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2 ABSTRACT 
The subcellular localization of RNA is crucial for processes such as cell polarization, division, and 
state, and is implicated in various diseases. Innovations in spatial transcriptomics now facilitate large 
scale and systematic studies of subcellular RNA localization. However, computational methods that 
characterize RNA localization are still developing. We enhanced an in-house convolutional 
autoencoder model that detects RNA localization patterns without manual feature engineering. Our 
primary goal was to develop a statistical framework to quantify the probability of RNA localization 
for individual genes across multiple cells. This framework was tested using simulated data and 
validated with an experimental MERFISH dataset of enterocyte apical-basal polarization in the small 
intestine.  

Two approaches were employed: supervised classification using Random Forests and a latent space 
(LS)-based approach in which statistical inference of subcellular localization was used directly. For 
the LT-based approach we tested if two gene point clouds within the latent space significantly 
differed from each other with a permutation test comparing the Chamfer L1 distance. By 
aggregating model classifications across cells for each gene, we aimed to establish a robust method 
for determining gene localization probabilities. Both supervised classification and LS-based 
approaches effectively identified RNA localization patterns in simulated data with realistic pattern 
strengths and RNA counts. Pericellular patterns could be discerned from non-patterns and other 
localization patterns. Validation showed that simulated data results could be generalized to biological 
and experimental contexts. Both approaches demonstrated high sensitivity, especially with 
intermediate and strong pattern strengths. A comprehensive power analysis determined necessary 
sample sizes for varying pattern strengths and dynamic ranges for both approaches. The supervised 
approach generally outperformed the latent space approach, particularly when considering 
computational resources. 

Our study presents a validated statistical framework for quantifying subcellular RNA localization 
probabilities across multiple cells, thereby enhancing sensitivity in detecting RNA localization 
patterns, even subtle ones. Future research should further refine this framework to ensure accuracy 
and applicability in biological contexts.  
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5 CONTEXT AND AIMS 
Spatial transcriptomics was deemed Nature’s method of the year in 20201. Because of these novel 
technologies, it is now possible to analyze subcellular RNA localization in a systematic and large scale 
manner. This will allow us to answer interesting fundamental biological questions in a variety of  
biological domains, in health and disease. However, computational methods to characterize 
subcellular RNA localization are still in their infancy. We therefore aim to tackle the following 
questions as part of this master thesis study: 

How does one automatically classify whether a gene shows a subcellular localized expression pattern 
or not? 

● Using supervised classification 
○ Which classification algorithm is best suited? And how do we train it optimally 
○ What is the performance of the optimal model? 
○ Can we aggregate model classifications of a gene over every cell, and can we create a 

reliable statistical test to discern the probability that a gene localizes non-randomly?  
○ If we can classify patterns from non-patterns, can we classify which specific pattern 

it is? 
● Can we infer subcellular localization directly from the latent space embedding of an in-house 

developed neural network model, without training a classifier first? 
● Do these results on simulated data generalize to real  biological/experimental data? 
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6 INTRODUCTION 
The subcellular localization of RNA is important for essential processes in the cell such as 
polarization, cell division and cell state2, and has been implicated in many diseases3. It is estimated 
that the majority of RNA in the cell portrays some form of spatial expression pattern3, however the 
evidence so far remains largely anecdotal. Recently, innovations in spatial transcriptomics 
techniques, allowing the detection of RNA species at the single-molecule level, have opened up the 
possibility  for a systematic study of the subcellular localization. However, the computational 
techniques needed for this task are still developing, and currently no formal way exists to characterize 
these patterns. This section therefore will focus on the functions and mechanisms of RNA 
localization, and describes current methods of experimental and in silico detection of RNA 
localization at a single-cell level. 

6.1 RNA SUBCELLULAR LOCALIZATION  
Subcellular mRNA localization was first reported in 1983 by Jeffery et al4 in ascidian eggs. He 
observed that actin mRNA was unevenly distributed in ascidian eggs, with a large proportion of the 
egg actin mRNA enriched in the myoplasm, which eventually develops into muscle fibers. We now 
know that subcellular RNA localization is an important form of post-transcriptional gene expression 
regulation that is conserved across all species (reviewed by Das et al.2 ). This has mainly been explored 
in mRNA, but emerging studies have demonstrated that it is relevant for the majority of RNA 
transcripts, including long non-coding RNAs5,6. High resolution imaging has shown that RNAs can 
localize in specific compartments (such as protrusions7, dendrites2,8, and the nuclear envelope9)  and 
organelles (such as ER2,10, nucleus6  , and mitochondria10) (Figure 1). In addition, trans-cellular 
mRNA localization has been observed in Drosophila Arc1 mRNA, which transfers across synapses 
between motor neurons and muscle cells11 . Disruption of this trans-synaptic transport leads to 
disruptions in synaptic plasticity3,11 , which could be clinically relevant as genetic mutations in the 
human Arc1 protein are linked to autism12 and schizophrenia13, which are both associated with 
abnormal neuroplasticity. These studies imply that RNA localization plays a role in post-
transcriptional fine-tuning of gene expression and regulating fundamental biological processes like 
cell movement, polarization and differentiation.  
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Figure 1: Schematic representations of different RNA localizations. Adapted from 14. 

6.2 WHY DOES RNA LOCALIZE? 
The functional advantages of subcellular RNA localization can be distinguished between unicellular 
and multicellular/tissue levels. At the unicellular level, RNA localization controls cell migration, 
polarity, and cell division through rapid responses to intra- and extracellular cues2. Conversely, in 
multicellular organisms or tissues, RNA localization plays crucial roles in maintaining homeostasis, 
promoting differentiation and orchestrating development. Interestingly, impairments in mRNA 
localization seldom lead to lethality or growth impairments in unicellular organisms. Dysregulation 
in RNA localization in multicellular organisms has been linked to various pathologies, such as in 
cancer progression15, neurodevelopmental16,17 and neurodegenerative disorders18,19. Moreover, 
disrupting RNA localization during Drosophila development results in severe developmental 
defects20. The following section details the functional and clinical relevance of subcellular RNA 
localization. 
 
Subcellular RNA localization enhances protein production efficiency and reduces the risk of protein 
malfunction. Translating mRNA locally multiple times is more cost-effective than transporting 
individual proteins, as a single mRNA can generate tens to hundreds of proteins21. This is 
particularly important when molecular diffusion processes become prohibitive for function over 
large distances, such as in motor neuron axons, which can span in length over one meter. Moreover, 
mRNA colocalization and local protein synthesis increase the likelihood of successful protein 
complex formation due to the decreased physical distance between protein subunits22. The 
colocalization of subunit mRNAs could also minimize the risk of protein subunits unintentionally 
interacting with other proteins during transport to their action site, preventing the formation of 
nonsensical complexes3. Lastly, proteins undergo various modifications throughout their lifetime, 
including normal changes such as phosphorylation, acetylation and ubiquitination, as well as 
pathological changes like oxidative damage and aggregation. Producing newly-formed proteins at 
distal sites helps avoid damage that might occur during transport from the soma, ensuring optimal 
protein functionality23.  
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Subcellular RNA localization enables cells to respond swiftly to environmental stimuli by facilitating 
local protein synthesis, bypassing the need for long-distance transport of pre-synthesized proteins23. 
This rapid response is particularly critical in neurons, which need to quickly respond to excitatory 
and inhibitory inputs which each require different protein effectors. Formicola et al. (2019)24 
reviewed how the material properties of neuronal ribonucleoprotein (RNP) granules can change 
substantially due to synaptic activation on both a transient and sustained timescales. For instance, in 
the dendrites of cultured neurons, RNP granules degranulate in response to chemically induced long 
term potentiation. As a result, the granules release beta-actin mRNA and ribosomes, which allows 
for active translation at the activated synapses8.  
 
In a pathological context, the behavior of proteins like TDP-43 and FUS in amyotrophic lateral 
sclerosis (ALS) and frontotemporal dementia (FTD) illustrates the importance of this mechanism. 
These proteins influence the liquidity of transport granules, which enables granules to swiftly 
exchange RNA and RNA-binding proteins (RBPs) with the cytosol in response to stimuli. In ALS 
and FTD, mutant versions of FUS and TDP-43 shift the equilibrium of proteins in these granules 
from a liquid to a more condensed state in response to oxidative stress18,25. This shift seems to either 
exclude RNA from RNP granules or binds the RNA too tightly to be released upon environmental 
stimuli23,26, thereby impairing the rapid and localized protein synthesis necessary for optimal cellular 
function.    
 
Localized mRNA can also perform regulatory roles beyond their coding functions. For instance, the 
mRNA of the RBP Oskar acts as a scaffold during early oogenesis of Drosophila melanogaster, 
independent of the Oskar protein27. Similarly, the untranslated Tp53inp2 mRNA enhances NGF-
TrkA signaling to regulate axon growth in sympathetic neurons by influencing the endocytosis and 
signaling of the TrkA receptor28. Notably, protein and RNA localization does not always coincide. 
The RNA of RAB13 localizes to the protrusions of migrating mesenchymal cells, whereas RAB13 
proteins are expressed perinuclearly29. Research by Moissoglu et al.29 demonstrated that specific 
prevention of RAB13 RNA localization does not affect the protein’s localization, but does impair 
efficient cell migration and the activation of GTPase, highlighting the regulatory function of RAB13 
transcripts. In the context of cancer, RAB13 RNA is located at the invasive front of leader cells. 
Given that Rab13 activity induces the formation of protrusions, its localization facilitates cancer cell 
metastasis30. These examples underscore the diverse and critical roles that localized mRNA can play 
in various biological processes. 

6.3 HOW DOES RNA LOCALIZE? 
Within the eukaryotic cell, one of the most common mechanisms of RNA localization is through 
active transport along the cytoskeleton. RNA is most commonly trafficked with active transport 
within a RNP complex2, which consists of proteins such as RBPs and their target coding or non-



13 
 

coding RNA. Trans-acting RBPs recognize and bind to cis-elements within the 3’UTR of the 
RN A3,31. These cis-elements act as a zip code, marking the destination of the RNA3. An RNP 
complex can transport one or multiple RNAs at the same time, such as CaMK11alpha, 
Neurogranin and Arc which are transported to dendrites within the same complex32. The active 
transport can be both long-range and short-range, which use different machinery and routes. Long-
range travel occurs over microtubules by dyneins and kinesins, whereas short-range travel occurs over 
actin filaments by myosins2 . However, active transport costs energy, so for longer distances - 
particularly traversing the axon14 - mRNA can hitchhike along with organelles like lysosomes33 , 
endosomes34 or mitochondria35 for long-distance travel through the axon.  
 
A second way RNA localizes is through local entrapment in RNP granules. RNP complexes can be 
contained within a RNP granule, which is a group of membrane-less organelles found in the nucleus 
and various cytosolic compartments36. Examples include stress granules, processing bodies (P-
bodies), and neuronal granules. These RNP granules serve various functions, including mRNA 
trafficking32, RNA processing2 and the temporary storage of mRNAs in a translationally repressed 
state36,37. In migrating mouse fibroblasts, the APC complex anchors RNA granules at the tips of 
protrusions, resulting in RNA localization7 . Upon disruption or loss of function of the APC 
complex, RNAs cease to localize in protrusions7, underlining local entrapment in RNP granules as 
a localization mechanism.  
 
