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Samenvatting

Het voorspellen van de aandelenmarkt met geavanceerde computertechnieken, met name ma-
chine learning (ML), biedt aanzienlijk potentieel om complexe marktdynamiek te analyseren.
Veel geavanceerde ML-modellen functioneren echter als black boxes, waarvan de interne besluit-
vormingsprocessen ondoorzichtig blijven voor gebruikers. Dit gebrek aan transparantie vormt
een kritieke uitdaging, vooral in financiële toepassingen met hoge belangen, en leidt vaak tot een
tekort aan gebruikersvertrouwen, wat de effectieve adoptie van deze krachtige tools belemmert.
Deze thesis pakt dit vertrouwenstekort aan door een nieuwe benadering te onderzoeken die
de betrouwbaarheid van ML-gedreven beursvoorspellingen verbetert, specifiek voor gebruikers
zonder diepgaande technische of financiële expertise.

De kernbijdrage van dit onderzoek is het ontwerpen, implementeren en empirisch evalueren van
een beslissingsondersteunend systeem. Dit systeem integreert voorspellingen van meerdere, di-
verse machine learning-modellen met inzichten uit historisch vergelijkbare marktpatronen. De
centrale hypothese is dat een meer holistische en interpreteerbare kijk op potentiële marktbe-
wegingen; door consensus of divergentie tussen modellen te tonen en voorspellingen te contex-
tualiseren met vergelijkbare situaties uit het verleden, het gebruikersvertrouwen aanzienlijk kan
verbeteren. Het ontwikkelde systeem, met name via zijn “Multiple Models View” (MMV), om-
vat zes verschillende ML-modellen voor het voorspellen van aandelenkoersen: Random Forest,
eXtreme Gradient Boosting, Light Gradient Boosting Machine, Long Short-Term Memory, Neu-
ral Basis Expansion Analysis for Time Series Forecasting en Temporal Fusion Transformer. Een
belangrijke innovatie is de zoekmachine voor historische overeenkomsten, die marktperioden van
20 dagen uit het verleden identificeert die qua kenmerken sterk overeenkomen met de huidige
marktomstandigheden. Deze zoektocht werkt op basis van kenmerken, afgeleid via Principal
Component Analysis (PCA) uit dezelfde set van acht technische indicatoren die de ML-modellen
als directe input gebruiken. Het systeem laat zien hoe de gëıntegreerde ML-modellen zouden
hebben gepresteerd voor deze gëıdentificeerde historische analogieën, door hun voorspellingen
naast de daadwerkelijke marktresultaten en hun voorspellingsfouten te presenteren. Dit levert
tastbaar, op voorbeelden gebaseerd bewijs van de modelbetrouwbaarheid onder omstandigheden
analoog aan de huidige. De MMV presenteert vervolgens een algemene beleggingsaanbeveling,
transparant gekoppeld aan de prestaties van de best presterende modellen op deze historisch
vergelijkbare patronen.

De onderzoeksmethodologie omvatte verschillende kernfasen. Eerst zijn historische dagelijkse
beursgegevens van IBM (1962-2024) verzameld en voorbewerkt, en is een set van acht tech-
nische indicatoren ontwikkeld als inputkenmerken voor de voorspellende modellen. De zes
geselecteerde ML-modellen zijn gëımplementeerd, en hun voorspellende prestaties zijn geanaly-
seerd voor procentuele rendementsprognoses op een horizon van 1 en 10 dagen. Deze analyse
bracht significante overfitting aan het licht voor de meeste modellen bij gebruik van standaard
hyperparameters, met over het algemeen zwakke statistische voorspellende nauwkeurigheid op
ongeziene testdata. Er werd echter een interessante divergentie waargenomen: sommige model-
len, ondanks zwakke statistische meetwaarden, leverden positieve totale rendementen op in een
gëıdealiseerde handelssimulatie en presteerden beter dan een Buy & Hold-benchmark. Hierna
is het beslissingsondersteunend systeem ontwikkeld, met twee hoofdinterfaces: de uitgebreide
MMV en een eenvoudigere “Single Model View” (SMV). De SMV presenteerde enkel voor-
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spellingen van het Random Forest-model, zonder de multimodale vergelijkingen of diepgaande
historische similariteitsanalyse. Ten slotte is een empirisch gebruikersonderzoek uitgevoerd met
22 deelnemers die met zowel de SMV als de MMV werkten. De studie verzamelde kwanti-
tatieve en kwalitatieve gegevens over gebruikersvertrouwen, vertrouwen in hypothetische be-
leggingsbeslissingen, waargenomen systeembruiksvriendelijkheid, begrip van aanbevelingen en
risicobewustzijn.

De bevindingen van het gebruikersonderzoek ondersteunden krachtig de centrale hypothese
van de thesis. De Multiple Models View (MMV) kreeg de overweldigende voorkeur van de
deelnemers en werd als significant betrouwbaarder ervaren dan de Single Model View (SMV).
Gebruikers rapporteerden significant meer vertrouwen in hun beslissingen bij gebruik van de
MMV. Zij schreven de grotere betrouwbaarheid ervan toe aan de transparantie door het zien
van meerdere modeloutputs, de contextualisering door historische patroonvergelijkingen, en de
op bewijs gebaseerde aard van de aanbevelingen. De MMV bleek ook significant effectiever
om gebruikers te helpen potentiële risico’s en onzekerheden verbonden aan voorspellingen te
begrijpen, grotendeels door modelverschillen en de variabiliteit van uitkomsten in vergelijkbare
scenario’s uit het verleden bloot te leggen. Hoewel de MMV als complexer werd ervaren dan
de SMV, wees de System Usability Scale (SUS)-score nog steeds op goede tot uitstekende
bruikbaarheid. Dit suggereert dat gebruikers bereid waren een hogere complexiteit te tolereren
in ruil voor de substantiële winst in vertrouwen en contextueel begrip.

Deze thesis toont aan dat een aanpak die meerdere machine learning-modellen combineert
met transparante, op bewijs gebaseerde historische similariteitsanalyse, de betrouwbaarheid
voor de gebruiker in algoritmische beursvoorspellingssystemen effectief kan verhogen. Door
verder te gaan dan enkelvoudige, ondoorzichtige voorspellingen en gebruikers rijkere context,
vergelijkende inzichten en begrip van modelgedrag in analoge situaties uit het verleden te bieden,
bevorderde het ontwikkelde systeem een beter gekalibreerd en gëınformeerd vertrouwen. Hoewel
de uitdaging om consistent accurate beursvoorspellingen te realiseren groot blijft, biedt dit
onderzoek waardevolle inzichten voor het ontwerpen van door kunstmatige intelligentie (KI)
gedreven financiële tools. Met dergelijke tools kunnen gebruikers met meer vertrouwen en
verantwoordelijkheid omgaan, wat de kritieke rol van transparantie en contextualisering bij het
opbouwen van vertrouwen in complexe KI-systemen onderstreept.



Summary

Stock market forecasting using advanced computational techniques, particularly machine learn-
ing (ML), offers significant potential for analyzing complex market dynamics. However, many
sophisticated ML models operate as black boxes, with their internal decision-making processes
remaining opaque to users. This lack of transparency poses a critical challenge, especially in
high-stakes financial applications, often leading to a deficit of user trust and hindering the
effective adoption of these powerful tools. This thesis addresses this trust deficit by investigat-
ing a novel approach to enhance the trustworthiness of ML-driven stock market predictions,
particularly for users who may not possess deep technical or financial expertise.

The core contribution of this research is the design, implementation, and empirical evaluation
of a decision support system that integrates predictions from multiple diverse machine learning
models with insights derived from historically similar market patterns. The central hypothesis is
that presenting users with a more holistic and interpretable view of potential market movements;
by showcasing consensus or divergence among models and contextualizing predictions with past
analogous situations, can significantly improve user trust. The system developed, particularly
through its “Multiple Models View” (MMV), incorporates six distinct ML models for stock price
prediction: Random Forest, eXtreme Gradient Boosting, Light Gradient Boosting Machine,
Long Short-Term Memory, Neural Basis Expansion Analysis for Time Series Forecasting, and
Temporal Fusion Transformer. A key innovation is the historical similarity search engine, which
identifies past 20-day market windows exhibiting strong feature similarity to the current market
conditions. This similarity search operates on features derived through Principal Component
Analysis (PCA) from the same set of eight technical indicators the ML models use as their direct
input. The system demonstrates how the integrated ML models would have performed for these
identified historical analogies, showing their predictions alongside the actual market outcomes
and their prediction errors. This provides tangible, example-based evidence of model reliability
under conditions analogous to the present. The MMV then presents an overall investment
recommendation transparently linked to the performance of the best-performing models on
these historically similar patterns.

The research methodology involved several key stages. First, historical daily stock data for
IBM from 1962 to 2024 was acquired and preprocessed, and a set of eight technical indica-
tors was engineered to serve as input features for the predictive models. The six selected ML
models were implemented, and their predictive performance was analyzed for 1-day and 10-
day horizon percentage return forecasts. This analysis revealed significant overfitting for most
models using default hyperparameters, with generally weak statistical predictive accuracy on
unseen test data. However, an interesting divergence was observed where some models, despite
poor statistical metrics, yielded positive total returns in an idealized trading strategy simu-
lation, outperforming a Buy & Hold benchmark. Following this, the decision support system
was developed, featuring two main interfaces: the comprehensive MMV and a simpler “Single
Model View” (SMV), which presented predictions from only the Random Forest model with-
out the multi-model comparisons or deep historical similarity analysis. Finally, an empirical
user study was conducted with 22 participants who interacted with both the SMV and MMV.
The study collected quantitative and qualitative data on user trust, confidence in hypothetical
investment decisions, perceived system usability, understanding of recommendations, and risk
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awareness.

The findings from the user study strongly supported the thesis’s central hypothesis. The Mul-
tiple Models View (MMV) was overwhelmingly preferred by participants and perceived as
significantly more trustworthy than the Single Model View (SMV). Users reported significantly
higher confidence in their decisions when using the MMV, attributed its greater trustworthiness
to the transparency afforded by seeing multiple model outputs, the contextualization provided
by historical pattern comparisons, and the evidence-based nature of its recommendations. The
MMV was also found to be significantly more effective in helping users understand potential
risks and uncertainties associated with predictions, largely by exposing model disagreements
and the variability of outcomes in similar past scenarios. While the MMV was perceived as
more complex than the SMV, its System Usability Scale (SUS) score still indicated good to
excellent usability, suggesting that users were willing to tolerate increased complexity for the
substantial gains in trust and contextual understanding.

This thesis demonstrates that an approach combining multiple machine learning models with
transparent, evidence-based historical similarity analysis can effectively enhance user trustwor-
thiness in algorithmic stock forecasting systems. By moving beyond single, opaque predictions
and providing users with richer context, comparative insights, and an understanding of past
model behavior in analogous situations, the developed system fostered a more calibrated and
informed sense of trust. While the challenge of achieving consistently accurate stock mar-
ket predictions remains profound, this research offers valuable insights into designing Artificial
Intelligence (AI)-driven financial tools that users can engage with more confidently and respon-
sibly, underscoring the critical role of transparency and contextualization in building trust in
complex AI systems.
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Chapter 1

Introduction

Stock markets have long intrigued investors and researchers, representing a domain where strate-
gic decision-making can lead to significant financial outcomes [BK12]. Investors frequently rely
on technical indicators like the Relative Strength Index (RSI) and Bollinger Bands to identify
patterns signaling potential price reversals [Huy24]. For instance, RSI values below 30 may
suggest an oversold asset, while Bollinger Bands provide insight into price volatility and devia-
tions from the mean, potentially indicating an inevitable price move [Huy24]. However, despite
strategies aligned with established technical principles, trades do not always yield the expected
results, highlighting the apparent randomness of market movements. The advent of sophis-
ticated computing techniques, particularly machine learning (ML), has opened new frontiers
for analyzing these complex market dynamics and forecasting price movements [XL24]. Yet,
despite their potential predictive power, many advanced ML models operate as black boxes,
with their internal decision-making processes remaining opaque to users. This lack of trans-
parency poses a critical challenge, especially in high-stakes financial applications, often leading
to a deficit of user trust and hindering the effective adoption of these powerful tools [Bar+20;
BB21; Li+24].

This thesis addresses this trust deficit by investigating a novel approach to enhance the trust-
worthiness of ML-driven stock market predictions, particularly for users who may not possess
deep technical or financial expertise. We posit that presenting predictions from multiple di-
verse machine learning models, rather than relying on a single, potentially opaque forecast, can
offer a more robust and nuanced perspective, especially given the market’s inherent complexity
[XL24]. By allowing users to observe areas of consensus or divergence among these models and
by further contextualizing these outputs with analytically identified similar historical market
patterns and the models’ past performance in those analogous situations, we aim to bridge this
trust gap. Therefore, the primary research question guiding this study is: “How can multiple
machine learning models be used to enhance trustworthiness in stock market predictions using
similar historical patterns?”.

The pursuit of predictive advantages in financial markets is often framed by the Efficient Mar-
ket Hypothesis (EMH), formalized by Eugene Fama, which, in its strong form, posits that all
available information is already reflected in prices, rendering consistent outperformance through
technical or fundamental analysis unachievable [Fam70]. Indeed, empirical evidence often sup-
ports this view, with 61% of actively managed funds failing to outperform market benchmarks
[VV14]. Yet, the persistent success of quantitative firms like Renaissance Technologies, whose
Medallion Fund has achieved extraordinary returns far exceeding market averages for decades,
as illustrated in Figure 1.1, challenges the strictest interpretations of EMH [Zuc19; Mag23].
These successes, achieved by applying sophisticated probabilistic models and statistical tech-
niques such as Markov processes to segment market states and exploit nonrandom anomalies
amid market noise, suggest that market inefficiencies can, at least by some, be systematically
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10 CHAPTER 1. INTRODUCTION

Figure 1.1: Annual returns of the S&P 500 Index compared to the Medallion Fund (net
of fees) from 1988 to 2021. The orange bars represent the annual returns of the S&P 500,
while the blue bars depict the returns of the Medallion Fund. The vertical axis measures
the percentage annual return, while the horizontal axis represents the years within the
given period. The figure illustrates the substantial outperformance of the Medallion Fund
relative to the S&P 500, with consistently higher returns across nearly all years, even
during market downturns. Figure inspired by [Mag23].

identified and leveraged [Zuc19]. As Jim Simons reportedly noted, “the assumption that prices
are always correct is false - anomalies persist, and with the right quantitative techniques, they
can be used for predictive insights” [Zuc19]. This ongoing debate underscores the potential
value of advanced computational methods if their outputs can be made sufficiently reliable and
trustworthy.

Effectively integrating ML models into financial decision-making requires addressing the afore-
mentioned black-box problem. Explainable Artificial Intelligence (XAI) has emerged as a crucial
field dedicated to developing methods that render ML model outputs and reasoning processes
understandable to humans [BB21]. In finance, where forecasts carry significant economic im-
plications, understanding why a model makes a particular recommendation is essential. A lack
of transparency can lead to distrust, where effective models are ignored, or overtrust, where
flawed recommendations are blindly followed, potentially resulting in financial losses or regu-
latory issues [Li+24; Bar+20]. XAI aims to empower users with the insights needed to assess
algorithmic advice critically, fostering informed decision-making, better risk management, reg-
ulatory compliance, and broader financial inclusion [BB21; Bar+20]. Our approach, leveraging
multiple models and historical similarity, aligns with XAI principles by seeking to provide in-
tuitive, evidence-based explanations for predictions.

This thesis focuses on technical analysis for stock price prediction using machine learning.
Technical analysis utilizes quantifiable, high-frequency historical market data, primarily price
movements (Open, High, Low, Close) and trading volumes, to identify patterns and predict
future trends [PJ16]. Technical analysis contrasts with fundamental analysis, which seeks to
determine a stock’s intrinsic value by examining company financials and broader economic
conditions for long-term investment [PJ16]. Technical analysis is well-suited for ML models
as it provides structured inputs and is believed to rapidly incorporate all available market
information, bypassing potential delays and subjectivity associated with fundamental factors
[BK23; PJ16]. However, the stock market is inherently multifaceted, nonlinear, and dynamic,
influenced by macroeconomic shifts, corporate performance, geopolitical events, investor senti-
ment, and regulatory changes [XL24]. While technical analysis provides structured data, the
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investment environment remains fraught with risk arising from the uncertainty of future price
movements. Furthermore, real-world decision-making is considerably more complex than pure
rational analysis, often influenced by behavioral biases such as overconfidence, loss aversion,
and herd behavior [Vir13]. These psychological factors can lead to deviations from rational
choices, complicating the straightforward application of predictive models even when based on
robust technical data.

To empirically investigate our research question, this thesis focuses on the stock of International
Business Machines Corporation (IBM). IBM was chosen for its extensive and consistent daily
trading history dating back to 1962, providing a rich and robust dataset crucial for training
and validating diverse predictive models over various market regimes [Sta24]. We develop and
evaluate a decision support system integrating predictions from six distinct ML models. These
predictions are contextualized by a historical similarity search engine and presented to users via
an interactive dashboard to make the outputs more interpretable. The impact of this system
on user trust, confidence, and decision-making is then assessed through a dedicated user study
involving participants without deep technical expertise.

The remainder of this thesis is structured as follows. Chapter 2: Related Work reviews existing
literature relevant to this study. Key areas explored include techniques for data collection and
processing within the financial sector, the application of machine learning models for stock mar-
ket prediction, the principles and methods of Explainable AI (XAI) in finance, and theoretical
frameworks for understanding user trust in AI-driven decision support systems, including the
potential impact of multi-model approaches and similarity-based explanations.

Chapter 3: Data Acquisition and Description details the process of obtaining the IBM stock
dataset, describes its characteristics, and discusses the rationale for its selection. Chapter 4:
Data Preprocessing and Feature Engineering outlines the crucial steps to clean and prepare the
raw data for modeling, including any feature engineering techniques applied to derive meaningful
inputs for the predictive models.

Chapter 5: Predictive Modeling and Performance Analysis describes the architectures and
implementation details of the six distinct machine learning models employed: Random For-
est (RF), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (Light-
GBM), Recurrent Neural Network (RNN), Neural Basis Expansion Analysis for Time Series
(N-BEATS), and Temporal Fusion Transformer (TFT). This chapter also presents a comprehen-
sive comparative analysis of these models based on their predictive accuracy and computational
efficiency.

Chapter 6: Design of a Multi-Model Trust-Enhancing System presents the architecture and
functionality of the decision support tool developed in this research. This chapter explains
how predictions from the multiple models are integrated and combined with a similarity search
mechanism to identify analogous historical market periods. It also details the design of the user-
facing dashboard, which incorporates views for both single-model and multi-model predictions
augmented with these similarity insights.

Chapter 7: User Study on System Trustworthiness describes the methodology and presents
the findings of a user study conducted with participants without deep technical expertise.
This chapter outlines the experimental design, participant tasks involving interaction with the
different dashboard views, and the data collection methods. It then analyzes the quantitative
and qualitative data to evaluate the system’s impact on user trust, confidence, and hypothetical
investment decisions.

Finally, Chapter 8: Conclusions interprets the overall findings from the predictive modeling
and user study, connecting them to the primary research question and existing literature. This
chapter also considers the implications of the research, acknowledges its limitations, summarizes
the main contributions, and suggests potential directions for future research in this area.

By structuring the thesis around these main components, this research aims to bridge the
gap between the sophisticated capabilities of advanced predictive modeling and the critical
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need for user trust in these systems. It seeks to provide actionable insights and demonstrate
practical pathways for enhancing this trust, particularly within the application of machine
learning for stock market forecasting. The findings are intended to contribute empirical evidence
to the ongoing debates on financial market efficiency, the role of algorithmic trading, and, more
broadly, to inform the responsible integration of artificial intelligence into investment strategies.
Ultimately, the goal is to foster more informed and confident decision-making by users better
equipped to understand and leverage AI-driven financial tools.



Chapter 2

Related Work

This chapter reviews existing research relevant to this thesis, which centers on predicting stock
market prices using machine learning and improving user trust in these predictive systems.
This review examines current practices, challenges, and recent advancements across several key
domains to contextualize this research. It begins by exploring financial data acquisition for
market analysis (Section 2.1), covering common sources, types, and difficulties in obtaining
necessary data. Subsequently, it delves into preprocessing and feature engineering for financial
time series (Section 2.2), focusing on methods for cleaning, transforming, and creating useful
features. The review then surveys machine learning models commonly employed for stock price
prediction (Section 2.3), discussing their application, performance, and role in decision support.
It further addresses the crucial topics of trust and explainability in AI-driven financial decision
support (Section 2.4), including the challenges of black-box models and strategies for enhancing
user confidence through transparency. Building upon this comprehensive review, the chapter
concludes by presenting the specific approach proposed in this thesis to improve trust in AI
predictions (Section 2.5).

2.1 Financial Data Acquisition for Market Analysis

The data collection process for forecasting stock markets has evolved, driven by the increasing
availability of high-frequency financial data and alternative data sources. Many studies rely on
established financial data providers and application programming interfaces (APIs) to obtain
historical market data. For example, Khan et al. (2023) obtained Tesla Inc. stock data from the
Alpaca broker from January 1, 2016, to December 31, 2021. They split the data into training
and test sets to facilitate model evaluation [Kha+23]. Similarly, Weerapat and Kantavat (2023)
and Mozaffari and Zhang (2024) used the Yahoo Finance platform, accessible via the Python
yfinance library, to collect daily stock data over multiple years, capturing key characteristics
such as open, high, low, close, volume and adjusted closing prices [BK23; MZ24]. In addition,
Subasi et al. (2021) used Yahoo Finance to compile decades-long datasets of major stock indices
such as NASDAQ, NYSE, Nikkei, and FTSE, providing a broad time perspective on market
trends [Sub+21].

Several studies have expanded their data collection methods by integrating heterogeneous data
types and using multiple sources. For example, Huyen Chau, Nguyen Thiand Doan, and Trung
Phong (2024) collected stock price data of pharmaceutical, chemical, and fertilizer companies on
the Hanoi Stock Exchange by combining web scraping with BeautifulSoup from cophieu68.com
and API requests from vndirect.com.vn. This dual-source approach allowed the extraction and
integration of attributes such as trading date, opening, closing, highest and lowest prices, along
with trading volume [Huy24]. In another study, daily long-term OHLCV data for SPY were
combined with a custom data table of over 83,000 securities collected from multiple exchanges
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using market data from Tiingo and fundamental data from Financial Modeling Prep to calculate
variables such as the Piotroski score [Chi22]. Patil et al. (2020) further diversified their data col-
lection by including historical stock prices at both daily and minute level intervals from sources
such as Yahoo Finance and Tiingo, as well as a dataset of one million financial news articles,
blending quantitative market data with qualitative sentiment indicators [Pat+20].

