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Summary

This Master thesis investigates a novel type of optical fiber sensors, i.e. fiber Bragg gratings

written in a special design of highly birefringent photonic crystal fibers. Optical fiber

sensors have many advantages such as their small dimensions and low weight, multiplexing

capabilities, immunity to electromagnetic interference, ... Additionaly, they can be integrated

as sensing elements in smart materials and smart structures. These are materials and

structures that can respond an adapt to their environment by sensing the forces acting upon

them and by continuous monitoring of their structural health. One example is a network of

optical fiber sensors embedded in the wings of an airplane to monitor loading during flight.

Another application is embedding optical fibers in a polymer sheet that can be used to track

the movements of a patient undergoing an MRI scan. Fiber Bragg gratings are the sensor

elements of choice for embedding applications. Moreover, by fabricating these sensors in

microstructured (photonic crystal) fibers, their sensitivity can be tailored to the needs of a

specific application.

In the first stage of this work, we inscribed fiber Bragg gratings in photonic crystal fibers.

We characterized the temperature and strain sensitivity of these sensors with experiments

and numerical simulations. The results we obtained show that the sensor is highly

insensitive to temperature changes and features a high sensitivity to transverse line loading

(–372 pm/(Nmm)) and hydrostatic pressure (–1.47 pm/bar). The ratio of these sensitivities

to the temperature sensitivity, is a figure of merit for optical fiber sensors and the values we

achieved have not been reported before.

We embedded this sensor in a composite material to investigate whether the high transverse

line load sensitivity of the bare fiber allowed to provide a high transverse strain sensitivity

when embedded in this material. This was indeed the case and we measured a transverse strain



SUMMARY vi

sensitivity of –0.16 pm/µε, which is an improvement of an order of magnitude with respect to

earlier reported values of fiber Bragg grating sensors fabricated in highly birefringent fibers

and embedded in composite materials.

We also embedded the sensor in biocompatible polymers for applications in the field of

healthcare (’artificial optical skins’). With experiments and 2D finite element analyses, we

showed that the transverse load sensitivity of an embedded sensor is higher for polymers with

a lower elastic modulus, which indicates that the sensitivity is not limited by the flexibility

of the polymer.

In addition, we investigated the relation between the sensitivity of the sensor and the position

of the skin on which the transverse strain is applied. The results we obtained, show that by

embedding the sensor in a polymer foil, an artificial optical skin is created that can be used

to monitor pressure distributions in applications like body mapping.

In summary, we have shown

� a fiber Bragg grating sensor that is insensitive to temperature and has a high

transverse line load sensitivity (–372 pm/(N/mm)) and hydrostatic pressure sensitivity

(–1.47 pm/bar). These sensitivities have not been achieved before and almost reach the

value of –2 pm/bar that the industry requires.

� that this sensor can be embedded in composite materials and provides a high transverse

strain sensitivity when embedded. We measured a transverse strain sensitivity of –

0.16 pm/µε, which is ten times higher than previous reported results.

� that this sensor can be embedded in biocompatible and flexible polymer foils. From the

performed experiments we can conclude that this sensor can be used in artificial optical

skins to monitor pressure distributions acting upon them.
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Samenvatting

Optische vezelsensoren voor slimme materialen

Optische vezelsensoren

Optische vezels geleiden licht omwille van totale interne reflectie die ontstaat door het verschil

in brekingsindex n van de kern en de mantel van de vezel. Ze hebben allerlei toepassingen,

en een daarvan zijn de optische vezelsensoren. Licht in een vezel wordt gekarakteriseerd door

intensiteit, golflengte, fase en polarisatie. Externe invloeden zoals temperatuur en krachten

bëınvloeden deze parameters waardoor ze gebruikt kunnen worden als basis voor een sensor.

Optische vezelsensoren hebben verscheidene voordelen: ze zijn compact, flexibel en zeer licht,

ze zijn immuun voor elektromagnetische interferentie en kunnen gemultiplexed worden wat

zeer voordelig is in gedistibueerde meetsystemen. De unieke combinatie van al deze voordelen

maakt optische vezelsensoren zeer interessant voor domeinen zoals lucht- en ruimtevaart,

bouwconstructies of biomedische toepassingen.

Een ander zeer groot voordeel van optische vezelsensoren is dat ze gebruikt kunnen worden in

zogenaamde slimme materialen. Dit houdt in dat de sensoren ingebed zijn in een materiaal

zodat ze krachten hierop inwerkend kunnen opmeten. Er zijn verschillende toepassingen van

zulke slimme materialen, maar mijn thesis richt zich vooral op het inbedden van Bragg rooster

sensoren in composiet materialen of (flexibele) polymeren.

Composiet materialen

Composiet materialen bestaan uit versterkingsvezels (koolstof, glas, ...) die zich in een matrix

materiaal (epoxy, polyester, ...) bevinden, en worden ook wel vezelversterkte materialen

genoemd. Ze hebben het voordeel dat ze licht zijn, maar toch ook zeer sterk, en worden
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daarom vaak gebruikt in grote constructies, zoals vliegtuigen, windmolens en bruggen.

De composiet materialen zijn enkel zeer sterk in de richting van de versterkingsvezels, en

in de andere richtingen kan er bijgevolg makkelijk schade optreden. Deze schade is niet

zichtbaar voor het blote oog, maar kan wel catastrofale gevolgen hebben aangezien ze de

stevigheid van een constructies sterk verminderen. Door optische vezelsensoren in te bedden

in deze materialen, zou schade vroegtijdig opgemerkt kunnen worden. Bovendien zouden deze

sensoren continu de belasting van de constructies kunnen opmeten, zodat er voortdurend

een betrouwbare schatting gemaakt kan worden van de overblijvende levensduur van de

constructie.

Flexibele optische huid

Een andere toepassing van slimme materialen is in artificiële ’optische huiden’, die rond

bewegende of grillige objecten gewikkeld kunnen worden om de krachten te meten die

hierop inwerken. Optische vezelsensoren zijn hiervoor voordelig omdat ze zeer compact

zijn en gemultiplexed kunnen worden. Deze optische huiden kunnen dan gebruikt worden

in biomedische toepassingen zoals ’body mapping’ om de bewegingen op te volgen van een

patient die een MRI scan ondergaat. Een ander voordeel van het inbedden van een optische

vezelsensor in een flexibele folie is dat deze ook bescherming biedt aan de breekbare vezel.

Bovendien zou voor specifieke toepassingen de elektronische aansturing en uitlees-unit ook

ingebed kunnen worden in de folie, zodat er enkel nog een conventionele elektonische connectie

voorzien moet worden naar de optische huid toe. Dit maakt het concept zeer toegankelijk

voor niet-gespecialiseerd personeel.

Polymeren zijn de materialen bij voorkeur voor optische huiden, omdat de eigenschappen

ervan aangepast kunnen worden naargelang de toepassing. Zo kunnen polymeren inert en

biocompatibel zijn en kan hun flexibileit sterk variëren.

Bragg roosters in dubbelbrekende microgestructureerde vezels

De focus van mijn thesis ligt op Bragg rooster sensoren die gebruikt kunnen worden om

temperatuur of rek op te meten. Een Bragg rooster in een optische vezel werkt als een spiegel

voor een welbepaalde golflengte (’Bragg golflengte’), terwijl alle andere golflengtes gewoon
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Figure 1: Concept tekening van een flexibele optische huid waarin meerdere optische vezelsensoren

(Bragg roosters) zijn ingebed. [11]

doorgelaten worden. Als er een breedbandig spectrum in de vezel gestuurd wordt, dan zal

een Bragg piek gecentreerd rond deze Bragg golflengte gereflecteerd worden en dezelfde piek

ontbreekt in het transmissie spectrum. In Fig. 2 is het principe weergegeven.

Een rooster wordt gefabriceerd door over een lengte van enkele millimeters de brekingsindex

van de kern periodisch te moduluren. De Bragg golflengte λB wordt bepaald door de periode

Λ van de brekingsindex modulatie ∆n en de effectieve brekingsindex neff = (n+ (n+ ∆n))/2

van de kern, en de relatie is λB = 2neffΛ.De periode Λ of effectieve brekingsindex neff

verandert onder invloed van temperatuur of rek en daarom kan een Bragg rooster gebruikt

worden als sensor voor temperatuur en rek.

Het type vezel dat in dit werk gebruikt wordt, is een microgestructureerde vezel, of fotonische

kristalvezel, waarbij de kern bestaat uit silica en de mantel uit een microstructuur van

luchtgaten in silica. Deze luchtgaten verlagen de gemiddelde brekingsindex van de mantel

zodat er een aangepaste vorm van ’totale interne reflectie’ optreedt. Door het aantal, de positie

en grootte van de luchtgaten aan te passen, kan een vezel gefabriceerd worden met allerlei

specifieke eigenschappen. Een mogelijkheid is om de microstructuur tweevoudig asymmetrisch

te maken waardoor de vezel dubbelbrekend wordt. Dit betekent dat licht aan de ingang van

een vezel opgesplitst wordt in twee orthogonaal gepolarizeerde modes die elk een verschillende

fase snelheid hebben. Dubbelbreking wordt niet alleen veroorzaakt door een tweevoudige
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Figure 2: Een Bragg rooster is een periodische modulatie van de brekingsindex van de kern van een

optische vezel. Dit rooster werkt dan als een spiegel voor een welbepaalde golflengte (λB)

en laat alle andere golflengtes gewoon door. [8]

asymmetrie van de microstructuur, maar ook door een asymmetrische kern. Deze bijdrage

aan de totale modale dubbelbreking wordt ’golfgeleider dubbelbreking’ genoemd. Er is ook

een bijdrage van materiaal dubbelbreking die veroorzaakt wordt door anisotropie van het

materiaal die kan ontstaan door er een kracht op te plaatsen (stress-optisch effect).

De combinatie van een Bragg rooster in een dubbelbrekende vezel, zorgt ervoor dat het rooster

twee Bragg pieken gecentreerd rond golflengtes λB,fast en λB,slow zal reflecteren. Beide Bragg

pieken kunnen anders reageren op externe invloeden zoals rek en temperatuur, en daarom

kan het verschil ∆λ = λB,slow − λB,fast ook gebruikt worden als sensor voor temperatuur of

rek.

Sensor concept en objectieven

De Bragg golflengte λB = 2neffΛ is afhankelijk van temperatuur T en rek ε omdat zowel neff

als Λ hiervan afhankelijk zijn. De verandering in Bragg golflengte δλB door een verandering

in temperatuur δT of rek δε wordt gegeven door:

δλB = 2

(
neff

∂Λ

∂ε
+ Λ

∂neff

∂ε

)
δε+ 2

(
neff

∂Λ

∂T
+ Λ

∂neff

∂T

)
δT (1)

De thermische bijdrage aan δλB wordt bepaald door de thermische expansie van de vezel en
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verandering in effectieve brekingsindex (thermo-optische effect) door opwarming. De invloed

van de thermische expansie is vooral afhankelijk van het materiaal, terwijl het thermo-optisch

effect sterk bëınvloed wordt door de aanwezigheid van thermische stress in de vezel.

δλB is ook afhankelijk van de rektoestand van de vezel. Zo zal axiale rek vooral ten uiting

komen in een toename van rooster periode Λ, terwijl een transversale kracht tot verschillende

effecten kan leiden.

Voor een dubbelbrekende vezel zijn zowel λB,fast als λB,slow afhankelijk van temperatuur

en rek en deze afhankelijkheid moet niet hetzelfde zijn voor beide golflengtes. Centraal in

deze thesis staat een sensor die onwtorpen is zodat λB,fast en λB,slow dezelfde verschuiving

ondergaan ten gevolge van een temperatuursverandering of aangelegde axiale rek, terwijl

ze zich anders gedragen voor transversaal aangelegde krachten. Dit betekent dus dat de

Bragg piek separatie enkel verandert onder invloed van transversale krachten. Dit concept is

weergegeven in Fig. 3.

(a) (b)

Figure 3: Invloed van (a) temperatuursveranderingen en axiale rek, of (b) transversale lijnbelasting

op de Bragg pieken en piek separatie van dubbelbrekende vezel.

In een eerste fase van mijn Master thesis voer ik onderzoek naar de gevoeligheid van Bragg

roosters gefrabriceerd in verschillende types dubbelbrekende microgestructureerde vezels. Met

experimenten en numerieke analyses, zal hun gevoeligheid voor temperatuur, axiale rek,

hydrostatische druk en een transversale lijnbelasting bepaald worden. Enkele van de getestte

sensoren zijn ontworpen om een hoge gevoeligheid te hebben van de Bragg piek separatie voor

hydrostatische druk en een transversale lijnbelasting, terwijl deze (bijna) ongevoelig moeten
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zijn voor temperatuurschommelingen.

De sensoren zullen ingebed worden in composiet materialen om na te gaan of de verhoogde

gevoeligheid voor transversale lijnbelasting van de sensor zelf, leidt tot een verhoogde

gevoeligheid voor transversale belasting wanneer de sensor is ingebed in een composiet

materiaal. De gevoeligheid van de ingebedde sensoren voor veranderingen in temperatuur

of aangelegde axiale rek wordt ook onderzocht.

Uiteindelijk zullen de sensoren ook ingebed worden in flexibele polymeren om een ’optische

huid’ te vormen. De invloed van de materiaaleigenschappen en dikte van het polymeer op de

gevoeligheid van de ingebedde sensor zal onderzocht worden.

Fabricage en karakterisering van een optische vezelsensor

In totaal werden er vier types dubbelbrekende vezels getest. Drie ervan zijn microgestruc-

tureerde vezels die dubbelbrekend zijn omwille van een asymmetrische microstructuur en

kern (’Type 1, 2 en 3 PCF’). Een ander type vezel is een bow-tie vezel, die dubbelbrekend is

omwille van thermische stress gëınduceerd door de aanwezigheid van twee materialen met een

verschillende thermische expansiecoëfficiënt. In Fig. 4 worden de verschillende types getoond,

samen met de aanduiding van de richting waarin de ’fast’ en ’slow’ modes gepolarizeerd zijn.

(a) (b) (c) (d)

Figure 4: Verschillende types dubbelbrekende vezels worden getest: (a) bow-tie vezel, (b) Type 1

PCF, (c) Type 2 PCF en (d) Type 3 PCF.

De sensoren werden gefabriceerd door Bragg roosters in de vezels te schrijven. Hun

reflectiespectra toonden aan dat de Bragg piekseparatie voor een bow-tie vezel slechts 0.3
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nm is, terwijl dit voor de microgestructureerde vezels ongeveer 2 nm is.

Een temperatuurstest toonde aan dat een sensor gefabriceerd in een Type 3 PCF, een zeer

lage temperatuursgevoeligheid heeft voor de Bragg pieken (∼ 9 pm/�C), terwijl de Bragg

piekseparatie nauwelijks bëınvloed wordt (Fig. 5(a)). Vergeleken met eerder gerapporteerde

resultaten over sensoren gefabriceerd in andere types dubbelbrekende vezels is dit een zeer

lage gevoeligheid.

Simulaties (en eerder uitgevoerde experimenten) hebben aangetoond dat de Bragg piek

separatie van een sensor gefabriceerd in een Type 3 PCF een zeer hoge gevoeligheid heeft

voor hydrostatische druk en de piekseparatie afneemt met -1.5 pm/bar (Fig. 5(b)). Ook

sensoren gefabriceerd in Type 2 PCFs hebben een hoge drukgevoeligheid voor de Bragg piek

separatie (-1.2 pm/bar). Bovendien is uit eerdere experimenten gebleken dat deze gevoeligheid

onafhankelijke is van de temperatuur.

Via experimenten en numerieke simulaties werd een transversale lijnbelasting aangelegd op

een sensor gefabriceerd in een Type 3 PCF, en dit onder verschillende hoeken op de vezel

(Fig. 5(c)). Dit resulteerde in een gevoeligheid die sterk afhankelijk is van orientatie van de

vezel. Een maximale gevoeligheid van -372 pm/(N/mm) voor de Bragg piek separatie werd

gevonden als een belasting wordt aangelegd volgens de ’slow’ richting (180�).

(a) (b) (c)

Figure 5: Gevoeligheid van de Bragg pieken van een sensor gefabriceerd in een Type 3 PCF (a) voor

temperatuur, (b) voor hydrostatische druk en (c) voor een transversale lijnbelasting die is

aangelegd op de vezel onder verschillende hoeken.

De gevonden resultaten toonden aan dat een Bragg rooster gefabriceerd in een Type 3 PCF
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gebruikt kan worden voor temperatuursongevoelige metingen van transversale lijnbelastingen.

Nooit eerder werden zulke hoge waarden gerapporteerd voor de temperatuursongevoeligheid

en gevoeligheid voor transversale lijnbelasting van een Bragg rooster sensor.

Optische vezelsensoren ingebed in composiet materialen

Bragg sensoren gefabriceerd in een Type 3 PCF werden ingebed in koolstofvezel/epoxy

composiet materialen met een ’cross-ply’ opbouw bestaande uit 16 lagen, waarbij de sensor

ingebed werd in het midden (Fig. 6(a) en 6(b)). De vezels werden ingebed met de ’fast’

richting parallel met het sample-oppervlak. Vergelijking van de reflectie spectra voor en

na embedding toonde aan dat de delicate vezels het inbeddingproces hadden overleefd en

dat de Bragg piek separatie afgenomen was door de aanwezigheid van residuele stress in

het composiet na fabricage. Nadat alle andere testen uitgevoerd waren, werden de samples

doorgesneden om de orientatie van de ingebedde sensor na te gaan en dit toonde aan dat de

vooraf aangeduidde orientatie goed behouden blijft (Fig. 6(c)).

(a) (b) (c)

Figure 6: (a) Gefabriceerde composiet samples met een ingebedde sensor, waarbij de orientatie van

de sensor (b en c) gecontroleerd kan worden met een destructieve test nadat alle andere

testen uitgevoerd waren.

De samples werden onderworpen aan een temperatuurstest die uitgevoerd werd met behulp

van een autoclaaf waarvan de temperatuur gecontroleerd kon worden (Fig. 7(a)). Uit de

resultaten bleek dat de Bragg piek separatie van de ingebedde sensoren niet langer ongevoelig

is voor temperatuur, deze nam namelijk toe met 4.4 pm/�C. Dit is een gevolg van de residuele

stress die afneemt wanneer de samples opgewarmd worden, maar ook weer toenemen zodra
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ze afgekoeld worden.

Een test waarbij axiale rek werd aangelegd op de samples (Fig. 6(b)) toonde aan dat de axiale

gevoeligheid van de sensor zelf of ingebed in een composiet materiaal niet sterk verschilt. De

Bragg piek separatie is dan ook ongevoelig voor axiale belasting van een composiet materiaal.

In een laatste reeks testen werd de gevoeligheid van de ingebedde sensoren voor een

transversale belasting bepaald (Fig. 6(c)). De resultaten toonden aan dat de Bragg piek

separatie afneemt met -24.4 pm/MPa, en dit komt overeen met -0.16 pm/µε als de elasticiteit

modulus gelijk genomen wordt aan die van het matrix materiaal, namelijk epoxy (E = 6.3

GPa).

(a) (b) (c)

Figure 7: Opstellingen om de gevoeligheid van de sensor ingebed in een composiet materiaal te testen

voor (a) temperatuur, (b) axiale rek en (b) transversale belasting.

Tabel 1 geeft een overzicht van de gevonden gevoeligheden van sensoren gefabriceerd in een

Type 3 PCF en ingebed in een composiet materiaal. Alhoewel de Bragg piek separatie

onafhankelijk is van de temperatuur voor de sensor zelf, is dit zeker niet het geval voor

een sensor ingebed in een composiet materiaal. Dit geeft aan dat er een andere methode

gebruikt moet worden om temperatuursonafhankelijke metingen uit te kunnen voeren.

De hoge gevoeligheid voor transversale lijnbelasting van de sensor zorgt wel voor een

verhoogde gevoeligheid voor transversale belasting van de ingebedde vezel. De gevoeligheid

van de Bragg piek separatie van -0.16 pm/µε is minstens tien keer hoger dan eerder

gerapporteerde waarden voor sensoren gefabriceerd in bow-tie vezels of Type 1 PCFs, die
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ingebed waren in een composiet sample met unidirectionele opbouw.

Table 1: Gemiddelde gevoeligheid van de Bragg sensoren ingebed in composiet materialen voor (a)

temperatuur, (b) axiale rek en (c) transversale belasting.

Temperatuur Axiale rek Transversale belasting

(pm/�C) (pm/µε) (pm/µε)

piek 1 (fast) 3.92 1.22 0.25

piek 2 (slow) 8.35 1.21 0.10

piek separatie 4.42 -0.01 -0.16

Optische vezelsensoren ingebed in polymeren

Het inbedden van optische vezelsensoren in (flexibele) polymeren is onderzoek dat nog maar

recent gestart is. In mijn Master thesis heb ik me dan ook gefocust op de mogelijkheden

om de vezels in te bedden in verschillende soorten polymeren met zeer verschillende

materiaaleigenschappen. Van deze verschillende samples heb ik dan de gevoeligheid van de

ingebedde sensor bepaald.

Om na te gaan wat de invloed van de elasticiteitsmodulus is op de gevoeligheid van een ingebed

Bragg rooster, werden er simulaties en experimenten uitgevoerd op bow-tie vezels en Type 3

PCFs die ingebed waren in een polymeer staafje met verschillende elasticiteitsmoduli (Fig.

8(a)). Uit transversale lijnbelasting proeven is gebleken dat de gevoeligheid van de sensor

afneemt wanneer deze is ingebed in een polymeer staafje. Bovendien neemt deze gevoeligheid

nog af wanneer het polymeer een hogere elasticiteitsmodulus heeft.

Sensoren gefabriceerd in Type 2 en Type 3 PCFs werden ingebed in een polymeer laag om

een ’optische huid’ te vormen (Fig. 8(c)). Twee soorten polymeer werden gebruikt, namelijk

PDMS dat een zeer flexibel materiaal is, en Ormocer dat een harder materiaal is. Deze

samples werden getest door op verschillende posities een gewicht van 0.45 N neer te laten

(Fig. 8(b)) en de uitwijking van de Bragg pieken te registreren. In Fig. 9 wordt de uitwijking

weergegeven van beide Bragg pieken en de piek separatie, als het gewicht op verschillende

posities neergelaten wordt. Hierin is duidelijk te zien dat op de positie van de ingebedde
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(a) (b) (c)

Figure 8: (a) Een Bragg grating sensoren ingebed in een polymeer staafje. (b) Om grotere folies

te testen wordt een optstelling gebruikt waarbij een gewicht van 0.45 N op verschillende

posities geplaatst kan worden. (c) Een voorbeeld van twee sensoren ingebed in een folie

van PDMS.

sensor de verandering in Bragg piek golflengte het grootst is. Bovendien is er ook een (kleine)

verhoogde gevoeligheid van de Bragg piek separatie op de positie van de sensor.

(a) (b) (c)

Figure 9: Deze grafieken geven de verschuiving van de Bragg golflengten weer als er een gewicht van

0.45 N geplaatst wordt op verschillende posities van de folie. (a) Bragg piek 1 (fast), (b)

Bragg piek 2 (slow) en (c) Bragg piek separatie.
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Conclusie

In mijn Master thesis heb ik aangetoond dat door het ontwerp van een microgestructureerde

vezel aan te passen er sensoren in gefabriceerd kunnen worden die een hoge gevoeligheid

hebben voor hydrostatische druk of transversale lijnbelasting, en bijna ongevoelig zijn voor

temperatuur. Deze sensoren kunnen ingebed worden in composiet materialen, waar ze leiden

tot een zeer hoge gevoeligheid voor transversale belasting hebben. Dit zou een oplossing

kunnen bieden om de belastingen en schade die het composiet materiaal ondervinden, op te

volgen. Bovendien heb ik aangetoond dat deze sensoren ingebed kunnen worden in flexibele

’optische huiden’ en dat deze gebruikt kunnen worden voor het opmeten van drukverdelingen

die inwerken op grote en grillige oppervlakken.
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Résumé

Les capteurs à fibres optiques présentent de nombreux avantages tels que leurs faibles

dimensions et poids, leur capacité de multiplexage et leur immunité face aux interférences

électromagnétiques. Ces fibres optiques offrent également l’avantage de pouvoir être intégrées

dans des matériaux: on forme alors des matériaux intelligents. Il s’agit de matériaux

dotés de la capacité de diagnostic de leur santé structurale en temps réel et en continu par

l’intermédiaire de capteurs en fibres optiques, insérés dans la masse. Une des applications

possibles de ce type de structure est un réseau de capteurs à fibres optiques intégré dans

une aile d’avion permettant le monitorage des forces s’exerçant sur l’aile pendant le vol.

Un autre d’exemple d’application est l’intégration de fibres optiques au sein de fines feuilles

de polymères afin de suivre les mouvements d’un patient au cours d’un examen IRM. Les

fibres à réseaux de Bragg présentent toutes les qualités requises pour être intégrées dans

des matériaux. De plus, en réalisant ces capteurs dans des fibres microstructurées (fibres à

cristal photonique), on peut modifier la sensibilité des fibres et l’adapter à une application

particulière.

