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Scientific Summary

The solar atmosphere is a highly dynamical environment, producing lots of interesting phenomena.
Among these phenomena are transient eruptive events that can strongly affect the conditions in inter-
planetary space and Earth’s upper atmosphere. It is thus of crucial importance to gain a deep understand-
ing of these phenomena. These eruptive events are believed to be powered by the magnetic field of the
corona. Since it is really difficult to measure the coronal magnetic field, insight needs to be obtained by
developing three-dimensional fields models. In most regions of the corona, the dynamics are governed
by the magnetic field, rather than by the thermal pressure or gradient or gravity. As a consequence, it is
often justified to neglect both thermal pressure gradients and gravity. This means that the Lorentz force
exerted by the magnetic field is in balance with itself, i.e., the Lorentz force vanishes. Magnetic fields
satisfying this condition are referred to as force-free fields.

In this work we will use the force-free assumption to model the coronal field above the solar active
region. We review the mathematical framework of force-free fields, and discuss several methods that aim
at reconstructing the coronal magnetic using the force-free assumption. These methods try to extrapolate
the coronal field, starting from measurements of the magnetic vector at the photosphere. A problem is
that these extrapolation methods assume a force-free field in the whole computational domain, whereas
the photospheric magnetic field is not force-free. Consequently, the photosperic magnetogram needs
to be transformed into a force-free chromospheric magnetogram, such that it can be used as boundary
condition for the extrapolation methods. This process is generally referred to as preprocessing, and a
numerical implementation of a preprocessing method is discussed in this thesis.

One of the extrapolation methods tries to reconstruct the coronal field by means of an optimization
method. The major emphasis of this thesis is on the performance of this method and the results that
it returns when applied to real solar data. A numerical implementation of the optimization method
is discussed and subsequently tested using various different semi-analytical force-free models of solar
active regions. We find that our optimization method is able to reproduce these semi-analytical test
field reasonably well, both in a quantitative and qualitative way. We find that the optimization method
performs best when considering a lower central volume in the computational domain. Such an inner
box is the region where the effects of the boundary conditions are the weakest and the electrical currents
and the magnetic fields the strongest. In addition, our results are observed to be better than the results
obtained by Schrijver et al. (2006), who uses a different set of extrapolation methods. The optimization
method is also observed to be able to reproduce magnetic fields that contain a flux-rope structure.

In the final part of the thesis, we used the optimization method to study the evolution of NOAA active
region 12371 over a period of seven days. During this period, the AR showed significant flare activity
and three CMEs were observed. The series of extrapolated fields showed a sheared arcade evolving into
a flux-rope structure. Combining this result with the observations of a decreasing photospheric magnetic
flux and an increasing free magnetic energy, we find strong evidence that a major flux cancellation event
according to the model developed by van Ballegooijen & Martens (1989), resulted in the formation of
a magnetic flux-rope. In addition, we remark that the existence of this flux-rope was confirmed as a
filament-like structure in AIA EUV images.
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Our findings suggest that a flux-rope can be present well before the onset of a CME. In addition, our
results support the idea that a flux-rope does not need to erupt in its entirety to cause a CME. Studying
the energetics of the magnetic fields before and after the eruptive events on 21 and 22 June 2015, we
find an energy redistribution that is consistent with a magnetic implosion of the coronal field. Such an
implosion is a consequence of a reduced magnetic pressure after solar flares and CMEs.

We studied the stability of the magnetic flux-rope against the torus instability, about three hours before
the CME on 25 June. Our results showed that at that time the flux-rope was located in a region stable
against the torus instability, yet a small expansion of the flux-rope would make it torus unstable. A clear
shift of energy towards higher altitudes present in the extrapolations of 25 June, may be a signature of
an expanding motion of the flux-rope. Therefore the torus instability should be regarded as a possible
trigger mechanism of the CME on 25 June.

Finally, we find that the performance of the optimization method can show a strong spatial dependence
within a single extrapolation. When using space-averaged metrics to quantify the goodness of the results,
a good performance in one part of the computational volume may mask a bad performance in another
part of the computational volume. This may lead to erroneous estimates of global variables like the total
energy content of the magnetic field. To detect and prevent such errors, we recommend using spatial-
dependent metrics in addition to space-averaged metrics, before performing any physical analysis of the
extrapolated fields.



Vulgarising Summary

The Sun is a highly dynamical object, producing energetic phenomena like bright solar flares and violent
eruptions called coronal mass ejections (CMEs). During these eruptions, the Sun hurls a billion-ton cloud
of charged particles into space. When striking Earth, these eruption may, among other things, disrupt
satellites, knock out power systems, and endanger human life in space. It is thus crucial to understand
and predict these CMEs and their effects on the environmental conditions in outer space. This is only
possible if the mechanism that creates these eruptive events is understood well. There is a consensus in
the heliophysics community that solar eruptive events like flares and CMEs are powered by the magnetic
field in the upper solar atmosphere, i.e., in the solar corona. Understanding CMEs and flares requires thus
knowledge about the structure and evolution of the coronal magnetic field. This turns out to be a very
challenging task, since it requires knowledge of a large variety of complex physical processes.

A major problem is that it is very hard to measure the magnetic field of the corona directly. Instead,
most of our measurements provide data about the magnetic field in the lower solar atmosphere, i.e., in
the photosphere. As a consequence, models need to be developed to reconstruct the coronal magnetic
field, starting from the measurements of the photospheric magnetic field. In this thesis, we use such a
model to study the three dimensional structure of the coronal magnetic field above solar active regions.
These are regions that show enhanced magnetic activity, from which CMEs and flares are often observed
erupting.

This thesis consists of two major parts. The first part is devoted to testing a numerical method that tries to
reconstruct the coronal magnetic field. The performance of this method is tested by using some analytical
magnetic field models of solar active regions. We find that the method is able to reconstruct the magnetic
fields reasonably well. In the second part of the thesis, this reconstruction method is used to study the
magnetic field of a specific active region of the Sun. This active region was visible on the solar disk from
19 June to 25 June, 2015. During this period, several flares and CMEs erupted from this active region.
We find that the reconstructed magnetic field corresponds well with the observations of the active region,
although there is still room for improvement.
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Chapter 1

Introduction

For human beings, the Sun is without doubt the most important celestial object. Allowing liquid water
to flow on Earth’s surface, and providing organisms the necessary energy to grow through processes like
photosynthesis, the Sun can be considered as the bringer of life on Earth. Moreover, the upraise of solar
energy as renewable energy source, both in industry and households, proves once more the importance
of the Sun. Whereas the Sun looks from Earth like a calm and unchangeable celestial object, the actual
truth about the Sun could not be further away. Space missions in the twentieth centuries have illustrated
that the Sun has also a “dark side”, posing a direct threat to our high-tech societies.

The Sun is a highly dynamical object, producing energetic phenomena like solar flares and violent erup-
tions called coronal mass ejections (CMEs). A lot of research has been devoted to the understanding of
these intrinsically magnetic phenomena. Especially CMEs have received a lot of attention in the past
few years, as they are thought to be the main drivers of major geomagnetic storms at Earth. These ge-
omagnetic storms are characterized by large disturbances in the magnetic field of the Earth. If strong
enough, geomagnetic storms may induce electric currents at ground level that damage transformers in
power grids. For example, the geomagnetic storm that struck Earth on 13 March 1989 damaged the
power transmission system of Quebec in Canada, resulting in an electrical blackout that lasted nine
hours.

In addition, CMEs can drive shock waves in which particles are accelerated to relativistic speeds. These
particles are called solar energetic particles (SEP), and are also often generated in major flare sites. On
impact, SEPs may cause severe damage to the electronics of satellites, and disrupt navigation systems.
In addition, they pose a severe threat for astronauts in space, and they can disrupt radio communication
(Committee On The Societal & Economic Impacts Of Severe Space Weather Events 2008). Understand-
ing the physics of events like CMEs, flares and SEPs is thus essential to anyone working with one of the
aforementioned technologies.

Events like CMEs, flares, and SEPs are often referred to as space weather events. According to the
definition of the U.S. National Space Weather Plan, space weather refers to:

Conditions on the Sun and in the solar wind, the magnetosphere, ionosphere, and thermo-
sphere that can influence the performance and reliability of space-born and ground-based
technological systems and that can affect human life and health.

Since damaging effects of space weather events can often be reduced by taking precautionary measures,
an accurate space forecast would be highly valuable. However, developing such a space weather forecast
turns out to be a very challenging task. This is because it requires a profound understanding of differ-
ent physical processes occurring in a wide range of environments. Understanding geomagnetic storms
requires a good understanding of the drivers of these storms, mostly CMEs. These CMEs are formed
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2 CHAPTER 1. INTRODUCTION

in complex processes occurring in the solar atmosphere, most of which are still poorly understood. A
good space weather forecast also requires a profound understanding of the physics of the interplane-
tary medium and the Earth’s magnetosphere and ionosphere. Apart from having their own complex
dynamics, these environments are also coupled in a far from trivial manner. This coupling can be real-
ized trough shocks, magnetic fields, electric currents, plasma dynamics, etc. (Schwenn 2006; Pulkkinen
2007).

Understanding space weather phenomena thus requires knowledge about a broad range of space envi-
ronments and processes with completely different physical properties. This often forces researchers to
specialize in a specific sub-domain, focussing on only a small part of the “big picture”. Developing a
good space weather forecast requires the combination of all these sub-domains in a consistent way. This
has turned out to be a major challenge. Several attempts have been made by several research groups
and institutes, with major contributions from the Space Weather Prediction Center at NOAA in the US,
and from the Solar Influences Data Center of the Royal Observatory of Belgium. Despite some ma-
jor improvements, the accuracy and reliability of the existing forecast methods is still relatively poor
(Singer et al. 2013). Our high-tech society remains thus largely unwarned and unprotected against the
vicissitudes of the Sun.

This thesis will focus on the solar coronal magnetic field. Understanding the evolution of the coronal
magnetic field is essential since the major drivers of space weather, CMEs, are intrinsically magnetic
phenomena originating from the solar corona. This chapter introduces the basic properties of the Sun,
focussing on the solar atmosphere. The emphasis will be on the magnetic properties of the solar atmo-
sphere, since almost every event occurring in the solar atmosphere has a magnetic origin. We will talk
about active regions, flux-ropes, prominences and filaments, solar flares and CMEs. Apart from that we
will also devote a section to how solar magnetic fields can be observed, and what the limitations are. We
conclude by giving the scope and the outline of this thesis.

1.1 The Solar Magnetic Field

The majority of space weather phenomena, like CMEs and flares, essentially owe their existence to the
solar magnetic field. The wide variety of phenomena is a consequence of the different ways the solar
plasma responds to the underlying magnetic field evolution. Especially in the solar corona, where the
ratio of the plasma to the magnetic pressure is much smaller than unity, the dynamics and the structures
are controlled by the magnetic field. In this section we will briefly review the general properties of solar
magnetism.

1.1.1 Origin of Solar Magnetism

The solar magnetic field is believed to be generated by a combination of convective motions and dif-
ferential rotation. These plasma motions drive a solar dynamo, which converts mechanical energy into
magnetic energy. This dynamo process can be studied either by looking to magnetic phenomena present
in the solar atmosphere, or by using helioseismology to probe the interior of the Sun.

By studying solar oscillations, the Sun’s internal rotation can be deduced. In doing so, a narrow shear
layer, called the tachocline (Spiegel & Zahn 1992), located between the radiative zone and the convective
zone was discovered. In this transition layer, the rotation changes from a nearly uniform rotation in the
radiative interior, to a latitude dependent rotation in the convection zone (Elsworth et al. 1995). This
dependence on latitude is illustrated in Fig. 1.1. It is now believed that the tachocline is the layer where
the solar dynamo is active. The rapidly changing angular velocity at the tachocline, may induce all kind
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Figure 1.1: The latitude dependence of the internal rotation of the Sun. These rotation profiles have been
inferred using data from the Michelson Doppler Imager on board Solar and Heliospheric Observatory
(SOHO). Below the convection zone, the different latitudes appear to rotate more or less at the same
pace. Figure adapted from Kosovichev et al. (1997)

of instabilities that can contribute to the solar dynamo. For a profound discussion about the tachocline,
the reader is referred to Hughes et al. (2007)

Apart from helioseismology, the magnetic phenomena observed in the solar atmosphere also provide
constraints for any model of the solar magnetic field. For example, a consistent, time-dependent model
of the solar magnetic field should be able to reproduce the solar cycle (see below) and all its associated
magnetic phenomena. Developing a dynamo model that reproduces all the known features of the solar
magnetic field has proven to be a formidable task. It is fair to say that, despite some major progress made
in the past decades, a consistent dynamo theory is still far from completion (Charbonneau 2010).

1.1.2 The solar Cycle

The solar cycle is a cycle of about 11 years, during which the magnetic polarity of the Sun is reversed.
This means that after about 22 years, the original magnetic configuration is restored. A first indication
of the solar cycle was discovered by studying the temporal evolution of the number of sunspots covering
the Sun. Sunspots are features that appear as dark patches on the solar surface. They will be discussed
in more detail in Section 1.2.1. The total number of sunspots covering the Sun varies constantly, yet,
when plotting the number of sunspots versus time, a cyclic pattern with a period of 11 years becomes
visible.

The period during which the solar magnetic field is closest to dipolar is called solar minimum, since then
almost no sunspots cover the Sun. When the magnetic poles start reversing, the magnetic field becomes
more and more complex. Halfway between two successive solar minima, the solar field is most complex.
During this period, which is called solar maximum, the Sun typically contains several sunspots.

Since the solar magnetic field plays a prominent role in many solar phenomena, it is not surprising that
this magnetic oscillation has profound effects on the solar activity. Near the solar minimum, the Sun
produces about one CME every five days. Near the solar maximum, this number amounts to about three
CMEs every day. Similarly, during the solar minimum there can be long periods of time during which no
detectable flares occur, whereas during the solar maximum multiple flares occur on a daily base (Priest
2014).
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1.2 The Solar Atmosphere and its Magnetic Features

The solar atmosphere is defined as the region from which photons can escape directly into space. This
corresponds to the region that has optical depth smaller than ∼ 2/3. Traditionally it is divided into three
major regions: the photosphere, the chromosphere, and the corona. These regions have their own phys-
ical characteristics, which strongly differ from each other. However, despite these profound differences,
the regions are strongly connected and influenced by each other through a multitude of magnetic, ther-
mal and dynamical processes. As a result, the solar atmosphere is a highly variable environment that is
spatially inhomogeneous on almost all scales.

From past observations, it has become clear that the inhomogeneity of the solar atmosphere results in
a whole zoo of different physical phenomena. The cause of these phenomena strongly depends on the
local properties of the plasma. Some phenomena are almost solely governed by gas dynamics, whereas
other, especially eruptive phenomena, are intrinsically magnetic in nature. However, it is fair to say
that at present, observations tend to be far ahead of theory. Indeed, the satellites and ground-based
telescopes have improved tremendously over the recent decades in sensitivity, spectral coverage, and
spatial resolution. This has resulted in the discovery of an unanticipated diversity of phenomena, for
which good theoretical frameworks are still lacking. This section gives an overview of the properties of
the different regions of the solar atmosphere, with emphasis on their magnetic features related to solar
activity. A more in-depth discussion of the solar atmosphere can be found in Solanki & Hammer (2002);
Wiegelmann et al. (2014) and Priest (2014).

1.2.1 The Photosphere

The photosphere is the region from where the majority of the photons escape into interplanetary space.
Therefore, it can be regarded as the surface of the Sun. The continuous spectrum of the photosphere
closely resembles that of a black body with an effective temperature of about 5778 K. The temperature
varies from about 6000 K at the lower boundary, down to 5000 K at the upper boundary. Superimposed
on the continuous spectrum, several absorption lines can be detected in the solar spectrum. The majority
of these absorption lines originate from the photosphere. The absorption lines in the optical spectrum
of the Sun are called the Fraunhofer lines, after the German physicist Joseph von Fraunhofer. Since the
photosphere is relatively dense and opaque, most of these lines, except the weakest ones, are optically
thick. As will be discussed in Section 1.3, some of these lines can be used to probe the photospheric
magnetic field.

As illustrated in Fig. 1.2, the photosphere is covered by millions of cell-looking features, called granules.
Granules typically have a diameter of about 1000 km, and dissipate over timescales of some minutes.
They are the result of underlying convective motions. More precisely, they mark the upper boundary
untill which plasma blobs can overshoot the outer convection zone of the Sun. Moreover, these con-
vective motions constantly carry new magnetic flux towards the solar atmosphere. As a consequence,
the photospheric magnetic field shows strong temporal variations and is highly inhomogeneously dis-
tributed.

The strongest magnetic concentrations are found in small, but intense flux tubes called magnetic ele-
ments. These tubes typically have a radius of about 100 km, and a vertical magnetic field of several
kG. Going towards the upper regions of the photosphere, these flux tubes spread out, causing their mag-
netic field to decrease to some hundreds of G in magnitude. Moreover, these flux concentrations are
often highly dynamic features, undergoing almost contentious fragmentation, merging and cancellation
processes.

The most notable features of the photosphere are without doubt the sunspots. Section 1.1 already briefly
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Figure 1.2: Granules surrounding a sunspot. The darkest part of the sunspot is the umbra, while the
reddish part is the penumbra (courtesy of NASA).

discussed the relationship between sunspots and the solar cycle. Here we focus on the intrinsic properties
of individual sunspots. Sunspots are relatively large (∼ 40000 km) areas, that can sometimes be seen
with naked eye during dusk or dawn. Solar sunspots can have a temperature of more than 1500 K below
the temperature of the surrounding photosphere. With the usual exposure times, this contrast makes
sunspots appear as dark spots on the photospheric surface. A Sun spot can be divided into two regions: a
central dark umbra, surrounded by a filamentary, somewhat brighter penumbra. This division is clearly
visible in the sunspot shown in Fig. 1.2. The umbra contains a very strong vertical magnetic field, up
to several kG. This strong vertical magnetic field is believed to suppress convection, which explains the
lower temperatures. In the penumbra, the magnetic field decreases in strength and becomes more and
more horizontal.

Often, sunspots appear in pairs of different magnetic polarity that are connected with each other through
coronal loops and/or filaments. These structures will be discussed in Section 1.2.3. Finally, we remark
that most CMEs and flares are observed to originate from regions that contain one or more sunspots.

1.2.2 The Chromosphere

The chromosphere is located just above the photosphere. Compared to the photosphere, the chromo-
sphere is a very dilute plasma with a density that is about 10−4 times smaller than the photospheric den-
sity. As a consequence, the chromosphere is optically thin in most wavelengths, apart from some strong
spectral lines. Without filters it can only be observed at the start and the end of a solar eclipse. Outside
of eclipses, spectral lines like the Hα Balmer line or the Ca II K line can be used to probe different layers
in the chromosphere. The study of the spectral lines has shown that the temperature of the chromosphere
decreases from about 6000 K at the inner boundary, to a minimum of approximately 3800 K. Afterwards,
the temperature starts increasing again, such that the outer boundary has a temperature of ∼ 25000 K. In
contrast to the temperature, the plasma density decreases rapidly outwards.

On top of the chromosphere, there is thin layer which is called the transition region, marking the sepa-
ration between the chromosphere and the corona. The transition region is characterised by a very large
temperature and density gradient. Over a distance of only ∼ 100km, the temperature jumps with two
orders of magnitude while the plasma density decreases with two orders of magnitude.

Like the photosphere, the magnetic field of the chromosphere is highly structured and dynamic. A
difference between the photosphere and the chromosphere, is that in the photospheric magnetic fields



6 CHAPTER 1. INTRODUCTION

appear to be mainly radially oriented, while in the chromospheric magnetic fields expand in all directions.
Apart from that, the chromosphere is also the region where magnetic forces start to dominate the thermal
gas pressure. This is often stated using the parameter β, which is defined as the ratio of the magnetic
pressure to the thermal pressure. In the chromosphere β varies from a value larger than unity to β � 1.
The height at which the transition from β > 1 to β < 1 occurs, varies strongly with position. Above a
solar active region, β � 1 can already be reached at heights of about ∼ 400 km above the photosphere
Gary (2001). In contrast, in quiet solar region environments, the magnetic forces will only start to
dominate at heights between 800 km and 1.6 Mm above the solar surface (Rosenthal et al. 2002).

Several chromospheric phenomena can be related to the magnetic field. When the chromosphere is seen
in the red light of hydrogen, dark filaments are observed on the solar disk, whereas bright gaseous features
are observed on the limb. Both observations are manifestations of the same phenomena viewed from a
different perspective. These structures are called solar prominences and are discussed in Section 1.2.3.3.
Apart from these prominences, the magnetic field also gives rise to phenomena like plages and spicules
(see, e.g, de Pontieu et al. 2007; De Pontieu et al. 2004).

1.2.3 The Corona

The outer part of the solar atmosphere is called the corona, an extremely rarefied and hot plasma. It
can be seen during a total solar eclipse as a highly structured glow around the solar disk. Alternatively,
a coronagraph can be used to produce an artificial eclipse. The corona is optically thin in almost all
wavelengths, and its spectrum shows emission lines of highly ionized heavy elements like calcium and
iron. Less heavy elements, like oxygen and carbon, do not produce any spectral lines since they are
completely ionized. This high degree of ionization indicates that the corona is an extremely hot plasma,
with a temperature in excess of a million degree. The origin of this high temperature is still a major
open-problem in solar physics, known as the coronal heating problem.

The extremely high temperature makes the corona a bright X-ray source. The first high resolution X-ray
images of the corona were taken in the early 70s by the Skylab space station. These images made clear
that the corona is a very structured and complex region. The complexity of the corona is essentially a
consequence of the corona being a low β environment. This means that the magnetic pressure dominates
the plasma pressure, and hence plasma transport across the magnetic field is strongly inhibited . Plasma
is thus forced to flow in a 1D direction along the magnetic field lines. A priori, one could think that this
largely simplifies the structure of the corona. However, the complex topology of the coronal magnetic
field makes the corona a highly inhomogeneous region with a complicated density profile. Coronal mag-
netic phenomena include coronal holes, helmet streamers, loop arcades, soft X-ray jets, postflare loops,
cusp-shaped loops, sigmoid structures and prominences. The differences found in these phenomena are
essentially due to differences in the underlying magnetic topology.

1.2.3.1 Coronal Holes

Coronal holes are regions that appear as large dark patches in X-ray and extreme ultraviolet (EUV)
images. An example of a coronal hole is given in panel (a) of Fig. 1.3. These regions are penetrated
by open magnetic field lines, along which plasma is able to escape from the Sun. This escaping plasma
that is believed to be the source of the fast solar wind. Another consequence of this plasma escaping the
Sun is that these regions have a lower density and a lower temperature than the surrounding corona. This
explains why they appear dark on X-ray images. During the solar minimum, large coronal holes normally
cover both poles. When the solar cycle proceeds, these polar coronal holes will start shrinking, until they
completely disappear around the solar maximum. Moreover, as the solar maximum approaches, more
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Figure 1.3: (1) EUV image (193Å) of the Sun, taken by the Atmospheric Imaging Assembly (AIA) on
board of the Solar Dynamics Observatory (SDO). The black patch is a coronal hole, while the bright
white regions are active regions. (b) Solar coronal loops, constituting a coronal arcade. Image taken by
by the Transition Region And Coronal Explorer (TRACE).

coronal holes will form at lower latitudes. In contrast to the coronal holes at the poles, these low latitude
coronal holes only exist for a few months.

1.2.3.2 Active Regions

In contrast to coronal holes, active regions are areas where most magnetic field lines appear in loops,
closing on the solar surface (see Fig. 1.3). These field lines can either connect different polarity regions
inside the active region, or they can interconnect different active regions with one another. Active regions
are regions with enhanced solar activity. They are characterised by the appearance of sunspots, dynamic
magnetic fields and enhanced electromagnetic emission. Moreover, active regions are the locations where
CMEs and flares often originate from. These eruptive events are the product of non-stopping magnetic
activity, like magnetic flux emergence, flux cancellation, and magnetic reconnection processes.

Most active regions are bipolar in nature, which explains why on an X-ray image, active regions will
show several bright loops. These bright coronal loops are anchored in the photosphere, where they
connect regions of opposite polarity. Often the zones with opposite polarity have large lateral extent,
so that multiple coronal loops form next to each other. Such a loop system is called a loop arcade, and
an example is shown in panel (b) of Fig. 1.3. The loops appear bright because plasma heating in the
footpoints of the loops causes upflows of hot plasma into the coronal loops. As a result, these loops are
hotter and denser than the surrounding corona. A single loop has typically a lifetime of about one day, yet
the whole loop arcade may exist for several solar rotations. Moreover, during its lifetime, new magnetic
flux may emerge into the active region. This new flux may have a different orientation, which leads to
flux cancellation and magnetic reconnection processes. These processes can result in active transient
phenomena like flares and CMEs.



8 CHAPTER 1. INTRODUCTION

Figure 1.4: (a) Hα image of a prominence (upper right corner) (credit: Jack Newton). (b) Hα image of
the Sun. The dark streak close to the center of the Sun is a solar filament (credit: Paul Andrew).

1.2.3.3 Solar Filaments and Magnetic Flux Ropes

Another feature appearing in the corona are solar prominences, which are large elongated plasma con-
centrations, suspended in the corona. The plasma of a prominence is much cooler and denser than the
coronal plasma, and therefore prominences appear as thin, dark, filaments on Hα photographs of the
solar disc (see panel (b) of Fig. 1.4). In contrast, when these structures are observed on coronagraph
pictures, they appear as bright loops (see panel (a) of Figure 1.4). Depending on their location, three
different types of filaments can be distinguished. Quiescent prominences appear outside active regions,
intermediate prominences appear on the boundary of active regions, and active-region prominences are
found inside active regions. In general, an active-region prominence has a much shorter lifetime and is
much smaller in size than an quiescent prominence. Despite these differences between the three types,
observations indicate that they have a similar structure and formation mechanism.

Filaments are located above polarity inversion lines (PILs). These are boundaries across which the
polarity of the solar magnetic field reverses. The magnetic field inside prominences tends to be almost
horizontal, aligned with the PIL. Remark that a horizontal magnetic field is a necessary requirement for
having a vertical Lorentz force. Such a vertical force is necessary to balance the downward directed
gravity. These horizontal fields can be curved either upward or downward. The latter is usually called
a magnetic dip, and it is expected that filaments are located in such dips. Without these dips, gravity
would pull this dense filament-plasma rapidly towards the solar surface, unless there is some other, non-
magnetic force counteracting gravity.

