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Preface

A model should be as simple as possible. But no simpler.
Albert Einstein
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opinion and contribution to this Master’s thesis.
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Abstract

Bone formation is a very complex physiological process, involving the participation of many
different cell types and regulated by countless biochemical and mechanical factors. In this
Master’s thesis a bioregulatory model of the effect of calcium phosphate biomaterials and
Ca2+ on the activity of osteogenic cells was developed and implemented. The mathematical
framework consists of six differential equations that describe the temporal evolution of
the osteogenic cells, the collagen and mineral matrix and several biochemical factors. The
predicted amount of bone formation corresponds to the amount measured experimentally
under similar conditions. Moreover, the model is able to qualitatively predict some impaired
bone formation conditions. Various strategies to compensate for insufficient cell seeding
densities were designed. The most influential parameters of the model were determined using
a sensitivity analysis by design of experiments. This work compared three different methods
and the results clearly indicated the strengths and shortcomings of every method. In the
last part of this Master’s thesis, the calcium model was extended to spatial coordinates. In
summary, this work illustrates the potential of mathematical models in further unraveling
the complex biological process of bone formation and designing more efficient calcium
phosphate scaffolds and therapies.
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Samenvatting

titel: Wiskundige modellering van de invloed van calcium op de activiteit van osteogene
cellen

Botvorming is een zeer complex fysiologisch proces, waar verschillende celtypes, groeifactoren
en weefsels bĳ betrokken zĳn. Deze masterproef beschrĳft de ontwikkeling en implementatie
van een wiskundig model dat de invloed van calcium en calciumfosfaten op de activiteit van
osteogene cellen simuleert. Dit wiskundig kader bestaat uit zes differentiaalvergelĳkingen
die de temporele evolutie van de verschillende celsoorten, weefsels en biochemische factoren
weergeven. De resultaten van het calcium model komen goed overeen met experimentele
data. Het model voorspelt verder ook kwalitatief enkele verstoorde botvormingscondities
en reikt mogelĳke behandelingsstrategieën aan. De belangrĳkste modelparameters werden
geïdentificeerd aan de hand van een sensitiviteitsanalyse op basis van de experimentele
ontwerpmethode, waarbĳ er drie verschillende methodes vergeleken werden. In het laatste
hoofdstuk werd het bestaande model uitgebreid met twee ruimtelĳke dimensies. Dit werk
illustreert de kracht van wiskundige modellen bĳ het ontrafelen van complexe, biologische
processen zoals botvorming. Bovendien laten zĳ toe om in silico efficiëntere draagstructuren
en therapieën te ontwerpen.

v
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Glossary

alkaline phosphatase (ALP): is often considered to be an early biochemical marker of
differentiation towards osteoblasts. 9

ANOVA: an acronym for “analysis of variance”, a statistical technique that separates
the variation in an experiment into categories relating to the causes of the variation.
40

appositional ossification: formation of new bone on existing bone. 5

bone lining cell: inactive osteoblasts that cover the available bone surface. 3

bone marrow: soft tissue filling the cavities of bones, source of stem cells. 3, 5, 9, 20, 26,
48, 54

bone morphogenetic protein (BMP): a member of a family of proteins that promote
bone formation and regeneration. 23

chemotaxis: the directional movement of cells or organisms towards or away from a
chemical stimulus. 7, 9, 10

chondrocyte: cartilage cell, produces and maintains the cartilaginous matrix. 25

collagen: the major protein (comprising over half of that in mammals) of the white fibers
of connective tissue, cartilage, and bone. 1, 3, 9, 11, 13, 14, 16–19, 25, 26, 37, 46, 51,
54, 55

cortical bone: the compact bone of the shaft of a bone that surrounds the marrow cavity.
4

cytosol: the fluid component of the cytoplasm without the organelles. 8, 14, 17

design of experiments (DOE): is a statistical technique that allows you to run the
minimum number of experiments to optimise your product or process. It involves
determining the best experiments to run to fit a particular mathematical model. 28

differentiation: biological process by which a less specialised cell develops or matures
into a cell with distinct form and function. 3–9, 12, 13, 15, 16, 18, 19, 21, 25, 26, 37,
38, 41, 42, 44, 52

ectopic: occurring at an abnormal location, e.g bone formation outside the area in which
it is normally expected to occur. 5, 6, 10, 16, 19, 20, 23

ix



Glossary

endochondral ossification: ossification that occurs in and replaces cartilage. 4

endoplasmic reticulum (ER): a membrane network within the cytoplasm of cells in-
volved in the synthesis, modification, and transport of cellular materials. 25

extracellular matrix: an insoluble protein scaffold on which cells reside. The extracellular
matrix provides structure, attachment sites and signals through cell surface receptors.
6, 13, 18, 38, 51

factor: in the context of DOE this is a variable over which you have direct control in an
experiment (e.g time, temperature, and pressure). 28–33, 35, 38–42, 44, 46–49

fibroblast: a cell from which connective tissue develops. 25

growth factor: a protein that promotes cell proliferation and differentiation when it binds
to specific receptors on the cell surface. 1, 5, 11, 12, 14, 16–19, 21, 23, 25, 26, 37, 41,
42, 51–55, 58, 60

haematopoietic stem cell: cells that reside in the bone marrow and have the ability to
give rise to all the different mature blood cell types. 4, 9

histomorphometry: the quantitative study of the microscopic organisation and structure
of a tissue (e.g. bone) especially by computer-assisted analysis of images formed by a
microscope. 22

homeostasis: the tendency of a physiological system to maintain internal stability, owing
to the coordinated response of its parts to any situation or stimulus tending to disturb
its normal condition or function. 25, 26

hydroxyapatite: a naturally occurring mineral form of calcium apatite with the formula
Ca5(PO4)3OH, a large percentage of bone is made up of a modified form of the
inorganic mineral hydroxyapatite. 3, 5, 6, 13, 14, 25, 41, 46

interaction: is a joint effect of factors. A common example is drug interaction, where
two medicines taken together produce an effect that neither could produce by itself.
27–32, 35, 38, 40, 41, 44, 46–50, 59

intramembranous ossification: ossification that occurs in and replaces connective tissue.
4, 25

lamellar bone: mature bone in which the collagen fibers are in an orderly layered ar-
rangement, called “lamellae”. 4

level: in the context of DOE this is the value to which a factor should be set in an
experiment (e.g 6 h is a level for time). 28–30, 32, 33, 38, 39, 41, 44, 46

main effect: the main effect for a factor is the effect on a response due to that factor only.
27, 29–31, 35, 40, 41, 46

mechanotransduction: refers to the many mechanisms by which cells convert a mechan-
ical stimulus into chemical activity. 3
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mesenchymal stem cell (MSC): multipotent stem cells that can differentiate into a
variety of cell types like osteoblasts, fibroblasts and chondrocytes. 1, 3, 5–7, 9, 11, 12,
14–21, 23, 25, 37, 38, 42, 46, 48, 51, 52, 54–56, 63

mesenchyme: the part of the embryonic tissue that consists of loosely packed, unspe-
cialised cells from which connective tissue, bone, cartilage, and the circulatory and
lymphatic systems develop. 4

mitochondrion: spherical or rod-shaped organelles, are referred to as the “powerhouse”
of the cell since they act as the site for the production of high-energy compounds,
which are the vital energy source for several cellular processes. 6

non-union: permanent failure of healing following the fracture of a bone. 1, 3, 5, 59

osteoblast: a mononuclear cell that forms bone. Osteoblasts produce osteoid and are
responsible for the mineralisation of the osteoid matrix. 1, 3, 4, 6–9, 11–18, 20, 21,
23, 25, 37, 38, 41, 42, 46, 48, 51, 52, 54, 63

osteocalcin: a protein found in the extracellular matrix of bone and dentin and involved
in regulating mineralisation in the bones and teeth. 3, 9

osteoclast: a large multinuclear cell associated with absorption and removal of bone. 3, 4,
9, 25

osteoconductivity: facilitation of cell and nutrient infiltration through the 3D porous
structure. 5

osteocyte: a mature osteoblast that has become embedded in the bone matrix. 3, 13

osteogenicity: supply of bone-forming cells by the bone marrow. 5

osteoid: the initial, organic matrix laid down by the osteoblasts, later it will be calcified.
4, 5, 19

osteoinduction: initiation of the differentiation of mesenchymal stem cells towards the
osteogenic lineage. 3, 6

osteopontin: a protein that is abundant in bone mineral matrix and accelerates bone
regeneration and remodelling. 3

osteoprogenitor: a stem cell that differentiates into an osteoblast, also called preosteoblast.
18, 25

pericyte: a slender cell that wraps around capillaries or other small blood vessels. 6

periosteum: a dense membrane covering the surface of bones (except at their extremities)
and serving as an attachment for tendons and muscles. 4

phagocytosis: the process of engulfing microorganisms, other cells, and foreign particles
by specific cells. 6

proliferation: increase in cell number by division. 4, 7–9, 12, 13, 15, 25, 26, 37, 42, 44,
46, 48, 52, 63
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receptor: a molecular structure within a cell or on the surface characterised by selective
binding of a specific substance and a specific physiologic effect that accompanies the
binding. 7, 14, 52

scaffold: an artificial structure capable of supporting three-dimensional tissue formation.
iv, 5, 6, 16, 19–26, 48, 55, 56, 58–60

trabecular bone: bone composed of thin intersecting trabeculae resulting in a porous
structure. Trabecular bone is usually found at the ends of long bones. It also also
referred to as “spongy” and “cancellous” bone. 4

woven bone: primitive bone with coarse collagen bundles arranged in a disorderly fashion
and replaced subsequently by lamellar bone. 4
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Chapter 1

Introduction

The need for bone tissue regeneration is continuously increasing due to the improvement
of the quality of life and the increase in life expectancy. In the United States alone
approximately 6 million fractures occur yearly, of which 5-10 % result in a delayed union or
in a non-union. An extrapolation of these numbers to the Indian population results in 240
million fractures a year, of which 12 million non-unions [Bhandari and Jain, 2009].

Bone tissue engineering aims at finding a better solution for the healing of large bone
defects and non-unions. This interdisciplinary research field applies principles of engineering
and life sciences to create an in vivo micro-environment that promotes local bone repair or
regeneration [Habibovic and de Groot, 2007; Eyckmans et al., 2010]. Bone formation is a very
complex physiological process, involving the participation of many different cell types and
regulated by countless biochemical and mechanical factors. Therefore, mathematical models
can make a significant contribution in further unravelling the interactions between the
different influential factors. Thus, in silico experimentation seeks to explain and understand
the underlying principles of the biological phenomenon. Moreover, mathematical models
can be used to design and test possible experimental and therapeutic strategies in silico
before they are tested in vitro or in vivo. These experimental results will, in turn, guide
further model building.

This Master’s thesis describes the development and implementation of a bioregulatory
model of calcium. The presented mathematical framework is inspired by the bioregulatory
model of bone regeneration during fracture healing by Geris et al. [2008] and simulates
the effect of calcium and calcium phosphate (CaP) on the activity of osteogenic cells as a
temporal variation of six variables: calcium concentration (Ca), mesenchymal stem cell
(MSC) density (cm), osteoblast density (cb), mineral matrix density (b), collagen matrix
density (m) and a generic osteogenic growth factor concentration (gb). Chapter 2 explains
the basic notions of bone biology. After this general description, the influence of calcium
on cellular differentiation, proliferation and migration is treated in more detail. The
following chapter covers the proposed calcium model. Firstly, the mathematical framework
and implementation are discussed. Secondly, some results on normal and impaired bone
formation are provided. A thorough discussion of the calcium model concludes the chapter.
Chapter 4 describes the sensitivity analysis that was performed on the calcium model. This
chapter starts with an overview of different methods that can be used for a sensitivity
analysis. In this Master’s thesis three methods have been explored : a latin hypercube,
a fractional factorial and a uniform design. The results of the sensitivity analysis clearly

1



1. Introduction

indicate the strengths and shortcomings of every method. Chapter 5 presents a spatial
extension of the calcium model. The mathematical framework focusses primarily on the
migration of the different cells and biochemical factors. The last chapter summarises
the most important conclusions of this Master’s thesis and gives suggestions for further
development of the (extended) calcium model, as well as possible in vitro or in vivo
experiments.

2



Chapter 2

The biology of bone formation

2.1 Introduction

Due to its scarless regeneration capacity, bone is a unique biological tissue. To find better
solutions for the healing of large bone defects and non-unions, it is important to understand
the fundamental process of bone formation.

This chapter starts with a brief description of bone biology, explaining the basic notions
of bone composition, bone structure and the modelling activities of bone (section 2.2).
Subsequently, section 2.3 discusses some of the mechanisms of osteoinduction proposed in
literature. Finally, the influence of Ca2+ on cellular activities will be described in section
2.4.

2.2 Bone biology

2.2.1 Bone composition

Bone is a very complex connective tissue, composed of three different phases: an organic
phase, an anorganic phase and water [Geris et al., 2008]. Collagen is the main constituent
of the organic phase, providing tensile strength and flexibility to the bone tissue. The
organic phase contains, besides collagen, also osteocalcin and osteopontin. The inorganic
phase mainly consists of hydroxyapatite. The compression strength and stiffness of the
bone is provided by these bioapatite crystals.

Osteoclasts, osteoblasts, osteocytes and bone lining cells are four important cell types
found in bone. The polynuclear osteoclasts play a key role in bone resorption. Osteoblasts
are mononuclear bone forming cells that arise from the differentiation of MSCs. The third
bone cell type, the osteocyte, is a differentiated osteoblast and is the mechanosensor of the
bone. The osteocytes sense the mechanical load on the bone tissue and transduce it into
specific chemical stimuli. From this point of view the osteocytes are an essential part of
mechanotransduction. The last type of bone cells are the bone lining cells. These cells
are also former osteoblasts like osteocytes, but they are not buried in newly formed bone
matrix. Instead, they become quiescent, elongated cells that are flattened against the bone
surface when they are no longer engaged in bone matrix production. Figure 2.1 presents a
schematic overview of the different cell types.

The bone marrow is a major source of osteogenic cells. It contains the precursors of

3



2. The biology of bone formation

osteoclasts (haematopoietic stem cells) and osteoblasts (bone stromal cells). Aside from
the bone marrow, the periosteum is another very important source of osteogenic cells (i.e.
human periosteal derived cells, hPDC’s) [Hall, 1990]. The periosteum defines the boundary
between bone and overlying soft tissue and is derived from the mesenchyme [Hall, 1992].

Figure 2.1: Deposition of bone matrix by osteoblasts [Alberts et al., 2007].

2.2.2 Bone structure

Bone is characterised by different structures on the macroscopic and microscopic level.
Macroscopically one distinguishes cortical bone and trabecular bone. The first is a very
compact, well-vascularised and mineralised tissue, found at the outer surface of bone [Hall,
1990]. The latter consists of different “trabeculae”, which results in a porous structure.
Nerve tissue, as well as blood vessels and other tissues, are found in the open spaces between
the “trabeculae”. On the microscopic level lamellar and woven bone can be found. Lamellar
bone is formed slowly, but is strongly organised in parallel “lamellae”. Woven bone, on the
other hand, is formed more quickly but is characterised by a less organised structure.

2.2.3 Bone formation

Bone formation is a multistep process, which starts with the proliferation of the precursor
cells and differentiation into active osteoblasts. In the second step active osteoblasts deposit
osteoid on a support. Depending on the supporting tissue, different osteogenic processes are
distinguished. In intramembranous ossification, the support for bone deposition is provided
by connective tissue. Endochondral ossification, which is characterised by the formation
of osteoid on cartilage, represents the second category of ossification processes. The last
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type of osteogenic processes is appositional ossification, in which case previously formed
bone tissue acts as a support for osteoid deposition [Geris et al., 2008]. The last step of
osteogenesis is the calcification of the bone matrix. In this mineralisation process insoluble
calcium phosphate salts are first deposited in the osteoid. Subsequently, these salts are
replaced by more stable hydroxyapatite crystals. The formation of bone is schematically
shown in figure 2.1.

In cases of impaired healing of bone fractures or even non-unions, biomaterials can help
to induce bone formation. The next section discusses the influence of CaP biomaterials on
bone formation in more detail.