Other studies have integrated nontraditional data sources to capture market sentiment and
real-time dynamics. For example, studies by Sirimevan et al. (2019) and Karami et al. (2022)
that combined stock market, social media, and news data illustrate the use of alternative data,
such as Twitter feeds, Reuters news headlines, and Google Trends data, in predictive frame-
works [Sir+19; Kha+22]. These approaches use APIs and web crawling techniques to collect
unstructured data that, combined with conventional market indicators, are used in forecasting
models. Moreover, Narkar (2019) addressed potential human bias in data selection by randomly
choosing stock symbols and using adjusted closing prices from Alphavantage to ensure that the
data reflect market values after taking into account corporate actions [Nar19].

The literature overviews diverse data collection approaches for stock market prediction. Re-
searchers have utilized traditional market data sources, such as Yahoo Finance, Alpaca, Tiingo,
and Alphavantage, and supplementary data gathered through web scraping, social media, and
news outlets.

2.2 Preprocessing and Feature Engineering in Financial
Time Series

A fundamental step in preprocessing financial data is addressing missing values and outliers.
Khan et al. (2023) highlight removing unwanted data, including trade counts, and handling
missing stock prices, which can be achieved through interpolation or by using the mean of
adjacent data points [Kha+23]. Mostafavi and Hooman (2025) specifically used linear interpo-
lation to handle missing values, particularly for indicators like the Average True Range (ATR)
and Relative Vigor Index (RVI). They employed Interquartile Range (IQR) based filtering to
remove outliers, which can significantly distort model training [MH25]. Nguyen Thi Huyen
Chau and Trung Phong Doan (2024) adopted specific rules for missing data, such as using the
previous day’s closing price for absent opening prices. They addressed logical inconsistencies,
for instance, a closing price exceeding the day’s high, by recalculating high and low values from
available opening and closing prices [Huy24].

Data normalization or scaling is another crucial preprocessing step to ensure that features with
larger magnitudes do not disproportionately influence model learning. Aldin et al. (2012) em-
phasize that normalization, for example, to a range of negative one-to-one, prevents the exces-
sive effect of high-value data points and reduces prediction errors in neural networks [ADE12].
Khan et al. (2023) and Mostafavi and Hooman (2025) both utilized Min-Max normalization
to rescale features, which aids in faster convergence of gradient descent algorithms [Kha+23;
MH25]. Nguyen Thi Huyen Chau and Trung Phong Doan (2024) employed both Min-Max
scaling for features within a zero to one hundred range and Z-Score standardization for other
features to achieve uniform scales [Huy24].

Feature engineering in financial time series often involves deriving technical indicators from
basic Open, High, Low, Close, and Volume (OHLCV) data. These indicators are designed to
capture various aspects of market dynamics, such as trend, momentum, volatility, and volume
patterns. Aldin et al. (2012) converted OHLC prices into ten technical indicators, including
the Accumulation Distribution Oscillator, Moving Average Convergence Divergence (MACD),
RSI, and Stochastic K percent [ADE12]. Similarly, Nguyen Thi Huyen Chau and Trung Phong
Doan (2024) engineered 65 features, incorporating technical indicators like Momentum, Stochas-
tic Oscillator, MACD, RSI, Bollinger Bands, and Money Flow Index (MFI), alongside features
representing price change ratios and trading volumes over specified periods [Huy24]. Khan et
al. (2023) selected nine input features for their models, including RSI, Simple Moving Average
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(SMA), ADX, and Momentum, often specifying particular look-back periods, illustrated by a
14-day RSI and a 50-day SMA [Kha+23]. It was noted, however, that their construction of fea-
tures such as “Previous (Open-Close)”, “Previous (Close-High)”, and “Previous (Close-Low)”
introduced look-ahead bias. An observed one-row shift in the data for these features meant that
they effectively used information from the period being predicted rather than strictly historical
data. This form of data leakage can artificially inflate performance metrics and underscores
the importance of meticulous data handling in time series forecasting [Kha+23]. Mostafavi and
Hooman (2025) generated an extensive set of 88 technical indicators using the TA-Lib library,
categorizing them into momentum, trend, volatility, and volume groups, underscoring the belief
that technical indicators can reveal underlying market sentiment and patterns [MH25]. Htun
et al. (2023) also note that technical indicators like RSI, stochastic oscillator, and MACD are
commonly extracted from historical price series to analyze past patterns and predict future
movements [HBP23].

Once a potentially large set of features is engineered, feature selection and dimensionality reduc-
tion become essential to mitigate the curse of dimensionality, reduce noise, prevent overfitting,
and improve model interpretability and computational efficiency. Htun et al. (2023) provide
a comprehensive survey of feature selection techniques, categorizing them into filter, wrapper,
embedded, and information theory-based methods, and feature extraction techniques such as
Principal Component Analysis (PCA) and Autoencoders (AE) [HBP23]. In practice, Mostafavi
and Hooman (2025) applied PCA to their 88 technical indicators, retaining 95 percent of the
variance and reducing the feature set to 35 principal components. They also performed rule-
based feature selection by excluding low variance indicators, like the Chaikin Oscillator, and
highly correlated features, specifically those with a Pearson’s correlation coefficient absolute
value greater than 0.95, before applying PCA [MH25]. While Htun et al. (2023) highlight Ran-
dom Forest (RF) and correlation criteria as widely used feature selection methods and PCA
and AEs for extraction, the specific application of diverse filter, wrapper, or embedded selec-
tion techniques beyond PCA and rule-based exclusion was less detailed in the other primary
research sources provided [HBP23].

2.3 Machine Learning Models for Stock Price Prediction

The prediction of stock market prices and trends has been a significant area of research, with
machine learning (ML) techniques increasingly being applied to tackle this complex and volatile
domain. The literature reveals various ML models, from traditional algorithms to advanced deep
learning architectures. Consistent with the methodological approach of this thesis, this review
will concentrate on studies where such models are primarily driven by technical indicators
derived from historical price data, highlighting the machine learning models frequently adopted
for this specific forecasting application.

2.3.1 Traditional Machine Learning Approaches

Simpler ML models have been foundational in stock prediction research, often serving as base-
lines or components in more complex systems.

Linear Regression, a basic statistical method, has been applied to predicting stock prices.
Bansal et al. (2022) included Linear Regression in their comparative study of five algorithms
for predicting stock prices of Indian companies, evaluating its performance alongside more
complex models [BGC22]. The intrinsic non-linear nature of financial markets can limit its
efficacy.

Support Vector Machines (SVM), particularly Support Vector Regression (SVR) for predicting
continuous price values, are frequently employed. Henrique et al. (2018) conducted an exten-
sive study on SVR to predict daily and up-to-the-minute stock prices using various technical
indicators. They found that SVR with periodic retraining and linear kernels showed predictive
power compared to a random walk model [HSK18]. Narkar (2019) also utilized SVM, among
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other classifiers, for predicting the direction of stock price changes based on numerous technical
indicators extracted from past data [Nar19]. In their survey, Htun et al. (2023) identify SVM as
a popularly deployed ML method for regression and classification tasks in finance, often using
technical indicators and macroeconomic factors as inputs [HBP23].

Other traditional classifiers such as K-Nearest Neighbors (KNN), Näıve Bayes (NB), Logistic
Regression (LR), and Decision Trees (DT) have also been explored, primarily for predicting
the direction (up/down/neutral) of stock price movements. Narkar (2019) included KNN in
his comparative study for directional prediction [Nar19]. Khan et al. (2023) evaluated nine
ML models: SVM, DT, LR, NB, KNN, RF, Adaptive Boosting (AdaBoost), XGBoost, and
Artificial Neural Network (ANN) for predicting stock market direction, reporting that Logistic
Regression achieved the highest accuracy (85.51%) in their 1-day time frame strategy using
traditional methodology [Kha+23]. Yiqiong and Xiaodong (2024) reviewed the use of Hidden
Markov Models (HMM) and Bayesian Networks, noting HMM’s interpretability but limita-
tions in predicting discrete data and representing inter-variable relationships, which Bayesian
Networks can address by modeling causal relationships between stock indicators [XL24].

2.3.2 Ensemble Methods

Ensemble learning techniques, which combine multiple models to improve predictive perfor-
mance and robustness, are prominent in stock market forecasting.

Random Forest (RF) is a widely adopted ensemble method. Zheng et al. (2024) demonstrated
that their RF model, using six technical indicators, achieved high accuracy (80-99%) in predict-
ing long-term stock trends for Apple, Samsung, and GE, with accuracy stabilizing around 98%
for forecast horizons greater than 60 days [Zhe+24]. Narkar (2019) also found RF to perform
well in his study on directional prediction [Nar19]. Yang (2025) utilized RF as a benchmark
model in the context of corporate financial forecasting [Yan25]. González et al. (2020) pro-
vide an extensive review and empirical comparison of various bagging (like RF) and boosting
ensembles for classification tasks [Gon+20]. Htun et al. (2023) highlight RF as a successful
ensemble method, often used with technical indicators for predicting stock direction and stock
selection [HBP23]. Khan et al. (2023) found RF to be one of the top performers, achieving
91.27% accuracy with their proposed 15-min interval strategy [Kha+23].

Gradient Boosting Machines, such as XGBoost and LightGBM, are another powerful class of
ensemble methods. Mostafavi and Hooman (2025) applied XGBoost (alongside RF, SVR, and
LSTM) to predict S&P 500 index prices using 88 technical indicators, identifying it as a strong
performer after PCA-based feature selection [MH25]. Khan et al. (2023) also included XGBoost
and AdaBoost in their comparative study, where XGBoost showed performance comparable
to RF [Kha+23]. Yang (2025) used XGBoost as a benchmark in their CNN-LSTM study
[Yan25]. González et al. (2020) cover XGBoost, LightGBM, AdaBoost, and LogitBoost in
their comprehensive analysis of ensemble techniques [Gon+20].

2.3.3 Neural Networks and Deep Learning

Neural networks, particularly deep learning models, have gained significant traction due to their
ability to model complex non-linear relationships in financial time series.

Artificial Neural Networks (ANNs) represent an early application of neural networks in this
domain. Aldin et al. (2012) focused on ANNs for predicting stock price index variations using
technical indicators such as Moving Averages, RSI, CCI, and MACD [ADE12]. Htun et al.
(2023) and Khan et al. (2023) also reference or apply ANNs in their respective studies [HBP23;
Kha+23].

Recurrent Neural Networks (RNNs), especially Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) architectures are popular for their ability to capture temporal dependen-
cies. Sirimevan et al. (2019) employed LSTM-RNN models, integrating them with sentiment
data (Twitter, web news, search queries) for stock price prediction of Dow Jones Industrial
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Average (DJIA) components [Sir+19]. Mozaffari and Zhang (2024) compared LSTM with
Transformer and Prophet for stock index prediction, finding LSTM to be a strong contender,
though ultimately outperformed by the Transformer model [MZ24]. Chang et al. (2024) con-
ducted a comparative analysis of LSTM and GRU for predicting technology stock prices (Apple,
Amazon, Google, Microsoft), concluding that GRU generally outperformed LSTM in terms of
Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and training time [Cha+24].
Phuoc et al. (2024) applied LSTM with technical indicators (SMA, MACD, RSI) to predict
stock trends in the Vietnamese market, achieving high accuracy (around 93%) [Phu+24]. Yang
(2025) also used standalone LSTM as a benchmark against their hybrid CNN-LSTM model
[Yan25]. Htun et al. (2023) list LSTM as a frequently used DL model in stock market predic-
tion, often combined with feature selection [HBP23]. Patil et al. (2020) mentioned LSTM in
the context of their graph-based deep learning models [Pat+20].

Convolutional Neural Networks (CNNs) have also been adapted for financial forecasting. Chan-
dar (2022) proposed a TI-CNN model, which converts ten technical indicators into Gramian
Angular Field images and uses a CNN for buy/sell/hold signal prediction, reporting high ac-
curacy (mean 77.75%) on NASDAQ and NYSE data [Cha22]. Buachuen and Kantavat (2023)
explored hybrid LSTM-CNN and CNN-LSTM architectures for an automated stock trading
system, leveraging CNNs for spatial feature extraction from stock data and LSTMs for se-
quence modeling [BK23]. Yang (2025) implemented a hybrid CNN-LSTM model for corporate
financial forecasting, finding it superior to standalone LSTM and other benchmarks [Yan25].
Patil et al. (2020) also utilized CNNs within their graph-based prediction framework, creating
spatio-temporal convolution layers [Pat+20]. Htun et al. (2023) list CNNs as a DL method
used for stock price and trend prediction [HBP23].

Transformer models, known for their attention mechanisms, are a recent advancement in time
series forecasting. Mozaffari and Zhang (2024) provided a direct comparison, showing that their
Transformer model outperformed both LSTM and Prophet for stock index prediction (AAL and
AAME stocks) [MZ24]. A specific architecture, the Temporal Fusion Transformer (TFT), has
also been explored for its ability to integrate static metadata with temporal data and its use
of multi-horizon forecasting. Hu (2021) utilized TFT for stock price prediction, comparing its
performance against SVR and LSTM and noting its effectiveness when sufficient training data
is available [Hu21]. Buachuen and Kantavat (2023) incorporated Attention Layers, a core com-
ponent of Transformers, into their deep learning models for an automated stock trading system
[BK23]. Htun et al. (2023) and Liu and Wang (2024) acknowledge Transformers in their surveys
of DL methods for time series forecasting, with Liu and Wang (2024) providing an extensive
review of Transformer-based models like Informer and Autoformer [HBP23; LW24].

Other deep learning architectures such as Deep Belief Networks (DBNs) and Restricted Boltz-
mann Machines (RBMs) are mentioned by Htun et al. (2023) as having been applied in stock
market prediction, often for feature extraction or as part of hybrid systems [HBP23]. Liu
and Wang (2024) also survey Multilayer Perceptron (MLP)-based models like N-BEATS and
DLinear for time series forecasting [LW24].

2.3.4 Reinforcement Learning

Deep Reinforcement Learning (DRL) is an emerging area in financial forecasting. Chiumera
(2022) focused on Proximal Policy Optimization (PPO), a DRL algorithm, for time series
forecasting in quantitative finance, using OHLCV data and technical indicators. The study
compared PPO’s performance against buy-and-hold strategies and explored optimal hyperpa-
rameter configurations [Chi22]. Patil et al. (2020) also explored DRL within their graph-based
models [Pat+20], and Htun et al. (2023) included DRL in their survey of advanced techniques
[HBP23]. Van et al. (2024) proposed hybridizing deep learning predictions with reinforcement
learning; Deep Q-Network (DQN), Double Deep Q-Network (DDQN), and Rainbow DQN to
generate trading signals [TNP23].
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2.3.5 Hybrid and Graph-Based Models

Several studies propose hybrid models that combine or integrate different ML techniques with
other paradigms like graph theory. Patil et al. (2020) introduced a novel approach using graph
theory to model spatiotemporal relationships between stocks, creating correlation-based and
causation-based graphs from news co-mentions. They then applied deep learning with Graph
Convolutional Networks (GCN) and traditional ML in the form of Linear Regression with
community detection to this graph structure for prediction [Pat+20]. As mentioned, hybrid
CNN-LSTM models are also common [Yan25; BK23].

2.3.6 Performance Metrics and Validation Strategies

The evaluation of machine learning models applied to stock prediction using technical indi-
cators is typically characterized by consistent performance metrics and validation strategies
within the reviewed literature. Key performance metrics frequently cited include accuracy,
Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), F1-score, and R-squared,
alongside finance-specific measures such as the Sharpe ratio and maximum drawdown [Kha+23;
Chi22; Cha+24; Zhe+24; HSK18]. Furthermore, these models are often benchmarked against
traditional forecasting methods like ARIMA or baseline investment strategies such as buy-
and-hold to gauge their relative effectiveness. Robust validation techniques, including k-fold
cross-validation or rolling window approaches, are also emphasized to ensure the generalizability
and reliability of the prediction results [HSK18; Huy24; Cha22]. The development of decision
support systems frequently follows, incorporating these evaluated models to provide actionable
insights for investors [Yan25].

2.4 Trust and Explainability in AI-Driven Financial De-
cision Support

Integrating Artificial Intelligence (AI) into financial decision-making has brought significant
advancements in predictive accuracy and efficiency [Yan25; Cha+24; XL24]. However, the
increasing complexity of these AI models, particularly black-box algorithms like deep neural
networks, raises serious concerns regarding user trust and the need for model transparency
[Bar+20; BB21]. This related work section reviews literature pertinent to trust and explain-
ability in AI-driven financial decision-support systems, beginning with a brief overview of the
sociological and psychological underpinnings of trust, then focusing on trust in AI decision-
making, particularly within the high-stakes financial domain. It will also explore the challenges
posed by opaque models and discuss strategies for building user confidence through transparency
and clear explanations, including the potential of multi-model approaches and similarity-based
explanations.

From a sociological and psychological perspective, trust is a fundamental component of human
interaction and societal functioning. “It involves a willingness to be vulnerable to the actions of
another party based on the expectation that the other will perform a particular action important
to the trustor, irrespective of the ability to monitor or control that other party” [Cur24; Afr+24].
This concept extends to interactions with technology, where users must trust that AI systems
will operate reliably and in their best interest. In AI decision-making, particularly in finance,
where outcomes can have significant monetary and personal consequences, establishing and
maintaining user trust is paramount [SMM23; Yeo+25].

The financial sector, characterized by high risk and the need for accountability, presents unique
challenges and opportunities for AI. While AI models can analyze vast amounts of data to
identify profitable investment strategies or assess creditworthiness with high accuracy [Yan25;
Cha+24; XL24], their black-box nature often hinders user acceptance and regulatory compliance
[CK24; Yeo+25]. Investors and financial professionals may be hesitant to rely on predictions or
recommendations if they cannot understand the underlying reasoning of the AI model [BB21].
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This lack of transparency can lead to a deficit of trust, even if the model demonstrates superior
performance [Afr+24].

Explainable AI (XAI) has emerged as a pivotal field in addressing these challenges. XAI
aims to develop methods and techniques that make the decisions of AI systems understand-
able to humans [Bar+20]. In finance, XAI can justify algorithmic trading decisions, credit
scoring outcomes, or fraud detection alerts, thereby fostering user confidence and enabling
more informed decision-making [CK24; Yeo+25]. Several XAI techniques have been proposed,
ranging from model-agnostic methods like LIME (Local Interpretable Model-agnostic Explana-
tions) and SHAP (SHapley Additive exPlanations), which can explain any black-box model, to
model-specific approaches that leverage the internal structure of particular algorithms [Bar+20;
Han+21; WL21]. These methods often focus on identifying important features, providing local
explanations for individual predictions, or generating simplified surrogate models that approx-
imate the behavior of the complex AI [WL21; Bar+20].

The concept of trustworthiness in AI is multifaceted, encompassing not only the accuracy and
reliability of the model but also its fairness, robustness, and transparency [Afr+24]. Research
by Schreibelmayr et al. (2023) investigated user perceptions of a financial AI assistant, finding
significant differences in trust levels based on initial impressions and the perceived competence
and understandability of the system [SMM23]. This highlights the importance of tailoring
explanations to the target audience and their existing knowledge.

One promising avenue for enhancing trust and understanding in AI-driven financial predictions
is using multi-model approaches. Instead of relying on a single, potentially opaque model, de-
cision support systems can integrate predictions and explanations from several diverse models
[Yeo+25; WL21]. This can provide a more robust and nuanced view of the prediction, highlight-
ing areas of consensus or disagreement among models. Furthermore, comparing the reasoning
of different models can offer deeper insights than a single explanation might provide.

Similarity-based explanations, which provide users with historical examples or analogous situa-
tions similar to the current prediction context, represent another valuable approach [Han+21].
In finance, this could involve showing past market scenarios or individual stock behaviors
that resemble the current situation, thereby helping users to contextualize and understand
the model’s forecast [NSK22]. Hanawa et al. (2021) evaluated different relevance metrics for
similarity-based explanations, emphasizing the importance of selecting metrics that align with
human intuition [Han+21]. Naveed et al. (2022) further explored user-centric taxonomies of
explanations in the financial domain, stressing the need for domain-specific information and
shared understanding between the user and the AI system [NSK22].

Ultimately, building trust in AI-driven financial decision support requires a holistic approach
that considers the technical aspects of model accuracy and explainability, the psychological
factors influencing user perception and confidence, and the specific contextual demands of the
financial domain [Afr+24; Yeo+25].

2.5 A Proposed Approach to Enhance Trust in AI Pre-
dictions

The preceding review of related work underscores both the advancements in applying machine
learning to stock market prediction and the persistent challenges surrounding user trust, par-
ticularly due to the black-box nature of many sophisticated models. Drawing inspiration from
these areas, this thesis proposes to investigate a novel approach to enhance trustworthiness in
AI-driven stock market predictions, specifically for users who may not possess deep technical
or financial expertise.

Our planned research will focus on a decision support system’s design, implementation, and
empirical evaluation. This system will be engineered to address the trust deficit by integrating
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insights from multiple machine-learning models with context derived from historically similar
market patterns. The core components of our proposed approach are:

• Leveraging Multiple Predictive Models: Inspired by the common practice of using
diverse ML models in financial forecasting (Section 2.3) and the XAI principle that mul-
tiple perspectives can offer richer insights, our system will incorporate several distinct
machine learning algorithms [Yeo+25; WL21]. Instead of relying on a single prediction,
users will be presented with forecasts from various models, allowing them to gauge con-
sensus or divergence.

• Incorporating Historical Similarity Analysis: Building on the concepts of similarity-
based explanations in XAI, the proposed system will feature a mechanism to identify
and present past market periods that exhibit strong feature similarity to the current
market conditions [Han+21; NSK22]. The key here is that the features used for similarity
matching will be the same technical indicators and temporal window length used as input
by the predictive models. This ensures that similar historical patterns are analogous
regarding the information the ML models are processing.

• Demonstrating Past Model Behavior in Similar Contexts: A crucial aspect of
our proposed approach, differentiating it from generic similarity displays, is that for each
identified historically similar pattern, the system will demonstrate how the integrated
machine learning models would have performed had they been presented with that specific
past input sequence. This will involve showing the models’ predictions for that past
instance alongside the actual market outcome and the resulting prediction error. This
aims to provide tangible, example-based evidence of model reliability or lack thereof
under conditions analogous to the present.

• Developing Transparent Recommendation Logic: The system will aim to provide
an overall investment recommendation (e.g., Buy, Sell, Hold). However, departing from
opaque recommendations, the logic behind this suggestion will be transparently linked to
the performance of the models on the identified historically similar patterns rather than
being a simple aggregation of current predictions.

What sets this proposed research apart is not merely the use of multiple models or historical
data, but the specific synergistic integration of these elements into a user-facing system designed
explicitly to foster calibrated trust. While the literature discusses multi-model systems and
similarity-based XAI, the intended contribution here is to:

1. Implement a specific form of similarity-based explanation where historical analo-
gies are directly tied to the ML models’ input space and are used to showcase concrete
past performance of these very models. This moves beyond just showing similar past price
charts to showing similar past model input and performance scenarios.

