"
Fat

INSTITUTE OF PHILOSOPHY g e
KARDINAAL MERCIERPLEIN 2 ] H
BE-3000 LEUVEN

SEDES::

T S
"%lz'usf
i€

Uncertainty in Climate Science

The Constitutive Elements of Uncertainties in Climate Model Projections

Supervisor: Prof. dr. Sylvia Wenmackers

Leuven, 2024

A thesis presented in partial
fulfilment of the requirements for

the degree of Master of Philosophy
(MA)

by Ruth Vanhaecht

50CIq
=3 o

V,
%, 3
g ©












DANKWOORD - ACKNOWLEDGEMENTS

Beste lezer,

Ik kan echt van het Nederlands genieten, een taal die, niet zo toevallig, ook de moedertaal is van de
meeste personen die ik wil bedanken. Anders dan de rest van deze thesis, is het dankwoord dus

geschreven in deze mooie taal.

lets minder dan een jaar geleden, gedurende de barbecue na de afstudeerceremonie, liet professor
Heysse me weten dat hij kon helpen met het vinden van een promotor. Twee maanden nadien, liet ik
het woord ‘onzekerheid’ vallen in zijn bureau waarop ik onmiddelijk een e-mail naar professor
Wenmackers mocht versturen van aan zijn computer. Bij deze, hartelijk bedankt, professor Heysse om

me nog voor het academiejaar aanving op pad te sturen.

Enkele weken later, leerde ik professor Wenmackers kennen. Professor Wenmackers is vanaf het begin
tot het einde van het notoire thesisproces de promotor gebleken waar een thesisstudent alleen maar van
kan dromen: enthousiast en betrokken, maar bovenal verwelkomend-ik heb enorm veel opgestoken uit
de bijeenkomsten met haar doctoraatsstudenten en postdocs. Verder wil ik haar ook bedanken voor haar
nauwkeurige en opbouwende commentaar op de tussentijdse versies van de thesis; dat heeft me steeds

enorm vooruitgeholpen. Hartelijk bedankt, professor Wenmackers!

Tijdens de eerste vergadering van professor Wenmackers’ team die ik bijwoonde, leerde ik Leander
kennen; Hij wees me meteen een arsenaal gepast bronmateriaal aan en gaf het vruchtbare advies om die
dag nog te beginnen schrijven. Gedurende het academiejaar kwam Leander me geregeld aanmoedigen

wanneer we beiden zaten te werken in de KUP-koffiebar van de KU Leuven. Leander, een dikke merci!

Ik had lange tijd moeite met het vinden van recent filosofisch bronmateriaal over modelleren. Dat
veranderde volledig toen Wiebe het boek Inference and Representation van Mauricio Suarez tussen de
‘nieuwe aanwinsten’ van de HIW-bibliotheek zag staan en het voor me uitleende; het werd mijn ‘poort’
naar de wereld van de modelleerliteratuur. Om Wiebe te bedanken, heb ik zo nu en dan een analogie

met muziek opgenomen in deze thesis.

Tot slot wil ik iedereen bedanken die mijn leven gezellig heeft gemaakt gedurende het afgelopen
academiejaar; als gelukkige mens, lever ik beter werk af. Bij deze bedank ik mijn familie, mijn

huisgenoten op Keizersberg, en mijn vrienden.

Groetjes en bedankt,

Ruth






List of abbreviations and symbols

CA Cellular Automata

CIME Common Infrastructure for Modelling the Earth
CMIP Coupled Model Intercomparison Project
ENIAC Electronic Numerical Integrator and Computer
IAM Integrated Assessment Model

IPCC Intergovernmental Panel on Climate Change
MIP Model Intercomparison Project

ScenarioMIP Scenario Model Intercomparison Project






List of Figures

Figure 1: Flowchart depicting the modelling process for one model component. The light blue
blocks depict input, the dark blue blocks depict processes, and the turquoise blocks depict
outcomes (that can be used as INPUL AftErWArdS). .........ccoriieiiieniiiie e 32

Figure 2: Component models of the CESM2 model. (Danabasoglu et al. 2020: 3). .............. 34

Figure 3: Flowchart depicting the modelling process for a coupled earth system model. The
light blue blocks depict input, the dark blue blocks depict processes, and the turquoise blocks
depict outcomes (that can be used as input afterwards). CSM stands for climate system model,
ESM stands for earth system mOodel.............cooiiiiiiiiii 38

Figure 4: Overview of the components and experiments of CMIP6 (Eyring et al. 2016: 1944)

Figure 5: Flowchart depicting the pathway from individual climate models to a model ensemble
and the ScenarioMIP experiment that leads to the ensemble projections. The input for
ScenarioMIP are trajectories constituted by quantification of expert narratives. The light blue
blocks depict input, the dark blue blocks depict processes, and the turquoise blocks depict

[0 11 (o]0 11T 46






Contents

R [ 411 (T [FTox {[o] o OO PP P PP UPP TP PP PP 1
2. MOElliNG 1N SCIBNCE........eiiiiieiie et 3
2.1.  Ahistory of modelling in SCIENCE.........c..ooiiiiiiiiiee e 3
2.1.1.  The advent of the modelling approach in modern science with Maxwell ........ 3

2.1.2.  Controversies regarding the legitimacy of the modelling approach with

Poincaré, Duhem, and the VIienna CirCle.............oovvviiiiiiiiiiiiiiieeeeeeieeeeeeeeeeeeeeeeee e 4
2.1.3. Refining the modelling approach with Hertz & Boltzmann..............cccoceenen. 7
2.2, MOGEIING SYSLEMS .....eiiie ettt 9
2.2.1.  ANIStory of the SYSIEM .....ccciie i 9
2.2.2.  The specificities of the system underlying the climate phenomena ............... 10
2.2.3.  Computer-simulated MOCEIS...........covureiiiieiiiee e 11
2.3, MOAEIS VEISUS thEOTIES. .....cueiiiiiieii et 13
3. Climate MOAelliNg ........oeeiiiee e 13
3.1.  Introduction to the climate and the climate System ...........ccccccvveiiiie e, 14
3.1.1.  Aclosed system with thermodynamically open subsystems...............cc......... 16
3.1.2. A dynamic system in transient balance...............cccccooviiiiiii i, 17
3.1.3. A complex and chaotiC SYStEM .........ccceeiiieiiiiee e 17
3.2. A brief history of climate and weather modelling.............ccccoovviivii i, 17
3.3.  Climate models and weather Models............cccveiiiiiiiiiiii 18
3.4.  The construction of ‘the ClMate’ ...........cccoiiiiiiiiiiiiie e 19



3.4.1. A phenomenological analysis of the climate..............ccccoooiiiiiiii, 19

3.4.2. From experience to SCIENtIfiC data..........ccooveiiieiiiiiiic e 22
3.4.3.  The epistemic value of inferences from supposed stand-alone objects........... 23

4. The climate Modelling CASCAUR ..........cuuiiiiiiieiii e 24
4.1.  Modelling one climate-system COMPONENT ..........coeiiiiiiiiiieiiieee e 25
4.1.1.  The Community Atmosphere Model 6.0 (CAMSB) .........ccccevviviiiiiiiiniiiennnn 25

4.1.2.  Sources of uncertainty in the modelling of one climate-system component... 27
4.2.  Modelling the climate system or the earth SyStem ..........ccccceeviiiiiiieneeie e, 32
4.2.1.  The Community Earth System Model 2 (CESM2)..........ccccovvveriiiiiniiiennnn 32

4.2.2.  Sources of uncertainty in the modelling process of a climate model or earth

1251 G 0170 T L= USSP 34
4.3.  Multi-model ensemble projections and eXperimentS...........cccceevveeriireeniieeesiinnenn 39
4.3.1.  The Coupled Model Intercomparison Project (CMIP)............cccccveviirevinnnenne, 39
4.3.2. Uncertainties in the ScenarioMIP projections............ccccovvveeviveeviiieesieee s, 46
4.3.3.  Sources of uncertainty in ScenarioMIP projections............cccccevvveeviveesinnnenne, 49

4.3.4. Interpreting increasing and decreasing uncertainty between CMIP phases.... 52

B CONCIUSIONS ... e e 53
B.  OULIOOK <. e 57
T RTINS ...ttt et 60

Vi



1. Introduction

“That there is much uncertainty about the system modeled is precisely one of the main

reasons why it is being modeled.” (SUarez: 65).

Good news for Belgians: our famous Burgundian lifestyle is being upgraded by an additional
regional product. Yes, nowadays, the Belgian wine sector is growing by no less than fifteen to
twenty per cent a year, and this way the Belgian monetary nobility knows what to do with its
land. This is apparently due to an otherwise unpopular phenomenon: climate change (Moors
2023).

Unfortunately, the Belgian viticulture sector is an exceptional case for which climate change is
a blessing. The consequences of the rather abstract concept—an increase in the incidence of
extreme weather events, rising sea levels, prolonged droughts, higher temperatures and so on -
are less appreciated in many other areas. The Duin voor Dijk (Dune for Dike) pilot project is
creating denser dunes to protect the dike from water extremes (Blauwe Cluster 2022); this is
not pleasant, according to some Belgians, who realise that the monetary value of their coastal
residence will plummet if the sea view is lost (Renson 2024). But there are worse things than
the loss of the sea sight: in 2020, water suddenly stopped coming out of the tap in Overijse.
The culprits were prolonged drought and poor water management (Ysebaert 2020). One year
later, the extreme rainfall in Western Europe became the second most expensive natural
disaster of that year worldwide with the cost estimated at 38 billion euros, in addition, 240
people died (Van Fleteren 2021).

Naturally, these events are interpreted in terms of climate change (at least by those who are not
dogmatic climate deniers) and this is a well-justified belief given the content of the sixth cycle

assessment report of the Intergovernmental Panel on Climate Change (IPCC):

Human influence has likely increased the chance of compound extreme events since the 1950s.
This includes increases in the frequency of concurrent heatwaves and droughts on the global
scale (high confidence), fire weather in some regions of all inhabited continents (medium

confidence), and compound flooding in some locations (medium confidence) (IPCC 2023: 9).

Nevertheless, whether a particular weather event is a consequence of climate change cannot be
confirmed. Climate models predict the increasing incidence of extreme weather events, but it

remains impossible to project where and when this will manifest with sufficient certainty.
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Climate model outputs are plagued with uncertainty; this fact evokes controversy about how
they should be interpreted, communicated, and used in decision-making. What do these models
tell us and is there a reason to base any policy decisions on their outcomes if these outcomes
are so highly uncertain? To warrant our trust in the model outcomes in light of decision-
making, the sources of and reasons for the uncertainty should be well-understood.

In this thesis, | will investigate the emergence of uncertainty in climate model projections.
More precisely, I am interested in what elements throughout the modelling process are
constitutive to the uncertainty in the outcomes and how this uncertainty should be interpreted.
This is an epistemological question: I will consider whether trust in the outcomes is warranted,

based on a philosophical analysis of the climate modelling process.

At the beginning of my inquiry—with just enough background knowledge about the climate and
modelling in science to be sceptical-I had an intuition that climate models could not be
adequate. At most, they show that disaster will force, but nothing more. Furthermore, I
hypothesised that all uncertainty in the outcomes can be traced back to the original discrepancy
between our perception of a thing and the inaccessible thing-in-itself-which also partially
clarifies the initial scepticism regarding the truthfulness of the outcomes. On the other hand,
given the fact that the global scientific community has not given up on modelling the climate

yet, | supposed that my sceptical intuition had to be, at least partially, wrong.

Before diving headlong into the quest for the answer to the research question ‘Is the trust in
model outcomes warranted?’, here is a brief overview of the course of the journey ahead: 1 will
examine climate modelling from three main perspectives: the conceptual, the
phenomenological, and the technical point of view. first, 1 will take a closer look at the concept
of model (§8 2.1 & 2.3), system (8§ 2.2), and climate (8§ 3.1-3.3). Then, | will conduct a
phenomenological analysis of the concept of climate to understand how our experience relates
to the scientifically constructed concepts and the models thereof (8 3.4). Afterwards, | will
delve into the technicalities of the climate modelling process and examine the construction of
single model components (§ 4.1), coupled global earth system models (§ 4.2), and model
ensembles (8§ 4.3). After each modelling phase, the implications of the employed methods to
the uncertainty in the resulting model and model outcomes will be highlighted. Finally, I will
bring the findings of the three perspectives together in a concluding chapter (§ 5) and provide
an outlook (8 6).



2. Modelling in science

In this chapter, | will set out some history and philosophical insights about modelling in
science. Models have replaced theories at the centre of scientific attention relatively recently:
from 1920 onwards, models gained prominence as instruments of scientific inquiry (Frigg
2023: 1). Philosophers started to pay attention to them only in the second half of the twentieth
century (Vorms 2018: 172).

2.1. A history of modelling in science

2.1.1. The advent of the modelling approach in modern science with Maxwell

According to some, the roots of the word ‘model’ lay in the Latin word ‘modus’ which means
‘measure’. Others, trace it back to the word ‘modulus’ that appeared in the first century BC
also meaning ‘measure’, but additionally bearing a particular connotation to the domain of
music: it referred to the ‘pitch’ as a measure of time. Around 23 BC, ‘modulus’ is found to be
used for the first time in an engineering context! (Muller 2009: 638). Throughout history the
word ‘model’ has been used in many different contexts, going from models for physical
constructions to speaking metaphorically about the model for someone’s behaviour (Muller
2009, 639). What Suaréz calls ‘the modelling attitude” emerged at the end of the nineteenth
century when building models and reflecting on their nature was still done by the same person;
science and philosophy of science were no distinct domains of inquiry yet. The ‘philosopher-
scientist’ who was arguably most directly ‘culpable’ for introducing the modelling attitude as
we know it today was the Scottish physicist Maxwell (Suarez 2024: 19-20). During his
education in Scotland, Maxwell was introduced to an important method of inquiry called
‘reasoning by analogy’. The figureheads of this method-Reid, Steward, Hamilton, and Forbes—
emphasised the instrumental nature of such analogies; the analogy was merely a tool for
inference, not a depiction of reality (Suarez 2024: 26). Furthermore, mainly to reconcile
rationalism with empiricism, Scottish academia embraced the idea that (1) mathematical forms
of knowledge need to be compared to experience (a posteriori knowledge) and, (2) vice-versa,
inductive empirical knowledge is grounded in unreflective presuppositions (a priori
knowledge). Therefore, primarily geometry was employed to make mathematical abstractions

from experience. These abstractions consisted of comparing an object of experience to an

L1t referred to the radius of a column in the field of architecture (Mller 2009: 638).
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imagined model of this object under changing circumstances (Suarez 2024: 21-22). Maxwell
is known for his theory of electromagnetism from which the equations still hold today?.
However, he inferred these mathematical equations through a semi-mechanistic model of the
‘ether’ that is not endorsed anymore. The model included ‘real analogies’—Maxwell thought
they gave insight into the real nature of the processes underlying the phenomenon—and heuristic
elements that were merely introduced for coherence (Suarez 2024: 27-28). Maxwell combined
Scottish reasoning by analogy with the fruits of his education at Cambridge in mathematical
physics: at Cambridge, he cultivated his skills for formalising analogies. This allowed him to
develop the model mathematically (Suarez 2024: 30). Furthermore, the idea prevailed at
Cambridge that good models were developed based on classical mechanics as the underlying
theory, but not in a heuristic way as the Scottish tradition prescribed, but to gain insight into
the nature of the ‘reality’. At the crossroads of these two traditions, models and their elements
became more than heuristic tools for inference (Suarez 2024, 26). Maxwell’s peers did not
accept the hybrid nature of his model (the combination of elements that would depict the
underlying reality with heuristic elements, e.g., the displacement current). Thomson (better
known as Lord Kelvin) who worked alongside Maxwell, rejected the theory completely
because introducing heuristic elements departed from the ruling mechanistic worldview
(Suérez 2024: 30). During the twentieth of his lectures at the Johns Hopkins University in
Baltimore, Thomson explained why he thinks these heuristic elements are problematic: “I never
satisfy myself until I can make a mechanical model of a thing. If I can make a mechanical
model | can understand it. As long as | cannot make a mechanical model all the way through,
I cannot understand, and that is why | cannot get the electromagnetic theory.” (Thomson (Lord
Kelvin) 1884: 270-71)