Dans la première partie de ce travail, les fibres à réseaux de Bragg ont été fabriquées dans des

fibres à cristal photonique. Ces capteurs ont été soumis Ã différents tests afin de caractériser

leur sensibilité face à des sollicitations thermomécaniques (changement de température,

déformations axiale et transversale). Les résultats expérimentaux et ceux provenant des

simulations numériques montrent, tout d’abord, une grande insensibilité du capteur vis-à-

vis de la température. Ils présentent également une sensibilité élevée du capteur face à une

contrainte transversale.

Ensuite, le capteur est intégré dans un matériau composite pour comparer la sensibilité de

la fibre seule soumise à une contrainte transversale par rapport à la sensibilité obtenue après



intégration dans le composite. Le capteur intégré dans le composite a été soumis à une

contrainte transversale. Cette dernière présente une sensibilité plus importante que celle de

la fibre seule et environ dix fois plus élevée que celle précédemment reportée dans des études

antérieures.

Finalement, le capteur est intégré dans de fines et flexibles feuilles de polymères reproduisant

une ’peau optique’. Divers types d’échantillons ont été testés (différents types de polymères)

afin de déterminer l’influence du module élastique sur la sensibilité de la fibre intégrée. Ces

tests et les simulations numériques montrent que le capteur est plus sensible quand il est

intégré dans un polymère de faible module élastique. De plus, la sensibilité en fonction de la

position du point d’application de la force (plus ou moins éloignée du capteur) a été étudiée.

On a ainsi mis en évidence que la sensibilité du capteur est très dépendante des propriétés

et dimensions du polymère. Ce concept de ’peau optique’ est très récent et pour le moment

très peu de résultats ont été publiés.
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Chapter 1

Introduction

Optical fiber sensors have revolutionized the field of measurement science and technology.

They have enabled a realm of new applications and they have brought tremendous added

value to numerous other applications. One can think of distributed measurements since

multiple sensors can be fabricated in one single fiber, aerospace where small dimensions

and low weight are of importance, oil pipelines and fuel tanks where electrical sparks could

have catastrophic consequences, ... In several of these applications it would be even more

advantageous to embed the fiber optic sensors in a material or inside the structure itself. For

example, load monitoring of mechanical structures or buildings will be more reliable when

the internal strain field is directly monitored as opposed to attaching a sensor to the surface

that can only estimate the internal strains.

Fiber Bragg grating (FBG) sensors are the sensors of choice for embedding purposes as they

can sense multi-axial strain fields and temperature. When combined with photonic crystal

fibers (PCF), the sensitivities of the FBG sensor can be tailored to the needs of a specific

application. My Master thesis focuses on FBG sensors fabricated in highly birefringent

(HiBi) PCFs that are intended to have an enhanced transverse line load and hydrostatic

pressure sensitivity. These sensors can be used in their bare state, but also when embedded

in different types of materials. More specifically, we will investigate the possibilities of

embedding the sensors in carbon fiber reinforced polymers (CFRP) and different types of

(flexible) polymers. Via experiments and simulations, the strain sensitivity of the embedded

fiber will be determined and from these results a conclusion will be drawn on whether the

enhanced transverse line load sensitivity of the bare fiber is an added-value for embedded

optic fiber sensor systems.

1.1 Outline

This work starts with three introductory chapters. Chapter 2 gives a brief review of fiber

optic sensors and touches upon the market aspects. A very interesting application of optical
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fiber sensors are the so-called smart materials and structures, and this concept will also be

explained in chapter 2 with an emphasis on structural health monitoring and artificial optical

skins.

In chapter 3 the necessary theoretical aspects of FBGs and PCFs wil be explained. The

working principle of FBG sensors is discussed together with their fabrication methods. PCFs

are used here because their properties can be tuned with an unprecedented design freedom

by adapting their microstructure. The details of their unusual features, such as a high

birefringence, are also discussed in this chapter.

The last introductiory chapter, chapter 4, deals with the sensor concept we envisioned in this

work. The principles of multi-parameter sensing with FBG sensors fabricated in HiBi PCFs

will be discussed in more detail. Chapter 4 concludes with an elaborate description of the

objectives of my Master thesis.

Chapter 5 starts with a detailed description of the characteristics of the different fiber types

that are tested and the grating inscription in these fibers. The fabricated sensors are tested

for their thermal sensitivity and an overview is given of previous reported axial strain and

hydrostatic pressure sensitivities. The transverse line load sensitivity is determined with

experiments and 2D numerical simulations. A short conclusion is drawn to indicate the

added value of the tested sensors.

The subject of chapter 6 is the embedding of the FBG sensor in CFRP. First, several sensors

are embedded in CFRP samples. These samples are then subjected to temperature, axial

strain and transverse strain tests. Afterwards, cross-sections of the samples are made to

verify the orientation of the embedded fiber and to evaluate the effects of the embedding

process on the fiber sensor.

In chapter 7, the sensor is embedded in a completely different type of material: flexible

polymers. To determine the influence of the embedding material on the sensitivity of the

fiber sensor, several polymers with different mechanical properties are investigated. This is

done via experimental characterizations and numerical simulations.

Finally, in chapter 8 I draw conclusions regarding the obtained results and the possibilities

for or advantages of embedding the sensor in different materials. I will also discuss future

prospects and provide hints towards possible improvements of the sensor itself and of the

embedding techniques.
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Chapter 2

Optical fiber sensors for smart

materials

2.1 Optical fiber sensors

2.1.1 Optical fibers

An optical fiber is a thin strand of silica (or plastic) that consists out of a core and a

surrounding cladding. Light entering the core of the fiber under a small angle (< θCA)

is guided in the core by means of total internal reflection, caused by the refractive index

difference between the core and cladding of the fiber (typical values in conventional fibers:

ncore ≈ 1.48, ncladding ≈ 1.46). This principle is shown in Fig. 2.1.

Optical fibers can be classified according to their guiding characteristics. Depending on the

number of modes they can confine, they are called ’single mode’ or ’multimode’. Single mode

fibers typically have a core diameter of several micrometers (∼ 8 µm), while the core diameter

of a multimode fiber can reach tens of micrometers (∼ 50-100 µm). The cladding diameters

for both types of fibers are often 125 µm, but smaller or larger cladding diameters are also

used. A protective (often acrylate-based) layer ’the buffer’ can be added around the cladding

to protect the (brittle) fiber against mechanical actions and environmental conditions (e.g.

water, chemicals, ...).

Light guided in an optical fiber has a modal behaviour, with every mode characterized

by a mode profile and wavenumber k = 2π/λ, with λ the free space wavelength. In a

circular waveguide each mode is degenerate as two orthogonal polarized modes exist for each

wavenumber.

Although the light is guided mainly in the core of the fiber, a small part of the mode profile

extends into the cladding. This has an influence on the refractive index n that the mode

sees, as both the refractive index of the core and of the cladding influence the propagation

constant β = kneff = 2πneff/λ. Therefore one speaks of the effective refractive index neff
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Figure 2.1: Light entering an optical fiber under an angle smaller than the critical angle θCA is guided

in the core by means of total internal reflection caused by a refractive index difference

between the core and cladding.

of a propagating mode in an optical fiber.

Optical fibers are ubiquitous nowadays, with applications ranging from high speed data

carriers for telecommunication to high power lasers for material processing. Another

application of optical fibers lies in optical metrology where a change in environmental

parameters (strain, temperature, chemical composition, ...) corresponds to a change in the

properties of the guided light. These are the optical fiber sensors.

2.1.2 Sensor configurations and types

There are several different ways to produce a sensor in or from an optical fiber and they can

be classified in several categories depending on their configuration and implementation [1],

[2]. A first subdivision is in intrinsic sensors, where the measurand interacts with the light

guided in the optical fiber, or extrinsic sensors, where the light is coupled out of the fiber to

and from an interaction region where the light beam is influenced by the measurand.

Optical fiber sensors can also be classified according to their implementation as a point sensor,

as a distributed sensor or as a quasi-distributed sensor, as shown in Fig. 2.2. One speaks of

a point sensor if the measurement is performed at only one specific location in the fiber or

at the end of the fiber. Sensors where the measurement is performed along the entire length

of the fiber are called distributed sensing systems. A quasi-distributed sensing system is a

combination of the previous configurations, and consists of multiple point sensors located at

different positions in the same fiber.

A third subdivision can be made depending on the modulation principle. Light guided in

the core of an optical fiber has several properties that can be used for sensing purposes. If

the fiber is bended or twisted, the intensity of the light will vary (’intensiometric sensors’).

The mode guided in a fiber has a certain phase that can be used in interferometric

setups (’interferometric sensors’). The difference in phase velocity between two orthogonally

polarized modes propagating in the fiber can also be used as a sensing principle (’polarimetric
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Figure 2.2: Sensor configurations: (a) Point sensor, (b) Distributed sensor and (c) Quasi-distributed

sensor. [1]

sensors’). The wavelength of the guided light can also change due to absorption or fluorescence

(’spectroscopic sensors’).

Based on the classification system itself, one can conclude that there are many different types

of optical fiber sensor. Some examples will be discussed in more detail to show the variety of

sensing principles and possible applications.

Fiber optic gyroscope

- A fiber optic gyroscope is an all-fiber interferometer, which is based on the Sagnac

effect (Fig. 2.3). Light is launched into a fiber loop in two directions. When the loop

rotates, light travelling in the same direction as the rotation will propagate over a longer

distance and thus longer time, than light travelling in the counterdirection. This time

difference will result in a specific fringe pattern when the two light beams are combined

again. [2]

Fiber optic gyroscopes are very robust systems as they have no moving parts and are

not affected by accelerations or vibrations. This makes them very popular in navigation

systems for cars, airplanes or ships.

Figure 2.3: Principle of a fiber optic gyroscope. [2]

Fiber optic Fabry Pérot interferometer

- A fiber optic Fabry Pérot interferometer is obtained if light is coupled out of the fiber,
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into a cavity with at the end a reflecting surface or fiber, such that light is reflected and

coupled back into the fiber (Fig. 2.4). Depending on the length or depth of the cavity,

the ratio of the power of the light entering the fiber (modein) and the power of the light

reflected from the end facet of the cavity (modeout) will vary, as this ratio is dependent

on the phase difference between the two modes. [1]

There are different types of setups for fiber optic Fabry Pérot interferometers, and some

of their applications are pressure or strain sensing.

Figure 2.4: Principle of a fiber optic Fabry Pérot interferometer. [1]

� Fiber Bragg grating sensor

- In a fiber Bragg grating, the sensor is created by locally modulating the refractive

index of the core of the fiber. If this refractive index variation is periodic, a wavelength

selective mirror is formed (’Bragg grating’); when broadband light is coupled in the

fiber, the Bragg grating will reflect only a narrow part of the spectrum and this part is

centered around the Bragg wavelength λB (Fig. 2.5). This Bragg wavelength will shift

when the fiber Bragg grating undergoes a change in strain (axial, transverse or radial)

or temperature [1]. This shift forms the basis of fiber Bragg grating sensors and the

focus of this Master thesis is on this type of fiber sensor.

Figure 2.5: Principle of a fiber Bragg grating. [1]
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2.1.3 (Dis)advantages and economical aspects

Optical fiber sensors have turned into an economic success story because of their long list of

advantages and because they can be deployed in situations where conventional sensors are no

longer functioning properly. [1], [2], [3], [4]

For applications such as aerospace, the weight and compactness of a sensing system is of

high importance. Building a distributed strain measurement system based on conventional

electrical strain gauges, requiring up to four electrical wires for each strain gauge, results in

a large and heavy bundle of wires. Fiber optic sensors are low weight, flexible and compact.

They can be multiplexed to form (quasi) distributed systems, with very low optical loss as

they are intrinsic sensors. Optical fiber sensors can also withstand a high number of loading

cycles at high strain (e.g. in [4] 10 million loading cycles), making them a possible candidate

for long term load measuring.

Other unique advantages of optical fiber sensors, is that they are immune to electromagnetic

interference (EMI) and can be deployed in explosion hazardous, chemical aggresive or nuclear

environments. This creates the possibility to perform measurements at nuclear waste sites, in

oil pipelines or fuel tanks where electrical sensors cannot be used because of possible sparks

and on windmills where the performance of electrical sensors would suffer from lightning

strikes.

There are also some disadvantages to optical fiber sensors, but most of these can be overcome

with the necessary research and investments [2], [5].

Optical fibers are very brittle ’objects’ that can break easily when handled without proper

care. Installing fiber based sensing systems therefore requires trained personnel. A

disadvantage that is inherent to fiber optic sensors is their cross-sensitivity, i.e. the measured

signal is a combination of several measurands. For example, a sensor that is sensitive to both

strain and temperature requires a temperature compensating system when only strain is of

interest.

The high installation cost of fiber optic systems where they have no real added value might

be another drawback. It is therefore often said that the key to success of optical fiber sensors

will be in those applications where conventional fibers are inadequate.

In Fig. 2.6 an overview is given of the different application fields of optical fiber distributed

sensing systems, and their corresponding market share. Although the global market for fiber

optic sensors has strongly increased over the last years, market penetration is still slower

than expected in many areas [5]. This is mainly due to lack of awareness by the industry

and a shortage of regulations. Some industries are not aware of the benefits that optical fiber

sensors have, resulting in a misinterpretation of the rather high initial cost attached to them.

Industry coordination, meaning defining a common language and understanding of optical
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Figure 2.6: Application fields and market share of distributed fiber optic sensors. [3]

fiber sensors, would encourage the use of optical fiber sensors. This was for example initiated

by COST Action 299 ”FIDES” (European Cooperation in Science and Technology, Optical

FIbres DEdicated to Society) which has contributed to develop standards and regulations

regarding optical fibers [6].

2.2 Smart materials

A very specific advantage of fiber Bragg grating (FBG) sensors that has not been mentioned

yet, is that they can be embedded inside a material or structure. This introduces several new

opportunities, especially in the field of smart materials and smart systems.

A smart system consists of sensors and actuators that are embedded in or attached to a

structure, such that it can ’interact’ with external influences, i.e. the smart system senses

something and possibly even reacts in an appropriate way [7]. The sensing part is done by a

so-called smart-material, for which embedded optical fibers are an excellent candidate. The

combination of the unique properties of optical fiber sensors (immune to EMI, light weight,

multiplexed and distributed systems, ...) and the wide range of materials in which they can be

embedded (polymers, composite materials, concrete, clay, ...) result in a long list of possible

application areas.

The focus of this work will be on fiber Bragg grating sensors embedded in composite materials

(fiber reinforced polymers) and polymers. A short overview of both materials and their

possible applications as smart material is given below.
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2.2.1 Optical fiber sensors embedded in composite materials

Introduction

Many buildings or mechanical constructions that have been operational over several years

have exceeded their design lifetime and some even show signs of deterioration. This raises the

question of safety of these constructions. This is especially the case for composite structures,

as the long-term behaviour of these materials in real situations is still very unpredictable.

Moreover, the initial damage to a composite construction does not have to cause any trouble,

but as this damage will grow over time, the consequence on the structural integrity can

be catastrophic. It is therefore crucial to be able to (continuously) estimate the remaining

lifetime of a construction. Continuously observing the structural integrity of a building or

construction, is referred to as ’structural health monitoring’ (SHM) or in short ’monitoring’.

In Fig. 2.7 a schematic view is given of SHM installation on a bridge.

Figure 2.7: A schematic view of a smart bridge with fiber optic sensors embedded in FRP structures.

[7]

Today, the surveillance of (composite) structures is based mostly on (regular) visual

inspections and more specific non-destructive tests such as ultrasonic inspection, acoustic

emission or radiography. These various inspection techniques are labour intensive and

require specialized personnel. Moreover, there is always the risk of suffering large damage in

between inspection rounds. Additionally, the structure can not be operational during such

an inspection, resulting in a high financial impact.

This is why branches such as aerospace or infrastructure construction are highly interested in

other non-destructive inspection techniques that can continuously monitor parameters such

as vibrations, deformations or damage (growth). Optical fiber sensors, for example, are a

promising candidate for such applications.
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Continuously monitoring structures would result in less or no visual inspections and would

allow making a sensible estimation of the remaining lifetime of these structures at all time.

Moreover, monitoring the effective loading of a structure could lead to a better insight in the

long-term behaviour of composite structures. This would result in an enhanced confidence

in the usage of composite materials, which up untill now has been farely limited despite the

numerous advantages composite materials have to offer.

Composite Materials

A composite is a heterogenous material consisting out of two or more materials that remain

clearly distinguishable on a macroscopic level. The best known example is fiber reinforced

polymer (FRP): by embedding reinforcement fibers in a polymer (matrix), its mechanical

properties can be improved. There are different types of reinforcement fibers (glass, carbon,

organic, ...), each having their own specific properties and applications. The matrix can

consist of either thermosetting or thermoplastic polymers, and examples are epoxy, polyester

and nylon.

The reinforcement fibers are there to absorb the load, while the matrix protects and bundles

the fibers, and redistributes the introduced load.

Figure 2.8: (a) Continuous fiber composite has individual fiber/matrix lamina, with continuous

unidirectional reinforcement fibers. (b) Woven fiber composites do not always have

distinct lamina and have a lower strength and stiffness than continuous fiber laminates.

(c) Chopped fibre composites have short fibres randomly dispersed in the matrix and their

mechanical properties are considerably poorer than those of continuous fiber composites.

(d) Hybrid composites may consist of mixed chopped and continuous fibers, or mixed

fiber types. [8]

It is this combination of reinforcement fibers in a matrix, that gives a composite material

very specific mechanical properties (high strength and stiffness) compared to other, more

traditional materials like steel or concrete. This means that composite structures weigh much

less, while being as strong as they would be if they were made from other materials. However,

a composite is intrinsically anisotropic, meaning that it only has a high specific stiffness and

strength in the direction of the reinforcement fibers, while these are low in the directions



2.2 Smart materials 11

perpendicular to those fibers.

Stacking different layers (’laminae’) of composite on top of each other (”to laminate”), with

a different orientation of the reinforcement fibers in each layer, increases the specific strength

and stiffness in multiple directions. One can tune the pattern of the laminate to the stress

field in the component of interest. In Fig. 2.8 various types of composites are shown, with

fiber directions in different well-defined or random orientations.

Because of their exceptional properties, composite materials are very interesting for ap-

plications in sportmaterials (bikes, skis, ...), aerospace, transport (cars, airplanes, ...) or

construction (bridges, buildings, ...).

Influence of the embedded fiber on the mechanical properties of the composite

Optical fiber sensors could be a very interesting solution for structural health monitoring of

composite structures, but they have to fulfill several requirements. It is obvious that they

have to be cost-effective and easy in use, but as they remain embedded in the structure for

its complete lifetime, the sensors also have to be stable and useable for a long period of time.

Another important requirement is that they have to survive the fabrication process of the

composite material.

Figure 2.9: The large difference in diameter between an optical fiber and the reinforcement fibers

can cause a local disturbance in the composite, forming an ’eye’. These weak zones can

be avoided by embedding the optical fiber in the same direction as the reinforcement

fibers. [8]

The large difference in diameter between an optical fiber (∼ 125-250 µm) and the

reinforcement fibers of the composite (∼ 5-20 µm), can cause a local disturbance in the

fiber pattern of the composite. As shown in Fig. 2.9, there can be more resin (epoxy) around

the fiber than reinforcement fibers, causing a typical ’eye’ in the structure. This will disturb

the distribution of internal stains in the composite material, and result in a mis-interpretation

of the global strain on the material by the optical fiber sensor. To ensure correct predictions

of the structural integrity, these ’eyes’ have to be prevented. It has been shown that when the

optical fiber is embedded in the same direction as the reinforcement fibers, the disturbance

is very small and has very little influence on the mechanical properties of the composite [8].
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2.2.2 Optical fiber sensors embedded in (flexible) polymers

Introduction

Today, many research efforts are being put in the domain of tactile sensing, where an artificial

skin is used to measure a spatial distribution of forces acting on the sensor. There are

numerous applications for tactile sensors ranging from robotic fingers to body mapping and

prosthetics that can adapt the shape of the socket to minimize pressure points (Fig. 2.10).

(a) (b) (c)

Figure 2.10: Some applications of tactile sensors: (a) Body mapping [9], (b) Robotics [10] and (c)

Prosthetics with an adaptable socket (’Smart socket’).

In certain application domains the usage of electronic skins is not preferred or simply

dangereous. First of all, electrical sensors are quite bulky as each strain gauge needs four

electrical contact wires. This can result in an unnatural feeling and limited flexibility of the

surface, which is not ideal in applications like body mapping. The combination of electrical

currents and humid environments should also be prevented at all costs as this could lead to

short circuits. Moreover, since electrical sensors are not immune to EMI they cannot be used

in several medical imaging applications (e.g. MRI).

An artificial skin based on optical sensors (’optical skin’) would be a solution to these

problems, and fiber Bragg grating sensors could replace the conventional strain gauge. By

embedding FBG sensors in a flexible or stretchable foil, a tactile sensor is created that can be

wrapped around, attached to or embedded in irregular shaped or moving objects to monitor

pressure distribution on the surface. [7], [11]

Several FBG sensors can be multiplexed in one single fiber without significant power loss such

that large sensing areas can be achieved with one single optical fiber. One of the disadvantages

of optical fibers is that they are fragile and not stretchable. This problem could be solved by

embedding the fiber in a meandered layout in a stretchable foil. If the application allows it,

the driving electronics and opto-electronics unit can be co-embedded in the optical skin, such

that the output of the artificial skin is just one electrical cable, eliminating the requirement
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for specialized personnel. This optical skin concept is shown in Fig. 2.11. [11]

Figure 2.11: Concept of a flexible optical skin in which fiber Bragg gratings are used for quasi

distributed tactile sensing. [11]

Polymers are ideal host materials for (flexible) optical skins. Silicones or methyl methacrylate

(MMA) based polymers are preferred because of their tuneability and wide range of

mechanical properties. Both polymer types are biocompatible and silicones are chemically

inert, which makes them ideal materials for medical applications. By changing the production

process of the polymers, their mechanical properties (strength, stiffness, flexibility, necking,

...) can be tuned to match the application and required sensitivity.

2.2.3 Other applications of embedded optical fiber sensors

Embedded FBG sensors are not only ideal for tactile sensing, but they can also be used

for more trivial purposes. As mentioned before, FBG sensors are the optical version of the

strain gauge, but have the disadvantage that they are difficult to handle. There are however

applications where optical strain gauges are preferable and to facilitate the handling, the FBG

sensor can be embedded in a ’patch’ to protect the fragile sensor and resemble an electrical

strain gauge.

Another application of an embedded FBG sensor is in combination with specialized polymer

coatings to create biophotonic sensors. This principle is called ’lab-on-a-fiber’ and is a research

area that is still little explored. A polymer can be modified such that when it is brought into

contact with a certain molecule, it will shrink or expand. When an FBG sensor is embedded

in that polymer, it will measure the shrinkage or expansion, and thus indicate the presence

of the molecule. Applications could be testing drinking water or blood for the presence of

molecules.
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Chapter 3

Fiber Bragg gratings in highly

birefringent photonic crystal fibers

3.1 Fiber Bragg gratings

3.1.1 Working principle

Figure 3.1: Basic principles of a fiber Bragg grating that works as a wavelength selective mirror. [8]

A fiber Bragg grating (FBG) is obtained when the characteristics of the core of an optical fiber

are locally changed over a length L (typically a few millimeters). More specifically, a FBG is

a periodic modulation of the refractive index, that will act as a wavelength selective mirror

(Fig. 3.1). When light propagating in the fiber encounters a change in refractive index ∆n, a

small part of this light will be reflected, while the rest is transmitted. Consecutive refractive

index changes will result in many small reflections, together forming one large reflection with

reflectivity R. Moreover, if the change in refractive index is periodical with period Λ, coupling
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between the forward and backward propagating mode will occur if their phases match (’phase

matching condition’), i.e. βbwd = −βfwd. But βbwd is determined by βfwd and by the period

Λ of the grating, with βbwd = βfwd +βFBG. Combining these equations will lead to the Bragg

condition, as given in equation (3.1c).

βbwd = −βfwd ∧ βbwd = βfwd + βFBG = βfwd +
2π

Λ
(3.1a)

⇒ 2

(
2π

λB

)
neff =

2π

Λ
(3.1b)

⇒ λB = 2neffΛ (3.1c)

with λB the Bragg wavelength that is determined by neff=n+(n+∆n)
2 which is the effective

refractive index of the core of the fiber, and Λ which is the period of the grating. When a

broadband light spectrum enters the fiber, the FBG will reflect a narrow part of the spectrum

centered around the Bragg wavelength λB. Both Λ and neff are influenced by strain and

temperature, implying that λB is also sensitive to strain and temperature, and will change

when strain or temperature varies.

In Fig. 3.2 two FBG reflection spectra are shown. Both spectra show a (broad) peak centered

around the Bragg wavelength (’Bragg peak’), but some other characteristics as well. The

reflectivity R and the spectral width of the Bragg peak are determined by the length L and

period Λ of the grating and the amplitude of the refractive index modulation ∆n in the core.

