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Introduction 
Climate change is known to have disastrous 
effects on biodiversity (Koch et al. 2012; ; 
Newbold 2018, Short et al., 2016; Newbold 
2018, Short et al., 2016). Most evidence is 
available for plants and vertebrates, with 
arthropods being heavily overlooked 
(Troudet et al., 2017), despite studies 
indicating the alarming rate at which these 
vertebrates are declining (Cardoso et al., 
2020). This decline is not solely due to 
climate change, but rather an interplay of 
multiple stressors including habitat 
fragmentation, habitat loss, pollution, and 
insecticides (Wagner et al., 2021). 
Despite the recognition of this disturbing 
trend, little effort has been made to protect 
these species from extinction (Cardoso et 
al., 2011; D’Amen et al., 2013). For example, 
the IUCN Red List does not provide a realistic 
picture of the arthropod status (The IUCN 
Red List of Threatened Species, n.d.). For the 
red lists, a much higher percentage of 
vertebrates than invertebrates is covered to 
assess their conservation needs. This bias 
subsequently leads to less accurate 
conservation strategies for these 
understudied species. Because arthropods 
play a vital role in ecosystem functioning, 
such as nutrient cycling and pollination, fast 
intervention is needed (Ollerton et al., 2011; 
Yang & Gratton, 2014). 

Species can adapt to climate change by 
range shift, acclimatization, and/or 
adaptation. How a species responds to this 
climate change depends on (genetic) trait 
variation such as dispersal, habitat breadth, 
thermal optimum, and fecundity (Richards 
et al., 2021; Lehmann et al., 2020; Pacifici et 
al., 2017; Richards et al., 2021). Therefore, 
incorporating species traits into distribution 
models will more accurately predict the 
ecological impacts of climate change. 
However, most studies are based on 
correlative approaches neglecting a 
mechanistic perspective to include traits 
and/or life histories (Green et al., 2022). Of 
these few studies including traits, most 
include only one, which is insufficient to 

explain complex responses to climate 
change. For example, patterns of range 
expansion observed in numerous species 
cannot be explained by a single trait (Chen et 
al., 2011: Comte et al., 2024). Furthermore, 
which traits and how they affect range 
expansion are species-specific. Therefore, a 
multi-trait approach is needed to make 
reliable predictions about ecological 
responses to climate change. By making 
these models spatially explicit, the results 
will be highly relevant for conservation 
decisions. In addition to more accurate 
predictions, these models also provide 
greater insight into how and why species 
differ in their ecological responses which 
currently, most studies fail to do so (Brown 
et al., 2014). These insights are important to 
better protect species by identifying which 
species are more vulnerable. 

In particular, dispersal ability is an important 
trait to capture because of its contribution to 
many ecological processes (Travis et al., 
2013). Dispersal consists of three main 
components: departure, transfer, and 
settlement (Clobert et al., 2004). These 
components can be associated with 
species-specific traits called dispersal 
syndromes, traits that are correlated with 
dispersal, but are also landscape dependent 
(Stevens et al., 2013). For example, a species 
may be highly dispersive, but if the 
landscape is of poor quality, its chances of 
finding suitable habitat are reduced. The 
inability to find a suitable habitat can lead to 
reproductive failure or even death. The 
dispersal capacity of a species can therefore 
be thought of as the ability of a species to 
spread. Spread depends on dispersal and 
population growth. These two factors are 
temperature dependent, but not necessarily 
in the same way (Amarasekare, 2024). This, 
combined with landscape effects, makes 
the dispersal capacity of a species difficult 
to predict under climate change. 

Tracking of the climatic niche is an example 
of an ecological response where dispersal 
capacity plays an important role (Eiserhardt 
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et al., 2013; La Sorte & Jetz 2012). In cases 
where acclimatization or adaptation is 
insufficient, colonization of new areas may 
be the only option to survive climate change. 
A decrease in dispersal capacity will inhibit 
the ability of a species to follow its climatic 
niche. In addition, the rescue effect allows 
metapopulation persistence by the 
colonization of individuals from other 
populations (Brown & Kodric-Brown, 1977; 
Lande et al., 1998). Small fragments can only 
support small populations, which increases 
their sensitivity to the effects of 
demographic stochasticity and reduces 
their genetic variance, which can ultimately 
lead to extinction. However, these 
processes can be prevented by the 
colonization of these small patches by 
individuals from other fragments. As the 
dispersal capacity of a species decreases, 
the occurrence of the rescue effect also 
decreases. Overall, the landscape seems to 
indirectly shape species' responses to 
climate change (Bonte et al., 2010). 

The connectivity of a landscape is described 
by the interplay between the dispersal 
capacity of a species and the landscape 
itself, making it inherently species-
dependent (Cheptou et al., 2017). As a 
result, it is not possible to determine a 
general connectivity value for a landscape. 
An important landscape characteristic 
influencing connectivity is fragmentation, 
which refers to the process by which 
habitats are divided into smaller, more 
isolated patches. Smaller habitat fragments 
support smaller populations which are more 
vulnerable to extinction (Cheptou et al., 
2017). This is particularly detrimental if the 
rescue effect is reduced due to reduced 
dispersal capacity. The impact of 
fragmentation on biodiversity is however 
controversial. Some studies suggest that 
fragmentation benefits species diversity 
(Fahrig, 2017; Fahrig et al., 2019), while 
others dispute this claim (Fletcher et al., 
2018). As a result, the effects of 
fragmentation on biodiversity remain 
controversial. However, fragmentation is 
often accompanied by habitat loss, and 
there is a general agreement on the negative 

effects of these combined factors on 
biodiversity. In the same way that the effects 
of fragmentation on biodiversity are not 
clear, the effects on dispersal are also 
complex. This makes it even more difficult to 
determine landscape connectivity for 
specific species. Although the effects of 
fragmentation on dispersal are not fully 
understood, dispersal between patches of a 
metacommunity is certainly necessary to 
maintain populations in the smaller patches 
(Brown & Kodric-Brown, 1977; Lande et al., 
1998). 

Because the effects of connectivity and 
fragmentation are species dependent, 
assessments of landscape connectivity 
should include multiple species (Cheptou et 
al., 2017). However, this is often not the case 
(Brodie et al., 2015). In addition to not 
including more than one species, most 
studies of fragmented landscapes use 
simple, unrealistic fragmentation patterns. 
Tao et al. (2024) have shown that the results 
of these studies are not generalizable to 
complex, realistic landscapes. Therefore, in 
addition to including multiple species in 
connectivity studies, the landscape should 
also be spatially explicit. This will make the 
results more robust for conservation 
strategies in that particular landscape. 

The Natura 2000 network was created to 
increase the connectivity of Europe's 
valuable habitats with the goal of protecting 
threatened and valuable species (Natura 
2000 - Environment - European 
Commission, n.d.). It has been suggested 
that this network was installed with a focus 
on plant and vertebrate protection, and 
therefore to be badly equipped to protect 
arthropods (D’Amen et al., 2013; 
Hernandez-Manrique et al., 2012). For this 
reason, we can also expect that arthropod 
hotspots may not currently fall under the 
coverage of the Natura 2000 network. 

Coleoptera are one of the largest order of 
insects (Zhang 2011). Like other arthropods, 
their populations are declining, with dung 
beetles being one of the most affected taxa 
(Sánchez-Bayo & Wyckhuys, 2019). The 
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order is not only large but also functionally 
diverse (McKenna et al., 2019). This explains 
their importance for ecosystem functioning. 
Bioturbation, seed dispersal, and 
decomposition are some examples (Nichols 
et al., 2008; De Vega et al., 2011). Despite 
their critical ecological roles, beetle species 
remain relatively understudied. Only 
grassland species will be studied as these 
species appear to be in even greater decline 
compared to other terrestrial arthropods 
(Seibold et al., 2019). 

Since landscape connectivity is species-
dependent, we lack information on how 
understudied species experience a 
landscape (Cheptou et al., 2017). An 
effective method to address this problem is 
the virtual species approach (Wood et al., 
2022). A virtual species is a combination of 
trait values that, when realistically assigned, 
represent real species, including those that 
are understudied. For instance, Santini et al. 
(2016) successfully predicted species' 
responses to climate change using this 
approach with only sparse data available on 
the species. To ensure realistic trait 
combinations, it is beneficial to include trait 
syndromes, which are traits that are closely 
related to each other. Since body size is 
closely related to many other traits, it serves 
as a good central trait for creating realistic 
virtual species (Woodward et al., 2005). This 
method will lead to reliable predictions for 
real communities. Another advantage of the 
virtual species’ approach is its efficiency in 
covering a wide range of beetle traits with a 
relatively small number of modeled species. 

Additionally, it eliminates sample bias (Qiao 
et al., 2016). 

