

Figure 8.2 show the most obvious flaw with this method. It is clear that marking ELMS everywhere the input goes above the

average, results in false predictions. The method is also not capable of differentiating between single and compound ELMS.

Therefore, one should not use this method. As a result, it is not included in the overview in Section 7.1.
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Figure 8.1: Detecting everything above the average as an ELM works for a very basic signal for a simple signal.

Figure 8.2: Detecting everything above the average as an ELM results in many false positives for a more difficult signal.

8.1.3 Robust optimal threshold method

The robust optimal threshold (ROT) algorithm was developed with the goal of improving the ELM detection performance.

In the simplest terms, it is an algorithm that calculates a smart threshold. The method combines statistical analysis and

thresholding techniques to robustly detect ELM events.

The threshold is computed using a function that considers the statistical characteristics of the data to determine an appro-

priate threshold level. This threshold is then used in combination with the find peaks method from SciPy. In figure 8.3, one

can notice that the false positives from the Average method are gone. However, the ROT method still fails to properly detect

more complex ELMs. One can find in figure 8.4, that an important but difficult set of ELMs was not detected.

Figure 8.3: Detecting everything above the ROT as an ELM.
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Figure 8.4: Detection is not always working in complex cases.

The ROT method is extended with a padding functionality and a merging functionality, with the latter being on the distance

between two ELMs. These are discussed in greater detail in Section 8.2. Table 8.1 shows all the parameters available in the

ROT method.

Hyperparameter Explanation Change Impact Optimal Value

quantile The initial guess for ELM thresh-

old.

. 0.95

window The number of samples for

moving average filter.

Higher values remove lower fre-

quency noise.

3

prominence The minimum prominence for

ELMs.

. 0.7

distance The minimum distance between

ELMs (ms, milliseconds).

. 1.0

fraction The fraction of signal corre-

sponding to startstop times.

. 0.1

max_compound_gap Maximum gap allowed between

peaks in a compound ELM. Two

peaks with a gap less than this

parameter are combined.

Larger values will lead to more

ELMs being combined into com-

pound ELMs.

0

padding_start Padding added to the start of

each peak.

Larger values will lead to more

padding at the front of a peak.

0

padding_end Padding added to the end of

each peak

Larger values will increase the

padding at the end of the peak.

0

Table 8.1: Hyperparameters and their descriptions for the ROT ELM detection method.

8.2 MACD method

This method is mainly implemented as a peak detection algorithm and operates by analyzing the MACD (see 6.9) of the

emissivity signal. The output of the peak detection algorithm is then passed through some other improvement steps. As a
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result, the implementation is quite complex and uses many configurable hyperparameters. These are listed in Table 8.2.

Hyperparameter Explanation Change Impact Optimal Value

slow The greater span width used for

calculating the MACD.

Higher values remove lower fre-

quency noise.

12

fast The smaller span width used for

calculating the MACD. Has to be

less than slow.

Higher values remove lower fre-

quency noise.

9

smooth The span width used for calcu-

lating the signal line if used for

the end detection.

Higher values remove lower fre-

quency noise for the end detec-

tion.

6

threshold_start Greater values than this will

signify the start of a peak.

A smaller threshold triggers

more peaks.

0.5

threshold_end Greater values than this will

signify the end of a peak.

A smaller threshold triggers

more peak ends. A negative

value that is too low, might pre-

vent the end of a peak from be-

ing detected.

-0.1

threshold_extender Lower values than this may

cause peak end extension.

The lower, the less effect noise

has but makes it less likely that

the peak will be extended.

-1

max_extender_gap The max amount after the cur-

rent end of a peak that the ex-

tension may happen.

The greater value, the greater

the gap allowed to bridge for

one peak.

0.01

max_compound_gap Maximum gap allowed between

peaks in a compound ELM. Two

peaks with a gap less than this

parameter are combined.

Larger values will lead to more

ELMs being combined into com-

pound ELMs.

0

padding_start Padding added to the start of

each peak.

Larger values will lead to more

padding at the front of a peak.

0.001

padding_end Padding added to the end of

each peak

Larger values will increase the

padding at the end of the peak.

-0.002

merge_using_savgol Whether or not to merge ELMs

into a compound ELM based on

the energy signal.

If true, merges peaks when the

energy goes down between the

time that both peaks occur.

False

drop_using_savgol Whether or not to remove de-

tected ELMs from the output

based on the energy signal.

If true, Removes a peak if the

energy is going up.

True

savgol_window The window used for the

Savitzky-Golay filter.

Higher values merge and re-

move more ELMs from the de-

tection output.

30

end_detection The filter to use for the end

detection. Either macd or

signal_line.

When the end detection uses

macd, more noise is present.

macd

Table 8.2: Hyperparameters and their descriptions for the MACD ELM and peak detection method.
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8.2.1 MACD peak detection

The process involves identifying peaks bymonitoring the MACD values. When the MACD crosses above a predefined threshold,

it signifies the start of a peak. Subsequently, the algorithm continues scanning the time series, awaiting a dip below a

secondary, lower threshold. Once the MACD crosses this second threshold again for a second time, it indicates the end of the

peak.

To illustrate this approach, consider Figure 6.9. In this example, a first threshold of 0.25 can be employed, and a second

threshold of -0.25 can prompt the algorithm to set the end marker immediately after the peak gradually declines back to

the baseline. Note, that the second threshold has to be passed twice after the start in order to trigger an end.

It’s important to note that in certain cases, an alternative approach using the signal line (EMA of the MACD) for end detection

might yield better results. When integrating this method into a project, it is advisable to experiment with both options, as

the outcomes may vary depending on the specific characteristics of the data set being analyzed. Keep in mind that most

noise will have been removed by the MACD but the signal line removes extra noise from the MACD, which might be desirable.

Figure 8.5 shows the same shot from before, but with MACD as the detection method.

Figure 8.5: Basic peak detection using MACD on the emissivity signal.

8.2.2 MACD peak detection extension

A certain characteristic that ELMs have, is that their light emissivity rises fast, and drops slowly. Some ELMs also tend to have

their emissivity stay high for a bit before the gradual decrease starts. Other ELMs are a variant of this, where the light signal

decreases gradually, then stays semi-hight and then decreases again. This can result in problems for the MACD method, as

can be seen in Figure 8.6.
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Figure 8.6: Detection without MACD extension.

The flaw in the detection algorithm becomes clear with Figure 8.7. When the input becomes flat before the ELM/peak has

ended, the MACD and signal line both move back to zero. However, from the moment the input starts to drop again, the both

filters drop below zero. By detecting this event, the signal can be extended. Two new parameters are therefore introduced. A

threshold that prevents simple noise from triggering the extension algorithm. This means that the filter has to drop below

the threshold for the extension to trigger. Secondly, the extension may only happen within a certain span after the end of

the ELM/peak. This span or gap that my be bridged, is the second parameter for the extension algorithm. Figure 8.8 show

that the issue is resolved with this extra algorithm.

Figure 8.7: Cause of the peaks detected with the MACD method ending too early.
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Figure 8.8: Detection with MACD extension.

8.2.3 MACD ELM detection

A few operations are still needed for converting the detected peaks to ELMs.

Padding post-processor

One may notice that the detected peaks in Figure 8.8 do not align with the labels as they should. This can be fixed by adding

padding around each peak. This padding can even be made negative if needed. The result can be seen in Figure 8.9.

Figure 8.9: Adding padding to MACD ELMs.

Savgol Gap post-processor

Another issue that arises is that ELMs sometimes should bemerged into compound ELMs. Section 2.6 explains that compound

ELMs can be seen as multiple ELMs within a continuous drop of energy. Section 2.6 also explains that ELMs do not occur

when the energy signal is rising. So two actions should be implemented. One that merges ELMs when the energy signal is

continuously dropping and one that removes ELMs from the output when the energy signal is effectively increasing.

For this, a new compound detection algorithm has been designed called Savgol Gap. It applies the Savitzky-Golay filter from

6.7 to the negated energy signal. The Savitzky-Golay filter was chosen above the difference filter to remove noise while

also getting an approximation of the first derivative of the signal. This output is then passed through the Simple threshold

method with threshold zero, which outputs every region where the energy is dropping as a peak interval.
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Now merging ELMs into compound ELMs when they fall under the same falling energy interval and removing ELMs when

they are not within a falling energy interval, results in fewer individual peaks and fewer false positives. Applying Savgol Gap

to Figure 8.10 results in Figure 8.11, which now contains detected compound ELMs and less false positives.

Figure 8.10: A complex signal with many false positives from the MACD method.

Figure 8.11: Merging and dropping ELMs using Savgol Gap. Not all problems are solved with Savgol.

Note however that Section 2.6 implicitly mentions that if the emissivity signal drops back to the baseline, two ELMs should

not be merged, even though the energy is continuously dropping. This extra rule was only given late in development, so it

was not implemented in the Savgol Gapmerging algorithm. As a side effect, single ELMs are regularlymerged into compound

ELMs, when they shouldn’t. Therefore, the merging mechanism should only be activated when absolutely necessary. Future

work could incorporate the extra rule to make the merging more robust.

Figure 8.12 disables the merging algorithm. Compared to 8.11, one can notice that the compound ELM between 49.5 and

49.6 seconds is not merged. This shows that even though enabling the merging option in Savgol Gap is generally not rec-

ommended, it does hold an advantage in some cases. Figure 8.12 also shows that disabling the merging option in Savgol

Gap reduces false positives, as seen at the end of the shot. This comparison between these two figures shows that careful

consideration is needed when enabling the merging option.
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Figure 8.12: Dropping ELMs using Savgol Gap. Not all problems are solved with Savgol Gap. Merging with Savgol Gap is

disabled.

Static Gap post-processor

Another compound detection algorithm was developed to merge individual ELMs into compound ELMs when required. This

algorithm is rather simple and merges two ELMs when they are closer than a given distance from each other. This works

rather well but does not follow the energy rules that are characteristic of ELMs. By default, the algorithm only merges the

ELMs when the first ELM its end time is equal to the start time of the second ELM.

Figure 8.13 shows the same figure as Figure 8.5 before, but now with all the small correction algorithms. For a basic shot like

this, these corrections do not have a great effect. They do yield improvements for difficult shots, as proven by the results in

Chapter 11.

Figure 8.13: ELM detection using the MACD method.

8.3 Rolling Z-score method

The Rolling Z-score algorithm is rather simple with only a few hyperparameters that can be tuned. These are listed below

in Table 8.3
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Hyperparameter Explanation Change Impact Optimal Value

window The greater span width used for

calculating the rolling Z-score.