2.1.2. Controversies regarding the legitimacy of the modelling approach with

Poincaré, Duhem, and the Vienna Circle

On the occasion of Kant’s Critique of Pure Reason, a major topic of discussion was the

connection between logic, mathematics and physics. According to Kant, formal logic—

2 Maxwell’s equations unify the laws of Coulomb, Faraday, and Ampere that describe the phenomena of electricity
and magnetism. From Faraday’s law — stating that a changing magnetic field instantiates an electric field — and
according to the recognition of symmetry in nature, Maxwell hypothesised that the reverse would also hold: a
changing electric field instantiates a magnetic field. The combination of the previous laws results in a description
of electromagnetic waves as the propagation of alternating magnetic and electric fields that constitute each other’s
next instance because of their variations. The resulting electromagnetic wave travels through space at the speed
of light. Maxwell’s equations are part of science education up to this day (Giancoli 2014).
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concerned with the form of thought while disregarding its content—can only serve as a canon:
an instrument to assess the truth of acquired knowledge. To extend the knowledge that we
already have with new findings, however, we need a special kind of logic, an organon of
science (Kant 1998: pt. Il). To Kant, this special logic that makes science possible is
transcendental logic. It is not entirely clear what the relationship between formal and
transcendental logic consists of. Moreover, the nature of the relationship between mathematics
and transcendental logic is not clear either: contrary to formal logic, which consists of analytic
judgements, mathematics comprises judgements that are synthetic and a priori. Can
mathematics serve as an organon of empirical science? The French philosopher Cavailles
considers these remaining ambiguities the source of the different traditions that emerged for
providing a foundation for mathematics: intuitionism and formalism (Cortois 1990: 107-9). A
third position is logicism-the tradition founded by Russell that conceives mathematics as fully
reduceable to logic; all mathematical truths can be reduced to logical truths (Black 1933, 7-8).
As an intuitionist, Poincaré holds that mathematics has creative virtue (contrary to formal logic)
and therefore forms the organon of science. Syllogistic reasoning, on the other hand, does not
allow for the addition of new knowledge, it merely restructures what is given and provides an
axiomatic conclusion (Poincaré 1979: 1-3). Poincaré emphasises that the principles of
mathematics are empirically inspired, based on experimental laws that have been elevated to
absolute truths. Many examples show that mathematics is a system of convention rather than
necessity (Poincaré 1979: 158). A popular example is his conceptions of mathematical space
that also elucidates why he refines (or substitutes) Kant’s a priori forms of intuition—time and
space: Poincaré notices that the laws according to which space unfolds itself when we move in
it, are learned through repetitive experience (Poincaré 1979: 83-92). The a priori conceptions
we need for this are a conception of iteration or repetition (instead of ‘time”), and a conception
of a continuum (instead of ‘space”). Hence, describing space through the Euclidean system is
a mere convention; other space systems would be as legitimate if they could be conceived of
in terms of iteration and continuity (Poincaré 1979: 94-97). Hereby, even the most abstract
mathematical equations get firmly rooted in the most original experience—but retain the

capacity to emancipate from the empirical world.

Maxwell’s theory and corresponding model were developed in the scientific milieu of the quest
for a foundation of mathematics and an organon of science. It seems logical that Thomson was
far from the only scientist who took a critical stance regarding Maxwell’s electrical theory.

Especially sceptical were the partisans of logicism (cf. the logical empiricism of the Vienna



Circle), which was prominent in the French tradition. One of the French scientists—and not
accidentally, a member of the Vienna Circle—expressing this frustration was Pierre Duhem. He
thoroughly criticised Maxwell’s electric theory (Duhem 1902). Moreover, he did not have
many good words left for others who claimed to explain physical phenomena mechanically: no
self-respecting physicist can endorse that the hypothesis “all phenomena can be mechanically
explained” has a meaning, since testing this against empirical reality—the criterion for
rejection—is impossible given the indeterminacy of the particles’ masses and their motions that
supposedly cause the phenomenon of interest (Duhem 1980: 97). Duhem took serious offence
to Thomson’s famous quotation from the Baltimore lectures (see § 2.1.1), to the extent that he
calls it ‘scandalous’ that understanding is considered equivalent to ‘imagination’—alluding to
the mechanical model that can (or cannot) be constructed for a phenomenon (Duhem 1980:
103).

To explain and to represent is not the same. Duhem believed we should put our faith in the
analytic method to explain physical phenomena. Mechanical models are only of use in a
practical sense, not logically. A model does not provide a physical theory and hence no
explication; they are merely ‘nice analogies’ (Duhem 1980: 94-103). Poincaré (1979) writes
about the devotion of French scientists to a method of exactly formulated hypotheses, strict
derivations, and precise conclusions. Maxwell’s theory, on the contrary, does not provide the
clarification for electromagnetism, he merely shows that it is possible to develop a mechanical
model for it. To make matters worse, Maxwell explores electromagnetism by employing
contradictory mechanical concepts—without even attempting to reconcile them. The French had
difficulties with appreciating the work of their English peers because of this lack of consistency
(Poincaré 1979: 220-21). Poincaré seems to have taken a more tolerant stance and writes that
however contradictory multiple candidate theories are, they can all have merit as instruments
of inquiry (Poincaré 1979: 222).

We see then that Thomson, on the one hand, criticised Maxwell’s approach for not being
mechanical enough; The French scientists—among whom Duhem-and the proponents of logical
empiricism in the tradition of the Vienna Circle on the other hand, criticised Maxwell’s theory
for being too mechanical as well as arbitrary. Both criticisms seem to emerge from the
frustration that the theory of Maxwell does not directly explain the real underlying mechanism
of the phenomenon. However, the modelling approach did allow for the extraction of the laws

that the modelled phenomena obeyed. In the end, whether phenomena could be clarified by



appealing to classical mechanics as corresponding to reality, was a matter of belief; Thomson
believed it to be true, Duhem disdained the idea, and Maxwell found a method to extract
abstract laws without dedicating himself to any of both opinions.

Is what Maxwell developed for electromagnetism a theory or a model then? We can consider
this a two-step process: the model is not a theory yet, but an instrument of inquiry that allows
for the extraction of abstract laws, with the potential to become a more general theory. By
modelling, we omit to posit a supposed underlying process that would cause the phenomenon
in advance. Bailer-Jones (2009: 173-74) maintains that a theory can only be connected to
empirical phenomena indirectly, via a model that exists at a lower level of abstraction. The
model mediates between theory and phenomenon: the theory can only be applied to the
phenomenon via the model, and the theory can only be constructed, inspired by the
phenomenon, through the model. We will come back to the relation between theory and model
in § 2.3.

2.1.3. Refining the modelling approach with Hertz & Boltzmann

The development of the theory of electromagnetism—and the modelling approach as a method
of science—was continued in the German-speaking tradition by scientists such as Hertz and
Helmholtz, and later also Boltzmann (Suérez 2024, 29). Helmholtz took Maxwell’s mechanical
analogies as no more than what Duhem suggested they would be: ‘nice analogies’. He added,
however, that from these nice analogies, laws could be derived that applied to the phenomena
of interest. The German-speaking scientists acknowledged that introducing heuristic elements
implied a departure from the underlying mechanistic nature. They did not regard this
problematic, however, since “the new approach compensates for the abandonment of complete
congruence with nature by the corresponding more striking appearance of the points of
similarity.” (Boltzmann 1974: 11).

In his introduction to The Principles of Mechanics Hertz (1956) describes how inferences from

past to future are made:

We form for ourselves images or images of external objects; and the form which we give them
is such that the necessary consequents of the images in thought are always the images of the

necessary consequents in nature of the things pictured. [...] The images which we here speak



of are our conceptions of things. With the things themselves they are in conformity in one
important respect, namely, in satisfying the above-mentioned relationship. (Hertz 1956: 1)

So, the only connection of our images to reality is that the inferences based on these images
systematically correspond to what we see unfolding. According to Hertz, our thoughts are mere
pictures of reality. Because of the limits of our cognitive functions, it is nothing beyond normal
that we can only represent parts of reality and never its entirety. Boltzmann argues that we have
two options now. (1) We could generalise the original picture to lower the likelihood that it
turns out to be incorrect once we compare it to new instances of the phenomenon it depicts.
This would imply a more ambiguous picture, contaminating its derivates with uncertainty. (2)
Working in the opposite direction, we could make the picture more specific (specialisation):
we add features of which we hypothesise that they are determining. If our hypothesis is correct,
we can derive the consequences unambiguously from the specialised picture. This approach,
however, increases the likelihood that the picture does not fit the new experience (Boltzmann
1974: 225).

Abstraction comes down to stripping the picture of the experiential phenomenon of what is
(supposedly) not relevant to a higher-level conception we have in mind—-a mind-internal model.
The specialisation can be applied simultaneously: we can add hypothetical properties that
(supposedly) determine the consequents we want to derive from our mind-internal model while
making abstractions. Abstractions and specialisations are hypothetical features; Boltzmann
believes that without them we “could never go beyond an unsimplified memory mark of each
separate phenomenon.” (Boltzmann 1974: 225). This condition suggests that the picture in a
second instance is informed by what we believe to know already about that kind of
phenomenon. What we seem to care about when adding hypothetical features is, as Hertz and
Boltzmann told us, that the resulting model fits new experience: the derived mind-internal
consequents correspond to the consequents in experience. The features we select should have
the highest likelihood of providing a model that satisfies the abovementioned aim. Consider a
phenomenon lacking any features that resemble something we have already experienced;
arguably, abstractions and specialisations of the original picture would be made at random—
with the same likelihood for each element of the set of candidate abstractions and
specialisations. When a phenomenon resembles an experience in memory, there exists a
background against which the likelihood of hypothetical features increases or decreases.

Hereby, the likelihood of the consequents of the mind-internal models fit new experiences.



2.2. Modelling systems

As we will see in § 3.1, ‘modelling the climate’ is expressed more precisely as ‘modelling the
climate system’. | will elaborate on what it entails for something to be regarded ‘a system’ in

the following paragraphs.

2.2.1. A history of the system

The idea that halfway through the twentieth century received the name ‘system’ and obtained
a corresponding field of inquiry—so-called ‘system theory’—has been present in the history of
epistemology (at least) since Aristotle wrote: “what is the cause of the unification? In all things
which have a plurality of parts, and which are not a total aggregate but a whole of some sort
distinct from the parts, there is some cause [...]” (Aristotle 1933: sec. 1045a). According to
Von Bertalanffy (1972: 408), what Aristotle expresses, as well as what is called ‘system’ is
nothing metaphysical; it is a straightforward empirical fact that gets confirmed with every
observation we make of a living organism, a social group, or every whole that can be conceived

as constituted of parts.

As long as the number of parts is limited and the causal relations between those straightforward,
the classical scientific practice that Descartes describes in Discours de la Methode-reduce the
whole to as many parts as can be discerned and assess their functioning and features in isolation
(1637, 8)—can explain the phenomenon (von Bertalanffy 1972: 409). However, this method
does not suffice longer when the phenomenon of interest emerges specifically because of the
structure of the whole, as abecause of interactions between the parts that have been discerned

(and of which Descartes’s method abstracts).

At the beginning of the twentieth century, scientists ran into problems when trying to solve the
three-body problem of celestial mechanics or when trying to explain phenomena in physiology,
psychology (Gestalt), the evolution of species and sociology. It became clear that the
constellation of the parts is crucial to the behaviour of the whole, and therefore crucial to the
understanding of the phenomenon. The concept ‘organisation’ gained importance as an
explanatory factor for phenomena, as well as jargon such as ‘organism’ and ‘organised entity’.
These developments at the beginning of the twentieth century, formed the source for what

became ‘general system theory’ (von Bertalanffy 1972: 410). In a rather practical way, but



nevertheless elucidating an important quality, Levine writes that “a system is a device that

accepts an input signal and produces an output signal.” (Levine 2005: 3).

2.2.2. The specificities of the system underlying the climate phenomena

When the state of a system evolves with time, it is called a dynamic system. Often, but not
always, dynamic systems can be described by ordinary differential equations. A dynamic
system can also be described by partial differential equations when the state variables depend
on the change in more than one independent variable. The equations can be linear or non-linear.
Linearity means that they obey the superposition principle, comprising additivity (equation 1)
and homogeneity (equation 2):

)+ fx2) = f (g + x1) 1)
axf(x;) = faxx;) (2)

When the behaviour of the whole is determined by the interactions between the elements, and
this ‘collective behaviour’ breaks with rules that govern the elements in isolation (broken
symmetry), the system underlying this behaviour is called ‘complex’ (Andersen 1972: 393;
Ladyman and Wiesner 2020: 3). Although there is no complete overlap, many dynamic systems
are also complex. Moreover, many dynamic systems we discern in nature are governed by non-

linear differential equations, complicating their analysis (Ladyman and Wiesner 2020: 13).

In the late nineteenth century, Poincaré (1892) inquired into the three-body problem. From the
perspective of the classical method that analyses the whole by its parts in isolation, this problem
could not be solved. Poincaré elucidated the sensitive dependence of this kind of system on the

initial conditions:

The final goal of celestial mechanics is to resolve the big question of whether Newton’s laws
alone explain the astronomic phenomena; the only means to achieve this is by making
observations that are as precise as possible and by comparing them to the results of the
calculation. This calculation can only be an approximation and hence it would not serve any

purpose to calculate more decimals than the observations reveal. Thus, it is useless to demand
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a higher precision for the calculations than for the observations; but we cannot ask for less
either. (my translation®) (Poincaré 1892: 1:1)

Hereby, Poincaré is considered the first to have ‘discovered’ the chaotic dynamic system.
However, investigating this kind of system with its many variables and non-linear equations
was complicated back in the day. The advent of the computer was a blessing for inquiry into
complex systems: the field advanced significantly through the visualisation of complex
systems and the enhanced capacity to solve equations numerically (Ladyman and Wiesner
2020, 14).