Cells utilize RNA localization in stress granules and P-bodies as an adaptive response to stressors 
such as heat-shock or oxidative stress38. RNP granules form through interactions among individual 
RNPs via protein-protein, protein-RNA or RNA-RNA interactions, and partly through RNA self-
assembly39. During cellular stress, actively translated mRNAs are released from ribosomes and 
compacted up to 200-fold37, leading to a rapid influx of these mRNAs into stress granules40. Once 
the stress stimulus is removed, stress granules rapidly disassemble, and the mRNAs previously 
trapped in stress granules and P-bodies are translated and degraded at rates similar to their cytosolic 
counterparts2,41. The entrapment of RNA in RNP granules thus provides a dynamic mechanism for 
subcellular localization, allowing cells to regulate protein synthesis in response to cellular conditions. 
 
Lastly, RNA can be localized through selective degradation or protection. The first two hours of 
embryogenesis in Drosophila melanogaster are programmed by maternally synthesized mRNA's, 
after which the majority of these mRNAs are degraded42. After 2,5-3 hours more than 96% of the 
maternal Hsp83 mRNA has been degraded42. The remaining Hsp83 transcripts are locally protected 
in the germ plasm at the posterior pole, resulting in subcellular localization42. This local protection 
is facilitated via a sequence in the 3’UTR which can be deleted or exchanged by the RBP SMAUG43. 
The Nos mRNA is selectively protected through a similar mechanism. SMAUG binds to cytoplasmic 
Nos transcripts, halting their translation and prompting recruitment of the CCR4-NOT complex 
for mRNA degradation via deadenylation44. However, in the germ plasm at the posterior pole the 
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RBP Oskar displaces SMAUG from Nos mRNA's, shielding them from degradation and lifting the 
translation block2,45. This targeted protection results in the subcellular localization of Nos at the 
posterior pole.   
 
Cells often use a combination of the aforementioned localization methods to regulate the 
transcription and translation of its transcriptome. For example, in budding yeast ASH1 transcripts 
localize in the distal bud tip during the anaphase of the cell cycle46 through active transport within a 
large RNP47. After localized translation, the Ash1 protein acts as a transcriptional repressor of the 
HO gene in the daughter-cell nucleus48, achieving RNA localization through asymmetric repression. 
The HO gene encodes an endonuclease that initiates mating-type switching, which means mother 
cells can switch their mating type whereas daughter cells cannot46. When any of the proteins 
responsible for transporting ASH1 within the RNP are depleted, ASH1 transcripts are translated 
prematurely, preventing proper localization to the bud tip47,48. This disruption nullifies HO 
silencing, leading to both mother and daughter cells possessing the same mating type47.  

6.4 THE EXPERIMENTAL STUDY OF RNA LOCALIZATION 
Hybridization-based techniques, such as Fluorescence In Situ Hybridization (FISH) techniques, 
provide direct visual evidence of RNA localization within cells, allowing the mapping of their precise 
location. Single molecule FISH (smFISH) uses fluorescent probes that bind to specific RNA 
transcripts with high specificity and sensitivity49, allowing the determination of the subcellular 
locations of these RNAs. However, smFISH is limited to detecting only a few genes at a time due to 
the need for fluorescent dyes with distinct spectra. 
 
Multiplexed error-robust FISH (MERFISH) builds upon smFISH by enabling the simultaneous 
measurement of a much larger number of transcript species  with an 80% detection efficiency and a 
4% misidentification rate50. In MERFISH, each gene in the panel is assigned a unique N-bit barcode, 
which corresponds to a complementary probe with fluorophore labels51. The imaging process 
involves N sequential rounds of smFISH, with each round reading out one bit of the binary barcode 
(Figure 2). A fluorescent signal in the image represents a ‘1’ in the corresponding bit position, while 
the absence of a signal represents a ‘0’. Theoretically, N rounds of hybridization could allow the 
detection of up to 2N - 1 different RNA species. For example, 15 hybridization rounds could 
theoretically probe over 32,000 genes, enough to cover all human nuclear protein-coding genes52.  
 
However, with each round of hybridization the RNA slightly degrades and the risk of 
misidentification increases51. To mitigate misidentification rates, MERFISH uses a subset of the total 
available binary barcodes based on a modified version of the Hamming Distance. MERFISH uses a 
Hamming distance 4 and prioritizes correcting missed hybridization events over misidentification of 
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background spots as RNA. This approach provides tolerance for a certain number of misreads 
before an RNA species is incorrectly identified.  
 

 
Figure 2: Schematic representation of multiple hybridization rounds of MERFISH. Adapted from 51. 

 

Given that a MERFISH experiment can include up to thousands of genes, assayed  in tens to 
hundreds of thousands of cells, it can be difficult and laborious to identify genes exhibiting 
subcellular localization by hand. It would therefore be advantageous to automatically detect whether 
a gene portrays subcellular localization, and if so, what particular type of subcellular localization. 
Automating this process not only saves time but would also ensure a more objective and 
reproducible analysis. The knowledge of which genes in a MERFISH panel exhibit subcellular RNA 
localization enables a more targeted investigation into the functional roles of these localized RNA’s. 
This transition from manual to automated analysis paves the way for high-throughput studies and 
deeper insights into the spatial organization of gene expression. 

6.5 STATE-OF-THE-ART OF RNA LOCALIZATION 

DETECTION 
In silico approaches to predict subcellular RNA localization can be broadly classified into sequence-
based and image-based methods. Sequence-based approaches utilize RNA sequences and secondary 
structures to predict localization, leveraging known localizations of similar sequences to forecast new 
sequences53. This method is grounded in the biological principle that RBPs recognize specific 
binding motifs and secondary structures3. Sequence-based models can be classified into two 
categories: those predicting a single localization for an RNA sequence54–57 and those predicting 
multiple possible localizations53,58–61. By identifying RNAs with predicted localizations, one can 
prioritize targets for experimental validation and focus their efforts on the most promising 
candidates. 
 
Image-based approaches often use the precise RNA locations within cells provided by FISH images 
to automatically detect RNA localization.  Currently there are seven studies proposing methods to 
automatically detect subcellular RNA localization based on FISH experiments. Four of these studies  
originate from the two groups that co-developed FISH-quant62, a commonly used toolbox which 
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includes simFISH to generate simulated FISH images with different localization patterns. 
Unsurprisingly, the majority of these 7 studies used simFISH to generate simulated datasets, as 
labeled/ground-truth experimental data is hard to come by.  
 

6.5.1 Methods using manually curated features 
Five out of seven studies used manually curated features to detect RNA localization detection. Three 
of these studies - Bento63, Samacoits et al.64, and Chouaib et al.65 - employed random forest machine 
learning classifiers to detect subcellular RNA localization based on manually curated feature vectors. 
Each study turned (simulated) smFISH data into feature vectors of varying lengths: Bento used 13 
features, Samacoits et al. used 23 features, and Chouaib et al. used  15 features. These features 
commonly included metrics such as polarization, point density throughout the cell, and the distance 
of each RNA transcripts to various cellular landmarks. While Samacoits trained a multilabel RF 
classifier with five patterns (foci, protrusion, intracellular, nuclear envelope, random), Bento 
Toolbox and Chouaib et al. used five binary RF classifiers to be able to assign multiple labels per 
observation.  
 

A closer examination of the evaluation strategies and dataset annotations employed by Bento and 
Chouaib et al. indicated potential gaps in the transparency and robustness of their reported results. 
Although Bento’s methods mentioned the manual annotation of RNA localization from 165 
seqFISH+ and 238 MERFISH samples for validation of the RF classifier, the results section did not 
provide performance details on this ground-truth dataset. Chouaib et al. used an imbalanced training 
set with a one-versus-all strategy to train their binary classifiers. However, it was unclear whether a 
train-test split was performed or if the genes shown in the results were part of the training set. 
 
Two studies - pointFISH66 and DypFISH67 - incorporated manual features alongside experimental 
data in their overall model. PointFISH66 utilizes both manual features and RNA point clouds as 
inputs for their attention-based artificial neural network model. The method employed five features: 
the occurrence of foci, and the distance and position of each RNA relative to the cellular and nuclear 
membranes. In order to classify subcellular RNA localizations, a support vector classifier was trained 
on the attention-based model embeddings. This classifier was compared to the Chouaib et al.65 
classifier, achieving similar performance for each pattern. PointFISH achieved an F1-score of 0.95 
on the simulated test dataset and 0.82 on the ground-truth smFISH test dataset. The difference in 
F1 scores could be partly attributed to the model’s lack of exposure to protrusion localizations during 
training. Additionally, pointFISH did not support multi-label predictions, whereas the ground-
truth smFISH data included genes with multiple localizations within the same cell, such as foci near 
the nuclear envelope. 
 
 



Tools Model Training  
Data 

RNA 
count 
per 

training 
sample 

Pattern 
Strength 

Training 
samples 

per 
pattern 

Input 
Features 

Localizations 1 gene 
multiple 

cells 
tested? 

Multi-label  
prediction? 

Last 
github  

commit 

Most recent 
interacted  
Github 
issue 

Bento  
(Mah et al. 

2022) 

5 binary RF on 
input features 

Simulated 
with 

simFISH 

5-300 10, 50, 
and 90% 
pattern 
strength 

2000 13 input 
features 

Nuclear, 
cytoplasmic, 

nuclear edge, cell 
edge, no pattern 

No Yes Apr/24 Apr/24 

FISHFactor  
(Walter et 
al. 2023) 

Factor analysis 
adapted for 

spatial 
transcriptomics 

data 

Simulated 
with in 
house 
model 

NA 5 
intensities, 

ranging 
from low 
till strong 

10 #factors Dataset dependent, 
validated on 

nucleus, cytoplasm 
and protrusion 

Yes No May/23 Oct/23 

PointFISH  
(Imbert et 
al. 2023) 

Support vector 
classifier on 

attention-based  
network 

embeddings 

Simulated 
with 

simFISH 

50-900 60-100% 
pattern 

20,000 5 input 
features 

random, foci, 
intranuclear, 
nuclear edge, 
perinuclear, 
protrusion 

No No Aug/22 NA 

Rfclassifier 
(Samacoits 
et al. 2018) 

Multiclass RF  
on input 
features 

Simulated 
with 

simFISH 

100-
200 

Moderate 
and 

strong 

? 23 features nuclear envelope, 
intranuclear, 

protrusion, foci, 
random 

Yes No Jul/22 Oct/23 

CNN 
workflow  
(Dubois et 
al. 2019) 

CNN: 
SqueezeNet 

Simulated 
with 

simFISH 

100-
1000 

Varied 
pattern 

strengths 

28,500 #RNA per 
pixel 

Nucleus&cell 
staining 

No pattern,  
protrusion, nuclear 
edge, intranuclear, 
foci, polarized, cell 

edge 

No No NA NA 

Rfclassifier 
(Chouaib et 

al. 2020) 

5 binary RF on 
input features 

labeled 
smFISH 

30+ NA 320-750 15 features Foci, protrusion, 
perinuclear, 

nuclear edge, 
intranuclear 

Yes Yes Jul/22 Oct/23 

DypFISH  
(Savulescu 
et al. 2021) 

Various tools, 
incl. per-
quadrant 

statistics and 
colocalization 

smFISH ? NA ? cell+nucleus 
boundaries, 
position of 

MOC 

Foci, protrusion, 
de novo 

Yes No Jun/23 Nov/21 

Tabel 1: Overview of RNA localization detection studies. NA indicates not applicable, a question mark denotes we were not able to find the information.  
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The DypFISH67 method used manually annotated landmarks and smFISH pictures of standardized 
cell shapes to analyze the spatial distribution of mRNA and proteins. The cell shapes were positioned 
in a uniform manner with the use of micropatterning, ensuring that each cell maintains the same 
shape. As input, DypFISH required RNA and protein images from smFISH and 
immunofluorescence, with cell stainings for cell boundaries and nuclei, and manual annotation of 
the microtubule organizing center (MOC). The MOC was used to overlap the uniform cells and 
average them per time point. The cells were divided into quadrants using isolines radiating from the 
MOC to calculate mRNA and protein concentrations in each quadrant. Colocalization scores for 
RNA and protein were then calculated using Ripley’s K function. Additionally, the average distance 
of cytoplasmic mRNA from the nuclear envelope was measured to indicate the extent of cytoplasmic 
spread. However, manually annotating the MOC is labor-intensive, and the method is less effective 
for cells that do not conform to standardized shapes achieved through micropatterning, so it is 
unlikely to perform well in vivo for tissues other than muscle tissue.  

