Um'\/ersiteiii
»p Nasselt

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF MASTER
OF SCIENCE IN COMPUTER SCIENCE

Author: Mentor:
Steve Bottelbergs Bram Bonné
Promotor:

Prof. dr. Wim Lamotte

Co-Promotor:
Prof. dr. Peter Quax

2012 - 2013

Preface

This thesis is the result of work conducted during my final year at Hasselt
University. It would never have been possible without the help of the people
I would like to thank here. Firstly, I would like to thank my mentor, Bram
Bonné and promotors Wim Lamotte and Peter Quax for providing me with
constructive feedback and suggestions. Secondly, thanks go out to my family
and friends, without whom I would never have been where or who I am today.
Lastly, very special thanks go to my girlfriend Sabrina Gust, for giving me the
needed support, helping me relax in stressful times, and generally keeping me
sane throughout the process of writing this thesis.

Abstract

Web content management systems are used by a lot of people who want to
create their own website or blog. Using content management systems can be
a very attractive solution because all low level functionality is abstracted by
providing a high level interface and the ability to extend core functionality by
installing added components. This also means that a typical CMS user will not
be concerned with the security of the system, as long as everything works.

A major issue of using content management systems is that a large number
of websites are susceptible to the same vulnerability if one is discovered. In this
thesis we will provide a comparative study on the three most used web content
management systems: WordPress, Joomla, and Drupal. We will compare these
content management systems to each other based on a set of objective criteria.
We will also provide statistics on the types of reported vulnerabilities and the
number of security-related releases for each of the content management systems
over the years.

Nederlandse samenvatting

In deze thesis bekijken we de beveiliging van de drie meest gebruikte web Con-
tent Management Systemen of CMS’en. Volgens een onderzoek van W3Techs
gebruikt iets meer dan 30% van de websites op het internet een of ander web
content management systeem [57]. De drie meest gebruikte zijn WordPress,
Joomla en Drupal. Een content management systeem biedt een zekere abstrac-
tie voor het beheren van een website, waardoor de website op hoger niveau
kan worden onderhouden en er gemakkelijker inhoud kan worden toegevoegd en
aangepast. Dit is zeer aantrekkelijk voor onervaren gebruikers of mensen zonder
programmeerervaring omdat dit hun in staat stelt om ook een website te kunnen
beheren.

Bij de keuze van een CMS wordt er vaak geen rekening gehouden met hoe
veilig het systeem precies is, maar eerder naar de gebruiksvriendelijkheid en hoe
goed het de wensen van de beheerder vervult. Het is bijgevolg belangrijk om
te weten in welke mate deze veel gebruikte web content management systemen
veilig zijn en waar er eventueel ruimte is voor verbetering. Hiervoor werd gezocht
naar een aantal objectieve criteria om de systemen met elkaar te vergelijken.
Deze criteria bestaan voornamelijk uit een onderzoek naar hoe ieder systeem
omgaat met de veiligheidsrisico’s vooropgesteld door de OWASP Top 10 [I].
Het Open Web Application Security Project, oftwel OWASP is een organisatie
die zich bezighoudt met het verbeteren van de beveiliging van software [37].
OWASP is een online gemeenschap van security experts die hun kennis over het
software beveiligingsdomein delen zodat applicaties geschreven kunnen worden
met een grotere focus op veiligheid en beveiliging. Het OWASP Top 10 project
is een lijst van de 10 gevaarlijkste en meest voorkomende veiligheidsrisico’s op
het internet, gebaseerd op meer dan 500000 kwetsbaarheden in meer dan 1000
applicaties [I].

Onze vergelijkende studie is gebaseerd op de risico’s die vermeld worden in
de OWASP Top 10, en de technieken die ieder content management systeem
voorziet om deze te voorkomen. Verder werd er ook gebruik gemaakt van rap-
porten over kwetsbaarheden in de basisfunctionaliteit en toegevoegde compo-
nenten van ieder content management systeem. Deze komen voornamelijk van
de Common Vulnerabilities and FEzxposures database. De informatie die deze
database bevat werd gegroepeerd per jaar, er werd onderzocht over welk soort
kwetsbaarheden het ging en of de kwetsbaarheid zich in de basisfunctionaliteit
of toegevoegde componenten bevond. Aan de hand van deze statistieken kregen
we een beter overzicht van de voornaamste kwetsbaarheden en waar deze zich

vooral bevonden. Verder hebben we ook statistieken opgemaakt die het aantal
gewone en beveiligingsupdates van ieder CMS vergelijken.

OWASP Top 10

In deze sectie zullen we beknopt de veiligheidsrisico’s die omgeschreven worden
in de OWASP Top 10 bespreken en technieken aanhalen die gebruikt kunnen
worden om ze te voorkomen.

Injection

Injection kwetsbaarheden zijn volgens de OWASP Top 10 de grootste risicofac-
tor voor web applicaties. SQL injection doet zich voor wanneer een kwaadwillige
gebruiker in staat is om een SQL query zo te manipuleren dat ze niet langer de
bedoelde functionaliteit uitoefent [44]. Een voorbeeld van een succesvolle SQL
injection aanval zou bijvoorbeeld kunnen zijn wanneer men in staat is om een
SELECT query zo aan te passen dat de wachtwoorden van iedere gebruiker wor-
den opgehaald in plaats van de zoekresultaten van een bepaalde zoekopdracht.
Dit is mogelijk indien de query op een onveilige manier wordt opgebouwd. Als
de query afhankelijk is van een of meerdere parameters die ingevuld worden door
een gebruiker, kan ze eventueel vatbaar zijn voor een SQL injection aanval. De
onbetrouwbare input van de gebruiker moet ofwel op voorhand gevalideerd en
opgeschoond worden voor dat ze gebruikt wordt in de query, ofwel moet er ge-
bruik gemaakt worden van zogenaamde Prepared Statement. In beide gevallen
wordt ervoor gezorgd dat SQL injection aanvallen gemitigeerd worden.

Broken Authentication and Session Management

Dit veiligheidsrisico houdt in dat een kwaadwillige gebruiker in staat zou kun-
nen zijn om de account van een andere gebruiker over te nemen doordat er
gebrekkige sessiebeheer- en authenticatiemechanismen aanwezig zijn. Sessies
zorgen ervoor dat gebruikers zich kunnen authenticeren en dat hun handelingen
bewaard kunnen blijven gedurende een bepaalde periode [3] (bijvoorbeeld het
toevoegen van producten aan een winkelwagen in een online webwinkel). Indien
de aanvaller erin slaagt om de account van iemand anders over te nemen is hij in
staat om alles te doen wat de gebruiker zelf zou kunnen doen. Als bijvoorbeeld
de sessie van een bevoorrechte account gestolen wordt, kan de aanvaller gebruik
maken van administratieve functionaliteit.

De twee volgende voorbeelden van aanvallen die gerelateerd zijn aan sessiebe-
heer stellen een aanvaller in staat om de sessie van een gebruiker over te nemen.
Deze aanvallen zijn ook sterk gerelateerd aan het volgende veiligheidsrisico uit
de OWASP Top 10: Cross-Site Scripting.

e Session hijacking — Bij dit type van aanval kan een aanvaller de sessie
van een gebruiker overnemen door zijn sessie ID te stelen. Door deze

gestolen sessie informatie mee te sturen met ieder verzoek naar de web-
server zal de webserver denken dat de verzoeken van de aanvaller afkomstig
zijn van het slachtoffer.

e Session fixation — Bij dit type van aanval hoeft de aanvaller de sessie
informatie van het slachtoffer niet te weten te komen. In plaats daarvan
probeert hij ervoor te zorgen dat het slachtoffer sessie informatie gebruikt
afkomstig van de aanvaller. Als het slachtoffer inlogt gebruikmakend van
deze sessie informatie kan de aanvaller verzoeken doen bij de webserver in
naam van het slachtoffer.

Cross-Site Scripting (XSS)

Veel websites bevatten scripts die uitgevoerd worden door de browser. Cross-
Site Scripting of XSS aanvallen houden in dat een aanvaller in staat is om
zijn eigen script te injecteren in een anderzijds betrouwbare websites. De code
is meestal geschreven in HTML/JavaScript, maar kan ook geschreven zijn in
VBScript, ActiveX, Java, Flash, of iedere andere technologie die door de browser
ondersteund wordt [58]. XSS veiligheidsrisico’s doen zich voor wanneer een web
applicatie onbetrouwbare gebruikersinput rechtstreeks gebruikt in de output van
de website, denk bijvoorbeeld aan het herhalen van de zoekterm bij het tonen
van de resultaten van een zoekopdracht. De browser heeft geen idee dat het
script dat geinjecteerd wordt niet betrouwbaar is en voert het dus gewoon uit.
Omdat het script vanuit de webpagina zelf wordt uitgevoerd, heeft het toegang
tot cookies, sessie tokens en alle andere objecten die bevat zitten in de HTML
pagina.

Er bestaan meerdere types van XSS aanvallen. De vaakst voorkomende
zijn persistente (of opgeslagen) en niet-persistente (of gereflecteerde) XSS aan-
vallen. Een persistente XSS aanval houdt in dat een aanvaller erin slaagt om zijn
kwaadaardig script in de database terecht te krijgen. De web applicatie veron-
derstelt dat dit legitieme gegevens zijn en toont deze dus gewoon aan iedereen
die deze gegevens kan en wil zien. Niet-persistente XSS aanvallen houden in
dat het kwaadaardig script niet in de database wordt opgeslagen, maar mee
terug gestuurd wordt in de respons van de webserver. Denk bijvoorbeeld aan
het vorige voorbeeld waarbij de zoekterm van een zoekopdracht wordt herhaald
bij het tonen van de resultaten. Als de aanvaller een script kan injecteren als
zoekterm, dan wordt deze in de webpagina opgenomen en uitgevoerd.

Er bestaan een aantal methodes om XSS kwetsbaarheden tegen te gaan.
Deze houden vooral in dat onbetrouwbare gegevens gefilterd moeten worden
afhankelijk van de HTML contextEI waarin ze terecht zullen komen. Het is
ook aangeraden om input te valideren aan de hand van een aantal verwachte
eigenschappen. Bijvoorbeeld de lengte van een inputveld limiteren, valideren
dat input die verwacht wordt numeriek te zijn dit inderdaad is en bij een
voorgedefinieerde selectie valideren dat de waarde die verzonden werd effectief
een van de geldige opties is.

1body, attribute, JavaScript, CSS of URL

Insecure Direct Object References

Het is goed mogelijk dat niet alle objecten van een website publiek toegankelijk
mogen zijn. Deze gegevens enkel verbergen van bezoekers die niet de juiste
autorisatie hebben is niet voldoende. Indien een bezoeker rechtstreeks toegang
probeert te krijgen tot deze objecten moet er gevalideerd worden of zij hiervoor
de juiste rechten hebben. Een aanvaller mag bijvoorbeeld niet zomaar het profiel
van een andere bezoeker kunnen aanpassen door de ID parameter in de URL aan
te passen naar die van een andere gebruiker. Er zouden sterke toegangscontrole
mechanismen aanwezig moeten zijn die de rechten van een bezoeker nagaan en
die aftoetsen of hij de resource mag bekijken.

Security Misconfiguration

Een web applicatie bestaat meestal uit een aantal samenwerkende componenten,
zeker in het geval van CMS’en die uitbreidbaar zijn met plug-ins, thema’s en
andere toegevoegde componenten. Ieder van deze componenten maakt het mo-
gelijk dat er veiligheidsrisico’s kunnen optreden in de web applicatie. Daarom is
het belangrijk dat de standaard instellingen veilig zijn, zodat het CMS meteen
veilig gebruikt kan worden. Dit houdt bijvoorbeeld in dat onnodige features au-
tomatisch uitgeschakeld zijn, er geen default accounts en paswoorden aanwezig
zijn en dat het tonen van foutrapporten automatisch uitgeschakeld is.

Sensitive Data Exposure

Gevoelige gegevens enkel afgeschermd opslaan, bijvoorbeeld in een database, is
niet voldoende. Het mag niet mogelijk zijn dat gevoelige gegevens gelezen kun-
nen worden als een kwaadwillige gebruiker op een of andere manier toegang kan
krijgen tot de database. Dit betekent dat deze geéncrypteerd moeten worden
opgeslagen. De gebruikte encryptie algoritmen moeten zelf ook veilig genoeg
zijn zodat de originele gegevens niet achterhaald kunnen worden. De veiligheid
van hash waarde die resulteert uit het encrypteren van gegevens mag niet recht-
streeks afhankelijk zijn van de originele gegevens. Bij paswoorden komt het bi-
jvoorbeeld vaak voor dat men simpele paswoorden kiest die gemakkelijk zijn om
te onthouden. Twee paswoorden die geéncrypteerd worden gebruikmakend van
hetzelfde algoritme, zullen resulteren in dezelfde hash. Dit maakt het bijvoor-
beeld mogelijk om hashes te vergelijken met waardes in een rainbow table van
hashes van typische paswoorden. Om dit te voorkomen kan er bijvoorbeeld een
willekeurige salt waarde toegevoegd worden aan de gegevens die geéncrypteerd
moeten worden. Door een salt toe te voegen is het niet langer mogelijk om de
hashes zomaar te vergelijken met de waarden in een rainbow table.

Missing Function Level Access Control

Dit veiligheidsrisico is sterk gerelateerd aan Insecure Direct Object References,
maar specifieker gericht op functionaliteit. Beide risico’s kunnen echter gemit-
igeerd worden door gebruik te maken van goede toegangscontrole mechanismen.

Zoals eerder vermeld is enkel het verbergen van functionaliteit niet voldoende.
Er moeten achterliggend in het systeem ook sterke mechanismen aanwezig zijn
die nagaan welke rechten een bepaalde gebruiker heeft en of hij de juiste rechten
heeft voor het uitvoeren van bepaalde acties.