2.2.3. Computer-simulated models

The direct foundations of computer science were established from the seventeenth century on
by Leibniz (i.a. the binary system), Babbage (the mechanical computer), Lovelace (the first
computer program), Boole (Boolean logic), and Shannon (switching theory underlying digital
circuits) (O’Regan 2021, 35-36). Nevertheless, the first generation of digital computers was
only developed in the 1940s: e.g., the ENIAC (Electronic Numerical Integrator and Computer)
at Princeton, Pennsylvania, in 1946 (O’Regan 2021: 57). From the second half of the twentieth
century, computers were employed to analyse complex systems. As we will see in § 3.2, the
ENIAC was the first computer used for weather forecasting in 1950. Keller points out that it is
also in this post-WOII period that the connotation of the term ‘simulation” undergoes a shift
from ‘deceitful’ to “a technique for the promotion of scientific understanding” (Keller 2002:
1). A transformation regarding the means for generating scientific knowledge occurs: Rohrlich
situates the new methodological field (that would be called ‘computational physics’) between
traditional theoretical physics and experimental physics, in the sense that computer simulation
makes it possible to conduct ‘experiments’ with theoretical systems (Rohrlich 1990). Keller,
however, relativises the novelty Rohrlich ascribes to computational physics: although the new
methodology allows for the study of complex physical systems, it does not change the
algorithm by which the system is solved-the numerical methods could have been executed with

pencil and paper. The progress in the field is caused by the increased accuracy, speed and scale

% Original quotation: “Le but final de la Mécanique céleste est de résoudre cette grande question de savoir si la loi
de Newton explique a elle seule tous les phénoménes astronomiques; le seul moyen d'y parvenir est de faire des
observations aussi précises que possible et de les comparer ensuite aux résultats du calcul. Ce calcul ne peut étre
qu'approximatif et il ne servirait a rien, d'ailleurs, de calculer plus de décimales que les observations n'en peuvent
faire connaitre. Il est donc inutile de demander au calcul plus de précision qu'aux observations; mais on ne doit
pas non plus lui en demander moins.”
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at which computers perform the calculations (Keller 2002: 3). Hence, the novelty is not
epistemological; computer simulation methods implement other epistemically valuable
methods (differential equations, Monte Carlo sampling etc.) for systems that were too complex
to calculate by hand with reasonable effort. The novelty corresponds to an abrupt increase in
calculation capacity rather than intrinsic epistemic progress. Keller describes how simulation
is applied to systems through time: at the beginning, a simulation merely implemented well-
formulated theoretical models and elicited their consequences (Keller 2002: 5-6). Later, the
theory was adjusted with a view to the implementation’s feasibility: empirically derived values
were introduced, although they did not directly further the understanding of the processes
underlying the simulated phenomenon (Keller 2002: 7). Eventually, the phenomena were even
directly simulated, without heeding any underlying laws, let alone theory (should one of these
have been devised). This method, called ‘cellular automata’ (CA), was developed by Wolfram,
and eventually also used to model complex dynamic systems (Keller 2002: 9-11). As stated in
Keller's citation from Wolfram’s Theory and Applications of Cellular Automata (1986),
Wolfram considers CA the method/model we need to describe complex behaviour in a
synthetic way, which was first impeded by the tradition of breaking systems down into their
parts (cf. Descartes’s scientific approach in § 2.2.1). Keller (2002: 12) explains how the striking
success of CA in a vast range of fields seduces scientists into swapping the model for the
empirical ‘reality’. It is said that CA models do not appeal to theory, but there are some
fundamental presuppositions in play: CA simulates a grid in which the cells have states. The
states are updated according to a rule (mathematical equation) depending on the state of their
neighbouring cells. CA models prescribe micro rules about the transaction of ‘information’ (the
states) to ‘agents’ (the cells) which results in collective macro-behaviour (Berto and Tagliabue
2023: para. 3.4). Hence, arule (or law) and the idea (maybe we could even call this theory) that

neighbouring agents exchange information, are present.

Miller (2009: 645) writes that a computer-simulated model differs from other models in
directly representing the laws that the target (supposedly) obeys, without appealing to another
object (a source) that obeys these laws. No other physical object is indeed involved with
computer-simulated models. A computer-simulated model implements equations that describe
laws supposedly applying to the target. However, the computer-simulated model, constituted
by implementing theoretical laws, could be considered the source. Inferences about the

behaviour of the target are made based on the visualised behaviour, relying on the idea that the
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source (the computer implementation of the equations or the visualisation) and target obey the

same laws.

2.3. Models versus theories

A philosophical review of modelling in science would be seriously deficient if nothing is
mentioned about the relation between models and theory. | touched upon this already in § 2.1.2,
where we saw that Duhem did not consider a model an explanation exactly because, in his
regard, it is not a theory—to Duhem, the essence of a theory is a set of laws that unites different
phenomena into ‘a rigorous order’ (Duhem 1980: 103). In that same paragraph, I thought the
model a means to construct a theory, following Bailer-Jones. There exists a variety of views
on the relationship between model and theory; Frigg and Hartmann (2020: para. 4.) distinguish
between two main positions: models as interpretations of theory and models as independent
from theory. The former position is applicable when a theory is considered a set of sentences
in a formal language and a model is taken to be a structure that organises the sentences of the
theory as referring to objects, relations, and functions in a way that they become ‘true’. In that
sense, the model is an instance of a more abstract theory. Depending on whether a theory is
considered in the syntactic or the semantic sense?, the instance of the theory (the model) is
constructed top-down: the formal sentences are adapted to apply to a specific field, or bottom-
up: a theory is conceived of as the overarching result of a set of models. A model can be
considered independent of a theory. This independence can take a full-fledged form-the model
plays the role of a substitute for a theory—or as partial independence when some relation to an
existing theory is present: to explore the theory, to develop the theory, to mediate between

theory and target system etc. (Frigg, Roman; Hartmann 2020: 4.2).

3. Climate modelling

In this thesis, | will focus on the emergence of uncertainty in climate model projections.

Climate modelling is the state-of-the-art way to gain insight into what we call ‘the climate’.

4 Carnap distinguishes three conceptions of language: the pragmatic view (focussing on the use of the sentences),
the semantic view (focussing on the referents of the sentences, the meaning), and the syntactic view (focussing
on the abstract structure and the logical relationships between the sentences). This distinction is applied to make
sense of theories: the syntactic view conceives the essence of a theory as a logical structure of abstract sentences
phrased in metamathematical language, the semantic view grants a privileged position to the meaning of the
sentences and the (persisting) role of modelling to theory, and the pragmatic view makes sense of the concept of
theory in the light of its non-formal components (Winther 2021: para. 1.1).
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Frigg and Hartmann (2020: para. 4.2) consider climate models to fall under the kind of model
that serves as a mediator between theory and the target system, in virtue of being (partially)
independent of both sides. For complex cases such as climate models, the line between what is
theory and what is model becomes blurry, corresponding to the idea that models are instances
of ‘more general’ theories, which is a gradual notion and hence does not provide a clear

criterion to distinguish between both.

Nevertheless, climate modelling offers a vocabulary, methods, and an overall framework for
investigating climate phenomena and how they relate to other phenomena. Particular aspects
of climate models amount to or thwart uncertainty and have been scrutinised in the last decades.
Before delving into the epistemic consequences of the technical particularities, | will briefly
outline certain fundaments of climate science that are indispensable for understanding the

workings of a climate model and the emergence of uncertainty related to it.

3.1. Introduction to the climate and the climate system

In everyday life, we understand the term ‘climate’ as the patterns of weather conditions that
appear typical for a certain region over a long period. However, what is meant by ‘climate’
scientifically—or at least, what it should mean-requires philosophical inquiry. Frigg,
Thompson, and Werndl (2015: 953) distinguish two main ways of defining ‘climate’: the
climate as a distribution over time, and the climate as an ensemble distribution. The former
definition points to the distribution of the values of climate variables over a certain period. The
latter assumes the probability distribution of the climate variables at a certain moment in the
future. Both types of definitions come with their corresponding problems. They conclude that
the least problematic definition among the candidates is climate as “the finite distribution over
time of the climate variables arising under a certain regime of varying external conditions
(given the initial states).” (2015: 955). Unlike the definitions relying on ensemble distributions,
this definition does not pose problems in defining the present and past climate. The definition
also considers the external conditions as they are, namely, varying instead of constant. A
remaining problem with this definition of climate is that it is still unclear over which period we
should evaluate the values of the climate variables. However, these authors argue that it suffices

to adapt the time interval to the purpose of the research (2015: 955). This idea stands in contrast
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to the fixed evaluation period of thirty years—determined by the World Meteorological
Institute®~taken up in the definition of the IPCC for the sixth cycle assessment report:

Climate in a narrow sense is usually defined as the average weather, or more rigorously as the
statistical description in terms of the mean and variability of relevant quantities over a period
ranging from months to thousands or millions of years. The classical period for averaging these
variables is 30 years, as defined by the World Meteorological Organization. The relevant
guantities are most often surface variables such as temperature, precipitation and wind. Climate
in a wider sense is the state, including a statistical description, of the climate system. (IPCC
2023: 2222)

The IPCC definition refers to ‘the climate system’ of which the ‘climate’ would be a state and

covers a wider notion than the average weather. The IPCC defines ‘climate system’ as follows:

The global system consisting of five major components: the atmosphere, the hydrosphere, the
cryosphere, the lithosphere and the biosphere and the interactions between them. The climate
system changes in time under the influence of its own internal dynamics and because of external
forcings such as volcanic eruptions, solar variations, orbital forcing, and anthropogenic
forcings such as the changing composition of the atmosphere and land-use change. (IPCC 2023:
2224)

We can interpret the relation between these definitions by considering ‘climate’ initially as a
phenomenon of experience, namely, the pattern that can be discerned in the subsequent weather
conditions over longer periods, in a certain region. Currently, we understand the emergence of
this phenomenon by positing a system of components that bring the phenomena about by
interacting with each other. We call the system we posit the ‘climate system’ and
consequentially, a state of this system is the climate at a certain instance of time and space. The
IPCC conceives of the climate system as composed of five subsystems: the atmosphere, the
hydrosphere, the cryosphere, the lithosphere, and the biosphere. The atmosphere is the gaseous
shell encapsulating the solid earth; the hydrosphere comprises all that is water in liquid form,
both at the surface and subterraneously; the cryosphere comprises all water in solid form; the
lithosphere is the upper shell of solid earth; and the biosphere consists of all the biomass—living

or dead-that pertains to ecosystems on the land, in the water and the air (IPCC 2023: 2219,

> The World Meteorological Organisation states that periods of thirty years should be used to calculate a
climatological standard normal. This period was decided on at the beginning of the twentieth century after heavy
international debate about what averaging period would be sufficiently long to allow convergence of the long-
term averages (World Meteorological Organization 2007). In light of climate change, the suitability of the thirty
years was revisited and retained (World Meteorological Organization 2017: 8-9).
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2225, 2234, 2237). The IPCC definition is explicit about the interactions between the
components being a part of the climate system—contrary to the 1975 definition of the World
Meteorological Organisation. Emphasis on the interactions has been steadily increasing since
then (McGuffie and Henderson-Sellers 2005: 5).

The climate system comprises large-scale stable patterns, such as the convection zones and the
thermohaline circulation, as well as positive and negative feedback loops, with enforcing and
dampening effects respectively (Ladyman and Wiesner 2020: 35). The processes comprised in
the climate system happen on different time scales. For example, carbon turnover happens on
a short timescale in the cycle driven by the metabolism of organisms: absorption and respiration
of carbon dioxide (CO.) from and to the atmosphere and ocean; slow carbon turnover is the
process in which carbon compounds are taken up in geological formations, among which the
turnover into crude oil. In a certain sense, we couple slow to fast carbon turnover by the

extraction of fossil fuels (Ladyman and Wiesner 2020: 36).

3.1.1. A closed system with thermodynamically open subsystems

Thermodynamically speaking, the components of the climate system are open systems: they
exchange heat, momentum, and mass. (IPCC 2001: 89). The system is ‘driven’ by factors
outside the system such as solar irradiation, plate tectonics, and mantle dynamics (Ladyman
and Wiesner 2020: 35). Changes in the behaviour of the system can be the result of changes in
these external drivers (also called external or radiative forcings) such as volcanic eruptions,
solar variations, changes in Earth’s orbit, and anthropogenic changes in the composition of the
atmosphere or land use (IPCC 2023: 2229). Contrary to the subsystems that exchange mass,
the impact of the external drivers is accounted for in the form of energy alone; no matter is
exchanged between the external source and the components of the climate system. This means
that the climate system, as the amalgam of open subsystems, is conceived of as a closed system
(2001: 91).

The principal driver of the climate system is the incoming solar energy. The system is in
equilibrium when the average net radiation at the top of the atmosphere is zero. Instead of the
stratosphere, the tropopause is taken as the top of the atmosphere given its transient response
to changing average radiative forcing because of the thermal inertia of the oceans (2001: 90—
91). Volcanoes and anthropogenic activity are not considered part of the climate system;

consequentially, their impacts on the climate system are accounted for as radiative forcing.
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Besides radiative forcing, changes in the state of the climate system can be attributed to internal
variability—the interactions between the various components of the climate system (2001: 91).

3.1.2. A dynamic system in transient balance

The climate system is a “dynamic system in transient balance” (McGuffie and Henderson-
Sellers 2005: 22). The system is ‘dynamic’ because the values of the variables that describe the
system are time dependent. The system is in ‘balance’ since the values for the state variables
oscillate around certain averages. It concerns a ‘transient’ balance since certain events can
induce a change in the current equilibrium after which the system evolves towards a new
equilibrium. When the system is pushed out of its equilibrium state, a transient state is induced:
a dynamic state between the moment of disturbance and the moment that the system settles
back into the same or another equilibrium state. The transient climate response (TCR) and the
equilibrium climate sensitivity (ECS) are key concepts in climate modelling that are related to
the so-called response theory of dynamic systems (McGuffie and Henderson-Sellers 2005: 72).

3.1.3. A complex and chaotic system

The climate system is a complex dynamic system described by non-linear partial differential

equations. It also exhibits chaotic behaviour—sensitive dependence on the initial conditions.

A climate model is a scientific representation of the climate system or, at least, a part of it.
Climate models consist of a set of equations that aim to describe the state of the climate system-—
the distribution over time of a set of climate variables—by representing the underlying processes
conditioned by varying circumstances (Frigg and Hartmann 2020; McGuffie and Henderson-
Sellers 2005; IPCC 2023: 181).

3.2. A brief history of climate and weather modelling

In the broader context of the development of the modelling approach, climate models were
developed based on weather models. In 1904, the Norwegian physicist Vilhelm Bjerknes
(2009) presented a mathematical model of the atmosphere comprising a set of six non-linear
partial differential equations: the three Navier-Stokes equations, the continuity equation that
expresses the conservation of mass, and the two first laws of thermodynamics; and one equation

of state: the ideal gas law-the equation of state for the atmosphere (2009: 664). He suggested
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that it would be possible to forecast the weather by solving this set of seven equations as an
initial value problem for the atmosphere (Gramelsberger 2009: 671). Lewis Fry Richardson
developed a method to solve the model equations proposed by Bjerknes and published the
results in his book Weather Prediction by Numerical Process (1922). He solved the differential
equations numerically over a grid that divides the continuous atmosphere in discrete units and
at specific points in time. Before computers got involved, weeks were needed to manually
compute a forecast of just a couple of hours. Even when in 1950 the method was executed by
the meteorology group under Von Neumann at Princeton using the ENIAC, the computations
took 24 hours for a 24-hour forecast; they could barely keep up with the weather itself (Lynch
2007: 3436; Charney, Fjortoft, and Neumann 1950).

In 1955, Philips explicitly applied numerical techniques to predict atmospheric circulations for
the next month-remarkably far into the future compared to what had been put to the test before.
This could be considered the first climate model, or at least the first intention to apply the
numerical weather forecasting method to a general circulation model of the atmosphere for
long-term predictions(Lewis 1998: 41; Phillips 1956). Following Philips’ initial impetus, many
research groups started to develop general circulation models of the atmosphere, including as
many of the understood processes as possible. In 1969, at the Geophysical Fluid Dynamics
Laboratory (GDFL) at Princeton, Manabe and Bryan (Manabe and Bryan 1969) developed the
first coupled global circulation model: the atmospheric model includes the temperature of the
upper ocean layer as a boundary condition, and the ocean model includes the influx of heat,

water and momentum computed by the atmospheric model as boundary conditions (1969: 787).

3.3. Climate models and weather models

Although climate models are based on the numerical implementation of the same differential
equations as models for weather forecasting, they are crucially different: climate models are
not weather models that have evolved over longer periods. A weather model considers the local
geographical conditions such as elevation, exposure, and the presence of rivers and water
bodies. It considers the most recent and spatially precise atmospheric conditions—e.g., the latest
temperature, pressure, humidity, cloud cover, wind speed and direction for a specific location.
Therefore, weather models operate on spatio-temporal scales of mere kilometres and hours.
The weather is ideated as the phenomenon resulting from an underlying weather system,

described by a set of partial differential equations; the weather projections comprise the
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variability of this system, propagated from the initial conditions. Because of the chaotic nature
of the system (the high sensitivity of the system equations on the previous state), the accuracy
of the forecast is highly dependent on the precision of the initial conditions; it inevitably drops
dramatically after a couple of days (Bauer, Thorpe, and Brunet 2015: 50). We will see in §
4.3.3 that the variability we want to record to make accurate weather predictions is exactly the

variability we desire to omit when making climate projections.