 

6.5.2 Methods without manually curated features 
A study by Dubois et al. (2019)68 introduced a deep learning approach to identify mRNA 
localization patterns, demonstrating a proof-of-principle for the use of deep neural networks to 
identify subcellular localization patterns without relying on handcrafted features. The study focused 
on seven localization patterns: no pattern, protrusions, nuclear edge, intranuclear, foci, polarized, 
and cell edge. The data preprocessing involved decomposing foci into individual RNA, counting the 
RNA per pixel, and a nucleus and cell boundary staining. The authors utilized the SqueezeNet 
architecture69, a fully convolutional neural network which produces 512 feature maps. These feature 
maps were then processed through a final 1x1 convolutional layer to classify the seven localization 
patterns, and a softmax activation function was applied to produce the probability for each 
localization pattern. The model achieved an overall accuracy of 91% on an independent simulated 
test set, with the lowest F1 score being 0.77 for distinguishing non-patterned versus patterned 
observations. 
 
FISHfactor70 adapts factor analysis for spatial transcriptomics data by modeling RNA molecule 
coordinates as a spatial Poisson point process. This process is represented as expression intensity, 
where a higher intensity indicates a higher likelihood of a molecule being present at that location71. 
The expression intensity is then factorized into non-negative factors and weights to achieve a 
biologically meaningful interpretation. While weights remain consistent across cells, factors are cell-
specific. FISHfactor does not predefine the localization patterns, allowing for the discovery of de 
novo patterns. However, the number of factors must be defined in advance, making it not entirely 
hypothesis-free as the expected number of different patterns must be predicted. The model was 
tested on three relatively distinct patterns, without including a non-pattern control. One limitation 
is that the model was validated on a test set with 60 genes in 20 cells and does not seem to scale well 
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with an increasing number of cells, genes and factors. It is therefore unclear whether this model 
would be suitable for MERFISH datasets.   

6.5.3 Gene localization detection across cells 

Rather than observing RNA localization at a single-cell level, it would be interesting to determine  
whether a gene consistently exhibits a pattern across various cells, rather than in isolated 
observations. Four studies have been developed to detect gene localization across cells, each with 
distinct approaches. FISHfactor utilizes a factor model, where the shared weights form a gene-by-
factor matrix, allowing for the readout of gene patterns across all cells70. DypFISH67 aligned and 
averaged their micropatterned cells to analyze mRNA/protein colocalization across cells. Samacoits 
et al.64 used heatmaps to depict the majority voting results of the RF classifier for each gene across all 
cells. They furthermore employed Gini impurity on the average posterior probabilities from the RF 
at both the single-cell and gene levels to assess mRNA localization heterogeneity. Building upon 
Samacoits et al.’s64 heatmap visualizations, Chouaib et al.65 introduced two key modifications: 
allowing observations to display multiple patterns simultaneously and incorporating statistical 
testing. The authors used the RF posterior probability scores with a threshold of 0.5 to label 
observations as patterned, and applied Fisher’s exact test to compare the frequency of pattern 
labeling between test genes and non-patterned control genes. Unlike Samacoits et al.64, Chouaib et 
al.65 did not use the Gini impurity test. 

 

6.5.4 Current gaps  
There are several notable gaps in the field of subcellular RNA localization detection. Most models 
rely on numerous features67, which necessitate manually intensive work. Additionally, many models 
make unrealistic assumptions for biological data, such as using RNA counts that are excessively high. 
For instance, in the host-lab’s experience genes generally express 1-2 RNA molecules per cell, and 
genes with RNA counts exceeding 100 are rare. However, Bento63 was the only study that included 
RNA counts lower than 30, while the majority had average RNA counts of 150 or higher (see Table 
1), misrepresenting a biologically realistic setting. Moreover, most models address RNA localization 
as a single-label multi-class task, ignoring the fact that RNA can localize to multiple localizations 
simultaneously7. Only two models currently account for this complexity63,65.  

Another limitation is the focus on global trends. It would be useful if models would assess the 
probability of a gene exhibiting specific patterns across multiple cells. Although four models perform 
gene localization across cells64,65,67,70, most rely heavily on handcrafted features. Moreover, 
FISHfactor is unsuitable for larger datasets, dypFISH is mainly applicable for micropatterned cells, 
Samacoits et al. only did an exploratory analysis, and Chouaib et al. used binary classification of RF 
posterior probability which reduces its power. 
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In order to address these gaps in the field, the host research group has built a convolutional 
variational autoencoder (CVAE) that automatically detects RNA localization at a single-cell level 
without requiring manual feature input. This thesis aims to enhance the CVAE model by creating a 
statistical framework that quantifies the probability of RNA localization for individual genes across 
multiple cells. To achieve this, we will use simulated data that better reflects biological reality and 
validate the findings with a ground-truth experimental MERFISH dataset. For the statistical 
framework we will consider two approaches: supervised classification and using the latent space 
embedding directly. By aggregating the model classifications across all cells for each gene, we aim to 
establish a test to determine the probability of gene localization. Additionally, this thesis will explore 
whether we can differentiate specific patterns from non-patterns and accurately classify them. Lastly, 
we will determine if results obtained from simulated data can be generalized to biological and 
experimental contexts.  
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7 METHODS 
All analyses were conducted using Python 3.9.13. The packages utilized at each step are documented 
in a YAML file available on the GitHub repository, which contains all the software code used in this 
thesis (see section 10). Unless otherwise specified, all figures were created using the Seaborn, scikit 
learn, and Matplotlib packages.  

7.1 DATA OVERVIEW 

7.1.1 Simulated dataset 
The simulated dataset was generated using simFISH within the FISH-quant tool62. Each observation 
was defined as a two dimensional point cloud, representing the set of observed RNA transcripts of a 
gene within a specific cell. Observations were generated for nine different patterns: foci (RNA 
aggregates, e.g. granules), intranuclear (inside the nucleus), extranuclear (in the cytoplasm), nuclear 
edge (near the nuclear membrane), cell edge (at the cellular membrane), perinuclear (on one side of 
the nuclear membrane), pericellular (polarized to one side of the cell), protrusion (in cell extensions), 
and non-patterned. The non-patterned localization was modeled as a Poisson point process, where 
all points occur independently72.    
 
For each observation, the number of RNAs varied between 1 and 150 to simulate differences in 
expression levels. For the ease of visualizations, we binned the RNA counts into 5 bins: 0 - 10, 10 - 
30, 30 - 60, 60 - 100, and above 100. Furthermore, different pattern strengths were simulated: low, 
moderate and strong levels (Figure 3). Pattern strength was defined as the percentage of RNA 
transcripts in an observation that localize in their pattern, with the remainder of transcripts randomly 
distributed through the cell. The strength levels were implemented as defined in the simFISH v2 
tutorial: low, moderate and strong pattern strength levels, with moderate pattern strength assumed 
to reflect biological samples. Briefly, all patterns except protrusion and non-pattern had pattern 
strengths of 10%, 50%, and 90% of spots within pattern, whereas protrusion had pattern strengths of 
5%, 25%, and 45%. As for non-pattern localizations, given that all of its RNA transcripts are 
randomly distributed rather than a percentage of transcripts, the concept of pattern strength does 
not apply and is therefore not assigned.   
 
In total, approximately 114,000 samples were simulated for protrusions and 189,100 samples for all 
other patterns, resulting in 1,626,800 training samples. The simFISH software generates 
observations from 317 smFISH images of HeLa cells62. To prevent our models from learning these 
specific cell shapes, an 80-20% train-test split was created based on cellular identities. This means that 
observations from 254 cell shapes were used for the training set, while observations from the 
remaining 63 cell shapes were used for the test set. 
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Figure 3: Examples of simFISH simulations of low, intermediate and strong pattern strengths. Adapted from 62. 

 

7.1.2 Simulated genes 
To train a framework to assess RNA localization of a gene across cells, annotated ground-truth genes 
were required. However, the simulated dataset only provided predefined cellular identities, not 
distinct genes, which is why genes were created from the simulated dataset. The overall approach 
involved using the entire Anndata object, which stored the simulated dataset, and filtering it based 
on the desired localization patterns, pattern strength, RNA counts. Pandas.sample() was utilized to 
obtain a random sample from the filtered Anndata object, with the sample size corresponding to the 
desired number of cells for the simulated gene. Sampling was done using a random seed unless 
specified otherwise, and the sampled Anndata object was then returned as the simulated gene.  

Four types of genes were generated: specific-pattern genes, mixed-pattern genes, other-pattern genes, 
and non-patterned genes. These gene types differed in two of the four filtering criteria: localization 
pattern and pattern strength. The RNA count and number of cells were consistent across all gene 
types. The pattern strength varied as follows: genes with a pattern (specific-pattern, mixed-pattern, 
and other-pattern genes) were filtered based on the inputted pattern strength, while non-patterned 
genes were not filtered by pattern strength, as it did not apply to them. For localization patterns, the 
specific-pattern and non-patterned genes only included one specific pattern, while the mixed-pattern 
and other-pattern genes included multiple localization patterns.  
 

● Specific-pattern gene: Created by filtering the dataset for one specific localization pattern 
(e.g., pericellular) 

● Non-patterned gene: Created by filtering the dataset to include only non-patterned 
observations.  

● Mixed-pattern gene: Created by excluding non-patterned observations, resulting in a gene 
with a mix of all patterned localizations. 

● Other-pattern gene: Created by filtering out non-patterned observations and one specific 
localization pattern of choice.  