Cross-Site Request Forgery (CSRF)

Dit type veiligheidsrisico houdt in dat een aanvaller ervoor kan zorgen dat een
gebruiker een bepaalde actie uitvoert op een betrouwbare web applicatie, zonder
dat hij hier besef van heeft [41]. Hiervoor hoeft de aanvaller de sessie informatie
van zijn slachtoffer niet te weten te komen, maar maakt hij misbruik van het
feit dat de browser deze automatisch meestuurt met ieder verzoek. De web
applicatie heeft zelf geen besef van de legitimiteit van het verzoek, dus verw-
erkt deze gewoon als enig ander verzoek. Als een aanvaller erin slaagt om een
bevoorrechte account zijn verzoeken te laten uitvoeren, kan de hele applicatie
gecompromitteerd worden. CSRF kwetsbaarheden worden meestal verholpen
door zogenaamde anti-CSRF tokens, dewelke aan de gebruiker gekoppeld zijn
en meegestuurd worden bij het uitvoeren van bepaalde kritieke functionaliteit.
Indien een verzoek geen correct token bevat, wordt het genegeerd.

Using Components with Known Vulnerabilities

Content management systemen kunnen vaak uitgebreid worden met plug-ins en
toegevoegde componenten die extra functionaliteit toevoegen. Deze toegevoegde
componenten kunnen op hun beurt allerlei veiligheidsrisico’s veroorzaken die
zich niet voordoen in de basisfunctionaliteit van het CMS. Het is dus van groot
belang dat deze toegevoegde componenten worden nagezien op beveiliging vo-
ordat ze beschikbaar worden gesteld aan het publiek. Daarnaast is het ook
belangrijk dat deze blijvend onderhouden worden door de ontwikkelaar, zodat
eventuele veiligheidsrisico’s opgelost worden. Het blijft wel aan degene die de
website onderhoudt om alle toegevoegde componenten up to date te houden
zodat de website veilig blijft.

Unvalidated Redirects and Forwards

Gebruikers worden vaak omgeleid naar andere pagina’s, bijvoorbeeld om na het
inloggen op de homepage van de website terecht te komen. Er moet voorzichtig
met deze omleidingen omgegaan worden, zeker indien de omleidingslocatie gebaseerd
is op gegevens die door de gebruiker kunnen worden aangepast (bijvoorbeeld in
een GET parameter van de URL). Er moet vooral opgepast worden indien deze
omleidingslocatie een extern domein betreft. De webpagina op deze externe
locatie zou mogelijk gegevens kunnen stelen van de gebruiker. Verder moet er
opgepast worden dat de gebruiker de juiste rechten heeft om naar de pagina
omgeleid te mogen worden. Anders zou het bijvoorbeeld mogelijk kunnen zijn
dat de toegangscontrole mechanismen omzeild kunnen worden en er rechtstreeks
toegang verstrekt kan worden tot administratieve functionaliteit.

Resultaten

Door de source code en API documentatie van ieder CMS te doorzoeken werd
duidelijk dat er voor ieder van de veiligheidsrisico’s uit de OWASP Top 10
wel een of ander mechanisme aanwezig is om deze risico’s te voorkomen. On-
danks dat WordPress, Joomla en Drupal allen op PHP gebaseerd zijn, zijn er
soms toch opmerkelijke verschillen. Joomla en Drupal gebruiken bijvoorbeeld
een Database Abstractie Laag (DBAL) zodat de CMS’en gebruikt kunnen wor-
den met meerdere types van databases. WordPress vereist daarentegen dat
een MySQL database gebruikt wordt. Als SQL injection preventietechniek ge-
bruiken WordPress en Joomla een soortgelijke aanpak door onbetrouwbare input
te valideren en op te schonen voordat ze in de query geplaatst wordt en de query
uitgevoerd wordt. Drupal maakt gebruik van prepared statements en plaatst
gewoon de ruwe data in de database. In Drupal moet deze data dus worden
opgeschoond voordat ze getoond wordt op een webpagina.

Terwijl Joomla en Drupal gebruikmaken van PHP sessies en sessie cookies,
maakt WordPress enkel gebruik van cookies. Zelfs tussen Joomla en Drupal
zijn er verschillen in de voorziene sessiebeheertechnieken aangezien Joomla ge-
bruik maakt van standaard PHP sessies en sessie ID’s, terwijl Drupal zelf sessie
ID’s genereert en deze opslaat in de sessie. Basisfunctionaliteit en toegevoegde
componenten van WordPress en Joomla up to date houden is ook aanzienlijk
gemakkelijker dan in Drupal. Drupal vereist dat de beheerder manueel alle oude
bestanden verwijdert en vervangt door de nieuwe, terwijl WordPress en Joomla
hiervoor geautomatiseerde systemen voorzien.

Om XSS tegen te gaan voorzien ze alle drie verschillende filters, gebaseerd
op de HTML context waarin de gegevens terecht zullen komen. WordPress
en Drupal gebruiken standaard white-list input validatie, terwijl Joomla ge-
bruik maakt van black-list input validatie. Verder voorzien ze ook mechanismen
waarbij de rechten van de al dan niet geregistreerde bezoekers kunnen worden
bepaald. WordPress voorziet een systeem van Roles en Capabilities, Joomla een
systeem van User Groups, Access Levels, Actions en Permissions en Drupal een
systeem van Roles en Permissions. Deze mechanismen zijn standaard vrij uit-
breidbaar en aanpasbaar in Joomla en Drupal, maar niet in WordPress. Word-
Press voorziet standaard zes gebruikersgroepen waar bepaalde gebruikers aan
gekoppeld kunnen worden. Deze mechanismen zorgen er in ieder CMS voor
dat objecten en functionaliteit niet vrij toegankelijk zijn voor iedereen, maar
toegang beperkt kan worden afhankelijk van de rol van een gebruiker binnen de
website.

Al de besproken CMS’en voorzien ook paswoord encryptiealgoritmen zo-
dat deze veilig kunnen worden bewaard in de database. WordPress en Drupal
maken gebruik van het Portable PHP Password Hashing (phpass) framework,
dat technieken bevat zoals salting en stretching. Stretching zorgt ervoor dat het
encryptiealgoritme vaker wordt uitgevoerd en dat brute force attacks bijgevolg
dus minder snel werken. Joomla gebruikt een eigen encryptiealgoritme dat ook
gebruik maakt van salting. Een opmerkelijk feit is wel dat zowel WordPress
als Joomla de minst veilige encryptiemethode kiezen van het phpass frame-
work. Deze methode maakt standaard gebruik van MD5. Drupal gebruikt een
aangepaste versie van het phpass framework en maakt gebruik van SHA-512 in

plaats van MD5 als onderliggend encryptiealgoritme.

De CMS’en voorzien ook technieken om CSRF aanvallen tegen te gaan.
Joomla en Drupal maken gebruik van anti-CSRF tokens die gekoppeld zijn aan
de sessie van de gebruiker en dus opnieuw gegenereerd worden als sessie van de
gebruiker vernieuwt wordt. WordPress maakt daarentegen gebruik van nonces,
tokens die 24u geldig blijven, zelfs als de sessie van de gebruiker verloopt.

We besluiten met het feit dat al deze CMS’en veelvuldig gebruik maken van
redirects and forwards. WordPress voorziet hiervoor meerdere functies, waarbij
de wp_safe_redirect functie gebruikt worden voor omleidingen die afhankelijk
zijn van GET parameters. Deze functie laat omleidingen naar externe webpag-
ina’s enkel toe indien ze in een lijst van toegestane domeinen voorkomen. Deze
lijst bevat standaard enkel het domein waarop de website zich bevindt. Drupal
laat standaard geen omleidingen toe naar externe domeinen indien deze locatie
verkregen werd van een GET parameter. In Joomla is dit echter wel mogelijk,
aangezien hierin de enige voorwaarde is dat de locatie in de GET parameter
geéncodeerd is gebruikmakend van Base64.

Kwestbaarheidstatistieken

Zoals vermeld in de inleiding hebben we informatie van de Common Vulnerabil-
ities and Ezposures (CVE) database gebruikt om erachter te komen welk type
kwetsbaarheden zich het vaakst voordoen en of deze zich over het algemeen
vaker voordoen in de basisfunctionaliteit dan wel in toegevoegde componenten.
Door de kwetsbaarheidsrapporten te groeperen per jaar en de omschrijvingen
te analyseren, slaagden we voor ieder CMS erin om een overzicht te krijgen van
deze factoren. Weinig opmerkelijk is het feit dat er aanzienlijk meer kwets-
baarheden ontdekt en gerapporteerd worden in toegevoegde componenten dan
in de basisfunctionaliteit.

Toegevoegde componenten worden in ieder van de CMS’en wel manueel en
automatisch nagekeken, maar er kunnen altijd kwetsbaarheden over het hoofd
gezien worden. De basisfunctionaliteit van de CMS’en doorstaat verscheidene
ontwikkelingsfases waardoor het minder waarschijnlijk is dat er hierbij veel
kwetsbaarheden achter zullen blijven in de finale release.

In WordPress zijn er een aanzienlijk aantal XSS kwetsbaarheden in zowel ba-
sisfunctionaliteit als in toegevoegde componenten. In Joomla overheersten SQL
injection kwetsbaarheden vooral in vroegere jaren. Tegenwoordig zijn kwets-
baarheidsrapporten over Joomla schaarser in de CVE, maar steken XSS kwets-
baarheden meer de kop op. Voor Drupal hebben we niet enkele gekeken naar
de gegevens in de CVE, maar ook naar Drupal’s eigen Security Advisories. Dit
zijn gegevens over kwetsbaarheden in Drupal die ze zelf publiek aankondigen.
We hebben deze statistieken erbij gehaald omdat er vrij weinig kwetsbaarhei-
dsrapporten over de basisfunctionaliteit van Drupal bevat waren in de CVE.
Een van de voornaamste bronnen van kwetsbaarheden in toegevoegde compo-
nenten van Drupal zijn XSS kwetsbaarheden. Dit zou verklaard kunnen worden
door het feit dat ruwe data rechtstreeks wordt opgeslagen in de database en
actief opgeschoond moet worden voordat deze getoond wordt op de webpag-
ina. Deze filters kunnen gemakkelijk vergeten worden door ontwikkelaars en

testers, waardoor het aantal XSS kwetsbaarheden aanzienlijk kan toenemen. In
de vroegere jaren van het bestaan van Drupal waren voornamelijk XSS kwets-
baarheden veel voorkomend in de basisfunctionaliteit. Tegenwoordig worden
vooral kwetsbaarheden opgemerkt die te maken hebben met het omzeilen van
toegangscontrole.

Conclusie

Terwijl al de besproken CMS’en verschillende mechanismen en technieken voorzien
om de veiligheidsrisico’s van de OWASP Top 10 te voorkomen, is het toch
opmerkelijk dat er kwetsbaarheden blijven gevonden worden. Sommige tech-
nieken zijn voor verbetering vatbaar, bijvoorbeeld het gebruik van nonces door
WordPress of het toestaan van omleidingen naar externe domeinen in Joomla.
Hoe dan ook is het zeer belangrijk dat de website beheerder steeds alle basis-
functionaliteit en toegevoegde componenten up to date houdt, en dat hij enkel
componenten gebruikt die betrouwbaar zijn. Voor onervaren gebruikers zijn
daarom CMS’en zoals Joomla en WordPress meer aanbevolen, aangezien deze
gebruiksvriendelijker zijn. Ze voorzien namelijk geautomatiseerde updatemech-
anismen waardoor de beheerder zich zelf geen zorgen hoeft te maken over de
werking van het updateproces.

10

Contents

[Preface] 1
[Abstract] 2
[Nederlandse samenvatting) 3
_Introduction| 17
I1.1 Problem statement and type of thesis| 18
M270OWASPl . . . o o oo 18
[1.2.1 OWASP Top 10| 18

[L.3 Common Vulnerabilities and Exposures (CVE) Database]. 19
op 1 21

2.1 Injection|.o 21
2.1.1 What 1s SQL injection|o 21

2.1.2 Dangers of SQL injection] 23

2.1.3 Preventing SQL injection| 23

2.2 Broken Authentication and Session Management| 28

2.2.1 Dangers of broken authentication and session management| 28

[2.2.2 Preventing authentication and session management flaws| 29

[2.3 Cross-Site Scripting (XSS)[. L 29
231 Typesof XSS o 30
2.3.2 Dangersof X55[. oL, 31
2.3.3 Preventing XSS5. o 0oL, 33

2.4 Insecure Direct Object Reterences| 34
2.4.1 Dangers of insecure direct object references| 34

11

12.4.2 Preventing insecure direct object references| 34

2.5 Security Misconfiguration| oL 34
[2.5.1 Dangers of security misconfiguration| 35
[2.5.2 Preventing security misconfiguration| 35

2.6 Sensitive Data Exposurel oo 35
[2.6.1 Dangers of sensitive data exposure| 36
|2.6.2 Preventing sensitive data exposure| 36

2.7 Missing Function Level Access Control| 37
2.7.1 Dangers of missing function level access control| 37
|2.7.2 Preventing missing function level access controlf 37

[2.8 Cross-Site Request Forgery (CSRF)| 37
2.8.1 Dangers of cross-site request forgery| 38
2.8.2 Preventing cross-site request forgery| 38

2.9 Using Components with Known Vulnerabilities] 39

12.9.1 Dangers of using components with known vulnerabilities| . 39

12.9.2 Preventing using components with known vulnerabilities|. 40

2.10 Unvalidated Redirects and Forwardsl 41
[2.10.1 Dangers of unvalidated redirects and forwards|. 41

[2.10.2 Preventing unvalidated redirects and forwards|. 41

RIT Conclusionl 41

[3 Content Management Systems| 45
B WordPresd. . . - o v v oo 45
8.1.1 WordPress Core Functionality|. 46