2. Empirically evaluate the impact of this integrated system on user trust, con-
fidence, and decision-making, particularly for an audience without deep technical
expertise. Many XAI techniques are proposed, but rigorous user studies evaluating their
effectiveness in enhancing trust within the specific context of financial predictions derived
from multiple, complex models augmented by such historical performance insights are less
common. This evaluation will compare user responses to this multifaceted system against
a more traditional, single-model prediction interface.

The ultimate goal is to investigate whether this approach; providing users with multiple model
perspectives, relevant historical analogies, and direct evidence of past model behavior in similar
situations, can make AI-driven stock market predictions more understandable, interpretable,
and, consequently, more trustworthy. This research endeavors to provide actionable insights for
designing financial AI tools that users can engage with confidently and responsibly.



Chapter 3

Data Acquisition and
Description

The foundation of this research rests on reliable financial data. This chapter details the acqui-
sition and description of the historical stock market information used throughout the study. It
begins by identifying the data source and the tool used for retrieval (Section 3.1). Subsequently,
the core components of the dataset, specifically Open-High-Low-Close (OHLC) prices and trad-
ing volume, are defined and explained (Section 3.2, Section 3.3). The chapter also clarifies the
decision to use unadjusted price data (Section 3.4) and presents the rationale for selecting Inter-
national Business Machines Corporation (IBM) stock and the daily data frequency for analysis
(Section 3.5). This establishes the specific dataset that forms the basis for the preprocessing
steps detailed in Chapter 4.

3.1 Data Source

The data used in this study is obtained from Yahoo Finance, a widely recognized platform
for accessing comprehensive financial information, including stock data, historical prices, mar-
ket summaries, and financial news. Yahoo Finance serves as an accessible and reliable data
provider that is frequently used in research to retrieve historical and real-time market infor-
mation as discussed in Section 2.1. The platform provides detailed data on various financial
instruments, including stocks and exchange-traded funds (ETFs), giving researchers access at
multiple timeframes, including intraday, daily, weekly, and monthly intervals [Sub+21].

To automate data retrieval, this research uses yfinance, a Python library developed to enable
easy access to Yahoo Finance’s financial data. The yfinance package provides a convenient
API for downloading data directly from Yahoo Finance in a structured format suitable for
analysis. With yfinance, users can access historical stock data, including open, high, low, close,
and adjusted close prices, as well as volume information [MZ24]. This package is often used in
quantitative finance and data science research because of its accessibility, easy integration with
Python, and ability to provide reliable financial data, as discussed in Section 2.1.

3.2 OHLC Data

OHLC data is an abbreviation for open, high, low, and close prices, which are fundamental
components in the technical analysis of financial data. These four data points are provided for
a specific time interval, such as daily, weekly, or monthly. Analysts use them to evaluate price
movements within that time period. The OHLC format is used for charting price action as it
provides insight into the price behavior of a security during a specific time frame [BGC22].
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Figure 3.1: Illustrating the structure of candlestick charts used in financial markets.
The left candlestick represents a bullish (green) candle, where the closing price is higher
than the opening price. In contrast, the right candlestick represents a bearish (red)
candle, where the closing price is lower than the opening price. Each candlestick consists
of a body, which denotes the range between the opening and closing prices, and upper
and lower shadows (wicks), which indicate the highest and lowest prices reached during
the trading period. Figure inspired by [Nna24].

Open Price The open price refers to the price at which a financial instrument, such as a
stock, begins trading at the beginning of the chosen time period. This price is essential
because it is the starting point from which the price movement for the session is measured.
A comparison between the open price and the closing price of the previous period can
provide insight into investor sentiment and help identify gaps or sudden shifts in market
dynamics [Jog24].

High Price The highest price represents the asset’s highest traded price during the speci-
fied period. This value is significant because it indicates the peak of buying interest or
bullish momentum within the time frame. High prices are especially relevant when de-
tecting resistance levels, where the price may struggle to move past a certain point due
to oversupply [Jog24].

Low Price The lowest price is the lowest point at which the asset trades during the selected
period. This value indicates the maximum bearish momentum or lowest level of buying
interest during that session. Low prices are crucial for identifying support levels, where
downward pressure may ease due to an increase in demand [Jog24].

Close Price The close price is the final price at which the security trades during the period.
It is often considered the most crucial of the OHLC components because it reflects the
market’s final consensus on the asset’s value at the end of the period. The closing price
is commonly used in various technical indicators. It is often compared to the open price
to assess whether the market has gone up or down during the period [Jog24].



3.3. VOLUME 23

3.2.1 Interpreting OHLC Data from Candlestick Charts

Candlestick charts are a standard method of visualizing OHLC data. Each candlestick repre-
sents the open, high, low, and close prices for a given period [Mit24]. The candlestick’s body is
formed between the open and close prices, while the shadows, also called wicks, extend to the
high and low prices, as shown in Figure 3.1.

With a green (bullish) candlestick, the open price is on the lower boundary of the body, and
the close price is on the upper boundary. This configuration indicates that the price has risen
during the period. In contrast, in a red (bearish) candlestick, the open price is at the body’s
upper limit, and the close price is at the lower limit, indicating that the price fell during the
period [Mit24].

• The top shadow extends from the body to the highest price and represents the highest
price level reached during the period [Jog24].

• The bottom shadow extends from the body to the lowest price and represents the lowest
price level achieved during the period [Jog24].

Candlestick charts are handy for identifying patterns that signal potential price movements,
such as bullish reversals, bearish continuations, or indecision in the market. By examining the
relative lengths of the body and shadows, along with the color of the candlestick, traders can
infer market sentiment and anticipate future price movements [Jog24].

3.3 Volume

Trading volume is an important measure in financial markets and refers to the total number of
shares or contracts exchanged between buyers and sellers within a given time period [Nic23].
It is an important indicator of market activity and liquidity and helps measure the strength
and importance of price movements. Higher trading volumes generally indicate a more liquid
and active market where orders can be executed efficiently and with minimal price movements
[Cha21]. Conversely, lower volumes indicate less activity and possibly higher slippage due to
less liquidity.

In technical analysis, volume is particularly valuable because it provides context for price move-
ments. A price movement associated with high volume is viewed as more robust and credible
because it indicates broad participation by market participants. Conversely, low-volume price
movements may be viewed with skepticism because they may result from limited market in-
volvement and may not have sustainability [Nic23].

3.4 Unadjusted Data

The closing price of a stock represents the final price at the end of a market period and serves
as an essential measure of the stock’s actual market value [Jog24]. Although adjusted closing
prices adjust this value to account for corporate actions such as stock splits, dividends, or
rights issues, they do not reflect the actual transaction price of the stock at the time the market
closes. Instead, these adjustments are intended to normalize the stock’s historical performance
for comparison purposes, removing fluctuations caused by non-market events that may affect
nominal prices. However, this normalization may mask the true price dynamics within the
market [Gan20].

For predictive modeling purposes, this study employs the unadjusted closing price since it
directly reflects the stock’s actual transaction history. Using this measure, the analysis avoids
distortions from corporate actions, ensuring that the data truly represents market-driven values.
Consequently, in this study, reference to the “close price” of a stock will refer to the unadjusted
closing price.
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3.5 Stock Selection

Negative transfer refers to the adverse impact on the performance of a target model when
knowledge from a source domain is transferred, particularly when there is a significant diver-
gence between the source and target data distributions [Wan+19]. This phenomenon can occur
in stock prediction when data from multiple stocks with inherently different market dynamics,
behavioral patterns, and corporate actions are used, as the resulting conflicting signals may
hinder the model’s ability to generalize effectively [Jog24]. Consequently, focusing the training
on a single stock mitigates the risk of negative transfer, allowing the model to be more pre-
cisely tailored to that stock’s unique characteristics and historical patterns, thus enhancing the
precision and relevance of prediction [Wan+19].

The stock selected for this study is International Business Machines Corporation (IBM), a
world leader in the technology sector. Known for its hardware, software, and cloud services
innovations, IBM has an established reputation and a long-standing presence in the market
[PM23]. The company went public on January 2, 1962, providing significant historical data for
building and validating predictive models [Sta24]. IBM’s prominent presence in the technology
industry and consistent data availability over several decades make it a strong candidate for
this study, providing a stable and reliable basis for analysis.

Daily data of IBM stock is used in this study as it captures meaningful price movements without
losing the fundamental trends. While intraday data introduces noise and weekly data is too
broad and slow to capture short-term trends, daily data strikes a balance by providing timely
insights that preserve the essence of the stock’s underlying story. Moreover, this frequency
is the most commonly utilized in the discussed related work, Chapter 2, thereby enhancing
the comparability and robustness of the findings. The dataset spans from January 2, 1962, to
December 31, 2024.



Chapter 4

Data Preprocessing and Feature
Engineering

Building upon the data acquisition detailed in Chapter 3, this chapter addresses the essential
preparation of the historical IBM stock data for machine learning analysis. Since raw financial
time series data requires careful cleaning and transformation for effective modeling, this chapter
outlines the application of specific preprocessing and feature engineering methods.

The process begins with addressing missing values within the dataset to ensure completeness
(Section 4.1). Following this, the target variable for the predictive models is clearly defined
(Section 4.2). A core part of this chapter focuses on feature engineering, explaining how relevant
technical indicators were derived from the open, high, low, close, and volume (OHLCV) data to
serve as informative inputs for the models (Section 4.3). The chapter concludes by describing
the procedures for chronologically splitting the data into training, validation, and test sets,
applying feature scaling, and structuring the data into the sequential format required by the
time series models used later in the study (Section 4.4). Together, these steps provide the
properly formatted and structured data foundation necessary for the predictive modeling phase
presented in Chapter 5.

4.1 Handling Missing Values

Financial datasets, despite careful collection, can contain missing entries. These gaps can arise
from various factors, such as trading holidays where no data is recorded, data feed interruptions,
errors in data recording, or periods of no trading activity for a specific stock. The presence of
missing values can significantly impair the data quality, leading to biased analyses and unreli-
able performance of machine learning models, as these models often require complete datasets
to function correctly or to learn patterns accurately [Kha+23]. As discussed in Section 2.2,
addressing missing data is a fundamental preprocessing step.

Upon retrieving the IBM daily stock data spanning from January 2, 1962, to December 31, 2024,
an initial analysis was conducted to identify missing values. Before this analysis, a precautionary
step was taken to convert any potential placeholders for missing or faulty data, such as infinities,
empty strings, or zero values, into Not a Number (NaN) values. The examination revealed that
the “Open”, “High”, “Low”, and “Close” price columns, as well as the “Date” column, were
complete, containing no missing entries. However, the “Volume” column was found to have
three missing values. While this represents a very small fraction (approximately 0.02%) of the
15,859 data points in the dataset, their presence necessitates a handling strategy to ensure data
integrity for subsequent modeling.

Given the time-series nature of stock market data, where the sequence and continuity of obser-
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vations are crucial, simply deleting rows with missing values is often undesirable, even for a few
instances, as it can disrupt the temporal structure. Instead, imputation techniques, such as in-
terpolating or using adjacent data points, are preferred to handle missing stock prices [Kha+23;
MH25]. For this study, a sequential imputation strategy was employed. First, a forward fill
(ffill()) method was applied. This method propagates the last known valid observation to fill the
NaN values, a technique similar to using the previous day’s value as adopted in other financial
studies [Huy24]. This is based on the assumption that the most recent trading information is
the best estimate for a missing data point until new information becomes available. It crucially
avoids any look-ahead bias or data leakage as it exclusively uses past observations to fill the
gaps. A backward fill (bfill()) method was applied following the forward fill. This fills any
remaining NaN values (which could occur if missing values are present at the very beginning of
the dataset, although not the case here) by propagating the following known valid observation
backward. This combined approach ensures that all missing values in the “Volume” column
were effectively imputed. After applying these imputation steps, a subsequent check confirmed
that there were no remaining missing values in any column of the dataset, rendering it complete
and ready for further preprocessing and feature engineering.

4.2 Target Variable Definition

In predictive modeling for stock markets, the target variable, often denoted as Y , is the specific
outcome the model aims to forecast. This study aims to predict the daily percentage change in
the stock’s closing price. This metric is a common choice in financial forecasting. It represents
the relative return over a single trading day and inherently normalizes price changes, making
them comparable across different price levels and historical periods. This choice aligns with
common practices in financial time series analysis where returns or price change ratios, rather
than absolute price levels, are often modeled due to their more desirable statistical properties,
such as a tendency towards stationarity, which can be beneficial for certain modeling techniques
[ZE17; MH25; Pat+20].

The daily percentage change, Yt, for a given day t is calculated using the closing price of that
day, Ct, and the closing price of the immediately preceding trading day, Ct−1. The target Yt

thus represents the actual return realized on day t. It is crucial to note that Yt represents the
outcome for day t itself. The machine learning models will subsequently be trained to predict
Yt using input features derived from data available up to and including day t− 1. Constructing
input sequences via a sliding window ensures that only past information is used to predict Yt,
thereby automatically handling the temporal alignment without requiring an artificial backward
shift of the target variable column in the dataset. The formula for the target variable is:

Yt =
Ct − Ct−1

Ct−1
(4.1)

As shown in Equation 4.1, this calculation yields a continuous variable representing the propor-
tional increase or decrease in the stock’s closing price from day t− 1 to day t. After computing
this target variable for the entire IBM dataset, its distribution was analyzed. The key descrip-
tive statistics are summarized below:

• Mean: 0.000374 (or approximately 0.04%)

• Standard Deviation: 0.015778 (or approximately 1.58%)

• Minimum: −0.235185 (or approximately −23.52%)

• 25th Percentile (Q1): −0.007740 (or approximately −0.77%)

• Median (50th Percentile): 0.000000 (or 0.00%)

• 75th Percentile (Q3): 0.008140 (or approximately 0.81%)
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Figure 4.1: Distribution of the daily percentage change (target variable) for IBM stock
from January 1962 to December 2024. The histogram displays the frequency of different
percentage changes, with an overlaid kernel density estimate (KDE) curve smoothing the
distribution. The x-axis represents the percentage change, and the y-axis represents the
frequency.

• Maximum: 0.131636 (or approximately 13.16%)

The distribution of this target variable is visualized in Figure 4.1. The histogram illustrates
that daily percentage changes are predominantly clustered near zero, indicating that most daily
movements are small. The presence of tails in the distribution signifies that larger price swings,
though less frequent, occur.

With the target variable defined as the one-day-ahead percentage return, the subsequent focus
shifts to engineering a set of input features from the historical OHLCV data. These features,
derived from information available up to and including day t − 1, will be the basis for the
machine learning models to predict Yt.

4.3 Feature Engineering

Following the handling of missing values and the definition of the target variable (daily per-
centage return, Yt), the next step is feature engineering. This process involves transforming the
raw historical open, high, low, close, and volume (OHLCV) data into a set of informative input
features that capture relevant market dynamics and can be used by machine learning models
to predict the target variable. As discussed in Section 2.2, technical indicators derived from
OHLCV data are commonly used for this purpose in financial time series forecasting [ADE12;
Huy24; Kha+23; MH25].

The strategy adopted in this thesis is to carefully select a diverse set of technical indicators cov-
ering different aspects of market behavior. Following the categorization suggested by Mostafavi
and Hooman (2025), the engineered features are grouped into trend, momentum, volatility, and
volume indicators [MH25]. This diversification aims to give the models a comprehensive view
of the market state preceding the prediction target day t. Furthermore, the selection process
prioritized indicators known for their potential predictive value while aiming for relatively low
inter-correlation and stationarity. As demonstrated later in this section, the chosen features
exhibit these desirable properties, mitigating the need for extensive dimensionality reduction
techniques like PCA or complex feature selection algorithms often required when starting with
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a very large, potentially redundant feature set [HBP23; MH25]. Ensuring feature stationarity
is particularly important as it aligns with the assumptions of many time series models and can
lead to more stable and reliable predictions [ZE17; Pat+20].

The feature set incorporates indicators inspired by Chapter 2: Related Work, Section 2.2, such
as the Average Directional Movement Index (ADX), Exponential Moving Average (EMA) cor-
relations, and RSI from Khan et al. (2023), and Bollinger Bands Width (BBW, referred to
as bbb here) from Nguyen Thi Huyen Chau and Trung Phong Doan (2024) [Kha+23; Huy24].
Additional technical indicators were added to achieve a well-rounded set covering trend, mo-
mentum, volatility, and volume dynamics. All features are calculated using data available up to
and including day t− 1 to predict the target Yt. Below are the descriptions and mathematical
formulations of the eight engineered features:

4.3.1 Trend Indicators

Trend indicators aim to capture the direction and strength of the prevailing price movement
[MH25].

• Average Directional Movement Index (adx): Measures the strength of a trend, re-
gardless of its direction (up or down). A higher ADX value suggests a stronger trend,
while a lower value indicates a weaker trend or a ranging market. It is calculated based
on smoothed averages of directional movement over a specified period, typically 14 days
[MH25]. Let +DI14 and −DI14 be the 14-period Positive and Negative Directional Indi-

cators. The Directional Index (DX) is calculated as DX = 100 × |+DI14−(−DI14)|
|+DI14+(−DI14)| . The

ADX is typically a smoothed moving average (often an EMA or a Wilder’s smoothing) of
the DX values [MH25].

adxt = ADX(High[t−13:t],Low[t−13:t],Close[t−13:t], length = 14) (4.2)

Where the function uses High, Low, and Close prices over the relevant look-back period
ending at time t.

• Short-Term Close-EMA Correlation (short close ema corr): Calculates the rolling
correlation between the closing price C and its 10-period Exponential Moving Average
EMA(C, 10) over the preceding 10 periods. This feature aims to capture how closely the
price is tracking its short-term trend line [Kha+23]. Let Ci be the closing price at time i.

short close ema corrt = Corr({Ct−9, ..., Ct}, {EMA(C, 10)t−9, ..., EMA(C, 10)t})
(4.3)

Where Corr(X,Y ) denotes the Pearson correlation coefficient between the sequence of
values X and Y over the specified 10-period window ending at time t.

• Long-Term Close-EMA Correlation (long close ema corr): Similar to the short-
term version, but uses a 20-period EMA and a 20-period rolling window. This captures
the relationship between the price and its longer-term trend [Kha+23].

long close ema corrt = Corr({Ct−19, ..., Ct}, {EMA(C, 20)t−19, ..., EMA(C, 20)t})
(4.4)

Where the correlation is calculated over the specified 20-period window ending at time t.

4.3.2 Momentum Indicators

Momentum indicators measure the rate of change in prices, gauging the speed and strength of
price movements [MH25].

• Relative Strength Index (rsi): A popular momentum oscillator that measures the
speed and change of price movements, oscillating between 0 and 100. “It compares the
magnitude of recent gains to recent losses over a specified time period” (here, 14 days)



4.3. FEATURE ENGINEERING 29

to determine overbought or oversold conditions [Fas24; Huy24; TNP23]. Let AvgGain14

and AvgLoss14 be the average gains and losses over the past 14 periods ending at time t.

rsit = 100− 100

1 + AvgGain14

AvgLoss14

(4.5)

• David Varadi Oscillator (dv2): This custom indicator measures the deviation of the
closing price from the midpoint of the daily high-low range, averages this deviation over
the past 2 days and then calculates the percentile rank of this 2-day average deviation
compared to its values over the last 126 days. It aims to capture relative price momentum
or short-term overextension compared to a longer historical context, scaled between 0 and
100 [Qua24]. Let Hi, Li, Ci be the high, low, and close prices on day i.

Midi = (Hi + Li)/2 (4.6)

D1i = (Ci/Midi)− 1 (4.7)

DVi =
D1i +D1i−1

2
(4.8)

dv2t = Rankpct(DVt within {DVt−125, ..., DVt})× 100 (4.9)

Where Rankpct denotes the percentile rank function over the 126-day window ending at
time t.

4.3.3 Volatility Indicators

Volatility indicators measure the magnitude of price fluctuations, irrespective of direction
[MH25].

• Intraday Range (intraday range): Calculates the difference between the high (Ht)
and low (Lt) price for the day t, normalized by the low price. This provides a measure of
the day’s price volatility relative to its price level.

intraday ranget =
Ht − Lt

Lt
(4.10)

• Bollinger Bands Width (bbb): Measures the width between the upper and lower
Bollinger Bands, normalized by the middle band (typically a Simple Moving Average).
“A wider band indicates higher volatility, while a narrower band suggests lower volatility”
[Gee24; Huy24]. Here, a 20-period SMA and two standard deviations are used for the
bands. Let SMA(C, 20)t be the 20-period SMA of closing prices, and StdDev(C, 20)t be
the 20-period standard deviation, calculated over the window ending at time t.

MiddleBandt = SMA(C, 20)t (4.11)

UpperBandt = MiddleBandt + 2× StdDev(C, 20)t (4.12)

LowerBandt = MiddleBandt − 2× StdDev(C, 20)t (4.13)

bbbt =
UpperBandt − LowerBandt

MiddleBandt
(4.14)

4.3.4 Volume Indicator

Volume indicators relate price movements to trading activity [MH25].

• Volume Momentum (volume momentum): Compares the current day’s trading volume
(Vt) to its average volume over a recent period (here, 20 days). Values significantly above
1 suggest an unusually high trading activity, potentially confirming a price move, while
values below 1 indicate lower-than-average activity [MH25]. Let SMA(V, 20)t be the
20-period SMA of volume over the window ending at time t.

volume momentumt =
Vt

SMA(V, 20)t
(4.15)
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Figure 4.2: Feature Correlation Matrix. This heatmap displays the Pearson correlation
coefficients between the engineered features and the target variable (’return’). Red indi-
cates a positive correlation, blue indicates a negative correlation, and the color’s intensity
represents the correlation’s strength. Values range from -1.00 to 1.00. The diagonal shows
perfect correlation (1.00) of each feature with itself. Only the lower triangle is shown due
to symmetry.

4.3.5 Feature Validation: Correlation and Stationarity

After engineering these eight features, two important checks were performed: assessing multi-
collinearity among features and testing for stationarity.

Correlation Analysis: A Pearson correlation matrix was computed for the engineered fea-
tures and the concurrent daily percentage return (labeled “return” in the matrix, calculated as
(Ct−Ct−1)/Ct−1), visualized in Figure 4.2. The analysis revealed that the absolute correlation
coefficients between all pairs of the eight input features remain relatively low. The highest ab-
solute correlation observed between any two distinct input features was 0.45, occurring between
bbb and intraday range, indicating that the selected features capture different facets of mar-
ket information without significant redundancy among themselves. The matrix also shows the
concurrent correlation between each feature and the daily return realized on the same day. No-
tably, the feature dv2 exhibits the highest absolute concurrent correlation with the daily return
at 0.48. While this indicates a relatively strong relationship between the dv2 value and the price
movement on the same day, it does not directly measure the predictive power of dv2 at time
t−1 for the target return at time t. However, the primary goal of checking for multicollinearity
among the input features is achieved, confirming they are sufficiently independent.