2.3 Influence of calcium phosphate granules on bone
formation

Tissue engineering aims to develop biological substitutes that restore, maintain or improve
tissue function. Two main strategies have been developed to regenerate bone tissue: the use
of biomaterials to induce bone formation chemically and the construction of hybrid implants
composed of a biomaterial scaffold seeded with osteogenic cells [Habibovic and de Groot,
2007; Langer and Vacanti, 1993]. The following terms are often used to characterise the
biological performance of biomaterials [Habibovic and de Groot, 2007]:

• osteogenicity: supply of osteogenic (bone-forming) cells by the bone marrow
• osteoinductivity: initiation of the differentiation of MSCs towards the osteogenic

lineage
• osteoconductivity: facilitation of cell and nutrient infiltration through the 3D porous

structure

Delayed and non-unions are characterised by an in vivo micro-environment that fails to
support bone repair or tissue regeneration. Hence, the micro-environment found at a non-
union can be considered as an ectopic site [Eyckmans et al., 2010]. Consequently, the tissue
engineering constructs should display osteoinductive properties. Calcium phosphate (CaP)
bioceramics are then interesting candidates, because of their biocompatibility, bioactivity
and osteoinductive characteristics. It has been clearly shown that calcium phosphates
induce bone formation, but the exact mechanism is still largely unknown [Eyckmans et al.,
2010; Yuan et al., 2007, 2006; Chang et al., 2000; Hanawa et al., 1997; Barrère et al., 2003;
Ripamonti, 1996]. There are, however, several different mechanisms proposed in literature
to explain the influence of calcium phosphate particles on bone formation as observed in
many experiments.

It has been stated that a high local concentration of growth factors and proteins can
be achieved by adsorption on the biomaterial substrate, thereby creating a favourable
micro-environment for bone formation [Yuan et al., 2006; Liu et al., 2008; Ripamonti, 1996].
Another explanation for the osteoinductive properties of CaP biomaterials is given by the
surface topography, since it influences the osteoblastic guidance and attachment and can
cause the asymmetrical division of MSCs [Barrère et al., 2006, 2003]. Barrère et al. [2003]
also suggest that the surface charge of the substrate can play a key role by triggering cell
differentiation. Furthermore, negative charges distributed on the surface of the biomaterial
can be an obstacle for cell-material adhesion, because the cell surface is negatively charged
[Zhou et al., 2007; Shelton et al., 1988]. The bioapatite layer, formed in vivo, might also be
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recognised by MSCs [Habibovic and de Groot, 2007]. A low oxygen tension in the central
region of the biomaterial, which triggers the pericytes of microvessels to differentiate in
osteoblasts, is another mechanism proposed in literature [Barrère et al., 2003].

However, the release of calcium and phosphate ions by dissolution, is believed to be the
main origin of the bioactivity of calcium phosphate biomaterials [Habibovic and de Groot,
2007; Barrère et al., 2006; Chang et al., 2000; Barrère et al., 2003]. The dissolution
properties of calcium phosphate biomaterials are influenced by the exposed surface area,
the composition and the pH. Pioletti et al. [2000] showed that small calcium phosphate
particles (< 10 µm) can induce phagocytosis. This process could then, in turn, produce an
accumulation of Ca2+ in the mitochondria, which can cause lysis of the mitochondria and
cell death. Phagocytosis also alters the pH of the surrounding body fluids. This pH-change
subsequently alters the dissolution properties of the calcium phosphate particles.

The size of the particles is not only critical because it can induce phagocytosis, it also
determines the reactivity of the particles. The smaller the particles, the larger the exposed
surface to the environment and the faster the biomaterial will dissolve. The dissolution rate
will increase, simply because larger quantities of exchange can take place [Barrère et al.,
2006].

The composition of the calcium phosphate biomaterials is another important character-
istic that determines the dissolution properties. A change in the calcium to phosphate ratio
means a change in phase composition, which directly affects the ionic exchange mechanisms
[Barrère et al., 2006].

Experimental evidence clearly indicates the key role of calcium and phosphate ions in
osteoinduction. Yuan et al. [2006] observe more bone formation in scaffolds made up of
biphasic calcium phosphate than of hydroxyapatite, the latter having a lower dissolution
rate. The effect of calcium ion implantation in titanium on bone formation was investigated
by Hanawa et al. [1997]. They found a larger amount of new bone on the Ca2+-treated side
than on the untreated side. Eyckmans et al. [2010] noticed that the CaP granule remnants
in a decalcified scaffold serve as anchoring points for cell attachment (see figure 2.2).
Titorencu et al. [2007] report that osteoblasts respond to changes in Ca2+ concentration
in the bone micro-environment. Moreover, differentiation of MSCs towards osteoblasts is
accompanied by the expression of Ca2+ binding-proteins and the incorporation of Ca2+

into the extracellular matrix [Titorencu et al., 2007]. It also appears that osteoblasts sense
and respond to the extracellular Ca2+ concentration independently of systemic calciotropic
factors in a concentration-dependent manner [Dvorak et al., 2004]. Bootman et al. [1996]
report that the extracellular calcium concentration could control the frequency of the
intracellular calcium spiking, which encodes specific cellular information according to Sun
et al. [2007].

It appears that the primary condition to induce ectopic bone formation is a critical
level of free, extracellular Ca2+. Therefore, this Master’s thesis will focus on the effect of
Ca2+ on the activity of osteogenic cells and bone formation.

2.4 Influence of calcium ions on cellular activity
As stated above, the release of Ca2+ by the dissolution of calcium phosphate biomaterials
constitutes the principal mechanism of osteoinduction. In this section the effect of Ca2+

on cellular activity will be more elaborated.
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Figure 2.2: Scanning electron microscope image of a remnant granule serving as an
anchoring point for cell attachment (the white arrow indicates a cell attaching to the
mineral remnants, the asterisk indicates a CaP granule, magnification 5000 x, scale bar = 5
µm) [Eyckmans et al., 2010].

Experiments show that the influence of Ca2+ differs from cell type to cell type [Barrère
et al., 2006]. This section will look primarily at MSCs and osteoblasts, since these osteogenic
cells will play a key role in the mathematical model which is presented in chapter 3. Notice
that the extracellular calcium ion can be bound to proteins (e.g. albumin). In this complexed
form the ion cannot influence cellular behaviour like differentiation and proliferation. The
term “calcium ion” refers, in the remaining part of this document, to the active, free ion.

In general, extracellular Ca2+ plays a role in regulating proliferation, differentiation
and migration via the activation of calcium sensing receptors (CaSR) and/or by increasing
the influx of Ca2+ [Zayzafoon, 2006]. The CaSR may act as a (gradient) sensor, triggering
chemotaxis of motile cells to critical micro-environments and transducing the Ca2+ signal
to intracellular signalling pathways regulating cell function [Breitwieser, 2008].

Although the mechanism of Ca2+ sensing remains unclear, it has been discovered
that osteoblasts express a similar calcium sensing receptor as the parathyroid cells. The
calcium sensor in the parathyroid and kidney is a G-protein coupled receptor with seven
transmembrane domains that detects the extracellular calcium concentration (see figure
2.3). Studies suggest that the calcium sensing receptor in osteoblasts is functionally similar
to but molecularly distinct from the calcium sensing receptor present in the parathyroid
and the kidney [Zayzafoon, 2006; Dvorak et al., 2004]. However, more studies are necessary
to characterise the complete function of the calcium sensing receptor in osteoblasts, as well
as its role in osteoblast differentiation, proliferation and migration.

2.4.1 Influence of Ca2+ concentration on proliferation

Mesenchymal stem cells

Dvorak et al. [2004] report an increase of proliferation of MSCs in a concentration dependent
manner. The experiments of Liu et al. [2009] show that, when the Ca2+ concentration is
lower than 1.8 mM, a decrease of Ca2+ concentration significantly inhibits the proliferation
of MSCs. When the Ca2+ concentration is higher than 1.8 mM, the cellular proliferation
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Figure 2.3: Different signaling pathways to regulate the gene expression in osteoblasts.
The extracellular calcium concentration is sensed by the calcium sensing receptor (CaSR,
left) [Zayzafoon, 2006].

does not change with varying Ca2+ concentrations [Liu et al., 2009]. By contrast, the
influence of Ca2+ on proliferation follows a Gaussian distribution according to unpublished
data of Yoke Chin Chai [Lab for Skeletal Development and Joint Disorders, K.U. Leuven,
Belgium].

Osteoblasts

Osteoblasts sense and respond to the extracellular Ca2+ concentration independently of
systemic calciotropic factors in a concentration dependent manner [Dvorak et al., 2004]. As
a consequence, local fluctuations in Ca2+ can regulate osteoblast activity. Zayzafoon [2006]
reports the importance of calcium channels in osteoblast proliferation. He suggests that
an increase in the intracellular Ca2+ concentration activates the Ca2+ signalling pathways
that are dedicated to induce proliferation. Maeno et al. [2005] studied the effects of Ca2+

on osteoblast proliferation and found a Gaussian dependency on calcium concentration.
5 mM Ca2+ was associated with maximum proliferation for both a monolayer and a 3D
culture. They suggest a concentration range of 0-6 mM Ca2+, which is slightly lower than
that suitable for differentiation.

2.4.2 Influence of Ca2+ concentration on differentiation

Mesenchymal stem cells

The intracellular Ca2+ oscillation is a complex process that reflects the transfer of Ca2+

into and from the extracellular space, cytosol, intracellular stores and the buffering due to
the binding to proteins. Cells recognise these oscillations through intricate mechanisms to
decode the information that is embedded in the Ca2+ dynamics [Sun et al., 2007]. Bootman
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et al. [1996] report that the extracellular calcium concentration can control the frequency
of the intracellular calcium spiking. A lower extracellular calcium concentration leads to
a lower intracellular calcium spiking frequency [Bootman et al., 1996]. Sun et al. [2007]
demonstrate that the calcium spiking frequency is closely related to the differentiation
potential of MSCs. They show that, in response to osteoinductive factors, the Ca2+ spikes
decrease to a level similar to the one found in osteoblasts. Therefore, in order to influence
the differentiation, a similar spiking pattern to the one of osteoblasts must be established in
MSCs. According to Bootman et al. [1996] this can be achieved by altering the extracellular
calcium concentration. Quantitative results were unfortunately not available. However,
qualitatively one can state that an optimal extracellular calcium concentration, altering
the intracellular spiking pattern of the MSCs so that it resembles the one of osteoblasts,
leads to the differentiation of MSCs towards osteoblasts.

Dvorak et al. [2004] report that elevations of Ca2+ promote the differentiation of MSCs.
They indicate a narrow optimal range (1.2 - 1.8 mM Ca2+). The results of Sun et al. [2007]
show that a depletion of extracellular Ca2+ interferes with the proper differentiation of
MSCs. This suggests a critical role for Ca2+ influx. Liu et al. [2009] found that different
biochemical markers for differentiation (e.g. ALP, collagen I and osteocalcin) reach a
maximal concentration at 1.8 mM, which corresponds well with the results of Dvorak
et al. [2004]. Liu et al. [2009] found a Gaussian dependency of differentiation on calcium
concentration.

Osteoblasts

Maeno et al. [2005] studied the effects of Ca2+ on osteoblast differentiation and found
a Gaussian dependency on the calcium concentration. 8 mM Ca2+ was associated with
maximum differentiation for a monolayer. They suggest a concentration range of 6-8 mM
Ca2+, which is slightly higher than that suitable for proliferation.

Biologically, the regulation of osteoblastic proliferation and differentiation by extra-
cellular Ca2+ can be considered as a coupling factor between osteoclasts and osteoblasts
[Duncan et al., 1998]. At bone erosion sites the Ca2+ concentrations exceed physiological
concentrations, which may stimulate osteoblast proliferation and differentiation, leading to
bone formation.

2.4.3 Influence of Ca2+ on cellular migration

Extracellular Ca2+ gradients are present in a number of distinct micro-environments and
can represent potent chemical signals for cell migration (chemotaxis) and directed growth
(see figure 2.4) [Lobovkina et al., 2010]. Moreover, Ca2+ is an important homing signal
that brings together different cell types required for the initiation of a multicellular process
like bone remodelling or wound repair [Breitwieser, 2008]. Many experimental studies
have investigated the chemotactic response of monocytes [Olszak et al., 2000], osteoblasts
[Godwin and Soltoff, 1997], breast cancer cells [Saidak et al., 2009], haematopoietic stem
cells [Adams et al., 2006] and bone marrow progenitor cells [Aguirre et al., 2010] to Ca2+.
They report a dose-dependent relationship, with a maximal effect achieved at concentrations
ranging from 3-10 mM Ca2+ [Aguirre et al., 2010].

The regulation of migration by extracellular Ca2+ is biologically a coupling factor
between osteoclasts and osteoblasts. High Ca2+ concentrations have been shown to
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stimulate preosteoblast chemotaxis to the site of bone resorption, and their maturation
into cells that produce new bone [Dvorak and Riccardi, 2004].

Figure 2.4: Confocal fluorescence microscopy images showing protrusive growth in surface-
adhered flat lipid vesicles caused by a Ca2+ gradient (scale bar is 10 µm, the pipette,
indicated by the dashed lines, forms the Ca2+ source) [Lobovkina et al., 2010].

2.5 Conclusion
This chapter explained the basic notions of bone composition, bone structure and the
modelling activities of bone. In some cases of impaired healing of bone fractures or even
non-unions, biomaterials can help to induce bone formation. Some of the mechanisms
proposed in literature to explain the osteoinductive properties of CaP biomaterials were
treated in more detail. From this discussion, it appeared that the primary condition to
induce ectopic bone formation is a critical level of free, extracellular Ca2+. The experimental
evidence of the influence of Ca2+ on cell proliferation, differentiation and migration was
also investigated in this chapter.

10



Chapter 3

Calcium model

3.1 Introduction

Improvements in computer capacity now enable computer simulations, in a dynamic sense, as
opposed to the earlier computer analyses, which predicted only a steady state configuration
[van der Meulen and Huiskes, 2002]. As a consequence of this technological revolution,
there has been an enormous increase in the use of mathematical models in biology and
medicine. These mathematical models can propose and test possible biological mechanisms,
contributing to the unravelling of the complex nature of biological systems. Moreover, they
can be used to design and test possible experimental strategies in silico before they are
tested in vitro or in vivo.

This chapter describes the mathematical model that simulates the effect of Ca2+ and
calcium phosphates on cellular activity as function of time. The proposed model is a 1D
model since time is the only dimension. An extension of this model, including a spatial
dependency, is given in chapter 5. Section 3.2 describes the functional forms and equations
of the proposed mathematical model. The derivation of the different parameter values is
explained in section 3.3. Section 3.4 provides information on the different simulation details.
A sensitivity analysis was performed to identify the most influential parameters, which
is discussed more in depth in chapter 4. The results of the calcium model are described
in section 3.5. Section 3.6 thoroughly discusses the results and simplifications of the
mathematical model. Finally, the last section summarises the most important conclusions
of this chapter.

3.2 Mathematical framework

The presented mathematical calcium model is inspired by the bioregulatory model of
Geris et al. [2008]. It consists of six partial differential equations and describes the effect
of calcium phosphates on the activity of osteogenic cells as a temporal variation of six
variables: calcium concentration (Ca), MSC density (cm), osteoblast density (cb), mineral
matrix density (b), collagen matrix density (m) and a generic osteogenic growth factor
concentration (gb). The sum of the mineral matrix and the collagen matrix represents
the total bone density. The following sections describe the individual reaction terms. A
schematical overview of the model is presented in figure 3.1.
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3. Calcium model

Figure 3.1: Schematic overview of the calcium model. W = maximum tissue density for
proliferation, X = minimum calcium concentration for proliferation, Z = maximum calcium
concentration for proliferation. The participation of a variable in a subprocess is indicated
by showing the name of that variable next to the arrow representing that subprocess, e.g.
calcium interferes with differentiation and bone formation.

Mesenchymal stem cells

The proliferation of MSCs is modelled by a logistic growth function where the proliferation
rate (Am) depends on the surrounding matrix density (m) and calcium concentration
(Ca) [Olsen et al., 1997; Weinberg and Bell, 1985; Yoshizato et al., 1985]. The calcium
dependency of the proliferation follows a Gaussian distribution (last two factors in equation
(3.1)).

Am = Am0.m

K2
m +m2 .

acm
ccm

.exp

(
−1

2
.

(
Ca− bcm
ccm

)2
)

(3.1)

The derivation of the constants in equation (3.1) and all the following equations is
discussed in section 3.3.

The differentiation of MSCs towards osteoblasts is mediated by a generic osteogenic
growth factor (gb). A minimal chemical concentration is included in the computational
model by defining a sixth order polynomial function. For high chemical concentrations
a saturation effect was modelled to take place [Bailón-Plaza and van der Meulen, 2001].
According to Liu et al. [2009] the calcium dependency of the differentiation follows a
Gaussian distribution (last two factors in equation (3.2)).

F1 = Y11.g
6
b

H6
11 + g6

b

.F11.exp

(
−1

2
.(Ca− F12)2

)
(3.2)

Upon production of mineral matrix, MSCs gradually become entrapped. When the
stem cell is surrounded by the bone matrix, it will differentiate or die (apoptosis), the latter
being modelled by a decay term:

dcm.b.cm (3.3)
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Osteoblasts

The proliferation of osteoblasts is modelled by a logistic growth function where the prolifer-
ation rate (Ab) depends on the surrounding matrix density (m) and calcium concentration
(Ca) [Olsen et al., 1997; Weinberg and Bell, 1985; Yoshizato et al., 1985]. According
to Maeno et al. [2005] the calcium dependency of the proliferation follows a Gaussian
distribution (last two factors in equation (3.4)).