Max length if set to -1.

Lower spans remove less noise. -1

threshold_start Greater values than this will

signify the start of a peak.

A smaller threshold triggers

more peaks.

0.5

threshold_end Smaller values than this will

signify the end of a peak.

A smaller threshold triggers

more peak ends. A negative

threshold that is too low, might

prevent the end of a peak from

being detected.

0

max_compound_gap Maximum gap allowed between

peaks in a compound ELM. Two

peaks with a gap less than this

parameter are combined.

Larger values will lead to more

ELMs being combined into com-

pound ELMs.

0

padding_start Padding added to the start of

each peak.

Larger values will lead to more

padding at the front of a peak.

0.001

padding_end Padding added to the end of

each peak

Larger values will increase the

padding at the end of the peak.

0

merge_using_savgol Whether or not to merge ELMs

into a compound ELM based on

the energy signal.

If true, merges peaks when the

energy goes down between the

time that both peaks occur.

False

drop_using_savgol Whether or not to remove de-

tected ELMs from the output

based on the energy signal.

If true, Removes a peak if the

energy is going up.

True

savgol_window The window used for the

Savitzky-Golay filter.

Higher value merge and remove

more ELMs from the detection

output

30

Table 8.3: Hyperparameters and their descriptions for the Rolling Z-score ELM and peak detection method.

8.3.1 Rolling Z-score peak detection extension

The rolling Z-score method is another peak detection algorithm developed for the master’s dissertation. It differs from the

MACD-based approach by utilizing the rolling Z-score of the light emissivity signal for analysis. The method follows a similar

pattern of peak identification bymonitoring the values of the rolling Z-score. When the rolling Z-score surpasses a predefined

threshold, it signifies the start of a peak. As the algorithm progresses through the time series, it awaits a subsequent drop

below a secondary, lower threshold, which serves as the indicator for the peak’s end.

There are two key distinctions between the rolling Z-score method and the MACD method. Firstly, instead of examining the
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MACD, the rolling Z-score is utilized as the basis for peak detection. Secondly, the ending point of the peak is determined by

thefirst instance the rolling Z-score crosses the second threshold, in contrast to theMACDmethodwhere the second threshold

crossing is only used as the endpoint when it crosses that threshold for the second time. These differences contribute to the

unique characteristics and behavior of the rolling Z-score method compared to the MACD approach.

8.3.2 Rolling Z-score ELM detection

To treat the Rolling Z-score peak detection as ELM detection, three extra steps were added. Firstly, the padding, as discussed

in section 8.2.3 and secondly, the Savgol Gap from section 8.2.3 and finally the Static Gap from section 8.2.3. Figure 8.14

shows the detected ELMs on a simple shot.

Figure 8.14: Rolling Z-score ELM detection.

8.4 LoG method

This method only looks at the emissivity signal, and uses the LoG filter to obtain a smoothed second order derivative of the

signal. The method is completely translation, amplitude and resolution invariant.

Hyperparameter Explanation Change Impact Optimal

Value

interval_LoG The interval over which the LoG kernel

is active

Longer intervals detect longer peaks

and vice versa

0.012s

threshold Value for SimpleThreshold step of

peak detection

Larger values decrease the sensitivity. 0.06

padding_start Padding added to the start of each

peak

Larger values will lead to more

padding at the front.

0.001s

padding_end Padding added to the end of each

peak

Larger values will increase the

padding at the end of the peak.

0.001s

max_gap Maximum gap allowed between

peaks in a compound ELM

Larger values will lead to more com-

pound ELMs

0s

Table 8.4: Hyperparameters and their descriptions for the LoG ELM and peak detection method.
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Even though the method can not run without knowing the resolution of the signal it is not included in the table of hyperpa-

rameters. This because the method is resolution invariant meaning that it should preform the same at any resolution. This

peak detection method is based on the LoG filter discussed in Section 6.13 that convolves an input signal with a Laplacian of

Gaussian kernel.

SIFT is completely invariant to changes in translation and illumination because of the convolution step. Because this method

also utilizes convolution the equivalent invariances in peak detection: translation and amplitude invariance are also achieved.

The last invariance needed for peak detection is resolution invariance. SIFT accomplishes scale invariance by searching for

the same blobs at different sizes. It does by filtering the image multiple times with LoG kernels of different lengths. For elm

detection searching for peaks at multiple scales is not required because a single ELM has roughly the same duration each

time. Compound ELMs can be detected by grouping multiple singular ELMs together afterwards.

8.4.1 LoG resolution invariance problem

Still the kernel needs to be adjusted to match the sampling frequency of the signal. To illustrate the need for this it is useful

to examine the negative effects if the same kernel is used for different resolutions. Propose that the training has concluded

that the best performance is achieved when the LoG kernel is applied over an interval of 31ms (interval_LoG = 0.031s). In

the figure below a time series signal is displayed and then subsampled with a factor of 2 and 4. The same LoG kernel that

spans 31ms at a resolution of 1ms with 31 elements is placed over each variation of the signal:

Figure 8.15: Time series signal subsampled by a factor of 1, 2 and 4 with a LoG kernel (interval_LoG = 31 ms, resolution = 1ms)

At higher resolutions the same kernel covers a bigger interval because the time between each measurement is no longer 1

ms. This means that peaks of the desired duration can not be detected anymore. By scaling the kernel proportionally to the

resolution this negative effect can be completely mitigated.

56



8 Filter-based ELM detection methods

8.4.2 LoG resolution invariance solution

Using the following formula it is possible to determine how many items are needed in a kernel for a given resolution and

interval so the kernel spans the correct amount of time when superimposed on a time series signal.

size = ⌈ interval
resolution

⌉odd (8.1)

Subsequently, the right standard deviation is determined for this kernel size. This principle is illustrated in the table below.

Sampling resolution

(ms)

Elements Standard devia-

tion

Interval covered (ms)

1 31 4 31

2 17 2 34

4 9 1 36

Table 8.5: Properties of different kernels created to cover the same 31ms at different sampling resolutions.

In the figure below the kernel now spans roughly the same time interval at each sampling rate so peaks of the correct length

are targeted.

Figure 8.16: Time series signal subsampled by factor 1, 2 and 4.

In practice, the interval in seconds over which the kernel is active is determined by the hyperparameter ’interval_LoG’ of

which the optimal value was found with a gridsearch during training at a resolution of 0.0001 seconds. When the ELM

method is executed the user needs to supply the sampling resolution of the ELM light signal. A new kernel of the correct

length and with the correct standard deviation is automatically created.

With amplitude, translation, and resolution invariance covered the steps of the LoG peak and elm detection method itself

can be explained.
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8.4.3 LoG peak detection

To facilitate the explanation shot number 94423-0 is used. Only the emissivity signal is plotted because this method doesn’t

use the energy signal.

Figure 8.17: Light signal of shot 94423-0

The first step is convolving the signal with a LoG kernel. The best performing interval_LoG was determined using a grid

search.

Figure 8.18: Convolution step of the LoG peak detection method

Subsequently, peaks are extracted out of the signal using the SimpleThreshold method, discussed in Section 8.1.1. The thresh-

old used is determined by the ’threshold’ hyperparameter.

Figure 8.19: Thresholding step of the LoG peak detection method

This concludes the peak detection portion of the LoG method.
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8.4.4 LoG ELM detection

The LoG method characteristically only returns the spikes itself. As mentioned in Section 2.6, ELMs have a short buildup and

a gradual decline in the emissivity signal which also needs to be included. The detected peaks are padded on the front and

tail end by hyperparameters ’padding_start’ and ’padding_end’.

In this example, 1 ms is added at the front and 3 at the back of each detected ELM.

Figure 8.20: Padding step of the LoG ELM detection method

After padding, it is possible that peaks overlap. In the final step ELMs that are closer to each other than a static time interval

are combined using the StaticGapmethod from Section 8.2.3 with hyperparametermax_gap. These aremost likely compound

elms.

Figure 8.21: Combining step of the LoG ELM detection method

Finally, in Figure 8.22 the result is displayed alongside the ground truth labels.
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Figure 8.22: Result of the LoG method

8.4.5 Conclusion

Chapter 11 shows that the LoG method is comparatively one of the better methods in this master’s dissertation, but it is

constrained by the fact that it only takes the light signal into account. As mentioned in section 2.6, there can be no ELM if

the energy signal is rising. This ignorance of the energy signal causes the LoG method to be prone to false positives.

8.5 LoGDoG method

This ELM detection method builds upon the LoG method by attempting to decrease the false positive rate. It is also invariant

to translation, resolution and amplitude.

As mentioned in section 2.6, every ELM is accompanied by a drop in plasma energy, however small it may be. This method

starts by convolving the light signal with a LoG kernel similarly to the LoG method. Next the method attenuates the filtered

signal based on the derivative of the energy signal. The aim is to remove spikes in the LoG signal that occur when the energy

signal is constant or rising. This also allows the method to be more sensitive to peaks in the light signal since false positives

are less of a concern.

This method serves some resemblance to the Savgol drop step described in section 8.2.3 which also attempts to remove

false positives by looking at the energy signal but this method is completely resolution invariant. This method can not work

without a plasma energy signal.

60



8 Filter-based ELM detection methods

Hyperparameter Explanation Change Impact Optimal

Value

interval_LoG The interval over which the LoG kernel

is active

Longer intervals detect longer peaks

and vice versa

0.012s

interval_DoG The interval over which the DoG ker-

nel is active

Longer intervals take into account

more time around the current peak to

determine if a peak in the light signal

is an ELM

0.0015s

gain Multiplier for the tanh activation

function

Larger values are less likely to dis-

qualify ELMs because the drop in en-

ergy is not big enough.

34

threshold Value for SimpleThreshold step of

peak detection

Larger values decrease the sensitivity. 0.05

padding_start Padding added to the start of each

peak

Larger values will lead to more

padding at the front.

0.0009s

padding_end Padding added to the end of each

peak

Larger values will increase the

padding at the end of the peak.

0.0009s

max_gap Maximum gap allowed between

peaks in a compound ELM

Larger values will lead to more com-

pound ELMs

0.001s

Table 8.6: Hyperparameters and their descriptions for the LoG ELM and peak detection method.