50% spots in pattern 90% spots in pattern 10% spots in pattern 
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7.1.3 MERFISH dataset 
To validate our methods using experimental data,  a MERFISH dataset provided by the Laboratory 
for Systems Physiology at ETH Zurich73 was employed. This dataset examined 500 genes across 408 
cells for subcellular RNA localization patterns in the small intestine. Six of these genes—ApoB, 
CDH1, and CDKN1A (apically localized) and CYB5R3, PIGR, and NET1 (basally localized)—are 
well-known for their subcellular localization in enterocytes, making them suitable as ground-truth 
genes for our analysis. Additionally, we chose two genes, CLCA4a and SLC39A14, which showed 
no apparent localization patterns upon visual inspection. These genes served as exploratory controls 
to assess whether our methods would indiscriminately flag most genes as patterned or demonstrate a 
higher level of selectivity.  

7.2 CVAE ARCHITECTURE 
The host research group developed a CVAE for the automatic detection of subcellular RNA 
localization. The model’s inputs were single-cell images generated from the simulated dataset, which 
included a nuclear boundary and where the image boundaries corresponded to the cellular 
boundary. Initially, each image was represented as a 100x100 array with RNAs marked by a value of 
1. These images were subsequently processed with a gaussian blur (sigma = 1.5), normalized, and 
augmented with rotations to ensure rotational invariance in the encodings. A train-test split was 
performed based on cell identities, using all images from 80% of the unique cell shapes for training 
and the remaining 20% for testing. 
 
The CVAE’s architecture comprises an encoder with four convolutional layers followed by a fully 
connected layer that maps to a 15 dimensional latent space represented as a distribution. Decoding 
involves sampling from this distribution, then passing through another fully connected layer and 
four convolutional layers. Additionally, a single-layer linear classifier evaluated the 15-dimensional 
embeddings to determine pattern presence, encouraging the model to prioritize learning this feature. 
The loss function combines the Kullback-Leibler loss, binary classifier loss, and reconstruction loss. 
The CVAE was trained on the complete training set using the ADAM optimizer74, with a batch size 
of 256, over a maximum of 100 epochs. All data described in this thesis were generated by embedding 
the original datasets using this trained model. 
 

7.3 QUANTIFYING PATTERN PRESENCE OF A GENE 
To determine the pattern presence probability of a gene for subcellular RNA localization, a two-
round approach was adopted. In the first round, the presence of a localization pattern was assessed 
for each gene. If a pattern was detected, the second round would identify the specific subcellular 
localization pattern. This two-round method offered distinct advantages over a single-round 
approach, where specific patterns were directly compared to a non-patterned control, as 
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implemented by Chouaib et al.65 Firstly, the first round could be used as a proof-of-principle, 
demonstrating that latent space embedding could effectively determine pattern presence. Secondly, 
conducting both analyses in a single round would restrict detection to the specific patterns included 
in the statistical framework, potentially missing de novo patterns. Even if these de novo patterns were 
not classified into predefined categories in the second round, one could manually examine these 
observations to identify new types of localizations.  

 

7.3.1 Supervised classification 
The scikit-learn package75 was utilized to train, create and optimize supervised classifiers. Two 
methods were considered: Random Forest (RF) and K-nearest Neighbors (KNN). All models were 
trained and validated on observations with strong pattern strength. Hyperparameter optimization 
was conducted for both classifiers in the first round. The classifier with better performance during 
round one was further explored in the second round to identify specific localization patterns. For 
the second round classifiers, non-patterned observations were excluded, and separate binary 
classifiers were trained for each specific pattern to determine the probability of an observation 
belonging to that pattern versus any other pattern.  

For hyperparameter selection and model comparison, the area under the curve (AUC) and F1 
metrics were considered. The F1 score, the harmonic mean between precision and recall, prioritizes 
true positives over true negatives but requires a specific threshold (typically 50%) for classification. 
This threshold can cause information loss by enforcing a binary decision. In contrast, AUC measures 
model performance across all possible thresholds, assessing the tradeoff between the true positive rate 
and false positive rate, preserving more information. Additionally, AUC accounts for both positive 
and negative cases, providing a balanced assessment of the model's performance. Given these 
advantages, AUC was used to train and evaluate our supervised classifiers, ensuring a robust 
performance assessment. 

For the Random Forest, hyperparameters considered included the maximum size of a random subset 
of features (i.e. latent space dimensions) when splitting a node, and the number of trees. The optimal 
number of features was determined using GridSearchCV with 100 trees (2, 3, 4, 5 and 6), followed 
by optimization of the number of trees (50 to 500 in increments of 50). The grid for the features was 
chosen using the square root of the latent dimensions with 2 values above and below, resulting in a 
grid of 2, 3, 4, 5 and 6 features. For the KNN, feature scaling of the latent dimensions was performed 
using min-max scaling, given their different variations (see Figure 5), and optimized the choice of k. 
Odd values of k were used to avoid classification ties, centered around the square root of the total 
data points (419), with five values above and below this point at intervals of 50. Sklearn caching75 
was used to efficiently perform the KNN grid search with cross validation.   
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In the first round, classifiers were trained and hyperparameters were optimized for pattern presence 
testing. These optimized settings were applied to classifiers in the second round. The effect of dataset 
balancing on training performance was compared to that of the unbalanced dataset. For balancing, 
the dataset was down sampled to equalize the sizes of pattern and non-pattern classes, maintaining 
the ratios between different patterns, pattern strengths, and different RNA counts within the 
pattern class.  

To quantify pattern presence of a gene across cells, each observation was assigned a posterior 
probability using the supervised classifier. Probability density functions were then created for the 
test gene and its non-patterned control gene, comparing these probability density functions using a 
two-sample Kolmogorov-Smirnov (KS) test. This non-parametric test evaluates whether two 
samples originate from the same probability distribution by comparing their cumulative distribution 
functions. The maximum absolute difference between these curves is compared to the expected 
distance if the samples were from the same underlying unknown distribution. After the first 
classification round, the specific pattern can be determined during the second round, for which a 
separate binary classifier was created for each specific pattern.  
 

7.3.2 Latent space based 
For the latent space approach, from now on referred to as the LS-based approach, the pattern 
presence of a gene was tested directly from the latent space. Given that the observations reside within 
a 15 dimensional latent space, test and control genes could be considered as point clouds within this 
space. This means the similarity between these two points could be computed to assess whether the 
test gene is significantly different from the control gene. Two components were needed to test 
whether two genes significantly differ from each other: a statistical test and a similarity measure. We 
focused on the first round of classification in which pattern presence was determined, to serve as a 
proof-of-principle of this LS-based approach. 
 
For the statistical test, the permutation test was chosen: a non-parametric test where the null 
hypothesis (H0) states that the test gene and the non-patterned control gene originate from the same 
underlying distribution, while the alternative hypothesis (H1) states they do not. The cell count of 
the two genes was matched, as the permutation distribution is sensitive to unbalanced sample sizes76. 
Our permutation method was based on the permutation test from the SciPy stats package77, adapted 
for our 15-dimensional latent space. Briefly, the point clouds of the two input genes were 
concatenated and randomly reassigned observations to either the test or control gene, computing the 
similarity metric each time. This process was repeated 9999 times to generate a distribution of the 
similarity under the null hypothesis. The p-value was then calculated as the proportion of samples 
with a distance equal to or greater than the observed distance, where the observed statistic was always 
included in the null distribution78,79. For genes where the number of permutations (9999) exceeds 
the binomial coefficient of (n choose k), an exact test was performed instead.  
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For the similarity measure, the Chamfer distance was chosen over the Earth Mover’s Distance, both 
of which are commonly used to train point cloud generators80. The Chamfer distance can be 
understood as the mean L1 distance from each point in point cloud 1 to its nearest neighbor in point 
cloud 2, and vice versa. The sum of these two mean distances is the Chamfer distance. Conversely, 
the Earth Mover’s Distance computes the least expensive way to transform one point cloud into 
another, but is substantially more computationally intensive81. Therefore, we selected the Chamfer 
distance as our similarity metric.  
 

7.3.3 Power analysis 
The power analysis was conducted following the methodology of Baumgartner & John Kalassa82. 
Specifically, cell counts (sample sizes) were evaluated for 14 rounded counts on a log10 scale ranging 
from 5 to 7000. For RNA counts, the binned RNA counts described in section 7.1.1 were used,  and 
three levels of pattern strength were considered: low, intermediate and strong. For each combination 
of cell count, RNA count and pattern strength, 1000 random test and control genes were obtained 
using the simulated gene function without a random seed, ensuring each gene was unique. For each 
of the 1000 test-control pairs, test statistics were determined. The two-sample KS test was used for 
supervised classification, and a permutation test was used for the LS-based approach. These results 
were compared against critical values of 0.05 and 0.00001 (Bonferroni correction for 5000 tests). 
The number of times the null hypothesis was rejected out of the 1000 samples was counted and then 
divided by 1000 to determine the power for each combination.  
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8 RESULTS 
In this study we aimed to develop a statistical framework to determine the probability that a gene 
exhibits significant subcellular RNA localization. To achieve this, we used the FISH-quant 
simulation framework to generate ground-truth data62 (methods section 7.1.1). This data was then 
fed into the CVAE, and we developed our statistical framework within the latent space embedding. 
First, we explored the feature distribution within the latent space (Section 8.1). Following this, we 
developed two methods for automatically classifying the pattern presence of a gene (Section 8.2). 
Finally, we assessed whether our statistical framework is applicable to experimental MERFISH data 
using ground-truth genes (Section 8.3).   

8.1 LATENT SPACE EXPLORATION 
In order to visualize the feature distribution of the CVAE latent space, we projected the 15-
dimensional embedding onto two dimensions with a UMAP projection83 (Figure 4), where a single 
point represents the subcellular pattern of  1 gene in 1 cell, from now on referred to as an observation. 
Observations with the same localization pattern clustered in the same region within the embedded 
feature space, whereas observations with different patterns are located in different regions (Figure 
4A). The observations do not appear to cluster based on the cellular identities (i.e. different cell 
shapes) used to generate the simulated data (Figure 4B), suggesting cellular identity was not learned 
as a feature by the embedding. On the other hand, the absolute count of RNA molecules of an 
observation did cluster in different regions of the embedded feature space (Figure 4D). Observations 
with lower counts were located in the bottom right with the highest counts located at the top of the 
UMAP.  

As for the strength of the pattern, given that non-patterned observation do not have a pattern 
strength (methods), these observations were excluded from Figure 4C for clarity. Observations with 
the same pattern strength clustered together (Figure 4C), with a gradient from low pattern strength 
in the center of the plot to a strong pattern in the extremities on the left and right. Interestingly, 
observations with a low pattern strength (≤10% of RNAs are in pattern) (Figure 4C) colocalized 
with observations without a pattern (Figure 4A), which suggests the CVAE assigns similar features 
to both.  
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Figure 4. UMAP dimensionality reduction plots of the CVAE latent space: Every dot represents a 2-dimensional 
representation of a gene expression pattern in a given cell colored by  (A) localization pattern type, (B) cellular 
identity, (C) pattern strength, (D) RNA count.  

 

Regarding the latent dimensions, in theory, they should all have the same range of values due to the 
regularization imposed by the Gaussian priors on the latent space. However, in practice, we observed 
some variation between the dimensions (Figure 5). For example, dimension 5 and 6 had different 
mean values, while dimensions 6 and 14 exhibited different variances. To assess whether we should 
use non-parametric or parametric statistical tests, we tested whether the dimensions were 
multivariate normally distributed using Henze-Zirkler’s multivariate normality test in the Pingouin 
package. The test rejected the null hypothesis (W = 3.30, p = <0.001). 