We aim to assess the effectiveness of the 
Natura 2000 areas in Flanders in protecting 
Coleoptera from climate change. To achieve 
this, virtual species are created and 
simulated using an individual-based model. 
Two landscapes will be used to determine 
the effects of two contrasting conservation 
scenarios on the Flanders’ beetle 
community. One landscape will include only 
the ecologically valuable grasslands within 
the Natura 2000 network present in 
Flanders, whereas the other landscape will 
include all valuable grasslands in Flanders. 
Each species is considered eurytopic for all 
the selected grasslands. Different heating 
scenarios are added to the model to study 
the effect of temperature on trait and 
species distributions under different 
management strategies. The effectiveness 
of the landscapes will be assessed by 
examining the alpha, bèta, gamma, and 
functional diversity of the beetle community. 
We expect low effectiveness in protecting 
Coleoptera from climate change, given the 
lack of focus on Coleoptera in conservation 
plans and the findings of previous studies 
(D’Amen et al., 2013; Hernandez-Manrique 
et al., 2012). Furthermore, we hypothesize 
that all diversity measures will be 
significantly higher in the landscape, 
including all Flanders' grasslands, as this 
landscape shows a higher level of 
connectivity, increasing its robustness to 
climate change. 

Materials and methods 

Virtual species 
Virtual species are formed using real life-
history traits of Flanders’ beetles (figure 1), 
utilizing a dataset containing trait values 
from Western European arthropods (Logghe 
et al., 2024). The correlations between trait 
values were established through Bayesian 
regression models in R using the brms 

package (Bürkner 2017). Each trait was 
individually tested against another trait. A 
range of potential slopes and intercepts were 
obtained from these models. Only traits from 
grassland species were used since these 
species are the focus of our study. 
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Body size is closely connected to many other 
factors, such as fecundity, dispersal 
distance, and environmental temperature 
(Honěk 1993; Jenkins et al., 2007; Klok & 
Harrison, 2013; Shelomi, 2012). Therefore, 
we will only use the correlations between 
body size and other life-history traits to 
ensure realistic trait combinations. The other 
life-history traits selected, are thermal 
breadth, thermal optimum, dispersal 
capacity, and fecundity. First, a random body 

size for each species is selected from the 
trait dataset. Next, for each trait, random 
draws are selected from the combined 
posterior distributions of the slope and 
intercept. Using the randomly selected body 
size, slope, and intercept, trait values can be 
determined using equation 1. Consequently, 
a virtual beetle with five unique life-history 
traits is created. This process will be 
performed multiple times to simulate a 
beetle community. 

 
𝑇𝑟𝑎𝑖𝑡 𝑣𝑎𝑙𝑢𝑒 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + log(𝑠𝑖𝑧𝑒) ∗ 𝑠𝑙𝑜𝑝𝑒     (1) 

Fig. 1: Workflow to create a virtual species. 

 

Basics of the model 

An individual-based model is created to 
simulate the effects of climate change on the 
virtual species using Python 3.10. This 
method is chosen for its ability to simulate 
population and community dynamics based 
on individuals’ life-history traits in a robust 
manner (DeAngelis & Grimm 2014; Grimm et 
al. 2017). Interactions between beetle 
species are poorly understood in nature; 
therefore, species are simulated 
independently from one another. 
Additionally, we assume no competition due 
to the large grid cells relative to the small 
beetles and thus expect local niche 
segregation to occur. 
 
Every run starts by creating a virtual beetle, 
as described above. Since we want to 
compare different scenarios with each other, 
we initialize the landscape at its carrying 

capacity, K. Thus, scenarios with the same 
landscape will always begin with the same 
population size. After initialization, the 
model loops through the following steps 
(Figure 2), with each loop representing a 
generation of beetles: assessing survival 
change according to the environmental 
temperature, surviving individuals get 
offspring, all the old individuals die, some 
offspring will disperse depending on cell 
density, and finally, the number of 
individuals above the carrying capacity die. 
These steps are closely related to the life-
history traits assigned to the different 
species. Each run lasts for 100 generations, 
to allow the population to stabilize. For each 
run, the population size at the end of the 
simulation and the end positions of the 
individuals are obtained. 
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Landscape 
Two landscapes are used in the model 
(Figure 3). For the first landscape, we aim to 
include only the biologically valuable 
grasslands present in the Natura 2000 area in 
Flanders. For the second landscape, we aim 
to include all the biologically valuable 
grasslands present in Flanders. To create 
these landscapes, the geographic 
information system QGIS 3.24.0 is used. The 
datasets ‘vogelrichtlijngebieden’ and 
‘Habitatrichtlijngebieden, Toestand 
18/01/2013’ from Agentschap voor Natuur 
en Bos are used to create Flanders’ Natura 
2000 polygon layer. The dataset ‘Biologische 
Waarderingskaart en Natura 2000 
Habitatkaart, Toestand 2023 (BWK)’ from 
INBO is used to select the correct habitat 
types (De Saeger et al., 2023, De Knijf et al., 
2010). All three datasets can be found on 
www.geopunt.be. 
 
Not all areas are suitable for grassland 
beetles; therefore, we include only 
ecologically valuable grasslands. This is 
based on the assumption that the number of 
species present in the less valuable 
grasslands will be negligible compared to 
those in the valuable areas. This also 
significantly decreases the running time of 
the model. Each species is considered 
eurytopic for all the selected grasslands. 
 

We only want to include biologically valuable 
habitats therefore only the following 
grassland types are selected: species-rich 
permanent grassland (coinciding with the 
following BWK codes: hj, hp+, and hpr), 
semi-natural grasslands (ha, hc, hk, hm, 
hmm, hme, hmo, hn and hu), dry dune 
grassland (hd and had), Corynephorus 
canescens grasslands (hat), and Aira 
grasslands (hac) (De Saeger et al., 2023, 
Vriens et al., 2011). To determine the habitat 
types of the different polygons, we only use 
unit one of the polygon descriptions since 
this unit best describes the areas. 
Sometimes ‘b’ is added to the codes which 
describes the growth of young trees and 
shrubs which shows a decrease in the value 
of the grasslands. Since the polygon is still 
tagged as a valuable grassland, we also keep 
these habitat types. Lastly, the signs ‘+’ or ‘-’, 
are sometimes included in unit one. This sign 
describes how well a biotope is developed 
with ‘+’ being a well-developed biotope and ‘-
‘ describing a weakly developed biotope. As 
this factor is not important to our study, it will 
not be used for the selection of habitats. We 
considered the sign only for code hp, since 
polygons with code hp- or hp indicate 
species-poor grasslands. When all suitable 
grasslands are selected, we use only the 
polygons that overlap with the Natura 2000 
area for the Natura 2000 landscape, whereas 
we use all selected grasslands for the other 
landscape. 
 
Next, a grid is constructed of the two 
different landscapes with cells of 1 × 1 km². 
The total landscape is 237 × 91 km². The 
grassland cover percentage is calculated for 
each cell. Carrying capacity is determined by 
multiplying this percentage by ten. Thus, the 
maximum carrying capacity per cell is ten 
individuals per species. This amount is low 
for computational reasons, but will still lead 
to reliable predictions, as we assume 
numbers in reality are a multiple of this 
computational number of individuals. The 
landscape with only Natura 2000 grasslands 
has 669 cells with a carrying capacity of at 
least one, while the other landscape 
contains 2278 of these kinds of cells. 

 

Fig. 2: Every simulation will loop 100 times 
through these steps. 
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Different scenarios 

Six different environmental temperatures, 
based on the IPCC report (IPCC 2022), are 
modeled in combination with the two 
different landscapes, resulting in 12 different 
scenarios. Each virtual species goes through 
all of these scenarios (figure 4), simplifying 
comparisons. As mentioned, one landscape 
includes only the suitable grasslands 
present in the Natura 2000 area of Flanders, 
whereas the other landscape includes all the 
suitable grasslands present in Flanders. The 
six different environmental temperatures are 
based on the Shared Socioeconomic 
Pathways (SSPs) defined by the IPCC Sixth 
Assessment Report (IPCC 2022). The first 
temperature is the average temperature of 
Flanders from 2023 (KMI 2024). The other 
temperatures are the expected changes in 
average temperature by 2081-2100 based on 
the 2021 report of the IPCC. This leads to the 
following environmental temperatures, 
12.1°C, 12.05°C, 12.45°C, 13.35°C, 14.25°C, 

and 15.05°C respectively linked to following 
scenarios, current average temperature, 
SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and 
SSP5-8.5. Temperature is always 
homogeneously modeled across 
landscapes. 
 