8.5.1 LoGDoG ELM detection

To explain the LoGDoG method shot 94776-0 is used. This shot is chosen because it has a very noticeable peak in the light

signal at around 49.8 seconds that is not an ELM but looks like it at first sight. The peak in question can not be an ELM

because the plasma energy signal is rising. The energy and light are visible in the figure below:

Figure 8.23: Light and energy signal of shot 94776-0

The initial convolution of the energy step is identical to LoG ELM detection. The light signal is convolved with a LoG kernel

that acts on an interval of length ’interval_LoG’ seconds. The result of this convolution is visible in the figure below.
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Figure 8.24: Light signal of shot 94776-0 in blue and a version that is filtered with a LoG kernel

The next step is convolving the energy signal with a DoG kernel. The interval over which this kernel is active is determined

by parameter. ’interval_DoG’. The result is shown in the figure below. When the plasma energy is drops the convolved signal

rises.

Figure 8.25: Energy signal of shot 94776-0 in blue and a version that is filtered with a DoG kernel

Next the signal obtained by the DoG convolution is processed. First the signal is multiplied by a hyperparameter called ‘gain‘.

Then the signal is then given to a hyperbolic tangent function that saturates the values between -1 and +1. Finally, the values

below 0 are set to 0. The resulting signal shown in the figure below acts as a ’gate’ with values between 0 and 1.

Figure 8.26: Energy signal of shot 94776-0 in blue and a version that is filtered with a DoG kernel

In this step the light signal convolved with a LoG kernel show in Figure 8.24 is multiplied by the processed energy from Figure

8.26 above. The resulting final signal is shown below and has no peaks anymore in regios where the energy signal is rising.

The peak at 49.8 seconds is now completely gone.
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Figure 8.27: Energy signal of shot 94776-0 in blue and a version that is filtered with a DoG kernel

The final three steps are equivalent to the ELM detection portion of the LoG method. First the signal is thresholded with

SimpleThreshold to extract the peaks, the peaks are padded on the left and right, and the peaks are combined using the

StaticCombiner. The hyperparameters are explained in Table 8.6.

The final result is shown in the figure below:

Figure 8.28: The light and energy signal of shot 94776-0 together with the detected peaks in red and correct peaks in green

8.5.2 Conclusion

This method improves upon the LoG method by taking into account the energy signal. As a result the false positives have

decreased. See Chapter 11 for more information.

8.6 CustomKernel method

This final filter based method is applicable to both peaks and ELMs. It is similar to the LoG method in the sense that it relies

on a single filtering operation to find peaks. It is also completely translation, amplitude and resolution invariant. Unlike

LoG it uses a custom kernel of which the optimal values have been determined by a custom gridsearch algorithm. Another

difference is that the CustomKernel method uses a correlation instead of a convolution. This makes the filtering operation

more intuitive because the kernel isn’t reversed in a correlation, see Section 3.2.1. The LoG kernel is perfectly symmetrical, but

in section 2.6 it is mentioned that a spike is characterized by a sudden spike in the emissivity signal that gradually goes away

again. Incorporating this information into the kernel could lead to better performance. The hyperparameters are presented

in the table below:
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Hyperparameter Explanation Change Impact Optimal Value

interval Length of the interval over which the

custom kernel is applied.

Longer intervals detect longer peaks

and vice versa

0.014s

custom_kernel custom kernel to detect peaks / See Figure8.29

threshold Value for SimpleThreshold step of

peak detection

Larger values decrease the sensitivity. 0.08

edges_0 Option to pad both sides of the kernel

with zero.

Set to True when the kernel was

trained with padded zero’s on both

ends.

False

max_gap Maximum gap allowed between

peaks in a compound ELM

Larger values will lead to more com-

pound ELMs

0.001s

padding_start Padding added to the start of each

peak

Larger values will lead to more

padding at the front.

0.001s

padding_end Padding added to the end of each

peak

Larger values will increase the

padding at the end of the peak.

0.001s

Table 8.7: Hyperparameters and their descriptions for the LoG ELM and peak detection method.

Because determining the optimum kernel is computationally very expensive a small kernel is used. When the method is

executed this kernel is upsampled as required using a process explained in Section 8.6.1. When experimenting the largest

kernel contained only 13 elements. Based on experimentation increasing the amount of items in the kernel does not improve

performance.

8.6.1 Kernel upsampling

As mentioned in section 8.4.2 of the LoG method, the amount of items in the kernel is calculated by the resolution and the

interval over which the kernel is applied. In the LoG and LoGDoG methods a new kernel is generated to fill the kernel by

using mathematical functions like the Gaussian PDF.

This is not possible here because the custom kernel is not determined by a formula, it is only defined by values in an array

with a (small) fixed size. This means that the small kernel needs to be upsampled to the right amount of elements. This

is done by a function that interpolates the kernel using a cubic spline function. This function also shifts the kernel, so the

integral is equal to zero. this is important for reasons explained in Section 3.2.The figure below contains the default kernel

that is used by the CustomKernel method, and an upsampled variant that is ready to be applied to an emissivity signal.
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(a) Original kernel with 11 elements (b) Upsampled version with 161 elements

Figure 8.29: Kernel upsampling demonstrated on the default kernel used in the CustomKernel method.

It is to be noted that the same method can also be applied for downsampling an existing kernel.

8.6.2 Determining the optimal kernel

The ’optimal’ kernel is determined using a modified grid search that brute forces different combinations. As a time saving

measure the amount of items in the kernel should be limited to a small number (<15). If this method is expanded upon

in future research it is recommendable to implement this with gradient descent to speed up the process. This process is

implemented in a notebook called notebook nbKernelExperimentation. The training process uses hyperparameters, which

are explained in Table8.8 below:

Hyperparameter Explanation Change Impact Default Value

kernel_length Amount of items in the custom kernel More items allow for a more complex

kernel shape

11

step Amount of variation possible in the

first iteration

/ 0.5

shrink_factor Multiplier to decrease the step after

each iteration∈]0, 1[
Larger values will converge slower

but are less likely to get stuck in lo-

cal minima

0.9

minimum Below this threshold the step stops

shrinking

Larger values will stop training faster

but will lead to less optimal values for

the kernel

0.1

Table 8.8: Hyperparameters and their descriptions for the LoG ELM and peak detection method.

First the kernel is initialized by randomnumbers∈ ]−step, step[. Subsequently, all possible variations (2kernel_length options)
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of this random kernel are generatedwhere an element is either increased or decreased by offset ’step’. All possible variations

are evaluated and the best option is chosen. Next the step is decreased by multiplying it by ’shrink_factor’ and the same

process is repeated. The process only stops when two conditions are met: The step variable is below a limit defined by

hyperparameter ’minimum’ and the kernel preformed the same as the kernel in the previous iteration. The figure below

shows an example of a kernel converging on a potential solution after 39 iterations.

Figure 8.30: Kernel training process from beginning to completion

8.6.3 CustomKernel peak detection

To facilitate the explanation, shot 94423-0 is used which is illustrated in Figure 8.17. The first step is upsampling the kernel

to the correct size. This is explained in Section 8.6.1. The next step is correlating the input signal with the upsampled kernel.

The result of this correlation is illustrated in Figure 8.31 below.
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Figure 8.31: The input signal is correlated using the upsampled kernel

Peaks are obtained using the SimpleThreshold method using the ’threshold’ hyperparameter.

8.6.4 CustomKernel ELM detection

The final steps are completely analogous to the LoG method, see Section 8.4. Subsequently, these peaks are padded and

combined. The parameters for these operations are available in Table 8.6. The final result is displayed below in Figure 8.32.

Figure 8.32: The light and energy signal of shot 94423-0 together with the detected peaks in red and correct peaks in green

8.6.5 Conclusion

The main disadvantage of this method is that a custom kernel is required. The kernel in this work was trained on the JET

database. How well this applies to tokamaks from other institutions in unfortunately unknown, but as long as the peak

shape isn’t drastically different the method has the potential to preform well. See Chapter 11 for a more in-depth analysis.
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Neural network ELM detection methods

This chapter focuses on the application of neural network-based methods, developed in TensorFlow [26], for ELM detection.

Leveraging their ability to learn complex patterns and relationships from large amounts of data, neural networks offer a

promising approach to tackle the challenges associated with ELM detection.

Two distinct neural network methods for ELM detection will be described in this chapter, each with its approach to building

a neural network model. These methods aim to enhance the accuracy, efficiency, and robustness of ELM detection.

In the first few sections, an overview is provided of the common preprocessing and postprocessing and training techniques

employed in both methods. This includes data normalization, feature extraction, handling the output of the neural network

model and training. Understanding the preprocessing and postprocessing steps is essential as they form the foundation for

the subsequent neural network architectures.

The last sections delve into the individual methods: one using a recurrent neural network (RNN) and the second one using a

convolutional neural network (CNN). For each method, a detailed description is presented of the network architecture, which

highlights the purpose and characteristics of each layer.

9.1 Preprocessing data for neural networks

As with the filter-based methods, both neural network methods get energy and light emissivity signals as input. In the

neural network-basedmethods, the input signals undergo a preprocessing step. This step is composed of twomain substeps:

statistical feature extraction and sequencing of the input.

9.1.1 Statistical feature extraction for usage in the input data

The first substep involves extracting statistical features from the energy and light signals using multiple filters. The light

signal is processed through two filters, namely the Moving Average Convergence Divergence (MACD) filter and the Lapla-

cian of Gaussian (LoG) filter. Similarly, the energy signal is filtered using the Difference of Gaussians (DoG) filter and the

Savitzky-Golay filter. These filters generate new signals that capture different aspects of the original signals, enhancing

their discriminative properties.
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To ensure consistent scaling and prevent the influence of input scaling on the results, all the generated signals are normal-

ized.

Overall, this substep yields six signals:

• Light signal (A)

• Energy signal (B)

• Light signal filtered by LoG (C)

• Energy signal filtered by DoG (D)

• Light signal filtered by MACD (E)

• Energy signal filtered by Savitzky-Golay (F)

Each signal is denoted by a corresponding letter, which will be referenced in the subsequent section 9.1.2.

When researching the effect of each signal on the model, it was found that each signal is essential for providing good

predictions but the LoG and DoG signals are the most influential for the output of the model.

Future work could incorporate more signals or try to make the whole set of input signals resolution invariant.

9.1.2 Sequencing the data to be compatible with fixed-length neural network models

In the sequencing substep, the six signals obtained from the statistical feature extraction are organized into sequences of

equal length. This step is necessary as both neural network models require fixed-length input. Take for example the input

in Fragment 9.1

[
[A1, B1, C1, D1, E1, F1],
[A2, B2, C2, D2, E2, F2],
[A3, B3, C3, D3, E3, F3],
[A4, B4, C4, D4, E4, F4],
[A5, B5, C5, D5, E5, F5],

]

Code Fragment 9.1: Example input with extracted features. Each row represents one sample in the time series. Note that in

practice, the values are numbers.

