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Scientific summary 
Metacognition, the ability to think about one's thinking processes, is vital for 

professional performance, academic achievement, and mental health. However, its 

ambiguous nature and subjective measurement techniques across various fields have 

posed significant challenges to research. Cognitive neuroscience offers a unique 

solution by providing objective measurements that link metacognition to brain activity, 

thereby establishing a ground truth. Recently, the convergence of explainable artificial 

intelligence (XAI) and perceptual decision-making, a subsection of metacognition 

within cognitive neuroscience, has led to the development of the WaveFusion 

framework. This innovative framework holds the potential to contribute to the 

unification of the fragmented metacognition research fields. 

The aim of this thesis was to enhance the WaveFusion framework, an explainable 

deep learning model, to classify metacognitive sensitivity and confidence using EEG 

data. The objectives were (1) to achieve a classification accuracy of 95% for 

metacognitive sensitivity, (2) to improve the accuracy for metacognitive confidence to 

97.5%, and (3) to identify key ambiguities and limitations in metacognition research. 

This study utilized an EEG dataset with event-related potentials (ERP) response-

locked for type 1 decisions. Data preprocessing addressed dataset imbalances 

through augmentation and balanced batch sampling. EEG samples were transformed 

into spectrograms and processed using the deep learning architecture comprising a 

Lightweight Convolutional Neural Network (LWCNN), a Squeeze and Excitation 

Network (SEN), and a classification network. The model was pre-trained using Subject 

Aware Contrastive loss (SAC) and trained with binary cross-entropy loss. SEN 

facilitated the models explainability by visualizing the created attention weights 

through topoplots, providing insights into brain areas used for classification. 

The WaveFusion model achieved high classification accuracy, reaching 99.7% for 

metacognitive confidence and 99.1% for metacognitive sensitivity. These 

improvements were due to a larger selection of electrodes, response-locked ERP 

data, and increased dataset size. The WaveFusion model not only demonstrates high 

classification accuracy but also offers enhanced explainability. This allows the 

framework to contribute to three major ambiguities: (1) the relationship between 

metacognition and executive functions, (2) its connection to consciousness, and (3) 

the domain generality of metacognition. By leveraging the WaveFusion framework, we 

can overcome limitations in cognitive neuroscience research through (1) utilizing 

transfer learning to compare relationships, (2) employing automatic classification to 

investigate ecological validity, and (3) expanding the framework for multimodality to 

integrate insights across various fields. 

Future research should focus on increasing data variability, addressing outlier 

performances, and improving interpretability through advanced visualization 

techniques to enhance the WaveFusion model’s robustness and applicability across 

cognitive neuroscience domains.  
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1. Introduction 
You do not have full access to your mind and it limits your professional performance, 

your academic performance and your mental health [1], [2], [3], [4]. Many blame this 

on unchangeable factors like their innate intelligence, their circumstances or even their 

own consciousness. However, there is an essential factor that can be continuously 

developed. Metacognition, generally defined as “thinking about thinking”, a 

psychological mechanism that controls your cognitive functions. A seemingly foreign 

concept, but it plays a crucial role in your day-to-day life. Formally introduced in 1976 

by John H. Flavell an American psychologist specialized in cognitive development. 

Metacognition has since been associated to ordinary concepts like theory of mind, 

self-regulated learning and delayed gratification to obscure concepts like artificial 

general intelligence (AGI), spirituality and vipassana meditation [5], [6], [7], [8], [9]. 

Unsurprisingly, metacognition is a tremendously difficult phenomenon to research 

accurately and define properly. Initially, a general model of metacognition was 

theorized, but after several decades, various fields have continued to develop their 

understanding based on this model independently. This separation has plagued the 

field of metacognition, preventing the transfer of insights and the development of 

broader applications. The core of the problem lies in the different assessment methods 

used to measure and define metacognition. 

Cognitive neuroscience aims to contribute by identifying the ground truth of 

metacognition, linking psychological mechanisms to their respective neural activities. 

However, like every field, neuroscience has its own limitations. Recently, the 

explainable artificial intelligence (XAI) movement has intersected with cognitive 

neuroscience, offering potential solutions to these limitations [10], [11]. A significant 

development in the subsection of perceptual decision-making was the creation of an 

explainable deep learning framework called "WaveFusion." This framework has the 

potential to significantly contribute to ongoing discussions unifying the divided fields of 

metacognition. 

Within the subsection of perceptual decision making, metacognition is investigated as 

metacognitive confidence and metacognitive sensitivity. In this thesis, we apply the 

WaveFusion framework to these two forms of metacognition and explore its position 

within the broader scheme of theoretical research. 
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2. Literature review 
The literature review will clarify the WaveFusion framework's role in metacognition 

research. We will first examine the theoretical understanding and current challenges 

of metacognition in psychology. Next, we will explore cognitive neuroscience 

contributions to the field. Finally, we will discuss the state-of-the-art machine learning 

techniques for decoding metacognition from EEG. 

2.1. Metacognition in psychology 

Metacognition is a complex and multifaceted standalone concept and a bridge 

between areas like mental health and cognitive development [12]. That is why it is 

researched across many disciplines in psychology as seen in Figure 1. Initially 

developed in the context of learning with a focus on memory it was soon expanded to 

all aspects of cognition and psychological phenomena like problem solving, emotional 

regulation and social behaviour [13], [14], [15]. 

Its multidimensional component allows meta- to be put before any psychosocial 

phenomenon (e.g. metamemory, metacommunication, meta-awareness, etc). This 

feature risks being a blanket term, meaning it is used to describe processes that it is 

not capable of accurately representing [16]. The field of metacognition has suffered 

from its ambiguous nature [17]. In what follows we will concretely define metacognition 

by firstly explaining the basic mechanisms. Secondly, by going into detail by exploring 

the fundamental model of metacognition and shortly discussing how it is integrated, 

applied, and researched in areas like cognitive neuroscience.  
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Figure 1: Number of metacognition records by classification code in the PsycINFO database [5, Fig 1]. 

2.1.1. The traditional mechanisms of metacognition 

Metacognition is generally defined as “thinking about thinking”. The concept was 

introduced in 1976 by John H Flavell, considered by many as the founding father of 

the field [18]. Since then, the concept of metacognition has been refined through 

empirical research to expose the nuances of its mechanisms. This development 

happened largely separately for different fields [5].  

For a thorough basic understanding we will discuss the following three aspects: 1) the 

meta-object level relationship to understand the difference between meta- and 

conventional cognition; 2) The relationship between consciousness and 

metacognition; 3) the domain interplay of metacognition as a general skill or specific 

to different situations. 

2.1.1.1. Meta-object levels 

At its core, metacognition is about how our thinking processes monitor and control 

themselves. It consists of two levels: the object level and the meta level. The object 

level is where our regular thinking happens, while the meta level is where we think 
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about our thinking. The meta level monitors and controls the object level (our 

cognition), ensuring our thinking processes are efficient and effective [19], [20]. We 

will dissect it in two simple steps, starting with explaining the mechanism of 

metacognition. Then moving on to our executive cognition and how it facilitates the 

meta level.  

2.1.1.1.1. Mechanism of metacognition 

The traditional mechanism of metacognition is seen in Figure 2. Metacognition is the 

monitoring and control performed from the meta level on the object level, with the 

object level being cognition. The mechanism of metacognition is represented by the 

flow of information between the meta and the object level. It is important to point out 

the asymmetry of the flow to understand the difference between the two levels. The 

meta level observes the object level, being an awareness that performs real time 

monitoring and receives information about the cognitive processes (the object level), 

while the object level receives controlling information from the meta level [19]. Here is 

an example to make the concept more concrete.  

Imagine trying to find your way back to a hotel in a new city. You are navigating 

unfamiliar streets, making decisions about which roads to take. Along the way, you are 

‘monitoring’ your cognitive actions and what is influencing your choices. Initially, you 

rely on the feeling of knowing the streets you have passed, but as time goes on, your 

confidence wanes. That is when you perform metacognitive control to switch to a 

different decision-making approach and pull out a map from your pocket. This map 

becomes your new decision-making guide, helping you find your way back to the hotel.

 

Figure 2: The theoretical mechanism of metacognition consisting of two structures (metalevel and object-level) and 

two relations in terms of the flow of information [19, Fig 1]. 
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This is the most basic mechanism of metacognition, but of course it has been 

described more extensively to fully capture it multidimensional component. Later in the 

fundamental model we will fully elaborate on this. We will see that control and 

monitoring will fall under the term of ‘metacognitive skills’. 

This is taken together with metacognitive knowledge to form the most used 

fundamental model, the 2-component model [21]. Metacognitive knowledge refers to 

the knowledge or beliefs an individual has about their own or general cognition. It is 

the information in Figure 2 that flows between the levels, facilitated by the mechanism 

of metacognitive skills. 

Metacognitive knowledge and skills are acquired from multiple sources, like parents, 

peers and teachers [3]. It continues to develop through external acquisition, such as 

learning new strategies and receiving instruction, as well as through the internal 

feedback loop created by the experience of implementing metacognitive skills. This 

feedback loop involves reflecting on experiences, learning from them, and adjusting 

strategies accordingly, which generates more metacognitive knowledge and leads to 

continuous improvement and understanding [3]. Later on, we will define what 

metacognitive knowledge entails in detail. 

2.1.1.1.2. Executive cognition  

There is a fine line between executive functions and metacognition. Executive 

functions involve cognitive processes such as conflict resolution, error detection, 

inhibitory control, planning, resource allocation, and emotional control [22]. The bottom 

part of Figure 3 shows the executive functions in action under normal circumstances. 

Perceptual information serves as input, which is transformed into schemas (thoughts). 

The executive system then modifies these thoughts, leading to action.  

For example, if you see a red traffic light while driving (perceptual information), this 

information is transformed into the thought that you need to stop (schema). The 

executive system prompts you to apply the brakes (action).  

Executive functions become metacognition when they are targeted towards 

themselves, instead of on perceptual information and object level thoughts. For 

example, this occurs when you start reflecting on why you decided to apply the brakes 

at a red light, analysing your thought process and decision-making. The top part of 
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Figure 3, shows how metacognition works. Where the executive system 

simultaneously acts as the object level and the meta [22], [23]. 

 

Figure 3:The top illustrates current views on metacognition and the bottom represents the views on the executive 

system, adapted from Nelson and Narens (1994) [22, Fig 1]. 

This is the fundamental relationship between executive cognition and metacognition, 

although it remains a topic of debate. The term 'model' in the meta level indicates that 

metacognition might include additional processes beyond monitoring and skills. There 

is no consensus on the exact relationship between executive function and 

metacognition, particularly regarding monitoring and information processing [20]. This 

uncertainty about their relationship is the first main ambiguity identified in this 

research. 

The relationship between executive functions and metacognition has long been 

debated, with some initially viewing metacognition as an epiphenomenon. However, it 

is now generally regarded as an integral part of our cognition rather than a byproduct 

[24]. Furthermore, executive functions, often linked to intelligence, are highly 

developed in humans, distinguishing us from other animals. Interestingly, research 
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indicates that metacognition develops independently of intelligence and is a more 

significant predictor of learning and academic performance [20], [25]. 

2.1.1.2. Consciousness 

Consciousness is a concept closely related to metacognition. There is ongoing 

discussion about whether metacognition is entirely conscious or if it also includes 

unconscious processes [3]. The definition of metacognition often influences this 

debate. In perceptual decision-making, metacognition is considered to include both 

conscious and unconscious cognitive processes [14]. 

It remains unknown how general metacognition is influenced by consciousness and 

what impact this has on resulting behaviour and subjective experience. This is 

particularly relevant because it plays an important role in mental disorders like 

schizophrenia [26]. Research into the physiological link between metacognition and 

consciousness is crucial for gaining a deeper understanding of their true nature [26], 

[27]. Thus, the relationship between metacognition and consciousness is a second 

significant point of ambiguity in this research. 

2.1.1.3. Domain interplay 

Metacognition seems to have a general and a domain specific competency that work 

hand in hand. These specific domains can be any cognitive tasks from estimating 

intercity distances, reading, spatial judgement, to solving mathematical problems [28]. 

It is still unknown what the metacognitive mechanism is between the interplay of the 

general metacognitive ability and the ability in specific domains. More granular 

empirical research needs to be conducted [3]. Thus, the domain interplay of 

metacognition is the third main point of ambiguity found in this research. 

 

Figure 4: Domain generality or domain specificity of metacognition [29, Fig 1] 
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Considering the meta-object level interplay, some might wonder if an infinite loop of 

metacognition about metacognition could occur, essentially "thinking about 

metacognition." While not explicitly mentioned in the literature, this recursive loop is 

still regarded as just one level of meta-object level interplay. 

2.1.2. The fundamental model of metacognition 

Building upon the traditional mechanisms of metacognition, we can now explore the 

fundamental model. This model can be viewed in two ways: the 2-component model 

and the 3-component model. 

We previously discussed the 2-component model of metacognition, which comprises 

metacognitive knowledge and skills. The 3-component model adds a third component: 

metacognitive experience. This distinction is significant because the 3-component 

model emphasizes the role of feelings and motivation in metacognition, which is 

particularly important in certain fields. In cognitive neuroscience, feelings and 

motivation play a crucial role in understanding metacognitive processes [14], [17]. 

This fundamental model can be integrated with other cognitive functions, such as 

memory, or applied to support specific practices, like self-regulated learning. The two 

most prominent extrapolated models are those used in metamemory research and 

self-regulated learning. [19], [30]. We will not go into detail of how these models work, 

as it is beyond the scope of this thesis. 

2.1.2.1. The 2-component model 

Introduced in 1987, the 2-component model consists of metacognitive skills and 

knowledge [21]. It serves as a simpler alternative to the initially introduced 3-

component model. This simplicity has enabled the main components of the 

fundamental model to be empirically validated using the Metacognitive Awareness 

Inventory (MAI) questionnaire [21]. Now we will dive deeper into these two 

components, namely metacognitive knowledge and skills.  

2.1.2.1.1. Metacognitive knowledge 

Metacognitive knowledge refers to the knowledge or beliefs an individual has about 

their own or general cognition. It facilitates an awareness about three categories, 

namely the person, the task, and the strategy [23], [31]. Aside from the categories that 

define what it is, this knowledge is also split up into three components: declarative, 
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procedural and conditional knowledge components [32]. We will first discuss the 

categories and then move on to the subcomponents. 

Three categories: person, task, strategy 

Starting with the person category, it refers to all the beliefs held about one’s own or 

others cognitive processes. The person knowledge can be divided into inter- and intra-

individual differences and universal beliefs of cognition. For example, personal beliefs 

about the effectiveness of learning through reading versus listening, and interpersonal 

beliefs about varying levels of emotional sensitivity [31]. 

The task category refers to the nature of the cognitive activity with respect to the task. 

For example, knowing that the needs are often stated at the beginning of a paragraph. 

On the other hand, task knowledge in respect to one’s own cognition can express itself 

as knowledge about the difficulty, abundance, familiarity, redundancy, organization, 

delivery method, pace, trustworthiness of the task [31]. 

The strategy category refers to the beliefs held with respect to the effectiveness of 

different cognitive strategies for achieving particular goals. For example, considering 

summarizing the main points in their own words as an effective learning strategy. This 

helps individuals regulate their cognitive activities to be more effective for specified 

goals [31]. 

The metacognitive aspect comes into play when this cognitive knowledge is used not 

just to perform a task but also to reflect upon and evaluate the efficacy of one's 

cognitive processes in achieving a cognitive goal. For example, cognitive knowledge 

is used to understand a text, while metacognitive knowledge will use this knowledge 

to evaluate how much you understand the text and if it is sufficient [23]. 

Three subcomponents: declarative, procedural, conditional 

The three subcomponents of metacognitive knowledge: declarative, procedural and 

conditional can be very simply understood as the what, the how, and the why and 

when of metacognitive beliefs [32]. For example, knowing that reading is your 

preferred learning method (declarative knowledge), understanding how to effectively 

read and take notes to enhance learning (procedural knowledge), and recognizing why 

reading works best for you and when to use this method, such as when studying for 

an exam (conditional knowledge). 



 
10 

 

Like all knowledge, metacognitive knowledge can be inaccurate, influence cognitive 

activities in varying degrees or fail to be activated when necessary. It provides support 

in selection, evaluation, revision, and abandonment in cognitive control and influences 

the interpretation of your metacognitive experience [31].  

2.1.2.1.2. Metacognitive skills 

Metacognitive skills apply metacognitive knowledge to adapt cognition through three 

core skills: planning, monitoring, and evaluating. As shown in Figure 2, monitoring 

uses awareness to observe and obtain information about the object level and inform 

the meta level. Planning sets goals and outlines strategies, while evaluating assesses 

strategy effectiveness and makes adjustments. [23], [32], [33]. There are more 

regulative skills described but these are the three main skills.  

2.1.2.2. The 3-component model 

Introduced in 1979 by Flavell and refined in the years after, the 3-component model is 

made up by metacognitive knowledge, - skills and - experiences . Originally this model 

included a fourth component, metacognitive goals or tasks, but this has received less 

attention than the other three components [5], [17], [31], [34]. Metacognitive 

knowledge and skills generally preserve their definition across the two different models 

so there is no need to repeat it, we will now dive deeper into metacognitive experiences 

which takes feelings and judgements into account [17]. The interplay between the 3 

components at the meta level and the interaction with cognition at the object level can 

be seen in Figure 5. 
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Figure 5: The meta- and object level interplay of the 3-component of metacognition [34, Fig 1]. 