Some sidelobes are also present due to the abrupt start and end of the grating.

By changing the parameters Λ and ∆n of the grating, the power of the sidelobes or the spectral

width of the spectrum can be reduced. Depending on whether or not they are constant, the

grating can be classified under 3 types:

� Apodized: An apodized grating is created if ∆n is modulated along the length, with

a Gaussian or raised-cosine refractive index profile. Such a refractive index profile will

result in strong sidelobe suppresion.

� Chirped: If Λ is increased over the length of the grating, a so-called chirped grating is

obtained. This type of grating can be used for dispersion compensation.

� Uniform: If both Λ and ∆n are constant, one speaks of a uniform grating. This type

of FBG is commonly used for sensing purposes.

Typical values for uniform gratings are a grating length L of about 1 cm, a reflectivity

R of 90%, a FWHM of about 0.2 nm, and a refractive index modulation ∆n of the core

on the order of 10�5 - 10�4.
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Figure 3.2: Reflection spectrum of two gratings with different parameters for grating length L, period

Λ and refractive index modulation ∆n of the core. [13]

3.1.2 Bragg grating inscription

Photosensitivity

By exposing silica to UV light, its refractive index will (most often) increase due to changes

in the silica’s chemical bonds and internal structure. The term ’photosensitivity’ refers to this

(permanent) change in refractive index. It is the presence of defects in the silica structure

that causes a fiber to be photosensitive, but there is still much debate about the exact link

between the defects and UV-induced change in refractive index, as it is not straightforward

to detect all types of defects. However, there are already some important well-known defects

that causes silica to be photosensitive. [12]

Silica fibers have such a high number of defects because of their specific fabrication process in

which several chemical processes are involved. As these chemical reactions are never 100 %

complete, suboxides and defects within the glass structure arise. As a result, the silica of

a fiber is a material that is highly inhomogeneous on a microscopic scale with little order

beyond the range of a few molecular distances.

The amount of defects in silica can be increased by doping it with germanium and creating

GeO-type defects. These defects have an absorption peak at 240 nm, and upon UV

illumination the bond of the defect will break causing a reconfiguration of the shape of the

molecule and changing the densitiy of the material.

Other types of defects are Ge(n)-type of defects with an absorption peak around 213 nm or

280 nm, NBOHC-type (non-bridging oxygen-hole center) of defects with absorption peaks

around 260 nm and 600 nm, and P-OHC-type (phosphorous-oxygen-hole center) of defects

that are believed to absorb at 260 nm.
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Another technique to increase the number of defects in Ge-doped fibers is hydrogenation

to form GeH-type of defects. There are several ways to hydrogenate Ge-doped fibers, and

one possibility is to H2-load the fiber for several days at a high pressure (180-700 bar).

This hydrogenation is not permanent as the hydrogen gas will outdiffuse rather quickly after

hydrogen loading. This can be prevented by storing the fiber at low temperatures (-70�) since

the diffusion process is temperature dependent.

Inscription techniques

Photosensitivity is exploited to change the refractive index of the fiber and create a fiber

Bragg grating in the fiber by illuminating it with UV light. There are several different setups

to illuminate the fiber with a periodic pattern but in general they fall into two categories:

holographic or phase mask exposure. [12]

� In a holographic setup a beam splitter is used to divide a single input UV beam into

two beams that recombine at the fiber and create an interference pattern.

In the Talbot interferometric setup (Fig. 3.3(a)) a phase mask (ΛPM) is used as beam

splitting element and two rotatable mirrors are used to create the periodic pattern at the

fiber position. The period Λ of the inscribed grating is determined by the wavelength

of the UV light λUV and the half angle φ between the two interfering beams, and the

relation is given by equation (3.2) [14]. When these mirrors are at the right angle to the

axis of the fiber, the period of the inscribed grating will be half that of the phase mask.

But by rotating the mirrors simultaneously in opposite directions, the period of the

grating can be adjusted, making it a very favourable technique to inscribe gratings with

varying λB. With this technique one can easily create arrays of gratings, i.e. multiple

gratings with different λB that are inscribed close together.

ΛFBG =
λUV

2sinϕ
and λB =

neffλUV

sinϕ
(3.2)

Talbot interferometry is one of the grating inscription techniques that is used for draw

tower gratings (DTG). These gratings are directly inscribed in the fiber while the latter

is being fabricated (Fig. 3.3(b)). This makes it possible to first inscribe the grating in

the fiber, and afterwards coat the fiber so that fiber and grating are well protected. In

all other situations where one wants to inscribe a grating in the fiber that is already

coated, the coating will have to be removed resulting in fragile parts or the grating has

to be inscribed through the coating which requires special techniques.

� In the phase mask technique the fiber is periodically exposed to a pulsed light source or

through a spatially periodic mask. In section 5.3.1 this technique will be used for the

fabrication of the tested sensors.
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(a) (b)

Figure 3.3: (a) Talbot interferometry and (b) Setup to inscribe a grating while fiber is being drawn

(Draw Tower Grating).[12]

The scanning phase mask interferometer setup (Fig. 3.4) uses a phase mask to diffract

an incoming UV beam into multiple higher order beams. If the fiber is placed close to

the phase mask at the position where the +1 and –1 orders intersect, a periodic pattern

will appear in the fiber. This pattern results in a grating with a period equal to half

that of the phase mask (ΛPM = 2ΛFBG). The thickness of the phase mask is chosen

such that the power of the 0th diffraction order is suppressed and the distance between

the fiber and the phase mask is large enough to avoid interference between the higher

order (> 1th) modes.

The advantage of this setup is that the length of the grating can be controlled by

translating the UV beam during inscription and is only limited by the length of the

phase mask. Moreover, as there are no additional components other than the phase

mask, it is a very robust and stable system, making it a good candidate for mass

production of gratings. However, it is disadvantegeous that one phase mask is needed

for each desired grating period and Bragg wavelength.

Figure 3.4: Scanning phase mask technique [12]
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3.2 Photonic crystal fibers

3.2.1 Different types of photonic crystal fibers

The most common known optical fibers have a high-index solid core surrounded by a cladding

of low-index material, and light propagation is based on total internal reflection. However,

photonic crystal fibers (PCFs) are an alternative fiber technology. PCFs consist of a periodic

arrangement of a low-index material (e.g. air) in a background of high-index material (e.g.

silica), forming a so-called 2.5D photonic crystal. PCFs can be categorized under mainly

two types, depending on their guiding mechanism: photonic bandgap fibers and high-index

guiding fibers. In references [15], [16], [17] and [18], some excellent reviews are given on

photonic crystal fibers and their sensing abilities.

Photonic bandgap fibers

The core of a photonic bandgap fiber (Fig. 3.5) has a lower refractive index (e.g. an airhole)

than the surrounding photonic crystal cladding and light is guided in the core by the presence

of a photonic bandgap (PBG) in the microstructured cladding. A PBG is the optical analogue

of an electronic bandgap, and prohibits the propagation of a certain wavelength in a material

with periodic dielectric properties. As light propagates through air, it can be used for low-loss

guidance and high power applications. Another very specific application is (bio-) chemical

sensing where the empty core can be filled with a gas or liquid.

Figure 3.5: (a) Schematic of a hollow core PCF with a triangular lattice of air-holes, which guides

light through the photonic bandgap effect. (b) Microscope picture of a fabricated hollow-

core triangular PCF. [15]

Index guiding fibers

PCFs with a silica core and silica/air-hole microstructured cladding can guide light based on

the principle of (modified) total internal reflection, because the cladding has a lower overall

refractive index due to the presence of air-holes. The refractive index seen by the fundamental

mode guided in the core is dependent on the refractive index of both core and cladding, and

is thus highly dependent on the number, shape, size, pitch and position of the airholes in the

cladding.
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Figure 3.6: (a) Schematic of a solid-core PCF with a triangular lattice of air-holes, which guides light

for (modified) total internal reflection. (b) Microscope picture of a fabricated solid-core

triangular PCF. [15]

The main advantage of this type of fiber is therefore that by changing the geometry of the

microstructure (adapting the size, position or number of air-holes), the properties of the PCF

can strongly be tailored. For example, a triangular lattice PCF as shown in Fig. 3.6, is

characterized by the air-filling fraction d/Λ of the cladding, with d the diameter of the air-

hole and Λ the hole-to-hole spacing. By changing this fraction one can alter the properties of

the PCF, and a few examples are given below:

� Single mode fiber: If d/Λ<0.4 the PCF is endlessly single mode, meaning that it is single

mode for all wavelengths. If the air-filling fraction is increased, higher order modes will

also be trapped in the core, resulting in a multimode fiber.

� Dispersion tailoring: When the PCF has a very small (solid) core, but is surrounded

with very large airholes, one can shift the zero-dispersion wavelength of the PCF to the

visible range.

� Large-mode area fibers: These fibers have small air-holes and large hole-to-hole

distances, implying a large modal area, that is useful for high-power applications.

� Birefringent fibers: By introducing significant assymetry in the microstructure, one can

create highly birefringent fibers (Fig. 3.7). This will be discussed in more detail in

section 3.3.

� Low bending loss fiber: If the air-filling fraction d/Λ is large, only a small part of the

light will escape the core when the fiber is bended. However, if d/Λ is small, light will

not be tightly confined in the core, resulting in larger bending losses.

3.2.2 Fabrication of PCFs

The high design flexibility in PCFs is possible because of their specific fabrication method.

There are different ways to fabricate PCFs, but the so-called stack and draw technique shown
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Figure 3.7: Microscope picture of (a) the cross-section and (b) the core region of a highly birefringent

triangular PCF. [15]

in Fig. 3.8, is most common [15]. As for standard fibers, first there is a preform fabricated that

already has the structure of interest on a macroscopic scale. In the stack-and-draw technique,

this preform is obtained by stacking silica tubes and rods to form the desired structure. Some

of these rods can be doped, some tubes can have thicker or thinner walls, and on some places

rods or tubes can be left out.

Once the preform is ready, the fiber is drawn like a conventional fiber on a drawing tower,

reducing the PCF structure to the desired size. As the fiber is heated during drawing, one

has to prevent the airholes from collapsing. This is done by using a drawing temperature

of only 1900�C instead of 2100�C, and by applying a slight overpressure inside the airholes

during fabrication. However, it is still very difficult to maintain the circular shape and

exact position of the airholes, and the eventual microstructure will be heavily dependent on

fabrication parameters such as temperature, drawing speed and over- or underpressure.

Figure 3.8: Scheme of the PCF fabrication process: a preform made with the stack-and-draw

techniques is drawn to a photonic crystal fiber. [15]

3.2.3 Grating inscription in PCFs

There are some difficulties related with inscribing gratings in PCFs, because of the multiple

reflections at the air/silica interfaces that cause high levels of reflected, refracted and diffracted

light. Moreover, because of the microstructure there will also be rotational variance, and at
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certain angles the scattering will be higher, while at other angles there can be a lensing effect.

[20]

For example, in Fig. 3.9 the scattering is shown for a certain microstructure when transversely

illuminated under an angle of 0� or 30�. There are clearly big differences in the scattering

pattern and the illumination level in the core.

Several solutions have been proposed to overcome this problem of scattering. One could insert

an index-matching fluid into the airholes to reduce the amount of scattering, but this is already

a very elaborate technique [19]. The easiest way to cope with the high levels of scattering, is

by Ge-doping the core of the microstructured fiber such that the photosensitivity of the core

is very high and only small amounts of light are needed to change the refractive index. Not all

applications of PCFs allow Ge-doping because dopants increase the transmission loss and can

affect the temperature sensitivity, but this is certainly not a problem for sensing applications.

(a) (b) (c)

Figure 3.9: 193 nm light (TE) focussed and scattered within the 4-ring PCF shown in (a) illuminated

under an angle of (b) 0◦ and (c) 90◦ orientations. [20]

We will see in section 5.3.1 that the PCFs studied in this Master thesis use Ge-doping and

are therefore compatible with conventional UV-inscription methods.

3.3 Highly birefringent fibers

Birefringence is a waveguide or material property related with the anisotropy of the refractive

index. A light ray entering a birefringent waveguide or material is decomposed into two

orthonally polarized modes and both modes will see a different refractive index resulting in a

different phase velocity (Fig. 3.10).

There are several birefringent crystals in nature, e.g. lithiumniobate (LiNbO3), calcite

(CaCO3) and sapphire (Al2O3), but there are also several ways to make an optically isotropic

material anisotropic. For example, by applying an electric field one can force the molecules

to line up asymmetrically (Pockels effects), but anisotropy can also be induced by applying
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Figure 3.10: When light enters a birefringent material or fiber, it will decompose into two

orthogonally polarized modes, along the fast and slow axis of the material. The phase

velocity v = c/neff of both modes is different.

mechanical stress on the material, via the stress-optic effect.

Since there are different types of birefringence, there are several ways to make a fiber

birefringent (’highly birefringent fiber’ or ’HiBi fiber’). The modal birefringence Bmodal of

a fiber is a combination of the effects listed below.

Material birefringence Bmaterial:

- Thermal stresses can occur in the fiber after fabrication, and these stresses can

result in birefringence (stress-optic effect). By introducing stress-applying parts (SAP)

in the fiber, i.e. materials that have a different thermal expansion coefficient than the

fiber, one can increase the amount of thermal stress and thus the level of birefringence.

Examples of stress induced HiBi fibers are bow-tie or panda fibers (Fig. 3.11).

- By applying stress directly to the fiber, one can also change the birefringence of

the fiber, again because of the stress optic effect. This will later on be the basis of our

sensor concept.

In (3.3) equations are stated for the change of the anisotropic refractive index with the

stress-optic effect, with C1 and C2 the stress optic coefficients of the fiber material,

σ1, σ2 and σ3 the principal components of the applied stress (direction ’1’and ’2’

perpendicular to fiber axis, direction ’3’ along fiber axis) and the stress induced

birefringence Bmaterial=n1-n2=(C1-C2)(σ1-σ2).

n1 = n+ C1σ1 + C2(σ2 + σ3) (3.3a)

n2 = n+ C1σ2 + C2(σ1 + σ3) (3.3b)

n3 = n+ C1σ3 + C2(σ1 + σ2) (3.3c)

Waveguide birefringence Bwaveguide:

- By making the cladding asymmetric in the region around the core, the two guided

modes will also see a different refractive index. This can be done in standard fibers

(elliptical clad fiber), but also in high index guiding PCFs where the microstructure

can be made asymmetrical by enlarging selected holes (Fig. 3.7), by removing air-holes,
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Figure 3.11: HiBi fiber cross-sectional geometry: (a) Panda and TruePhase fibers, (b) bow-tie fiber,

(c) D cladding and elliptical core fiber, (d) elliptical core fiber, (e) elliptical cladding

fiber and (f) polarization axes configuration. [21]

by having large airholes in one direction and small airholes in the other, ... Every

symmetry lower than two-fold symmetry in the microstructure will result in waveguide

birefringence B.

- By making the core asymmetrical the two modes in the core will see a different

refractive index as well. An asymmetric core can be intentional e.g. an elliptical core

fiber (Fig. 3.11), but can also be induced by the fabrication. As was explained in section

3.2.2, it is difficult to maintain exact geometries in PCFs during the fiber drawing. By

making the microstructure of a PCF highly asymmetric, it is very likely that the core

will also become asymmetrical, resulting in an increase of Bwaveguide.

Both Bmaterial and Bwaveguide will contribute to the overall modal birefringence in an optical

fiber (’Highly birefringent fiber’ or ’HiBi fiber’). The modal birefringence Bmodal=nslow-nfast

with nfast and nslow the effective refractive indices of the two fundamental modes propagating

the fiber. It is the difference in phase velocity v = c/neff and corresponding phase difference,

that makes birefringent fibers so interesting for sensing applications. For example, they can

be used as polarimetric sensor where the phase difference between the two modes measured

at the end of the fiber can tell you someting about temperature changes over the whole length

of the fiber.

HiBi fibers can also be used in combination with an FBG that will reflect light in

both modes and thus two Bragg wavelengths (λfast and λslow) will be visible in the
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reflection spectrum. Their separation ∆λ=λslow-λfast will depend on the total birefringence

Bmodal=Bmaterial+Bwaveguide of the fiber, and λfast and λslow are given by equations (3.4).

Thus, if the modal birefringence Bmodal of the fiber changes, due to stress for example, both

Bragg wavelengths will change.

λfast = 2

(
neff −

Bmodal

2

)
Λ (3.4a)

λslow = 2

(
neff +

Bmodal

2

)
Λ (3.4b)

∆λ = λslow − λfast = 2ΛBmodal (3.4c)

This mechanism will form the basis of our sensor concept, which will be explained in more

detail in the next chapter.
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Chapter 4

Sensor concept

4.1 Temperature and strain sensitivity of an FBG in a HiBi

fiber

The Bragg condition states that λB=2neffΛ, with both neff and Λ dependent on temperature

T and strain ε or even other perturbations. This implies that an FBG can be used as a

temperature and/or strain sensor, as they both will cause a shift δλB of the Bragg wavelength

as given by equation (4.1).

δλB = 2

(
neff

∂Λ

∂ε
+ Λ

∂neff

∂ε

)
δε+ 2

(
neff

∂Λ

∂T
+ Λ

∂neff

∂T

)
δT (4.1)

If an FBG is inscribed in a highly birefringent fiber, two Bragg wavelengths (λfast=2nfastΛ and

λslow=2nslowΛ) will be reflected by the grating, and both these wavelengths are dependent on

strain and temperature. This implies that the peakseparation ∆λ=λslow-λfast also depends

on strain and temperature, and that it can be considered to measure strain or temperature.

The advantage of using ∆λ as sensor read-out is that this is a differential measurement where

the information is contained in a difference between two values. This means that no reference

wavelength is needed, there are no problems regarding drift on the read-out and the sensor

does not need to be connected or monitored continuously.

Another possible advantage of using ∆λ as measurement signal is that it can be made

(almost completely) independent of temperature changes by correctly choosing the fiber type,

microstructure design and material. Strain sensors that are not affected by temperature

changes have a distinct advantage as they need no temperature compensating system. This

could lower the cost of a fiber sensor system, which is one of the current reasons for the

limited acceptance of these sensors in industry, as explained in section 2.1.3.

In the next sections equation (4.1) will be studied in more detail in order to find the

requirements for such a temperature insensitive strain sensor.
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4.1.1 Response to temperature

The sensitivity of the Bragg wavelength to temperature can be found if there is no strain

applied (εi=0). Equation (4.1) then becomes

δλB = 2

(
neff

∂Λ

∂T
+ Λ

∂neff

∂T

)
δT (4.2a)

= λB

(
1

Λ

∂Λ

∂T
+

1

neff

∂neff

∂T

)
δT (4.2b)

= λB (αf + αn) δT (4.2c)

There are two dominant effects influencing the Bragg wavelength when the temperature T

varies. First of all, an increase in temperature causes a thermal expansion of the fiber, and

thus a change in grating period Λ. The thermal expansion coefficient is given by αf = 1
Λ
∂Λ
∂T

and is approximately 0.55×10�6 1/K [22] for undoped silica.

Moreover, a temperature change also induces a change in refractive index, which is the so-

called thermo-optic effect. αn = 1
neff

∂neff
∂T is the thermo-optic coefficient and its value is

dependent on the dopant type and doping concentration of the silica fiber. Values between

3.0×10�6 1/K and 8.6×10�6 1/K [22] for germanium-doped silica-core fibers have been

reported.

Equation (4.2a) can be re-written as (4.2c), with αf+αn the temperature coefficient in which

the thermo-optic coefficient αn will have the largest influence. It follows that for αf =

0.55×10�6 1/K and αn = 7×10�6 1/K at a wavelength λ of 1550 nm, the (theoretical)

sensitivity of the Bragg wavelength for temperature is about 10.85 pm/K.

4.1.2 Response to strain

When the temperature T is kept constant, the Bragg wavelength is only dependent on the

strain conditions and equation (4.3) can be applied.

∆λB = 2

(
neff

∂Λ

∂ε
+ Λ

∂neff

∂ε

)
∆ε (4.3)

Strain ε is given by a 3×3 matrix εij (for i, j=1,2,3), with the coordinate system as depicted

in 4.1. This coordinate system will be taken as convention throughout the rest of the text.

Photo-elasticity, also known as the stress-optic or strain optic effect, describes refractive index

changes due to mechanical strain. The change in optical permeability tensor (∆ηi) depends on

the strain tensor (εj) and the strain-optic tensor (pij), and their relation is given by equation

(4.4). The strain-optic tensor p depends on the symmetry of the material, and for an isotropic

material such as silica, this tensor contains only two independent coefficients p11 and p12. The
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Figure 4.1: Coordinate system of an optical fiber that will be taken as convention throughout the

rest of the text.

tensor itself is given by equation (4.5).

The values of the strain optic coefficients are dependent on the type of material, the doping

concentration and the wavelength at which they are determined. Typical values for undoped

bulk silica, measured at 630 nm, are p11=0.121 and p12=0.270 [22].

ηi = η
(0)
i + ∆ηi with ∆ηi = ∆

(
1

n2

)
i

= pijεj i, j = 1, 2, ..., 6 (4.4)

p =



p11 p12 p12 0 0 0

p12 p11 p12 0 0 0

p12 p12 p11 0 0 0

0 0 0 1
2(p11 − p12) 0 0

0 0 0 0 1
2(p11 − p12) 0

0 0 0 0 0 1
2(p11 − p12)


(4.5)

Strains normal to all surfaces of the fiber (ε1, ε2 and ε3 6= 0) will result in a change in

refractive index along the axes as depicted in Fig. 4.1, with the principal axes corresponding

to the slow and fast axis of a HiBi fiber. This change in refractive index will be translated

into a shift of the Bragg wavelength(s) when an FBG is inscribed in the fiber.

Shear deformations ε4, ε5 and ε6 have no effect on the first two impermeability values, p11 and

p12, and consequently also not on the refractive indices of the fiber, they cannot be measured

with an optical fiber.

For small variations of the refractive index, equation (4.4) becomes equation (4.6).

d

(
1

n2

)
i

=
−2

n3
i

dni ⇒
−2

n3
i

dni = pijεj ⇒ dni =
−1

2
n3
i pijεj (4.6)

If (4.5) and (4.6) are combined, one finds (4.7)

dn1 =
−n3

1

2
(p11ε1 + p12ε2 + p12ε3) (4.7a)
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dn2 =
−n3

2

2
(p12ε1 + p11ε2 + p12ε3) (4.7b)

dn3 =
−n3

3

2
(p12ε1 + p12ε2 + p11ε3) (4.7c)

From the Bragg condition one then finds (4.8), assuming that the only change in period of

the grating is an increase dependent on the amount of axial strain, Λ = Λ0(1+ε).

λB = 2neffΛ⇒ dλB
ε

= 2
dneff
ε

Λ + 2
dΛ

ε
neff (4.8a)

⇒ dλB
ε

= 2
dneff
ε

Λ + 2Λneff (4.8b)

⇒ dλB
ε

= λB

(
1 +

1

neff

dneff
ε

)
(4.8c)

From equation (4.7) and (4.8) the equations can be derived to find the change in Bragg

wavelength when a strain is applied (4.9):

δλB,1

λB,1
= ε3 −

1

2
n2

eff,1 [p11ε1 + p12 (ε2 + ε3)] (4.9a)

δλB,2

λB,2
= ε3 −

1

2
n2

eff,2 [p11ε2 + p12 (ε1 + ε3)] (4.9b)

In Fig. 4.2 different types of strain fields are shown and each of them will have a specific

influence on the Bragg wavelength(s) of an FBG. Consequently, by studying the behaviour of

the Bragg peak(s), the corresponding strain field could possibly be derived. The Bragg peak

behaviour of a (HiBi) fiber under axial or transverse line loading will be discussed in more

detail below.

Figure 4.2: Schematic representation of different types of strain on a fiber: (a) axial strain, (b)

hydrostatic pressure and (c) transverse line load. [8]
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Axial strain

In the specific case that only axial stress is applied on the free standing fiber, the transverse

strains ε1 and ε2 are a fraction of the axial strain ε3 (4.10):

ε1 = ε2 = −νε3 = −νε (4.10)

Equations (4.9) become equation (4.11):

δλB,1

λB,1
= ε− 1

2
n2

eff,1 [νε (p11 + p12) + p12ε] (4.11a)

δλB,2

λB,2
= ε− 1

2
n2

eff,2 [νε (p11 + p12) + p12ε] (4.11b)

For the change in peak separation between the two Bragg wavelengths, one finds equation

(4.12). From this follows that for a uniaxial fiber (neff,1=neff,2) the peak separation does not

change when only axial stress is applied to the fiber. However, this is not necessarily the case

for a HiBi fiber for which neff,1=fast 6= neff,2=slow.

δλB,2

λB,2
−
δλB,1

λB,1
= −1

2
[νε (p11 + p12) + p12ε]

(
n2

eff,2 − n2
eff,1

)
(4.12)

Transverse strain

In the specific case that the fiber is only transversely loaded, a plane strain (ε3=0) situation

is created. Equation (4.9) becomes (4.13), and from these it is clear that λB,1 and λB,2 behave

differently when a transverse line load is applied, for both a non-HiBi fiber and a HiBi fiber.