29 
 

 

Figure 5. Distributions of CVAE latent space dimensions: Each boxplot on the X-axis represents the summary 
statistics for one of the CVAE latent dimensions. The horizontal line represents the median value, the box represents 
the Q1-Q3 interquartile range, upper and lower whiskers represent the 95% confidence interval and points represent 
outlier observations. 

8.2 QUANTIFYING THE PATTERN PRESENCE OF A GENE 
We explored two different approaches to classify patterns from non-patterns: using the classification 
scores of a supervised learner and comparing distribution similarities directly within the latent space. 
We tested both approaches with experimental data to determine their effectiveness in detecting 
patterns in actual MERFISH experiments, specifically focusing on genes known to exhibit apical-
basal in enterocyte RNA localization patterns. 

8.2.1 Using supervised classification  

8.2.1.1 Choice of classification algorithm 
Given the challenges posed by correlated and non-normally distributed latent dimensions, we 
selected RF and KNN as suitable classifiers for our analysis. The hyperparameters for both RF and 
KNN were tuned using an exhaustive grid-search with 5-fold cross validation implemented in the 
sci-kit learn package75. The KNN model required feature scaling (min-max normalization, see 
methods) due to the non-normal latent dimensions, as discussed in section 7.3.1. Optimal 
hyperparameters for the RF included 3 maximum features for splitting nodes and 200 trees in the 
forest. For the KNN, the optimal number of neighbors was set to 69. 

Both models achieved great results on the test set with AUC scores (Figure 6), suggesting that the 
classification results were reproducible across different model types. We chose to continue our 
analysis with the RF model because random forests are more robust against noisy data with outliers 
compared to KNN.   
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Figure 6. Hyperparameter tuning for the Random Forest and KNN classifiers: (A) Line plot representing the relation 
between the AUC scores (Y-axis) and the number of trees in the Random Forest ensemble (X-axis), (B) Line plot 
representing the AUC scores (Y-axis) in relation with the number of neighbors in the KNN. 

 

8.2.1.2 Factors affecting classifier training 

8.2.1.2.1 Impact of balancing the training data 
We investigated the impact of balancing the training data on the performance of our classification 
models in the context of a substantially imbalanced simulated dataset. The dataset exhibited a 
notable 8:1 ratio between the patterned and non-patterned classes. Given that most classification 
algorithms aim to minimize the error rate, this imbalance could lead the classifier to 
disproportionately label observations as patterned, the more frequent class. To address this, we tested 
the influence of balanced versus unbalanced training data on the model's performance. 

When we compare the ROC curves (Figure 7A), the AUC was identical for both balanced and 
unbalanced models. However, the confusion matrices (Figure 7B-C) revealed notable differences. 
The balanced RF predicted fewer observations as ‘patterned’ than the unbalanced RF, regardless of 
the true label. Specifically, the balanced RF had twice as many false negatives and 3.4 times fewer 
false positives. Based on these results, we chose to train the RF on the balanced data, prioritizing a 
more conservative approach in labeling observations as patterned to reduce the incidence of false 
positives.  

   

B A 
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8.2.1.2.2 Impact of cellular identity on training the data 
As 317 images of cells were used as a template to generate thousands of simulated genes (methods), 
we explored the impact of this cellular stratification on the extent of overfitting of the RF classifier 
and the embedding itself. Firstly we examined the impact of cellular identity on the Random Forest, 
by performing two different train-test splits. In one split, all observations with a particular cellular 
identity were assigned either to the train or the test set, ensuring that no cellular identity appeared in 
both sets. In the other split, cellular identity was not considered while dividing the dataset. The 
models trained and tested based on split per cellular identity showed a slightly worse AUC score, but 
overall, the difference between the two splits was negligible indicating that the classifier did not 
overfit on cellular identity. To enhance the external validity of our model for other datasets, we 
decided to continue using train-test splits based on the cellular identity. 

Next, we investigated the impact of cellular identity stratification on the embedding by training two 
Random Forests. The first RF was trained on balanced data from an embedding that was trained on 
all 317 cellular identities (referred to here as the Mixed cell-id embedding), whereas the other RF was 
trained with balanced data from an embedding that was trained on 80% of the cellular identities (see 
methods, referred to here as the Split cell-id embedding). The remaining 20% of cellular identities 
were then projected onto the embedding with the pretrained encoder and served as the test dataset. 
The test set of the Mixed cell-ID embedding model used the same 80% of cellular identities to select 
the train set for this model, with the remaining 20% of cellular identities forming the test set. Training 
the embedding on all cellular identities or 80% of them influenced the RF probability scores assigned 
to the test sets. Both models performed well on the test data obtained from the same embedding 
(Figure 8), showing the models did not learn to identify pattern presence based on cellular identity.  

As a negative control, we were interested in what the two embeddings would do with a completely 
random input. Given that both embeddings have completely different feature distributions, giving 
the test set of the split cell-ID embedding to the Mixed cell-ID embedding model (and vice versa) 
should therefore be completely random data for the RF. As shown in Figure 8, the RF scores the 

Figure 7. Classification performance for balanced and unbalanced RF classifiers for pattern presence: (A) 
Receiver operator characteristic (ROC) curves performances for balanced versus unbalanced training sets. (B) 
Confusion matrix for a RF classifier using a balanced training set, (C) Confusion matrix for a RF classifier using 
an unbalanced training set. Both (B) and (C) used a balanced testing set with all pattern strengths. 
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patterned and non-patterned observations from this ‘random’ test dataset on the decision boundary 
(i.e. scores around 0.5), suggesting both models exert caution in labeling unknown data.  Given that 
the split cell-ID embedding is theoretically more sound and performs well on cellular identities that 
neither the model nor the embedding had encountered before, we proceeded with this embedding. 
This approach should ensure robustness and generalizability.  
 

 
Figure 8. Random Forest prediction score distributions under different CVAE training scenarios: Histograms 
representing Random Forest prediction scores for different training/testing scenarios.  

 

8.2.1.3 The optimal model’s performance 
The final model was trained with 3 features considered for each split and 200 trees. The receiver 
operating characteristic (ROC) curves, presented for subsets of the test dataset categorized by 
pattern strength and RNA count (Figure 9), highlight the model's efficacy. The RF's AUC scores 
improved incrementally with increasing RNA counts for all pattern strengths. This trend could be 
attributed to the model having a higher false positive rate for non-pattern observations with lower 
RNA counts than those with higher counts. The model performed almost perfectly for observations 
with a strong pattern strength and an RNA count of 30 or higher, with an AUC exceeding 0.98. 
Even for RNA counts below 30, the model maintained an AUC of at least 0.83. This indicates that 
the RF model consistently classifies observations with strong pattern strength effectively. For 
observations with intermediate pattern strength and RNA counts of 30 or higher, the model achieves 
AUC scores between 0.85 and 0.92. However, the model's performance drops for low pattern 
strength observations, yielding AUCs ranging from 0.52 to 0.54, which is only marginally better than 
random guessing. These results demonstrate that the RF model performed sufficiently well for 
individual observations with intermediate and strong pattern strengths.   
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Figure 9. Classification performance to detect pattern presence: ROC curves for different RNA count values for strong 
(left), intermediate (middle) and low (right) pattern strengths. 

 

8.2.1.4 Gene localization detection across cells 
Aggregating the RF results over multiple cells is likely to enhance its overall performance, as 
theoretically, the ensemble's predictive power should improve with aggregation. Moreover, this 
approach would enable the determination of whether a gene consistently exhibits a pattern across 
various cells, rather than in isolated observations. We therefore created simulated genes (methods) 
and tested whether the RF score probability density curve of the test (patterned) gene significantly 
differed from that of a non-patterned control gene. A illustrates this comparison for a mixed-pattern 
gene with 600 observations with a strong pattern strength and an RNA count of 0-10. The test gene 
significantly differed from the non-patterned control gene (D(600,600)=0.48, p = 5.92•10-63), and 
would therefore be classified as a patterned gene by our model/framework.  

 

 

We then investigated whether our model classifies certain patterns better than others. Figure 10B 
shows the distribution of patterns across the probability spectrum seemed fairly even, indicating that 
the random forest classifier does not exhibit a significant bias towards any particular pattern. 
However, the model classified certain patterns, such as pericellular and intranuclear, with higher 
probabilities, suggesting better performance for these patterns. In conclusion, the even distribution 

Figure 10. RF score distributions for simulated genes showing either patterns or no patterns: (A) Histograms 
represent RF score distributions for 600 gene simulations with RNA counts between 0 and 10 and either a mixed 
pattern type with strong pattern strength (blue), or no pattern (pink). (B) The same simulations colored by pattern 
type.   



34 
 

of different patterns in the RF probability spectrum reinforces the model's robustness and 
generalizability in pattern classification. Moreover, the mixed-pattern gene appears to be a good 
approximation of the average RF score across various patterns.  

While the observations so far provide a strong proof of concept, it remains to be seen whether this 
statistical framework works for more biologically realistic cases, where patterns may have lower 
strength, or involve fewer cells. For instance, a simulated gene with intermediate pattern strength but 
the same RNA count and cell count also significantly differed from a matched non-pattern control 
(D(600,600)=0.18, p = 1.36•10-08). The method is also sensitive enough to detect differences in rare 
cell types with few cells available. For example, a gene with intermediate pattern strength, an RNA 
count of 10-30 and a cell count of 50 would be classified as patterned (D(50,50)=0.42, p = 0.0002), 
albeit this would not pass multiple testing corrections commonly performed in MERFISH analyses.  

To evaluate the proposed statistical framework, a power analysis was conducted. The objective was 
to determine the minimum number of cells required to reliably reject the null hypothesis when there 
is a true difference in RF classification scores between a patterned gene and a non-patterned control 
gene. The power analysis was performed with an alpha level of 0.05 as a commonly accepted 
benchmark in statistical analyses (Figure 11). 

 

  
Figure 11. Power analysis for pattern presence detection across cells using the RF approach: Line plots represent the 
relationship between sample size and statistical power for detecting patterns across cells for strong (left), 
intermediate (middle) and low (right) pattern strength. Successful test statistics were considered at a false discovery 
rate (α) of 0.05. 

For genes exhibiting strong pattern strength, the analysis demonstrated a near 100% power with as 
few as 30 cells. To achieve a power of 0.8, 27 cells were sufficient for genes with at least 10 detected 
RNA molecules. In contrast, 100 cells were necessary for genes with RNA counts below 10. 
Although low pattern strength only marginally outperformed random chance for individual 
patterns (Figure 9), the power analysis revealed that it is possible to detect low pattern strength 
patterns when a sufficient number of cells are aggregated. Specifically, 1315 cells were required for 
RNA counts above 70, and 4000 cells for RNA counts between 10 and 70. This indicates that even 
genes with a pattern strength that is too low to detect by the human eye can be detected through 
aggregations, underscoring the effectiveness of this approach in distinguishing patterned genes. 
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To simulate correcting for false discovery rates for 500 genes across 10 cell types, the power analysis 
was adjusted using a Bonferroni correction for 5000 tests. Strong and intermediate patterns remained 
robust despite this correction (Figure 12). Differences could be reliably detected even with low RNA 
counts starting from a cell count of 400. For low pattern strength, detection was generally unfeasible 
unless RNA counts exceeded 70. Using Cohen's (1998)84 recommendation of a maximum Type II 
error probability of 20%, genes with low pattern strength but high RNA counts (70 or above) still 
met the power threshold, provided a sufficient number of cells were included. However, genes with 
such high RNA counts are atypical in the host-lab’s experience. 