Moreover, prominences tend to have inverse polarity, which means that the magnetic field inside fila-
ments points from the negative side of the PIL to the positive side of the PIL. Prominences are thus
embedded in highly non-potential magnetic fields, exhibiting strong magnetic shear. A prominence is
often surrounded by a region of reduced density, called the coronal cavity. The above observations sug-
gest that a filament is embedded in a magnetic flux-rope, although other explanations are also possible
(Mackay et al. 2010). An illustration of a magnetic flux-rope is given in panel (a) of Fig. 1.5. This flux-
rope in particular is a realisation of a semi-analytical model developed by (Titov & Démoulin 1999), and
will be discussed in more detail in Section 2.4.1.2. In the flux-rope model, the rope is located horizon-
tally above the PIL, with the prominence located in the lower concave part of the flux-rope. Panel (b) of
Fig. 1.5 shows cross-sections of different possible magnetic topologies of flux-ropes. The gray patches
located in the magnetic dips represent the filament plasma. The coronal cavity corresponds to the centre
and upper part of the flux-rope.
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Figure 1.5: (a) Model of a flux-rope. The orange color-scale gives the vertical magnetic field, whereas
the “rainbow”-color scale is proportional to the current density. (b) Schematic representation of three
possible magnetic field topologies in a cross-section of a prominence. The gray patches, located in
magnetic dips, represent the filament plasma. Image adapted from Gilbert et al. (2001).
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Figure 1.6: (a) The left column shows 195 Å images of a filament subjected to the kink instability. The
images were taken by Transition Region and Coronal Explorer (TRACE) on May 27, 2002. The right
column shows a simulation of the magnetic field of the filament. Image from Török & Kliem (2005).
(b) A classic three-part CME observed by the Large Angle and Spectrometric Coronagraph Experiment
(LASCO) on board of SOHO.

Coronal arcade structures overly flux-ropes. These coronal arcades are shown in panel (a) of Fig. 1.5
as black loops. The magnetic tension forces provided by these arcades are necessary to keep the flux-
rope close to a stable magneto-static equilibrium. Without these arcades, the flux-rope would not be in
force balance with its surroundings. Another important parameter for stability concerns the twist of the
flux-rope. If the twist of the flux-rope exceeds some critical value (the Kruskal-Shafranov criterion), the
rope becomes susceptible to the kink instability (Török & Kliem 2004). The amount of twist in a flux-
rope may vary over time. Vortex motions at the footpoints of flux-ropes may increase the twist in the
flux-rope, making the flux-rope eventually unstable (Hood & Priest 1981). An illustration of a filament
subjected to a kink instability is shown in panel (a) of Fig. 1.6.

1.2.3.4 Coronal Mass Ejections

Coronal mass ejections are enormous solar eruptions, ejecting a huge cloud of magnetized plasma into
interplanetary space. As already mentioned in the beginning of this chapter, the potential dangerous
effects of CMEs c on our society make the development of good space weather forecast models essential.
Achieving this is only possible if both the launching mechanism and the subsequent CME evolution are
well understood. It is generally accepted that CMEs are powered by the magnetic field in the lower
corona. The energy necessary for the eruption is the free energy stored in highly non-potential fields. A
likely mechanism responsible for converting this magnetic energy into kinetic and gravitational potential
energy is magnetic reconnection. Several models for the launching mechanism of CMEs have been
developed, involving different kinds of instabilities, magnetic reconnection processes, shearing motions,
catastrophic flux cancellations, and mass unloading. An overview of these different mechanisms can
be found in Chen (2011). These models are similar in the sense that they all involve the conversion
of large amounts of magnetic energy into kinetic energy in a relatively short timespan. However, none
of these mechanisms is able to reproduce all the observed properties of CMEs, and it is thus fair to
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say that the exact launch mechanism remains unknown. In order to make progress, it is essential that
the configuration of the magnetic field before the eruption is well understood. Knowledge about the
magnetic configuration prior to the eruption may lead to insights about the triggering mechanism of the
CME.

CMEs and prominences are closely related phenomena. This is illustrated in the classical three-part
CME, which has a leading edge, followed by a dark cavity, followed by a bright cloud of plasma (see
panel (b) of Fig. 1.6). This bright cloud of plasma is almost certainly an erupting filament. The leading
edge and the cavity of the CME are probably a consequence of the flux-rope structure of prominences.
One should however note that not every CME has this three-part structure and not every CME is thus
related to an erupting filament. It is possible that those CMEs still originate from a magnetic structure
similar to that of a filament, with the only difference that there is no dense plasma embedded in the
flux-rope. Moreover, not every prominence eruption is associated with a CME either. Apart from that,
prominences can also break up or dissipate without erupting.

1.2.3.5 Solar Flares

Solar flares are fast and sudden releases of large amounts of energy, mostly in the form of fast-particle
energy and radiation. The emitted radiation often covers the whole electromagnetic spectrum, from radio
waves to gamma-rays. When observed on the Sun, a flare appears as a sudden flash of brightness. Like
CMEs, solar flares often originate from ARs, and they are also expected to be powered by magnetic
energy. In addition, CMEs are often accompanied by solar flares, although this is definitely not always
the case.

An interesting feature of flares is that they are often observed in ARs with a very complicated magnetic
topology. In contrast, simple bipolar active regions often show almost no flare activity (Priest 2014).
It is generally believed that flares are powered through magnetic reconnection processes occurring in
the solar corona (Shibata & Magara 2011). However, the exact details of the full three dimensional
generation mechanism of flares are still an open question.

1.3 Observing the Solar Magnetic Field

From the previous sections it is clear that a lot of interesting solar phenomena are intrinsically magnetic in
nature. Understanding these phenomena is thus tantamount to understanding the dynamics and evolution
of the solar magnetic field. Therefore, it would be very helpful if one could actually observe the solar
magnetic field. It turns out that this is indeed possible in some regions of the Sun, by using the Zeeman
effect and by analysing the polarisation of the electromagnetic waves emitted by the Sun.

The Zeeman effect is a quantum mechanical effect that results in the splitting and polarisation of spectral
lines of atoms in an external magnetic field. The possible polarisations are shown in panel (a) of Fig 1.7.
σ+ and σ− are, respectively, the right handed and left handed circular polarizations around the external
magnetic field. π is the linear polarisation parallel to the magnetic field. To illustrate the Zeeman effect,
we consider a normal Zeeman triplet shown on panel (b) of Fig. 1.7. The total angular momentum
quantum number J of the lower level is 0, whereas the upper level has J = 1. From quantum mechanics
we know that this implies that the upper level contains three sublevels, having magnetic quantum number
M = −1, 0, 1. In contrast, the J = 0 level has has only one sublevel (M = 0). Conservation of angular
momentum requires that the emitted photon of the ∆M = −1 transition has angular momentum −~,
and is therefore right-handed polarized (σ−). Analogous, the emitted photon of the ∆M = 1 transition
has angular momentum −~, and is therefore left-handed polarized (σ+). Finally, the transition ∆M = 0
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Figure 1.7: (a) Illustration of the possible polarizations: σ+ (σ−) is right (left) handed circular around
the external magnetic field ~B, and π is parallel to ~B. The diagram at the right illustrates the polarization
of a normal Zeeman triplet. Figure addapted from J.-P. Zahn (auth.).

emits a photon with zero angular momentum and is therefore linearly polarized (π). In addition, the
different transitions emit photons at slightly different wavelengths. As a consequence, the polarization
will vary along the spectral line profile.

The polarization1 of the solar light arriving at Earth is measured in terms of the Stokes parameters I ,
Q, U , and V . I gives the total intensity, Q is the intensity difference between horizontal and vertical
linear polarizations, U is the intensity difference between linear polarizations at ±45◦, and finally, V
is the intensity difference between right- and left-handed circular polarizations. The parameter V can
be used to obtain the line-of-sight (LOS) component of B. The parameters U and Q both sample the
transverse magnetic component. Under some assumptions about the radiative transport of the polarized
waves, it is possible to invert the Stokes profiles and thereby obtain a complete vector magnetogram
(see del Toro Iniesta (2007) for details). However, there are some limitations that have to be taken into
consideration.

Detecting the Zeeman effect in a coronal spectrum is very difficult for a couple of reasons. First, the high
temperature of the corona broadens the line profile orders of magnitudes above the Zeeman splitting.
Second, as discussed in Section 1.2.3, coronal spectral lines are optically thin. The observed line is thus
the result of a complicated LOS integration, making the interpretation difficult. For example, polarity
changes of the LOS component can strongly reduce the value of the measurements, unless the structure
along the LOS can be detected. For these reasons, attempts to measure directly the coronal field have been
relatively rare (but see e.g., Lin et al. (2004) and Kramar et al. (2006)). The photospheric environment is
more favourable for using physical processes like the Zeeman effect to measure the magnetic field B. As
a consequence, most of our solar magnetic data consists of measurements of the photospheric magnetic
field. From the discussion in Section 1.2.3 it should be clear that a lot of interesting magnetic phenomena
take place in the corona. Therefore, the difficulties regarding the measurements of the coronal magnetic
field represent a major drawback.

An additional complication is that obtaining the transverse magnetic component is in general harder
than obtaining the LOS component. This can be explained as follows. The tangential component of
the magnetic field goes roughly as B2

t ∝
√
Q2 + V 2/I . Therefore, the photon noise can be estimated

as BtδBt ∝ QδQ+UδU√
Q2+V 2I

. For the minimum detectable magnetic field, i.e., δBt ∼ Bt, we have then

1Remark that the polarisations σ± and π were with respect to the external magnetic field, while the polarizations here follow
the usual definitions of electromagnetic radiation.
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that

δBt ∼
√
δQ2 + δV 2

IBt
∼ 1

Bt

δI

I
∼
√
I

Bt
. (1.1)

In contrast, the LOS component BLOS can be approximated by BLOS ∝ V/I , and therefore

δBLOS ∝
δV

I
∼ δI

I
∼
√
I. (1.2)

Comparing Eq. (1.2) with Eq. (1.1), it can be seen that the noise on the transverse magnetic field can
be considerably larger for weak magnetic fields. For example, the Helioseismic and Magnetic Imager
(HMI) on board of SDO has estimated noise levels of about 10G and 100G for the LOS and transverse
magnetic field, respectively.

Another problem concerns the spatial resolution of the observation. A limited spatial resolution leads
to a loss in information about the fine structure of the magnetic field. A spatial resolution element may
contain magnetic fields of different polarity. Since these magnetic features are unresolved, opposite
magnetic polarities will partially cancel each other out. In the most dramatic case, the positive magnetic
flux of the resolution element will exactly equal the negative magnetic flux, such that V equals zero. As
a consequence, the LOS magnetic component will be wrongly put equal to zero.

A final problem with the inversion of the Stokes parameters to obtain B, concerns the direction of the
longitudinal magnetic component. The symmetry of the linear polarisation parameters Q and U causes
a 180◦ ambiguity in the direction of the transverse magnetic component. Numerous methods have been
invented to remove this ambiguity. Although some of these methods show good results, none of them
removes the ambiguity everywhere perfectly. An overview and comparison of these different methods
can be found in Metcalf et al. (2006).

1.4 Motivation and Outline of Thesis

From the discussion given above, it should be clear that the solar magnetic field plays a central role in
many phenomena occurring in the solar atmosphere, including transient eruptive events. Understanding
these phenomena is essential towards developing a reliable space weather forecast (see also the recent
COSPAR roadmap by Schrijver et al. (2015)), and is therefore the subject of intensive research. Since
several important space weather events, like flares and CMEs, are powered by the solar magnetic field,
it is essential to gain a deep understanding about the structure and evolution of the solar magnetic field.
However, as explained in Section 1.3, it is very difficult to measure the coronal magnetic field directly.
Therefore, one needs to develop good models of the coronal field. These models are often based on the
photospheric magnetic field, which can be measured.

In this work, we present a study of the three-dimensional structure of the coronal magnetic field above
active regions. More specifically, we will look at methods that reconstruct the coronal magnetic field un-
der the assumption that the corona is well approximated by a force-free magnetic field. This is a magnetic
field in which the Lorentz force is essentially zero. Chapter 2 elaborates on the mathematical theory of
force-free magnetic fields and their applicability for modelling the coronal magnetic field. Within this
mathematical framework, several methods for reconstructing the coronal magnetic field are discussed.
These methods try to obtain the coronal magnetic field by extrapolating photospheric magnetogram data.
One of these methods does this by means of an optimization approach. In Chapter 3, a numerical im-
plementation of the optimization method is discussed. Using semi-analytical solar active region models,
the performance of the method is qualitatively and quantitatively evaluated. In chapter 4, we use the
optimization method to study the evolution of a solar active region during a period of seven days. In
Chapter 5, the main results of this thesis are summarised.
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Chapter 2

Force-Free Fields

Numerous interesting phenomena, like filaments, CMEs and flares, occur in the solar corona. Since these
phenomena are magnetic in nature, understanding them requires knowledge of the coronal magnetic field.
However, as explained in Section 1.3, direct measurements of the coronal magnetic field are difficult and
only available for a few individual cases. The magnetic measurements that are feasible provide instead
the photospheric magnetic field. To obtain the coronal magnetic field, it is therefore necessary to develop
methods that extrapolate the coronal magnetic field from the photospheric magnetograms. This is only
possible if one has a good mathematical model for the coronal magnetic field.

In this chapter we will elaborate on a popular model for the coronal magnetic field, called the force-free
field assumption. Section 2.1 details how the equations that govern force-free fields can be obtained, and
why force-free fields are interesting for modelling the coronal magnetic field. Moreover, we will see that
force-free magnetic fields can be divided into three groups of increasing complexity: potential fields,
linear force-free fields, and nonlinear force-free fields. These three types of magnetic field, and there
applicability to model the coronal field are discussed in Section 2.2, 2.3, and 2.4, respectively. Since the
equations governing force-free fields are differential equations, they need to be supplied with appropriate
boundary conditions. As it turns out, this is far from trivial for the coronal setting and is discussed in
Section 2.5.

2.1 Force-Free Field Equations

The road towards finding a good model of the coronal magnetic field, starts by gaining knowledge about
the features of the coronal plasma that influence the magnetic field. The natural way to do this is by
studying the different terms in the equation of motion of the coronal plasma in the single-fluid ideal
magnetohydrodynamics (MHD) setting. This equation is given by

ρ
dv

dt
= −∇p+ j×B + ρg, (2.1)

= −∇p+
1

µ0
(∇×B)×B + ρg (2.2)

where v denotes the velocity, ρ the density, p the thermal pressure, g the gravitational acceleration, µ0

the permeability of free space, j the current density, and B the magnetic field. The second equality is
obtained by using Ampère’s law. In addition to Eq. (2.2), the solenoidal condition for the magnetic field,
i.e.,∇·B = 0, has to be taken into account. Furthermore, one also needs an appropriate equation of state.
Most equations of state, like the ideal gas law, show a temperature dependence which in turn requires an

15
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additional energy equation. In general, the resulting system of equations cannot be solved analytically
and a numerical approach is required. To solve these equations, one has to impose an appropriate set
of boundary conditions for the different physical variables. Since the magnetic field of the photosphere
can be measured, it is natural to consider the photosphere as a boundary of the computational domain.
However, the photospheric density and temperature are very hard to measure. In addition, when using
the photosphere as boundary, one needs to include the transition region, and thereby a description of
the coronal heating, which further increases the difficulties. As a consequence, the equations are often
simplified by making additional assumptions. This is justified as long as one understands the limitations
of the approximations.

A first popular assumption is to consider a static plasma configuration. This assumption can be justified
as follows. Using a characteristic length scale L0, a typical density ρ0 and pressure p0, a time scale t0,
and a magnetic field strength B0, we can make the following estimations:

ρ
dv

dt
∼ ρ0

L0

t20
, ∇p ∼ p0

L0
,

1

µ0
(∇×B)×B ∼ B2

0

µ0L0
, ρg ∼ ρ0g. (2.3)

Using these estimates in Eq. (2.2), we obtain that the inertia term in the left-hand side can be neglected if
the flow speed is much smaller than the sound speed vs ∼

√
p0/ρ0, the Alfvén speed vA = B0/

√
µ0ρ0,

and the gravitational free fall speed vff ∼
√
gL0. If these conditions are fulfilled, one obtains the follow-

ing equation for magnetohydrostatic balance

0 = −∇p+ j×B + ρg. (2.4)

In the corona, values for the sound speed and the free fall speed are about ∼ 150 km/s, and the Alfvén
speed is on average about ∼ 6000 km/s, although its value may strongly vary depending on the local
plasma properties. A static configuration is often a good first approximation, as long as one stays away
from regions where the magnetic field is evolving very rapidly, e.g., in current sheets. Evidently, a static
approach cannot be used to model CMEs or flares, yet it can be used to study the magnetic field before
and after such eruptive events. A comparison of the prior and anterior magnetic field properties can then
be used to gain knowledge about the actual eruptive event. For example, by comparing the energy stored
in the magnetic field before and after the eruption, an estimate about the energy content of the eruptive
event is obtained. Moreover, by studying the magnetic topology before the eruption, one can hope to
gain insight in which magnetic topologies are able to launch eruptions.

For the solar corona, Eq. (2.4) can be further simplified by realizing that often not all the terms are of
equal importance. The gravity force can be neglected in comparison with the pressure gradient when the
length scale L0 is much less than the pressure scale-height Λ1. In addition, in a large part of the corona,
the pressure force can be neglected in comparison with the Lorentz force j×B. This is a consequence of
the relatively strong coronal magnetic field and the low plasma density. It is often expressed by stating
that β = 2µ0p/B

2 (i.e., the ratio between the gas pressure and magnetic pressure), is much smaller than
one. For solar active regions, β � 1 is valid in most of the low and mid corona (see e.g., Gary 2001).
However, at small heights above the photosphere and in the upper part of the corona, β often exceeds
unity. In addition, coronal regions may contain extended structures, like helmet streamers, where β is
also not small.

In the regions where β � 1 is satisfied, the pressure and gravity terms in Eq. (2.4) can be neglected,
leading to the following equation:

j×B = 0. (2.5)

1 The pressure scale height is defined as Λ = RT/µ̃g,with T the temperature,R the gas constant, and µ̃ the mean molecular
weight. It gives the distance over which the pressure decreases with a factor e and can be found by solving dp/dz = −ρ(z)g,
(see, e.g., Priest 2014).
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A magnetic field that satisfies this equation is called a force-free field. For such fields, any electrical
current has to be aligned with the magnetic field, i.e., currents only flow along the magnetic field lines.
Mathematically, this can be expressed as

µ0j = αB, (2.6)

where the force-free parameter α gives the proportionality between the magnetic field and the current
density. Inserting this in Ampère’s law then gives

∇×B = αB. (2.7)

In general, the force-free parameter α is a space-dependent function. The only restriction on α can be
found by taking the divergence of Eq. (2.7), and using the solenoidal condition ∇ ·B = 0. In doing so,
one obtains that

B · ∇α = 0, (2.8)

implying that α is constant along magnetic field lines. Remark that the spatial dependence of α allows
different field lines to have a different value of α. The function α identifies thus the amount of current
that flows along each magnetic field line.

Together, Eq. (2.7) and Eq. (2.8) constitute a set of four differential equations for the three magnetic field
components and the force-free parameter α. It is thus a complete set of differential equations. Despite
looking simple, solving Eqs. (2.7) and (2.8) is far from trivial. The complexity of the problem follows
from the αB term in Eq (2.7), making it a nonlinear differential equation.

One way to proceed in solving the force-free equations is by imposing extra conditions on the spatial
behaviour of α. A widely used approximation is to assume that α is constant. Within this approximation,
the case α = 0 is often considered separately. These approximations will be discussed in Sections 2.2
and 2.3. However, whereas the approximations to obtain the force-free equations are fairly well justified
in the corona, it turns out that a constant α assumption is rarely a good approximation of the coronal
magnetic field. Therefore, it is necessary to solve the force-free equations in general. This will be
discussed in Section 2.4.

Solving the force-free equations requires the addition of boundary conditions that are compatible with a
force-free magnetic field. To reconstruct the coronal magnetic field, these boundary conditions can be
deduced from magnetograms. However, as explained in Section 1.3, we mostly measure the photospheric
magnetic field, where force-freeness is often a poor approximation. Therefore, methods have been de-
veloped to make magnetograms more force-free. These methods, together with the boundary conditions,
will be discussed in Section 2.5.

2.2 Potential Magnetic Field

The simplest way to obtain a solution satisfying Eqs. (2.7) and (2.8), is by assuming that α = 0 every-
where. Since j = αB, there are no electric currents present in this solution. This means that∇×B = 0,
such that the magnetic field has a scalar potential φ

B = −∇φ, (2.9)

clarifying why B is in this case called a potential magnetic field. The solenoidal condition implies that φ
satisfies the Laplace equation ∇2φ = 0. This is a well-known differential equation which can be solved
as a well posed boundary value problem (see Jackson 1975). The boundary conditions can be either the
value of φ on the boundary or its derivative normal to the boundary: n̂̂n̂n · ∇φ. The former is called the
Dirichlet boundary condition, whereas the latter is called the Neumann boundary condition.
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There exist several reasons why potential fields are of interest to solar physics, including the follow-
ing

• Potential fields can be easily computed and provide a first estimate of the magnetic field strength
and topology.

• As boundary condition, only the normal magnetic field componentBn at the photosphere is needed
to compute the potential field.

• Potential fields can be used to estimate the shapes of coronal magnetic loops.

• Potential fields correspond to the lowest energy configuration (see Section 2.2.1).

• Potential fields are used in several nonlinear force-free extrapolation methods (see Section 2.4.2).

2.2.1 Potential Minimum-Energy Theorem

One of the most interesting features of potential magnetic fields is that they correspond lowest possible
energy states in which magnetic fields can reside. More precisely, given a domain Ω with the normal
component Bn fixed on the boundary ∂Ω, the potential field will be the field with the smallest amount of
energy

Emag =

∫
Ω

B2

2µ0
dV.

This means thus that all other magnetic fields, with the same Bn on the boundary of the volume, will
have higher energy. The volume can be a semi-infinite region such as the solar corona, as long as there
are no sources at infinity.

The proof of this theorem goes as follows. Let ∇φ be a potential field and B any other magnetic field,
such that both fields have the same normal component on ∂Ω. We can write B = ∇φ + B̃, with
B̃ = B − ∇φ. Remark that B̃ · n̂̂n̂n = 0 on ∂Ω since B and ∇φ have the same normal component on
∂Ω.

The magnetic energy of B can be calculated as

Emag =

∫
Ω

(∇φ+ B̃)2

2µ0
dV

=

∫
Ω

(∇φ)2 + 2∇φ · B̃ + B̃2

2µ0
dV

=

∫
Ω

(∇φ)2 + 2∇ · (φB̃) + B̃2

2µ0
dV,

where the last equality was obtained by using the solenoidal condition for B̃. The middle term can be
rewritten using Gauss’s theorem

Emag =

∫
Ω

(∇φ)2 + B̃2

2µ0
dV +

1

µ0

∫
∂Ω
φB̃ · n̂̂n̂ndA (2.10)

=

∫
Ω

(∇φ)2 + B̃2

2µ0
dV, (2.11)

where we used that B̃ · n̂̂n̂n = 0 on ∂Ω. Since B̃2 ≥ 0, it follows that the energy stored in B exceeds the
energy stored in the potential field. The excess energy of B compared to the energy of the potential field
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∇φ is called the magnetic free energy ∆Emag. We have thus that

∆Emag = Emag −
∫

(∇φ)2

2µ0
dV =

∫
B̃2

2µ0
dV ≥ 0. (2.12)

∆Emag is called free energy since it is the maximal amount of magnetic energy that can be released by a
magnetic field. The fact that potential fields satisfy ∆Emag = 0 implies that they are unable to drive solar
eruptions. This is because the magnetic field before the eruption should have a higher energy state than
after the eruption. If not, an eruption would have to bring extra energy into the magnetic field, which
is unrealistic. In contrast, a magnetic field can evolve to a more potential state by releasing magnetic
energy through a solar eruption.

2.2.2 Calculation Methods

This section presents a brief review of two important methods for solving the Laplace equation. When
modelling the coronal magnetic field, one often represents the corona by the semi-infinite half-space
Ω = {z > 0}, with the z-axis pointing towards the observer. The boundary ∂Ω = {z = 0} corresponds
then with the photosphere, where magnetic measurements provide the value of Bn. Hence the Neumann
boundary condition is applicable on ∂Ω:

n̂̂n̂n · ∇φ = −Bn. (2.13)

As a second boundary condition one assumes that the field strength decays to zero at infinity

lim
z→∞

φ(r) = 0. (2.14)

Remark that measurements of the solar magnetic field are often limited to a small patch on the solar
surface. However, to solve the Laplace equation in the half space z > 0, one has to provide boundary
conditions on the whole z = 0 plane. This can be done by either assuming that Bn = 0 everywhere
outside the finite domain, or by extending the magnetic data periodically onto the whole half-space. The
former is chosen when the Laplace equation is solved with a Green’s function method, whereas the latter
is preferred when using a Fourier expansion method (see below).