B2 Joomlal. 50
3.2.1 Joomla Core Functionality] 50

3.3 Drupall. 56
13.3.1 Drupal Core Functionality|. 57

4 s and the op 10 63
EI WordPresd. . . - o v oot 63
4.1.1 Injection|. 64

4.1.2 Authentication and session management| 66

4.1.3 Cross-site scripting| L., 69

[4.1.4 Direct object references] 70

4.1.5 Security misconfiguration| 71
4.1.6 Sensitive data exposure| 72
4.1.7 Function level access controll 72
4.1.8 Cross-site request forgery| 73
4.1.9 Components with known vulnerabilities] 74
4.1.10 Redirects and forwards. 75
H2 Joomlal.o 76
4.2.1 Injection|.o 76
4.2.2 Authentication and session management| 78
4.2.3 Cross-site scripting|o 78
4.2.4 Direct object references] 81
4.2.5 Security misconfiguration| L. 82
4.2.6 Sensitive data exposure] 84
4.2.7 Function level access controll 84
4.2.8 Cross-site request forgery| 85
4.2.9 Components with known vulnerabilities] 86
4.2.10 Redirects and forwardsl. 87
Drupal| oL 89
4.3.1 Injection|. 89
4.3.2 Authentication and session management| 91
4.3.3 Cross-site scripting| oL 92
4.3.4 Direct object references| 94
4.3.5 Security misconfiguration| oL 94
4.3.6 Sensitive data exposure] L. 96
4.3.7 Function level access controll 97
4.3.8 Cross-site request forgery| 98
4.3.9 Components with known vulnerabilities| 98
4.3.10 Redirects and forwardsl. 100
4 Conclusionl 101

13

[F Comparing Content Management Systems|

[6 _Conclusionl

|A Portable PHP Password Hashing Framework|

IA.1 Validating passwords|

14

103
103
111
112
119

121

123

List of Figures

8.1 WordPress 3.4 user registration form| 47
3.2 Joomla user registration form|o 51
3.3 The hierarchy of Joomla User Groups| 54
[3.4 An overview of Joomla extensions [27]| 56
3.5 Drupal 7.x user registration form| 58
3.6 Granting Permissions to certain Roles in Drupal 7.x| 61
4.1 WordPress update indicator for the Akismet plug-in| 71
4.2 WordPress update indicator for the Twenty Eleven theme| 72
4.3 Joomla Extension Manager| 86
4.4 Drupal Warning System for important issues| 96
[5.1 WordPress Vulnerabilities Types and Core/Extension Ratio (CVE)[113
[5.2 WordPress Core Releases [71lf 114
[5.3 Joomla Vulnerabilities Types and Core/Extension Ratio (CVE)|. 115
0.4 Joomla Core Releases 116
[5.5 Drupal Vulnerabilities Types and Core/Extension Ratio (CVE)| . 117
5.6 Drupal Core Security Advisories| 118
5.7 Drupal Core Releases|. 119

15

List of Tables

[2.1 mysqli_real escape_string() characters? 26
4. WordPress’s Data Validation Filterd®| 70
[4.2 Secure Conversions from One Text Type to Another*|. 93

.1 Comparing content management systems based on the OWASP |
| Top 10 (Part 1) 107

b.2 Comparing content management systems based on the OWASP |
| Top 10 (Part 2)[. 108

.3 Comparing content management systems based on the OWASP |
| Top 10 (Part 3) 109

5.4 Comparing content management systems based on the OWASP |
| Top 10 (Part 4)[. 110

5.5 Comparing content management systems based on the OWASP |
| Top 10 (Part b) 111

16

Chapter 1

Introduction

The world is becoming more and more interconnected every day through the use
of the internet. Many people want their own website to promote their products
or share their ideas, but not everyone wants or needs to know exactly how to
build a secure website from scratch. Open source web content management
systems enable anyone to build and maintain their own website, even without
having any programming knowledge. Content management systems provide a
basic framework for users to build upon, and are usually highly customisable
to fit the user’s needs. Default functionality can be extended by plug-ins, and
other added components like themes and templates can be installed to give the
website a totally different look and feel. These frameworks are expected to be
well secured against common security risks, but as we shall see in Chapter[f] this
isn’t necessarily the case. New exploits in CMS core functionality are reported
frequently and even more so for vulnerabilities found in added components. One
of the major issues of using the same web content management systems is that
a large number of websites will be vulnerable to the same security exploit if one
is discovered.

In a study by W3Techs about the usage statistics of web content manage-
ment systems [57], WordPress, Joomla and Drupal came out on top as the three
most used web content management systems available today. This is why we
will analyse the security for these CMSs based on a set of objective criteria. In
the next subsection, we will provide an introduction to The Open Web Appli-
cation Security Project (OWASP), an organisation that focusses on improving
the security of software. OWASP provides the OWASP Top 10 project, which
is a list of the ten most critical web application security risks. We provide a
more in depth overview of the security risks on the list in Chapter [2} together
with common best practices and mitigation techniques. This overview will help
us assess the security of the content management systems’ core functionality.

Lastly in this introductory chapter, we will take a look at the Common
Vulnerabilities and Exposures Database [36], which contains a large number of
real-world security vulnerabilities reports. We have scraped and analysed the
information concerning the web content management systems we will describe
in Chapter |3] from this database. The results of this analysis can be found in

17

Chapter [5] in which we will compare the content management systems to each
other based on the criteria set forth in Chapter 2| A final conclusion will be
provided in Chapter [6]

1.1 Problem statement and type of thesis

This thesis tries to answer the question "How safe are open source web content
management systems”. We hope to answer this question by providing a compar-
ative study between the three most used open source web content management
systems. By basing our research on the OWASP Top 10, vulnerability reports,
and core release statistics, we have provided a solid set of objective criteria to
form the basis of this comparative study.

1.2 OWASP

The Open Web Application Security Project (OWASP) is an organization that
focusses on improving the security of software. They provide information so
that individuals and organizations can make informed decisions about soft-
ware risks. OWASP is a free and open community of security experts sharing
their knowledge of the software security domain, dedicated to enabling organi-
zations to conceive, develop, acquire, operate, and maintain applications that
can be trusted [37]. OWASP supports many initiatives, including the WebGoat
projectEI; a deliberately insecure web application to teach web application secu-
rity lessons, the Zed Attack Proxy Projecﬂ an integrated penetration testing
tool for finding vulnerabilities in web applications, and the OWASP Top 10; an
awareness document listing the 10 most critical web application ﬂawdﬂ. The
OWASP Top 10 will be used as a basis of comparison for the different web con-
tent management systems that will be discussed. In the next subsection, we will
provide more information about the OWASP Top 10, why it exists and why we
will use it as a basis of comparison.

1.2.1 OWASP Top 10

The OWASP Top 10 is a list of the ten most critical web application security
risks. The most recent version of the OWASP Top 10 was released in June of
2013. The current release is based on 8 datasets from 7 firms that specialize
in application security [I]. This data spans over 500000 vulnerabilities across
hundreds of organisations and thousands of applications. The items in the
Top 10 are selected and prioritized according to this prevalence data, in com-
bination with consensus estimates of exploitability, detectability, and impact
estimates [I]. The Top 10 provides techniques and best practices to protect
against high risk problem areas. The primary aim of the OWASP Top 10 is to

1h‘ctps ://www.owasp.org/index.php/Category: OWASP_WebGoat_Project
2https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
Shttps://www.owasp.org/index.php/Category: OWASP_Top_Ten_Project

18

https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

educate people about the consequences of the most important web application
security weaknesses.

Each new release contains release notes, describing which changes were made
compared to the previous version, and why the change was made. Usually these
changes are limited to reordering certain items on the list, and broadening cer-
tain other areas to include more use cases. For instance, Cross-Site Request
Forgery (CSRF) attacks moved down in prevalence based on the datasets used
for the previous release of the OWASP Top 10, which was released in 2010. It is
believed that this is because CSRF has been in the OWASP Top 10 for 6 years,
causing organisations and framework developers to have focussed on it signif-
icantly, reducing the number of CSRF vulnerabilities in web applications [I].
The current Top 10 consists of the following security risks:

1. Injection
2. Broken Authentication and Session Management

Cross-Site Scripting (XSS)

> W

Insecure Direct Object References

o

Security Misconfiguration
Sensitive Data Exposure
Missing Function Level Access Control

Cross-Site Request Forgery (CSRF)

© »®» x>

Using Components with Known Vulnerabilities

10. Unvalidated Redirects and Forwards

In Chapter |2, we will go into more detail about each of these security risks,
providing a definition, the dangers, and ways to mitigate each risk. We will use
this as a basis of comparison in Chapter [and find out which techniques and
best practices are upheld by each of the content management systems described
in the chapter.

1.3 Common Vulnerabilities and Exposures (CVE)
Database

The Common Vulnerabilities and Exposures (CVE) Database is a dictionary
of publicly known information security vulnerabilities and exposures [36]. It
contains examples of real-world security issues detected in all sorts of software,
including web applications. We chose this database because other vulnerability
databases, such as the Exploit Databaseﬂ often refer to the CVE, and it was
the largest repository of vulnerability reports for each CMS. We have used this

4nttp://www.exploit-db.com/

19

http://www.exploit-db.com/

database to obtain an overview of which and how many security issues are de-
tected and reported in the open source content management systems described
in Chapter[3] These vulnerability reports encompass both core and added com-
ponents.

Vulnerabilities in the CVE have a certain identifier which contains the year
in which the exploit was reported. This allowed us to group the vulnerability
reports by year and get a decent overview of the yearly number of reported
vulnerabilities. By analysing the vulnerability descriptions, we were able to
identify which types of vulnerabilities were reported, and if the vulnerability
concerned functionality in CMS core or added components. The results of this
analysis can be found in Chapter

20

Chapter 2

OWASP Top 10

In the introductory chapter, we gave more information about the OWASP Top
10 project. In this chapter, we will take a look at each item in the Top 10
and provide more information about each of them. This section combines the
OWASP Top 10 with the dangers of each flaw and a collection of mitigation and
prevention techniques. This information will be necessary in Chapter [when
we analyse the security of each of the CMSs based on these techniques and best
practices.

2.1 Injection

Injection attacks are first on the list of the OWASP Top 10. This is due to
the fact that injection vulnerabilities are quite trivial to exploit [2I]. Injection
attacks aren’t limited to attacks on databases; everything with a command in-
terface that combines data into a command is susceptible [44]. This includes
SQL, LDAP, Operating System, XPath, XQuery, Expression Language, and
many more. Cross-site scripting attacks, which will be explained in Section [2.3
are also a form of injection. In this section, however, we will focus primar-
ily on injection attacks targeted at databases. Successful attacks are possible
even when one only has basic knowledge of the database query language (e.g.
SQL). Not only web applications are vulnerable to this type of injection. For
instance, SQL injection can also occur in desktop applications that use SQL
server backends [21].

2.1.1 What is SQL injection

An SQL injection attack occurs when a malicious user is able to trick the
database into executing malicious queries by inserting, or injecting, SQL into
the application, whether directly in the input fields of the application, or by
tampering with cookie data. A successful exploit can expose sensitive data
from the database, modify database data or give the malicious user access to
administration operations on the database [46].

21

S TR W N =

U W N

An application is vulnerable to SQL injection when unsanitized user in-
put data is put directly into a database query and then fed to the database.
Example demonstrates an unsafe database query in PHP.

$username = $_GET[’username’|;
$original _query =
"SELECT % FROM users WHERE username = ’$username ’;”

3

Example 2.1: Unsanitized input data, put directly into an SQL query

In this example, the HTTP request’s GET parameter is put directly into the
query. This query works well as long as everyone uses the application as in-
tended, but imagine the scenario where someone inputs the following code into
the application’s username field: > or ’1’=’1. Notice that the input string
starts with a single quote but ends without one. This is to align the number of
quotes with the ones that are already there in the original query. Lines 5 and 6
of Example show how the original query gets altered by the malicious user’s
input.

$username = $_GET[’username’|;
$original _query =

"SELECT % FROM users WHERE username = ’$username ’;”
$altered_query =

"SELECT % FROM users WHERE username = '’ or '1’="1";”

Example 2.2: SQL SELECT query gets altered by user input

By inputting > or ’1’=’1, the query gets altered in such a way that the SQL
query is still valid, but the result of the query gives the malicious user access to
user details he is not allowed to see. This query will now return every row from
the users table where the username matches with an empty string, or where the
following statement is true: ’1’=’1’. Because this statement is always true, all
rows will be returned by the database and the malicious user is able to access
all of this information.

Not only SELECT queries are susceptible to SQL injection. The same prob-
lem applies to INSERT or UPDATE queries, where one can adjust data in the
database for their own benefit. For instance, one could change another user’s
password or give themselves admin privileges through SQL injection. Imagine
the case where a malicious user tries to update their profile and sets the string
Jeff’, admin=’1 as their username. Lines 5 and 6 of Example show how
the original query gets altered by the malicious user’s input.

$username = $_GET[username’];
$original _query =

"UPDATE users SET name=’$username’ WHERE ...;”
$altered_query =

22

6

"UPDATE users SET name=’Jeff’, admin='1" WHERE ...;”

Example 2.3: SQL UPDATE query gets altered by user input

2.1.2 Dangers of SQL injection

It’s obvious that leaving a website vulnerable to SQL injection can be a serious
problem. If an attacker is able to exploit an SQL injection flaw, he could
potentially steal valuable information or deface the entire web application.