Stationarity Test: Many time series models perform better with stationary input data, where
statistical properties like mean and variance do not change over time [ZE17; Pat+20]. The
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Augmented Dickey-Fuller (ADF) test was applied to each of the eight engineered features to
check for stationarity. “The null hypothesis of the ADF test is that the time series has a
unit root, meaning it is non-stationary” [Ali23]. The test results provided strong evidence
against this null hypothesis for all features. Each feature yielded a highly significant negative
ADF statistic, and the corresponding p-value was effectively 0.0, which is definitively less than
the conventional significance level of 0.05. Therefore, the null hypothesis was rejected for all
features, concluding that all engineered input features are stationary.

4.4 Data Splitting, Scaling, and Sequence Creation

Following the definition of the target variable and the engineering and validation of features,
the final data preparation phase involves partitioning the dataset, applying feature scaling, and
structuring the data into sequences suitable for the time series forecasting models employed in
this study.

4.4.1 Data Splitting

To evaluate the generalization capability of the predictive models and mitigate the risk of
overfitting, the historical dataset is partitioned into distinct training, validation, and testing
subsets. Due to the temporal dependency inherent in financial time series, this partitioning
must strictly adhere to chronological order. Applying random shuffling, a technique suitable
for cross-sectional data would introduce look-ahead bias and is therefore inappropriate for this
context, particularly as temporal models are employed in this study [Nar19].

After an initial period required for the computation of features with the longest look-back,
the IBM dataset comprises 15,732 usable daily observations spanning from July 2, 1962, to
December 31, 2024. This dataset was chronologically divided according to a 70%-10%-20%
allocation:

• Training Set: Constitutes the initial 70% of the data, encompassing 11,012 observations.
This subset is utilized exclusively for training the parameters of the machine learning
models. The number of predictable target samples Yt derived from this set using a 20-day
look-back is 10,992.

• Validation Set: Comprises the subsequent 10% of the data, consisting of 1,593 observa-
tions. This subset serves to fine-tune model hyperparameters. After applying the 20-day
look-back, this split yields 1,573 predictable target samples Yt.

• Test Set: Represents the final 20% of the data, containing 3,167 observations. This
subset remains entirely unseen by the models during training and validation. It provides
3,147 predictable target samples Yt for the final, unbiased assessment of the selected
models’ predictive performance.

4.4.2 Feature Scaling

Feature scaling is recognized as an important preprocessing step, particularly for algorithms
whose performance can be influenced by the relative magnitudes of input variables, including
neural networks and gradient-based optimization methods, as discussed in Section 2.2 [ADE12;
Kha+23; MH25]. Appropriate scaling helps ensure that all features contribute effectively to
the learning process [MH25].

Initially, an approach similar to that described by Nguyen Thi Huyen Chau and Trung Phong
Doan (2024) was considered, which involved applying Min-Max scaling to features with natu-
rally defined bounds and Z-score standardization to other features [Huy24]. Scaling the target
variable was also part of this initial consideration. However, experimentation and preliminary
investigations into model performance revealed that a more straightforward, uniform approach
yielded greater baseline results. Consequently, the strategy of applying Z-score standardization
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to all eight engineered input features while leaving the target variable unscaled was adopted for
this study.

Z-score standardization transforms each original feature value x to a standardized value z,
such that the distribution of z has a mean of approximately zero and a standard deviation of
approximately one [MZ24]. This transformation is achieved using the formula:

z =
x− µ

σ
(4.16)

In this equation, µ represents the mean of the feature, and σ represents its standard deviation,
calculated exclusively from the values within the training dataset.

An important aspect of this scaling procedure is that the parameters µ and σ for each of the
eight features were computed solely using the training data. These derived statistical parameters
were then consistently applied to transform the corresponding features in the validation and
test sets. This methodology is essential to prevent any information leakage from the validation
or test data distributions into the model training and scaling process, thereby maintaining the
integrity and unbiased nature of the following model evaluation.

The decision to leave the target variable unscaled stems from its intrinsic characteristics as a
percentage change. This form already possesses desirable scale-invariant properties and often
exhibits tendencies towards stationarity, making further transformation unnecessary and po-
tentially complicating the interpretation of predictions. Maintaining the original scale of the
target variable also simplifies the direct evaluation of model predictions and associated error
metrics. The rationale for adopting this specific scaling approach, which involves standardizing
input features and leaving the target variable unscaled, is further substantiated by the resultant
model performance. This performance will be elaborated upon in detail in Chapter 5.

4.4.3 Sequence Creation for Model Input

Input sequences for the models were constructed using a look-back window of 20 trading days.
This period, approximating one calendar month defines the historical feature context for pre-
dicting Yt. A sliding window technique with a unit stride was implemented in the training,
validation, and test datasets to generate input-target pairs. For every feasible prediction time
point t within a given split, beginning on the 21st available day to accommodate the 20-day
look-back:

• The input sequence, Xt, comprises a matrix of the eight scaled feature values observed
from day t− 20 through t− 1. The dimensionality of each Xt is (20 × 8).

• The associated target value, Yt, is the unscaled daily percentage return for day t, calcu-
lated according to Equation 4.1.

This methodology generates a series of overlapping input-target pairs, (Xt, Yt), structuring the
data to facilitate the models’ learning of temporal dependencies.



Chapter 5

Predictive Modeling and
Performance Analysis

Following the acquisition (Chapter 3) and preprocessing (Chapter 4) of the IBM stock data, this
chapter focuses on the core predictive task. It begins by detailing six distinct machine learning
models’ selection, architecture, and implementation, as presented in Section 5.1. Subsequently,
Section 5.2 presents a comprehensive comparative analysis of these models. This analysis
evaluates their performance in predicting IBM’s daily percentage returns across 1-day and
10-day horizons using default hyperparameters, assessing predictive accuracy (both regression
and directional), computational efficiency, and the outcomes of a simple trading strategy. The
results from this chapter establish a critical baseline understanding of each model’s capabilities
within this financial forecasting context.

5.1 Model Selection: Rationale, Architecture, and Imple-
mentation

This section details the six machine learning models selected for this study. The chosen models
are Random Forest (RF), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting
Machine (LightGBM), a Recurrent Neural Network (RNN) implemented as Long Short-Term
Memory (LSTM), Neural Basis Expansion Analysis for Time Series (N-BEATS), and Tem-
poral Fusion Transformer (TFT). For each model, the following subsections will describe its
underlying architecture, specific implementation details relevant to this research, and its key
hyperparameter configurations, which were primarily kept to their default settings to establish
a baseline for comparative performance analysis.

These particular models were selected by a strategy to encompass a diverse range of well-
established and contemporary machine learning techniques common in financial forecasting,
as discussed in Section 2.3. The models can be broadly categorized into ensemble methods
and dedicated time-series deep learning architectures. The ensemble methods, Random For-
est, XGBoost, and LightGBM, were chosen for their robust performance and widespread use
in various predictive tasks, including financial market prediction [Gon+20; Zhe+24; MH25;
Kha+23]. These models operate by aggregating the outputs of multiple decision trees, which
often leads to improved predictive accuracy and better generalization compared to individual
models [Gon+20]. RF is a foundational ensemble technique known for its simplicity and effec-
tiveness [Bre01], while XGBoost and LightGBM represent advanced gradient boosting frame-
works recognized for their efficiency and state-of-the-art results in many financial applications
[CG16; Ke+17].

In contrast, the deep learning models, LSTM, N-BEATS, and TFT, were selected for their spe-
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cialized capabilities in handling sequential data and capturing complex temporal dependencies,
which are fundamental in financial time series [LW24]. LSTMs are a type of RNN specifi-
cally designed to learn long-range dependencies and are a common choice for stock prediction
tasks [HS97; Sir+19; MZ24]. N-BEATS and TFT represent more recent advancements in deep
learning for time series forecasting. N-BEATS offers a pure deep learning architecture based
on residual blocks that have achieved strong benchmark results [Ore+20], while TFT is an
attention-based model designed for multi-horizon forecasting and interpretability, capable of
integrating various types of input features effectively [Lim+20; Hu21].

All six models are suitable for the regression task of predicting continuous daily percentage
returns and can utilize the engineered technical indicators (past covariates) as input sequences,
as reviewed in Section 2.3. Their inclusion allows for comparing different modeling philosophies,
from tree-based ensembles to sophisticated neural networks. The subsequent subsections pro-
vide a detailed overview of each model’s principles and specific setup used in this thesis.

5.1.1 Random Forest (RF)

This subsection details the Random Forest (RF) algorithm. The core concepts and mathematical
formulas discussed are taken from the original architecture introduced by Leo Breiman [Bre01].
Random Forest is an ensemble learning method introduced by Leo Breiman (2001), widely
utilized for both classification and regression tasks [Bre01; Zhe+24]. It operates by constructing
a multitude of decision tree predictors during the training phase. “For regression, the final
prediction is the average of the predictions from all individual trees” in the forest [Swa+25;
Bre01].

The core concept of Random Forests is to build an ensemble of tree predictors {h(x,Θk), k =
1, . . . ,K}, where each tree h(x,Θk) is grown based on a random vector Θk. These random
vectors {Θk} are independent and identically distributed for all K trees in the forest [Bre01].
The introduction of randomness aims to decorrelate the individual trees, which, when combined,
can lead to improved generalization performance and robustness compared to a single tree.
According to Breiman (2001), this randomness is typically injected in two key ways:

1. Bagging (Bootstrap Aggregating): Each tree in the forest is trained on a different
bootstrap sample of the original training data. A bootstrap sample is created by drawing
N samples with replacements from the original training set of N examples [Bre01]. This
means that, on average, each tree is trained on about two-thirds of the original data,
with the remaining one-third (the out-of-bag samples) being left out. This process con-
tributes to the diversity of the trees. The Scikit-learn implementation enables this by the
bootstrap=True parameter.

2. Feature Randomness: When determining the best split at each decision tree node,
instead of considering all available input features, Random Forests select a random subset
of features. The split is optimized using only this subset [Bre01]. This further diversifies
the trees and reduces the correlation between them. The number of features considered
at each split is a critical parameter, often denoted as max features. Breiman (2001)
noted that “using a random selection of features to split each node yields error rates that
compare favorably to other methods” [GMR04].

Individual trees within the forest are typically grown to their maximum possible depth without
pruning, often using a CART (Classification and Regression Trees) like methodology [Bre01].
This corresponds to Scikit-learn parameters such as max depth=None. The quality of a split for
regression trees is commonly measured by criteria that aim to reduce variance, such as squared
error.

As in this study, the Random Forest predictor aggregates the predictions of all K individual
trees for regression tasks. If hk(x) is the prediction of the k-th tree for an input instance
x, the final Random Forest prediction ŷRF (x) is the average of these individual predictions
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[Bre01]:

ŷRF (x) =
1

K

K∑
k=1

hk(x) (5.1)

Breiman (2001) showed that the generalization error for Random Forests converges to a limit
as the number of trees (K) becomes large, implying that Random Forests do not overfit with
an increasing number of trees. The generalization error depends on the strength (accuracy) of
the individual trees and the correlation between them: higher strength and lower correlation
lead to better performance [Bre01]. The method is also noted for its robustness to outliers and
noise [Bre01].

In this research, the Random Forest model is implemented using the RandomForestRegressor
class from the sklearn.ensemble module in Scikit-learn, with the specific parameters and their
default behaviors taken from the library’s official documentation [Ped+11]. The model was
configured using these default parameter settings, with the most pertinent parameters for its
construction and behavior being:

• n estimators=100: This sets the number of trees (K) in the forest to 100.

• criterion=’squared error’: The function used to measure the quality of a split. For
regression, this criterion minimizes the L2 loss using the mean of each terminal node and
is equivalent to variance reduction.

• max depth=None: Trees are expanded until all leaves are pure or until all leaves contain
fewer samples than min samples split. This aligns with Breiman’s recommendation of
growing trees fully without pruning.

• min samples split=2: The minimum number of samples required to split an internal
node.

• min samples leaf=1: The minimum number of samples required to be at a leaf node.

• max features=1.0: This parameter controls the size of the random subset of features
to consider when looking for the best split. For RandomForestRegressor, a float value
of 1.0 means that int(1.0 * n features) features are considered at each split, which
implies all features are considered. In this specific configuration, the diversity among trees
primarily stems from the bootstrap sampling of data instances (bagging), as the feature
selection randomness at each split, as described by Breiman (2001), is not active when all
features are considered.

• bootstrap=True: Bootstrap samples are used to build each tree, implementing the bag-
ging procedure.

• oob score=False: Out-of-bag samples are not used to estimate the R2 on unseen data.

5.1.2 Extreme Gradient Boosting (XGBoost)

This subsection details the Extreme Gradient Boosting (XGBoost) algorithm. The core concepts
and mathematical formulas discussed are taken from the original architecture introduced by
Tianqi Chen and Carlos Guestrin [CG16]. Extreme Gradient Boosting, developed by Chen
and Guestrin (2016), is a highly efficient and widely adopted gradient boosting framework. Its
state-of-the-art performance in many machine learning competitions and real-world applications
has gained popularity due to its scalability, speed, and accuracy [CG16; MH25]. XGBoost is
an ensemble learning method that builds trees sequentially, where each new tree attempts to
correct the errors made by the previously trained ensemble of trees [CG16].

The core of XGBoost lies in its regularized learning objective and advanced tree construction
algorithms. Given a dataset D = {(xi, yi)} with n examples and m features, a tree ensemble
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model uses K additive functions (trees) to predict the output ŷi:

ŷi = ϕ(xi) =

K∑
k=1

fk(xi), fk ∈ F (5.2)

The space of regression trees (CARTs) is represented by the notation F = {f(x) = wq(x)}.
Each fk represents an independent tree structure q that maps an example to a leaf index, and
w is a vector of leaf weights (scores) for the corresponding leaves. T is the number of leaves in
a tree [CG16].

To learn the set of functions fk, XGBoost minimizes a regularized objective function:

L(ϕ) =
∑
i

l(yi, ŷi) +
∑
k

Ω(fk) (5.3)

“Where l is a differentiable convex loss function that measures the difference between the target
yi and the prediction ŷi” [CH15]. The term Ω(fk) penalizes the complexity of the model’s trees
and is defined as:

Ω(f) = γT +
1

2
λ∥w∥2 (5.4)

Here, γ is the complexity cost of introducing an additional leaf (controlling pruning), and λ is
the L2 regularization parameter on the leaf weights w. This regularization term helps to avoid
overfitting by smoothing the final learned weights [CG16].

Because the model in Equation 5.2 uses functions as parameters, it is incompatible with con-
ventional optimization methods that operate in Euclidean space. An additive training strategy
is therefore adopted. For the t-th iteration, the prediction for a given instance i is denoted by

ŷ
(t)
i . A new tree, ft, is then introduced to the model with the express purpose of minimizing
the following objective:

L(t) =

n∑
i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) (5.5)

This objective can be approximated using a second-order Taylor expansion around ŷ
(t−1)
i :

L(t) ≈
n∑

i=1

[l(yi, ŷ
(t−1)
i ) + gift(xi) +

1

2
hif

2
t (xi)] + Ω(ft) (5.6)

The terms gi and hi denote the first and second-order gradient statistics for the loss function,
defined as gi = ∂ŷ(t−1) l(yi, ŷ

(t−1)) and hi = ∂2
ŷ(t−1) l(yi, ŷ

(t−1)) [CG16]. After removing constant

terms, the simplified objective at step t becomes:

L̃(t) =

n∑
i=1

[gift(xi) +
1

2
hif

2
t (xi)] + Ω(ft) (5.7)

Substituting Ω(ft) and defining Ij = {i|q(xi) = j} as the set of instances in leaf j, the objective
can be rewritten by summing over the leaves of the tree:

L̃(t) =

T∑
j=1

∑
i∈Ij

gi

wj +
1

2

∑
i∈Ij

hi + λ

w2
j

+ γT (5.8)

For a fixed tree structure q(x), the optimal weight w∗
j for leaf j is:

w∗
j = −

∑
i∈Ij

gi∑
i∈Ij

hi + λ
(5.9)



5.1. MODEL SELECTION: RATIONALE, ARCHITECTURE, AND IMPLEMENTATION37

And the corresponding optimal objective value (structure score) is:

L̃(t)(q) = −1

2

T∑
j=1

(
∑

i∈Ij
gi)

2∑
i∈Ij

hi + λ
+ γT (5.10)

This score is used to evaluate the quality of a tree structure q. A greedy algorithm is used
to find the best tree structure by iteratively adding splits that maximize the loss reduction,
given by Equation (7) [CG16]. XGBoost also incorporates novel algorithms for handling sparse
data, approximate tree learning using weighted quantile sketch, and system optimizations like
cache-aware access and out-of-core computation [CG16].

This study implements the XGBoost model using the xgb.XGBRegressor class from the xgboost
Python package. The model was configured using its default parameter settings, with the specific
parameters and their default behaviors taken from the library’s official documentation [Dev22].
The most significant default parameters influencing tree construction and regularization for the
gbtree booster are:

• booster=’gbtree’: Uses tree-based models.

• eta=0.3 (alias: learning rate): Step size shrinkage to prevent overfitting.

• gamma=0 (alias: min split loss): Minimum loss reduction required to make a further
partition on a leaf node.

• max depth=6: Maximum depth of a tree.

• min child weight=1: Minimum sum of instance weight (hessian) needed in a child.

• subsample=1: Subsample ratio of the training instances.

• colsample bytree=1: Subsample ratio of columns when constructing each tree.

• lambda=1 (alias: reg lambda): L2 regularization term on weights.

• alpha=0 (alias: reg alpha): L1 regularization term on weights.

• tree method=’auto’: XGBoost automatically selects the best tree construction algo-
rithm.

• objective=’reg:squarederror’: Specifies regression with squared loss as the learning
task.

5.1.3 Light Gradient Boosting Machine (LightGBM)

This subsection details the Light Gradient Boosting Machine (LightGBM) algorithm. The
core concepts and mathematical formulas discussed are taken from the original architecture
introduced by Ke et al. [Ke+17]. Light Gradient Boosting Machine, proposed by Ke et al.
(2017), is another gradient boosting framework designed for high efficiency and scalability,
particularly with large datasets and high feature dimensions [Ke+17; Gon+20]. While sharing
the foundational principles of Gradient Boosting Decision Trees (GBDT) with algorithms like
XGBoost, LightGBM introduces several novel techniques to accelerate the training process and
reduce memory usage without significant loss in accuracy [Ke+17].

The primary challenge in conventional GBDT implementations, especially with large datasets,
is the time-consuming process of finding the best split points. This often involves scanning all
data instances for each feature to estimate the information gain of all possible splits. LightGBM
addresses this bottleneck through two main architectural innovations [Ke+17]:

1. Gradient-based One-Side Sampling (GOSS): In GBDT, data instances with dif-
ferent gradients contribute differently to the computation of information gain. Instances
with larger gradients (i.e., those currently under-trained or poorly predicted) play a more
significant role. GOSS leverages this insight by keeping all instances with large gradients
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and randomly sampling instances with small gradients. GOSS introduces a constant mul-
tiplier for the information gain calculation of the small-gradient instances to compensate
for the change in data distribution due to sampling. This method allows for a more accu-
rate estimation of information gain with a much smaller data size than uniform random
sampling, especially when the information gain values have a large range [Ke+17].

2. Exclusive Feature Bundling (EFB): In many real-world applications, feature spaces
are often very sparse, with many features being mutually exclusive (i.e., they rarely take
non-zero values simultaneously, such as one-hot encoded features). EFB bundles such
exclusive features into a single feature, effectively reducing the number of features to con-
sider. The problem of finding the optimal bundling is NP-hard, but LightGBM employs a
greedy algorithm that can achieve a good approximation. This bundling reduces the com-
plexity of histogram building from O(data× feature) to O(data× bundle), where bundle
is much smaller than feature. This significantly speeds up training without substantially
hurting accuracy [Ke+17].

LightGBM primarily uses a histogram-based algorithm to find split points. Instead of sorting
continuous feature values, it buckets them into discrete bins and constructs feature histograms.
This approach is more efficient regarding memory consumption and training speed than pre-
sorted algorithms, especially for large datasets [Ke+17]. The GOSS and EFB techniques are
integrated with this histogram-based approach.

Another distinctive feature of LightGBM is its use of a leaf-wise tree growth strategy with
depth constraints, as opposed to the level-wise growth strategy common in many other GBDT
implementations (though XGBoost also supports leaf-wise). In leaf-wise growth, the tree grows
by splitting the leaf, resulting in the largest loss reduction. This can lead to more complex
trees and potentially overfitting if not regularized properly, but it often converges faster and
can achieve lower loss on the training data. LightGBM controls complexity by limiting the
maximum depth (max depth) and the maximum number of leaves (num leaves) [Ke+17].

The learning process and objective function in LightGBM are similar to those in other GBDT
frameworks like XGBoost, involving the sequential addition of trees that fit the current ensem-
ble’s negative gradients (residual errors). Regularization techniques are also employed.

This study implements the LightGBMmodel using the lightgbm.LGBMRegressor class from the
lightgbm Python package. The model was configured using its default parameter settings, with
the specific parameters and their default behaviors taken from the library’s official documentation
[Dev25]. Key default parameters relevant to its architecture and performance include:

• boosting type=’gbdt’: Specifies the traditional Gradient Boosting Decision Tree.

• num leaves=31: Maximum tree leaves for base learners. This is a primary parameter for
controlling tree complexity in leaf-wise growth.

• max depth=-1: Maximum tree depth for base learners, where -1 means no limit. However,
complexity is often better controlled by num leaves.

• learning rate=0.1: Boosting learning rate.

• n estimators=100: Number of boosted trees to fit.

• subsample for bin=200000: Number of samples used for constructing feature bins (his-
tograms).

• objective=’regression’: Specifies regression with L2 loss as the learning task.

• min split gain=0.0: Minimum loss reduction required to make a further partition.

• min child weight=0.001: Minimum sum of instance weight (hessian) needed in a child.

• min child samples=20: Minimum data instances needed in a child (leaf).

• subsample=1.0: Subsample ratio of the training instance.
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• colsample bytree=1.0: Subsample ratio of columns when constructing each tree.

• reg alpha=0.0: L1 regularization term on weights.

• reg lambda=0.0: L2 regularization term on weights.

5.1.4 Recurrent Neural Network: Long Short-TermMemory (LSTM)

This subsection details the Long Short-Term Memory (LSTM) algorithm. The core concepts
and mathematical formulas discussed are taken from the original architecture introduced by Sepp
Hochreiter and Jurgen Schmidhuber [HS97]. Long Short-Term Memory networks, introduced
by Hochreiter and Schmidhuber (1997), are a special type of Recurrent Neural Network (RNN)
specifically designed to address the vanishing and exploding gradient problems that can occur
when training traditional RNNs on long sequences [HS97]. LSTMs are well-suited for learning
from sequential data with long-range dependencies, making them a popular choice for time
series forecasting [HS97; Sir+19].