Sequences are generated by sliding awindowof defined length over the signalswith a stride of 1. For instance, if the sequence

length is set to 3, the resulting partially overlapping sequences from Fragment 9.1 would be as shown in Fragment 9.2.

69



9 Neural network ELM detection methods

[
[

[A1, B1, C1, D1, E1, F1],
[A2, B2, C2, D2, E2, F2],
[A3, B3, C3, D3, E3, F3],

],
[

[A2, B2, C2, D2, E2, F2],
[A3, B3, C3, D3, E3, F3],
[A4, B4, C4, D4, E4, F4],

],
[

[A3, B3, C3, D3, E3, F3],
[A4, B4, C4, D4, E4, F4],
[A5, B5, C5, D5, E5, F5],

]
]

Code Fragment 9.2: Sequencing applied to Fragment . With sequence length 3 and stride 1.

9.2 Defining the output of the model

The output of each neural network model is a set of sequences constrained to a one-dimensional array of values between

zero and one. The length of each array is the same as the input sequence length. So in the example above, this would be 3.

The number of sequences in the output corresponds to the number of sequences in the input. This output format facilitates

implementation and training, with each value in the array indicating the likelihood of an ELM’s presence at a specificmoment

in time. A value closer to zero signifies the absence of an ELM, while a value closer to one signifies its presence.

9.3 Preprocessing step on the labels used during training

In order to train the neural networks, labeled sequences need to be created because the framework requires the labels to

be in the same format as the model’s output.

To accomplish this, the labels indicating the presence of an ELM are converted into a binary signal, where zero represents

the absence of an ELM and one represents the presence of an ELM. Figure 9.1 provides a visual representation of this binary

signal. Once the binary signal is generated, it undergoes the same sequencing process as described in Section 9.1.2.
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Figure 9.1: Labels represented as a binary signal.

9.4 Extra steps required for making the custom metrics compatible with the models

during training

To use the metrics defined in Chapter 5, it is necessary to convert the model outputs and label sequences from a binary

representation to an interval representation.

As mentioned previously, both the model output and label sequences are represented as one-dimensional arrays. To convert

them into intervals, the Simple Threshold method discussed in Section 8.1.1 is applied with a threshold of 50%. This method

assigns values above the threshold to the ELM intervals, while values below the threshold are ignored.

9.5 First important remark on training: potential problem with sequences

The training process is conducted using multiple shots to enhance the model’s ability to learn the complexities of different

ELM types. To achieve this, the sequences from all the used shots are concatenated together. In other words, the sequences

from one shot are appended at the end of the array of sequences from another shot. This results in a single large array of

sequences for the labels and a single large array of sequences for the preprocessed input data.

While each sequence from one shot is kept separate and not mixed with data from another shot, this approach can pose chal-

lenges for recurrent neural networks (RNNs) due to their ability to remember temporal dependencies from past sequences.

However, it does not pose a problem for other neural networks like the CNN model described in Section 9.9.

9.6 Second important remark on training: hardware and software limitations

It should be noted that, during the master’s dissertation, the training of these methods was constrained to an Intel® Core™

i7-8750H CPU, which boasts 6 cores with hyperthreading and a maximum turbo frequency of 4.10 GHz and 16 GB RAM. This

is because due to software problems, CUDA [27] could not be used to speed up the training process. As a result, the number

of epochs was kept low at two epochs. The batch size is also set to 32 to have a balance between memory usage, training

speed, and accuracy in the estimation of the gradient. Future work could try increasing the number of epochs and setting
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another batch size.

9.7 Postprocessing the output of a neural network to be compatible with the other ELM

detection methods

In the postprocessing stage, merging multiple partially overlapping prediction sequences is required. The predictions made

on multiple sequences can be merged by calculating the mean value for each moment from the sequences, resulting in a

new prediction array of the same length as the original input arrays. Similar to the training phase, the output is initially

in a binary-like representation, but it needs to be transformed into intervals. This is accomplished by applying the simple

threshold method with a threshold of 50% to the prediction array. In other words, means greater than 50% are considered

part of an ELM, and means below 50% are not considered as an ELM. Code fragment 9.3 shows how this is implemented.

# Generate predictions using the model
model_output = model.predict(np.array(X_sequences))

# Combine partially overlapping predictions
length = len(model_output)
temp = [[] for _ in range(length + self.sequence_length - 1)]
for index, pred in enumerate(model_output):

for n in range(self.sequence_length):
temp[index + n].append(pred[n])

predictions = [sum(values) / len(values) for values in temp]

# Detect peaks using a simple threshold
peaks = SimpleThreshold(threshold=0.5).find_peaks(time, predictions)

Code Fragment 9.3: Merging multiple partially overlapping prediction sequences.

During the testing phase, it was observed that the detected ELM intervals were excessively narrow, drastically lowering the

true positive rate. This occurrence could potentially be attributed to inconsistencies in the labeling process. To mitigate this,

the padding options and the dropping mechanism using the Savgol Gap algorithm from Section 8.2.3 were added as extra

postprocessing steps. As with the other methods, these are optional and can be disabled.

9.8 An overview of the recurrent neural network method

The RNN ELM detection method utilizes several hyperparameters, listed in Table 9.1. To accommodate time and comput-

ing limitations, mentioned in Section 9.6, default parameters were selected, drawing inspiration from the corresponding

filter-based detection methods. Future endeavors could focus on enhancing these parameters. Nonetheless, the results, as

explored in Chapter 11, exhibit significant promise.
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Hyperparameter Explanation Change Impact Optimal Value

interval_LoG The interval over which the LoG

kernel is active

Longer intervals detect longer

peaks and vice versa

0.007 s

interval_DoG The interval over which the DoG

kernel is active

Longer intervals take into account

more time around the current

peak to determine if a peak in the

light signal is an ELM

0.001 s

gain_DoG Multiplier for the tanh activation

function

Larger values are less likely to dis-

qualify ELMs because the drop in

energy is not big enough.

21

slow_MACD The greater span width used for

calculating the MACD.

Higher values remove lower fre-

quency noise.

12

fast_MACD The smaller span width used for

calculating the MACD. Has to be

less than slow.

Higher values remove lower fre-

quency noise.

9

span_Savgol Thewindow used for the Savitzky-

Golay filter.

Higher values remove lower fre-

quency noise.

30

resolution Time between two samples. De-

pends on the sampling rate.

Method needs to be retrained af-

ter change.

0.0001

sequence_length Sets the length of the input and

output sequences used by the

model.

Longer sequences may yield bet-

ter results but have a higher risk

of overfitting.

16

batch_size The number of training examples

that are processed together in a

single forward and backward pass

during the training phase.

Increasing this causesmoremem-

ory usage during training but may

lower the risk of overfitting.

32

model_path (not a hy-

perparameters, just a nor-

mal parameter)

Where the model’s weights are

saved.

. modelsRNN

padding_start Padding added to the start of each

peak.

Larger values will lead to more

padding at the front of a peak.

0.0005

padding_end Padding added to the end of each

peak

Larger values will increase the

padding at the end of the peak.

0.0005

drop_using_savgol Whether or not to remove de-

tected ELMs from the output

based on the energy signal.

If true, Removes a peak if the en-

ergy is going up.

True

Table 9.1: Hyperparameters and their descriptions for the RNN ELM detection method.
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The RNN model processes input data in a sequential manner, taking into account the temporal dependencies present in the

signals.

The architecture of the RNN model consists of multiple Gated Recurrent Unit (GRU) layers [28], followed by dropout layers

for regularization [29], and a final dense layer with sigmoid activation output [30].

The GRU layers in the model are responsible for capturing and encoding the temporal information in the input sequences.

They havememory cells that allow them tomaintain an internal state. This enables them to remember information frompast

sequences while processing a newer sequence. This memory mechanism can help in capturing the dynamics and patterns of

ELMs in the input signals.

Themodel developed for this master’s dissertation begins with a GRU layer with 64 units, which returns sequences and takes

an input of the shape (sequence length, number of features). While the sequence length is a parameter set in the constructor

of the RNN method, the number of features is equal to six, as defined in section 9.1.2.

To prevent overfitting during training and to improve the model’s generalization ability, dropout regularization is applied

directly after the first GRU layer. The dropout rate, which indicates the percentage of units to randomly drop during each

training step is set to 20% during training and 0% when not in training.

Following the first GRU layer, another GRU layer is added with 32 units, which again returns sequences. This layer further

refines the learned representations and captures more complex patterns in the input sequences.

A second dropout layer is then applied to regularize the outputs of the second GRU layer.

Finally, the model ends with a third GRU layer with 16 units, followed by a dense layer. The dense layer uses the sequence

length for the number of units and uses the sigmoid activation function to produce the model’s output. As mentioned in

section 9.2, this output now represents the likelihood of an ELM occurring at that specific moment in time.

Figure 9.2 shows the final result, obtained when applying the method to a shot.

Figure 9.2: The RNN method applied on shot 94423-0.

9.9 An overview of the convolutional neural network method

To compare the results with another neural network, an existing peak detection CNN [31] model was implemented. However,

some modifications were made to make it compatible with the neural network base code that was written for this master’s
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dissertation and defined in the previous sections of this chapter. The hyperarameters are listed in Table 9.2. As with the

RNN, to accommodate time and computing limitations, default parameters were selected, drawing inspiration from the

corresponding filter-based detection methods.
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Hyperparameter Explanation Change Impact Optimal Value

interval_LoG The interval over which the LoG

kernel is active

Longer intervals detect longer

peaks and vice versa

0.007 s

interval_DoG The interval over which the DoG

kernel is active

Longer intervals take into account

more time around the current

peak to determine if a peak in the

light signal is an ELM

0.001 s

gain_DoG Multiplier for the tanh activation

function

Larger values are less likely to dis-

qualify ELMs because the drop in

energy is not big enough.

21

slow_MACD The greater span width used for

calculating the MACD.

Higher values remove lower fre-

quency noise.

12

fast_MACD The smaller span width used for

calculating the MACD. Has to be

less than slow.

Higher values remove lower fre-

quency noise.

9

span_Savgol Thewindow used for the Savitzky-

Golay filter.

Higher values remove lower fre-

quency noise.

30

resolution Time between two samples. De-

pends on the sampling rate.

Method needs to be retrained af-

ter change.

0.0001

sequence_length Sets the length of the input and

output sequences used by the

model.

Longer sequences may yield bet-

ter results but have a higher risk

of overfitting.

8

batch_size The number of training examples

that are processed together in a

single forward and backward pass

during the training phase.

Increasing this causesmoremem-

ory usage during training but may

lower the risk of overfitting.