For instance, if users’ passwords are stored in plain text or stored using
a weak hashing algorithm, an attacker could potentially steal all passwords
through an SQL injection attack. This makes protecting sensitive data very
important, as will be explained in Subsection 2.6] As people often use the same
password for different accounts, an attacker could use the stolen passwords to
log into the victims’ e-mail or other accounts. Stealing other valuable informa-
tion, such as credit card information or social security numbers, are just a few
examples of potentially disastrous results of leaving a web application vulnerable
to SQL injection.

2.1.3 Preventing SQL injection

There are multiple ways SQL injection can be prevented. Most of these tech-
niques require very little effort and take little to no time to implement. In this
subsection, we will list a number of SQL injection prevention methods, which
we can refer to when we investigate which — if any — of these prevention tech-
niques are used by the developers of the content management systems that are
discussed in Chapter [3] This list of techniques is based on the OWASP SQL
Injection Prevention Cheat Sheet [47)

Prepared statements

Prepared statements enable a developer to first define all SQL code, and pass
in each parameter to the query later. Besides the fact that using prepared
statements is safer than using static queries, they are also faster and more
efficient. This is due to the fact that prepared statements need only be parsed
(or prepared) once, but can be executed any number of times [19]. Executing a
static query requires the database to analyze, compile and optimize the query
each time the query is called. For complex queries this process can take up
large amounts of time and can noticeably slow down an application. Prepared
statements use less resources because they only go through this process once [19].

Using prepared statements enables the database to distinguish between code
and data, regardless of user input. Any user-supplied input is treated as input
data only and thus will never be able to alter the query. Example 2:4] shows a
comparison of a typical static query and equivalent prepared statements. If an
application only uses prepared statements, one can be reasonably sure that no
SQL injection will occur.

23

© 00 J O Ut B W N

e e e e
N O Ut W N = O

//http://example.com/users.php ?name=dave ’ or ’'1’="1
$name = $_GET['name’ |;

//Static query for selecting a user from the wusers table
$static_query =
?SELECT % FROM users WHERE name = ’$name’” ;

//Prepared statement wusing ¢
$stmt =

$dbh—>prepare (”SELECT % FROM users WHERE name = ?7);
$stmt—>execute (array ($name)) ;

//Named prepared statement
$stmt =
$dbh—>prepare ("SELECT x FROM users WHERE name = :n”);
$stmt—>bindParam (’:n’, $name);
$stmt—>execute () ;

Example 2.4: Selecting a user from the users table (static query + prepared
statement)

In this example, the static query on line 5 gets altered as shown in Example [2.2]
because it uses the unsanitized user input directly. The prepared statement
treats the entire string as user input and queries the database for a user whose
name literally matches the string dave’ or ‘1°=’1 and thus is not susceptible
to SQL injection. In the last prepared statement (starting on line 14), a named
placeholder is used instead of the positional ? placeholder. Both prepared
statements are equally valid and secure, but the one using named placeholders is
more readable and easier to debug. When using question mark placeholders, care
must be taken that the order in which the parameters are passed to the prepared
statement is the same as the order of the question marks in the query [19].

Stored procedures

Stored procedures are comparable to prepared statements and have the same
effect when implemented safely [47]. Just like prepared statements, they also
require the separation of code and data. The developer defines the code first and
passes in the parameters later. The main difference between stored procedures
and prepared statements is where they reside in the application. The SQL code
for stored procedures is defined and stored in the database itself and called
from the application [20], whereas prepared statements have to be passed to
the database and prepared at least once every time they are needed. Stored
procedures are equally adept at preventing SQL injection as their prepared
statements counterparts, so it is up to the developer which approach they will
use [47].

1|CREATE PROCEDURE p (IN id_val INT)
2| BEGIN

24

3|INSERT INTO test (id) VALUES(id_val);
4|END;

5

6/CALL p(1);

o =

© 00 J O Ut B~ W

10

Example 2.5: Creating and executing a stored procedure in SQL

This example creates a stored procedure on a MySQL database. The pro-
cedure is named p and takes one argument id_val of type integer. The body of
the stored procedure is defined between the BEGIN and END keywords. In this
case the body of the procedure causes the value of the id_val argument to be
inserted into a table named test.

Care must be taken when creating stored procedures, because they can still
be made to be insecure. Example [2.6] shows how a stored procedure is used in
an insecure way.

DELIMITER //

CREATE PROCEDURE QueryAnyTable (IN table_.name VARCHAR
(100))

BEGIN

SET Qquery = CONCAT(’SELECT x FROM ’, table_name);

PREPARE stmt FROM Qquery ;

EXECUTE stmt ;

END; / /

DELIMITER ;

CALL QueryAnyTable(’ (SELECT % FROM...) ")

Example 2.6: Insecure use of stored procedure]]

In the example above, a stored procedure is created that concatenates the value
of the table name variable to a SELECT statement. Seeing as any value could be
entered, including another SELECT statement, this stored procedure is vulnerable
to SQL injection.

Escaping all user-supplied input

This SQL injection prevention technique relies on actively sanitizing input data
before putting it in a query. User-supplied input data is escaped using the
DBMS’s character escaping scheme. If done correctly, the sanitized input data
will no longer be a threat, thus avoiding SQL injection vulnerabilities. Care
must be taken when using this technique, however, because it is easy to forget
escaping user input, making your application vulnerable to SQL injection.

ISources: http://thedailywtf.com/Articles/For-the-Ease-of-Maintenance.aspx and
http://www.slideshare.net/billkarwin/sql-injection-myths-and-fallacies, slide 31

25

http://thedailywtf.com/Articles/For-the-Ease-of-Maintenance.aspx
http://www.slideshare.net/billkarwin/sql-injection-myths-and-fallacies

N O U Rk W N =

Name Unsafe char | Hex | Escaped char
Null NUL 0x00 \O
Line feed LF 0x0A \n
Carriage return CR 0x0D \r
Backslash \ 0x5¢ \\
Single quote ’ 0x27 \’
Double quote " 0x22 \"
Control-Z SUB 0x1A \Z

Table 2.1: mysqli_real_escape_string() charactersﬂ

The following code example, Example shows how to perform string
escaping in PHP for a MySQL database server. The first line of this code sample
sanitizes the user input data supplied in the name parameter by replacing all
instances of the unsafe characters displayed in Table by their respective
escaped versions. Under certain circumstances, the sanitized input data can
now be used directly in the query, without fear of SQL injection. As we shall
see in Example however, using this method isn’t always safe.

$name = mysqli_real_escape_string ($.GET ['name’]) ;

$query = ”?SELECT * FROM users WHERE name = ’$name’”;

Example 2.7: Escaping a MySQL query in PHP

Escaping user input does not always prevent SQL injection. This issue is shown
in Example 2.8

//http ://www. example.com/users.php?id=1 or 1=1
$id = $.GET[’id’]; //1 or 1=1
$id = mysqli_real_escape_string ($id);

$query = ”"SELECT % FROM users WHERE id = $id”;

Example 2.8: Even though the user input data is escaped, this query is still
vulnerable to SQL injection

In the example above, a malicious user is able to provide the following id to
the script: 1 or 1=1. Because the user input is assumed to be of type integer,
its value is not put between quotes. Despite the input data being escaped, this
query is still prone to SQL injection.

2Source: http://php.net/manual/en/mysqli.real-escape-string.php

26

http://php.net/manual/en/mysqli.real-escape-string.php

Least privilege

One can try to minimize the impact of a successful SQL injection attack by lim-
iting the privileges assigned to the database accounts used in the DBMS. Giving
everyone all privileges is easy, but it is very dangerous and should be avoided
as much as possible [47]. Limiting database user privileges is not something a
CMS can enforce in itself, but we will go over the minimal required privileges for
each framework and compare them with what their installation guides suggest
in Chapter [

White list input validation

The act of white list input validation is a great way to limit the input a user
(or attacker) can insert into the application. By using input validation, an at-
tack can be prevented at the earliest possible stage, because unauthorized input
can be detected before it is processed by the application [40]. White list in-
put validation involves tightly defining which input is allowed and authorized.
By definition, all other input is not authorized. When the type of input data
expected is well structured data, like dates or e-mail addresses, a developer
could easily define strong validation patterns, usually based on regular expres-
sions [40], for validating such input. Examples of such regular expressions can
be found in Example If the expected input data is less well structured,
defining validation patterns can be harder, but not impossible. For instance,
when the input field to validate is a free text field, like a place comment text
field, one can include only printable characters or define a maximum size for
the input field. Another example might be checking if the input data received
from a choice-based input field (e.g. a drop-down list generated with the HTML
<select> tags) is actually one of the provided options and did not get altered
in any way.

Validating Data from Free Form Text Field for Zip Code
(5 digits plus optional —4):

\d{5}(-\d{4})?$

Validating a Free Form Text Field
for allowed chars (numbers, letters, whitespace, .—_):
"la—2zA-Z0-9\s._—]+$ (Any number of characters)
"[a—2A—-Z0-9\s._—]{1-100}$ (Limited to 1 to 100
characters)

Example 2.9: White list validation regex examplesﬂ

Another technique one could use to try and validate user supplied input could
be using black list validation. Instead of validating user input against allowed
strings and patterns, input is checked against a list of disallowed strings and
patterns. The problem with black list validation, however, is that it is impossible
to account for all different ways of writing a string and all various encoding

3Source: [https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet

27

https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet

methods. It is much more likely for a malicious user to find some way to
circumvent the black-listed input validation than it is for him to circumvent
white list input validation [18]. For instance, even if the string > or ’1’=’1 had
been black-listed, one could easily bypass the black list validation by writing °
OR ’1°=’1,’ oR ’1’= ’1 or any other permutation of capitalisation or spacing.

2.2 Broken Authentication and Session Manage-
ment

Second on the OWASP Top 10 list is Broken Authentication and Session Man-
agement [I]. Tt talks about the possibility that a malicious user might be able to
steal accounts from others or disguise their own actions through malfunctioning
or badly established session management and authentication mechanisms. If
these systems are flawed, a malicious user might be able to take advantage of
these leaks or flaws to impersonate other users. Such flaws may allow some or
even all accounts to be attacked. If an attacker is able to exploit a leak or flaw
successfully, the attacker can do anything the victim could do. It is for this
reason that privileged accounts are targeted frequently [IJ.

2.2.1 Dangers of broken authentication and session man-
agement

We will provide some common causes for broken authentication and session
management, and the dangers associated with them:

e Weak account management functions — Weak account management
functions like account creation, change or recover password and weak ses-
sion IDs might make it possible for a malicious user to guess or overwrite
other users’ credentials.

e URL rewriting — URL rewriting can be used as a session management
technique. The web server appends the session ID as a GET parameter to
every link on the web page that points to another page on the website. If
a user clicks on a link containing such a URL, the session ID will be sent
along with the request in the GET parameter, enabling the web server to
determine who made the request. However, if someone were to share the
URL of a web page with their session ID embedded in the URL, anyone
clicking on the link would be identified as the user who shared the web
page. Anyone who clicked on the link would be able to change the user’s
credentials. If the web page were to belong to an online web shop, anyone
would be able to use the unsuspecting user’s credit card to make purchases.

e Session ID timeout — If an application’s timeouts aren’t set properly
and a user forgets to log out before leaving the web page, anyone using
the computer after them will find themselves logged in as the first user.

28

e Credentials stored as plain text — If the web application doesn’t en-
crypt or hash their users’ login data and an attacker is able to gain access
to the system’s database, all passwords will be exposed to the attacker.

The following two examples of session attacks are very dangerous and enable
attackers to completely take over a victim’s session. As these attacks are also
strongly related to XSS attacks, we will provide more details about these attacks
in Subsection For now, we will provide a brief summary of each attack:

e Session hijacking — An attacker tries to take control over a victim’s
session by stealing their session ID. He then uses this session ID to make
the server think he is the victim. In Subsection 2.3 we will explain how
an attacker can hijack his victim’s session using XSS.

e Session fixation — In contrast to session hijacking, the attacker forces
the victim to use a session ID that is known to him in advance. The goal
of both attack vectors is the same: to take control over a victim’s session.
In Subsection we will explain how an attacker can force his victim to
use a certain session ID using XSS.

2.2.2 Preventing authentication and session management
flaws

In order to prevent authentication and session management flaws, OWASP sug-
gests meeting all the authentication and session management requirements de-
fined in their Application Security Verification Standard (ASVS) and to have
a simple authentication template for developers to build upodﬂ The ASVS
provides a basis for testing application security controls and provides a list of
requirements and best practices to protect against vulnerabilities [38].

Strong efforts must be made to prevent cross-site scripting (XSS) flaws.
These attacks are used frequently to steal users’ session information. Cross-site
scripting attacks are third on the OWASP Top 10 list, and will be explained in
the next section. Session hijacking and session fixation attacks are related to
authentication and session management. XSS can be used as an attack vector
for these attacks, as we will explain in Section |2.3

2.3 Cross-Site Scripting (XSS)

Cross-Site Scripting (or XSS) attacks are a type of injection attack, wherein
an attacker is able to inject malicious scripts into an otherwise benign website,
generally in the form of a browser side script [39, [3]. The code is usually written
in HTML/JavaScript, but could also be written in VBScript, ActiveX, Java,
Flash, or any other browser-supported technology [58]. XSS vulnerabilities can

4The OWASP Top 10 document suggests using the ESAPI Authenticator and User APIs
templates as a basis: http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/
org/owasp/esapi/Authenticator.html

29

http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Authenticator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Authenticator.html

occur when a web application uses user input in its output without validating or
encoding the input first. An attacker abuses this vulnerability to inject his own
malicious script. The browser has no way of knowing that the script should not
be trusted, and will execute it. Because the script is executed from within the
trusted web page, it can access cookies and session tokens and can even rewrite
the content of the HTML page [39]. The code basically has the ability to read,
modify and transmit any sensitive data accessible by the browser [5§].