The core architectural innovation of an LSTM unit is its memory cell (ct) and a system of gates
that regulate the flow of information into and out of this cell. These gates are multiplicative
units that learn to open and close access to the cell’s state, allowing the LSTM to store infor-
mation over extended time intervals and selectively update or forget it [HS97]. An LSTM cell
typically consists of three main gates:

1. Input Gate (it): Controls which new information from the current input (xt) and the
previous hidden state (ht−1) should be stored in the cell state. It decides how much of
the candidate cell state (c̃t) is added to the current cell state.

it = σ(Wiixt + bii +Whiht−1 + bhi) (5.11)

c̃t = tanh(Wicxt + bic +Whcht−1 + bhc) (5.12)

Where σ is the sigmoid activation function, and W and b terms represent weights and
biases for the respective connections.

2. Forget Gate (ft): Determines what information should be discarded from the previous
cell state (ct−1). “It looks at ht−1 and xt and outputs a number between 0 and 1 for each
number in the cell state ct−1. A 1 represents ‘completely keep this’, while a 0 represents
‘completely get rid of this’” [Cor21].

ft = σ(Wifxt + bif +Whfht−1 + bhf ) (5.13)

3. Output Gate (ot): Regulates which parts of the current cell state (ct) should be out-
putted as the hidden state (ht). “The cell state is passed through a tanh function (to push
values between -1 and 1) and then multiplied by the output of the sigmoid gate” [KYA19].

ot = σ(Wioxt + bio +Whoht−1 + bho) (5.14)

ht = ot ⊙ tanh(ct) (5.15)

The cell state itself is updated by combining the influence of the forget gate on the previous
cell state and the input gate on the candidate cell state:

ct = ft ⊙ ct−1 + it ⊙ c̃t (5.16)

This gating mechanism allows LSTMs to maintain a constant error carousel within the memory
cells, enabling constant error flow through self-connected units and thus mitigating the vanishing
gradient problem over long time lags [HS97]. The ability to learn what to remember, what to
forget, and what to output makes LSTMs powerful for modeling complex temporal dynamics.
Multiple LSTM layers can be stacked to create deeper recurrent networks, potentially capturing
more abstract temporal features.
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This study implements the LSTM model using the pytorch forecasting.LSTM class from the
PyTorch Forecasting library, with the specific parameters and their default behaviors taken from
the library’s official documentation [Bei20]. The model was configured using these default
parameter settings, with the primary architectural choices being:

• cell type=’LSTM’: Explicitly uses the LSTM cell architecture (as opposed to GRU, an-
other gated RNN variant).

• hidden size=10: The number of features in the hidden state h. This is a key hyperpa-
rameter that determines the capacity of the LSTM layer.

• rnn layers=2: The number of recurrent (LSTM) layers stacked on top of each other.

• dropout=0.1: Dropout probability applied to the outputs of each LSTM layer except the
last layer for regularization.

• loss=NormalDistributionLoss(): The default loss function assumes the target variable
follows a normal distribution and predicts its mean and standard deviation.

5.1.5 Neural Basis Expansion Analysis for Time Series (N-BEATS)

This subsection details the Neural Basis Expansion Analysis for Time Series (N-BEATS) al-
gorithm. The core concepts and mathematical formulas discussed are taken from the original
architecture introduced by Oreshkin et al. [Ore+20]. Neural Basis Expansion Analysis for Time
Series, proposed by Oreshkin et al. (2020), is a deep neural architecture designed for uni-
variate time series point forecasting. It is notable for its pure deep learning approach, which
achieved state-of-the-art results on several well-known forecasting benchmarks without relying
on time-series-specific components or complex feature engineering [Ore+20; LW24].

The architecture of N-BEATS is based “on a deep stack of fully connected layers with backward
and forward residual links” [Kar23]. The fundamental building unit is a block, which takes a
segment of the time series (lookback window or backcast from a previous block) as input and
produces two outputs: a forecast for a future segment and a backcast, which is an estimate of
its input [Ore+20].

A block internally consists of a stack of fully connected (FC) layers with ReLU non-linearities.
This part of the block processes the input xl (where l is the block index) to predict expansion

coefficients for a forward basis (θfl ) and a backward basis (θbl ). These coefficients are then

projected onto their respective basis functions (gfl and gbl ) to produce the partial forecast ŷl
and the backcast x̂l for that block. The operation can be described as [Ore+20]:

hl,1 = FCl,1(xl), hl,2 = FCl,2(hl,1), . . . , hl,NL
= FCl,NL

(hl,NL−1) (5.17)

θbl = LINEARb
l (hl,NL

), θfl = LINEARf
l (hl,NL

) (5.18)

x̂l = gbl (θ
b
l ), ŷl = gfl (θ

f
l ) (5.19)

Where ReLU is included in FC layers, and LINEAR layers are simple linear projections. NL is
the number of layers within a block.

Blocks are organized into stacks. N-BEATS employs a doubly residual stacking principle. The
input to the first block of a stack is the original lookback window (or the output of a previous
stack). For subsequent blocks within the same stack, the input xl is the residual from the
previous block: xl = xl−1 − x̂l−1 [Ore+20]. This allows downstream blocks to focus on signal
components not well approximated by earlier blocks.

The overall forecast from a single stack is the sum of the partial forecasts from all blocks within
that stack: ŷstack =

∑
l ŷl. The architecture can consist of multiple stacks, where the input to

a subsequent stack is the backcast residual from the previous stack. The final model forecast is
the sum of the forecasts from all stacks [Ore+20].

N-BEATS can be configured in two main ways [Ore+20]:
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1. Generic Architecture: The basis layers gbl and gfl are learnable linear projections. This
configuration does not rely on time-series-specific knowledge and aims to learn the basis
functions from data.

2. Interpretable Architecture: The basis layers gbl and gfl are fixed to specific functional
forms to reflect common time series decompositions, such as trend and seasonality. For
the trend stack, gfl produces a polynomial trend based on θfl . For the seasonality stack, gfl
produces a Fourier series based on θfl . This allows the model’s output to be decomposed
into interpretable components.

This study implements the N-BEATS model using the pytorch forecasting.NBeats class
from the PyTorch Forecasting library, with the specific parameters and their default behaviors
taken from the library’s official documentation [Bei20]. The model was configured using these
default parameter settings for the generic version, as the primary goal is predictive performance
rather than interpretability in this specific context. Key default parameters for the generic
configuration include:

• stack types=[’generic’]: Uses only generic stacks.

• num blocks=[1]: The number of blocks within each stack. For a purely generic N-BEATS,
the default often implies one block per stack, with the effective depth controlled by the
number of stacks.

• num block layers=[4]: Number of fully connected layers with ReLU activation per
block.

• widths=[512]: Widths of the fully connected layers in the blocks.

• sharing=[False]: Weights are not shared across blocks within a stack.

• expansion coefficient lengths=[32]: Length of the expansion coefficients θf and θb.

• prediction length: Set based on the forecast horizon (1 and 10 days in this study).

• context length: Length of the lookback window (20 days in this study).

• loss=MASE(): Default Mean Absolute Scaled Error.

• backcast loss ratio=0.0: No weight is given to the backcast loss during training by
default.

5.1.6 Temporal Fusion Transformer (TFT)

This subsection details the Temporal Fusion Transformer (TFT) algorithm. The core concepts
and mathematical formulas discussed are taken from the original architecture introduced by Lim
et al. [Lim+20]. The Temporal Fusion Transformer, introduced by Lim et al. (2020), is a novel
attention-based deep learning architecture designed explicitly for interpretable multi-horizon
time series forecasting. It aims to combine high performance with the ability to provide insights
into temporal dynamics by effectively handling a complex mix of inputs, including known future
inputs, static covariates, and past-observed extrinsic time series [Lim+20].

TFT’s architecture is built upon several specialized components designed to address the het-
erogeneity of forecasting inputs and learn temporal relationships at different scales:

1. Gating Mechanisms (Gated Residual Networks - GRNs): Throughout the net-
work, Gated Linear Units (GLUs) and Gated Residual Networks (GRNs) are used. GRNs
allow the network to adapt non-linear processing or skip over layers if simpler processing
is sufficient for a given input or dataset. This provides flexibility and can improve learning
efficiency by controlling the information flow and depth of processing [Lim+20]. A GRN
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takes a primary input a and an optional context vector c, yielding:

GRNω(a, c) = LayerNorm(a+GLUω(η1)) (5.20)

η1 = W1,ωη2 + b1,ω (5.21)

η2 = ELU(W2,ωa+W3,ωc+ b2,ω) (5.22)

Where LayerNorm is layer normalization, ELU is the Exponential Linear Unit, and GLU
is a Gated Linear Unit:

GLUω(γ) = σ(W4,ωγ + b4,ω)⊙ (W5,ωγ + b5,ω) (5.23)

This gating allows TFT to control the contribution of non-linear transformations [Lim+20].

2. Variable Selection Networks: TFT employs variable selection networks to handle the
potentially large number of input features and select the most relevant ones for a given
time step and entity. These networks assign instance-wise importance weights to each
input variable (static, past, and future) using GRNs and a Softmax layer. This allows
the model to focus on salient features and ignore irrelevant or noisy ones, which also aids
interpretability [Lim+20]. For a flattened vector of transformed past inputs Ξt and a
static context cs, the selection weights vχt

are:

vχt = Softmax(GRNvχ(Ξt, cs)) (5.24)

Each selected variable ξ
(j)
t is then further processed by its own GRN before being com-

bined: ξ̃t =
∑

j v
(j)
χt GRNξ̃(j)(ξ

(j)
t ) [Lim+20].

3. Static Covariate Encoders: Static metadata (e.g., store location, item ID) are encoded
using separate GRN encoders into context vectors (cs, cc, ch, ce). These context vectors
are then injected into various parts of the temporal processing pipeline to condition the
learning of temporal dynamics on static attributes. This allows the model to learn entity-
specific patterns [Lim+20].

4. Temporal Processing: TFT employs a sequence-to-sequence layer (typically LSTM-
based) for local processing of known and observed time-varying inputs. This captures
short-term temporal patterns. TFT utilizes an interpretable multi-head self-attention
mechanism to learn long-term dependencies across different time steps. This attention
is modified from standard transformer attention to share values across heads and use
additive aggregation, which enhances interpretability by allowing direct assessment of
attention weights for feature importance over time [Lim+20]. The interpretable multi-
head attention output H̃ is:

InterpretableMultiHead(Q,K, V ) = H̃W̃H , where H̃ =

(
1

NH

NH∑
h=1

A(QW
(h)
Q ,KW

(h)
K )

)
VWV

(5.25)
Where NH is the number of heads, and A(·) is the scaled dot-product attention.

5. Prediction Intervals: TFT generates quantile forecasts to provide prediction intervals,
simultaneously predicting multiple percentiles (e.g., 10th, 50th, 90th) for each future time
step using linear transformations of the final decoder output [Lim+20].

The architecture involves processing static inputs and then concurrently processing past and
future time-varying inputs through their respective variable selection networks and LSTM en-
coders/decoders. The outputs are then fed into a temporal self-attention layer, followed by
GRNs and a final output layer for quantile predictions [Lim+20].

This study implements the TFT using the pytorch forecasting.TFT class from the PyTorch
Forecasting library, with the specific parameters and their default behaviors taken from the
library’s official documentation [Bei20]. The model was configured using these default param-
eters. Key defaults include:
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• hidden size=16: Main hidden size of the network.

• lstm layers=1: Number of LSTM layers for local processing.

• dropout=0.1: Dropout rate.

• output size=7: Number of quantiles to predict.

• loss=QuantileLoss(): Default loss function.

• attention head size=4: Number of attention heads.

• hidden continuous size=8: Hidden size for processing continuous variables.

• learning rate=0.001.

5.2 Performance Analysis and Discussion

Building upon the data preprocessing and feature engineering detailed in Chapter 4 and the
model architectures described in Section 5.1, this section presents a comparative analysis of
the six selected machine learning models. The evaluation focuses on their predictive accuracy
for IBM stock’s daily percentage returns, their computational efficiency during training and
inference, and the performance of a simple trading strategy based on their predictions. This
analysis is conducted for two distinct prediction horizons: 1 day ahead and 10 days ahead,
using default hyperparameter settings for each model to establish a baseline comparison. The
intrinsic difficulty in stock market prediction due to its volatile and non-linear nature is a
well-acknowledged challenge, as discussed in Chapter 1 [Pat+20; MZ24].

5.2.1 Evaluation Metrics

To provide a holistic view of model performance, a diverse set of metrics is employed, consistent
with practices in financial forecasting literature as outlined in Section 2.3 [HBP23; Cha+24;
HSK18].

Computational Efficiency Metrics

These metrics quantify the resource utilization and speed of the models:

• CPU Usage (%): Average percentage of CPU utilized during training.

• Memory Usage (MB): Peak RAM utilized during training.

• GPU Usage (%): Average percentage of GPU utilized during training.

• Training Time (seconds): Total time taken to train the model.

• Single Instance Prediction Time (seconds): Time taken to predict a single input
sequence.

Regression Performance Metrics

These metrics evaluate how well the models predict the continuous value of the daily percentage
return.

• Mean Absolute Error (MAE): The mean absolute deviation between the predicted
outcomes ŷi and the true values yi [LW24]. It measures the average magnitude of errors.

MAE =
1

n

n∑
i=1

|yi − ŷi| (5.26)
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• Root Mean Squared Error (RMSE): The root of the mean of the squared deviations
between the predicted and observed values [LW24]. It penalizes larger errors more heavily.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (5.27)

• R-squared (R2) Score: The extent to which variation in the dependent variable can be
explained by the predictor variables [LW24]. An R2 of 1 indicates perfect prediction, zero
indicates the model performs no better than predicting the mean ȳ, and negative values
indicate worse performance.

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(5.28)

Directional (Classification) Performance Metrics

These metrics assess the models’ ability to correctly predict the direction of the price movement
(up or down), treating the regression output as a binary classification problem (positive return
= Up, negative/zero return = Down).

• Average Precision Score: Summarizes the precision-recall curve, representing the
weighted mean of precisions achieved at each threshold. It is useful for evaluating perfor-
mance on potentially imbalanced class distributions of up/down movements.

• Directional Prediction Accuracy (%): The percentage of times the model correctly
predicts whether the stock return will be positive (Up) or non-positive (Down).

Strategy Performance Metrics

These metrics evaluate the profitability of a hypothetical trading strategy based on the models’
predictions. The strategy is to go long (buy) if the predicted return is positive and short (sell)
if the expected return is negative or zero. Positions are held for the prediction horizon (1 day
or 10 days). No transaction costs or slippage are considered, which is a common simplification
in initial strategy backtests [BK23]. The Buy & Hold return serves as a benchmark.

• Total Return (%): The cumulative percentage return generated by the strategy over
the test period. If P0 is the initial portfolio value and Pf is the final portfolio value:

Total Return =
Pf − P0

P0
× 100% (5.29)

• Annualized Return (%): The geometric average amount of money earned by an in-
vestment each year over a given time period Ny (in years).

Annualized Return =

((
1 +

Total Return

100

) 1
Ny

− 1

)
× 100% (5.30)

• Sharpe Ratio: This value evaluates the return generated above the risk-free rate (Rf )
for each unit of total risk, with risk being quantified by the standard deviation of returns
(σP ). A higher Sharpe Ratio indicates better performance for the level of risk taken
[BK23]. The general formula is:

Sharpe Ratio =
RP −Rf

σP
(5.31)
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This study calculates the Sharpe Ratio using daily returns and then annualizes them.
Assuming a risk-free rate Rf of 0, the annualized Sharpe Ratio is computed as:

Annualized Sharpe Ratio =
√
Ntrading days ×

Mean(Daily Returns)

StdDev(Daily Returns)
(5.32)

Where Ntrading days is the number of trading days in a year, taken as 252 in this research.
This formula corresponds to the implementation used to report Sharpe Ratios in Table 5.6.

• Maximum Drawdown (%): The largest peak-to-trough decline during a specific period
of an investment. It is an indicator of downside risk.

Maximum Drawdown =
Trough Value− Peak Value

Peak Value
× 100% (5.33)

5.2.2 Computational Efficiency Analysis

The computational resources and time required for training and prediction are practical consid-
erations, especially when dealing with large financial datasets and the need for timely forecasts
[Ke+17]. All model training, evaluation, and computational efficiency metrics reported in this
section were performed on a high-end workstation equipped with an Intel Core i9-14900KS
Central Processing Unit (CPU), 64GB of Random Access Memory (RAM), and an NVIDIA
GeForce RTX 4090 Graphics Processing Unit (GPU). Table 5.1 summarizes these metrics for
all models across both 1-day and 10-day prediction horizons.

Table 5.1: Computational Efficiency Metrics for 1-Day and 10-Day Prediction Horizons

Model CPU (%) Mem (MB) GPU (%) Train (s) Pred (s)

1-Day Prediction Horizon

Random Forest 6 715 0 402 0.00800
XGBoost 12 950 45 0.6 0.01900
LightGBM 27 635 35 0.5 0.00445
RNN LSTM 7 940 100 145 0.02130
N-BEATS 7.5 1020 100 1201 0.14921
TFT 8 1080 100 796 0.05129

10-Day Prediction Horizon

Random Forest 6 830 0 992 0.00400
XGBoost 14 950 100 2.5 0.05425
LightGBM 96 760 85 5.5 0.00950
RNN LSTM 7 940 100 143 0.02824
N-BEATS 7.5 1020 100 1203 0.09185
TFT 8 1080 100 826 0.06145

Key observations from Table 5.1:

• Training Time: Gradient boosting models (XGBoost, LightGBM) are exceptionally
fast to train, taking only seconds. LightGBM is the fastest. Random Forest training
time is considerably longer. Among the deep learning models, LSTM is the quickest to
train, while N-BEATS and TFT require significantly more time, with N-BEATS being the
slowest. Training times generally increase for the 10-day horizon, especially for Random
Forest and the boosting models.

• Prediction Time: LightGBM offers the fastest single instance prediction time, followed
by Random Forest. The deep learning models, particularly N-BEATS, have higher pre-
diction latencies.

• Resource Usage: Random Forest is purely CPU-based. XGBoost and LightGBM can
leverage GPU, significantly speeding up their training. The deep learning models (LSTM,



46 CHAPTER 5. PREDICTIVE MODELING AND PERFORMANCE ANALYSIS

N-BEATS, TFT) fully utilize the GPU when available. Memory usage is relatively con-
sistent, with TFT and N-BEATS using slightly more. LightGBM has notably high CPU
usage when training for the 10-day horizon, possibly due to more complex tree structures
or optimization routines for the multi-output regression.

Overall, LightGBM and XGBoost demonstrate superior computational efficiency in training
speed, while LightGBM also excels in prediction speed. Deep learning models, especially N-
BEATS and TFT, are more computationally intensive.

5.2.3 Predictive Accuracy Analysis

Regression Performance Analysis

The regression performance assesses how accurately models predict the magnitude of daily per-
centage returns. Results for the training and test sets are presented in Table 5.2 and Table 5.3,
respectively.

Table 5.2: Regression Metrics on
the Training Set for 1-Day and 10-
Day Prediction Horizons

Model MAE RMSE R2

1-Day Prediction Horizon

Random Forest 0.0043 0.0061 0.8572
XGBoost 0.0044 0.0058 0.8713
LightGBM 0.0084 0.0113 0.5180
RNN LSTM 0.0101 0.0135 0.3053
N-BEATS 0.0031 0.0045 0.9230
TFT 0.0151 0.0203 -0.5707

10-Day Prediction Horizon

Random Forest 0.0136 0.0183 0.8658
XGBoost 0.0136 0.0177 0.8744
LightGBM 0.0270 0.0350 0.5094
RNN LSTM 0.0330 0.0428 0.2678
N-BEATS 0.0112 0.0139 0.9229
TFT 0.0440 0.0584 -0.3574

Table 5.3: Regression Metrics on
the Test Set for 1-Day and 10-Day
Prediction Horizons

Model MAE RMSE R2

1-Day Prediction Horizon

Random Forest 0.0098 0.0145 -0.0152
XGBoost 0.0107 0.0156 -0.1792
LightGBM 0.0099 0.0146 -0.0283
RNN LSTM 0.0106 0.0158 -0.2066
N-BEATS 0.0113 0.0159 -0.2246
TFT 0.0141 0.0195 -0.8230

10-Day Prediction Horizon

Random Forest 0.0332 0.0446 0.0036
XGBoost 0.0370 0.0489 -0.1949
LightGBM 0.0335 0.0452 -0.0220
RNN LSTM 0.0367 0.0499 -0.2461
N-BEATS 0.0374 0.0498 -0.2435
TFT 0.0494 0.0644 -1.0661

Training Set Performance: On the training data (Table 5.2), N-BEATS achieves the best fit
for both 1-day and 10-day horizons, with R2 scores around 0.923, indicating it explains over 92%
of the variance in training returns. This is visually confirmed in Figure 5.1, where N-BEATS
predictions closely follow the actual target train values. XGBoost and Random Forest also
show strong performance on the training set with R2 scores around 0.86-0.87. LightGBM and
LSTM exhibit moderate fits, while TFT performs poorly on the training data, with negative
R2 scores suggesting it fails to capture even basic patterns in the training data with default
settings. This poor performance of TFT on training data with default settings for this specific
univariate task using only past covariates might indicate that its architecture, designed for
complex multi-horizon forecasting with various input types, may require more specific tuning
or richer input features to be effective here [Lim+20; Hu21].

Test Set Performance: The performance on the test set (Table 5.3) reveals a stark contrast.
For the 1-day horizon, all models yield negative R2 scores, signifying that their predictions
are worse than simply predicting the average return of the test set. MAE and RMSE values
are also considerably higher than on the training set. This indicates significant overfitting for
models like N-BEATS, Random Forest, and XGBoost, which performed very well on training
data. Figure 5.2 illustrates this for N-BEATS, where test set predictions deviate substantially
from actuals. The difficulty of stock prediction is well-documented, with many studies showing
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Figure 5.1: Predictions vs Actual Targets (Train Set) for N-BEATS (1-Day Horizon).
The blue line represents the actual daily percentage returns (target train values), and
the orange line represents the model’s predicted returns on the training data. The close
tracking indicates a good fit on training data.

limited predictive power, especially with purely technical data [HBP23; Cha+24]. For the
10-day horizon, the Random Forest model shows a slightly positive R2 (0.0036), suggesting a
marginal predictive capability beyond the mean, but still very weak. All other models continue
to have negative R2 scores on the test set for the 10-day horizon, with TFT performing the
worst.

The dramatic drop in performance from training to test sets across most models highlights
the difficulty of generalizing learned patterns from historical IBM stock data to future, unseen
data, especially with default hyperparameters. Overfitting appears to be a major challenge, a
common issue in financial time series forecasting [MH25; HSK18].

Directional Performance Analysis

Directional performance metrics evaluate the models’ ability to predict whether the stock price
will increase or decrease. Results are in Table 5.4 and Table 5.5.