Survival linked to the thermal 
niche 

Each individual receives a fitness value 
between one and zero. However, fitness only 
represents survival associated with the 
thermal niche in our model. Nevertheless, 
this value is important for local demography 
since only after assessing survival via fitness, 
an individual can reproduce and disperse 
(Figure 2). Once an individual survives, 
reproduction and dispersal depend only on 
the life-history traits fecundity and dispersal, 
respectively (see further). The fitness value 
depends on two life-history traits (thermal 
optimum and thermal breadth) and the 
environmental temperature in the grid cell. 
Since thermal breadth and optimum are 
constant for individuals of the same virtual 
species, their fitness will only vary if the 
environmental temperature is different. 
Survival chance, on the other hand, will be 
more stochastic, as it is only partially 
influenced by fitness. Randomization is done 
by generating a random number between 
one and zero for each individual. If this 
number is lower than the individual's fitness, 
the individual is removed from the model. 
Thus, the higher the match between the 
environmental temperature and an 
individual’s thermal optimum, the higher its 
chance of survival will be. 
 

Fig. 4: Every virtual species will go through these 

twelve different scenarios. 

A B 

Fig. 3: The two different landscapes used in the model. A: only the valuable grasslands present in the Natura 

2000 area of Flanders. B: All the valuable grasslands present in Flanders. 
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Many studies have documented the 
generality of left-tailed skewed thermal 
niches (Roitberg & Mangel 2016; Ruel & Ayres 
1999). Thereby, the performance of an 
individual decreases faster when the 
environmental temperature is above its 
optimum than when the environmental 
temperature is below its optimum. We want 
to include this observed asymmetry in the 
calculation of an individual’s fitness to make 
the model more realistic (figure 5). Therefore, 
we use an analogy to the Morse potential 
function to calculate the fitness, as seen in 
Terry et al. (2024). 
 

𝐺𝑀𝑜𝑟(𝐸) =  𝑅𝑚𝑎𝑥 (1 −  
(1 − 𝑒𝑎(𝐸−𝜙))

2

𝑎2𝑊2
)     (2) 

 
The value a determines the asymmetry of the 
niche and is set to 0.1 since this provides a 
realistic temporal niche for beetles (Buckley 
et al., 2022; Terlau et al., 2023). A sensitivity 
analysis will be performed to test the effect 
of this factor (appendix 1). RMax describes the 
local intrinsic growth rate of an individual at 
its thermal optimum. In the model, RMax is 
equal to one. Therefore, the survival 
probability of an individual will be equal to 
one when the environmental temperature 
and its thermal optimum are the same. E is 
the parameter for the individual’s thermal 
optimum, whereas W describes the thermal 
breadth of the individual. 
 

Fecundity 
In the model, we assume no partner 
limitations; therefore, we model only 
females. Since we do not include genetics in 
the model, this assumption should not pose 
problems regarding the reliability of the 
results. As mentioned above reproduction is 
determined in part by fitness and hence by 
thermal optimum and range. This is because 
fitness partially controls whether an 
individual reaches reproductive age. 
However, if an individual reaches this age, 
the number of offspring, 𝜆, depends solely 
on the life-history trait fecundity. Some 
beetle species are k-strategists, producing 
few offspring with higher survival rates. 
While many other beetle species produce 
hundreds of eggs, only a small portion of 
them will successfully hatch and reach 
reproductive age. These are r-strategists. To 
minimize the running time of the model, 𝜆 
will only represent the offspring who reach 
adulthood under demographic stochasticity 
and selection. Therefore, we take the base 
ten logarithm of the fecundity value of the 
individual. Taking this logarithm will result in 
a proportionally greater effect on higher 
fecundity values (r-strategists) compared to 
lower values (k-strategists). To get the final 𝜆 
one is added to the transformed fecundity 
value this ensures an average of two 
offspring per individual. This approach 
avoids modeling species with declining 
populations only because of a low average 
number of offspring, independent of the 
environment. The number of offspring per 
individual of the same virtual species is 
constant. Thus, demographic stochasticity 
is added by taking a Poisson distribution to 
determine the final number of offspring per 
individual. Offspring inherit the life-history 
traits and position of their parent. In a later 
step, the offspring will be able to disperse. 
 

Dispersal 
To realistically simulate the movement of an 
individual, the life-history trait dispersal is 
used, which is valued between one and zero. 
In the trait database the dispersal value 

Fig. 5: Example of a species fitness curve using 
equation 2 where E = 9 and W = 10. 



Zaya Lips  

10 
 

represent the relative mobility of a species in 
comparison with species of the same order, 
which is in most cases based on the wing 
load of the species. This trait includes the 
probability of dispersal, as well as the 
distance traveled. A value of one means a 
species will travel far and/or has a high 
probability of dispersal. We use the Pareto 
distribution to represent these two factors 
(García & Borda-de-Agua, 2017). 
 

𝑌 =
𝛼−1

𝛼
 ∗ 𝑋_𝑚𝑒𝑎𝑛 

𝑈
1
𝛼

     (3) 

 
X_mean represents the average distance 
traveled by a virtual species. This value is 
calibrated using the maximum known 
dispersal distance of Flanders’ beetle 
species. In this case, a dispersive ladybug 
species typically traveled 18 km (Jeffries et 
al., 2013). Multiplying the dispersal trait 
value of the virtual species by 18 gives the 
value for X_mean; therefore, the most 
dispersive virtual beetle, with a dispersal 
value of one, can travel an average of 18 km. 
Since individuals from the same species will 
obtain the same dispersal curve (figure 6), 
we include the random value U in the 
equation. U represents a random value 
between one and zero and is used to add 
stochasticity to the model; thus, individuals 
of the same species will not disperse the 
same distance. Finally, α determines the 
curve’s tail. We want a heavy fixed tail; 
therefore, this value was set to two. This type 
of tail leads to the inclusion of rare long-
distance dispersal events in our model, 
which is important for correctly assessing. 
landscape connectivity (Saura et al., 2014). 
These rare long-distance dispersals have 
also been documented for beetles (Trotter et 
al., 2023; Elek et al., 2014). A sensitivity 
analysis will be performed to test the effect 
of α (appendix 1). Dispersal direction is 
completely random and differs for each 
individual. When an individual crosses the 
borders of the landscape, they are removed. 

 

 
The probability of dispersal is partly included 
in the Pareto distribution but depends 
mostly on the carrying capacity of a cell. 
When local populations exceed the K of their 
cell, individuals disperse away from the cell 
until the carrying capacity in that particular 
cell is reached. Which individuals disperse 
out of the cell is completely random. Since 
an individual can only disperse once and the 
direction is completely random, there is a 
probability that an individual will not reach a 
suitable cell and die. After all dispersal 
events have finished, the K of each cell is 
again checked. This is necessary since 
individuals who dispersed in the previous 
step could have reached another full cell. 
For each cell, all individuals above the K are 
removed from the model. Which individuals 
are removed is again completely random, 
thus not based on arrival time. 
 

Data analysis 
Each run consists of only one species (figure 
7). Since we want to investigate diversity 
measures between the different scenarios, 
we need to create beetle communities. A 
simulated community is created by merging 
100 virtual species. This is replicated three 
times to have independent replicates on the 
emergent properties of the species 
dynamics, which results in a total of 300 
modeled species. This is a simplification of 
the more than 4000 beetle species present in 
Flanders. However, this model aims to cover 
the trait diversity observed in Coleoptera and 

Fig. 6: Example of a dispersal curve using 
equation 3 with X_mean = 9 km. 
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not the species diversity. Since many 
species have similar traits, a community of 
100 beetles should be sufficient to cover this 
trait diversity. This amount was also verified 
by plotting 100 random body sizes from the 
trait database which resulted in a normal 
distribution, as observed in the real beetle 
community. 

 
 
 
 
 

All calculations are performed using R 4.1.2 
with the packages ggplot2, dplyr, tidyr, 
forcats, betapart, and vegan (Wickham 
2016, Wickham et al., 2021, Wickham 2021, 
Wickham 2021, Baselga et al., 2023). 
 

Alpha diversity 

First, we calculate alpha diversity at the cell 
level. For each cell, the number of different 
species is counted; this number represents 
the alpha diversity and is independent of the 
number of individuals per species. This value 

is averaged across the replicates to obtain 
the final alpha diversity value per cell. 
Heatmap for different scenarios are created 
using these alpha diversity values. Next, the 
average alpha diversity for each scenario is 
calculated. Therefore, for every scenario 
separately, all the alpha diversity values at 
the cell level are added up. This sum is then 
divided by the number of cells with a carrying 
capacity of at least one. Depending on which 
landscape is used this number of cells will 
differ. This value is again averaged across 
the three replicates. 
 