With a climate model, we aim to predict a ‘coarse-grained’ variant of the weather on seasonal
timescales and longer: the precise temperatures at certain moments of the day, at precise
locations, are replaced by average temperatures over longer periods or temperature trends
compared to a baseline; in specific regions or at certain latitudes. Climate projections aim to
predict the probability distribution of the weather, not the weather itself (Vitart and Robertson
2019: 6). To make such projections over periods of a decade or a century, the aspects of the
system that only cause day-to-day variations must be ignored in the light of this new purpose:
a climate model is evolved over a lower spatial resolution—e.g., 100 km compared to 100 m, a
magnitude difference of 10°~which improves the accuracy of results on higher temporal scales
(2019: 7). Furthermore, the model employed must consider the aspects of the system that make
a difference in the long term but are not causing significant changes over a couple of days:
climate models comprise equations that describe the dynamics of the ocean, ocean ice and land
surface besides the atmosphere alone. The resulting model is a so-called earth system model

(ECM) consisting of several coupled global circulation models (2019: 7-8).

3.4. The construction of ‘the climate’

3.4.1. A phenomenological analysis of the climate

I adhere to Kant’s revelation that we cannot access ‘the thing in itself”. Our perception of
‘reality’, what would be out there independent of us, is mediated by our senses; they inevitably
leave a particular flavour on the resulting representation we discern (Kant 1998: para. A30).
This idea poses an epistemological problem: what can be legitimately claimed about the world
if we do not have direct access to it? Husserl addressed this question with his transcendental
idealism, a conception of the relationship between the phenomenon and the mind-independent

world or ‘reality’. To Husserl, the perception of a phenomenon at a certain moment in time is
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an intentional act (noesis, a meaning-giving act of consciousness) comprising a correlate
(noema, the ideal content of this act) (Husserl 1982: vol. I, paras 80, 88—93)

The intentional act as a fundamental unit happens at a given moment; hence, approaching the
weather phenomenologically is more straightforward than doing so for the climate. If we
consider our perception of the weather as an intentional act, then what we discern as ‘the
weather’ is its ideal content. The experience of the climate, on the other hand, requires ‘the
presence’ of more than only the weather at an instance of time; it should be the experience of
a certain consistency in the weather patterns within a region. If what we refer to as ‘climate’ is
also an ideal content of an intentional act, then this act should be directed to more than the
weather at the very moment. Husserl illustrates the role of time-consciousness with the
apprehension of a melody. In the present instance, it is apprehended as one object with a
duration and not simply as single tones. In the intentional act, the subsequent phases are
apprehended through ‘retention” and ‘protention” processes. They extend the consciousness of
the previous tone in the past and evoke the idea of a supposed subsequent tone (Husserl 1991:
paras 7-13, 40).

Has the experience of the climate the same structure as the experience of a melody? Husserl
considered retention the kind of process that targets ‘what has just been’ (Husserl 1991, para.
12). Clearly, this does not apply to the climate, which is conventionally evaluated at timescales
of thirty years, as we have seen in 8 3.1. A more fruitful approach could be to consider the
processes of memory and anticipation with subsequent fulfilment or frustration. I was born and
raised in Belgium, where | am used to the weather patterns throughout the year. What led to
the ideation of the climate through experience happened to me for the first time when | lived
in the Southern part of Chile for about nine months: the temperature, precipitation, humidity,
and winds occur in different patterns; the weather changes move along a different path.
Recently, | experienced what led to the ideation of climate again: being in Belgium, I am
surprised by the amount of rain in the past months. The climatological report of the Royal
Meteorological Institute of Belgium confirms my experience: the winter of 2024 has been the
third wettest winter since the first observations in 1833 (Koninklijk Meteorologisch Instituut
(KMI) 2024: 2).

| infer from these anecdotes that the experience of a rupture in the expected patterns
(frustration) calls for an object that clarifies this variability: different temperatures and

precipitations over hours and days are understood as ‘the weather’; changes over months, with
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a certain return period, are addressed by ‘seasonality’; regional variability in the weather
patterns is explained by the idea of climate zones. Recently, new variability has entered: even
though we stay put, the patterns change in a way that does not show a return period. The object
we posit to make sense of that experienced change is climate change.® In this understanding,
the climate is not what we experience, but a second-order object, a concept tailored to make
sense of the variability in the object posited instantaneously. Hepach (2023: 204) would agree;
moreover, he would say that the process of imagination plays a key role in my positing of the

climate as a response to the extreme precipitation event in Belgium.

Scepticism about the legitimacy of a phenomenology of the climate exists in the field of climate
science (because it is a scientifically constructed object that can only be learned about through
media devices), as well as in other disciplines (because the climate is not a universally shared
object) (Hepach and Hartz 2023: 214; Schneider and Nocke 2014: 12). Nevertheless, authors
developed phenomenological analyses for this invisible phenomenon: Knebusch takes climate
as “a cultural relationship established progressively between human beings and weather.”
(Knebusch 2008: 5). By this, he means that we experience climate by experiencing the weather,
through second-order objects such as seasonality, when locating ourselves in time. This way,
we can talk about ‘autumnal weather’, which does not refer to average meteorological
variables, but to the idea that the weather is as expected for the meteorological time (Knebusch
2008: 5-6). Hepach (2023: 175-76) argues that we experience climate in its immediacy. He
appeals to the phenomenological correlation: subject and object always remain connected and,
as conceptualised, this connection should be represented. Hepach compares the climate to a
room which influences how the objects and events within the room are experienced. We cannot
see the whole room at once, but if the room changes, the experience of what happens inside
changes too (correlation). The room, as well as the climate, shape our experiences prior to

reflection.

Inquiry into the ‘climate’ according to the phenomenological method, shows us that experience
is fundamental to our inferences—whether the climate is experienced prior to reflection or not.
Furthermore, it is the target of our descriptions, depictions, and possible understanding.

Experience is what we start from and return to. The appropriation of an invisible scientific

& It must be noted that climate science has not confirmed that the above-average precipitation in Belgium is a
result of climate change. Climate model projections of extreme precipitation events are generally plagued with
much uncertainty. This strictly scientific confirmation, however, differs from how extreme weather events are
understood against the background of endorsed concepts and claims. This shows clearly how the (scientific)
concepts we use and have developed — partially based on experiences — form the background for new experiences.
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concept informs our understanding of extreme weather events as climate change. On the other
hand, constructing the scientific concept of ‘climate’ did not happen through immediate
experiences alone; it required more than individual experiential ‘data’. Scientific concepts are
synthesised based on special kinds of (mediated) experiences: a vast amount of empirical data
measured in specific ways, modelling outcomes, computer simulations, scientific experiments

and so on.

3.4.2. From experience to scientific data

The climate is a scientifically constructed concept—or, at least, a concept that requires more
empirical observations than one individual can provide through the senses. Thus, climate
models, employing scientific concepts to model a scientific concept, cannot be traced back
directly to our experience of the world; the scientific method plays a crucial role. What is the
relationship between the phenomenological correlation and the scientific method? what forms
the bridge between experience and scientific data?

The phenomenological correlation persists, although objects are experienced as ‘out there’.
Positing the object of experience goes hand in hand with positing the ‘I’ as a subject: the
experience is divided between object and subject; it is understood as something that emerges
in the interaction between the perceiving subject and the world of things surrounding the

perceiver.

Why do we divide experiences into a subject and an object? Kant considered space and time to
be forms of intuition. We do not decide to conceive of objects in space and time, it is a function
engrained in our human nature; it happens unmediated. As we have seen in § 2.1.2 Poincaré
refined Kant’s forms; according to him, we need engrained concepts of iteration and continuity
to discern objects. It follows that experience is split up before any conscious awareness. The

moment awareness can enter the scene, there is already an object to be aware of.

The objective perspective, employed in the field of science, does away with the subject-pole of
the experience while the object emancipates from its constitution; it becomes a stand-alone
object. Is this required or a necessary consequence somehow? In The View from Nowhere
(1986), Nagel considers this detached view a human ability rather than a well-thought-out
approach. Without exploring the benefits of this perspective very deeply, it suffices to allege

that it is an approach that ‘works well’.
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So, for a scientific approach, we employ our ability to create a view from nowhere and dispose
of the subject. It might be primarily a matter of making sense of experiences without retaining
any variability that is constituted because of the subject’s particular features; maybe it is merely
easier to derive causal relations between objects and phenomena when abstracting from the
subject-when leaving it out of the picture so to speak. Doing away with the variability of
individual perspectives results in the perceived ‘objectivity’ of scientific methods and their
outcomes. Nevertheless, it is not legitimate to solidify this: within the context of the scientific
method, objectivity is a legitimate assumption, but, once the results are brought to the public—
beyond the realm of scientific inquiry—they should be considered as the result of a thought

experiment that presupposes the absence of the subject in the existence of the object.

3.4.3. The epistemic value of inferences from supposed stand-alone objects

Making an assumption, to proceed from it and derive interesting, helpful, or—for better and
worse—productive insights, does not make the assumption true. An analogy can be made with
axioms in mathematics according to the school of mathematical formalism?: they are required
for ‘building’ mathematics, but there are no reasons to believe them independently of the reason
for their instantiation. Axioms in math, as well as objectivity in science, have a teleological
cause. Within the realm of science, where we adopt the view from nowhere and believe—
axiomatically—in the existence of the object as a stand-alone object, it seems perfectly
warranted to use the adjective ‘objective’. In the end, this approach to the world, with the
existence of the inferred object taken as an axiom, is the birthplace of objectivity as an idea.
Since I am not writing in the capacity of a scientist, I will restrict the use of ‘objective’ and its

derivates to the description of ‘reality’ as understood through scientific glasses—not mine now.

On the other hand, | want to emphasise the ‘realness’ of our experience and its impact on our
existence. A (theoretical) human being fails to autonomically thermoregulate by sweating when
exposed for an extended period to a wet-bulb temperature that exceeds 35°C (Sherwood and
Huber 2010, 9552). These are the conditions (the combination of temperature and humidity) at
which the average human body overheats: the blood pressure drops, the heart might fail, the
kidneys get damaged and so on (Székely, Carletto, and Garami 2015: 452). Between 1999 and

2008, the instantaneous wet bulb temperature never exceeded 31°C, nowhere on earth

7 Axioms in mathematics are considered teleologically posited and therefore arbitrary to some extent by some
(e.g. Quine) and as fundamentally existent by others (e.g. Godel). The first position is linked to mathematical
formalism, and the latter to mathematical Platonism or realism (Horsten 2023).
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(Sherwood and Huber 2010: 9553). However, over the past 64 years, the European wet bulb
temperatures during summer have, on average, increased by more than 1°C (Ma, Chen, and
lonita 2024: 2059). Furthermore, Powis et al. (2023: 7) show that the geographic range and the
frequency of wet bulb temperatures exceeding 35°C rapidly increase with moderately
increasing average temperatures. Duhem paid tribute to empiricism by writing “The human
mind, presented with the external world in order to know it, first encounters the realm of facts.”
(my translation)® (Duhem 1987: 3:1). In the context of empiricism, ‘external’ is to be
understood as reality as it is experienced and not independent of the subject, as a realist would
defend. So, it is compatible with understanding the ‘facts’ of the external world as posited
objects derived from a primordial experience. What is relevant for decision-making, is not
whether the object is believed to be a stand-alone object (realism) or whether it retains the
connection with how it is experienced and its constitution; what is relevant to manoeuvre in
the world, is how an object will affect us. Extended exposure to wet bulb temperature exceeding
35°C is harmful, to say the least; it is a fact that we can be confronted with, independent of our
belief in the object’s existence. Science may abstract from the human perspective to gain
insights we otherwise cannot achieve. We may abandon the subject to inquire into the causal
relations between objects in the external world, but, in the end, the fruits of this abstraction are
brought back into the realm of experience: the insights gained are meant to help us deal with

the facts; they can guide us towards a goal (or away from potential harm).

4. The climate modelling cascade

I have defined a climate model as a representation of a part of the climate system that describes
certain climate variables in time based on the underlying processes. | also mentioned that
climate models are not weather models; climate models include the processes that are relevant
to the variation in the long term and use initial conditions with a different resolution in space
and time. The development of a climate model is a unique process. Compared to model
development in other fields, a climate model resembles a Frankenstein creation; it couples
different models representing separate climate system components. The patchwork lacks
significant elegance. As such, it is more complicated and more interesting for an
epistemological analysis; for instance, climate model developers must negotiate between the

aims of adequate representation and correspondence with empirical data. Intuitively, we might

8 The original quotation is “L’esprit humaine, mis en presence du monde extérieur pour le connaitre, rencontre
d’abord le domaine des faits.”
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expect that a more adequate representation of the climate system results automatically in more
accurate projections, but strangely, these two aims can counteract each other.

To illustrate how climate models are developed and which elements and techniques play an
essential role in the constitution of their projections, I will refer to one of the models that are
included in CMIP6: the Community Earth System Model 2 (CESM2) and a specific component
of it: the Community Atmosphere Model (CAMG).

4.1. Modelling one climate-system component

4.1.1. The Community Atmosphere Model 6.0 (CAMG6)

The CAMG6 model has two main types of components: a dynamical core and a parametrisation
suite. The dynamical core of a climate model is the component of the model that numerically
solves the set of coupled differential equations for the hydrostatic atmosphere representing the
assumed physical processes therein (Ullrich et al. 2017: 4478). There exist different types of
dynamical cores depending on the discretisation method and the constraints used to solve the
equations (Ullrich et al. 2017: 4480). The parametrisation suite contains equations
summarising the excluded processes and the processes occurring at a scale below the grid size
of (the ‘subgrid’ processes). They are represented in a simplified way: depending on free
parameters and in function of the model’s state vector. The equations in the parametrisation
suite provide the input for the processes operating at the resolvable scale of the model
(Couvreux et al. 2021: 1,2). Examples of the parametrised processes are cloud microphysics,
radiative transfer, aerosols, and deep convection (National Center for Atmospheric Research
(NCAR) 2017c). As we will see, each dynamical core has shortcomings; they are addressed by

implementing multiple dynamical cores into the same model.

The dynamical cores of CAMG6 are fully separated from the parametrisation suite. To obtain a
comprehensive solution, the components are ‘coupled’. In CAMS6, this coupling is done in a
time-split manner or a process-split manner: time-splitting updates the parametrisation suite
and the dynamical core sequentially, based on each other’s solutions (equation 3); process-
splitting updates both simultaneously, based on the previous solution (equation 4). In the

equations provided below, D represents the dynamical core; T, S, R and M represent sets of
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processes taken up in the parametrisation suite (National Center for Atmospheric Research
(NCAR) 2017a).

Yt =T (5 (r(M(p™, 0))))) @)

T<S<R(M(1/)n_1))>>—1/)n_1

2At

ll)n+1 =D lpn—l' (4)

Whether the former or latter technique is applied depends on the type of dynamical core, e.g.
for spectral transform dynamical cores, process-splitting is most convenient, while for finite-
volume dynamical cores, time-splitting is the best option (National Center for Atmospheric
Research (NCAR) 2017a). CAMG6 comprises four different dynamical cores: the Finite Volume
Dynamical Core, the Spectral Element Dynamical Core, the Eulerian Dynamical Core, and the
Semi-Langrangian Dynamical Core. The Finite Volume Dynamical Core discretises the
governing equations—the hydrostatic balance equations, the conservation of total air mass, the
conservation law for tracer species (gases in the atmosphere that occur in small quantities) or
water vapour, the first law of thermodynamics, and the momentum equations (Navier-Stokes
equations)—horizontally and vertically (National Center for Atmospheric Research (NCAR)
2017b: para. 5.1). The governing equations for the hydrostatic atmosphere are formulated

depending on the dynamical core (National Center for Atmospheric Research (NCAR) 2017b).