 

2.1.2.2.1. Metacognitive experience 

Metacognitive experiences, as seen in Figure 6, include feelings, judgements, and 

reactive experiences. These are similar to the monitoring and evaluative components 

of metacognitive skills but occur spontaneously rather than being part of a strategic 

plan. For example, while reading this thesis, you might “feel” confident or doubtful 

about your understanding. Based on this feeling, you might “judge” your 

comprehension level and then “react” by adjusting your learning methods if you realize 

you have not grasped the material well. These experiences are influenced by personal 

and task-related metacognitive knowledge, meaning that individual beliefs about one's 

abilities and the nature of the task shape our real-time metacognitive experiences. 
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Figure 6: Amplification of metacognitive experiences in the conceptual framework of metacognition [17, Fig 9.6]. 

Importantly, these experiences contribute to the formation of metacognitive 

knowledge, creating a dynamic interplay where experience creates knowledge, which 

in turn shapes future experiences and guides metacognitive skills [17], [35]. 

In Figure 7 and Figure 8 the subcomponents of feelings and judgement are 

comprehensively and intuitively explained. Pay particular attention to confidence 

judgement, as it is especially relevant to this thesis within the field of cognitive 

neuroscience [17], [35]. Notably, feelings do not only include emotions but also other 

subjective sensations like confidence, difficulty, or satisfaction that arise during 

cognitive tasks.  

 

Figure 7: Amplification of metacognitive experiences, including metacognitive feelings, in the conceptual framework 

of metacognition [17, Fig 9.7]. 
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Figure 8: Amplification of metacognitive experiences, including metacognitive judgements, in the conceptual 
framework of metacognition [19, Fig 9.8]. 

 

2.1.2.3. Research 

The multidimensionality of metacognition introduces a challenge in using consistent 

research methodologies within and across fields, thus makes integrating the findings 

challenging [36]. To get a general understanding of empirical metacognition research 

we will shortly discuss how we can firstly, theoretically activate metacognition, 

secondly which assessment methods have generally been used, and finally the 

differences in individuals. 

2.1.2.3.1. Activating metacognition 

Metacognition can be triggered by individual, social, and environmental factors [37]. 

This means that one’s cognitive processes switches from ‘thinking with’ to ‘thinking 

about’ their own cognition. Theoretically there are 5 ways that contribute to making this 

switch [13]. Firstly, metacognition can be triggered through direct elicitation, like 

actively implementing a new cognitive strategy or making evaluative judgements about 

one's feelings and performance [37], [38]. Secondly, cognitive tasks that have a 

balance between high and low novelty or difficulty. This flow state balance tends to 

increase the likelihood of triggering metacognition, as it requires a manageable level 

of effort, without it being an automatic cognitive process [39]. Thirdly, metacognition 

often arises when individuals engage in important parts of a cognitive process that 

must deliver a correct result, such as problem-solving or decision-making [40]. 

Fourthly, the detection of errors in cognition, such as self-contradictions, prompts 

individuals to pause and reflect on their thought processes [37]. Lastly, the availability 
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of attention plays a significant role in triggering metacognition, with emotional 

experiences like stress and fear potentially diverting attention away from reflective 

thinking [39]. These various triggers underscore the dynamic and ambiguous nature 

of metacognition and contribute to the challenge of researching metacognition. 

2.1.2.3.2. Assessment methods 

Assessment methods of metacognition are made to quantify the performance of 

different components (metacognitive knowledge and skills) and subcomponents (E.g. 

Declarative knowledge, metacognitive planning). This performance is defined 

differently across fields like education and psychiatry [41], [42]. Assessment methods 

can generally be divided into off-line and on-line assessments. Off-line methods 

commonly take the form of questionnaires, are presented before or after the 

metacognitive task has been performed. On-line assessments are commonly 

executed by a third party that infers metacognitive performance of the candidate from 

thinking-out loud, eye-tracking, and behavioural observations. These assessment 

methods are limited by subjective biases and generalizability. The understanding of 

metacognition has evolved hand in hand with the evolution in assessment methods. 

However, the fragmentation of empirical assessment methods hinders the 

development of a comprehensive understanding of metacognition, leading to 

ambiguity [3]. 

2.1.2.3.3. Individual differences 

Individual differences in metacognition stem primarily from three key factors. Firstly, 

each person possesses a uniquely developed metacognitive framework, resulting in a 

complex array of differences not only within individual components but also in how 

these components interact. For instance, variations in acquired self-beliefs embedded 

within one's metacognitive knowledge can lead to distinct interpretations of the same 

metacognitive experience. Secondly, individuals exhibit diverse emotions and 

motivations, which exert differential effects on their metacognitive processes. Lastly, 

metacognitive assessment tends to be domain-specific, complicating the interpretation 

by introducing confounding variables such as disorders and disabilities impacting 

memory, or variations in raw cognitive capacities affecting self-regulated learning. 

These three factors collectively contribute to individual differences in metacognition 

and introduce confounding elements into assessments, thereby further fostering 

ambiguity in understanding metacognitive processes [3], [43]. 
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2.1.3. The ambiguities of metacognition 

Empirically researching metacognition is challenging, as we can conclude from the 

ambiguities in activating, assessing and the impact of individual differences. This has 

led to a field trying to solve this problem by uncovering the ground truth definition of 

the mechanisms of metacognition and its activation. A field eager to contribute to the 

three major ambiguity points being 1) the relationship of metacognition and executive 

functions, 2) the relationship of metacognition and consciousness and 3) the domain 

interplay of metacognition. In the following chapter we will explore how cognitive 

neuroscience objectively identifies metacognition by linking it to the activation in our 

brain [44].  

2.2. Metacognition in cognitive neuroscience 

Central to the problem in defining metacognition is the reliance on subjective reports 

[16]. Cognitive neuroscience research, however, provides objective measurements, 

offering valuable insights that can be applied to fields such as educational science and 

mental health [45], [46]. Before discussing the insights obtained from fMRI and EEG 

research on metacognition, we will first explain the field of focus for this research 

project and its terminology. 

2.2.1. Perceptual decision making 

Perceptual decision making is a subcategory within the broader functioning of 

metacognition. As the name implies, it involves metacognition in the decision-making 

process about a perceptual task. Specifically, it refers to visual perception involved in 

a visual task where individuals make confidence judgements about the correctness of 

their decisions. First, we will specify this perceptual task. Second, we will discuss 

common definitions, such as how confidence judgements. This understanding is 

essential before exploring how the meta is encoded and decoded (read out) of the 

brain. 

2.2.1.1. Perceptual task 

The perceptual decision task used to elicit metacognition in this thesis is presented in 

Figure 9. This is a typical two alternatives forced choice task (2AFC), as the name 

implies it forces the participant to choose between two options. In this task, participants 

are first shown a visual stimulus, consisting of two squares, each containing a certain 

number of dots. The participant then decides which square, left or right, contains more 
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dots. Finally, the participant makes a judgement about how confident they are in the 

correctness of their decision, based on their visual perception of the stimulus [47]. 

 

Figure 9: Summary of the task procedure. Participants first pressed a key according to the field containing more 

dots making a type 1 decision, then rated their confidence in their decision on a 6-point scale. RSI. [47, Fig 1] 

The first decision made based on the visual stimulus is called a type 1 decision, which 

involves choosing either the left or right square. The confidence judgement that follows 

is a type 2 decision, where the participant indicates how certain they are that their 

choice was correct, with options such as maybe, probably, or certainly [48]. This task 

falls within the category of retrospective confidence judgements. 

2.2.1.2. Definitions 

The following definition of confidence judgement is the most important for this research 

project, nevertheless in Table 1 other common definitions in the field like metacognitive 

bias are provided. Later, metacognitive sensitivity will be discussed in more depth. 

2.2.1.2.1. Confidence judgement 

Previously in this literature review, we discussed the expansion from the 2-component 

model to the 3-component model. This expansion includes not only metacognitive 

skills and knowledge but also metacognitive experiences. Metacognitive experiences 

encompass feelings and judgements, such as confidence. Therefore, the 

metacognition explored within this thesis is specifically focused on the metacognitive 

experience of confidence related to visual perception. 
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Table 1: Glossary of definitions from a consensus meeting in the field of metacognitive perceptual decision making 

[48, Table 1]. 

Term Definition 

Metacognitive bias An increase or decrease of confidence level despite basic task 
performance remaining constant 

Metacognitive 
efficiency 

The ability to distinguish between one’s own correct and incorrect 
responses given a certain level of Type 1 performance 

Metacognitive 
noise 

A type of noise that affects confidence ratings but not primary 
decisions 

Metacognitive 
sensitivity 

The ability to distinguish between one’s own correct and incorrect 
responses 

Type 1 vs. Type 2 
decisions 

Type 1 decisions are about the primary task, whereas Type 2 
decisions are about the quality of the Type 1 response. 

Type 1 vs. Type 2 
task performance 

Type 1 task performance indicates how well one’s choices predict 
stimulus identity, whereas Type 2 task performance indicates how 
well one’s subjective ratings predict one’s accuracy (i.e., 
metacognitive sensitivity). 

In the following section, we will include broader insights on metacognition from various 

fields. However, the primary focus of this project will remain on the field of perceptual 

decision-making. 

2.2.2. fMRI 

Three central research questions for analysing metacognition in the field of cognitive 

neuroscience are: firstly, “Where in the brain do we represent the ‘meta’?”. Secondly, 

“Is ‘meta’ domain-specific?”. Lastly, “How do we encode and read out the ‘meta’?” [5]. 

Together, these questions aim to uncover the neural basis and functional aspects of 

metacognition, which are explored based on fMRI research. 

Research results suggest that the neural system involved in metacognition is 

independent of that of decision making [49]. Several experiments display this 

separation through task manipulation, inhibition of neuromodulation, and 

neurostimulation impacting metacognition but not decision making [41], [42], [43]. The 

extent of correlation between the neural systems of decision making and 

metacognition is still a matter of research. 
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2.2.2.1. Activation areas  

Figure 10 addresses the first question, “Where in the brain do we represent the 

‘meta’?”. fMRI research identifies the brain areas associated the two-component 

model comprising metacognitive skills and knowledge with both online and offline 

metacognition. Overall metacognition in predominantly associated with the cerebral 

cortex, the largest subsection of the cerebrum which is a subsection of the forebrain. 

The cerebral cortex is known for the higher-level processes like language, memory, 

reasoning, learning, decision-making and emotion. 

2.2.2.1.1. Metacognitive skills and knowledge 

Metacognitive skills are primarily located in the prefrontal cortex, aligning with the 

regions involved in executive functions. In contrast, metacognitive knowledge is 

additionally associated with the posterior part of the brain, specifically the precuneus 

[45]. 

Metacognitive knowledge is typically activated in subjects by a reflective task like them 

rating their confidence in the perceived success of their performance in a task [45]. In 

the 3-component model, this is considered a metacognitive experience, where the 

subject evaluates their own belief about their performance. 

On the other hand, metacognitive skills is closely related to the executive functions 

and are mainly activated with behavioural tasks such as Flanker tasks, Stroop tasks, 

Motion Discrimination tasks and Demand Selection tasks [45]. As discussed in the 

models of metacognition, this control represents the planning, monitoring and 

evaluating of employed strategies and resources. 

 

Figure 10: Brain regions associated with metacognition in the cognitive neuroscience literature. The regions are 

divided into online and offline metacognition. Striped are overlapping functions. [45, Fig 1] 
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The exact relationship between executive functions and metacognition is still up for 

debate. Interestingly early models in cognitive neuroscience research of 

metacognition were extrapolated from those of executive functions to study 

perception, decision-making, learning and sense of agency. Figure 11 shows how the 

meta was considered to be the brain regions in the prefrontal cortex (PFC) and the 

object level to be the posterior cortex [1]. 

 

Figure 11: The brain areas mapped on the 2-component model[1, Fig 1]. 

2.2.2.1.2. Online and offline Metacognition 

Online metacognition occurs during the execution of a task. Metacognitive skills is 

typically considered online because monitoring and skills generally happen quickly, 

without requiring reflective thinking [45]. Interestingly no example was provided nor 

easily found for online metacognitive knowledge. 

In contrast, offline metacognition takes place during reflective breaks. Metacognitive 

knowledge is mostly viewed as an offline process. Judgements can be seen as offline 

processes of metacognitive knowledge or, more precisely, as metacognitive 

experiences, as they require the subject to reflect on their cognition and develop meta-

representations. Offline metacognitive skills is evident in actions such as cognitive 

offloading, where thinking is reduced at regular intervals [45]. 

Brain-imaging studies suggest that the medial frontal cortex (MFC) and anterior 

cingulate cortex (ACC) engage in online meta-knowledge, with the ventrolateral 

prefrontal cortex (VLPFC) managing online metacognitive skills. In contrast, the 

anterior prefrontal cortex (aPFC) and precuneus, along with the lateral prefrontal 

cortex (lPFC), are activated when subjects engage in offline meta-knowledge and 

meta-control, respectively [45]. 
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2.2.2.2. Domain specificity 

Figure 12 addresses the question, “Is ‘meta’ domain-specific?”. fMRI research 

indicates that metacognition interacts differently with various cognitive functions in 

potentially different meta-level systems [53]. Within neuroscience, perceptual decision 

making and metamemory are the most extensively researched cognitive functions. 

The research into the domain specificity of these cognitive functions, specifically 

revolved around metacognitive confidence judgements. Figure 12 shows a neural 

overlap in metacognitive activation between these functions, with domain-specific 

differences highlighted in blue and red. This suggests that metacognition has both 

domain-general and domain-specific aspects. Overall, these areas overlap with the 

previous insights, but are more specified for metacognitive confidence. 

 

Figure 12: domain-specific patterns of confidence-related activity  [29, Fig 5].  

2.2.2.2.1. Domain general 

Domain-general metacognitive activity has been identified in five main brain areas and 

are specified in Table 2. First, within the frontoparietal network, regions such as the 

posterior medial frontal cortex (pMFC) and the anterior prefrontal cortex (aPFC) have 

distinct roles. Second, the aPFC is connected to areas below the prefrontal cortex in 

the frontal lobe, specifically the interoceptive cortices like the dorsal anterior cingulate 

cortex (dACC) and the insula. Third, further below the frontal lobe in the basal ganglia, 

the striatum also shows activity. Fourth, medial areas in the frontal lobe, such as the 

ventromedial prefrontal cortex (vmPFC) and the pre-supplementary motor area (pre-

SMA), are involved. Lastly, in the superior parietal lobule, the precuneus is another 
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region where domain-general metacognitive activity is observed [29]. Each of these 

areas plays a distinct role in supporting metacognitive processes, the functionalization 

of which we will explore later. 

Table 2: Domain general brain regions of metacognitive judgements. 

Region Specific Area Specific Regions 

Frontal Lobe Frontoparietal Network Posterior Medial Frontal 
Cortex (pMFC), Anterior 
Prefrontal Cortex (aPFC) 

Frontal Lobe Interoceptive Cortices Dorsal Anterior Cingulate 
Cortex (dACC), Insula 

Basal Ganglia Basal Ganglia Striatum 

Frontal Lobe Medial Areas Ventromedial Prefrontal 
Cortex (vmPFC), Pre-
Supplementary Motor 
Area (pre-SMA) 

Parietal lobe Superior Parietal Lobule Precuneus 

2.2.2.2.2. Domain specific  

Firstly, domain-specific patterns for metacognitive confidence for metamemory and 

decision making were identified in nuanced areas of the right lateral anterior prefrontal 

cortex (aPFC) [29]. Furthermore, for metamemory, a distinction was found between 

retrospective and prospective confidence judgements. Lastly, in general mentalising, 

making a metacognitive judgement about someone else’s performance also shows 

both domain-general and specific activation. These aspects highlight the domain-

specificity the mechanism of metacognition portrays [54]. 

Answering the first two key research question provides an understanding of how 

metacognition is represented in the brain. The answer to the third question will be 

limited to strictly perceptual decision making for the relevance of this thesis.  

2.2.2.3. Functionalization 

The following sections provide a high-level explanation of the third question: “How do 

we encode and read out the ‘meta’?”. To address this, we need to understand the 

functionalization of brain areas involved in metacognition from the perspective of 

information processing. 

Firstly, we will explore the types of information used and how they are integrated. 

Secondly, we explain how this information is processed for metacognitive confidence 
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judgements. This explanation is divided into two sections: (1) Brain area specific 

functions and (2) Common differentiating areas. 

2.2.2.3.1. Type of information 

To understand how metacognitive confidence judgements are encoded, it is essential 

to recognize the sources of information the brain uses. It is suggested that 

metacognitive judgements involve integrating three types of information, as seen in 

Figure 13. First, external sensory perceptual information. Second, interoceptive 

information, which consists of internal sensory signals from within the body, such as 

heart rate and breathing. Third, action information, which provides feedback on actions 

related to decision-making, including response strength and the fluency of response 

execution. This information is integrated in the central frontal cortex, while the anterior 

prefrontal cortex contributes by making predictions about the state of the world and 

the individual, leading to accurate metacognitive judgements. 

 

Figure 13: Sensory, interoceptive and action signals are read out in central frontal cortex. Anterior prefrontal cortex 

provides predictions about the “state of the world” and the “state of the decider” when a decision is made. Central 

frontal theta oscillations [55, Fig 9]. 