Ab = Ab0.m

K2
b +m2 .

acb
ccb

.exp

(
−1

2
.

(
Ca− bcb
ccb

)2
)

(3.4)

Upon production of mineral matrix, osteoblasts gradually become entrapped by the matrix
they are producing. When an osteoblast is completely surrounded by bone matrix, it will
either mature and become an osteocyte or die (apoptosis). In both cases, this removes
the osteoblast from the active matrix producing population. This removal is modelled
by a constant decay term (db). Both apoptosis and differentiation of osteoblasts towards
osteocytes are calcium dependent processes [Titorencu et al., 2007; Maeno et al., 2005]. This
is included in the mathematical model by defining a threshold for the calcium concentration
at which the value of the decay term increases.

Collagen matrix

The equation describing the evolution of the collagen matrix density was modelled according
to Geris et al. [2008]. Extracellular matrix production was assumed proportional to the cell
density of the matrix producing cells (the osteoblasts). The production rate decreases as
the surrounding collagen matrix density increases.

Mineral matrix

The temporal variation of the mineral matrix is modelled in a similar way as the collagen
matrix. The mineral matrix production is assumed proportional to the cell density of the
matrix producing cells (the osteoblasts). The production rate decreases as the surrounding
mineral matrix density increases. However, a sixth order polynomial was used to model the
production of mineral matrix, in contrast with a linear decrease of the production rate of
collagen matrix.

The mineralisation of the last fraction of (unmineralised) collagen takes place after a
very long time. This period is not considered in the timeframe of the mathematical model
but is taken into account by introducing an offset of 5%.

There are two conditions that need to be satisfied in order to have production of
mineral matrix. Hydroxyapatite deposition occurs following the maturation of the collagen
matrix during bone formation [Maeno et al., 2005; Barrère et al., 2006]. The first condition
(equation (3.5)) implies that the collagenous matrix needs to be mature before mineralisation
can take place:

m > 85% . mmax (3.5)

where mmax represents the maximal collagen density. Calcium is used by osteoblasts for
the production of hydroxyapatite and for other general metabolic activities. The second
condition (equation (3.6)) demands that at least an equivalent amount of calcium deposited
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as hydroxyapatite should be taken up by the mineral matrix producing cells (the osteoblasts).
Parameter Q in equation (3.6) represents a proportionality constant.

Pbb.(0, 95− κbb.b)6.cb.Q < JLeaky.cb.
Ca

HCa4 + Ca
(3.6)

Calcium

In most of the aforementioned processes, the calcium concentration plays an important role.
The kinetics of the dissolution of the calcium phoshate granules is modelled by a general
empirical equation:

dc

dt
= k.s.(c∞ − c)n (3.7)

where dcdt is the rate of dissolution, k is the rate constant for dissolution, s represents
the specific area, c∞ stands for the equilibrium concentration and c for the concentration
of the solution and n is the effective order of the reaction [Zhang et al., 2003]. For the
specific case that is modelled here, the equilibrium concentration is taken to be the maximal
concentration at which artificial precipitation does not yet occur. The effective order of the
reaction is considered to be 1. In this study, the parameters k and s are combined in the
model parameter σ.

Biological mineralisation is a complex process resulting in the deposition of hydroxyap-
atite on the mature collagen matrix. The formation of intracellular vessicles containing
bioapatite is a metabolic process involving protein and RNA synthesis and requiring the
uptake of calcium [Stanford et al., 1995]. The calcium flux from the extracellular space
towards the cytosol is modelled as a leakage flux [Maurya and Subramaniam, 2007].

Jleaky.
Ca

HCa4 + Ca
(3.8)

Sun et al. [2007] suggest a critical role for Ca2+ influx. The calcium uptake for the
metabolic activities of both osteoblasts and MSCs is included in the mathematical model
by a constant decay function (dCa).

Generic growth factor

Besides calcium, growth factors also play a key role in a lot of the modelled processes. The
generic osteogenic growth factors are produced by osteoblasts, up to a certain saturation
concentration, after which the production rate levels off. The production rate (Egb) is not
limited by the matrix density.

Egb =
Ggb.gb
Hgb + gb

(3.9)

The removal of growth factors is modelled by a decay function (dgb) representing denat-
uration and irreversible binding to matrix proteins [Bailón-Plaza and van der Meulen,
2001]. The binding of a growth factor to a specific cell surface receptor initiates a signal
transduction cascade. The growth factor-receptor complexes are subsequently removed
from the cell surface via endocytosis. A significant amount of growth factors are, however,
not recycled to the cell surface and will be internally degradated [Sorkin and Waters, 1993].
The removal of the growth factors from the osteogenic environment is modelled by:

(cm,t − cm,t−0.0001) . Gcon.gb
Hcon + gb

(3.10)
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where cm,t represents the MSC density at time t and cm,t−0.0001 the MSC density at time
t− 0.0001. The difference between these two densities indicates the amount of cells that
differentiated or proliferated during that time interval and, consequently, the amount of
growth factors that were removed from the osteogenic environment.

Set of equations

Briefly stated, this leads to the following set of equations:

∂m

∂t
= Pbs.(1− κb.m).cb (3.11)

∂cm
∂t

= Am.cm.(1− αm.cm)− F1.cm − dcm.b.cm (3.12)

∂gb
∂t

= Egb.cb − dgb.gb − (cm,t − cm,t−0.0001) . Gcon.gb
Hcon + gb

(3.13)

∂cb
∂t

= Ab.cb.(1− αb.cb) + F1.cm − db.cb (3.14)

∂b

∂t
= Pbb.(0.95− κbb.b)6.cb (3.15)

∂Ca

∂t
= σ.(Ca∞ − Ca)− Jleaky.cb.

Ca

HCa4 + Ca
− dCa.Ca.(cb + cm) (3.16)

The scaling factors that were chosen for non-dimensionalisation, as well as the non-
dimensionalised model parameter values can be found in section 3.3.2.

3.3 Parameters

3.3.1 Parameter values

The parameter values were determined using three different methods. First, a stability
analysis was performed in order to determine the stability of different stationary states
and to gain more understanding of the mathematical model. The parameter values were
further derived from unpublished experimental data provided by Yoke Chin Chai [Lab
for Skeletal Development and Joint Disorders, K.U. Leuven, Belgium] and from literature
where possible.

Proliferation

Bailón-Plaza and van der Meulen [2001] derived for their model the values of the parameters
Am0, Km, Ab0 and Kb of the proliferation functions for MSCs and osteoblasts (equations
(3.1) and (3.4)). A slightly smaller value for Am0 was adopted here. The parameters
acm, bcm, ccm, acb, bcb and ccb that characterise the Gaussian dependency on the calcium
concentration, were derived from unpublished experimental data provided by Yoke Chin
Chai [Lab for Skeletal Development and Joint Disorders, K.U. Leuven, Belgium]. Appendix
A describes in more detail the determination of these parameter values.

Differentiation

Bailón-Plaza and van der Meulen [2001] examined, in the absence of quantified cell dif-
ferentiation rates, different values for the parameters describing MSC differentiation in a
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sensitivity analysis. The same parameter values are adopted here. The differentiation of
MSCs towards osteoblasts is a calcium dependent process. Studies on osteogenic differenti-
ation of MSCs in vitro show a Gaussian distribution with an optimal differentiation in a
narrow range of calcium concentrations (1.2 mM - 1.8 mM) [Dvorak et al., 2004; Liu et al.,
2009]. Dvorak et al. [2004] report an eightfold increase of differentiated cells at the optimal
calcium concentration.

Cell decay

The rate of osteoblast removal is not available from literature or experimental data and has
been estimated by Bailón-Plaza and van der Meulen [2001] in a linear stability analysis.
Their estimates are adopted in the presented mathematical model. The rate of MSC
apoptosis is not available from literature or experimental data and has been estimated.

Matrix synthesis and degradation

Matrix synthesis rate decreases proportionally with the increase of the corresponding matrix
density. The production will stop when the matrix density reaches its maximum value. The
parameters κb and κbb are inversely proportional to the limiting matrix density. As such,
they represent the balance between synthesis and degradation of extracellular collagen
matrix and bone matrix respectively. The values of Bailón-Plaza and van der Meulen
[2001] are adopted here. The initial production rates (Pbs and Pbb) were investigated
numerically. Yuan et al. [2006] report the initiation of ectopic bone formation at 20 days
post implantation, Pbs was varied in order to fit this time scale. The amount of bone
formation after 90 days is approximately 31 % according to Yuan et al. [2006]. The
parameter Pbb was chosen to fit the reported amount of bone formation.

Growth factor production

Experimental data on the production rates of growth factors are not available. However,
Geris et al. [2008] explored a range of parameter values numerically. The magnitude of
the production rate (Ggb) is determined numerically and the value of the parameter Hgb is
chosen in such a way that the saturation level for the production occurs around typical
growth factor concentration levels. The mathematical model adopts the numerical estimates
of Geris et al. [2008].

Growth factor decay and consumption

The parameter value for the decay term of growth factors (dgb) is adopted from Geris et al.
[2008] who used typical values for the half life of growth factors involved in fracture healing
(typically below and around 30 minutes). A half-life of 13 minutes corresponds to a decay
constant of 75 day−1. The parameter Hcon was chosen in such a way that the term Gcon.gb

Hcon+gb
becomes equal to 1 for growth factor concentrations higher than 1000 ngml . In the absence of
data Gcon was assumed to have a dedimensionalised value of 1.

CaP dissolution

Experimental data on the dissolution rate and specific surface area of CaP scaffolds are not
available. The dedimensionalised parameter σ̃ was estimated to be 10. Since osteoblasts do
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not survive when the calcium concentration exceeds 50 mM [Maeno et al., 2005], this value
was adopted for Ca∞.

Ca2+ consumption

The formation of intracellular vessicles containing bioapatite is a metabolic process requiring
the uptake of calcium [Stanford et al., 1995]. The calcium flux from the extracellular space
towards the cytosol (JLeaky) is estimated to have a dedimensionalised value of 750. The
parameter HCa4 was chosen in such a way that the term Ca

HCa4+Ca becomes equal to 1 for
calcium concentrations higher than 10 mM. The parameter dCa, which models the calcium
uptake for the metabolic activities of both osteoblasts and MSCs, has a dedimensionalised
value of 100.

3.3.2 Scaling and non-dimensionalisation

The following scaling factors were chosen for the non-dimensionalisation of the model
variables:

t̃ = t

T
, c̃m = cm

c0
, c̃b = cb

c0
, m̃ = m

m0
, b̃ = b

m0
, g̃b = gb

g0
, C̃a = Ca

Ca0

The time scale of T = 1 day was taken from Geris et al. [2008], based on studies of Harrison
et al. [2003]. Representative concentrations for the collagen content (m0 = 0.1 g/ml) and
growth factors (g0 = 100 ng/ml) are adopted from Geris et al. [2008]. A typical value
for the cell density (c0 = 106 cells/ml) is derived from Bailón-Plaza and van der Meulen
[2001]. The scaling factor for the calcium concentration was assumed to be equal to the
extracellular calcium concentration (1 mM).

The model parameters were non-dimensionalised as follows (the tildes represent the
non-dimensional parameters):

P̃bs = Pbs.c0.T

m0
, κ̃b = κb.m0, ˜Am0 = Am0.T

m0
, K̃m = Km

m0
, ˜acm = acm

Ca0
,

˜bcm = bcm
Ca0

, ˜ccm = ccm
Ca0

, α̃m = αm.c0, H̃11 = H11
g0

, Ỹ11 = Y11.T,

G̃gb =
Ggb.T.c0

g0
, H̃gb =

Hgb
g0

, d̃gb = dgb.T, Ãb0 = Ab0.T

m0
, K̃b = Kb

m0
,

ãcb = acb
Ca0

, b̃cb = bcb
Ca0

, c̃cb = ccb
Ca0

, α̃b = αb.c0, d̃b = db.T, P̃bb = Pbb.c0.T

m0
,

κ̃bb = κbb.m0, σ̃ = σ.T, ˜Ca∞ = Ca∞
Ca0

, ˜Jleaky =
Jleaky.T.c0

Ca0
, ˜HCa4 = HCa4

Ca0
,

˜dCa = dCa.T.c0, F̃11 = F11, F̃12 = F12, ˜Gcon = Gcon.c0, ˜Hcon = Hcon
g0

, ˜dcm = dcm.m0.T

This results in the following set of non-dimensionalised parameter values:

P̃bs = 0.18, κ̃b = 1, ˜Am0 = 0.85, K̃m = 0.1, ˜acm = 5.98,
˜bcm = 3.33, ˜ccm = 1.67, α̃m = 1, H̃11 = 14, Ỹ11 = 10, G̃gb = 350, H̃gb = 1,
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d̃gb = 75, Ãb0 = 0.202, K̃b = 0.1, ãcb = 41.82, b̃cb = 5.06, c̃cb = 1.9,
α̃b = 1, d̃b = 0.1, P̃bb = 0.0398, κ̃bb = 1, σ̃ = 10, ˜Ca∞ = 50, ˜Jleaky = 750,

˜HCa4 = 0.01, ˜dCa = 100, F̃11 = 8, F̃12 = 1.5, ˜dcm = 1.5, ˜Gcon = 1, ˜Hcon = 0.001

3.4 Simulation details
The set of non-linear differential equations was implemented in Matlab (The MathWorks,
Inc.). In order to solve the aforementioned differential equations, a time delay and initial
conditions need to be specified.

Time delay

The proposed mathematical model does not include the whole lineage of osteoprogenitor
cells. Only two cell types, the undifferentiated MSCs and fully differentiated osteoblasts,
are modelled. To minimise the error due to this simplification, a time delay is adopted.
Malaval et al. [1999] report eight to ten population doublings in cultures of osteoprogenitors
before the appearance of differentiated osteoblasts. This results in a time delay of 11 days.
The mature osteoblasts start producing collagen after three days. The dde routines of
Matlab (The MathWorks, Inc.) were used to implement the time delays and solve the set
of differential equations.

Initial conditions

At the start of the simulation there are MSCs (c̃m,ini = 1) and growth factors (g̃b,ini =
15) present. The calcium concentration is assumed equal to the normal extracellular
concentration (C̃aini = 1). Only a very small amount of collagen matrix (m̃ini = 0.01)
is present at the beginning of the simulation. All other variables are assumed to be zero
initially.

Discontinuities

To model specific events, like a bolus injection of growth factors or the gradual decrease
of calcium release, Matlab (The MathWorks, Inc.) provides specific options like “Jumps”
and “InitialY”. The interested reader can find more documentation on these topics on the
Matlab help-file.

3.5 Results

3.5.1 Normal bone formation

Using the parameters as described in section 3.3, the model predicts 31 % bone formation
at 90 days post implantation. Figure 3.2 shows the temporal evolution of the extracellular
matrix density, MSCs, growth factor concentration, osteoblasts, bone matrix density and
calcium concentration.

The calcium concentration initially increases, due to the dissolution of the calcium
phosphates. This increase, as well as the presence of osteogenic growth factors, triggers
the differentiation of the MSCs towards osteoblasts. The remaining stem cells proliferate
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Figure 3.2: Temporal evolution (days post implantation) of collagen matrix density (m),
mesenchymal stem cell density (cm), growth factor concentration (gb), osteoblast cell density
(cb), bone matrix density (b) and calcium concentration (Ca) during normal bone formation.
The arrows indicate the initial conditions.

until they reach the maximal cell density. As the total cell density (MSCs + osteoblasts)
increases, the metabolic need for calcium rises and the calcium concentration decreases.
After three days the differentiated osteoblasts start to produce collagen matrix. This process
continues and at a collagen matrix density of 85 % it triggers the mineralisation of the
osteoid. Gradually the scaffold gets filled with bone, and the MSCs that are trapped in the
bone matrix die.

3.5.2 Impaired bone formation

Decalcified scaffold

Eyckmans et al. [2010] suggest that CaP granules need to be present in sufficient quantities
to induce ectopic ossification. Experimental evidence of this hypothesis is given by the
observations that the bone spicules were only present on the CaP granules, and that no bone
or fibrous tissue was found 8 weeks after implantation of cellularised decalcified scaffolds
[Eyckmans et al., 2010]. This impaired form of bone formation was simulated by reducing
the dissolution rate of the calcium phosphate scaffold (σ) from 10 to 0.

Figure 3.3 shows the temporal evolution of the different cells and tissues in the decalcified
scaffold. The initial concentration of growth factors allows some differentiation of MSCs.
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Figure 3.3: Temporal evolution (days post implantation) of collagen matrix density (m),
mesenchymal stem cell density (cm), growth factor concentration (gb), osteoblast cell density
(cb), bone matrix density (b) and calcium concentration (Ca) during bone formation in a
decalcified scaffold (σ = 0). The arrows indicate the initial conditions.