Given the current power analysis and the size of the simulated dataset, it remains unclear whether 
genes with low RNA counts and low pattern strength could achieve sufficient power. As MERFISH 
experiments can include 100,000 cells for non-rare cell types, it could be that these sample sizes 
would be high enough to reach sufficient power. Further investigation is required to draw definitive 
conclusions for these categories. 

 

 

Figure 12. Power analysis for pattern presence detection across cells after Bonferroni multiple testing correction 
using the RF approach: Line plots represent the relationship between sample size and statistical power for detecting 
patterns across cells for strong (left), intermediate (middle) and low (right) pattern strengths. Successful test 
statistics were considered at a Bonferroni corrected false discovery rate (α) of 0.05/5000. 
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8.2.1.5 Assessment of the specific localization pattern  
To accurately classify specific pattern categories 
that a gene might exhibit, we opted for a separate 
binary RF classifier for each pattern rather than a 
single multi-class classifier. This approach allows 
genes to portray multiple localizations within the 
same cell (i.e. pericellular and foci). To ensure this 
approach did not compromise accuracy, we 
conducted a sensitivity analysis comparing the 
AUC scores of each pattern between the multi-
class classifier and the eight binary classifiers. Both 
classification methods achieved comparable AUC 
scores (see Table 2), validating our choice for the 
binary RF classifiers to assign probabilities for 
genes to portray specific subcellular localization 
patterns. Going forward, we limited the scope of 
our analysis to one specific pattern for brevity. We 
opted for pericellular localization, which was one 
of the better performing patterns (see Table 2 and 
Figure 10B).  

We examined the effect of different variations of training datasets on the performance of the 
pericellular RF classifier. Firstly the impact of balancing the dataset was investigated. Unlike the 
general pattern/nonpattern classifier, this analysis revealed a difference between balanced and 
unbalanced datasets at the intermediate pattern strength level (Figure 13A). Based on these findings, 
all subsequent classifiers were trained with balanced pattern type data. Furthermore, we examined 
the effect of including non-patterned training data in the RF classifier. This inclusion aimed to 
enhance the model’s performance by providing a reference for non-patterned observations, which 
could prove useful if a gene deemed patterned in the first round of classification (i.e. pattern vs non-
pattern) has some non-patterned cells amongst its observations. The ROC curves show that both 
models perform similarly (Figure 13B), but the model including non-patterned data slightly 
outperformed the other for the intermediate pattern strength. Thus, this model was adopted for 
further analysis.  

Pattern  

 

Multiclass 
AUC 

8 Binary 
AUC 

Cell-Edge 96.06% 96.14% 

Extranuclear 93.38% 93.97% 

Foci 95.34% 94.92% 

Intranuclear 99.31% 99.23% 

Nuclear-Edge 99.12% 99.18% 

Pericellular 99.56% 99.49% 

Perinuclear 97.85% 97.79% 

Protrusion 99.47% 99.28% 
Table 2: Comparison between the AUC scores of 
the multiclass RF classifier and 8 binary RF 
classifiers. AUCs were calculated on the strong 
pattern test dataset. Multiclass AUCs were 
calculated with a one versus rest approach. 
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The performance of the optimized pericellular versus other patterns model is detailed in Figure 14. 
The model achieved perfect predictions for observations with strong pattern strengths and RNA 
counts higher than 30, with an AUC of at least 0.91 for lower RNA counts. For intermediate pattern 
strength, the model’s performance ranged from 0.78 to 0.88, improving with higher RNA counts. 
For low pattern strength, the model’s performance is equal to or slightly better than random chance.  
 

 

Figure 14. Classification performance to detect pericellular pattern presence: ROC curves for pericellular 
classification under strong (left), intermediate (middle) and low (right) pattern strengths, colored by varying levels of 
RNA counts. 

To determine whether we could detect a gene that consistently exhibits a pericellular localization 
pattern across various cells, we compared three simulated genes: a pericellular gene, a non-patterned 
gene, and a gene composed of a mix of all non-pericellular localization patterns. Each gene included 
300 cells with RNA counts between 0 and 10, and the two patterned genes had an intermediate 
pattern strength. This comparison was performed for models including (Figure 15A) and excluding 
random patterns (Figure 15B). The pericellular gene exhibited a wide probability distribution, with 
many observations falling below a 0.5 probability threshold, which would not classify them as 

A B 

Figure 13. Classification performance for pericellular patterns: ROC curves with different degrees of pattern 
strength for (A) balanced and unbalanced training with respect to pattern type, pattern strength and RNA 
count, evaluated with a balanced test set,  and (B) Including or excluding non-pattern data while training, with 
a balanced test set including non-patterned observations.  
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pericellular individually. However, both the simulated non-patterned gene and the gene composed 
of other patterns were assigned significantly lower probabilities, distinguishing the pericellular gene 
from other patterns (D: 0.50, p = 1.89•10-34) and from the non-patterned gene (D: 0.56, p = 4.08•10-

43). Interestingly, even the RF classifier that had not been trained on non-patterned observations 
during training classified these instances as non-pericellular, supporting the robustness of the 
pericellular RF classifiers. Overall, we could statistically distinguish pericellular localizations, both 
compared to other patterns and to genes displaying no patterns. Our framework complement the 
statistical framework of Chouaib et al65 where the frequency of RF classifications of specific patterns 
were directly compared to those of a non-patterned control.  

 

Figure 15. Random Forest score distributions of a simulated pericellular patterned gene: Histograms showing the RF 
scores for a simulation of 300 cells showing a gene with RNA counts between 0 and 10 exhibiting a pericellular 
pattern with intermediate pattern strength (turquoise), a mixture of non-pericellular patterns with intermediate 
pattern strength (pink) or no pattern localizations (blue) either including (A) or excluding (B) random patterns while 
training the pattern type classifier.  

 

8.2.2 Using the latent space  
As an alternative approach to supervised classification for determining the presence of a pattern for 
a particular gene, we could also directly compare point clouds in the latent space embedding. The 
advantage of directly comparing point clouds within the latent space is that there is no dependence 
on predefined patterns. This could be especially of interest when determining which pattern a gene 
might portray, given that one could in theory detect de novo patterns, which would be undetectable 
through supervised classification of a set of predefined patterns. We therefore compared the 
similarity of the point clouds of test genes with non-patterned control genes using a Chamfer 
distance metric (methods). A permutation test was used to test if the observed distance was 
significantly larger than a hypothetical null distribution (see methods). Figure 16 illustrates this 
comparison for a mixed pattern gene with 600 observations with an intermediate pattern strength 
and an RNA count of 0-10. The observed distance between the test gene and non-patterned control 
gene (pink dotted line) was significantly larger than expected if the two genes would have been drawn 
from the same underlying distribution (p = 0.0001). The test gene would therefore be classified as a 
patterned gene by our model/framework.   
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Figure 16. Empirical distribution of Chamfer distance: Histogram representing the distribution of Chamfer distance 
estimates for the null distribution of permutations (blue) versus the observed Chamfer distance (pink) for a patterned 

gene with 600 observations, intermediate pattern strength and RNA counts between 0 and 10 for each observation. 

We conducted a power analysis to thoroughly assess the robustness of the proposed LS-based 
statistical test. To compare results with the supervised-based framework, the power analysis was 
performed with an alpha level of 0.05 (Figure 17). Due to time constraints, the power analysis was 
only computed for the sample sizes up to 1315 cells. For genes exhibiting strong pattern strength, 
the analysis demonstrated nearly 100% power with as few as 46 cells. For genes with intermediate 
pattern strength, 81 cells were sufficient to achieve a power of at least 0.8 for cells with at least 10 
RNA. In contrast, 247 cells were necessary for genes with RNA counts below 10.  

Generally for both the supervised classifier and this LS-based approach the power increased with 
increasing counts, however the opposite occurred for observations with a low pattern strength. For 
these observations, the power went down with increasing RNA counts. The LS-based method 
achieved a power of 0.99 at 432 cells, whereas higher RNA counts had an average power of 0.28. 
Nevertheless, all RNA counts were able to reach a power of at least 0.8.  Similarly to the supervised-
based model, a Bonferroni correction of 5000 was performed, however all observations remained 
underpowered. This was to be expected, given that 9999 permutations only a minimum p-value of 
0.0001 can be achieved, whereas the Bonferroni would require p < 0.00001 for a successful detection. 
Future studies should perform a power analysis with more permutations to ascertain whether the 
permutation test could surpass a Bonferroni correction of 5000. 
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Figure 17:  Power analysis for pattern presence detection using the latent space permutation test: Line plots 
represent the relationship between sample size and statistical power for detecting patterns across cells for strong 
(left), intermediate (middle) and low (right) pattern strength. Successful test statistics were considered at a false 
discovery rate (α) of 0.05. 

 

8.3 VALIDATION ON A BIOLOGICAL DATASET 
Having established that both tests work for simulated data, we aimed to determine if these results 
would generalize to biological and experimental contexts. To this end, we used an experimental 
MERFISH dataset from the Laboratory for Systems Physiology, ETH Zurich73 , which focused on 
subcellular RNA localization patterns in the small intestine. This dataset included six genes which 
are generally accepted to exhibit subcellular localization in enterocytes: ApoB, CDH1, and CDKN1A 
(apically localized) and CYB5R3, PIGR, and NET1 (basally localized). Our goal was to evaluate 
whether these ground-truth genes were also classified as patterned by the supervised and LS-based 
approaches.  

For each of the six genes, we simulated a non-patterned control with the same cell count and matched 
RNA count. The RNA count for the simulated control was matched by taking the mean RNA per 
cell of the test gene, plus or minus the standard deviation, and rounding to the nearest tenfold. We 
then compared each gene with its matched control gene using our two statistical tests. The 
descriptive statistics and results can be found in Table 3. All genes showed significant differences 
from their matched controls. While the p-values varied in the supervised approach, the LS-based p-
values were uniformly 0.0001. To further investigate whether the two approaches might classify any 
biological gene as patterned, we selected two genes (CLCA4a and SLC39A14) that visually did not 
exhibit any localization pattern. Both of these genes also showed significant differences from their 
non-patterned controls, with RF p-values surviving a Bonferroni correction of 5000 (CLCA4a: LS-
based: p = 0.0001, RF: p = 4.21•10-27; SLC39A14: LS-based: p = 0.0001, RF: p = 8.03•10-26).   
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Description of the Genes Simulated 
control 

Statistical results 

Gene Apical/ 
Basal 

Cell 
count 

Mean (std) 
RNA 
count 

Min - 
max 

RNA 
count 

RNA count 
used for 

simulated 
control 

P-value: 
LS-

based 

RF: KS 
stat 

P-value: 
RF 

ApoB Apical 406 26.5 (15.2) [1-92] 0-100 0.0001 0.90 2.91•10-175 

CDH1 Apical 358 3.55 (2.53) [1 – 15] 0-10 0.0001 0.68 1.61•10-79 

CDKN1A Apical 376 4.2 (3.28) [1 – 21] 0-10 0.0001 0.59 5.74•10-60 

CYB5R3 Basal 406 18.3 (10.5) [1 – 63] 10-30 0.0001 0.67 3.42•10-88 

NET1 Basal 155 1.4 (0.75) [1 – 4] 0-10 0.0001 0.80 9.31•10-50 

PIGR Basal 408 68.1 (41.5) [4 - 299] 20-100 0.0001 0.91 8.22•10-182 

CLCA4a Seems 
random 

125 4.86 (7.94) [1-39] 0-20 0.0001 0.67 4.21•10-27 

SLC39A14 Seems 
random 

389 5.49 (3.76) [1-23] 0-10 0.0001 0.38 8.03•10-26 

Table 3: Description of the biological validation dataset and results of the statistics of the LS-based and RF-based 
approaches.  

