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List of symbols
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Eγ [keV] = E0 [keV] energy of the incoming γ ray

E′
γ [keV]= E2 [keV] energy of the scattered γ ray

Ee [keV] = E1 [keV] energy of the recoil electron

θ [°] scattering angle, opening angle, cone angle

u⃗ normalised scatter axis, cone axis

Chapter 4

ϕ [°] angle obtained by rotating around horizontal axis

τ [°] angle obtained by rotating around vertical axis

A [MBq] activity of a source

f number of frames

uf number of usable frames

Re energy range, how much the total energy of a cluster may deviate from

the ideal energy Eγ

Chapter 7

n number of measurements

Pm = [ϕm, τm] measured intersection point, defined by the angles ϕm [°] and τm [°]

Pc = [ϕc, τc] calculated intersection point, defined by the angles ϕc [°] and τc [°]
Chapter 8

aS [°] resolution of the discretised unit sphere

S 2D matrix that represents the discretised unit sphere

σ [°] standard deviation used to create a single back-projection

δg the Gaussian difference between a cone and the points of the discretised

unit sphere

εa [°] angular error, angular difference between Pm and Pc

δm,c difference between a cone and the points of the discretised unit sphere,

expressed as a value between ln(vc) and 0, used to calculate a single 2D

map before multiplication of the 2D maps

vc cut-off value, used in making a single back-projection for multiplication

Chapter 9

εa [°] mean of a list of angular errors

RMS(εa) [°] root-mean-square of list of angular errors

FWHM [keV] full width at half maximum, used to determine the width of the absorp-

tion peak

lt total length

ls slice length

m number of rows, number of values for independent variable

s number of shuffles



uf% [%] percentage of frames that are considered usable frames

ufh

[
frames
h·MBq

]
usable frames per hour per MBq

t100 [h] time necessary to gather 100 usable frames for a source with A = 1 MBq

std [°] standard deviation used to describe a Gaussian distribution

SEM [°] standard error on the mean



Abstract

A present-day challenge is nuclear decommissioning. Before actual decommissioning of a

nuclear facility can begin, human operators locate and characterise the sources, hot spots

and contaminated areas by entering the facility and manually performing measurements.

A strict time limit for these measurements ensures the health of the operators, but leads

to less accurate or incomplete measurements. A mobile robot that maps the sources using

a single layer Compton camera, can be a viable alternative.

This thesis researches how to use a 1 mm thick CdTe single layer Compton camera to

detect the position of a γ-ray point source at a given distance from the detector. Back-

projection of the Compton cones, which are reconstructed using the data from the camera,

determines the two angles necessary to locate the point source. Two back-projection

algorithms are implemented and compared: addition and multiplication.

The implemented algorithms have similar results: they both show an exponential descent

for the angular error in function of the measurement time. Typically, addition is 6% more

accurate compared to multiplication, but that percentage is larger for shorter measure-

ment times and shrinks to zero for longer measurement times. For a γ-ray point source

with an activity of 1 MBq, the angular error for addition is 2.90° at a measurement time

of 1 h and 1.77° at a measurement time of 4 h. Those results can compete with the current

state-of-the-art.





Abstract in het Nederlands

Een hedendaagse uitdaging is de ontmanteling van nucleaire faciliteiten. Vooraleer de

daadwerkelijke ontmanteling van een dergelijke faciliteit kan beginnen, lokaliseren menseli-

jke operatoren bronnen, hot spots en gecontamineerde gebieden door de faciliteit te be-

treden en handmatig metingen uit te voeren. Een strikte tijdslimiet is noodzakelijk om

de gezondheid van de operatoren te waarborgen, maar leidt tot minder nauwkeurige of

onvolledige metingen. Een mogelijk alternatief is een mobiele robot die de bronnen in

kaart brengt met behulp van een eenlagige Compton-camera.

Deze thesis onderzoekt hoe een 1 mm dikke CdTe eenlagige Compton-camera gebruikt

kan worden om de positie van een γ-puntbron te bepalen die zich bevindt op een gegeven

afstand van de detector. Projectie van de Compton-kegels, die worden gereconstrueerd op

basis van de data van de camera, bepaalt de twee hoeken die nodig zijn om de puntbron te

lokaliseren. Twee projectie-algoritmen worden gëımplementeerd en vergeleken: optelling

en vermenigvuldiging.

De twee algoritmen hebben vergelijkbare resultaten: ze tonen beide een exponentiële

daling voor de hoekfout in functie van de meettijd. Optelling is typisch 6% accurater

dan vermenigvuldiging, maar dat percentage stijgt voor kortere meettijden en daalt tot

nul voor langere meettijden. Voor een γ-puntbron met een activiteit van 1 MBq is de

hoekfout voor optelling 2,90° bij een meettijd van 1 u en 1,77° bij een meettijd van 4 u.

Deze resultaten zijn in lijn met de huidige stand van de techniek.





Chapter 1

Introduction

A present-day challenge is nuclear decommissioning. Before actual decommissioning of

a nuclear facility can begin, the sources, hot spots and contaminated areas have to be

located and characterised. Currently, human operators carry out this task by entering

the facility and manually performing the measurements [1].

The most significant disadvantage is that the operators are exposed to radiation. To keep

the radiation exposure to a reasonable minimum, there is a strict time limit in which the

measurements have to be performed. The reasonable minimum is determined according

to the ALARA (as low as reasonably achievable) principle [2]. This ensures the health

of the workers, but leads to less accurate or incomplete measurements. Using a mobile

robot to perform these measurements, can be a viable alternative [3].

One of the techniques the robot can use to map the sources is a compact Compton

imaging system. A Compton camera uses incoming gamma rays to reconstruct Compton

scattering events. These events can then be used to estimate the position of the source.

A traditional Compton camera consists of two layers [4]. However, there is a second type

of Compton camera: a single layer Compton camera [5]. This type of camera has a lower

efficiency, but is smaller and lighter than a traditional Compton camera and thus easier

to mount on a mobile robot. This paper will research the possibility of using a single

layer Compton camera to locate a γ-ray source.

This thesis builds upon the research done in [3]. Chapter 2 starts with a literature study

about the interactions of γ radiation with matter and how Compton scattering is the

basis of the workings of the traditional and single layer Compton camera. Next, chapter

3 describes a study of the research performed in [3] and the specific γ camera used in that

research.

This is followed by chapter 4, which explains the measurement setup and the used software.

Subsequently, in chapter 5, reverse engineering of pieces of code already written in [3] is

performed in order to start from a structured framework, which can be used for Compton

processing. Chapter 6 gives an overview of the used conventions and chapter 7 analyses

the gathered data as a whole.

Chapter 8 explains the creation of back-projections in order to determine the position

of the point source. Different algorithms were implemented: some are based on addition



of back-projections while others are based on multiplication of back-projections. Next,

chapter 9 discusses the results of the different implementations with different parameters.

This is followed by a comparison between the different implementations and the current

state-of-the-art. The thesis ends with a concise conclusion and outlook in chapter 10.
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Chapter 2

Compton scattering

2.1 Nuclear decay

Radioactive materials emit radiation due to nuclear decay. In the process of nuclear decay,

an unstable atomic nucleus loses energy by radiation. In α decay the nucleus emits an α

particle, which is a 2
4He2+. In β decay, a β particle is emitted. A β particle is a high-

energy electron or positron emitted by the atomic nucleus. α decay or β decay can be

followed by γ decay which involves the emitting of a γ ray, which is a photon [6].

If α or β particles end up in the body they do significantly more damage than a γ particle

would do, but they only travel a small distance in the air. An α particle can travel about

2.5 cm in the air and cannot penetrate the skin. β particles can travel several meters in

the air and can penetrate almost 1.2 cm of skin and body, but they can be shielded with

less than 2.5 cm of a material such as plastic. γ rays can travel tens of meters and can

easily penetrate the body. Shielding of γ rays requires thick and dense material, such as

concrete or lead [7].

This thesis focuses on the detection of sources of γ radiation.

2.2 Interaction of γ radiation with matter

γ radiation can interact with matter in different ways, depending on the energy of the γ

radiation and the atomic number of the absorber. At low energy, photoelectric absorp-

tion occurs the most, at mid-energy range Compton scattering and at high energy,

pair production. Figure 2.1 visualises this. On the left curve, the photoelectric effect

and Compton effect are equally dominant, while on the right curve, the Compton effect

and pair production are equally dominant [8].

2.2.1 Photoelectric absorption

In photoelectric absorption, a γ ray photon interacts with one of the bound electrons of

an atom. The kinetic energy of the electron Ee is the difference between the γ ray energy

Eγ and the energy necessary to separate the electron from its shell Eb. Figure 2.2 displays

the mechanism [8].



Figure 2.1: The dominance of the three mayor γ ray interactions relative to the atomic
number of the absorber and the energy of the incoming γ ray, adapted from [9]

Figure 2.2: The mechanism of photoelectric absorption [8]

2.2.2 Compton scattering

Compton scattering is a direct interaction of a γ ray photon with a loosely bound electron.

During this interaction, the γ ray collides with an electron. A part of the energy of the

original γ ray is given to the recoil electron and is that electrons kinetic energy. The rest

of the energy manifests as a scattered γ ray γ’ with a scattering angle θ. The binding

energy of the electron is ignored because it is only a few eV and thus negligible compared

to the energy of the incoming γ ray γ, which is a few keV. Figure 2.3 illustrates this

interaction [8].

Figure 2.3: The mechanism of Compton scattering [8]

Compton equation

The energy of the recoil electron is calculated using equation 2.1 [4].
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Ee = Eγ − Eγ′ with


Ee [keV] is the energy of the recoil electron

Eγ [keV] is the energy of the incoming gamma ray

Eγ′ [keV] is the energy of the scattered gamma ray

(2.1)

The scattering angle is calculated using equation equation 2.2 [4].

cos(θ) = 1−mec
2 Ee

Eγ(Eγ − Ee)
with

{
θ is the scattering angle

mec
2 = 511 keV

(2.2)

The relation between the scattering angle θ and the three different energies is given by

equation 2.3, which combines equations 2.1 and 2.2 and is referred to as the Compton

equation [4].

{
cos(θ) = 1−mec

2 Ee

Eγ(Eγ−Ee)

Eγ = Ee + Eγ′
(2.3)

2.2.3 Pair production

In pair production, the γ ray photon interacts with the atom as a whole. The γ ray

photon converts into a electron-positron pair. This means that pair production can only

occur when the γ ray photon has an energy equivalent to at least the combined rest mass

of the two particles (electron and positron), which is 2 · 511 keV = 1022 keV. In practice,

pair production occurs at energies higher than 1022 keV. The two created particles share

the excess energy of the γ ray photon equally. The positron loses kinetic energy very

fast in matter until it reaches a kinetic energy close to zero. Because positrons are anti-

particles to electrons and the slowed positron will eventually be near an electron, they exist

shortly as a positronium. Then the process of annihilation occurs and both the positron

and electron disappear and two photons are produced, each with an energy equal to the

electron mass of 511 keV. Because that whole sequence is likely to happen within 1 ns of

creation of the pair, it can be considered instantaneous in practice. Figure 2.4 visualises

the sequence of events.

Figure 2.4: The mechanism of pair production [8]
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2.3 Compton camera

The Compton equation can be used to reconstruct Compton events given that the ener-

gies and corresponding positions are known. This concept is the basis of the workings

of a Compton camera. The figures of this section use different symbols than the ones

established before: E0 = Eγ, E1 = Ee and E2 = Eγ’.

2.3.1 Traditional Compton camera

A traditional Compton camera relies on the principle of Compton scattering and consists

of two detectors. The scattering of the primary γ ray (first interaction) occurs in the

scattering detector, which records the position and energy of the recoil electron. The scat-

tered photon continues towards the absorption detector. This second detector absorbs the

scattered photon (second interaction) and records its energy and position. The Compton

scattering events of the incoming γ ray can then be reconstructed using the collected data

and the Compton equation (eq. 2.3) [4].

Figure 2.5 visualises how possible directions of the scattered γ ray can be presented as

the surface of a cone. The energies of the events determine the opening angle of the cone

θ and the positions of the events determine its axis of revolution. The axis of revolution

is also called the scatter axis or the cone axis and its normalised version is referred to as

u⃗.

Figure 2.5: Visualisation of the possible directions of the original γ ray as the surface of
a cone [4]

With multiple Compton interactions recorded, multiple cones can be constructed. The

intersection of the surfaces of the cones determines the location of the source. Conic

curves can be created using the intersection of the surfaces of the cones with a projection

plane. This results in a back-projected image of the cones. Figure 2.6 illustrates this.

Instead of choosing a plane as the projection surface, it is also possible to use a sphere.

Section 8.1.1 discusses this option.

2.3.2 Single layer Compton camera

A single layer Compton camera, useful because of its size and portability, has the disad-

vantage of having only one detector. Although the scattering of the primary γ ray and the

absorption of the scattered photon can occur in a single detector [5], two difficulties arise.

First, there is no obvious depth difference between the two interactions, which means it is

more difficult to get an accurate cone axis. Second, while two interactions still take place,
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Figure 2.6: Back-projection onto a plane of multiple reconstructions using a traditional
Compton camera [4]

it is usually not possible to determine which interaction represents the scattering of the

primary γ ray and which interaction represents the absorption of the scattered photon.

This means there are two cones possible cones, but it is not possible to determine which is

the correct one. Figure 2.7 illustrates Compton events in a single layer Compton camera

with only the correct cones (and their back-projections) displayed.

Figure 2.7: Back-projection onto a plane of multiple reconstructions from a single layer
Compton camera [5]

Section 3.4 explains the determination of the estimated interaction depths. The problem

of not being able to determine which cone is the correct one cannot be solved without

using advanced techniques. Therefore, both cones will be used for further calculations.
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Chapter 3

Gamma camera

The exploration of the workings of the used Compton camera and the selected settings

and parameters were part of a previous Master’s thesis [3] and are therefore discussed

separately in this chapter. No new decisions concerning the settings and parameters were

made. This chapter exists solely to explain the workings of the camera and the previous

research in order to lay a foundation for the rest of the thesis.

3.1 AdvaPIX TPX3

The measurements were done with a single layer Compton camera based on Timepix3

technology: the AdvaPIX TPX3, model B07-W0049 with a 1000 µm CdTe detector [10].

It is a hybrid pixel detector with a read-out chip that can record time-of-arrival (ToA)

and time-over-threshold (ToT) simultaneously in each pixel. The detector consists of a

grid of 256 by 256 pixels. Each pixel has a area of 55x55 µm [11]. Figure 3.1 shows the

detector.

(a) Outside of the AdvaPIX TPX3
detector [10]

(b) Inside of the AdvaPIX TPX3 detector

Figure 3.1: AdvaPIX TPX3 detector



3.2 Hybrid pixel detector

Hybrid pixel detectors are radiation detectors that consist of an array of semiconductor

technology diodes and their associated electronics. The semiconductor sensor and the

ASIC (application specific integrated circuit) are manufactured separately and afterwards

bump-bonded [12]. Bump-bonding is a technique used when a large number of connections

are needed between the detector layer and the electronics that are as dense as the pixels

themselves. In this case there are 256 by 256 pixels that have to be connected with

their associated pixel channels with a pixel pitch of only 55 µm. Bump-bonding means

the two layers are connected by a metal droplet. Solder bumps are placed on the die,

the die is flipped over and the solder bumps are aligned with the contact pads on the

substrate. Placement in a furnace ensures that re-flowing of the solder ball takes place

which establishes the bonding between the die and the substrate [13]. Figure 3.2 illustrates

bump-bonding.