Due to the metabolic needs of both osteoblasts and MSCs, the calcium concentration drops
quickly. Since, from that time point on, the derivatives of equations (3.12), (3.13) and (3.16)
become equal to zero, the simulation predicts constant profiles for the variables cm, gb and
Ca. This is, however, not physiologically possible. In reality, the lack of calcium ions will
induce the apoptosis of the MSCs. Although the concentration of osteoblasts is low, there
is some production of collagen matrix. The production rate gradually decreases due to
the apoptosis of the osteoblasts. Remark the absence of bone formation in the decalcified
scaffold.

Insufficient cell seeding

Eyckmans et al. [2010] report that a minimal amount of 106 cells is needed to induce
ectopic bone formation. This finding is supported by the experimental results of Kruyt
et al. [2008]. They determined a minimal bone marrow stromal cell density (BMSC density)
of 8.104 BMSCs

cm3 for bone formation in a BCP scaffold. The discrepancy between the
reported minimal amount might be explained by the different experimental set-up (mice vs
goats) and cell source (hPDCs vs hBMSCs). The calcium model can simulate the effect of
insufficient cell seeding by reducing the initial seeding density of MSCs (c̃m0) from 1 to 0.3.

The temporal evolution of the different cells and tissues for a low seeding condition is
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Figure 3.4: Temporal evolution (days post implantation) of collagen matrix density (m),
mesenchymal stem cell density (cm), growth factor concentration (gb), osteoblast cell density
(cb), bone matrix density (b) and calcium concentration (Ca) in a scaffold with low initial
seeding density (c̃m0 = 0.3). The arrows indicate the initial conditions.

illustrated by figure 3.4. As is suggested by Eyckmans et al. [2010], no bone formation
is found at 8 weeks post implantation. Since the concentration of growth factors is too
low to induce differentiation, the osteoblasts gradually die. Consequently, no collagen or
bone matrix is found in the scaffold. The calcium concentration remains high enough to
satisfy the consumption by the MSCs, with the result that the stem cells are maintained at
a slightly lower density than the initial seeding density.

3.6 Discussion

3.6.1 Simulation results

Normal bone formation

In the experiments reported by Hartman et al. [2005], the percentage of bone formation
was determined at day 7, 21 and 42 post implantation. The percentage of bone formation
was calculated as the ratio of the surface area of newly formed bone to the surface area of
the CaP-implant. These values are represented by the bars in figure 3.5. Since the amount
of modelled bone formation cannot exceed 1, figure 3.5 shows the temporal evolution of the
predicted bone tissue fraction (continuous line).
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Figure 3.5: Predicted (continuous line) and experimentally measured (bars, average
+ standard deviation) bone tissue fraction. The bars represent the bone formation as
determined by histomorphometry at week 1, 3 and 5 by Hartman et al. [2005].

The results of the simulation and experiment correspond qualitatively. However, the
bone formation is observed to start at a later time point in the simulation. If smaller time
delays would be adopted, the bone formation would also start earlier in the simulation.
The amount of bone measured at day 21 is much larger than the predicted amount. It is
worth noting, however, that this time point has a large standard deviation. Remark as well
that Hartman et al. [2005] measures the amount of bone formation in scaffolds that were
subcutaneously implanted in rats. The parameters of the calcium model were, however,
fitted according to the data for dogs [Yuan et al., 2006]. The predicted amount of bone at
42 days corresponds to the experimental observations.

Roldan et al. [2010] report the amount of bone formation in a highly porous biphasic
calcium phosphate scaffold. They measured a median of 45 % at 84 days post implantation,
where the bone formation was calculated as the ratio of newly mineralised bone area to
ceramic area. The difference between this experimental (mice) and predicted result could
be attributed to the fact that the computational model fitted the canine experimental data
of Yuan et al. [2006]. Roldan et al. [2010] also use highly porous scaffolds (± 93%) whereas
the samples used by Yuan et al. [2007] have a macroporosity of 40%.

Bone apposition inside an ectopically implanted disc was investigated by Kruyt et al.
[2007]. They report a bone formation percentage of 19.8±6.9% at 63 days post implantation.
The contact percentage was calculated as the ratio of bone-scaffold contact length to scaffold
perimeter length. The difference between this experimental (goats) and predicted result
could be explained by the fact that the computational model fitted the canine experimental
data of Yuan et al. [2006]. Kruyt et al. [2007] also use scaffolds with an 80/20 weight
percent ratio of HA to tricalcium phosphate whereas Yuan et al. [2007] implants scaffolds
with an 60/40 weight percent ratio.

From the previous discussions it seems that the animal model is a crucial parameter.
This is also suggested by Ripamonti [1996], who showed a dramatic difference in the amount
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of bone formation between different animal species. In order to gain more understanding
of the interactions between biomaterials and animal species, further research should be
conducted in this field. This will further advance the design of porous bone substitutes for
therapeutic purposes.

Impaired bone formation

Eyckmans et al. [2010] found no bone formation in decalcified scaffolds. The present model
assumes that the deprivation of Ca2+ is the underlying reason for this observation. However,
the CaP spicules also form an anchorage for the osteogenic cells. The removal of this
support in the decalcified scaffold may thus impair the survival of the seeded cells and limit
the amount of bone formation.

Eyckmans et al. [2010] report that a minimal amount of 1.106 cells is needed to induce
ectopic bone formation. It is, however, interesting to investigate whether a certain therapy
might induce bone formation, even with less cell seeding. A possible strategy could
include the use of growth factors, since bone morphogenetic proteins (BMPs) have specific
biologic activities, like the induction of bone formation at ectopic sites in vivo. This was
experimentally investigated by Kim et al. [2005] and Liang et al. [2005]. They both report
ectopic bone formation in scaffolds loaded with BMP-2, although no cells were seeded. A
major difference with the 1D-model is, however, the fact that these decellularised scaffolds
are ectopically implanted thereby causing the migration of MSCs in the nearby tissue
towards the scaffold. The calcium model does not have this spatial dependency as a result
of which it needs a certain initial MSC concentration to start the biological process.

A possible therapy for a scaffold loaded with 1/3 of the standard seeding cell density is
illustrated in figure 3.6. When the scaffold is ectopically implanted, the calcium concen-
tration will increase rapidly due to the dissolution of the calcium phosphates. However,
since the initial cell seeding is lower, the need for calcium is reduced. A possible therapy
might thus concentrate on removing the excessive amount of Ca2+. This is simulated
by exponentially reducing the parameter σ from eight to four. The reduction in calcium
release creates a more viable environment for the osteogenic cells. As can be seen in figure
3.6, the MSCs and osteoblasts start to proliferate. Collagen matrix is produced by the
osteoblasts and bone formation starts at 40 days post implantation. The amount of bone
formation can be further increased by injecting a bolus of growth factors. This was done
at 50 days post implantation and causes the differentiation of MSCs and, consequently, a
rapid increase in the osteoblast concentration. Remark that the amount of bone formation
at 90 days is almost 25%, which would be zero without the reduction in calcium release
due to insufficient cell seeding (see figure 3.4).

3.6.2 Simplifications

The current model assumes that the dissolution of calcium phosphate granules is the key
mechanism by which the granules influence cellular activity. The dissolution of the calcium
phosphate granules frees up calcium ions that can subsequently alter the cellular metabolism.
Calcium can only influence bone cells when it is an ion, not when it is bound to other
atoms. There are, however, other mechanisms of influence proposed in literature. Barrère
et al. [2006], for example, cite the effect of topography and exposed surface area for protein
bonding. More information on this particular subject can be found in section 2.3. The
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Figure 3.6: Temporal evolution (days post implantation) of collagen matrix density (m),
mesenchymal stem cell density (cm), growth factor concentration (gb), osteoblast cell density
(cb), bone matrix density (b) and calcium concentration (Ca) in a scaffold with an initial
cell density of c̃m0 = 0.3. After ten days the calcium release is exponentially reduced
(σ = 8 → σ = 4). A bolus of growth factors is injected at day 50 post implantation. The
arrows indicate the initial conditions.

incorporation of some of these mechanisms may further refine the proposed mathematical
model.

Due to the lack of experimental data, the parameter σ was estimated. However, if this
parameter could be determined more accurately, the model could be used to test different
biomaterials in silico. Namely, for every calcium phosphate the optimal seeding density
could be determined, since this depends on the dissolution rate and specific surface area
of the bioapatite. Also, the expected amount of bone formation could be calculated in
silico, allowing for an in silico triage of new biomaterials and thereby reducing in vitro
experimentation on poorly performing biomaterials. The specific surface area of a scaffold
can be derived from gas adsorption or µCT measurements. The dissolution rate can be
derived from calcium concentration measurements at consecutive timepoints, as was done
by Zhang et al. [2001] and Zhang et al. [2003]. Recently, a number of characterisation
measurements and calcium dissolution tests were preformed on clinical CaP scaffolds within
Prometheus. These data will be used in the future to derive biomaterial specific values of σ.

When the CaP scaffold is ectopically implanted, proteins will adsorb on the surface of
the biomaterial. This adsorbed protein layer will influence the dissolution behaviour of the
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implanted scaffold. Therefore, not only the initial dissolution rate but also the decrease in
calcium release should be fully investigated and quantified.

The parameter σ is not the only parameter that was estimated due to a lack of
experimental data. The uptake of calcium by osteoblasts (Jleaky), the apoptosis rate of
MSCs in the bone matrix (dcm), the consumption of growth factors during differentiation
and proliferation (Gcon) and the amount of calcium uptake for metabolic activities (dca)
are also parameters that should be investigated and quantified in future experiments.

In the proposed mathematical model there is no artificial deposition of hydroxyapatite
on the collagen matrix. This assumption is supported by the findings of Chang et al. [2000]
for in vitro experiments. The validity of this assumption for in vivo conditions is, however,
questionable.

The key role of calcium in several intra- and extracellular processes is long established.
The complex calcium dynamics that underlie these different phenomena are simplified by
the proposed mathematical model. The uptake of calcium by osteoblasts for hydroxyapatite
production is characterised by a leakage flux (Jleaky) from the extracellular space to the
cytosol. Osteogenic cells also store Ca2+ in the endoplasmic reticulum (ER). However, the
presented calcium model does not include the contribution of Ca2+ stored in the ER or
other organelles to the hydroxyapatite production.

There is no calcium flux going from the intracellular towards the extracellular space.
This assumption is supported by the fact that the cells need calcium for the hydroxyapatite
production. Both MSCs and osteoblasts take up calcium for their metabolic activities (dca).

However, calcium ions might influence these metabolic activities by activating G-coupled
proteins that initiate intracellular signalling cascades. In this transduction mechanism
there is no uptake of calcium ions by the cell. Moreover, one calcium ion can activate more
than one G-coupled protein. The current model, however, uses a black box approach. This
means that a certain input (the calcium concentration) has a certain output (proliferation
and differentiation), but how this input is transduced into the output (the underlying
intracellular mechanisms) is not modelled. This approach is intrinsically a simplification,
but can be justified by the limited knowledge that is available on the specific transduction
mechanisms. At a later stage the intracellular and cellular models might be combined to
give a more accurate description.

The current model does not include chondrocytes. This means that only intramembra-
nous ossification is being modelled. A further extension of the proposed mathematical model
might include adding other cell types like chondrocytes, fibroblasts and osteoprogenitor
cells in additional stages of differentiation. Moreover, also osteoclasts could be included
since Ca2+ can be considered as a coupling factor between osteoclasts and osteoblasts,
as was mentioned in section 2.4. This extension could be inspired by the mathematical
framework of Lemaire et al. [2004] who modelled the interactions between osteoblast and
osteoclast activities during bone remodelling. The coupling factor Ca2+ is, however, not a
variable in their model. A more refined mathematical model is proposed by Peterson and
Riggs [2010]. They model the integral calcium homeostasis and bone remodelling using
28 coupled differential equations including not only different cell types and biochemical
signals, but also some key hormones (e.g. PTH) and intracellular variables (e.g. Runx2 and
CREB). The effect of calcium on the differentiation and proliferation of osteogenic cells, as
described in this chapter, is not included in the framework of Peterson and Riggs [2010].
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Furthermore, their focus lies on bone remodelling, whereas the presented Master’s thesis
concentrates on bone formation. At a later stage the presented calcium model might be
combined with the mathematical framework of Peterson and Riggs [2010] to give a more
accurate description of the integral calcium homeostasis during bone formation.

Another important aspect that is not included in the mathematical model is angiogenesis.
The invasion of blood vessels will present an additional source of calcium ions and growth
factors. Thus, even in the absence of calcium phosphate granules, there might be bone
formation. This was observed by Hartman et al. [2005]. They implanted seeded titanium
scaffolds subcutaneously in the back of rats. Although, the amount of bone formation was
much less when compared with the CaP scaffolds, it was not zero. This is in contrast with
the observations of Eyckmans et al. [2010], who saw no bone formation when there were no
CaP granules present. This discrepancy could be explained by the use of different animal
models (rat vs mice), cells (bone marrow cells vs hPDC’s) and biomaterial construct (a
complete titanium scaffold versus a collagen scaffold seeded with CaP granules). However,
further research is necessary to identify whether some critical parameters, that could explain
this discrepancy, are still undiscovered.

The proposed mathematical model focusses on calcium only. However, Stanford et al.
[1995] report the influence of organophosphates on mineralisation. According to their data
Pi triggers the mineral formation and Ca2+ regulates the amount of mineral deposition
after the initation by phosphate. In the future, it would be interesting to investigate a
mathematical model that focusses on phosphate ions. The mathematical framework would
be similar to the calcium model proposed here, only the parameter values would change.
In a later stage both models could be combined to give a more complete description of the
mineralisation process.

A last simplification lies in the fact that the model only looks at 1D variations. A
further extension, including spatial variations will be discussed in chapter 5.

3.7 Conclusion
This chapter presented a 1D mathematical model that describes the effect of calcium on
the activity of osteogenic cells. It incorporates some key features such as proliferation,
differentiation and apoptosis and its results have been successfully corroborated by com-
parison with experimental data from literature. Application of the calcium model to the
set-up of bone formation, allowed to simulate decalcified scaffold and insufficient cell seeding
conditions. Simulations of these adverse biological situations predicted the formation of
little or no bone, as was shown experimentally. A therapy was designed for the condition
of insufficient cell seeding.

To the author’s knowledge, the model presented here, is the first to establish a mathe-
matical description of the effect of calcium on the activity of osteogenic cells at the tissue
level. Sandino et al. [2010] also simulate cell differentiation in a CaP scaffold, however, they
focus on the mechanical stimuli instead of the biochemical stimuli like Ca2+ and growth
factors. Future research should focus on the coupling of mechanical and biological influences
on the bone formation process. The study presented in this chapter is an illustration of the
potential of mathematical models to help solve the biological puzzle of bone formation.
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Chapter 4

Sensitivity analysis by design of
experiments

4.1 Introduction

The computational calcium model describes the effect of calcium on the cellular activity of
osteogenic cells. However, the current model does not account for the uncertainty in input
parameters and some assumptions. Moreover, some assumptions about parameter values are
not yet fully established. Identifying these parameters could lead towards designing specific
experiments to measure unknown parameters of significance. Firstly, a sensitivity analysis
can be used to determine main effects as well as important interactions between factors.
Secondly, a sensitivity analysis could also be used to simplify the model by determining and
eliminating insignificant model parameters. Finally, a sensitivity analysis not only allows to
optimise the response, but also to assess the stability and global optimality of the optimum
in the parameter space.

Section 4.2 highlights the major differences between physical and computer experiments.
Section 4.3 describes the different methods that can be used to determine the parameters
of significance. Details on the specific method that is used in this study are given in section
4.4. The results are discussed and interpreted in sections 4.5 and 4.6. The last section
recapitulates the most important findings of this chapter.

4.2 Physical experiments versus computer experiments

To answer a particular research question at hand, proper experimentation is paramount.
An important aspect of proper experimentation is the design of the experiment. An efficient
experimental design can greatly improve the reliability of the gained knowledge while
reducing the cost of the experiment. This is especially important for physical experiments,
which can be tedious and expensive, but, with a proper design, can provide reliable
results in the presence of unavoidable experimental and measurement errors [Montgomery,
2009; Myers and Montgomery, 1995]. Although computer experiments are deterministic,
experimental design can also be useful to ensure a reliable outcome with a minimum
of computational time when the phenomena under study are complex and highly non-
linear. Computer experiments require, however, the use of hardware and are only an
approximation of the complex physical process under study. In spite of these disadvantages,
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computer experimentation may provide an interesting alternative when the number of input
parameters is too large for the physical experiment to be run or some economical or ethical
reasons prohibit the physical experiment [Santner et al., 2003].

Once the experimentation has been executed, there are appropriate statistical methods
to analyse the resulting data. This is true whether the data are generated by a physical
process or by a computational model, like the calcium model that is considered here.
However, there are some significant differences between the data generated by a physical
experiment and the data generated by a computer code.