One can thus expect a clear change in Bragg peak separation when a transverse line load is

applied to the fiber.

δλB,1

λB,1
= −1

2
n2

eff,1 [p11ε1 + p12ε2] (4.13a)

δλB,2

λB,2
= −1

2
n2

eff,2 [p11ε2 + p12ε1] (4.13b)

4.2 Envisioned sensor concept

In general, the goal is to achieve a sensor that is insensitive to temperature, but has a high

transverse strain sensitivity. Temperature insensitivity can (possibly) be obtained by using

a HiBi PCF. The birefringence leads to two Bragg wavelengths λfast and λslow and their

separation ∆λ is the measured signal, making it a differential sensor. Photonic crystal fibers

have the advantage that they have only small and slightly doped parts resulting in very small

(temperature sensitive) thermal stresses. The microstructure of the PCF can be adapted such



4.3 Thesis objectives 31

that the fiber has a very high transverse strain sensitivity, thus that the peak separation is

heavily dependent on transverse strain.

This concept is shown in Fig. 4.3. Under influence of temperature (or axial strain) both

Bragg peaks shift in the same way leading to no change in peak separation, while the Bragg

peaks shift in opposite direction due to transverse strains resulting in an increase or decrease

in peak separation.

(a) (b)

Figure 4.3: Effect on the Bragg wavelengths of an FBG in a HiBi fiber due to (a) axial strain or

temperature changes and (b) transverse strain.

The second step is to exploit the high transverse line load sensitivity of the bare fiber sensor in

an embedded sensor. There are several applications where embedded optical fiber sensors with

an increased transverse line load sensitivity have a significant added-value, as was discussed

in section 2.2.

4.3 Thesis objectives

The combination of an FBG inscribed in a HiBi PCF allows multi-parameter sensing and by

careful design of the microstructure the fiber can be made very sensitive to one parameter

while nearly insensitive to others. The sensor of interest in this work is designed to have a

low temperature sensitivity and at the same time a high transverse strain and hydrostatic

pressure sensitivity. This sensor could be used for all kinds of applications, but one of the

main goals is to embed this fiber in different types of materials to create a smart material

with a high transverse strain sensitivity.

In this Master thesis the sensitivity of a HiBi PCF that was specially designed to have a high

transverse strain sensitivity is determined for the bare fiber, but also when it is embedded

in two very different materials, i.e. polymers and composite materials. The objectives are

discussed in the next section.
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4.3.1 Sensitivity of the FBG sensor

State of the art

There are not many references that investigate the combination of an FBG with a HiBi PCF

for transverse strain sensing purposes. Some results regarding fibers with a low temperature

sensitivity and high hydrostatic pressure sensitivity, which usually corresponds to a high

transverse strain sensitivity, have been reported before ([23], [24], [25]). In reference [26] a

PCF is presented with two large airholes on each side of the core with a grating inscribed that

should withstand high temperatures. The reported hydrostatic pressure sensitivity is on the

order of 1 pm/bar, but shows a significant temperature dependence. At room temperature

a sensitivity of 1.27 pm/bar is achieved, but this value is not stable and becomes about 1.4

pm/bar or 1.7 pm/bar at a temperature of 199 �C or 858 �C respectively.

An overview of the transverse line load sensitivity of different types of thermal stress-induced

birefringent fibers is given in [21]. The highest line load sensitivity was obtained for an

elliptical clad fiber with a maximum sensitivity of λslow of 230 pm/(N/mm) and corresponding

sensitivity of ∆λ of about 210 pm/(N/mm). However, the temperature sensitivity of this type

of HiBi fiber is also quite high, with a value of 14.5 pm/�C for λslow and 15.6 pm/�C for λfast.

The transverse line load sensitvity of a twin-hole fiber was investigated in [27], and the

sensitivity of the peak separation was found to be about 212 pm/(N/mm). Values regarding

the temperature sensitivity were not reported.

The line load sensitivity of another type of microstructured HiBi fiber was determined in [28],

a transverse strain sensitivity of ∆λ of about 100 pm/(N/mm) was found. Thanks to the

design of the fiber, the temperature sensitivity of the peak separation could be neglected.

Objectives

In my work, several types of HiBi (microstructured) fibers will be investigated. I will start with

fabricating the sensors by inscribing gratings in the fibers and determining their temperature

and strain sensitivity. This is done via experiments and FEM simulations in order to achieve

a better understanding of Bragg grating sensors inscribed in HiBi fibers.

The goal is to have a differential sensor for which the peak separation ∆λ = λslow − λfast is

(nearly) insensitive to temperature changes and at the same time has a high transverse line

load or hydrostatic pressure sensitivity. The envisioned hydrostatic pressure sensitivity of ∆λ

lies between –1 pm/bar to –1.7 pm/bar and this should correspond to a transverse line load

sensitivity of ∆λ of around 200 pm/(N/mm).
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4.3.2 FBG sensors embedded in a composite material

State of the art

Embedded FBG sensors fabricated in standard single mode fiber in various composite

materials with different lay-ups, were reported in [29]. They showed that depending on the

orientation of the optical fiber with respect to the reinforcement fibers, non-uniform residual

strains will cause a shift of the Bragg wavelength. More specifically, it was shown that a

quasi-isotropic layup of glass fibre/epoxy only caused a shift in Bragg wavelengths, while

an angle-ply layup resulted in such high residual strains that the embedded fiber becomes

birefringent.

Values regarding FBG sensors fabricated in a bow-tie fiber and a microstructured fiber

embedded in a carbon fiber/epoxy composite with a unidirectional layup, were reported

in [30]. Testing of both samples showed that their sensitivity of ∆λ is nearly zero for axial

strain, while the transverse strain sensitivity of the peak separation was -0.022 pm/µε for

the bow-tie embedded sample and -0.014 pm/µε for the embedded PCF. The temperature

sensitivity differed significantly for both samples; the sensitivity of ∆λ was -0.42 pm/�C and

0.026 pm/�C for the embedded bow-tie fiber and PCF, respectively.

Objectives

In this Master thesis, I will investigate the possibilities of embedding an FBG sensor in a

PCF with enhanced transverse line load sensitivity and a highly asymmetric microstructure,

in a carbon fiber/epoxy composite. The fiber will be embedded under a welll defined

orientation to optimize transverse sensitivity, and this orientation will be checked at the

end with a destructive test. The first test that I will perform on these samples is a thermal

sensitivity test to see whether the temperature insensitivity of the bare fiber is maintained

when embedded in a composite. I expect that the axial strain sensitivity of the FBG sensor

will not change dramatically when embedded, but it will be determined for completeness.

Since a composite has a very high stiffness, I assume that transverse loading of a composite

will result in transverse loading of the embedded sensor and thus that the high transverse

line load sensitivity of the bare fiber sensor will result in a high transverse strain sensitivity

of the embedded fiber sensor.

The research regarding the composites was made in cooperation with the department of

Materials Science and Engineering of the university of Ghent.
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4.3.3 FBG sensors embedded in a flexible polymer

State of the art

FBG sensors embedded in flexible polymer skins are a research topic that is still in its early

stages and therefore good references are hard to find. Embedded FBG sensors in a fexible

thin PDMS sheet for pressure sensing were reported in [31]. However, their sensing principle

was not related to the strain-optic effect, but to the decrease in optical power reflected by the

Bragg grating when the fiber is bended. They obtained a sensitivity of 10 % optical power

loss per 10 kPa pressure and a spatial resolution of 1 cm2.

Objectives

I will embed FBG sensors fabricated in HiBi PCFs with enhanced transverse line load

sensitivity in different polymers (PDMS, MMA, ORMOCER, ...) with varying mechanical

properties to determine the influence of these properties on the sensitivity of the FBG sensor.

As the elastic modulus of the embedding material is quite different from the optical fiber, a

transverse strain on the material will be seen by the sensor as a hydrostatic pressure rather

than as a pure transverse line load. Via experimental characterizations and FEM simulations

the sensitivity of the sensor will be determined for materials with varying parameters. I will

also look at the influence of the polymer thickness and the sensitivity at a certain distance

from the FBG sensor.
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Chapter 5

Fabrication and characterization of

an FBG sensor

5.1 Outline and objectives

In section 5.2, four different types of highly birefringent fibers will be described and their

properties such as birefringence (material, waveguide and modal) will be discussed. Some

fibers already had fiber Bragg gratings inscribed, while in two types of fibers, they had to be

inscribed during this work. The fabrication and evaluation of these gratings is discussed in

section 5.3.1.

The sensitivity of the fabricated FBG sensors are characterized via FEM analyses and

experiments. The goal of these sensors is to use them for multi-axial strain field sensing.

This implies that the sensitivity of the gratings for different types of strain needs to be

known. As was discussed in section 4.1.2, this sensitivity can be determined by applying pure

axial stress and a pure transverse line load to the fiber. However, as the characteristics of a

grating also depend on temperature, the sensitivity to temperature has to be determined, in

order to know how important it is to control temperature during strain measurements.

The sensitivity of a sensor can be determined by (linear) fitting the response of the Bragg

peak wavelength λfast and λslow and the Bragg peak separation ∆λ, resulting in a value with

unit pm/�C , pm/µε, ... . The goal is to have a high sensitivity of the Bragg peak separation

∆λ for transverse line loading, while ∆λ is more or less constant for temperature and axial

strain. A sensor with these specifications can be used for differential, temperature insensitive

strain monitoring.

5.2 Fibers under test

In section 3.3 the different possibilities to obtain a highly birefringent fiber were discussed.

Four different types of HiBi fiber will be tested, three types of PCF (Type 1, 2 and 3) with
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a highly asymmetric microstructure and a bow-tie fiber in which birefringence is induced by

thermal stress.

I will explain the important differences between the tested fibers in the following sections.

It is important to understand the types of birefringence present in a fiber as the eventual

sensitivity of an FBG sensor fabricated in the fiber will be highly dependent on the level of

Bmaterial and Bwaveguide. Bmaterial and Bmodal=Bmaterial+Bwaveguide can be simulated with

FEM analyses and more details about these simulation procedures can be found in Appendix

A.

5.2.1 Bow-tie fiber

Figure 5.1: SEM image of a bow-tie fiber.

A bow-tie fiber (Fig. 5.1) is birefringent because of the presence of stress-applying parts

(SAP) that have a different thermal expansion coefficient than the silica cladding. During

fabrication of the fiber thermal stresses will be induced due to the different thermal expansion

coefficients, resulting in stress-induced birefringence.

Since a bow-tie fiber is birefringent mainly because of thermal stresses, Bmodal will be

determined mostly by Bmaterial. With FEM analyses, both Bmaterial and Bmodal are simulated.

The simulation parameters are given in Table 5.1 and the geometrical model used for the

simulation is shown in Fig. 5.2(a).

Table 5.1: Geometrical and material parameters for the simulation of a fabricated bow-tie fiber with

stress-optic coefficients C1 = -6.9E-13 m2/N and C2 = -41.9E-13 m2/N. [32]

Core Cladding SAP

n 1.4558 1.4478 1.4418

E (GPa) 69.5 78 78

ν 0.165 0.186 0.186

α (1/K) 2.215E-6 0.54E-6 1.45E-6

Tref (�C) 1030 1100 1100

The fabrication induced birefringence Bmaterial=n2-n1=(C1-C2)(σ2-σ1) (with 1 and 2 along
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the fast and slow axis respectively) in a bow-tie fiber is shown in Fig. 5.2(b) and a close-up of

the core is shown in Fig. 5.2(c). The simulated Bmaterial for a bow-tie fiber is about 3 × 10− 4

in the core and it is clear from these plots that this birefringence is caused by an asymmetric

distribution of the stresses σ1 and σ2 in and around the core. In Table 5.2 an overview is

given for the average stresses in the circular core.

(a) (b) (c)

Figure 5.2: Simulation of a bow-tie fiber: (a) Geometrical model. (b) Material birefringence Bmaterial

= n2-n1 and close-up of the core region (c).

Table 5.2: Simulation of a bow-tie fiber: Numerical results of the fabrication induced stesses in a

bow-tie fiber. Values are obtained by averaging over the circular core.

σ1 (MPa) 14.23

σ2 (MPa) 106.40

σ2-σ1 (MPa) 92.18

Bmaterial 3 × 10 − 4

The mode profiles of the two fundamental modes with refractive indices nfast and nslow are

shown in Fig. 5.3(a) and (b). The obtained values are nfast = 1.4489 and nslow = 1.4492, and

the corresponding modal birefringence Bmodal=nslow-nfast is about 3 × 10 − 4.

By comparing Bmaterial and Bmodal, the waveguide birefringence Bwaveguide=Bmodal-Bmaterial

can be found. From the simulated results it is immediately clear that Bwaveguide is (nearly)

zero for bow-tie fibers and that it is birefringent mostly because of thermal induced stresses.

5.2.2 HiBi PCFs

The most common way to make a PCF birefringent is by making the microstructure of

the cladding asymmetric or by making the solid core itself asymmetric, and thus introduce

waveguide birefringence. There are numerous ways to design an asymmetric microstructure
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(a) (b)

Figure 5.3: Modal profile of the fundamental modes with refractive indices nfast (a) and nslow (b)

guided in the core of a bow-tie fiber.

and an asymmetric core is often the result of deformations caused by fabrication as was

explained in section 3.2.2.

Three different types of HiBi PCF are tested and the SEM images of their cross section are

shown in Fig. 5.4. Type 1 is an example of a PCF with only a few holes and they are placed

in a very asymmetrical way around the core. Type 2 and Type 3 are HiBi PCFs that are

specially designed to have a high transverse mechanical sensitivity. Both types are based on

a triangular lattice microstructure with some holes enlarged or missing.

Type 1 PCF (Fig. 5.4(a) and (b)) is designed by VUB and WRUT (Wroclaw University of

Technology, Poland) and has a birefringence Bmodal of about 2 × 10 − 3 according to [33].

Type 2 PCF is designed by WRUT and is meant to have a high mechanical sensitivity. As

can be seen from the SEM image in Fig. 5.4(c) and (d), due to the highly asymmetric

microstructure the core itself has become asymmetric and this will contribute to the total

birefringence Bmodal of the PCF. The core itself is not only asymmetric, it is also weakly

enclosed by airholes along the slow axis resulting in a low air-filling fraction d/Λ (section 3.2.1).

This implies that higher order modes will escape the core very easily along this direction,

ensuring single mode behaviour but also (possible) high bending losses. A particular feature

of PCF Type 2 is that it has a hexagonal outercladding, what could simplify orientation of the

fiber in applications where orientation is important. Fabrication of a PCF with hexagonal

outercladding is not much more difficult than a PCF with circular outercladding, as the

preform can be made by stacking rods and tubes in a hexagonal pattern.

Type 3 PCF is designed by VUB and is, as Type 2, designed to have a high transverse
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: SEM images of the cross section of the different types of tested HiBi PCFs: (a) - (b):

Type 1, (c) - (d): Type 2, (e) - (f): Type 3, with a cladding diameter of respectively

125 µm, 80 µm and 129 µm.
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mechanical sensitivity. This is again achieved by making the microstructure highly

asymmetric which also resulted in an asymmetric shaped core (Fig. 5.4(a) and 5.4(b)). The

guided modes in this type of PCF are better confined by airholes (large d/Λ), resulting in low

bending losses. However, the tight confinement also indicates that higher order modes can

be trapped in the core region and the design has to be tuned such that only the fundamental

modes are guided in the core. This implies that fabrication has to be well controlled as the

slightest deviation from the design can cause the fiber to become multimode.

From the SEM images it is also clear that maintaining exact circular airholes or a circular

outercladding, becomes increasingly difficult for more complex microstructures. The outer

diameter of this type of fiber is about 125 µm.

(a) (b) (c)

Figure 5.5: Simulation of a Type 3 PCF: (a) Geometrical model. (b) Material birefringence

Bmaterial = n2 − n1 and close-up of the core region (c).

A FEM analysis was performed on the cross section of a Type 3 PCF to determine the

fabrication induced stresses. The geometrical model is shown in Fig. 5.5(a) and the material

parameters are listed in Table 5.3. The material birefringence of the bare fiber without any

external forces applied, is plotted in Fig. 5.5(b) with a close-up of the core region in Fig.

5.5(c) and Table 5.4 lists the average stresses in the core with Bmaterial = 3 × 10�5.

The mode profiles of the two fundamental modes with refractive indices nfast = 1.4168 and

nslow = 1.4188 are shown in Fig. 5.6(a) and 5.6(b). Since the total birefringence Bmodal =

2×10�3 of the fiber is much larger than Bmaterial, this fiber will be mainly birefringent because

of the specific microstructure and asymmetrically shaped core. This will be translated in a

low temperature sensitivity as will be shown in section 5.4.1.

In Fig. 5.6(c) and 5.6(d) the logarithmic energy distribution of the fundamental modes are

shown and from these plots it is immediately clear that the energy of the fundamental modes

is distributed asymmetrically, which corresponds to the high level of waveguide birefringence.
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(a) (b)

(c) (d)

Figure 5.6: Modal profile of the fundamental modes guided in the elliptical core of a Type 3 PCF

with refractive index (a) nfast and (b) nslow, and the logarithmic energy distribution plots

for both fundamental modes with refractive index (c) nfast and (d) nslow.
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Core Cladding

radius (µm) ∼0.6-1.7 ∼64.5

n 1.4481 1.4440

E (GPa) 73.31 75.11

ν 0.1626 0.165

α (1/K) 8.81E-7 5.31E-7

T (�C) 1070 1100

Table 5.3: Geometrical and material parameters for the simulation of a fabricated Type 3 PCF, with

C1 = 6.9E-13 1/Pa and C2 = 41.9E-13 1/Pa. [34]

Table 5.4: Numerical results of a FEM analysis of the fabrication induced stresses in a Type 3 PCF.

Values are obtained by averaging over the elliptical core region.

σ1 (MPa) 3.14

σ2 (MPa) 12.88

σ2-σ1 (MPa) 9.74

Bmaterial 3 × 10�5

5.3 Fabrication and evaluation of fiber Bragg gratings

5.3.1 Fiber Bragg grating inscription

Grating inscription in PCF Type 2 and Type 3 was performed at the cleanroom facilities of

the Univeristy of Mons, where they have a scanned phase mask interferometric setup for the

inscription of Type I gratings (Fig. 5.7).

The PCFs were first prepared by splicing both ends to single mode fiber to seal off the

airholes of the PCF and prevent outgassing of hydrogen after hydrogenation. The samples

were hydrogenated for 48 hours, at a temperature of 200�C and pressure of 200 atm.

Afterwards, the samples were stored for a week in a fridge at -40�C. Storing the samples

at low temperatures is only necessary when the gratings cannot be inscribed immediately

after hydrogenation as low temperatures ’freeze’ the effects of hydrogenation.

Once the samples were prepared they could be placed in the interferometric setup (Fig. 5.7

and Fig. 5.8). The sample was spliced to a connector cable, such that the growth of a grating

could be monitored with an optical spectrum analyzer (OSA). As the OSA had no built-in

source, an external amplified spontaneous emission (ASE) source and directional coupler were

used. The fiber was placed behind the phase mask (ΛPM=1095.08 nm) and was clamped in

two fiber holders, such that the fiber was tightly fixed.
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Figure 5.7: Scanning phase mask interferometric setup at University of Mons.

A frequency doubled Argon ion laser was used as UV source (244 nm) and the power of the

UV beam could be measured at the exit of the frequency doubler by placing a power meter

directly in the path of the beam.

Figure 5.8: Scheme of scanning phase mask interferometric setup at University of Mons.

Actual grating inscription was done when the UV beam hit the fiber. By translating the UV

beam over the length of the fiber during inscription, the length and thus reflectivity of the

grating could be increased.

There were in total 4 gratings inscribed in Type 2 PCFs, and 7 gratings in Type 3 PCFs.

The inscription power was different per sample, varying between 18 mW and 52.7 mW, and

the final length of the inscribed gratings varied between 5 mm and 8 mm, depending on the

inscription power. These values correspond to those for grating inscription in standard single
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mode fibers.

After grating inscription the samples were annealed to remove the remaining hydrogen. This

was done by storing the samples for 16h at a temperature of 80�C.

Examples of the resulting spectra of the gratings can be seen in Fig. 5.11 (Type 2 PCF) and

Fig. 5.12 (Type 3 PCF).

5.3.2 Evaluation of the inscribed FBGs

The provided bow-tie fibers already had uniform FBGs inscribed in them. This was done

with a Talbot interferometric setup with the period of the grating ΛFBG=530 nm and one of

the spectra is shown in Fig. 5.9.

The modal birefringence Bmodal,exp=∆λ/(2ΛFBG) of the fiber can be calculated from the

reflected Bragg peak wavelengths λfast and λslow with ∆λ=λslow- λfast=0.380 nm, and is

about 4 × 10 − 4 for this type of HiBi fiber. This value is comparable with the simulated

value Bmodal,sim= 3 × 10 − 4 found in section 5.2.1. There is a strong peak overlap as the peak

separation is rather small compared to the spectral width of the peaks and this could make

peak determination more difficult.

Figure 5.9: Reflection spectrum of an FBG inscribed in a bow-tie fiber. The Bragg peaks wavelengths

are λfast = 1535.951 nm and λslow = 1536.331 nm.

The provided Type 1 PCFs had also gratings inscribed in them already. This grating

inscription was done using a Talbot interferometric setup which made it possible to inscribe

an array of gratings with varying period ΛFBG, and Bragg wavelength λB, by rotating the

beam combining mirrors (section 3.1.2). The spectrum of a sample with an array of 7 gratings

inscribed, is shown in Fig. 5.10 together with the Bragg wavelengths for grating Gr1.

The birefringence Bmodal,exp of this type of fiber is about 2 × 10− 3 which corresponds to the

value reported by [33]. The modal birefringence of a Type 1 PCF is much larger than that

of a bow-tie fiber, which results in a larger peak separation and simplified detection of both
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peaks.

Figure 5.10: Reflection spectrum of a wavelength multiplexed array of 7 FBGs inscribed in a Type

1 PCF. The Bragg peaks wavelengths for grating Gr1 with ΛFBG = 530 nm are

λfast = 1530.278 nm and λslow = 1532.443 nm.

Gratings are inscribed in a Type 2 PCF with the scanning phase mask technique (ΛFBG = 547.54

nm) as described in detail in section 5.3.1. The spectrum of a fabricated sample is shown

in Fig. 5.11 together with the Bragg peak wavelengths. This type of PCF has a modal

birefringence Bmodal,exp of about 1 × 10− 3, which is slightly smaller than for a Type 1 PCF

but still large enough for reliable peak detection.

Figure 5.11: Reflection spectrum of an FBG inscribed in a Type 2 PCF. The Bragg peaks

wavelengths are λfast = 1561.928 nm and λslow = 1563.492 nm.

Gratings also had to be inscribed in Type 3 PCFs, and this was done with the scanned phase

mask technique (ΛFBG = 547.54 nm) discussed in section 5.3.1. A spectrum of one of the

samples is shown in Fig. 5.12 together with the corresponding Bragg peak wavelengths. The

modal birefringence Bmodal,exp of this type of fiber is about 2 × 10 − 3 and is the same as

Bmodal,sim that was simulated in section 5.2.2.
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Figure 5.12: Reflection spectrum of an FBG inscribed in a Type 3 PCF. The Bragg peaks

wavelengths are λfast = 1554.208 nm and λslow = 1556.372 nm.

5.4 FBG sensor calibration

5.4.1 Temperature calibration

A first step in characterizing the sensitivity of the fabricated fiber Bragg grating sensors, is

determining their sensitivity to temperature since we want a temperature insensitive sensor.

In section 4.1.1 the theoretical aspects of the temperature sensitvity of an FBG sensor were

explained. There are two dominant temperature effects: the thermal expansion (αf ) of a fiber

and the thermo-optic effect (αn).

In this work, the temperature sensitivity of a Type 3 PCF is determined via experiments

and the results are compared with earlier reported values for a bow-tie fiber and a Type 1

PCF. The tested Type 3 PCF had an array of four gratings inscribed and in this way the

temperature test was actually performed four times.

The experimental setup is shown in Fig. 5.13. The fiber is connected via a directional coupler

to an amplified spontaneous emission (ASE) source and an optical spectrum analyzer (OSA)

that has a peak detection accuracy of 10 pm. The unstrained grating is placed in an oven of

which the temperature can be controlled manually. Although the oven has a built-in read-out,

a thermocouple with a more accurate read-out (accuracy of 1 �C) is fixed beside the gratings

to determine the temperature.

Once the temperature in the oven is stabilized the Bragg wavelengths are determined. The

measured temperature range is from 38.4�C to 86.4�C and the corresponding change in Bragg

peak wavelengths (λfast and λslow) and Bragg peak separation ∆λ of the second grating (Gr2)

are shown in Fig. 5.14(a) and 5.14(b).

The sensitivity (in pm/�C) is found by a linear fit of these graphs (Table 5.5). From Fig.