Bèta diversity 
We examine bèta diversity by plotting the 
distance decay in dissimilarity, as this 
method has proven to be powerful for 
ecological studies (Graco-Roza et al., 2022; 
Morlon et al., 2008). Hereby, the similarity 
between communities is calculated along 
the spatial distance. Therefore, two different 
matrices are calculated. The first matrix is a 
dissimilarity matrix, which is calculated 
using the Sorensen dissimilarity index and 

Fig. 7: Schematic representation of the methods. 
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the function beta.pair from the R package 
betapart (Martín-Devasa et al., 2024). Next, a 
distance matrix is calculated, which 
contains the Euclidean spatial distances 
between the cells, using the dist function of 
R. The distance decay for each scenario is 
calculated using the function decay.model 
of the R package betapart. We choose to use 
the exponential model type following Martìn-
Devasa et al. (2024). For each scenario, the 
distance decay in dissimilarity is plotted. 
These functions are the result of taking the 
average between the replicates for every 
scenario. 

 

Gamma diversity 
Gamma diversity is calculated by counting 
the number of species still present at the end 
of a run. This is done separately for each 
scenario and is independent of the 
population size. The average between the 
different replicates is calculated to obtain 
the final gamma diversity of each scenario. 

Functional diversity 

Functional diversity is the last measure of 
diversity studied. Each life-history trait will 
be studied separately. The average value for 
each life-history trait for each cell is 
calculated, which is dependent on the 
number of individuals per species present in 
the cell and is therefore weighted. We also 
calculate the mean trait value of each 
landscape by taking the average of all cell 
means. Next, we determine the coefficient of 
variation (CV) for each trait in each cell. This 
allows us to study changes in the average 
trait value as well as changes in the diversity 
of traits for the different scenarios. We again 
calculate a landscape mean for every CV 
value of each trait by taking the average of all 
cell-CV-values. For the average trait values 
and coefficient of variances, the average of 
the replicates for each cell is calculated to 
obtain the final results. Heatmaps are again 
created to show the mean trait values and 
coefficient of variance for the different 
scenarios. 

 

Results 
Alpha diversity 
Across both landscapes (Figure 8), mean 
alpha diversity per cell level decreases with 
rising temperatures. Another trend visible for 
both landscapes is a higher level of alpha 

diversity in more connected and/or larger 
habitats. Since the landscape with all 
Flanders grasslands has more of these 
habitats, more cells with high alpha diversity 
are observed in this landscape.  
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Alpha diversity at cell level for scenario 1 

Alpha diversity at cell level for scenario 4 

Alpha diversity at cell level for scenario 6 
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Fig. 8: Heatmaps of scenario 1, 4, 6, 7, 10 and 12 depicting the alpha diversity at cell level. The first three heatmaps 
are scenarios with only Natura 2000 grasslands while the scenarios of the other three heatmaps use the landscape 
with all Flanders’ suitable grasslands. Scenarios 1 and 7 have an environmental temperature of 12.01°C, scenarios 4 
and 10 have a temperature of 13.35°C and finally scenarios 6 and 12 have a temperature of 15.05°C.  

 

Alpha diversity at cell level for scenario 7 

Alpha diversity at cell level for scenario 10 

Alpha diversity at cell level for scenario 12 
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The mean alpha diversity for both 
landscapes decreases with increasing 
temperatures (Figure 9). Although both 
landscapes follow the same trend, the 
landscape including all grasslands always 
has a higher alpha diversity when comparing 
scenarios with the same environmental 

temperature. For the two most extreme 
heating scenarios, a more pronounced 
decrease in alpha diversity is observed for 
the all grassland landscape in comparison to 
the Natura 2000 landscape. The replicates 
are very similar with only small standard 
deviations observed. 

 

Fig. 9: Mean alpha diversity plotted for all scenarios. Red represents the all grassland landscape and blue represents 
the landscape with only Natura 2000 grasslands. The dot size represents the mean population size for each scenario. 
For each scenario, the mean population size is calculated by taking the average of the population sizes at the end of a 
run for each species present in that scenario. Error bars indicate the standard deviation between replicates. 

 

A decrease in mean population size is 
observed with increasing temperatures 
(Figure 9, Figure 10). When comparing 
scenarios with the same temperature, the 
Natura 2000 landscape consistently has a 

lower population size. In addition, we 
observe more abundant species in the 
cooler scenarios (Figure 3). The number of 
rare species increases with increasing 
temperatures. 
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Fig. 10: Rank abundance plots of scenarios 1, 4, 6, 7, 10 and 12. For each scenario, the population size at the end of a 
species run is plotted for each species present in that scenario, which is subsequently ordered by population size. On 
the left, scenarios with only Natura 2000 grasslands are plotted, while on the right, scenarios with all suitable 
grasslands of Flanders are plotted. Scenarios 1 and 7 have an environmental temperature of 12.01°C, scenarios 4 and 
10 have a temperature of 13.35°C, and scenarios 6 and 12 have a temperature of 15.05°C. Only one replicate is included 
in the rank abundance plots. 
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Bèta diversity 
The slope of the distance decay function 
increases with increasing temperatures for 
both landscapes and is most pronounced for 
the Natura 2000 landscape (Figure 11). The 
slopes are positive, i.e. an increase in 
distance between sites leads to an increase 
in dissimilarity between these sites. The 
intercept decreases with increasing 
temperatures for the all grassland 
landscape. Thus, for this landscape, 
communities close to each other are more 
similar at higher temperatures but become 
increasingly dissimilar as distance 
increases. Since the intercepts for the all 
grassland landscape decrease strongly with 
increasing temperatures and the slopes 
decline less extreme, an overall decrease in 
dissimilarity with increasing temperatures is 
observed. This is not the case for the Natura 
2000 landscape, where intercepts vary less 
and no decreasing trend is found for the two 
most extreme heating scenarios. For this 

landscape, dissimilarity is generally highest 
for the three most extreme heating 
scenarios. Thus, for the Natura 2000 
landscape, communities that are close to 
each other maintain almost the same level of 
similarity as temperature increases. 
However, the increase in dissimilarity 
between communities with increasing 
distance becomes more extreme with higher 
temperatures. However it is important to 
note that although no overall decrease in 
dissimilarity is observed for the Natura 2000 
landscape, the dissimilarity starts at a lower 
level in the colder scenarios compared to the 
all grassland landscape. Therefore, the 
Natura 2000 landscape has an overall lower 
level of dissimilarity than the other 
landscape, there is just no decrease in 
dissimilarity observed. The replicates are 
very similar with only small standard 
deviations observed. 

 

 

Fig. 11: Distance decay in dissimilarity plotted for the 12 scenarios, with only Natura 2000 scenarios on the left and 
scenarios including all valuable grasslands on the right. The color of the lines represents the different temperatures. 
The standard deviation between replicates is also plotted. Since the blue and grey scenarios are very similar only blue 
is clearly visible. 
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Gamma diversity 
For the three coldest temperatures, the 
gamma diversity remains constant (Figure 
12). A further increase in temperature leads 
to a decrease in gamma diversity, with a large 
drop between 14.25°C and 15.05°C. This 
pattern is observed for both landscapes. 
When comparing scenarios with the same 

temperature, the Natura 2000 landscape will 
always have a lower gamma diversity. This 
difference increases for the two most 
extreme heating scenarios. The standard 
deviation is relatively small, only for scenario 
6 we observe a large standard deviation. 

 

 

Functional diversity 
The coefficient of variation (CV) decreases 
for each life-history trait with increasing 
temperatures (Figure 13). This means that 
trait values vary less with higher 
temperatures. Thus, functional diversity is 
reduced. Except for dispersal, the CV of the 
different traits is lower for the Natura 2000 
landscape when comparing scenarios with 
the same environmental temperature. The 
variance in temperature optimum and 
breadth is very small, with small CV values 

between 0.03 and 0.02 and 0.12 and 0.085 
respectively, so the observed decrease is 
also very small. For dispersal, the variance is 
larger with a CV between 0.40 and 0.44, 
again with only a small decrease observed. 
Fecundity is highly variable with a CV above 
one, with a stronger decrease from 3.50 to 
1.50. Finally, size has a CV between 0.80 and 
0.55. When considering the CV values for the 
different traits geographically, there is a 
general trend towards lower CV values for 
the more isolated and smaller fragments 
(Figure 14, Appendix 2.1). Thus functional 
diversity is lower for the smaller fragments. 

 

Fig. 12: Mean gamma diversity plotted for all scenarios. Red represents the landscape with all grasslands and blue 
represents the landscape with only Natura 2000 grasslands. The error bars indicate the standard deviation between 
the replicates. 
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Fig. 13: Mean CV of all life-history traits plotted for the different scenarios. Red represents the landscape with all 
grasslands and blue represents the landscape with only Natura 2000 grasslands. The mean CV values are calculated 
only including the cells were at least one individual is present. 
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Fig. 14: Heatmaps of the coefficients of variance for fecundity and dispersal for scenarios 11 and 12 respectively. The 
darker the color of the cell the higher the CV value of the trait is. 