We hypothesized that extreme RNA counts might skew the p-values. Therefore, we filtered the 
dataset based on RNA counts that could be visually recognized as pattern presenting during the 
training of the CVAE model. Specifically, RNA counts below 10 were excluded (as it was difficult 
to say if e.g. 4 RNA spots formed a pattern or not), as well as counts above 100 (where molecular 
crowding made it difficult to distinguish patterns). After applying these filters, NET1 was excluded 
due to insufficient cell counts. New matching non-patterned controls were created for the remaining 
genes (see Table 4). All the genes remained significant, although the p-values were less extreme and 
seemed more realistic. Notably, CLCA4a barely reached significance (LS-based: p = 0.022, RF: p = 
0.045), and four genes (CDH1, CDKN1A, CLCA4a, and SLC39A14) would no longer be significant 
after a Bonferroni correction of 5000. It remains unclear whether the reduced extremity of p-values 
compared to the unfiltered dataset was due to lower cell counts (and thus lower test power), or if low 
RNA count observations might have overestimated pattern presence.   
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Description of the Genes Simulated 
control 

Statistical results 

Gene Apical/ 
Basal 

Cell 
count 

Mean (std) 
RNA 
count 

Min - 
max 

RNA 
count 

RNA count 
used for 

simulated 
control 

P-value: 
LS-

based 

RF: KS 
stat 

P-value: 
RF 

ApoB Apical 353 29.5 (14.0) [11-92] 10-50 0.0001 0.89 2.47•10-148 

CDH1 Apical 9 12 (1.2) [11 – 15] 10-20 0.0067 0.67 0.034 

CDKN1A Apical 22 13.5 (2.9) [11 – 21] 10-20 0.0001 0.64 0.00017 

CYB5R3 Basal 297 22.6 (8.9) [11 – 63] 10-30 0.0001 0.63 7.06•10-55 

NET1 Basal 313 53.7 (23.5) [11,100] 30-70 0.0001 0.81 9.61•10-104 

PIGR Basal 17 22.6 (8.8) [12-39] 10-40 0.022 0.47 0.045 

CLCA4a Seems 
random 

40 13.7 (2.9) [11-23] 10-20 0.0001 0.4 0.0030 

SLC39A14 Seems 
random 

353 29.5 (14.0) [11-92] 10-50 0.0001 0.89 2.47•10-148 

Table 4: Description of the filtered biological validation dataset and results of the statistics of the LS-based and RF-
based approaches. RNA counts below 10 and above 100 were excluded from the biological validation dataset. 
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9  DISCUSSION 
In this study, we built upon an in-house convolutional autoencoder model which automatically 
detects RNA localization patterns without relying on manual feature inputs. Our primary goal was 
to create a statistical framework capable of quantifying the probability of RNA localization for 
individual genes across multiple cells. This framework was tested using simulated data that closely 
mimics biological reality and was further validated with an experimental MERFISH dataset of 
enterocyte apical-basal polarization. An extensive power analysis also reveals the necessary sample 
sizes at varying pattern strengths and dynamic ranges. We employed two distinct approaches: 
supervised classification and localization detection within the latent space embedding. By 
aggregating model classifications across all cells for each gene, we aimed to establish a robust method 
for determining gene localization probabilities. Furthermore, we explored our model’s ability to 
distinguish pericellular patterns from non-patterns and from other localization patterns. Finally, we 
validated that the results from simulated data could be generalized to biological and experimental 
contexts.  

Even on individual observations, the random forest alone showed promising sensitivity with 
intermediate and strong pattern strengths. Given that random forests, as an ensemble method, have 
more power to accurately classify data than a single decision tree, we hypothesized that aggregating 
moderately accurate predictions across many cells for each gene would enhance sensitivity in 
detecting RNA localization patterns. This hypothesis was confirmed. Both the supervised 
classification and LS-based statistical framework successfully identified RNA localization patterns 
across populations of  cells, achieving satisfactory results with simulated data that had realistic 
pattern strengths and RNA counts. Notably, we included a more diverse set of localization patterns 
(nine in total) compared to the current standard in the field, which typically include five (see Table 
1). These findings were further validated with a ground-truth experimental dataset, demonstrating 
the robustness of our approach. 

Our statistical framework demonstrated sensitivity to low pattern strengths, whereas random forests 
alone performed only marginally better than chance. Moreover, both approaches detected 
significant pattern presence in all genes from our experimental dataset, including those that did not 
visibly exhibit any localization pattern. This underscores the conceptual intrigue of observations 
with low pattern strength. Patterns with only 10% of their RNA localized in specific regions can 
appear indistinguishable from non-patterned genes to the human eye. Our framework can detect 
these subtle patterns, suggesting that some genes labeled as non-patterned in biological datasets 
might actually exhibit low-strength patterns. This capability is significant given the nascent state of 
the spatial transcriptomics field and the reliance on visual inspection. It remains unclear whether 
low-strength patterns are biologically relevant. Our framework could help further investigate the 
potential biological relevance of these low-strength patterns.  
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The supervised classification approach generally outperformed the LS-based approach, particularly 
when considering resource requirements. The LS-based approach is resource-intensive because it 
calculates the mean L1 distance from each point in point cloud 1 to its nearest neighbor in point 
cloud 2 and vice versa. This calculation necessitates a distance matrix with dimensions proportional 
to the cell count, causing the computational intensity to scale exponentially with the number of 
included cells. Furthermore, this process must be repeated for each of the 9,999 permutations, 
allowing for a minimum p-value of 0.0001. If a lower p-value is required to correct for multiple 
testing errors, even more resources would be needed. In contrast, the RF-based approach is less 
computationally demanding. The random forest obtains a posterior probability by averaging the 
predictions of all its decision trees, resulting in a substantially lower complexity than the LS-based 
approach. Therefore, even though both approaches achieved satisfactory results, the RF-based 
approach is preferred over the LS-based approach.  

Unexpectedly, the permutation test in low pattern strengths performed better for genes with low 
RNA counts compared to higher counts (Figure 17). This phenomenon could potentially be an 
artifact of molecular crowding. Alternatively, it could be explained by the overlap of low pattern 
strength observations with non-patterned observations within the latent space, in relation to the 
RNA counts. As shown in Figure 4D,  lower RNA counts occupy a distinct space in the center right, 
whereas higher counts (i.e. above 100) cluster closer to non-patterned observations (Figure 4A). 
Consequently, genes with low pattern strength but high RNA counts are nearer to non-patterned 
observations in the latent space than genes with low counts. This results in the observed Chamfer 
distance and the hypothesized null-distribution for the two genes being closer, making it less likely 
to reject the null hypothesis for genes with high RNA counts than those with low RNA counts 
which are further from non-patterned observations.  

9.1 LIMITATIONS 

As previously mentioned, our framework can detect pattern presence in observations with 10% 
pattern strength. However, as it is unknown whether these pattern strengths are biologically relevant, 
it is possible that detecting 10% patterns might be an artifact of training on simulated data, and 
therefore overclassification on real data. Indeed, the two genes from the biological validation set that 
visually did not exhibit any localization pattern, were detected as pattern presenting by both the RF- 
and LS-based approaches (see Table 3 and Table 4). This could indicate that the algorithm might be 
overly sensitive. Even if these low strength patterns would be biologically meaningful, the statistical 
framework currently does not allow users to merely detect strong patterns while excluding all genes 
with subtle patterns. Future studies could explore whether the KS test statistic would be reliable 
enough to treat as an effect size one could filter on. A KS lower than 0.5 has been acknowledged as 
not distinct enough as a general rule of thumb. In our biological validation test set, at least one of the 
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two visually non-patterned genes had a KS value lower than 0.5 in both the unfiltered and filtered 
genes (see table Table 3 and Table 4 

Description of the Genes Simulated 
control 

Statistical results 

Gene Apical/ 
Basal 

Cell 
count 

Mean (std) 
RNA 
count 

Min - 
max 

RNA 
count 

RNA count 
used for 

simulated 
control 

P-value: 
LS-

based 

RF: KS 
stat 

P-value: 
RF 

ApoB Apical 353 29.5 (14.0) [11-92] 10-50 0.0001 0.89 
2.47•10-

148 

CDH1 Apical 9 12 (1.2) [11 – 15] 10-20 0.0067 0.67 0.034 

CDKN1A Apical 22 13.5 (2.9) [11 – 21] 10-20 0.0001 0.64 0.00017 

CYB5R3 Basal 297 22.6 (8.9) [11 – 63] 10-30 0.0001 0.63 7.06•10-55 

NET1 Basal 313 53.7 (23.5) [11,100] 30-70 0.0001 0.81 
9.61•10-

104 

PIGR Basal 17 22.6 (8.8) [12-39] 10-40 0.022 0.47 0.045 

CLCA4a Seems 
random 

40 13.7 (2.9) [11-23] 10-20 0.0001 0.4 0.0030 

SLC39A14 Seems 
random 

353 29.5 (14.0) [11-92] 10-50 0.0001 0.89 
2.47•10-

148 

Table 4), suggesting this could be interesting to further explore. 

A ground-negative random distribution for subcellular RNA localization in a biological setting has 
not yet been described in literature. Although one study labeled 375 genes as non-patterned65, this 
was conducted in HeLa cells, raising questions about its generalizability to other cell lines or in vivo 
tissue samples. Additionally, given the classification was based on visual inspection, some of these 
non-patterned genes might actually exhibit 10% pattern presence, which may or may not be 
biologically relevant. The assumption that simulated non-patterned localizations reflect biological 
reality poses a significant limitation. Both the CVAE model architecture and the proposed statistical 
framework were trained on this simulated dataset. If our definition of a non-patterned localization 
is not biologically accurate, comparing a test gene to this simulated non-patterned control would not 
be relevant.  To overcome this limitation, our research group plans to conduct a MERFISH 
experiment, visualizing genes APEX-seq has flagged as non-patterned in their transcriptome-wide 
subcellular RNA atlas10, to hopefully identify ground-truth non-patterned genes. If experimentally 
validated randomly distributed genes are found, future MERFISH experiments could include these 
genes as a ground-negative control. The statistical framework can then be adjusted using these new 
ground-negative control genes as a new null distribution.  
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Another limitation of our simulated dataset is the uncertainty regarding the actual strength of 
biological patterns compared to the simulated ones. SimFISH v164 (using MATLAB) addressed this 
by defining low, moderate, and strong pattern strengths, with moderate corresponding to biological 
data. However, when the software was translated to Python with SimFISH v262 (which we used for 
our simulations), different parameters were used to express pattern strength, specifically the 
percentage of RNAs showing patterned localization. The authors of SimFISH v2 did not compare 
these new parameters to real biological data for context. Similar to SimFISH v1, SimFISH v2 also 
displayed three different pattern strengths in their tutorial. We assumed these correspond to the 
original three levels, making the 50% (moderate) pattern strength a reasonable approximation of 
biological data. Future studies should validate this assumption to ensure accuracy.  