Training Set Performance: Similar to regression metrics, directional accuracy and average
precision are very high on the training set (Table 5.4) for Random Forest, XGBoost, and N-
BEATS (accuracies often >89%, average precision >0.96). This indicates these models learn
to classify the direction of movement in the training data very well, as exemplified by the N-
BEATS 1-day training confusion matrix (a) in Figure 5.3. LSTM, LightGBM, and especially
TFT show weaker directional performance on the training set.

Test Set Performance: On the test set (Table 5.5), directional accuracy for all models drops
to around 50–52% for both 1-day and 10-day horizons. This performance is close to random
guessing for a binary outcome, consistent with the Efficient Market Hypothesis, which suggests
prices follow a random walk [HSK18; Fam70]. Average precision scores also hover around 0.51-
0.56. For instance, the N-BEATS 1-day test confusion matrix (b) in Figure 5.3 shows that for
1514 actual down movements, only 548 were correctly predicted. This is close to the chance level
for a dataset with roughly balanced up/down movements. This poor directional performance
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Figure 5.2: Predictions vs Actual Targets (Test Set) for N-BEATS (1-Day Horizon).
The blue line represents the actual daily percentage returns (target test values), and the
orange line represents the model’s predicted returns on unseen test data. The divergence
highlights overfitting and poor generalization.

Table 5.4: Directional Classifica-
tion Metrics on the Training Set for
1-Day and 10-Day Prediction Hori-
zons

Model Precision Dir. Acc (%)

1-Day Prediction Horizon

Random Forest 0.9923 95.54
XGBoost 0.9671 89.20
LightGBM 0.8911 78.96
RNN LSTM 0.6647 59.25
N-BEATS 0.9835 91.18
TFT 0.5735 54.43

10-Day Prediction Horizon

Random Forest 0.9943 95.53
XGBoost 0.9707 89.46
LightGBM 0.8924 78.33
RNN LSTM 0.7081 61.20
N-BEATS 0.9861 89.60
TFT 0.6883 62.65

Table 5.5: Directional Classifica-
tion Metrics on the Test Set for 1-
Day and 10-Day Prediction Hori-
zons

Model Precision Dir. Acc (%)

1-Day Prediction Horizon

Random Forest 0.5299 51.22
XGBoost 0.5128 49.86
LightGBM 0.5101 48.52
RNN LSTM 0.5288 50.21
N-BEATS 0.5269 50.87
TFT 0.5358 50.53

10-Day Prediction Horizon

Random Forest 0.5596 52.20
XGBoost 0.5317 48.79
LightGBM 0.5600 51.31
RNN LSTM 0.5419 51.37
N-BEATS 0.5484 51.40
TFT 0.5149 50.36
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(a) Training Set (b) Test Set

Figure 5.3: Confusion matrices for N-BEATS (1-Day Horizon). Rows represent actual
movement (down/up), and columns represent predicted movement. (a) Training set:
For down movements (5327 actual), 4529 were correctly predicted as down and 798
were incorrectly predicted as up. For up movements (5665 actual), 171 were incorrectly
predicted as down, and 5494 were correctly predicted as up. (b) Test set: For down
movements (1514 actual), 548 were correctly predicted as down’ and 966 were incorrectly
predicted as up. For up movements (1633 actual), 580 were incorrectly predicted as down
and 1053 were correctly predicted as up.

on unseen data further underscores the overfitting issue and difficulty predicting stock market
movements.

5.2.4 Strategy Performance Analysis

The performance of a simple trading strategy (long on predicted positive return, short on
predicted negative return) is shown in Table 5.6. The total Buy & Hold return for the test
period (July 2012 to December 2024) was 19.14% for the 1-day horizon and 63.40% for the
10-day horizon.

1-Day Horizon Strategy: Surprisingly, despite poor regression and directional metrics on
the test set, N-BEATS, TFT, and Random Forest generated positive total returns (121.28%,
115.79%, and 104.14% respectively) for the 1-day strategy, all outperforming the Buy & Hold
strategy. The performance of the Random Forest 1-day strategy is visualized in Figure 5.4.
Their Sharpe Ratios (0.40, 0.38, 0.37) are modest but positive. XGBoost and LightGBM re-
sulted in significant losses. This suggests that even if the overall R2 is negative and directional
accuracy is near chance, these models might occasionally capture large correct moves or have
a slight, albeit statistically weak, edge that accumulates over many trades in this idealized
backtest. However, the high maximum drawdowns (e.g., -48.34% for N-BEATS) indicate con-
siderable risk.

10-Day Horizon Strategy: For the 10-day horizon, Random Forest leads with a total return
of 105.72%, a notably improved Sharpe Ratio of 0.86, along with a lower maximum drawdown of
-26.29%. This is visualized in Figure 5.5, where the strategy (blue line) significantly outperforms
the Buy & Hold approach (grey line) over the test period. N-BEATS also shows a positive return
(48.46%) with a Sharpe Ratio of 0.49, beating Buy & Hold. RNN LSTM and LightGBM are
roughly breakeven or slightly positive in total return, while XGBoost and TFT incur losses.
The improved Sharpe ratio for Random Forest on the 10-day horizon suggests it might be better
at capturing slightly longer-term signals or that the 10-day aggregation smooths out some of
the daily noise.
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Table 5.6: Strategy Performance Metrics on the Test Set for 1-Day and 10-Day Pre-
diction Horizons. (Buy & Hold Total Return for 1-Day Horizon: 19.14%; for 10-Day
Horizon: 63.40%)

Model Total Ret (%) Ann. Ret (%) Sharpe Ratio Max DD (%)

1-Day Prediction Horizon

Random Forest 104.14 5.88 0.37 -38.31
XGBoost -74.60 -10.39 -0.36 -85.58
LightGBM -79.74 -12.00 -0.44 -83.89
RNN LSTM -19.10 -1.68 0.04 -60.59
N-BEATS 121.28 6.57 0.40 -48.34
TFT 115.79 6.44 0.38 -47.55

10-Day Prediction Horizon

Random Forest 105.72 5.96 0.86 -26.29
XGBoost -26.71 -2.46 -0.32 -45.60
LightGBM -0.54 -0.04 0.04 -45.13
RNN LSTM 2.64 0.21 0.06 -30.77
N-BEATS 48.46 3.22 0.49 -20.48
TFT -3.07 -0.27 0.00 -38.81

Figure 5.4: Strategy Performance Comparison for Random Forest (1-Day Horizon) on
the Test Set. The blue line shows the cumulative portfolio value of the trading strategy
based on Random Forest predictions. The grey line represents the cumulative portfolio
value of a Buy & Hold strategy. The light blue area at the bottom shows the daily returns
of the 1-day Buy & Hold strategy. The strategy significantly outperforms Buy & Hold
despite weak statistical metrics.
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Figure 5.5: Strategy Performance Comparison for Random Forest (10-Day Horizon) on
the Test Set. The blue line shows the cumulative portfolio value of the trading strategy
based on Random Forest predictions. The grey line represents the cumulative portfolio
value of a Buy & Hold strategy. The light blue area at the bottom shows the daily returns
of the 10-day Buy & Hold strategy. The strategy significantly outperforms the Buy &
Hold approach over the test period.

The strategy results, particularly for Random Forest, N-BEATS and TFT (1-day) and Random
Forest (10-day), are somewhat counterintuitive given their poor statistical predictive accuracy
on the test set. This discrepancy might be due to the non-linear nature of returns, where a few
correctly predicted large moves can offset many small errors.

5.2.5 Overall Performance Summary and Discussion

The evaluation of the six machine learning models with primarily default hyperparameters
reveals several key insights regarding their application to IBM stock price prediction:

1. Overfitting is a Dominant Challenge: Most models, particularly N-BEATS, Ran-
dom Forest, and XGBoost, demonstrated strong performance (high R2, high directional
accuracy) on the training data but failed to generalize to the unseen test data. Test set
R2 scores were predominantly negative, and directional accuracies hovered around 50–
52%. This highlights the significant difficulty in capturing truly predictive, generalizable
patterns in stock market data with out-of-the-box models, a common finding in financial
machine learning [HSK18; BGC22]. The models largely learned noise or specific patterns
in the training data that did not persist.

2. Computational Efficiency Varies Widely: Gradient boosting models (LightGBM,
XGBoost) are extremely fast to train, often completing in seconds, making them suitable
for rapid experimentation. Deep learning models, particularly N-BEATS and TFT, are
comparatively more computationally intensive. While they require substantial training
time as shown in Table 5.1, these durations are generally well within practical limits
for daily model retraining, aligning with the daily frequency of the financial data used,
described in Chapter 3.

3. Regression vs. Directional Accuracy on Test Data: Poor regression performance,
exemplified by metrics such as a negative R2 on the test set, generally correlated with
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weak directional accuracy, which typically ranged between 50–52%. For context, a naive
benchmark strategy of consistently predicting positive returns within this test set would
have achieved an accuracy of 52.26%. This outcome is anticipated, as accurately predict-
ing both the magnitude and sign of returns is intrinsically more complex than forecasting
the sign alone.

4. Divergence Between Statistical Metrics and Strategy Performance: A key ob-
servation was the divergence between conventional predictive accuracy metrics and the
performance in an idealized trading strategy. Despite generally low R2 scores and near-
random directional accuracy on the test set, certain models, notably Random Forest
(1-day and 10-day), N-BEATS (1-day and 10-day), and TFT (1-day), generated positive
total returns that surpassed a Buy & Hold benchmark. This suggests that the standard
metrics, while important, might not fully capture the nuances that contribute to prof-
itability in this simplified trading context. However, these strategy outcomes must be
viewed cautiously, given the idealized backtest and the lack of robust statistical underpin-
ning on the test data. Achieving consistent alpha remains a significant challenge [Fam70;
VV14].

5. Impact of Prediction Horizon:

• For regression and directional accuracy on the test set, performance remained poor
for both 1-day and 10-day horizons, with a marginal improvement in R2 for Random
Forest at 10 days.

• For strategy performance, the 10-day horizon seemed to benefit Random Forest
significantly (improved Sharpe ratio, lower drawdown) and N-BEATS to some extent.
This might suggest that predicting slightly longer-term aggregated movements could
be less noisy or that these models are better suited for such horizons, potentially
capturing weaker, longer-term signals.

6. Model Families:

• Ensemble Tree-Based Models (RF, XGBoost, LightGBM): Showed strong
fitting capabilities on training data (especially RF and XGBoost). RF showed some
promise in the 10-day strategy. However, all suffered from severe overfitting regarding
statistical predictive accuracy on the test set.

• Deep Learning Models (LSTM, N-BEATS, TFT): N-BEATS was the best at
fitting training data. LSTM performance was modest. TFT struggled significantly
even on training data with default settings for this specific task. N-BEATS and TFT
showed noteworthy strategy performance on the 1-day horizon (N-BEATS also on
10-day). These models are generally more complex and might require more careful
tuning, different feature engineering, or architectural adjustments to generalize well
on this univariate forecasting task [LW24; Hu21].

In summary, the models struggled to achieve robust statistical predictive power on unseen IBM
stock data using default hyperparameters, primarily due to overfitting. Test set regression and
directional metrics were generally weak. However, an interesting divergence emerged where
some models, despite these statistical shortcomings, yielded positive total returns in an ide-
alized trading simulation, outperforming a Buy & Hold strategy. Specifically, the Random
Forest and N-BEATS models demonstrated this noteworthy strategy performance. Even a
marginal, consistent predictive edge in financial markets can translate to significant alpha or
excess returns [Kha+23; HSK18]. While these preliminary strategy results are encouraging,
they must be interpreted cautiously due to the idealized backtesting conditions (e.g., no trans-
action costs) and the underlying weak statistical validation. Nevertheless, the performance of
Random Forest and N-BEATS, in particular, suggests they are promising candidates for fur-
ther, more rigorous investigation. Future work should prioritize addressing overfitting through
robust regularization, comprehensive hyperparameter optimization, potentially richer feature
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sets, and more realistic backtesting protocols to determine if a truly reliable predictive edge
can be consistently extracted [Pat+20; Sir+19].



Chapter 6

Design of a Multi-Model
Trust-Enhancing System

Building on the predictive modeling performance analysis in Chapter 5, this chapter details
the architecture, components, and design rationale of a decision support system developed
to address the challenges of user trust in stock market predictions. Many machine learning
models’ inherent complexity and black-box nature, as discussed in Section 2.4, can hinder user
acceptance, especially in high-stakes financial decision-making. This system aims to mitigate
these concerns by integrating predictions from multiple machine learning models with insights
derived from historically similar market patterns, thereby fostering greater transparency and
contextual understanding.

6.1 Introduction and Design Philosophy

The primary research question guiding this thesis is: “How can multiple machine learning mod-
els be used to enhance trustworthiness in stock market predictions using similar historical pat-
terns?”. The system described in this chapter directly attempts to answer this question by pro-
viding users with a more holistic and interpretable view of potential market movements.

The design philosophy is rooted in several key principles aimed at enhancing user trust:

• Transparency through Comparison: Instead of presenting a single, opaque predic-
tion, the system showcases outputs from the six distinct machine learning models detailed
in Section 5.1. This allows users to observe areas of consensus or divergence among the
models.

• Contextualization through Historical Analogy: The system identifies and presents
past market periods that exhibit strong similarity to current conditions, aligning with
similarity-based explanation concepts discussed in Section 2.4 [Han+21; NSK22]. The
window length for defining these patterns (20 days) deliberately matches the look-back
period used by the machine learning models, ensuring that the historical analogies are
based on the same temporal input scale as the models’ predictions.

• Evidence-based Insight into Past Model Behavior: The system demonstrates how
the integrated machine learning models would have performed when presented with those
past input sequences for each similar historical period. This provides tangible evidence
of their past accuracy under analogous feature conditions.

• User Empowerment and Facilitated Interpretation: The system provides infor-
mation and tools for exploration. Visualizations like “Model Performance on Historical

54
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Patterns” and a statistically derived “Recommendation” are included to aid non-expert
users.

These elements are integrated into an interactive dashboard designed to allow users to explore
predictions, examine historical similarities, and understand the basis for system recommenda-
tions.

6.2 System Architecture

The system is architected as a three-tier application, illustrated in Figure 6.1. The components
are:

Frontend Web Application (React): The user-facing layer for data visualization, user in-
teraction, and API communication.

Backend API Server (FastAPI): The core logic engine developed in Python, exposing API
endpoints. It handles data preprocessing, calculation of the eight technical indicators
defined in Section 4.3, scaling, PCA transformation, pattern matching using Dynamic
Time Warping (DTW), and model predictions.

Data Storage & Machine Learning Models: Consists of the historical IBM stock data
and the six pre-trained ML models for 1-day and 10-day horizons from Section 5.1.

User interactions on the React frontend trigger HTTP API requests to the FastAPI backend,
which processes them and returns JSON data for display.

Stock Market Prediction System Architecture

Frontend Web Application (React)

User Interface



Date Selection, Charting, 
View Toggle

Backend API Server (FastAPI)

API Endpoints



/patterns, /predictions, 
/single-model

Data Storage & 
Machine Learning Models

Historical 
Stock Data



(IBM.csv)

Pre-trained 
ML Models



(.pt Models)

API Client



(Fetch API)

Data Preprocessing 
& Feature 
Engineering



Pandas, Scikit-learn 
(Scaling, PCA), TA-Lib

Pattern Matching 
Engine



DTW, Similarity Scoring

Prediction Service



Model Inference 
(RF, N-BEATS, etc.)

User

User Interactions

HTTP API Requests/ 
Responses (JSON)

Read Data

Load Models

Figure 6.1: High-level architecture of the Stock Market Prediction System. This dia-
gram illustrates the three main tiers: the Frontend Web Application (React) handling
user interactions and API calls; the Backend API Server (FastAPI) containing the core
logic for data processing, pattern matching, and model predictions; and the Data Storage
& Machine Learning Models layer providing historical stock data and pre-trained models.
Arrows depict the flow of data and user interactions.

6.3 Core System Components – Design and Implementa-
tion Details

6.3.1 Multi-Model Prediction Integration

The system integrates all six machine learning models analyzed in Chapter 5: Random Forest,
XGBoost, LightGBM, LSTM, N-BEATS, and Temporal Fusion Transformer. As detailed in
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Section 4.4.3, these models input a 20-day sequence of the eight engineered technical features.
For any given 20-day window, current or historical, each model generates a 1-day and 10-day
percentage return forecast. Presenting these diverse outputs simultaneously, as discussed in
Section 2.4, allows users to assess model agreement based on identical input feature sequences
[Yeo+25; WL21].

6.3.2 Historical Similarity Search Engine

A core component for contextualization is the historical similarity search engine, inspired by
Velasquez (2023) [Vel23]. It identifies past 20-day market windows most similar to a selected
current window. This 20-day window length is essential, as it matches the look-back period used
to train and feed input to the machine learning models, ensuring that the historical analogies
are based on patterns of the same temporal scale and feature set that the models themselves
process.

Defining Similarity: Features and Metric

Similarity is defined based on comparing 20-day windows of two types of data:

1. Daily Percentage Returns: The sequence of raw daily returns.

2. PCA-Reduced Technical Indicators: The eight engineered technical features (ADX,
short/long close-EMA correlation, RSI, DV2, intraday range, Bollinger Bands Width, and
volume momentum, as detailed in Section 4.3) serve as the primary basis for similarity.
These are the same features used as input to the machine learning models. To make the
similarity search more robust and less prone to noise from eight individual indicator series,
they are first standardized, and then Principal Component Analysis (PCA) is applied to
reduce them to three principal components. This PCA model is fit on the training portion
of the data as per Section 4.4.1 and then used to transform the features for any given
20-day window. These three PCA components, which capture 58.5% of the variance of the
original eight indicators, form the technical indicator feature set for similarity matching.

The distance D between the current window and each historical window is calculated using
a weighted Dynamic Time Warping (DTW) distance. DTW is chosen for its ability to find
similarities between time series that might be warped or shifted in time [Vel23]. The composite
distance is:

D = α ·Dreturns + (1− α) ·Dindicators (6.1)

Where Dreturns is the DTW distance between the normalized daily percentage returns of the
two windows, and Dindicators is the DTW distance (using Euclidean distance for point-wise
comparison within DTW) between the 3-dimensional PCA-reduced technical indicator series of
the two windows. The weight α is set to 0.2. This assigns 80% importance to the similarity of
the PCA-reduced technical indicator patterns and 20% to the similarity of the raw return pat-
terns. This specific weighting acknowledges that while price movement patterns are important,
the richer, multifaceted information captured by combining technical indicators should be more
heavily emphasized when defining similarity in market states. Since four of the eight original
technical indicators are mathematical transformations of the close price and thus directly re-
lated to returns calculated over the 20-day window, a 20% weight is still assigned to the direct
returns component. The primary reliance on the PCA-reduced indicators for similarity ensures
that the identified past patterns are analogous in terms of the features the ML models consider,
enhancing the relevance of these historical comparisons for understanding potential model be-
havior. The resulting DTW distance is then converted to a normalized similarity score, where
higher values indicate greater similarity.

Search Process and Presentation

The backend identifies the top three most similar historical 20-day patterns, ensuring a mini-
mum temporal separation of 5 days between them to prevent overlap. For each of these patterns,
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the system retrieves:

• The 20-day sequence of their historical returns and PCA-reduced features.

• The actual subsequent 10-day returns that followed that pattern.

• The 1-day and 10-day predictions each of the six ML models would have generated if
provided with that specific historical 20-day window of features as input.

• The absolute error of each model’s prediction against the actual outcome for that past
instance.

The “IBM Stock Historical Pattern Similarity” chart (Figure 6.2) visualizes the current 20-
day window (based on relative price movement), the three most similar past patterns (also
shown as relative price movement, including their actual continuations over the next 10 days),
and a median pattern projection. This median projection, derived from the outcomes of these
historically similar input sequences, offers a form of transparent, example-based forecast.

Figure 6.2: The Historical Pattern Similarity chart presented in the Multiple Models
View of the user interface. The solid black line (“Effective Selected Pattern”) represents
the relative price movement of IBM stock over the current 20-day window selected by the
user (ending 23 March 2023 in this example). Three dotted lines (gold, silver, bronze)
depict the three most historically similar 20-day patterns, showing their actual relative
price movements and continuations over the subsequent 10 trading days. The dashed
black line (“Median Pattern Projection”) illustrates the median price trajectory derived
from these three historical continuations. The vertical dashed line labeled “Now” marks
the end of the 20-day pattern window and the beginning of the 10-day projection/actual
outcome period. The x-axis represents trading days, and the y-axis shows relative price
movement normalized to the start of each pattern.
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6.3.3 Aggregation and Analysis for User Interpretation

To simplify interpretation for non-expert users, the system provides aggregated insights:

• Model Performance on Historical Patterns: For each of the six models, a weighted
average absolute error for both 1-day and 10-day predictions is calculated across the three
most similar historical patterns. The weights are the normalized similarity scores of these
patterns, emphasizing performance in more analogous past situations. The formula is:

Avg Error =

3∑
i=1

(wi × errori) (6.2)

Where wi is the normalized weight of the i-th pattern and errori is the model’s absolute
prediction error on that pattern. This is visualized in Figure 6.3, highlighting the best
model (lowest error) in green for each forecast horizon.

Figure 6.3: The “Model Performance on Historical Patterns” summary component from
the Multiple Models View. This visualization presents the weighted average absolute
error for each of the six machine learning models, calculated based on their predictive
performance across the three most similar historical patterns. Separate bar charts display
these errors for 1-Day and 10-Day Forecasts. The length of each blue bar is proportional
to the error, with lower error values indicating better historical performance. The model
with the lowest error in each category is highlighted with a green bar. The “Pattern
Weights” used to calculate these weighted average errors are also displayed, reflecting
the normalized similarity scores of the historical patterns.

• Statistical Recommendation: The best performing models, those with the lowest
weighted average error on historical patterns, for the 1-day and 10-day horizons are used
to generate a qualitative recommendation for the current window: “Strong Buy”, “Weak
Buy”, “Hold”, or “Sell”. The logic is:

– Strong Buy: The Best 1-day model predicts positive, and the best 10-day model
predicts positive.

– Weak Buy: The Best 1-day model predicts positive, but the best 10-day model
predicts non-positive.

– Hold: The Best 1-day model predicts non-positive, but the best 10-day model pre-
dicts positive.

– Sell: The Best 1-day model predicts non-positive, and the best 10-day model predicts
non-positive.

This approach of using buy/hold/sell signals is common in technical analysis, as noted in
Section 2.3, and extending to four states, offers an actionable suggestion grounded in the
historical reliability of the models in similar contexts.

The “Selected Window” card (Figure 6.4) presents the current predictions from all six models
alongside this statistical recommendation. The “Historical Similar Patterns” cards (Figure 6.5)
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provide a compelling drill-down, showing each model’s specific prediction and error for each
past similar instance, facilitating inter-model comparisons and offering transparency into their
past behaviors.

Figure 6.4: The “Selected Window” predictions card from the Multiple Models View,
corresponding to the date 23 March 2023, representing today. It displays the 1-day and
10-day percentage return forecasts from each of the six integrated machine learning mod-
els. At the bottom, the card presents an overall “Recommendation”, which is explicitly
stated as being “Based on best models” historically, along with the specific forecasts from
those best-performing models that led to the recommendation.