Figure 3.2: Bump-bonding [13]

3.2.1 Charge sharing

In a hybrid pixel detector, charge sharing occurs because the pixels are small and very close

to one another. Under the influence of an electrical field, the charge carriers drift towards

the corresponding electrode [14]. During this collection process, the charge carriers are

spread out due to repulsion and diffusion. Repulsion means the charge carriers going to the

same electrode have the same charge, so they repel each other and spread out. Diffusion

means the charges do not exactly follow the electric field lines, but diffuse as a result

of the random thermal motion in the crystal lattice [15]. This leads to the charge being

spread out across several neighbouring pixels, thus forming a cluster of pixels. Figure 3.3a

visualises the principle of charge sharing. For each pixel, the collected charge is compared

to a threshold level and only if it is higher, the event is registered. This means that a

part of the energy is lost due to not reaching the threshold in certain pixels [16]. That is

illustrated in 3.3b.

(a) Charge sharing (b) Lost charge

Figure 3.3: Charge sharing and lost charge as a result [16]
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3.3 Signal formation

For each pixel the charge carriers induce current. This current is converted into voltage

pulses in the nearest pixel electrode. This leads to a triangular pulse as illustrated in

Figure 3.4 [12]. The different parameters that can be found in that figure are explained

below [10], [12].

THL = threshold level

The threshold level is the minimum level of energy a pixel must have in order to be

registered as a hit. The threshold level is given in keV.

ToA = time-of-arrival

The ToA is the time from the start of the exposure until the signal crosses the threshold

level. It is expressed in the number of periods of a the base clock. The base clock has a

frequency of 40 MHz.

fToA = fast-time-of-arrival

The fToA is the time between the signal crossing the threshold and the next base clock

signal. An additional clock with a frequency of 640 MHz is used for this purpose. The

more precise arrival time can therefore be calculated by using equation 3.1.

arrival time [ns] = ToA · 25 ns - FToA · 1.5625 ns (3.1)

ToT = time-over-threshold

The ToT is the time the signal is above the threshold level. For this registration only the

base clock is used, so it has an accuracy of 25 ns.

Figure 3.4: Signal formation with indication of different time parameters[12]

3.3.1 Time walk effect

The amplifier in the ASIC has a fixed signal rise time of ∼25 ns. The height of the signal

is linearly correlated to the charge deposited in the pixel. This leads to the signal crossing

the threshold at a different time for different energies [12], as illustrated in figure 3.5.

An event with a lower energy and therefore a lower end value, crosses the threshold at a
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later time. This is what is known as the time walk effect and is something that has to be

taken into account when determining the correct time stamps. Equation 3.2 calculates

the corrected ToA.

Figure 3.5: Time walk effect [12]

ToA = ToAmeasured −∆T with ∆T the time walk (3.2)

In order to make a good estimate for the needed time-walk correction, a per-pixel cal-

ibration would be the ideal scenario. Because this was not possible due to restrictions

in laboratory availability, a general time-walk correction was determined. The method

discussed in [17] was used. That method results in equation 3.3 for the calculation of the

time-walk effect [17].

∆T [ns] =
c

(E − E0)d
with


E [keV] is the energy of the pixel

E0 [keV] is the threshold energy

calibration parameter c
[

ns
keVd

]
calibration parameter d

(3.3)

The results from [3] determine that c = 57179 ns
keVd , d = 3.535 and E0 = 5.00 keV.

3.3.2 Relation between ToT and energy

In order to accurately describe the relation between ToT and deposited energy, a per-pixel

calibration of the device is necessary. This calibration does not have to be done by the

user. It comes pre-installed with the device. To give an idea of what that relation looks

like, figure 3.6 visualises the relation for one individual pixel. The relation is non-linear

for energies below ∼20 keV and linear for higher energies. The parameters a, b, c and

t are the pre-installed values. This means the parameters can be viewed as an array of

65536 by 4. Equation 3.4 is the corresponding equation [18], [19].
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Figure 3.6: Calibration for an individual pixel [19]

ToT [ns] = a · Ed + b− c

Ed − t
with



Ed [keV] is the deposited energy

calibration parameter a [ ns
keV

]

calibration parameter b [ns]

calibration parameter c [ns · keV]
calibration parameter t [keV]

(3.4)

3.4 Depth determination

When using a camera with only a single layer, the depth cannot be measured directly

and has to be constructed using other information available. The method explained in

[20] was followed. Figure 3.7 shows the different time stamps. tinteraction is the time of

the interaction. tdrift is the delay due to the charge carrier drift. tinduction is the time the

pulse shaping starts. It starts a bit before the charge carriers actually arrive due to charge

induction. toffset is the time between the start of the pulse shaping and the time the hit

is assigned. ttime−walk is ∆T as mentioned in section 3.3.1. tmeasurement is the time the

interaction is actually measured. As the figure illustrates there are delays due to charge

carrier drift en pixel electronics behaviour. As illustrated in figure 3.7, tdrift is not exactly

the same as the difference between tinduction and tinteraction, but the difference is deemed

negligible [20].

Figure 3.7: Illustration of the different time stamps [20]

The drift time measured in pixel i is the difference between the pixel’s time stamp ti and

the minimal time within the set of pixels forming a track tmin,track. Because the depth

depends on the drift time, the important parameter for depth determination is tinduction.
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Since tinduction depends on the interaction depth and the deposited energy, 2D lookup

tables were calculated zlook−up (tinduction, Edep). The equation for the estimated depth is

equation 3.5 [20].

zest = z0,look−up(ti − tmin,track, Emeasurement) (3.5)

The look-up tables calculated in [3] for four different energy bins are displayed in figure

3.8a. It illustrates that pixels with a higher energy have a lower drift time for the same

interaction height. Because all the look-up tables are close to one another, it was decided

in [3] to do a linear approximation of one energy bin: 75-100 keV. Figure 3.8b visualises

the linear approximation that is used to calculate the depth based on the difference in

time-of-arrival. Equation 3.6a is used to calculate the depth for pixels with an energy

above 30 keV. For pixels with energies below 30 keV a time-walk-correction is applied,

which leads to equation 3.6b. The extra values used in equation 3.6b are those from

section 3.3.1.

z = 46.43 + 32.27 ·∆ToA (3.6a)

z = 46.43 + 32.27 ·
(
∆ToA− 57179

(E + 5)3.535

)
(3.6b)

(a) Look-up tables for 0-25 keV (grey), 25-50
keV (black), 50-75 keV(red) and 75-100 keV

(green)

(b) Linear approximation of the look-up table
for the energy bin of 75-100 keV

Figure 3.8: Look-up tables [3]
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Chapter 4

Measuring setup and software

4.1 Measuring setup

The point source is located at a distance of 30 cm from the centre of the active part of

the detector. The detector rotates around the ϕ and τ axes to gather measurements for

different angles. The detector is connected to a laptop that uses the PIXetPro software

[21] to capture and save all the measurement data. Figure 4.1 illustrates the setup.

(a) Illustration of the measurement setup (b) Photo of the measurement setup

Figure 4.1: Measurement setup

4.1.1 Used source

A 137Cs point source will be assumed. In practice, it will be a series of four point sources

in a row. Table 4.1 lists the characteristics of the used sources. These activities to a total

activity A = 14.15 MBq. Figure 4.2a displays the sources. The sources are stacked into

wooden holders that fit in the lead cylinder as displayed in figure 4.2b. That lead cylinder

can also be seen figure 4.1b.



Table 4.1: Characteristics of the four point sources

Source Element Activity Uncertainty y-impurities
1 137Cs 3.52 MBq 5% 0.1%
2 137Cs 3.55 MBq 5% 0.1%
3 137Cs 3.52 MBq 5% 0.1%
4 137Cs 3.56 MBq 5% 0.1%

(a) Four sources (b) The sources in the wooden holders and the lead
cylinder

Figure 4.2: Sources

4.1.2 Used gamma camera

The measurements are done with a single layer Compton camera based on Timepix3

technology: the AdvaPIX TPX3, model B07-W0049 with a 1000 µm CdTe detector [10].

The use of the camera and the selected settings and parameters were part of a previous

Master’s thesis and were therefore discussed earlier in chapter 3.

4.2 PIXetPro software

The PIXetPro software [21] is used to capture the measured data. There are 2 mayor

types of operation. The frame type reads out all pixels at the end of exposure. The pixel

type reads continuously during exposure and only reads out the hit pixels. This project

uses the pixel type with the ToT+ToA mode. That means that for every hit pixel the

position, ToT, ToA and FToA are read out continuously [10]. This type and mode, which

is also called event-based, is chosen because it keeps pixels sensitive at all times [11], which

means that multiple events can be detected. The simultaneous reading of ToT and ToA

(including FToA) is important because both those values are needed in order to properly

reconstruct a Compton interaction.

4.2.1 Registering hit pixels

The output of a measurement using this type and mode is a .t3pa file. Figure 4.3 gives

an example of a part of such a file, which returns all the hit pixels in chronological order
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with a position parameter and multiple time parameters. The parameters ToA, ToT and

FToA were already explained in section 3.3. The other parameters are explained below.

Figure 4.3: Example of a .t3pa file

Index

This is the index of the hit pixel. This does not give useful information about the event

and will therefore be ignored.

Matrix index

The matrix index gives the location of the pixel in the detector. 0 → 255 is the first row.

The x-coordinate and y-coordinate can thus be calculated using equation 4.1.{
x-coordinate = remainder of the integer division of Matrix Index by 256

y-coordinate = integer division of Matrix Index by 256
(4.1)

Overflow

This lets the user know if overflow occurred. In this thesis, the overflow is always zero, so

this value can be ignored.

4.2.2 Clustering

In order to reconstruct the Compton interaction, the information of the .t3pa file has to

be clustered. This is done by grouping all hit pixels within 200 ns [3] of each other and

then dividing this group into clusters based on their location.

All the pixels in a single cluster have to be connected, either horizontally, vertically or

diagonally. Figure 4.4 gives a set of examples.

Another possible concern are so-called dead pixels. Those are pixels that are never reg-

istered as a hit pixel because their hardware is faulty. Something as simple as a bad

connection can cause a dead pixel. Because those pixels do not register, clusters which

contain one or more of those pixels are not reliable because they miss a part of the infor-

mation. To identify dead pixels, the detector was irradiated for 15 minutes with gamma

rays of 241Am with an activity of 0.42 MBq. This source was placed on top of the pro-

tective cover of the detector right above the sensor. Any pixels that had no counts are

considered dead pixels [3]. The PIXetPro software has been given a list of those dead pix-
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els. Clusters that (possibly) contain a dead pixel are therefore not listed by the PIXetPro

software and do not show up in the .clog file.

(a) (b) (c) (d) (e) (f)

Figure 4.4: Illustration of the clustering principle: a set of examples (a) No hit pixels
(b) Single hit (c) Cluster due to horizontal and vertical connection (d) Cluster due to
horizontal, vertical and diagonal connection (e) Two separated clusters (f) One cluster

due to diagonal connection

Figure 4.5 illustrates clusters that are not listed by the PIXetPro software because they

(possibly) contain dead pixels. The dead pixels are red. Figure 4.6 gives two examples

where the dead pixel effectuates that it is impossible to know if there is one or two

clusters. For that reason those hit pixels are also not listed in the .clog file. Figure 4.7

gives examples where clusters are registered because they are not directly connected to a

dead pixel. In 4.7c The upper cluster is listed while the lower cluster is not listed.

(a) (b) (c) (d)

Figure 4.5: Non-registered clusters because of (possible) dead pixels: a set of examples.
Some of those (possible) dead pixels are fully enclosed (a), while others might only be

connected at the sides (b and c) or at a single corner (d).

(a) (b)

Figure 4.6: Non-registered hit pixels belonging to one or two clusters: a set of examples
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(a) (b) (c)

Figure 4.7: Registered clusters: a set of examples

The different steps for clustering are all done by the PIXetPro software. The input for

this clustering process is a .t3pa file. The output is a .clog file. A part of such a file is

displayed in figure 4.8. Each file consists of different frames. Each frame consist of one or

more clusters. Each cluster consists of one or more pixels. A pixel consists of four values:

x-coordinate, y-coordinate, energy and extra time. The different elements of a frame are

indicated in figure 4.9. Figure 4.10 gives a summary of the conversion between .t3pa files

and .clog files. The conversion from ToA and FToA to extra time uses equation 4.2. The

arrival time is calculated using equation 3.1.

extra time = arrival timepixel - arrival timefirst pixel (4.2)

Figure 4.8: Example of a clog file with 7 illustrative frames that shows that the frames
can depict all kinds of different events: single events (frames 14, 15, 16, 18 and 20) as

well as multiple events (frames 17 and 19) are possible

Figure 4.9: Example of a frame consisting of a frame header, cluster 1 and cluster 2:
Each frame consists of different pixels and each pixel consists of x-coordinate,

y-coordinate, energy and extra time
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(a) Equation 4.1
(b) Equation 3.4
(c) Equation 4.2

Figure 4.10: Data conversion from a .t3pa file to a .clog file done by the PiXetPro
software [21] prior to the data processing done in this thesis

In a next step, the data from the .clog file is pre-processed so it can be easily used

afterwards. Chapter 5 describes this pre-processing.
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Chapter 5

Data pre-processing

This chapter describes how the information from a .clog file is processed for further cal-

culations. While the previous chapter 4 described calculations the PIXetPro software [21]

did, this chapter describes calculations that were implemented specifically for this thesis

using Python [22]. The important scripts and notebooks created for this thesis can be

found in the corresponding GitHub repository [23].

5.1 Converting text file to structured data

In order to translate a .clog file that contains a measurement into easily manipulable

data, a structured framework needs to be provided. This comes in the form of the class

Measurement. A .clog file is actually just a text file with a specified structure. This

specified structure allows for easy processing of the text file. The class Measurement

splits the text file into different Frames. Each frame consists of one or more Clusters

and each cluster consists of one or more Pixels. Each of those pixels has a x-coordinate,

y-coordinate, z-coordinate and energy. Figure 5.1 visualises the data structure.

Figure 5.1: Data structure



5.2 Rebuilding structured data

While the splitting from the text file into the different classes goes measurement → frame

→ cluster → pixel. The rebuilding goes pixel → cluster → frame → measurement.

5.2.1 Pixel

When everything is split, a conversion from the pixel data in .clog form to pixel data in

class form is performed. Figure 5.2 visualises this conversion.

(a) Equation 3.6

Figure 5.2: Conversion from .clog file to class Pixel

5.2.2 Cluster

To make a cluster, all the p pixels from this cluster are grouped together. The total energy

of the cluster is the sum of the energies of the pixels. The x-coordinate, y-coordinate and

z-coordinate are calculated in a weighted manner as shown in equation 5.1. The pixels

have a pixel pitch of 55 µm.