2.2.2.3.2. How the information is processed 

Decision making confidence 

Figure 14, based on fMRI research, presents a detailed understanding of how the 

various areas function to process the information of metacognitive confidence in 

perceptual decision making.  

Firstly differentiating between local confidence, which is only related to the specific 

perceptual task performed, and global confidence, which encompasses broader self-
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beliefs about one’s abilities and skills across various tasks and situations [56]. 

Secondly, we see that the parietal brain areas are related to sensory processing. While 

the frontal areas being involved in metacognitive skills and generating confidence 

judgements.  

 

Figure 14: Neural correlates of metacognitive evaluation on a perceptual task. [56, Fig 2] 

Differentiating areas: High and low confidence areas 

In Figure 15, we observe that brain activity associated with high confidence is primarily 

found in the central and posterior regions of the brain. Conversely, activity related to 

low confidence is predominantly located in the frontal regions. 
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Figure 15: Significant brain regions associated with more (red) and less (blue) confidence, shown on sagittal slices 

with numbers above each slice representing coordinates [57, Fig 3].  

2.2.3. Metacognitive sensitivity 

Contrary to the intuitive belief that we have complete and accurate access to our 

cognitive processes, research shows that our self-assessment is not always fully 

aligned with reality [1]. This means that our metacognition can be inaccurate. 

Furthermore, the accuracy of metacognitive ability varies significantly across 

individuals, independent of task performance and confidence levels [58]. 

Understanding the neural mechanisms underlying metacognitive sensitivity is 

essential for comprehending failures in metacognition in conditions such as brain 

damage and psychiatric disorders [1]. We will first discuss the definition of 

metacognitive sensitivity in perceptual decision-making. Second, we will move on to 

the insights fMRI research obtained in metacognitive sensitivity, which is limited 

compared to metacognitive confidence research. 

Overall domain-general metacognitive sensitivity has been linked to real-world 

applications such as mental health and behaviour. Individuals with psychosis-related 

symptoms of mental disorders show a significant reduction in metacognitive sensitivity 

In general, poor self-judgement and overconfidence are linked to high rates of 

entrepreneurial failure, global stock market crashes, the explosion of the Space 

Shuttle Challenger, and the nuclear accident at Chernobyl [59]. Due to its importance, 

metacognitive sensitivity has garnered significant interest, leading to research into 

training methods for improving it [60]. 

2.2.3.1. Definition 

In perceptual decision making, the concept of metacognitive sensitivity has been 

developed to represent an individual's ability to distinguish between their own correct 

and incorrect responses [48].  

Another way to understand metacognitive sensitivity is from the perspective of type 1 

and 2 decision performance. Type 1 task performance represents the ability to 

correctly answer on the visual task. While type 2 task performance represents 

metacognitive sensitivity, the ability to correctly predict one’s own correct and incorrect 

answers in the type 1 decision [48]. 

 



 
25 

 

2.2.3.2. fMRI  

Although the research into metacognitive sensitivity is limited, some similar insights 

are found. Again, we can answer the three central questions. Firstly, “Where in the 

brain do we represent the ‘meta’?”. Secondly, “Is ‘meta’ domain-specific?”. Lastly, 

“How do we encode and read out the ‘meta’?”. From research into visual motor 

metacognitive sensitivity it is suggested that there are distinct brain regions for the 

object level performance and the metacognitive performance [61].  

2.2.3.2.1. Activation Areas 

To address the first question, “Where in the brain do we represent the ‘meta’?”, we will 

focus on activation areas of perceptual decision-making tasks with retrospective 

confidence judgements. An overview can be seen in Table 3. 

Most prominently, increased activity in the rostral and dorsal aspects of the lateral 

prefrontal cortex (rlPFC and dlPFC) are found to be crucial for metacognitive sensitivity 

[1], [62]. Furthermore the salience network known for consisting of brain regions that 

evaluate the importance of internal or external stimuli, has shown to mediate 

metacognitive sensitivity [63]. Particularly the dorsal medial prefrontal cortex (dmPFC) 

and anterior insula, two critical components within the salience network that encodes 

self-awareness and monitors perceptual decision errors [63]. 

In addition to fMRI, volumetric techniques like quantitative MRI (qMRI) provide 

additional insights into metacognitive sensitivity. These techniques measure local grey 

matter myelination and iron content, revealing correlations with metacognitive 

sensitivity in the anterior prefrontal cortex (aPFC), precuneus, hippocampus, and 

visual cortices [64].  

Table 3: Overview of brain areas related to metacognitive sensitivity and the respective measurement technique. 

Technique Main Area Specific Areas 

fMRI Lateral prefrontal cortex 
(lPFC) 

Rostral lateral prefrontal 
cortex (rlPFC), Dorsal lateral 
prefrontal cortex (dlPFC) 

fMRI Salience Network Dorsomedial prefrontal cortex 
(dmPFC), Anterior insula 

qMRI Various area’s Anterior prefrontal cortex 
(aPFC), Precuneus, 
Hippocampus, Visual cortices 
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2.2.3.2.2. Domain specificity 

Secondly, “Is ‘meta’ domain-specific?”. Metacognitive sensitivity is also found to be 

domain-general and -specific. The activation areas in the brain vary for social and 

cognitive reasoning tasks, visuomotor tasks, and retrospective and prospective 

judgements [1], [61], [65]. For perceptual tasks, a domain-general aspect remains 

present as metacognitive sensitivity is correlated across different perceptual tasks, 

suggesting a task-independent mechanism underlying metacognition [66]. In general, 

the domain-specific mechanism of metacognitive sensitivity within perceptual decision 

making and their brain areas remain unclear and under researched. 

2.2.3.2.3. Increased metacognitive sensitivity 

Lastly, “How do we encode and read out the ‘meta’?”. This question remains largely 

unexplored. Further research is needed to identify the functional roles of the previously 

discussed brain regions in relation to metacognitive sensitivity [61]. Although there is 

insight into which areas are related to improved metacognitive sensitivity, this does not 

mean they are distinct activation regions of metacognitive sensitivity. 

Firstly, the dorsolateral and anterior prefrontal cortical subregions (dlPFC and aPFC) 

work in conjunction with interoceptive cortices, such as the cingulate and insula, to 

enhance metacognitive sensitivity [1]. Furthermore higher metacognitive accuracy is 

associated with decreased activation in the anterior medial prefrontal cortex (amPFC) 

[57], [62]. Additionally, volumetric findings show that increased myelination in the right 

anterior prefrontal cortex (aPFC) myeloarchitecture and decreased myelination in the 

left hippocampus correlate with better metacognitive sensitivity [64]. 

2.2.4. EEG:  

While fMRI provides localization of neural substrates with great spatial precision, EEG 

offers insight into the temporal dynamics of neural activity, albeit with less precise 

spatial localization. Due to these differences in neuroimaging techniques, EEG 

findings differ in spatial localization compared to fMRI. As EEG data is used in this 

thesis, we will firstly discuss the challenges that guide the data analysis approach. 

Secondly, we will discuss the temporal and spectral insights gained from EEG analysis 

for both metacognitive confidence and sensitivity. 
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2.2.4.1. The challenges 

Starting with the three general challenges in comparing and analysing insights from 

EEG activation profiles of metacognition: First, metacognition has a varying temporal 

activation profile, as shown in Figure 16. Second, the activation profile of 

metacognition is task-specific, even within visual perceptual decision-making tasks, as 

seen in Figure 17. Third, the activation profile varies for confidence ratings about 

correct versus incorrect type 1 decisions, as depicted in Figure 18. 

These insights originate from metacognitive confidence research. There are no 

temporal topographies of metacognitive sensitivity derived from the metacognitive 

confidence. These insights are likely transferable but not certain for metacognitive 

sensitivity, so they will be taken into consideration. 

2.2.4.2. Metacognitive confidence 

2.2.4.2.1. Temporal activity 

The temporal activity of metacognitive confidence has been extensively researched. 

This includes identifying temporal activity both across the entire topography, 

encompassing all EEG electrodes, and the event-related potentials (ERP) at specific 

electrodes. The ERP represent the electrical activity over time at an electrode, those 

which are most strongly correlated with metacognition. We will begin by discussing the 

event-related potential (ERP) and then move on to the topographies. 

ERP 

In Figure 16, the event-related potential (ERP) is displayed. This shows the electrical 

activity, locked to the type 1 decision, in the temporal plane at a specific EEG 

electrode. Typically, the Pz, Cz, or Fcz electrodes are chosen to extract the ERP, as 

the characteristic activations for metacognition are most pronounced in the fronto-

central and parietal regions of the scalp [47]. These characteristic activations include 

the Error-Related Negativity (ERN), Correct-Response Negativity (CRN), and Error 

Positivity (Pe). 
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Figure 16:  Response-locked event-related potential (ERP) and topography for the difference between “certainly 

wrong” and “certainly correct” for metacognitive confidence [47, Fig 3]. 

The ERN is a negative deflection in the ERP that occurs 50-100 ms after an error is 

made. The CRN is similar but occurs after correct responses and has a smaller 

amplitude [47]. The Pe is a positive deflection in the ERP that occurs 200-400 ms after 

an error, but the Pe is a negative deflection after a correct type 1 response [47]. 

Overall, the ERN and CRN are associated with general performance monitoring, a 

subconscious process, while the Pe is linked to error detection with conscious 

awareness [67]. As seen in Figure 16 the amplitudes of the ERP demonstrates a clear 

graded association with metacognitive confidence at the Pz electrode [47]. 

The Pe's time interval of 200-400 ms can be further specified to the P3 component, 

which occurs between 300-400 ms after the stimulus is presented. The waveform 

associated with the P3 component represents the metacognitive experience, 

specifically the confidence judgement [68].    

Topography 

In Figure 17, topographies are shown throughout time in a condition where a type 1 

decision error was made.  
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Figure 17: EEG topography throughout different time phases of the confidence judgement, with Fig. 2. portraying 

activation for the Eriksen flanker task and Fig. 4. for the circle discrimination task [69, Fig 2, 4]. 

The fronto-central and parietal electrodes represent the most variable activity. Starting 

with a general negative electrical signal at the Error-Related Negativity (ERN), which 

displays a slightly different topography when compared to the Correct-Response 

Negativity (CRN), as seen in Figure 18. Continuing to an early and late Error Positivity 

(Pe), showing a positive electrical signal throughout the scalp in the incorrect 

condition. In the correct condition this is likely a negative deflection as seen in Figure 

16. 

 

Figure 18: Topographies for the event-related potential (ERP) in the rating condition at 60 ms post-response, 

differentiated for erroneous and correct type 1 decisions [67, Fig 2B]. 
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2.2.4.2.2. Spectral activity 

The following insights have not been correlated strictly with metacognitive confidence 

but have been related to metacognitive sensitivity. Considering the mechanism of the 

event-related potential (ERP) we just discussed, the following insights are noteworthy 

for metacognitive confidence, especially considering the limited research on this 

aspect. 

In Figure 19, a spectrogram at a frontal electrode (AFz) and occipital electrode (Oz) 

are shown with their respective topographies. These activities are stimulus-locked, 

meaning right when the visual task is presented. Note that this is different than the 

temporal event-related potential (ERP) insights above. The occipital electrode (Oz) 

and its topographies represent the neural activity right after the stimulus of the task 

was represented, the frontal electrode (AFz) time window starts one second after 

stimulus presentation. Despite the confusing time window intervals, we see that 

overall, around 2,5 seconds after stimulus presentation there is increased theta-band 

(4 – 6 Hz) activity in these electrodes. While a decrease in lower beta-band (13–20 

Hz) and theta-band activity in the left and right motor channels occurred.  

 

 

Figure 19: Time-frequency analysis of stimulus-locked neural activity at Oz and AFz electrodes [70, Fig 3C]. 

Furthermore, in the first second after presenting the stimulus decreased beta-band 

activity was found in the frontal, the left and right parietal, occipital, and motor channels 

was found.  
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Besides this indirect insight there was research that directly found pre-stimulus alpha-

band (8–13 Hz) power in the posterior part of the head to be directly negatively 

correlated with confidence, which did not affect accuracy [71].  

2.2.4.3. Metacognitive sensitivity 

2.2.4.3.1. Temporal activity 

The research on the neural substrates of metacognitive sensitivity using EEG is quite 

limited for metacognition in general and specifically retrospective judgements in 

perceptual decision making. This presents an opportunity for further research to 

explore this area in more depth. 

2.2.4.3.2. Spectral activity 

In Figure 20 a correlation between prefrontal theta-band activity 1,5-2,5 seconds after 

stimulus and metacognitive sensitivity (adequacy) is shown, but at no particular 

activity. This in fact represents a positive linear relationship, which is unrelated to task 

accuracy [70]. Further research proved that metacognitive sensitivity improved due to 

theta burst stimulation, again without affecting first-order decision making. Strongly 

suggesting the importance of theta band activity for metacognitive sensitivity [8]. 

 

Figure 20: Multiple linear regression EEG results: late time window (1.5–2.5 s). Showcasing in particular the 

relationship between theta power and metacognitive sensitivity (adequacy) [70, Fig 5]. 

2.3. Machine learning for decoding metacognition 

Machine learning has been applied in various ways to study metacognition. It is used 

to model and gain a deeper understanding of the cognitive processes involved, 

estimate derivations from confidence judgements such as metacognitive efficiency, or 

even predict confidence judgements directly from EEG data [64], [66], [67]. We will 

firstly discuss the limitations of traditional approaches, then shortly explore machine 

learning applications, lastly dive deeper into deep learning. 
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2.3.1. Limitations of traditional approach  

Traditional approaches to researching metacognition in cognitive neuroscience often 

rely on statistical correlations. These methods include identifying linear relationships 

or co-occurrences between brain activity and confidence levels, but also more 

complex computational models. While these approaches have significantly advanced 

our understanding of metacognition, they also have notable limitations. 

The three most notable limitations identified are as follows: First, the ecological validity 

of the insights reviewed is unclear, making it difficult to determine how well they reflect 

real-life metacognition. Second, there is a need for more cross-disciplinary research 

to better understand the neural substrates of metacognition. Third, the distinction 

between the neural correlates of metacognitive skills and metacognitive knowledge 

remains insufficiently explored [45]. 

2.3.2. Machine learning applications 

Machine learning is inherently different from traditional approaches. Traditional 

computational models are rule-based and designed to simulate patterns in systems 

using predefined equations and rules. In contrast, machine learning models learn 

these patterns directly from data. 

Machine learning has been used in various ways for metacognition. Most commonly it 

was used to predict metacognition. On the one hand, a hierarchical Bayesian 

approach could predict metacognitive efficiency from confidence judgements [72]. On 

the other hand a multivariate classifier could predict high or low confidence directly 

from EEG data, with an above chance accuracy [76].  

2.3.3. Deep learning 

Deep learning further differentiates itself from machine learning as a subsection by 

being able to learn features directly from raw data without manual intervention. In 

contrast, other machine learning techniques require feature engineering before they 

can automatically learn patterns in the data. We will first explore the pros and cons of 

deep learning to understand its usefulness before examining specific applications. 
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2.3.3.1. Pros and cons 

2.3.3.1.1. pros 

Deep learning offers three notable advantages for metacognition research (1) 

ecological validation, (2) multimodality and (3) transfer learning. Starting with 

ecological validation, by automating the prediction of metacognition, allowing for its 

application in more naturalistic settings. For instance, a deep learning model trained 

on confidence judgements in perceptual decision-making can be utilized and 

compared in ecological experimental setups. 

Secondly, deep learning models can integrate various types of data, such as EEG, 

text, and audio, facilitating the fusion of cross-disciplinary insights [77]. This 

multimodal integration allows for the combination of data from cognitive neuroscience 

and mental health surveys, for example, to predict outcomes relevant to educational 

sciences. 

Lastly, transfer learning in deep learning allows the use of model weights from one 

application in a different context, reducing the need for extensive data and enabling 

the evaluation of relationships between different domains. For instance, weights from 

a model trained on metacognitive knowledge can be used to predict metacognitive 

skills, providing valuable insights into their interconnectedness. 

2.3.3.1.2. Cons 

Deep learning models face three notable disadvantages, (1) data requirement, (2) time 

consuming and (3) limited interpretability. Firstly, they require a large amount of high-

quality data to perform effectively. This is particularly challenging in the context of 

confidence judgements, where imbalanced datasets necessitate data augmentation, 

potentially leading to generalization issues. Secondly, training deep learning models 

is time-consuming due to their complex architectures and the extensive computational 

resources required. Lastly, deep learning models suffer from limited interpretability. 

Although certain frameworks like Convolutional Neural Networks (CNNs) provide 

some degree of interpretation, they remain more abstract compared to traditional 

computational models. 

2.3.3.2. Deep learning application 

Although limited, a couple of deep learning applications have been explored within the 

whole of metacognition. Most notably, a transfer learning algorithm called ‘meta-
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learning’ uses EEG and EOG input data to make trial-by-trial confidence predictions 

while quickly adapting to the current subject with limited data by leveraging data from 

previous subjects with a 70%-80% NMSE [74]. On the other hand, a Long Short-Term 

Memory (LSTM) neural network model directly estimates a subject's learning 

confidence in an immersive VR environment using multiple data inputs such as eye 

gaze and controller position, achieving 85.6% accuracy [77]. 