2.2.2.1 Green’s Function Method

The Green’s function method is extensively discussed in Sakurai (1982). It gives the potential φ as

φ(r) =

∫
z=0

Bn(r′)Gn(r, r′)dA′, (2.15)

where dA = dxdy and r′ = (x′, y′, 0) is a point in the z = 0 plane. The Green’s function Gn(r, r′)is
given by a monopole located at r′, i.e.,

Gn(r, r′) =
1

2π|r− r′|
. (2.16)

Eq. (2.15) gives thus the potential φ as an integral over a series of monopoles covering the z = 0 plane.
Since a monopole has a magnetic flux Bndxdy, it is easy to see that φ as given by Eq. (2.15) satisfies the
Neumann boundary conditions.
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In practice, solar observations only provide Bn on discrete mesh points. Therefore, the integral in
Eq. (2.15) has to be transformed into a sum over the grid points:

φ(r) =
∑
r′ij

Bn(r′ij)Gn(r, r′ij)∆
2, (2.17)

where r′ij gives the positions of the grid points and ∆ the distance between two adjacent grid points. The
discreteness of the data also requires a modified Green’s function, such that φ still fulfils the boundary
conditions approximately. The simplest solution is a monopole located at a depth ∆/

√
2π under the

z = 0 plane(Sakurai 1982):

Gn(r, r′ij) =
1

2π|r− r′ij + (∆/
√

2π)n̂̂n̂n|
. (2.18)

The Green’s function method described above was first used in Schmidt (1964), and is therefore called the
classical Schmidt method. However, remark that this method can only be used for regions that are close
to the centre of the solar disk, since the method requires that the line-of-sight (LOS) is perpendicular to
the boundary. The method can however be generalized such that the magnetic field of regions located far
from the solar centre can also be reconstructed. This method is called the oblique Schmidt method, and
was first derived in Chapter 4 of Semel (1967). In the oblique Schmidt method, the Neuman boundary
condition (2.13) is changed to

−l̂̂l̂l · ∇φ = −Bl,

where l̂̂l̂l is a unit vector along the LOS, andBl is the magnetic field along the LOS. The magnetic potential
is given by (Sakurai 1982):

φ(r) =

∫
z=0

Bn(r′)Gn(r, r′)dA′, (2.19)

with

Gl(r, r
′) =

1

2π

(
n̂̂n̂n · l̂̂l̂l
|r− r′|

+
µ · (r− r′)

|r− r′|(|r− r′|+ l̂̂l̂l · (r− r′))

)
, (2.20)

and µ = l̂̂l̂l × (n̂̂n̂n× l̂̂l̂l). Remark that if l̂̂l̂l = n̂̂n̂n, the classical Schmidt method is recovered.

The classical and oblique Schmidt method are only valid when relatively small areas on the solar surface
are studied. If large regions are studied, the curvature of the solar surface has to be taken into account.
The spherical Schmidt method, as described in Sakurai (1982), uses a Green’s function method to obtain
a solution. Alternatively, one can use methods that use the expansion of the solution into spherical
harmonics (see below).

2.2.2.2 Expansion Method

Another way to solve the Laplace equation with boundary conditions (2.13) and (2.14), is by using the
method of separation of variables (Teuber et al. 1977). In doing so, it is found that φ equals∑

k

φk exp(ikxx+ ikyy − kz), (2.21)

where k2 = k2
x + k2

y and kx, ky, k > 0 are real. The terms φk can be found by expanding the boundary
value Bn in its Fourier components:

Bn = Bn0 +
∑
k 6=0

Bk exp(ikxx+ ikyy),
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where Bn0 is a constant. From Eq. (2.13), it then follows that φk = Bk/k.

When the curvature of the solar surface is taken into account, it is convenient to expand φ in spherical
harmonics (Altschuler & Newkirk 1969):

φ(r, θ, ϕ) = R�

N∑
l=1

l∑
m=0

fl(r)P
m
l (θ)(gml cosmϕ+ hml sinmϕ), (2.22)

with (r, θ, ϕ) the usual spherical coordinates and Pml (θ) the Legendre polynomials. The function fl(r)
gives the radial dependence of φ and is given by

fl(r) =
(rw/r)

l+1 − (r/rw)l

(rw/R�)l+1 − (R�/rw)l
, (2.23)

where rw is the location of the so-called source surface. These potential fields are commonly called
potential field source surface (PFSS) models of the coronal magnetic field. Remark that if r = rw, then
fl(r) = 0, meaning that the magnetic field lines become radial at r = rw. This simulates the effect of the
solar wind which distort the magnetic field in the outer corona. The solar wind drags out the magnetic
field lines, making them approximately radial at a distance of typically 2.5R�. Remark that in the limit
of rw →∞, one obtains the potential field that approaches zero at infinity.

Equations (2.21) and (2.22) illustrate that the expansion method involves the evaluation of an infinite
series. In practical applications this is not possible and hence the series has to be truncated at a certain
point.

The solution to Laplace’s equation with given boundary conditions like equations (2.13) or (2.14), is
uniquely determined (see, e.g., Jackson 1975). Therefore, the potential fields obtained with the Green’s
function method and the expansion method have to be identical. However, as discussed above, numerical
codes can only use the Green’s function method if integral (2.15) is replaced by a finite summation. Sim-
ilar, numerical codes have to truncate the infinite series (2.22) after a finite amount of terms. Therefore,
numerical codes will produce slightly different magnetic fields, depending on the used method.

2.2.3 Applicability of Potential Fields in the Solar Corona

The relative straightforward implementation of numerical codes calculating the potential field has re-
sulted in numerous applications. Apart from computational tractability, potential fields are also popular
since they only require knowledge of the radial magnetic field component. When calculating a global
potential field, this radial magnetic component is obtained from Carrington maps of the photospheric
magnetic field. These maps consist of an assembly of magnetograms measured over an entire solar rota-
tion. A major drawback of this method is that it assumes that there are no temporal variations within a
single solar rotation.

The applicability of a potential field model in the corona depends strongly on the properties of the re-
gion of interest. A potential field requires a region that has a magnetic field with low helicity, and the
underlying magnetic sources must have remained stationary for a certain amount of time, allowing the
field to reach its minimum energy state. Active regions that show flux emergence and contain highly
sheared or twisted magnetic fields are therefore poorly approximated by potential fields. This is for ex-
ample illustrated in Sandman et al. (2009), where the magnetic loops reconstructed with STEREO data
clearly deviated from the calculated potential field. Furthermore, in Schrijver et al. (2005) it was shown
that active regions have a non-potential magnetic topology, especially when magnetic flux has recently
emerged in or close to the active region. Finally, as discussed in Section 2.2.1, the minimum energy of
potential fields makes them unable to drive solar eruptions.
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Despite these clear limitations, the potential field remains of great interest for solar physics. The reason is
that PFSS fields show a good agreement with observations on large scales. In other words, large coronal
loops are generally seen to coincide rather well with those predicted from PFSS. Also, PFSS gives rather
good approximations for locations of coronal holes and their sizes. Actually, the PFSS model works
surprisingly well considering the approximations involved. This can be understood by performing a
multipole expansion of the magnetic field, which shows that the current-dependent terms decay faster
than the potential terms. This implies that at large distances from the sun, the magnetic field should
become increasingly potential.

In addition, potential fields can be used as a starting point in the construction of more realistic magnetic
field configurations. For example, in Section 2.4.2, we will see that most of the nonlinear force-free
extrapolation methods evolve a potential field towards a more accurate field topology.

2.3 Linear Force-Free Fields

A force-free field is called linear if the force-free parameter α is constant. Hence, the linear force-free
field model allows currents to flow, making it a more realistic approach than the potential field model.
The computation of a linear force-free field can be treated in a similar way as the potential field. Taking
the curl of Eq. (2.7) gives, after some algebra, the following equation

(∇2 + α2)B = 0, (2.24)

which is a linear differential equation, known as the vector Helmholtz equation. Similar to the Laplace
equation, the Helmholz equation can be solved by providing the normal component of the magnetic field
on the boundaries of the domain.

By expressing the magnetic field in terms of a toroidal scalar field T and a poloidal scalar field P , i.e.,
B = ∇× [Tẑ̂ẑz+∇×(Pẑ̂ẑz)] (Morse & Feshbach 1953), the vector Helmholtz equation can be transformed
into a scalar Helmholtz equation for P :

(∇2 + α2)P = 0. (2.25)

Since Eq. (2.7) implies that T = αP , solving Eq. (2.25) is sufficient to obtain the magnetic field. Similar
to Laplace’s equation, a solution of the scalar Helmholtz equation can be found using either a Green’s
function (see, e.g., Chiu & Hilton 1977; Seehafer 1978), or a series expansion method (see, e.g., Naka-
gawa & Raadu 1972; Altschuler & Newkirk 1969).

Several limitations of linear force-free fields can be listed:

1. A linear force-free magnetic field behaves as a spherical wave at infinity. This means that the field
decays slowly, as exp(±iα)/r, such that the magnetic energy integral diverges (Seehafer 1978).

2. Related to the previous remark is the observation that currents in linear force-free fields have an
infinite extent, which is unrealistic.

3. Solutions of Eq. (2.25) show oscillatory behaviour at large distance, such that there are no appro-
priate boundary conditions at infinity.

4. A model in which the magnetic field becomes radial at a certain source surface, like the potential
field in Eqs. (2.22) and (2.23), is not possible for a force-free field. The reason is that the boundary
conditions Bθ = Bϕ = 0 and Br 6= 0 can only be satisfied if α = 0 or if α is allowed to vary in
space (Aly & Seehafer 1993).
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5. A solution of Eq. (2.25) for given boundary conditions is not necessarily unique. In general, this
is because the equation

(∇2 + λ2)P = 0, Bn = 0 at z = 0,

has an infinite number of eigenfunctions corresponding to eigenvalues λ = λ0, λ1, λ2, . . . . There-
fore, if α coincides with one of these λ’s, one can add the corresponding eigenfunction, scaled
by an arbitrary constant. One way to ensure a unique solution is by choosing α smaller than the
smallest eigenvalue λi.

6. Observations of the solar magnetic field have illustrated that coronal fields often contain twisted
magnetic structures, indicating that both the magnitude and sign of α can vary significantly, even
in small regions. This was illustrated in Wiegelmann & Neukirch (2002), where α was shown to
switch sign within the studied active region. This result implies that the actual magnetic fields in
active regions are highly nonlinear.

Despite these limitations, linear force-free fields remain popular for modelling the coronal magnetic
field. The main reason is that solving the Helmholz equation is fairly straightforward and as boundary
condition only Bn is required. However, the above list of limitations makes it clear that the use of linear
force-free fields is rather limited and will therefore not be discussed any further.

2.4 Nonlinear Force-Free Field

The previous discussion has made clear that both potential fields and linear force-free fields are often an
inadequate representation of coronal magnetic fields. As mentioned above, observations have illustrated
that the force-free parameter α can vary significantly, giving rise to strongly localized currents. Apart
from these observations, the potential field and a linear force-free field are also inadequate since they
possess a minimum energy and an infinite energy2, respectively. Therefore it is necessary obtain force-
free fields in which α can vary from one field line to another, allowing (strongly) localized current
densities. Such a magnetic field is called a nonlinear force-free field (NLFFF).

The equations describing the force-free field, repeated here for referential convenience, are

∇×B = αB, (2.26)

B · ∇α = 0. (2.27)

To solve Eqs. (2.26) and (2.27) in a certain domain Ω, one would like to have a combination of boundary
conditions such that the problem becomes a well-posed problem in Hadamard sense. Finding such a
formulation is a non-trivial problem since Eq. (2.26) and Eq. (2.27) are partial differential equations of
mixed elliptic and hyperbolic type. If B is prescribed, the equation for α is hyperbolic, such that an
appropriate boundary condition is to give α at only one polarity 3. On the other hand, if α is given,
the equation for B becomes elliptic, such that it is natural to provide the normal component Bn on
∂Ω. Bineau (1972) and Boulmezaoud & Amari (2000) showed that these boundary conditions for α
and B can be used to prove an existence and uniqueness theorem for Eq. (2.26) and Eq. (2.27) in a
bounded domain Ωb, if α|∂Ω remains small enough. To the best of my knowledge, a general existence
and uniqueness theorem valid for all values of α has not yet been proven, neither in a bounded nor in an
unbounded domain.

2Remark that a linear force-free field has only an infinite energy when considering a (semi-)infinite domain, but not for a
finite volume.

3α is only required at one polarity because it is constant along magnetic field lines. Therefore the values of α of one polarity
are mapped to the other polarity by following the magnetic field lines.



24 CHAPTER 2. FORCE-FREE FIELDS

The complexity of Eqs. (2.26) and (2.27) makes finding analytical solutions very hard. Semi-analytical
solutions can only be obtained by making certain symmetry assumptions, such that the magnetic field
becomes independent of at least one of the coordinates. Two such solutions will be discussed below.
The importance of these solutions resides in their applicability as test cases to validate numerical extrap-
olation codes. Such numerical schemes try solve the force-free equations by extrapolating the coronal
magnetic field from photospheric vector magnetograms. Various extrapolation methods have been devel-
oped and they are discussed in Section 2.4.2. We remark that if these extrapolation methods are not able
to reproduce smooth analytical solutions, then there is little hope that they perform well with real solar
data. Moreover, the obtained analytical solutions are also valuable since the nonlinearity of the problem
does not allow the superposition of solutions to obtain new ones.

2.4.1 Semi-Analytical Solutions

2.4.1.1 The Low and Lou Equilibrium

In this section, we will describe a class of semi-analytical nonlinear force-free fields, found by Low &
Lou (1990) (henceforth LL). As shown in the following, these solutions can be used as a model of the
magnetic field of a solar active region. To obtain the LL equilibrium, one solves equations (2.26) and
(2.27) in infinite space, under the assumptions that the magnetic field is axisymmetric. This means that it
can be expressed in terms of two scalars functionsA andQ. In spherical coordinates this becomes

B =
1

r sin θ

(
1

r

∂A

∂θ
r̂̂r̂r − ∂A

∂r
θ̂̂θ̂θ +Qϕ̂̂ϕ̂ϕ

)
, (2.28)

where A is called the flux function, since A = constant represents a flux surface. Using the force-free
equations, it can be shown thatQ is a function ofA, that α = dQ

dA , and thatA satisfies the Grad-Shafranov
equation (see e.g., Marsh 1992)

∂2A

∂r2
+

1− µ2

r2

∂2A

∂µ2
+Q

dQ

dA
= 0, (2.29)

where µ = cos θ. This equation can be solved by seeking solutions of the form:

Q(A) = aA1+1/n (2.30)

A =
P (µ)

rn
, (2.31)

where a and n are constants, and P is a scalar function of µ. Remark that a = 0 corresponds to a
potential field, i.e., α = 0. By substituting Eqs. (2.31) and (2.30) into Eq. (2.29), the following ordinary
differential equation for P is obtained:

(1− µ2)
d2P

dµ2
+ n(n+ 1)P + a2 1 + n

n
P 1+2/n = 0. (2.32)

One way to solve this equation is by fixing a value for n, and solving (2.32) as an eigenvalue problem,
with a2 the corresponding eigenvalue. To ensure that the solutions are well behaved, one has to require
that Bϕ and Bθ vanish along the symmetry axis. This can be done by requiring that P = 0 at µ = ±1.
The origin remains a singularity 4 and can be viewed as the location of a magnetic point source

4The existence of such a singularity is intrinsic to nonlinear force-free fields with finite energy in infinite space. For such a
field, the magnetic energy Emag can be written as Emag =

∫
Ω

r·j×B
µ0

dV . If the force-free field has no singularity, one obtains
thus that Emag = 0 and hence B = 0.
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Figure 2.1: LL equilibriua for parameters n = 1, a2 = 0.425, and ` = 0.3. The left panel corresponds
to a LL equilibrium with Φ = 0. The right panel corresponds to a LL equilibrium with Φ = π/3.
The colour-coding corresponds to the vertical magnetic field Bz (in G). The black lines are a number of
arbitrary selected magnetic field lines.

To mimic the solar magnetic field in an active region, the point source is translated over a distanceL away
from the origin, while keeping it outside the computational domain. In addition, the symmetry axis is
rotated over a certain angle Φ with respect to the vertical axis. This means that the Cartesian coordinates
used to describe the LL equilibrium, i.e., X = r sin θ cosϕ, Y = r sin θ sinϕ, and Z = r cos θ, can be
written in term of the physical Cartesian coordinates as

X = x cos Φ− (z + L) sin Φ, (2.33)

Y = y, (2.34)

Z = x sin Φ + (z + L) cos Φ. (2.35)

The distance L is often expressed in units of a typical length scale r0, i.e., L = `r0. The obtained
magnetic field configuration shows resemblance with a realistic magnetic field of a solar active region.
The translation of the point source and the rotation of the symmetry axis are done in order to obtain a
solution that is not symmetric in the considered domain.

Fig. 2.1 shows two examples of LL equilibria for n = 1 and a2 = 0.425. The magnetic point source is
translated a distance 0.3r0 underneath the z = 0 plane, which represents the photosphere. On the left
plot, Φ = 0, which means that the symmetry axis of the LL equilibrium is aligned with the vertical axis.
On the right plot, the symmetry axis of the LL equilibrium was rotated over an angle Φ = π/3. In this
plot, the symmetry is no longer obvious and a magnetic field configuration somewhat similar to a solar
active region is obtained.

Analogously, if the photosphere is represented by (part of) a spherical shell with radius r = R�, the point
source is shifted a distance L away from to origin, while keeping it outside the computational domain.
Such a configuration is shown in Fig. 2.2.

By changing the parameters n and Φ, a whole class of different magnetic configurations is obtained.
These magnetic fields are often used for testing numerical methods that extrapolate a nonlinear force-
free field from photospheric boundary conditions. By prescribing the magnetic field at the boundary of
the computational box, the extrapolation tool should be able to reproduce the LL equilibrium.
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Figure 2.2: LL equilibrium in spherical coordinates for parameters n = 1, a2 = 0.425, ` = 0.3 and
Φ = π/3. The photosphere is represented by {r = R�} and the colour-coding corresponds to the radial
magnetic field Br (in G). The black lines are a number of arbitrary selected magnetic field lines.

2.4.1.2 The Titov-Démoulin equilibrium

In this section, we discuss a flux-rope model called the Titov-Démoulin (henceforth TD) equilibrium
(Titov & Démoulin 1999). Despite that this model is only approximately force-free, it is still a popular
model for testing nonlinear force-free numerical codes. The set-up of the model is illustrated in Fig. 2.3
and consists of a current-carrying toroidal flux-rope of major axisR0 and minor axis a, and two magnetic
monopoles ±q. The original TD model also contained a line current I0 flowing along the symmetry axis
of the torus. The symmetry axis of the toroidal flux-rope, the line current, and the monopoles are all a
distance d submerged under the solar surface (z = 0). In doing so, the resulting configuration in the
z > 0 plane resembles a magnetic flux tube, line-tied to the photosphere.

Titov et al. (2014) generalized the Titov-Démoulin equilibrium by including flux-ropes that do not have a
uniform axial current. Two different current density profiles are considered by the authors. The first one
is a current distribution in which the current is limited to a small layer at the outer boundary of the flux-
rope. This configuration is called the hollow-core distribution. Next, a parabolic current distribution is
considered, in which the current distribution obtains its maximum at the centre of the flux-rope. These
two configurations will be used in Chapter 3. Titov et al. (2014) determined the magnetic field in terms
of a magnetic vector potential. Here we limit ourself to the description of the basic parameters and the
stability of the flux-rope.

In contrast to the original TD model, the configurations developed by Titov et al. (2014) do not contain
a line current flowing along the symmetry axis of the torus. The total magnetic field is then equal to
the sum of the bipolar field Bq, and the magnetic field Bt of the flux-rope. The magnetic component
produced by the magnetic charges ±q is given by

Bq = q

(
r+

|r+|3
+

r−

|r−|3

)
, (2.36)
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with r = (x∓ L, y, z − L). Remark that the use of magnetic monopoles does not violate the solenoidal
condition, since the magnetic monopoles are located outside the domain. This overlaying potential field
exercises a force on the toroidal current in the magnetic flux tube. This is necessary to keep the flux-rope
down, since the outward hoop force of the torus , i.e., the Lorentz force resulting from the curvature of
the tube axis, will try to expand the flux tube (Shafranov 1963)

To proceed, it is assumed that a � R0, which means that the flux-rope is thin compared to its global
size. Assuming in addition that the plasma pressure is negligible, i.e., assuming a low β environment,
the magnitude of the magnetic hoop force is given by

Fhoop =
µ0I

2

4πR0

(
ln

8R0

a
− 3

2
+
li
2

)
,

where li is the total internal self-inductance per unit length of the flux-rope. This hoop force needs thus
to be balanced by an opposite Lorentz force due to the ambient bipolar field. This force balance can be
written as:

µ0I
2

4πR0

(
ln

8R0

a
− 3

2
+
li
2

)
+ IB⊥ = 0, (2.37)

where B⊥ denotes the component of the ambient bipolar field orthogonal to the torus-plane, i.e.,

B⊥ = − 2qL(
R2

0 + L2
)3/2 x̂.

Solving this equation for the current I yields the so-called Shafranov’s equilibrium current

IS = − 4πRB⊥/µ0

ln
(

8R
a

)
− 3

2 + li
2

(2.38)

=
8πLR0(R2

0 + L2)−3/2

µ0

[
ln
(

8R
a

)
− 3

2 + li
2

] . (2.39)

If I > IS, the outward hoop force will be larger than the inward force due to the overlaying bipolar
field, and hence the flux-rope will expand. This may lead to an instability called the torus instability.
In contrast, when I < IS the flux-rope will be pulled towards the photosphere since the hoop force
is now smaller than the inward force due to the overlaying field. An expanding or shrinking flux-rope
will compress the ambient magnetic field in the direction of motion. This increase in magnetic pressure
will counteract the hoop force of the magnetic flux-rope. Whether this is sufficient to avoid the torus
instability depends largely on the strength of the ambient field (Kliem & Török 2006). Also, magnetic
reconnection at the bottom of an expanding flux-rope may complicate things, since it can slowly drive
the flux-rope towards an unstable configuration. In addition, Török et al. (2004) showed that the flux-
rope may be subject to the kink instability when the twist of the rope exceeds a certain value Φc which
depends on the ratio a/R.

2.4.2 Extrapolation Methods

In practice, solar observations provide magnetograms which can be used as boundary conditions for the
nonlinear force-free equations. Obtaining a solution of Eqs. (2.26) and (2.27) with such boundary data
requires a numerical approach. Different numerical models, also called extrapolation models, have been
developed for the computation of nonlinear force-free coronal magnetic fields. An important difference
between those models is the way the boundary conditions are imposed. Some methods use the full
vector magnetogram, whereas other methods use the normal magnetic field and the α-distribution of one
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Figure 2.3: The Tidov-Démoulin model, consisting of a toroidal flux tube, a line current I0, and two
opposite magnetic monopoles ±q. Figure adapted from Titov & Démoulin (1999).

polarity. As it turns out, there is a strong dependence of the solutions on the boundary conditions, as we
will discuss in Section 2.5.1.

In the remainder of this section, we will introduce three important extrapolation methods: the opti-
mization method, the magnetofrictional method, and the Grab-Rubin method. We focus on these three
methods since they have shown the most promising results (see, e.g., Schrijver et al. 2006, 2008). For an
extended review of these methods, we refer to Wiegelmann & Sakurai (2012).

2.4.2.1 The Optimization Method

The optimization method was originally proposed by Wheatland et al. (2000). The idea behind the
method is to minimize a functional L(B) that measures the Lorentz force and the divergence of the
magnetic field in a computational volume. More specifically, this functional is defined as

L = Lf + Ld, (2.40)

where
Lf =

∫
V
B2wfΩ

2
fdV, Ld =

∫
V
B2wdΩ

2
ddV. (2.41)

In these equations wf and wd are dimensionless weighting functions and

Ωf =
j×B

B2
, Ωd =

(∇ ·B)B

µ0B2
. (2.42)

The quantity Lf gives the Lorentz force integrated over a volume V . Similarly, Ld gives the divergence
of the field B, integrated over V . For a nonlinear force-free magnetic field both quantities should be
zero, and hence L will also be zero. Moreover, choosing wf and wd as positive functions implies that
L ≥ 0.

To minimize the functionL, a time-like iteration parameter t is introduced. DifferentiatingLwith respect
to t yields the following expression

1

2

∂L

∂t
= −

∫
V

∂B

∂t
· FoptdV −

∫
S

∂B

∂t
·GoptdS, (2.43)
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where

Fopt =
1

µ0
(Ωf ×B)×∇wf +

1

µ0
(Ωd ·B)∇wd + wfFf + wdFd, (2.44)

Gopt = wf n̂̂n̂n× (Ωf ×B)− wd(Ω ·B)n̂̂n̂n, (2.45)

with

Ff =
1

µ0
∇× (Ωf ×B) + j×Ωf + Ω2

fB, (2.46)

Fd = − 1

µ0
(∇ ·B) Ωd +

1

µ0
∇ (Ωd ·B) + Ω2

dB. (2.47)

For the derivations of these expressions we refer to Appendix A. If B is kept fixed on the surface S, the
surface integral in Eq. (2.43) disappears. Iterating the magnetic field by

∂B

∂t
= µF, (2.48)

with µ > 0 an arbitrary function, results then in the following evolution for L

1

2

dL

dt
= −

∫
V
µF 2dV. (2.49)

From this expression it is clear that L will decrease monotonically. Moreover, remark that if the solution
space is convex, the obtained magnetic field for whichL is minimal is also a global minimum. In contrast,
if the solution space is non-convex, the obtained magnetic field may only be a local minimum.

The minimization procedure is initiated by choosing an initial magnetic field in the computational volume
and subsequently replacing the lower boundary by the required vector boundary condition. Often, the
initial field is a potential field computed from the normal component of the vector magnetogram. The
tangential components of this potential field on the bottom boundary are then changed to fully match
the vector magnetogram. Replacing the lower boundary with the measurements, results in an initial field
that is in general not force-free nor divergence-free at the lower boundary. As a consequence, L will be
larger than zero.

Remark that the optimization method requires boundary conditions on all sides of the computational box,
and that these boundaries all have the same influence on the final solution. However, solar observations
only provide photospheric magnetograms such that only the boundary conditions at the bottom boundary
are known. As a consequence, the magnetic field on the lateral and top boundaries of the computational
box is approximated by the initial potential field. In reality this potential field can be a poor approx-
imation of the true magnetic field. Therefore it is desirable to decrease the importance of the side an
top boundaries with respect to the bottom boundary of the computational box. This can be realized by
choosing wf and wd to be equal to unity in the entire computational volume, except at the problematic
boundaries, where they smoothly drop to zero. As a consequence, the problematic boundaries influence
the magnetic field less severely compared to the optimization method without weighting functions. Test
calculations performed by Wiegelmann (2004) showed that the use of weighting functions can strongly
improve the results. Finally, remark that if vector magnetogram data is available on the whole photo-
sphere, it is in principle possible to reconstruct the complete coronal field. In that case, the computational
box has no lateral boundaries such that only the top boundary has to be worried about. This is similar to
the potential field source surface approach discussed in Section 2.2.2.2.