Ecluster =
p∑

i=1

Ei

xcluster =
55·

p∑
i=1

xi·Ei
2

p∑
i=1

Ei
2

ycluster =
55·

p∑
i=1

yi·Ei
2

p∑
i=1

Ei
2

zcluster =

p∑
i=1

zi·Ei
2

p∑
i=1

Ei
2

(5.1)

5.2.3 Frame

A measurement consists of a lot of frames. The total number of frames is referred to as f .

Most of those frames do not represent a Compton interaction. The goal is to select these

frames that do represent a Compton interaction. The rules for selecting those frames are

rather simple at first sight.

1. The frame must contain exactly two clusters.
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2. The total energy of the frame must lie between Emin and Emax.

In an ideal situation the total energy of the frame would be Eγ. In practice, the total

energy will deviate from the ideal value of Eγ. The parameter Re, also referred to as

energy range, determines how much the energy of the frame may deviate from the ideal

energy Eγ: Emin [kev] = Eγ [kev] − Re [kev] and Emax [kev] = Eγ [kev] + Re [kev]. In

chapter 9 a good value for Re will be determined in the case of 137Cs where Eγ = 662

keV.

Before selection based on these two criteria can be executed, correction for X-ray fluores-

cence (XRF) must be applied.

Correcting for XRF

XRF is the phenomenon where a γ ray excites an atom which leads to an XRF photon

being emitted. In this thesis, it is about internal fluorescence of the CdTe sensor which

means the γ ray excites a Cd atom or a Te atom. This emitted XRF photon is then

detected in an other pixel which can lead to a new cluster being formed with an energy

EXRF . This also means that the energy of the original cluster Eoriginal cluster is decreased

with EXRF . Therefore a correction for XRF has to be applied. This is implemented as

follows: If a frame with exactly 3 clusters has exactly one cluster with an energy below 40

keV then its energy is added to the the one cluster of the remaining two clusters that is

located closest to the XRF cluster. The XRF cluster is then removed from the list. This

results in a frame with two clusters.

In a frame that originally has two clusters, a cluster with an energy below 40 keV will

also be interpreted as an XRF cluster, which means that cluster does not represent a

Compton interaction. This leads to the definition of usable frames.

Usable frames

Every time a frame is constructed, a list of clusters is made and the total energy of those

clusters is calculated. Then the frame will be corrected if necessary. The last step is

checking if the (corrected) frame is usable. This means that the frame

1. has exactly two clusters,

2. has a total energy between Emin and Emax,

3. has no cluster with an energy below 40 keV.

The number of usable frames is referred to as uf .

5.2.4 Measurement

When ’rebuilding’ a measurement, the code will build every frame and add it to a list that

contains all the frames. In that same iteration, it will check if the frame is usable and if

so, will add it to the list of usable frames. It also has a function — that does not run

on initialisation — that calculates the axes and angles of the Compton cones for every

usable frame. This function will be discussed in section 5.3 .
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5.3 Compton processing

For every usable frame, the possible cones will be calculated. For this, the normalised

scatter axis u⃗ and opening angle θ are necessary. The opening angle is calculated using the

Compton equation (2.2). The normalised scatter axis u⃗ is calculated using equation 5.2.

[x0, y0, z0] are the coordinates of the first interaction, while [x1, y1, z1] are the coordinates

of the second interaction.

u⃗ =
[x0 − x1, y0 − y1, z0 − z1]√

(x0 − x1)2 + (y0 − y1)2 + (z0 − z1)2
(5.2)

Relation between twin cones

Some usable frames produce only one cone, while others produce two. When two cones

are created, these cones are called twin cones. This section takes a little detour to explore

the relation between twin cones. The equation that results in the opening angle of the

cones is equation (5.3), which is the same equation as 2.2 [4].

cos(θ) = 1−mec
2 Ee

Eγ(Eγ − Ee)
(5.3)

A cosine can only have a value between -1 and 1. To determine the associated energies

Ee that result in the cosine being -1 and 1, equation 5.3 is filled in and simplified. The

results are shown below.

−1 = 1−mec
2 Ee

Eγ(Eγ − Ee)
⇒ Ee =

2 · E2
γ

mec2 + 2 · Eγ

1 = 1−mec
2 Ee

Eγ(Eγ − Ee)
⇒ Ee = 0

To find the maximum energy for 137Cs, the symbols are substituted by their known values:

Eγ = 662 keV, mec
2 = 511 keV.

Ee =
2 · E2

γ

mec2 + 2 · Eγ

⇒ Ee =
2 · 6622

511 + 2 · 662
keV = 477.65 keV

While the minimum value for Ee is 0 keV according to these calculations, it was established

in 5.2.3 that the minimum value for a usable frames is 40 keV. This means that only frames

with energies between 40 keV and 477.65 keV result in a cone. When only one of the two

energies lie in that range, there is only one cone. When both energies lie in that range,

twin cones are formed.

Cones constructed from an energy of (662 - 477.65) keV = 184.35 keV have an opening

angle of 0.792 = 45.4°. This means that cones with an opening angle of 45.4° or lower are
single cone while cones with a greater opening angle have a twin cone.
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Figure 5.3a shows a single cone with an opening angle of 56.3°. Figure 5.3b illustrates

twin cones with an opening angle of 79.3° (blue) and 74.5° (red).

(a) Single cone with an opening angle of 36.9° (b) Twin Cones with opening angles of 79.3°
(blue) and 74.5° (red)

Figure 5.3: Difference in opening angle between a single cone and twin cones
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Chapter 6

Orientation and convention

This chapter describes the different orientations and conventions used in this thesis. The

main goal of this chapter is to be a guide to understand the rest of the thesis and the

implementation of the code.

6.1 Cartesian coordinate system

The orientation of the x, y and z-axis according to the convention of the detector is

illustrated in figure 6.1.

Figure 6.1: Orientation of x, y and z-axis according to detector convention

Figure 6.2 illustrates the new convention that is used in this thesis. This convention

makes sure that the point [1,0,0] is located right in front of the detector when ϕ = 0 and

τ = 0. The created coordinate system is a left-handed coordinate system. [1,0,0] is the

unit vector that describes the x-axis, [0,1,0] is the unit vector that describes the y-axis

and [0,0,1] is the unit vector that describes the z-axis.

When drawing the cones, the apex is always located at the middle of the sensor and not

at the location of the cluster that represents the first interaction. This introduces a small

error but makes computation significantly easier. The coordinate system is thus located

at the centre of the sensor as illustrated in figure 6.3.



Figure 6.2: Orientation of x, y and z-axis according to the thesis convention

Figure 6.3: Orientation of the axes in the centre according to the thesis convention

6.2 Axes of rotation and projection sphere

Figure 6.4 displays the ϕ-axis and τ -axis. The Compton camera will revolve around these

axes, following the right-hand rule, to carry out the measurements.

Figure 6.4: Orientation of ϕaxis and τ axis

The photo of the measurement setup (figure 6.5) gives a better understanding of how

these axes rotate. The photo illustrates that when there is a rotation about the τ -axis,

the ϕ-axis also rotates. However, when there is a rotation around the ϕ-axis, the τ -axis

does not rotate along.

46



Figure 6.5: Photo of the measurement setup

ϕ and τ are also used to create the projection sphere. In order to create a sphere ϕ ranges

from -π to π and τ ranges from -π
2
to π

2
. In order to draw the sphere in Python and

in order to calculate the intersections between the sphere and the cones, a conversion

from spherical coordinates to Cartesian coordinates has to be made. This is done using

equation 6.1.


x = r · sin(τ + π

2
) · cos(ϕ)

y = r · sin(τ + π
2
) · sin(ϕ)

z = r · cos(τ + π
2
)

with


τ in degrees

ϕ in degrees

r = 1

(6.1)

Figures 6.6, 6.7 and 6.8 illustrate the angular difference of each axis with the projection

sphere.

Figure 6.6: Angular difference of u⃗ = [1,0,0] with the projection sphere

Figure 6.7: Angular difference of u⃗ = [0,1,0] with the projection sphere
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Figure 6.8: Angular difference of u⃗ = [0,0,1] with the projection sphere

6.3 Alternative convention

An alternative convention could be to follow the model of a globe. This would mean that

θ ranges from -π to π and that ϕ ranges from -π
2
to π

2
.

The new convention for the Cartesian coordinate system would then be constructed in

such a way that the centre of the earth is the origin of the coordinate system, the x-

axis ’pierces’ Africa and that the North Pole and South Pole are located on the z-axis.

The position of the y-axis is then chosen so a right-handed coordinate system is created.

Figure 6.9 and figure 6.10 illustrate this.

Figure 6.9: Alternative convention for the Cartesian coordinate system

Figure 6.10: Alternative orientation of the coordinate system with the axes in the centre
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Chapter 7

Taking a look at the data

This chapter takes a closer look at the gathered data. The number of measurements is

referred to as n. There are 276 measurements in the used data set. Each of those has

a measurement time of 1 hour. Appendix A gives an overview of all the measurements:

ϕ ranges from -55° to 0° and τ ranges from -55° to 55°. The ’correct’ intersection point

according to the measurements will be referred to as Pm = [ϕm, τm]. The calculated point

of intersection will be referred to as Pc = [ϕc, τc].

Figure 7.1 visualises the number of frames for every measurement. The circular pattern

indicates that the number of frames is higher when Pm is closer to [0°,0°]. Figure 7.2

visualises the expected distribution. This figure was made using the absorption probability

in function of the incident angle. The code to create this figure used the xraylib library

[24]. The probability for every incident angle was then multiplied by the sum of the

number of frames for every incident angle divided by sum of the probability for every

incident angle. Comparing these two figures leads to the conclusion that the circular

pattern is indeed expected, but that the number of frames has a steeper decline than

expected.

Figure 7.1: Number of frames for every
measurement

Figure 7.2: Expected distribution of the
number of frames based on absorption

probability in function of the incident angle

The measurement with Pm = [−40°,−55°] does not fit in the pattern. There can be

several causes. One possibility is a equipment malfunction, but an other — probably



more likely — possibility is a change in environment. The measurement setup was set

up in a place that is accessible to other people and where other experiments are done.

It can be that an other person was passing by with another source, that a laser hit the

detector, or any other change in environment that happens when multiple people use the

same lab. Because this measurement can be labelled as an outlier, it could be excluded

from the measurements. Because it was only 1 of 276 measurements and the results of

that measurement were in line with the other measurements, the measurement was not

excluded from the data.

Figure 7.3 visualises the number of usable frames for every measurement for Re = 30 keV.

Two things can be observed: first, there is no circular pattern as there was in figure 7.1

which means there is no directly proportional relationship between the number of frames

and the number of usable frames and second, there are more usable frames for theta in

range [30°,35°]. This figure does not have a clear pattern as was the case for figure 7.1.

That is because only one hit is not enough, but a complete Compton interaction has to be

recorded. The mathematics that predict the pattern of which angles will have the most

usable frames are very complex. Therefore, further analysis of this figure is not a part of

the scope of this thesis.

Figure 7.4 visualises the number of cones that intersect in Pc for Re = 30 keV and σ = 2°
for simple addition for every measurement. Although this figure is not exactly the same

as figure 7.3, the same patterns can be found. This is logical as more usable frames lead

to more cones which in turn leads to more cones that can and will intersect.

Figure 7.3: Number of usable frames for
every measurement (Re = 30 keV)

Figure 7.4: Number of cones intersecting in
Pc for every measurement for simple

addition with Re = 30 keV and σ = 2°

Comparing figure 7.1 and figure 7.3 illustrates that only a small number of frames are

considered usable frames. The percentage of frames considered usable frames is referred

to as uf% The average percentage for all n measurements of frames used is calculated

using equation 7.1. This results in 0.479% for Re = 30 keV and 0.572% for Re = 35 keV.

uf%n =
1

n

n∑
i=1

ufn
fn

(7.1)

The next step is analysing the number of cones that intersect in Pc, referred to as ic.
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It is important to remember that a cone not just ’intersects or not intersects’. Every

cone has a value between 0 and 1 for for Pc and not every usable frame creates a cone

that intersects in Pc. Taking every measurement into account, the average percentage of

frames that result in a cone that intersect in Pc, referred to as ic%, can be calculated

using equation 7.2.

ic%n =
1

n

n∑
i=1

icn
fn

(7.2)

That results in ic%n = 0.126% for simple addition with Re = 30 keV and σ = 2°. That

also means that for simple addition with Re = 30 keV and σ = 2°, 0.126/0.479 = 26,3%

of the usable frames result in a cone that intersects in Pc.
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Chapter 8

Back-projection

While section 2.3 visualises back-projection using a projection plane, in this thesis a pro-

jection sphere is used. Because the source is always the same distance from the detector,

it is logical to have a projection surface that is also always the same distance from the

detector. The distance from the detector to the source is 30 cm. This would mean that a

sphere with a radius of 30 cm is needed. However, because the distance is already known,

the position is fully defined using the angles ϕ and τ . Therefore the radius of the sphere

is irrelevant. To simplify further calculations, a unit sphere will be used.

Figure 8.1 illustrates the concept. Each cone is reconstructed based on the data from

one Compton event (see section 2.3). To keep the figure clear, only single cones are used.

Every cone intersects with the projection sphere, resulting in a circle. All these circles —

and thus also the cones — intersect in one point on the sphere. The angles ϕc and τc that

correspond with that point are the points that define Pc. In this example, all the cones

neatly intersect in one point. This will not be the case with real data. Because it is not

practical to use a 3D sphere for calculations, the sphere will be displayed as a 2D map,

very similar as to how a globe unfolds into a world map. This also means that while the

intersection of a cone with the sphere is a circle in 3D space, it will not always look like

a sphere on a 2D map.

Figure 8.1: Back-projection using a projection sphere



8.1 Preparing for back-projection

8.1.1 Creating the projection sphere

The unit sphere will be parameterised using the angles ϕ and τ . It is discretised with

a resolution aS [°]. The sphere is defined using equation 8.1. The reasoning behind this

equation is explained in chapter 6. To create a full sphere ϕ needs to range from −π to π

and τ from −π
2

to π
2
. aS defines how many values there are for ϕ and τ using equation 8.2.

A unit sphere with aS = 1° therefore has 361 values for ϕ and 181 values for τ . For every

combination of ϕ and τ there is a x, y and z-value. That means the sphere is defined as

a 3D matrix of 3 rows, 181 columns and 361 layers. In order to later use this sphere in

matrix multiplication, the sphere has to be unravelled into a 2D matrix of 3 rows (x, y

and z) and 181 x 361 = 65341 columns. This 2D matrix will be referred to as S. For

the purpose of illustration, a unit sphere with aS = 60° is assumed. This leads to a 3D

matrix of 3 rows, 4 columns and 7 layers as illustrated in figure 8.2. Figure 8.3 illustrates

the unravelled version with 3 rows and 28 columns.


xsphere = sin(τ) + π

2
· cos(ϕ)

ysphere = sin(τ) + π
2
· sin(ϕ)

zsphere = cos(τ + π
2
)

(8.1)

{
number of ϕ values = 360

aS
+ 1

number of τ values = 180
aS

+ 1
(8.2)

Figure 8.2: The values of the discretised projection sphere as a 3D matrix
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Figure 8.3: The values of the unravelled sphere S as a 2D matrix

8.2 Creating a single back-projection

8.2.1 Calculating the angular difference

The angle between a point on the sphere and the cone axis u⃗ is defined as δaxis. This value

can be calculated for every single point on the sphere — meaning for every combination

of ϕ and τ — using equation 8.3. This can be visualised by creating a map where ϕ varies

horizontally and τ vertically. Figure 8.4 illustrates this with u⃗ = [1,0,0]. This can be

interpreted as a cone with u⃗ = [1,0,0] and θ = 0°.