Despite these interesting experiments this project focused solely on an explainable 

deep learning framework called WaveFusion. WaveFusion was developed for 

classifying and localizing neural activity in neuroscience research applications [78]. 

This framework has been applied to metacognition in perceptual decision-making 

tasks with retrospective confidence judgements, achieving a 95.7% classification 

accuracy of confidence judgements using EEG data as input [75]. In this research 

project, this framework will be expanded to additionally classify metacognitive 

sensitivity from EEG data. We will explore this framework in three sections, starting 

with the input, continuing with the processing model, and ending with the output. 

2.3.3.2.1. WaveFusion framework 

Input 

The input for the WaveFusion model are spectrograms an example for the Pz 

electrode is shown in Figure 21Figure 22. These spectrograms were created for each 

electrode by applying the STFT to stimulus-locked EEG data of a visual task in 

perceptual decision making. A selection of these electrodes was made to limit the 

framework, only the posterior electrodes were chosen due to the importance of 

posterior pre-stimulus alpha band activity. 

 

Figure 21: Spectrogram at Pz electrode used as input for the WaveFusion model [75, Fig 4]. 
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Model structure 

The input is passed through three sections in the model architecture before the 

classification is performed. We will discuss these sections seen in Figure 22 in more 

detail. 

 

Figure 22: The WaveFusion architecture [75, Fig 1]. 

Firstly, there are three layers of lightweight convolutional neural networks (LWCNN) 

for each EEG lead, with a total of 17 electrodes in this case. These convolutional layers 

generate 2D feature maps from the spectrogram. Each layer processes these feature 

maps sequentially, learning more abstract features. To prevent overfitting, the first two 

layers include ReLU activation, 2x2 max-pooling, dropout with a 10% drop rate, and 

batch normalization. The last convolution layer also uses dropout and batch 

normalization, outputting a compressed feature map with more filters, each 

representing different variations of the learned features. The hyperparameters are 

detailed in Table 4 

Table 4: The hyperparameters detailed for the LWCNN and SEN structure [75, Table 1].  
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Secondly, the compressed feature maps are forwarded to the Squeeze and Excite 

Network (SEN). This network, operating in an encoder-decoder mode, creates 

attention weights that indicate the importance of each lead. The dense encoder layer 

condenses the 17×1 input to 5×1, followed by ReLU activation. Then, the dense 

decoder layer expands the output back to 17×1. To address overfitting, the weights πi 

are flattened using temperature τ within the sigmoid activation function in the last linear 

layer of the SEN. This operation is shown in Equation 1 for the attention weights. 

Equation 1: Attention weights [75, eq 1] 

Thirdly, the projection network creates pretrained weights for the 

final classification by projecting the feature maps from the LWCNN, which have been 

attention-focused by the SEN network and flattened. These features are sent to a 

unit hypersphere, and the weights are optimized based on the Subject-Aware 

Contrastive (SAC) loss. 

The loss formula is presented in Equation 2, which uses a projection network to map 

representations to an embedding vector z. Here zi is the anchor, representing one 

sample from a particular subject, and τ ∈ R+ is a temperature parameter. The set Q(i) 

contains all samples generated from the same subject and of the same class as the 

anchor. The set S(i) includes negative samples, which are divided into inter-subject 

negatives N(i)r and intra-subject negatives N(i)a. The loss function aims to maximize 

the similarity between the anchor and its positive samples while minimizing the 

similarity between the anchor and its negative samples, thereby improving the model's 

ability to differentiate between different classes and subjects. 

Equation 2: Subject aware contrastive loss [75, eq 2] 
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Finally, after pre training the weights using the subject aware contrastive loss, the 

weights are transferred to the classification layer and further trained to reach higher 

classification accuracy of high or low confidence. 

Output 

The WaveFusion framework provides three types of outputs. Firstly, it performs 

classification based on the combined information from all EEG electrodes' 

spectrograms, categorizing the input as high or low confidence, with an average F1 

score and accuracy of 95.7%. Secondly, the attention weights, as seen in Figure 23, 

can be plotted to represent the importance the model assigns to each electrode for 

making a class prediction. Lastly, class activation maps (CAMs) highlight the 

importance of specific features localized in the input spectrograms for each EEG lead. 

 

Figure 23: The visualised outputs with on the left the attention weights on a topography for both high and low 

confidence, and on the right the input spectrogram and it’s respective class activation map for the Pz electrode in 

a low confidence scenario [75, Fig 3, 4]. 

3. Research aims and objectives 

The aim of this thesis was to develop an explainable deep learning model to classify 

metacognitive sensitivity using EEG data, and to understand its contribution to 

theoretical research on metacognition. The model builds upon the WaveFusion model 

for classifying metacognitive confidence created by Briden and Norouzi (2023), who 

generously provided their code for this project. Although the python code was nearly 

complete, it required debugging and modifications to align with the specific objectives 

of this research, all code was written in python. This study utilized the response-locked 

event-related potential (ERP) EEG dataset from Boldt and Yeung (2015), which was 
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kindly provided by my co-promotor, Kobe Desender, to implement and evaluate these 

methods. 

The specific objectives were (1) to develop the deep learning model with a 

classification accuracy of at least 95% for metacognitive sensitivity, and (2) to improve 

the metacognitive confidence classification accuracy to at least 97.5%. The code was 

designed to output and plot the attention weights, thereby visualizing the neural activity 

the model used to make its class predictions. The third objective; to identify key 

ambiguities and limitations in metacognition research, has been discussed in the 

literature review. 

4. Materials & methodology 

There are four main parts to this coding project, starting with the dataset, 

preprocessing of that data, creating the models and algorithms to process the data, 

and finally evaluating the model. 

4.1. Dataset 

The dataset used was kindly provided by my co-promotor Kobe Desender, who gave 

me access to the data used in Boldt and Yeung (2015). The dataset consisted of EEG 

data, confidence judgements and truths for 16 subjects.  

The EEG data has three dimensions, first dimension (32) are the channels of the 

QuikCap, Neuroscan used, with the electrodes specified in the following order: FP1, 

FPz, FP2, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4, T8, TP7, 

CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8, POz, O1, Oz, O2. The second dimension 

(1701) is time running -500:1:1200, with time zero being the type 1 decision made. 

The EEG measurements are response-locked to show the event-related potential 

(ERP) and sampled at 1000Hz. The third dimension (800+) are the individual trials of 

the task procedures executed by the participants. This EEG data has been pre-

processed and trial removal was performed as specified in Boldt and Yeung (2015). 
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Figure 24: An example of the dataset, showcasing the signal measured across 32 electrodes for subject 6 first trial. 

Furthermore, the confidence judgements are performed according to the task 

procedure specified in Boldt and Yeung (2015). The confidence judgements are ratings 

running from 1 (low) to 6 (high) and has the same length as the number of trials 

performed by the subject. Similarly, the truths have the same dimensions, but the 

values indicate if the trial was an error (1) or correct (0). 

The dataset is notably imbalanced, with a predominant number of high-confidence 

answers that are correct. Table 5 illustrates the average number of samples per class 

across all subjects. There are roughly four times more samples in the high-confidence 

class compared to the low-confidence class. Additionally, there are about ten times 

more samples in the correct class than in the error class for metacognitive sensitivity. 

The smallest sample sizes were observed in the high-confidence and correct class for 

Subject 2, with only 4 answers, and in the low-confidence and incorrect class for 

Subject 6, with only 5 answers. The number of samples per class per subject can be 

seen in the table 6. 

Table 5: Average number of samples per subject divided across their classes. 

Average number of 
samples 

High Confidence Low Confidence Total 

Correct  663 112 775 

error 36 38 74 

Total 699 150 849 
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4.2. Preprocessing 

Preprocessing was implemented to firstly obtain two classes for both metacognitive 

confidence and sensitivity. Secondly, to split the data into train and test sets. Thirdly, 

to generate more samples, and lastly to convert the EEG samples into spectrograms. 

This was done separately for every subject and for three different selection areas: the 

full head, frontal and posterior area. In general, the preprocessing approach was to be 

as consistent as possible to that of Briden and Norouzi (2023), the paper of which the 

deep learning model was used. 

Starting with obtaining the classes, a different method was necessary for 

metacognitive confidence and sensitivity. Here the EEG data was already down 

sampled from 1000hz to 100hz to match the approach of Briden and Norouzi (2023). 

This down sampling maintains the integrity of the frequency activity of the brain which 

ranges typically between 0.5-40 Hz and reduces the size of the data to make 

processing more manageable. Moving on, it was important to start by defining the 

confidence classes before implementing the sensitivity data split. The EEG data was 

split based on the confidence judgements from 1-6 and were divided into low (<4) and 

high (≥4) confidence classes while creating separate variables for the truths to keep 

them aligned with their EEG samples. To create the two classes of correct and 

incorrect judgements for metacognitive sensitivity a division based on the truths and 

the confidence class was made. The correct class consisted of the high confidence 

class with the correct truth (0) and the low confidence class with the error truth (1), 

and vice versa for the incorrect class. Metacognitive sensitivity is often quantified using 

meta-d', which requires a batch of samples and is not suitable for individual trials [79]. 

To address this, we implemented a class division approach to capture metacognitive 

sensitivity. This approach represents instances where a subject's metacognitive 

sensitivity is accurate by displaying high confidence when the type 1 decision is correct 

and low confidence when the decision is an error. It is the opposite for the incorrect 

metacognitive sensitivity. The two variables of correct high and low confidence were 

added in variable and randomly shuffled for good measure, and vice versa for the 

incorrect variables. 
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Table 6: The amount of samples divided across their classes, including the total and derived the derived metrics, 
actual metacognitive sensitivity and metacognitive bias. 

 

Secondly, the data was split into training and validation sets using the train_test_split 

function from scikit-learn. This division ensured that the model could learn and validate 

on distinct datasets, thereby enhancing the reliability and robustness of the model's 

performance. No test set was created due to the imbalanced data, there were not 

enough class two samples, being low for confidence and incorrect for metacognitive 

sensitivity. This imbalanced dataset would lead to too much redundant data for 

generating averaged samples as explained in the next step. For confidence classes a 

70/30 split was performed and for sensitivity a 50/50 split was performed due to the 

lower number of samples in the imbalanced classes. 

Dataset 
High 

Confidence 
Correct 

High 
Confidence 

Incorrect 

Low 
Confidence 

Correct 

Low 
Confidence 

Incorrect 

Total Correct 
trials 

Metacognitiv
e sensitivity 

(%) 

High 
Confidenc

e trials 

Metacognitiv
e Bias (%) 

Subject 
1 

704 37 66 22 
829 770 92.9 741 89.4 

Subject 
2 

643 4 128 54 
829 771 93.0 647 78.1 

Subject 
3 

689 28 105 19 
841 794 94.4 717 85.2 

Subject 
4 

703 20 69 61 
853 772 90.5 723 84.7 

Subject 
5 

583 100 100 67 
850 683 80.4 683 80.4 

Subject 
6 

690 43 73 5 
811 763 94.1 733 90.3 

Subject 
7 

657 47 139 14 
857 796 92.9 704 82.0 

Subject 
8 

701 24 86 48 
859 787 91.6 725 84.4 

Subject 
9 

750 18 33 58 
859 783 91.1 768 89.5 

Subject 
10 

664 16 78 103 
861 742 86.2 680 79.2 

Subject 
11 

630 69 147 10 
856 777 90.8 699 81.9 

Subject 
12 

716 20 89 10 
835 805 96.4 736 88.1 

Subject 
13 

621 66 97 77 
861 718 83.4 687 80.0 

Subject 
14 

576 40 217 25 
858 793 92.4 616 71.8 

Subject 
15 

627 16 211 6 860 838 97.4 643 74.9 

Subject 
16 

649 22 158 25 854 807 94.5 671 78.7 
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Thirdly, generating more samples was performed to have sufficient data for the deep 

learning model to train on and to stay consistent with the methodology of Briden and 

Norouzi (2023). More samples were created by averaging a randomly selected 10% 

subset of the EEG recordings. This was done separately for four variables created by 

splitting in the two different classes and the train and validation sets. For metacognitive 

confidence, a separate variable holding truth values was averaged and rounded to 0 

(correct) and 1 (error) for their respective averaged EEG recording. In total five 

hundred samples were created for the train sets and 250 samples for each of the 

classes. This step not only augmented the data but also reduced noise and variability 

in the recordings, resulting in a more robust dataset for model training. 

 

Figure 25: An example of the event-related potential (ERP) which later on is converted to a spectrogram. 

Lastly, the EEG samples were converted into spectrograms. Spectrograms were again 

separately generated for both classes, and the training and validation. The 

spectrograms were created by applying the STFT using a window size of eighty 

datapoints, with the Hann window and a 75% overlap. These settings were specified 

in Briden and Norouzi (2023) and provide a good compromise in spectral and time 

resolution and leakage. The commonly used Hann window was not specified in the 

paper but was chosen in this project as again it provides a great compromise in 

maintaining resolution and reducing spectral leakage. The spectrograms have the 

dimension (41,10) with units respectively (Hertz, seconds), and are created per EEG 

electrode of the samples per subject. The absolute values are then taken to obtain the 
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magnitude of the spectrograms, in the case that only a subsection of the electrodes is 

selected this is done right after. Finally, the spectrograms are saved specific labelled 

directories, according to the class and the train or validation group. The samples 

themselves were name coded using the subject number, the sample number, the class 

label and the (augmented) truth values. The filename was the following: 

‘train/{group}/spectrogram_{subject}_{i}_{label}_{truth}.npy’. This careful labelling 

ensured the integrity and traceability of the data. 

 

Figure 26: An example of a spectrogram used as an input for the deep learning model. 

4.3. Models and algorithms 

The deep learning model in this section is based on code that originates from Briden 

and Norouzi (2023). It contained several scripts to load the data, create, train, and 

select the model. Several details were debugged, and modifications were made to 

train it on metacognitive sensitivity. The WaveFusion framework worked best with the 

subject aware contrastive loss (SAC) with a batch size of five hundred, comprising of 

50% positives and 50% intrasubject negatives in the research of Briden and Norouzi 

(2023), so this was maintained. 

The following model and algorithms can predict the class of metacognitive confidence 

or sensitivity. The prediction type depends on the input dataset and whether the labels 

are designated for confidence or sensitivity. 

https://github.com/bridenmj/Metacognition
https://github.com/bridenmj/Metacognition
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4.3.1. Data loading 

Before the model was trained the data first had to be loaded into the python 

environment, and secondly the samples correctly balanced to avoid class imbalanced 

training. 

4.3.1.1. Loading the Dataset 

The data was loaded using the name coding and the file location of the samples. The 

file location was defined as ‘train’ or ‘val’ to organize the samples into training and 

validation. The labels were extracted from the filename, encoding for either 

metacognitive confidence or sensitivity, depending on the mode of the model. 

Once the dataset was loaded, we applied data augmentation transformations to the 

training data. These transformations included adding pink noise, randomly dropping 

input signals, and corrupting the data with Gaussian noise as done in Briden and 

Norouzi (2023). These steps were essential for simulating real-world noise and 

variability, this enhanced the model's robustness and generalizability. The augmented 

data was then fed into PyTorch data loaders, which facilitated efficient batching and 

parallel processing during model training. 

4.3.1.2. Balanced Batch Sampler 

To address the issue of class imbalance in the training data, a custom batch sampler 

was employed. This sampler created balanced batches with equal representation of 

different classes, the superior 50/50 split mentioned earlier, ensuring that the model 

received a well-rounded training experience. 

4.3.2. Model structure 

The deep learning model structure was previously explained in Figure 27, now we will 

go in more depth on how this was implemented in python scripts. The model consists 

of four sections 1) Lightweight Convolutional Network (LWCNN) 2) Squeeze and 

Excitation Network (SEN), 3) WaveFusion Projection Network and 4) WaveFusion 

Classification Network. 



 
45 

 

 

Figure 27: The WaveFusion architecture [75, Fig 1]. 

4.3.2.1. Lightweight Convolutional Network (LWCNN) 

The model starts by processing the input spectrograms using a Lightweight 

convolutional neural network (LWCNN), it is called lightweight because of its relatively 

small and simple architecture. Each EEG electrode is convolved separately using a 

series of convolutional, dropout, max-pooling, and batch normalization layers as 

specified in Table 5. The convolutional layers capture the local temporal and spectral 

features of the EEG signals, creating a 2D feature map, while the dropout, max-

pooling, and batch normalization layers help in regularizing the model to prevent 

overfitting. The output from each lead-specific CNN is then flattened and combined to 

form a tensor holding the learned features from all the EEG electrodes. 

Table 5: The hyperparameters detailed for the LWCNN 32/12x41x10 input size. 

Operation Kernel Strides Padding Count BN? Dropout Nonlinearity 

2D 
Convolution 

5 × 4 2 × 1 2 × 1 16 ✗ 0.01 ReLU 

2D Max-
Pooling 

2 × 2 N/A N/A 16 ✗ N/A N/A 

2D 
Convolution 

4 × 2 2 × 1 0 × 0 16 ✓ 0.01 ReLU 

2D Max-
Pooling 

2 × 2 N/A N/A 16 ✗ N/A N/A 

2D 
Convolution 

2 × 1 1 × 1 0 × 0 32 ✓ 0.01 N/A 

The table provided outlines the hyperparameters for the Lightweight Convolutional 

Neural Network (LWCNN) layers used in the model. Here is a detailed explanation of 

each column. The "Kernel" column indicates the size of the convolutional kernel (or 
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filter) used in both the convolutional layers and max-pooling layers. This kernel size 

defines the receptive field of the convolution operation, determining how many input 

pixels (or features) are considered at a time. The "Strides" column specifies the step 

size with which the convolutional kernel moves across the input data, influencing how 

much the kernel shifts at each step. The "Padding" column shows the amount of zero-

padding added to the input 2D spectrograms around the borders, which helps control 

the spatial dimensions of the output feature maps. Lastly, the "Count" column denotes 

the number of output filters produced by the convolutional layer, with each filter 

detecting different features from the input data.  