Discretisation on a grid of a certain size implies that some of the information presented by the
continuous differential equations is lost; there is only one solution for a certain period and a
certain finite region in space. Equations are discretised horizontally and vertically. First,
integrating over a finite volume preserves the exactitude of the equation—at least for the
determined volume. To solve the integral, however, a difference operator is introduced for
decomposition in time and space, resulting in an approximate solution (National Center for
Atmospheric Research (NCAR) 2017b: para. 5.1). The accuracy of the integration methods is
enhanced with increasing degrees of freedom available for the subgrid solutions (zero degrees
of freedom result in a constant subgrid distribution, one degree of freedom results in a slope,
two or more degrees of freedom allow for a second- or higher-order polynomial describing

subgrid dynamics). The Finite Volume Dynamical Core of CAM6 allows for a second-order
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polynomial through the Piecewise Parabolic Method, striking a good balance between accuracy
and calculation efficiency (National Center for Atmospheric Research (NCAR) 2017b: 5.1).

To ensure the solutions at grid size are sufficiently accurate, the discretisation should comply
with three conditions. In the case of the Finite-Volume Dynamical Core, firstly, the system
solution should be conservative over time. This can be guaranteed by ensuring that the flux
leaving through a certain face of the finite volume over which is integrated is equal to the flux
entering through that face in the neighbouring finite volume cell. A second condition is called
‘constancy’: a scalar that is initially homogenous should remain so everywhere in the
subsequent time-steps of the solution. Lastly, the solution should be shape-preserving: local
extrema should not be exaggerated, nor underestimated. Satisfying these three conditions
simultaneously is challenging, especially for a multi-dimensional flow. When, for example, the
algorithm fails to consider the transversal contributions to the face-normal flow—that is the only
flow considered in the one-dimensional case—so-called ‘splitting errors’ are introduced during
the calculation of subsequent system solutions such that the solutions will satisfy the
conservation condition but not the constancy condition (Leonard, Lock, and MacVean 1996:
2588-89).

For CAMBG splitting error is reduced by first applying one-dimensional flux-form operators that
ensure conservative solutions, and replacing them by derived advective-form operators,
preserving shape and ensuring constancy. This way a two-dimensional solution is obtained.
Using a vertical Lagrangian coordinate system reduces the three-dimensional differential
equations to their two-dimensional forms (the Lagrangian coordinate system moves vertically
with the fluid). In the horizontal direction, an Eulerian coordinate system is used. The scalars
(i.e. pressure) defined in the horizontal coordinate system determine the ‘position’ of the
vertical coordinate system. This way, vertical advection errors are eliminated. However, due
to the diabatic warming and cooling processes simulated, the Lagrangian surfaces deform. To
omit consequential errors, the surfaces are mapped back to the Eulerian coordinate space by a
conservative algorithm with a reference coordinate (National Center for Atmospheric Research
(NCAR) 2017b: para. 5.1.).

4.1.2. Sources of uncertainty in the modelling of one climate-system component

To represent climate phenomena, the reality that brings them about is understood as a system

of several interacting elements. Within the boundaries of this system, we can describe the
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movement of matter and energy. External influences, related to processes not represented by
the system equations, can be accounted for by ‘boundary conditions’; we condition the internal
description of the system on what the situation should look like at its boundaries. Already at
this point, uncertainty comes into play: we understand the phenomena we perceive by positing
a system of causal relations. This system is not part of the ‘real’ or ‘objective’ world, it is a
conceptual representation. A discrepancy exists between what the world ‘is’, independently of

our human conception, our perception of it, and our understanding of it.

The conceptual system by which we understand the perceived phenomena can be transcribed
into a mathematical form: the system is represented by a set of coupled differential equations
that describe the evolution of the physical, chemical, and biological climate processes in time
(IPCC 2023: 181). Different authors have described different stages in the translation from
reality to a model: they mention mind-internal, cognitive, conceptual, mathematical, physical,
and computer models. Hestens (2006: 10) distinguishes mental and conceptual models: the
former as subjective and personal knowledge, the latter as objective and scientific knowledge,
already formalised. Lian and Zeng (2023: 805) distinguish the physical model from the
mathematical model, both counting as ‘objective’ and ‘scientific’, with the latter referring to
the dynamic framework of models. Sargent (2010: 168) focuses on the distinction between the
conceptual model and the computer model, the former a result of analysis and modelling, while
the latter results from implementing the conceptual model by computer programming. The
correspondence between the two models is tested by ‘computerized model verification’
whereas comparing the conceptual and the computer model to the real world is called
validation. Since the qualities highlighted by these different model stages, and how they relate
to each other, may clarify the climate modelling process, | will tailor the concepts to develop a
framework that conceives of the genesis of a climate model in four stages: the phenomenon,

the mind-internal model, the conceptual model, and the computer-simulated model.
The ‘facts’: phenomena against objects and concepts

As we have seen in § 3.4.2, models are derived from the empirical world. This happens partially
through experience in a ‘natural’ way, with the subject- and object-pole present. For another
part, the scientific method—adopting the ‘view from nowhere’ and abolishing the subject—plays
a crucial role in the constitution of scientific concepts. With ‘object’, I refer to things in the
world that can immediately be posited prior to reflection. Concepts are the things that mediate

between the experiences and the understanding of them. They are posited to make sense of the
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variability in the pattern of experience that was first met with frustration instead of fulfilment.
The constitution of an apt concept can transform frustration in the face of variability into

fulfilment.
The mind-internal model

Individually—but often inspired by the intersubjective ‘trend’®~we understand the phenomenon
as something with a cause (and maybe an impact). | will call the causal understanding, going
beyond the phenomenon as it presents itself, the ‘mind-internal model’. This is a subjective
model; it has not been formalised to be communicable and understandable yet. It is merely an
individual interpretation of what presents itself. Note that, also here, the contribution of the

scientific approach and its methods with vast amounts of measured empirical data is crucial.
Formalisation and conceptual models

To share our subjective insights, we must formalise them so they would be communicable and
understandable to others. | will call the variants of formalised models instances of a ‘conceptual
model’. Formalisation can rely on conventions that were developed in more (or less) organic
ways, over shorter or longer periods, and more (or less) strict, or ambiguous. The use of
language allows for substantial ambiguity, whereas logic and mathematics leave less room for
interpretation, but are also less flexible suitors. If we want the phenomenon to be understood

as precisely®® as possible, mathematical formalisation seems fit for purpose.

In the case of climate models, there is a mathematical instance of the conceptual model, but as
Lian and Zeng (2023: 805) distinguish physical and mathematical models, it becomes clear that
another instance of the conceptual model, at a lower level of abstraction, is also relevant. I

understand this physical model as a conceptual model that employs physical theories to

® With ‘intersubjectively inspired’, I mean that making sense of a phenomenon, even before the insights are
formalised and shared, depends on how the individual has learned to think about experiences by its community
and the tradition. Thunderstorms were once understood by appealing to the Gods, while now, when hearing the
rumbling of an approaching thunderstorm, the average Danish person would only think about Thor riding the
clouds while swinging a hammer by pure association—not in a causal sense. In a causal sense, this average Danish
human being would think about something with friction between masses of air and electricity.

101 will not claim that a mathematical formalisation often leads to the highest accuracy. This judgement would
only be defendable within the scientific realm, where accuracy is a measure of the degree of overlap between the
results from our theories and the objective world as measured empirically. Understanding accuracy as approaching
the phenomenon of experience as closely as possible — what we ought to do outside of the scientific realm, poetics
arguably performs better than math. In Poetics of Space, Bachelard inquires into the ontology (the entity and
dynamism) that is referred to through the poetic image: “The poet does not confer the past of his image upon me,
and yet his image immediately takes root in me. The communicability of an unusual image is a fact of great
ontological significance.” (Bachelard 1964: xvii).
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understand bits and pieces of the causal relations underlying the phenomenon’s emergence,
but, without a coherent mathematical integration of these multiple physical theories. Therefore,
having the relevant theories in mind, mathematisation will lead to a conceptual model at a
higher level of abstraction that must be fully coherent (unlike the physical understanding).
Some aspects are only ‘vaguely’ present in the physical model: they are not (yet) sufficiently
understood to be described mathematically, or it is too complicated to integrate their
mathematical description into the existing governing equations.

In short: the well-posedness of the physical model in a mathematical sense—thus the
configuration of the dynamical cores—is crucial to the reasonability of the model outcome (Lian
and Zeng 2023: 805). Processes that are not well understood can be represented by
parametrisation (IPCC 2023: 181). It is known, however, that there must be a more adequate

representation than the parametrised one that we do not have access to for now.
The computer-simulated model

In the case of CAMS6, the mathematical conceptual model exists of the continuous differential
equations that describe the flow over the sphere of the Earth. A fourth stage comes into the
picture as the conceptual model should provide certain information: concrete solutions in time
and space. However, the conceptual model comprises a set of coupled, non-linear, partial
differential equations. Often, we do not have a well-studied solution for them—our insight into
the nature of the equations is poor—and it is said that ‘there is no analytic solution for the
equation’. We fail to unravel how the mathematical representation of the system behaves
exactly at every point of its ‘state-space’. However, we can find approximate solutions by
specifying conditions and iteratively testing whether a specific solution complies with the
equations. ‘Fortunately,” numerical methods allow us to obtain a discrete solution. Given the
computational capacity needed to solve the coupled equations numerically, this is done by a
computer program. | will call the form in which the mathematical conceptual model is
implemented by computer programming script, the computer-simulated model. Clearly, the fit
between the conceptual model and its numerical implementation is far from exact (Oberkampf,
Trucano, and Hirsch 2004: 26).

Finding solutions for the mathematical expression of the climate-system components requires
discretisation. The simple fact that the solution will only be available at specific instances in

time and space implies a loss of information. The various algorithms to obtain the discrete
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solutions constrain the differential equations that can be included in the dynamical core. Hence,
not the equations most adequately describing the system are chosen, but the equations that
describe the system as adequately as possible while complying with the constraints of the
algorithm of choice. Furthermore, no algorithm satisfies the three conditions for an accurate
solution (conservation in time, constancy, and shape preservation) simultaneously, so,
inaccuracies, such as splitting errors and deformations, are introduced. Although techniques
(e.g. applying operators ensuring conservative solutions and others ensuring consistency and
shape preservation sequentially) are applied to minimise these errors, they in turn have
undesirable consequences (e.g. deformation of the Lagrangian surface).

Other sources of constraints is that each dynamical core comes with its specific type of grid—
that can be implemented at different resolutions—and its specific type of physics-dynamics
coupling. This is yet another reason why employing different dynamical cores can lead to
significant differences between the model outcomes (Jun, Choi, and Kim 2018: 2811;
Herrington et al. 2022: 23-25).

At last, it speaks for itself that the employment of parametrisations—not directly representing
any physical process, but merely simulating subgrid phenomena and phenomena that are not
well understood-—is a source of uncertainty as well. Figure 1 depicts the constitution of a model

component.
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Figure 1: Flowchart depicting the modelling process for one model component. The light
blue blocks depict input, the dark blue blocks depict processes, and the turquoise blocks
depict outcomes (that can be used as input afterwards). Note that the scientific input for the
constitution of the concept is missing here.

4.2. Modelling the climate system or the earth system

4.2.1. The Community Earth System Model 2 (CESM2)

The CAM6 model is the submodel representing the atmospheric processes in the Community
Earth System Model 2 (CESM2). CESMZ2 is a coupled Earth system model released in June
2018 by the NCAR-this modelling group also delivered a model for the first IPCC assessment
in 1990. The predecessors of the CESMs (1 and 2) were the community climate system models
(CCSMs). Because of the inclusion of processes such as global dynamical vegetation changes,
land use changes due to anthropogenic activities, and processes of aerosol effects among others,
what was first called a climate system model is now called an earth system model, it includes
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processes that are not comprised in the climate system but play an important role as external
drivers and forcings. CESM2 simulations are executed as a contribution to CMIP6. The model
participates in twenty Model Intercomparison Projects (MIPs) including ScenarioMIP
(Danabasoglu et al. 2020: 2).

CESMZ2 is a coupled earth system model: it exists of several coupled component models that
represent parts of the climate system, among which CAM6-described in § 4.1.1-represents the
atmosphere. Other components models included in CESM2 are a land model, a sea-ice model
a land-ice model, an ocean model, a surface waves model, and a river runoff model (see Figure
2: Component models of the CESM2 model. (Danabasoglu et al. 2020: 3).Figure 2)
(Danabasoglu et al. 2020, 3). The model can operate with two versions for the atmospheric
component: a low-top variant (CAM6) and a high-top variant: the Whole Atmosphere
Community Climate Model (WACCM)). CAMB6 represents the atmosphere up to a pressure of
2.26 hPa, or about 40 km above the sea level with 32 vertical levels; WACCMBG6 represents up
to a pressure of 4.5x10 hPa, or about 130 km above the sea level earth with 70 vertical levels.
The high-top variant better represents the stratosphere and includes upper atmospheric
processes that are not included in the low-top variant (Danabasoglu et al. 2020: 3,4). However,
running the high-top variant on the Cheyenne supercomputer costs about seven times more
than running the low-top variant on the same device, since the former simulates four years per
day, while the latter simulates thirty years per day (Danabasoglu et al. 2020: 7). Here it becomes

clear how financial concerns are relevant to modelling decisions.

The coordinated functioning of the five model components is enabled by the Common
Infrastructure for Modelling the Earth (CIME) software. This software controls, among other
things, the intercomponent exchange of fluxes and information about the component state
between the atmospheric, land, wave, and sea-ice components. The fluxes between the
atmospheric and ocean components are calculated by the compiler and exchanged every
timestep of one hour towards the ocean component and every timestep of thirty minutes
towards the atmospheric component. Furthermore, CIME is equipped with additional
software—the Case Control System-to configure, compile, and execute complex earth system

model experiments (Danabasoglu et al. 2020: 7).
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Figure 2: Component models of the CESM2 model. (Danabasoglu et al. 2020: 3).

4.2.2. Sources of uncertainty in the modelling process of a climate model or earth

system model

In § 4.1.2, | discussed the sources of uncertainty that can be found in the modelling of one
component of the climate system: the conceptualization of reality (the idea of a complex
dynamic system), the mathematical formalization of this system, the discretization as such, the
constraints on the equations, grid, and dynamics-physics coupling imposed by specific
discretization algorithms, as well as the errors introduced by those, and the parametrization of
sub-grid and processes that are not sufficiently understood. These sources of uncertainty remain
present in complete climate system or earth system models given their composition of multiple

single climate components.

In the following paragraph, I will focus on the estimation of the parameters included in the
parametrization suite. Parameter estimation is relevant to the models for individual components
as well, so I could have included this already in the § 4.1.2. However, estimation happens
throughout different stages of the modelling process: first at the process level, then as a set of
parameters representing processes comprised by a specific component (such as CAM®6), and
ultimately, at the level of the coupled model-the integrated climate model comprising all

components and their processes (Hourdin et al. 2017: 591).
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Lack-of-fit and trade-offs

In§4.1.2, I mentioned the lack of fit between the computer-simulated model and the conceptual
system: a climate or earth system model does not represent the climate system fully adequately.
It can represent certain components or processes more adequately than others, and often there
exists a trade-off between the adequacy of the representation of distinct parts: enhancing the
adequacy of one part, implies a cost regarding the adequacy of representation of another part.
There exist trade-offs between the adequate simulation of different target processes, e.g., tuning
the parametrisation representing cumulus clouds to improve the simulation of the Madden-
Julian Oscillation (MJO)—a mode of tropical interseasonal variability—goes hand in hand with
an increased bias in the mean state of the variables (Kim et al. 2012; 2011). Another kind of
trade-off exists between adequate simulation of target systems and adequate representation of
the physics of the climate system by tuning the parametrisations, e.g., the parameterisation for
cloud microphysics that results in the best simulations of temperature, is at the same time a
suboptimal configuration compared to what is known about cloud microphysics based on
satellite data. Process-based tuning-the bottom-up approach attempting to represent the
physical processes adequately—results in a different optimal parametrisation than top-down,
tuning, constrained by a target outcome (e.g. the temperature trend or radiation balance)
(Suzuki, Golaz, and Stephens 2013: 4468).