5.14(b) it is clear that a linear fit of the change in Bragg peak separation is of very little
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Figure 5.13: Setup to measure the temperature sensitivity of an FBG sensor.

relevance, and this was also the case for the other gratings.

There is some spread on the sensitivities of the Bragg wavelengths of the different gratings.

However, the relative standard deviation is 0.02 % for both the fast axis and slow axis, which

indicates that the obtained averaged results are reliable. The temperature sensitivity of the

Bragg peaks in a Type 3 PCF is thus about 9.09 pm/�C and 9.02 pm/�C for the modes

polarized along respectively the fast and slow axis, and the peak separation is insensitive to

temperature.

(a) (b)

Figure 5.14: Temperature sensitivity of the second grating of an array of four inscribed in a Type

3 PCF. Nominal shift of (a) the Bragg peak wavelengths and (b) the Bragg peak

separation. The line in (a) is a linear fit with a sensitivity given in Table 5.5.

The obtained sensitivity of the Bragg peaks is lower than the theoretical sensitivity of an FBG

in a standard (silica) single mode fiber that was calculated in section 4.1.1. This because of

the smaller doped regions that result in a lower thermo-optic effect. This was also shown in

section 5.2.2 where the thermal stresses were calculated with a FEM analysis.

In Table 5.6 the temperature sensitivity of a Type 3 PCF is compared with that of earlier

reported values for a bow-tie fiber and Type 1 PCF. A Type 3 PCF has the lowest sensitivity
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Table 5.5: Temperature sensitivity of the array of FBG sensors inscribed in a Type 3 PCF.

[pm/�C] Gr1 Gr2 Gr3 Gr4 Average Standard deviation

peak 1 - fast axis 9.15 8.83 9.09 9.26 9.09 0.18

peak 2 - slow axis 9.07 8.78 9.02 9.20 9.02 0.18

peak separation -0.08 -0.06 -0.08 -0.06 -0.07 0.01

of the Bragg peaks, and also its peak separation is least affected by temperature changes.

The bow-tie fiber has the highest temperature sensitivity of ∆λ and this is a direct result of

the large amount of thermal stresses present in a bow-tie fiber.

Table 5.6: Temperature sensitivity of FBG sensors fabricated in different types of HiBi fibers.

[pm/�C] Bow Tie [22] Type 1 [35] Type 2 Type 3

peak 1 - fast axis 10.55 10.27 / 9.09

peak 2 - slow axis 10.18 10.15 / 9.02

peak separation -0.37 -0.12 / -0.07

5.4.2 Axial strain calibration

The goal is to use FBG sensors fabricated in a HiBi PCF for multi-axial strain sensing. In

order to know the potential of the sensors, they have to be calibrated for different types of

strain. Pure axial strain is one of them. In section 4.1.2 the theory of the axial sensitvity of an

FBG was explained: the sensitivity of the Bragg wavelengths and the Bragg peak separation

to pure axial stress is given by the equations (5.1), with p11 and p12 the strain-optic coefficients

and neff,1 and neff,2 the refractive indices along the principal axis.

δλB,1

λB,1
= ε− 1

2
n2

eff,1 [νε (p11 + p12) + p12ε] (5.1a)

δλB,2

λB,2
= ε− 1

2
n2

eff,2 [νε (p11 + p12) + p12ε] (5.1b)

δλB,2

λB,2
−
δλB,1

λB,1
= −1

2
[νε (p11 + p12) + p12ε]

(
n2

eff,2 − n2
eff,1

)
(5.1c)

The sensitivity to axial strain can be determined by elongating the fiber and grating, and

monitoring the corresponding change in Bragg peak wavelengths and Bragg peak separation.

By linear fitting this change, a sensitivity in pm/µε is obtained.

Although axial strain experiments are not performed in this work, for completeness earlier

reported values are listed in Table 5.7. In Fig. 5.15 the nominal shift of the Bragg peak

wavelength and Bragg peak separation for a type 3 PCF are shown.
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Table 5.7: Axial strain sensitivity of FBG sensors fabricated in different types of HiBi fibers.

[pm/µε] Bow Tie [22] Type 1 Type 2 [35] Type 3 [35]

peak 1 - fast axis 1.22 / 1.14 1.18

peak 2 - slow axis 1.23 / 1.14 1.18

peak separation 0.01 / 0.00 0.00

(a) (b)

Figure 5.15: Pure axial strain sensitivity of an FBG inscribed in a Type 3 PCF. Nominal shift of

(a) the Bragg peak wavelengths and (b) the Bragg peak separation. The line in (a) is

a linear fit with a sensitivity given in Table 5.7. [35]
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From Table 5.7 it is clear that for all three types of HiBi fiber λfast and λslow have about the

same sensitivity for axial strain. The Bragg peaks have a sensitivity of about 1.2 pm/µε and

the peak separation is insensitve to axial strain. According to equation 5.1c this implies that

for these HiBi fibers neff,1 ' neff,2.

5.4.3 Hydrostatic pressure calibration

Although the specific case of sensitivity to hydrostatic pressure was not discussed in section

4.1.2, it is a very good indication for the transverse line load sensitivity. Moreover, there are

also certain applications were a sensor for hydrostatic pressure can be interesting, for example

to monitor pressure in oil wells or pipelines.

The hydrostatic pressure sensitivity of and FBG sensor fabricated in a bow-tie fiber and

a Type 3 PCF is determined via 2D FEM analyses (the details regarding the numerical

simulation procedure can be found in Appendix A). The geometrical model and material

parameters of section 5.2 are used and the simulated pressure range is from 0 - 200 bar.

The corresponding change in refractive index nfast and nslow of the two fundamental modes

is monitored and their change corresponds to the sensitivity of the modal birefringence to

hydrostatic pressure. By applying the Bragg condition λB = 2nΛ and assuming an FBG

period ΛFBG = 530 nm, a sensitivity for hydrostatic pressure (in pm/bar) of the Bragg

wavelengths can be calculated. The results for a bow-tie fiber and a Type 3 PCF are listed in

Table 5.8 and in Fig. 5.16(a) and 5.16(b) the response of the Bragg peaks and peak separation

of an FBG sensor fabricated in a Type 3 PCF are shown.

Table 5.8: Hydrostatic pressure sensitivity of FBG sensors fabricated in different types of HiBi fibers.

Experimental values are reported in [35].

[pm/bar] Bow Tie Type 1 Type 2 Type 3

2D Sim Exp 2D Sim Exp 2D Sim Exp 2D Sim Exp

peak 1 - fast axis 0.64 -0.27 / -0.44 / 0.94 2.25 0.99

peak 2 - slow axis 0.72 -0.21 / -0.49 / -0.22 0.78 -0.48

peak separation 0.08 0.06 / -0.05 / -1.16 -1.47 -1.47

The results from the simulation in Table 5.8 show that there is a distinct difference in the

sensitivity for a bow-tie fiber and for a Type 3 PCF. The sensitivity of the mode polarized

along the slow axis is more or less the same for both fibers (∼ 0.75 pm/bar), but the

mode polarized along the fast axis behave in a very different way. For the FBG sensor

fabricated in a bow-tie fiber, the sensitivity of the mode polarized along the slow axis is the

highest which results in the Bragg peaks moving away from each other when the hydrostatic

pressure is increased, and this with 0.08 pm/bar. On the other hand, for a Type 3 PCF the
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(a) (b)

Figure 5.16: Hydrostatic pressure sensitivity of an FBG inscribed in a Type 3 PCF. Nominal shift

of (a) the Bragg peak wavelengths and (b) the Bragg peak separation, obtained via

simulations (lines) and experiments (patterns) reported in [35].

mode polarized along the fast axis is the most sensitive, resulting in a decrease of ∆λ when

hydrostatic pressure increases. Moreover, the sensitivity of the peak separation is much larger

for a Type 3 PCF than for a bow-tie fiber, which should result in a higher transverse line

load sensitvity. Whether this is indeed the case will be investigated in section 5.4.4.

The hydrostatic pressure sensitivity for FBG sensors fabricated in different types of HiBi

fibers were experimentally determined in [35] and the results are summarized in Table 5.8.

The sensors created in a Type 2 and Type 3 PCF both have a very high pressure sensitivity

for the Bragg peak wavelengths and the Type 3 PCF has the highest sensitivity for the Bragg

peak separation. The corresponding plots of the Bragg peak behaviour of the Type 3 PCF

are shown in Fig. 5.16.

In [35] it was also shown that the pressure sensitivity of a Type 2 and Type 3 PCF is

independent of temperature and this was done by performing the hydrostatic pressure test at

different temperatures. This implies that the transverse strain sensitivity of these fibers will

likely be independent of temperature.

If the simulated results are compared with the experimental results, one can see that while the

sensitivity of the Bragg peaks are very different, the sensitivity of the Bragg peak separation

is nearly (bow-tie fiber) or exactly (PCF Type 3) the same.

This could be the result from axial strain that is not taken into account in the 2D FEM

analyses, while it does play a significant role in the experiments. Since axial strain has the

same influence on both Bragg peaks, the Bragg peak separation will not be affected by the

2D approximation.

Another reason could be that the stress-optic coefficients C1 and C2 chosen for the FEM
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analyses do not correspond to the values of the fabricated PCF, but that the difference

C1−C2 does. This would result in a miscalculation in the sensitivity of the Bragg peaks, but

not in the Bragg peak separation.

5.4.4 Transverse line load calibration

A transverse line load calibration is another part of determining the potential of an FBG

sensor for multi-axial strain sensing. In section 4.1.2 equations (5.2) were derived for the

change in Bragg peak wavelength when a HiBi fiber is transversally loaded, assuming that

transverse strain field is dependent on ε1 and ε2, and not on ε3.

δλB,1

λB,1
= −1

2
n2

eff,1 [p11ε1 + p12ε2] (5.2a)

δλB,2

λB,2
= −1

2
n2

eff,2 [p11ε2 + p12ε1] (5.2b)

A transverse line load can be applied to a fiber by compressing it between two plates (resulting

in ε3 = 0). When the plates and the fiber are brought into contact, the contact can be

described by a line force (or point force if only the cross section is considered).

If the elastic moduli of the core and cladding of a fiber are comparable, the stresses in the

core (σx and σy) resulting from the transverse loading, can be approximated by the equations

(5.3) used to describe the stresses in a dielectric rod with radius r when an external force fy

is applied [36]. From these equations it is clear that a (uniaxial) fiber will become birefringent

by applying a transverse external load, as σx and σy behave different.

σx
∼= fy/ (πr) (5.3a)

σy
∼= −3fy/ (πr) (5.3b)

Bow-tie fiber

A 2D simulation is performed to determine the transverse line load sensitivity of a bow-tie

fiber with a geometry as shown in Fig. 5.2(a) and simulation parameters as listed in Table

5.1.

A line force of maximum 2 N/mm is applied to the fiber under different angles and for each

rotation angle the change in refractive index of the fundamental modes nfast and nslow is

monitored. These values can be calculated to Bragg wavelengths by assuming that a uniform

grating with ΛFBG = 530 nm, and consequently a sensitivity in pm/(N/mm)) is found. In

Fig. 5.17 the transverse line load sensitivity of the Bragg peaks and peak separation of a

bow-tie fiber is shown when loaded under different angles.
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Figure 5.17: Simulated transverse line load sensitivity of an FBG sensor fabricated in a bow-tie fiber

with a diameter of 125 µm, when loaded under different rotation angles.

The sensitivity versus rotation angles shows a sine-like trend with a maximum positive

sensitivity of the Bragg peak separation of 81.1 pm/(N/mm) when loaded along the fast

axis, and a sensitivity of -77.4 pm/(N/mm) when a force is applied along the slow axis.

Type 3 PCF

A 2D FEM analysis is performed to determine the transverse line load sensitivity of an FBG

sensor fabricated in a Type 3 PCF for loading under different orientations. This was done

by applying a line force of maximum 2 N/mm on the geometry shown in Fig. 5.5(a) with

material parameters as listed in Table 5.4. In Fig. 5.18 the result is shown of the simulated

transverse line load sensitivity of a Type 3 PCF when loaded under different rotation angles.

This graph clearly shows a sine-like trend with high sensitivities of the Bragg peak separation

when a force is applied along 90� which is the fast axis (235.3 pm/(N/mm) ), or when the

fiber is loaded along 0� which corresponds to the slow axis (-324.9 pm/(N/mm) ).

Figure 5.18: Simulated transverse line load sensitivity of an FBG sensor fabricated in a Type 3 PCF

when loaded under different rotation angles.

In Fig. 5.19 the material birefringence Bmaterial is shown for transverse loading under 0�
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and 90�. From these plots it is clear that for loading under 90� the material birefringence

increases, while it decreases when a force is applied along 0�.

These colour plots also clearly show that the large side-microstructures ’guide’ the applied

force along the core, as they were intended to do.

(a) (b)

(c) (d)

Figure 5.19: Simulated material birefringence Bmaterial = n2-n1 when a transverse line load of

2N/mm is applied along the slow axis (a and c) or along the fast axis (b and d).

The FEM simulations also showed that the waveguide birefringence Bwaveguide=Bmodal-

Bmaterial of the Type 3 PCF barely changes under transverse loading. It is thus the

contribution of the material birefringence to the modal birefringence that will cause the Bragg

peak separation to increase or decrease under transverse loading.

The transverse line load sensitivity of a sensor fabricated in a Type 3 PCF is also determined

experimentally with the test setup as shown in Fig. 5.20. With this setup, the experiment

is performed on two fibers at the same time, and their results are averaged to cancel out

inhomogeneous loading. Both fibers are clamped by two rotation stages (accuracy 1�) to

determine the transverse strain sensitivity for different fiber orientations.

The gratings are placed on a glass plate with on top a steel plate that transfers a load from a
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test bench via a ball-joint to the fibers. The actual applied load is determined by a load cell

with an accuracy of 0.25 %.

The fibers are connected via two directional couplers to an unpolarized optical source and a

commercial FBG scan (FOS&S FBG-scan 608 interrogator) with a peak detection accuracy

of 30 pm and resolution of 1 pm (Fig. 5.21).

(a) (b)

Figure 5.20: Setup to determine the transverse line load sensitivity of two fibers of the same type,

at the same time. (a) shows the two fibers clamped in rotation stages with their FBG

sensor positioned on top of the glass plate. (b) shows the mechanical load and ball joint

that apply a load to the aluminum plate and the fibers.

Figure 5.21: Overview of the test setup to determine the transverse line load sensitivity of FBG

sensors fabricated in two Type 3 PCFs.

Since the microstructure of the PCF is highly assymmetric, one cannot assume that the

resulting strain in the core is the same for both fibers when they are randomly oriented. To

improve accuracy, the transverse strain experiment should be performed in two steps: an

orientation procedure to rotate both fibers over the same angle, and a calibration procedure

to determine the sensitivity of the two fibers (Fig. 5.22).

In the orientation step, a continuous increasing (and decreasing) load of maximum 0.2 N/mm

is applied to both fibers for different orientation angles (every 10�) over a total rotation

of 180�. This results in two plots, one for each fiber, showing the sensitivity of the Bragg

peaks for each rotation angle. The relative mis-orientation of the two fibers can be found by
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(a) (b)

Figure 5.22: The transverse line loading experiment consists out of two steps: (a) an orientation

procedure to orient both fibers in the same way and (b) a calibration step to determing

the sensitivity of both fiber under different orientations.

comparing the trends of these graphs. Both fibers are oriented such as to align their trends

and by doing so, the same strain will be applied to their cores.

Once both fibers are oriented in the same manner, the calibration step can be performed. The

two fibers are again loaded under different angles (every 15� over a total rotation of 360�) and

plots are made of the transverse strain sensitivity versus orientation. These plots are shown

in Fig. 5.23.

(a) (b)

Figure 5.23: Transverse line load sensitivity of FBG sensors fabricated in two Type 3 PCFs ((a)

FBG1 and (b) FBG2) for a load applied under different angles.

To avoid inhomogeneous loading because of non-parallel plates, the results of both fibers are

averaged (Fig. 5.24). The resulting average has a maximum sensitivity for the Bragg peak

separation when loaded under 180�. By comparing the SEM crosssection of the Type 3 PCF

(Fig. 5.4(e)) with the pattern in Fig. 5.24, one can assume that the orientation of 0� or 180�
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corresponds to a load applied along the slow axis.

Figure 5.24: Averaged transverse line load sensitivity of a sensor fabricated in a Type 3 PCF.

Fig. 5.24 also shows some ’plateaus’ where the sensitivity is constant over a range of angles.

These can be the intended result from a specific microstructure, but since this was not the

case for the simulated results, it is not likely. It could also be attributed to the flattened

outercladding of the PCF structure. Initially, when the pressure plates and the fiber make

contact the fiber will stay in the correct orientation, but as soon as some extra load is applied

the fiber may rotate and slip onto the flat side. This effect was not taken into account in the

simulation, as these was performed with an ideal line force.

In Fig. 5.25 and Table 5.9 the results for the Bragg peak separation from the experiment are

compared with those of the simulation. Apart from the plateaus in the experimental results,

the values are more or less comparable. This indicates that the simulated line force on the

cross section is a relatively good approximation to the actual experiment with pressure plates.

Figure 5.25: Comparison of the transverse line load sensitivity of the Bragg peak separation obtained

with experiments (patterns) or simulations (solid line).
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Table 5.9: Comparison of simulated and experimental results of the transverse line load sensitivity

when a sensor fabricated in a Type 3 PCF is loaded along the fast axis (90◦) or the slow

axis (0◦).

[pm/(N/mm)] 90� 0� or 180�

experimental simulation experimental simulation

peak 1 - fast axis -354.8 -296.8 480.1 456.3

peak 2 - slow axis -87.0 -61.5 108.5 131.4

peak separation 268.0 235.3 -371.6 -324.9

5.5 Conclusion

Four different types of HiBi fibers were tested: Three different types of PCF that have a highly

asymmetric microstructure and a bow-tie fiber that is birefringent because of the presence

of thermal stresses. With FEM analyses it was shown that the material birefringence of a

bow-fiber is much larger than for a Type 3 PCF (3 × 10 �4 versus 3 × 10 �5). The modal

birefringence of the bow-tie fiber was also about 3 × 10 �4 which indicates that birefringence

is due to thermal stresses. For a Type 3 PCF, the modal birefringence is much larger and

about 2 × 10 �3. The (temperature insensitive) waveguide birefringence will therefore be the

most dominant contribution to the birefringence of a Type 3 PCF.

Fiber Bragg grating inscription in Ge-doped Type 2 and Type 3 PCFs was done using the

scanning phase mask technique. The reflection spectra of the FBGs showed that the HiBi

PCFs have indeed a much larger peak separation (∼ 2 nm) than a bow-tie fiber (∼ 0.4

nm). If an external influence causes a decrease of the peak separation, correct peak detection

can become difficult for a bow-tie fiber as the peaks will strongly overlap resulting in peak

deformations.

The FBG sensor calibration started with a themal test performed on an FBG fabricated in

a Type 3 PCF. The temperature sensitivity of the modes polarized along the fast and slow

axes was about 9.09 pm/�C and 9.02 pm/�C, respectively. The peak separation was nearly

insensitive to temperature variations, which indicates that a Type 3 PCF could be used as a

differential, temperature insensitive sensor.

An axial strain calibration was not performed in this Master thesis, but earlier reported values

show that FBGs fabricated in a Type 2 and Type 3 PCF have more or less the same sensitivity

to axial strain. The Bragg peaks shift with about 1.2 pm/µε which is a normal value for silica

fibers, and there is no change in Bragg peak separation under influence of axial strain.

Another performed calibration was that for hydrostatic pressure, as this can give a very good

indication regarding the transverse line load sensitivity.
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FEM simulations showed that the Bragg peaks of a Type 3 PCF shift to longer wavelengths

when pressure is applied, while the overall peak separation decreases with -1.47 pm/bar.

In earlier reported results of the experimental calibration of hydrostatic pressure, the exact

same sensitivity of the Bragg peak separation was found. This was however not the case

for the behaviour of the Bragg peaks themselves. This difference could be the result from

axial strains that are not taken into account in the performed 2D FEM analyses. Another

possibility is that the used values of the stress-optic coefficients C1 and C2 slightly differ from

the real values, but that their difference C1-C2 does correspond to that of the actual fiber.

According to the earlier reported experimental results, both Type 2 and Type 3 PCF have a

high hydrostatic pressure sensitivity, and this sensitivity is independent of temperature. This

is a clear indication that both types of fibers will have a high transverse line load sensitivity

with a Bragg peak separation that is independent of temperature.

The final calibration test was a transverse line load test. Simulations showed that there

is a (sine-like) dependence of sensitivity on the direction along which the load is applied

to the fiber. A simulation of a bow-tie fiber resulted in a maximum sensitivivty of the

peak separation of 81 pm/(N/mm)), while earlier reports obtained a maximum sensitivity of

160 pm/(N/mm)). This difference is likely due to the geometrical model from the simulation

that does not correspond to the bow-tie fiber they tested experimentally. Simulations on a

Type 3 PCF showed a maximum transverse line load sensitivity of the peak separation of

-325 pm/(N/mm), which is a significant improvement compared to the bow-tie fiber.

An experimental transverse line load calibration was also performed on an FBG sensor

fabricated in a Type 3 PCF. The combination of a test setup in which force was applied

with two pressure plates and the flattened (hexagonal-like) cladding of the PCF, resulted in

’plateaus’ in the sensitivity plots. These are likely to result from the fiber rotating or slipping

onto a flat side when load is applied. The maximum sensitivity of the peak separation was

-372 pm/(N/mm) which is even higher than the value obtained with simulations.

The overall conclusion from this chapter is that an FBG sensor fabricated in a Type 3 PCF

can be used as a differential sensor that is insensitive to temperature and has a very high

transverse line load sensitivity.
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Chapter 6

Optical fiber sensors embedded in

carbon fiber reinforced polymers

6.1 Outline and objectives

In the previous chapter, FBG sensors fabricated in different types of HiBi fibers were

calibrated for temperature, axial strain, hydrostatic pressure and transverse line load. This

showed that a Type 2 and Type 3 PCF had a very high transverse line load sensitivity,

and moreover, this sensitivity is independent of temperature. Since a composite has a

very high stiffness, one could assume that transverse loading of a composite will result in

transverse loading of the embedded fiber. Type 2 and Type 3 PCFs therefore could make

a good candidate for structural health monitoring of fiber reinforced polymers, in which the

monitoring of transverse strains is of crucial importance.

In this chapter I will look at the possibilities of embedding a Type 3 PCF in a composite

material and embedding this fiber under a certain orientation. The fabrication is evaluated

by looking at the reflection spectrum and by a destructive test that is done when all other

tests are finished. The first test performed on the fabricated sample is a temperature test to

compare the temperature sensitivity of the bare fiber and the embedded fiber.

Both the axial and transverse strain sensitivity of the embedded FBG sensors will be

determined via extensive testing. These results will indicate whether the improved transverse

line load sensitivity of the bare fiber allows to provide a high transverse strain sensitivity of

an FBG sensor embedded in a composite material.
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6.2 Fabrication of composite laminates with embedded optical

fiber Bragg sensors

6.2.1 Autoclave technique

The composite samples used to test the strain and temperature sensitivity are made from

prepreg material and fabricated with an autoclave process. Prepreg is a type of composite

material in which the reinforcement fibers are already placed in a partially cured matrix; in

this work a uni-directional carbon fiber reinforced epoxy matrix is used (M55j/M18). Epoxy

is a thermosetting polymer and will cure (’polymerize’) when heated. To prohibit curing of

the epoxy matrix, the prepreg is stored in a freezer at -18� before actual fabrication of the

laminate. Prepreg comes on a large roll (Fig. 6.1), with reinforcement fibers along the length

of the roll. Layers can be cut with different dimensions and orientation of the reinforcement

fibers, and a laminate can be formed by stacking these in a particular way.

(a) (b)

Figure 6.1: (a) The prepreg material is wrapped on a roll. The layer is covered with a protective

film on each side. (b) The orientation of the reinforcement fibers is unidirectional, as is

illustrated by tearing the fibers apart (merely done for illustrating purposes).

The laminate can be cured in an autoclave process, which will polymerize the epoxy matrix

when the temperature is increased. In Fig. 6.2 the different elements of the autoclave or

curing cycle is shown. An autoclave is used to control the pressure to ensure good adhesion

between the different layers of the laminate, while a plate with heating elements is used to

increase the temperature. The laminate is placed on this heating plate together with several

layers of release film to facilitate removal of the sample afterwards and an absorbing layer to

remove excessive epoxy. The complete lay-up is put in a vacuum bag to remove air bubbles

that can be trapped in between different layers of prepreg. The setup is placed in the autoclave

and the curing cycle can start.

The curing cycle will determine the eventual quality and properties of the laminate. It is
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(a) (b) (c) (d)

Figure 6.2: (a) Heating plate that goes into the autoclave. (b) Composite sample is placed on

the heating plate, inside a vacuum bag. (c) Eveything is placed in the autoclave and

undergoes a curing cycle. (d) The end result is a cured composite sample.

therefore important to control the pressure, vacuum and temperature with high precision, as

shown in Fig. 6.3.