4.3.2.2. Squeeze and Excitation Network (SEN) 

The model incorporates an attention mechanism to focus on the most relevant 

electrodes of the input data. The attention class is the Squeeze and Excitation Network 

(SEN) described by Briden and Norouzi (2023). The process begins with an adaptive 

average pooling layer that reduces the spatial dimensions of the input, forming a 

vector, with a value per EEG lead. The architecture then includes an encoder-decoder 

model, which uses convolutional layers but with a kernel of one, making it functionally 

the same as a fully connected layer (fc). In the encoder stage, the averaged tensor is 

passed through a convolutional layer (fc1), which reduces the dimensionality of the 

input. This layer is followed by a ReLU activation function, which introduces non-

linearity and helps capture essential features. The encoded representation is further 

processed by batch normalization (bn), which stabilizes and accelerates the training 

process by normalizing the inputs of the next layer. In the decoder stage, the 

condensed representation is expanded back to its original size using another 

convolutional layer (fc2). This layer increases the dimensionality of the encoded 

features, preparing them for the final attention weighting. The output is then scaled by 

a temperature parameter using a sigmoid activation function, as seen in Equation 1, 

which adjusts the attention weights to ensure a balanced emphasis on all features. 

The sizes of these layers depend on the number of electrodes, which are equal to the 

input and output of the encoder-decoder model, the intermediary size varies and is set 

to be 25% of the input size. 

Table 7: The operations within the encoder-decoder model within the squeeze and excite network (SEN). 

Operation Kernel BN? Nonlinearity 

Avg Pooling N/A ✗ N/A 
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1D Convolution 
(FC-like) 

1 ✗ N/A 

ReLu and BN 
layer 

N/A ✓ ReLU 

1D Convolution 
(FC-like) 

1 ✗ Sigmoid 

These attention weights are applied to the outputted feature maps of the Lightweight 

Convolutional Network (LWCNN). Before these feature maps are further processed in 

the WaveFusion projection network or the classifier, The attention-augmented features 

extracted undergo further processing through Relu, batch normalization, a fully 

connected layer. The ReLU activation function is applied to introduce non-linearity. The 

batch normalization stabilizes the learning process by standardizing the inputs to 

subsequent layers, ensuring consistent feature distributions. The output size thirty-two 

of the LWCNN is used for reshaping the feature distribution. The fully connected layer 

reduces the dimensionality of the feature maps, making the data more manageable 

and highlighting the most critical features for classification. 

Table 8: The operations after the encoder-decoder model within the squeeze and excite network (SEN). 

Operation Size 

ReLu Number of electrodes * 32 

Batch Normalization Number of electrodes * 32 

Fully Connected Layer 128 

4.3.2.3. WaveFusion Projection Network 

The WaveFusion projection network will pre-train the weights in the Lightweight 

convolutional neural network (LWCNN) and the Squeeze and Excitation Network 

(SEN) based on the Subject Aware Contrastive loss (SAC). Building on these sections 

the projection head module as described in Briden and Norouzi (2023) is added, 

consisting of an additional two fully connected layers and further refines the feature 

representations, applying ReLU activation function in between these two layers to 

capture complex patterns. This hierarchical structure enables the model to capture 

complex patterns across multiple EEG electrodes, significantly improving the weights 

pre-trained on the EEG data. 

Table 9: The operations within the WaveFusion Projection Network (WFP). 

Operation Size 

Head Module - FC Layer 1 128 

ReLu 128 

Head Module - FC Layer 2 32 
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4.3.2.3.1. Subject Aware Contrastive loss (SAC) 

The Subject Aware Contrastive loss (SAC) is designed to enhance the discriminative 

ability of neural network models by leveraging both class and patient labels. This loss 

function is used to pre-train the Lightweight Convolutional Network (LWCNN) and the 

Squeeze and Excitation Network (SEN) within the model. The process following 

process in the code represents the mathematical equation seen in Equation 3. It 

begins by ensuring the input features have the correct shape and splitting the labels 

into class and patient identifiers. Masks are created to identify positive pairs (samples 

with the same class and patient) and used to compute similarity scores between 

feature vectors, which are scaled by a temperature parameter for stability. These 

masks are adjusted to exclude self-contrast cases, and log probabilities are computed 

to determine the mean log-likelihood of positive samples. The final loss, representing 

the contrastive loss for the batch, is averaged over all samples. This SAC loss 

encourages the model to bring similar samples closer in the feature space, where each 

dimension represents a learned feature, while pushing dissimilar ones apart. This 

process effectively pre-trains the LWCNN and SEN to learn discriminative and robust 

feature representations from the EEG signals, facilitating better classification 

performance in subsequent tasks. 

Equation 3: Subject aware contrastive loss [75, eq 2] 

 

4.3.2.4. WaveFusion Classification Network 

Now that the Lightweight Convolutional Network (LWCNN) and the Squeeze and 

Excitation Network (SEN) are pre-trained the classifier model is used to further train 

and validate the network. Building on the feature extraction capabilities of the previous 

sections, a classification head now replaces the projection head module as described 

in Briden and Norouzi (2023). This head consists of a fully connected layer that 

reduces that reduces the dimensionality of the feature maps from the SEN to 128 units, 

followed by a dropout layer to prevent overfitting. The final stage of the network 

consists of another fully connected layer that outputs the class scores, which represent 

probabilities of the model's predictions for each EEG input sample. The model is 

designed to output both the class predictions and the attention weights, providing 
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insight into which parts of the EEG data were most influential in making the 

classification decision. Originally the script did not output the attention weights but was 

modified to include them as an output. 

Table 10: The operations within the WaveFusion Classification Network (WFC). 

Operation Output size 

Fully Connected Layer 128 

Dropout Layer 128 

ReLu 128 

Fully Connected Layer (classifier) 2 

The WaveFusion Classification Network also includes methods for loading pre-trained 

weights and freezing or unfreezing parameters, enabling fine-tuning and transfer 

learning. The capability to selectively freeze or unfreeze the parameters of the model 

is instrumental in transfer learning. It is often beneficial to freeze certain layers of the 

model to preserve their learned weights while allowing other layers to adapt to the new 

task. This flexibility is crucial for adapting the model to different datasets or tasks while 

retaining previously learned knowledge. This functionality was not utilized in this 

project. 

4.3.3. Model training 

This section describes the methodology used to train the WaveFusion Classification 

Network, focusing on two main processes. Firstly, pre-training the model with the 

Subject Aware Contrastive loss (SAC), and secondly training it for classification using 

a standard Cross-Entropy Loss.  

4.3.3.1. Pre-training 

During the pre-training process, the function iterates over a specified number of 

epochs, each consisting of training and validation phases. In the training phase, the 

model parameters are updated based on the computed the Subject Aware Contrastive 

loss (SAC), while in the validation phase, the model's performance is evaluated on a 

separate validation dataset. For each batch of data, the EEG spectrogram inputs are 

normalized, and the optimizer's gradients are reset to zero. The model then performs 

a forward pass to compute the predictions and the loss. In the training phase, the loss 

is backpropagated, and the optimizer updates the model weights. The final loss and 

accuracy are calculated through the accumulation of losses and accuracies per batch 
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and are finally outputted by dividing the accumulated loss by the number of samples 

to represent the loss per sample. 

The function tracks and prints the loss and accuracy for both training and validation 

phases. Although the model weights continuously update during training, the "best 

model weights" are only updated when the validation accuracy at the end of an epoch 

surpasses the previously recorded best accuracy. These "best model weights" are 

then saved and further fine-tuned. 

4.3.3.2. Training for Classification 

Now the pre-trained model is fine-tuned for the specific task of classification using a 

standard Cross-Entropy Loss. Different hyperparameters, such as dropout rates and 

weight decay values, were explored to find the optimal configuration. 

For each combination of dropout rates and weight decay values, the function initializes 

a new instance of the classification model, loading the pre-trained weights into the 

feature extractor. In this research project the function did not use the parameter freeze 

for the feature extractor, allowing all previous layers such as the lightweight 

convolutional neural network (LWCNN) and the squeeze and excite network (SEN) to 

be fine-tuned during training. 

The function uses the Adam optimizer and cross-entropy loss for training. It maintains 

histories of training and validation accuracy, as well as lists for true and predicted 

labels to compute performance metrics such as the accuracy, confusion matrix and F1 

score. 

During each epoch, the function executes forward and backward passes like the pre-

training phase. Additionally, a modification was made to average the attention weights 

for across the final batch of the epoch with the best validation accuracy. The reason 

here for is that the model updates its weights gradually and the weights updated by 

the last batch are stored. The attention weights and the corresponding model weights 

are saved for the epoch that achieves the best validation accuracy during the 

classification phase. 

The function continues training until the validation accuracy no longer improves for a 

specified number of epochs. The best model weights, attention weights and 

hyperparameters are saved and returned at the end of the training process. 
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4.3.4. Model selection 

Model selection is done by optimizing for several hyperparameters. This optimization 

was performed by iterating over not only the dropout rates and weight decay values 

for the model fine-tuning phase but also by iterating over the pre-training weight decay, 

attention temperature, and contrastive temperature the values can be seen in table 

11. Other fixed hyperparameters were tuned separately, like the learning rate, 

momentum and the pre-training and fine-tuning number of epochs. The exact values 

and ranges of the hyperparameters can be seen in table 11. 

Table 11: The hyperparameters utilized to optimize the deep learning model 

Hyperparameter Value / Range 

Attention Temperature [27.5, 32.5, 37.5] 

Supervised Contrastive Temperature [0.01, 0.05, 0.1, 0.25] 

Embedding Model Weight Decay [0.001, 0.005, 0.0075] 

Classification Model Dropout Rate  [0.5, 0.67, 0.75] 

Classification Model Weight Decay  [0.001, 0.005, 0.0075] 

Learning Rate 0.001 

Batch Size  500 

Momentum 0.0005 

Contrastive Learning Epochs  2  

Classification Task Epochs  5  

 

After completing the training and fine-tuning phases, the best model configurations are 

identified based on the validation accuracy. The best model weights, along with the 

corresponding attention weights, are saved for future use. This ensures that the most 

effective model configuration is retained for further analysis. 

4.4. Model evaluation 

The trained models were subsequently utilized for further calculations to derive 

additional results. Initially, the accuracy was calculated on a validation set with slight 

data modifications. Next, the attention weights were plotted to visualize the importance 

the model assigned to various electrodes in making its predictions. 

4.4.1. Accuracy 

The prediction accuracy and F1-score were calculated for both models trained on 

metacognitive confidence and sensitivity. The following three steps were employed to 

calculate the accuracy on a modified validation dataset. 
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Firstly, half of the validation dataset was loaded, and several transformations were 

applied to this EEG data, including pink noise, drop input, and Gaussian corruption in 

the same way. These transformations were implemented to create more variability to 

challenge the model and ensure that it could perform accurately. 

Secondly, the trained model with the best validation accuracy was loaded, this was 

done separately for the model trained on metacognitive confidence and sensitivity. 

These models had previously demonstrated superior performance on the validation 

set and was therefore selected for further analysis. The models were then employed 

to generate new predictions. Depending on the specific type of model used, these 

predictions pertained either to confidence levels or sensitivity. 

Thirdly, these predictions were evaluated based on their corresponding labels to 

determine the accuracy and F1 score for each subject. This involved comparing the 

predicted values with the actual labels to assess the model's performance. The 

calculation of the accuracy and F1 score, both in total and per class, served as metrics 

to check the reliability of how well the model could generalize its predictions to the 

validation data with extra variability specifically for each subject. 

Lastly, the actual metacognitive sensitivity from the data itself was calculated from the 

dataset using the amount of correct confidence judgements divided by total amount of 

judgements made. Likewise metacognitive bias was calculated as the percentage of 

high confidence trials [79]. Both values can be seen in Table 6. 

4.4.2. Attention weights 

To gain insight into the model's focus areas during the learning process, the attention 

weights are visualized on a topoplot, the actual values can be seen in the appendix 

8.1. This shows the importance the model put on the different EEG electrodes to make 

the classification prediction. Creating this plot was done in the following four steps. 

Firstly, the attention weights, which were outputted from the trained model, were 

extracted from the model's output files. Secondly, the loaded attention weights were 

baseline corrected by subtracting the minimal value from all the other attention weight 

values. This correction was necessary to standardize the values and facilitate create 

a topoplot based on only positive values. Due to the normalization method employed 

in the code by Briden and Norouzi (2023), all the attention weight values hovered 
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closely around 0.5. Baseline correction adjusted these values to ensure that any 

deviations from the baseline represented significant variations in attention. 

Thirdly, the electrodes were selected based on the legend provided and the electrodes 

chosen during preprocessing. Finally, the selected electrodes and their respective 

corrected attention weights were plotted using standard settings. However, these plots 

were custom fit to the head outline using the built-in function. This customization 

involved adjusting the plotting parameters to align the electrode positions accurately 

with the head outline, providing a clear and accurate visualization of the attention 

distribution. The resulting topoplots offer a detailed view of the model's attentional 

focus and interpolates the values across different regions of the scalp. 

5. Results 

The results will be presented by first providing an overview of the models' 

performance. This will be followed by a detailed analysis of subject-specific model 

performance. 

5.1. Performance overview 

We will first explore the accuracy of the model per class and per head area used as 

input data. Secondly, we will show the attention weights visualized on topoplots. 

5.1.1. Accuracy 

Starting with an overview table containing the accuracy, F1 and the accuracy per class 

for both metacognitive confidence and metacognitive sensitivity classification. The 

table 12 also shows the impact of different head areas used as input data on the 

model’s predictive capability. Three modes were used, all the EEG electrodes as input 

data, only the frontal electrodes, meaning the first sixteen electrodes of the thirty-two, 

and lastly the posterior electrodes, meaning the last sixteen electrodes of the thirty-

two. A bonus model was added to gain insight into the repeatability of the deep learning 

algorithm. 
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Table 12: The model performance metrics for the various head selection areas and their model type. 

Head Area Accuracy (%) F1 (%) Class 1 (%) Class 2 (%) 

Confidence   High Low 

Full head 99.7 99.7 99.7 99.8 

Frontal  95.3 95.3 95.0 95.5 

Posterior 90.3 90.6 88.0 92.8 

Sensitivity   Correct Error 

Full head 98.8 98.9 97.7 99.9 

frontal 99.1 99.1 98.7 99.4 

posterior 98.9 98.9 98.3 99.5 

Bonus   High Low 

Full head 
confidence (2) 

99.6 99.6 99.6 99.6 

 

Overall, the model performed best for predicting metacognitive confidence using the 

full head as an input data. While for metacognitive sensitivity directly the model using 

the electrodes from only the frontal head area performed the best. For both confidence 

and sensitivity for all models, class 2 had a better prediction accuracy than class 1. 

Notably the choice of head area was not an influential factor for sensitivity predictions, 

but it was for confidence where that the full head performed much better than the 

frontal area and likewise performed better than the posterior area. These accuracies 

were calculated on a modified validation dataset, while Briden and Norouzi (2023) 

used the accuracy from the validation mechanism built into the deep learning model. 

The accuracy values for the models in table 12 for this validation set can be seen in 

the appendix 8.2.  

5.1.2. Hyperparameters 

Each model was trained for a total of seven epochs: two pre-training epochs using 

contrastive learning and five regular training epochs using standard Cross-Entropy 

Loss. The training was conducted with a learning rate of 0.001, a momentum of 

0.0005, and a batch size of five hundred with an equal number of samples from both 

classes. Table 13 displays other hyperparameters used as the combination for training 

the models. Interestingly, using the same hyperparameters for the head selection area 

does not always achieve a great result, portraying a certain inconsistency, but in 

general it converges to the same hyperparameters as seen for the bonus full head 

confidence. 
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Overall, the best hyperparameters for classifying metacognitive confidence were quite 

consistent, with only slight variations in dropout rate and weight decay. In contrast, the 

optimal hyperparameters for classifying metacognitive sensitivity showed more 

significant variability. Notably, an attention temperature of 27.5, as shown in Equation 

1, was uniformly the best for training the deep learning models for classification. This 

value, being the lowest option, resulted in more pronounced attention weights. 

Table 13: The hyperparameters used for the models. 

Head Area Embedding 
Model 
Weight 
Decay 

Supervised 
Contrastive 
Temperature 

Attention 
Temperature 

Classifier 
Dropout 
Rate 

Classifier 
Weight 
Decay 

Confidence   

Full head 0.001 0.1 27.5 .75 0.005 

Frontal  0.001 0.1 27.5 .5 0.005 

Posterior 0.001 0.1 27.5 .5 0.001 

Sensitivity    

Full head 0.0075 0.05 27.5 0.75 0.0075 

frontal 0.005 0.01 27.5 0.75 0.001 

posterior 0.001 0.1 27.5 0.67 0.005 

Bonus 

Full head 
confidence 
(2) 

0.001 0.1 27.5 .75 0.005 

The embedding model weight decay is an L2 regularization parameter used in the pre-

training phase. A higher value of weight decay helps prevent overfitting by penalizing 

larger weights. For the sensitivity model, this parameter varied, while it remained 

relatively low for the confidence model. 