Calibration and ‘tuning’ for adequacy for purpose

The prioritisation of some parts over others depends on the model’s purpose; what is enhanced
is the model’s ‘adequacy for purpose’ (Oberkampf, Trucano, and Hirsch 2004: 26). Adequacy
for purpose can be enhanced through the process called ‘tuning’ which was already mentioned
in the previous paragraph. Tuning partially has the same goal as calibration: the estimation
(calculation) of the parameters of a hypothetical population based on a sample of the population
(Fisher 1922: 311-12). In a technical sense, it concerns optimising a cost function that
minimises the distance between the estimated values for the variables and the observed data.
Calibration, however, is a purely heuristic procedure; the parameter values are determined by
nothing more than the algorithm and the empirical calibration data. Calibration can provide
satisfying results for very ‘basic’ models—e.g. linear combinations of variables of which the
coefficients should be estimated. However, in the case of a climate model, the parameter values
are part of the simplified representation of processes that cannot be included in the dynamic

core of the model. If they ought to adequately represent these processes, they cannot just take
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any value that works well with the others for overall model fit. Many parameters are up for
estimation and when looking for combinations of their values that fit the calibration data, often,
multiple combinations are performing equally well. When calibration is applied to estimate the
parameters of a climate model, given the complex configuration of such a model and the many
structural insufficiencies it might contain, enhancing overall adequacy will often lead to the
choice of parameter values that are suboptimally representing their target process (Hourdin et
al. 2017: 591). For example, for CAMB6, one of the statistical methods applied is a Perturbed
Parameter Ensemble (PPE) method, tuning 45 parameters simultaneously to avoid ‘getting
stuck’ at local extrema for a subset of parameters. Experiments show that multiple sets of
parameter values can lead to equally adequate simulations. This observation underlines the
need for expert opinion to pick out the sets of values that approach the assumed physical basis
best (Eidhammer et al. 2024: 23).

So, a procedure that welcomes expert judgment offers benefits; this is an essential difference
relative to the calibration process and therefore, it merits another title: “tuning’. Hourdin (2017:
590) draws an analogy with reaching ‘harmony’ in music: to produce a beautiful symphony,
the musicians should (1) individually practice their lines, and (2) literally ‘attune’ to one
another. Furthermore, the musicianship is not purely a technical endeavour: musicians play
according to what the composer wrote on the staff, but additionally, they perform their
interpretation of the written music. Music emerges where the static signs on the staff coincide
with a musician who interacts with them. This dialogue also happens at the level of the
integrated piece of music, produced by the whole orchestra playing together: the conductor
ensures the tempo and attenuation are achieved as it is meant to be according to the sheet music,

but also brings some interpretation into play.

Back to tuning in climate models, where this also happens (broadly speaking), at two levels
and includes subjective judgement: first the parameters are brought within their observational
range by running an estimation for the corresponding processes; then, the estimation is further
refined against the constraints of the fully integrated system—often against the radiation balance
at the top of the atmosphere (Lguensat et al. 2023: 2). These steps rely partially on technique
and ‘knowledge’ about the specific process. Nevertheless, an important contribution is the
expert judgement of the modelling team and the choices they make to prioritise the

representation of certain processes over others with adequacy for purpose in mind.
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The legitimacy of tuning

By tuning, modelling groups address the problems with mere calibration: a model fit without
representational adequacy. However, they can also decide to deliberately ‘impurify’ the
representation of a process and enhance the accuracy of the model projections. Whether
compensation for model error by tuning is legitimate, is a topic of debate (Hourdin et al. 2017:
590). In any case, it is never legitimate over the whole line: even if it seems better to sacrifice
the representational adequacy regarding specific processes for the accuracy of the envisaged
model projections (its purpose), there will always remain processes that are vital to this purpose
and should be represented as adequately as possible. We want a model to make accurate
predictions—approaching observational data—for the right reasons, namely, that the
representation of the system is (sufficiently) adequate (Knutti 2018: 349). If accuracy were a
result of a combination of parameter values that are merely working well together (the
combination that corresponds to a (local) minimum of the cost function), but in themselves
have little to do with the processes they represent, it can be argued that the model solutions are
obtained by sheer luck. | admit that ‘sheer luck’ is a dramatic way of putting it: as Baumberger
et al. defend, “it is far from trivial that a model can be successfully calibrated.” (Baumberger,
Knutti, and Hirsch Hadorn 2017: 8). The parameter values are not the only focal point of
adequate representation; so, at least partially, the accuracy of the predictions relies on the well-
posedness of the model configuration that exists besides the parameter values. Otherwise, no
sufficiently good solutions for the parameter values would exist in the first place; it would not

be possible to make the model fit the observational data.

We could believe that the reason for the accuracy of the projections is irrelevant: if the
projections are accurate, and the purpose of the model is to make accurate projections regarding
a certain variable, then why would we bother any longer about how these predictions are
obtained? The reason is that the projections should be accurate beyond the space made up by
the tuning data. For predicting phenomena that have not manifested yet, we rely on the idea
that we understand the principles by which they emerge. The epistemic value of the projections
beyond the tuning dataset is warranted by the adequate representation a climate model offers
of the climate system (Baumberger, Knutti, and Hirsch Hadorn 2017: 12). The (increased)
belief that the representation of the climate system is sufficiently adequate to allow meaningful
projections beyond the tuning dataset is warranted by evaluating the model after it has been

tuned with ‘use-novel’ data: data that were not included in the tuning dataset, and therefore
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indicate the model performance beyond the space made up by the tuning data (Frisch 2019,
997-98; Oberkampf and Barone 2006: 9). It should be noted that applying the model to a
domain that is larger than the domain covered by the empirical data it has been tuned and
evaluated on, brings additional uncertainty, the validation procedure with use-novel data
notwithstanding. Oberkampf and Barone acknowledge that “how this extrapolation should be
accomplished is a complex, and unresolved, issue.” (Oberkampf and Barone 2006: 13). Figure

3 depicts the process from model components to a coupled model.

Atmosphere

model Cryosphere

model Lithosphere

model Hydrosphere

model Biosphere
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Process
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Figure 3: Flowchart depicting the modelling process for a coupled earth system model. The
light blue blocks depict input, the dark blue blocks depict processes, and the turquoise blocks
depict outcomes (that can be used as input afterwards). CSM stands for climate system
model, ESM stands for earth system model.
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4.3. Multi-model ensemble projections and experiments

4.3.1. The Coupled Model Intercomparison Project (CMIP)

Before climate models had seen daylight, weather models were already the subject of
philosophical reflection: from 1963 on, Sanders (1963; 1973) inquired into the subjective
aspect of meteorological forecasting. He assessed the accuracy of forecasters’ statements about
the likelihood of weather events with the climatologically expected values as a benchmark—
expressed in values for temperature and precipitation, the occurrence of thunder, and wind
direction among others (1963: 194). He found that the group-mean probability forecast is more
accurate than the most accurate forecast of an individual forecaster (1963: 201; 1973: 1176).
Gyakum (1986) and Wobus et al. (1995) confirmed these findings. From a literature review
over a wide variety of fields—weather forecasting, psychology, and econometrics among
others—Clemen (1989) concludes that ensemble forecasts provide higher accuracy predictions
compared to the best of the individual ones in the subjective, as well as for more objective—in
the sense that no human judgement directly produces the prediction statement-statistical
ensemble forecasts. Thompson (1977) developed the mathematical side of the phenomenon
and showed that the optimal—and thus weighted—combination of two independent forecasts can
reduce the error variance by about twenty per cent. It is important however to keep in mind that
this error reduction only takes place for model ensembles that perform at similar accuracies. If
some models perform significantly worse than others, they will drag the accuracy level of the
mean down (Fritsch et al. 2000: 578).

Ensemble forecasts can be created in multiple ways. One way that has been proven to improve
the accuracy is the employment of differing ‘units’~human beings or models—that generate the
forecast based on the initial conditions although the practice causes the ensemble spread to
increase significantly (Stensrud et al. 1999; Hamill and Colucci 1997). Alternatively, varying
the initial conditions for a single forecast-generating unit also provides an ensemble spread of
which the mean will be more accurate than the individual predictions (Molteni et al. 1996; Toth
and Kalnay 1993; Stensrud et al. 1999; Hamill and Colucci 1997).

Besides the insight into the advantages of pooling several predictions to obtain a more accurate
result, it was not clear what the sources of the differences in projections of independent models
were. In 1989, the Atmospheric Model Intercomparison Project-an effort to compare the

atmospheric climate models of several modelling groups and inquire into the representation of
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the physical processes, the corresponding error and performance—was founded (Gates 1992,
1963). This project is the predecessor of the Coupled Model Intercomparison Project (CMIP).
In 1990 the first IPCC assessment report was published; an updated version in 1992 (IPCC
1992: vii). The findings for the 1990 report were informed by global coupled general
circulation models from the National Centre for Atmospheric Research (NCAR) and the
National Fluid Dynamics Laboratory, both located in the US. For the 1992 update, model
results from the Max-Planck-Institute for Meteorology in Germany and the Hadley Centre of
the UK Meteorological Office were included. These results accounted for a transient response
to increasing CO> levels (IPCC 1992: 103-4). In the years after the publication of the first
assessment report, many more modelling groups dedicated themselves to the development of
coupled climate models (Meehl 1995: 951). The report of a workshop, organised in 1994 by
the World Climate Research Programme Steering Group on Global Coupled Modelling, states
the following:

It was suggested that WCRP continue to facilitate the international coordination of global
coupled modeling and that an update to an earlier "level1" model intercomparison undertaken
[...] for the four global coupled models that were referenced in the 1992 IPCC report be

performed for the larger set of models now in use. (Meehl 1995: 957)

The proposal to undertake coupled model intercomparison activities was widely supported and
CMIP was born (Meehl et al. 2000a, 313) to “better understand past, present, and future climate
change arising from natural, unforced variability or in response to changes in radiative forcings

in a multi-model context.” (Eyring et al. 2016: 1938).

CMIP provides climate researchers with a database of the inter-comparable output from a set
of global coupled general circulation models evaluated under standardised boundary
conditions. The effect of anthropogenic activity on the historical climate record can be detected
from these simulations, and the future climatic impact of anthropogenic emissions can be
projected. Meanwhile, the CMIP researchers inquire into the model architecture to elicit
sources of consensus and divergence in the output of different models (Covey et al. 2003: 104).
Hagedorn et al. (2005) inferred from the literature that ensemble models perform better and
show that this is a result of error compensation, as well as increased consistency. It was
mentioned earlier that lower-performing models drag down the overall performance of the
ensemble; this could be addressed by ensemble weighting (and ascribing lower weights to

lower-performing models) (Hagedorn et al. 2005: 231).
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In the past two decades, the CMIP experiments have expanded: from including fifteen models
(Lambert and Boer 2001: 83), to more than a hundred models from 49 modelling centres
(Durack 2024a; 2024b); from considering a constant level of CO; forcing (Lambert and Boer
2001: 87), to a transient response arising because of a linear increase in CO with one per cent
a year (Meehl et al. 2000b: 315), to projections considering complex socio-economic pathways
bringing about the forcings that the climate system could undergo (van Vuuren et al. 2011: 5).

The Coupled Model Intercomparison Project Phase Six (CMIP6)

The details of the most recent project phase of CMIP: CMIP6, were published in 2016. The
structure of CMIP6 consists of three main aspects: (1) a set of common experiments comprising
CMIP historical simulations and what is referred to as ‘DECK’ (Diagnostic, Evaluation and
Characterization of Klima), (2) common standards, coordination, infrastructure, and
documentation, and (3) a set of 21 Model Intercomparison Projects (MIPs) that address
questions specific to CMIP6 (see Figure 4) (Eyring et al. 2016: 1937). DECK comprises a
preindustrial (Pl)—before 1850—control simulation, an atmospheric model intercomparison
project simulation, a simulation with a forcing of an abrupt quadrupling of CO2 concentration,
and a simulation with a forcing of a linear increase in CO concentration of one per cent a year.
These experiments make it possible to compare the performance of CMIP6 models and the
models of future CMIP phases. The historical simulation simulates the climate from 1850 to
2014 (Eyring et al. 2016: 1940-41). CESM2, described in § 4.2.1, contributes to CMIP6 with
datasets arising from preindustrial climate simulations (before 1850) and simulations for the
historical period from 1850 to 2014.

Using forcing datasets corresponding to specific models for executing the DECK experiments
and the historical simulation might be beneficial to assessing uncertainty in the model output.
However, it would be difficult to distinguish the uncertainty in the outcomes from the
uncertainty in the forcing dataset. Therefore, these experiments preferably get executed with
the same standardised forcing datasets for all participating models. Additionally, how the
forcing dataset is used exactly for the experiments should be well documented and the

uncertainty should be assessed (Eyring et al. 2016: 1941).
The Model Intercomparison Projects (MIPs)

MIPs are experiments aiming to answer specific questions and therefore often specific for their
corresponding CMIP phase. In the case of CMIP6, 21 MIPs have been selected with the World
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Climate Research Programme’s Grand Science Challenges!! in mind (Eyring et al. 2016:
1944). The overarching questions that should be addressed by the MIPs are “How does the
Earth system respond to forcing?”, “What are the origins and consequences of systematic
model biases?”, and “How can we assess future climate change given internal climate
variability, climate predictability, and uncertainties in scenarios?” (Eyring et al. 2016: 1945).
Examples of MIPs are the Decadal Climate Prediction Project which aims to predict and
understand forced climate change and internal variability for projections up to ten years into
the future; the Land-Use MIP focussing on the influence of land-use changes on climate change
and exploring mitigation strategies based on these feedbacks, and ScenarioMIP focussing on
the impact of certain plausible future scenarios, including adaptation and mitigation strategies,
as well as exploring the uncertainties that come with such projections. (Eyring et al. 2016:
1946-47). CESMZ2, discussed in 8§ 4.2.1 takes part in twenty MIPs, including ScenarioMIP
(Danabasoglu et al. 2020: 2).

I will restrict my focus to ScenarioMIP since this MIP produces future climate projections |

focus on in this thesis.

11 The Grand Challenges of the World Climate Research Programme are areas of research, modelling, analysis,
and observations that are focused on during the decade from 2012 to 2022 (World Climate Research Programme
(WRCP) 2023). The topics require continued research since there is still a lot of uncertainty concerned (Beniston
2013: 1). The identified challenges were (1) Melting Ice and Global Consequences, (2) Clouds, Circulation and
Climate Sensitivity, (3) Carbon Feedbacks in the Climate System, (4) Weather and Climate Extremes, (5) Water
for the Food Baskets of the World, (6) Regional Sea-Level Change and Coastal Impacts, and (7) Near-term
Climate Prediction (World Climate Research Programme (WRCP) 2023).
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Figure 4: Overview of the components and experiments of CMIP6 (Eyring et al. 2016: 1944)

The Scenario Model Intercomparison Project (ScenarioMIP)

Around 2010, the interest in the impact of climate policies and adaptation measures more

generally grew while the then scenarios—the Special Report on Emission Scenarios (SRES)—

only included non-climate policy conditions. On the technical side, the SRES scenarios did not

meet the input requirements of the new generation of climate models (van Vuuren et al. 2011:

6); therefore, developing a corresponding generation of scenarios, as requested by the IPCC in

2008, was unavoidable (Pachauri 2008: 2). The scenarios, updated and expanded relative to the

SRES are the Representative Concentration Pathways (RCPs), presented radiative forcing

ranging from 2.6 W/mz2 to 8.5 W/m? including two intermediate scenarios of 4.5 W/m?2 and 6
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W/mz2. They covered the range of forcings and corresponding scenarios discussed in the
scientific literature and were thus called ‘representative’. The scenarios in the literature were
many more than the four RCPs developed, implying that one RCP represents multiple specific
scenarios. The RCPs were combinable with climate models as well as integrated assessment
models'?. Moreover, they have been created based on the results of IAMs to ensure plausibility
and consistency: first, a set of conditions for the year 2100 was specified, then the different
pathways leading up to these conditions were explored, considering trends in energy use, GHG
emissions, and land use. The result of this development process was a set of four different time
series of GHGs and air pollutant concentrations and land-use change, ranging from the year
1850 to the year 2100, with extensions to the year 2300 (van Vuuren et al. 2011: 7-9).