One layer of prepreg material will have a final layer thickness of 0.1 mm after curing. The

relation between induced strains ε and resulting stresses σ is given by equation (6.1) with the

coordinate system as depicted in Fig. 6.4. The material properties of a layer after curing are

listed in Table 6.1. The material properties of the complete laminate are heavily dependent on

the stacking orientations of the reinforcement fibers in the different layers and these properties

could be determined by performing a number of tests on the resulting composite samples.
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Table 6.1: Elastic material properties for the M55J/M18 carbon/epoxy material (after curing). [22]

E1′1′ E2′2′=E3′3′ G1′2′=G1′3′ G2′3′ ν1′2′=ν1′3′ ν2′3′=ν3′2′ ν2′1′=ν3′1′

[GPa] [GPa] [GPa] [GPa] [-] [-] [-]

300.0 6.3 4.3 2.3 0.320 0.380 0.002

6.2.2 Fabrication of laminates with embedded optical fiber sensors

The autoclave technique described above can be used to embed optical fibers sensors in

composites. The samples made for this work have a [02, 902]2S lay-up, forming a so-called
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Figure 6.3: The curing cycle used to produce the M55J/M18 carbon/epoxy samples.

Figure 6.4: The local orthogonal coordinate system used for a single composite layer.
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cross-ply laminate. This notation can be understood as: the number 0 and 90 correspond

to the angle of reinforcing fibers with the length of the sample (and thus with the optical

fiber); the subscript 2 indicates the number of consecutive layers; the subscript 2s denotes

a symmetrical (two-fold) lay-up with respect to the mid-plane. This results in a 16-layer

laminate with the optical fiber placed in between layers 8 and 9 (Fig. 6.5). As the optical

fiber is placed in between layers with the reinforcement fibers oriented in the same direction,

a minimal amount of disruption of the composite can be expected.

The strength and stiffness of a cross-ply laminate will be much higher in-plane (along the

reinforcement fibers) than perpendicular to the laminate, and such a laminate can thus be

considered as an orthotropic material.

Figure 6.5: Schematic representation of the [02,902]2s stacking, with an optical fiber embedded in

the centre. Also shown is the global orthogonal coordinate system of a fabricated sample.

The optical fiber is directed along the x’-axis.

Although the embedding of optical fiber sensors in fiber reinforced polymers has been done

plenty of times before, it is still a fragile process. Because of the large difference in stiffness

between the flexible, though brittle optical fiber and the very stiff FRP sample, special

attention has to go to the point where the optical fiber exits the FRP sample. In the fabricated

samples, epoxy tape is placed at the exit to protect the optical fiber as much as possible, but

the risk of breaking the optical fiber at this point during manufacturing or testing is remains

high.

6.2.3 Orientation control of an embedded optical fiber sensor

A type 3 PCF is embedded in the composite samples, and as the transverse sensitivity of

these fibers is highly dependent on the orientation of the fiber, the orientation of the fibers

has to be determined and the desired orientation has to be indicated before embedding it.

Two methods were used to determine the orientation of the fiber. As the transverse sensitivity

can be determined with the setup discussed in section 5.4.4, the orientation with highest

sensitivity can be indicated with small tabs (prepreg or epoxy), as shown in Fig. 6.6(a).

Another possibility is to look at the microstructure at both end-facets of the PCF with a

microscope (Fig. 6.6(b) and ??), and align both ends to the most sensitive direction (slow

axis).
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Both orientation methods have their advantages and disadvantages. The method that uses

the transverse line load set-up is time-consuming, but determines the orientation precisely at

the position of the grating. Checking the orientation of the PCF with the microscope is a fast

method, but optical connections (’pig-tails’) have to be removed, and as only the end facets

are oriented, mis-orientation at the position of the grating is still possible.

Both methods were used, and the results will be compared in section 6.3.2.

(a) (b)

Figure 6.6: The orientation of an optical fiber can be done using (a) a setup to measure the

transverse strain sensitivity along different orientations, or (b) a microscope to visualize

the microstructure of the PCF, as shown in the inset

Once the orientation of the fibers is known, the fiber has to be fixed on the prepreg layers to

maintain this orientation. This can be done with prepreg tabs or epoxy tabs (Fig.6.7(a) and

6.7(b), respectively). It is important that these tabs do not disturb the final laminate too

much, as this would lead to a redistribution of the stresses close to the grating.

There are in total 5 samples fabricated, and two of them are shown in Fig. 6.8. Their

dimensions are about 25 cm x 2 cm x 1.6 mm, with the FBG located in the middle of the

sample.

6.3 Evaluation of fabrication

6.3.1 Comparison of the FBG reflection spectra before and after embed-

ding

An easy way to determine whether FBGs in the optical fibers have survived the embedding

proces and curing cycle, is by looking at their reflection spectrum. Only two of the five fibers

appeared to have survived the process, and their spectra before and after embedding are

shown in Fig. 6.9.

Comparing the spectra before and after embedding can tell something about the residual
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(a) (b)

Figure 6.7: The orientation of an optical fiber can be fixed by using (a) prepreg tabs or (b) epoxy

tabs.

Figure 6.8: Multiple fibers can be embedded in the same CFRP sample. The fabricated sample (as

shown in Fig. 6.2(d)) can be cut to several smaller samples, shown here.

(a) (b)

Figure 6.9: Comparison of the spectra before and after embedding the fiber in a composite sample,

(a) Sample 1 and (b) Sample 2. As the optical connections were re-made after embedding,

the powerlevels cannot be compared.
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strains in the sample and consequently strain acting on the fiber which result in Bragg peak

wavelength shifts. In Table 6.2 the values of the Bragg peak wavelengths before and after

embedding are listed, together with the corresponding wavelength shift.

Table 6.2: Comparison of the Bragg peak wavelengths in the reflection spectra before and after

embedding.

[nm] Sample 1 Sample 2

Before After Shift Before After Shift

peak 1 - fast axis 1553.87 1557.50 3.63 1553.76 1557.31 3.55

peak 2 - slow axis 1556.05 1558.93 2.88 1555.98 1558.79 2.81

peak separation 2.18 1.43 -0.75 2.22 1.48 -0.74

The peak wavelength shifts for both samples are comparable, which indicates that the shifts

are the result from a consistent build-up of internal strains and not just coincidal.

By embedding the FBG sensors, both Bragg peak wavelengths shift to longer wavelengths.

There are several possible contributions to this. An expansion of the laminate in the x’-

direction due to the curing of the epoxy, results in an axial straining of the fiber and thus in

a positive wavelength shift.

Another possibility is a transverse strain that is the largest along the slow axis of the PCF.

In section 5.4.4 it was shown that a transverse loading of the PCF along the slow axis results

in a positive shift of the Bragg peak wavelengths. This transverse strain could be induced by

a shrinkage in the z’ direction of the laminate due to curing of the epoxy.

Another notable change in the reflection spectra before and after embedding, is the decrease

of the Bragg peak separation. This is the result of radial and transverse strains acting upon

the fiber, but their individual effect is difficult to determine.

6.3.2 Verification of the fiber orientation

The two samples for which a reflection spectrum was detected, were used for extensive testing.

Afterwards, these and two other fabricated samples, were cut at the grating itself and at a

position before and after the grating to determine the exact orientation of the embedded fiber.

In Fig 6.10 the cross-section at the grating of sample 1 and 2 are shown. The intention was

to embed these fibers with the slow axis perpendicular to the surface of the sample.

In Table 6.3 a summary is given of the misalignement for the two tested samples and two

samples that showed no signal. It is clear that the orientation of the fibers in the tested

samples (Sample 1 and 2) is relatively well maintained. The numerical simulation for the

transverse line load sensitivity of the bare PCF (section 5.4.4) indicates that a misalignement

of 4� corresponds to a decrease in sensitivity of about 2 %. The orientation of the samples
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(a) (b) (c) (d)

Figure 6.10: Cross sections of the samples were made to determine the orientation at the position of

the grating, (a) Sample 1, (c) Sample 2. In (b) and (d) a close-up is shown, together

with the misalignement and embedding depth. The top 90 ◦ layer in Sample 2 (c) broke

off during the preparation of the samples for the images of the cross sections. However,

this layer was present as in Sample 1 (a).

that could not be tested (Sample 0a and 0b) has a maximum misalignement of almost 12�,

which would correspond to a decrease in transverse sensitivity of the bare fiber of about 7 %.

The embedding depth of the fiber in the 0� layer in the middle of the laminate is also listed

in Table 6.3 and it is measured with respect to the 90� as indicated in Fig. 6.10(b) and

6.10(d). As the center 0� layer consists out of 4 layers, its total thickness after fabrication is

400 µm and the embedding depth would be 200 µm in the ideal case. The height of the fiber

embedded in Sample 1 differs significantly from the center of the laminate.

Table 6.3: Results for the fabricated composite samples with embedded optical fiber sensors.

orientation method Misalignement (�) Embedding depth µm

sample 1 Microscope 3.70 155

sample 2 Microscope 3.73 181

sample 0a Strain setup 3.38 211

sample 0b Strain setup 11.84 208

The evaluation of the fabricated samples by taking cross-sections is a destructive test which

is unfavourable as in some cases it is important to evaluate the embedded sensor before

actual deployment. In the future it could be possible to visualize the fiber and perhaps even

the microstructure while embedded in the composite structure, with advanced visualization

techniques such as micro CT scanning or high resolution 3D X-ray micro tomography.

Another solution would be to minimize possible mis-orientations. This could be done by

making the cladding of the fiber flat on one side, such that the fiber will automatically rotate
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on this side during embedding. A D-clad fiber is an example of a fiber where the cladding is

structured with the potential to facilitate its orientation.

6.4 Temperature sensitivity

The goal is to determine the internal strain field of structures with embedded FBGs sensors.

In section 5.4.1, it was shown that the Bragg peak separation was (almost) independent of

the temperature. This is not necessarily the case for an embedded sensor as thermal strain

of the composite structure can transfer strains on the sensor.

For this reason the characterization of the embedded fiber started with a temperature test

(’Test 1’). After the axial and transverse strain test, another temperature test (’Test 2’) was

performed to verify the first results.

Test 1: The first test was performed by placing the samples inside the autoclave that was

used only for heating. Its temperature was set at 100�C and the change in Bragg peak

wavelengths was monitored with a commercial FBG interrogator (FOS&S FBG-scan 608

interrogator) during heating and cooling down of the sample. The accuracy of the peak

detection is 30 pm, while the temperature could be set with an accuracy of 1�C.

Fig. 6.11(a) shows the temperature during the test, that took almost 18 hours. It started

with a (controlled) temperature increase of ∼2.2�C/min, followed by an unforced cooling

down period of over 17 hours. During cooling down, the temperature in the autoclave can be

considered constant in comparison with the measurement speed of the interrogator.

Test 2: The second temperature test was performed using a ’standard’ oven, of which the

temperature control was less accurate (±5�C). The samples were placed in the oven and the

temperature was set at 100�C. Initially, the temperature increased at a rate of ∼4.6�C/min

and the unforced cooling down period took almost 10 hours. The temperature cycle is shown

in Fig. 6.11(b)

In Fig. 6.12 the resulting change in Bragg peak wavelength and separation is shown, for

sample 1 from Test 2. These plots are fitted linearly to obtain a sensitivity in pm/�C. A

summary of these sensitivities is given in Table 6.4.

The average sensitivity of the modes polarized along the fast and polarized along the slow,

is respectively 3.92 pm/�C and 8.35 pm/�C . The different sensitivity of both modes is a

combined effect from the intrinsic thermo-optic effects of the optical fiber, and the thermal

strain (axial and transverse) in the composite sample. The release of residual strains (axial

and (asymmetric) transverse) of the composite sample, will cause both axes to see a different

strain. In section 6.3.1 it was already shown by comparing the spectra before and after
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(a) (b)

Figure 6.11: Temperature cycle of (a) Test 1 and (b) Test 2.

(a) (b)

Figure 6.12: Temperature sensitivity of Sample 1 in Test 2. (a) Bragg peak wavelength response and

(b) Response of the Bragg peak separation.

Table 6.4: Temperature sensitivity of FBG sensors fabricated in a Type 3 PCF, embedded in a

cross-ply laminate.

Sample 1 [pm/�C] Sample 2 [pm/�C]

Test 1 Test 2 Test 1 Test 2

peak 1 - fast axis 4.25 3.63 4.22 3.59

peak 2 - slow axis 8.65 8.07 8.68 7.98

peak separation 4.40 4.43 4.46 4.39
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embedding, that large amounts of residual strain are presented in the fabricated [02, 902]2s

composite samples. When the samples are cooled down, the residual strains will re-appear.

The decoupling of the thermal strains and the intrinsic thermal effects is not straight

forwards. The embedded fibers ’sees’ a three dimensional strain and temperature effects

of the composite, and intrinsic thermal effects of the optical fiber. Extra tests and numerical

simulations should be performed to know the thermal strain effects in the fabricated samples

and have an idea of the residual strains.

From these results, it is clear that although the Bragg peak separation for the bare fiber

has (almost) zero temperature sensitivity, this is certainly not the case for the embedded

fiber. Therefore, another temperature compensating system will have to be used if strain

measurements are performed. A common used compensating systems is that of co-embedding

a second grating in the same laminate that sees the same temperature but is free from strains.

This is achieved by embedding the second grating in a capillary. However, as the dimensions

of such a capillary are much larger than the reinforcement fibers, it will heavily disturb the

structure of the composite, which is again unfavourable.

6.5 Axial strain sensitivity

The first strain test performed on the samples is an axial strain test. In order to be able

to clamp the sample, aluminum tabs were glued at the ends of the sample (Fig. 6.13(a)).

These tabs were gripped by the clamps of a mechanical testing machine, and the sample was

monotonically loaded in tension (Fig. 6.13(b)).

A reference grating with a well-known axial strain sensitivity (1.2 pm/µε) was glued on the

surface of the sample at the position of the grating. The Bragg peak response of this reference

grating was used to determine the exact axial strain at the position of the grating.

The test was repeated three times for each sample. The maximum strain was 1000 µε, and

the displacement rate was 0.05 mm/min. In Fig. 6.14 the Bragg peak behaviour and peak

separation for increasing axial strain is shown for sample 1, during the first test. By linear

fitting these plots, an axial strain sensitivity in pm/µε is obtained. In Table 6.5 the sensitivity

of both samples from the three tests are listed.

In section 5.4.2 the axial strain sensitivity of the bare PCF was found to be 1.18 pm/µε

for both Bragg peaks. The obtained sensitivities for an embedded fiber are about the same

and range from 1.19 pm/µε to 1.24 pm/µε, and there is almost no change in Bragg peak

separation due to axial strain. For sample 1 a sensitivity of the Bragg peak separation of

-0.02 pm/µε that was consistent for all three tests was found. This small sensitivity can be

due to the off-center position of the fiber in the middle 0� layer as was discussed in section
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(a) (b)

Figure 6.13: (a) For the axial strain test, aluminum tabs and a reference grating had to be glued

onto the sample. (b) The sample was clamped by the grips of a mechanical testing

machine.

(a) (b)

Figure 6.14: Axial strain sensitivity of Sample 1 in Test 1. (a) Bragg peak wavelength response and

(b) Response of the Bragg peak separation.

Table 6.5: Axial strain sensitivity of FBG sensors fabricated in a Type 3 PCF, embedded in a cross-

ply laminate.

Sample 1 [pm/µε] Sample 2 [pm/µε]

T1 T2 T3 T1 T2 T3

displacement (mm/min) 0.05 0.05 0.05 0.1 0.05 0.05

peak 1 - fast axis 1.24 1.26 1.26 1.19 1.19 1.20

peak 2 - slow axis 1.22 1.24 1.24 1.19 1.19 1.19

peak separation -0.02 -0.02 -0.02 0.00 0.00 0.00
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6.3.2. It is possible that during the axial strain tests, also some bending strain was put on

the sample because of the misalignements of the grips of the mechanical testing machine.

6.6 Transverse strain sensitivity

The second type of strain test performed on the samples is a transverse strain test. As

discussed in Table 6.1, composite samples feature a very high elastic modulus (∼ 300 GPa)

in the direction of the reinforcement fibers, while the elastic modulus in the out-of-plane

direction is determined by the epoxy, resulting in a much lower elastic modulus (∼ 6.3 GPa).

Strain in the out-of-plane direction can thus pose a threath to the structural integrity of the

composite. Monitoring the transverse strain in composite structures is therefore crucial.

Figure 6.15: For the transverse strain test, metal blocks were glued on each side of the sample, and

rubbers were placed between the blocks and compression plates of a mechanical testing

machine.

The transverse strain test was performed by compressing the sample in the z’ direction

(as depicted in Fig. 6.5) by two plates with a mechanical testing machine. To achieve

homogeneous loading of the sample, two metal blocks were glued on both sides on the sample.

Then pieces of rubber were placed between these blocks and the plates of the testing machine.

The applied load was determined using a load cell, and an increasing load of maximum 20 kN

was applied, corresponding to a pressure of ∼25 MPa. The response of the Bragg peak

wavelengths is shown in Fig. 6.16 (results from testing sample 2). By linear fitting these

plots a sensitivity for transverse strain in pm/MPa is obtained. In Table 6.6 the sensitivity

of both samples is summarized.

The test was performed three times per sample (referred to as T1, T2, T3), and the

orientation of the sample with respect to the compression plates was altered to ensure that

the compression plates were parallel and load was distributed evenly.

When Table 6.6 is compared with the values obtained for the transverse strain sensitivity

of the bare fiber, a similar trend is found. That is, both Bragg peak wavelengths increase

with transverse loading, but the overall peak separation decreases. To obtain sensitivities
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Figure 6.16: Transverse strain sensitivity of Sample 2, Test 1. (a) Bragg peak wavelength response

and (b) Response of the Bragg peak separation.

Table 6.6: Transverse strain sensitivity of FBG sensors fabricated in a Type 3 PCF, embedded in a

cross-ply laminate.

Sample 1 [pm/MPa] Sample 2 [pm/MPa]

T1 T2 T3 T1 T2 T3

peak 1 - fast axis 49.81 49.07 48.04 31.70 31.06 30.43

peak 2 - slow axis 19.05 18.80 18.30 12.65 12.61 12.15

peak separation -30.76 -30.27 -29.74 -19.04 -18.44 -18.29
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in pm/µε, the elastic modulus of the composite sample along the z’-axis should be known.

Because of the particular stacking used ([02, 902]2s) it is not straight forward to determine this

value. Extra tests should be performed to know the exact value. However, a rough estimate

would be, as there are no reinforcement fibers along the z’-axis, that the elastic modulus

equals that of the epoxy, which is about 6 GPa. If this is taken into account, the values of

Table 6.6 (in pm/MPa) correspond to the sensitivities (in pm/µε) in Table 6.7.

Table 6.7: FBG sensitivities versus transverse strain of the composite material if Ez′=E2′2′=6.3GPa

Sample 1 [pm/µε] Sample 2 [pm/µε]

T1 T2 T3 T1 T2 T3

peak 1 - fast axis 0.31 0.31 0.30 0.20 0.20 0.19

peak 2 - slow axis 0.12 0.12 0.12 0.08 0.08 0.08

peak separation -0.19 -0.19 -0.19 -0.12 -0.12 -0.12

There are no earlier reported values about HiBi fibers embedded in a cross-ply laminate and

therefor it is difficult to make a founded comparison. However, in reference [30] bow-tie

fibers and Type 1 PCFs were embedded between the second and third layer of a 16-layer

unidirectional carbon fiber/epoxy laminate and a transverse strain test was performed with

the same setup as shown in Fig. 6.15. Their results are compared with the average value of

the embedded Type 3 PCFs in Table 6.8.

The Type 3 PCF has a transverse strain sensitivity of the Bragg peak separation that is an

order of magnitude higher than an embedded bow-tie fiber, and even higher than an embedded

Type 1 PCF. This clearly shows that the enhanced transverse strain sensitivity of a bare Type

3 PCF results in a significant increase in transverse strain sensitivity of an embedded fiber.

Table 6.8: Transversal strain sensitivities of different types of HiBi fiber embedded in carbon

fiber/epoxy laminates. It should be noted that the lay-up and testing method was different

for the bow-tie fiber and Type 1 PCF.

[pm/µε] Type 3 PCF Bow-tie fiber [30] Type 1 PCF [30]

peak 1 - fast axis 0.25 0.060 0.040

peak 2 - slow axis 0.10 0.075 0.053

peak separation -0.16 -0.016 -0.012

6.7 Conclusion

Type 3 PCFs were succesfully embedded in carbon fiber/epoxy laminates with a cross-ply

layup. The orientation of the optical fiber was taken into account and the fast axis was
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embedded parallel to the laminate surface.

A comparison was made of the reflection spectra before and after embedding, and this showed

that large amounts of residual strains were present in the fabricated cross-ply laminates.

This caused the Bragg peaks to shift to longer wavelengths while the overall peak separation

decreased. This behaviour is a combination of several strains, such as axial, radial and

transverse strain. To determine the exact amounts of each strain, extra tests and FEM

simulations should be performed.

However, the sensor was still perfectly useable because the peak separation was still large

enough and the peaks had not deformed.

Since the residual strains are an indication of the curing state of the laminate, the shift in

Bragg peak wavelengths and peak separation can be used to monitor curing during fabrication

of the composite samples.

With a destructive test that was performed after all other tests were performed, cross-sections

of the samples were made to determine the orientation of the fiber and the embedding depth.

This showed that the fiber orientation was maintained during embedding.

The thermal calibration showed that the Bragg peaks shift to longer wavelengths when the

samples are heated, with the increase of the slow axis twice as high as the increase of the fast

axis. This resulted in a sensitivity of 4.4 pm/�C of the Bragg peak separation, while this was

nearly zero for the bare fiber. This is likely the result of the residual strains that are released

during heating and restored during cooling.

The temperature sensitivity of the embedded fiber is a combination of temperature effects

and multi-axial strain effects. Extra tests and simulations should be performed to know the

exact contributions.

The axial strain calibration showed an axial strain sensitivity comparable with that of the bare

PCF, and both Bragg peaks have a sensitivity of about 1.2 pm/µε while the peak separation

is insensitive to axial strain.

The final test was a transverse strain calibration and this was done by glueing metal blocks to

the sample and compressing the sample via loading of these blocks. The average sensitivity

of the peak separation was found to be about -26 pm/MPa, but there was a small difference

between the two tested samples. This is the result from the off-center positioning of the

optical fiber in one of the samples, which resulted in a slightly higher sensitivity.

Since the elastic modulus in the direction of applied load is determined by the epoxy, the

values in pm/MPa can be calculated to values in pm/µε. The average sensitivity of the peak

separation is then -0.16 pm/µε.

Earlier reported values of a bow-tie fiber and Type 1 PCF embedded in a carbon fiber/epoxy

laminate with unidirectional layup showed a transverse strain sensitivity that was an order of
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magnitude smaller than the sensor reported here, which is a breakthrough for FRP materials.

The overall conclusion of this chapter is that the enhanced transverse strain sensitivity of a

Type 3 PCF has a distinct added value when embedding the fiber in composite materials for

structural health monitoring.



OPTICAL FIBER SENSORS EMBEDDED IN POLYMERS 78

Chapter 7

Optical fiber sensors embedded in

polymers

7.1 Outline and objectives

As mentioned in chapter 2, the combination of smart materials and fiber optic sensors opens

the door to many new applications such as optical skin. This is a (flexible) polymer sheet with

FBG sensors embedded and that can be used for tactile sensing. This sheet can be wrapped

around or attached to irregular and moving objects to monitor pressure distributions.

Optical skins are still a very young research domain and therefore the focus of my work goes

to investigating the possibility of embedding an FBG sensor in different types of polymer and

with different fiber configurations. Moreover, I will investigate the transverse load sensitivity

of an embedded sensor for polymers with varying material properties. Since the elastic

modulus of (flexible) polymers is much smaller than that of a silica fiber, one could assume

that a transverse loading of the polymer is seen as hydrostatic pressure by the embedded

sensor. Therefore, FBG sensors fabricated in Type 2 or Type 3 PCFs are suited to embed

in optical skins as they have a high hydrostatic pressure sensitivity and transverse line load

sensitivity.

In section 7.2 2D simulations are performed on a bow-tie fiber and a Type 3 PCF embedded

in a polymer tube. The influence of the elastic modulus and Poisson ratio are investigated.

This is done by applying a transverse line load to the sample along different angles.

In the experimental work, FBG sensors fabricated in bow-tie fibers and embedded in polymer

tubes are tested on their transverse line load sensitivity. Types of polymers with a different

flexibility are investigated. Bow-tie fibers are used as their respons to transverse loading

is already well-known, such that different results of multiple samples can be linked to the

polymer itself and not the fiber.

In section 7.3 experiments are performed on ’optical skins’. FBG sensors fabricated in Type
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2 and Type 3 PCFs are embedded in different types of polymers, with different fiber lay-out

and different sample dimensions.