32

model_path (not a hy-

perparameters, just a nor-

mal parameter)

Where the model’s weights are

saved.

. modelsCNN

padding_start Padding added to the start of each

peak.

Larger values will lead to more

padding at the front of a peak.

0

padding_end Padding added to the end of each

peak

Larger values will increase the

padding at the end of the peak.

0.0015

drop_using_savgol Whether or not to remove de-

tected ELMs from the output

based on the energy signal.

If true, Removes a peak if the en-

ergy is going up.

False

Table 9.2: Hyperparameters and their descriptions for the CNN ELM detection method.
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The modifications made are the following. One dense layer was added as a new output layer, with one unit and sigmoid as

the activation function. As for the hyperparameters used to construct the model, these are defined in Fragment 9.4.

dropout_rate = 0.2 if training else 0.0
model = ConvNet(

dropout=dropout_rate,
pool_sizes=[1, 1, 1],
input_shape=(sequence_length, num_features),
output_shape=(sequence_length, 3),

)

Code Fragment 9.4: Creation of the CNNmodel with custom hyperparameters. The output shape here is not for the last layer

because a new layer was added at the end of the model.

While the architecture and hyperparameters of the CNN model were adjusted for ELM detection, the fundamental principles

of convolutional operations, pooling, and non-linear activations remain intact. The CNN model consists of several convo-

lutional layers, activation functions, batch normalizations, dropout, and addition operations to extract features and learn

representations from the input data. These operations are designed to capture relevant patterns and facilitate the predic-

tion of peaks, and thus ELMs accurately.

Figure 9.3 shows the final result, obtained when applying the method to a shot.

Figure 9.3: The CNN method applied on shot 94423-0.
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This ELM detection method deviates from the other methods discussed in this work because it is not based on filtering the

input signal or processing the input signal with neural networks. Instead, it is based on a paper titled ”Fluctuations in a vast

range of physical systems can be described as a superposition of uncorrelated pulses with a fixed shape” by S. Ahmad. [32] In

this paper, the authors propose a novel deconvolution technique that can be used to estimate arrival times and amplitudes

of pulses in time series data. The method is designed to handle processes that can be described as a superposition of

uncorrelated pulses with a fixed shape, resembling the characteristics of some ELM signals. The deconvolution method

outlined in the paper has been implemented and adapted for ELM detection in the current work.

Hyperparameter Explanation Change Impact Optimal

Value

prominence The required prominence of the peaks

to be detected

Larger values require the peaks to

stick out more from the surrounding

baseline.

0.3

interval_peak Interval of the peak_shape. Longer intervals detect longer peaks

and vice versa

0.006s

iterations Howmany iterations are preformed in

the deconvolution algorithm.

Increasing this value detected more

peaks.

400

padding_start Padding added to the start of each

peak

Larger values will lead to more

padding at the front.

-0.001s

padding_end Padding added to the end of each

peak

Larger values will increase the

padding at the end of the peak.

0.006s

peak_shape Peak shape meant to represent an

ELM, used for deconvolution process

Unknown See Fig-

ure 10.2

Table 10.1: Hyperparameters and their descriptions for the LoG ELM and peak detection method.
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10.1 Prototype ELM shape

The deconvolution process requires a pulse shape that is to be used as a deconvolution kernel. This pulse shape should be

representative of all peaks in the signal. To create a suitable pulse shape, ELMs are manually selected and combined into a

singular ”Prototype ELM shape”. The prototype ELM should have a low noise level and contain the features present in most

ELMs as outlined in Section 2.6. First representative ELM profiles are chosen out of the data. Representative ELM profiles

should have low noise and a regular shape. Subsequently, the intervals of the representative ELM profiles are manually

adjusted to contain the entire ELM and nothing more. Figure 10.1 below contains twenty-two representative ELM profiles.

Figure 10.1: Representative ELM profiles
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In the next step the representative ELM profiles are resampled to have the same amount of elements. This done using the

method described in Section 8.6.1. Finally, the different candidates are averaged to create the prototype ELM shape. The

result is presented in Figure 10.2 below.

Figure 10.2: Prototype ELM shape to be used as a pulse shape for the deconvolution process

This prototype ELM is upsampled and downsampled depending on the interval hyperparameter and the resolution of the

input signal. The counselor of this master’s dissertation mentioned that he arrived at a similar approximate shape in inde-

pendent research using a functional data clustering approach.

10.2 Implementation

To facilitate the explanation, shot number 94423-0 is used. The signal is illustrated in Figure 8.17 where the same signal

was used to explain the implementation of the LoG method.

The first step is resampling the prototype ELM so it contains the correct amount of items for a given resolution and inter-

val_peak hyperparameter. This is done using the logic detailed in 8.6.1.

Subsequently, the light signal is deconvolved using the method RL_gauss_deconvolve provided by the original im-

plementation. [33] The prototype ELM is supplied as the deconvolution kernel. The hyperparameter iterations determines

how many iterations are preformed in the deconvolution process. The original signal and deconvolved signal are displayed

in the Figure 10.3 below.

80



10 Deconvolution ELM detection method

Figure 10.3: Deconvolution step

The signal is now represented as a superposition of individual pulses. To extract the pulses themethodthree_point_maxima
from the original implementation is used. It is a wrapper for the method find_peaks from SciPy. Because of the signif-

icant amount of noise present in the signal the ’prominence’ and ’wlen’ parameters are used, as suggested in the original

implementation. [33] The former determines howmuch a peak needs to rise above it surroundings to be detected, while the

latter determines the size of the window in which the prominence is to be calculated. [34].

The output of the three_point_maxima method needs to be processed further because the method only extracts

the timestamp at which the maximum amplitude occurs, while this work attempts to extract the start and end times of

each peak. Each timestamp is converted to an interval by using the padding hyperparameters in the following manner:

peak = [timestmap−padding_start, timestamp+padding_end]. It is notable that the padding_parameter

is negative. This is because the deconvolution technique has a tendency to detect peaks slightly before the peak occurs in

the input signal. The result of this padding is illustrated in Figure 10.4 below.

Figure 10.4: Padding of the peaks detected using three_point_maxima

After padding a lot of peaks overlap. This is solved by applying the StaticGap mixin with a max_gap of zero. The final the

result is illustrated in Figure X below.
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Figure 10.5: Result of the Deconvolution ELM detection method

During the implementation it was discovered that this method is strongly dependent on resolution. Each time the resolution

changes the ’threshold’ and ’iterations’ hyperparameters need to be reconfigured by preforming a computationally intensive

grid search. Because the result was unsatisfactory on relatively easy shots, further attempts at experimentation, such as

executing several deconvolutions with different pulse shapes and combining the results, were halted due to time constraints.

10.3 Conclusion

The performance of the deconvolution-based method in accurately identifying and characterizing ELMs is not as robust as

initially anticipated. More information regarding its shortcomings and results can be found in Chapter 11.
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Results

The following chapter presents a comprehensive analysis of the performance of various ELM detection methods employed in

this study. A brief overview of themethod’s properties and execution timewas given in Table 7.1. The evaluation encompasses

both novel approaches developed specifically for this master’s dissertation and existing methods. The objective is to assess

the effectiveness and limitations of these methods in accurately identifying ELM events.

11.1 Overview

Table 11.1 below contains the results achieved by the ELM detection methods. A visual comparison between the results can

be found in Appendix B. Among the evaluated methods, the rolling Z-score, LoG, LoGDoG, CustomKernel, and RNN (modified)

demonstrate the most promising results.

gap interval

TP (%) FN (%) FP (%) TN (%) Fβ (%) TP (%) FN (%) FP (%) TN (%) Fβ (%)

ROT 34.41 65.59 25.62 74.38 44.69 34.41 65.59 17.53 82.47 52.48

MACD 87.17 12.83 78.13 21.87 57.25 87.17 12.83 21.63 78.37 82.25

Rolling Z-score 89.99 10.01 60.82 39.18 64.16 89.99 10.01 16.39 83.61 87.33

LoG 86.61 13.39 57.86 42.14 64.46 86.61 13.39 12.79 87.21 87.81

LoGDoG 80.78 19.22 45.15 54.85 67.59 80.78 19.22 10.91 89.09 87.42

CustomKernel 82.97 17.03 46.01 53.99 68.24 82.97 17.03 9.39 90.61 88.62

RNN 83.16 16.84 20.01 79.99 81.53 83.16 16.84 14.60 85.40 84.65

RNN (modified) 91.95 8.05 59.52 40.48 65.46 91.95 8.05 15.90 84.10 87.07

CNN 53.35 46.65 12.50 87.50 69.35 53.35 46.65 10.89 89.11 70.61

CNN (modified) 80.01 19.99 54.00 46.00 63.27 80.01 19.99 16.63 83.37 82.66

Deconvolution 78.14 21.86 84.39 15.61 51.90 78.14 21.86 70.30 29.70 56.28

Table 11.1: Table with results for all methods. The GapMetrics are calculated using a threshold of 0.75 for TP and FN and 0.1

for the FP and TN. The IntervalMetrics are calculated using a threshold of 0.75 for TP and FN and 0.5 for the FP and TN. The

Fβ-scores are calculated for both metrics separately with a beta value of 0.5.
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Table 11.1 presents the results of the evaluation of various ELM detection methods using two sets of metrics: Gap Metrics and

Interval Metrics. While both metrics provide valuable insights, the Interval Metrics offer a more comprehensive overview

of the actual performance of the methods. Therefore, unless explicitly specified, the following discussions regarding the

evaluation results should be assumed to be based on the Interval Metrics, which offer a better perspective of the methods

and their effectiveness in ELM detection.

The results presented in the table were obtained by calculating the metrics individually for each shot and then taking the

mean of each metric of a shot per method. Therefore, the reported Fβ-scores are the means of the Fβ-scores calculated for

each shot, and they are not derived from the mean values of true positives, false positives, and false negatives displayed in

the table.

11.1.1 Discussion about labeling quality

At the inception of this master’s dissertation, a set of manually labeled intervals was provided to facilitate the evaluation

of the ELM detection methods. However, it is noteworthy that only half of the shots were labeled, and these labeled shots

exhibited a considerable number of inaccuracies in the form of false positives and false negatives. Nonetheless, themethods

were trained successfully using the available labeled shots. The results obtained using these labels can be found in Appendix

C.

Six days prior to the completion of the master’s dissertation, a new set of labels was introduced. This updated labeling en-

compassed all shots and effectively resolved numerous inconsistencies that were prevalent in the previous labeling scheme.