In contrast to physical experiments, a computer experiment uses a deterministic simula-
tion model. This implies that running the computer code with the same input parameters
will yield identical observations. Computer experiments thus lack random error (noise),
unlike physical experiments, which have substantial error due to the variability in the input
parameters and the environment. As a consequence, the traditional principles developed to
deal with this variability, such as blocking, randomisation and replication, cannot be used
for the design and analysis of computer experiments [Montgomery, 2009]. The p-values
from fitted statistical models lose their usual meanings. They have become indications,
since no valid confidence intervals can be determined from these deterministic data.

In addition to being deterministic, computer experiments can be time-consuming.
Moreover, the number of factors in a computer simulation can be quite large, ranging from
15 to 20 or more. The range of variation for each of these factors can also be much larger
in computer experiments than in physical experiments. Although a lot of methods were
initially created for physical experiments, they can be extended to the context of numerical
simulation [Saltelli et al., 2000]. The remaining part of this chapter will focus on the design
and analysis of computer experiments.

4.3 Design and analysis of computer experiments

A variety of methods exists to conduct a sensitivity analysis by design of experiments. This
section provides a short introduction to different techniques that are most commonly found
in the biomedical literature. A more detailed discussion can be found in Montgomery [2009],
Myers and Montgomery [1995] and Saltelli et al. [2000].

4.3.1 OAT-design

The simplest class of designs is that of the one-at-a-time (OAT) experiments, where the
effect of one factor is assessed by varying the value of only that factor and keeping all other
factors fixed. This approach is often referred to as ceteris paribus [Saltelli et al., 2000]. The
standard OAT-design uses a “nominal” or “standard” value per factor. The combination of
nominal values for all the factors is called the reference or base-line condition. Next, two
extreme values are proposed to represent the range of each factor. Usually the “standard”
value will be in the middle of the two other levels. The magnitudes of the differences
between the outputs for the extreme values and the “standard” values are then compared
to find the factors that influence the model output the most [Saltelli et al., 2000]. The
OAT-method was used by Lacroix [2001] and Geris et al. [2006].

The main advantage of this method is its simplicity. However, OAT experiments can
only study one factor at the time and cannot, because of this restriction, capture interactions
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between factors. Another disadvantage is the necessary selection of a reference (base-line
condition) [Isaksson et al., 2008].

4.3.2 Factorial designs

Full factorial design

In a full factorial design all possible combinations of the levels of each factors are investigated.
For example, if there are a levels of factor A and b levels of factor B then the total experiment
will consist of ab runs. In order to explain the basic principles, consider the experiment in
figure 4.1.

Figure 4.1: A two-factor factorial experiment with the response of the 4 runs shown at
the corners. Remark that in this experiment a = 2 and b = 2 which results in ab = 4 runs.

This is a two-factor (A and B) experiment with both factors at two levels (+, high
and -, low). The main effect of factor A in this design can be calculated as the difference
between the average response at the low level of A and the average response at the high
level of A. In this example this is equal to:

A = 40 + 51
2

− 20 + 30
2

(4.1)

In general one can define the effect of a factor as the change in response produced by
a change in the level of the factor [Montgomery, 2009]. A full factorial design can also
estimate interactions between factors, as is illustrated in figure 4.2. At the low level of B,
the effect of A is:

A = 50− 20 = 30 (4.2)

At the high level of B, the effect of A is:

A = 12− 40 = −28 (4.3)

These results show that the effect of A depends on the level chosen for factor B, which
indicates that there is interaction between the factors A and B. Moreover, the magnitude
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Figure 4.2: A two-factor factorial experiment with interaction between the factors A and
B.

of the interaction effect is the average difference between these two effects of A, namely
[Montgomery, 2009]:

AB = −28− 30
2

= −29 (4.4)

These two simple examples illustrate the basic principles of full factorial design. The above
principles can obviously be extended to more factors and levels. Using other, more complex
techniques a full statistical analysis of the model can thus be obtained.

Full factorial designs have several advantages. They are more efficient than OAT-experiments
and provide information on the interactions between factors. These designs do not require
a base-line condition, which is necessary for an OAT-design. Furthermore, they can study
the effects of a factor at several levels of the other factors, yielding conclusions that are
valid over a range of experimental conditions. However, when the computational model
contains a lot of parameters and the number of levels is large, the experimental cost can
become very high [Montgomery, 2009; Saltelli et al., 2000].

Fractional factorial design

As the number of factors grows, the computational cost can increase rapidly. For example,
a 26 full factorial design requires 64 runs, of which only six are used to estimate the main
effects and 15 to estimate the two-factor interactions. The remaining runs are used to
calculate the three-factor and higher-order interactions [Myers and Montgomery, 1995].
Fractional factorial designs are based on the idea that at some point higher-order interactions
tend to become negligible, so that the information on the main effects and lower-order
interactions can be obtained by running only a fraction of the complete factorial experiment
[Saltelli et al., 2000; Myers and Montgomery, 1995].

In order to explain the basic principles of fractional factorial design, consider a situation
in which three factors (A, B and C), each at two levels, are of interest but the experimenter
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Table 4.1: Plus and minus signs for the 23 factorial design [Montgomery, 2009].

Treatment Factorial Effect
Combination I A B C AB AC BC ABC

a + + - - - - + +
b + - + - - + - +
c + - - + + - - +
abc + + + + + + + +
ab + + + - + - - -
ac + + - + - + - -
bc + - + + - - + -
(1) + - - - + + + -

cannot run all 23 = 8 experiments. The experimenter would like to obtain some information
from only four runs, one-half fraction of a 23 design. Table 4.1 shows the 23 design.

Suppose that the first four runs are selected from table 4.1. This allows us to estimate
the main effects (similar to full factorial design):

A = 1
2
.(a− b− c+ abc) (4.5)

B = 1
2
.(−a+ b− c+ abc) (4.6)

C = 1
2
.(−a− b+ c+ abc) (4.7)

and the two-factor interactions are then given by:

BC = 1
2
.(a− b− c+ abc) (4.8)

AC = 1
2
.(−a+ b− c+ abc) (4.9)

AB = 1
2
.(−a− b+ c+ abc) (4.10)

If one compares these results, one notices that A = BC, B = AC and C = AB. Conse-
quently, it is impossible to differentiate between A and BC, B and AC and C and AB. This
phenomenon is called aliasing or confounding [Montgomery, 2009]. Since the design in
table 4.1 confounds the main effects with two-factor interactions, this design is called a
resolution III design. However, the main effects are not confounded with other main effects.
In a resolution IV design no main effects are confounded with other main effects or with
any two-factor interactions, but two-factor interactions are confounded with each other.
The designs in which no main effect or two-factor interaction is confounded with any other
main effect or two-factor interaction, but in which two-factor interactions are confounded
with three-factor interactions, is called a resolution V design [Montgomery, 2009; Myers
and Montgomery, 1995; Saltelli et al., 2000].

From this discussion it is clear that a higher resolution is less restrictive in the assump-
tions regarding which interactions are negligible in order to obtain a unique interpretation of
the data [Montgomery, 2009]. Obviously, in practice, there is a trade-off between resolution
and computational cost. The above principles can obviously be extended to more factors
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and levels. Using other, more complex techniques a statistical analysis of the model can
thus be obtained.

Fractional factorial designs thus provide information on the (lower-order) interactions
between factors, can study different factors simultaneously and do not require a reference
(base-line condition). Furthermore, they can study the effects of a factor at several levels
of the other factors, yielding conclusions that are valid over a range of experimental
conditions. They require less time and cost than a full factorial analysis, but, if the focus is
on interactions, then a full factorial or a higher resolution design is suggested. The main
disadvantage of fractional factorial designs is the fact that the results are only valid within
the chosen parameter space for the sensitivity analysis. This limitation applies, however,
also to other methods like OAT and Taguchi [Isaksson et al., 2008]. Another shortcoming
is the fact that interactions are confounded, i.e. the effects of certain interactions cannot
be separated from each other.

Fractional factorial designs are often used in screening experiments to identify efficiently
the subset of factors that are important and to provide some information on interactions
[Myers and Montgomery, 1995]. Isaksson et al. [2008] determined, for example, the most
important cellular characteristics for fracture healing using a resolution IV fractional
factorial design and a three-level Taguchi orthogonal array. A resolution IV fractional
factorial design was also used by Malandrino et al. [2009] to analyse the influence of six
material properties on the displacement, fluid pore pressure and velocity fields in the L3-L4
lumbar intervertebral disc.

4.3.3 Taguchi’s Method

Professor Taguchi recommends the use of statistical experimental design methods to assist
in quality improvement during the development of a product or process. In a manufacturing
process, for example, there are controllable factors (control factors) and uncontrollable
factors (noise factors) that cause the variability in the final products. The goal of robust
parameter design is essentially to find the levels of the control factors that are least influenced
by the noise factors [Montgomery, 2009].

In the Taguchi parameter design methodology one orthogonal design is chosen for the
control factors (inner array) and one orthogonal design is selected for the noise factors
(outer array). Then, the inner and outer arrays are crossed to give the complete parameter
design lay-out. After the experiment is run, the resulting data may be summarised and
interpreted. For this purpose, Taguchi recommends the use of signal-to-noise ratios [Myers
and Montgomery, 1995].

Taguchi’s methodology has received a lot of attention in statistical literature. His
philosophy was very original, but the implementation and technical nature of data analysis
has received some criticism. Firstly, it does not allow the estimation of interaction terms.
Secondly, some of the designs are empirically determined (“they work”) but are suboptimal
in comparison to rigorous alternatives such as fractional factorial designs [Montgomery,
2009]. Moreover, the signal-to-noise ratio does not always distinguish between processes
that are characterised by different mean and variance properties [Myers and Montgomery,
1995]. Finally, if the Taguchi approach works and yields good results, one may still not
know what caused the result because of the aliasing of critical interactions. In other words,
the problem may be solved (short-term success) but one does not know why it works so
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that no process knowledge (long-term success) has been gained. A more detailed discussion
on Taguchi’s method is given by Montgomery [2009] (chapter 12, supplementary material)
and Myers and Montgomery [1995] (chapter 10, pages 462-480).

Despite of the criticism, Taguchi’s approach is often used in biomedical literature,
because of its simplicity. It is, for example, used by Yang et al. [2007] to optimise a
cervical ring cage, and by Lin et al. [2007] to determine the relative contribution of different
parameters on the biomechanical response of a single tooth implant placed in the maxilla.
The application of Taguchi’s robust parameter design is also demonstrated in the context
of finite elements by Dar et al. [2002].

4.3.4 Space-filling designs

Isaksson et al. [2008] identify the most important cellular characteristics of their mechanoreg-
ulatory bone-healing model by means of a two-level screening experiment. However, with
only two, discrete levels for every input (parameter value) one cannot capture the behaviour
of the response (output of the model) for values between these levels (see figure 4.3). To
avoid the risk of disregarding any complex behaviour, which is likely for sophisticated non-
linear models, one would intuitively like to assess more levels by spreading the experimental
points in space [Santner et al., 2003]. This is not problematic, since one is dealing with
a computer experiment in which all the factors can easily adopt different values. Various
methods to achieve an effective spreading of points, commonly referred to as space-filling
designs, have been suggested in literature as appropriate experimental designs for computer
experiments. Two well-established space-filling designs are latin hypercube sampling (LHS)
and uniform sampling, into which this section will give a short introduction. The interested
reader can find more information on these and other space-filling designs in Santner et al.
[2003] and Fang et al. [2006].

Latin hypercube sampling

The building principle of a latin hypercube design (LHD) can be illustrated by the following,
simple example. Consider a square-shaped, 2D experimental region which is divided into n
equally spaced rows and columns (n corresponds to the number of points in the design).
This results in n2 cells that, in the next step, are filled with integers as to form a Latin
square, an arrangement in which each integer appears exactly once in every row and column.
Then, one integer is selected at random and in each of the n cells that contain this integer
a random point is selected. The resulting design is a latin hypercube sample of size n
[Santner et al., 2003]. An example of a space-filling LHD is given in figures 4.3 (III) and
4.4 (left). The design shown on the right-hand side of figure 4.4 is also a LHD but it is not
space-filling. More elaborate algorithms, which aim at ensuring the space-filling property
of latin hypercube designs, are described by Fang et al. [2006].

The LHD has many strengths: it is computationally cheap to generate, it can deal with
large number of runs and input variables and has an excellent performance in computer
experiments [Santner et al., 2003; Fang et al., 2006]. A disadvantage of LHD is that it
is not flexible with regard to adding additional points. The fact a LHD is well-suited
for monotonic response functions, but may not be adequate for non-monotonic response
functions is also a major disadvantage [Fang et al., 2006].
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Figure 4.3: Schematical overview of different designs for two factors A and B. I: 3 level
full factorial design, II: 3 level fractional factorial design, III: LHD, IV: uniform design.
Remark that the factorial designs only use discrete levels, whereas the space-filling designs
spread the points in space.

Figure 4.4: Two latin hypercube designs (n=4). There is one point in every row and
column. Remark that the right design is not space-filling.

Uniform design

The uniform design was proposed by Fang et al. [2006]; Fang [1980]; Wang and Fang
[1981] as a way of experiment to find as much information as possible, using relatively few
experimental points. The goal was to find the best estimator of the overall mean (overall
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mean model). This can be achieved by an uniform spreading of points, since, if all the
points were clustered at one corner of the experimental space, the sample mean would
represent the population mean rather poorly [Fang et al., 2006]. Other than the fact that
it seems intuitively reasonable to use designs that spread the points evenly across space, it
was noted that the points in orthogonal designs are typically uniformly spread. Thus, there
might be a possibility that these uniform designs are often orthogonal [Santner et al., 2003].

It was found that uniform designs limit the effects of aliasing, are efficient and robust
and have have an excellent performance in computer experiments. Aliasing or confounding
means that the design cannot differentiate between main effects and interactions or lower-
order interactions and higher-order interactions. This phenomenon is more thoroughly
discussed in section 4.3. Users have reported that the uniform design is easy to understand
and convenient, in that designs with small size have been tabulated for general use. However,
the construction of a uniform design is computationally very demanding [Fang et al., 2006].

4.4 Materials and methods
This section describes in detail the different aspects of the design of experiment approach
that was used to study the calcium model. In order to identify the input parameters that
have the largest influence on the outcome variables, three different designs were explored:
a resolution IV fractional factorial design, as was used by Isaksson et al. [2008], and two
space-filling designs. This approach was chosen to allow a thorough interpretation and a
comparison between the different design methods.

Section 4.4.1 describes the parameters that were included in the analysis. The criteria
that characterise the performance of the system are defined in section 4.4.2. The different
designs and methods of data analysis are discussed in sections 4.4.3 and 4.4.4 respectively.

4.4.1 Factors and levels

Table 4.2 lists the 33 parameters that were examined in the parametric study. The
investigated properties include all the parameters of the calcium model except αm, αb, κb
and κbb. These factors were excluded from the analysis, since their ranges would not have
any physiological meaning. Namely, the maximal viable cell density and matrix density do
not vary, due to different experimental conditions. Moreover, Isaksson et al. [2008] also
exclude mmax (the maximal amount of matrix in an element) and cmax (the maximal cell
concentration in an element), which are clearly similar to the parameters omitted here.
In order to study the effect of the initial conditions, m0, cm0, gb0, cb0, b0 and Ca0 were
included in the investigated set of parameters.

Within the study, each of the investigated parameters is referred to as a factor. The
ranges of the factors that are adopted in the different designs, as well as the standard
values, are listed in table 4.2. The chosen parameter space for each of the investigated
factors was obtained from a literature study and experimental data. In the following tildes
on non-dimensional values are omitted for simplicity.

• Bailón-Plaza and van der Meulen [2001] explored a range of values for Pbs numerically.
The same range was adopted here.
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Table 4.2: Ranges and standard values of the model parameters.

Parameter Range Standard value
Pbs 0.1 - 2 0.18
κb / 1
Am0 0.1 - 1.01 0.85
Km 0.01 - 0.1 0.1
αm / 1
Y11 10 - 100 10
H11 10 - 20 14
acm 4.72 - 6.97 5.98
bcm 3.05 - 3.73 3.33
ccm 1.55 - 1.70 1.67
dcm 0.001 - 3.5 1.5
Ggb 200 - 1000 350
Hgb 0.1 - 2 1
dgb 33 - 1000 75
Hcon 0.0001 - 0.1 0.001
Gcon 1 - 75 1
Ab0 0.2 - 2.02 0.202
Kb 0.01 - 0.1 0.1
αb / 1
db 0.05 - 0.2 0.1
acb 35.2 - 46.94 41.82
bcb 3.32 - 5.41 5.06
ccb 1.9 - 2.28 1.9
Pbb 0.0298 - 0.0731 0.0398
κbb / 1
Jleaky 400 - 800 750
HCa4 0.01 - 0.1 0.01
dca 10 - 500 100
σ 0 - 22 10
F11 6.5 - 10 8
F12 1.2 - 1.8 1.5
m0 0.01 - 0.1 0.01
cm0 0 - 1 1
gb0 10 - 100 15
b0 0 - 1 0
Ca0 1 - 50 1
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• The parameter κb is inversely proportional to the limiting matrix density. As such, it
represents the balance between synthesis and degradation of extracellular collagen
matrix. As mentioned above, this parameter is excluded from the sensitivity analysis
since a range would not have a physiological meaning.