6.4 User Interface (UI) and Dashboard Design

The React frontend offers a “Multiple Models View” and a “Single Model View”.

6.4.1 Multiple Models View

This core view integrates components designed to enhance trust:

• IBM Stock Historical Pattern Similarity Chart (Figure 6.2): Displays the current
20-day window, the three most similar historical patterns with their actual subsequent
10-day price movements, and a median 10-day projection derived from these patterns.

• Selected Window Predictions Card (Figure 6.4): Presents 1-day and 10-day fore-
casts from all six models for the current date, plus the system’s overall recommendation.
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Examples of the four recommendation states are shown in Figure 6.6.

(a) Strong Buy (b) Weak Buy

(c) Hold (d) Sell

Figure 6.6: Examples of the four distinct qualitative recommendation states provided
by the system in both Views. These states are: (a) “Strong Buy”, indicating positive
forecasts from the best-performing historical models for both 1-day and 10-day horizons;
(b) “Weak Buy”, where the best 1-day model is positive but the best 10-day model is
non-positive; (c) “Hold”, where the best 1-day model is non-positive but the best 10-day
model is positive; and (d) “Sell”, indicating non-positive forecasts from the best historical
models for both horizons. Each recommendation card explicitly shows the forecasts from
the historically best-performing 1-day and 10-day models that determined the specific
recommendation.

• Historical Similar Patterns Analysis Cards (Figure 6.5): For each of the three
similar historical patterns, a card details its similarity score, date, and essentially, the
1-day/10-day predictions from all six models versus the actual outcome, alongside their
prediction errors (over/underestimation and magnitude). This offers direct evidence of
past model reliability in comparable situations.

• Model Performance on Historical Patterns Summary (Figure 6.3): Visualizes
the weighted average absolute error for each model (1-day and 10-day) based on per-
formance in the three similar historical patterns. It highlights the best models (lowest
error) and displays the pattern weights used in the calculation, providing a quantitative
summary of historical model reliability.

Interactive features such as date selection and hover effects linking cards to the chart facilitate
exploration. Info icons offer on-demand explanations for calculations.

6.4.2 Single Model View

For the user study (Chapter 7), a “Single Model View” (Figure 6.7) is provided. It uses only the
Random Forest model for predictions and recommendations, omitting multi-model comparisons
and historical similarity analysis, to serve as a baseline for evaluating the trust impact of the
Multiple Models View. The Random Forest model was selected as the best model from the
analysis in Section 5.2.
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Figure 6.7: Overview of the Single Model View interface. This view presents a simplified
prediction dashboard based solely on the Random Forest model. The main chart displays
the “Actual Stock Pattern” for the selected 20-day window (ending 23 March 2023 in
this example), with the 1-day and 10-day Random Forest forecasts shown as dotted lines.
To the right, “Prediction Results” cards show the numerical percentage change for the
“Next Day Forecast” and the “10-Day Forecast”. Below these, a “Recommendation” is
provided, based exclusively on the Random Forest model’s current predictions for the
1-day and 10-day horizons.

6.5 User Workflow and Transition to Evaluation

The system is designed with two primary interfaces to facilitate user interaction and comparative
analysis: the Multiple Models View and the Single Model View.

In the Multiple Models View, users can select a date, observe the current market pattern
against historically similar ones and their outcomes (Figure 6.2), review current predictions
from all six models and the system’s evidence-based recommendation (Figure 6.4), delve into
how each model performed in those specific past similar instances (Figure 6.5), and understand
the aggregated historical reliability that underpins the recommendation (Figure 6.3). This
multifaceted approach aims to allow users to build a more informed sense of trust by providing
transparent insights into model behavior and historical performance within analogous contexts,
leveraging a similarity search.

The Single Model View (Figure 6.7) intentionally presents a streamlined workflow, offering
predictions and recommendations based solely on the Random Forest model’s output, without
the multi-model comparisons or historical similarity analysis.

The distinct design of these two views, the comprehensive and evidence-rich Multiple Models
View versus the simpler Single Model View, is central to the empirical investigation of this
thesis. The following chapter, Chapter 7, will detail the methodology and findings of a user
study to evaluate the impact of these different system presentations on user trust, confidence,
and hypothetical investment decisions. This evaluation will directly assess whether integrating
multiple models and similarity-based historical insights, as designed in the Multiple Models
View, effectively enhances trustworthiness in stock market predictions compared to a more
conventional single-model approach.



Chapter 7

User Study on Evaluating System
Trustworthiness

This chapter details a user study conducted to empirically investigate this thesis’s primary re-
search question: “How can multiple machine learning models be used to enhance trustworthiness
in stock market predictions using similar historical patterns?”. The study aimed to assess the
impact of a multi-model decision support system, augmented with historical similarity insights,
on user trust, confidence, and perceived system utility compared to a more conventional single-
model system. By systematically evaluating user responses to two distinct interface designs;
the Single Model View (SMV) and the Multiple Models View (MMV) as described in Chap-
ter 6, this research seeks to provide evidence-based insights into designing more trustworthy
AI-driven financial tools.

7.1 Methodology

A within-subjects experimental design was employed, where participants interacted with the
SMV and MMV interfaces. The order of presentation was counterbalanced to mitigate potential
learning or fatigue effects.

7.1.1 Participants

A total of 22 participants completed the user study. The demographic breakdown was as
follows:

• Age Range: The majority were 18-24 years old (13 participants, 59.1%), followed by
25-34 (7 participants, 31.8%). Smaller representations were from the age groups of 35-44
(1 participant, 4.5%) and 55-64 (1 participant, 4.5%).

• Gender: The participant pool was predominantly male (20 participants, 90.9%), with 2
female participants (9.1%).

• Stock Market Investing Experience: Half of the participants (11, 50.0%) identified
as beginners with basic knowledge or have made a few investments. A significant portion
(9 participants, 40.9%) had no prior investing experience. One participant (4.5%) had
advanced expertise, and one (4.5%) had intermediate experience.

• Data Visualization Experience: Participants generally had some experience with data
visualization tools. Nine (40.9%) reported basic experience (viewed occasionally), another
nine (40.9%) reported intermediate experience (use regularly), one (4.5%) had advanced
expertise, and one (4.5%) had no experience.

63



64 CHAPTER 7. USER STUDY ON EVALUATING SYSTEM TRUSTWORTHINESS

• Machine Learning (ML) Familiarity: A substantial number of participants had ex-
posure to ML concepts, with 10 (45.5%) reporting advanced familiarity (studied/worked
with ML) and 9 (40.9%) having some practical exposure. Two participants (9.1%) had
no understanding of ML, and one (4.5%) had a basic understanding.

This diverse group, particularly in terms of stock market and ML experience, provided a range
of perspectives on the system interfaces.

7.1.2 System Interfaces

Participants interacted with two distinct web-based dashboard views designed for this study,
as detailed in Chapter 6:

• Single Model View (SMV): This interface presented stock predictions (1-day and
10-day IBM stock returns) based solely on the Random Forest model. It displayed the
current 20-day stock pattern, the model’s forecasts, and a system-generated investment
recommendation (Strong Buy, Weak Buy, Hold, Sell) derived from these forecasts. This
view is depicted in Figure 7.1.

• Multiple Models View (MMV): This interface provided predictions from all six ma-
chine learning models (Random Forest, XGBoost, LightGBM, LSTM, N-BEATS, TFT).
Crucially, it integrated a historical similarity search engine, displaying the current 20-day
pattern alongside the three most similar historical patterns and their actual subsequent
outcomes. Each historical pattern showed how all six models would have performed. The
MMV also provided a system-generated investment recommendation based on the per-
formance of the historically best-performing models in those similar past scenarios. This
view is depicted in Figure 7.2.

7.1.3 Experimental Design

A within-subjects experimental design was employed, meaning each participant experienced
and evaluated both the Single Model View (SMV) and the Multiple Models View (MMV). This
approach directly compared the two interface views (effectively, View A: SMV versus View B:
MMV) based on each participant’s responses to both. To control for potential order effects,
where experiencing one view first might influence perceptions or performance on the second, the
presentation sequence of the SMV and MMV was counterbalanced across participants:

• Group 1 (11 participants) first interacted with the MMV (View B), followed by the SMV
(View A).

• Group 2 (11 participants) first interacted with the SMV (View A), followed by the MMV
(View B).

This counterbalancing strategy within the within-subjects design helps ensure that any observed
differences in the comparison between SMV and MMV are more likely attributable to the
interfaces’ characteristics rather than the specific order in which the participants encountered
them.

7.1.4 Procedure

The study was conducted in a controlled on-location setting, with the researcher present as an
observer and facilitator. Participants completed the study using a structured online form on a
dedicated computer. The procedure for each participant was as follows:

1. Introduction and Consent: Participants first received a verbal briefing from the fa-
cilitator detailing the study’s purpose and procedure. They were then given a physical
informed consent form (detailing data processing, rights, and confidentiality), which they
read and signed. Following this, they accessed the online platform, which began with a
digital reiteration of the study’s introduction.
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Figure 7.2: The Multiple Models View (MMV) dashboard for IBM stock prediction as
of 31/12/2024, designed to enhance user trust through multi-faceted analysis and histor-
ical context. Key components include: (i) the “IBM Stock Historical Pattern Similarity”
chart, comparing the current 20-day pattern to the three most similar historical analogs
and their actual subsequent outcomes; (ii) current 1-day and 10-day forecasts from six
distinct machine learning models, alongside a system recommendation derived from his-
torically best-performing models; (iii) detailed performance cards for each model on each
identified historical pattern, showing predictions versus actuals and errors; and (iv) a
“Model Performance on Historical Patterns” summary visualizing weighted average er-
rors. This view offers a rich, evidence-based context for interpreting stock predictions.
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2. Demographic Questionnaire: Participants answered questions on the online form
about their age, gender, and experience with stock investing, data visualization, and
machine learning.

3. First Interface Evaluation (SMV or MMV):

• Participants were guided to open the computer’s assigned interface (SMV or MMV).
The facilitator encouraged them to spend a few minutes familiarizing themselves
with its components and asked if they had any initial questions about navigation.

• For five pre-defined historical dates (scenarios), participants selected the date in
the dashboard, analyzed the presented information, made a hypothetical 10-day
investment decision (Strong Buy, Weak Buy, Hold, Sell) via the online form, and
rated their confidence in that decision on a 7-point Likert scale (1 = Not at all
confident, 7 = Extremely confident) within the form. The scenarios were chosen to
represent varied market conditions and system recommendations. The facilitator was
available to clarify task instructions if needed but did not influence decision-making.

• After completing the five scenarios for the first interface, participants answered ques-
tionnaires on the online form regarding their experience with that specific view: the
Trust in Automated Systems Test (TOAST), the System Usability Scale (SUS), and
a set of additional feedback questions.

4. Second Interface Evaluation (MMV or SMV): Participants repeated step 3 for
the other interface, using a different set of five historical scenarios presented through the
online form.

5. Overall Comparison and Qualitative Feedback: After evaluating both views, par-
ticipants answered questions on the online form comparing the two interfaces regarding
overall preference, trustworthiness, impact on confidence, information complexity, most
helpful features, suggestions for improvement, and risk awareness. They also rated their
willingness to invest a hypothetical €1000 based purely on the MMV’s recommendations
via the form.

6. Debrief and Submission: The facilitator briefly discussed the experience with the par-
ticipant, answered any final questions, and the participant then submitted their completed
online form.

The study was designed to take approximately 40-50 minutes per participant. The controlled
environment and presence of a facilitator ensured consistency in procedure and allowed for
immediate clarification of non-leading questions.

7.1.5 Data Collection and Measures

A combination of quantitative and qualitative data was collected:

Scenario-Based Decisions and Confidence

For each of the 10 scenarios (5 per view), participants’ hypothetical investment actions and
confidence scores (1-7 Likert scale) were recorded. An average confidence score per view per
participant was calculated.

User Action and System Recommendation Correctness

The correctness of participants’ hypothetical investment decisions and the system’s own recom-
mendations was evaluated against the actual IBM stock performance over the subsequent 10
trading days for each scenario date. For this evaluation, both user choices (Strong Buy, Weak
Buy, Hold, Sell) and system recommendations were first mapped to one of three definitive
market actions: “Buy”, “Hold”, or “Sell”. Specifically, “Strong Buy” and “Weak Buy” were
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mapped to “Buy”. The actual market outcome was also categorized into one of these three
actions. This categorization utilized a 1% threshold, a level considered significant for defin-
ing price movements and targeted in predictive financial studies [SK21; DA12]. Specifically, a
percentage change in stock price over the 10-day period greater than +1% was considered a
“Buy” situation, a change less than -1% was a “Sell” situation, and changes between -1% and
+1% (inclusive) were considered “Hold” situations. A decision or recommendation was deemed
correct if its mapped action matched the categorized actual market outcome.

Trust in Automated Systems Test (TOAST)

TOAST is a 9-item questionnaire designed to measure user trust in automated systems, includ-
ing aspects of understanding and performance [Woj+20]. Participants rated their agreement
with statements (e.g., “I understand what the system should do” and “The system helps me
achieve my goals”) on a 7-point Likert scale (1 = Strongly Disagree, 7 = Strongly Agree).
Scores were calculated for:

• TOAST Overall: Average of all 9 items.

• TOAST Understanding: Average of items 1, 3, 4, 8 (e.g., “I understand the limitations
of the system” and “I understand how the system executes tasks”).

• TOAST Performance: Average of items 2, 5, 6, 7, 9 (e.g., “The system performs
consistently” and “I feel comfortable relying on the information provided by the system”).

Higher scores indicate greater trust, understanding, or perceived performance [Woj+20].

System Usability Scale (SUS)

SUS is a 10-item questionnaire providing a global measure of perceived usability [Sau11]. Par-
ticipants rated their agreement with statements (e.g., “I thought the system was easy to use”
and “I found the system unnecessarily complex”) on a 5-point Likert scale (1 = Strongly Dis-
agree, 5 = Strongly Agree). SUS scores are calculated by summing item contributions (odd
items: score - 1; even items: 5 - score) and multiplying by 2.5, resulting in a score from 0 to
100 [Sau11]. A score of 68 is considered average [Sau11].

Additional Feedback Metrics

Participants rated their agreement (1-7 Likert scale) with statements specifically about each
view:

• “I feel the information provided by this view is trustworthy”.

• “I understand how this view arrives at its final recommendation”.

• “I would feel comfortable using this view to inform real financial decisions”.

• “This view helps me understand the potential risks or uncertainty associated with the
prediction”.

They also rated the “appropriateness of the amount of information presented” (1 = Far too
little, 4 = Just right, 7 = Far too much).

Qualitative Feedback

Open-ended questions captured participants’ reasoning for their preferences, perceived trust-
worthiness, helpful features, suggestions for improvement, and risk awareness.

Observational Data

The facilitator observed participants’ interactions with the system interfaces during the study
sessions. Specific interactions with key features (e.g., analyzing historical pattern charts and
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examining detailed prediction cards) were noted for each participant to understand engagement
patterns with different components of the SMV and MMV.

7.2 Results

This section presents the analysis of the data collected from the 22 participants. Statistical sig-
nificance was assessed at the p < 0.05 level using paired t-tests for within-subjects comparisons
and independent samples t-tests for order effect analysis.

7.2.1 Analysis of Presentation Order Effects

An essential step in validating the within-subjects design was to assess whether the order in
which participants experienced the Single Model View (SMV) and the Multiple Models View
(MMV) influenced their evaluations. To this end, independent samples t-tests were conducted.
These tests compared the mean scores on key outcome measures: the TOAST overall score,
the System Usability Scale (SUS) score, and the average scenario confidence, between the
participant group that interacted with the SMV first and the group that encountered the MMV
first.

These t-tests consistently indicated no statistically significant differences (at the p < 0.05
threshold) for any primary metrics when evaluating the SMV or the MMV. For example, the p-
value for the difference in TOAST overall scores for the SMV between the two order groups was
p = 0.070, which, while showing a slight numerical divergence, did not meet the conventional
criterion for statistical significance. All other comparisons for TOAST scores on the MMV,
SUS scores for both views and average scenario confidence scores for both views yielded p-
values comfortably above this threshold, typically ranging from p = 0.268 to p = 0.840.

The consistent absence of statistically significant order effects across these key measures suggests
that the counterbalancing of the interface presentation effectively mitigated biases arising from
the sequence of exposure. This finding is important as it lends greater confidence to interpreting
subsequent, direct comparisons between the SMV and MMV, allowing observed differences to
be more robustly attributed to the fundamental characteristics of the interfaces themselves
rather than an artifact of the presentation order.

7.2.2 Quantitative Comparison of Interface Views

The quantitative data gathered from the 22 participants thoroughly compared the Single Model
View (SMV) and the Multiple Models View (MMV) across several dimensions. Analysis using
paired t-tests, with statistical significance set at p < 0.05, revealed notable differences in how
users perceived and interacted with the two interfaces.

Scenario-Based Confidence

A primary indicator of user experience, scenario-based confidence, was significantly higher
when participants used the MMV. On a 7-point scale, average confidence with the MMV reached
a Mean of 4.96 (Standard Deviation = 0.91), compared to a Mean of 3.89 (Standard Deviation
= 1.18) for the SMV (t(21) = −3.94, p = 0.0007). This suggests that the richer informational
context of the MMV, visualized in Figure 7.3, instilled greater assurance in users’ hypothetical
investment decisions.

User Action and System Recommendation Correctness

Examining the correctness of these decisions, as shown in Figure 7.4, users tended to
perform better with the MMV. Across 110 decisions per view, the user action correctness rate
was 44.55% for the MMV, compared to 31.82% for the SMV. A z-test for two proportions
indicated this difference approached statistical significance (z = −1.94, p = 0.0520). While the
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Figure 7.3: Average User Confidence in Scenario-Based Decisions: SMV vs. MMV.
Boxplots comparing average confidence scores (N=22, 1-7 scale) for decisions made with
the Single Model View (SMV, light blue) and Multiple Models View (MMV, light red).
The MMV elicited notably higher median confidence (MMV Median=5.10) compared to
the SMV (SMV Median=4.20), a statistically significant difference (p < 0.001). Each
boxplot visualizes the median, interquartile range, and data spread.

MMV’s system recommendations were numerically more accurate (60.00% vs. 40.00% for SMV
over 10 scenarios), this difference was not statistically significant (z = −0.89, p = 0.3711), likely
due to the limited number of scenarios for this specific evaluation.

Adherence to System Recommendations

The study also examined how frequently participants’ decisions aligned with the system’s rec-
ommendations for each view, referred to as adherence. For the Single Model View (SMV),
participants followed the system’s recommendations 63.64% of the time across 110 decisions.
For the Multiple Models View (MMV), this rate was very similar, at 62.73% over 110 decisions.
A z-test for two proportions confirmed no statistically significant difference in adherence rates
between the two views (z = 0.14, p = 0.8888). This suggests that while the MMV was perceived
as more trustworthy and led to higher confidence, it did not necessarily lead to greater direct
adherence to its specific final recommendations compared to the simpler SMV.

Trust (TOAST Scores)

The core construct of trust, measured by the Trust in Automated Systems Test (TOAST), also
favored the MMV, see Figure 7.5. The MMV achieved a significantly higher TOAST overall
score (Mean = 5.54, SD = 0.71) than the SMV (Mean = 5.02, SD = 0.87; t(21) = −3.41, p =
0.0026). This superior trust perception appears largely driven by the MMV’s perceived perfor-
mance, as its TOAST performance subscale score (Mean = 5.56, SD = 0.66) was significantly
higher than the SMV’s (Mean = 4.68, SD = 0.89; t(21) = −5.03, p < 0.0001). Interestingly,
both views were perceived similarly regarding system understanding, with no significant differ-
ence in their TOAST understanding subscale scores (MMV Mean = 5.50, SD = 1.00 vs. SMV
Mean = 5.44, SD = 1.12; p = 0.7699).



7.2. RESULTS 71

Figure 7.4: Correctness Rates of User Decisions and System Recommendations: SMV
vs. MMV. Bar chart illustrating the percentage of correct hypothetical investment de-
cisions by users and correct system recommendations for the Single Model View (SMV)
and Multiple Models View (MMV). User actions with MMV (44.5%) tended to be more
correct than with SMV (31.8%). MMV system recommendations (60.0%) were also nu-
merically more accurate than SMV’s (40.0%).

Usability (SUS Scores)

In contrast to trust, the simpler Single Model View was perceived as significantly more
usable. The SMV obtained an average System Usability Scale (SUS) score of 83.86 (SD =
9.87), indicating excellent usability. The MMV, while still achieving a good to excellent SUS
score of 76.82 (SD = 10.18), was rated lower (t(21) = 2.99, p = 0.0069). Both scores, detailed
in Figure 7.6, comfortably exceeded the average SUS benchmark of 68.

Additional Feedback Metrics

Further direct feedback metrics, visualized in Figure 7.7, consistently underscored the MMV’s
advantages in fostering a positive user perception beyond basic usability. Participants found the
information from the MMV significantly more trustworthy (MMV Mean = 5.18 vs. SMV Mean
= 3.23; p < 0.0001) and reported a better understanding of its recommendation logic (MMV
Mean = 5.68 vs. SMV Mean = 4.18; p = 0.0046). This translated into significantly greater
comfort using the MMV to inform hypothetical real financial decisions (MMV Mean = 4.91 vs.
SMV Mean = 2.86; p < 0.0001). Moreover, the MMV was rated significantly more effective in
helping users understand potential risks and uncertainties (MMV Mean = 5.18 vs. SMV Mean
= 3.55; p < 0.0001). Regarding the appropriateness of information amount (1=Far too little,
4=Just right, 7=Far too much), the SMV was seen as offering slightly too little information
(Mean = 2.91). At the same time, the MMV was rated closer to optimal, though tending
towards slightly more information (Mean = 4.50), a significant difference (p < 0.0001).

Perceived Impact of MMV Features and Willingness to Invest

Finally, the study probed the perceived impact of MMV’s unique features and users’
willingness to invest based purely on its recommendations. The MMV’s features (multiple
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Figure 7.5: Trust of Automated Systems Test (TOAST) scores for overall trust, under-
standing, and performance: SMV vs. MMV. Comparative boxplots of TOAST subscale
scores (N=22, 1-7 scale) for the Single Model View (SMV, light blue) and Multiple Mod-
els View (MMV, light red). The MMV showed significantly higher median scores for
overall trust (MMV Median=5.83 vs. SMV Median=5.00; p < 0.01) and performance
(MMV Median=5.80 vs. SMV Median=4.50; p < 0.001). Median scores for understand-
ing were similar for both views. Each boxplot visualizes the median, interquartile range,
and data spread.
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Figure 7.6: System Usability Scale (SUS) Scores: SMV vs. MMV. Boxplots comparing
SUS scores (N=22, 0-100 scale) for the Single Model View (SMV, light blue) and Mul-
tiple Models View (MMV, light red). While both views scored above the average SUS
benchmark of 68 (dashed line), the SMV (Median=85.00) was rated as significantly more
usable than the MMV (Median=77.50; p < 0.01). Each boxplot displays the median,
interquartile range, and data spread.

models, historical comparisons) were reported to significantly increase decision confidence rel-
ative to a single forecast, achieving a mean impact score of 5.77 (SD = 0.92) on a 7-point scale
where 7 represented a significant increase (Figure 7.8). When asked about their willingness to
invest a hypothetical €1000 based purely on MMV’s recommendations, participants expressed
a moderate inclination to trust the MMV for such a decision, with a mean score of 4.27 (SD =
1.42) on a 7-point scale (Figure 7.9).