The supervised contrastive temperature in Equation 1 also varied in the sensitivity 

models but tended to be higher for the confidence model. Similar to its role in attention 

weights, the contrastive temperature in the loss function modulates the emphasis on 

distinguishing between the two classes. Lower contrastive temperatures increase this 

discrimination. 

The classifier dropout rate is a regularization technique that randomly sets fractions of 

neuron inputs to zero during training. A higher dropout rate helps prevent overfitting 

by ensuring that the model does not rely too heavily on any single neuron. 
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Finally, the classifier weight decay, like the embedding model weight decay, is an L2 

regularization parameter used during the classifier training phase. A higher value helps 

prevent overfitting by penalizing large weights in the classifier. 

5.1.3. Attention weights 

The attention weights represent the areas on the scalp, specifically the EEG 

electrodes that contributed the most to the predictions of the model. These attention 

weights are shown on topoplots, and their values are interpolated across the scalp 

between the areas of the EEG electrodes. The topoplots of predicting the classes of 

metacognitive confidence to the left and metacognitive sensitivity on the right. These 

topoplots are shown side by side for each of the selection areas, starting with the full 

head, then the frontal area and finally the posterior area. The darker the red area, the 

more importance the model put on the data coming from that region for making a 

classification prediction. The attention weight values before and after baseline 

correction can be seen in the appendix 8.1. Due to the large volume of data and their 

relatively low standalone importance, they are better visualized in the following 

topoplots. To test the reliability of the model an extra full head confidence topoplot was 

generated by creating an extra model. 

5.1.3.1. Full head 

Figure 28 shows the full head with the attention weights applied, as a topoplot. On the 

left we see the attention weights of the model trained on confidence. Which compared 

to the right, the attention weights of the model trained on sensitivity, is more evenly 

distributed from where the attention is placed. Most importance is put of the Fp 

electrode and the central regions C3 and Cz. For the topoplot of sensitivity the 

important regions are mostly concentrated in the frontal left area with the F7 and FT7. 

The sensitivity topoplot also shows P8 and TP8 as rather important areas, the rest of 

the attention is more randomly scattered with more neutral spot like P4 and FC3. 



 
57 

 

 

Figure 28: The topoplots visualizing the attention weights for the full head selection area, with on the left the weights 

for confidence and the right sensitivity. 

Remarkably a model with the same hyperparameters and a slightly lower overall 

accuracy of 99.6% has a considerably different topoplot, as seen in the second 

confidence full head topoplot in Figure 29 and compared to the first confidence being 

the left topoplot in Figure 28. 

 

Figure 29: The topoplots visualizing the attention weights for  
                    the second confidence full head selection area. 

5.1.3.2. Frontal area  

Figure 30 shows the topoplot for the attention weights trained only on the first sixteen 

electrodes, this selection is exactly half of the thirty-two electrodes. These frontal area 

topoplots have more concentrated importance spots compared to the full head area. 

In the confidence topoplot the Fp2 and Fc4 show the most importance while C3 and 
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Fz are less important. The sensitivity topoplot of the frontal area shows F3, F4 and Cz 

as the most important electrodes, while Fcz and C3 are the least important. 

 

Figure 30: The topoplots visualizing the attention weights for the frontal selection area, with on the left the weights 

for confidence and the right sensitivity. 

5.1.3.3. Posterior area 

The topoplots of the posterior area are a visualization of the last sixteen electrodes of 

the EEG 32 measurement system. Again, the confidence topoplot has more evenly 

distributed importance compared to the sensitivity topoplot, with most of the 

importance going towards occipital Oz and left parietal electrodes Cp3, Tp7 and Pz. 

In the sensitivity topoplot most of the importance is directed towards the P7 lead. 

 

Figure 31: The topoplots visualizing the attention weights for the posterior selection area, with on the left the weights 

for confidence and the right sensitivity. 
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5.2. Subject specific performance 

To gain a deeper understanding of the model's performance, we will examine its 

performance per subject across various head selection areas. As the F1 scores were 

quite similar to accuracy, as seen in Table 13, we will focus solely on accuracy. 

Additionally, for subjects with outlier performances, we will delve into class-specific 

performances to identify any underlying causes or patterns. Lastly, we will investigate 

the relationship between the model's performance, metacognitive bias, and actual 

metacognitive sensitivity using scatter plots. These results will be presented first for 

models trained on metacognitive confidence and then for those trained on 

metacognitive sensitivity. 

5.2.1. Metacognitive confidence 

5.2.1.1. Accuracy for each subject 

In the following table, the accuracy of the model’s classification of metacognitive 

confidence is displayed per subject for various head selection areas. The accuracy for 

the full head model is consistently high and near perfect for all subjects. However, 

when using only the frontal electrodes, the accuracy is more variable and generally 

lower compared to the full head accuracy. The posterior area shows even greater 

variability, with accuracy ranging from as high as 98% for some subjects to as low as 

76% for others. 
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Table 14: The confidence model accuracy per subject for the various head selection areas including the second 
full head model. 

 

5.2.1.2. Outlier subjects per class: 

In Table 15, we examine the accuracy per class for subjects with outlying average 

accuracy to further analyse performance by high and low metacognitive confidence 

classes. Subject 13, selected from the full head selection, exhibited relatively low 

accuracy due to poor performance in the high-confidence class, despite perfect 

accuracy in the low-confidence class. For the frontal area selection, subjects 1 and 2 

were chosen due to their relatively low accuracy. The low performance for these 

subjects was attributed to poor accuracy in the high-confidence class for subject 1 and 

the low-confidence class for subject 2. In the posterior area, subjects 6, 9, and 15 were 

notable for their low or high accuracy. Subject 6 and 15’s performance was 

predominantly hindered by low accuracy in the high-confidence and low-confidence 

classes, respectively. Conversely, the high performance for subject 9 was attributed to 

equal performance in both classes. 

 

 

 

Subject Full head 
(%) 

Frontal area 
(%) 

Posterior area (%) second full 
head (%) 

Subject 1 99.6 87.6 83.7 99.6 

Subject 2 100.0 85.7 83.5 98.8 

Subject 3 100.0 100.0 97.5 100.0 

Subject 4 100.0 98.7 92.4 100.0 

Subject 5 100.0 97.9 95.9 100.0 

Subject 6 100.0 100.0 76.6 100.0 

Subject 7 100.0 98.3 98.0 100.0 

Subject 8 99.6 95.3 83.9 99.6 

Subject 9 100.0 98.4 98.4 100.0 

Subject 10 100.0 95.8 89.3 99.6 

Subject 11 100.0 97.3 98.1 100.0 

Subject 12 100.0 98.0 98.0 100.0 

Subject 13 98.0 89.6 82.9 98.0 

Subject 14 98.8 88.7 83.2 99.2 

Subject 15 100.0 97.0 89.9 99.2 

Subject 16 100.0 96.2 93.4 100.0 
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Table 15: The confidence model accuracy for the outlier subject for the various head selection areas. 

Confidence outlies High class (%) Low class (%) 

Full head Subject 13 95.9 100.0 

Fontal area Subject 1 75.2 100.0 

Frontal area Subject 2 98.3 73.1 

Posterior area Subject 6 54.6 97.6 

Posterior area Subject 9 98.4 98.4 

Posterior area Subject 15 97.9 81.1 

5.2.1.3. Scatter plot 

Scatter plots were created to explore the relationship between the model's predictive 

capability of metacognitive confidence and two factors: metacognitive bias and actual 

metacognitive sensitivity for each subject. Metacognitive bias typically reflects 

overconfidence, where subjects have a greater number of high-confidence trials 

compared to low-confidence trials, often exceeding 50%. Similarly, actual 

metacognitive sensitivity refers to the bias in the number of correct versus incorrect 

trials, with a higher sensitivity indicating more correct trials, usually above 50%. 

A linear relationship between prediction accuracy and either metacognitive bias or 

actual metacognitive sensitivity suggests that these variables influence prediction 

accuracy. An R² value close to one or minus one indicates a strong dependence of 

predictive capability on the bias, while an R² value near zero indicates minimal 

dependence. 

In Figure 32, confidence prediction accuracy is plotted as the dependent variable on 

the y-axis, while metacognitive bias is the independent variable on the x-axis. Each 

point represents a subject, differentiated by the various head selection areas, as 

shown in the legend. The results indicate only a slight influence of metacognitive bias 

on confidence prediction accuracy. For the full head and frontal selection areas, the 

R² values are 0.13 and 0.14, respectively, suggesting a minor influence. Conversely, 

the posterior area, which also had the lowest accuracy, shows an R² of 0.01, indicating 

almost no influence. 
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Figure 32: Scatterplot showing the relationship between metacognitive bias and the confidence predictive accuracy 

of the model divided for their various head selection areas. 

In Figure 33, confidence prediction accuracy is the dependent variable on the y-axis, 

while actual metacognitive sensitivity is the independent variable on the x-axis. Each 

point represents a subject, categorized by different head selection areas, as indicated 

in the legend. The results show that there was only a slight influence of actual 

metacognitive sensitivity on confidence prediction accuracy for the full head selection 

area, which had the best performance, with an R² of 0.11. The frontal and posterior 

selection areas, with R² values close to zero, demonstrate no significant dependence 

on actual metacognitive sensitivity. 

 

Figure 33: Scatterplot showing the relationship between actual metacognitive sensitivity and the confidence 

predictive accuracy of the model divided for their various head selection areas. 
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5.2.2. Metacognitive sensitivity 

5.2.2.1. Accuracy for each subject 

In the following table, the accuracy of the model’s classification of metacognitive 

sensitivity is displayed per subject for various head selection areas. The accuracy for 

the full head model is consistently high and near perfect for all subjects, except for 

subject 10, which significantly lowered the average performance below that of the 

frontal area. The performance using the frontal and posterior electrodes is also 

consistently high, with the frontal area showing more instances of perfect accuracy 

compared to the posterior area. However, the posterior area has fewer scores below 

98% compared to both the full head and frontal area models. 

Table 16: The sensitivity model accuracy per subject for the various head selection areas. 

Sensitivity Full head (%) Frontal area (%) Posterior area (%) 

Subject 1 100.0 100.0 99.2 

Subject 2 100.0 100.0 99.6 

Subject 3 100.0 99.7 100.0 

Subject 4 100.0 99.6 98.3 

Subject 5 97.1 96.8 98.0 

Subject 6 100.0 99.1 99.6 

Subject 7 100.0 98.9 99.2 

Subject 8 100.0 100.0 98.8 

Subject 9 99.6 98.9 98.7 

Subject 10 85.5 97.8 92.8 

Subject 11 100.0 96.2 99.6 

Subject 12 100.0 100.0 100.0 

Subject 13 99.2 99.2 99.2 

Subject 14 100.0 99.6 98.7 

Subject 15 100.0 100.0 100.0 

Subject 16 100.0 100.0 100.0 

5.2.2.2. Outlier subjects per class: 

In Table 17, we examine the accuracy per class for subjects with outlying average 

accuracy to further analyse performance by high and low metacognitive sensitivity 

classes. Subject 10 was selected across all head areas due to lower performance of 

the model, especially for the correct class which is a trend across subjects as seen in 

subject 11 for the frontal area. The model trained on the full head area had an 

exceptionally low accuracy for subject 10 correct class having 70.9% accuracy. 
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Table 17: The sensitivity model accuracy for the outlier subjects for the various head selection areas. 

Sensitivity outliers Correct class Incorrect class 

Full head Subject 10 70.9 100.0 

Frontal area Subject 10 95.12 100.0 

Frontal area Subject 11 92.2 100.0 

Posterior area Subject 10 85.9 100.0 

5.2.2.3. Scatter plot 

Scatter plots were now created to explore the relationship between the model's 

predictive capability of metacognitive sensitivity and two factors: metacognitive bias 

and actual metacognitive sensitivity for each subject. The same dataset used for 

metacognitive confidence, thus has the same distribution, is applied here. Both 

metacognitive bias and actual metacognitive sensitivity are skewed towards 

overconfidence and higher sensitivity. A linear relationship between prediction 

accuracy and either metacognitive bias or actual metacognitive sensitivity suggests 

that these variables influence prediction accuracy. 

In Figure 34, sensitivity prediction accuracy is plotted as the dependent variable on 

the y-axis, while metacognitive bias is the independent variable on the x-axis. Each 

point represents a subject, differentiated by the various head selection areas, as 

shown in the legend. The results indicate practically no influence of metacognitive bias 

on sensitivity prediction accuracy, with the R² values being smaller than 0.10 for all 

head sections. 

 

Figure 34: Scatterplot showing the relationship between metacognitive bias and the sensitivity predictive accuracy 

of the model divided for their various head selection areas. 
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In Figure 35, sensitivity prediction accuracy is plotted as the dependent variable on 

the y-axis, while actual metacognitive sensitivity is plotted as the independent variable 

on the x-axis. Each point represents a subject, categorized by different head selection 

areas, as indicated in the legend. The results show a slight influence of actual 

metacognitive sensitivity on sensitivity prediction accuracy across all head selection 

areas. Notably, the frontal area demonstrated the highest correlation, with an R² of 

0.40, which is significant given its overall best predictive accuracy. The full head 

selection area followed with an R² of 0.28, and the posterior area had an R² of 0.21, 

both showing a similar classification accuracy. 

 

Figure 35: Scatterplot showing the relationship between actual metacognitive sensitivity and the sensitivity 

predictive accuracy of the model divided for their various head selection areas. 

6. Discussion 

The goal of this thesis was to develop and enhance a deep learning model for 

classifying metacognitive confidence and metacognitive sensitivity using EEG event-

related potentials (ERP) across three variations of EEG electrode selections. In the 

following discussion, we will begin by reflecting on the methodology and the results 

obtained by the deep learning model. This will be followed by a discussion about the 

theoretical model of metacognition, concluding with suggestions for future research. 
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6.1. Deep learning model 

To reflect on the deep learning model, we will examine three key aspects to gain a 

comprehensive understanding of this project: firstly, the data processing; secondly, the 

model performance; and finally, its explainability using the topoplots. 

6.1.1. Data preprocessing 

This thesis utilized the dataset from Boldt and Yeung (2015), which, as shown in Table 

6, was imbalanced. This imbalance is a common issue in experimental research on 

metacognitive confidence [79]. The dataset contained more high confidence and 

correct trials, impacting the preprocessing steps. We used a standard 70/30 

train/validation split for confidence, but a 50/50 split for metacognitive sensitivity to 

maintain data variability for the data augmentation. 

In the data augmentation we averaged a random 10% of samples within each class to 

create five hundred training samples and 250 validation samples. However, due to the 

limited number of samples, this approach led to data redundancy, with duplicates of 

averaged samples limiting the model's ability to learn variability and generalize to other 

data. Although this has likely led to the higher performance of the deep learning model. 

This limited quantity of data electrodes us to not create a separate test set. Instead, 

the final performance evaluation was conducted on a noise-modified validation dataset 

[80]. Despite efforts to offset the effects of the imbalanced dataset through data 

augmentation and balanced sampling during training, these dataset limitations 

persisted. 

The dataset included EEG measurements of response-locked event-related potentials 

(ERP), differing from the stimulus-locked ERP data used in Briden and Norouzi (2023). 

To achieve the high accuracy reported in Briden and Norouzi (2023), their 

methodology was closely followed, except for the differences mentioned above. Other 

methods, such as creating the spectrograms, were kept the same. 

6.1.2. Model performance 

In this thesis, we successfully reproduced and improved upon the results from Briden 

and Norouzi (2023). The best model for classifying metacognitive confidence achieved 

an impressive 99.7% overall accuracy and F1-score for the head selection area using 

all electrodes. Meanwhile, the best model for classifying metacognitive sensitivity 
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attained a 99.1% overall accuracy and F1-score for the frontal head selection area. 

These performance improvements were accompanied by a reduction in both pre-

training and training epochs by a factor of 12.5 and 50, respectively. The main factors 

contributing to this enhancement are likely (1) the selection of all electrodes for training 

the model, and (2) the utilization of higher-quality data, including six additional subjects 

with an equal number of samples and the use of response-locked event-related 

potentials (ERP) instead of stimulus-locked ERP. 

In the following sections, we will delve deeper into the model's performance for 

classifying confidence and sensitivity across various selection areas and individual 

subjects. We will then assess the hyperparameters used across the different models. 

Next, we will examine the class-specific performance of the models. Finally, we will 

explore the effect of metacognitive bias and actual metacognitive sensitivity of the 

subjects on the model’s predictive accuracy. 

6.1.2.1. confidence 

The model classifying metacognitive confidence using all electrodes as data input 

performed significantly better than the models using selected areas, either frontal or 

posterior. This suggests that having more data leads to better performance or that 

significant metacognitive activity is present in both posterior and frontal parts. This is 

likely the case, as indicated by Figure 10, which shows confidence activity in the 

posterior-central frontal areas, particularly in the electrodes Pz, Cz, and FCz [47]. 