The transition to the new set of labels posed a substantial challenge. In addition to rectifying the inconsistencies present

in the previous labeling, the new labels introduced a distinct paradigm. Specifically, the detection of compound ELMs now

entailed the consideration of a new rule, as elucidated in Section 2.6. Furthermore, the average number of detected ELMs

experienced a marked increase. This can be attributed to the reclassification of numerous small-scale ELMs, which, despite

lacking a clear energy drop, were now classified as ELMs. Both of these modifications exerted substantial and consequential

effects on the performance of the ELM detection methods.

Furthermore, it is important to acknowledge that a closer examination of individual shots and a comparison between the

labels provided by the ELM detectionmethods and the ground truth regularly revealed instances where themethod’s outputs

were more accurate than the assigned labels. This observation suggests that the performance results presented in Table 11.1

should be interpreted with caution.

11.2 Performance evaluation of the CNN method

A consequence of these inconsistencies can be observed with the CNN method. The presence of inconsistencies causes the

CNN model to exhibit a tendency to output very thin ELM intervals, which subsequently leads to a reduced detection rate in

the true positives (TP rate). As discussed in Section 9.7, padding was introduced as a solution to increase the number of true

positives, resulting in the modified CNN variant (CNN (modified)). However, an undesired side effect of this modification is
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an increase in the number of false positives being detected.

11.3 Performance evaluation of the LoG method

The LoG method, developed immediately after the commencement of the master’s dissertation, is characterized by its sim-

plicity and robust performance. Its straightforward implementation and symmetric LoG kernel contribute to its wide appli-

cability. Despite its simplicity, the method remains one of the top-performing approaches. It demonstrates fast execution,

easy retraining, and successful performance with both the old and new labeling sets. Furthermore, the LoG method exhibits

the advantageous quality of achieving satisfactory results even with manually estimated hyperparameters. This favorable

characteristic will be leveraged in Section 11.12, where the method is applied to a novel dataset with promising outcomes.

11.4 Performance evaluation of the CustomKernel method

The CustomKernel method demonstrates excellent performance, with a slightly lower true positive score (3.64% lower) com-

pared to the LoGmethod, but also a reduced false positive score (3.4% lower). This method achieves the lowest false positive

score among all the evaluated methods. These findings suggest that when excluding ELMs based on the absence of signif-

icant energy drops becomes ineffective, relying on the shape of the ELM becomes a viable alternative. As mentioned in

Section 3.2, this method relies on a custom kernel for its operation. Therefore, when applying the CustomKernel method to

other datasets with significantly different peak shapes, determining a new optimal custom kernel may be necessary. Further

details can be found in Section 11.12.

11.5 Performance evaluation of the LoGDoG method

LoGDoG is designed to achieve a high detection rate comparable to that of LoG, while mitigating the occurrence of false

positives. Under the old labeling scheme, LoGDoG consistently exhibited effective filtering of false positives by leveraging

the energy signal, occasionally even outperforming the ground truth labels. Moreover, it demonstrated greater consistency

in correctly identifying small peaks as ELMs by analyzing the energy drop. Figure 11.1 illustrates how the previous version of

LoGDoG adeptly disregards the peak around 49.8 seconds due to the negligible energy drop.

Figure 11.1: The light and energy signal of shot 94776-0 together with the detected peaks in red and correct peaks in green

The introduction of the new labels resulted in the retraining of the LoG method due to numerous small labeling changes,
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such as the reclassification of the peak at 49.8 seconds as an ELM. As a consequence, the underlying principle of the LoGDoG

method, which relied on excluding peaks based on a lack of energy drop, became less effective. This is evident in Figure 11.2,

which displays the processed DoG signal based on the old hyperparameters. The signal remains close to zero for significant

portions, indicating the absence of detectable ELMs. Consequently, when applying the method without retraining, the true

positives would be substantially reduced. For a direct comparison, Figure 8.26 and Figure 8.28 depict the same processing

step and final result for the same shot with the new hyperparameters following retraining on the revised labeling dataset.

Figure 11.2: The processed DoG signal using the old LoGDoG method

The transition to the new labels and the associated modifications in the labeling paradigm has influenced the performance

of the LoGDoG method. The method exhibits a decrease in the true positives by 5.83% and a marginal decrease in the false

positives by 1.88%. These changes highlight the impact of the new labeling set on the effectiveness of the LoGDoG method.

However, it is worth noting that the method still holds promise when applied to different tokamaks or within alternative

labeling paradigms.

11.6 Performance evaluation of the MACD method

The MACD method is a strong contender in achieving high true positives but at a cost of a higher number of false positives

compared to most other methods. Despite the MACD’s origin, as indicator for the stock market, it is still able to achieve a

high Fβ-score. With both the old and new labels, the MACD was able to accurately predict ELMs. The number of parameters

make it highly tuneable and it also has a fast execution time.

11.7 Performance evaluation of the rolling Z-score method

The rolling Z-score method is able to provide the second-highest number of true positives. This is again at the cost of a

higher number of false positives, but not as bad as with the MACD. This method is very easy to implement and understand,

which makes it a strong choice for ELM detection. However, the performance of the method was a lot worse when trained
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and evaluated on the old labels, which may indicate that the method is not suitable for each application.

11.8 Performance evaluation of the RNN method

The RNNmethod usesmultiple feature-extracting filters in its preprocessing step. Combinedwith the simplicity of themodel,

and only 125 kB of weights, this method is very accurate in detecting ELMs. One should note though that it is slow to run,

which makes it not suitable for real-time applications.

Though not as bad as the unmodified CNN method, the RNN method does have predicted ELMs that are too small to be

counted by the metrics. By adding some padding, the number of true positives increased from 83.16 % to 91.95 %, which is

the highest of all methods. This padding does increase the number of false positives from 14.60 % to 15.90 %. Note that RNN

(modified), which is the padded version, also enables the Savgol Gap drop mechanism, which helps reduce the impact of the

padding on the number of false positives.

As an end result, the RNN (modified) is one of the best-proposed methods to use for detecting ELMs. It is able to detect

small intricacies in the data which other methods are not able to do and also uses the energy signal to make it extra robust.

11.9 Performance evaluation of the Deconvolution method

The deconvolution-based method, implemented based on a 2023 paper by S. Ahmad. [32], falls short of the initial expecta-

tions in terms of accurately identifying and characterizing Edge Localized Modes (ELMs). The method exhibits the highest

false positive score and the second lowest Fβ-score among the evaluated ELM detection methods.

One major factor contributing to the suboptimal performance is the high levels of noise present in the data. The deconvolu-

tion process relies on the assumption of uncorrelated pulses with fixed shapes, which may not hold well in the presence of

significant noise.

Another factor that impacts the effectiveness of the deconvolution method is the irregularity and variability of the peak

shapes exhibited by ELMs. The method assumes a constant pulse shape, which may not fully capture the diverse range of

ELM characteristics encountered in our specific study.

Finally, the variability in the gaps between ELMs, or the waiting times, further complicates the deconvolution process.

In light of these challenges, it is important to acknowledge that the deconvolution-based approach, while conceptually

intriguing, may not be well-suited for the specific characteristics of the ELMs encountered in this study. The unique nature

of ELM events encountered, including high noise levels, irregular peak shapes, and variability in the waiting times, presents

significant obstacles to the accurate and reliable application of the deconvolution process. Further research is needed to
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explore its potential in different ELM scenarios with reduced challenges.

11.10 Discussion about false positives and the plasma energy signal

One noticeable trend in the data is that methods that do not take into account the plasma energy signal (LoG and Decon-

volution) generally tend to exhibit a higher number of false positives. CustomKernel is an exception to this. False positives

can often be identified and ruled out by considering the plasma energy information. To cope with these false positives,

the Savgol Gap drop mechanism was added to some methods (MACD, Rolling Z-score, and RNN (modified), CNN (modified)),

which was able to reduce the false positives from 16.63 % to 16.15 % in the CNN (modified) method. The effect of this change

is equally small in the other methods as well and can have a counterproductive result. For example, it reduced the Fβ score

from 82.66 % to 82.55% in CNN (modified) because it also slightly reduces the true positives. As the effect of the Savgol Gap

drop mechanism is rather minor, enabling this should be chosen on a per-method and per-dataset basis. The effect could

however be increased, for better or worse, by increasing the Savgol window parameter available in these methods.

An alternative approach to mitigate false positives is provided by the LoGDoG method. This method tries to reduce the

number of false positives by attenuating the result of a LoG filter by looking at drops in the energy signal. As discussed in

Section 11.5, this approach works reasonably well but the new labeling set decreases the efficacy of this approach.

11.11 Comparison to existing methods

11.11.1 ROT and Deconvolution

In addition to the developed methods, existing approaches were also evaluated: ROT, developed by the research group In-

fusion at UGent, and Deconvolution, a peak detection method based on a paper by the Complex Systems Modelling research

group at UiT. While Deconvolution was originally designed for peak detection, the UiT research group suggested its potential

suitability for ELM detection. The evaluation revealed that the new methods consistently outperformed both ROT and De-

convolution. It is important to acknowledge that the performance of methods can vary depending on the specific task and

dataset. Therefore, the findings highlight the effectiveness of the approaches in the context of ELM detection.

11.11.2 CNN

As with the RNN, this method is rather slow and thus not suitable for real-time use. One other fact to give is that the model

is a lot more complex than the RNN counterpart and its weights are 3263 kB in size.

Still, based on the evaluation results presented in Table 11.1, the CNN (modified) method demonstrates great performance

in accurately identifying ELM events. It achieves high true positives, showing its effectiveness in correctly detecting ELM

events. While it also maintains low false positives, indicating its ability to minimize incorrect detections. This is especially

impressive, given the fact that the model used in the CNN method was not designed for the specific needs of this master’s

dissertation. Although it was designed as a peak detection method, the preprocessed data passed to the input layer is much

more extensive and proves to be a great help in making this method also work for ELM detection.
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One note, however, compared to the RNN is that the CNN is much more complex. The complexity of this model could result

in overfitting. The lower results than some other methods, make it clear that this isn’t the case.

11.12 Peak detection on other datasets

In order to assess the performance of the peak detection framework, two datasets were captured to obtain relevant time

series information. The first dataset recorded the illuminance levels in Ghent over an eleven-day period. Correspondingly,

the second dataset documented the outside temperature during the same timeframe. These datasets were chosen due

to their distinct trends and served as valuable inputs for evaluating the peak detection methods within the framework.

As both signals contain distinct trends, different parameters needed to be set for each signal within the framework. It is

important to note that these signals were unlabeled and were solely used for visual demonstration purposes, showcasing

the performance of the peak detection methods.

The advantages and disadvantages of the different ELM detection methods are also conveyed here for their peak detection

counterparts.