A setup is built to determine the response of the embedded FBG sensor when a load is applied

at different positions of the skin. The sensitivity will depend on the skin thickness, embedding

depth of the fiber and the sensitivity at a certain distance from the fiber.

7.2 Fibers embedded in a polymer tube

7.2.1 FEM simulations

Typical values for PMMA are an elastic modulus E of 1.8 - 3.1 GPa and a Poisson ration ν

of 0.35 - 0.4, but the properties of a cured polymer are heavily dependent on the fabrication

method. Therefore, numerical simulations are made to have an idea of the influence of E and

ν on the sensitivity of the Bragg peak wavelengths.

(a) (b)

(c) (d)

Figure 7.1: Geometrical model (a) and transverse line load sensitivity (c) of an FBG sensor fabricated

in a bow-tie fiber and embedded in a polymer tube with a diameter of 2 mm, E = 3 GPa,

ν = 0.35 and α = 70E-6 1/K. For comparison, in (b) and (d) the geometrical model and

sensitivity of a free standing bow-tie fiber with a diameter of 125 µm are shown.
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Simulations were performed on a bow-tie fiber with a geometrical model as discussed in section

5.2.1 and embedded in a polymer tube with a diameter of 2 mm, elastic modulus E of 3 GPa

and Poisson ration ν of 0.35. A line force of maximum 10 N/mm was applied on the cross

section along different directions. In Fig. 7.1(a) the geometrical modal is shown, and the

resulting plot of transverse line load sensitivity versus rotation angle is shown in Fig. 7.1(c).

In Fig. 7.1(b) the geometrical model a bare bow-tie fiber is shown, with in Fig. 7.1(d) the

transverse line load sensitivity of a bare bow-tie fiber, as was calculated in section 5.4.4.

The peak separation in Fig. 7.1(c) has a minimum sensitivity of -7.5 pm/(N/mm) when a load

is applied along the slow axis and a maximum sensitivity of 8.3 pm/(N/mm) when applied

along the fast axis. When comparing this with the values of a free standing bow-tie fiber in

Fig. 7.1(d), it is clear that the overall sensitivity of an embedded bow-tie fiber is almost an

order of magnitude lower. This is because the complete cross section over which the applied

load is distributed, is larger for the embedded fiber (diameter ∼ 2 mm) than for the bare

fiber (diameter ∼ 125 µm).

Another simulation was performed to determine the change in sensitivity when the elastic

modulus of the polymer tube is varied. A transverse strain was applied along the fast axis

of an embedded bow-tie fiber, which corresponds to the direction where the peak separation

is the most sensitive. The elastic modulus of the polymer was varied between 0.3 GPa and

12 GPa. The resulting plot (Fig. 7.2) shows that the sensitivity of the Bragg peak separation

decreases with increasing elastic modulus.

This indicated that a more rigid polymer tube will protect the fiber from external forces,

while a more flexible polymer transfers the external load onto the embedded fiber.

Figure 7.2: Influence of the elastic modulus E of the polymer tube on the sensitivity of the Bragg

peak separation of an FBG sensor fabricated in a bow-tie fiber, when a transverse line

load is applied along the fast-axis.

The same types of simulations were performed on a Type 3 PCF with a model as explained in
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section 5.2.2, and that was embedded in a polymer tube. The influence of the elastic modulus

and the Poisson ratio of the polymer on the sensitivity is determined when the embedded

PCF is transversally loaded along the slow axis. The results are shown in Fig. 7.3(a) and

7.3(b).

(a) (b)

Figure 7.3: Influence of (a) the elastic modulus and (b) the Poisson ratio of the polymer tube on the

sensitivity of the Bragg peak separation of an FBG sensor fabricated in a Type 3 PCF,

when a transverse line load is applied along the slow axis.

From Fig. 7.3(a) it is again clear that the sensitivity of the peak separation decreases (the

absolute value decreases) with increasing elastic modulus, which corresponds to the results

from the simulation on an embedded bow-tie fiber (Fig. 7.2).

Typical values for the Poisson ratio ν of PMMA are 0.35 - 0.4, and in Fig. 7.3(b) the influence

of the elastic modulus of the polymer on the sensitivity of the Bragg peak separation is given

for different Poisson ratios (0.25 - 0.4). It is clear that the magnitude of the sensitivity

decreases for decreasing Poisson ratio.

Fig. 7.4 shows that the sensitivity of the fiber also decreases with increasing elastic modulus

when the load is applied along the fast axis.

7.2.2 Experiments

The characterization of FBG sensors fabricated in bow-tie fibers and embedded in polymer

tubes is also done via experiments. The fabrication of the tested samples was not a part of

this Master thesis, but the basic principles are discussed to situate the subject.

Material development and fabrication of fibers embedded in polymer tubes

The choice of polymer for the development of flexible substrates was based on the ability

to adjust the mechanical properties of the material, as well as their chemical resemblance
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(a) (b)

Figure 7.4: Sensitivity of the peak separation of a FBG sensor fabricated in a Type 3 PCF and

embedded in a polymer tube (diameter = 2 mm, ν = 0.4 and α = 70E-6 1/K), when a

transverse line load is applied along (a) the slow axis and (b) the fast axis.

with fiber coatings (polymethacrylate based material). The biocompatibility was also a

requirement, as this allows the use of the optical skin for medical purposes. The selected

monomers are MMA, BuMA and EHMA, and different mixtures of MMA/BuMA and

MMA/EHMA are used to adapt the flexibility of the material. The flexibility of a polymer is

difficult to determine as this is heavily dependent on the fabrication process and these could

be determined with elaborate testing of the mechanical properties of the polymer. However, a

far simpler method to estimate the flexibility of a polymer is by looking at the glass transition

temperature (Tg), that decreases with increasing flexibility. In Table 7.1 an overview is given

of Tg for different compositions. Also shown is the temperature up untill which the material

is stable (decomposition temperature, Tdecomp).

Table 7.1: Glass transition temperature and decomposition temperature of different MMA-based

compositions. [37]

MMA/BuMA MMA/EHMA

composition Tg Tdecomp composition Tg Tdecomp

(mol%) (�C) (�C) (mol%) (�C) (�C)

MX1 80/20 96 228 MX4 80/20 51 222

MX2 50/50 66 231 MX5 50/50 29 230

MX3 20/80 51 — MX6 20/80 -4 229

The production process of the polymer and fabrication of the polymer tubes are both very

elaborate techniques, and as it was not done in the framework of this thesis, their details will
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not be discussed, but are explained in [37]. Polymerization occurs under influence of UV-light

and a glass mould is used to produce fiber embedded polymer tubes (Fig. 7.5(a)). An optical

fiber can be placed in the center of the mould, and a fiber embedded in a polymer tube is

shown in Fig. 7.5(b).

(a) (b)

Figure 7.5: (a) UV-transparant mould for the fabrication of fiber embedded polymer tubes. (b)

Example of a fiber embedded in a polymer tube with a length of 12 mm. [37]

Experimental setup for transverse line load tests

A possible setup to measure the transverse line load sensitivity is shown in Fig. 7.6. The fiber

is clamped in between two rotation stages that can be controlled manually. This is done in

order to keep axial strain on the fiber constant and to determine the sensitivity along different

orientations of the fiber. The sensor embedded in a polymer tube is placed in between two

steel pressure plates and weights can be manually added on top.

The fiber itself is connected with a directional coupler to an ASE source and OSA for Bragg

peak detection (accuracy of 10 pm, resolution of 1 pm).

Figure 7.6: Setup to determine the transverse line load sensitivity of a FBG sensor embedded in a

polymer tube along different angles. Weights are added manually on top of the pressure

plate.

Three polymer tubes are tested; a PMMA sample with an unknown glass transition

temperature, a MMA/BuMA 50/50 sample (Tg=66�C) and a MMA/EHMA 50/50 sample

(Tg=29�C), with a tube length of 12 mm, 14 mm and 16.2 mm, respectively.
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PMMA

In Fig. 7.7(a), the reflection spectrum of an FBG sensor fabricated in a bow-tie fiber and

embedded in a PMMA tube is shown, and there are two Bragg peaks clearly visible. The

transverse loading test was performed with a maximum load of 4.25 N/mm. The sensitivity

of the Bragg peaks and peak separation is determined for several orientations (every 15� over

a total of 180�) and the resulting plot is shown in Fig. 7.7(b).

(a) (b)

Figure 7.7: FBG sensor fabricated in a bow-tie fiber and embedded in a PMMA tube: (a) Reflection

spectrum and (b) Transverse line load sensitivity.

From Fig. 7.7(b) it is clear that there is an orientation dependence of the sensitivity and that

the sensitivity is sine-like, as is the case for a non-embedded sensor (section 5.4.4). There

seems to be an off-set of about 50 pm/(N/mm) on the sensitivity of the separate Bragg

peaks, but this is not the case for the sensitivity of the Bragg peak separation. This can

be an indication that the off-set is due to axial effects, as these have no result on the peak

separation. A possible explanation is that by compressing the polymer, its length will increase

which results in an elongation of the grating and this causes an increase of the Bragg peak

wavelength leading to a positive off-set.

The peak separation has a minimum sensitivity of -8.26 pm/(N/mm) and a maximum

sensitvity of 7.95 pm/(N/mm) for a line load applied along the slow and fast axis, respectively.

These sensitivities are significantly lower than those obtained for a free standing FBG sensor

fabricated in a bow-tie fiber. This is the result from the strain that is distributed over a

larger area in an embedded fiber (diameter ∼2 mm) than in a bare fiber (diameter ∼125 µm),

implying lower line loads seen by the sensor itself.

The obtained sensitivities correspond very well with the simulated sensitivities in Fig. 7.1(c)

for a polymer with elastic modulus 3 GPa and a Poisson ratio of 0.35, indicating that these

correspond to the material properties of the tested PMMA tube.
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MMA/BuMA 50/50

The reflection spectrum of an FBG sensor fabricated in a bow-tie fiber and embedded in a

composition of MMA/BuMA 50/50 is shown in Fig. 7.8(a). The spectrum is heavily deformed,

being the result from unequal strains on different positions along the Bragg grating. Still, a

transverse line load test was performed on the sample with a maximum load of 3.65 N/mm

and the behaviour of the two peaks indicated in Fig. 7.8(a) is followed. As there is no

indication that these two peaks are the Bragg peaks, the resulting sensitvities will only be an

indication of the order of magnitude. The sensitivity of the embedded sensor loaded under

different orientation angles, is shown in Fig. 7.8(b). Data is missing for several orientations,

as the reflection spectrum was often too heavily deformed and peak determination was no

longer possible.

(a) (b)

Figure 7.8: Reflection spectrum of an FBG sensor fabricated in a bow-tie fiber and embedded in

an MMA/BuMA 50/50 tube: (a) Reflection spectrum and (b) Transverse line load

sensitivity.

The sensitvity of the separate Bragg peaks again show an offset, here about 100 pm/(N/mm).

This implies that the axial effects resulting from transverse loading of a MMA/BuMA 50/50

are twice as large as for a PMMA sample. This indicates that the Poisson ratio ν of fabricated

MMA/BuMA 50/50 tubes is smaller than of PMMA tubes.

The sensitivity of the Bragg peak separation shows no clear sine-like trend and outliers at

30� and 150� (and maybe 135�). If these points are not considered, the minimum sensitivity

is about -14 pm/(N/mm) and the maximum sensitivity about 18 pm/(N/mm). Although

these values can only be an indication of the order of magnitude, there is a slight increase in

sensitivity of the peak separation compared to a sensor embedded in a PMMA tube. Since

PMMA has a higher elastic modulus than MMA/BuMa 50/50, this observation corresponds

to the simulations in section 7.2.1, where it was shown that the transverse line load sensitivity
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is higher for a polymer with a smaller elastic modulus.

MMA/EHMA 50/50

The reflection spectrum of an FBG sensor fabricated in a bow-tie fiber and embedded in a

MMA/EHMA 50/50 tube, is shown in Fig. 7.9. The spectrum clearly shows two Bragg peaks,

but the tube itself was too heavily deformed and prohibited reliable testing. The tube is no

longer cylindrical but rectangular, the thickness of the sample differs along the length of the

tube (’tapered rectangle’) and the sample is slightly bended. These deformations are likely

the result of the low glass transition temperature Tg = 29 �C which makes the sample very

soft.

Figure 7.9: Reflection spectrum of an FBG sensor fabricated in a bow-tie fiber and embedded in an

MMA/EHMA 50/50 tube.

7.3 Fibers embedded in a polymer skin

As mentioned in the the introduction in section ??, I also investigated FBG sensors embedded

in polymer skins. These results are presented here.

7.3.1 Used materials and fabrication methods

PDMS

PDMS (polydimethylsiloxane) is an organic polymer that is used for many types of

applications. It is a UV or thermal curable polymer that has a viscosity that is highly

dependent on the fabrication of the polymer. Since PDMS is chemically inert, biocompatibel

and flexibel, it is an ideal polymer for optical skins. The PDMS used in this work is Sylgard

184 (Dow Corning).

There are different techniques to embed optical fibers in a PDMS polymer sheet. Both

techniques are based on making small traces in a bottom layer of PDMS in which the fiber
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can be fixed before placing another PDMS layer on top. The traces can be made by either

soft lithography or laser structuring.

(a) (b) (c) (d)

Figure 7.10: (a) Fibers are placed in the grooves of a cured PDMS layer with the aid of a microscope.

(b) Another layer of PDMS is placed on top with hot embossing. (c) A fabricated sample

with two fibers embedded in the same skin along a straight line. (d) By embedding

a fiber with an array of gratings in a meandered fiber layout an optical skin based on

multiplexing is obtained.

In the soft lithography technique a ’stamp’ with the fiber layout is imprinted in a layer of

PDMS during thermal curing. The layout of the stamp is made with lithography resulting

in very accurate dimensions and positioning of grooves in which the fibers can be placed.

Another advantage of this technique is that the stamp can be used several times.

After imprinting the fiber layout in the PDMS layer, the optical fiber is placed inside the

traces using a microscope (Fig. 7.10(a)). It is possible to take the orientation of the fiber into

account during this step. A UV curable adhesive is used to fix the fibers inside the traces

before moving the sample to a hot embossing setup. The PDMS layer with the fibers placed

in the grooves is covered by another layer of cured PDMS with an uncured layer of PDMS

placed in between to ensure adhesion and minimize the amount of air bubbles. This lay-up is

then placed in a hot embossing setup to thermally cure the PDMS (Fig. 7.10(b)). The final

thickness of the sample is determined by the thickness of the different PDMS layers used.

Laser ablation with a CO2 laser can also be used to make grooves in a layer of (cured)

PDMS. The advantage of this technique is that it fully automatically transfers a CAD file

with the desired layout into grooves in the PDMS layer. Laser structuring is preferred over

soft lithography if the fiber layout is more complex, for example in a meandered layout (Fig.

7.10(d)).

Like in the soft lithography step, the fiber is placed inside the grooves using a microscope and

the layer is covered with another layer of PDMS using hot embossing.

A PDMS sample (Sample 1) was fabricated using the soft lithography technique, with a Type
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2 and Type 3 PCF (Sample 1A and Sample 1B) embedded in straight grooves about 1 cm

apart of each other (Fig. 7.10(c)). Both fibers are oriented with their slow axis perpendicular

to the sample surface. The total sample thickness is about 1 mm with the fibers in the middle

of the skin, and the dimensions of the skin are 4 cm × 6 cm.

Another PDMS sample (Sample 2) was available for testing. A Type 2 PCF is embedded in a

skin with a meandered fiber layout that was fabricated using the laser structuring technique

(Fig. 7.10(d)). The fiber has an array of 4 gratings inscribed and due to the total length

of the fiber it was difficult to take orientation of the fiber into account. The total sample

thickness is about 3 mm thick and has dimensions of 8 cm × 10 cm.

Ormocer

Ormocer is an ORganically MOdified CERamic material that is UV-curable and has a limited

flexibility. It is often used for micro-optical applications and planar optical wave guiding as it

has excellent optical properties. On the other hand, it can also be used for embedding optical

fibers sensors to create a (limited) flexible skin.

Ormocer skin samples are produced by injecting the polymer in a UV-transparant mould,

with the FBG placed in this mould, as depicted in Fig. 7.11(a). To avoid air bubbles and

uneven distribution of the (liquid) polymer, air outlets are foreseen in the top lit. The injected

mould is illuminated with UV light to cure the polymer and a fabricated sample is shown in

Fig. 7.11(b). The final step is a hardbake procedure to ensure thermal and environmental

stability of the polymer.

(a) (b)

Figure 7.11: (a) Cross section of the buildup of the injection mould used for the fabrication of

Ormocer samples. (b) An example of an FBG sensor embedded in Ormocer

The fabricated Ormocer samples are 1 cm × 4 cm large and have a thickness of 1 mm with

the fiber embedded at a depth of only 100 µm. Since there is no prestrain on the fiber during

curing, nothing prevents the fiber from bending. This will result in a varying embedding

depth along the length of the grating. Moreover, as the fiber is not clamped or fixed during

curing, it is likely that the embedded fiber is not oriented along the intended direction. Some
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of the fabricated samples also have surface irregularities or are bended over the total length.

All of these flaws can make it difficult to obtain consistent results.

7.3.2 Transverse loading setup

(a) (b) (c)

Figure 7.12: (a) The setup to scan the polymer skins consists out of two translation stages and a

metal ball of 0.45 N (b) attached to a fully mechanical release system. (c) indicates at

which positions the sensitivity is determined when a surface scan or a cross section is

made.

A fully mechanical setup is built to determine the transverse load sensitivity at different

positions of the optical skin (Fig. 7.12(a)). The position is determined by two translation

stages with each a range of 25 mm and accuracy of 10 µm. A small metal ball attached to

a hinge is used to apply a force of about 0.45 N to the skin (Fig. 7.12(b)). As this is fully

mechanical, the weight is constant for all positions during testing.

The surface can be scanned to determine the transverse load sensitivity at different positions.

The sensitivity is determined by monitoring the response δλ of the Bragg peak wavelengths

every time the weight is placed on and removed from the optical skin. A commercial

FBG interrogator (FOS&S FBG-scan 608 interrogator) is used to determine the Bragg peak

wavelengths with an accuracy of 30 pm and resolution of 1 pm.

7.3.3 Experimental results

PDMS samples

The reflection spectra of the two FBG sensors (Type 2 and Type 3 PCF) embedded together

in the PDMS skin (Sample 1A and 1B) are shown in Fig. 7.13(a) and Fig. 7.13(b). Both

spectra show that embedding has caused the peaks to slightly shift to shorter wavelengths,

but that the peaks have not deformed.

Testing of Sample 1B was done by making a surface scan of the response of the Bragg peaks
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(a) (b)

Figure 7.13: Reflection spectra of the FBG sensors embedded in a PDMS skin: (a) Sample 1A (Type

2 PCF) and (b) Sample 1B (Type 3 PCF).

when the weight is placed on several positions on the optical skin. The resulting color plots

for both Bragg peaks and the peak separation is shown in Fig. 7.14. In Fig. 7.15 a more

detailed cross section is shown that was made by crossing the sample at the center of the

grating.

The color plots and the cross-section clearly show an increased sensitivity at the position of

the grating. The maximum change in Bragg peak wavelength δλmax is 33 pm for the mode

polarized along the fast axis, and 31 pm for the mode polarized along the slow axis, and the

FWHM is for both Bragg peaks around 1.4 mm.

The color plot for the sensitivity of the Bragg peak separation also show a higher sensitvity

at the position of the grating, albeit only a sensitivity of about 3 – 4 pm. At a distance of

5 mm away from the grating, this sensitivity has decreased to nearly zero.

Testing of PDMS Sample 1A (Type 2 PCF) was difficult because it seemed as if the fiber

was not well placed inside the groove before curing the PDMS sample. This caused the fiber

to move whenever pressure was put near the embedded fiber, resulting in other effects than

pure transverse strain. Therefore, only a cross section of the sensitivity could be made at the

center of the FBG where the fiber was at a stable position. The result is shown in Fig. 7.16.

This skin has a maximum change in Bragg peak wavelength δλmax of 94 pm, and both Bragg

peaks behave in more or less the same way.

The spectrum of PDMS Sample 2 (Type 2 PCF) with an array of four gratings embedded in

a meandered layout is shown in Fig 7.17. Due to bending of the fiber, the reflected power of

the gratings was very low and since some gratings were positioned in a bend, their spectrum

was heavily deformed. This made it difficult to detect all Bragg peaks and therefore only one



7.3 Fibers embedded in a polymer skin 91

(a) (b) (c)

Figure 7.14: Color plots that show the change in Bragg peak wavelength (in pm) when a load

of 0.45 N is applied at different positions of PDMS Sample 1B (Type 3 PCF): The

sensitivity of the mode polarized along (a) the fast axis, (b) the slow axis and (c) the

sensitivity of the Bragg peak separation.

Figure 7.15: Cross section of the transverse load sensitivity at the center of the grating of PDMS

Sample 1B (Type 3 PCF). Both curves are approximated by a Gaussian fit, and the

obtained parameters for Peak 1 (fast axis) are R2 = 0.9550, δλmax = 33 pm and

FWHM = 1.41 mm. The obtained parameters for Peak 2 (slow axis) are R2 = 0.9581

δλmax = 31 pm and FWHM = 1.44 mm.
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(a)

Figure 7.16: Cross section of the transverse load sensitivity at the center of the grating of PDMS

Sample 1A (Type 2 PCF). Both curves are approximated by a Gaussian fit and leaded

to a FWHMPeak1 = 1.44 mm and FWHMPeak2 = 1.54 mm.

grating could be tested. This Bragg peaks reflected by this grating are indicated in Fig. 7.17,

and this FBG corresponds to FBG1 in Fig. 7.10(d).

(a)

Figure 7.17: Reflection spectra of an array of FBG sensors fabricated in a Type 2 PCF and embedded

in a PDMS skin with a meandered fiber layout (Sample 2).

The grating that could be used for testing PDMS Sample 2 was situated at the edges of the

skin. Because of the thickness of the skin, it was bended and only made contact with the

surface plate with its edges. This resulted in other effects than transverse strain when placing

the load on the skin. In order to perform reliable transverse load tests, pre-strain should

be placed on the skin such that it is slightly stretched ann at least flat. Since this was not

possible with the transverse setup as shown in Fig. 7.12(a), no consistent or reliable results

were obtained for the meandered skins.
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Ormocer samples

There are in total four Ormocer samples that were be tested, two Type 2 PCF embedded

samples and two Type 3 PCF embedded samples. Because some of the samples were bended,

it was impossible to make a surface scan without destabilizing the sample. Therefore, only

cross sections of the sensitivity could be made at the (visibly) stable position of the sample.

(a) (b)

Figure 7.18: (a) Transverse load setup to test the Ormocer samples. (b) Because of the bend in the

Ormocer samples, tests are also performed with a small block placed under the sample

to ensure stable positioning.

The samples are tested in two different ways, as shown in Fig. 7.18. The extra-block is used

to ensure that force is applied on the most stable position of the sample. The position of the

sample is maintained by fixing both fiber ends to the translation stage. However, in between

different tests and switching between the two setups, the position of the sample changed. For

this reason the cross section is made with respect to ’relative positions’.

The reflection spectra of the FBG sensors fabricated in two Type 3 PCFs and embedded in

Ormocer are shown in Fig. 7.19. Both spectra show a shift of about 5 - 6 nm for the Bragg

peaks to shorter wavelengths, while the peak separation remains the same. The equal shifts

of the Bragg peaks indicate that the embedding results in an axial compression of the FBG.

A transverse load test is performed on both samples, with both setups as shown in Fig. 7.18.

The resulting cross sections for the first sample are shown in Fig. 7.20. Both curves clearly

show a Gaussian-like profile, with an enhanced sensitivity at the position of the grating. The

maximum change in Bragg peak wavelength is about 74 pm for the mode polarized along the

fast axis, and this was the same for both test methods. The Gaussian fits in Fig. 7.20(a) show

a small difference in sensitivity between modes polarized along the fast and slow axis, with a

maximum change in Bragg peak wavelength of 74 pm and 66 pm, respectively. This can be

an indication that the distinct peak behaviour of the free standing sensor under transverse

line loading is translated to the sensor embedded in Ormocer.
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(a) (b)

Figure 7.19: Reflection spectra of an FBG sensor fabricated in a Type 3 PCF, before and after

embedding in an Ormocer skin sample ((a) Sample 1 and (b) Sample 2). The spectrum

of Sample 2 is of low quality due to a bad optical connection.

The FWHM also shows some small difference both Bragg peaks measured with both test

methods. The obtained values lie between 2.2 mm and 2.6 mm.

The cross sections corresponding to the transverse strain tests performed on the second

Ormocer sample with a Type 3 PCF embedded, are shown in Fig. 7.21. Both plots show

again a Gaussian like profile with an increased sensitvity at the position of the grating. In Fig.

7.21(a), the mode polarized along the slow axis has the highest change in Bragg wavelength

(50 pm versus 37 pm). The FWHM for the Gaussian fit, is about 2.33 mm and 2.04 for both

Bragg peaks.