Apart from creating boundary layers, the weighting functions wf and wd can also be used to increase the
importance of the solenoidal condition compared to the force-free condition or vice-versa. For example,
by choosing wd > wf , more effort is spent in making the magnetic field divergence-free than making
it force-free. In the test cases considered in Schrijver et al. (2006), the optimal choice was to use equal
weighting functions, i.e., wd = wf . In Chapter 3 we will further investigate the effects of these weighting
functions.
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2.4.2.2 The Magnetofrictional Method

The magnetofrictional method is in some aspects similar to the optimization method. As we will see
below, the magnetofrictional method also starts from an initial state which is then evolved to a force-free
state by solving an equation of the same form as Eq. (2.48). Like for the optimization approach, the initial
field configuration is often a potential field in the numerical box, where the bottom boundary has been
replaced by the measured vector magnetogram. This results in non-zero Lorentz forces at the bottom of
the box, which induce flows with plasma velocity v. The magnetofrictional method tries to relax this
initial non-equilibrium state towards a relaxed stationary state that is a solution of the MHD equations.
This is done by introducing a dissipative term, D(v), into the momentum equation,

ρ

(
∂v

∂t
+ v · ∇v

)
+∇p = j×B + D. (2.50)

The dissipative term should be chosen such that it vanishes when a static equilibrium is reached. There-
fore, a friction term is often used as dissipative term: D(v) = −νv. The parameter ν is an arbitrary
function of space and time which is usually chosen as

ν =
B2

µ(t)
, (2.51)

where µ(t) is an adjustable parameter that can depend on time. This parameter is chosen such that it
optimizes the relaxation process and reduces oscillations at the end of the relaxation process.

The pressure gradient term and the inertial terms in Eq. (2.50) are often neglected (see, e.g., Yang et al.
1986; Valori et al. 2005) such that Eq. (2.50) can be rewritten as

v =
1

ν
j×B. (2.52)

The time evolution of the plasma is then governed solely by the induction equation for the magnetic
field

∂B

∂t
= ∇× (v ×B) (2.53)

= µ∇×
(

[∇×B)×B]×B

µ0B2

)
(2.54)

= µFmfm, (2.55)

where

Fmfm = ∇×
(

[∇×B)×B]×B

µ0B2

)
. (2.56)

Remark that if the initial field has zero divergence, then Eq. (2.53) ensures that the magnetic field remains
divergence-free. Moreover, any numerically generated divergence can be minimized using a diffuse
approach (see, e.g., Dedner et al. 2002). This is only required if the numerical method used to compute
Eq. (2.53) is such that it does not keep the value of∇ ·B as the magnetic field is updated.

The magnetofricitonal method assumes that there exists a static force-free equilibrium to which the sys-
tem can relax. Remark however that if a force-free equilibrium indeed exists, reconnection processes
may be needed to transform the field line connectivity of the initial field to the equilibrium field. This is
in particular the case if the topology of the initial starting field is very different from the topology of the
force-free field.
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Comparing Eq. (2.55) with Eq. (2.48), reveals that both the optimization method and the magnetofric-
tional method evolve the magnetic field by using an equation of the form

∂B

∂t
= µF.

A closer inspection of the first term of Eq. (2.46) reveals that Fmfm is contained in the expression of
Fopt, yet Fopt contains additional terms.

2.4.2.3 Grad-Rubin Method

The Grad-Rubin method uses that equations (2.26) and (2.27) can be decomposed into an elliptical part
and a hyperbolic part, as explained at the beginning Section 2.4. These two parts are then successively
solved in an iterative manner. More specifically, each iteration step k starts by solving the hyperbolic
part to obtain α(k) in the volume Ω:

B(k) · ∇α(k) = 0 (2.57)

α(k)|∂Ω± = α0, (2.58)

where Ω± corresponds to the boundaries where the magnetic field has either positive or negative polarity.
Subsequently the elliptical part is solved to obtain B(k+1):

∇×B(k+1) = α(k)B(k), (2.59)

∇ ·B(k+1) = 0, (2.60)

B(k+1)
z |∂Ω± = Bz0, (2.61)

lim
|r|→∞

|B(k+1)| = 0. (2.62)

This iteration is continued until the updated magnetic configuration does not change any more.

B(0) is normally set equal to the potential field computed from the observed line-of-sight magnetic field.
The parameter α can be computed from the magnetogram data as

α(x, y) =
1

Bz

(
∂By
∂x
− ∂Bx

∂y

)
. (2.63)

Mathematically, the Grad-Rubin method is interesting since it solves the force-free equation as a well
posed boundary value problem. For a detailed mathematical study of this method we refer to Amari
et al. (2006) and references therein. Remark that the method disregards a large part of the observations,
i.e., it uses only one polarity for computing the parameter alpha needed for the boundary conditions (see
Eq. (2.58)). Hence, by applying the method twice, once for each polarity, one obtains two solutions.
Noise and measurement errors often result in differences between these two solutions (see, e.g., De Rosa
et al. 2009). Alternatively, one can attach a certain weight to each boundary value of α, on both polarities.
These weights may depend on the noise of the measurements. The final value for α is then obtained as a
weighted average of the α values on both footpoints of a field line.

Different approaches exist to fulfil the solenoidal condition, i.e., Eq. (2.60). One possibility is to rewrite
Eqs. (2.59)–(2.62) in terms of a vector potential A, with ∇×B = A. This is done in the ‘XTRAPOL’
code as explained in Amari et al. (2006). Alternatively one can keep working with Eqs. (2.59)–(2.62) and
minimize the divergence of B in a least-square sense. This method is for example used in the ‘FEMQ’
code, also introduced in Amari et al. (2006).
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Optimization Method Magnetofrictional Method

Grad-Rubin Method
(XTRAPOL)

Grad-Rubin Method
(FEMQ)

Figure 2.4: The first row shows the resulting magnetic fields of the optimization method and the mag-
netofrictional method, respectively. The second row shows the results of the XTRAPOL code and the
FEMQ code. The starting points for the field lines are in all the plots equal.

2.4.2.4 Discussion

When the different methods are applied to real solar data, they often return magnetic field configurations
that are not identical to each other. One of the reason is that the magnetograms which are used as bound-
ary conditions are not exactly force-free, and thus not compatible with a force-free solution. Moreover,
since the different methods treat the boundary conditions differently, it is thus not surprising that the
resulting fields differ from each other. Many studies have been dedicated to the comparison of the per-
formance of the different methods. Examples are Schrijver et al. (2006, 2008); Metcalf et al. (2008); De
Rosa et al. (2009); DeRosa et al. (2015).

DeRosa et al. (2015) applied the optimization method, the magnetofrictional method and the Grad-Rubin
method to a magnetogram of the NOAA solar active region 10978 on 2007 December 13. In order to
demonstrate how the results of various extrapolation methods differ, the results of four methods are
plotted in Fig. 2.4. The magnetogram data is from DeRosa et al. (2015) and the extrapolation results
can be downloaded from http://dx.doi.org/10.7910/DVN/7ZGD9P. The first row of Fig. 2.4
shows the results of the optimization method and the magnetofrictional method, respectively. The second
row shows the results of the XTRAPOL code and the FEMQ code. The starting points for the field
lines are in all plots chosen equal, to make a comparison possible. For details about the numerical

http://dx.doi.org/10.7910/DVN/7ZGD9P
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implementation of the methods we refer to DeRosa et al. (2015).

Figure 2.4 shows that there exist qualitative differences between the field lines obtained with the different
methods. Although these differences seem to be small, DeRosa et al. (2015) showed that there are signifi-
cant quantitative differences when comparing physical quantities like magnetic field energy and helicity.
As already mentioned at the start of Section 2.4.2, these differences may be, at least partly, attributed
to the different ways of treating the boundary conditions. Apart from this, there are other differences
between the methods that may introduce variations. For example, in contrary to the optimization method
and the magnetofrictional method, the Grad-Rubin method provides at every iteration a magnetic field
that satisfies the solenoidal conditions. As a result, the resulting magnetic field configuration given by
the optimization method and the magnetofrictional method are expected to have a larger divergence than
the magnetic field obtained from the Grad-Rubin methods.

2.5 Boundary Conditions

The extrapolation methods discussed above are all based on the assumption that the input vector mag-
netogram is force-free. However, typically only detailed observations of the photospheric magnetic field
are available (see Section 1.3), where the force-free approximation is not valid. In Metcalf et al. (1995)
it is estimated that the force-free approximation becomes valid at roughly 400 km above the photo-
sphere.

The non-force-freeness of magnetograms can strongly affect the solution obtained from the different
extrapolation methods (see Metcalf et al. 2008). One way to resolve this problem is by transforming
the photospheric magnetogram into a force-free chromospheric magnetogram. These two magnetograms
should be very similar since there is only a thin separation (∼ 400 km) between the photosphere and the
start of the force-free region. The chromospheric magnetogram needs to be smoother, since a large part
of the magnetic field lines originating from the photosphere extent only a few hundreds of meters above
the photosphere, before returning back to the photosphere. The remaining magnetic flux rapidly expands
to larger distances (see e.g., Close et al. 2002). For these reasons, it is expected that a chromospheric
magnetogram can be obtained from the photospheric magnetogram without performing major modifica-
tions. Furthermore, one should also take into account that the photospheric magnetograms contain noise,
especially the horizontal components of the magnetic field. Therefore, modifying the magnetogram is
justified if the changes that are made smaller or of the size of the errors in the measurements.

Transforming a photospheric magnetogram into a chromospheric magnetogram is generally referred to
as preprocessing, and was for the first time introduced by Wiegelmann et al. (2006). The preprocessing
method described in Wiegelmann et al. (2006) used however a somewhat ad-hoc smoothing to model the
expansion of the magnetic field from the photosphere to the chromosphere. In Jiang & Feng (2014), the
authors describe a preprocessing method with a more physically justified smoothing procedure. In the
next section we introduce a new preprocessing method, which is similar to the preprocessing method of
Jiang & Feng (2014).

2.5.1 Preprocessing

The preprocessing technique is based on considering the necessary conditions that are fulfilled by a
force-free field. These conditions express that the volume integrals of the total Lorentz force and torque
should be zero: ∫

Ω
j×BdV =

∫
Ω

r× (j×B)dV = 0. (2.64)
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By expressing these equations in terms of the magnetic stress tensor Tij = − B2

2µ0
δij + 1

µ0
BiBj , and by

using Gauss’s Theorem to convert the volume integrals into surface integrals, it was shown in Aly (1989)
that a force-free field needs to fulfil the following conditions:

Fx = − 1

µ0

∫
∂Ω
BxBzdxdy = 0, (2.65)

Fy = − 1

µ0

∫
∂Ω
ByBzdxdy = 0, (2.66)

Fz =
1

2µ0

∫
∂Ω
B2
x +B2

y −B2
zdxdy = 0 (2.67)

τx =
1

2µ0

∫
∂Ω
x(B2

x +B2
y −B2

z )dxdy = 0 (2.68)

τy = − 1

2µ0

∫
∂Ω
y(B2

x +B2
y −B2

z )dxdy = 0 (2.69)

τz =
1

µ0

∫
∂Ω

(yBxBz − xByBz)dxdy = 0. (2.70)

The first two equations express the that the total force F on the boundary ∂Ω vanishes. The last three
equations express that the total torque τ on the boundary vanishes. Remark that these equations are a
necessary but not a sufficient condition for a magnetic field to be force-free. In addition, the integration
in these equations has to be carried out over a closed surface ∂Ω. However, in practice the integra-
tion is limited to the bottom magnetogram, since the magnetic field on the side and top boundaries of
a computational box is in general not known. When the magnetogram spans a solar active region, this
approximation can be justified by choosing a computational box that is large enough such that the mag-
netic field at the side and top boundaries is close to potential. In the following, ∂Ω will always refer to
the bottom boundary of the computational domain.

Following Jiang & Feng (2014), we split up the magnetic field in a potential part B0 and a non-potential
part B1. Here the potential part is calculated using the normal component of the magnetogram. This
means that

B|∂Ω = B0|∂Ω + B1|∂Ω = (B0x +B1x, B0y +B1y, B0z)|∂Ω. (2.71)

The first step in the preprocessing procedure is to replace B0|∂Ω by its value at a height of ∼ 400km
above the photosphere. This step can be understood as an attempt to model the smoother chromospheric
field given the photospheric one. In the remainder of this section we use B to denote the magnetic
field adapted by the preprocessing method, and Bobs to denote the magnetic field of the original magne-
togram.

The second step towards achieving the force-free magnetogram requires the reformulation of Eqs. (2.65)–
(2.70) by using the fact that the potential field B0 satisfies the equalities identically:

Fx = − 1

µ0

∫
∂Ω
B1xB0zdxdy = 0, (2.72)

Fy = − 1

µ0

∫
∂Ω
B1yB0zdxdy = 0, (2.73)

Fz =
1

2µ0

∫
∂Ω
B2

1x +B2
1y + 2(B0xB1x +B0yB1y)dxdy = 0 (2.74)

τx =
1

2µ0

∫
∂Ω
x(B2

1x +B2
1y + 2(B0xB1x +B0yB1y))dxdy = 0 (2.75)

τy = − 1

2µ0

∫
∂Ω
y(B2

1x +B2
1y + 2(B0xB1x +B0yB1y))dxdy = 0 (2.76)

τz =
1

µ0

∫
∂Ω

(yB1xB0z − xB1yB0z)dxdy = 0. (2.77)
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Since the photospheric magnetogram is in general not force-free, these conditions will not be satisfied.
To check how good or bad the raw magnetogram data fulfils conditions (2.72)–(2.77), the following
functionals are computed:

L1 = L2
11 + L2

12 + L2
13, L2 = L2

21 + L2
22 + L2

23, (2.78)

where5

L11 = − 1

µ0

∑
p

[B1xB0z] ∆x∆y, (2.79)

L12 = − 1

µ0

∑
p

[B1yB0z] ∆x∆y, (2.80)

L13 =
1

2µ0

∑
p

[
B2

1x +B2
1y + 2(B0xB1x +B0yB1y)

]
∆x∆y (2.81)

L21 =
1

2µ0

∑
p

[
x(B2

1x +B2
1y + 2(B0xB1x +B0yB1y))

]
∆x∆y (2.82)

L22 = − 1

2µ0

∑
p

[
y(B2

1x +B2
1y + 2(B0xB1x +B0yB1y))

]
∆x∆y (2.83)

L23 =
1

µ0

∑
p

[(yB1xB0z − xB1yB0z)] ∆x∆y. (2.84)

In these expressions,
∑

p denotes a summation over all the grid points p of the bottom boundary, and ∆x
and ∆y are the distances between two adjacent grid points in the x and y direction. Remark that these
equations are the discrete versions of Eqs. (2.72)–(2.77). A preprocessing method aims at minimizingL1

and L2 by varying the magnetic field components B1x and B1y at each point p of the bottom boundary.
However, in minimizing these quantities, the magnetic field should not be allowed to vary too much.
As already mentioned above, it would be desirable that the magnetic field is only modified inside or
close to the error margins of the data. This means that the following expression should remain small
enough

L3 =
1

2µ0

∑
p

[
(B1x −B1x,obs)

2 + (B1y −B1y,obs)
2
]

∆x∆y, (2.85)

with B1,obs the non-potential part of the magnetic field of the original vector magnetogram. Remark
that L3 can be considered as an area integrated magnetic energy deviation. Finally, the chromospheric
force-free magnetogram is expected to be smoother than the photospheric magnetogram. Part of this
smoothing was already achieved by changing the photospheric B0 to its value at a distance of ∼ 400km
above the photosphere. Additional smoothing can be achieved by minimizing

L4 =
∑
p

[
(∆Bx)2 + (∆By)

2
]

∆x∆y, (2.86)

where ∆ is the 2D-Laplace operator, usually a five-point stencil:

∆Bi,j = Bi+1,j +Bi−1,j +Bi,j+1 +Bi,j−1 − 4Bi,j ,

with p = (i, j) a pixel in the grid.

5Remark that the preprocessing methods developped by Wiegelmann et al. (2006) and Jiang & Feng (2014) do not contain
the factors “ 1

2
” in the expressions for L13, L21 and L22. However, Eqs. (2.72)–(2.77) illustrate that these factors should be

included if every force and torque component is equally weighted.
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Putting everything together, the preprocessing method tries to minimize a functional of the form

L =
µ1

N1
L1 +

µ2

N2
L2 +

µ3

N3
L3 +

µ4

N4
L4, (2.87)

where the µi represent different weights and theNi are some normalisation constants, needed to make the
constituents of Eq. (2.87) dimensionally consistent. Appropriate values for these normalization constants
are found by realizing that numerical discretization errors inhibit a perfectly force-free field. Therefore,
the magnetic field should not be expected to satisfy Eqs. (2.65)–(2.70) more accurately than the numerical
computed potential field, and hence N1 and N2 are chosen as

N1 =
1

µ2
0

(∑
p

[B0xB0z] ∆x∆y

)2

+
1

µ2
0

(∑
p

[B0yB0z] ∆x∆y

)2

+
1

4µ2
0

(∑
p

[
B2

0x +B2
0y −B2

0z

]
∆x∆y

)2

N2 =
1

4µ2
0

(∑
p

[
x(B2

0x +B2
0y −B2

0z)
]

∆x∆y

)2

+
1

4µ2
0

(∑
p

[
y(B2

0x +B2
0y −B2

0z)
]

∆x∆y

)2

+
1

µ2
0

(∑
p

[(yB0xB0z − xB0yB0z)] ∆x∆y

)2

.

The smoothness of the potential field at a distance of ∼ 400km can be used as a reference for the
smoothness of the non-potential part. Therefore we choose

N4 =
∑
p

[
(∆B0z)

2
]

∆x∆y.

In this expression we use only B0z , since the smoothness of B0z should be of the same order as the
smoothness of B0x and B0y. This seems reasonable since the smoothness is not expected to have a
directional preference. Since we used the potential field to define N1, N2, and N4, a logical choice for
N3 is then

N3 =
1

2µ0

∑
p

[
B2

0,obs

]
∆x∆y.

The weighting factors µ1 an µ2 in Eq. (2.87) are normally chosen equal to unity, since there is no reason
why the torque component would need a different weight than the force component. The optimal choice
of µ3 and µ4 depends on the magnetogram under consideration. Often they are chosen equal to or smaller
than µ1 and µ2 to give greater weight to the force-free conditions (2.65)–(2.70). Moreover, µ3 has to
be chosen sufficiently large to ensure that L3 remains smaller than

∑
p B2

noise. For real data, this latter
quantity is not exactly known and has thus to be estimated.

Since L(Bx, By, Bz) is an explicit functional of the magnetic field components, it can be minimized by
solving

∇BL(Bx, By, Bz) = 0. (2.88)

This can be realized by performing an iterative scheme of the form

B(i+1) = B(i) − λ(i)∇BL
(
B(i)

)
, (2.89)

where λ defines the step size. This iterative scheme corresponds to the method of steepest descent. The
parameter λ can be chosen to optimize the decrease in L (see Jiang & Feng 2014):

λ(i) = arg minL
[
B(i) − λ∇BL

(
B(i)

)]
. (2.90)
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Alternatively, one can estimate the step size by requiring that the functional should decrease each iteration
step. If the functional indeed decreases, one can increase the step size for the next iteration, to accelerate
the process. In contrast, if the functional increase during an iteration step, one should repeat this iteration
step with a smaller step size, until the functional decrease.

The force-freeness and the torque-freeness of the resulting magnetogram can be quantified by the fol-
lowing metrics:

εforce =
1

µ0P

(∣∣∣∣∣∑
p

BxBz

∣∣∣∣∣+
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with R� the solar radius and P the integrated magnetic pressure given by

P =
1

2µ0

∑
p

B22µ0.

A force-free magnetogram should satisfy εforce � 1 and εtorque � 1. The smoothness of the magnetic
field can be measured by

S =
1

N4

∑
p

(∆B)2∆x∆y. (2.93)

2.5.2 Example

In this section we will use the bottom boundary of the Low&Lou (LL) semi-analytical solar active region
model to demonstrate the preprocessing procedure. To do this, we solve Eq. (2.32) in a cubic volume
containing 1003 pixels. The relevant parameters are n = 1, ` = 0.3, Φ = π/4 , and a2 = 0.425, up to
the accuracy of discretization. Since the LL equilibrium is a solution of the force-free equations, it will
evidently satisfy conditions (2.65)–(2.70). To imitate a magnetogram obtained from solar observations,
we therefore add noise to the LL magnetogram. In Section 1.3, we saw that the measurement error in
the transversal component of the magnetic field scales as the square root of photon noise which is of
the order of a few tens of Gauss (Wiegelmann et al. 2006). Therefore we choose a noise model of the
form

δBi = ci
√
Bi. (2.94)

For the transverse components Bx and By, we choose the ci as a random number between −5 and
5. The line-of-sight component Bz can be measured more precisely, such that the error in the current
measurements is only a few G. Therefore we chose cz as a random number between−0.25 and 0.25. The
weighting parameters µi in Eq. (2.87) are chosen equal to µ1 = µ2 = 1, µ3 = 10−4, and µ4 = 1. This
combination of weighting parameters has proven to give good results in Jiang & Feng (2014).

The result is illustrated in Fig. 2.5. The first column shows the LL equilibrium magnetogram, the second
row shows the magnetogram with added noise and the last row shows the preprocessed magnetogram.
From Table 2.1 it is clear that both the force and torque metric are strongly reduced by the preprocessing
method. In addition, the preprocessing method decreases the smoothing parameters Sx and Sy with
three orders of magnitude. This smoothing can be seen in Fig. 2.5 since the fine structures present
in the magnetograms of the second column are smoothed away by the preprocessing procedure. As
already explained at the start of Section 2.5, this smoothness is indeed desirable for a chromospheric
magnetogram. At the same time however, one should be careful that the smoothing does not erase too
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Metrics Magnetogram with
noise

Preprocessed mag-
netogram

εforce 1.0× 10−1 1.7× 10−3

εtorque 2.0× 10−4 6.8× 10−5

Sx 1.1× 102 6.2× 10−1

Sy 1.1× 102 3.7× 10−1

Sz 1.0 1.0

Table 2.1: εforce, εtorque and Sfor the magnetogram with added noise and for the preprocessed magne-
togram

much details of the original magnetogram. Hence, the parameter µ4 has to be treated with care when
preprocessing real data.

2.6 Beyond Force-Free Fields

The problems with forced magnetograms, as discussed in the previous section, illustrate that the force-
free approximation is not valid in the lower corona. This raises the question whether it is possible to go
beyond the force-free approximation, and also consider a pressure gradient and gravity. Remark that if
this is indeed possible, the preprocessing method would become redundant.

If the plasma flows are still ignored, a non force-free field is described by the equation of magnetohydro-
static equilibrium (see also Eq. (2.4))

−∇p+ j×B + ρg = 0.

To solve this equation, the prescription of the pressure and the density on the boundaries is required.
However, in contrast to the magnetic field, the photospheric density and pressure are (presently) hard to
obtain observationally. In Gilchrist & Wheatland (2013), the Grad-Rubin method has been generalized
to solve Eq. (2.4) under the additional assumption of zero gravity. In Wiegelmann & Inhester (2003), a
generalization of the optimization method is described. At present, the application of these methods is
limited due to the lack of good density and pressure measurements. Alternatively, one could try to pre-
scribe a density and pressure profile. For example, exponentially decreasing pressures and density pro-
files may be a fairly good approximation of the corona. A solution of Eq. (2.4), obtained by a generalized
optimization method, can then be used to obtain a force-free chromospheric vector magnetogram.
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Exact LL Magnetogram Magnetogram with Noise Preprocessed Magnetogram

Figure 2.5: The first row shows Bz for the original LL equilibrium, the magnetogram with added noise
and the preprocessed magnetogram, respectively. The second and third row show the same but for Bx
and By, respectively.



40 CHAPTER 2. FORCE-FREE FIELDS



Chapter 3

The Optimization Approach

Methods for the extrapolation of the coronal magnetic field try to obtain solutions of a system of partial
differential equations starting from appropriate boundary conditions. Apart from solving the equations,
the methods also need to be able to handle solar data as boundary conditions. The ability of the numer-
ical scheme to solve the system of differential equations can be tested using semi-analytical solutions.
Judging the performance of an extrapolation method using real solar data is harder, since the extrapolated
field can not be compared with the unknown exact field.

Section 2.4.2 of the previous chapter, introduced three different extrapolation methods. In this chapter we
will take a closer look at one of these methods, namely the optimization method. Section 3.1 provides
details about the numerical implementation of our optimization method. Thereafter, in Sections 3.2
and 3.3, the performance of the code is tested by using the semi-analytical nonlinear force-free fields
introduced in the previous chapter. In Section 3.4, the optimization method is applied to a real solar
magnetogram, and compared to results of other extrapolation methods that used the same magnetograms
as boundary data.

3.1 Numerical Implementation

This section discusses the numerical implementation of our optimization code. The mathematical de-
tails of the optimization method were already given in Section 2.4.2. We recall the basic steps of the
method:

1. Compute the potential field from the normal magnetic component of the magnetogram, and set the
initial magnetic field B(0) equal to this potential field.

2. Replace the transverse field components of the initial potential field B(0) at the photospheric
boundary by the transverse field components of the magnetogram. The magnetic field at the lower
boundary is thus equal to the (preprocessed) vector magnetogram.

3. Minimize the functional L ( see Eq. (2.40)) by evolving the magnetic field as Eq. (2.48):

∂B

∂t
= µFopt.

While doing so, the magnetic field is kept constant on the boundaries of the computational box.

In our code we split the magnetic field B into a potential part B0 and a non-potential part B1, i.e,

B = B0 + B1.

41
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This allows for a more accurate computation of the non-potential part during the optimization procedure.
The potential field B0 is computed by using the normal component of the magnetogram. Since the
magnetogram does not change during the optimization procedure, the potential field B0 remains fixed.
Therefore, we can write Eq. (2.40) as

∂B

∂t
=
∂B1

∂t
= µFopt.

This is implemented in a single-step forward Euler manner:

B
(k+1)
1 = B

(k)
1 + F

(k)
opt∆t, (3.1)

where F
(k)
opt is computed using B

(k)
1 and B0. Remark that the “temporal” accuracy is of no concern here,

since t is just an iterative parameter, and we are only interested in the final field. The step size ∆t is varied
during the iteration procedure to accelerate the convergence process. When L(B(k+1)) ≤ L(B(k)),
the iteration was successful and ∆t is multiplied with a factor of 1.01. This is done to accelerate the
optimization procedure. On the other hand, if L(B(k+1)) > L(B(k)) , the time step ∆t is halved, and
the iteration step is repeated. The iteration is continued until the updated magnetic field configuration
does not change any more.