Figure 11.3 illustrates how the MACD peak detection method is applied to the illuminance signal. Smaller peaks, such as the

one between x = 750 and x = 1000, are grouped together.

Figure 11.3: MACD peak detection on an illuminance signal.

On the other hand, Figure 11.4 demonstrates the application of the CustomKernel peak detection method to the illuminance

signal, which yields superior results. This outcome aligns with expectations since the MACD method is highly sensitive to

trends, as demonstrated by its ability to detect peaks in the reverse illuminance signal, as shown in Figure 11.5. Now each

peak is detected individually, but the end detection is quite irregular.
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Figure 11.4: CustomKernel peak detection on an illuminance signal.

Figure 11.5: MACD peak detection on a flipped illuminance signal.

Figures 11.6 and 11.7 illustrate the results obtained by applying the CustomKernel and LoG peak detection methods to the

temperature data. In the context of this particular signal, both methods achieve satisfactory results.

Figure 11.6: CustomKernel peak detection on a temperature signal.

Figure 11.7: LoG peak detection on a temperature signal.
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11.13 ELM detection on other data

The ELM detectionmethodswere also tested on data from another fusion device, namely DIII-D [35]. However, only unlabeled

light emission signals were available for this master’s dissertation, and no energy signals were provided. To address this

limitation, a fabricated energy signal was created, which linearly transitions from 1 to 0.

It should be noted that the presence of this artificial energy signal can adversely affect the performance of certain ELM detec-

tion methods, namely the LoGDoG, RNN, and CNN methods. Conversely, methods that employ the Savgol Gap drop algorithm

from Section 8.2.3 are not significantly impacted, as they only exclude ELMs when the energy is increasing. However, if these

methods were to enable the Savgol Gap merge algorithm, which is disabled by default, they would also be influenced by the

fabricated energy signal.

To assess the robustness of the ELM detection methods, Figures 11.8, 11.9, 11.10, and 11.11 depict the ELM detection outcomes

using the LoG, RNN (modified), CNN (modified), and CustomKernel methods, respectively. These figures provide a visual

representation of the performance of each method with the default hyperparameters.

Figure 11.8: LoG ELM detection on an emissivity signal from DIII-D.

Figure 11.9: RNN (modified) ELM detection on an emissivity signal from DIII-D.
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Figure 11.10: CNN (modified) ELM detection on an emissivity signal from DIII-D.

Figure 11.11: CustomKernel ELM detection on an emissivity signal from DIII-D.

11.14 Conclusion

The results show that all methods developed in this master’s dissertation outperform the existing ROT method. It is also

found that the deconvolution method is not suitable for the specific characteristics of ELMs encountered in this work.

Each method exhibits its own set of advantages and disadvantages. For instance, the RNN and CNN models are trained

with specific parameters, which may require retraining when applied to datasets with different parameter requirements.

The CustomKernel method receives the highest Fβ-score and exhibits the lowest number of false positives. However, it is

surpassed by the MACD, Rolling Z-score, LoG, and RNN methods in terms of true positive detection. The LoGDoG method

demonstrates the potential to reduce the number of false positives compared to the LoG method. However, its robustness

using the energy signal inadvertently leads to a decrease in the number of true positives. Overall, these findings highlight the

trade-offs and varying performance characteristics of eachmethod, underscoring the importance of selecting an appropriate

method based on specific application requirements and priorities.

The results in Table 11.1 show that the rolling Z-score, LoG, LoGDoG, CustomKernel, and RNN (modified) methods emerge

as the clear winners in terms of ELM detection performance. These methods exhibit high true positives, indicating their

ability to accurately identify ELMs while maintaining low false positives, which suggests a minimal tendency to incorrectly

label non-ELM events. The combination of these favorable characteristics positions these methods as strong contenders for

effective ELM detection in the given context.
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The primary aim of this master’s dissertation was to develop reliable and accurate methods for detecting ELMs in toka-

maks with machine learning. Throughout the research, each objective from Section 2.5 was successfully achieved, leading to

significant advancements in ELM detection techniques;

To begin with, the study thoroughly explored a range of technologies and algorithms suitable for ELM detection, encompass-

ing both traditional signal processing techniques and machine learning approaches. By considering diverse methodologies,

the research aimed to identify the most effective strategies for detecting ELMs in tokamaks.

Secondly, a range of performance metrics were specifically developed to assess the effectiveness of ELM detection methods.

Thesemetrics facilitated comprehensive training and evaluation processes, tailored specifically to the task of detecting ELMs

and their associated peaks as intervals.

Next, through meticulous experimentation and analysis, it was found that a combination of traditional signal processing, a

smart custom implementation of metrics and machine learning, proved to be highly performant. Multiple approaches were

explored, including the filters, such as LoG and DoG. These filters enabled the extraction of meaningful features from the

light emissivity and energy data, capturing the unique characteristics of ELMs. These extracted features were then utilized

in both thresholding algorithms and machine learning models to accurately detect ELMs.

Multiple ELM detection methods were developed, each employing different approaches, each with its own advantages and

disadvantages. The performance of thesemethodswas thoroughly evaluated and compared to existing approaches, allowing

for a comprehensive assessment of their effectiveness.

In addition to the accomplishments mentioned earlier, it is important to highlight that for this master’s dissertation a com-

prehensive framework has also been developed. This framework not only encompasses the detection of ELMs but also

includes a peak detection library. Its modular design enables effortless integration and expansion, providing a flexible and

adaptable platform for future research and advancements in the field.

The work plan outlined at the beginning of the master’s dissertation included the implementation of existing methods for

comparisonwith the ELM detectionmethods. However, certain planned optionswere replacedwith alternative ELM detection

methods due to the unavailability or lack of open-source access to the original methods.

Adapting to a new set of labels, which were provided six days before the final deadline of the master’s dissertation, posed

a significant challenge. These labels serve as the ground truth for the ELM detection methods. The new labels were based

on different criteria for ELM detection, necessitating the retraining of the methods. Furthermore, due to the substantial

dissimilarity in the labels, the performance of the methods underwent significant changes, resulting in a prolonged delay in

completing the results section.

This master’s dissertation addresses ELM detection challenges in tokamak reactors by developing robust methods. Through

mathematical transformations andmachine learning techniques applied to real JET data, the research contributes to nuclear
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fusion research. These findings pave the way for efficient ELM research, advancing the goal of fusion energy realization.

Ethical and social reflection

ELM detection contributes to scientific and technological advancements and holds significant ethical and social implications.

The most apparent implication is the contribution to the seventh Sustainable Development Goal (SDG).

The research aligns directly with SDG 7, which aims to ensure access to affordable and clean energy. ELMs can impact the

performance and stability of fusion reactors. By developing effective ELM detection methods, fusion researchers can focus

on analyzing the ELM events themselves instead of locating the ELMs in the data. This makes their research more efficient,

thereby contributing to the goal of sustainable energy access.

Additionally, the master’s dissertation also supports SDG 9, which focuses on promoting sustainable industries, fostering

innovation, and developing an efficient infrastructure. ELM detection research helps technological innovation, enabling the

optimization of fusion reactors and thus the development of reliable and efficient infrastructure.

SDG 12, which stands for responsible consumption and production, is also positively impacted by ELM detection, because

ELMs can cause damage to tokamak walls, resulting in material erosion and more waste. A good ELM detection algorithm

enables researchers to mitigate the negative impact of ELMs and thus minimizes the waste of expensive and rare materials

used in the fusion device walls.

The calls for urgent action to combat climate change, which is SDG 13, is also partially addressed by the fusion research

that ELM detection contributes to. Fusion research tries to develop climate-friendly energy solutions and works toward a

sustainable low-carbon future.

Finally, the master’s dissertation emphasizes the importance of collaboration and partnerships, which aligns with SDG 17.

Progress in fusion research relies on exchanging knowledge, resources, and expertise among researchers and institutions

worldwide. Fostering this accelerates the road to achieving the other SDGs. The methods proposed by this master’s disser-

tation are trained on JET data. JET research is important for the functioning of ITER since they use similar plasma configu-

rations, which makes these methods applicable to ITER. ITER is a huge multinational project, where exchanging knowledge

and resources is essential.

In conclusion, the master’s dissertation not only contributes to scientific and technological advancements but also holds

positive ethical and social implications. ELM detection helps to achieve multiple SDGs, particularly those related to the

development of affordable and clean energy
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Appendix A: Usage of AI

With the emergence of advanced language models like ChatGPT [36] and Github CoPilot [37], Artificial Intelligence (AI) has

gained significant prominence in software development and data research. While AI can be a valuable tool, it is important to

acknowledge its limitations, such as occasional hallucinations and inadequate source referencing. Students need to use AI

responsibly and ethically. Consequently, the use of AI was permitted in this master’s dissertation; however, to ensure trans-

parency, a supplementary attachment is included. This attachment provides detailed explanations of the implementation of

AI and offers sample prompts to illustrate its usage.

Research

Bing Chat was often used in the research process to find relevant papers. Prompts like the following were used:

”I’m doing research about the data quality for machine learning. Could you link me some relevant papers,

with a summary for each of them?”

Bing Chat would respond with:

”I found a paper on arxiv.org titled ”The Effects of Data Quality on Machine Learning Performance” by Lukas

Budach et al. [1] The paper explores empirically the relationship between six of the traditional data quality

dimensions and the performance of fifteen widely used machine learning (ML) algorithms covering the tasks

of classification, regression, and clustering, with the goal of explaining their performance in terms of data

quality. The paper concludes with an extensive discussion of their observations.

Another paper I found is ”Data Quality Toolkit: Automatic assessment of data quality and remediation for

machine learning” by Saurabh Gupta et al. [2] The authors attempt to re-look at the data quality issues in the

context of building a machine learning pipeline and build a tool that can detect, explain and remediate issues

in the data, and systematically and automatically capture all the changes applied to the data.

Lastly, I found a paper on SpringerLink titled ”Machine Learning: Algorithms, Real-World Applications and Re-

search Directions” by S. Suresh et al. [3] The paper provides a comprehensive view on various types of machine

learning algorithms that can be applied to enhance the intelligence and the capabilities of an application. I

hope this helps!

[1]: https://arxiv.org/abs/2207.14529

[2]: https://arxiv.org/abs/2108.05935

[3]: https://link.springer.com/article/10.1007/s42979-021-00592-x ”

The advantage here above a normal search engine is that multiple summaries can be provided within the same response. As

a result, the researcher does not have to read the abstract of every paper returned by a normal search engine, and finding a

paper can take less time than before.