δaxis [°] = arccos(u⃗ · S) · 180°
π

(8.3)

Figure 8.4: 2D map of the angular difference for a cone with u⃗ = [1,0,0] and θ = 0°

To construct a 2D map for a cone with θ > 0°, the difference of δaxis and θ, defined as

δtotal, has to be calculated using equation 8.4. This results in figure 8.5.

δtotal [°] = δaxis [°] - θ [°] (8.4)

Although figure 8.5 is correct, it is not very easy to interpret. To improve visualisation,

the colours need to be shifted so that dark blue represent 0 again. This is achieved by

taking the absolute value of δtotal, referred to as δtotal,abs, using equation 8.5. Figure 8.6

visualises the result. This figure with the dark blue circle — which is the projection of

the cone — is significantly easier to interpret than figure 8.5.
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Figure 8.5: 2D map of the angular difference for a cone with u⃗ = [1,0,0] and θ = 45°

δtotal,abs [°] = |δaxis [°]− θ [°]| (8.5)

Figure 8.6: 2D map of the absolute angular difference for a cone with u⃗ = [1,0,0] and θ
= 45°

8.2.2 Introducing a threshold

To highlight the shape of the projection of the cone, a threshold t can be introduced so

that everything beneath that threshold is marked as 1 and everything above that threshold

as 0. This leads to equation 8.6. The result of this equation is referred to as δt. In a first

example, t = 1°. That means that every point with δtotal,abs > 1° is set to 0 and every

point with δtotal,abs ≤ 1° is set to 1. This results in figure 8.7a. A small t results in a thin

circle. This results in the most precise projection, but difficulties might arise later on

when the intersection between projections has to be found, because the margin for error

is small. A bigger t solves this problem. This results in figure 8.7b where t = 5°.

{
δt = 0 if δtotal,abs > t

δt = 1 if δtotal,abs ≤ t
(8.6)

While this approach succeeds in making the circle thicker and thus having a bigger margin

of error, it treats all the points of the ’circle’ as ’equally good’ while the points that

’survive’ a lower t are actually ’better’ than the ones only surviving a bigger t. This

problem can be solved by not simply assigning 1 to the values smaller than t, but by
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(a) (b)

Figure 8.7: 2D map of the threshold function of the angular difference as defined in
equation 8.6 for a cone with u⃗ = [1,0,0], θ = 45° and (a) t = 1° (b) t = 5°

assigning values according to a linear gradient using equation 8.7. The result is referred

to as δt,linear.

{
δt,linear = 0 if δtotal,abs > t

δt,linear =
t - value

t
if δtotal,abs ≤ t

(8.7)

Figure 8.8: 2D map of the linear threshold function of the angular difference as defined
in equation 8.7 for a cone with u⃗ = [1,0,0], θ = 45° and t = 8°

8.2.3 Introducing the Gaussian equation

The Gaussian equation

A Gaussian equation is an equation of the form:

f(x) = a · e
(
− (x−b)2

2·c2

)
with real constants a, b and non-zero c. (8.8)

Figure 8.9 visualises the graph of a Gaussian equation. It is shaped like a symmetric bell

curve. The parameters a, b and c define the shape of that bell curve. Parameter a defines

the height of the peak, parameter b defines the position of the centre of the peak and

parameter c defines the width of the peak. Parameter c is also known as the standard

deviation and will from now on be represented by the letter σ.
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Figure 8.9: Graph of a Gaussian function with a = 1, b = 60 and c = σ = 10

Applying the Gaussian equation

Instead of the linear threshold equation defined in 8.7, a Gaussian equation can be applied

to highlight the projection of the cone. Equation 8.9 calculates the Gaussian difference

δg. To do this, the general parameters a, b, c and and the variable x have to be replaced

by their specific counterparts. This means that x = δaxis and b = θ. These parameters

are fixed for a certain cone. The choice for parameter a is not very relevant because the

comparison will always be relative. Therefore, a = 1. The parameter c, which is already

defined as the standard deviation σ, can be varied in order to get a smaller or wider peak

which results in a thinner or thicker back-projection that in turn results in a smaller or

larger margin of error when calculating the intersection of cone projections. Figure 8.10

displays the 2D map of the Gaussian difference of a cone with u⃗ = [1,0,0], θ = 45° and σ

= 3. This figure is similar to figure 8.8. To give better insight into the differences, figure

8.11 compares the descent of the two.

δg = e
−|δaxis - θ|2

2·σ2 (8.9)

Figure 8.10: 2D map of the Gaussian difference for a cone with u⃗ = [1,0,0], θ = 45° and
σ = 3°

Mathematically, δg always lies within the range ]0,1]. However, when calculating δg in

Python, the range is [0,1]. A point that is located exactly on the back-projection of the

cone will result in e
−|0|2

2·32 = e0 = 1. A point that is located far from the back-projection,

for example 135°, will result in e
−|135|2

2·32 = e−1800 = 1.86 · 10−782. Because Python cannot

handle numbers that small, it rounds 1.86·10−782 to 0, even though ex can mathematically

never be 0. In this explanation, σ = 3° was assumed.
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(a) (b)

Figure 8.11: Difference in descent for (a) δt,linear with t = 9° and (b) δg with σ = 3°

8.2.4 Example for u⃗ ̸= [1,0,0]

The previous examples all used u⃗ = [1,0,0] and θ = 45° because this results in a clear

’round’ figure that is easy for explanation. Because not all back-projections have the same

shape, figure 8.12a illustrates the Gaussian difference for a cone with u⃗ = [0.5857, 0.7095,

0.3919], θ = 100° and σ = 3° and figure 8.12b for a cone with u⃗ = [0.3873, -0.6708, -0.6325],

θ = 30° and σ = 10°. This illustrates that back-projections can have very different shapes

than the one used in all the previous examples, while also illustrating the impact of σ:

figure 8.12b with σ = 10° displays a significantly thicker back-projection than figure 8.12a

with σ = 3°.

(a) (b)

Figure 8.12: 2D map of the Gaussian difference for a cone with (a) u⃗ = [0.5857, 0.7095,
0.3919], θ = 100° and σ = 3° and (b) u⃗ = [0.3873, -0.6708, -0.6325], θ = 30° and σ = 10°

This section illustrated different methods of creating a 2D map, starting from calculating

just the angular difference, through threshold equations all the way up to the Gaussian

implementation. From this point on, all the calculations will be done with the 2D maps

created with the Gaussian implementation, unless mentioned otherwise.

8.3 Sum of back-projections

In order to determine the angles ϕ and τ that define the position of the source, the

point where the different back-projections intersect has to be calculated. This is done
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by adding up the different 2D maps and locating the point with the highest value. The

angular difference between Pm and Pc will be referred to as εa [°] and is calculated using

equation 8.12, which uses equation 8.10 and equation 8.11. In the equations below, all

the angles are in rad because that is easier for the calculations, but when discussing εa,

degrees is used. Degrees can be easily transformed in rad and the other way around

because 1 rad = 180
π

°.


xm = sin (τm + π

2
) · cos (ϕm)

ym = sin (τm + π
2
) · sin (ϕm)

zm = cos (τm + π
2
)

with

{
τm in rad

ϕm in rad
(8.10)


xc = sin (τc +

π
2
) · cos (ϕc)

yc = sin (τc +
π
2
) · sin (ϕc)

zc = cos (τc +
π
2
)

with

{
τc in rad

ϕc in rad
(8.11)

εa = [xc, yc, zc] · [xm, ym, zm] with εa in rad (8.12)

8.3.1 Simple addition

A first option is to interpret twin cones simply as two different cones and making a 2D

map for each one of the cones. Then all these maps are added up. This is what is called

’simple addition’.

8.3.2 Twin addition

A different option is to keep twin cones together and to make 1 2D map for every pair

of twin cones — a single cone still has its own map. This is called ’twin addition’. The

map for twin cones is not made by simply adding the 2D maps for every cone as this

would give the same result as simple addition. Instead, the maximum is taken for every

point. This is done because it prevents points of the wrong cone being taken into account

where possible. Because the value for one of the cones is 0 for most of the points, this

will not make a significant difference for every point. Only when the two back-projections

are close to each other this will make a difference. The results in chapter 9 illustrate that

this new method does indeed give better results than simple addition.

8.3.3 Example with artificial data

Table 8.1 gives an overview of artificial cones defined by their normalised scatter axis u⃗

and opening angle θ. The correct value for this set of cones is P = [153°,−3°]. The table

consists of 3 pairs of twin cones. Cone a is the correct cone, while cone b is the incorrect

twin cone. Figure 8.13 illustrates the sum of the back-projections of the correct cones,

Pc = [153°,−3°]. Figure 8.14 illustrates the sum of the back-projections of the incorrect

twin cones, Pc = [164°,−12°]. Figure 8.15 illustrates the sum of all the back-projections,

correct and incorrect ones, Pc = [153°,−3°]. The three figures illustrate two things. First,

simple addition and twin addition give the same results in this case — on a small amount
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of artificial data. Second, the sum of back-projections of correct and incorrect cones give

different results, but when both are combined, the result is the same as the one with only

the correct cones. This is because the correct cones intersect neatly in 1 point, while the

incorrect twin cones did not. This is corroborated by the values of the colour scale.

Table 8.1: Normalised scatter axes u⃗ and opening angles θ of the selected cones

Cone u⃗ θ [°]

1a [0.5857, 0.7095, 0.3919] 100.2363

1b [-0.5857, -0.7095, -0.3919] 60.3912

2a [0.4525, -0.8914, -0.0258] 144.2232

2b [-0.4525, 0.8914, 0.0258] 47.8521

3a [0.395, -0.0935, -0.9139] 115.6897

3b [-0.395, 0.0935, 0.9139] 54.2429

(a) Simple addition, Pc = [153°,−3°] (b) Twin addition, Pc = [153°,−3°]

Figure 8.13: Sum of back-projections of correct cones using (a) simple addition and (b)
twin addition

(a) Simple addition, Pc = [164°,−12°] (b) Twin addition, Pc = [164°,−12°]

Figure 8.14: Sum of back-projections of incorrect cones using (a) simple addition and
(b) twin addition
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(a) Simple addition, Pc = [153°,−3°] (b) Twin addition, Pc = [153°,−3°]

Figure 8.15: Sum of back-projections of correct and incorrect cones using (a) simple
addition and (b) twin addition

8.3.4 Example with real data

The previous example used few and artificial data. There were 3 frames which resulted

in 6 cones. This example uses the measurement with Pm = [−15.3°,−4.95°] and Re = 30

keV. The measurement has 3282 usable frames which results in 6069 cones. Figure 8.16

compares the sum of back-projections using simple addition in 8.16a with Pc = [−14°,−5°]
and twin addition in 8.16b with Pc = [−15°,−5°]. While the two figures might seem

identical, the values for Pc illustrate that there is a small but significant difference, which

results in twin addition having a slightly better result because simple addition εa = 1.296°
and for twin addition εa = 0.303°.

(a) Simple addition, Pc = [− 14°,−5°] (b) Twin addition, Pc = [− 15°,−5°]

Figure 8.16: Sum of back-projections of a real measurement with Pm = [−15.3°,−4.95°]
using (a) simple addition and (b) twin addition

8.4 Multiplication of back-projections

In 8.3 all the different back-projections are added up. That can be translated as looking

for a point that is located on this cone or that cone or that cone. Pc should actually be

the point that is located on this cone and that cone and that cone. That would result

in multiplication instead of addition.

8.4.1 Simple multiplication

Simply making a back-projection for every cone and multiplying them instead of adding

them, would not give a usable result. There are two reasons: incorrect cones and small
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numbers. The first problem will be explained and solved in the following paragraphs. The

second problem will be solved in section 8.4.3.

Incorrect cones

The creation of a 2D map results in every point having a value between 0 and 1. However,

the vast majority of the points will have a value of 0. Making a separate 2D map for every

single cone also means that every single incorrect twin cone will get its own map. Because

Pc is probably a 0 on that map — or at least at one of the maps of incorrect twin cones

— the outcome for that point will always be 0, because at some point it gets multiplied

by zero. This method results in a figure where every value is 0. Figure 8.17 illustrates

this. The cones from table 8.1 were used for this figure.

Figure 8.17: Simple multiplication of 2D maps of the cones defined in table 8.1

8.4.2 Twin multiplication

The problem about the back-projections of incorrect twin cones can be solved by using

the same method as in twin addition. By keeping the twin cones together and taking the

maximum value of the back-projections for each point to create the map, there should be

no map where Pc is not located on the back-projection. Therefore, multiplication of the

created 2D maps should result in a 2D map where the value for Pc is not 0. For the cones

defined in table 8.1, this results in figure 8.18.

Figure 8.18: Twin multiplication of 2D maps of the cones defined in table 8.1,
Pc = [153°,−3°]

However, this figure was made with few cones and artificial data. Applying the same

principle on real data, does not yield usable results. Figure 8.19, made with the axes
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and angles of the measurement with Pm = [-5.40°,-4.95°] and Re = 30 keV, illustrates the

steps taken when doing twin multiplication. Subfigure (1) illustrates the back-projection

for the first usable frame. Subfigure (2) visualises the multiplication of the (1) with the

back-projection of the second usable frame. Subfigure (3) visualises the multiplication of

(2) with the back-projection of the third usable frame. This process repeats until there

are 15 figures. Subfigures (1) to (3) illustrate the progression that might be expected. The

progression from (3) to (4) is not what is expected. Pc of (4) is not close to Pc of subfigure

(3). Taking a closer look at the legend also reveals that the maximum value is significantly

lower. This means that the back-projection of the cone of usable frame 4 is probably not

close to the previous back-projections. This results in a very low maximum value. The

same thing — the maximum value lowering by a significant amount — happens again

in other subfigures. This goes on until the maximum value becomes so low that Python

cannot handle it. At that moment every point gets the value 0 and Pc = [-180°,90°]. To

solve this problem, very small numbers have to be avoided. A solution is presented in

section 8.4.3.
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(1) Pc = [14°, 4°] (2) Pc = [34°, 5°] (3) Pc = [− 84°,−12°]

(4) Pc = [− 113°, 7°] (5) Pc = [− 78°, 9°] (6) Pc = [− 78°, 9°]

(7) Pc = [− 14°, 15°] (8) Pc = [− 15°, 15°] (9) Pc = [− 17°, 13°]

(10) Pc = [− 19°, 12°] (11) Pc = [− 19°, 11°] (12) Pc = [− 16°, 20°]

(13) Pc = [− 15°, 21°] (14) Pc = [− 180°, 90°] (15) Pc = [− 180°, 90°]

Figure 8.19: Step-by-step illustration of twin multiplication, Pm = [−5.4°,−4.95°]

8.4.3 Adjusting the creation of a single back-projection

In order to solve the problem explained in the previous paragraph, the original method for

making a single back-projection (see section 8.2) must be changed. That new method will

be referred to as δm. The original method resulted in values in range ]0,1]. That meant

each multiplication ended in a smaller value — except for 1, then the value remained the

same. To avoid the value getting smaller each time, it is necessary that the absolute value

of δm is greater than 1 (most of the time). There are different ways to solve that problem.