Eq (2.44) shows that several spatial derivatives have to be computed in order to obtain the functional
Fopt. These spatial derivatives are computed using standard centred fourth order finite differences. The
computational grid is assumed to be rectilinear, with each direction having a constant spacing between
the grid points. This constant spacing can be different for the different directions. Furthermore, there is
also a grid-refinement scheme implemented in the optimization method. This scheme allows applying
the optimization procedure on successively finer meshed grids. Each time, the solution obtained on the
coarser grid is interpolated to a finer grid, and subsequently used as the initial field of the optimization
method on the finer grid. Such a grid-refinement scheme improves the quality of the solution, and
decreases the total computation time of the code considerably.

3.2 The Low and Lou Test Cases

Before applying our optimization code to real solar data, we test it using semi-analytical solutions. Ob-
viously, if the the code is unable to extrapolate a smooth analytical test field, then there is little hope
that the code will perform well on noisy solar data. In this section the performance of our optimization
code will be tested by applying the code to boundary data provided by the Low and Lou (henceforth LL)
equilibrium fields (see Section 2.4.1.1). The benefit of using semi-analytical test cases is that the extrap-
olated magnetic field can be compared qualitatively and quantitatively with the exact LL fields. The LL
equilibria have become standard reference cases for testing nonlinear force-free extrapolation codes (see,
e.g., Amari et al. 1999; Wheatland et al. 2000; Wiegelmann & Neukirch 2003; Yan & Li 2006; Amari
et al. 2006; Inhester & Wiegelmann 2006; Schrijver et al. 2006; Wiegelmann 2007).

Schrijver et al. (2006) considered two specific cases of the LL solutions to test and compare different
extrapolation methods. We will run our code using the same test cases and with the same resolution,
such that we can compare the results of our optimization code with the results in Schrijver et al. (2006).
The test cases are the following:

(I) The first test case uses LL parameters n = 1, a2 = 0.427, l = 0.3, and Φ = π/4. For the meaning
of these parameters we refer to Section 2.4.1.1. The calculations will be performed in a cubical
box, containing 643 pixels and (x, y, z) ∈ [−1, 1]× [−1, 1]× [0, 2]. Two sub-cases are considered:

• Case Ia: the LL equilibrium field is provided on all boundaries of the computational box
(same as Case I of Schrijver et al. (2006)).



3.2. THE LOW AND LOU TEST CASES 43

• Case Ib: the LL equilibrium field is only provided on the lower boundary.

(II) The second test case uses LL parameters n = 1, a2 = 8.036, l = 0.3, and Φ = 4π/5. Like in
Case I, the test region, i.e., the region where we will compute different performance metrics (see
below), is a cubical box, containing 643 pixels and (x, y, z) ∈ [−1, 1] × [−1, 1] × [0, 2]. Again
two sub-cases are considered:

• Case IIa: the LL equilibrium field is provided on all boundaries of the computational box.

• Case IIb: the LL equilibrium field is only provided on the lower boundary (same as Case
II of Schrijver et al. (2006)). Following Schrijver et al. (2006), we apply the optimization
method in a rectangular computational box of resolution 192 × 192 × 64, and (x, y, z) ∈
[−3, 3]× [−3, 3]× [0, 2]. This computational box is centred on the 643 test cube.

The exact LL equilibria for Case I and II are plotted in Fig. 3.1. The first row shows the magnetic fields
in the complete computational box. The second rows shows the fields in the inner volumes outlined by
the cubes in the first row of the figure. Remark that the magnetic field lines of Case I extend to much
larger height than those of Case II.

The fields are extrapolated using weighting functions wf and wd equal to unity. Only in Section 3.2.4,
where the effect of using different weighting functions is tested, we use weighting functions that differ
from unity.

3.2.1 Metrics

To quantify the performance of the optimization code, Schrijver et al. (2006) introduced a set of metrics
that measure the agreement between the extrapolated field and the model field. The first two metrics
measure the directional differences between the extrapolated field b and the LL equilibrium B. They are
given by

Cvec =

∑
i Bi · bi

(
∑

i |Bi|2
∑

i |bi|2)1/2
, CCS =

1

M

∑
i

Bi · bi
|Bi||bi|

, (3.2)

where
∑

i denotes the summation over all the grid points i, and M is the total number of points. Remark
that both metrics equal unity when the vector fields are identical, equal zero when the vector fields are
orthogonal, and are negative when the vector fields are anti-parallel.

The next two metrics contain information about the agreement between the vector fields, both in direction
and magnitude. They are given by

En =

∑
i |bi −Bi|∑

i |Bi|
, Em =

1

M

∑
i

|bi −Bi|
|Bi|

. (3.3)

In contrast with the first two metrics, the metrics En and Em equal zero when the vector fields are
identical. Therefore, to make the comparison between the metrics easier, we consider instead E′n =
1−En and E′m = 1−Em. Apart from the differences in direction and magnitude, we are also interested
in the differences between the energy content of the vector fields. Therefore, we introduce the following
metrics

ε =

∑
i |bi|2∑
i |Bi|2

, εp =

∑
i |bi|2∑
i |Bp,i|2

, (3.4)

where Bp is the potential field computed from the normal magnetic component of the lower boundary.
Remark that, whereas the metrics Cvec, CCS, E′n and E′m measure local differences between the vector
fields, the energy metrics give a measure of global differences.
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Case I Case II

Figure 3.1: LL magnetic fields for Case I and Case II. The grey scale is proportional to the vertical
magnetic field component, with positive (negative) values corresponding to a white (black) colour. The
first column shows the exact LL field for Case I, whereas the the second column shows the magnetic field
of Case II. The second row gives a close-up of the black boxes outlined in the first row.
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To measure the force-freeness of the solution, we introduce the following metric (see, e.g., Wheatland
et al. 2000):

CW sin θ =

∑
i |ji|| sin θi|∑

i |ji|
, (3.5)

where

| sin θi| =
|ji × bi|
|ji||bi|

. (3.6)

This metric gives the current weighted average of the sine of the angle between the magnetic field and
the current density. For a perfect force-free field, the current is parallel to the magnetic field and hence
this metric becomes zero. Remark that from the different metrics introduced in this section, CW sin θ is
the only one that can be computed when the exact magnetic field is not known, as in the case when using
real solar data.

3.2.2 Case I

Figure 3.2 compares the exact LL equilibrium with the computed field for Case Ia and Case Ib. Figure 3.3
zooms in on the inner volume of 323 pixels. For Case Ia, a visual inspection of Figs. 3.2 and 3.3 reveals
that the extrapolated magnetic field is very similar to the LL equilibrium. This is also quantitatively
confirmed by considering the values of the metrics given in Table 3.1. Remark that the metrics for the
inner box are slightly worse than the metrics for the full domain. This can be explained by remarking
that the LL magnetic field of Case Ia deviates stronger from the initial potential field at the center of the
box than in the outer regions.

Test Case Ia was also used in Schrijver et al. (2006) to examine the performance of different extrapolation
methods. Comparing their results with our results reveals that our optimization code has better values
for all metrics than the extrapolation methods discussed in Schrijver et al. (2006). This is true both for
the full domain and in the inner box of 323 pixels.

For Case Ib, the LL equilibrium was only specified on the lower boundary. This means that the magnetic
field on the side and top boundaries remains equal to the potential field during the optimization procedure.
In other words, these boundaries have the wrong boundary conditions and therefore, it is not surprising
that the values of the metrics of Case Ib are lower than those of Case Ia. Remark however that the metrics
of the Case Ib field still performs significantly better than the potential field. Figure 3.2 clearly shows
that the extrapolated field of Case Ib deviates more from the exact LL field than for Case Ia. Moreover,
remark that for Case Ib, the metrics of the inner 323 pixel volumes are all better than the metrics of
the complete volume. A visual inspection of Figs. 3.2 and 3.3 indeed shows that the magnetic field is
much better reproduced in the inner volume. This is because the inner volume is further away from the
side and top boundaries. For Case Ia, there was not such a difference between the complete domain and
the inner box, since the correct boundaries were provided on all sides of the computational box. This
difference between Case Ia and Case Ib illustrates that the boundary conditions can strongly influence
the final extrapolated field.

3.2.3 Case II

The extrapolated fields of Case II are shown in Figs. 3.4 and 3.5. The values for the performance metrics
are given in Table 3.2. Similar conclusions as for Case I can be drawn. A qualitative inspection of
Figs. 3.4 and 3.5 illustrate that the computed field is similar to the LL model field. Looking at the metrics
in Table 3.2, we see that the metrics of Case II are relatively good, yet not as good as the metrics for Case
I. Especially the metrics E′m and CCS are considerably better in Case I than in Case II. These differences
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Figure 3.2: Magnetic fields for Case I. The grey scale is proportional to the vertical magnetic field
component, with positive (negative) values corresponding to a white (black) colour. The left column
shows the computed field. The right column shows the exact LL field (blue) and the computed field (red)
together. The first row shows Case Ia, while the second row shows Case Ib.
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Figure 3.3: Same as in Fig. 3.2, but for the cubes outlined in Fig. 3.2.

Model Cvec CCS E′n E′m ε εp

Complete volume of 643 pixels.

LL equilibrium 1 1 1 1 1 1.29

Case Ia 1 1 0.99 0.98 1 1.3

Case Ib 0.99 0.81 0.74 0.43 0.99 1.28

Potential field 0.85 0.81 0.44 0.35 0.77 1.0

Inner volume of 323 pixels.

LL equilibrium 1 1 1 1 1 1.24

Case Ia 1 1 0.98 0.96 1.01 1.25

Case Ib 1 0.81 0.84 0.48 1.01 1.26

Potential field 0.86 0.87 0.48 0.39 0.80 1.0

Table 3.1: Metrics for Case I.
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Figure 3.4: Analogous to Fig. 3.2, but for Case II.

between Case I and Case II are possibly caused by the differences in the way the strength of the magnetic
field decreases with height. The strength of the magnetic field decreases much faster with height for the
Case II magnetic field than for the Case I magnetic field. For Case II, the weak magnetic field in the
upper regions of the computational box leads to strong deviations between the computed field and the
exact LL field. This also explains why Cvec and E′n are much closer to unity than the corresponding CCS

and E′m. From their definition (see Section 3.2.1), we see that En and Cvec give more weight to regions
with a stronger field. Consequently, these measures are less affected by deviations in regions where the
field is weak.

Remark that for both Case IIa and Case IIb, the metrics of the inner 323 volume are much better than
the metrics of the complete box. For Case IIb, this is partly a consequence of specifying only the LL
equilibrium on the lower boundary. A similar observation was made for Case Ib. However, in contrast
to Case IIa, Case Ia did not show this feature. The much better performance of Case II in the smaller
box can be attributed to strong deviations in the upper regions of the simulated region. These weak field
regions are mainly situated above the inner test volume. Again, this illustrates that the performance of
the optimization code decreases for weaker magnetic fields.
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Figure 3.5: Details of the boxes outlined in Fig. 3.4.

Model Cvec CCS E′n E′m ε εp

Complete volume of 643 pixels.

LL equilibrium 1 1 1 1 1 1.10

Case IIa 1 0.81 0.94 0.53 1.02 1.13

Case IIb 1 0.65 0.90 −0.42 1.02 1.13

Potential field 0.92 0.35 0.47 -0.63 0.91 1

Inner volume of 323 pixels.

LL equilibrium 1 1 1 1 1 1. 10

Case IIa 1 0.96 0.95 0.69 1.02 1.13

Case IIb 1 0.68 0.95 0.21 1.02 1.13

Potential field 0.92 0.66 0.57 0.30 0.91 1

Table 3.2: Metrics for Case II.
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1 0 0.99 0.89 0.76 0.52 0.99 0.099 21.4 1.46 122.8
1 0.1 0.99 0.87 0.77 0.50 1.01 0.08 4.41 1.17 5.58
1 0.5 0.99 0.85 0.75 0.46 0.99 0.11 2.50 1.46 3.96
1 1 0.99 0.82 0.73 0.44 0.99 0.13 2.12 1.73 3.85
1 1.5 0.99 0.80 0.71 0.42 1.00 0.15 1.98 1.95 3.92
1 2 0.99 0.79 0.70 0.41 0.99 0.15 1.90 2.10 4
1 10 0.98 0.73 0.65 0.35 1.00 0.21 1.69 3.16 4.85
0 1 0.98 0.75 0.63 0.37 0.95 0.29 1.66 4.64 6.30

Table 3.3: Metrics using different weights for Case Ib

3.2.4 Effect of the Weighting Functions

In this section, we take a closer look at the effect of the weighting functions wf and wd in Eq. (2.40). To
do this, we run the optimization code several times for test Case Ib, while using each time a different pair
of weighting functions. The results are quantified using the same metrics as before. In addition to these
metrics, we also look at the values of Lf/wf , Ld/wd and Lf/wf + Ld/wd (see Eqs. (2.40) and (2.41)).
We recall that Lf/wf gives a measure of the total force present in the computational volume, whereas
Ld/wd gives a measure of the integrated divergence of the magnetic field.

The results are given in Table 3.3. As expected, we see that if only the Lorentz-force is minimized, i.e.,
when wf = 1 and wd = 0, the lowest values of Lf/wf and CW sin θ are attained. However, this choice
of weighting functions gives the highest value for Ld/wd.1 Increasing wd relatively to wf results in
increasing values of CW sin θ and Lf/wf , and decreasing values of Ld/wd, again as expected. Looking

at the values of
(
Lf
wf

+ Ld
wd

)
, we see that the lowest value is obtained for wf = wd = 1. Therefore,

one could select wf = wd = 1 as the optimal choice of weighting functions. However, the metrics Cvec,
CCS, E′n, E′m and ε tell a different story. Inspecting their values reveals that the extreme casewf = 1 and
wd = 0 gives the best metric values. However, for this case the metric Ld/wd is an order of magnitude
larger than for the other cases, indicating the presence of a relatively large divergence. Maybe more
interestingly, compared to the the wf = wd = 1 case, we see that case wf = 1 and wd = 0.1 has a
Ld/wd value of the same order of magnitude and improves some metrics up to 6%. This indicates that
Lf/wf and Ld/wd may not be the best indicators for goodness of the extrapolation

3.2.5 Effect of Preprocessing

Preprocessing was introduced in Section 2.5.1. We recall that it is a method developed for removing
forces present in photospheric magnetograms. In this section, we will investigate the performance of
the optimization code when using preprocessed data. This is done by adding first artificial noise to the
lower boundary of the LL equilibrium field. The noise model we use is the same as the one introduced
in Section 2.5.2, when we illustrated the preprocessing method. We recall that the noise is chosen

1Remark that we do not divide by zero here since Ld also contains the wd term.
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(a) (b) (c)

Figure 3.6: The left figure gives the exact LL magnetic field. The middle figure shows the reconstructed
field using the noisy data without preprocessing. The right figure shows the reconstructed field using the
preprocessed noisy data. The color-code is proportional to Bz .

Metrics Magnetogram with
noise

Preprocessed mag-
netogram

εforce 1.4× 10−1 7.2× 10−3

εtorque 2.7× 10−4 4.9× 10−5

Table 3.4: εforce and εtorque for the magnetogram with added noise and for the preprocessed magnetogram

proportional to the square root of the magnetic field, to imitate a real magnetogram. Here we extend this
noise model by rotating the transverse magnetic field over an angle of 180◦ in a set of randomly selected
points of the magnetogram. The total number of these points covers 5% of the complete magnetogram.
In this ways, we imitate the 180◦ ambiguity (see Section 1.3).

As LL test case, we consider Case Ib of previous sections. The preprocessing method is performed
using µ1 = µ2 = 1, µ3 = 10−4, and µ4 = 1. For this choice of parameters, we still have that L3

(see Eq (2.85)) is smaller than
∑

p B2
noise, indicating that the magnetic field is altered without exceeding

the noise level. Table 3.4 gives the force and torque measures εforce and εtorque (see Eq. (2.91)) for the
noisy and the preprocessed magnetogram. We see that the integrated force is lowered by two orders of
magnitude and the integrated torque by one order of magnitude. The preprocessed magnetogram fits the
force-free conditions thus substantially better.

Panel (a) of Fig 3.6 shows the original LL solution. Panel (b) shows the nonlinear force-free reconstruc-
tion using the magnetogram with added noise, without any preprocessing. In panel (c), the magnetic
field extrapolated from a preprocessed magnetogram is shown. It can be seen that the preprocessed
magnetogram reproduces a much smoother magnetic field, which is in better agreement with the exact
LL model. This qualitative visual inspection is confirmed quantitatively by inspecting the values of the
metrics given in Table 3.5. All the metrics of the preprocessed magnetogram are at least as good as the
magnetogram that was not preprocessed. In addition, remark that the metrics of the extrapolation using
the preprocessed magnetogram are close to the metrics of the extrapolation using the exact LL magne-
togram. Preprocessing has thus a positive effect on the performance of the optimization code.
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Model Cvec CCS E′n E′m ε εp

Complete volume of 643 pixels.

LL equilibrium 1 1 1 1 1 1.10

Using exact magnetogram 0.99 0.81 0.74 0.43 0.99 1.28

Using noisy magnetogram 0.97 0.81 0.65 0.42 1.02 1.33

Preprocessed noisy magnetogram 0.99 0.81 0.71 0.45 1.013 1.32

Table 3.5: Metrics for Case Ib, using a magnetogram with added noise.

Figure 3.7: Left: Titov-Démoulin Flux Rope model. The magnetic field of the flux-rope is coloured red.
Right: Potential field computed from the Bz component of the Titov-Démoulin model. The grey-scale
gives gives Bz , with black (white) for negative (positive) values of Bz .

3.3 The Titov-Démoulin Flux Rope Test Cases

In this section, we will use the Titov-Démoulin (henceforth TD) flux-rope model (see Section 2.4.1.2)
to test the optimization code. Using a magnetic field that contains a flux-rope as test case is for several
reasons interesting. First of all, it is believed that magnetic flux-ropes are often present in active solar
regions. These flux-ropes are expected to play an important role in the launch of coronal mass ejections
(see Section 1.2.3). Therefore it is desirable that a model of the coronal magnetic field is able to reproduce
a magnetic flux-rope configuration. Such a magnetic topology was not present in the LL equilibria, which
makes the TD model a complementary test case. Moreover, for the LL test case, the corresponding
potential field had a magnetic topology similar to the exact LL field. This is not the case for a flux-rope
configuration, since the corresponding potential field does not contain a flux-rope. This clear difference
between the flux-rope model and the potential field is illustrated in Fig. 3.7.

It is important to realise that the TD flux-rope model is only approximately force-free. Therefore the
optimization method cannot be expected to reproduce the exact magnetic topology of the model. It is
expected that in the solar corona, a magnetic configuration like the TD flux-rope model would rapidly
relax to a force-free equilibrium. Since the optimization method searches for a force-free topology, it can
be expected that the optimization code will rather converge to the relaxed force-free equilibrium instead
of the exact TD flux-rope model.

As test cases, we use the two different flux-rope models that where developed by Titov et al. (2014)
and discussed in Section 2.4.1.2. Following Titov et al. (2014), the model parameters are chosen equal
to d = 0.83Mm L = 1.25Mm, R = 1.83Mm, a = 0.75Mm, and q = 1014C, corresponding to a
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stable flux-rope configuration. For the meaning of these parameters, we refer to Section 2.4.1.2. The two
models that we consider differ from each other in the way the current is distributed in the flux-rope. For
Case I the flux rope has a parabolic current density profile, obtaining its maximal value at the center of
the rope. For test Case II the current is localized in a thin layer at the outer boundary of the rope. For both
test cases a computational box of size [−3, 3] × [−4, 4] × [0, 4] with a resolution of 643 pixels is used.
Moreover, for each test case we apply the optimization code once with the exact TD model imposed on
all six boundaries, denoted by Case Ia and Case IIa, and once with the exact TD model only imposed on
the lower boundary, denoted by Case Ib and Case IIb. For both Case I and Case II, we also apply the
optimization code using the exact TD model field as initial field. This should produce a relaxed TD field,
i.e., a TD model that has evolved towards a more force-free equilibrium.

The fields are extrapolated using weighting function wf and wd equal to unity. Only in Section 3.3.3,
where the effect of using different weighting functions is tested, we use weighting functions that differ
from unity. To quantify the performance of the optimization method we use the same metrics as we used
for the LL test case in Section 3.2.

3.3.1 Test Case I: a Flux Rope with a Parabolic Current Distribution

The results of test Case I are illustrated in Fig 3.8. From this figure it is clear that the optimization
method is able to reproduce a flux-rope configuration, starting from an initial potential field that has no
flux-rope topology. The second row of Fig 3.8 shows a side view and a cross section along the magnetic
flux-rope of the relaxed field. Comparing with the exact TD model, which is plotted in the first row of the
figure, we see that the cross-section of the relaxed field has a more elongated shape. The elongated shape
is actually what one expects in a force-free equilibrium, since the strength of the ambient bipolar field
decreases with height. A consequence of this decreasing strength is that the upper part of the flux-rope
feels less resistance against expansion than the lower part of the flux-rope. Remark that the side views of
the flux-ropes of the exact model and the relaxed fields look similar, yet the relaxed field has a slightly
broader current density distribution at the upper parts of the rope. Similar to the elongated shape, this
can also be attributed to the decrease in strength of the ambient magnetic field. Titov et al. (2014) used
the ideal MHD equations to relax the exact TD model to a force-free state. In doing so, the authors
obtained a similar teardrop shape (see their Fig. 3). Based on a visual comparison, we can thus conclude
that a relaxation using the optimization code and a relaxation using ideal MHD equations lead to similar
results.

The last two rows of Fig 3.8 show that the flux-ropes of Cases Ia and Ib have a tear drop shape similar to
the relaxed TD field. As already explained above, this is what can be expected since the exact TD model
is not completely force-free. Remark that the cross sections of the reproduced fields are somewhat more
compact than the cross sections of the relaxed field. Likewise, the side views reveal that the reconstructed
flux-ropes lay somewhat lower than the relaxed flux-rope.

The first part of Table 3.6 gives the values for the different metrics with respect to the exact TD model.
As expected, the values for Case Ia are slightly better than those of Case Ib. In addition, both cases
perform much better than the potential field. This is not surprising since the potential field misses the
flux-rope configuration. Moreover, remark that both Cases Ia and Ib have a CW sin θ which is lower than
the one of the exact TD model. This indicates that the current is better aligned with the magnetic field in
the computed fields than in the exact TD model.

As already explained above, the extrapolated fields are expected to be more similar to the relaxed state
of the TD model field. Therefore it is interesting to compute the metrics for the extrapolated fields with
respect to the relaxed TD model instead of the exact TD model. These metrics are given in the second
part of Table 3.6. We find that the values of the metrics with respect to the relaxed TD model are indeed
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Figure 3.8: The grey scale is proportional to Bz , with white (black) corresponding to positive (negative)
values ofBz . The orange colour-scale represents the magnitude of the current density. Both colour scales
are in all the figures identical. The left column shows a cross section along the rope axis and the ambient
magnetic field lines. The right column shows a side view of the flux-rope, together with some magnetic
field lines of the rope. The first row is the exact TD model, the second row is the relaxed model, the third
row is Case Ia, and the last row is Case Ib.
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Model Cvec CCS E′n E′m ε εp CW sin θ

Metrics with respect to the exact TD model

Exact TD model 1 1 1 1 1 2.05 0.11

Relaxed Field 0.99 1 0.91 0.94 1.06 2.19 0.05

Case Ia 0.99 1 0.94 0.95 1.04 2.13 0.05

Case Ib 0.99 0.99 0.87 0.77 0.97 2.00 0.16

Potential field 0.67 0.93 0.45 0.53 0.47 1.0

Metrics with respect to the relaxed TD model

Case Ia 0.99 1 0.95 0.97 0.97 2.13

Case Ib 0.99 0.99 0.94 0.97 1.04 2.04

Potential Field 0.67 0.95 0.49 0.69 0.51 1.0

Table 3.6: Metrics for Case I.

all closer to one than the values of the metrics with respect to the exact TD model. As expected, the fields
of Case Ia and Ib are thus more similar to the relaxed field than to the exact TD field.

3.3.2 Test Case II: a Flux Rope with a Hollow Current Distribution

The results of test Case II are illustrated in Fig 3.9. Like as for Case I, the relaxed and extrapolated fields
show a much more elongated shape than the exact TD field. In addition, it can be seen from the side
views that the relaxed and extrapolated flux-ropes are somewhat higher than the flux-rope of the exact
TD model. These observations can again be attributed to the decreasing strength of the surrounding
field. Furthermore, remark that the current density of the relaxed and extrapolated fields is broadened
and concentrated near the bottom of the flux-rope. Despite this broadening, the side views in Fig 3.9
show that the magnetic field lines remain largely axial.

The values of the metrics are given in Table 3.7. The values of the metrics are slightly lower than those
of Case I. This could already be expected since the cross-sections shown in in Fig 3.9 clearly deviate
more from the model field than those in Fig 3.8. A possible explanation is that the exact field of Case II
contains more force than the Case I field. This is reflected in a higher value of CW sin θ for the Case II
model field than for the Case I model field. As a consequence, the relaxed field of Case II will deviate
more from the exact TD field than in Case I. Finally, remark that the metrics with respect to the relaxed
field are very high for Case II. Even for Case IIb, where only the lower boundary is specified, the metrics
deviate at most 0.06 from unity.

3.3.3 Effect of the Weighting Functions

In Section 3.2.4, we investigated the effect of the weighting functions wf and wd, using the LL field as
test case. In this section we will do the same, but now using test Case Ib of the TD model.

The results are given in Table 3.8. Like for the LL equilibrium, we see that the lowest value of
(
Lf
wf

+ Ld
wd

)
is obtained for wf = wd = 1. However, inspecting the metrics Cvec, CCS, E′n, E′m and ε, it is seen that
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Figure 3.9: Analogous to Fig. 3.8 for Case II
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Model Cvec CCS E′n E′m ε εp CW sin θ

Metrics with respect to the exact TD model

Exact TD model 1 1 1 1 1 2.05 0.23

Relaxed Field 0.96 0.99 0.85 0.89 1.09 2.23 0.11

Case IIa 0.96 0.99 0.84 0.89 1.08 2.21 0.11

Case IIb 0.96 0.97 0.80 0.74 0.99 2.02 0.20

Potential field 0.67 0.90 0.40 0.46 0.49 1.0

Metrics with respect to the relaxed TD model

Case IIa 1 1 0.97 0.97 0.97 0.99

Case IIb 0.99 0.98 0.86 0.74 0.91 2.02

Potential Field 0.63 0.88 0.37 0.43 0.45 1

Table 3.7: Metrics for Case II.

the best results are obtained for wf = 1 and wd = 2, although the differences are small. Remark that
this is different from the LL test case (see Table 3.3), where the best metrics were obtained for wf = 1
and wd = 0. The force present in the exact TD field can explain why the TD test case attains its best
metrics when wf < wd. By assigning a non-zero value to wf , the optimization code will also try to min-
imize the force present in the exact model, such that the computed field will deviate more from the exact
TD model. The difference with the LL test case illustrates that the optimal choice of weights depends
on the specific magnetic field under consideration. However, in both cases we find that the results for
wf = wd = 1 perform well.