The improved performance of this model compared to Briden and Norouzi (2023) is 

not solely attributed to the wider selection of electrodes. Considering the posterior 

topoplots with similar EEG electrode selection, the validation accuracy was remarkably 

similar; 95.7% in their study compared to 95.2% in ours. This comparison was made 

using the built-in validation system in the model, disregarding the secondary validation 

performed in this thesis. The similar performance was achieved despite a significantly 

reduced number of epochs, suggesting that differences in the dataset might also have 

contributed to the improvement, given that preprocessing and model training methods 

were nearly equivalent. 

Two key differences likely contributed to the performance improvement. Firstly, Briden 

and Norouzi (2023) used stimulus-locked EEG, while this thesis used response-locked 

EEG, which has been more extensively correlated with metacognitive confidence [47]. 
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However, this aspect requires further investigation. Secondly, the increased dataset 

size in this thesis likely played a role. Their study included fewer subjects; ten 

compared to the sixteen subjects used in this thesis. Overall, using a full head 

selection area is the main cause for improvement. They focused on utilizing only the 

posterior area of the head, for which we obtained comparable results with fewer 

epochs. Utilizing the full scalp led to a significant improvement in the model's 

performance from 90.3% on the posterior area to 99.7% on the full head, using the 

modified validation set. This result can be recreated as seen in the bonus full head 

confidence model, but peculiarly it inconsistently gives a similarly result by directly 

inserting the same hyperparameters but does seem to converge to the same 

hyperparameters when training on the full hyperparameter ranges. 

6.1.2.2. Sensitivity 

The model classifying metacognitive sensitivity using only the frontal electrodes 

performed the best among the three selection areas. This superior performance, 

however, was largely influenced by an outlier, Subject 10, where the full head model 

showed particularly poor results. Despite this, the model trained on the full head area 

generally performed better across all other subjects. The reason for the mediocre 

performance on Subject 10 remains unclear, but it is specifically attributable to the 

correct-class instances. Notably, Subject 10 did not present similar challenges for the 

models classifying confidence. 

6.1.2.3. Hyperparameters 

Compared to Briden and Norouzi (2023), this thesis utilized considerably fewer 

epochs: two contrastive learning epochs for pre-training and five epochs for training 

the classifier, as opposed to the original 25 and 150 epochs, respectively. Despite the 

reduced number of epochs, high accuracy was achieved, rendering additional epochs 

unnecessary and avoiding the extreme computational expense associated with longer 

training periods. With the hyperparameters selection loops, runtimes for the lower 

epochs could still extend up to eight hours. 

Certain hyperparameters were fixed across models, including the learning rate and 

momentum, set at 0.001 and 0.0005, respectively. While the momentum remained 

consistent with Briden and Norouzi (2023), the learning rate was significantly reduced 

by a factor of fifty. This reduction addressed oscillation around the optimal value across 
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the classification training epochs. The learning rate likely could be further optimized. 

However, due to time constraints, this was not pursued in this thesis. 

The hyperparameters were optimized by selecting the best model for each 

combination. The attention temperature of 27.5 emerged as the preferred value across 

all models, being the lowest among the suggested values. This indicates that the 

model might have benefitted from an even lower attention temperature, which would 

lead to more pronounced attention weights. However, an even lower value was not 

used in this thesis as the prediction accuracy was already sufficiently high. 

Similarly, for confidence specifically, a lower embedding model weight decay and a 

higher supervised contrastive temperature could be used. This would lead to a 

modified pre-training phase, but there is no suggestion that the pre-training model was 

over or underfitting. A decrease in the weight decay usually indicates underfitting, while 

an increase in the contrastive temperature suggests overfitting on the pre-training 

data. For sensitivity, the models ranged throughout these values, indicating a well-

considered selection range given their good performance. 

The hyperparameters for training the classifier, namely the dropout rate and weight 

decay, varied again throughout the selection range for both confidence and sensitivity, 

indicating an effective selection. 

6.1.2.4. Class 2 and F1 

Overall, class 2, representing the low confidence class and the incorrect sensitivity 

class, is more accurately classified by the models across all selection areas. This is 

likely due to the imbalanced dataset, where having less variability in the data makes it 

easier for the model to recognize recurring patterns. It remains unclear whether it is 

better to let the model underfit or if the model will underperform on other datasets. 

On the other hand, it is remarkable that the F1 score is so close to the accuracy of the 

model. This is due to the high accuracy for both classes, achieved through the 

balanced batch sampler and data augmentation, ensuring an equal number of 

samples for both classes during training. This approach has led to a small number of 

false positives and false negatives. An imbalance in these metrics would cause a lower 

F1 score, indicating the bias of the model. 
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6.1.2.5. Effect of metacognitive bias and actual metacognitive sensitivity 

The metacognitive bias and actual metacognitive sensitivity of the subjects effectively 

represent the class imbalance inherent to the experimental design for typical 

confidence judgements. Establishing a linear relationship between the model's 

predictive accuracy and these biases using scatter plots can indicate their effect on 

the model's performance. Unsurprisingly, there is barely any relationship between the 

prediction accuracy for confidence and the actual metacognitive sensitivity, and 

similarly, for the prediction accuracy of sensitivity and the metacognitive bias of the 

subjects. 

However, there is a slight relationship between the prediction accuracy for confidence 

and metacognitive bias, as well as between the prediction accuracy of sensitivity and 

the actual metacognitive sensitivity of the subjects. This suggests that the higher these 

biases, the higher the predictive ability of the model. The R² values were higher for the 

relationship between the actual sensitivity and the prediction accuracy of sensitivity 

compared to confidence and its bias. This might be due to the greater class imbalance 

of metacognitive sensitivity compared to confidence, which on average had a ten-to-

one and a five-to-one class imbalance respectively, as seen in Fleming and Lau 

(2014). 

Remarkably, the R² is higher for the frontal area for both metacognitive bias and actual 

sensitivity, suggesting a higher association between the frontal area and 

metacognition compared to the posterior area. This is consistent with existing 

literature, as the prefrontal cortex has been largely associated with metacognitive 

confidence and sensitivity [1], [45], [62], [64], [65]. 

6.1.3. Model explainability 

To gain insight into the neural activity that supports the model's performance, the 

attention weights are visualized using topoplots. These topoplots interpolate the 

attention weights per electrode across the scalp, offering a visual representation of the 

model's focus during classification. As seen in the two full head confidence topoplots 

the models produce inconsistent topoplots, which is a major limitation that needs to be 

addressed for dependable explainability of the deep learning model. Regardless, we 

will first compare the topoplots across the models and then analyse them individually, 

correlating them with known brain activity associated with metacognition.  
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Starting with the comparison of topoplots across the models, there is no resemblance 

between the frontal and posterior areas with the full head for both confidence and 

sensitivity. Similarly, there are no significant similarities between the topoplots for 

confidence and sensitivity within their respective selection areas. 

To interpret the topoplots based on existing literature, it is important to understand that 

they are created based on spectrogram inputs, meaning they incorporate both time 

and frequency information. The attention weights used to create the topoplots are fixed 

values and do not vary across either time or frequency, which limits their 

interpretability. The attention weight represents the focus given to both classes, either 

for high and low confidence or for correct and incorrect sensitivity. It is crucial not to 

confuse the dark red areas and white areas as positive and negative electrical 

deflection; instead, they indicate areas of more or less importance placed on the 

activity of that electrode for making predictions. Lastly, the selection areas have 

different accuracy levels, which are high but not perfect, suggesting the potential for 

variation with improved accuracy. 

6.1.3.1. Confidence 

Starting with confidence, most of the temporal variation in neural activity seen in the 

fronto-central-parietal area of the scalp is consistent with previous findings in [47]. The 

electrodes in these locations, particularly Pz, Cz, and Fcz, have been extensively used 

to analyse event-related potentials (ERP) and correlate them with metacognitive 

confidence [47]. In addition to well-studied temporal activity, some spectral activity 

based on pre-stimulus EEG is related to confidence, particularly alpha-band power 

observed in the posterior part of the scalp, especially on the right side [71]. 

Given this background, the confidence topoplots in this study are not straightforward 

to interpret. However, some patterns can be discerned. The topoplots consistently 

show relative importance in the centre of the scalp. Specifically, in the Full Head Area, 

the most important electrodes identified are C3 and Cz. In the Frontal Area, the 

electrodes Fc4 and Fcz are highlighted as significant. Meanwhile, in the Posterior 

Area, the electrodes Cp3, Tp7, and Pz are considered significant.  

These findings indicate that the model assigns importance to these fronto-central-

parietal electrodes associated with the ERP of metacognitive confidence across 

various areas. However, it is noteworthy that while the topoplots do show these 
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electrodes as important, they do not always consider them the most important, instead 

assigning more importance to other electrodes. This discrepancy suggests that while 

the model is capturing some known relevant activity, it may also be identifying other 

patterns or regions not traditionally emphasized in the literature. 

The full head area considers Fp1 the most important electrode. The full head topoplot 

also shows significance in the right posterior part, which might align with alpha-band 

frequency activity found in pre-stimulus EEG, though this is unclear as the topoplots 

represent response-locked activity [71]. The frontal area attaches considerable 

importance to the Fp2 electrode, while Fz is relatively neutral. The posterior area 

highlights the occipital electrodes O1, Oz, and O2, while being neutral on P8. There is 

no clear EEG research supporting these areas as playing a crucial role in 

metacognitive confidence. Moreover, it is unclear whether the model assigns 

importance to these areas due to variation in activity or the lack thereof, across both 

time and frequency. 

The emphasis on the frontal Fp1 and Fp2 electrodes and the occipital electrodes might 

be explained through fMRI research. Although the differences between fMRI and EEG 

measurement techniques prevent direct comparison, some insights can be gleaned. 

Activity in the frontopolar cortex (FPC) and underlying ventromedial prefrontal cortex 

(vmPFC) might have influenced these channels [56]. Meanwhile, the occipital 

channels capture activity from the visual sensory cortex. High and low confidence have 

been associated with the right and left areas of the visual cortex, respectively. 

However, this has been attributed to the setup of the task, where judgements of low 

confidence are directed to the left and high confidence to the right [57]. However, this 

region seems to be important for discriminating high and low confidence in the 

posterior area. 

There is a slight overlap between the posterior topoplots of this thesis and those of 

Briden and Norouzi (2023), particularly around the P08 and P8 electrodes being 

relatively unimportant. Further comparison is challenging due to differences in EEG 

measurement systems and slightly different posterior head area selections. 

6.1.3.2. Sensitivity 

EEG research on metacognitive sensitivity is quite limited, with the main insight being 

a relationship with prefrontal theta activity, particularly for the stimulus-locked ERP. 
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However, this differs from the response-locked event-related potential (ERP) used in 

this thesis [70]. Therefore, relating this insight to the full head and frontal area topoplots 

is challenging. 

fMRI research indicates that activity in the frontal areas is most correlated with 

metacognitive sensitivity [1], [62], [63], [64]. Although this does not directly translate to 

EEG, it suggests that the frontal area might be more important. Interestingly, the frontal 

area model did achieve the highest accuracy, but this was predominantly due to the 

mediocre performance of the full head model on subject 10. The full head model itself 

does not indicate particular importance in the frontal area, mostly highlighting the F7 

and FT7 areas on the left frontal side of the scalp. 

There is little to no basis for further interpretation of the frontal and posterior head 

areas from the topoplots, given the current understanding and the specific nature of 

the data used in this thesis. 

6.2. Theoretical model of metacognition 

Since its introduction in 1976 by John F. Flavell, metacognition generally defined as 

"thinking about thinking" has garnered significant attention. The two- and three-

component models have served as foundational frameworks for further research 

across various fields [5]. However, the use of these models has been hindered by their 

ambiguous nature [17]. Different fields have developed their own definitions and 

measurement techniques, leading to a divide between disciplines and a lack of 

transferability of insights [5]. 

The field of neuroscience aims to enhance the research on metacognition by offering 

objective measurements based on brain activity using techniques like fMRI and EEG 

[45], [46]. This approach has significantly advanced our understanding of 

metacognitive confidence. However, it faces three main challenges. Firstly, the 

ecological validity of the findings is often limited, as most studies are conducted under 

lab-controlled conditions due to the experimental setup. Secondly, there is a need for 

deeper insight into metacognitive skills. Lastly, there are issues with integrating and 

transferring insights from neuroscience to other fields [45]. 

Explainable deep learning models, as discussed in this thesis, offer three key 

advantages. Firstly, Automation of predicting metacognition can enhance ecological 
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validity by allowing 'lab-trained' models to predict metacognition in varied experimental 

setups. Secondly, transfer learning further allows the application of model weights to 

different contexts, aiding in the evaluation of relationships. Lastly, these models can 

integrate multiple types of data, such as EEG and eye-tracking, which can help 

combine insights across domains. These advantages give deep learning models the 

potential to ignite discussions on key issues in metacognition research. 

However, deep learning models also have notable limitations. They require substantial 

amounts of data to train effectively, which can be difficult to obtain. Furthermore, their 

complexity often results in limited interpretability. Therefore, it is crucial to complement 

deep learning approaches with other research methods to gain a fuller understanding 

of metacognition. 

6.2.1. Explainability of the fundamental model 

In several fields, metacognition is suggested to have a hierarchical mechanism for its 

domain specificity, as illustrated in the following image from educational sciences. 

Similarly, in cognitive neuroscience, metacognition is proposed to have a hierarchical 

structure [29]. This hierarchical mechanism refers to a layered domain generality that 

can be divided into specific use cases. In Figure 36, it is categorized as follows: 

General Metacognitive Ability (GMA) at the top, a range of broad metacognitive skills 

(BMS) in the middle layer, and several specific metacognitive skills (SMS) at the 

bottom layer [81]. 

 

Figure 36: the hierarchical model of metacognition (adapted) [81, Fig 7] 

In the cognitive neurosciences, perceptual tasks can be considered as a broad 

metacognitive skill (BMS), with decision making and memory tasks representing a 

specific metacognitive skill (SMS). It would be interesting for further research to utilize 

the explainable deep learning model to be able to predict and differentiate 
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metacognition in memory and decision making. And see if the model depends on a 

domain general and specific mechanism to do so. 

Although speculative, this mechanism could be extrapolated across various fields, 

potentially offering a novel approach to re-examine or partially validate a fundamental 

model based on domain-general metacognition. This approach allows for the 

theoretical research of metacognition to be re-evaluated and discussed, integrating 

insights from multiple disciplines. It could reconsider various theoretical elements, 

such as the methods for activating metacognition and the contents of metacognitive 

knowledge. 

6.2.2. The WaveFusion framework for the theoretical research of 

metacognition 

This thesis improved and applied the WaveFusion framework for classifying high and 

low metacognitive confidence and correct and incorrect metacognitive sensitivity, while 

providing insights into the neural activity utilized to make these classification 

predictions. This framework can specifically contribute to the theoretical understanding 

of metacognition in the following three ways. 

Firstly, a robust WaveFusion model trained on metacognition in perceptual decision-

making can be used to classify confidence or sensitivity in the event-related potentials 

(ERP) of other cognitive functions like consciousness, executive functions, or other 

domains of metacognition such as metamemory [82], [83], [84]. This approach could 

provide insight into the ambiguous relationship between metacognition and executive 

functions, consciousness, and the domain generality of metacognition. 

Secondly, using the trained model can enhance the ecological validity of metacognition 

research. By generating predictions, the model allows for greater freedom in 

experimental design, without requiring explicit judgements. For example, using VR 

technology to simulate real-life environments, as done in Yudong Tao et al (2020). 

Lastly, expanding the framework for multimodality can integrate various assessment 

methods across different domains of metacognition, potentially improving the model's 

accuracy across domains. Domain-specific attention weights could visualize the 

correlation of brain activity between different domains of metacognition. 
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The theoretical debate on metacognition is complex, and the suggestions above are 

concise and do not address the full complexity of the issue. However, they are meant 

to spark the creativity of future researchers and initiate an exchange between the 

model's results and traditional research methods. To obtain qualitative insights in the 

suggestions above, a robust model needs to be created, several recommendations for 

improvement are provided in the following section. 

6.3. Future research 

Although the models in this thesis demonstrate impressive performance, several 

limitations need to be addressed in future research to further enhance their robustness 

and interpretability. 

Firstly, data variability is a critical area for improvement. A more balanced dataset will 

significantly impact data augmentation by reducing data redundancy in the smaller 

class. Utilizing a more balanced dataset, without relying on data augmentation and 

balanced batch sampling, will provide clearer insights into the effects of metacognitive 

bias and actual metacognitive sensitivity on the model’s performance. Furthermore, 

an increase in data variability, such as more subjects and various visual tasks, will 

provide the model with more of a challenge to achieve high accuracy but will also be 

more representative. Additionally, further research should isolate the differences 

between response-locked and stimulus-locked event-related potentials (ERPs) to 

better understand their respective contributions to the model’s performance.  

Secondly, a more detailed analysis of the model’s performance might uncover 

additional insights. Investigating why subject 10 is an outlier for sensitivity but not for 

confidence is necessary for improved model performance and understanding the 

differences between metacognitive confidence and sensitivity. Systematically varying 

the electrode selection area could aid in understanding their respective importance. 

Hyperparameter optimization, such as using a lower attention temperature for all 

models and adjusting the embedding model weight decay and supervised contrastive 

temperature for confidence, could further enhance the models. 