A simple method could be to just do δm = δg + 1. That meets the requirement of —δm—

being greater than 1, but upon testing it does not work because it quickly results in the

values being to big (and thus becoming inf in Python) because of the multiplication of all

the 2D maps. For the number of usable frames in our measurements, this could be solved

65



by doing δm = 1 + δg
100

.

However, a better option is to take the natural logarithm of δg (see equation 8.13). Besides

producing numbers whose absolute value is greater than 1 (in most cases), it provides two

other advantages. First, the natural logarithm is the inverse of the exponential function,

which means they cancel each other out (see equation 8.14). Second, by taking the

natural logarithm the multiplication of 2D maps changes into addition because ln(a · b) =
ln(a) + ln(b).

δm = ln(δg) = ln(e
−|δaxis - θ|2

2·σ2 ) (8.13)

δm =
−|δaxis - θ|2

2 · σ2
(8.14)

To illustrate the differences between the original method of making a single back-projection

and the new method, the results of the two methods are put side by side in figure 8.20.

Figure 8.20a gives the result of a back-projection using equation 8.9, which is the same

figure as figure 8.10. Figure 8.20b gives the result of a back-projection using equation

8.14.

(a) (b)

Figure 8.20: The difference between calculating a 2D map for a single back-projection
with u⃗ = [1,0,0], θ = 45° and σ = 3 using (a) δg and (b) δm

The back-projection in 8.20a is very clear, while the back-projection in 8.20b is still

visible, but significantly less clear. Putting their gradients side by side (8.21) explains

this observation. The gradient of 8.21a is in the range ]0,1] and thus has a ’natural’

cut-off value. The gradient of 8.21b is in the range ]-∞,0] and does not have a natural

(or imposed) cut-off value.

To improve the clarity of a single back-projection using δm, a cut-off value, referred to

as vc can be imposed. Equation 8.15 defines δm with a cut-off value, referred to as δm,c.

Figure 8.22 displays the result of δm,c with σ = 3 for vc = 0.05 (figure 8.22a) and vc =

0.0001 (figure 8.22b) and in doing so illustrates the impact of vc. vc here determines the

width of the back-projection in a very similar way as σ did in 8.2.

{
δm,c = δm if δm ≤ ln(vc)

δm,c = ln(vc) if δm ≥ ln(vc)
(8.15)
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(a) (b)

Figure 8.21: Difference in descent for (a) δg with σ = 3 and (b) δm with σ = 3

(a) (b)

Figure 8.22: 2D map of δm,c for a cone with u⃗ = [1,0,0], θ = 45°, σ = 3° and (a) cv =
0.05 (b) cv = 0.0001

Figure 8.23 displays the gradients of δm,c in function of δtotal,abs for different values of cv.

Figure 8.23a is the gradient that belongs to 8.22a where vc = 0.05 and Figure 8.23b is the

gradient that belongs to 8.22b where vc = 0.0001. These gradients can be confirmed by

simple calculations: ln(0.05) = -3.0 and ln(0.0001) = -9.2.

(a) (b)

Figure 8.23: Difference in descent for δm,c with σ = 3 and (a) cv = 0.05 (b) cv = 0.0001
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Example with real data

This example uses the same measurement as for the example of addition, Pm = [−15.3°,−4.95°]
and Re = 30 keV. Figure 8.24 visualises the result for σ = 3 and vc = 0. This is the same

as not applying a cut-off value because ln(0) = −∞. Figure 8.25 visualises the result

for σ = 3 and (a) vc = 0.05, (b) vc = 0.0001. These figures illustrates that using a

cut-off value results in better accuracy because εa = 3.424° for vc = 0 and εa = 0.303° for
vc = 0.05 and vc = 0.0001. Chapter 9 researches what a good value is for vc

Figure 8.24: Multiplication of back-projections of a real measurement with Pm =
[-15.3°,-4.95°] with σ = 3 and vc = 0 that results in Pc = [−12°,−4°]

(a) (b)

Figure 8.25: Multiplication of back-projections of a real measurement with Pm =
[-15.3°,-4.95°] with σ = 3° and (a) vc = 0.05 that results in Pc = [−15°,−5°], (b) vc =

0.001 that results in Pc = [−15°,−5°]

Twin multiplication with the use of a cut-off value will from now on be referred to as

simply ’multiplication’.

8.5 Zooming in to decrease computing time

To have an idea about the computation time for the different methods, a comparison

was performed. For every method (simple addition with Re = 30 keV and σ = 3°, twin
addition with Re = 30 keV and σ = 3° and multiplication with Re = 30 keV, σ = 3° and vc
= 0.05) the processing time was calculated for the measurement with Pm = [-15.3°,-4.95°]
It is important to note that the process time only measured the time to actually calculate

Pc, starting with the angles, axes and unravelled sphere already calculated. In order to

get accurate time readings, the function time.process time() is used as to not include the

time the computer is busy doing other tasks. A first time doing these calculations, which
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existed of calculating the processing time 5 different times and then taking the average,

resulted in the average time being 98 s for simple addition, 98 s for twin addition and

99 s for multiplication. On a different day, this resulted in the average time being 78

s for simple addition, 79 s for twin addition and 78 s for multiplication. This shows

that the calculation time is still heavily subject to fluctuations even though the function

time.process time() was used. The fluctuations are due to the fact that timing can never

really be guaranteed in a real computer. That is because the state of the computer is

never the same. Many things can differ: certain bytes still being in the cache, the python

script getting 2 x 15 ms instead of 1 x 30 ms, the temperature of the CPU being too

high, ... That means that the exact calculation times are not that important but that

the ratio of the calculation times calculated at roughly the same moment is important.

Therefore, it can be concluded that the difference in computing time between the three

different implementations is insignificant. To speed up the process of calculating Pc, a

zoom function is implemented. The sections below explain the implementation and give

an example. The results can be found in chapter 9.

8.5.1 Implementation

Zooming starts with aS = aS,orig and ends with aS = aS,new. It is implemented by first

doing a back-projection with a sphere with accuracy aS,orig which results in a figure of

( 180
aS,orig

+1) by ( 360
aS,orig

+1) . Then Pc is calculated for that figure. The next step is making

part of a sphere that is located around Pc as a raster. This square raster has a size of

(2 · aS,orig
aS,new

+ 1) by 2(·aS,orig
aS,new

+ 1). For every point in the raster, a back-projection is done.

Figure 8.26 illustrates the concept with aS,orig = 5° and aS,new = 1°. The numbers in blue

in the figure are ϕfig and τfig. The numbers in black are ϕdiff and τdiff . Subsequently,

Pc is calculated using equation 8.17 which in turn uses equation 8.16.

Figure 8.26: Illustration of the zoom function
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ϕdiff =
(
ϕfig − aS,orig

aS,new

)
· aS,new

τdiff =
(
τfig − aS,orig

aS,new

)
· aS,new

(8.16)

{
ϕnew = ϕc − ϕdiff

τnew = τc − τdiff
(8.17)

Two things should be noted. First, it is possible to zoom in more than once and make

it an iterative process. Second, there is no loss of accuracy when results are calculated

using the zoom implementation compared to immediately calculating the results with an

accuracy of aS,new.

8.5.2 Example

This subsection uses an example to illustrate the results of the previous subsection. Like in

the previous subsection, back-projection with simple addition is used. The measurement

with Pm = [−15.3°,−4.95°] is used for this example with Re = 30 keV and σ = 2°.

On the one hand, a back-projection with aS = 10° is made. This results in figure 8.27a,

then the zoom function is used to bring the accuracy to aS = 1°. This results in figure

8.27b. On the other hand, a back-projection with an angle accuracy of 1° is made. This

results in figure 8.28a. Figure 8.28b literally zooms in to display only part of figure 8.28a.

Comparing figure 8.28b to figure 8.27b illustrates that starting with a lower accuracy

(which means a higher value for aS) and then using the zoom function results in exactly

the same figure as literally zooming in on the figure made with the higher accuracy (which

means a lower value for aS).

(a) (b)

Figure 8.27: Illustration of the zoom function applied on a real measurement starting
from (a) aS = 10° to (b) aS = 1°
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(a) (b)

Figure 8.28: Illustration of (a) the back-projection of a real measurement using simple
addition with aS = 1° and (b) a part of that same back-projection zoomed in on the

area around Pc
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Chapter 9

Results and discussion

This chapter discusses the achieved results using the methods from chapter 8. For all

the methods there were certain parameters that can be varied. This chapter gives an

overview of the different results. For the tables that discuss the angular error εa, there

are always two tables: one has the values of the mean angular error εa while the other

has the values of the root-mean-square angular error RMS(εa). While the tables with

εa give the parameter values that give the lowest εa, the tables with RMS(εa) are also

important because they filter out the bigger angular errors. That might be important if

small errors are not really a problem because there is an extra safety margin. However

this safety margin might not be big enough to compensate for larger errors. There will

be no exact results about what ’the best’ values are for certain parameters is, because

the choice for certain methods and parameter values can differ between different projects.

Some projects might focus on obtaining the smallest angular error possible, while others

might want to minimise measurement time or processing time. For every table in this

chapter aS = 1°. That means that even if everything worked perfectly and there were no

uncertainties, there would still be an error because most of the values for ϕm and τm are

not integers. If for every measurement ϕc and τc were the integers closest to ϕm and τm,

then εa would be 0.290°.

9.1 Simple addition

The 2 parameters that can be varied for simple addition are Re and σ. This results in

tables 9.1 and 9.2. The best results are εa = 1.414° with Re = 30 keV and σ = 2° and
RMS(εa) = 1.632° with Re = 35 keV and σ = 2°.

Table 9.1: εa for different values of σ and Re for simple addition

εa [°] Re [keV]
25 30 35 40 45

1 1.930 1.825 1.780 1.836 1.818

2 1.518 1.414 1.419 1.450 1.477
σ [°] 3 1.532 1.534 1.593 1.608 1.663

4 1.726 1.756 1.855
5 1.950 2.042 2.122



Table 9.2: RMS(εa) for different values of σ and Re for simple addition

RMS(εa) [°] Re [keV]
25 30 35 40 45

1 2.211 2.145 2.022 2.128 2.079

2 1.767 1.653 1.632 1.658 1.733
σ [°] 3 1.759 1.762 1.823 1.833 1.918

4 2.003 2.039 2.150
5 2.290 2.404 2.502

9.2 Twin addition

The 2 parameters that can be varied for twin addition are Re and σ. This results in tables

9.3 and 9.4. The best results are εa = 1.340° with Re = 30 keV and σ = 3° and RMS(εa)

= 1.537° with Re = 30 keV and σ = 3°.

Table 9.3: εa for different values of σ and Re for twin addition

εa [°] Re [keV]
25 30 35 40

σ [°]

1 1.873 1.746 1.787 1.765
2 1.428 1.365 1.373 1.369

3 1.378 1.340 1.351 1.416
4 1.462 1.476 1.559

Table 9.4: RMS(εa) for different values of σ and Re for twin addition

RMS(εa) [°] Re [keV]
25 30 35 40

σ [°]

1 2.138 2.019 2.043 2.032
2 1.640 1.557 1.562 1.563

3 1.577 1.537 1.553 1.606
4 1.688 1.702 1.786

9.3 Multiplication

The 3 parameters can be varied for multiplication are Re, σ and vc. The first calculations

vary Re, σ and have a fixed vc = 0.05. This results in tables 9.5 and 9.6. The best results

are εa = 1.332° with Re = 30 keV and σ = 2° and RMS(εa) = 1.520° with Re = 30 keV

and σ = 2°.

Table 9.5: εa for different values of σ and Re with vc = 0.05 for multiplication

εa [°] Re [keV]
25 30 35 40

1 1.768 1.670 1.664 1.705

σ [°] 2 1.424 1.332 1.339 1.374
3 1.501 1.533 1.583 1.615
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Table 9.6: RMS(εa) for different values of σ and Re with vc = 0.05 for multiplication

RMS(εa) [°] Re [keV]
25 30 35 40

1 2.020 1.906 1.819 1.969

σ [°] 2 1.613 1.520 1.542 1.560
3 1.728 1.764 1.812 1.847

The next parameter that needs to be inspected is vc. Because εa and RMS(εa) for Re =

30 and Re = 35 with σ = 2 where close to each other, the choice is made to calculate

the εa and RMS(εa) for Re = 30 keV and Re = 35 keV with varying values for parameter

vc and fixed σ = 2. This results in tables 9.7 and 9.8. The best results are εa = 1.332°
with Re = 30 keV and vc = 0.05 and RMS(εa) = 1.520° with Re = 30 keV and vc = 0.05.

Combining the results from table 9.5, 9.6, 9.7 and 9.8 leads to the parameter values being

Re = 30 keV, σ = 2° and vc = 0.05 to get the best results for εa and RMS(εa).

Table 9.7: εa for different values of Re and vc with σ = 2° for multiplication

εa [°] Re [keV]
30 35

0 11.044 11.238
0.0001 1.700 1.724
0.01 1.421 1.405

vc 0.03 1.370 1.333

0.05 1.332 1.339
0.07 1.370 1.357
0.1 1.396 1.344

Table 9.8: RMS(εa) for different values of Re and vc with σ = 2° for multiplication

RMS(εa) [°] Re [keV]
30 35

0 11.938 12.095
0.0001 1.934 1.992
0.01 1.610 1.589

vc 0.03 1.562 1.531

0.05 1.520 1.542
0.07 1.559 1.557
0.1 1.588 1.534

9.4 Validating the values for Re

Figure 9.1 displays the energy spectrum of the measurement with Pm = [−20.25°,−50.40°].
The histogram is in the range [10, 1000] and has 300 bins. Number 1 is the XRF peak

(see 5.2.3), number 2 is the Pb X-ray peak, number 3 is the back-scatter peak, number

4 is the Compton edge and number 5 is where full absorption of 137Cs takes place. The

important part for this research is number 5.

75



Figure 9.1: Energy spectrum of a real measurement with the different peaks and edges
indicated

Figure 9.2 zooms in on the last peak. This is the part of the spectrum where the Compton

interactions can be found. The peak is located around 700 keV, therefore all the frames

with an energy between 600 keV and 800 keV are used to make this figure. Calculating

the mean and standard deviation results in mean = 686.7 keV and standard deviation

= 24.3 keV. The full width at half maximum (FWHM) is then calculated using equation

9.1. This results in FWHM = 57.3 keV. This value confirms that 30 keV (or 35 keV) is

an acceptable value for Re.