Code

To reduce the time spend reading documentation of libraries. Simple prompts like the following were used:

”I have a time series in python called ’arr’. How can I calculate the the exponential moving average?”

To which, ChatGPT responds with:

To calculate the exponential moving average (EMA) of a time series in Python, you can use the pandas library,

which provides a convenient function called ewm().

Here’s an example of how you can calculate the exponential moving average using pandas:

import pandas as pd
# Assuming 'arr' is a list or a pandas Series containing your time series data
arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
# Convert the list to a pandas Series (if it's not already)
arr_series = pd.Series(arr)
# Calculate the exponential moving average with a smoothing factor of 0.5
ema = arr_series.ewm(alpha=0.5).mean()
# Print the exponential moving average
print(ema)

In this example, we use a smoothing factor (also known as the decay factor or alpha) of 0.5. You can adjust

this value based on your requirements and the desired level of smoothness for the EMA.

The ewm() function applies the exponential weighting to the data, and the mean() function calculates the

moving average. The resulting ema variable will contain the exponential moving average of the arr time

series.

Note that you may need to install the pandas library if you haven’t done so already. You can install it using

pip:

pip install pandas

Of course, everything that ChatGPT returned was thoroughly tested, to make sure that the code it provided functioned cor-

rectly. The parts used from the response are also modified to fit into the code base of the master’s dissertation. The code

below shows how its response was implemented.



class ExponentialMovingAverageMixin(BorderMixin):
def ema(self, arr, span: int) -> np.ndarray:

# Apply border padding to input array
data = self.border_same_value(arr, span)
# Calculate EMA using pandas library
return self.ema_pandas(data, span)[span:-span]

def ema_pandas(self, arr, span: int) -> np.ndarray:
# Calculate EMA using pandas library
return pd.Series(arr).ewm(span=span, adjust=False).mean().values

def ema_numpy(self, arr, span: int) -> np.ndarray:
# Calculate alpha value using span parameter
alpha = 2 / (span + 1)
# Initialize output array with zeros
s = np.zeros_like(arr)
# Set first value of output array to first value of input array
s[0] = arr[0]
# Loop over input array and calculate EMA using previous value and alpha
for i in range(1, len(arr)):

s[i] = (alpha * arr[i]) + ((1 - alpha) * s[i - 1])
return s

Documentation

To facilitate the writing of documentation, ChatGPT was used, but only to provide a rudimentary draft. For example, the code

above shows a Python class that provides two implementations for calculating an exponential moving average using a span.

An effort was made to explain the code with comments, but the documentation could be expanded further. To help with this,

the following prompt was sent to ChatGPT:

”Can you add docstrings and comments for me to this code? If possible, add the typedefs in the docs. For this

keep in mind what the libraries their functions return. If you see anything that you want to improve, add an

extra codeblock with your proposed changes.

« original undocumented code here »”

The output documentation, supplied by ChatGPT was used as a draft, as it does not know the context of the whole code base

and can therefore make wrong assumptions. This means that the output is used more as an inspiration. The final version of

the code is now:

class ExponentialMovingAverageMixin(BorderMixin):
"""



Mixin class that provides functions to calculate the exponential moving
average of a given array.

Attributes:
Inherits attributes from BorderMixin class.

"""

def ema(self, arr, span: int) -> np.ndarray:
"""
Calculates the exponential moving average of the input array.

Args:
arr (np.ndarray): Input array to calculate EMA from.
span (int): The span parameter for the EMA calculation.

Returns:
np.ndarray: The exponential moving average of the input array.

"""
# Apply border padding to input array
data = self.border_same_value(arr, span)
# Calculate EMA using pandas library
return self.ema_pandas(data, span)[span:-span]

def ema_pandas(self, arr, span: int) -> np.ndarray:
"""
Calculates the exponential moving average of the input array using pandas.

Args:
arr (np.ndarray): Input array to calculate EMA from.
span (int): The span parameter for the EMA calculation.

Returns:
np.ndarray: The exponential moving average of the input array.

"""
# Calculate EMA using pandas library
return pd.Series(arr).ewm(span=span, adjust=False).mean().values

def ema_numpy(self, arr, span: int) -> np.ndarray:
"""



Calculates the exponential moving average of the input array using numpy.

Args:
arr (np.ndarray): Input array to calculate EMA from.
span (int): The span parameter for the EMA calculation.

Returns:
np.ndarray: The exponential moving average of the input array.

"""
# Calculate alpha value using span parameter
alpha = 2 / (span + 1)
# Initialize output array with zeros
s = np.zeros_like(arr)
# Set first value of output array to first value of input array
s[0] = arr[0]
# Loop over input array and calculate EMA using previous value and alpha
for i in range(1, len(arr)):

s[i] = (alpha * arr[i]) + ((1 - alpha) * s[i - 1])
return s

Scription

To help the writing process of the master’s dissertation, ChatGPT was regularly asked things like the following:

”I’m writing a paper about ELM detection for my master’s dissertation. In this paper, there is a chapter about

filters. This is the introduction to that chapter:

« original chapter introduction here »

What would you improve about this introduction?”

A prompt like this would trigger ChatGPT to return an improved version. However, the response is never perfect, which is

why it is only used as a guideline. Some improved sentences may be taken, but never the whole response.



Appendix B: Applying ELM detection methods to shots

This section applies various ELM detection methods to a selection of shots to showcase their respective strengths and weak-

nesses.

Shot 94442-1

The CNN (modified) method applied on shot 94442-1.

The CNN method applied on shot 94442-1.

The CustomKernel method applied on shot 94442-1.



The Deconvolution method applied on shot 94442-1.

The LoG method applied on shot 94442-1.

The LoGDoG method applied on shot 94442-1.

The MACD method applied on shot 94442-1.



The RNN (modified) method applied on shot 94442-1.

The RNN method applied on shot 94442-1.

The Rolling Z-score method applied on shot 94442-1.

The ROT method applied on shot 94442-1.



Shot 94776-0

The CNN (modified) method applied on shot 94776-0.

The CNN method applied on shot 94776-0.

The CustomKernel method applied on shot 94776-0.



The Deconvolution method applied on shot 94776-0.

The LoG method applied on shot 94776-0.

The LoGDoG method applied on shot 94776-0.

The MACD method applied on shot 94776-0.



The RNN (modified) method applied on shot 94776-0.

The RNN method applied on shot 94776-0.

The Rolling Z-score method applied on shot 94776-0.

The ROT method applied on shot 94776-0.



Shot 97395-1

The CNN (modified) method applied on shot 97395-1.

The CNN method applied on shot 97395-1.

The CustomKernel method applied on shot 97395-1.



The Deconvolution method applied on shot 97395-1.

The LoG method applied on shot 97395-1.

The LoGDoG method applied on shot 97395-1.

The MACD method applied on shot 97395-1.



The RNN (modified) method applied on shot 97395-1.

The RNN method applied on shot 97395-1.

The Rolling Z-score method applied on shot 97395-1.

The ROT method applied on shot 97395-1.



Shot 97343-0

The CNN (modified) method applied on shot 97943-0.

The CNN method applied on shot 97943-0.

The CustomKernel method applied on shot 97943-0.



The Deconvolution method applied on shot 97943-0.

The LoG method applied on shot 97943-0.

The LoGDoG method applied on shot 97943-0.

The MACD method applied on shot 97943-0.



The RNN (modified) method applied on shot 97943-0.

The RNN method applied on shot 97943-0.

The Rolling Z-score method applied on shot 97943-0.

The ROT method applied on shot 97943-0.



Appendix C: Comparing results between the two labels sets

gap interval

TP (%) FN (%) FP (%) TN (%) Fβ (%) TP (%) FN (%) FP (%) TN (%) Fβ (%)

ROT 34.41 65.59 25.62 74.38 44.69 34.41 65.59 17.53 82.47 52.48

MACD 87.17 12.83 78.13 21.87 57.25 87.17 12.83 21.63 78.37 82.25

Rolling Z-score 89.99 10.01 60.82 39.18 64.16 89.99 10.01 16.39 83.61 87.33

LoG 86.61 13.39 57.86 42.14 64.46 86.61 13.39 12.79 87.21 87.81

LoGDoG 80.78 19.22 45.15 54.85 67.59 80.78 19.22 10.91 89.09 87.42

CustomKernel 82.97 17.03 46.01 53.99 68.24 82.97 17.03 9.39 90.61 88.62

RNN 83.16 16.84 20.01 79.99 81.53 83.16 16.84 14.60 85.40 84.65

RNN (modified) 91.95 8.05 59.52 40.48 65.46 91.95 8.05 15.90 84.10 87.07

CNN 53.35 46.65 12.50 87.50 69.35 53.35 46.65 10.89 89.11 70.61

CNN (modified) 80.01 19.99 54.00 46.00 63.27 80.01 19.99 16.63 83.37 82.66

Deconvolution 78.14 21.86 84.39 15.61 51.90 78.14 21.86 70.30 29.70 56.28

Table with results for all methods using the new labels.

gap interval

TP (%) FN (%) FP (%) TN (%) Fβ (%) TP (%) FN (%) FP (%) TN (%) Fβ (%)

ROT 32.31 67.69 20.77 79.23 44.25 32.31 67.69 2.69 97.31 56.46

MACD 85.18 14.82 82.41 17.59 55.30 85.18 14.82 24.60 75.40 80.54

Rolling Z-score 26.92 73.08 24.99 75.01 40.33 26.92 73.08 17.66 82.34 44.76

LoG 87.27 12.73 51.61 48.39 67.64 87.27 12.73 8.00 92.00 91.05

LoGDoG 72.47 27.53 46.97 53.03 62.17 72.47 27.53 6.53 93.47 85.47

CustomKernel 79.59 20.41 45.21 54.79 66.21 79.59 20.41 5.19 94.81 89.53

RNN 82.62 17.38 30.53 69.47 74.88 82.62 17.38 7.39 92.61 89.45

CNN 86.63 13.37 44.46 55.54 70.28 86.63 13.37 11.65 88.35 88.16

Deconvolution 43.13 56.87 67.59 32.41 36.32 43.13 56.87 45.25 54.75 44.23

Table with results for all methods using the old labels.

A notable trend is an increase in both false positives and true positives when comparing the new labels to the old labels.

This may be attributed to the prevalence of short-duration, low-amplitude ELMs that occur consecutively in the new labels,

resembling noise. Consequently, the new labels pose greater difficulty for the ELM detection methods. In an attempt to

capture an adequate number of ELMs, the methods also identify some noise as ELMs. In contrast, the old labels allowed for

more effective noise reduction, resulting in a lower count of false positives.
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