The RCPs were used for CMIP5 experiments; with the advent of CMIP6, new emission
scenarios have been developed again: on the one hand, the four RCPs updated based on the
Shared Socioeconomic Pathways (SSPs), on the other hand, four additional so-called ‘gap-
scenarios’, corresponding to average forcing levels that are of interest but were not considered
by the previous set of RCPs yet'® (O’Neill et al. 2016: 3468). The SSPs are based on five
internally consistent narratives—developed by experts—describing possible future socio-
economic developments without explicit additional climate policies for climate change
mitigation or adaptation (Riahi et al. 2016: 155). From these narratives, quantitative models
develop demographic and economic drivers (education, population, urbanisation, and GDP
projections), and a set of IAMs determine the emission, land-use, and energy trajectories
emerging from the narratives between 2015 and 2100, or, in the extended version from 2015
to 2300 (Eyring et al. 2016: 1941). A depiction of this process can be found in Figure 5.

Multiple IAMs were used to assess the robustness of the resulting scenarios and the uncertainty
corresponding to each SSP (Riahi et al. 2016: 156). The resulting quantitative trajectories are
consistent with the literature about plausible forcing scenarios. SSP mitigation scenarios are
developed based on the baseline SSPs and with the RCP forcing levels as the target values for
2100. Using the previous RCP forcing levels ensures continuity with foregoing assessments

and facilitates integrated research (Riahi et al. 2016: 156). Since the success rate of policies

12 An integrated assessment model (IAM) combines the exploration of human systems (society and economy) and
natural systems to support decision-making (Weyant et al. 1995: 371).

13 The average forcing levels reached by 2100 considered in these additional forcing pathways are (1) below 2,6
W/m? (corresponding to the aim of the Paris Agreement to stay ‘well below 2°C’, considered in this scenarios as
below 1,5°C global mean temperature rise above pre-industrial levels), (2) 3,4 W/m?2 (a new mitigation scenario),
(3) a variant of the 3,4W/m2 pathway with an overshoot in radiative forcing during the 21% century still, and 7,0
W/mz, a baseline pathway corresponding to a scenario without mitigation efforts.
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depends on the societal circumstances, the stringency of the policies and the policy instruments
used for implementation, and when and where they are implemented, ‘shared policy
assumptions’, corresponding to each of the narratives, have been formulated as well (Kriegler
et al. 2014: 404). The development of the SSPs happened through the cooperation of climate
modelling, integrated assessment, and impact adaptation and vulnerability communities. With
CMIPG6, the scenario experiments are not part of the core experiments but are included with a
dedicated MIP: ScenarioMIP. (O’Neill et al. 2016: 3462).

The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within
Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model
climate projections based on alternative scenarios of future emissions and land use changes

produced with integrated assessment models. (O’Neill et al. 2016: 3461)

The objectives of this MIP are to (1) provide climate model simulations that support integrated
research (by climate modelling, integrated assessment, and impact, adaptation and
vulnerability communities) and enhance the understanding of the physical climate system and
its impact on societies, (2) provide a basis for specific scientific questions from ScenarioMIP,
but also other MIPs that need scenario-based research, and (3) provide a basis for inquiry in
projection uncertainty quantification (O’Neill et al. 2016: 3463). The first objective, to support
integrated research, has priority; an overarching research question corresponding to this
objective is: “What are the mitigation efforts, climate outcomes, impacts, and adaptation
options that would be associated with a range of radiative forcing pathways?” (O’Neill et al.
2016: 3465)

A subset of the resulting data from the sixth phase of the CMIP experiments (CMIP6) has been
used for the development of the sixth cycle of the IPCC report (IPCC 2023: 215-17).
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4.3.2. Uncertainties in the ScenarioMIP projections
Uncertainty in the projections of the general climate variables

In general—focussing on geophysical outcomes such as global averages and spatial patterns for
the variables surface atmospheric temperature and precipitation—some CMIP6 models have a
higher climate sensitivity than their predecessors in CMIP5. Moreover, the shared
socioeconomic pathways (SSPs), used for ScenarioMIP6, consider a wider range of radiative
forcings than the representative concentration pathways (RCPs) applied to ScenarioMIP5.
These features have consequences for the outcomes of the simulations: especially towards the
end of the 21 century (2081-2100) CMIP6 outcomes span a wider range than CMIP5
outcomes (Tebaldi et al. 2021). Model uncertainty is found to be the main reason for this.

Concretely, it concerns the structural differences between the included models and the
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differences between models regarding the size and evolution of the internal variability—
generally decreasing—in time (Tebaldi et al. 2021). Hence, for some simulations, the CMIP6
projections are more uncertain than the projections their predecessor CMIP5 made. Zhang and
Chen (2021) calculate that the total uncertainty in CMIP6 projections is 1.20 to 1.93 times
higher than in the CMIPS5 projections. Scenario uncertainty—the variation among outputs based
on different scenarios—is smaller for CMIP6 projections than for CMIP5 projections. It is more
of a hassle to connect the outcomes of CMIP5 projections to their respective mitigation actions:
the RCPs pool multiple mitigation actions per scenario. This conflation impaired the cost-
benefit analysis for individual actions based on the model outputs (Stouffer et al. 2017: 100).
Planton et al. (2021) report that CMIP6 models perform significantly better for eight out of
twenty-four climate variables relevant to climate dynamics. Only for the coupling between the
ocean surface and subsurface temperature anomalies, the CMIP6 models perform significantly
worse than the CMIP5 models.

So, model uncertainty and the uncertainty due to internal variability—here referring to the
noise-are shown to be larger for CMIP6 projections than CMIP5 projections, with model
uncertainty as the dominant contributor (at least when assessing for global geophysical
outcomes). The contribution of scenario uncertainty is smaller for CMIP6 than it used to be for
CMIP5 projections. Model uncertainty and internal variability dominate short-term projections
while scenario uncertainty overtakes the former sources of uncertainty in the projections for
2060-2070 onwards (Zhang and Chen 2021).

Uncertainty in the projections of extreme events

More specific outcomes of interest are the impact of the SSPs on trends in extreme events
(extreme droughts, extreme precipitation events etc.). Monerie et al. (2020) show that model
uncertainty is the main source of uncertainty in the precipitation projections for the Sahel. The
decomposition of the precipitation rate in dynamic and thermodynamic aspects shows that the
former (the response of atmospheric circulation to climate change), is the main contributor to
the uncertainty in the projections. The uncertainty and its sources are the same for CMIP5 and
CMIP6 models. Also, John et al. (2022) find large uncertainties regarding CMIP6 projections
of extreme precipitation events at a regional scale; according to their assessment, internal
variability is the main contributor since most of the included models project the same trend.
Wu et al. (2024) investigated the uncertainty in CMIP6 projections of hydrological variables—

runoff, precipitation, evapotranspiration, and soil moisture. For the 21 century, more than
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seventy per cent of the overall uncertainty for these variables can be attributed to model
uncertainty. The further in the future the projections are made, the more the contribution of

internal variability decreases, while the contribution of scenario uncertainty increases.

Besides extreme precipitation, drought is of interest too: Ji et al. (2024) decomposed the
uncertainty in drought projections of CMIP6 models over the three commonly used sources of
uncertainty: internal variability of the climate system, model uncertainty, and scenario
uncertainty. They found that model uncertainty, on average, accounts for about seventy per
cent of the uncertainty in the projections and is the dominant source in projections for tropical
regions, whereas, in North America, Eastern South America, the Mediterranean, and southern

Australia, scenario uncertainty is the most important contributor to the overall uncertainty.
Uncertainties in the projections of EI Nifio Southern Oscillation

Another particular interest is the impact of climate change on climate processes of internal
variability such as El Nifio Southern Oscillation (ENSO)-the ‘dominant mode of interannual
climate variability” with a significant impact on, among others, agriculture. Brown et al. (2020)
find biases in sea surface temperature that cause the intertropical convergence zone to shift
northward. These biases are slightly smaller for CMIP6 than for CMIP5 models. In general,
the ENSO pattern, temperatures and precipitation are well simulated, but highly model-
dependent: both CMIP5 and CMIP6 project an increased ensemble mean for ENSO amplitude
in the future. Beobide-Arsuaga et al. (2021) quantified the uncertainty in ENSO projections for
CMIP6 models and decomposed this uncertainty over the model uncertainty, the scenario
uncertainty, and the internal variability. Uncertainty in the projected ENSO amplitude increases
over time. During the first three decades of the twenty-first century, internal variability is the

main source of this uncertainty, later, inter-model differences play the biggest role.
Uncertainty in the projections due to empirical data bias

Another source of uncertainty that comes to the fore is the empirical data used for model
building: You et al. (2021) find that the CMIP6 models consistently underestimate the mean
surface temperatures over the territory of China—called a ‘cold bias’. Model uncertainty is
responsible for the uncertainty in the short term, while scenario uncertainty gains importance
in the long term. They infer that the difficulties of CMIP5 models in representing the
atmospheric processes over complex geography persist in the CMIP6 models. Besides the

complex topography, they suppose data biases due to sparsely placed stations, the inadequate
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representation of the snow-albedo feedback and low-level cloud cover, and the deficient
inclusion of atmospheric pollution lay at the basis of the cold bias.

Uncertainty in the downstream projections: impact modelling

Further downstream, the climate model projections are used as an input to model specific
impacts of climate change. The projections of these models contain even more uncertainty
since the uncertainty of the climate projections propagates while more model uncertainty is
added by the impact model used. Muller et al. (2021) make an uncertainty assessment for crop
model projections and find that further in the future—projections for the end of the 21st century—
the climate-model-induced variance is the main contributor to the overall uncertainty. The crop
model-induced uncertainty is the main contributor to the overall uncertainty for short-term and

medium-term projections.

4.3.3. Sources of uncertainty in ScenarioMIP projections

In the scientific papers about the uncertainties in the CMIP6 projections summarised in § 4.3.2,
five main loci of uncertainty came back: internal variability, model uncertainty, scenario
uncertainty, climate dataset uncertainty, and uncertainties downstream. | will proceed with an
overview of these types of uncertainty and derive their meaning and place in the total

uncertainty related to climate models.
Model uncertainty

When models with a different configuration are run on the same input data, they produce
different outcomes. The uncertainty derived from that is called ‘structural model uncertainty’.
It comes down to the idea that, either no model configuration adequately represents its target
system, or under the assumption that there would be a model that does so, we do not know
which one it would be. Wu et al. (2022: 4) consider model uncertainty corresponding to a
certain input scenario. The model uncertainty is quantified as the variance among the outcomes

for different models running on a certain scenario:
1
M = s * Y5 VAT, (xm,s,t) (5)

With #S the number of scenarios, x,, . the outcome of a model m for a scenario s at time t,

and var,, the variance of a certain model.

49



Assessing the spread of the outcomes of a model ensemble—several models run in the same
input data—is a common way to estimate model uncertainty. Winsberg (2012: 119) elucidates
four problems with this approach: it assumes that (1) all models are equally performant and
that (2) the models included in the ensemble are representative of the space with all possible
models. Furthermore, (3) climate models are not independent of one another and (4) climate
modellers tend to tune the models to fit previous average outcomes better.

Because of these reasons, using ensemble spread to estimate model structural uncertainty is not
a reliable approach. Especially, the idea that the models would represent the space with all
models is problematic. Winsberg argues that it should not comprise ‘all possible models’, only
these models that adequately represent the target system. We would have to assume then that
they can be found in a normal distribution around the ‘ideal model’; an assumption that is not
complied with (Winsberg 2012: 122).

Internal variability

The IPCC glossary defines climate variability as “Deviations of climate variables from a given
mean state (including the occurrence of extremes, etc.) at all spatial and temporal scales beyond
that of individual weather events.” (IPCC 2023: 2224). One kind of climate variability is so-
called ‘natural variability’ resulting from processes other than anthropogenic influence. On the
one hand, natural variability can occur due to processes external to the climate system, such as
volcanic eruptions, on the other hand, this variability is considered internal or intrinsic to the
system when it occurs due to internal fluctuations of processes; the fluctuations observed when
the system is “subject to a constant or periodic external forcing (such as the annual cycle).”

(IPCC 2023: 2224).

Wau et al. (2022: 4) quantify the internal variability of a model as the variance of the residuals
of the fits across all scenarios. Calculating this over all models, they obtain what would
correspond to the internal variability of the climate system itself:

1
#M

V= * Yim Uars,t(em,s,t) (6)

With varg (€, ) the variance of the model m across all scenarios at all times.

Lehner et al. (2020: 491-92) connect internal variability to the chaotic nature of the climate

system: at a certain point in time, the precision of the initial conditions is not sufficient anymore
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to predict the system's evolution. So, internal variability comprises the influence of the initial
conditions on the projections. Since the aim of these projections is understanding the impact of
a forcing scenario on the evolution of the climate variables—that are summarising statistics of
particular states and aim to average out internal variability—the influence of the weather
conditions that contingently but inevitably provide the starting point of the evolution, should
ideally be reduced to zero (Winsberg 2018: 42—43). Winsberg explains that internal variability
contributes to uncertainty in the projections in an indirect way; it is not clear from only a few
runs of a model what variability in the outcome is a change of the climate variables and what
is due to the sensitive dependence of the system on the initial conditions. A higher number of
model runs (ideally, but impossibly one for each possible set of initial conditions to strictly
exclude conflation) is needed to distinguish between the two sources of variability and
disregard the former (2018: 93).

Scenario uncertainty

Wu et al. (2022: 4) quantify scenario uncertainty as the variance of a multi-model average

under the different considered scenarios.

S = varg ($ * ZM xm,s,t) (7)

However, Winsberg (2018: 95) does not consider this type of uncertainty as a real source of
uncertainty in the projections: these projections are, in fact, transparently dependent on the
proposed scenario. The scenario as such is uncertain, there is no uncertainty emerging during

the process resulting in the projections.
Winsberg’s sources of uncertainty in climate projections

As mentioned in the previous sections, Winsberg reclassifies the main sources of uncertainty
based on philosophical reflections regarding their nature and their relations. He divides model
uncertainty into two independent sources: the model configuration comprising the initial
equations, the discretisation scheme, and the parametrisation scheme on the one hand and the
chosen values for the parameters on the other hand. Furthermore, he includes climate dataset
uncertainty, which is sometimes mentioned as a fourth main source of uncertainty, in the
uncertainty due to the parameter values since it is an inseparable part thereof. Finally, scenario

uncertainty is not exactly a source of uncertainty for what is found in the climate model
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projections since these projections are either conditional on the scenarios or independent of
them.

4.3.4. Interpreting increasing and decreasing uncertainty between CMIP phases

Model uncertainty and internal variability are larger for CMIP6 than for CMIPS5 projections. Is
this a disappointing fact? Before drawing conclusions, we should investigate the reasons for
this evolution. First of all, modelling groups are, besides reducing uncertainty in the outcomes
per se, hopefully also working on a sound representation of the climate system. The reason that
model uncertainty grows can be interpreted as the consequence of experimentation with
methods to include a better representation of the physics of the system into the model instead
of focusing excessively on the adequacy of the eventual outcomes with observations. The
increase in model uncertainty could indicate a growing awareness regarding the variety of
options to represent the climate system, without a certain representation being singled out as
the ‘best’ one for all applications. Furthermore, CMIP6 elaborates on a higher number of
climate-related questions for which the outcomes of the models form the basis of inquiry.
Assuming no dramatic increase in the ability to represent the physics of the system between
the fifth and sixth CMIP phase, the models included in CMIP6 experiments should cover a

broader range of ‘fitness for purpose’ and a wider span of corresponding model configurations.