FWHM [keV] = 2 · σ[keV] ·
√
2 · ln 2 (9.1)

Figure 9.2: Energy spectrum of a real measurement zoomed in on the peak where full
absorption of 137Cs takes place
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9.5 Zoom

The zoom function, explained in 8.5, was tested using the measurement with Pm =

[−15.3°,−4.95°] using simple addition with Re = 30 keV and σ = 2°. Table 9.9 lists the

tested zoom sequences and their process time. The process time was calculated in the

same way as in section 8.5. The process time for each zoom sequence was measured 4

times and then the average was calculated. As established in section 8.5, the exact times

are not important but the ratio is.

Table 9.9: Process time for different zoom sequences

Zoom sequence Process time (s) Ratio
1° 73.3789 100

5° → 1° 0.8867 1.21
10° → 1° 0.5430 0.74
20° → 1° 0.6289 0.86

20° → 5° → 1° 0.4922 0.67
40° → 5° → 1° 0.5391 0.73
30° → 3° → 1° 0.5234 0.71

30° → 5° → 1° 0.4531 0.62
60° → 20° → 5° → 1° 0.5742 0.78
90° → 30° → 10° → 1° 0.6484 0.88

The table shows that the sequence 30° → 5° → 1° is the fastest one. It is about 160 times

faster than not using the zoom function. The findings from table 9.9 can be explained

using some calculations. When calculating Pc most of the computation time is spent on

calculating the back-projections which includes a matrix multiplication. That is a rather

costly calculation, which means it is better if those matrices are smaller.

Directly calculating Pc with aS = 1° leads to a matrix multiplication of u⃗ with a matrix

of 3 by 65341 (181 x 361) for every cone. When using a zoom function, there are more

matrix multiplications, but the numbers are significantly smaller. Starting with aS = 5°
leads to a matrix multiplication of u⃗ with a matrix of 3 by 2701 (37 x 73) for every cone.

This is then followed by a matrix multiplication of u⃗ with a matrix of 3 by 121 (11 x 11)

for every cone. When using the iterative zoom 30° → 5° → 1°, the numbers become 91

(13 x 7) → 169 (13 x 13) → 121 (11 x 11).

Using more than 3 steps in the iteration brings the size of the matrices further down,

but not the process time. That is because those matrix multiplications are not the only

calculations that need to be executed. In each iterative step a number of other things

also has to be calculated (for example computing ϕdiff and τdiff ), which means that more

iterative steps do not always lead to a shorter process time.

9.6 εa in function of number of Compton interactions

9.6.1 Implemented calculations

All the tables in this chapter used the whole measurement to calculate the values for εa
and RMS(εa). To have an idea about the amount of data necessary to get decent results
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for εa — where the interpretation of decent depends on the project — other calculations

need to be performed. Plotting a graph of εa in function of the number of Compton

events — which is the same as the number of usable frames — can lead to new insights.

The steps taken to plot such a curve are explained in the paragraphs below. Figure 9.3

is added to keep track of the different steps in the explanation.

Figure 9.3: Visual support to help understand the creation of the y-input

Step 1: Determine maximum number of Compton events to use in the graph

To determine the maximum number of Compton events that can be used in the graph,

it is necessary to find the minimum number of usable frames for all n measurements

with a certain value for Re. The lowest value for Re that will be used in the following
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calculation is Re = 30 keV, because a smaller value for Re leads to a lower number of

usable frames, the lowest number of usable frames for Re = 30 keV is determined. That

minimum number is 2684, which is rounded down to a total length lt = 2500.

Step 2: Create n shuffled data frames D1 with lt rows

A data frame D1 with columns phi, tau, angles and axes is created for every single

measurement. This data frame has as many rows as there are usable frames. The rows

are then randomly shuffled. A seed is used so the results can be reproduced. The data

frame is then cut short to a length lt.

Step 3: Create a new data frame with slices D2

A new data frame D2 is created by slicing data frame D1 into different slices. Each slice

has a slice length ls. This new data frame has m rows with m = lt
ls
. Each row contains

the columns phi, tau, list of angles and list of axes. The columns list of angles and list of

axes contain ls elements. A new column figure is created by doing a back-projection for

the cones defined by the list of angles and list of axes of that row.

Step 4: Create s new data frames D3

s new data frames D3 are created. Each of those data frames is a shuffled version of D2

with a different random state. That means that D3 also contains the columns phi, tau,

list of angles, list of axes and figure. New columns are added to this data frame. The first

one is the column iterative figure. This column contains the sum of every figure of every

row up to and including that row itself. That means that iterative figure of the first row

(index 0) contains a figure made with ls usable frames, the second row contains a figure

made with 2 x ls usable frames, the third row with 3 x ls usable frames and so on. The

last row contains a figure made with m·ls = lt usable frames. Then the columns calculated

ϕ and calculated τ are added. Those columns contain ϕc and τc using the figure of the

column iterative figure. A last column, angular difference, is then added that calculates

the angular difference εa between Pm, defined by ϕ, τ , and Pc, defined by calculated phi

and calculated tau.

Step 5: Combining the column angular difference of all data frames to create

the y-input

There is now a total of n · s data frames that all have m rows. n lists with m values are

created that take the mean of all the s values for that row. Then 1 list with m values is

created that takes the mean of all the n values for that row. That list is the y-input.

Step 6: Create the x-input

The x-input is a list that has the number of usable frames. The first element of that list

is ls, the second element is 2 · ls, ..., the last element is m · ls = lt.
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9.6.2 Resulting figures

In this section different plots of εa in function of the number of Compton events are

displayed. Only twin addition will be used because it keeps the cones of the usable frames

together. Therefore twin addition will simply be referred to as ’addition’ from now on.

The previous sections of the chapter revealed that Re = 30 keV and Re = 35 keV were

the two values that gave the best results. For the sake of experimental research Re = 40

keV, Re = 45 keV and Re 50 keV are added to that list. These figures are made using the

steps explained in section 9.6.1 with n = 276, lt = 2500, ls = 100, m = 25 and s = 50.

Addition

Figure 9.4 displays εa in function of the number of Compton events for Re ranging from

30 keV to 50 keV and (a) σ = 2° and (b) σ = 3°. These two figures display an exponential

descent and illustrate that εa decreases when Re decreases. This is logical because a

smaller value for Re means that the frames selected as usable frames have average energies

closer to the ideal energy of Eγ. Figure 9.5 combines figures 9.4a and 9.4b for easy

comparison. This figure illustrates that addition with σ = 3° outperforms addition with

σ = 2°. Table 9.3 verifies that.

(a) (b)

Figure 9.4: εa in function of the number of Compton interactions for addition for
varying values of Re and (a) σ = 2° and (b) σ = 3°

Figure 9.5: Comparison of εa in function of the number of Compton interactions for
addition for σ = 2° and σ = 3°
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Multiplication

Figure 9.6 displays εa in function of the number of Compton events for multiplication

with σ = 2° and vc = 0.05. In this figure εa also decreases when Re decreases. That is

logical for the same reason as for addition.

Figure 9.6: εa in function of the number of Compton interactions for multiplication with
σ = 2° and vc = 0.05

Comparison

In figure 9.7 addition with σ = 2°, addition with σ = 3° and multiplication with σ = 2°
and vc = 0.05 is displayed. Re = 30 keV is used for all three because that value gave the

best results. The figure demonstrates that multiplication performs better than addition

with σ = 2° but worse than addition with σ = 3°.

Figure 9.7: Comparison of εa in function of the number of Compton interactions with
Re = 30 keV for addition with σ = 2°, addition with σ = 3° and multiplication with σ =

2° and vc = 0.05

It might seem like these results contradict the results from section 9.2 and section 9.3

because multiplication gave slightly more accurate results than twin addition. However

the results in these tables used all the usable frames for every measurement. The curves in

figure 9.7 used a limited number of usable frames. And while addition shows better results

in figure 9.5, the difference between the two decreases when the number of Compton events

increases. Figure 9.8, which uses a logarithmic scale for the x-axis and a linear scale for

the y-axis, visualises the difference in accuracy of addition compared to multiplication,

referred to as da, in function of the number of Compton events. Figure 9.8a displays the
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curves for the different values of Re and figure 9.8b displays the mean of the curves of

figure 9.8a with the markers highlighting the exponential scale. The curves all show a

downward trend starting at about 600 Compton events. The curve for Re = 35 keV even

crosses the threshold of 0%, which means that for Re = 35 keV and 2500 Compton events

multiplication is more accurate than addition.

(a) (b)

Figure 9.8: Difference in accuracy of addition compared to multiplication in function of
the number of Compton events

9.6.3 Comparison with state-of-the-art

Comparison with the state-of-the-art means in this research comparing with [25].

An important aspect to take into consideration is the difference in Compton camera and

environment management used in [25] compared to the one used in this thesis. In [25] the

CdTe detector is equipped with a 1 mm thick crystal. It has 16 by 16 pixels with a pixel

pitch of 625 µm leading to a total sensitive area of 1 cm2. The operating temperature is a

stable -10 °C obtained by using coolers. The detector of this thesis also has a 1 mm thick

CdTe layer. However, it has 256 by 265 pixels with a pixel pitch of 55 µm, leading to a

total sensitive area of 1.98 cm2. The measurements are done at room temperature without

temperature management which means the detector heats up during those measurements

and has a less stable temperature. Therefore, while the explanation below often speaks

of one algorithm versus another algorithm, the comparisons are not a direct comparison

between algorithms, but are actually comparisons between the combination of a certain

technologies combined with these algorithms.

The data from [25] is presented in appendix B and is used to make figure 9.9. This figure

compares the back-projection implementation of this thesis with addition (Re = 30 keV,

σ = 3°), the back-projection implementation of this thesis with multiplication (Re = 30

keV, σ = 2°, vc = 0.05), the back-projection implementation from [25] and the neural

network from [25].

As in the previous figures, this figure displays the exponential descent of the results

calculated using the methods created in this thesis. When comparing the methods im-

plemented in this thesis with the methods from [25], the figure demonstrates that both
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Figure 9.9: Comparison of angular errors εa in function of number of Compton events
for the different implementations in this thesis and the implementations in [25]

back-projection algorithms implemented in this thesis outperform the back-projection

from [25], but do not outperform the neural network from [25].

To have a better idea about the data, certain things can be replaced or added. The

first option is to replace the mean with a simplified version of a box plot. For every

x-value, there are 5 y-values plotted that represent 5 different things: the minimum,

the first quartile, the median, the third quartile and the maximum. This illustrates the

distribution. Figure 9.10 visualises the results. A second option is to add an error bar

with a length of 2 · std (one above the mean and one below). std is calculated using

equation 9.2. This also illustrates the distribution, but implies that that distribution is

Gaussian. This results in figure 9.11. A third option is to take the standard error of the

mean (SEM) into account and add an error bar with a length of 2·SEM. SEM is calculated

using equation 9.3. This results in figure 9.12. This could be used to fit a curve. When

fitting a curve without calculating SEM, every point will be treated as equally correct.

However, when SEM is calculated, a curve can be fitted where the points with a smaller

SEM have more weight than points with a larger SEM. This leads to a more accurate fit.

std =

√√√√1

s

s∑
i=1

ε2a (9.2)

SEM =
std√
s− 1

(9.3)

For all these figures s = 50. It is important to note that every single point of the s =

50 points that are used to calculate the boxplot, std or SEM, is calculated by averaging

over all the n = 276 measurements. This could be the explanation about why the curves

of the implementations in this thesis are significantly smoother than the curves from [25].

In their case, s = 100, but n = 6.

Figure 9.10 illustrates two things. First, there are no obvious outliers. Second, the dis-

tances between the first quartile and the median and between the third quartile and the

median are smaller than the distances between the first quartile and the minimum and

between the third quartile and the maximum. This is expected because a Gaussian dis-
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tribution is expected because of the central limit theorem [26]. Because of that Gaussian

distribution, figure 9.11 can give valuable information. This figure shows relatively small

error bars which means that std is small, which means that the values tend to be close to

the mean. Figure 9.12 has to be made very large in order to have visible error bars. This

means that standard error on the mean is very small. That was not unexpected because

the curve is very smooth. Because the curves are already smooth and the standard errors

are very small for every point, fitting a curve would not make a big difference. Therefore,

no curve is fitted.

Figure 9.10: Comparison of angular errors εa in function of number of Compton events
for the different implementations in this thesis and the implementations in [25] with the

addition of simplified box plots

Figure 9.11: Comparison of angular errors εa in function of number of Compton events
for the different implementations in this thesis and the implementations in [25] with the

addition of error bars representing std
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Figure 9.12: Comparison of angular errors εa in function of number of Compton events
for the different implementations in this thesis and the implementations in [25] with the

addition of error bars representing SEM
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9.7 εa in function of measurement time

Figure 9.9 demonstrated that,using the number of Compton events as figure of merit, the

neural network from [25] outperforms the back-projection algorithms implemented in this

thesis. However, in [25] a very limited number of frames are considered usable frames.

Only those frames with a total energy between 647 keV and 670 keV are considered usable.

In this thesis Re = 30 keV or Re = 35 keV is mostly used. Even energy ranges as large as

Re = 50 keV are considered. This means that this thesis uses a larger percentage of the

generated frames. Table 9.10 presents these percentages, referred to as uf%. It can be

noted that even though the steps are always 5 keV, the percentage of additional usable

frames decreases every time. That is because the full absorption peak is bell-shaped (see

fig. 9.2). Because this research uses a larger percentage of generated frames, the angular

error εa is also calculated depending on the measuring time for a source with an activity

of 1 MBq.

Table 9.10: uf% for different values of Re in this thesis and the percentage for paper [25]

Re = 30 keV Re = 35 keV Re = 40 kev Re = 45 keV Re = 50 keV Paper [25]

uf% [%] 0.479 0.572 0.653 0.718 0.765 0.186

9.7.1 Implemented calculations

In order to plot εa in function of the measurement time, the y-values can remain the same

if the x-values are transformed. This is done using the steps explained below. Figure 9.13

visualises these.

Figure 9.13: Visualisation of the steps necessary to transform the x-axis

Step 1: Calculate the usable frames per hour for a source with A = 1 MBq

With ufh = usable frames per hour per MBq
[
frames
h·MBq

]
, A = source activity [MBq], tm =

measurement time [h], uf = number of usable frames, ufh is calculated using equation

9.4.

ufh =
1

n

n∑
i=1

uf

tm · A
(9.4)

The results are presented in table 9.11.

Table 9.11: ufh for different values of Re in this thesis and for paper [25]

Re = 30 keV Re = 35 keV Re = 40 kev Re = 45 keV Re = 50 keV Paper [25]

ufh

[
frames
h·MBq

]
283 338 386 424 452 85
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Step 2: Calculate the time necessary to gather 100 usable frames for a source

with A = 1 MBq

In figure 9.9 the x-axis was defined using steps of ls = 100. Therefore, the time necessary

to gather 100 usable frames (assuming a source with A = 1 MBq), referred to as t100 [h],

is calculated using equation 9.5.

t100 =
100

ufh
(9.5)

Table 9.12: t100 for different values of Re in this thesis and for paper [25]

Re = 30 keV Re = 35 keV Re = 40 kev Re = 45 keV Re = 50 keV Paper [25]

t100 [h] 0.353 0.296 0.259 0.236 0.221 1.176

Step 3: Create the x-axis

In order to keep the same y-values, the x-values need to modelled so that the first value

is for 100 cones, the second for 200 cones and the 25th for 2500 cones. While the x-values

used for the previous figures were the same for every set of y-values, this is not the case

now. For every different value of Re, a different set of x-values has to be made. It is still

a set of 25 values, but it starts at t100 for that specific value of Re and ends at 25 · t100 for
that specific value of Re.