3.4 Reconstruction of Active Region 10978

In previous sections we tested the performance of the optimization code using semi-analytical solutions
of the force-free equations. In this section, we will go one step further and apply the optimization code
to real solar data. We will use a vector magnetogram of NOAA2 Active Region 10972 on 13 December
2007. This AR was scanned from 12:18 UT untill 13:41 UT by the Solar Optical Telescope Spectro-
Polarimeter (SOT-SP) on board of the Hinode spacecraft. Less than three hours before this scan, at
09:39 UT, this AR produced a C4.5 flare. In addition, the AR produced a C1.0 flare less than one hour
after the scan. In total, the National Geophysical Data centre GOES counted about 30 soft X-ray flares
originating from this region. These flares indicate the presence of non-potential magnetic fields. This
AR was selected because it was also used by DeRosa et al. (2015) to investigate nonlinear force-free
extrapolation methods. This provides the opportunity to compare the results obtained by DeRosa et al.
(2015) with our results.

Observations of the AR are shown in Fig. 3.10. As can be seen in panel (a), the AR is rather isolated
and located close to the disk center, minimizing projection effects. The white boxes in panel (a) and
(b) outline the scan area of Hinode/SOT-SP. It can be seen that most of the magnetic flux is situated
inside this region. Remark however that it would be preferable to have a magnetogram encompassing an
area larger than the AR. This would allow the non-potential magnetic field to be concentrated near the

2National Oceanic and Atmospheric Administration
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1 0 0.88 0.94 0.60 0.58 0.62 0.062 404 4.94 408.94
1 0.1 0.92 0.96 0.64 0.60 0.60 0.22 18 2.7 20.7
1 0.5 0.99 0.99 0.87 0.78 0.97 0.14 0.75 0.89 1.64
1 1 0.99 0.99 0.86 0.77 0.97 0.16 0.47 1.11 1.58
1 1.5 0.99 0.99 0.86 0.77 0.97 0.17 0.35 1.28 1.63
1 2 0.99 0.99 0.88 0.79 1.0 0.18 0.28 1.31 1.59
1 10 0.98 0.98 0.83 0.77 0.93 0.24 0.16 3.57 3.73

Table 3.8: Metrics for the TD model, using different weights.

Figure 3.10: (a) SOHO/MDI full-disk magnetogram of Active Region 10972 on 13 December 2007
at 12:46 UT. (b) Hinode/XRT images of the AR, using a logarithmic scaling. (c) Continuum intensity
measured by Hinode/SOT of the region outlined by the white box in panels (a) and (b). (c) Longitudinal
magnetic field obtained from the Hinode/SOT polarization spectra. Figure from DeRosa et al. (2015).
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center of the box, such that the field near the boundaries is close to potential. The optimization method
would greatly benefit from such measurements since the method keeps the side and top boundaries of the
computational box fixed and equal to the potential field. Remark that keeping a potential field fixed on
the side and top boundaries means that the optimization method does not allow any current to leave the
computational volume, except at the bottom boundary. An additional drawback is that not many loops
can be clearly distinguished on the image taken by the X-Ray Telescope (XRT) on board of Hinode (see
panel (b) of Fig 3.10). This makes it difficult to estimate the goodness of the extrapolated magnetic
field.

The SOT-SP has a field of view of about 164′′ × 164′′, which is sampled over 10242 pixels. Each pixel
correspond thus with a 0.16′′×0.16′′ region. The entire region corresponds to an area of about 168×1012

m2. Performing a nonlinear extrapolation method using a computational box of about ∼ 10243 pixels is
a challenge, even for modern computers. Using a grid of size ∼ 10243, where each grid point contains
a three-dimensional vector of single-precision floating-point numbers, requires about 12GiB of byte-
addressable computer memory. Most extrapolation methods require the simultaneous storage of several
of these four-dimensional arrays, resulting in memory problems on most computers. A second problem
is the time needed for the computations. If N3 denotes the number of grid points, then a run of an
extrapolation method takes a time that scales in the best case as N4 (Wheatland 2007).

Here we circumvent these memory and time problems by using a magnetogram that is calculated from a
polarization spectra rebinned by a factor of six in each dimension. Following DeRosa et al. (2015), we
additionally neglect the northernmost 25% of the SOT field of view. The effect of using rebinned data
on the nonlinear force-free extrapolation methods was investigated by DeRosa et al. (2015). They found
that the large-scale magnetic and current density structures are retained in the lower resolution data, yet
the structures on scales comparable or equal to the resolution limit are lost. In addition, it was found that
when the extrapolation methods are applied on high resolution data, they provide magnetic fields that are
more force-free and divergence-free.

3.4.1 Metrics

The performance of the optimization code, can no longer be quantified using the metrics introduced in
Section 3.2.1. The reason is that these metrics require knowledge about the exact magnetic field. Only
the metrics CW sin θ and εp do not require the true magnetic field and can thus still be used. Here we
introduce some additional metrics that are often used to evaluate the computed magnetic field. The first
one was introduced in Malanushenko et al. (2014) and is given by

ξ =
1

N

∑
i

|FL|i
|Fmp|i + |Fmt|i

, (3.7)

where
∑

i denotes a summation over all pixels, N the total number of points, FL the Lorentz force,
Fmp the magnetic pressure force, i.e., − 1

2µ0
∇⊥B2, and Fmt the magnetic tension force, i.e., 1

µ0
B2 d̂b̂b̂b

db ,

with B = Bb̂̂b̂b and b the distance along the magnetic field. Since FL = Fmt + Fmp, we have that
0 ≤ ξ ≤ 1. Like CW sin θ, the measure ξ is used for estimating how force-free a magnetic field is.
If ξ ≈ 1, the magnetic field contains substantial Lorentz-force, whereas a vanishing ξ corresponds to a
force-free configuration.

Next, we introduce a metric that measures the divergence of the magnetic field. It was first used by
Wheatland et al. (2000) and is defined as

〈|f |〉 =
1

N

∑
i

|(∇ ·B)i|∆x
6|B|i

, (3.8)
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where ∆x is the grid spacing. For a perfectly divergence-free magnetic field, the metric 〈|f |〉 is equal to
zero.

Finally, we introduce two metrics that probe the force-freeness of the magnetic field as a function of
height. The first metric provides for each height z the average angle between the magnetic field and the
current density, .i.e.,

〈θ〉(z) =
1

N

∑
p

arcsin

(
|jp × bp|
|jp||bp|

)
, (3.9)

where
∑

p denotes a summation over all pixels at height z, and N is the total number of pixels at height
z. The second metric provides for each height z a current weighted average angle between the magnetic
field and the current density.i.e.,

〈θJ〉(z) = arcsin

(∑
p |jp|| sin θp|∑

p |jp|

)
, (3.10)

where

| sin θp| =
|jp × bi|
|jp||bp|

. (3.11)

Remark that this metric is similar to the CW sin θ introduced in Eq. (3.5). For a perfect force-free field,
both 〈θ〉(z) and 〈θJ〉(z) become zero at all heights z.

3.4.2 Results

Since the vector magnetogram is not completely force-free, we will run two different tests. For test
Case I, we apply the optimization method to the original vector magnetogram. For test Case II we first
preprocess the magnetogram, using parameters µ1 = µ2 = 1, µ3 = 10−4 and µ4 = 1, and subsequently
apply the optimization method. For details about the preprocessing method we refer to Section 2.5.1. In
addition, the test cases are further extended by performing the optimization code several times, where
each run uses different weights wf and wd.

The computed magnetic fields are shown in the first row of Fig. 3.11. Remark that, in contrast to the
semi-analytical fields discussed in the previous sections, we obviously do not have the exact magnetic
field to check our solution with. The second row of Fig. 3.11 gives a contour map of the force-free
parameter α. It can be seen that α is highly variable, switching sign in several regions. This illustrates
that a linear force-free field would probably be a poor approximation of the exact magnetic field. The
last row of Fig. 3.11 shows the magnitude of the total current density, integrated vertically through the
computational box. These figures show that the AR contains some strong localized current densities, and
hence illustrate the necessity of nonlinear force-free extrapolations. In addition, the figures reveal that
there are strong current densities located close to the side boundaries of the computational volume. This
suggests that there may exist current flows across the boundaries of the computational domain. However,
since the optimization code does not allow any currents to leave, these current flows are not treated well.
therefore, one should question the correctness of the obtained current distribution.

To compare our results with the results of DeRosa et al. (2015), we plot in the left column of Fig. 3.12
the magnetic fields obtained by DeRosa et al. (2015), using four different extrapolation methods. These
methods include an optimization method, a magnetofrictional method and two different implementations
of the Grad-Rubin method. For the Grad-Rubin methods, DeRosa et al. (2015) used the XTRAPOL and
the FEMQ codes (see Section 2.4.2.3). For details about the numerical implementations of the different
methods, we refer to DeRosa et al. (2015) and reference therein. The extrapolated fields in the left
column of Fig. 3.12, reveal that there are some differences between the magnetic fields obtained with the
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different extrapolation methods. The overall topology of the fields is however similar. Moreover, remark
that the magnetic fields obtained with our implementation of the optimization method (see first row of
Fig. 3.11) have a similar morphology.

For additional comparison, we computed for each field of DeRosa et al. (2015) the total current density,
integrated vertically through the models. These integrated current distributions are shown in the right
column of Fig. 3.12. They reveal that there are some major differences between the various extrapolation
methods. In particular, the fields calculated with the Grad-Rubin methods contain significantly less cur-
rent than the fields calculated with the optimization method and the magnetofrictional method. Remark
that, although the magnitudes of the currents strongly differ, the overall shape of the different current
densities shows resemblance.

The integrated current density of our Case I field (see Fig. 3.11) shows most resemblance with the
integrated current density of the magnetofrictional method, shown in the second row two of Fig. 3.12. In
contrast, the integrated current density of our Case II field shows clear resemblance with the integrated
current density shown in the first row of Fig. 3.12. This is not surprising, since this current density was
also obtained from an optimization approach that uses a preprocessed magnetogram. Remark however
that the currents of our Case II field are, at most locations, slightly weaker than the currents obtained from
the optimization method of DeRosa et al. (2015). Recall from Section 3.1 that our optimization code
splits the magnetic field into a potential and non-potential part, to allow for a more accurate computation
of the non-potential part. Since the optimization method used by DeRosa et al. (2015) does not perform
such a splitting, one can speculate that this causes, at least partly, the observed differences between the
results of the two optimization codes.

Table 3.9 provides the values of the different metrics for our Case I and II fields. The table also gives
the total energy E and the energy relative to the potential field energy, εp (see Eq. (3.4)). Remark that
εp < 1 for the magnetic field of Case I with wd = wf = 1. At first, this may seem to violate the potential
minimum-energy theorem introduced in Section 2.2.1. However, this theorem only applies for perfectly
solenoidal magnetic fields. Therefore, if the computed field contains a non-vanishing divergence, the
minimum energy theorem can be violated. The fact that εp is smaller than unity, indicates thus that the
optimization method did not succeed to minimize divergence sufficiently. This is also reflected in the
relatively high value of the metric f . By increasing the weight wd of the divergence term in Eq. (2.40),
the computed field will become more divergence-free, and is therefore more likely to satisfy the potential
minimum-energy theorem. Inspecting the metrics of Case I withwd = 5 andwf = 1, reveals that for this
test case the potential energy is indeed smaller than energy of the computed field, i.e., εp > 1. Remark
that the energy of the computed field is still only 2.4% higher than the potential field energy. However,
the observations of numerous flares originating from the AR suggest significant deviations from the a
potential field configuration. In addition, remark that the extrapolated fields of Case I have a relatively
large metric CW sin θ. By taking the inverse sine of CW sin θ, we obtain an angle of ∼ 30◦, which
shows that the currents and the magnetic fields are not well aligned. It can thus be concluded that the
reconstructed field of Case I is a rather poor approximations of the real solar field.

In contrast, in Case II all extrapolations have an εp significantly larger than one. Comparing the different

fields of Case II we see that the minimum
(
Lf
wf

+ Ld
wd

)
is obtained when wd = wf = 1. This is in

agreement with the results of Sections 3.2.4 and 3.3.3. We remark that our Case II fields have a total
energy content of 1.32×1026J, whereas the field computed by DeRosa et al. (2015) with the optimization
method has a total energy of 1.43× 1026J. In contrast, the fields computed by DeRosa et al. (2015) with
the Grad-Rubin methods have an energy content of ∼ 1.27 × 1026J. Solely based on the energetics,
we can thus say that our Case II fields are more similar to the fields computed by DeRosa et al. (2015)
with the Grad-Rubin method than with optimization method. This may be a consequence of the splitting
of the magnetic field in a potential and non-potential part in our implementation of the optimization
code.
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Figure 3.11: The first row shows the computed magnetic field lines. The blue-red colour scale gives Bz
in tesla. The second row gives α (m−1). The last row gives the vertically integrateded magnitude of the
current density, in A/Mm. The x, y and z axis are in Mm.



3.4. RECONSTRUCTION OF ACTIVE REGION 10978 63

Magnetic Field Integrated Current

O
pt

im
iz

at
io

n
M

et
ho

d
M

ag
ne

to
fr

ic
tio

na
l

M
et

ho
d

G
ra

d-
R

ub
in

M
et

ho
d

(F
E

M
Q

)
G

ra
d-

R
ub

in
M

et
ho

d
(X

T
R

A
PO

L
)

Figure 3.12: The left column shows the magnetic fields obtained in DeRosa et al. (2015), using the
extrapolation methods indicated at the left side of the figures. The blue-red colour scale gives Bz in T.
The right column shows the vertically integrateded magnitude of the current density, in A/Mm. The
colour scale are identical to the ones used in Fig. 3.11.
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Case I
1 1 1.043 0.93 0.49 4.8 0.091 3.93 3.04 6.97
1 5 1.127 1.024 0.5 3.13 0.19 3.61 3.40 7.01
Case II
1 0.1 1.32 1.20 0.24 4.6 0.24 2.5 0.8 3.3
1 0.5 1.33 1.21 0.21 2.8 0.15 1.6 0.94 2.54
1 1 1.32 1.20 0.23 2.3 0.13 1.4 1.0 2.4
1 1.5 1.32 1.19 0.25 2.2 0.14 1.3 1.16 2.46
1 2 1.32 1.19 0.23 2.1 0.14 1.3 1.2 2.5

Table 3.9: Metrics calculated for extrapolations of AR 10978.

Remark that the computed magnetic fields of our Case II all have a magnetic energy content that is about
20% larger than the energy of the potential field. This may be a fairly good estimate of the relative energy
content of the true magnetic field. However, considering all uncertainties concerning the boundary data,
the true magnetic energy may still deviate significantly from the obtained 20%.

Figure 3.13 shows the average angles 〈θ〉 and 〈θJ〉 (see Eqs. (3.9) and (3.10)) for Case II. The figure
reveals that the magnetic field and the current density are considerably better aligned at low altitudes
than at high altitudes. This illustrates that the performance of the optimization code strongly depends on
the strength of the magnetic field and current density. For regions with a weak magnetic field and cur-
rent density, the optimization code produces a magnetic field that is much less aligned with the current
density than for regions with a strong magnetic field and current density. A similar result was obtained
when discussing the Low&Lou models in Section 3.2.3. Moreover, this also explains why 〈θ〉 is every-
where larger than 〈θJ〉, since the latter gives more weight to regions with stronger currents and magnetic
field.

Better results would be obtained if we would have a larger vector magnetogram, such that the entire
magnetic flux of the AR is covered. As already mentioned above, the magnetic field at the boundaries of
a magnetogram covering the whole AR will be more potential, which is beneficial for the performance of
the optimization method. This was illustrated in Section 3.2 by calculating the metrics of the computed
LL equilibria for the whole domain and for an inner box. However, there are no larger vector magne-
tograms available that cover the AR, yet there are line-of-sight magnetograms covering the whole Sun.
One could thus extend the vector magnetogram by using these line-of-sight magnetograms. In these
extended zones one can choose the horizontal magnetic components equal to the horizontal magnetic
components of either the potential field or a linear force-free field. By extending the boundary data in
this way, one moves the boundaries of the computational box further away from the AR of interest, which
increases the performance of the optimization method. The drawback is that one has to assume a hor-
izontal magnetic component, which will reduce the performance of the optimization method. Whether
the net result of such an extension will improve the results has to the best of my knowledge not yet been
investigated. Remark that such an approach is only relevant when one wants to study ARs from before
2010. For ARs that appeared on the Sun later than 2010, one can use vector magnetograms of the com-
plete solar disk measured by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic
Observatory (SDO).
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Figure 3.13: The blue dashed curve shows the average angle betweent the magnetic field and the current
as a function of height. The solid green curve show the average current weighted angle as a function of
height.

3.5 Summary and Conclusions

In this chapter, we tested an implementation of the optimization approach. This was done with the help of
semi-analytical reference fields and real solar measurements. For the test cases using the semi-analytical
fields, the performance of the method was determined qualitatively, by comparing the magnetic field
lines with the exact model, and quantitatively, by using different metrics that measure the agreement
between the extrapolated and model field.

We used two different Low&Lou (LL) fields to test the performance of the optimization code. For both
cases, the extrapolated fields agree relatively well with the exact LL model fields. The results were
even better when considering a smaller box, centred in the full computational domain. For test Case
I, this increase in performance could solely be attributed to the remoteness of the boundaries of the
computational box. For test Case II, we noted that the reason for the increase of performance in the
smaller box was twofold. One reason was, like for the first LL field, the remoteness of the boundary
conditions. The other reason is that the optimization code seems to perform best in regions where the
magnetic field and the currents are strong.

One should be careful when drawing conclusions from the good results obtained when using the LL fields
as test cases. Whereas these results are definitely encouraging, one can argue that the LL fields may not
be the most challenging tests for the optimization method. The LL fields are very smooth, and their
magnetic field topology is similar to the potential field computed from the lower boundary. Therefore it
should not be surprising that the optimization code delivers good results. On the other hand, a code that
does not succeed with the LL model will probably also not work well for real solar data.

The TD test cases illustrated that the optimization method is able to reconstruct a flux-rope topology,
starting from a potential field that does not contain any flux-rope. Although the metrics of the extrap-
olated fields are relatively high, we noted that there are some clear differences in Fig. 3.8 and Fig. 3.9
between the model field and the computed fields. However, these differences are probably mostly caused
by the fact that the TD model fields are not perfectly force-free. In addition, the way the current is dis-
tributed also seems to affect the optimization code, since the first TD test case delivered higher values
for the metrics than the second TD test case. This can be attributed to the fact that the first TD model is
more force-free than the second one.

We remark that for both the LL fields and the TD fields, the optimization code accurately reproduces the
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ratio of the total energy over the potential energy. This is important since it allows to determine the free
energy, which is the energy that drives eruptive events in the solar corona.

The effect of using different weighting functions in Eq. (2.40) was tested for both the LL and the TD test
cases. For both test cases, we obtained a different choice for the optimal weighting functions. The LL
test case benefited most from giving a larger weight to the force component of Eq. (2.40). In contrast,
the TD test case gave the best results when the divergence term of Eq. (2.40) was weighted more. This
illustrates that the optimal choice of the weighting functions is dependent on the specific magnetic field
under consideration. This makes it difficult to obtain an optimal choice of weighting functions for real
solar data, in which case the exact field is unknown. Remark however that for both the LL and TD test
cases, an equal weight for the divergence and the force term in Eq. (2.40) led to results that were close
to the optimal. This suggests that it is safe to use equal weights when applying the optimization code to
real solar data.

The extrapolation of a magnetogram of AR 10978 illustrated that preprocessing the magnetogram may
significantly alter the results. This is due to the fact that the photospheric environment is not a force-free
regime. Using the original magnetogram, we found that the ratio of the energies of the extrapolated field
and the potential field was smaller than one. This is in contradiction with the potential minimum energy
theorem, stating that a potential field is the magnetic field configuration with the lowest energy. This
contradiction can be attributed to the presence of a substantial amount of divergence in the extrapolated
field. When using a larger value for weight wd, we obtained that the divergence is minimized enough to
satisfy the potential minimum energy theorem. Moreover, the extrapolation using a preprocessed field
gave also an energy ratio larger than one, i.e., a ratio that is physically possible. However, since the
preprocessing method makes many approximations, it is questionable whether this energy ratio is close
to the true value.

Like for the analytical test cases, we found that the performance of the optimization method strongly
worsen with increasing altitude. This is probably due to the weak magnetic field and electric currents in
these regions. To check whether the extrapolated field is a good reproduction of the exact solar magnetic
field, it would be interesting to have coronal images that can be used to identify several coronal loops.
The importance of a comparison between observations and the computed field has been stressed in many
studies (see, e.g., Schrijver et al. 2008; De Rosa et al. 2009; DeRosa et al. 2015).



Chapter 4

Evolution of a Solar Active Region

The coronal magnetic field is the driving force behind extreme solar activity, which mostly originates
from solar active regions (ARs). As discussed in Section 1.2.3.2, ARs are characterised by a strong
and highly dynamic magnetic field. In these regions, substantial flux emergence, shearing motions and
reconnection processes often cause the magnetic field to deviate strongly from a potential magnetic field.
Eventually, the magnetic field may become unstable, leading to transient eruptive events like coronal
mass ejections (CMEs) and flares. The energy driving these eruptions originates from the available free
magnetic energy, such that the magnetic field after the eruption is reconfigured to a more potential state.
It is believed that the topology of the magnetic field almost solely determines whether a CME and/or a
flare occurs. Therefore, knowledge about the AR magnetic field and its evolution is of utmost importance
if one wants to understand solar activity.

The magnetic field of ARs can be studied using nonlinear force-free extrapolation methods, like the ones
discussed in Section 2.4.2. Such methods have already been applied to several ARs with varying success
(see, e.g., Thalmann & Wiegelmann 2008; Schrijver et al. 2008; De Rosa et al. 2009; Sun et al. 2012;
DeRosa et al. 2015). These attempts have illustrated that the different methods often produce results
that differ from each other in many aspects. Most of these differences are believed to be a consequence
of the different treatments of the boundary conditions in these methods. These boundary conditions are
derived from photospheric magnetic field measurements, and, as discussed in Section 2.5.1, they are
subject to many uncertainties. These uncertainties not only include measurement noise, but also the non-
force-free nature of the photospheric magnetic field. The inconsistencies between the various models
show the importance of metrics that are able to quantify the similarities and differences between the
extrapolated fields and the real solar magnetic field. In addition, extreme ultraviolet images (EUV) can
be used to compare the extrapolated field and EUV outlined loop trajectories of the AR. If the topology
of the extrapolated magnetic fields corresponds well with those loops, and if the extrapolated field is in
addition consistent with both the force-free and divergence-free conditions, the field can be used to probe
physical quantities of the AR. Examples include connectivities, current densities, magnetic energy, and
helicity.

Recall that the currently existing extrapolation methods assume a quasi-static configuration, i.e., plasma
flows are neglected. As discussed in the beginning of Chapter 2, this approximation is justified by
considering that for a coronal structure of length scale ∼ 100 Mm, the characteristic Alfvén transit time
is only a few minutes. Therefore, the evolution of the magnetic field of ARs be studied by using a series
of successive static extrapolations. By comparing an extrapolation made just before a CME or flare with
an extrapolation directly after, one can hope to obtain knowledge about the actual event. For example,
changes in the magnetic topology may indicate the occurrence of magnetic reconnection processes. Apart
from that, one can try to deduce the energetics of the CME or flare by looking for changes in the free
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Figure 4.1: Time profile of the X-ray flux measured by the GOES satellite from 18 June to 25 June
2015. The black curve corresponds to the 1–8 Å bandpass and the blue curve corresponds to the 0.5–
4.0 Å bandpass. The M-class flares discussed in the text are indicated with red circles.

energy of the magnetic field. In principle, all of this is possible, but whether it is in practice possible with
current existing methods is not clear and is part the topic of this chapter.

In this chapter, we use the optimization method to investigate the evolution of the magnetic field of
NOAA AR 12371 during a period of seven days, from 19 June 2015 to 25 June 2015 . As detailed in
Section 4.1, the AR showed significant activity during this time period. The extrapolations are performed
using a series of vector magnetograms from the Helioseismic and Magnetic Imager (HMI) on board the
Solar Dynamic Observatory (SDO). To study the evolution of the AR, a sequence of magnetograms
spaced six hours apart in time were chosen. Section 4.2 describes the preparation of the series of vector
magnetograms, and discusses the observed properties of the magnetic field. Next, in Section 4.3, we
discuss the extrapolated fields, including an analysis of the force-freeness and divergence-freeness of
the fields (Section 4.3.1), and we use EUV images taken by the Atmospheric Imaging Assembly (AIA)
on board SDO to compare the extrapolated field with observed loops. Sections 4.3.2 and 4.3.3 study the
evolution of the morphology of the magnetic field of the AR, while in Section 4.4, the energy distribution
of the magnetic field is discussed. A summary and conclusions are provided in Section 4.6.

4.1 Observations of AR 12371

AR 12371 first appeared on the East limb of the Sun on 16 June 2015. Eleven days later, on 27 June, the
AR reached the West limb and moved out of our field of view. The left column of Fig. 4.2 illustrates the
location of the AR on the solar limb. Shown are magnetograms of the full solar disk on 19, 22, and 25
June. The AR is indicated with a red box.

Several flares and CMEs originated from the AR 12371 between 18 June and 25 June. The CMEs
described in the following were identified using the CACTUS catalogue (Robbrecht et al. 2009), whereas
the flares were identified using the Hinode Flare Catalog1, which is maintained by ISAS/JAXA and Solar-
Terrestrial Environment Laboratory, Nagoya University. Figure 4.1 shows the X-ray flux measured by
the GOES satellite from 18–25 June, 2015. Indicated on this figure are five M-class flares which are
discussed in the following.