• Assuming that the maximal cell proliferation occurs at the initial matrix density,
Bailón-Plaza and van der Meulen [2001] calculate a value for the parameter Am0.
Consequently, the range of initial matrix densities determines the range of parametric
study values of Am0.

• Bailón-Plaza and van der Meulen [2001] assume that Km = m0. This permits the
calculation of the range for the parameter Km, based on the range for m0.

• The parameter αm is inversely proportional to the limiting MSC density. As mentioned
above, this parameter is excluded from the sensitivity analysis, since a range would
not have a physiological meaning.

• Bailón-Plaza and van der Meulen [2001] estimated a range of the cell conversion
constant Y11. The same range is adopted here.

• It was stated by Bailón-Plaza and van der Meulen [2001] that a range of initial growth
factor concentrations induced the transformation of MSCs to osteoblasts in vitro.
The same range was adopted here for gb0. Moreover, this range sets a threshold value
for the growth factor concentration necessary to induce differentiation. The range of
parameter H11 was determined by varying the respective parameter to such an extent
that the threshold value was met.

• The ranges of acm, bcm, ccm, acb, bcb and ccb were derived from unpublished experi-
mental data provided by Yoke Chin Chai [Lab for Skeletal Development and Joint
Disorders, K.U. Leuven, Belgium].

• In the absence of data, the range for dcm was estimated to be 0.001− 3.5.
• A range of values for Ggb was explored numerically by Bailón-Plaza and van der

Meulen [2001]. The same range was adopted here.
• The range of values for Hgb was chosen so that the saturation level for the production

of growth factors occurs at typical growth factor concentrations.
• Growth factors have short in vivo half-lives, usually less than 30 minutes [Bailón-Plaza
and van der Meulen, 2001; Coffey et al., 1990; Dasch et al., 1989; Edelman et al.,
1993]. Assuming a range of 1− 30 min in half-lives, the corresponding range of the
decay constant dgb can be calculated.

• The parameter Hcon was chosen in such a way that the term Gcon.gb
Hcon+gb becomes equal

to 1 for growth factor concentrations higher than 10.
• In the absence of data, the range of Gcon was assumed to be 1− 75.
• The range of Ab0 was assumed to be twice the range of Am0.
• Bailón-Plaza and van der Meulen [2001] assume that Kb = m0. This permits the

calculation of the range for the parameter Kb, based on the range for m0.
• The parameter αb is inversely proportional to the limiting osteoblast cell density. As
mentioned above, this parameter is excluded from the sensitivity analysis, since a
range would not have a physiological meaning.

• During the screening experiment (L64), Isaksson et al. [2008] use 0.05− 0.2 as range
to describe the apoptosis of osteoblasts (db) in normalised cell variables. The same
range was adopted here.

• The parameter Pbb was numerically varied in order to match the variation in bone
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formation experimentally found by Yuan et al. [2006].
• The parameter κbb is inversely proportional to the limiting bone matrix density. As

such, it represents the balance between synthesis and degradation of bone matrix. As
mentioned above, this parameter is excluded from the sensitivity analysis, since a
range would not have a physiological meaning.
• In the absence of data, the range of Jleaky was estimated to be 400− 800.
• The parameter HCa4 was chosen in such a way that the term Ca

HCa4+Ca becomes equal
to 1 for calcium concentrations higher than 10.
• In the absence of data, the range of dca was chosen to be 10− 500.
• In the absence of data, the range of σ was chosen to be 0− 22.
• Dvorak et al. [2004] report a tenfold increase of differentiated cells at the optimal cal-

cium concentration. Taking into account the range of optimal calcium concentrations,
a range for F11 can be established from their experimental values.
• Studies on osteogenic differentiation of MSCs in vitro show an Gaussian distribution
with an optimal differentiation in a narrow range of calcium concentrations (1.2 mM -
1.8 mM) [Dvorak et al., 2004; Liu et al., 2009]. This range was adopted for F12.
• The initial extracellular matrix density is estimated to be between 0.01− 0.1.
• The initial concentration of MSCs and osteoblasts was allowed to vary between a
conservative range of 0− 1, thereby taking into account all possible values.
• The initial bone matrix density was estimated to vary between a conservative range

of 0− 1, thereby taking in account all possible values.
• The initial calcium concentration was chosen to vary between a conservative range
of 1− 50, where the lower limit represents the physiological concentration and the
upper limit the maximal possible value.

4.4.2 Responses

In order to assess the results obtained from the parametric study, criteria that characterise
the outcome of the system were determined. In this study, 9 different outcome analyses
were performed (see table 4.3). Firstly, to evaluate the effect of time, the amount of bone
formation was measured at different time points (7, 21 and 42 days post implantation).
Secondly, to assess the effect of response definition, three different response goals were
tested for every time point: “match target”, “maximise” and “none”. The experimental
data of Hartman et al. [2005] determined the lower and upper limits of the target to be
matched. For the second response goal, i.e. “maximise”, the amount of bone formation was
allowed to vary across the entire range. The last response goal, i.e. “none”, did not require
any limits.

4.4.3 Design of the matrix

Isaksson et al. [2008] use a resolution IV fractional factorial design to identify the most
important factors of their cell/tissue model. As mentioned in section 4.3, a major disadvan-
tage of this method is the fact that interactions are confounded, i.e. the effects of certain
interactions cannot be separated from each other. Expecting that interactions could play
an essential role in the calcium model proposed here, some space-filling designs were used as
well. These space-filling designs provide information about all portions of the experimental
region, instead of only two, discrete levels.
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Table 4.3: Definition of the responses for the parametric study.

Response name Lower limit Upper limit Response goal
bone formation after 7 days 0.0001 0.0141 match target

21 days 0.071 0.3 match target
42 days 0.161 0.3 match target

bone formation after 7 days 0 1 maximise
21 days 0 1 maximise
42 days 0 1 maximise

bone formation after 7 days / / none
21 days / / none
42 days / / none

In total three designs were tested: a resolution IV fractional factorial with 128 runs,
a LHD with 80 runs and a uniform design with 80 runs. The low and high levels of the
resolution IV orthogonal array were taken to be respectively the lower and upper limit
of the ranges specified in table 4.2. The arrays were generated and analysed with the
statistical analysis software JMP (8.0.1 SAS Institute Inc.).

4.4.4 Data analysis

The data of all three designs were analysed using a screening analysis and a stepwise
regression. The two-space filling designs were also modelled as a Gaussian process. The
following sections describe the statistics that are computed by JMP.

Screening analysis

The aim of a screening analysis is to estimate the importance of each factor and rank them
accordingly. The significance of the estimated effects is expressed using a p-value where
p denotes the probability that the result is obtained by chance or, in other words, the
probability of obtaining a false positive (type I error). Therefore, a low p-value (e.g. less
than 0.01) indicates a high significance level. JMP generates the p-values based on the
method of Lenth. The idea behind this method is to estimate the standard error from the
median value of the parameter estimates.

Stepwise regression

The goal of a stepwise regression is to automatically obtain a model that includes a minimal
amount of significant factors. At each step the significance of the residual factors (the factors
that are not included in the current model) is determined. The factors with a significance
probability of p < 0.25 are entered into the model. Then the software determines if the other
factors that are included in the model, are still significant. If the significance of the factors
is greater than 0.25, the corresponding factors are removed from the model. Consequently,
a factor can be added to the model at one step and removed at the following step. The
previous description corresponds to the “mixed mode”, i.e. the method alternates between
the forward and backward steps. The direction could also be specified otherwise: forward
(only extra factors are included in the model) and backward (there is only a removal of
factors).
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The stepwise regression was conducted on the main effects only. The direction was set
to “mixed”. The sum of squares (SS), which represents the reduction in the error SS, if
the term is entered into the model, or the increase in the error SS, if the term is removed
from the model, was considered as a measure of importance for each factor. The error sum
of squares (SSE) is calculated as the sum of the squared distances of each point from the
mean.

Gaussian process

This platform is used to model the relationship between a continuous response and one
or more continuous variables. A Gaussian process is, in fact, a natural generalisation of a
Gaussian distribution to infinitely many variables. As is commonly known, a multivariate
Gaussian distribution is characterised by a mean vector and covariance matrix. If one
extends this definition to infinite dimensions, the vectors become functions and thus a
Gaussian process is characterised by a mean and covariance function. So intuitively, since the
Gaussian distribution is used as a probability distribution to fit data and make predictions,
a Gaussian process can also be used to fit models with an infinite number of parameters.
Gaussian processes are easy to use and give very good results. A major disadvantage,
however, is the computational complexity of O(n3), which limits the size of the datasets.
Some very clear lectures on the topic of Gaussian processes by MacKay D. [http://
videolectures.net/gpip06_mackay_gpb/] and Rasmussen C. [http://videolectures.
net/epsrcws08_rasmussen_lgp/] are available on the internet.

JMP calculates a functional ANOVA table (see appendix B), in which the variation
is computed using a function-driven method. The functional main effect of parameter X
is the integrated total variation due to X alone. The ratio of functional X effect to the
total variation is listed as the main effect (ME). The functional interaction effects are
computed in a similar way. The total sensitivity (TS) is the sum of the main effect and all
the interaction terms. Due to this addition the sum of the TS of the different factors does
not add to 1. By this definition, the TS represents the amount of influence of a factor and
all its two-way interactions.

Prediction profiler

To further interpret the data a prediction profiler was used. The profiler is an interactive
tool that separately plots the predicted response function and 95 % confidence interval as
function of all main factors. It allows the value of one main factor to be changed while the
others are held constant at the current values. When a value is changed, the profiler traces
the predicted response, updating all plots simultaneously. Example prediction profiler plots
are shown in figure 4.5 on page 44.

To some extent, the importance of a factor can be assessed by the slope of the prediction
trace. The profiler also allows the detection of interaction effects, since the slope and
curvature in the plots of other factors will shift by modifying one factor. If the profiler only
changes in height, not in slope or shape, then there are no interaction effects present.
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4.5 Results
An overview of the most important factors as function of time point and design is given in
table 4.4. More detailed information can be found in appendix B where the most important
factors are set in bold.

4.5.1 Resolution IV fractional factorial design

According to the screening analysis, the amount of bone formation during the early stage
(day 7 post implantation) was most influenced by the initial amount of bone (b0), the
optimal calcium concentration for differentiation (F12) and the threshold growth factor
concentration for differentiation (H11). The mid stage (day 21 post implantation) was
sensitive to the same factors, whereas the late stage (42 days post implantation) was only
influenced by the initial amount of bone (b0). For all the time points H11, F12 and b0
are characterised by the highest sum of squares in a stepwise regression analysis, thereby
confirming the previous result. The three different response goals (i.e. “match target”,
“maximise” and “none”) do not yield different results.

4.5.2 Latin hypercube design

A scatterplot matrix confirmed that the levels of each factor are evenly spaced across the
entire range. At all time points the amount of bone formation was most influenced by
the initial amount of bone (b0) and the amount of calcium taken up by osteoblasts for
hydroxyapatite production (JLeaky). According to the stepwise regression, JLeaky (45%),
b0 (25%) and Hgb (20%) contribute the most to the early stage, JLeaky (33%), Hgb (25%)
and acm (17 %) to the mid stage and JLeaky (39%), b0 (18%) and Hgb (16%) to the late
stage. These results are similar to the performed screening experiment. The results were
also modelled as a Gaussian process. As can be seen in tables B.2, B.3 and B.4 there is a
large difference between the total sensitivity and the main effect. This means that factor
interactions have an essential contribution to the overall importance of the factor. If the
total sensitivity is taken as a measure of importance, acm, Pbb and JLeaky are the most
important factors for the early stage, JLeaky, bcb and cm0 for the mid stage and JLeaky, ccb
and bcb for the late stage of bone formation. Similar results are obtained, if the main effect
is taken as a measure of importance. However, there are two exceptions: H11 is more
important than cm0 at day 21 and b0 is more important than ccb at day 42. The three
different response goals (i.e. “match target”, “maximise” and “none”) do not yield different
results.

4.5.3 Uniform design

A scatterplot matrix confirmed that the levels of each factor are evenly spaced across the
entire range. At all time points the amount of bone formation was most influenced by
Km, F11 and cb0. Y11 was also statistically significant for the amount of bone formation at
day 7 post implantation. These screening results were at all time points confirmed by the
stepwise regression. The results were also modelled as a Gaussian process. Tables B.5, B.6
and B.7 show that there is a large difference between the total sensitivity and the main
effect. This means that the interactions between factors are very important in the calcium
model. If the total sensitivity is taken as a measure of importance, F11, cb0 and Ca0 are the
most important factors at all stages. Similar results are obtained, if the main effect is taken
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as a measure of importance. However, there is one exception: Km is more important than
Ca0 for the amount of bone formation at day 42 post implantation. The three different
response goals (i.e. “match target”, “maximise” and “none”) do not yield different results.

4.6 Discussion

Both the screening analysis and the stepwise regression gave similar results for the fractional
factorial design at all the time points. This conclusion is also valid for the LH and uniform
design. The Gaussian process does not, however, yield similar results as the screening
analysis or the stepwise regression (table 4.4). Some factors do reoccur, but their relative
importance has shifted (e.g. JLeaky is the most important factor according to a regression
analysis on the data of the LHD for day 7 (SS=0.44), whereas it is second in the Gaussian
process (TS=0.17)). Moreover, some factors that were not important in the regression
or screening analysis have a large influence in the Gaussian model, e.g. Ca0 has a total
sensitivity of 55% in the Gaussian model of the data of the uniform design at day 21, but
this factor does not appear in the results of the other analyses.

The fractional factorial design indicates b0, F12 and H11 as the most influential factors.
These results vary little over the different time points, and are the same for both the
screening and regression analysis. It is logical that the initial amount of bone formation
(b0) has an effect on the total amount of bone formation. H11 represents the threshold
concentration of growth factors that is necessary for the differentiation of MSCs towards
osteoblasts. F12 is the optimal calcium concentration for differentiation. Both factors
are parameters in the same term, i.e. F1, and can thus be considered important for
differentiation.

According to the LHD, other factors than b0, F12 and H11 are important, although b0
remains an important parameter. Since these factors shift from time point to time point,
the different stages will be discussed separately. Taking together the three different methods
of analysis, b0, JLeaky, Hgb, acm and Pbb are the most influential factors for the amount of
bone formation at day 7 post implantation. These parameters appear in different terms in
the set of equations (equations (3.11) - (3.16)). The amount of bone formation at 21 days
is mostly determined by JLeaky, b0, acm, Hgb, ccm, bcb and cm0. The first four of these
parameters are also important for the bone formation at day 7. b0, JLeaky, Hgb, ccb and bcb
are the most important factors for the amount of bone formation at day 42. Again, some
of these factors are also important for the bone formation at the other time points. Both
acm and ccm, as well as bcb and ccb, represent the calcium dependency of the proliferation
of MSCs and osteoblasts respectively. cm0 is also important for proliferation, since it
determines the starting point on the logistic growth function. These factors can thus be
considered important for proliferation.

The uniform design yields other results than the fractional factorial or LH design. The
factors do not shift from time point to time point. Taking together the three different meth-
ods of analysis, Km, F11, cb0 and Ca0 are the most influential factors. These parameters
are present across the set of equations.

It is clear that the three designs yield different results, although some similarities exist.
Firstly, the initial conditions appear in all the results, clearly indicating their importance.
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4. Sensitivity analysis by design of experiments

Secondly, the influential factors are usually present across the entire set of equations,
suggesting that interactions are potentially important. Although the factors are scattered,
the fractional factorial design indicates more differentiation-related terms, whereas the
proliferation-related factors are considered to be influential by the LHD. Notice, however,
that different factors in one term can possibly work in other directions, thus effectively
cancelling out the combined effect. This, again, implies the importance of investigating the
interactions present in the calcium model.

Figure 4.5: Prediction profiler plots for the amount of bone formation at day 7 for different
designs and factors. The y-axis displays the amount of bone formation, the x-axis the range
of the corresponding factor. The dashed blue line represents the 95% confidence interval.

Figure 4.5 shows some profiles for the amount of bone formation at day 7. There are
some striking differences between the three designs and between the factors displayed here.
The fractional factorial design only used two levels. The intermediate values are represented
by a linear relationship between the lower and upper limit. This is a serious disadvantage
of the technique, since it does not allow modelling of non-linearity, which is clearly present
in the calcium model (observe e.g. the profile of bone formation as function of Ca0 in the
uniform design)!