 

 

We also observed mean values for body size, 
dispersal, fecundity, thermal optimum, and 
thermal breadth (Figure 15). Dispersal and 
size decreased with increasing 
temperatures, while the other three life-
history traits increased. These responses to 
temperature increase are observed for both 
landscapes. When considering the mean 
values for the different traits geographically, 

we observe higher mean values for the traits 
dispersal and thermal breadth in the more 
isolated and smaller fragments (Figure 16, 
Appendix 2.2). This means that more species 
with a high dispersal and or thermal breadth 
value are present in these fragments in 
comparison to the rest of the landscape. For 
the other traits, these trends were absent or 
less pronounced. 

 

  

CV of fecundity for scenario 11 

CV of dispersal for scenario 12 
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Fig. 15: Mean value of all life-history traits plotted for the different scenarios. Red represents the landscape with all 
grasslands and blue represents the landscape with only Natura 2000 grasslands. The mean values are calculated only 
including the cells were at least one individual is present. 
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Fig. 16: Heatmaps of the mean trait of dispersal and thermal breadth on the right for scenario 12. The higher the cell 
color the higher the mean trait value is. 

 

The sensitivity analysis performed on the factors α and a, show that changes in these factors do 
not significantly alter our results (appendix 1). Therefore our insights are robust. 

 

Discussion 
We can conclude that an increase in 
temperature leads to a decrease in diversity, 
regardless of which landscape we study. This 
is true for alpha, functional, and gamma 
diversity, with a direct response of the first 
two. Gamma diversity decreases only in the 
more extreme heating scenarios. Bèta 
diversity is a more complex measure. With 
increasing temperatures, bèta diversity 
decreases for the all grassland landscape, 

indicating homogenization, while no 
decrease is observed for the Natura 2000 
landscape. However, the Natura 2000 
landscape starts with a lower beta diversity 
and therefore still has a lower level of beta 
diversity compared to the other landscape. 
The decrease in diversity can be explained by 
the decrease in the thermal fitness of the 
virtual beetles. As the mean thermal 
optimum of all virtual beetles is below the 

Mean value for dispersal for scenario 12 

Mean value for thermal breadth for scenario 12 

Mean thermal 
breadth 

Mean dispersal 
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current environmental temperature, species 
are already experiencing a warmer 
environment than their optimum, resulting in 
lower thermal fitness. An increase in 
temperature will only reduce their thermal 
fitness further, causing population sizes to 
decrease and some species to disappear 
altogether. 

Although we see a general effect of 
temperature on diversity, patterns are not 
entirely the same between the two 
landscapes. The most noticeable 
differences between the two landscapes are 
the size and number of habitats and the 
connectivity between them. The landscape 
with all valuable grasslands consists of 
larger suitable areas and is more connected. 
The Natura 2000 landscape on the other 
hand, has only a few large areas and is 
generally considered to be very fragmented 
in terms of beetle dispersal capacity. These 
differences explain the different responses 
to temperature increase which we will 
discuss further. 

The more isolated and smaller fragments 
have lower alpha diversity compared to the 
other habitats. Thus, smaller fragments 
contain fewer species. As the Natura 2000 
landscape consists of more fragmented 
areas, a lower mean alpha diversity is 
observed for this landscape. To explain the 
species density distribution, we consider the 
equilibrium theory of island biogeography 
and related metapopulation dynamics 
(MacArthur & Wilson, 2001). This theory 
explains species density on isolated 
fragments through colonization and 
extinction. Smaller fragments support 
smaller populations that are more 
susceptible to the effects of demographic 
stochasticity and thus extinction (Melbourne 
& Hastings, 2008). In contrast, larger 
fragments can support larger populations 
that are less vulnerable to extinction. These 
larger habitats can act as sources of 
colonization for the smaller habitats, 
neutralizing the increased extinction rate. 

This phenomenon is known as the rescue 
effect (Brown & Kodric-Brown, 1977). 
However, smaller fragments are also often 
isolated, leading to the combination of less 
colonization and more extinction, which 
explains the lower number of species in 
these fragments. The landscape containing 
all grasslands has many small habitats but 
differs from the Natura 2000 landscape in 
that these fragments are more connected to 
source habitats, resulting in a higher number 
of species within smaller fragments 
compared to the Natura 2000 landscape as 
colonizing chance increases with increasing 
connectivity. 

The equilibrium theory of island 
biogeography is further supported when 
examining the variance in life-history traits. 
We observe a higher trait value for dispersal 
in the smaller fragments. Thus as expected, 
the more dispersive species can more easily 
colonize and maintain populations in these 
isolated habitats. Overall, trait variation is 
lower in these fragments because species 
with certain traits, such as high dispersal and 
fecundity, are more likely to establish 
populations in these isolated fragments. In 
addition, the lower number of species 
present in these areas further reduces trait 
variation. This decrease in trait variation 
indicates a decrease in functional diversity. A 
reduction in functional diversity linked to the 
isolation of a fragment has also been 
demonstrated in plant, bird, and insect 
communities (Arellano-Rivas et al., 2016; 
Matuoka et al., 2020; Tu et al., 2019). 
Because functional diversity is a key 
determinant of ecosystem functioning, it is 
an important metric on which to focus 
conservation planning (Gagic et al., 2015). 

Mean alpha diversity decreases with 
temperature increase. Consequently, the 
mean number of species present in a cell is 
declining, indicating that many species 
ranges are shrinking. A decline in distribution 
range is mainly due to loss of species in the 
smaller, more isolated patches, which can 
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be again explained by island biogeography 
(MacArthur & Wilson, 2001). As population 
sizes decline, the probability of an individual 
reaching an isolated area also decreases. 
The loss of individuals in some fragments will 
further reduce landscape connectivity, thus 
reducing the probability of colonization to 
the smaller patches. Furthermore, the 
probability of extinction in a small fragment 
is further increased as a consequence of the 
reduced fitness of the virtual species 
following an increase in temperature. This 
explains why even more species are lost in 
smaller isolated fragments during 
temperature increase leading to a decline in 
range distribution. Range contraction due to 
climate change and habitat loss has been 
observed in multiple species, including 
insects (Pacifici et al., 2020; Sánchez-Bayo & 
Wyckhuys, 2019). However, insects are also 
known to shift their range during climate 
change (Rubenstein et al., 2023). This 
phenomenon is described as tracking of the 
climatic niche which is not possible in our 
model due to the temperature being 
constant over the whole landscape, and the 
individuals' inability to move beyond the 
boundaries of Flanders. Therefore we can 
only conclude that some species will 
experience a contraction of their Flemish 
distribution. To determine whether this is 
accompanied by range shift further studies 
are needed. 

The mean number of species per cell 
decreases in a similar trend for both 
landscapes for the four coldest 
temperatures. However, for the two warmest 
scenarios, the species density decreases 
faster for the all grassland landscape. We 
hypothesize that this is related to the 
decrease in population size. As mentioned 
above, smaller populations are more 
sensitive to the effects of demographic 
stochasticity. The Natura 2000 landscape 
has smaller population sizes to begin with 
and is therefore already more susceptible to 
the effects of demographic stochasticity. We 

assume that around the scenario with an 
environmental temperature of 14.25°C, the 
all grassland landscape crosses a threshold 
where demographic stochasticity noticeably 
changes the species density, which was 
already the case for the Natura 2000 
landscape. Nevertheless, alpha diversity is 
always higher for the all grassland landscape 
than for the Natura 2000 landscape when 
comparing the same temperature scenarios. 

When dissimilarity between communities 
decreases we talk about homogenization 
(Baeten et al., 2012). An increase in 
homogenization is observed for the all 
grassland landscape with an increase in 
temperature meaning there is a decrease in 
beta diversity. It is, however, important to 
note that while no increase in 
homogenization is observed for the Natura 
2000 landscape, the landscape in general 
has a higher level of homogenization 
compared with the all grassland landscape. 
Homogenization is a widespread 
phenomenon with recent studies showing it 
destabilizes ecosystem functioning (Petsch, 
2016; Wang et al., 2021; Wang & Loreau, 
2016). Therefore this phenomenon must be 
included in conservation plans. The 
homogenization of a landscape can be 
attributed to the loss of rare species and/or 
an increase in species present over the entire 
landscape (Socolar et al., 2016). Given that 
only certain species can persist in isolated 
fragments under higher temperatures, the 
observed homogenization can be attributed 
to the loss of rare species. However, the 
extinction of rare species is observed for 
both landscapes. We assume nestedness is 
the reason for the obstruction of 
homogenization for the Natura 2000 
landscape.  