2.3.1 Types of XSS

There are 2 main types of XSS attacks: persistent (or stored) and non-persistent
(or reflected). There is a third, less well known type (DOM based XSS) which
we will not discuss, but which is mentioned for completeness. In this subsection,
we will provide a little more detail about each of these types of XSS attacks and
give some examples.

Persistent XSS (stored XSS)

In a persistent XSS attack, an attacker is able to inject his script by abusing a
web application’s ability for users to provide their own content (e.g. message
boards or a comment field). This allows the attacker to store his script on the
web server persistently, causing the server to send the malicious script to users
viewing the content that contains the malicious script.

The full attack scenario is as follows:

1. The attacker sends a message containing the malicious script to the web
server, which stores it in its database.

2. An unsuspecting user visits a page containing the message submitted by
the attacker.

3. The server responds to the user’s request and returns the web page con-
taining the malicious script.

4. The user’s browser sees the script code and executes it.

Non-persistent XSS (reflected XSS)

A non-persistent XSS attack, or reflected XSS attack, occurs when an attacker
is able to exploit a vulnerability in the way a web page handles requests. The
script code is not stored on the web server but rather reflected back to the
client’s browser as part of the server’s response. For clarity, we will provide
the following example: imagine a website that provides search functionality,
for instance at http://www. example. com/ search. php? q=query. When a
search query is entered, the search results page usually shows something along
the lines of ” Your search for ’query’ resulted in the following matches”. The
unsafe script that generated this output is shown in Example

30

http://www.example.com/search.php?q=query

—_

w

$query = $.GET["q” |;

echo "<p>Your search for 7 $query 7’ resulted in the

following matches.</p>";

Example 2.10: PHP script for search results web page

As shown in Example the user-provided search term is not handled cor-
rectly, resulting in an attacker’s ability to exploit this vulnerability. For in-
stance, if one were to enter script code instead of a regular search query, the
code would be contained in the resulting web page, and subsequently executed
by the browser. An attacker could abuse this vulnerability by crafting a URL
containing the malicious script and sending it to the victim. Having script
code in the URL might arouse suspicion with the victim, so it’s likely that the
attacker will URL encode the script [58].

Without URL Encoding:
www . example.com/search.php?g=<script>alert(’XSS’) ;</script>

With URL Encoding:

www . example . com/search.php?q=%3C%73%63%72%69%70%74%,3E/,61%
6CHE65%72%74%28%27%58%53%53%27 %29%3B%3Ch2F /s 73%63%72%69%70%
74%3E

As demonstrated, the URL encoded script code, appended to the URL looks a
lot less suspicious. When the victim visits the link, the malicious script will get
reflected back from the server and will be contained in the server’s response.
The victim’s browser will see the code and execute it.

The full attack scenario is as follows:
1. The attacker crafts a URL containing a malicious script and sends it to
the victim, trying to trick them into opening it.
2. The victim opens the link and his browser makes a request to the server.

3. The server responds with the requested page and reflects back the mali-
cious script code.

4. The user’s browser sees the script code and executes it.

2.3.2 Dangers of XSS

Because XSS attacks allow an attacker to get their malicious code executed
from within a trusted domain, the script can access sensitive information within
that domain. This gives the attacker the ability to read information from a
trusted domain and send it to his own web server, where he can access and
abuse this information [35]. In this subsection, we will briefly go over a few of
the most dangerous consequences of XSS vulnerabilities. Two of these issues —

31

www.example.com/search.php?q=<script>alert('XSS');</script>
www.example.com/search.php?q=%3C%73%63%72%69%70%74%3E%61%6C%65%72%74%28%27%58%53%53%27%29%3B%3C%2F%73%63%72%69%70%74%3E
www.example.com/search.php?q=%3C%73%63%72%69%70%74%3E%61%6C%65%72%74%28%27%58%53%53%27%29%3B%3C%2F%73%63%72%69%70%74%3E
www.example.com/search.php?q=%3C%73%63%72%69%70%74%3E%61%6C%65%72%74%28%27%58%53%53%27%29%3B%3C%2F%73%63%72%69%70%74%3E

session hijacking and session fixation — were briefly mentioned in Section [2.2
In this subsection, we will take a closer look at both and explain how XSS
vulnerabilities can be used as an attack vector for these attacks.

Session hijacking

In a session hijacking attack, an attacker tries to take over a victim’s session by
stealing their session ID and using it to make requests to the server. The server
thinks these requests are coming from the victim, which allows the attacker to
make changes to the victim’s account, steal sensitive information, or read their
e-mails to name a few examples. We will now explain how XSS can be used as
an attack vector for a session hijacking attack.

As mentioned previously, the injected script code is executed from within a
trusted domain. If we assume that the attacker used JavaScript, the malicious
code has access to the cookie attribute via the document.cookie command.
He can subsequently send the cookie value to himself and use it to take over
the victim’s session. If the web application doesn’t use cookies to store session
information, but rather uses URL rewriting, the attacker would still able to
steal the session information. The script also has access to any link on the web
page. Because URL rewriting is used, these links contain the session ID, which
the attacker can steal and send to himself, successfully stealing the victim’s
session [3]. A JavaScript example of stealing the victim’s cookie information
can be found in Example

var url = 7http://www.example.com/logcookie.php?cookie="
+ document. cookie ;

var xmlHttp = new XMLHttpRequest () ;

3| xmlHttp.open(”"GET”, url, false);

xmlHttp.send (null);

Example 2.11: JavaScript example of a session hijacking XSS attack

In this JavaScript XSS attack example, the attacker appends the value of the
cookie to the URL of a web page and makes an AJAX call to that URL.
The logcookie.php web page that is called, logs the value of the cookie GET
parameter, which the attacker can subsequently use to take over the victim’s
session.

Session fixation

As in a session hijacking attack, the session fixation attack allows the attacker
to take control over the victim’s session. In stead of capturing the victim’s
session ID, however, the attacker forces the victim to use a session ID that is
known to him in advance. The victim’s browser attaches this session ID to every
subsequent request to the server. If the victim logs in, the session ID will now
be associated with the logged in victim. The attacker can make requests using

32

the same session ID. The server will think the victim is making the requests,
enabling the attacker to impersonate the victim.

If we again assume that the attacker is using JavaScript, he can set or re-
place the session cookie with the desired value using the document.cookie or
cookie.write() function. If URL rewriting is used instead of session cookies,
the attacker could write JavaScript code to replace every session ID in every link
on the web page with his own desired value. It doesn’t matter if session man-
agement is implemented with cookies or through URL rewriting. Either way,
an attacker could easily craft a script that makes session hijacking or session
fixation attacks possible.

2.3.3 Preventing XSS

In this subsection, we will go over the most important XSS prevention tech-
niques. The most important way XSS can be prevented is by escaping all un-
trusted data based on the HTML contexiﬂ that the data will be placed into [I].
The OWASP XSS Prevention Cheat Sheet [48] provides a list of rules of how
and when to escape data in order to prevent XSS vulnerabilities:

1. Never insert untrusted data except in allowed locations.

2. HTML escape before inserting untrusted data into HTML element content
(tags such as div, p, td, etc.)

3. Attribute escape before inserting untrusted data into HTML common at-
tributes (attributes such as width, name, value, etc.)

4. JavaScript escape before inserting untrusted data into JavaScript data
values

5. CSS escape and strictly validate before inserting untrusted data into HTML
style property values

6. URL escape before inserting untrusted data into HTML URL parameter
values

7. Sanitize HTML markup with a library designed for the job
8. Prevent DOM-based XSS

It usually won’t be necessary or possible to implement all these rules as not
every use case will be applicable to all web applications. For instance, if a
certain web application never uses untrusted data in CSS elements, rule #5 will
not be applicable to that web application. For more information on these rules,
visit the OWASP XSS Prevention Cheat Sheet®]

5body, attribute, JavaScript, CSS, or URL

6The OWASP XSS Prevention Cheat Sheet can be found at https://www.owasp.org/
index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

33

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

2.4 Insecure Direct Object References

Sometimes developers wrongly assume that once a user is logged in and shown
only the resources they are allowed to access, also known as Presentation Level
Access Control, they will not be able to access resources they aren’t authorized
to see. If there are flawed resource restriction mechanisms in place, anyone could
be able to access any resources, whether they are authorized to access them or
not. Malicious users might be able to access administrative resources or view
confidential information.

2.4.1 Dangers of insecure direct object references

One example of insecure direct object references might be a certain web appli-
cation’s functionality for users to edit their profile, for instance at http://www.
example.com/profile.php?id=ID, where ID stands for their own unique ID
number. If no proper checks are in place, one would be able to change ID to
someone else’s ID and view /edit their profile in stead.

Another example of an insecure direct object reference flaw could be ex-
ploited by using browser history. Assume that a user logged in to a web appli-
cation on a public computer. After viewing some restricted resources they are
authorized to see, the user logs out. Further assume that another user uses the
computer afterwards and wants to access the same web application. When they
start typing the URL of the web application, the browser will show suggestions
based on the letters the user typed in. If some of the restricted resources are
shown as suggestions and there are flawed resource restriction mechanisms in
place, the new user will be able to access these resources directly, without proper
authorization.

2.4.2 Preventing insecure direct object references

To prevent insecure direct object references, one must verify that all object
references have appropriate defences [I]. Two techniques mentioned by the
OWASP Top 10 are:

e Per user or session indirect object references — This prevents at-
tackers from directly targeting unauthorized resources [I]. Direct object
references are mapped to a set of indirect references that are safe to use
publicly. This can be used to help protect database keys, filenames, and
other types of direct object references.

e Check access — Care must be taken to ensure that users are authorized
to access the resources they have requested.

2.5 Security Misconfiguration

A web application is usually comprised of a lot of components across the appli-
cation stack. Therefore it is important that proper security hardening should be

34

http://www.example.com/profile.php?id=ID
http://www.example.com/profile.php?id=ID

performed across the entire application stack [I]. All components, including op-
erating system, web/app server, DBMS, applications and code libraries should
be kept up to date as frequently as possible, so as to not be susceptible to known
vulnerabilities in these components. Furthermore, every unnecessary resource
should be disabled, removed, or not installed (e.g. ports, services, pages, default
accounts and passwords, privileges) [].

2.5.1 Dangers of security misconfiguration

Security misconfiguration may result in attackers gaining unauthorized access
to system data or functionality. This data could potentially be stolen or mod-
ified over time. Problems with security misconfiguration can occur across the
entire application stack, including the platform, web server, application server,
framework, and custom code [I]. Automated scanners and Google Dorks can
be used for detecting misconfigurations, use of default accounts and passwords,
unnecessary services, etc.

2.5.2 Preventing security misconfiguration

Security misconfigurations can be prevented by implementing a repeatable hard-
ening process. Patches should be deployed in a timely manner and all software
and code libraries should be updated regularly. Running scans or doing audits
can help detect or prevent misconfigurations or missing patches, and a strong
application architecture should be upheld with a good separation and security
between components [I]. All settings should be set to be as secure as possible
by default, so that someone using the system’s defaults shouldn’t worry about
leaving their website open to security risks.

2.6 Sensitive Data Exposure

Sensitive data exposure can occur when sensitive data or backups of sensitive
data are stored or transmitted unencrypted or using a weak encryption algo-
rithm. For instance, MD5 is a one way, 128-bit cryptographic hash function
that was a widely used as a means to encrypt data, such as passwords. The
hashed password would be stored in the database together with other creden-
tials. Because there is no way to decrypt an MD5 hash, when a user logged
in, the password they entered would be hashed with MD5 and compared with
the hashed value in the database. If both hashes were identical, the user had
successfully logged in. MD5 has now been proven not to be collision resistant,
which means that there are multiple input strings that share the same hash as
output [53]. This, together with the fact that most people use weak passwords
that are easy to remember, has made MD5 unsuitable for encrypting passwords
and other sensitive data. If a hacker is able to gain access to the database and
read the MD5 hashed passwords, they can compare these hashes with values in
a rainbow table of precalculated hashes to effectively figure out the user’s pass-
word. Furthermore, because MD5 is a very fast algorithm, brute force attacks
might be able to break weak passwords quickly.

35

2.6.1 Dangers of sensitive data exposure

OWASP considers this vulnerability difficult to exploit, but a successful exploit
can have severe impact on the exposed data. Typically this information includes
sensitive data such as health records, credentials, personal data, and credit card
numbers [I] and should be protected at all cost. Consider a site that doesn’t
use SSL for all authenticated pages. An attacker could then simply monitor the
network, like an open wireless network, and perform a session hijacking attack
by stealing the victim’s cookie and sending it to the vulnerable web application,
making it think that the attacker is the victim. The attacker is now able to
access all the victim’s private data on the web application.

2.6.2 Preventing sensitive data exposure

Sensitive data exposure can be prevented in a number of ways. In this section,
we will provide a list of guidelines, rules, and best practices developers should
keep in mind when writing the web application [43] 45].

e Disable autocomplete and caching on forms collecting sensitive data. For
instance, form input fields that collect credit card information should not
automatically fill in the credit card number anyone else may have typed
in before.

e It’s important that no sensitive data is stored unnecessarily. If the data
doesn’t get stored, it can’t get stolen.

e If storing data is insurmountable, it is important that only strong cryp-
tographic algorithms such as AES, RSA public key cryptography, and
SHA-256 are used. These are proven to be strong cryptographic algo-
rithms.

e Passwords should be stored hashed and salted. A salt is a fixed-length
cryptographically-strong random value that is appended to the credential
data. Salts serve two purposes:

1. Prevent encrypted data from revealing identical credentials
If two pieces of unsalted data are encrypted using the same encryption
algorithm, they will result in the same hash. This can cause an
attacker to figure out the unencrypted data.