Fig. 7.21(b) shows the same trend, with the highest sensitivity for the mode polarized along

the slow axis. The corresponding Gaussian fit has a maximum of 64 pm and a FWHM of

1.93 mm. The Gaussian fit of the sensitivity of the mode polarized along the fast axis, has a

maximum of 48 pm and a FWHM of 2.18 mm.

The same tests are performed on two Type 2 PCFs embedded in Ormocer. The reflection

spectra of the Bragg gratings before and after embedding are shown in Fig. 7.22(a) and

Fig. 7.22(b). Both spectra show large deformations due to embedding. Fig. 7.22(a) shows a

splitting of the peaks which can be an indication that one part of the grating sees more axial

strain than the other part, and as such are two gratings present with each a different Bragg

wavelength. The largest peaks are followed during testing.

The spectrum in Fig. 7.22(b) shows that much deformations that the Bragg peaks are barely

recognizable and the indicated peaks are assumed to be the Bragg peaks.

The resulting cross-sections from the transverse load tests on Sample 1 (Fig. 7.22) with the
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(a) (b)

Figure 7.20: Cross section of the transverse load sensitivity at the center of Sample 1 of the Type

3 PCF embedded Ormocer. skin. The curves shown in (a) are obtained with the

setup as shown in Fig. 7.18(a) and a Gaussian fit leads to FWHMPeak1 = 2.23 mm

and FWHMPeak2 = 2.39 mm. The curves shown in (b) are obtained with the setup

as shown in Fig. 7.18(b) and a Gaussian fit leads to FWHMPeak1 = 2.63 mm and

FWHMPeak2 = 2.43 mm.

(a) (b)

Figure 7.21: Cross section of the transverse load sensitivity at the center of Sample 2 of the Type

3 PCF embedded Ormocer. skin. The curves shown in (a) are obtained with the

setup as shown in Fig. 7.18(a) and a Gaussian fit leads to FWHMPeak1 = 2.33 mm

and FWHMPeak2 = 2.04 mm. The curves shown in (b) are obtained with the setup

as shown in Fig. 7.18(b) and a Gaussian fit leads to FWHMPeak1 = 1.93 mm and

FWHMPeak2 = 2.18 mm.
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(a) (b)

Figure 7.22: Reflection spectra of an FBG sensor fabricated in a Type 2 PCF, before and after

embedding in an Ormocer skin sample ((a) Sample 1 and (b) Sample 2).

setups as depicted in Fig. 7.18 are shown in Fig. 7.23. A Gaussian like profile is again

obtained, which corresponds to an increased sensitivity at the position of the grating.

The Gaussian fits in Fig. 7.23(a) have a maximum change in Bragg peak wavelength of

120 pm and 117 pm for the modes polarized along the fast and slow axis, respectively. The

FWHM is for both fits about 2.16 mm.

Fitting the curves shown in Fig. 7.23(b) with a Gaussian distribution leads to a maximum

change in Bragg peak wavelength of 128 pm and FWHM of 2.17 mm for the mode polarized

along the fast axis. For the mode polarized along the slow axis, the maximum change in

Bragg peak wavelength is 124 pm and the FWHM is 2.22 mm.

Due to too much deformation of the second sample, it was impossible to perform transverse

loading tests while keeping it stable. Lowering the weight of the metal ball on the sample,

caused the sample to tilt, resulting in large axial strains on the fiber. This made it impossible

to link the Bragg peak behaviour to induced transverse strains.

7.4 Conclusion

Simulations of a bow-tie fiber and Type 3 PCF embedded in polymer tubes, showed that the

transverse line load sensitivity decreases when a polymer with high elastic modulus is used.

They also showed that the sensitivity of the sensors is about an order of magnitude when

embedded. The influence of the Poisson ratio was also investigated with FEM simulations,

and this showed that the sensitivity is higher for polymers with a higher Poisson ratio. This

effect was however small compared to the contribution of the elastic modulus.

Experiments were performed on FBG sensors fabricated in bow-tie fibers and embedded in



7.4 Conclusion 97

(a) (b)

Figure 7.23: Cross section of the transverse strain sensitivity of Sample 2 of the Type 3 PCF

embedded Ormocer. skin. The curves shown in (a) are obtained with the setup as

shown in Fig. 7.18(a) and a Gaussian fit leads to FWHMPeak1 = 2.18 mm and

FWHMPeak2 = 2.15 mm. The curves shown in (b) are obtained with the setup

as shown in Fig. 7.18(b) and a Gaussian fit leads to FWHMPeak1 = 2.17 mm and

FWHMPeak2 = 2.22 mm.

polymer tubes. Two types of polymers were tested: a PMMA tube and a tube made of a

MMA/BuMA 50/50 composition which is more flexible than a pure PMMA tube. A third

type of polymer tube (MMA/EHMA 50/50) with an even higher flexibility was also provided

for testing, but the sample itself was too heavily deformed because it was that soft.

The obtained sensitivity of the peak separation of the PMMA tube was comparable with the

simulated results for a polymer of elastic modulus of 3 GPa and a Poisson ratio of 0.35. It is

thus likely that these are approximately the material properties of the tested PMMA sample.

The maximum sensitivity of the peak separation was -8.3 pm/(N/mm) for a load applied

along the fast axis.

The reflection spectrum of the MMA/BuMA 50/50 sample was heavily deformed due to

uneven strains on the grating. This made it difficult to detect the Bragg peaks and the

obtained sensitivities are only an indication for the order of magnitude. The maximum

sensitivity of the peak separation of this sample was about 18 pm/(N/mm), which is higher

than the sensitivity of the PMMA sample. This corresponds to the conclusion drawn from

the simulations: FBG sensors fabricated in bow-tie fibers have a higher transverse line load

sensitivity when embedded in a polymer with a low elastic modulus.

FBG sensors fabricated in Type 2 and Type 3 PCFs were also embedded in polymer skins.

The tested polymers were PDMS, which is a rather soft and flexible material, and Ormocer,

a more rigid polymer. Embedding FBG sensors in both types of polymer was possible, but

for some of the fabricated Ormocer samples the reflection spectrum was heavily deformed
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after embedding. This is likely the result of an uneven distribution of residual strains in the

fabricated sample.

Two sensors fabricated in a Type 2 and Type 3 PCF, were embedded together in a PDMS

sample. The maximum change in Bragg peak wavelength was 94 pm for the sensor in a Type

2 PCF, while the sensor in a Type 3 PCF resulted in a maximum change in Bragg peak

wavelength of only 32 pm. This large difference in sensitivity is likely the result from different

orientations along which they are embedded. For both sensors, there was no different peak

behaviour for both Bragg peaks and the FWHM was about 1.4 mm.

The testing of the Ormocer sample also resulted in a larger change in Bragg peak wavelength

for the sensor fabricated in a Type 2 PCF than for a sensor fabricated in a Type 3 PCF

(maximum 128 pm opposed to maximum 74 pm). However, for the sensors fabricated in a

Type 3 PCF, there was a different behaviour for both Bragg peaks, with a maximum change

in Bragg peak separation of about 16 pm. The FWHM was found to be around 2.2 mm for

all tested Ormocer samples.

The sensitivities found for the Ormocer and PDMS samples cannot be compared directly,

because the orientation of the fiber is not known and the skins have a different sample thickness

and embedding depth of the fiber. The combination of experimental testing with (3D) FEM

simulations will be important to be able to draw reliable conclusions.

From the testing of the polymer skins it also became clear that the uniformity of the sample

is of high importance. Flaws like surface irregularities, bending of the sample or fiber, air-

bubbles and others, made it difficult to obtain consistent, and sometimes even reliable, results.

Optimization of the embedding procedure is therefore also important.
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Chapter 8

Accomplishments and future

prospects

The focus of my Master thesis was on fiber Bragg grating sensors fabricated in highly

birefringent photonic crystal fibers. The specific goal was to obtain a temperature insensitive

sensor that has a high mechanical strain and hydrostatic pressure sensitivity. This sensor

could be used in its bare state, but the applications of interest in this work were structural

health monitoring and smart materials that rely on embedded sensors. Fiber optic sensors

are beneficial to both applications because of their advantages including compact dimensions,

low weight and multiplexing capabilities. But the envisioned sensors could bring even more

added value. One can think of monitoring loading and damage in the transverse direction

of composite materials, which up to now has been impossible to achieve with satisfactory

resolution. Another application where the investigated sensors have distinct advantages is

in so-called artificial optical skins. These flexible polymer foils can be wrapped around

or attached to an irregular and moving object, with the intention to monitor a pressure

distribution on the surface. This would be of particular interest inthe field of robotics to

provide a sense of touch to humanoid or social robots, or in the field of healthcare to provide

pressure monitoring and relief in prosthesis sockets.

My Master thesis tackled several challenges. First, we calibrated an FBG sensor that was

specially designed to have a high mechanical strain and hydrostatic pressure sensitivity and

low temperature sensitivity. Subsequently we embedded this sensor in a composite material

and we characterized the fabricated samples for several mechanical loading conditions. Finally,

we also embedded the sensors in polymer foils and we determined the influence of different

material parameters on the sensitivity of the embedded sensor. The characterization tests

we performed were experiments as well as 2D finite element analyses, and we compared the

obtained results.

An overview of the conclusions is given below.
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8.1 Accomplishments

8.1.1 Calibration of the bare sensor

We inscribed fiber Bragg gratings in specially designed highly birefringent photonic crystal

fibers. The results from a thermal cycling test, evidenced that the fabricated sensors are highly

insensitive to temperature changes. Temperature insensitivity was one of the requirements of

the sensor concept that we envisioned.

Via 2D finite element analyses, we found that the sensor has a hydrostatic pressure sensitivity

of -1.47 pm/bar, and this values corresponds to experimental values we obtained earlier. A

fiber Bragg grating sensor with a hydrostatic pressure sensitivity of -1.47 pm/bar

has not been reported before and almost matches the industry requirements of

2 pm/bar.

We investigated the transverse line load sensitivity of the sensor via experiments and 2D finite

element analyses and found a maximum sensitivity of -372 pm/(N/mm) and -325 pm/(N/mm)

for the experiments and simulations, respectively. Since the obtained sensitivities are

comparable, we conclude that the model used for the 2D finite element analyses is valid

to simulate the sensitivity of the real sensor. Moreover, this very high transverse line load

sensitivity also implies that the sensor can be used as a temperature insensitive sensor with

high mechanical strain sensitivity.

8.1.2 Embedding of the sensor in composite materials

We successfully embedded the sensors in the middle of carbon fiber/epoxy laminates with a

cross-ply layup of 16 layers. The reflection spectra of the sensors after embedding showed

that the Bragg peak separation had decreased due to the presence of residual strains in the

fabricated laminates, but this did not interfere with the Bragg peak analyses. Additionally,

we studied the cross sections of the fabricated samples to conclude that the orientation of the

sensor is well maintained in the embedding procedure.

We performed a thermal test evidencing that once embedded and as expected the sensor

is no longer insensitive to temperature with an average sensitivity of 4.4 pm/�C. This

sensitivity stems from residual stresses inside the laminate that decrease during heating and

increase again while cooling down. To meet the requirements of temperature insensitive load

monitoring, the sensor could be doped such that it becomes sensitive to temperature changes

in its bare form, but compensates for the differences in thermal expansion coefficients when

embedded. This would allow monitoring the true strains in the laminate.

The transverse strain tests we performed resulted in a sensitivity of -0.16 pm/µε. This

sensitivity is an order of magnitude larger than earlier reported values for sensors

fabricated in other types of highly birefirngent fibers and embedded in a carbon fiber/epoxy

laminate with unidirectional layup.
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The high mechanical line load sensitivity of the bare sensor is a true added value when

embedded in composite materials, and the transverse strain sensitivity we obtained is a

breakthrough for monitoring loading of FRP materials.

8.1.3 Embedding of the sensor in flexible polymers

We also embedded the sensors in flexible polymers. Experiments and simulations of a sensor

embedded in a polymer tube showed that a higher transverse line load sensitivity is achieved

when the polymer has a lower elastic modulus. Tests we performed on the sensors embedded

in a polymer foil showed that there is an increased sensitivity at the position of the embedded

sensor. The sensitivity of the Bragg peak separation was low compared to the sensitivity of

the separate Bragg peaks, which indicates that the high transverse line load sensitivity of the

bare sensor does not necessarily provide a high load sensitivity when embedded in a (flexible)

polymer skin. However, the experiments showed that when the sensitivity of the Bragg peaks

is considered, the embedded sensor can be used for distributed pressure sensing.

8.2 Future prospects and challenges

The tested photonic crystal fibers had a highly asymmetric microstructure that consisted of

several large airholes which were deformed due to fabrication. The slightest deviation in the

design of a single mode and bend insensitive microstructured fiber will result in multimode

behaviour or high bending losses. Although the tested fibers had a very high mechanical

strain sensitivity, an improvement would be a fiber with the same or higher sensitivity that

is less affected by fabrication induced imperfections.

As the microstructured fibers have a transverse strain sensitivity that is dependent on angular

orientation, the orientation of the highest sensitivity should be indicated in some way. An

option is to make the outer cladding hexagonal to limit the angular orientations of the fiber

to three possibilities. The principle of a D-clad fiber could also be applied to the photonic

crystal fibers. Both options would significantly ease control of the orientation of the fibers

during embedding.

When the sensor was embedded in a composite material it was no longer insensitive to

temperature changes due to the presence of residual strain in the fabricated cross-ply laminate.

This implies that another compensating system should be used in strain monitoring of

composite samples. A commonly used method is the co-embedding of a sensor that is placed

in a capillary.

Although the embedding of an optical fiber in fiber reinforced polymers did not induce

significant disturbances to the structure of the composite, fibers with a smaller diameter

should be considered. This will result in a more reliable monitoring of the real internal

strains, and not the strains induced by the presence of the optical fiber.
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One of the difficulties of embedding optical fibers in composite materials, was the combination

of a very brittle fiber that had to be embedded in a rigid laminate with a harsh fabrication

process. Questions may arise about the possibilities of embedding optical fibers with other

techniques than the autoclave and in other configurations than small rectangular samples.

These large hurdles will have to be overcome before even thinking of embedding photonic

crystal fibers on a large scale in composite structures.

Besides the experimental work, 3D FEM simulations could also reveal possible improvements.

The influence on the sensitivity of parameters like embedding depth and laminate layup could

indicate what samples should be considered for fabrication and experimental testing.

As the research domain of optical skins is still very young, there are still many effects that

have to be investigated and problems that have to be solved before a comparative study can

be made of the sensitivity of different types of fibers. First of all, 3D simulations of optical

skins with different material and geometrical properties should be performed.

A second step is to optimize the embedding procedure such that testing of several samples

fabricated in the same manner produce consistent results. The (surface) quality of the

polymer, the orientation of the fiber and the adhesion between polymer and fiber will heavily

influence the sensitivity of the sensor. Once this is optimized, the spatial resolution of larger

skin samples could be tested including their ability to distinguish multiple forces.

Other experiments like thermal tests, axial and bending strain tests should also be performed

on several types of optical skins.

The use of microstructured polymer optical fibers could resolve several problems associated

with silica fibers [38]. They have the advantage of being mechanically very flexible and their

fabrication process is much more tolerant. Polymers preforms could be made with the stack-

and-draw technique, but also by polymer casting, extrusion or injection moulding. The fibers

are drawn at a temperature of about 150 - 200 �C and due to this low temperature, the

shape of the airholes is well maintained after drawing. Much more complex microstructures

are therefore possible. The fiber is also much less affected by fluctuations of fabrication

parameters like temperature, which could make it possible to fabricate them at low cost in

large volumes.

Polymers can be modified by including molecular components or atomic species. This would

open the door to a whole new class of fiber optic sensors in which a chemical reaction between

the polymer fiber and a certain molecule induces a change in material properties of the fiber.

An application in which polymer fibers could be an improvement over silica fibers, is in the

domain of structural health monitoring [39]. First of all is the possible low cost fabrication of

polymer fibers an important economical factor in distributed sensing systems. Moreover, as

the material properties of the polymer can be tuned to the specific applications, fiber Bragg

grating sensors can be made that can endure large strains. However, considerable additional
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research is required on the fabrication of such microstructured fiber sensors and the inscription

of Bragg gratings in these fibers, since this requires different techniques than for silica fibers.

Although the domain of polymer optical fibers is still very young, it is clear that they will offer

a wide range of advantages and will definitely gain importance in the coming years. Moreover,

the developed sensor concept presented in this thesis can be transferred to microstructured

polymer fibers.

8.3 Conclusion

During my Master thesis, we have clearly shown the potential of fiber Bragg grating sensors in

their bare state and as sensing elements in smart materials. The results we obtained greatly

advance on the state-of-the-art and will be taken up in international journal publications.

With this I hope to have contributed to the development of fiber optic sensors and smart

materials that rely on embedded optic fiber sensors.
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Appendix A

Comsol Multiphysics

A.1 Finite Element Method

Several properties and sensitivties of photonic crystal fibers presented in this thesis, have

been derived using Finite Element Method (FEM) analyses. FEM is a very versatile and

flexible technique that can be used to solve complicated structural, thermal, semiconductor

and electromagnetic problems. It is especially advantageous for electromagnetic field problems

in waveguides with an arbitrarily shaped cross section composed of several materials. FEM

divides the cross section of a fiber into a patchwork of triangular elements with different

shape, size and refractive index. [40]

The formulation of the FEM is based on the vector wave equation or curl-curl equation,

which is given by equation (A.1) for a medium described by the complex tensors of the

relative dielectric permittivity εr and magnetic permeability µr. In this equation h is the

magnetic field and k0 = 2π/λ is the wave number in vacuum. [15]

5×
(
ε
�1
r 5× h

)
− k2

0µrh = 0 (A.1)

The magnetic field of the modal solution is expressed as h = He�γz, with H the magnetic field

distribution on the transverse plane and γ = α + jk0neff the complex propagation constant

with α the attenuation and neff the refractive index. In order to make the field components

continuous over the whole domain, a first degree polynomial interpolation is assumed between

the field values at the cross points of the triangles. [40]

Equation (A.1) leads to equation (A.2) when the variational finite element procedure is

applied. {H} is the discretized magnetic field-vector distribution of the mode, and [A] and

[B] are sparse and symmetric matrices. [15](
[A]−

(
γ

k0

)2

[B]

)
{H} = 0 (A.2)



A.2 Birefringence analyses 105

The advantage of the variational procedure is that it can automatically satisfies the boundary

conditions when left free (’natural boundary condition’). To reduce the computational

domain, the boundary conditions can be changed to reduce the matrix order. For instance,

when the cross section of the waveguide has a plane of symmetry, advantage of that should

be taken. Another example is when the vector wave equation only has to be solved in the

core of a fiber, because one knows that the modes are located here. In order to enclose the

computational domain without affecting the numerical solution, Perfectly Matched Layers

(PML) are placed before the outer boundary. The PML are also used to calculate waveguide

losses. [40], [41]

FEM analyses of photonic crystal fibers lead to knowledge regarding their propagation

characteristics and field distributions. Extensive waveguide analyses can be performed by

varying the material properties or fabrication parameters. Since the mechanical parameters

are also taken into account, FEM can be used to analyse the sensitivity of the fiber to

influences like hydrostatic pressure, axial and transverse strain. More complex structures like

fibers embedded in different materials are also possible to model.

In this work, 2D FEM calculations were performed using the commerical available Comsol

Multiphysics with RF and structural mechanics modules. Analyses were performed to model

the material and modal birefringence of a fiber and to calculate the sensitivity of the fibers

to hydrostatic pressure and transverse strain. The details regarding these simulations are

discussed in more detail in the following sections.

A.2 Birefringence analyses

A plane strain analysis combined with a perpendicular hybrid-mode wave analysis was

performed to study the birefringence of a fiber. The model consisted out of the cross section

of the fiber with correct material properties assigned to different regions. The materials

considered for fibers are isotropic, and parameters like elastic modulus, poisson ratio and

thermal expansion coefficient had to be set. Thermal stresses are taken into account by

setting the reference temperature for the thermal expansion coefficient, and the temperature

at which the simulation is performed. This reference is taken to be 20 �C in all performed

simulations, unless noted otherwise.

Optical properties like the considered wavelength, stress-optic coefficients and refractive index

of the material were also some of the required parameters.

This model divided in triangular elements which is also called ’meshing’. A PML was placed

around the core region, with an increased number of elements inside the PML to improve

the precision. To reduce the computational domain, the domain of the optical analyses was

restricted to the PML. In Fig. A.1, the different steps of a FEM analysis are shown.

The birefringence analysis started with a plane strain analyses to calculate the fabrication
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(a) (b) (c)

(d) (e) (f)

Figure A.1: Different steps of a 2D FEM analysis: (a and d) A geometrical model with the correct

material parameters and a rectagular PML is built. (b and e) This model is divided in a

mesh of triangular elements with varying shape and size. (c and f) After the simulations,

different properties, such as the mode profile, can be plotted.
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induced stresses. These thermal stresses are the result from different thermal expansion

coefficients and lead to material birefringence. The next step was an optical analyses that is

based on the previous calculated stresses, but also takes waveguide birefringence into account.

This leads to effective refractive indices of the two fundamental modes and the corresponding

modal birefringence of the fiber.

A.3 Hydrostatic pressure sensitivity

The analyses of the sensitivity of a fiber to hydrostatic pressure is much comparable to

the birefringence analysis. The only difference is that during the mechanical simulations, a

hydrostatic pressure is applied to the outercladding of the fiber. This pressure will change the

internal stress distribution in the fiber cross section, and thus result in a change in material

and modal birefringence. This can be repeated for several hydrostatic pressure, to obtain a

sensitivity of the birefringence to pressure.

A.4 Transverse strain sensitvity

Like in the analyses of the pressure sensitivity, the transverse strain sensitivity of a fiber is

determined by applying a force in the mechanical simulation. Transverse strain is simulated

by applying a point force to the fiber, and fixing the point on the other side of the fiber

in both directions (constraint in x and y direction). This load will lead to a change in

the stress distribution and thus also in material and modal birefringence. The simulation

can be performed for several values of the point force and for point forces applied to several

orientations of the fiber. This results in a plot of transverse strain sensitvity versus orientation

of the fiber.
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List of abbreviations

BuMA butyl methacrylate

CFRP carbon fiber reinforced polymers

EHMA 2-ethylhexyl methacrylate

EM electromagnetic

FBG fiber Bragg grating

FEM finite element method

FRP fiber reinforced polymers

FWHM full width at half maximum

HiBi highly birefringent

MMA methyl methacrylate

MSF microstructured fiber

ORMOCER organically modified ceramic

PCF photonic crystal fiber

PDMS polydimethylsiloxane

PMMA polymethyl methacrylate

SHM structural health monitoring
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List of Symbols

Λ period

λ wavelength

λB Bragg peak wavelength

∆λB Bragg peak separation

δλB change in Bragg peak wavelength

B birefringence

n refractive index

C stress-optic coefficient

β propagation constant

v phase velocity

k free-space wavenumber

E elastic modulus

G shear modulus

ν Poisson ratio

σ stress

ε strain

p strain-optic coefficient

α thermal expansion coefficient

T temperature




	Acknowledgements
	Summary
	Samenvatting
	Résumé
	Contents
	Introduction
	Outline

	Optical fiber sensors for smart materials
	Optical fiber sensors
	Optical fibers
	(Dis)advantages and economical aspects

	Smart materials
	Optical fiber sensors embedded in composite materials
	Optical fiber sensors embedded in (flexible) polymers
	Other applications of embedded optical fiber sensors


	Fiber Bragg gratings in highly birefringent photonic crystal fibers
	Fiber Bragg gratings
	Working principle
	Bragg grating inscription

	Photonic crystal fibers
	Different types of photonic crystal fibers
	Fabrication of PCFs
	Grating inscription in PCFs

	Highly birefringent fibers

	Sensor concept
	Temperature and strain sensitivity of an FBG in a HiBi fiber
	Response to temperature
	Response to strain

	Envisioned sensor concept
	Thesis objectives
	Sensitivity of the FBG sensor
	FBG sensors embedded in a composite material
	FBG sensors embedded in a flexible polymer


	Fabrication and characterization of an FBG sensor
	Outline and objectives
	Fibers under test
	Fabrication and evaluation of fiber Bragg gratings
	Fiber Bragg grating inscription

	FBG sensor calibration
	Axial strain calibration
	Hydrostatic pressure calibration
	Transverse line load calibration

	Conclusion

	Optical fiber sensors embedded in carbon fiber reinforced polymers
	Outline and objectives
	Evaluation of fabrication
	Verification of the fiber orientation

	Temperature sensitivity
	Axial strain sensitivity
	Conclusion

	Optical fiber sensors embedded in polymers
	Outline and objectives

	Accomplishments and future prospects
	Accomplishments
	Calibration of the bare sensor
	Embedding of the sensor in composite materials
	Embedding of the sensor in flexible polymers

	Future prospects and challenges
	Conclusion

	Comsol Multiphysics
	Finite Element Method
	Birefringence analyses
	Hydrostatic pressure sensitivity
	Transverse strain sensitvity

	Bibliography
	List of abbreviations
	List of Symbols