As mentioned in section 4.4.4, the importance of a factor can be assessed by the slope
of the profile plot. For the fractional factorial design this means that H11 and b0 are more
important than F11, which is indeed the case, if one looks at table 4.4. A similar conclusion
can be drawn for the other two designs. Remark as well, that the amount of bone formation
can be maximised by lowering a factor (e.g. acm in LHD) or by increasing a factor (e.g.
Ca0 in uniform design). It is important to realise, however, that the slope and shape of the
curves can change when the value of another factor is altered. This is illustrated in figure
4.6.
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Figure 4.6: Prediction profiler plots for the amount of bone formation at day 7 for the
fractional factorial and uniform design. The y-axis displays the amount of bone formation,
the x-axis the range of the corresponding factor. The dashed blue line represents the 95%
confidence interval. Note that the profiles of Ca0 change as the value of cb0 is altered.
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4. Sensitivity analysis by design of experiments

For the fractional factorial design, the profile of the amount of bone formation as
function of Ca0 decreases in height for increasing values of cb0, but not in slope or shape.
This is clearest, if one compares the left and right most pictures in figure 4.6 (cb0 = 0 and
cb0 = 1). According to section 4.4.4, this suggests that there are no interactions present
between these two factors. This also holds for the other factors included in the analysis.

The parameter interactions cannot be grasped with the fractional factorial design,
since it has only two levels and the resolution is too low. As explained in section 4.3, in
a resolution IV design no main effects are confounded with other main effects or with
any two-factor interactions, but two-factor interactions are confounded with each other.
This means practically that only conclusions on the main effects can be drawn, since the
interactions are confounded with each other. The use of only two levels implies a linear
profile, which will obviously not capture the nonlinearities that are present. In conclusion,
the low spatial and design resolution limit the accuracy of the fractional factorial method.

Looking at the results of the uniform design in figure 4.6, the profiles change drastically
in shape when the value of cb0 is altered, which means there is a high interaction between
cb0 and Ca0. In table B.5 one can also remark an interaction value of 0.16, which confirms
the previous observation. These interactions can be founded by a more biological point of
view. As the initial amount of osteoblasts (cb0) increases, the optimal calcium concentration
increases as well (the peak in figure 4.6 shifts towards the right). This is logical since
these osteoblasts need calcium to survive, proliferate and make hydroxyapatite nodules.
A higher initial osteoblast concentration thus implies a higher need for calcium which is
nicely reflected in the profiles. Interestingly, the amount of bone formation goes down
with increasing initial concentration of osteoblasts (cb0). This result is counterintuitive
since the osteoblasts are the key to bone formation. These bone cells use, however, a
lot of calcium that might be necessary for other (metabolic) processes. Moreover, it
might be more optimal to go through all the different sequential events of bone formation
(proliferation, differentiation and matrix production) in contrast with starting halfway
through the biological process. Or, in other words, to try to mimic the biological processes
as well as possible by starting with MSCs instead of osteoblasts. This concept is not new,
and is commonly known in developmental biology as “path-dependence”. “Path-dependence”
means that each developmental stage depends on the previous ones, and that these previous
stages provide the optimal conditions for the next stages [Lenas et al., 2009]. From this
point of view, the initial osteoblast concentration should indeed be low, as was predicted
by the sensitivity analysis.

Another example is the interaction between Kb and Ca0 (interaction value of 0.12 in
table B.5). As can be seen in figure 4.7, the optimal initial calcium concentration decreases
as Kb is increased (the calcium peak shifts to the left). This can be biologically explained
in the following way. As Kb is increased, the peak in factor Ab decreases, meaning that the
proliferation is less stimulated at low values of collagen matrix (m) (see figure 4.8). Since the
initial proliferation of osteoblasts is less, less calcium is necessary to sustain their metabolic
activity. Hence, the optimal calcium concentration decreases. Remarkably, the amount
of bone formation increases with increasing value of Kb. This is again a counterintuitive
result since Ab goes down with increasing Kb. Biologically this might be explained by
the fact that bone formation is a slow process in which only some osteoblasts make the
hydroxyapatite nodules instead of a lot of cells that would simply consume all the calcium
in the environment. This suggestion of an optimal osteoblast cell density should be verified
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Figure 4.7: Prediction profiler plots for the amount of bone formation at day 7 for the
uniform design. The y-axis displays the amount of bone formation, the x-axis the range
of the corresponding factor. The dashed blue line represents the 95% confidence interval.
Notice that the profile of Ca0 changes as the value of Kb is altered.

Figure 4.8: The proliferation factor Ab = Ab0.m
K2
b

+m2 as function of m for different values of
Kb.

experimentally. The previous interpretations were done for the amount of bone formation
at 7 days. Similar conclusions can, however, be drawn for the other time points.

Like the uniform design, the LHD also shows some interesting features. Firstly, the
interactions between factors are a lot smaller compared to the uniform design, the highest
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4. Sensitivity analysis by design of experiments

Figure 4.9: Prediction profiler plots for the amount of bone formation at day 7 for
the LHD. The y-axis displays the amount of bone formation, the x-axis the range of the
corresponding factor. The dashed blue line represents the 95% confidence interval. Notice
that the profile of cm0 changes as the value of acm is altered.

interaction value is 0.0363 for Pbb and JLeaky whereas cb0 and Ca0 have an interaction
value of 0.16 in the uniform design (see tables B.2 and B.5). Secondly, these results can
also be interpreted from a biological point of view. As can be seen in figure 4.9, the
optimal initial concentration of MSCs shifts from the right to the left when acm is increased.
This implies that less MSCs are necessary for bone formation. This is a logical result
since acm determines how much the proliferation of MSCs is stimulated at the optimal
calcium concentration. At high values of stimulation, lower initial cell concentrations
are more optimal. Too high initial concentrations are even unfavourable since these cells
would consume all the calcium. Remark that the amount of bone formation goes down by
increasing the value of acm. This again confirms that bone formation is a slow process in
which only a small amount of cells participate. Like for the osteoblasts, there seems to be
an optimal MSC density at which these cells “work” most efficiently. This hypothesis is
supported by the experimental results of Kruyt et al. [2008]. They determined an optimal
bone marrow stromal cell density (BMSC density) of 8.106 BMSCs

cm3 for bone formation in a
BCP scaffold. This suggestion should, however, be further investigated experimentally.

The results obtained from the LHD should be interpreted with caution. As mentioned
in section 4.3, the LHD is well-suited for monotonic response functions, but may not be
adequate for non-monotonic response functions. This does not necessarily imply that
non-monotonic response functions, like the ones of the calcium model presented here, are
incorrect. It means that their non-monotonicity may not be fully accounted for, in a similar
- albeit much less pronounced - way as that non-monotonicity cannot be accounted for by
the fractional factorial design. There are clearly a lot of differences between the uniform
design and the LHD. They both assign different factors to be important, and the interaction
values are much lower in the LHD. These differences might be caused by the fact that the
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calcium model is clearly not monotonic. Hence, the results of the LHD might not be valid,
even though some biological interpretation can be given to the results.

The prediction profiler also allows to determine the parameter set that would maximise
the (predicted) amount of bone formation. This was tested for the uniform design at days
7, 21 and 42. Appendix C shows the sets of optimal parameter values corresponding to
the different time points. The simulations in Matlab showed an increase in bone formation
with respect to the standard value at all time points. The increase was, however, not
the one predicted by the statistical model (35% versus 100% bone formation). This
discrepancy could be explained by the fact that only 80 runs were included in the statistical
model, whereas more data points might be necessary. It is also possible that the examined
region was undersampled. This suggestion should be further investigated since the found
discrepancy between the statistical predictions and simulation results questions the validity
of the employed uniform design.

Given that the fractional factorial design is not satisfactory, due to the lack of non-
linearities and interactions, and the LHD, due to the restricted applicability to monotonic
response functions, the uniform design probably yields the best results. The results of
the uniform design should, however, also be interpreted with caution, due to the found
discrepancy between the statistical predictions and simulation results. Designs with more
runs should be investigated for both the LHD and uniform design and this might even lead
to a better correspondence between the results of both designs.

There are some conclusive remarks that need to be made. Firstly, the profiles were
calculated for a certain set of parameter values (standard values). When the values of
other parameters than the ones displayed in figures 4.6, 4.7 and 4.9 change, the profiles
might change as well, due to the interactions. Secondly, the sensitivity analysis is able
to identify the most important factors within the chosen parameter space. Likewise, the
results of the parametric study depend on the outcome criteria that were defined. If the
parameter ranges or the responses would be altered, a different result could be obtained
[Saltelli et al., 2000]. Thirdly, the results of the study are based on a particular model,
namely the calcium model, and should as such not be directly extrapolated to other similar
computational models. Finally, some variables, which are suggested to have an important
influence on the outcome, have not yet been adequately characterised and quantified. The
uniform design indicates Ab0, cb0, b0 and Ca0 as influential factors, but their range was
estimated in a conservative way. More attention should be paid to these variables, and
more experimental studies should investigate the influence of the initial conditions on the
amount of bone formation. Moreover, the sensitivity analysis has led to some interesting
biological hypotheses that need to be explored experimentally.

4.7 Conclusion

This chapter illustrates the potential of sensitivity analysis methods for evaluating computa-
tional model parameters. Firstly, the difference between computer and physical experiments
was discussed. Secondly, an overview was presented of the different methods for computer
experiments that are commonly used in biomedical literature. The overview discussed
the strengths and shortcomings of each method. To compare the different methods, three
different designs were used to determine the most influential parameters of the calcium
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model. The resolution IV fractional factorial design was not satisfactory for the specific
model under study, since it could not capture the non-linearities and higher-order parameter
interactions. The latin hypercube design yielded some logical results, although these were
different from the results of the uniform design. This discrepancy could be explained by
the lack of support for non-monotonic response functions. The results of the uniform
design should also be interpreted with caution due to the found discrepancy between the
statistical predictions and simulation results. Some of the parameters that were indicated
as influential, have not yet been fully characterised and quantified. The results of the
uniform design also suggested some new insights in the biology of bone formation. Future
experiments should preferentially focus on establishing the unknown parameter values and
explore some of the suggested biological hypotheses that might further unravel the process
of bone formation in CaP scaffolds.
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Chapter 5

Extended calcium model

5.1 Introduction

In this chapter the development of an extended calcium model is elaborated. The main
objective is to extend the calcium model proposed in chapter 3 with spatial coordinates (x
and y). Section 5.2 describes the functional forms and equations of the extended model.
The derivation of the parameters is explained in the following section (5.3). Section 5.4
provides information on the different simulation details. An overview of the simulations
that were carried out using the extended calcium model is given in section 5.5. The results
and simplifications of the mathematical model are thoroughly discussed in section 5.6.
To conclude this chapter, the most important findings are recapitulated together with
suggestions for further improvements of the extended calcium model.

5.2 Mathematical framework

The presented mathematical model is an extension of the calcium model. It is built on the
model proposed by Geris et al. [2008]. The extended calcium model consists of six partial
differential equations and describes the effect of calcium phosphates as a spatiotemporal
variation of six variables: calcium concentration (Ca), MSC density (cm), osteoblast density
(cb), mineral matrix density (b), collagen matrix density (m) and a generic, osteogenic
growth factor concentration (gb). The sum of the mineral matrix and the collagen matrix
represents the total bone density. The following sections describe the individual terms.

Mesenchymal stem cells

The migration of MSCs is a combination of random (-kinesis) and directed (-taxis) motion,
in response to gradients of soluble signals (chemo-) and gradients of cell-substrate adhesion
(hapto-) [Pountos and Giannoudis, 2005; Thibault et al., 2007; Spaeth et al., 2008]. The
random motion is modelled as a haptokinetic process. The form of the haptokinetic
coefficient (Dm) was adopted from Olsen et al. [1997], based on experimental data of
Dickinson and Tranquillo [1993]. The random motion is influenced by the matrix density
(m) since cells cannot move in the absence of a substrate for attachment (Dm = 0 for m = 0)
[Olsen et al., 1997]. Moreover, in the abundance of extracellular matrix, cell movement is
restricted (Dm → 0 as m→∞) [Olsen et al., 1997].
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5. Extended calcium model

Dm = Dhm.m

K2
hm +m2 (5.1)

The form of the chemotactic coefficients (CmgbCT and CmcaCT ) was adopted from Geris
et al. [2008]. Geris et al. [2008] model the chemotactic motion with a receptor-kinetic form
that gives a maximal chemotactic response at a particular growth factor concentration.
The chemotactic response of MSCs depends on osteogenic growth factors (CmgbCT ) and
extracellular calcium (CmcaCT ).

CmgbCT =
CgbCTm.gb
K2
gbCTm + g2

b

(5.2)

A similar functional form was used for the chemotactic response to Ca2+ since it is also
receptor-mediated [Saidak et al., 2009; Aguirre et al., 2010; Olszak et al., 2000].

CmcaCT = CcaCTm.Ca

K2
caCTm + Ca2 (5.3)

Based on a kinetic analysis of a model mechanism for the cell-surface-receptor-extracellular-
ligand binding dynamics [Sherratt, 1994], Olsen et al. [1997] derived a haptotactic coefficient
(CmHT ). The same functional form is adopted here.

CmHT = CkHTm
(KkHTm +m)2 (5.4)

The functions that were used to model the proliferation and differentiation of MSCs in
the calcium model are adopted here (see section 3.2).

Osteoblasts

The motion of osteoblasts is not included in the extended calcium model since differentiated
cells are often considered to be less motile [Zahor et al., 2007]. The functions that were
used to model the proliferation and differentiation of osteoblasts in the calcium model are
adopted here (see section 3.2).

Collagen and mineral matrix

The spatiotemporal evolution of the collagen and mineral matrix were modelled as in the
calcium model (see section 3.2).

Calcium

The local concentration of calcium plays an essential role in most of the aforementioned
processes. Calcium ions are able to migrate inside the biomaterial, simulated here by a
diffusion process with a constant diffusion rate (Dca). Since Ca2+ can be bound to large
molecules, thereby reducing the diffusion, an effective diffusion coefficient is used here
[Keener and Sneyd, 2009].
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Generic growth factor

Besides calcium, growth factors also play a key role in a lot of the modelled processes.
Growth factors are able to migrate inside the porous biomaterial, modelled here by diffusion
process with a constant diffusion rate (Dgb). The functions that were used to model the
production and removal of growth factors in the calcium model are adopted here (see
section 3.2).

Set of equations

This leads to the following set of non-dimensionalised equations, where the tildes are omitted
for simplicity:

∂m

∂t
= Pbs.(1− κb.m).cb (5.5)

∂cm
∂t

= ∇
(
Dm∇cm − CmcaCT cm∇Ca− CmgbCT cm∇gb − CmHT cm∇m

)
(5.6)

+Am.cm.(1− αm.cm)− F1.cm − dcm.b.cm (5.7)
∂gb
∂t

= ∇ (Dgb∇gb) + Egb.cb − dgb.gb (5.8)

∂cb
∂t

= Ab.cb.(1− αb.cb) + F1.cm − db.cb (5.9)

∂b

∂t
= Pbb.(0, 95− κbb.b)6.cb (5.10)

∂Ca

∂t
= ∇ (Dca∇Ca) + σ.(Ca∞ − Ca)− Jleaky.cb.

Ca

HCa4 + Ca
(5.11)

−dCa.Ca.(cb + cm) (5.12)

The scaling factors that were chosen for non-dimensionalisation, as well as the non-
dimensionalised model parameter values can be found in section 5.3.2.

5.3 Parameters

5.3.1 Parameter values

The parameter values were derived from experimental data and from literature where
possible. Only the parameters that form an extension or adaptation of the calcium model
in chapter 3 are discussed here.

Haptokinesis

Geris et al. [2008] report diffusion constants in the orders of magnitude of 10−8 to 10−6

cm2/s, depending on the cell type under investigation and experimental conditions [Gruler
and Bültmann, 1984; Friedl et al., 1998; Rupnick et al., 1988]. Geris et al. [2008] determined
the haptokinetic coefficient (Dm) in the following way: the maximum rate of cell motility
occurs at a matrix density ofm = Khm, yielding a value of Dhm = 2.Khm.D. The parameter
Khm was chosen positive and higher than the initial matrix density. The same values are
adopted here.
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5. Extended calcium model

Chemotaxis

Geris et al. [2008] model the migratory response to increasing growth factor concentrations
as a bell-shaped curve, based on experimental studies. They report a maximal chemotactic
response for growth factor concentrations of 1 to 10 ng/ml. The values, as determined by
Geris et al. [2008] from experimental evidence, are adopted here.