Thirdly, Improving the reliability of the attention weights is crucial for ensuring the 

explainability of the deep learning model. One approach to achieve this is by averaging 

the attention weights across multiple runs or possibly converging the model after more 
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epochs. Furthermore, interpretability utilizing class activation maps or variable 

topoplots is worth exploring. While topoplots are useful, class activation maps may 

offer better interpretability as they can highlight the most important regions contributing 

to the model's predictions for both time and frequency, as shown in Briden and Norouzi 

(2023). On the other hand, the interpretability of topoplots can be improved by making 

them vary over time or frequency instead of one fixed value for both. Another 

improvement could be by differentiating topoplots for high and low confidence as was 

done in Briden and Norouzi (2023). 

Lastly, enhancing explainability through traditional research into the neural correlates 

of metacognitive sensitivity is crucial. The current model's explainability is limited by 

the lack of such traditional research. The insights from the deep learning model could 

be used to guide further traditional neuroscience research.  

7. Conclusion 

The goal of this thesis was to develop the explainable WaveFusion deep learning 

model to classify metacognitive sensitivity and confidence from EEG data, and to 

understand how it can contribute to the theoretical research of metacognition. The 

specific objectives were (1) to develop the WaveFusion deep learning model with a 

classification accuracy of 95% for metacognitive sensitivity, (2) improve its 

classification accuracy to 97.5% and (3) identify the main limitations in the theoretical 

research of metacognition. 

In terms of model development, the WaveFusion deep learning model successfully 

achieved a classification accuracy of 99.7% for metacognitive confidence using all 

electrodes, and 99.1% for metacognitive sensitivity using the frontal head selection 

area. These results surpass the initial objectives, and the F1-scores demonstrate the 

model’s robustness for both the low and high confidence classes and the incorrect and 

correct sensitivity classes. 

The interpretation of these results reveals several key insights. Firstly, the use of a full 

head selection area enhances the model's performance compared to using only frontal 

or posterior electrodes. This suggests that metacognitive activity is distributed across 

both posterior and frontal regions, and utilizing a broader range of data inputs 

improves classification accuracy. Further performance enhancements compared to 
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Briden and Norouzi (2023) 95.7% is likely due to the increased dataset size with more 

subjects and the use of response-locked event-related potentials (ERP) instead of 

stimulus-locked ERP. 

The implications for theoretical research can be profound, as overcoming the following 

obstacles can reevaluate or validate the fundamental model of metacognition. The 

WaveFusion model not only achieves high classification accuracy but also provides 

explainability through topoplots, which visualize the neural activity associated with its 

predictions. This allows the framework to contribute to three major ambiguities: (1) the 

relationship between metacognition and executive functions, (2) its connection to 

consciousness, and (3) the domain generality of metacognition. By leveraging the 

WaveFusion framework, we can overcome limitations in cognitive neuroscience 

research through (1) utilizing transfer learning to compare relationships, (2) employing 

automatic classification to investigate ecological validity, and (3) expanding the 

framework for multimodality to integrate insights across various fields.  

Future research should focus on addressing the limitations identified in this thesis to 

make the model more robust. Improving data variability by using more balanced 

datasets and exploring the differences between response-locked and stimulus-locked 

ERPs could provide deeper insights into metacognitive processes. Detailed analysis 

of outlier subjects and systematic variation of electrode selection areas will help 

understand the importance of different brain regions. Furthermore, optimizing 

hyperparameters and improving the reliability of the interpretability through advanced 

techniques like averaging attention weights across multiple equivalent models and 

class activation maps to enhance the model’s robustness and utility in theoretical 

research. 

In conclusion, this thesis successfully enhanced the WaveFusion deep learning model 

for classifying metacognitive sensitivity and confidence, achieving high classification 

accuracy, and providing insights into the neural mechanisms underlying its predictions. 

This model is a prime example of how explainable artificial intelligence (XAI) might be 

able to contribute to theoretical research, with potential to aid in the discussion for 

unifying the divided fields of metacognition research. 
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8. Appendix 

8.1. Attention weights 

8.1.1. Pre-correction 

8.1.1.1. Full head 
Table 18: Full head confidence attention weights pre-correction. 

Electrode Attention Weight 

Fp1 0.5027132 

Fpz 0.50015855 

Fp2 0.5001319 

F7 0.49898297 

F3 0.49866417 

Fz 0.49916422 

F4 0.5000009 

F8 0.49955645 

FT7 0.50048214 

FC3 0.49905646 

FCz 0.50066346 

FC4 0.49767974 

FT8 0.49616224 

T7 0.49932697 

C3 0.5024128 

Cz 0.501616 

C4 0.50064427 

T8 0.5003597 

TP7 0.4995896 

CP3 0.50015205 

CPz 0.49965382 

CP4 0.5019871 

TP8 0.5007266 

P7 0.50063294 

P3 0.4995569 

Pz 0.49951604 

P4 0.5009426 

P8 0.5003627 

POz 0.5015538 

O1 0.49941555 

Oz 0.5007155 

O2 0.49837905 

 

Table 19: Full head sensitivity attention weights pre-correction 

Electrode Attention Weight 

Fp1 0.49762455 

Fpz 0.49729618 

Fp2 0.50039280 
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F7 0.50452197 

F3 0.50039990 

Fz 0.49925244 

F4 0.49592975 

F8 0.49870750 

FT7 0.50410295 

FC3 0.49526978 

FCz 0.49866170 

FC4 0.49726573 

FT8 0.49550372 

T7 0.49897105 

C3 0.49842006 

Cz 0.50199044 

C4 0.49841338 

T8 0.50125260 

TP7 0.50182563 

CP3 0.50015910 

CPz 0.49925184 

CP4 0.50039740 

TP8 0.50185126 

P7 0.49560010 

P3 0.49809796 

Pz 0.49592748 

P4 0.49533340 

P8 0.50325000 

POz 0.49926195 

O1 0.50030550 

Oz 0.49970454 

O2 0.49931952 

 

8.1.1.2. Frontal area 

Table 20: Frontal area confidence attention weights pre-correction. 

Electrode Attention Weight 

Fp1 0.49262312 

Fpz 0.4936609 

Fp2 0.5118585 

F7 0.49364752 

F3 0.5005596 

Fz 0.487411 

F4 0.5026649 

F8 0.50394183 

FT7 0.49821824 

FC3 0.49994797 

FCz 0.5095788 

FC4 0.5151598 

FT8 0.50041217 

T7 0.4925592 
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C3 0.48222366 

Cz 0.499707 

 

Table 21: Frontal area sensitivity attention weights pre-correction. 

Electrode Attention Weight 

Fp1 0.500296 

Fpz 0.5007079 

Fp2 0.49982914 

F7 0.49988323 

F3 0.5018503 

Fz 0.49990508 

F4 0.5019784 

F8 0.49891722 

FT7 0.5001888 

FC3 0.5008733 

FCz 0.49828672 

FC4 0.49996555 

FT8 0.5005929 

T7 0.49984854 

C3 0.49852243 

Cz 0.50108933 

 

8.1.1.3. Posterior area 

Table 22: posterior area confidence attention weights pre-correction. 

Electrode Attention Weight 

C4 0.50019515 

T8 0.4996794 

TP7 0.5003658 

CP3 0.5004566 

CPz 0.50021094 

CP4 0.5001204 

TP8 0.4999967 

P7 0.50003886 

P3 0.50000006 

Pz 0.5002832 

P4 0.4997696 

P8 0.4994602 

POz 0.4997359 

O1 0.5001962 

Oz 0.5001234 

O2 0.50022036 

 

Table 23: Posterior area sensitivity attention weights pre-correction. 

Electrode Attention Weight  

C4 0.50000006 
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T8 0.49999997 

TP7 0.50000006 

CP3 0.50000006 

CPz 0.49999958 

CP4 0.5000004 

TP8 0.49999958 

P7 0.500001 

P3 0.49999994 

Pz 0.5 

P4 0.5 

P8 0.50000006 

POz 0.50000054 

O1 0.5000004 

Oz 0.5 

O2 0.49999994 

 

8.1.2. Baseline corrected 

8.1.2.1. Full head 

Table 24: Full head confidence attention weights baseline corrected. 

Electrode Attention Weight 

Fp1 0.00655097 

Fpz 0.00399631 

Fp2 0.00396967 

F7 0.00282073 

F3 0.00250193 

Fz 0.00300199 

F4 0.00383866 

F8 0.00339422 

FT7 0.00431991 

FC3 0.00289422 

FCz 0.00450122 

FC4 0.0015175 

FT8 0.00000000 

T7 0.00316474 

C3 0.00625056 

Cz 0.00545377 

C4 0.00448203 

T8 0.00419748 

TP7 0.00342736 

CP3 0.00398982 

CPz 0.00349158 

CP4 0.00582486 

TP8 0.00456434 

P7 0.00447071 

P3 0.00339466 

Pz 0.0033538 

P4 0.00478035 
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P8 0.00420046 

POz 0.00539154 

O1 0.00325331 

Oz 0.00455326 

O2 0.00221682 

 

Table 25: Full head sensitivity attention weights baseline corrected. 

Electrode Attention Weight 

Fp1 0.002355 

Fpz 0.002026 

Fp2 0.005123 

F7 0.009252 

F3 0.005130 

Fz 0.003983 

F4 0.000660 

F8 0.003438 

FT7 0.008833 

FC3 0.000000 

FCz 0.003392 

FC4 0.001996 

FT8 0.000234 

T7 0.003701 

C3 0.003150 

Cz 0.006721 

C4 0.003144 

T8 0.005983 

TP7 0.006556 

CP3 0.004889 

CPz 0.003982 

CP4 0.005128 

TP8 0.006581 

P7 0.000330 

P3 0.002828 

Pz 0.000658 

P4 0.000064 

P8 0.007980 

POz 0.003992 

O1 0.005036 

Oz 0.004435 

O2 0.004050 

 

8.1.2.2. Frontal area 

Table 26: Frontal area confidence attention weights baseline corrected. 

Electrode Attention Weight 

Fp1 0.01039946 

Fpz 0.01143724 
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Fp2 0.02963486 

F7 0.01142386 

F3 0.01833597 

Fz 0.00518733 

F4 0.02044126 

F8 0.02171817 

FT7 0.01599458 

FC3 0.01772431 

FCz 0.02735516 

FC4 0.03293613 

FT8 0.01818851 

T7 0.01033553 

C3 0.00000000 

Cz 0.01748335 

 

Table 27: Frontal area sensitivity attention weights baseline corrected 

Electrode Attention Weight 

Fp1 0.00200927 

Fpz 0.0024212 

Fp2 0.00154242 

F7 0.00159651 

F3 0.00356358 

Fz 0.00161836 

F4 0.00369167 

F8 0.0006305 

FT7 0.0019021 

FC3 0.0025866 

FCz 0.0 

FC4 0.00167882 

FT8 0.00230616 

T7 0.00156182 

C3 0.00023571 

Cz 0.00280261 

 

8.1.2.3. Posterior area 

Table 28: posterior area confidence attention weights baseline corrected. 

Electrode Attention Weight  

C4 0.00073496 

T8 0.0002192 

TP7 0.0009056 

CP3 0.00099638 

CPz 0.00075075 

CP4 0.00066021 

TP8 0.0005365 

P7 0.00057867 

P3 0.00053987 
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Pz 0.00082299 

P4 0.00030941 

P8 0.0 

POz 0.0002757 

O1 0.00073603 

Oz 0.00066319 

O2 0.00076017 

 

Table 29: posterior area sensitivity attention weights baseline corrected. 

Electrode Attention Weight  

C4 4.7683716e-07 

T8 3.8743019e-07 

TP7 4.7683716e-07 

CP3 4.7683716e-07 

CPz 0.0000000e+00 

CP4 8.3446503e-07 

TP8 0.0000000e+00 

P7 1.4305115e-06 

P3 3.5762787e-07 

Pz 4.1723251e-07 

P4 4.1723251e-07 

P8 4.7683716e-07 

POz 9.5367432e-07 

O1 8.3446503e-07 

Oz 4.1723251e-07 

O2 3.5762787e-07 

 

8.1.3. Bonus confidence full head area 

8.1.3.1. Pre baseline correction 

Table 30: Second full head confidence attention weights pre-correction. 

Electrode Attention Weight 

Fp1 0.5027132 

Fpz 0.50015855 

Fp2 0.5001319 

F7 0.49898297 

F3 0.49866417 

Fz 0.49916422 

F4 0.5000009 

F8 0.49955645 

FT7 0.50048214 

FC3 0.49905646 

FCz 0.50066346 

FC4 0.49767974 

FT8 0.49616224 

T7 0.49932697 
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C3 0.5024128 

Cz 0.501616 

C4 0.50064427 

T8 0.5003597 

TP7 0.4995896 

CP3 0.50015205 

CPz 0.49965382 

CP4 0.5019871 

TP8 0.5007266 

P7 0.50063294 

P3 0.4995569 

Pz 0.49951604 

P4 0.5009426 

P8 0.5003627 

POz 0.5015538 

O1 0.49941555 

Oz 0.5007155 

O2 0.49837905 

 

8.1.3.2. Post baseline correction 

Table 31: Second full head confidence attention weights baseline corrected. 

Electrode Attention Weight 

Fp1 0.00655097 

Fpz 0.00399631 

Fp2 0.00396967 

F7 0.00282073 

F3 0.00250193 

Fz 0.00300199 

F4 0.00383866 

F8 0.00339422 

FT7 0.00431991 

FC3 0.00289422 

FCz 0.00450122 

FC4 0.0015175 

FT8 0.00000000 

T7 0.00316474 

C3 0.00625056 

Cz 0.00545377 

C4 0.00448203 

T8 0.00419748 

TP7 0.00342736 

CP3 0.00398982 

CPz 0.00349158 

CP4 0.00582486 

TP8 0.00456434 

P7 0.00447071 

P3 0.00339466 
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Pz 0.0033538 

P4 0.00478035 

P8 0.00420046 

POz 0.00539154 

O1 0.00325331 

Oz 0.00455326 

O2 0.00221682 

 

8.2. Non modified validation accuracy 
Table 32: The validation accuracy of the models across various selection areas 

Model Accuracy (%) 

Full head confidence 99.74 

Frontal electrodes confidence 96.60 

Posterior confidence 95.21 

Full head sensitivity 99.26 

Frontal electrodes sensitivity 99.71 

Posterior sensitivity 99.65 

Second full head confidence 99.92 
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Use of Generative Artificial Intelligence (GenAI) – Form to be completed  
 
Student name: Juul Vande Abeele 
Student number: r0955305 
 
Please indicate with "X" whether it relates to a course assignment, to the BIG-project or to the 
master’s thesis:  
 
X This form is related to my master’s thesis.  
Title master’s thesis: Decoding Metacognitive Sensitivity from EEG using Deep Learning. 
Promoter: Jean-Marie Aerts, Kobe Desender 
 
O This form is related to a BIG-project.  
Title BIG-project: … 
Promoter: …  
 
O This form is related to a course assignment.  
Course name: … 
Course code: …  
 
Please indicate with "X":  

o I did not use GenAI tools.  
X I did use GenAI tools. In this case specify which one (e.g. ChatGPT/GPT4/...): ChatGPT 

 
Please indicate with "X" (possibly multiple times) in which way you were using it:  

X As a language assistant for reviewing or improving texts you wrote yourself, provided that 
the model does not add new content. In this case, the use of GenAI is similar to the spelling and 
grammar check tools we already have today, so you do not need to explicitly mention using GenAI 
for this).   
X As a search engine to get initial information on a topic or to make an initial search for 
existing research on the topic. (This way of gathering information is similar to using an ordinary 
search engine when working on anassignment. As a student, you are responsible for checking and 
verifying the absence and correctness of references. Therefore, after this initial search, look for 
scientific sources and conduct your own analysis of the source documents. Interpret, analyse and 
process the information you obtained; don’t just copy-paste it. If you then write your own text 
based on this information, you do not have to mention you used GenAI.)   
o To generate text blocks. (If you do copy-paste text blocks of GenAI output,  you have to cite 

your GenAI sources and quote them, i.e. you clearly state that the item was created via GenAI 
by citation/reference.) 

o To generate graphs or figures. (If you do copy-paste graphs/figures of GenAI output,  you have 
to cite the GenAI sources and quote them, i.e. you clearly state that the item was created via 
GenAI by citation/reference.) 

X To generate some code as part of a larger assignment. (Watch out, this can only be done if 
the teacher/promotor explicitly allows it.) 
o Other (Contact the teacher of the course or the supervisor of the thesis or BIG project. Explain 

how you comply with article 84 of the examination regulations. Explain the usefulness or 
added value of using GenAI.) 

o  
Further important guidelines and remarks:  
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The faculty follows the KU Leuven policy regarding responsible use of GenAI. This 
form is an aid towards transparency about the use of GenAI by the student which is 
essential. Irresponsible and non-transparent use of GenAI can be considered an 
irregularity and can be sanctioned. Students who consider to use GenAI should inform 
themselves through the university website concerning the additional guidelines (How 
to correctly quote and refer to GenAI? What is (not) allowed? Tips and points of 
attention for responsible use): 
https://www.kuleuven.be/english/education/student/educational-tools/generative-
artificial-intelligence 
 

https://www.kuleuven.be/english/education/student/educational-tools/generative-artificial-intelligence
https://www.kuleuven.be/english/education/student/educational-tools/generative-artificial-intelligence