9.7.2 Resulting figures

In this section different plots of εa in function of the measurement time will be displayed.

These figures are made using the steps explained in section 9.7.1.

Addition

Figure 9.14 displays εa in function of the measurement time for Re ranging from 30 keV

to 50 keV and (a) σ = 2° and (b) σ = 3°. These figures again display an exponential

descent, which is logical because the adaptation of the x-axis did need distort the curves,

it simply shifted them horizontally. Figure 9.15 illustrates again that σ = 3° gives better
results than σ = 2°. This is expected because for both values of σ the curves for Re = 30

keV are shifted an equal distance, both curves for Re = 35 keV are also shifted an equal

distance (but a different distance than for Re = 30 keV). This is true for all values of Re.

Therefore, the only possibility was that σ = 3° gives better results than σ = 2°, when
using the measurement time as figure of merit.

Multiplication

Figure 9.16 displays εa in function of the measurement time for multiplication with σ =

2° and vc = 0.05. For this figure, the same observations as those described for addition

can be made.
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(a) (b)

Figure 9.14: εa in function of the measurement time for addition for varying values of Re

and (a) σ = 2° and (b) σ = 3°

Figure 9.15: Comparison of εa in function of the measurement time for addition for σ =
2° and σ = 3°

Figure 9.16: εa in function of the measurement time for multiplication with σ = 2° and
vc = 0.05

Comparison

The previous figures illustrated that compensating for the frames used, results in very

similar results for the different values of Re. It is visible that Re = 30 keV is not the

best value, but apart from that value, it is difficult to determine which value for Re gives

the ’best’ results. An option would be to fit a straight line for every value of Re and

use that to determine the best value. However, it is important to remember that these
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curves are only estimates. Each one is made by selecting combinations of usable frames

on a semi-random basis. That means that these curves would look slightly different if

other random seeds were used. The difference between the curves is therefore considered

insignificant. The middle value, Re = 40 keV, is chosen to compare addition with σ = 2°,
addition with σ = 3° and multiplication with σ = 2° and vc = 0.05. Figure 9.17 illustrates

this comparison. Because Re has the same value for all three implementations, they all

shift the same distance, which means that, again, multiplication performs better than

addition with σ = 2° but worse than addition with σ = 3°.

Figure 9.17: Comparison of εa in function of the measurement time with Re = 30 keV for
addition with σ = 2°, addition with σ = 3° and multiplication with σ = 2° and vc = 0.05

9.7.3 Comparison with state-of-the-art

The implemented algorithms will again be compared to [25], this time using the measure-

ment time as figure of merit. Figure 9.18 compares the back-projection implementation

of this thesis with addition (Re = 30 keV, σ = 3°), the back-projection implementation of

this thesis with multiplication (Re = 30 keV, σ = 2° and vc = 0.05), the back-projection

implementation from [25] and the neural network from [25].

Figure 9.18: Comparison of angular errors εa in function of measurement time for the
different implementations in this thesis and the implementations in [25]

To have a better idea about the data, the same replacements and additions are made as

in the previous section. First, a simplified box plot is added. This results in figure 9.19.

Second, error bars representing std are added. This results in figure 9.20. Third, error

bars representing SEM are added. This results in figure 9.21.
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Although the y-values are not exactly the same as in section 9.6.3, because section 9.6.3

used Re = 30 keV and this section uses Re = 40 kev, the discussion of the figures is very

similar.

Figure 9.19 shows no obvious outliers and has the expected Gaussian distribution. Figure

9.20 has small error bars which means small values for std which indicates that the values

tend to be close to the mean. Figure 9.21 displays small error bars which indicate the

standard error on the mean is small. Because the curves are already smooth and the

standard errors are very small for every point, no curve was fitted.

Figure 9.19: Comparison of angular errors εa in function of measurement time for the
different implementations in this thesis and the implementations in [25] with the

addition of simplified box plots

Figure 9.20: Comparison of angular errors εa in function of measurement time for the
different implementations in this thesis and the implementations in [25] with the

addition of error bars representing std

Because [25] uses only a small percentage of the generated frames and therefore needs more

time to gather 100 usable frames, the curves of the back-projection and neural network

implementation of [25] are not shifted the same distance as the curves of back-projection

with addition and back-projection with multiplication implemented for this thesis. This

results in the implemented algorithms being able to compete with the neural network

from [25]. Therefore, it can be concluded that the used technology combined with the

implemented algorithms can compete with the current state-of-the-art.
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Figure 9.21: Comparison of angular errors εa in function of measurement time for the
different implementations in this thesis and the implementations in [25] with the

addition of error bars representing SEM
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Chapter 10

Conclusion and outlook

This thesis researched the possibility of using a single layer Compton camera to deter-

mine the position of a γ-ray point source. Two different back-projection algorithms were

implemented to accomplish that: one uses addition while the other uses multiplication.

The difference in computation time is insignificant. To speed up the process, the zoom

function can be used, which can make some major steps in the calculations up to 160

times faster.

The algorithms produce similar results and show an exponential descent for the angular

error in function of the number of Compton interactions. Typically, addition is 6% more

accurate than multiplication — but that percentage is larger for shorter measurement

times and shrinks to zero for longer measurement times. Both algorithms in this thesis

outperform the back-projection implementation from [25], but cannot compete with their

neural network implementation. Back-projection using multiplication with Re = 30 keV

has an angular error of 5,2° at 100 Compton cones and an angular error of 2.0° at 1000
Compton cones, while the neural network from [25] has an angular error of 3.6° at 100

Compton cones and an angular error of 1.6° at 1000 Compton cones.

When compensating for the numbers of frames used, the figure of merit changes to the

measurement time for a source with an activity of 1 MBq. Comparison between the two

algorithms implemented in this thesis is the same as in the previous paragraph, but the

comparison with the implementations from [25] changes: both algorithms implemented

in this thesis still outperform the back-projection implementation from [25], but can now

also compete with their neural network. Back-projection using addition with Re = 40

keV needs 55 minutes to reach an angular error of 3° and 161 minutes to reach an angular

error of 2°. The neural network needs 95 minutes to reach an angular error of 3° and 173

minutes to reach an angular error of 2°. These numbers illustrate that the results from

this thesis can compete with the current state-of-the-art.

Because the γ camera combined with the implemented algorithms can compete with the

current state-of-the-art, this research can be used as a first step in the localisation of a

γ ray point source. However, this research involved a simplified experimental setup in

a controlled environment, where the distance from the point source to the detector was

known. Therefore, further research and development is necessary in order to use the single

layer Compton camera in a real-life nuclear decommissioning setting.



There are several promising next steps for further research and development. The first

would be analysing a second data set. The measurements for such a data set are already

performed, but the data was not available on time to be analysed as part of this the-

sis. However, a paper will be written that includes this second data set. A link to this

paper will be published on the GitHub page of this thesis [23]. Some other options for

improvement could require only small adjustments, like adding compensation for detector

temperature in the calculations, while others might consist of completely new implemen-

tations. A machine learning algorithm can possibly be trained to select the correct cone

before doing back-projection; or a neural network can be implemented in an attempt to

achieve a predetermined accuracy with less measurement time. These options all target

more accurate or faster results but start from the same limited measurement setup.

To use new research in a real-life setting, it will be very important to look beyond that

simplified experimental setup in a controlled environment. What happens if testing is

done with a different source? What if the source is not a point source? What if there

are multiple sources? In order to answer these questions, at least two things need to be

done: first, the current algorithms need to be optimised and new algorithms need to be

implemented. Second, it might prove very helpful to combine different types of equipment.

Adding the imaging from a 3D camera, for example, might help narrow down positions

of point sources.

Overall then, the technology analysed here combined with the implemented algorithms

can form a solid point of departure, with more research needed to unlock its full potential.
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Appendix A

Measurements overview

This appendix gives an overview of all the measurements. Phi and Theta are the mea-

sured phi and theta for that measurement. The Time is the measurement time in hours.

Counts is the total number of frames. uf (30) is the number of usable frames for Re =

30 keV. Cones (30) is the number of cones for Re = 30 keV. uf (35) is the number of

usable frames for Re = 35 keV. Cones (35) is the number of cones for Re = 35 keV.

Table A.1: Overview of measurements

Index Phi Theta Time [h] Counts uf (30) Cones (30) uf (35) Cones (35)

0 -54.9 -54.9 1 593192 3803 6620 4585 8024

1 -54.9 -49.95 1 622254 3963 6922 4720 8275

2 -54.9 -44.55 1 651899 4042 7118 4805 8459

3 -54.9 -39.6 1 677702 4048 7143 4874 8623

4 -54.9 -34.65 1 696783 4179 7390 4953 8796

5 -54.9 -29.7 1 717790 4031 7155 4856 8638

6 -54.9 -24.75 1 735257 4080 7220 4852 8613

7 -54.9 -19.8 1 750501 4124 7274 4925 8714

8 -54.9 -14.85 1 764769 4241 7507 5057 8979

9 -54.9 -9.9 1 769896 4104 7351 4968 8909

10 -54.9 -4.95 1 772334 4130 7381 4951 8845

11 -54.9 -0.0 1 776112 4059 7213 4948 8824

12 -54.9 5.4 1 777867 4016 7208 4873 8732

13 -54.9 10.35 1 780102 3949 6993 4745 8428

14 -54.9 15.3 1 772820 3666 6471 4507 7980

15 -54.9 20.25 1 766811 2984 5302 3797 6780

16 -54.9 25.2 1 752319 3026 5354 3893 6902

17 -54.9 30.15 1 734175 3161 5618 3996 7116

18 -54.9 35.1 1 713697 3403 6010 4300 7613

19 -54.9 40.05 1 690279 3760 6617 4622 8144

20 -54.9 45.0 1 663251 3864 6773 4742 8337

21 -54.9 50.4 1 629513 3782 6593 4690 8208

22 -54.9 54.9 1 600754 4011 6973 4869 8504

23 -50.4 -54.9 1 618735 3769 6605 4534 7971

24 -50.4 -50.4 1 645099 3913 6806 4725 8254

25 -50.4 -45.0 1 676687 4011 7060 4795 8456

26 -50.4 -40.05 1 703275 3836 6790 4611 8174

27 -50.4 -35.1 1 728591 4002 7107 4838 8613

Continued on next page
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Index Phi Theta Time [h] Counts uf (30) Cones (30) uf (35) Cones (35)

28 -50.4 -30.15 1 748876 3770 6776 4579 8224

29 -50.4 -25.2 1 770236 3395 6019 4191 7440

30 -50.4 -20.25 1 788749 3103 5505 3933 7018

31 -50.4 -15.3 1 803322 3211 5735 4024 7219

32 -50.4 -10.35 1 810223 3928 7021 4831 8651

33 -50.4 -5.4 1 812943 4043 7201 4857 8686

34 -50.4 -0.0 1 816206 3973 7146 4785 8624

35 -50.4 4.95 1 819771 4107 7397 4961 8950

36 -50.4 9.9 1 821196 4257 7642 5132 9216

37 -50.4 14.85 1 816497 4087 7351 4880 8797

38 -50.4 19.8 1 807049 4225 7498 5066 9032

39 -50.4 24.75 1 794309 4284 7631 5127 9156

40 -50.4 29.7 1 778310 4273 7609 5142 9169

41 -50.4 34.65 1 757335 4098 7283 4967 8843

42 -50.4 39.6 1 733048 4109 7253 4982 8833

43 -50.4 44.55 1 703915 4124 7257 4966 8770

44 -50.4 49.95 1 668565 4116 7215 4973 8741

45 -50.4 54.9 1 631129 4070 7105 4920 8615

46 -45.0 -54.9 1 647014 3921 6875 4723 8305

47 -45.0 -49.95 1 683294 4037 7109 4816 8489

48 -45.0 -44.55 1 715669 3937 6991 4714 8372

49 -45.0 -39.6 1 742216 4115 7288 4896 8689

50 -45.0 -34.65 1 769036 4097 7288 4937 8799

51 -45.0 -29.7 1 794875 4184 7487 5003 8973

52 -45.0 -24.75 1 818258 4150 7464 4984 8964

53 -45.0 -19.8 1 833926 4128 7504 4944 8994

54 -45.0 -14.85 1 848368 4215 7619 5041 9140

55 -45.0 -9.9 1 856900 4271 7722 5043 9128

56 -45.0 -4.95 1 859809 4063 7345 4890 8856

57 -45.0 -0.0 1 863165 4203 7617 5024 9122

58 -45.0 5.4 1 867510 4113 7458 4914 8905

59 -45.0 10.35 1 866670 3991 7278 4819 8793

60 -45.0 15.3 1 862284 3936 7104 4810 8690

61 -45.0 20.25 1 854279 3897 7073 4713 8569

62 -45.0 25.2 1 836133 4012 7188 4864 8728

63 -45.0 30.15 1 817867 3858 6902 4733 8488

64 -45.0 35.1 1 794434 3771 6714 4665 8328

65 -45.0 40.05 1 767609 4145 7412 4994 8927

66 -45.0 45.0 1 737095 4182 7397 5077 8981

67 -45.0 50.4 1 698809 4021 7120 4822 8558

68 -45.0 54.9 1 666861 4020 7042 4837 8502

69 -40.05 -54.9 1 673891 3952 6989 4769 8465

70 -40.05 -50.4 1 702161 4078 7164 4929 8680

71 -40.05 -45.0 1 736590 4100 7307 4884 8711

72 -40.05 -40.05 1 767969 4078 7342 4850 8750

73 -40.05 -35.1 1 798557 4147 7452 4955 8916

74 -40.05 -30.15 1 824497 4030 7261 4833 8713

75 -40.05 -25.2 1 849100 4004 7242 4832 8751

76 -40.05 -20.25 1 868476 3981 7203 4779 8666

77 -40.05 -15.3 1 881528 3841 6980 4668 8505

78 -40.05 -10.35 1 894895 3942 7203 4750 8688

79 -40.05 -5.4 1 898525 4104 7475 4903 8937

Continued on next page
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Index Phi Theta Time [h] Counts uf (30) Cones (30) uf (35) Cones (35)