Internal variability as understood by Winsberg can only indirectly result in more uncertainty in
the projections. This happens if we do not include enough model runs to distinguish between
what share of the variability is due to the influence of the initial conditions (over which a
climate model should average) and what is a more consistent change independent of which

initial conditions the model runs on.

Scenario uncertainty is smaller for CMIP6 projections than for CMIP5 projections. The
emission and mitigation pathways of CMIP6 are developed more rigorously and disentangle
different mitigation strategies that were conflated in the RCPs used in CMIP5. The scenarios
must consider a reasonable range of possibilities regarding the course of human action while
minimising the conflation of different mitigation actions. Winsberg teaches us that the
projection outcomes are conditional on the input scenario and therefore scenarios are no source
of uncertainty to the projections although they are uncertain. The scenario uncertainty in the
CMIP6 projections quantified as the variance of a multi-model average under the different

considered scenarios is nothing more than the different outcomes conditioned on different
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scenarios. When considering this variance uncertainty, we are losing sight of the problem this
outcome must address. Collingwood elucidates this error in the chapter “Question and Answer”
in An Autobiography for interpreting a written text: we cannot adequately interpret ‘the answer’
a piece of writing presents without having the question it is answering in mind (Collingwood
1939). The same applies to (climate) model projections: the MIPs aim to answer specific
questions in the light of which the model outcomes should be interpreted. A diverging range
of outcomes across multiple scenarios can only be problematic if we look for convergence. As
we saw in 8 4.3.1 ScenarioMIP aims to answer the question “What are the mitigation efforts,
climate outcomes, impacts, and adaptation options that would be associated with a range of
radiative forcing pathways?”. This indicates convergence is not what we are looking for; on
the contrary, hopefully, the outcome values show dependency on our specific course of action.
If there were no variance in that sense, it would mean that factors beyond our sphere of
influence would determine the evolution of the climate system and implementing explicit
climate policies would be completely in vain. Fortunately, different emission and mitigation

scenarios result in different model projections.

It remains, however, desirable to obtain convergence of the outcomes of different models based
on the same scenario. If all modelling groups would represent the physical processes of the
climate system as adequately as possible, convergence would indicate that we are getting closer
to an adequate representation of the overall system. This seems not to be the case yet; thus,

there remains plenty of room for improvement in model configuration.

5. Conclusions

This thesis was supposed to be concerning ‘uncertainty in climate models’. More specifically,
| answered the question “What constitutive elements lay at the basis of climate model
projection uncertainties?”. To answer this question, | have explored climate models from

various perspectives.

First (8 2), | investigated modelling in science in its historical context and conducted a
conceptual analysis of the concept of ‘system’ since it is the climate system that is modelled.
In 8 3, I turned to the central concept of this thesis: the climate. I introduced the necessary and
relevant definitions, meanings, and features and linked them with the characteristics that
something understood as a system can exhibit (non-linearity, chaotic and dynamic nature etc.).

| explored how climate models were constituted and their relationship with the weather and the
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models thereof. Then, I applied the phenomenological method to understand the ideation of the
climate. Finally (8 4), | looked at the technical side of climate modelling. I studied the methods
used in the several phases of the modelling process—from a single model component to model
ensembles and their projections—and identified the loci of uncertainty generation connected to
them. In this concluding chapter, I will highlight the noteworthy findings of the undertaken

discourse.
Conceptual analysis in a historical context

First, I investigated modelling in science as the broader context in which climate modelling is
encountered. | adopted a historical perspective by delving into the historical milieu where the
modelling attitude in its modern form emerged: Western Europe in the early twentieth century.
At that time, Maxwell developed a model that combined heuristic analogies with supposed true
representations of the real world; it was met with serious criticism. Eventually, this hybrid
model form, combining elements of established theories with heuristic ones, was embraced in
a vast range of scientific fields. The modelling attitude dethroned theory and took its role as

the prime tool of scientific inquiry.

Questions about the relationship between theory and model, the epistemic value of models, and
the nature of models intrigued philosophers of science from the second half of the twentieth
century, until today. Among many other views on the relation between models and theory,
models can be considered instances of theories in a more specific domain, theories may be
inferred from models, or models are considered to mediate between theory and empirical data.

The latter view is commonly ascribed to the role of climate models in climate science.

In a second instance, | turned to the target of climate models, namely, the ‘climate system’.
This brought us to explore the meaning of ‘a system’ and how to model it. The concept of a
system emphasises the crucial role of the interactions between different components in bringing
about the phenomena of interest. Systems can be complex, non-linear, and chaotic. These three

characteristics apply to the climate system.

| then investigated the history of the development of climate models specifically. They were
developed based on weather models in the second half of the twentieth century. By then, the
modelling approach was not as controversial anymore in the scientific realm. However, the
philosophical considerations complementing the advances in the modelling attitude were still

scarce. The rapid evolutions and expansions regarding science forced a high degree of
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specialisation. Whereas in Maxwell’s times, scientists were also philosophers of science, due
to the specialisation a division occurred: scientific and philosophical inquiry were not
conducted by the same person anymore. Nowadays, philosophers of science must keep pace
with the novelties in the scientific realm; their endeavours are complicated by the high level of
sophistication and complexity of the models to simulate the climate system.

Phenomenological analysis of the climate

| attempted to interpret the concept of ‘climate’ by conducting a phenomenological analysis.
This appeared more cumbersome than expected: the climate is (1) something that requires time-
consciousness to be experienced and therefore processes such as memory and expectation to
fit into the intentional act, and (2) it is a scientifically constructed concept so it is not
straightforward in what sense it would be an object of experience. During this inquiry, it
became clear that the relation between a supposed experience of the climate and the scientific
concept at least exists in the appropriation of the latter that becomes a part of the background
against which phenomena are interpreted: suddenly, an extreme precipitation event is
understood because of ‘climate change’, while this has not been predicted nor confirmed

scientifically.

The construction of the concept of climate does not rely solely (if at all) on subjective
experience; scientific inquiry plays a crucial role. The relationship between the individual
experience and the scientific inquiry consists of a shift from the division between subject and
object where both remain present to the abolishment of the subject. In the scientific realm, we
assume a stand-alone object. The apparent virtue of this assumption within the practice of
science notwithstanding, it is not legitimate to solidify the absence of the subject when the
outcomes of scientific procedures are brought into the world. On the other hand, restoring the

phenomenological correlation does not render the scientific results meaningless.
The technicalities of climate modelling

The technical phases of model building commence with experience in the presence of the
subject-pole. To conceptualise the climate, experience is completed with information from the
scientific approach and a mind-internal model is constituted. This model is conceptualised,
formalised, and implemented. Each conversion comes with adjustments that add adequacy (e.g.
when aligning with well-established physical theories) or sacrifice adequacy (e.g. when trading

adequacy for compliance with what is mathematically feasible). Without access to the real
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world, adequacy of the model with this real world is a myth; adequacy with the conceptual
system we have constituted, on the other hand, is attainable.

The core feature of the model is the set of continuous differential equations. Due to their
complexity, their solutions rely on numerical instead of analytical calculation methods. This
conversion implies a loss of information too: instead of information at all points of the state
space, we obtain solutions at discrete points only. The model configuration—the inclusion of
equations in the dynamical core and how they are formulated—depends heavily on the features
of the discretisation algorithm, its grid and the physics-dynamics coupling. Errors arising from
the calculation method (splitting errors) can be compensated for, but the employed measures
do not come without consequences. Climate models comprise multiple dynamical cores
compensating for each other’s constraints. The parametrisation suite forms an even bigger
source of uncertainties and errors. lIdeally, all physical processes would be represented as
adequately as possible after tuning (at the level of the process, of individual model components,
and the coupled model); however, the adequacy of the representation of several processes
stands in trade-off with others, and with the accuracy of the model outcomes. In tuning, choices
must be made again; introducing subjective uncertainty is unavoidable. Model builders should
strike the right balance between bottom-up and top-down tuning; however, one can doubt
whether trusting the outcomes of a model that performs well because of top-down tuning,

lacking physical adequacy, is warranted.

The choices made form a source of subjective uncertainty, while the technical constraints of
the chosen approach introduce errors. The concept of ‘adequacy-for-purpose’ (or fitness-for-
purpose) is introduced: a model is never adequate relative to the entire climate system. By
making choices during the modelling process, the model becomes more apt to answer some

questions and less apt to answer others.

Individual coupled models are pooled into multi-model ensembles. Ensemble modelling is
supposed to provide more accurate and consistent outputs based on the idea that the individual
model errors will average each other. Furthermore, ensemble projections can be used to gain
insight into the projection uncertainties, decomposing and quantifying them. ScenarioMIP is
an ensemble model experiment that projects climate trajectories with scenarios as input. The
model input is a set of quantitative emission, land-use, and energy trajectories constructed

based on expert-developed narratives converted by quantitative models and IAMs.
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Sources of uncertainty in climate model projections

The ensemble model projections carry all the uncertainty gathered along the path to their
constitution. Conversions between model phases, discretisation errors, parametrisation choices,
the uncertainty in the tuning and evaluation datasets, the uncertainties in the input scenarios,
the choices about the ensemble weights etc. In the literature, projection uncertainty is traced
back to three main sources: internal variability, model uncertainty, and scenario uncertainty; a
fourth source mentioned is dataset uncertainty. Winsberg, however, retains only model
uncertainty as the main source, since internal variability is merely the noise due to the sensitive
dependence on the initial conditions, that should have been averaged out, and scenario
uncertainty is rather a condition to the model outcomes they can or cannot be dependent on.

Dataset uncertainty is considered a constitutive element of model uncertainty.
Interpreting climate model projection uncertainty

We have seen how the development of climate models comprises various sources of
uncertainty; the question remains how these should be interpreted. Overall, there are three
important elements to remember: first, a climate model is built to gain insight into the climate
system that explains climate phenomena. The climate phenomena are highly uncertain when
we rely on experience alone, the system we conceptualise to explain the phenomena is too
complex to be analysed without the help of simulation techniques. A climate model, with all
its uncertainty, reduces the original uncertainty that is many times more voluminous. Secondly,
climate models cannot be adequate as such, they are intended for a specific purpose. It is not
warranted to use the climate model outcomes for answering questions they were not built for;
this will result in a meaningless response. Lastly, the previous reasoning can be applied to the
uncertainty quantification and decomposition. The uncertainty in the outcomes should be
evaluated considering the question asked: including more models and more scenarios (that are
plausible) results in a higher model spread, but also in a more accurate model spread. High
precision does not mean high accuracy; we are looking for accuracy rather than inaccurate

precision.

6. Outlook

In this thesis, | made an overview of the uncertainties that enter during the modelling process:

from individual experience, via the development of scientific concepts, the algorithms for
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numerical discretisation and parametrisation, the various phases of model configuration—
formalisation, implementation, tuning, evaluation—and the coupling of model components, to
the intercomparison experiments compiling model ensembles and ensemble projections. |
made an overview of the projection uncertainties at the end of the modelling process and

explored how they relate to so-called ‘sources of uncertainty’.

There are many relevant aspects | did not explore. To begin with, in climate modelling, many
choices are made. Exploring the levels at which ‘subjective uncertainty’ enters the model
would be interesting. How could this be accounted for (maybe even quantified)? To continue,
the scenarios used as input for future projections in the context of ScenarioMIP are developed
in multiple phases relying on various scientific communities, narratives, impact assessment
models and more, as | touched upon in § 4.3.1. They probably carry a significant level of
uncertainty beyond the scenario uncertainty as it is quantified based on the climate model
outputs (see equation 7). An ongoing controversy regarding multi-model ensembles is whether
all models included should have the same ‘weight’ in the calculations. As we have seen in §
4.3.1, there are well-justified reasons for preferring weighted model ensembles. Some models
are known to perform better than others, so it seems logical that these models have more impact
on the outcomes of the ensemble. However, O’Loughlin (2024) argues that lower-performing
models help scientists gain knowledge they otherwise would not obtain and therefore we should

not discard them.

Furthermore, I wrote ‘the end of the modelling process’, but climate model projections are far
from the final outcomes. Often, the model projections form the input data for simulations with
regional impact models, such as the crop model that was briefly mentioned in § 4.3.2. Bias
correction and downscaling methods adjust and warp the climate model projections to align
them with the input format of the impact model; these procedures may be the major source of
uncertainty in the impact model projections (Lafferty and Sriver 2023). Finally, the outcomes
produced by the climate and impact models require interpretation and are communicated to
policymakers and other users. In communicating an outcome, the uncertainty of this outcome
ought to be communicated too. The IPCC’s ‘calibrated uncertainty language’, developed for
this purpose, is received with controversy (Dethier 2023). However, there are not many viable
alternatives on the market (yet); to inform model and model outcome users about the
uncertainty in the outcomes and the limits of the model, without evoking inadequate scepticism

remains an unresolved balancing exercise. Winsberg (2024) emphasises the importance of
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making disclaimers about models for scientific and policy-making communities that will use
the model outcomes. Reminding the enormous complexity of these ‘Frankenstein creations’
built by plenty of experts in different fields, we could ask how conferring information to ensure

users know the domain in which the model is fit for purpose, would be effective.
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ABSTRACT

Few fields in human life benefit from what we call ‘climate change’. The consequences of
climate change become apparent and are obstructing—sometimes taking—our lives. This is
reason enough to anticipate them and implement mitigation and adaptation strategies through
policymaking. However, climate model outputs are plagued with uncertainty; this fact evokes
controversy about how they should be interpreted, communicated, and used in decision-
making. What do these models tell us and should we base any policy decisions on their
outcomes if these are highly uncertain? To warrant our trust in the model outcomes regarding

decision-making, the sources of and reasons for the uncertainty should be well-understood.

In this thesis, | investigate the emergence of uncertainty in climate model projections. More
precisely, 1 examine what elements throughout the modelling process are the reason for the
uncertainty in the outcomes and how this should be interpreted. Is trust in the outcomes
warranted? | evaluate this question as a philosopher of science, conducting a philosophical

analysis of the climate modelling process and the concepts related to it.

| cast light on the question by analysing climate modelling in three main ways: through a
conceptual analysis of ‘model’, ‘climate’, and ‘system’, through an analysis of the experience
of ‘climate’, and from a technical perspective by examining the construction of single-model

components, coupled global earth system models, and model ensembles.

When considering how the climate is experienced, | find that it is not clear how it could be
experienced since it is a scientifically constructed concept. On the other hand, knowledge of
this scientific concept may influence our interpretation of weather phenomena. Furthermore,
there are many phases in the model-building process; each phase introduces errors and
therefore uncertainty that is carried along to the subsequent phases. Observational data is used
to estimate some free values in the model. Choosing which values to align with the data on the
one hand and with the physical theory on the other hand requires expert opinion. It is a matter
of debate whether the outcomes are trustworthy when they result from alignment with
observational data, at the expense of adequate representation of the physical processes. The
choices made form a source of subjective uncertainty, while the technical constraints of the
chosen approach introduce errors. The concept of ‘adequacy-for-purpose’ means that a model
is never adequate relative to the entire climate system, but more apt to answer some questions

and less apt to answer others.
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Overall, there are three important elements to remember: first, a climate model is built to gain
insight into climate phenomena that are highly uncertain. Although the model includes
uncertainty too, it reduces the uncertainty in the climate phenomena per se. Secondly, climate
models are never ‘true’, but can be adequate for their intended purpose. Using climate model
outcomes for answering questions they were not built for will result in meaningless responses.
Lastly, including more models and more plausible scenarios will result in more different
outcomes; if these outcomes are, on average, closer to the ‘truth’, this should not be a problem.
Converging outcomes does not necessarily mean they are more correct. Obtaining more correct

average answers, by evaluating more models and more scenarios, is a good practice.
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