The simulated dataset had a limited size, particularly for the non-patterned observations, which 
restricted the sample sizes available for the power analysis. Since we needed to match the cell count 
between the test and control genes76, our sample size was constrained by the non-patterned 
observations (see Table 5). Consequently, we could only conduct the power analysis up to a cell 
count of 7000 per gene for genes with RNA counts above 30. We could analyze up to 1315 and 5000 
cells for genes with RNA counts between 0-10 and 10-30 respectively. Sampling beyond these limits 
would require using nearly identical non-patterned genes or sampling with replacement, which 

would have compromised the reliability and validity of the power analysis. In a MERFISH 
experiment hundreds of thousands of cells can be assayed, so our analysis does not reflect the 
potential for achieving sufficient power for genes with low RNA counts and low pattern strengths 
(Figure 12). Future studies could ensure a more comprehensive power analysis by using the current 
simulated data points to estimate a probability density curve, therefore allowing infinite sampling 
from the continuous curve. However, this approach has downsides: the probability density curve is 
an approximation of the data, introducing an error term, and it assumes that the distributions will 
remain consistent with higher samples. This consistency may not be the case as effect sizes tend to 
increase with larger samples, potentially introducing bias.  

RNA 
count 

Patterns per pattern strength Non-
patterned Low Moderate Strong 

0-10 3900 4206 3802 1442 

10-30 13264 12987 13590 5305 

30-60 19896 20502 19812 7836 

70-100 20247 19760 19450 7402 

100+ 39734 39604 40397 16213 
Table 5: Overview of the size of the test dataset, grouped per RNA counts, and 

patterned versus non-patterned data. The patterned observations were 
grouped based on pattern strength. 
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Matching the control to the experimental test gene proved to be critical for accurate statistics, 
particularly for smaller cell counts. Figure 17 illustrates this with the filtered SLC39A14 gene (n = 
40) from the ground-truth dataset, compared to a non-patterned control. The only difference 
between the two non-patterned genes in these two figures is the random seed used to sample the data. 
Therefore, SLC39A14 did not significantly differ from the control in figure 17A (Chamfer: p = 0.5, 
RF: p = 0.54), while the difference was significant in figure 17B (Chamfer: p = 0.0001, RF: p = 
0.003).  

  

Figure 18. The influence of random seed choice on the RF score distributions: Histograms showing the RF scores for 
the filtered Slc39a14 gene with a simulated non-patterned control matched on RNA counts. (A) used random seed = 
101 whereas (b) used random seed = 42.  

Although the choice of random seed is predetermined and difficult to control, the matching of the 
non-patterned control can be improved by more precisely aligning the RNA counts of the 
experimental test gene with the control gene. Future studies should aim to exactly match the RNA 
counts of the control gene with those of the test gene, using the list of RNA counts from the test 
gene rather than a range based on the mean ± standard deviation. This is particularly important for 
the LS-based approach, as many distance measures, including the Chamfer distance, are sensitive to 
outliers within point clouds due to their reliance on the nearest neighbor in the other point cloud. 
The RNA count was clearly a feature learned by the CVAE and a driving force in creating the latent 
space. Consequently, observations with different RNA counts localized in different parts of the 
latent space (Figure 4D), meaning that slight variations in RNA counts could inadvertently affect 
the proximity of points in the latent space and thus influence the Chamfer distance. By ensuring 
identical RNA counts between the test and control genes, we can eliminate a potential source of 
variation and error. Thus, future studies should match the RNA spot counts between the test and 
control genes to ensure accurate results.  

A B 



48 
 

9.2 FUTURE DIRECTIONS 
Building on the current findings, several avenues for further research and development can enhance 
the robustness and applicability of our framework. For example, the second classification round to 
identify the specific subcellular localization pattern can be further expanded. For the supervised 
approach, random forests can be trained for all non-pericellular patterns. For the LS-based approach, 
the identification of specific subcellular localization patterns needs to be implemented from the start. 
Currently, the plan would be to compare a gene point cloud with each pattern in the latent space 
and determine which one it does not significantly differ from. However, this approach is 
counterintuitive to statistical testing principles, as failing to reject the null hypothesis does not 
provide evidence that it is true.   

Another area to explore is how the framework would classify a localization pattern that it has not 
encountered before. The most straightforward method is to assess the performance during validation 
when the CVAE embedding and the random forest have not been trained on a specific localization 
pattern. However, this requires creating many different models, which does not truly test whether 
the framework would perform well with de novo patterns. Additionally, if there are multiple distinct 
de novo localization patterns, it is important to investigate whether the CVAE would assign them 
similar embedding features or place them in different regions of the latent space. 

The current framework has primarily been tested with simulated genes that either exhibit one 
specific localization pattern or a mix of all non-random localization patterns. Previous studies have 
shown that the same gene can portray two or three different localization patterns65. Therefore, it 
would be valuable to explore the heterogeneity of patterns within a gene across cells in future studies. 
From a biological perspective, it would be intriguing to see if a certain gene exhibits high 
heterogeneity in cell type A but low heterogeneity in cell type B. Therefore, future studies should 
create simulated genes that exhibit a specific localization pattern in e.g. 60% of cells and a non-
patterned localization in 40%, so we can test whether the statistical framework would still detect this 
heterogeneous gene as pattern-presenting. Similarly, for a gene with 60% of cells showing localization 
pattern A and 40% showing localization pattern B, it would be interesting to see if these patterns are 
identified in the second classification round. Implementing the Gini impurity index, as done by 
Samacoits et al.64, could be a relatively easy way to test for heterogeneity between cells in a gene.   

The CVAE embedding currently struggles with foci patterns, as the algorithm blurs the MERFISH 
input image, making it difficult to detect foci blobs. Following the approach of Chouaib et al.65 and 
FISH-quant v262, using DBSCAN85 to automatically detect and/or count the number of foci in a 
cell could be beneficial. This metadata could then be fed into the CVAE.  

For the permutation test, expanding upon the Chamfer distance is a promising direction. Recent 
developments have introduced modifications to the Chamfer distance that account for the density 
of the point clouds80, considering potential differences between their density distributions. 
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However, this method was implemented using Euclidean distance, which is effective in 3D spaces 
but falls short in higher dimensions due to the curse of dimensionality. Given that the L1 
(Manhattan distance) version of the Chamfer distance is widely used in training point cloud 
generators80 , we decided to implement this as a proof of concept for the LS-based approach. Future 
studies could adapt the density-aware Chamfer Distance to use the L1 distance, enhancing its 
applicability in higher-dimensional spaces.  

In this master thesis study, we developed and validated a statistical framework to quantify subcellular 
RNA localization probabilities for individual genes across multiple cells. Using simulated and 
experimental MERFISH datasets, we employed supervised classification and LS-based approach to 
aggregate model classifications and determine gene localization probabilities. Our findings showed 
that the aggregating across cells significantly enhanced sensitivity in detecting RNA localization 
patterns, including subtle low-strength patterns that are visually indistinguishable for individual 
observations. The supervised approach generally outperformed the LS-based approach, especially 
when considering Bonferroni corrections. Future research should validate our assumptions and 
refine the framework to ensure its accuracy and applicability in biological contexts. We are confident 
that the proposed statistical framework will help shift the focus in the field of subcellular RNA 
localization from global trends to gene localization across cells. This contribution will enable deeper 
insights into the molecular biology of subcellular RNA localization, thereby advancing the broader 
field of spatial transcriptomics.   
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10 CODE AVAILABILITY 
All code used is available at: https://github.com/nynkekatinka/subcellular_RNA_localization  
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12 APPENDICES 

12.1 USE OF GENERATIVE AI ASSISTANCE 
 

Use of Generative Artificial Intelligence (GenAI) – Form to be completed  
 
Student name: Nynke Tilkema 
Student number: r0927201 
 
Please indicate with "X" whether it relates to a course assignment, to the BIG-project or to the 
master’s thesis:  
 
X This form is related to my master’s thesis.  
Title master’s thesis: Statistical Inference of AI-identified Subcellular RNA Localizations 
Promoter: Alejandro Sifrim 
 
O This form is related to a BIG-project.  
Title BIG-project: … 
Promoter: …  
 
O This form is related to a course assignment.  
Course name: … 
Course code: …  
 
Please indicate with "X":  

o I did not use GenAI tools.  
X I did use GenAI tools. In this case specify which one (e.g. ChatGPT/GPT4/...): GPT4 and Copilot 

 
Please indicate with "X" (possibly multiple times) in which way you were using it:  

o X As a language assistant for reviewing or improving texts you wrote yourself, 
provided that the model does not add new content. In this case, the use of GenAI is 
similar to the spelling and grammar check tools we already have today, so you do not 
need to explicitly mention using GenAI for this).   

o As a search engine to get initial information on a topic or to make an initial search for 
existing research on the topic. (This way of gathering information is similar to using an 
ordinary search engine when working on anassignment. As a student, you are responsible 
for checking and verifying the absence and correctness of references. Therefore, after this 
initial search, look for scientific sources and conduct your own analysis of the source 
documents. Interpret, analyse and process the information you obtained; don’t just copy-
paste it. If you then write your own text based on this information, you do not have to 
mention you used GenAI.)   

o To generate text blocks. (If you do copy-paste text blocks of GenAI output,  you have to 
cite your GenAI sources and quote them, i.e. you clearly state that the item was created 
via GenAI by citation/reference.) 

o To generate graphs or figures. (If you do copy-paste graphs/figures of GenAI output,  you 
have to cite the GenAI sources and quote them, i.e. you clearly state that the item was 
created via GenAI by citation/reference.) 
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o To generate some code as part of a larger assignment. (Watch out, this can only be 
done if the teacher/promotor explicitly allows it.) 

o X Other (Contact the teacher of the course or the supervisor of the thesis or BIG 
project. Explain how you comply with article 84 of the examination regulations. Explain 
the usefulness or added value of using GenAI.): Used to debug my already written 
code.  
 

Further important guidelines and remarks:  

The faculty follows the KU Leuven policy regarding responsible use of GenAI. This form is an aid 
towards transparency about the use of GenAI by the student which is essential. Irresponsible and 
non-transparent use of GenAI can be considered an irregularity and can be sanctioned. Students 
who consider to use GenAI should inform themselves through the university website concerning 
the additional guidelines (How to correctly quote and refer to GenAI? What is (not) allowed? Tips 
and points of attention for responsible use): 
https://www.kuleuven.be/english/education/student/educational-tools/generative-artificial-
intelligence 
 