1http://st4a.stelab.nagoya-u.ac.jp/hinode_flare/

http://st4a.stelab.nagoya-u.ac.jp/hinode_flare/
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On 18 June a first CME occured at 17:36 UT, and was accompanied by an M3.0 class flare. This flare was
visible as a two-ribbon flare on 171 Å images taken by AIA. The CME was observed as a halo-CME by
the Large Angle and Spectrometric Coronagraph (LASCO) on board Solar and Heliospheric Observatory
(SOHO).

On 21 June, an M2.0 class flare and an M2.6 class flare were observed at 01:02 UT and 02:06 UT,
respectively. Shortly after these flares, at 02:36 UT, another halo CME erupted from AR 12371. Some
hours later, at 09:45 UT and 18:20UT, two other flares, i.e., an M3.8 and an M1.1 class flare were
observed. These four flares are all clearly visible in SDO AIA 171 Å, 193 Å, and 131 Å (see also panel
(a) of Fig. 4.7). During these events, the AR was located close to the disk center. When the CME reached
Earth on 22 July at 18:00 UT, it caused a huge magnetic storm.

A third halo CME erupted from AR 12371 on 22 June at 18:36UT. This CME was associated with a
bright M6.5 class flare. The brightening of the flare is clearly visible in the EUV imagery of AIA 193 Å,
171 Å, 211 Å, 304 Å and 131 Å (see panel (b) of Fig 4.7). The flares and CME caused a significant solar
energetic particle event at Earth and, when the CME reached Earth on 24 June at 13:00 UT, it caused a
relatively short geomagnetic storm.

A fourth CME originated from AR 12371 on 25 June, at 08:48 UT. At this time the AR was approaching
the West solar limb and as a consequence the CME was observed as a partial halo CME by LASCO. This
CME was associated with a bright M7.9 class flare (see panel (c) of Fig 4.7). The flare is again clearly
visible in the AIA imagery, at the wavelengths 193 Å, 171 Å, 211 Å, 304 Å, and 131 Å, and occurred
less than 30 minutes before the CME that erupted at 08:48 UT.

4.2 Vector Magnetogram Data for AR 12371

The magnetograms that we use as boundary data for our extrapolations are measured by the HMI in-
strument on board SDO. This instrument measures the photospheric magnetic field of the full solar disk,
by using six polarizations states of the Fe I absorption line at 6137 Å . Line-of-sight magnetograms are
available with a cadence of 45s, whereas full-disk vector magnetograms are provided every 720s (twelve
minutes). The vector magnetograms are obtained by inverting the IQUV Stokes parameters, assuming a
Milne-Eddington atmosphere when solving the radiative transport equations. This is done by using the
Very Fast Inversion of the Stokes Vector code as described by Borrero et al. (2011).

An area encompassing NOAA AR 12371 is selected from the full-disk vector magnetograms. The en-
closement is tracked according to the rotation of the Sun so that the AR remains well within the window
during it’s evolution across the disk. The vector magnetic field is then projected to a local Cartesian
system with the origin at the center of the window using a Cylindrical Equal Area projection. A final
step in constructing the magnetogram sequence is to perform a temporal regularization of the magne-
tograms similar to Welsch et al. (2013). This is done in order to remove spurious flips of the horizontal
field that arise as a result of errors inherent in the disambiguation procedure when applied to separate
magnetograms. This step greatly enhances the temporal quality of the data set. Note that this temporal
regularisation is performed using the full-cadence data-set of HMI.

In strong field regions, the 180◦ azimuth ambiguity is resolved with the Minimum Energy code (see Leka
et al. (2009) for details), whereas in in weak field regions, the 180◦ azimuth ambiguity is resolved with
the potential field acute angle method (see Hoeksema et al. (2014) for details).

The HMI instrument has an optical resolution of 0.91′′ and a pixels size of 0.5′′. For our computations,
we bin the data to about 2′′ pixel−1, and adopt a computational domain of 300× 170× 150 Mm3, corre-
sponding to a grid of 191×126×102 pixels. We preprocess the magnetograms to obtain chromospheric
force-free magnetograms (see Section 2.5.1). This is done assuming that the chromosphere is at a height
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Figure 4.2: Line of sight component of the HMI vector magnetograms on 19 June 2015 at 00:00 UT, 22
June 2015 at 00:00 UT, and 25 June 2015 at 06:00 UT respectively. The red box indicated the location
of AR 12371.
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Figure 4.3: (a) Ratio of the net to the unsigned flux. (b) Ratio of the net to the unsigned current.

of 400 km above the photosphere, and by using the preprocessing parameters µ1 = µ2 = µ4 = 1 and
µ3 = 10−4.

In total, 26 magnetograms of NOAA AR 12371 are considered, with a cadence of 6 hours. The first
magnetogram corresponds to 19 June 2015 at 00:00 UT, and the last magnetogram corresponds to 25 June
2015 at 06:00 UT. During this time period, AR 12371 rotates from the East limb to the West limb of the
Sun, while remaining at locations sufficiently far from the limb (see Fig 4.2). This is necessary because
close to the limb the quality of the magnetogram data quickly degrades. This is because the AR is viewed
at a considerable angle, leading to a substantial loss in resolution. The right column of Fig. 4.2 gives
three snapshots of the vertical magnetic field in the domain used to perform our extrapolations. When
studying the evolution of the AR, we will often consider the right and the left side of the magnetograms
separately, for convenience of exposition. This is indicated by the blue dashed line in Fig 4.2. Remark
that, since the rotation of the Sun is removed from the magnetograms, the separation between left and
right is well defined as a function of time. The reason to look at both sides separately is because most of
the EUV activity occurs on the left part of the AR. In addition, it allows us to investigate the evolution
and interaction between both parts more closely. Figure 4.2 reveals that the AR consists of three major
magnetic polarity regions. At the left side, there is a major region with a positive magnetic polarity. This
region is indicated with the letter P. In the middle and at the right side of the AR, there are two major
regions with negative polarity, denoted by N1 and N2, respectively.

The left column of Fig. 4.2 shows that AR 12371 is largely isolated from other ARs, such that it is
expected to be flux-balanced to large extend, i.e., not many magnetic field lines connect the AR with
external regions. The flux-balance is illustrated in panel (a) of Fig. 4.3, which shows the ratio of the net
flux Φ to the unsigned flux Φ0, i.e.,

Φ

Φ0
=

∑
pBz∑
p |Bz|

,

where
∑

p denotes a summation over all pixels of the magnetogram used for the extrapolation (see
Fig. 4.2). The figure reveals that the net flux is at most ∼ 6% of total the unsigned flux. The small value
of Φ/Φ0, indicates that most of the magnetic field lines originating from the magnetogram return to the
magnetogram. Panel (b) of Fig. 4.3 shows the ratio of the net vertical current Jz to the unsigned vertical
current Jz0, i.e.,

Jz
Jz0

=

∑
p jz∑
p |jz|

,
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Figure 4.4: For all plots, the red curve corresponds to the left part, the black curve to the right part,
and the blue curve to the entire magnetogram. (a) The average unsigned vertical magnetic component.
(b) The average magnitude of the horizontal flux. (c) The average unsigned vertical current density. (d)
The average force-free parameter. (e) The force metric εforce. (d) The torque metric εtorque.

where
∑

p again denotes a summation over all pixels of the magnetogram. The small value of Jz/Jz0,
indicates that most of the current leaving the magnetogram, returns somewhere else to the magnetogram.
This means that most current is confined to the magnetogram and the regions above it, and only a little
current is flowing from or towards regions located outside the magnetogram. This is important since
the optimization method, as implemented in this work, keeps a potential field fixed at the side and top
boundaries of the computational box. Since a potential field has zero current, the optimization method
does not allow any current to leave the computational box.

Panel (a) of Fig. 4.4 shows the evolution of the average unsigned vertical magnetic flux 〈|Bz|〉, for the left
part, the right part, and the entire magnetogram. Likewise, panel (b) gives the evolution of the average
horizontal flux 〈Bh〉, where

Bh =
√
B2
x +B2

y .

Remark that most of the flux is concentrated in the right part of the magnetogram. In addition, we see that
from 19 to 23 June, both the vertical and horizontal magnetic flux show a decreasing trend. Moreover,
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panels (a) and (b) of Fig. 4.4 reveal that the strongest decrease of flux is situated in the left part of the
magnetogram, i.e., the part that contains polarity regions P and N1. The magnetogram evolution, shows
that polarity regions P and N1 interact strongly with each other. It is therefore likely that the interaction
between these opposite polarities induces magnetic cancellation (Martin et al. 1985). The mechanism
that drives this cancellation will be discussed in Section 4.3.3, when discussing the magnetic topology
of the extrapolated fields.

Panel (c) shows the evolution of the average unsigned vertical current density. Remark that this figure is
very similar to panel (a), which follows from the fact that for a force-free field µ0jz = αBz . Note that the
vertical current density jz is computed from the derivatives of the horizontal magnetic field components.
Recall from Section 1.3 that these horizontal magnetic components are subjected to significant noise,
such that the obtained values for jz should be treated with caution. A similar remark can be made about
the force-free parameter α, since it is computed as the ratio of µ0jz toBz . The average value of the force-
free parameter α of the magnetogram is shown in panel (d) of Fig. 4.4. The figure shows that there are
some clear spikes in the evolution of the parameter. However, most of the time 〈α〉 has a value between
−1 and 1 Mm−1. This is reflected in the median value of 〈|α|〉, which equals 0.57 Mm−1.

The last row of Fig 4.4 shows the force and torque metrics εforce and εtorque. These metrics were in-
troduced in Eq. (2.91), and provide a measurement of the force and torque present in the magnetogram,
respectively. Their values are low since the magnetogram was preprocessed. Moreover, panel (f) shows
that both sides of the magnetogram have similar integrated torque values. However, from panel (e)
we can see that the right part of the magnetogram contains twice as much force as the left part of the
magnetogram. We can thus expect that the optimization code will perform better on the left part of the
magnetogram than on the right part. This needs to be kept in mind when analysing the extrapolated
fields.

4.3 Extrapolated Magnetic Field

4.3.1 Extrapolation Metrics

This section presents an analysis of the performance of the optimization code in producing force-free
and divergence-free magnetic fields from the given set of magnetograms. To quantify how force-free the
extrapolated fields are, we use the CW sin θ metric, which was introduced in Eq. (3.5). Recall that this
metric gives the current weighted angle between the magnetic field B and the current density j, such
that it vanishes for a perfectly force-free field. Panel (a) of Fig 4.5 shows this metric for the different set
of computed extrapolations. The average value of CW sin θ during the whole period and for the whole
magnetogram is 0.36, which corresponds to an angle of ∼ 20◦. Panel (a) also reveals that the left part is
considerably more force-free than the right part. Over the whole period, the left part has an an average
CW sin θ value of 0.3, whereas the right part has an average CW sin θ of 0.46. These values correspond
respectively to angles of ∼ 17◦ and ∼ 47◦. The higher force-freeness of the left part can be attributed to
the smaller amount of force present in the left part of the magnetogram (see above). Recall that for the
semi-analytical test cases discussed in Chapter 3, we obtained values of CW sin θ between 0.10 and 0.20
(see Tables 3.3,3.6 and 3.7). These values corresponded to angles between 5.7◦ and 11◦. This shows that
the performance of the optimization method in the left part of computational volume is slightly worse
than the results obtained for the semi-analytical test cases. Since the optimization code was able to
reproduce the semi-analytical fields well, one can thus expect that the magnetic field obtained in the left
part will be a fairly good approximation of the real magnetic field. In contrast, the ∼ 47◦ angle obtained
in the right part of computational volume indicates that the optimization method did not succeed well in
finding a force-free configuration. Therefore, it is expected that the magnetic field in the right part of the
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Figure 4.5: (a) The force-free metric CW sin θ. (b) The divergence metric f . In both panels (a) and
(b), the black curve refers to the right part of the computational box, the red curve to the left part of the
computational box, and the blue curve to the entire computational box.

volume will be a rather poor approximation of the real solar field.

Since physical magnetic fields are solenoidal, we also quantify how divergence-free the extrapolated
fields are. This is done using the f -metric introduced in Eq. (3.8). Similar conclusions as for the
CW sin θ metric can be made. For the dates before 24 June, the extrapolation method produces a mag-
netic field that is more divergence-free in the left part of the magnetogram than in the right part. The
difference is especially notable for the eight extrapolations on 21 and 22 June. Thereafter, the left part
has a slightly higher value of f , although the difference between the two sides remains small.

When using estimates of physical quantities that rely on the extrapolated fields, it should be kept in mind
that the the right part of the magnetogram is less force-free and divergence-free than in the left part. In
addition, remark that the worse performance in the right part is surprising, since EUV images reveal that
all flares and CMEs originate from the left part of the magnetogram, and therefore the left part is expected
to deviate more from a potential field configuration. However, the right part of the magnetogram contains
weaker magnetic fields and currents than the left part. In Chapter 3 we saw that the optimization code
performs better in regions with strong currents and magnetic fields. This may, at least partly, explain the
better results obtained in the left part than in the right part of the magnetogram.

4.3.2 Global Evolution of the Magnetic Field

Figure 4.6 shows four snapshots of the evolution of the AR. The snapshots were taken at 06:00 UT on
June 19, 21, 12 and 25, respectively. The left column shows AIA 171 Å observations of the AR, whereas
the right column shows the corresponding reconstructions by means of our optimization code. The
colours of the field lines are proportional to the current density along the magnetic field lines. Green and
cyan colours correspond to low currents, whereas colours like blue and purple represent stronger currents.
The regions that contain strong localized currents indicate a non-potential magnetic field.

The EUV radiation emitted by the hot coronal plasma reveals signatures of the magnetic topology of the
AR. This can be compared with the magnetic field lines of the extrapolations. Remark however that not
all the magnetic field lines are outlined on the EUV images. The field lines will only be visible if the
plasma along these lines has a sufficiently high density and temperature. In addition, there is a strong
line of sight effect since coronal EUV lines are optically thin lines. Moreover, since we do not have
images of the AR taken from another angle, we are limited to the 2D top-views shown in Figure 4.6 to
evaluate the magnetic structure. The AR also does not stay at the centre of the solar limb, such that the
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Figure 4.6: AIA 171 Å images of the AR and the corresponding reconstructed magnetic field. The
different rows correspond respectively to 19 June 06:00 UT, 21 June 06:00 UT, 23 June 06:00 UT, and
25 June 06:00 UT. The grey-scale is proportional to the vertical magnetic field, whereas the “rainbow”
colour scale is proportional to the current density along the magnetic field lines.
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(a) 21 June, 02:50 UT (b) 22 June, 18:35UT (c) 25 June, 08:35 UT

Figure 4.7: AIA 171Å images of the AR during the three M-class flares.

EUV images are subject to varying projection effects. Consequently, it is often difficult to compare the
EUV images with the extrapolations.

Figure 4.6 reveals that the regions that show large loops in the EUV images often also have similar
large loops in the extrapolations. Moreover, the upward field lines in the upper left corner of the EUV
images are also present in the magnetic field extrapolations. At first sight, a major difference between
the EUV images and the extrapolated fields seems to be the blue flux-rope structure that is present in the
extrapolations. However, a closer inspection of the EUV images reveals the presence of a dark filament-
like structure on the location where the extrapolations show a flux-rope. In Fig. 4.6, this filament is clearly
visible on the image of 23 June. In addition, when looking at EUV images taken during the transient
eruptive events discussed in Section 4.1, the flux-rope structure becomes visible as a very bright structure.
This is illustrated in Fig. 4.7, which shows the AR during the flares occurring at the major events on 21
June at 02:50 UT, on 22 June at 18:35 UT, and on 25 June at 08:35 UT. We see that there is a clear
similarity between the brightened structures on the three images of Fig 4.7 and the flux-rope structure
in the last three extrapolations of Fig. 4.6. A possible explanation for the brightening of the filament
could be that the eruptions injects hot plasma into the flux-rope. In the next section, we will discuss the
evolution and topology of the flux-rope in more detail.

4.3.3 Evolution of the Flux-Rope

In this section, we study the evolution of the flux-rope structure in more detail. The different panels of
Fig 4.8 show the flux-rope at 00:00 UT on 19, 20, 21, 22, 23, 24, and 25 June. Panel (a) shows that on
19 June the magnetic field has a topology of a sheared arcade rather than a flux-rope topology. During
the next days, the shear increases and the arcade structure gradually evolves into the flux-rope structure
showed in panel (f) and (g) of Fig. 4.8. Although the flux-rope can thus be better described as a tangled
arcade during the first days of the extrapolations, we will for simplicity often refer to it as a flux-rope in
the following.

Figure 4.9 shows the magnitude of the current density j in a vertical plane, cutting the flux-rope halfway.
In addition, some projected magnetic field lines are drawn. The left panel corresponds to 19 June and
shows that the sheared arcade present at that time contains some strong current densities, up to a height of
∼ 25 Mm. The right panel corresponds to 25 June. This panel shows clear signatures of helical magnetic
field lines, rotating around an axis at about 14 Mm altitude. In addition, we see that the flux-rope contains
a relatively strong current density compared to the surroundings.

The observed flux-rope formation process is in agreement with the theoretical model developed by van
Ballegooijen & Martens (1989). This model is illustrated in Fig. 4.10 and goes as follows. At the start, a
more or less potential field arcade connects two regions of opposite magnetic polarity. Next, differences
in the velocities of the plasma flows (i.e., shear flows) of both polarity regions transform the potential
field into a sheared arcade. This is illustrated in panels (b) and (c) of Fig. 4.10. The shear flows cause



4.3. EXTRAPOLATED MAGNETIC FIELD 77

(a) 19 June, 00:00 UT (b) 20 June, 00:00 UT (c) 21 June, 00:00 UT

(d) 22 June, 00:00 UT (e) 23 June, 00:00 UT (f) 24 June, 00:00 UT

(g) 25 June, 00:00 UT

Figure 4.8: Snapshots of the arcade/flux-rope structure. The grey-scale is proportional to the verti-
cal magnetic field, whereas the “rainbow” colour scale is proportional to the current density along the
magnetic field lines.
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19 June 00:00 UT 25 June 06:00 UT

Figure 4.9: Cross-sections of the arcade/flux-rope structure for 19 (left) and 25 (right) June. The color
scale gives the magnitude of the current density j. The black lines are magnetic field lines projected on
the cross-section.

Figure 4.10: Panels (a) to (c) illustrate how a coronal arcade connecting opposite magnetic polarities
transforms in a sheared arcade. Panel (c) shows how reconnection results in a long loop, labelled AD,
and a short potential loop, labelled CB, which submerges. Panels (e) and (f) show how overlying loops
repeat the process, eventually producing the helical field line topology of a flux-rope. Image from van
Ballegooijen & Martens (1989).
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the magnetic field lines to be more aligned with the neutral line separating the two opposite polarities.
In addition, the shearing motions bring the footpoints of the magnetic field lines on opposite polarities
closer together. This is illustrated in panel (c) of Fig. 4.10, where footpoints B and C are close to each
other. Eventually, the converging opposite polarity fragments will reconnect, producing a long field line
nearly parallel to the neutral line and a smaller loop that is more or less potential, i.e., it is orthogonal to
the neutral line. This is illustrated in panel (d) of Fig. 4.10, where the asterisk denotes the reconnection
site. The magnetic tension force at the zenith of a magnetic loop equals B2/(4πR), with R the local
curvature radius. This inverse proportionality to the curvature radius causes a strong tension force in the
small loop, and as a consequence, it will be pulled down beneath the photosphere. Remark that these
reconnection processes and the subsequently submergence of the smaller magnetic loops will decrease
the magnetic flux at the photosphere. Therefore, these reconnection processes are called flux cancellation
episodes. In a next step, other field lines, whose footpoints were initially further away from the neutral
line, evolve trough the same process. The result is the helical field structure of a flux-rope, as illustrated
in panel (f) of Fig. 4.10.

The magnetic field evolution shown in Fig. 4.8 indeed shows how a sheared arcade evolves into a flux-
rope structure. In addition, the extrapolations show the presence of enhanced current densities in the flux-
rope region, which is typical for reconnection sites (Priest & Forbes 2006). The helical field structure
predicted by the model (see panel (f) of Fig. 4.10) is also clearly present in the extrapolated fields,
as shown in the right panel of Fig. 4.9. Moreover, remark that panels (a) and (b) of Fig. 4.4 show a
decreasing magnetic flux, especially in the left side of the magnetogram. Since the flux-rope is located
above the left side of magnetogram, this decrease in flux can thus be explained as a consequence of the
submergence of small reconnected loops.

On 25 June, at 06:00 UT, the total unsigned flux of the left side of the magnetogram is≈ 1.7× 1021 Mx.
This is 0.5×1021 Mx less than the peak value of≈ 2.2×1021 Mx reached on 19 June at 00:00 UT. This
corresponds to a decrease of ≈ 23% of the absolute flux of the AR on 19 June. If all flux cancellation
occurs through the process discussed above, then about 30% of the total flux of the magnetogram is
contained in the flux-rope on 25 June. In Bobra et al. (2008) and Su et al. (2009), three ARs containing
a flux-rope are studied using a flux-rope insertion method. The authors find that the flux-ropes become
unstable if more than ∼ 10% of the unsigned magnetic flux is contained in the flux-rope. The 23% that
we obtain is thus well above this limiting value of 10%. However, the value of 23% is derived under the
assumption that all the reconnected field lines become part of the flux tube. As argued in Green et al.
(2011), this does not need to be the case. In addition, it is expected that the CME eruptions on 21 and 22
June will carry away part of the magnetic flux, and there may be magnetic flux exiting and/or entering
the magnetogram window from each side.

From the AIA images, it can be seen that all flares and the CMEs on 18, 21, 22 and 25 June originate from
the vicinity of the arcade/flux-rope structure. This supports the idea that a flux-rope is, at least for some
CMEs, already present before the actual onset of the eruption. This is in agreement with the observational
studies of e.g., Green & Kliem (2014) and Aulanier et al. (2010). In addition, the extrapolations suggest
that the flux-rope, or at least part of it, can survive multiple CMEs. In other words, a CME can be caused
by a partial eruption of a flux-rope. This supports the observations made in Green & Kliem (2014), where
a sigmoid was observed to outlive a CME eruption.

4.3.4 Energies

The flux cancellation model of van Ballegooijen & Martens (1989) assumes that small loops formed
through the reconnection process (see loops CB and GF in Fig. 4.10) are submerged under the photo-
sphere. As argued in the previous section, these small loops are expected to be close to a potential state,
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Figure 4.11: (a) The lines with full dots give the total energy. The lines with star symbols give the
energy of the potential field. (b) The free magnetic energy. (c) Ratio of the total energy over the energy
of the potential field. In each plot, the red dot-dash line represents the left part, the black dashed line the
right part, and the blue full line the entire computational volume.

and hence their submergence leaves a more non-potential field behind in the corona. As a consequence,
the magnetic free energy (see Eq. (2.12)) is expected to increase.

Figure 4.11 gives the evolution of the energetics of the extrapolated fields. Panel (a) shows the total
energy of the magnetic field of the AR, and reveals that the energy is constantly decreasing from 19 to
25 June. In contrast, panel (b) reveals that the free magnetic energy increases over time. Panel (c) shows
that the ratio between the total energy and the energy contained in the potential part of the magnetic
field steadily increases. The decrease in total energy is thus largely due to a decrease in the energy of
the potential part of the magnetic field, which is consistent with the flux cancellation process discussed
above.

We remark that Fig. 4.11 reveals that on the right part of the computational box, the potential field seems
to have a higher energy than the extrapolated field. This is in contradiction with the potential minimum
energy theorem derived in Section 2.2.1. A similar problem was observed with the extrapolations in
Section 3.4, where the contradiction with the potential minimum energy theorem could be explained by
the fact that the extrapolated field is not perfectly divergence-free, like a real physical magnetic field is.
This indicates thus that the reconstruction of the magnetic field in the right part of the computational
box, and any numbers derived from it, should be treated with caution. The worse performance of the
optimization code in the right part of the magnetogram compared to the left part, was already noted
in Section 4.3.1, and can be attributed to the larger force present in the right part of the magnetogram
(see Section 4.2). Note however that the energy and the changes in the energy are dominated by the
contributions of the left part of the computational box, i.e., the part that contains the flux-rope. The
magnetic field in the right part seems to play only a minor role in producing the eruptive phenomena.
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Figure 4.12: (a) Integrated magnetic energy distribution as a function of heigth. The different colours
represent the different days, as indicated by the subscribts in the legend of the figure. (b) Same as (a)
but zoomed in on the heights where the curves shift from order. (c) The difference in energy density for
successive days. (d) The integrated magnetic free energy density as a function of height.

4.4 Energy Distribution of the Magnetic Fields

In this section we investigate how the energy density behaves as a function of height. This is done by
integrating for each height z the energy density over a horizontal plane, i.e.,

e(z) =

∫
S

B2

2µ0
dxdy, (4.1)

with S a horizontal plane at height z. The variable e gives thus the integrated magnetic energy distribution
as a function of height above the photosphere.

4.4.1 Long Term Evolution of the Energy Distribution

Panel (a) of Fig 4.12 shows e(z) for the extrapolated fields of 19, 20, 21, 22, 23, 24 and 25 June at
06:00 UT. As expected, the major part of the energy is located close to the photosphere. Moreover, as the
AR evolves, we see that the energy stored in the layers just above the photosphere decreases with time.
In contrast, panel (b) shows that the order of the curves starts reversing at heights higher than ∼ 12Mm.
This means thus that the energy content at large altitudes increases over time. This behaviour is more
clearly illustrated in panel (c), where we show ∆ei = ei+1 − ei, where the index i refers to the ith day
of June.