Nestedness refers to the difference in 
community composition between sites due 
to species loss. This results in a nested 
pattern in which smaller and/or isolated 
habitats are inhabited by smaller subgroups 
of the total beetle community (Ulrich & 
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Almeida‐Neto, 2012). We therefore expect 
an overall increase in nestedness with 
increasing temperatures for both 
landscapes due to loss of connectivity. We 
know that landscape connectivity and 
population size decrease significantly with 
increasing temperatures in both landscapes. 
This significant decrease will inhibit the 
rescue effect in smaller and more isolated 
habitats. Therefore, species will go extinct in 
the isolated patches, resulting in 
communities that differ from each other due 
to species loss. As the loss of connectivity is 
more extreme for the Natura 2000 
landscape, we predict that the increase in 
nestedness will also be more pronounced 
compared to the all grassland landscape, 
ultimately preventing homogenization. 
However, this is not a positive phenomenon 
in terms of diversity, as it simply means that 
the Natura 2000 landscape loses more 
species compared to the all grassland 
landscape. We also observe that the 
increase in dissimilarity with distance 
becomes more extreme for both landscapes. 
We assume that this reflects the increase in 
nestedness with increasing temperatures. 
Together with nestedness, turnover provides 
a complete picture of community 
differences (Baselga, 2009). Turnover 
describes the change in community 
composition between sites due to species 
replacement. A decrease in this measure 
leads to homogenization (Baeten et al., 
2012). Thus, we expect turnover to decrease 
for both landscapes, but the effects of this 
decline are offset by the increase in 
nestedness for the Natura 2000 landscape. 

Next, we take a closer look at functional 
diversity. We observe a decrease in the 
variance of all life-history traits for both 
landscapes, indicating a decrease in 
functional diversity. The Natura 2000 
landscape has the lowest functional 
diversity value for all life-history traits except 
dispersal. This decrease in trait variation 
means that certain trait values make a 

species more vulnerable to temperature 
decrease, ultimately leading to the loss of 
these types of traits. These correlations have 
been the subject of recent studies showing 
that they are useful for conservation plans, 
but difficult to generalize as they are species-
dependent (Dawson et al., 2011; Pacifici et 
al., 2017). Of all traits, we observe the largest 
relative decrease in variation for fecundity 
(approximately 57%), which is consistent 
with studies showing a correlation between 
fecundity and climate change (Advani, 2023; 
Dawson et al., 2011). This decrease in 
variation is due to an increase in individuals 
with high fecundity values. A higher fecundity 
value directly affects the fitness of a species; 
if an individual has more offspring, the 
chance of an offspring finding a suitable area 
increases, which in turn increases fitness. 
Thermal breadth, optimum, and body size 
also decrease in variation, although the 
relative decrease is smaller (about 30%). 
Other studies have also found that these 
traits are associated with vulnerability to 
climate change (Dewenter et al., 2024; Jiguet 
et al., 2006; Lehmann et al., 2020). Of these 
traits, body size decreases with increasing 
temperatures, a trend already observed in 
other species (Sheridan & Bickford, 2011). 
Since body size in our model is only related 
to other life-history traits, the correlation 
between these traits and the change they 
undergo due to temperature increase 
determines the decrease in body size. The 
mean of the other traits, thermal optimum 
and breadth, increases with warmer 
temperatures. This implies that individuals 
with a higher thermal optimum and a larger 
thermal breadth are less vulnerable to 
temperature increases, as would be 
expected. Since thermal optimum and 
breadth are used to determine the thermal 
niche in our model, the decline of species 
with lower thermal optimum and breadth 
during temperature increase can be directly 
linked to a decrease in thermal fitness. In 
summary, species with a low fecundity 
value, a low thermal optimum, a low thermal 
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breadth, and a large body size are more 
vulnerable to climate change. 

The trait dispersal is also studied. This is the 
only trait where the variance is lower in the all 
grassland landscape compared to the 
Natura 2000 landscape. We assume that this 
is a consequence of the method used to 
calculate the trait variation. We only include 
cells with at least one individual when 
calculating the different variation values. As 
mentioned above, the Natura 2000 
landscape loses species faster in the 
isolated fragments than in the all grassland 
landscape. Thus, fewer of these fragments 
are used to calculate dispersal variation for 
the Natura 2000 landscape, which ultimately 
leads to a smaller decrease in dispersal 
variation. This effect is only observed for 
dispersal, as this trait plays an important role 
in determining whether a species reaches a 
more isolated fragment. A decrease in 
dispersive individuals is the reason for the 
decrease in variance. Although this could 
mean that dispersive species are more 
vulnerable to temperature increases, the 
most likely reason is the method used to 
calculate mean dispersal. A mean dispersal 
value is calculated for each cell. The average 
of all these cell means is taken to calculate 
the overall mean. Only the more dispersive 
species can reach the isolated cells, these 
cells will increase the mean dispersal value. 
As the temperature increases, fewer of these 
isolated cells will be inhabited and thus not 
included in the mean trait calculation. This is 
most likely the reason for the observed 
decrease in mean dispersal. Thus, dispersive 
species are not necessarily more vulnerable, 
they are just unable to reach the more 
isolated habitats anymore due to the general 
population decline. However, they do 
experience a decline in range distribution. 
Which we already observed for some 
species determined via mean alpha 
diversity. To further investigate the effects of 
climate change on dispersal we should look 
at the mean dispersal of the population 
instead of on a landscape level. Informed 
dispersal decision is also not included in our 
model which could also alter the results to 

benefit more dispersive species during 
climate change since in our model species 
have a high possibility of moving to a non-
suitable cell (Mortier et al., 2018). This could 
again be the subject of further research.  

As mentioned above, gamma diversity 
decreases only in the two most extreme 
heating scenarios. This is related to the 
fitness of a species. As the temperature 
rises, the fitness of most species starts to 
decrease, so their chance of dying increases. 
Species become less abundant. However, 
only at the 13.35°C scenarios, fitness 
crosses a threshold where the detrimental 
effects of demographic stochasticity 
become visible. Since the Natura 2000 
landscape contains smaller populations, 
these stochasticity effects are even more 
pronounced for this landscape, resulting in a 
greater decrease in gamma diversity. 

It is important to note that our predictions of 
biodiversity decline are optimistic because 
we do not include biotic interactions in our 
model. The loss of ecological interactions 
often occurs long before species go extinct 
(Valiente-Banuet et al., 2014). Therefore, 
even in the cooler scenarios with minimal 
diversity loss, we can expect many losses of 
ecological interactions. These losses will not 
only negatively affect the functioning of an 
ecosystem, but will also accelerate the 
extinction rate through secondary 
extinctions (Sandor et al., 2022). Therefore, 
the loss of biodiversity observed in our model 
without biotic interactions is an optimistic 
representation of reality. 

Another factor that leads to an 
overestimation of the effectiveness of 
landscapes in protecting beetles from 
extinction is the absence of genetics in our 
model. We have already mentioned the 
sensitivity of small populations to the effects 
of demographic stochasticity. These effects 
are partly present in our model through 
randomizing survival, dispersal direction and 
number of offspring. However, there is also 
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an important genetic aspect to the 
vulnerability of small populations that we 
were not able to include in our model. Small 
populations experience an increase in 
inbreeding and genetic drift, leading to an 
increase in homozygosity and ultimately a 
loss of genetic diversity (Blomqvist et al., 
2010). The loss of genetic diversity makes a 
species vulnerable to a variety of factors. The 
combination of low genetic diversity and 
vulnerability to the effects of demographic 
stochasticity increases the likelihood that a 
species will enter a downward spiral in which 
the population becomes smaller and smaller 
until the species disappears completely. 
This is the so-called extinction vortex (Gilpin 
and Soulé 1986). Thus, even though we only 
see a decline in gamma diversity in the most 
extreme heating scenarios, some species 
will already be at the tipping point of 
extinction in the cooler scenarios, where 
population sizes have already started to 
decline. 

Finally, the inability of the Natura 2000 area 
to cover an important grassland area should 
also be noted. Looking at the heatmaps of 
the landscape including all the valuable 
grasslands, we can observe three important 
source areas where many species survive in 
the warmest scenarios. Even though none of 
these areas are well covered by the Natura 
2000 network, one has almost no coverage, 
the area in the south of Flanders. It is 
important to protect these source areas as 
they keep the populations in the neighboring 
smaller cells alive. Thus, in addition to the 
low connectivity of the Natura 2000 network, 
it also lacks the protection of important 
areas for beetles to survive climate change. 