7.2.3 Qualitative Feedback Analysis

Qualitative data from open-ended questions provided more profound insights into user percep-
tions.

Overall Interface Preference and Trustworthiness

• Overall Interface Preference for Understanding Predictions: 21 out of 22 partic-
ipants (95.5%) preferred the MMV.

• Overall Trustworthiness Preference: All 22 participants (100.0%) found the MMV
more trustworthy.

Reasons for Perceived Trustworthiness of MMV

Participants consistently cited the MMV’s enhanced information and context as primary reasons
for its higher trustworthiness. Key themes included:

• More Information and Context: The ability to compare with historical data and see
multiple model outputs was highly valued.
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Figure 7.7: User Assessment of Interface Trust, Clarity, Comfort, and Risk Insight:
SMV vs. MMV. Comparative boxplots of participant ratings (N=22, 1-7 scale) for the
Single Model View (SMV, light blue) and Multiple Models View (MMV, light red) across
four dimensions. The MMV consistently received higher median ratings for information
trustworthy (MMV Median=5.0 vs. SMV Median=3.0), understanding recommendation
Logic (MMV Median=6.0 vs. SMV Median=5.0), comfort with real financial decisions
(MMV Median=5.5 vs. SMV Median=2.5), and helping understand risk/uncertainty
(MMV Median=5.0 vs. SMV Median=4.0). These differences were statistically signifi-
cant (p < 0.01 for all comparisons). Each boxplot shows the median, interquartile range,
and whiskers.
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Figure 7.8: Perceived Impact of MMV Features on Decision Confidence Relative to
SMV. Histogram and overlaid kernel density estimate (KDE) showing the distribution of
participant ratings (N=22, 1-7 scale) on how MMV’s features influenced their confidence.
The dashed red line indicates the mean impact score of 5.77, suggesting a strong positive
influence of MMV features on user confidence.

Figure 7.9: User Willingness to Invest €1000 Based on MMV Predictions. Histogram
and overlaid kernel density estimate (KDE) illustrating participant willingness (N=22,
1-7 scale) to invest based on the Multiple Models View. The dashed red line represents
the mean willingness score of 4.27, indicating a moderate investment inclination.
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• Multiple Perspectives: Users found reassurance in seeing agreement (or disagreement)
among multiple models, believing this offered a more credible basis than a single model’s
output.

• Transparency: Exposing details behind recommendations, such as model performance
on historical patterns, made the system feel less like a black-box.

Perceived Impact of MMV Features on Confidence

The qualitative feedback aligned with the quantitative finding that MMV features generally in-
creased confidence (Mean quantitative impact: 5.77/7). The reasons provided included:

• Historical Validation: Seeing how models performed on similar past patterns provided
tangible evidence of their potential reliability.

• Consensus Building: Agreement among multiple models or consistency with historical
trends bolstered confidence.

• Realistic Assessment: Some noted that while seeing model disagreements could lower
immediate confidence in a specific prediction, it fostered a more realistic (and thus trust-
worthy) understanding of market uncertainty.

Information Amount and Complexity

When comparing the two views:

• The vast majority (72.7%) felt “The Multiple Models View provided valuable context
despite its complexity”.

• Smaller, equal proportions (9.1% each) felt “The Single Model View lacked sufficient detail
or context”, “Both views had strengths and weaknesses regarding information presenta-
tion”, or “The Single Model View was refreshingly simple and clear”.

This suggests that while MMV was more complex, its informational benefits often outweighed
this complexity for most users.

Most Helpful and Trust-Enhancing Features

Across both views, but particularly for MMV, participants highlighted:

• Historical Comparison/Pattern Similarity Chart: This was very frequently men-
tioned as the most helpful feature for contextualizing current predictions.

• Multiple Model Predictions: The ability to see outputs from different models and
their past performance (error metrics) was key to building trust.

• Clear Recommendation: The system-generated recommendation was appreciated, es-
pecially when its basis (e.g., “based on best models historically in MMV”) was clear.

Suggestions for Improvement

Participants offered several constructive suggestions:

• Enhanced Explainability (XAI): Desire for more insight into why models make certain
predictions (e.g., feature importance).

• More Contextual Data: Suggestions included adding fundamental data (company
news, reports), sector comparisons, or broader market indicators.

• Customization and Control: Ideas like user-defined thresholds for recommendations
or longer lookback periods for historical analysis.
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• UI/UX Refinements: Better guidance on information flow, particularly in MMV, and
clearer explanations for some metrics. Some suggested incorporating historical similarity
into SMV for a fairer comparison.

Awareness of Risk and Uncertainty

A central aspect of trustworthy AI is its ability to convey its predictions’ inherent limitations
and uncertainties. The study found a strong consensus among participants that the Multiple
Models View (MMV) was noticeably superior to the Single Model View (SMV) in this regard.
When asked which view made them more aware of potential risks or uncertainty, 20 out of
22 participants (90.9%) explicitly stated the MMV. Conversely, no participant indicated that
the SMV was more effective for risk awareness. Two participants (9.1%) found neither view
particularly helpful or both views equally (un)helpful in conveying risk.

The primary reasons cited by participants for the MMV’s effectiveness in highlighting risk and
uncertainty included:

• Visible Model Disagreements: Seeing different models predict different outcomes
highlighted market volatility and prediction uncertainty.

• Historical Outcome Variability: Observing that similar past patterns could lead to
vastly different actual outcomes was a key factor.

• Exposure of Model Errors: The MMV’s display of past prediction errors made the
fallibility of models apparent.

These elements collectively contributed to a more nuanced and cautious interpretation of the
predictions offered by the MMV, aligning with the goal of fostering calibrated trust.

7.2.4 Observational Analysis of Feature Interaction

During the study sessions, the facilitator observed and logged participants’ interactions with
key features of both the Single Model View (SMV) and the Multiple Models View (MMV).
This observational data provided insights into user engagement patterns with different interface
components.

For the Multiple Models View (MMV), core features demonstrated high levels of interac-
tion. All participants (100%) actively engaged with the “IBM Stock Historical Pattern Sim-
ilarity” chart, utilizing the “Hover over prediction cards” functionality (for both the selected
window and historical patterns), and analyzed the “Selected window” predictions card. The
detailed “Historical Similar Patterns” analysis cards, which allow for in-depth comparison, also
saw high engagement, with 17 out of 22 participants (77.3%) interacting with them. Interest-
ingly, the “Model Performance on Historical Patterns” summary, which provides an aggregated
view of model reliability in similar past scenarios, was engaged with by 11 out of 22 participants
(50.0%). This moderate engagement might be attributed to participants understanding that the
system’s final recommendation (presented in the “Selected window” card) was already derived
from these underlying analyses. Consequently, some users may have found it less necessary to
perform their own detailed examination of this specific component, trusting the system to have
factored its insights into the final output. Nevertheless, qualitative feedback often cited this
feature as being trust-enhancing for those who engaged with it.

The interaction was similarly focused on its primary components in the Single Model View
(SMV). All participants (100%) engaged with the “IBM Stock Random Forest Prediction”
chart and the “Prediction results” cards. The “Hover over prediction cards” feature in the
SMV was used by 13 out of 22 participants (59.1%).

Regarding features common to both views, 10 out of 22 participants (45.5%) were observed
clicking on info icons (designed to provide more information about specific features or formulas),
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and 12 out of 22 participants (54.5%) utilized advanced chart functionalities offered by the Plotly
library, such as zooming or panning.

The high observed interaction rates with the MMV’s historical comparison and multi-model
prediction features strongly corroborate the qualitative feedback where users cited these ele-
ments as particularly useful and trust-enhancing. Both views’ universal engagement with core
prediction elements confirms their fundamental importance. The varied interaction levels with
more detailed summaries (like the MMV’s model performance summary) or auxiliary features
(like info icons and advanced chart tools) suggest differing user needs for depth of information
versus reliance on readily available, aggregated system outputs or varying levels of technical
comfort and exploratory behavior.

7.3 Discussion

The user study yielded significant insights into how different presentations of machine learning-
based stock predictions affect user trust, confidence, and perceived utility.

7.3.1 Key Findings and Interpretation

The primary finding is that the Multiple Models View (MMV), which integrated predictions
from six models with historical similarity analysis, was significantly preferred and perceived as
more trustworthy than the Single Model View (SMV). This was evident in higher TOAST overall
and performance scores, direct ratings of trustworthiness, comfort with real financial decisions,
and understanding of recommendation logic for the MMV. Specifically, when asked directly, all
22 participants (100.0%) stated they found the MMV more trustworthy overall, and 21 out of
22 participants (95.5%) preferred the MMV for understanding the stock predictions.

This enhanced trust appears to be driven by the MMV’s ability to provide richer context and
transparency. The historical pattern comparisons, coupled with the performance of multiple
models on these past analogous situations, offered users an evidence-based framework for eval-
uating current predictions. This aligns with XAI principles advocating for explanations that
help users understand an AI’s reasoning and reliability [Bar+20]. The features of the MMV
were reported to increase decision confidence significantly relative to a single forecast.

Interestingly, while the Multiple Models View (MMV) was perceived as more complex, reflected
in its System Usability Scale (SUS) score of 76.82 being significantly lower than the SMV’s
score of 83.86, this complexity was often deemed acceptable due to the valuable context it
provided. It is important to note that the MMV’s SUS score still indicates good to excellent
usability, comfortably exceeding the industry benchmark of 68. This suggests a trade-off: users
may tolerate a degree of higher complexity if it leads to a more transparent, justifiable, and
ultimately more trustworthy system, especially when the perceived usability remains at a good
level.

The MMV also excelled in making users more aware of the inherent risks and uncertainties
in stock prediction. Showcasing model disagreements and variable historical outcomes fos-
tered a more calibrated and realistic sense of trust rather than blind faith or undue skepti-
cism. This ability to accurately convey uncertainty is a hallmark of a truly trustworthy system
[Afr+24].

While user decision correctness showed a positive trend for MMV (44.55% vs. 31.82% for
SMV, p = 0.052), it remained below 50%, underscoring the difficulty of market prediction even
with advanced tools. The system’s recommendation correctness was numerically higher for
MMV (60% vs. 40% for SMV), though this difference was not statistically significant with the
limited number of scenarios. Adherence to system recommendations was similar for both views
(SMV: 63.64%, MMV: 62.73%, p = 0.8888), indicating that the increased trust in MMV did
not translate into a significantly higher rate of following its explicit advice over SMV, perhaps
because the MMV also better-equipped users to make their own informed deviations.



7.3. DISCUSSION 79

7.3.2 Answering the Research Question

The research question was: “How can multiple machine learning models be used to enhance
trustworthiness in stock market predictions using similar historical patterns?”. The study find-
ings strongly suggest that such an approach, as embodied by the MMV, can indeed enhance
user trustworthiness. The mechanisms for this enhancement include:

1. Increased Transparency and Reduced Opacity: Presenting multiple model outputs
and their past performance on similar patterns clarifies the prediction process compared
to a single black-box output. Users could see areas of model consensus and divergence.

2. Contextualization through Historical Analogy: Grounding abstract ML predictions
in concrete, similar past market scenarios (sharing the same 20-day feature input structure
as the models) made them more relatable and interpretable, a key aspect of similarity-
based XAI [Han+21; NSK22]. High user engagement with these features confirmed their
value.

3. Evidence-Based Reasoning for Recommendations: The MMV’s recommendation,
derived from the historical performance of models in analogous situations, offered a more
justifiable basis for action than the SMV’s direct model output.

4. Calibrated Understanding of Uncertainty and Risk: The MMV’s design explicitly
exposed model fallibility and market unpredictability, leading to a more informed and
realistic level of trust.

Despite its higher complexity, the combination of these factors contributed to the MMV being
perceived as a more reliable and confidence-inspiring tool.

7.3.3 The Interplay of Information, Trust, and Usability: A Design
Trade-off

The study highlights a nuanced interplay between the amount of information presented, per-
ceived system trust, and usability. While the richer informational context of the Multiple
Models View (MMV) significantly boosted user trust and confidence, it also led to a perception
of higher complexity, as evidenced by its lower System Usability Scale (SUS) score compared
to the more streamlined Single Model View (SMV). However, with the MMV still achieving a
SUS score indicative of good to excellent usability, this finding suggests that users are often
willing to navigate a more complex interface if the additional information demonstrably en-
hances transparency and provides a more justifiable basis for decision-making, particularly in
domains characterized by high stakes and inherent uncertainty like financial forecasting. This
underscores a critical design challenge: optimizing the presentation of complex, trust-enhancing
information in a manner that minimizes cognitive load and maintains high usability.

7.3.4 Insights for Future System Design

The user feedback provided valuable directions for future development:

• Deeper Explainability: Users expressed a desire for more granular explanations of
model behavior, such as identifying which input features most influenced a prediction.
Incorporating techniques like SHAP or LIME could address this.

• Richer Contextual Information: Integrating external data sources (e.g., news sen-
timent, sector trends, fundamental company data) could further enhance the system’s
analytical power and user understanding. One participant suggested comparing IBM’s
performance to a tech sector moving average, which aligns with concepts like statistical
arbitrage and could be a valuable feature [JCC23].

• Adaptive Presentation of Information: Future systems could offer different levels
of detail or explanation based on user expertise or preference, potentially mitigating the
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complexity issue of the MMV while retaining its trust-enhancing benefits.

• Refined Recommendation Logic: The method of deriving the final recommendation
could be further sophisticated. For instance, using the results of “model performance
on historical patterns” as weights to create a weighted average prediction from multiple
models, rather than relying on the best model, could be explored. Another insight was
applying the average historical residual; the deviation of past predictions from actuals,
on similar patterns to current predictions to assess their significance.

• Fairer Benchmarking in Studies: For future comparative studies, including historical
pattern similarity features in both single-model and multi-model views could provide a
more controlled comparison of the multi-model aspect itself.

7.3.5 Limitations of the Study

This study has several limitations:

• Sample Characteristics: The participant pool, while diverse in ML/visualization ex-
perience, was somewhat skewed towards younger males with limited direct stock investing
experience. Results might differ with a more experienced investor population.

• Hypothetical Decisions: Investment decisions were hypothetical, which may not fully
reflect behavior under real financial risk.

• Limited Scenarios for System Correctness: The assessment of system recommen-
dation correctness was based on only 5 scenarios per view, limiting the statistical power
of this particular comparison.

• Fixed Stock and Features: The study focused on a single stock (IBM) and a specific
set of technical indicators. Generalizability to other assets or feature sets requires further
investigation.

• Default Model Hyperparameters: The underlying ML models used default hyperpa-
rameters. Performance and user trust could potentially be further improved with opti-
mized models.

7.4 Conclusion

The user study provides compelling evidence that integrating multiple machine learning models
with explanations grounded in similar historical patterns can significantly enhance user trust-
worthiness in stock market prediction systems. The Multiple Models View, despite its increased
complexity, was overwhelmingly preferred and trusted over the Single Model View. This was
attributed to its greater transparency, contextualization through historical analogies, evidence-
based recommendations, and a more realistic portrayal of prediction uncertainty. These findings
underscore the importance of designing AI-driven financial tools that not only aim for predic-
tive accuracy but also prioritize interpretability and provide users with the necessary context
to build informed confidence in algorithmic outputs. While challenges in managing information
complexity remain, the benefits of a multi-faceted, evidence-rich approach appear decisive for
fostering user adoption and responsible use of AI in financial decision-making.



Chapter 8

Conclusions

The endeavor to predict stock market movements is a formidable challenge, one that has capti-
vated researchers and practitioners for decades. This master’s thesis embarked on this complex
domain not merely to chase predictive accuracy, but to confront an equally, if not more, critical
hurdle: the inherent opacity of many algorithmic forecasting methods and the resultant deficit
in user trust. The central question guiding this research, “How can multiple machine learning
models be used to enhance trustworthiness in stock market predictions using similar historical
patterns?”, sought to explore a pathway towards more transparent and confidence-inspiring
AI-driven financial tools. This concluding chapter moves beyond a simple recapitulation of
findings; it offers a personal and critical reflection on the journey undertaken, the insights
gleaned, the lessons learned, and the profound complexities encountered at the intersection of
machine learning, financial markets, and human-computer interaction.

Reflecting on the core research question, the development and empirical evaluation of the Multi-
Model View (MMV) system provided compelling, albeit nuanced, answers. The user study de-
tailed in Chapter 7 unequivocally demonstrated that an approach integrating predictions from
multiple diverse models, contextualized by historically similar market patterns and transpar-
ently showcasing past model performance in those analogous situations, can significantly en-
hance user trustworthiness. Participants overwhelmingly preferred the MMV, citing its richer
informational context, the ability to see model consensus or divergence, and the evidence-based
grounding of its recommendations as key factors. This resonates deeply with the principles of
Explainable AI (XAI), suggesting that even without delving into the intricate mathematical
innards of each model, providing users with comparative, historical, and performance-based
evidence can substantially demystify the black-box. The enhanced sense of understanding the
recommendation logic, comfort with making hypothetical financial decisions, and a more acute
awareness of potential risks and uncertainties were all testament to the MMV’s success in
fostering a more calibrated and informed trust.

However, the journey also illuminated the intricate nature of trust itself. While the MMV fos-
tered significantly higher confidence and perceived trustworthiness, this did not directly trans-
late into a statistically significant increase in users’ adherence to its specific recommendations
compared to the simpler Single Model View (SMV). This suggests that the richer information,
while building trust in the system’s process and integrity, also empowered users to make more
independent, possibly divergent, judgments. Perhaps the MMV, by making model fallibility
and market uncertainty more apparent, encouraged a healthy skepticism alongside trust, which
is arguably a more desirable outcome than blind adherence. Furthermore, the trade-off between
informational richness and perceived usability was evident. The MMV, while still rated as highly
usable, was inevitably more complex than the SMV. The willingness of most users to navigate
this increased complexity for the sake of enhanced understanding and trust underscores a crit-
ical design insight: in high-stakes domains like finance, users may prioritize transparency and
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justifiable reasoning over mere simplicity, provided the interface remains manageable.

The predictive modeling phase (Chapter 5) was, in itself, a sobering lesson in the inherent
difficulties of stock market forecasting. The pervasive challenge of overfitting was starkly evi-
dent; models that exhibited impressive performance on training data often failed to generalize
to unseen test data, with most yielding negative R-squared scores. This reality reinforced the
already deeply held understanding of the immense challenge of consistently finding true market
alpha. Yet, an intriguing and counterintuitive finding was the divergence between these weak
statistical predictive metrics and the performance of some models, notably Random Forest and
N-BEATS, in an idealized trading strategy simulation. Despite their poor statistical fit on test
data, these models generated positive total returns that outperformed a buy-and-hold strategy.
This discrepancy provokes critical questions about the suitability of standard regression metrics
alone for evaluating financial AI and hints that even a marginal, statistically weak predictive
edge, if consistently applied, might hold potential in financial markets’ non-linear and often
event-driven dynamics. It highlights the immense difficulty in capturing truly generalizable
patterns and underscores the need for robust regularization, meticulous hyperparameter opti-
mization, and perhaps more sophisticated feature engineering than was employed with default
settings in this initial exploration.

The development process itself was a significant learning curve. Integrating six distinct ma-
chine learning models, each with its own input requirements and characteristics, into a cohesive
system was a substantial software engineering task. Designing the historical similarity engine,
particularly the weighting of raw returns versus PCA-reduced technical indicators using Dy-
namic Time Warping, required careful consideration to ensure that similarity was meaningful
in the context of the models’ input space. The subsequent design of the user interface, striving
to present a wealth of information without overwhelming the user, was an iterative process.
The realization of how profoundly the presentation of information impacted user perception
was one of the most significant “aha!” moments. It became clear that trustworthiness is not
solely a function of a model’s latent predictive capability but is heavily mediated by how its
outputs, uncertainties, and rationale are communicated to the user.

Personally, this master’s thesis has been a journey of immense growth. It has solidified my
fascination with the intersection of artificial intelligence and quantitative finance, revealing not
just the potential of algorithms but also the paramount importance of human-centric design.
The challenge of engineering meaningful input features, debugging intricate code, interpreting
often ambiguous results, and structuring these findings into coherent narratives has honed my
analytical and problem-solving skills. The process of designing and conducting the user study,
in particular, provided invaluable experience in empirical research methods and the subtleties of
human-computer interaction. While the inherent difficulty of finding alpha was clear from the
outset, actively confronting the stubborn unpredictability of financial data and the limitations
of the models necessitated strategic decision-making at critical junctures. Yet, overcoming these
hurdles brought a profound sense of accomplishment and a deeper appreciation for the rigor
and perseverance required in research. This project has certainly fueled my desire to delve
further into areas like advanced time-series analysis, XAI techniques specifically tailored for
both financial contexts and high-stakes environments, and the cognitive aspects of decision-
making with AI support.

Acknowledging the limitations of this study, as detailed in Chapter 7, is crucial. The relatively
small and somewhat homogenous participant sample, the hypothetical nature of investment
decisions, the focus on a single stock, and the use of default model hyperparameters all cir-
cumscribe the generalizability of the findings. These limitations, however, also illuminate clear
pathways for future research. Exploring more sophisticated XAI techniques to provide feature-
level explanations, integrating richer contextual data, such as news sentiment or macroeconomic
indicators, developing adaptive interfaces that cater to varying user expertise, and rigorously
backtesting with transaction costs and slippage are all promising avenues. Furthermore, a more
refined recommendation logic, incorporating a weighted ensemble based on historical perfor-
mance in similar situations, could offer further improvements.
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In conclusion, this thesis ventured into the challenging terrain of enhancing trustworthiness
in AI-driven stock forecasting. The findings strongly suggest that a multi-faceted approach,
combining diverse model perspectives with transparent historical evidence, can indeed foster a
more robust and calibrated sense of user trust. While the quest for perfectly accurate stock pre-
diction remains elusive, the journey towards creating more understandable, interpretable, and
ultimately more trustworthy AI tools is a critical one. The insights gained from this research, I
believe, contribute a small but meaningful step in that direction, emphasizing that in the com-
plex dance between algorithms and human decision-makers, especially in high-stakes financial
domains, transparency and context are not just desirable features, but essential foundations
for responsible innovation. The path forward requires a continued commitment to designing
systems that empower users, not by promising infallible predictions, but by providing the tools
and insights needed to navigate uncertainty with informed confidence.
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