The decrease of energy at low altitudes can be attributed to the flux cancellation event occurring at the
flux-rope structure (see Section 4.3.3). Similarly, the increasing energy at higher altitudes may be due
to the formation of a flux-rope, which causes magnetic flux concentrations and hence a magnetic energy
concentration at larger heights. In addition, any expanding motion of the flux-rope will shift some of
the energy higher up into the corona. Panel (d) of Fig 4.12 gives the free energy density as function of
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height, i.e.,
efree(z) = e(z)− epot(z),

where epot is the integrated energy density of the potential field. The increase of free magnetic energy
over time, as already illustrated in Fig 4.11, is here also clearly visible. In addition, panel (d) also
reveals that the entire free energy curves efree(z) are slightly shifted towards larger heights as the AR
evolves. Especially on 25 June, a lot of free energy is shifted toward larger heights compared to the
previous days. Recall that we used the extrapolated fields at 06:00 UT of each day to compute these
energy distributions. For 25 June, this is only two hours and thirty minutes before the onset of an M7.9
class flare and a CME. The strong increase in free energy at high altitudes may thus be a signature
of some pre-eruption mechanism, like an expanding motion and/or the beginning of an instability that
eventually leads to the the launch of the CME. We will discuss this in more detail in Section 4.5, where
we investigate the stability of the flux-rope.

4.4.2 Evolution of the Energy Distribution During Eruptive Events on 21 and 22 June

Besides the events on 25 June, we recall from Section 4.1 that there was also substantial solar activity on
June 21 and 22. On 21 June, two M-class flares were observed, together with a CME that was launched
at 02:36 UT. On 22 June, there was a bright M6.5 class flare accompanied by another CME eruption at
18:36 UT. For these dates, we have extrapolations both before and after the eruptive events. Panels (a)
and (b) of Fig. 4.13 show the integrated free energy distribution of the extrapolations before and after
these events. Remark that for both events, the free energy at low altitudes seems to increase, whereas the
free energy at higher altitudes seems to decrease. Panels (c) and (d) of Fig. 4.13 show the difference in
the total energy distribution of the extrapolations before and after the events. Both figures show that there
is an increase of energy at lower altitudes and a decrease of energy at higher altitudes. This behaviour
is more pronounced for the event on 23 June. Remark that this behaviour is different from the long
term evolution of the energy distribution of the AR, which instead favours a decrease of energy at low
altitudes and an increase of energy at high altitudes (see discussion above, and panel (c) of Fig. 4.11).
This suggests that the behaviour of the energy distribution in panels (c) and (d) of Fig. 4.13 is possibly a
consequence of the flares and CMEs that occurred on 21 and 22 June.

It is generally accepted that magnetic energy is the main energy source of flares and CMEs. Removal
of magnetic energy by these events leads to a decrease in the magnetic pressure gradient, and as a result
the magnetic field contracts or “implodes” until it reaches a new balance (Hudson 2000; Hudson et al.
2008). Such an implosion transports magnetic energy towards lower altitudes, resulting in an energy
distribution more concentrated just above the photosphere. This scenario is consistent with the data
presented in Fig. 4.13 that shows a decrease of magnetic energy at high altitudes and an increase at
lower altitudes. Observational evidence for such an implosion of the coronal magnetic field after flares
or CMEs can be found in Khan et al. (2006); Liu et al. (2009); Liu & Wang (2010); Liu et al. (2012);
Simões et al. (2013); Shen et al. (2014). Our results indicate that nonlinear force-free extrapolations are
able to reproduce this phenomenon in terms of variations in the energy distribution.

It would be interesting to estimate how much magnetic energy is put into the flares and CMEs. This can
be done by comparing the free magnetic energy before the eruptions with the free magnetic energy after
the eruption. The difference between those quantities reveals then how much magnetic energy was used
to drive the CME and flares. However, when calculating the total free energy available in the extrapolated
magnetic field of 21 June at 06:00 UT, we find that it is ∼ 6× 1024 J higher than the free energy content
on 21 June at 00:00 UT. Instead of a decrease, we find thus an increase in free magnetic energy. So it
seems that neither the M2.0 and M2.6 class flares nor the CME have any significant impact on the total
free energy content of the magnetic field. This may be a result of the six hour time span between our
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Figure 4.13: Panel (a) and (b) give the integrated free energy distribution for indicated times. Panel (c)
gives the difference of the integrated energy densities of 21/06 06:00 UT and 21/06 00:00 UT. Panel (d)
gives the difference of the integrated energy densities of 22/06 18:00 UT and 23/06 00:00 UT.

successive extrapolations, i.e., the magnetic free energy decrease due to the CME and flares may simply
not have been temporarily resolved.

For the events on 22 June, we find that the total free energy available on 22 June at 18:00 UT is decreased
with an amount of ∼ 7 × 1024 J compared to 23 June at 00:00 UT. This is sufficient energy to power
the M6.5 flare occurring during that period. A typical energy of a moderately large CME is of the order
of ∼ 1025 J (Forbes 2000). A free energy decrease of ∼ 7 × 1024 J is thus rather at the low side
to power a CME, yet not impossible considering that 1025 J is only an order of magnitude estimate.
Similar to the 21 June event we remark that there may be processes occurring, like flux cancellation, that
constantly increase the available free magnetic energy during the six hour period between successive
extrapolations. Therefore one can conclude that the cadence of six hours is probably a too coarse time
resolution to demonstrate unambiguously dips in the free energy. We leave it for future work to compare
extrapolations of magnetograms measured some minutes before and after the events.

4.5 Torus Instability

In Section 4.3.3 we discussed how a sheared arcade evolved into a flux-rope from 19 to 25 June (see
Fig. 4.8). On 25 June at 08:48 UT, a bright flare and a CME are observed erupting from the vicinity
of this flux-rope. In this section we investigate whether it is possible that this CME is triggered by a
torus instability of the magnetic flux-rope. The torus instability was introduced in Section 2.4.1.2, when
discussing the semi-analytical flux-rope model developed by Titov & Démoulin (1999). We recall that
the instability occurs when there is a loss in balance between the downward and upward forces acting
on the magnetic flux-rope. The upward force on the flux-rope is called the hoop force, and is due to
the Lorentz force caused by the current flowing in the flux-rope. The downward stabilizing force is the
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Figure 4.14: The color-code in left panel gives the decay index n in a vertical plane along the flux-rope
axis. The right pinel shows the decay index in a vertical plane, orthogonal to the flux-rope axis. The
black lines are magnetic field lines. Both figures were calculated from the extrapolation at 06:00 UT on
25 June.

Lorentz force caused by the overlaying magnetic field.

A criteria to determine whether a flux-rope is torus unstable can be found by assuming that the magnitude
of the external field decreases with height as a power law, i.e., B ∝ R−n, where

n = − z
B

∂B

∂z

is called the decay index. At the limit of very thin current channels, the flux-rope will be torus unstable
if the decay index exceeds the critical value of 1.5 (see Kliem & Török 2006). This criterion was gen-
eralized by Démoulin & Aulanier (2010) for current channels with a finite thickness. They found that
a flux-rope is torus unstable if the decay index is larger than a value in the range [1.1, 1.3]. The exact
critical value depends on the shape of the flux-rope.

The left panel of Fig. 4.14 shows the decay index n in a vertical plane along the flux-rope axis, calculated
from the extrapolation at 06:00 UT on 25 June, i.e., about three hours before the CME. The right panel
of Fig. 4.14 shows also the decay index, yet for a vertical plane orthogonal to the flux-rope axis, and
located halfway the flux-rope. The figures illustrate that most of the flux-rope satisfy n ≤ 1. Therefore,
the flux-rope can be considered to be stable against the torus instability. However, the left panel of
Fig. 4.14 shows that some of the magnetic field lines at the top of the flux-rope are close to n = 1.5.
Therefore, if the flux-rope would slightly expand, the upper parts of the flux-rope will reach a region that
is unstable against the torus instability. Remark that we found in Section 4.4.1 that the peak in the energy
distribution for 25 June is shifted towards higher altitudes compared to the previous days. This may be a
signature of an expanding motion of the flux-rope. If such an expanding motion indeed occurs between
06:00 UT and 08:48 UT, the CME of 25 June may be triggered by the torus instability.
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4.6 Summary and Conclusions

We studied the evolution of the three-dimensional coronal magnetic field configuration of AR 12371,
from 19 June to 25 June 2015. This was done by extrapolating a set of 26 preprocessed magnetograms
by means of the optimization method. The obtained magnetic field configurations were compared to EUV
images of AIA. We computed the energy distribution of the magnetic field as a function of height, and
paid special attention to reconfigurations in the energy distribution due to the flares and CMEs occurring
on 21 and 22 June. Finally, we studied the torus instability as a possible trigger mechanism for the CME
occuring on 25 June.

The extrapolations show a sheared arcade evolving into a flux-rope structure during the timespan of
seven days. Combining this result with the observations of a decreasing photospheric magnetic flux and
increasing free magnetic energy, we find strong evidence that a major flux cancellation event according
to the model developed by van Ballegooijen & Martens (1989), resulted in the formation of a magnetic
flux-rope. In addition, we remark that the observed flares and CMEs, occurring on 21, 22 and 25 June,
originate from the location where the extrapolated magnetic fields contain the flux-rope structure. Dur-
ing these flares, the existence of this flux-rope is confirmed as a bright structure visible in AIA EUV
images.

The presence of the flux-rope structure during several days suggests that a flux-rope can be present well
before the onset of a CME. In addition, the extrapolations suggest that the flux-rope survives the CMEs
occurring on 21 and 22 June. This supports the idea that a flux-rope does not need to erupt in its entirety
to cause a CME. We would like to remark that this does not need to be in contradiction with the flux-rope
structure observed in interplanetary CMEs, since much of the magnetic structure of interplanetary CMEs
may be formed through reconnection processes after their launch (Qiu et al. 2007).

We also studied the energy distribution of the extrapolated fields as a function of height. We find that
during the long term evolution of the AR, the magnetic energy at low altitudes (. 15Mm) decreases,
whereas the energy at higher altitudes shows an increasing trend. This can be understood as a conse-
quence of the formation of the flux-rope through the flux cancellation mechanism. In addition we found
a clear shift of free magnetic energy towards higher altitudes for the magnetic field of 25 June. This may
be a signature of an expanding motion of the flux-rope.

A different evolution in the energy distribution is observed when looking at the extrapolations made di-
rectly before and after the flares and CMEs occurring on 21 and 22 June. The magnetic energy decreases
at high altitudes and increases at low altitudes, resulting in a more compact energy distribution. This is
consistent with a magnetic implosion, which happens because of a decrease in magnetic pressure. This
decrease of magnetic pressure is a result of the magnetic energy loss during flares and CMEs.

The free energy available in the magnetic field does not decrease when comparing the extrapolations
directly before and after the flares and CMEs occurring on 21 June. For the events of 22 June, we find a
decreasing free energy, yet this decrease seems rather low to power a large CME. This might be the result
of using a too coarse time grid, such that the events are not sufficiently resolved in time. To study the
energy lost to flares and CMEs, one should use a much finer time resolution, e.g., the 12 minute cadence
of the HMI full-disk vector magnetograms. Even when using such a fine time grid, one should be careful
when using absolute values of physical variables obtained from the extrapolations. This is because the
extrapolated fields are definitely not a perfect reproduction of the real solar magnetic field. Although the
extrapolations discussed in this chapter seem to be in fairly good agreement with the observations, we
find that in the right part of the computational volume, the extrapolated field has a lower energy than the
potential field. Therefore, absolute values of the energy determined from the extrapolations may differ
considerably from the real energy value.

Finally, we studied the stability of the magnetic flux-rope against the torus instability. This was done
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using the extrapolation of 25 June at 06:00 UT, i.e., about three hours before the CME eruption. Our
results showed that at that time the flux-rope was located in a region stable against the torus instability.
However, the upper part of the flux-rope was close to the instability zone. Therefore, a small expansion
of the flux-rope could make it torus unstable. Since the evolution of the energy distribution suggests
such an expanding motion, the torus instability should be regarded as a possible trigger mechanism of
the CME on 25 June.



Chapter 5

Concluding Remarks

5.1 Summary and Conclusions

In this master thesis, we studied the three-dimensional structure of solar coronal magnetic fields above
active regions (ARs). This was done by modelling the magnetic field as a nonlinear force-free field. The
theory of force-free fields was elaborated in Chapter 2. We discussed the limitations of potential and
linear force-free modelling of the coronal field, and introduced different methods to obtain a nonlinear
force-free field from given boundary conditions. When using real data, these boundary conditions are
available in the form of photospheric vector magnetograms. Since the photospheric field is not force-
free, the magnetograms have to be preprocessed before they can be used as boundary conditions for the
force-free extrapolation methods. Such a preprocessing method is introduced and discussed at the end of
Chapter 2.

In Chapter 3, we discussed and tested an implementation of the optimization method. These tests used the
semi-analytical nonlinear force-free fields that were introduced in Chapter 2. The performance of our op-
timization method was determined qualitatively, by comparing field lines of the extrapolated and model
field, and quantitatively, by using different metrics that measure the agreement between the extrapolated
and model field. We found a good agreement between the extrapolated fields and the semi-analytical
models, both in a qualitative and quantitative manner. In addition, the results were better when con-
sidering a smaller region, centred in a larger computational box. This increase in performance can be
partly attributed to the remoteness of the side and top boundaries of the computational box, since the
optimization method, as implemented in this work, does not allow a departure of the magnetic field from
a potential state on these boundaries. In addition, the optimization method was observed to perform best
in regions where the magnetic field and the current are strong.

The semi-analytical test cases using the Titov & Démoulin (1999) flux-rope model illustrated that the
optimization method is able to reconstruct a flux-rope topology, starting from a potential field that does
not contain any flux-rope. In addition, the optimization code accurately reproduced the ratio of the total
energy over the potential energy for the semi-analytical fields. In the last part of Chapter 3, we used the
optimization code to extrapolate the vector magnetogram of NOAA 10978. These extrapolations showed
the importance of data preprocessing before applying the optimization code. In addition we found that
the performance of the optimization code decreases significantly with altitude above the photosphere.
This is because at high altitudes, the magnetic field and the electric current density are considerably
weaker than at low altitudes.

In Chapter 4, we studied the evolution of the magnetic field of NOAA AR 12371, from 19 June to 25
June 2015. During this period, the AR showed significant flare activity and three large CMEs were
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observed. The series of extrapolated fields showed a sheared arcade evolving into a flux-rope structure.
Combining this result with the observations of a decreasing photospheric magnetic flux and an increasing
free magnetic energy, we find strong evidence that a major flux cancellation event according to the model
developed by van Ballegooijen & Martens (1989) resulted in the formation of a magnetic flux-rope. In
addition, we remark that the existence of this flux-rope was confirmed as a filament-like structure in AIA
EUV images.

Our findings suggest that a flux-rope can be present well before the onset of a CME. In addition, our
extrapolations indicate that the flux-rope survives the CMEs occurring on 21 and 22 June. This supports
the idea that a flux-rope does not need to erupt in its entirety to cause a CME. Studying the energetics
of the magnetic fields before and after the eruptive events on 21 and 22 June, we found that the energy
decreases at high altitudes and increases at low altitudes. This is consistent with a magnetic implosion,
which happens because magnetic energy lost to flares and CMEs reduces the magnetic pressure such that
the field contracts.

By studying the extrapolated fields in the left and the right part of the computational box separately, we
found that the performance of the optimization method can show a strong spatial dependence within a
single extrapolation. It is likely that this is also the case for other extrapolation methods. Remark that
when using space-averaged metrics, a good performance in one part of the computational volume may
mask a bad performance in another part of the computational volume. This in turn may lead to erroneous
estimates of global variables like the total energy content of the magnetic field. To detect and prevent
such errors, we recommend using spatial-dependent metrics in addition to space-averaged metrics before
performing any physical analysis of the extrapolated fields.

Finally, we studied the stability of the magnetic flux-rope against the torus instability. This was done
using the extrapolation of 25 June at 06:00 UT, i.e., about three hours before a large CME eruption. Our
results showed that at that time the flux-rope was located in a region stable against the torus instability.
However, the upper part of the flux-rope was located close to the instability zone. Therefore, a small
expansion of the flux-rope could make it torus unstable. In the extrapolations of 25 June, there was a
clear shift of free energy towards higher altitudes, which may be a signature of an expanding motion of
the flux-rope. Therefore the torus instability should be regarded as a possible trigger mechanism of the
CME on 25 June.

5.2 Future Prospects

We conclude this thesis by outlining some future possibilities of nonlinear force-free modelling. We start
by discussing the research that can directly built onto the results obtained in this thesis.

The study of AR 12371, performed in Chapter 4, can be extended in several ways:

• Using a high time resolution, e.g., the 12 minute cadence of HMI full-disk vector magnetograms,
one can investigate the transient eruptive events occurring between 19 June and 25 June in more
detail. Such a study would clarify whether the optimization method is able to detect dips in the
free magnetic energy that are unambiguously caused by flares or CMEs. If these dips are indeed
detected, they may provide useful estimates of the energy content of flares and CMEs. In addi-
tion, it allows studying in more detail the reconfiguration of the magnetic topology after transient
eruptive events.

• It would be interesting to redo the extrapolations performed in Chapter 4 using the full resolu-
tion of the HMI magnetograms. Such a study may reveal the influence of spatial resolution on
the optimization method. It can be expected that the resolution-dependent effects are coupled
to the complexity of the magnetic field. Therefore it is possible that resolution effects strongly
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vary depending on the specific magnetogram under consideration. A practical problem is that the
execution time and the memory usage of the extrapolations does not scale well with increasing
resolution.

• It would be interesting to reconstruct the magnetic field of the AR, using different extrapolation
methods, and subsequently compare the results. From such analyses, one can try to deduce whether
there is one method that systematically outperforms the other methods.

Evidently, one should not limit oneself to the study of only one specific AR. It would be interesting to
perform analyses similar to the one provided in Chapter 4, for a large set of ARs. A comparison of
the differences and similarities between the magnetic field topologies of the different ARs, can provide
insights about the features that are crucial for causing transient eruptive events. It could provide us with
estimates about what portion of CMEs erupt from a flux-rope configuration, and whether it is common
for these flux-ropes to erupt only partially.

When using the optimization method, we found that the results in general deteriorate near the side and
top boundaries of the computational domain. This is because in our implementation of the optimization
code, the magnetic field on the boundaries is kept fixed and equal to a potential field. This problem can
be circumvented by using a large computational domain to compute the fields, yet focusing on a smaller
inner volume for physical analysis. Unfortunately, the optimization method turns out to have hight time
and memory complexity. An interesting challenge is therefore to extend the optimization code so that it
can also alter the magnetic field on the side and top boundaries.

Nonlinear force-free fields can potentially be used in future space weather forecasting operations, as
model of the coronal field. This would require fast nonlinear extrapolations of the magnetic field of the
full solar disk. However, current nonlinear extrapolation methods are relatively slow, and very demanding
in terms of computer memory. In their current form, the extrapolation methods can therefore not be
used in space weather forecasts to obtain the global coronal field. It is thus important to develop faster
implementations of nonlinear force-free extrapolation methods.

Finally, remark that nonlinear force-free magnetic field models only provide us information about the
magnetic field and the electric current, but not about any plasma parameters. A next step is to include
coronal plasma, and thus developing a reliable magnetohydrostatic equilibrium model. This is especially
crucial for the low and top corona, where the force-free assumption is not satisfied. Future space missions
like e.g., Solar Orbiter and Solar Probe Plus, will help to impose additional constraints on the modelling
of the solar magnetic field.
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Appendix A

Equations Concerning the Optimization
Approach

Here we derive Eqs. (2.43) – (2.47). Varying

L = Lf + Ld, (A.1)

where

Lf =

∫
V
B2wfΩ

2
fdV, Ld =

∫
V
B2wdΩ

2
ddV, (A.2)

and

Ωf =
j×B

B2
=

(∇×B)×B

µ0B2
, Ωd =

(∇ ·B)B

µ0B2
, (A.3)

with respect to a iteration parameter t gives

dL

dt
=
dLf
dt

+
dLd
dt

We will consider dLfdt and dLd
dt desperately. We start with obtaining an expression for dLfdt :

1

2

dLf
dt

=

∫
V
wfΩf ·

∂

∂t

(
(∇×B)×B

µ0

)
dV

−
∫
V
wfΩ

2
fB ·

∂B

∂t
dV

(A.4)

We will now rewrite every term in the above equation as a product with ∂B
∂t . Remark that the second

term is already in this form. The first term can be rewritten as

1

2

dLf
dt

=

∫
V

wf
µ0

Ωf ·
((
∇× ∂B

∂t

)
×B

)
dV

+

∫
V

wf
µ0

Ωf ·
(
∇×B× ∂B

∂t

)
dV

−
∫
V
wfΩ

2
fB ·

∂B

∂t
dV

(A.5)

Applying the vector identity a·(b×c) = b·(c×a) = c·(a×b) to the first and second term gives
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1

2

dLf
dt

=

∫
V

wf
µ0

(
∇× ∂B

∂t

)
· (B×Ωf ) dV

+

∫
V

wf
µ0

∂B

∂t
· (Ωf × (∇×B))dV

−
∫
V
wfΩ

2
fB ·

∂B

∂t
dV.

(A.6)

Remark that the second term is a product with ∂B
∂t and has therefore the correct form. The first term

needs some extra rewriting. Using the identity (∇× a) · b = a · (∇× b) +∇ · (a× b), we get

1

2

dLf
dt

=−
∫
V

wf
µ0

∂B

∂t
· (∇× (Ωf ×B)) dV

−
∫
V

wf
µ0
∇ ·
(

(Ωf ×B)× ∂B

∂t

)
dV

+

∫
V

wf
µ0

∂B

∂t
· (Ωf × (∇×B))dV

−
∫
V
wfΩ

2
fB ·

∂B

∂t
dV.

(A.7)

Only the second term is not yet a product of ∂B∂t . To proceed, we apply the identity f∇ · a = ∇ · (fa)−
a · ∇f to this term:

1

2

dLf
dt

=−
∫
V

wf
µ0

∂B

∂t
· (∇× (Ωf ×B)) dV

−
∫
V
∇ ·
(
wf
µ0

(Ωf ×B)× ∂B

∂t

)
dV

+

∫
V

1

µ0

(
(Ωf ×B)× ∂B

∂t

)
· ∇wf

+

∫
V

wf
µ0

∂B

∂t
· (Ωf × (∇×B))dV

−
∫
V
wfΩ

2
fB ·

∂B

∂t
dV.

(A.8)

Applying Gauss law to the second term results in

1

2

dLf
dt

=−
∫
V

wf
µ0

∂B

∂t
· (∇× (Ωf ×B)) dV

−
∫
S
n̂̂n̂n ·
(
wf
µ0

(Ωf ×B)× ∂B

∂t

)
dV

+

∫
V

1

µ0

(
(Ωf ×B)× ∂B

∂t

)
· ∇wfdS

+

∫
V

wf
µ0

∂B

∂t
· (Ωf × (∇×B))dV

−
∫
V
wfΩ

2
fB ·

∂B

∂t
dV.

(A.9)

Again applying the vector identity a · (b× c) = c · (a× b) to the second and third term gives
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1

2

dLf
dt

=−
∫
V

wf
µ0

(∇× (Ωf ×B)) · ∂B

∂t
dV

−
∫
S

wf
µ0

(n̂̂n̂n× (Ωf ×B)) · ∂B

∂t
dS

+

∫
V

1

µ0
(∇wf × (Ωf ×B)) · ∂B

∂t
dV

+

∫
V

wf
µ0

(Ωf × (∇×B)) · ∂B

∂t
dV

−
∫
V
wfΩ

2
fB ·

∂B

∂t
dV.

(A.10)

We see that every term in this expression is now a product of ∂B∂t .

Next we search an expression for ∂Ld∂t as a summation of terms that are a product of ∂B∂t :

1

2

dLd
dt

=

∫
V

wd
µ0

Ωd ·
∂

∂t
((∇ ·B)B) dV

−
∫
V

(
wdΩ

2
d

)
B · ∂B

∂t
dV,

(A.11)

or,
1

2

dLd
dt

=

∫
V

wd
µ0

(Ωd ·B)∇ · ∂B

∂t
dV

+

∫
V

wd
µ0

(Ωd(∇ ·B)) · ∂B

∂t
dV

−
∫
V

(
wdΩ

2
d

)
B · ∂B

∂t
dV

(A.12)

Applying the identity f∇ · a = ∇ · (fa) − a · ∇f to the first term, and identity (∇ × a) · b =
a · (∇× b) +∇ · (a× b) to the second and third term gives:

1

2

dLd
dt

=−
∫
V

wd
µ0
∇ (Ωd ·B) · ∂B

∂t
dV

+

∫
V

wd
µ0
∇ ·
(

(Ωd ·B)
∂B

∂t

)
dV

+

∫
V

wd
µ0

(Ωd(∇ ·B)) · ∂B

∂t
dV

−
∫
V

(
wdΩ

2
d

)
B · ∂B

∂t
dV

(A.13)

Again applying the identity f∇ · a = ∇ · (fa)− a · ∇f , but this time on the third term, leads to

1

2

dLd
dt

=−
∫
V

wd
µ0
∇ (Ωd ·B) · ∂B

∂t
dV

+

∫
V
∇ ·
(
wd
µ0

(Ωd ·B)
∂B

∂t

)
dV

+

∫
V

1

µ0
(Ωd(∇ ·B)∇wd) ·

∂B

∂t
dV

−
∫
V

(
wdΩ

2
d

)
B · ∂B

∂t
dV

(A.14)
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Applying Gauss’ theorem to the second term gives

1

2

dLd
dt

=−
∫
V

wd
µ0
∇ (Ωd ·B) · ∂B

∂t
dV

+

∫
S
n̂̂n̂n ·
(
wd
µ0

(Ωd ·B)
∂B

∂t

)
dS

+

∫
V

1

µ0
(Ωd(∇ ·B)∇wd) ·

∂B

∂t
dV

−
∫
V

(
wdΩ

2
d

)
B · ∂B

∂t
dV

(A.15)

Remark that all terms have been written as a product of ∂B
∂t . We can now combine Eq. (A.10) with

Eq. (A.15) to obtain an expression for dL/dt:

1

2

∂L

∂t
= −

∫
V

∂B

∂t
· FdV −

∫
S

∂B

∂t
·GdS, (A.16)

where

Fopt =
1

µ0
(Ωf ×B)×∇wf +

1

µ0
(Ωd ·B)∇wd + wfFf + wdFd, (A.17)

Gopt = wf n̂̂n̂n× (Ωf ×B)− wdn̂̂n̂n(Ω ·B), (A.18)

with

Ff =
1

µ0
∇× (Ωf ×B) + j×Ωf + Ω2

fB (A.19)

Fd = − 1

µ0
(∇ ·B) Ωd +

1

µ0
∇ (Ωd ·B) + Ω2

dB (A.20)
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