80 -40.05 -0.0 1 901179 4141 7556 4950 9042

81 -40.05 4.95 1 907169 4193 7657 5047 9227

82 -40.05 9.9 1 906510 4105 7507 4942 9037

83 -40.05 14.85 1 902900 4221 7696 5062 9250

84 -40.05 19.8 1 893562 4202 7656 5048 9214

85 -40.05 24.75 1 876215 4260 7686 5126 9285

86 -40.05 29.7 1 856002 4371 7879 5178 9334

87 -40.05 34.65 1 837318 4367 7860 5196 9380

88 -40.05 39.6 1 808132 4242 7591 5055 9068

89 -40.05 44.55 1 777751 4399 7796 5213 9270

90 -40.05 49.95 1 738629 4368 7768 5188 9213

91 -40.05 54.9 1 907771 4323 7656 5185 9187

92 -35.1 -54.9 1 694969 4475 7911 5224 9265

93 -35.1 -49.95 1 733101 4593 8131 5309 9394

94 -35.1 -44.55 1 768561 4684 8365 5432 9718

95 -35.1 -39.6 1 799154 4572 8218 5358 9622

96 -35.1 -34.65 1 833449 4557 8192 5282 9489

97 -35.1 -29.7 1 862496 4501 8181 5253 9572

98 -35.1 -24.75 1 887098 4503 8239 5226 9571

99 -35.1 -19.8 1 912794 4593 8423 5294 9720

100 -35.1 -14.85 1 926960 4566 8380 5325 9765

101 -35.1 -9.9 1 929200 4434 8149 5119 9411

102 -35.1 -4.95 1 934112 4442 8163 5200 9542

103 -35.1 -0.0 1 942321 4202 7748 4974 9165

104 -35.1 5.4 1 949020 4245 7817 5079 9365

105 -35.1 10.35 1 943390 4082 7491 4893 8994

106 -35.1 15.3 1 938081 4130 7600 4905 9022

107 -35.1 20.25 1 925419 4226 7749 5008 9195

108 -35.1 25.2 1 910667 4261 7742 5061 9212

109 -35.1 30.15 1 887413 4294 7778 5137 9329

110 -35.1 35.1 1 861341 4414 7957 5277 9537

111 -35.1 40.05 1 832502 4396 7937 5204 9408

112 -35.1 45.0 1 813072 4461 7951 5260 9385

113 -35.1 50.4 1 757783 4355 7710 5173 9155

114 -35.1 54.9 1 725369 4267 7548 5127 9062

115 -30.15 -54.9 1 711026 4568 8080 5328 9443

116 -30.15 -50.4 1 743391 4740 8394 5500 9736

117 -30.15 -45.0 1 782873 4622 8287 5354 9607

118 -30.15 -40.05 1 816741 4722 8451 5401 9666

119 -30.15 -35.1 1 851654 4664 8447 5354 9693

120 -30.15 -30.15 1 880770 4610 8416 5348 9764

121 -30.15 -25.2 1 905772 4503 8281 5210 9571

122 -30.15 -20.25 1 929081 4622 8462 5358 9839

123 -30.15 -15.3 1 946902 4526 8416 5245 9745

124 -30.15 -10.35 1 959096 4402 8167 5137 9545

125 -30.15 -5.4 1 962428 4456 8257 5242 9714

126 -30.15 -0.0 1 968855 4418 8202 5128 9529

127 -30.15 4.95 1 974094 4563 8403 5244 9689

128 -30.15 9.9 1 975142 4566 8455 5264 9761

129 -30.15 14.85 1 971111 4697 8672 5435 10044

130 -30.15 19.8 1 963225 4671 8578 5378 9886

131 -30.15 24.75 1 941534 4762 8750 5496 10109

Continued on next page
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Index Phi Theta Time [h] Counts uf (30) Cones (30) uf (35) Cones (35)

132 -30.15 29.7 1 919455 4931 8996 5648 10306

133 -30.15 34.65 1 894799 4773 8679 5556 10108

134 -30.15 39.6 1 866426 4868 8784 5620 10132

135 -30.15 44.55 1 833952 4912 8771 5668 10129

136 -30.15 49.95 1 787177 4798 8529 5518 9805

137 -30.15 54.9 1 741405 4856 8610 5611 9953

138 -25.2 -54.9 1 726176 3989 7071 4828 8573

139 -25.2 -49.95 1 770838 3998 7111 4809 8580

140 -25.2 -44.55 1 807757 4165 7492 4932 8886

141 -25.2 -39.6 1 843818 3963 7173 4744 8604

142 -25.2 -34.65 1 880782 4016 7363 4832 8878

143 -25.2 -29.7 1 911954 3923 7158 4686 8575

144 -25.2 -24.75 1 936085 3773 6992 4615 8554

145 -25.2 -19.8 1 956246 3868 7115 4699 8677

146 -25.2 -14.85 1 973643 3864 7131 4640 8569

147 -25.2 -9.9 1 984806 4068 7499 4871 9003

148 -25.2 -4.95 1 991917 4133 7652 4933 9156

149 -25.2 -0.0 1 993325 3906 7259 4657 8656

150 -25.2 5.4 1 1000485 4192 7753 4970 9208

151 -25.2 10.35 1 1002616 4254 7898 5022 9312

152 -25.2 15.3 1 993097 4240 7839 5020 9285

153 -25.2 20.25 1 981583 4542 8344 5292 9740

154 -25.2 25.2 1 964026 4621 8469 5365 9837

155 -25.2 30.15 1 938645 4664 8568 5434 9990

156 -25.2 35.1 1 912709 4905 8907 5669 10312

157 -25.2 40.05 1 881308 4849 8737 5566 10031

158 -25.2 45.0 1 845617 4912 8819 5659 10146

159 -25.2 50.4 1 799423 4902 8747 5659 10112

160 -25.2 54.9 1 761428 4823 8511 5615 9928

161 -20.25 -54.9 1 740770 4002 7107 4776 8492

162 -20.25 -50.4 1 772684 4049 7224 4849 8664

163 -20.25 -45.0 1 812642 4156 7475 4953 8932

164 -20.25 -40.05 1 852902 4170 7556 4966 9014

165 -20.25 -35.1 1 892866 3960 7256 4746 8706

166 -20.25 -30.15 1 921945 4067 7463 4773 8770

167 -20.25 -25.2 1 947937 3889 7160 4689 8661

168 -20.25 -20.25 1 972974 3782 6986 4553 8405

169 -20.25 -15.3 1 992593 3822 7105 4598 8549

170 -20.25 -10.35 1 1004582 3808 7056 4549 8426

171 -20.25 -5.4 1 1010211 3781 7044 4604 8593

172 -20.25 -0.0 1 1016951 3598 6647 4386 8107

173 -20.25 4.95 1 1021951 3760 7001 4505 8376

174 -20.25 9.9 1 1020825 3847 7152 4648 8638

175 -20.25 14.85 1 1017345 3828 7085 4641 8608

176 -20.25 19.8 1 1005575 3967 7327 4735 8765

177 -20.25 24.75 1 986721 3899 7154 4724 8683

178 -20.25 29.7 1 964568 3996 7307 4844 8858

179 -20.25 34.65 1 938696 4167 7618 5035 9223

180 -20.25 39.6 1 906713 4315 7839 5151 9357

181 -20.25 44.55 1 868714 4319 7853 5143 9343

182 -20.25 49.95 1 827209 4480 7970 5324 9506

183 -20.25 54.9 1 776061 4418 7836 5293 9406

Continued on next page
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Index Phi Theta Time [h] Counts uf (30) Cones (30) uf (35) Cones (35)

184 -15.3 -54.9 1 747843 3997 7086 4754 8454

185 -15.3 -49.95 1 789807 4064 7268 4870 8724

186 -15.3 -44.55 1 834914 4035 7293 4895 8865

187 -15.3 -39.6 1 872231 3877 7051 4703 8567

188 -15.3 -34.65 1 911475 3744 6879 4550 8362

189 -15.3 -29.7 1 942422 3765 6964 4556 8431

190 -15.3 -24.75 1 970970 3745 6957 4513 8393

191 -15.3 -19.8 1 990898 3591 6658 4444 8243

192 -15.3 -14.85 1 1012224 3470 6456 4229 7873

193 -15.3 -9.9 1 1024150 3367 6226 4132 7642

194 -15.3 -4.95 1 1029561 3282 6069 4028 7453

195 -15.3 -0.0 1 1033855 3408 6362 4307 8030

196 -15.3 5.4 1 1039349 3840 7144 4631 8630

197 -15.3 10.35 1 1038682 3901 7255 4648 8651

198 -15.3 15.3 1 1030503 4093 7563 4915 9083

199 -15.3 20.25 1 1018379 4196 7736 5025 9274

200 -15.3 25.2 1 1000703 4372 8050 5121 9445

201 -15.3 30.15 1 975375 4423 8149 5228 9653

202 -15.3 35.1 1 946017 4380 8014 5216 9544

203 -15.3 40.05 1 914722 4328 7896 5145 9380

204 -15.3 45.0 1 876782 4358 7828 5136 9272

205 -15.3 50.4 1 828871 4428 7887 5247 9364

206 -15.3 54.9 1 786795 4404 7800 5197 9231

207 -10.35 -54.9 1 753024 4117 7329 4931 8790

208 -10.35 -50.4 1 787224 4037 7226 4826 8660

209 -10.35 -45.0 1 830912 3923 7088 4686 8481

210 -10.35 -40.05 1 871861 3983 7241 4811 8769

211 -10.35 -35.1 1 910188 3897 7188 4679 8632

212 -10.35 -30.15 1 943601 3876 7142 4743 8759

213 -10.35 -25.2 1 971804 3825 7109 4625 8592

214 -10.35 -20.25 1 997652 3850 7120 4628 8567

215 -10.35 -15.3 1 1017252 3796 7062 4573 8511

216 -10.35 -10.35 1 1031852 3694 6880 4477 8340

217 -10.35 -5.4 1 1036908 3424 6385 4204 7841

218 -10.35 -0.0 1 1042275 3029 5609 3761 6953

219 -10.35 4.95 1 1047873 3077 5701 3895 7234

220 -10.35 9.9 1 1050457 3023 5588 3789 7022

221 -10.35 14.85 1 1043044 3082 5696 3913 7250

222 -10.35 19.8 1 1032586 3041 5627 3838 7104

223 -10.35 24.75 1 1014498 3207 5878 4008 7382

224 -10.35 29.7 1 989897 3665 6743 4467 8253

225 -10.35 34.65 1 962422 3926 7167 4781 8744

226 -10.35 39.6 1 929821 4089 7455 4957 9047

227 -10.35 44.55 1 891957 4002 7261 4847 8804

228 -10.35 49.95 1 846541 4125 7387 4981 8923

229 -10.35 54.9 1 794812 4376 7781 5213 9270

230 -5.4 -54.9 1 755369 4339 7720 5080 9043

231 -5.4 -49.95 1 798510 4401 7922 5145 9276

232 -5.4 -44.55 1 843789 4266 7743 5003 9083

233 -5.4 -39.6 1 884288 4216 7665 4956 9032

234 -5.4 -34.65 1 921692 3953 7279 4684 8631

235 -5.4 -29.7 1 953699 3835 7093 4628 8570
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Index Phi Theta Time [h] Counts uf (30) Cones (30) uf (35) Cones (35)

236 -5.4 -24.75 1 982601 3819 7063 4641 8607

237 -5.4 -19.8 1 1007349 3480 6424 4281 7912

238 -5.4 -14.85 1 1026207 3413 6353 4167 7770

239 -5.4 -9.9 1 1038169 3330 6167 4171 7736

240 -5.4 -4.95 1 1045256 3394 6320 4163 7760

241 -5.4 -0.0 1 1049507 3703 6902 4497 8379

242 -5.4 5.4 1 1054854 4063 7583 4841 9018

243 -5.4 10.35 1 1053373 4280 7947 5018 9330

244 -5.4 15.3 1 1045543 4280 7987 5003 9340

245 -5.4 20.25 1 1033308 4360 8112 5115 9513

246 -5.4 25.2 1 1015496 4331 8041 5105 9498

247 -5.4 30.15 1 989035 4335 8021 5084 9410

248 -5.4 35.1 1 961936 4424 8183 5152 9517

249 -5.4 40.05 1 925646 4478 8148 5264 9599

250 -5.4 45.0 1 889370 4558 8246 5380 9743

251 -5.4 50.4 1 841520 4379 7874 5252 9447

252 -5.4 54.9 1 798691 4383 7822 5247 9364

253 0.0 -54.9 1 755688 4339 7760 5072 9076

254 0.0 -50.4 1 790270 4426 7943 5171 9292

255 0.0 -45.0 1 836818 4404 8000 5176 9400

256 0.0 -40.05 1 875259 4422 8066 5185 9455

257 0.0 -35.1 1 916981 4367 7988 5091 9312

258 0.0 -30.15 1 948522 4364 8036 5122 9452

259 0.0 -25.2 1 976874 4371 8125 5159 9605

260 0.0 -20.25 1 1003786 4371 8129 5091 9471

261 0.0 -15.3 1 1023520 4498 8412 5203 9719

262 0.0 -10.35 1 1035411 4424 8262 5133 9596

263 0.0 -5.4 1 1043777 4384 8188 5063 9448

264 0.0 -0.0 1 1049380 4297 8025 5000 9339

265 0.0 4.95 1 1056578 3804 7081 4580 8535

266 0.0 9.9 1 1055086 3305 6161 4130 7721

267 0.0 14.85 1 1052020 3110 5771 3900 7246

268 0.0 19.8 1 1039303 3279 6087 4083 7585

269 0.0 24.75 1 1022247 2814 5184 3578 6611

270 0.0 29.7 1 999951 3033 5538 3803 6964

271 0.0 34.65 1 973209 2684 4915 3468 6366

272 0.0 39.6 1 940211 3605 6560 4467 8156

273 0.0 44.55 1 898048 4360 7895 5171 9354

274 0.0 49.95 1 853668 4329 7779 5159 9284

275 0.0 54.9 1 802174 4416 7853 5251 9360
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Appendix B

Data from state-of-the-art paper [25]

This appendix gives an overview of the data extracted from [25]. The data from table

B.1 is extracted from the plot in [25] using [27] and table B.2 is copied from [25].

Table B.1: x-input and y-input from the plot in [25] extracted using [27]

x-axis y-axis angle [degrees]
Index Cones Back-projection Neural network
0 100 7.65260 3.56763
1 200 6.01239 2.38310
2 300 4.62127 1.6852590
3 400 4.765354 1.9735043
4 500 4.141358 2.126273
5 600 4.233179 1.78413
6 700 3.239486 1.7763306
7 800 3.325866 1.5988566
8 900 2.8777139 1.523551
9 1000 3.2823922 1.57105
10 1100 3.12779 1.3653314
11 1200 3.127793 1.21818
12 1300 2.659266 1.40173
13 1400 2.3831032 1.27839
14 1500 2.500893 1.5036
15 1600 2.5118864 1.557331
16 1700 2.8651202 1.4774
17 1800 2.311050 1.414087
18 1900 2.659266 1.5710
19 2000 2.95444 1.353407



Table B.2: Characteristics of the measurements from [25], copied for comparison

Position of the source
(longitude and latitude)

Source activity Measurement time Total number of counts
Number of selected
Compton events

(0°,0°) 1.7 MBq 35.6 h 3190418 4855
(10°,0°) 1.7 MBq 57.7 h 5423829 8065
(30°,0°) 1.7 MBq 83.8 h 6993265 12222
(35°,0°) 1.7 MBq 19.5 h 1672290 3014
(40°,0°) 1.7 MBq 76.8 h 4791771 11581
(-22°,33°) 3.6 MBq 61.1 h 8213658 17978
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