The Natura 2000 network is currently not 
effective in protecting beetles from climate 
change. Therefore, the current management 
plans need to be modified. To improve beetle 
conservation in Flanders, management 
should focus on increasing the number of 
protected areas with valuable grasslands 
that are currently not part of the Natura 2000 

network, thereby increasing the carrying 
capacity and to some degree connectivity of 
the protected valuable grasslands. This will 
lead to larger populations and more diversity 
in all aspects, making the beetle community 
in Flanders less sensitive to climate change. 
As valuable grasslands in Flanders are still 
fragmented, additional measures are 
needed to further increase connectivity. 
Restoration of non-valuable grasslands will 
help with this. As beetles play an important 
role in ecosystem functioning, special 
attention should be paid to increasing 
functional diversity. Therefore, especially 
species with traits leading to an increased 
vulnerability to climate change should be 
considered in conservation plans. These 
species include beetles with one or more of 
the following traits: low thermal optimum, 
thermal range, fecundity, and/or large body 
size. Despite these efforts, beetle diversity 
will still decline with extinctions in the most 
extreme heating scenarios. This is another 
indication that we need to limit climate 
change as soon as possible to prevent 
further extinctions. 

Conclusion 

Currently, the Natura 2000 network in 
Flanders is not effective in protecting beetles 
from climate change, as an overall decline in 
biodiversity and population size is observed 
with warmer temperatures. This decline can 
be attributed to the small amount of valuable 
grasslands within the Natura 2000 network 
and the low connectivity between these 
areas. Therefore, an adapted management 
plan focusing on increasing the amount of 
habitat and improving the connectivity of 
protected areas is needed. In addition, 
management plans should prioritize more 
vulnerable species, using life-history traits to 
aid in the selection process. Although this 
approach will result in more resilient beetle 
populations, beetle diversity will still decline. 
This is yet another reminder that we need to 
limit climate change to mitigate species 
extinction. Although our results already 
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indicate significant problems, our results are 
optimistic because we did not consider 
genetics and biotic interactions in our 
model. This could be the focus of further 
studies, as these factors are likely to further 
accelerate beetle population declines, 
making management issues even more 
urgent. In addition, more research is needed 
to determine the effects of increasing 
temperatures on beetle dispersal traits, 
which could further inform conservation 
strategies. 
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Appendix 
1. Sensitivity analysis 
 

Methods
We conducted a sensitivity analysis on two 
parameters. The first parameter is a, which 
determines the tail of the dispersal curve and 
was set to 2 in our model. The second 
parameter is α, which determines the 
asymmetry of the fitness curve and was set 
to 0.1. To test the effect of these parameters 
on our results, we ran our model for -25%, -
10%, +10%, and +25% of these values. This 
resulted in a total of eight runs with a equal 
to 1.5, 1.8, 2.2, and 2.5 and α equal to 0.075, 
0.090, 0.110, and 0.125. 

We specifically tested the effects of these 
parameters on mean alpha diversity, mean 
population size, and gamma diversity. These 
variables were calculated for the different 
values of a and α in the same way as 
described above and plotted for each 
scenario. We also calculated the relative 

variance for each result. Thus, we subtract 
the result (alpha diversity, mean population 
or gamma diversity for a given scenario) 
obtained with one of the newly chosen 
values for a and α from the corresponding 
result obtained with the base model and 
finally divide this by the result obtained with 
the base model. 

Results 
We observe similar trends even though the 
values for a change meaning the Natura 
2000 landscape always has lower values in 
comparison with the all grassland landscape 
(Figure 1 – 3). The most variance is observed 
for the most extreme heating scenarios. But 
overall there is no large variance between 
the results. 

 

 

 

Fig. 1: Sensitivity analysis for the variable a for mean alpha diversity. On the left, the relative variance for each run and 
scenario is plotted. On the right are the mean alpha values for every scenario plotted. 
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Fig. 2: Sensitivity analysis for the variable a for mean gamma diversity. On the left, the relative variance for each run and 
scenario is plotted. On the right are the mean gamma values for every scenario plotted. 

Fig. 3: Sensitivity analysis for the variable a for mean population size. On the left, the relative variance for each run and 
scenario is plotted. On the right are the mean population sizes for every scenario plotted. 

 

We observe similar trends even though the 
values for α change meaning the Natura 
2000 landscape always has lower values in 
comparison with the all grassland landscape 
(Figure 4 – 6). The most variance is observed 

for the most extreme heating scenarios. 
There is some variance but this does not 
change the patterns observed in the main 
model. 

 

Fig. 4: Sensitivity analysis for the variable α for mean alpha diversity. On the left, the relative variance for each run and 
scenario is plotted. On the right are the mean alpha values for every scenario plotted. 
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Fig. 5: Sensitivity analysis for the variable α for mean gamma diversity. On the left, the relative variance for each run and 
scenario is plotted. On the right are the mean gamma values for every scenario plotted. 

 

Fig. 6: Sensitivity analysis for the variable α for mean population size. On the left, the relative variance for each run and 
scenario is plotted. On the right are the mean population sizes for every scenario plotted. 

 

Conclusion 

The sensitivity analysis performed on the factors α and a shows that changes in these factors do 
not significantly alter our results. Therefore, our results are robust. A more complete sensitivity 
analysis would include other results such as functional diversity. However, this was not possible 
due to the time frame of the thesis. Nevertheless, we do not expect significant deviations from our 
current findings if we included these outcomes as well. 

 

 

2. Functional diversity 
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2.1 Coefficient of variation 

Fig. 7: Heatmaps of the CV of dispersal for scenarios 1, 6, 7 and 12. The darker the color the larger the diversity in 
dispersal is. 

Heatmap of CV of dispersal for scenario 1 

Heatmap of CV of dispersal for scenario 6 

Heatmap of CV of dispersal for scenario 7 

Heatmap of CV of dispersal for scenario 12 
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Fig. 8: Heatmaps of the CV of fecundity for scenarios 1, 6, 7 and 12. The darker the color the larger the diversity in 
fecundity is.

Heatmap of CV of fecundity for scenario 1 

Heatmap of CV of fecundity for scenario 6 

Heatmap of CV of fecundity for scenario 7 

Heatmap of CV of fecundity for scenario 12 



Zaya Lips  

38 
 

Fig. 9: Heatmaps of the CV of body size for scenarios 1, 6, 7 and 12. The darker the color the larger the diversity in body 
size is.

Heatmap of CV of body size for scenario 1 

Heatmap of CV of body size for scenario 6 

Heatmap of CV of body size for scenario 7 

Heatmap of CV of body size for scenario 12 
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Fig. 10: Heatmaps of the CV of thermal optimum for scenarios 1, 6, 7 and 12. The darker the color the larger the 
diversity in thermal optimum is.  

Heatmap of CV of thermal optimum for scenario 1 

Heatmap of CV of thermal optimum for scenario 6 

Heatmap of CV of thermal optimum for scenario 7 

Heatmap of CV of thermal optimum for scenario 12 
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Fig. 11: Heatmaps of the CV of thermal breadth for scenarios 1, 6, 7 and 12. The darker the color the larger the 
diversity in thermal breadth is.  

 

Heatmap of CV of thermal breadth for scenario 1 

Heatmap of CV of thermal breadth for scenario 6 

Heatmap of CV of thermal breadth for scenario 7 

Heatmap of CV of thermal breadth for scenario 12 
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2.2 Mean of life-history traits 

Fig. 12: Heatmaps of the mean dispersal for scenarios 1, 6, 7 and 12.  

Heatmap of the mean dispersal for scenario 1 

Heatmap of the mean dispersal for scenario 6 

Heatmap of the mean dispersal for scenario 7 

Heatmap of the mean dispersal for scenario 12 
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Fig. 13: Heatmaps of the mean fecundity for scenarios 1, 6, 7 and 12. 

  

Heatmap of the mean fecundity for scenario 1 

Heatmap of the mean fecundity for scenario 6 

Heatmap of the mean fecundity for scenario 7 

Heatmap of the mean fecundity for scenario 12 
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Fig. 14: Heatmaps of the mean body size for scenarios 1, 6, 7 and 12. 

Heatmap of the mean body size for scenario 1 

Heatmap of the mean body size for scenario 6 

Heatmap of the mean body size for scenario 7 

Heatmap of the mean body size for scenario 12 
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Fig. 15: Heatmaps of the mean thermal optimum for scenarios 1, 6, 7 and 12. 

  

Heatmap of the mean thermal optimum for scenario 1 

Heatmap of the mean thermal optimum for scenario 6 

Heatmap of the mean thermal optimum for scenario 7 

Heatmap of the mean thermal optimum for scenario 12 
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Fig. 16: Heatmaps of the mean thermal breadth for scenarios 1, 6, 7 and 12. 

Heatmap of the mean thermal breadth for scenario 1 

Heatmap of the mean thermal breadth for scenario 6 

Heatmap of the mean thermal breadth for scenario 7 

Heatmap of the mean thermal breadth for scenario 12 
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populated cells. Since all individuals above the carrying capacity will die, the selection process 
of which individuals will die is random. 
 