Many experimental studies have investigated the chemotactic response of monocytes [Olszak
et al., 2000], osteoblasts [Godwin and Soltoff, 1997], breast cancer cells [Saidak et al., 2009]
and bone marrow progenitor cells [Aguirre et al., 2010] to Ca2+. They report a Gaussian
distribution with a maximal effect achieved at concentrations of 3-10 mM Ca2+ [Aguirre
et al., 2010]. Maximal chemotactic response is reported for calcium concentrations of
5 mM [Godwin and Soltoff, 1997] and 4.5 mM [Olszak et al., 2000]. The values of the
parameters of the functional form (equation (5.3)) are determined from these experimental
observations, since there are no reports on the chemotactic response of MSCs to Ca2+

available in literature.

Haptotaxis

For the haptotactic coefficient, Geris et al. [2008] assign values in the same order of
magnitude as those of the chemotactic coefficients. This assumption was made due to a
limited amount of available data. The same values are used here.

Diffusion

Geris et al. [2008] determined the value the diffusion coefficient of the osteogenic growth
factor (Dgb) from its molecular weight. Using a relation developed by Vander et al. [1998],
Geris et al. [2008] calculated orders of magnitudes of 10−8 cm2/s.

The effective diffusion coefficient of Ca2+ was determined from Keener and Sneyd [2009].

5.3.2 Scaling and non-dimensionalisation

The following scaling factors were chosen for the non-dimensionalisation of the model
variables:

t̃ = t

T
, c̃m = cm

c0
, c̃b = cb

c0
, x̃ = x

L
, ỹ = y

L
, m̃ = m

m0
, b̃ = b

m0
, g̃b = gb

g0
, C̃a = Ca

Ca0

The time scale and length scales of T = 1 day and L = 3.5 mm were taken from Geris
et al. [2008], based on studies of Harrison et al. [2003]. Representative concentrations for the
collagen content (m0 = 0.1 g/ml) and growth factors (g0 = 100 ng/ml) are adopted from
Geris et al. [2008]. A typical value for the cell density (c0 = 106 cells/ml) is derived from
Bailón-Plaza and van der Meulen [2001]. The scaling factor for the calcium concentration
was assumed to be equal to the extracellular calcium concentration (1 mM).

The model parameters were non-dimensionalised as follows (the tildes represent the
non-dimensional parameters):

P̃bs = Pbs.c0.T

m0
, κ̃b = κb.m0, ˜Am0 = Am0.T

m0
, K̃m = Km

m0
, ˜acm = acm

Ca0
,
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˜bcm = bcm
Ca0

, ˜ccm = ccm
Ca0

, α̃m = αm.c0, H̃11 = H11
g0

, Ỹ11 = Y11.T,

G̃gb =
Ggb.T.c0

g0
, H̃gb =

Hgb
g0

, d̃gb = dgb.T, Ãb0 = Ab0.T

m0
, K̃b = Kb

m0
,

ãcb = acb
Ca0

, b̃cb = bcb
Ca0

, c̃cb = ccb
Ca0

, α̃b = αb.c0, d̃b = db.T, P̃bb = Pbb.c0.T

m0
,

κ̃bb = κbb.m0, σ̃ = σ.T, ˜Jleaky =
Jleaky.T.c0

Ca0
, ˜HCa4 = HCa4

Ca0
, ˜dCa = dCa.T.c0,

F̃11 = F11, F̃12 = F12, ˜Gcon = Gcon.c0, ˜Hcon = Hcon
g0

, ˜dcm = dcm.m0.T,

˜Dhm = Dhm.T

L2.m0
, ˜Khm = Khm

m0
, ˜CgbCTm =

CgbCTm.T

L2 , ˜KgbCTm =
KgbCTm
g0

,

˜CcaCTm = CcaCTm.T

L2 , ˜KcaCTm = KcaCTm
Ca0

, ˜CkHTm = CkHTm.T

L2.m0
,

˜KkHTm = KkHTm
m0

, D̃gb =
Dgb.T

L2 , D̃ca = Dca.T

L2 , ˜Ca∞ = Ca∞
Ca0

This results in the following set of non-dimensionalised parameter values:

P̃bs = 0.1, κ̃b = 1, ˜Am0 = 0.85, K̃m = 0.1, ˜acm = 5.98, ˜bcm = 3.33,
˜ccm = 1.67, α̃m = 1, H̃11 = 14, Ỹ11 = 10, G̃gb = 350, H̃gb = 1,
d̃gb = 50, Ãb0 = 0.202, K̃b = 0.1, ãcb = 41.82, b̃cb = 5.06, c̃cb = 1.9,
α̃b = 1, d̃b = 0.1, P̃bb = 0.0471, κ̃bb = 1, σ̃ = 0, ˜Ca∞ = 50, ˜Jleaky = 750,

˜HCa4 = 0.01, ˜dCa = 100, F̃11 = 8, F̃12 = 1.5, ˜dcm = 1.5, ˜Gcon = 1, ˜Hcon = 0.001
˜Dhm = 0.014, ˜Khm = 0.25, ˜CgbCTm = 0.04, ˜KgbCTm = 0.1, ˜CcaCTm = 1.6,

˜KcaCTm = 8, ˜CkHTm = 0.0034, ˜KkHTm = 0.5, D̃gb = 0.005, D̃ca = 0.4973

5.4 Simulation details

Geometrical domain

The numerical simulations are performed on a simplified representation of a pore in a CaP
scaffold. Commercially available scaffolds (e.g. NuOssTM ) have typically macropores of
200-600 µm. The CaP spicule was assumed to have dimensions of ± 5 µm as can be seen
in figure 2.2. Figure 5.1 shows a schematical representation of the geometrical domain.

Initial conditions

At the start of the simulation there are MSCs (c̃m,ini = 0.0001) and growth factors
(g̃b,ini = 15) present. The calcium concentration is assumed equal to the normal extracellular
concentration (C̃aini = 1). Only a very small amount of collagen matrix (m̃ini = 0.01)
is present at the beginning of the simulation. All other variables are assumed to be zero
initially.

55



5. Extended calcium model

Figure 5.1: Geometrical domain of the extended calcium model. 1: pore, 2: CaP spicule.
The Dirichlet boundary condition of Ca is also indicated.

Boundary conditions

The set of partial differential equations was completed by suitable boundary conditions.
When the CaP scaffold is ectopically implanted, proteins will adsorb on the surface of the
biomaterial. This adsorbed protein layer will influence the dissolution behaviour of the
implanted scaffold. To take this decrease in calcium release into account, a time-dependent
Dirichlet boundary condition was specified for Ca. It is assumed that after 15 days the
calcium release decreases by 50 % (C̃abc = 20 → C̃abc = 10).

Numerical implementation

The set of non-linear partial differential equations was implemented in Matlab (The
MathWorks, Inc.). To solve the set of taxis-diffusion-reaction equations efficiently, a specific
code created by Gerisch and Chaplain [2006] and adapted by [Gerisch and Geris, 2007],
was used. This finite volume code was specifically developed for biological systems and can
be used for 2D or 3D axi-symmetric geometries.

5.5 Results

The results of the simulation are shown in figure 5.2. The calcium concentration initially
increases near the CaP spicule, causing the MSCs to proliferate (see figure 5.2, day 27).
The conditions of the micro-environment are favourable so that the MSCs differentiate.
The newly formed osteoblasts start to produce collagen matrix and growth factors. At 54
days, the collagen matrix is mature and the bone formation starts. The cell population
gradually decreases and after 90 days the pore is filled with 25 % bone. Notice that the
CaP spicule plays a key role in initiating the biological process.
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Figure 5.2: Spatiotemporal evolution (days post implantation) of MSC density (cm),
osteoblast density (cb), collagen matrix density (m), mineralised matrix density (b), growth
factor concentration (gb) and calcium concentration (Ca).

5.6 Discussion

Unfortunately, there are no experimental data available to corroborate the predicted results.
Some general remarks can, however, be made.

Firstly, as can be seen in figure 5.2, cells can proliferate and migrate anywhere in the
geometrical domain. Biologically this is not possible, since osteogenic cells are anchorage-
dependent, they need a substrate to grow on. The use of non-local terms in the set of
equations is a possible solution for this simplification [Lee et al., 2001; Gerisch and Chaplain,
2008]. This mathematical tool allows to test whether a substrate is present in a small
environment around the cell. If this is indeed the case, the cell will be able to migrate and
proliferate.

Another interesting phenomena that could be incorporated in the mathematical de-
scription is the problem of moving boundaries. During the dissolution of the CaP spicules
Ca2+ is released and consequently the CaP spicule decreases in size. This means that the
boundary conditions for Ca shift in space. A more rigorous description of this simplification
could further improve the accuracy of the simulations.

Furthermore, the current calcium model does not include angiogenesis. The invasion of
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5. Extended calcium model

blood vessels will present an additional source of calcium ions and growth factors and will
locally create a more favourable environment for proliferation, differentiation and finally
bone formation. Further research should certainly focus on this aspect.

Finally, the simplifications of the 1D model are also applicable here.

5.7 Conclusion
In this chapter the extension of the calcium model with spatial coordinates was elaborated.
It includes some key features such as proliferation, differentiation and migration. The current
chapter focussed primarily on the correct modelling of migration, including the chemotactic
response to Ca2+. Numerical simulations were performed on a simplified representation of
a pore in a CaP scaffold and interpreted with a biological point of view. Future research
should focus on the incorporation of non-local terms and a correct description of moving
boundaries. The extension of the mathematical model with angiogenesis could further
improve the accuracy of the predicted results.
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Chapter 6

Conclusion

The need for bone tissue regeneration is continuously increasing, due to the improvement of
the quality of life and the improvement of life expectancy. Millions of fractures occur yearly
worldwide, of which 5-10 % result in a delayed union or in a non-union. In order to find better
solutions for the healing of large bone defects and non-unions, it is important to understand
the complex process of bone formation, involving the participation of many different cell
types and regulated by countless biochemical and mechanical factors. Mathematical models
can help to explain and understand the underlying principles of this complex phenomenon
and further unravel the interactions between the different influential factors.

It can be concluded from chapter 2 that calcium plays a key role in regulating the
different subprocesses underlying osteogenesis. Hence, this Master’s thesis focussed on the
influence of calcium on the activity of osteogenic cells, resulting in the presented (extended)
calcium model. The calcium model described in chapter 3, is inspired by the bioregulatory
model of Geris et al. [2008]. However, some important simplifications and adaptations were
made: some cell types and tissues were not included, the influence of calcium on proliferation,
differentiation and migration has been modelled using literature and experimental data and
some parameter values were altered to fit the current application of the model. The results
of the calcium model have been successfully corroborated by comparison with experimental
data from literature. Moreover, application of the calcium model to the set-up of bone
formation, allowed to simulate a decalcified scaffold and insufficient cell seeding conditions.
Simulations of these adverse biological situations predicted the formation of little or no
bone, as was found experimentally. Moreover, the calcium model was used to design a
therapeutic strategy for insufficient cell seeding in silico.

Chapter 4 provides an in depth discussion of the sensitivity analysis that was performed
to determine the most influential parameters of the calcium model. This Master’s thesis
explored three different designs. The resolution IV fractional factorial design was not
satisfactory for the specific model under study, since it could not capture the non-linearities
and higher-order parameter interactions. The latin hypercube design yielded some logical
results, although these were different from the results of the uniform design. This discrepancy
could be explained by the lack of support for non-monotonic response functions. The results
of the uniform design should also be treated with caution due to the difference between the
statistical predictions and simulation results. Designs with more runs should be investigated
for both the LH and uniform design.

Some of the parameters that were indicated as influential, have not yet been fully
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6. Conclusion

characterised and quantified. More attention should be paid to these parameters in future
experiments. The results of the uniform design also suggested some new insights in the
biology of bone formation, i.e. the existence of an optimal osteoblast and MSC concentration
during bone formation. The concept of “path-dependence” is also supported by the results
of the sensitivity analysis.

The last chapter presented an extension of the calcium model with spatial coordinates
thereby focussing primarily on the correct modelling of migration, including the chemotactic
response to Ca2+. Numerical simulations were performed on a simplified representation
of a pore in a CaP scaffold and interpreted with a biological point of view. Although the
extended calcium model could not be corroborated, it provides a proof of concept and
first step towards a more complete spatiotemporal description of the influence of CaP
biomaterials on ectopic bone formation.

Future experiments should preferentially focus at establishing the unknown parameter
values related to the calcium release rate, the calcium uptake for hydroxyapatite production,
the growth factor consumption, the apoptosis rate of MSCs and the calcium uptake for
metabolic functions. Some of the suggested biological hypotheses should also be further
explored. An accurate identification of the calcium release rate would allow in silico testing
of specific biomaterials, as well as, the determination of optimal seeding densities for these
different bioapatites. The importance and effect of the initial conditions should also be
verified experimentally.

The performed sensitivity analysis successfully compared three different methods. How-
ever, some discrepancies that were found question the validity of the results. It is necessary
to further explore the possibilities of these techniques by testing designs with more runs
and focussing on the most important factors.

The mathematical model can be refined in several ways as well. Firstly, other cell
types and tissues can be included to not only predict intramembranous ossification but also
endochondral ossification. Secondly, the influence of organophosphates can be taken into
account to provide a more complete description of mineralisation. Thirdly, the incorporation
of non-local terms and a correct mathematical description of moving boundaries could
further improve the calcium model. Finally, the extension of the calcium model with
angiogenesis, which represents an additional source of growth factors and calcium, would
further increase the accuracy of the mathematical framework in the spatial domain.

Currently, the (extended) calcium model can be used to predict the past, by simulating
normal and adverse bone formation conditions. As was stated by van der Meulen and
Huiskes [2002], the ultimate objective, however, should be to predict the future, by using
the model to facilitate the screening of new biomaterials and to design novel therapeutic
strategies in silico.

60



Appendices

61





Appendix A

Determination of the proliferation
parameter values

Bailón-Plaza and van der Meulen [2001] derived for their model the values of the parameters
Am0, Km, Ab0 andKb of the proliferation functions for MSCs and osteoblasts. Similar values
were adopted in the calcium model. The parameters acm, bcm, ccm, acb, bcb and ccb that
characterise the Gaussian dependency on the calcium concentration, were determined from
unpublished experimental data provided by Yoke Chin Chai [Lab for Skeletal Development
and Joint Disorders, K.U. Leuven, Belgium].

The total DNA content was measured at different time points (day 1, 3, 7, 14, 21
and 28) and calcium concentrations (0, 2, 4, 6, 8 and 10 mM). The data measured at 7
days were assumed to be representative of MSC proliferation, whereas the data measured
at 28 days were assumed to be representative of osteoblast proliferation. The data were
normalised with respect to the total DNA content measured at day 1. Since the 0 mM
calcium concentration means that no exogenous calcium was added to the culture medium,
which originally contained 1.8 mM of calcium, an offset was introduced to compensate
for this effect. However, as can be seen in figure A.1, the proliferation is not zero at 0
mM. Therefore, the values of Am and Ab are set to zero in the simulation code when the
calcium concentration decreases below a certain threshold. A least-square fitting through
the experimental data determined the parameters acm, bcm, ccm, acb, bcb and ccb of the
Gaussian distributions.

Figure A.1 illustrates the proliferation as function of calcium concentration. The fitted
Gaussian distributions correspond well to the values found in literature. The Gaussian
distribution predicts an optimal proliferation of MSCs in a range of 2-4 mM Ca2+. This is
similar to data found in literature, i.e. Liu et al. [2009] report an optimal concentration of
1.8 mM. Maeno et al. [2005] measured maximal proliferation of osteoblasts at 5 mM Ca2+,
this is again nicely predicted by the fitted Gaussian function. The data also suggest that
osteoblasts are more sensitive to Ca2+ than MSCs (factor 25 versus 7 in figure A.1). This
hypothesis should, however, be further investigated experimentally.
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A. Determination of the proliferation parameter values

Figure A.1: Proliferation factor of MSCs and osteoblasts as function of calcium concen-
tration.
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Results of the sensitivity analysis
by DOE
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B. Results of the sensitivity analysis by DOE
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Appendix C

Most beneficial parameter sets for
the amount of bone formation

The prediction profiler plots were used to determine the parameter values that result in
a maximal amount of bone formation at the different time points. The non-influential
parameters were set at their standard value (see table 4.2). Table C.1 only includes the
values of the influential factors. Remark that in table C.1 the optimal initial osteoblast
concentration is quite high which does not correspond with the results displayed in figure
4.6 (cb0 ∼= 0.4 in table C.1 versus cb0 = 0 in figure 4.6). It is important to realise, however,
that a lot of interactions are present between the different factors. These interactions
will influence the profile of the initial osteoblast density which might explain the observed
difference in optimal initial osteoblast concentration.

Table C.1: Overview of the parameter values that result in a maximal amount of bone
formation according to the uniform design.

name factor day 7 day 21 day 42
Km 0.04036 0.01 0.0565
acm 6.211 6.02
dgb 464.1
Ab0 0.902 1.325
Kb 0.014
bcb 3.824 3.831 3.508
ccb 2.0373 2.0921
F11 8.4282 9.261 9.331
cb0 0.349 0.478 0.427
Ca0 10.45 23.87 23.02
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