2. Make sure the the entropy fed to the protecting function is
high enough, without relying on credential complexity
As mentioned previously, it’s not uncommon for users to use simple
passwords such as password, pass123, or passwordl, that are easily
remembered. Brute force attacks would be able to crack unsalted
passwords such as these in an instant.

e Ensure that the cryptographic protection remains secure even if access
controls fail. This rule supports the principle of defence in depth. Storage
encryption should remain secure, even if an attacker is able to gain access
to the database.

36

e Any secret key should always be protected from unauthorized access. This
includes defining a key life cycle, storing unencrypted keys away from en-
crypted data and using independent keys when multiple keys are required.

2.7 Missing Function Level Access Control

Missing function level access control flaws could potentially enable attackers to
access administrative functionality that is left unprotected, whether by miscon-
figuration (see Section or by a developer who forgot to include the proper
code checks. Hiding certain functionality from unauthorized users, also known
as Presentation Level Access Control, is not enough (as explained in Subsec-
tion . If attackers are able to find out or guess how to access these hidden,
unprotected functions, for instance by changing URL parameters, they will have
full control of these functions, without proper authorization or authentication.

2.7.1 Dangers of missing function level access control

As administrative functionality is often targeted, attackers could potentially
change security settings, install vulnerable components or open backdoors, giv-
ing them even more access to data and resources.

2.7.2 Preventing missing function level access control

Make sure that there are proper access control checks in place so that hidden
functionality is inaccessible by unauthorized people. Presentation Level Ac-
cess Control alone doesn’t actually provide any protection. The authorization
process should deny all access by default, requiring explicit grants of access to
specific roles only.

2.8 Cross-Site Request Forgery (CSRF)

Cross-site request forgery (CSRF) is an attack which forces a user to execute
actions on a trusted web application [41] for which the user is currently authen-
ticated. In contrast to session hijacking and session fixation attacks (see Sec-
tion|2.3)), an attacker doesn’t try to completely take over the victim’s session, but
instead abuses the victim’s browser’s implicit authentication to make requests
in the victim’s name [3]. This is achieved by making the victim’s browser issue
a request to a web application where the user has previously logged in. If the
targeted victim is the administrator account, this can compromise the entire
web application [41].

37

2.8.1 Dangers of cross-site request forgery

To shed light on the dangers of CSRF, we present a popular example of a possible
attack scenario of CSRF: the transfer funds functionality of a bank’s web bank-
ing service [41]. Assume that this bank’s web application supports transferring
money to another account from the following URL: http://www.example.com/
transfer.php?amount=AMOUNT&destAcc=ACCOUNTNUMBER. When an authenti-
cated user visits this page, AMOUNT will be transferred to the destination
ACCOUNTNUMBER. An attacker could construct a URL so that the victim
transfers a desired amount to the attacker’s bank account. The attacker then
needs to find a way to get the victim’s browser to issue the request. If the user is
still logged into the bank’s web application, the browser will attach the victim’s
session cookie to the request, causing the request to validate at the server and
the funds to be transferred to the attacker’s account.

Forcing the browser to make requests in the victim’s name can happen in a
number of ways. All the attacker has to do is find a way to make the victim’s
browser issue a request to the desired URL, for instance by setting the desired
URL as the src attribute of an img tag. When the victim visits a page with
the img tab embedded, their browser will issue a request to the URL in the src
attribute, thinking it’s loading the image. This method only works when trying
to issue a request to a web application that works with GET parameters.

If the web application uses POST parameters, the attacker can create an
HTML form containing the desired elements and values as POST parameters.
The attacker then has to either trick the victim into submitting the form, or
use JavaScript to submit the form automatically.

Another way the attacker can get the victim’s browser to issue a request
to the URL is by performing an XSS attack, using the XMLHttpRequest ob-
ject. The GET parameter variant of this attack is comparable to the session
hijacking attack code example, Example This example can be altered to
accommodate for POST parameters.

2.8.2 Preventing cross-site request forgery

A common method for preventing CSRF attacks is to include a unique token
to be sent in the body of the HT'TP request. These unique challenge tokens
are associated with the user’s current session and are inserted within HTML
forms and links associated with sensitive server-side operations. It is then the
responsibility of the server application to verify the existence and correctness of
the token. Using challenge tokens helps mitigate CSRF attacks, as these tokens
are generated randomly and successful exploitation assumes the attacker knows
the randomly generated token for the victim’s session. The challenge token
needs only be generated once per session and is utilized until the session expires.
Example shows an HTML POST form with a hidden field containing the
value of the challenge token.

1‘<f0rm action="/transfer .do” method="post”>

38

http://www.example.com/transfer.php?amount=AMOUNT&destAcc=ACCOUNTNUMBER
http://www.example.com/transfer.php?amount=AMOUNT&destAcc=ACCOUNTNUMBER

2| <input type="hidden” name="CSRFToken”

3| value="OWY4ANmMQwODEAODRIN2Q2NTIhMmZIYWEwYzU . . . 7>
4 e

5| < /form>

Example 2.12: HTML form containing a hidden input field with a unique,
random CSRF challenge tokerff]

If the form above were to be submitted, the value of the challenge token would
automatically be contained in the request sent to the server. If the challenge
token is wrong or absent from the request, it should be aborted, the token reset
and the event logged as a potential CSRF attack [41].

2.9 Using Components with Known Vulnerabil-
ities

Using vulnerable components is not unusual when content management systems
are concerned and can leave a web application seriously compromised. Exploit
databases get updated daily with new vulnerabilities that are found in core
functionality, plug-ins, and other added components. When new exploits are
discovered, it takes a while for the developers to fix the issue and release a new
version, if at all. Even then, it’s up to the systems maintainer to update the vul-
nerable module to the latest release, something that doesn’t happen frequently
enough in real life. Automated tools are a dangerous asset in aiding attackers
to find websites that contain these vulnerabilities. Components with known
vulnerabilities could open up the web application to a full range of weaknesses,
including injection, broken access control, and XSS [I].

2.9.1 Dangers of using components with known vulnera-
bilities

We will illustrate the dangers of using components with known vulnerabilities by
providing some real-world cases of vulnerable plug-ins, modules and extensions
for each of the web content management systems we will discuss in Chapter
namely WordPress, Drupal and Joomla. These examples are taken from the
vulnerability databased’] mentioned in Section

The first example comes from the WordPress Spicy Blogroll plug—irﬂ It was
recently discovered that this plug-in contains a file inclusion vulnerability. In
one of the PHP scripts, certain GET variables are obtained from the URL and
used in the require_once function that includes an external file in the current
script. Attackers can abuse this vulnerability to access any file on the system.
The Spicy Blogroll plug-in has been downloaded at least 2500 times.

8Source: https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
_Prevention_Cheat_Sheet
“More information about these exploits can be found at: http://cve.mitre.org/
Onttp://wordpress.org/plugins/spicy-blogroll/

39

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
http://cve.mitre.org/
http://wordpress.org/plugins/spicy-blogroll/

The second example comes from the Drupal WYSIWYGIEI CKEditoriEI mod-
ule. Versions below 4.1 of this module contained a persistent XSS flaw. If the
WYSIWYG editor was enabled for posting comments or adding content, it was
possible for an attacker to inject a hidden iframe which could execute unre-
stricted JavaScript when viewed in the edit mode, making it possible to access
the victim’s session cookie. This attack vector was targeted at privileged users
who are able to edit posts. This vulnerability was fixed in version 4.1 of the
module. This module was downloaded approximately 12120 times, and is in use
by more than 1500 sites.

The third and final example comes from the Joomla Highlight plugin. User
input passed through the highlight parameter was not properly sanitized before
being passed to the unserialize method. This could be exploited to inject ar-
bitrary PHP objects into the application. This plugin is installed by default.
Versions of Joomla earlier than 2.5.8, and 3.0.2 are susceptible to this vulnera-
bility.

2.9.2 Preventing using components with known vulnera-
bilities

The best way to deal with this risk is to ensure that all components are kept
up to date and only components that are compatible with the application are
installed. This means that vulnerability databases, project mailing lists, and
announcements regarding vulnerabilities must be checked regularly, though this
is no guarantee that component vulnerabilities will be fixed. Many developers
do not create vulnerability patches for older versions, but instead simply fix the
problem in the next version.

For instance, at any given time there two supported versions of Drupal.
The current supported versions of Drupal are version 6.x and version 7.x. Core
updates for both versions are released on a regular basis until Drupal version
8.0 will be released. Omnce this version is released, only versions 7.x and 8
will be supported. The reason for this is that module developers sometimes
lag behind on Drupal releases, causing some required functionality to not be
available for the latest version of Drupal. Having to support two releases of
Drupal means that module developers must maintain and update their code
for both versions of Drupal. This may cause developers to only update the 7.x
version of the module, leaving the 6.x version broken and vulnerable. While
anyone using the 7.x version of Drupal might be safe, people using version 6.x
will still be vulnerable and have no way of installing the fixed, safe version of the
module without first updating their entire Drupal installation. In our review
of the Drupal content management system, we will only take the latest version,
version 7.x, into account.

HMWhat You See Is What You Get
2https://drupal.org/project/wysiuyg_ckeditor

40

https://drupal.org/project/wysiwyg_ckeditor

2.10 Unvalidated Redirects and Forwards

Web applications frequently use redirects and forwards to redirect users to other
pages. If the target page is specified in an unvalidated parameter, this could
potentially be exploited by an attacker to redirect the victim to a malicious
page, or gain access to administrative functions.

2.10.1 Dangers of unvalidated redirects and forwards

Unvalidated redirects and forwards can have serious consequences. Once the
user is on the attacker’s domain, they are susceptible to any number of attacks.
The attacker may attempt to install malware or trick the victim into disclosing
passwords or other sensitive information [I]. For instance, the user may be per-
suaded into clicking on http://www.example.com/redirect.jsp?url=evil.
com because http://www.example.comn is a trusted web page. The victim will
then be redirected to the malicious evil.com website, which may be designed
to look like the login page of the application. When the user tries to log in, the
attacker is able to steal their credentials [T].

Another way an attacker could abuse unvalidated forwards is to bypass the
application’s access control check to gain access to unauthorized functions. For
instance, assume that an application uses a parameter to indicate where a user
should be sent if a transaction is successful. The attacker could craft a URL like
http://www.example.com/forward. jsp?fwd=admin. jsp that bypasses access
control checks and forwards the attacker to an administrative function they
aren’t authorized to see. [I].

2.10.2 Preventing unvalidated redirects and forwards

The first way unvalidated redirects and forwards can be prevented is by simply
not using redirects and forwards. If using redirects and forwards is insurmount-
able, they should not be based on user parameters, care must be taken that the
supplied value is valid, and the user is authorized to be redirected there.

2.11 Conclusion

A lot must be kept in mind by a developer who wants to build a secure web
application from the ground up. While not impossible, it is less likely that a
single developer will be able to write a fully secure web application from scratch.
Certainly someone with limited or no programming knowledge will not be very
concerned with security. This is why content management systems are very
attractive solutions. Typical users of content management systems are usually
not concerned with the inner workings of the system. They just want everything
to work, and assume that everything is implemented securely.

This is why it is worth finding out if these content management systems
are indeed secure. In the Chapter [4] we will investigate the three most used

41

http://www.example.com/redirect.jsp?url=evil.com
http://www.example.com/redirect.jsp?url=evil.com
http://www.example.com
evil.com
http://www.example.com/forward.jsp?fwd=admin.jsp

open source web content management systems, namely WordPress, Joomla, and
Drupal. For each of these content management systems, we will attempt to find
answers for the following questions and guidelines, based on the security risks
described in the OWASP Top 10:

1. Injection
e Which SQL injection prevention techniques are used and how do they
work?
e Are these techniques used in a secure way?

e Is least privilege encouraged?
2. Broken Authentication and Session Management

e Is the Authentication mechanism secure?

e Is a strong password policy[™| enforced?

e How does the Session Management mechanism work?
e Are Session IDs sufficiently random?

e Are Session IDs sufficiently long?

e Are Session IDs set to expire?

e [s there a password recovery mechanism in place?

e Does the password recovery system send passwords in plain text?
3. Cross-Site Scripting (XSS)

e Does the CMS contain any input/output filtering methods?

e Are there different filtering methods based on the HTML context of
the input data?

4. Insecure Direct Object References

Preventing Insecure Direct Object References is strongly related to Miss-
ing Function Level Access Control, as both security risks are mitigated by
strong access control. Therefore, we will split up our analysis of the access
control mechanism in two parts. In the section about Missing Function
Level Access Control, we will talk more in depth about how access con-
trol is implemented in each system. In the section about Insecure Direct
Object References, we will provide a higher level overview of the access
control mechanism.

5. Security Misconfiguration

e How difficult is it to keep core functionality up to date?
e Are there automated update processes in place?

e Are default settings set securely? This includes checking whether or
not displaying error messages is turn off, and which privileges are
granted to registered users by default.

13The definition of a strong password policy can be found at http://www.sans.org/
security-resources/policies/Password_Policy.pdf

42

http://www.sans.org/security-resources/policies/Password_Policy.pdf
http://www.sans.org/security-resources/policies/Password_Policy.pdf

6. Sensitive Data Exposure When comparing web content management
systems on Sensitive Data Exposure mitigation techniques, we will inves-
tigate if and how any of the guidelines mentioned in Subsection [2.6] are
implemented and maintained.

7. Missing Function Level Access Control
As explained previously, both Insecure Direct Object References and Miss-
ing Function Level Access Control security risks can be mitigated by strong
access control. In the sections about Missing Function Level Access Con-
trol, we will review the access control system at a lower level.
e How is access control enforced?
e Is directory browsing denied by default?

e Does the access control mechanism fail securely?
8. Cross-Site Request Forgery (CSRF)

e Are any efforts made to prevent CSRF attacks?

e Does the content management system core contain any token gener-
ation mechanisms?

e How do these mechanisms work, and are they secure?
e Are they easy to use by developers?
e Does the anti-CSRF token get regenerated if a request is received

containing a wrong value?