Learning 
There is no aspect of learning in the model. 
 
Prediction 
Individuals cannot make predictions about the cells they move to. 
 
Sensing 
Individuals can sense the number of individuals in a grid cell thus if the carrying capacity is met. 
This triggers the movement of an individual.  
 
Interaction  
There are indirect interactions in the model. Some individuals are forced to move if the carrying 
capacity of a cell is satisfied. No communication accompanies these interactions. 
 
Stochasticity 
One form of stochasticity in the model is the position of an individual within a cell at timestamp 
zero. Scenarios with the same landscape always start with the same number of individuals in 
each cell. However, the positions of individuals within these cells are random. 

The survival chance of an individual leads to stochasticity, as it is only partly influenced by their 
fitness value. Randomization is performed by generating a random number between one and zero 
for each individual. If this number is lower than the individual's fitness, the individual is removed 
from the model. Thus, the higher an individual’s fitness, the higher its chance of survival will be.  

Demographic stochasticity is also added via the number of offspring an individual has. 
Stochasticity is added by taking a Poisson distribution of the individual's fecundity value to 
determine the number of offspring per individual.  

For each species, a dispersal curve is formed using the Pareto distribution. Since individuals of 
the same species will have the same dispersal curve, we include the random value U in the 
dispersal curve equation. U represents a random value between one and zero and is used to add 
stochasticity to the model; thus, individuals of the same species will not disperse the same 
distance. The direction of dispersal is also random. 

Some individuals will move when the carrying capacity of a cell is reached. However, which 
individuals move is randomized. This is done by shuffling the population list before selecting the 
moving individuals. After all individuals have dispersed, the carrying capacity is checked again. 
Since the dispersing individuals could have reached a full cell again. All individuals above carrying 
capacity die, the selection process of these individuals is again randomized by shuffling the 
population list. 

Finally, stochasticity is added to the creation of the virtual species. For each species, a random 
body size is selected from a list of realistic body sizes. The other life-history traits, dispersal 
capacity, fecundity, temperature optimum, and temperature range, are calculated using this 
random body size. For each trait, we have a list of different intercepts and slopes describing the 
relationship between body size and that particular trait. To obtain these values real trait data was 
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used. A random intercept and slope are selected for each trait. These values and body sizes are 
then used to determine the life-history traits of the virtual species. 

Stochasticity is used to include variability in processes for which it is unimportant to model the 
actual causes of variability. 

 
 
Collectives 
Individuals can be grouped into species. Individuals of a species differ in their x and y values, but 
their life-history traits are the same. Sharing life-history traits means that fitness and the dispersal 
curve are the same as these variables are determined by life-history traits. Therefore, individuals 
of the same species are expected to behave more similarly than individuals of different species. 
However, this collective is more a definition we give than a real collective created by individuals 
flocking together as a result of individual behavior since species are never modeled in the same 
simulation. 
 
Observation 
Each species runs through twelve different scenarios. For each species, the population size and 
positions at the end of a scenario run are collected. Additionally, all life-history traits generated 
for each species are collected at the end of each species loop. However, since the life-history 
traits do not change during the run for each species, the timing is not important here. 
 

5. Initialization 

For each new virtual species, new life-history traits are created. These traits are not completely 
random, but based on values obtained in the field. Next, the landscape is added. There are two 
different landscapes, one containing all the valuable grasslands in Flanders and the other 
containing only the grasslands present in the Natura 2000 networka of Flanders. Depending on 
the scenario, one of the two landscapes is selected. Next, an environmental temperature is 
assigned, also depending on which scenario is run. There are six different temperatures; these 
are based on the IPCC report and reflect the expected temperature increase in Flanders by 2100 
based on the Shared Socioeconomic Pathways (SSPs). 

At time zero, all cells of the landscape are filled with individuals until their carrying capacity is 
reached. The carrying capacity of each cell depends on the landscape used. This means that 
scenarios with the same landscape always start with the same initial population size, even if 
different species are modeled. However, the location of individuals within the cell is random and 
therefore not constant between the same scenarios. 

 

6. Input data 
 
Input data is used to create the life-history traits of each species. There is one dataset for each 
trait. The body size dataset contains only one column with realistic beetle sizes. The other 
datasets contain one column of intercepts and a second column of correlated slopes. These 
intercepts and slopes describe the relationship between size and that particular life-history trait. 
In addition, external data is used to create the landscapes. One tiff file is used per landscape. The 
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tiff files are created using the Natura 2000 and BWK habitat maps from INBO and are modified in 
QGis. 
 

7. Submodels 
 
Creating the two different landscapes 
Two different tiff files are used for the two different landscapes. The tiff files contain a raster where 
each cell contains a value. These values represent the percentage of grassland cover in each cell. 
The Natura 2000 and BWK habitat maps from INBO are used to calculate these coverage 
percentages using qgis. The percentages are used to calculate the carrying capacity for each cell 
by multiplying this number by 10, this final number is rounded down. Thus, the maximum carrying 
capacity of a cell is ten individuals per species. The array function of numpy is used to return a 
grid of values from the tiff files, which can then be implemented as the landscape of the model. 
 
Species initialization 
The initialization of a species starts by selecting a random body size from the body size dataset. 
Next, for each trait, a random slope and intercept are selected from the corresponding data sets. 
Using the randomly selected body size, slope, and intercept, the trait values can be determined 
using Equation 1. This creates a virtual beetle with five unique life-history traits.  
 

𝑇𝑟𝑎𝑖𝑡 𝑣𝑎𝑙𝑢𝑒 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + log(𝑠𝑖𝑧𝑒) ∗ 𝑠𝑙𝑜𝑝𝑒     (1) 
 
The traits fecundity and dispersal need different back transformations. The back transformation 
for fecundity will be: etrait value. The back transformation for dispersal capacity will look like this:  
etrait value / 1 + etrait value. 
 

Population initialization 
At the end of the population initialization, the landscape must be filled with individuals up to its 
carrying capacity. To achieve this, we loop through each cell of the landscape. When a cell has a 
carrying capacity of at least one, an individual is assigned to that cell by generating coordinates 
for that individual that falls within that cell. Where in the cell these coordinates fall is completely 
random. We repeat this until the cell reaches its carrying capacity. All this is done for each cell, 
resulting in the landscape being filled to its carrying capacity. 
 
Determine which individuals will survive according to the environment 
temperature 
As mentioned above, survival is partly determined by fitness. Fitness is linked to the life-history 
traits temperature optimum and temperature range and the environmental temperature. Each 
individual receives a fitness that ranges from one to zero. We used a Morse potential function to 
calculate this fitness as we wanted to include asymmetry in the fitness calculation (Equation 2).  
 

𝐺𝑀𝑜𝑟(𝐸) =  𝑅𝑚𝑎𝑥 (1 −  
(1 − 𝑒𝑎(𝐸−𝜙))

2

𝑎2𝑊2
)     (2) 

The value a determines the asymmetry of the niche and is set to 0.1. RMax describes the local 
intrinsic growth rate of an individual at its temperature optimum. In the model, RMax is equal to 
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one. E is the parameter for the individual’s temperature optimum, whereas W describes the 
thermal range of the individual. 

A random value between one and zero is generated for each species. If this number is higher than 
the fitness value of the individual, the species will die. Thus, the higher the fitness of an individual, 
the higher its chance of survival. 

Individuals get offspring 
The number of offspring, depends on the life-history trait fecundity. We take the base ten 
logarithm of the fecundity value of the individual and add one. The number of offspring per 
individual of the same virtual species is constant. Thus, demographic stochasticity is added by 
taking a Poisson distribution to determine the final number of offspring per individual. Offspring 
inherit the life-history traits and position of the parent. In a later step, the offspring will be able to 
disperse. 
 

Dispersal 
When the carrying capacity of a cell is reached, any individuals above the carrying capacity will 
disperse. Which individuals disperse is random. As mentioned above, each species has its 
dispersal curve. This curve is created using the Pareto distribution (Equation 3). 
 

𝑌 =
𝛼−1

𝛼
 ∗𝑋_𝑚𝑒𝑎𝑛 

𝑈
1
𝛼

     (3) 

X_mean represents the average distance traveled by a virtual species and is calculated by adding 
18 to an individual's dispersal trait value. 18 is added because this is a known mean dispersal 
distance for the highly dispersal beetle species in Flanders. α determines the tail of the curve. We 
want a heavy fixed tail, so this value was set to two. This type of tail results in the inclusion of rare 
long-distance dispersal events in our model. Since individuals of the same species will receive 
the same dispersal curve, we include the random value U in the equation. U represents a random 
value between one and zero and is used to add stochasticity to the model. 

A random value of U is chosen for each individual. Adding this value to Equation 3 determines the 
distance the individual will travel. The direction of dispersal is completely random. 
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