9. Using Components with Known Vulnerabilities The web content
management systems we will discuss in Chapter [3| have their own plug-in,
or add-on databases where users can search for and download components
to extend the core functionality of their desired CMS. When discussing
this security risk, we will investigate the following;:

e Is there a versioning system in place where the current version of an
added component can easily be identified?
e Are security issues disclosed publicly?

e Is there a project or security mailing list in place to warn users about
new vulnerabilities?

e Are there any manual or automated checks in place in order to detect
vulnerabilities before the components are released publicly?

e [s there any indication or warning given when searching for or trying
to install components with known vulnerabilities?

e How are vulnerability reports dealt with and how quickly do flaws
get fixed?

e Are updates difficult to install?
Some of these criteria are also applicable to flaws in CMS core function-
ality. While Using Components with Known Vulnerabilities may allude to

plug-ins and added components, it will be worth investigating if and how
these criteria are dealt with when core functionality is concerned.

43

10. Unvalidated Redirects and Forwards We will investigate if the con-
tent management systems use redirects and forwards in core functionality.
We will check if any of the following rules and guidelines suggested in the
OWASP Top 10 are considered:

e Don’t use redirects and forwards.
e Don’t base redirects and forwards on user parameters.

e Make sure that the supplied value is valid.

e Make sure the user is authorized to be redirected to that location.

44

Chapter 3

Content Management
Systems

In this chapter we will take a look at the three most used open source content
management systems, namely WordPress, Joomla, and Drupal [57]. These open
source CMSs are designed in a modular way, supporting added components to
extend core functionality and the ability for users to customise the website to
their own taste. They are assumed to be secure, because they have been through
many iterations, with a strong focus on security. However, these open source
web content management systems are maintained by people, and people are not
perfect. A strong disadvantage of everyone using the same content management
systems is that a lot of websites will be susceptible to the same exploit if one
is discovered. It is therefore very important that core and added functionality
be kept up to date as much as possible. In this Chapter we will provide a more
general overview of each content management system before going into more
detail in Chapter

3.1 WordPress

WordPress is a content management system that was first developed back in
2001. WordPress is primarily considered a blogging framework, but has pushed
to become a fully fledged content management system. Whether or not they
succeeded is up for debate. While many people agree that WordPress is a
blogging tool first and a CMS second, others strongly disagree and say that
it’s a CMS with blogging capabilities [55]. WordPress started out as b2 cafelog,
a simple blogging tool. More functionality has been added through the years,
including a plug-ins and themes system, and customization capabilities.

WordPress is very focused on backwards compatibility and being univer-
sally deployable. Up to WordPress version 3.2, released in 2011, the earliest
supported version of PHP was 4.3.x, which is very dated. In trying to ensure
usability, sometimes choices are made in the codebase that are not necessarily
the most secure, but provide good backwards compatibility. Examples of this

45

include enforcing PHP’s Magic Quotes GPC functionality, even though this has
been deprecated since PHP version 5.3.0 and removed since version 5.4.0 [52],
and using hashing methods such as MDHH for compatibility. We will focus on
WordPress version 3.5.2, being the latest version of WordPress at the time. This
version was released in June of 2013.

WordPress consists of two distinct areas: a public front facing area and an
administrative area. The first area contains all the content that is available
to registered and unregistered users alike. In the front facing area, only lim-
ited functionality is allowed, including reading posts and posting comments. All
administrative functionality, including adding new posts and pages, editing pro-
files, and installing themes and plug-ins is found in the administrative area. As
we will see in the rest of this chapter, these areas are kept separate for security
reasons.

In a study by W3Techs [57], a trusted source for web technology surveys, on
the usage of content management systems for websites, WordPress came out on
top, being considered the most used content management systems. WordPress
has a 57.1% CMS market share, while approximately 18.9% of all websites use
WordPress. A list of websites that use WordPress as the underlying framework
include:

e MSNBCS TV (http://tv.msnbc.com/) — The website of a major Amer-

ican news network.

e Variety (http://variety.com/) — The website of a large entertainment
news source.

e The Rolling Stones (http://www.rollingstones.com/) — Website for the
legendary rock band ”The Rolling Stones”.

3.1.1 WordPress Core Functionality

In this subsection, we will take a look at some of the functionality provided by
WordPress core. Most of the provided information will be more high level, but
sometimes technical details will be provided. We will start by giving an overview
of the database system, and continue on with a quick overview of the authen-
tication and session management mechanism, including the password recovery
system. Then we will take a look at WordPress’s mechanism to distinguish user
privileges and finally, we will talk about ways in which WordPress functionality
can be extended using themes and plug-ins.

Database

WordPress has two minimum requirements that must be met before it can be
used [72]:

1. PHP version 5.2.4 or greater must be used

1MD5 has been proven to be insecure, see Section

46

http://tv.msnbc.com/
http://variety.com/
http://www.rollingstones.com/

2. MySQL version 5.0 or greater must be used

This means that WordPress cannot be run on any other database system other
than MySQL. The two other content management systems we will review,
namely Joomla and Drupal, both provide Database Abstraction Layers (DBAL),
enabling them to be run on different sorts of databases. More of these technical
details will be given in Subsection of the next chapter.

User Registration and Authentication

User registration requires that a new user enters a unique username and a valid
e-mail address. An e-mail will be sent containing a clear text password that
was generated by WordPress. A user can change this generated password in
their profile settings. Figure shows the default user registration form on a
WordPress 3.4 website.

@WORDPRESS

Register For This Site
Username
E-mail

A passward will be e-mailed to you.

Register

Figure 3.1: WordPress 3.4 user registration form

When a user changes their password, password strength is assessed as it is being
typed in. Passwords are classified in four categories, using a scoring system
based on the password length and a number of other criteria:

e Password contains numbers — Add 10 points to the overall points.

e Password contains lower case letters — Add 26 points to the overall
points.

47

e Password contains upper case letters — Add 26 points to the overall
points.

e Password contains punctuation marks — Add 31 points to the overall
points.

The final score is then obtained by dividing the logarithm of the overall points,
raised to the power of the password’s length by the natural log of 2.

log(pointspassword-lengthy
In(2)

score =

The resulting score is then used to classify passwords into the following cate-
gories:

Very weak — If the password contains less than 4 characters.

Weak — If the password is equal to username, or if the overall score is less
than 40.

Medium — If the overall score is less than 56.

Strong — If the overall score is more than, or equal to 56.

Providing the password scoring system can give users an incentive to use longer
and more secure passwords, making brute force attacks harder. Unfortunately,
WordPress doesn’t enforce any minimum password requirements. For instance,
the current password system allows passwords of just one character, while it
states that a minimum of seven characters is recommended. We will provide
more information about WordPress’s password hashing algorithm in Subsec-
tion Sensitive data exposure.

Typing in the current password is not required when changing a password.
If an attacker were to gain access to someone else’s account, they would be
able to change their password without having to provide the current password.
For instance if the attacker were somehow able to steal a user’s Logged in and
Admin cookie, they would be able to change all the victim’s credentials in
the administrative area. We will provide more information about WordPress
sessions in Subsection

Password Recovery

WordPress provides a password recovery system. When a user indicates that she
has forgotten her password, an activation key will be generated and associated
with the user’s credentials in the database. An e-mail will then be sent to
the user’s e-mail address containing a link to a password reset page with the
activation key and the user’s username in GET parameters. If the user clicks
on the link, the application will check if the activation key matches the one
associated with the username in the database. If the activation key matches
the one in the database, the user can enter a new password. At no point in

48

time are passwords stored in plain text. However, as mentioned previously, a
random password will be generated for the new user when they register for a
new account. An e-mail will be sent to the new user’s e-mail address containing
the plain text password. An attacker eavesdropping on the network might be
able to intercept this e-mail and obtain the user’s initial password.

User Privileges

WordPress provides a system of Roles and Capabilities, whereby a Role defines
which Capabilz'tiesﬂ a user is allowed to perform. These capabilities can vary
from writing and editing posts to managing plug-ins or other user. They define
a user’s responsibilities within the site. By default, WordPress provides six
predefined user roles. An authenticated user can have only one Role assigned
to them at any given time. These user roles are named as follows:

1. Super Admins
2. Administrators
3. Editors

4. Authors

5. Contributors

6. Subscribers

In Subsection [£.1.4] we will see which privileges are associated with each of these
Roles.

Added Components

WordPress core functionality can be extended by installing Plug-ins and Themes.
WordPress provides a plug-in directory, which contains over 26000 Plug-ins [68].
Plug-ins can range from adding functionality to share posts on social media
websites, to extending administrative functionality to enable an administrator
to edit user Roles.

Plug-ins uploaded to be hosted on the WordPress website will be manually
checked by code reviewers before being allowed. Reviewers will check if plug-
in code is up to par with WordPress coding standards and uses the correct
API functions to defend against attacks. Plug-in developers can be e-mailed
and asked to provide more information about their plug-in prior to the plug-in
being accepted. After approval, the developer will be allowed to upload the
plug-in to a Subversion repository, after which the plug-in will appear in the
plug-ins browser automatically [69].

2A full list of the default capabilities provided by WordPress can be found at: http:
//codex.wordpress.org/Roles_and_Capabilities

49

http://codex.wordpress.org/Roles_and_Capabilities
http://codex.wordpress.org/Roles_and_Capabilities

3.2 Joomla

Joomla is an open source web content management system that was first released
in 2005. Joomla reached thirty million downloads in March of 2012 [24], and is
estimated to be the second most used CMS on the internet, after WordPress [57].
We will focus only on the latest version of Joomla at the time, being Joomla
version 3.1.5, which was released in August of 2013. Joomla is written in PHP
and contains a database abstraction layer, which makes it possible to be used
in a multitude of software environments.

Like WordPress, Joomla is comprised of separate front end web interface and
a back end administrative interface. Unlike WordPress, however, users have
to log in to each interface separately. The front end web interface has some
limited functionality for certain users, like creating new articles and posting
comments. Regular users are not allowed to access the back end interface, as
this functionality is reserved for users with higher privileges.

In a study by W3Techs [57] on the usage of content management systems
for websites, Joomla came up second to WordPress. Joomla has a 9.9% CMS
market share, while approximately 3.3% of all websites use Joomla. A list of
websites that use Joomla as the underlying framework include:

e Harvard University - The Graduate School of Arts and Sciences (http:
//gsas .harvard.edu/) — Website for the academic unit responsible for
many post-baccalaureate degree programs offered through the Faculty of
Arts and Sciences at Harvard University.

e The Guggenheim Museum (http://variety.com/) — Website of an inter-
nationally renowned art museum.

e Times Square (http://timessquare.com/) — Website containing the hap-
penings in Times Square New York.

More examples of websites that use Joomla as the underlying content manage-
ment framework can be found in the Joomla Showcasd]

3.2.1 Joomla Core Functionality

In this subsection, we will take a look at some of the functionality provided
by Joomla core. Most of the provided information will be more high level,
but sometimes technical details will be provided. We will start by giving an
overview of the database system, and continue on with a quick overview of
the authentication and session management mechanism, including the password
recovery system. Then we will take a look at Joomla’s mechanism to distinguish
user privileges and finally, we will talk about ways in which Joomla functionality
can be extended using added components like plug-ins, modules, and templates.

3The Joomla Showcase contains more than 3900 websites and can be found at http:
//community.joomla.org/showcase/sites.html

50

http://gsas.harvard.edu/
http://gsas.harvard.edu/
http://variety.com/
http://timessquare.com/
http://community.joomla.org/showcase/sites.html
http://community.joomla.org/showcase/sites.html

Database

Joomla provides a Database Abstraction Layer (DBAL) to simplify the usage
of database queries [26]. Using a DBAL ensures that Joomla supports multiple
kinds of SQL database systems. Syntactical differences between SQL database
queries will be handled by the DBAL. As we shall see in the next Chapter,
Joomla’s DBAL makes it possible to create dynamic queries by using a process
called query chaining, but also supports regular string queries. Untrusted user
data must be actively sanitised by a developer before it is used in the query.

User Registration and Authentication

User registration requires that a user enters their name, unique username, pass-
word, and a valid, unique e-mail address. A confirmation mail will be sent to
the e-mail address, containing a registration token. This token is associated
with the new user in the database, and is generated by hashing a 16 character
application secret using salted MD5. The application secret is randomly gen-
erated when Joomla is installed. The salt value used is a randomly generated
string of 8 characters, which is appended to the application secret before being
hashed. Even after a new user confirms their registration, their account must
still be approved by an administrator before it is finally activated. Figure [3.2
shows the default Joomla user registration form.

User Registration

* Required field

*

MName

*

Username
Passwaord: *
Confirm Passwaord: *

Email Address: *

*

Confirm email Address

Figure 3.2: Joomla user registration form

Unlike in WordPress, there is no password strength indicator shown when setting
or changing passwords. There is a minimum password requirement, however,
as passwords are required to be at least 4 characters long. Other requirements
include the fact that a password may not begin or end with a space, and that

o1

0 N O U R W N

passwords cannot be over 100 characters long. Longer passwords can limit the
success rate of brute force attacks but as Joomla core doesn’t contain any login
attempt limitations, brute force attacks are left possible.

User’s passwords are stored hashed and salted, using MD5 as the encryption
algorithm. More information about how Joomla’s password hashing algorithm
works will be given in Subsection [4.2.6

Password Recovery

Joomla provides a password recovery system. When a user indicates that they
have forgotten their password, an e-mail will be sent to their e-mail address
containing a verification code and a link to a password reset page. A code
snippet of how the verification code is generated is shown in Example [3.1]

$token = JApplication :: getHash (

JUserHelper :: genRandomPassword ()) ;
$salt = JUserHelper:: getSalt (’crypt—md5’);
$hashedToken = md5($token . $salt) . ’:7 . $salt;

$user—>activation = $hashedToken;

Example 3.1: Code snippet from Joomla’s processResetRequest functionlﬂ

The token is generated using the getHash function, which will return a salted
MD5 hash of a 16 character long secret value that was generated when Joomla
was installed. The return value of the genRandomPassword function, which
generates an 8 character long random string, is used as salt for the getHash
function. This is the token that is sent to the user.

In order to safely associate the token with the user, it will first be hashed
again before being stored in the database. The getSalt function generates a
salt by hashing the result of the mt_rand PHP function using MD5. As described
earlier, the mt_rand function generates a random integer value between 0 and
the value returned by mt_getrandmax. In this case only the first 8 characters of
the resulting hash are used as the final salt value. Finally, the generated token
is concatenated to the salt value and hashed using MD5. The salt value is then
appended to the resulting hash and associated with the user.

The user has to manually copy the verification code from the e-mail and paste
it in the password reset form, together with their username. The verification
token will be checked against the hashed version associated with the user in
the database. The token is hashed using the same method as described above,
using the salt obtained from the hashed version. If the two hashes match, the
user will be able to enter a new password, and the reset request will be logged
in the database.

4Source: components/com_users/models/reset.php

52

User Privileges

Joomla contains a very extensive system for defining user privileges. This system
is actually divided into two systems. One system controls what users can view,
the other system controls what users can do. The first system is comprised
of User Groups and Access Levels, while the seconds system is based on User
Groups, Actions and Permissions. In this subsection, we will provide some basic
information on these systems. In Subsection [£:2.4] in the next chapter, we will
provide more in depth information on each of these systems. First we will take
a look at the system that defines what a user can view. Then we will review
the system that defines what a user can do.

User Groups and Access Levels

Defining what users can view is implemented in a hierarchical system of User
Groups and Access Levels. Access Levels define which Groups of users can view
certain kinds of content. A Group can be assigned to multiple Access Levels,
making members of that Group able to view content with those specific Access
Levels. There are four Access Levels defined by default.

1. Public — Open to all visitors of the website.
2. Guest — Restricted to non authenticated visitors of the website.
3. Registered — Restricted to all registered, authenticated users.

4. Special — Restricted to all User Groups, except Guest and Registered.

New content and items are assigned one Access Level, limiting who will be able
to view that content or item. By default, there are nine User Groups, which
reside in a hierarchical system whereby each Group can have a parent and child
Groups. A user can be a member of multiple Groups at the same time. The
hierarchy of User Groups is visualised in Figure [3.3

53

Group Title

Public

|— Guest

|[— Manager

|—— Administrator
|— Registered
|—— Authaor
[——|— Editor

[—~—|—|— Publisher

o o g o ooo4ooggo

|— Super Users

Figure 3.3: The hierarchy of Joomla User Groups

Actions and Permissions

The system that defines what a user can do uses the same User Groups, but to
a different end. The system that defines a user’s privileges is comprised of User
Groups, Actions and Permissions. In the following summary, we will explain
how these components fit together:

e Groups — Groups are comprised of a list of Actions and Permissions.
Permissions are set on the Actions of a certain Group. A Group can
be set to inherit Permissions from the parent Group, or define different
Permissions altogether.

e Actions — Actions define which actions are possible on a certain item.
For instance creating, editing, or deleting content.

e Permissions — Permissions define which Actions are allowed and which
are not. Each Action can have only one Permission defined on itself. The
four possible Permissions for any given Action are:

— Deny — Denies this Action for the Group and any child of this Group
at all levels in its hierarchy. Even if a child Group sets the Permission
to Allow, this will not have any effect, as only the Permission set in
the parent Group will be considered.

— Not set — Defaults to Deny, but can by overridden by a Permission
in a child Group. This only applies to the main Public Group at the
top of the hierarchy.

— Inherit — Inherits the Permission from the parent Group or a higher
level in the hierarchy.

54

— Allow — Allows this action to be allowed for the current Group and
any child Group. A Group in a lower level of the hierarchy can
override this Permission by setting it to Deny.

Added Components

Joomla contains five types of extensions, each handling specific functional-
ity [27]. These five extension types are as follows, and are visualised in Fig-

ure [3.4k

1. Components — Components are the largest and most complex extensions.
Most components have two parts: a site part and an administrator part.
A Component is called to render the body of a page, thus contains most
of the content on the page. Examples of Components include Contact,
News Feeds, and Web Links Components.

2. Modules — Modules are smaller components used for page rendering.
Modules can be thought of as bozes that are arranged around a Component
and contain certain lightweight functionality. Examples of modules include
a Login Module or the Who’s Online Module. Modules can also contain
static HTML or text.

3. Plug-ins — Plug-ins are in essence event handlers. In the execution of
any part of Joomla, an event can be triggered, and a Plug-in register to
handle certain events. For example, a Plug-in could be used to intercept
user-submitted articles and filter out bad words.

4. Templates — A Template can be thought of as the design and layout of
the website. Templates change the look and feel of a website. Templates
define fields in which a page component or modules will be shown.

5. Languages — Language packages consist of key/value pairs and can be
used to translate the website to a different language. These key/value
pairs contain the translation of static text strings which are used by the
application to build the interface.

55

Joomla!
m Semple Sites Joomls.org

About joomla!
Getting Started
Using la!
The ! Project
The |G

MODULES
Joomlal COMPONENT This Site

Congrstulstions! You have a Joomls site! Joomla makes it essy to build a website just the way you want it and

Home
keep it simple to update and maintain. Site Map
Joomls is a flexible and powerful platform, whether you are building s small site for yourself or a huge site with Lagin
hundreds of thousands of visitors. Joamla is open source, which means you can make it work just the way you Sample Sites

want it to. Site inistrator
Example Pages
The content in this installaticn of Joomla has been designed to give you an in depth tour of Joomla's features.

Beginners Upgraders Professionals

If this is your first Joocmla! site or If you are an experienced Joomls! Joomla! 2 continues development .

your first web site, you heve come user, this Joomla site will seem very of the Joomila Platform and CMS Login Form
to the right place. Joomls will help familiar but alss ver nt. The =52 powsrful and flexible way to

you get your website up and biggest change is the w bring your visicn of the web to L | User Hame
running guickly and easily. admin nterfsce and the reslity. With the new administrator
adoption of responsive design. interface and adoption of Twitter B Fassword

o ts . the ability to control its

look and the management of Remember Me
extensicns is now complete.

Start off using your site by logging
in using the administrator sccount
you crested when you installed

prove

Joomila
¥ Read mos ? Read more: Frofessicnals Creste sn scoount ¥
F U username?
Forgot your password?
Home

Figure 3.4: An overview of Joomla extensions [27]

Before extensions can be uploaded and used by other users, they are manually
reviewed by code reviewers. The added extension will be checked according to
four checklists [30]:

1. Submission Checklist

2. Trademark Checklist

w

. License Checklist

W

. Installation and Functionality Checklist

These checklists are available publicly, and can be checked by the developer
before submission to speed up the approval process.

3.3 Drupal

Drupal is an open source web content management system that was first released
in 2001. Drupal is used by approximately 876000 websites [17], and is estimated
to be the third most used CMS on the internet, after Joomla [57]. Drupal

56

is written in PHP and contains a database abstraction layer, which makes it
possible to use Drupal in a multitude of software environments. There are two
supported versions of Drupal at any given time. At this time, Drupal versions
6.x and 7.x are the supported releases. Once Drupal version 8.0 is released,
version 6.x will no longer be supported. In this section, we will focus on Drupal
7.x primarily, as this is the latest stable release.

Unlike WordPress and Joomla, Drupal doesn’t contain a separate front- and
back end. Administrative and site viewing functionality are rather combined
in a hybrid view. Registered users are allowed to post and edit comments, but
creating posts and pages is reserved for more privileged users. Unregistered
users are only allowed to view articles and comments, but are not allowed to
post comments of their own.

According to a study by W3Techs [57] on the usage of content management
systems for websites, Drupal is the third most used web content management
system. Drupal has a 6.0% CMS market share, while approximately 2.0% of
all websites use Drupal. A list of websites that use Drupal as the underlying
framework include:

e The Economist (http://www.economist.com/) — A weekly news and in-
ternational affairs publication.

e Twitter Developers (http://dev.twitter.com/) — The website of the
developer community for the Twitter platform.

e FedEx (http://about.van.fedex.com/) — The "about” portion of the
website of an American global courier delivery services company.

More examples of websites that use Drupal as the underlying content manage-
ment framework can be found in the Drupal Showcasd?]

3.3.1 Drupal Core Functionality

In this subsection, we will take a look at some of the functionality provided
by Drupal core. Most of the provided information will be more high level,
but sometimes technical details will be provided. We will start by giving an
overview of the database system, and continue on with a quick overview of
the authentication and session management mechanism, including the password
recovery system. Then we will take a look at Drupal’s mechanism to distinguish
user privileges and finally, we will talk about ways in which Drupal functionality
can be extended using themes and modules.

Database

Drupal uses a Database Abstraction Layer (DBAL), based on PHP’s Data Ob-
jects (PDO), to help prevent SQL injection.

5The Drupal Showcase contains more than 3900 websites and can be found at http://wuw.
drupalshowcase.com/

57

http://www.economist.com/
http://dev.twitter.com/
http://about.van.fedex.com/
http://www.drupalshowcase.com/
http://www.drupalshowcase.com/

The intent of this layer is to preserve the syntax and power of SQL
as much as possible, but also allow developers a way to leverage more
complex functionality in a unified way. It also provides a structured
interface for dynamically constructing queries when appropriate, and
enforcing security checks and similar good practices. — Drupal API:
Database abstraction layer

This means that Drupal can be used with a number of different types of databases.
The DBAL will ensure that the correct syntax is used for querying the database.
As we shall see in Subsection on Drupal’s SQL injection mitigation tech-
niques, Drupal makes use of prepared statements with slight syntactical differ-
ences to regular prepared statements.

User Registration and Authentication

Based on the default user registration conditions, user registration requires that
new users must validate their e-mail address and be approved by administrators.
When a new user registers, they have to enter a unique username and a valid
e-mail address. A random password will be generated, but not disclosed to the
user. If no default password were generated, anyone could log into the new
account, without providing a password. The other reason is that the one-time
login token generation mechanism uses a snippet of the current password hash
to create the token. If no password were set, this mechanism would fail. The
new user will be able to change this password later.

User account

Create new account Login Regquest new password

Username *

E-miail address *

Create new account

Figure 3.5: Drupal 7.x user registration form

When approved by an administrator, an e-mail will be sent to the user, con-
taining their username and a unique one-time login link that enables the user
to log in and change their password. We will go into more detail about this
one-time login link in the next subsection, concerning password recovery. Pass-
word strength is assessed as it is being typed in. Passwords are classified in four

58

categories, using a scoring system based on the password length and a number
of other criteria. Every password starts with a strength of 100. If the password
is shorter than 6 characters, the strength indicator will deduct 5 points for every
character less than 6, plus a 30 point penalty:

strength = 100
strength = strength — ((6 — password_length) * 5) + 30)

Then, each time any of the following criteria is true, it will be counted as an
extra weakness:

e Password doesn’t contain any numbers.
e Password doesn’t contain any lower case letters.
e Password doesn’t contain any upper case letters.

e Password doesn’t contain any punctuation marks.

If one weakness is detected, 12.5 points will be deducted from the current pass-
word strength. If two weaknesses are detected, 25 points will be deducted from
the current password strength. If three or more weaknesses are detected, 40
points will be deducted from the current password strength. Finally, the pass-
word strength indicator will check if the password is equal to the username. If
this is the case, password strength will be set to 5, because passwords that are
the same as the username are considered very weak.

The resulting score is then used to classify passwords into the following cate-
gories:

Weak — Password strength < 60.

Fair — 60 > Password strength < 70.

Good — 70 > Password strength < 80.

Strong — 80 > Password strength < 100.

Providing the password scoring system can give users an incentive to use longer
and more secure passwords, making brute force attacks harder. Unfortunately,
Drupal doesn’t enforce any minimum password requirements. For instance, the
current password system allows passwords of just one character, while the pass-
word scoring system states that a minimum of six characters is recommended.
We will provide more information about Drupal’s password hashing algorithm
in Subsection Another brute force attack mitigation technique used by
Drupal is enforcing a maximum number of authentication attempts. Drupal
provides a mechanism that automatically blocks an IP address that’s flooding
the system with login attempts with incorrect credentials. The defaults are set
to 5 attempts every 6 hours for a single IP address and a single account, and
50 attempts per hour coming from the same IP address, trying to log into any

59

account. No login attempts coming from a blocked IP address will be allowed,
even if the login credentials are correct]f] .

Typing in the current password is not required when changing a password.
If an attacker were to gain access to someone else’s account, they would be able
to change the victim’s password and other credentials without having to provide
the current password. For instance, if the attacker were somehow able to steal a
user’s session cookie, they would be able to change all the victim’s credentials.
When a user changes passwords, their session will be regenerated. This means
that if an attacker were able to perform a Session Hijacking or Session Fixation
attack, and change the victim’s e-mail address and password, the victim’s session
would be invalidated. They would be unauthenticated with no means of being
able to log back in as the password recovery system sends a one-time login link
to the specified e-mail address. We will provide more information about Drupal
sessions in Subsection [£:3.2] but first we will take a look at Drupal’s password
recovery system.

Password Recovery

Drupal provides a password recovery system. When a user indicates that they
have forgotten their password, a one-time login token will be generated and
an e-mail will then be sent to the user’s e-mail address containing a link to a
password reset page. The one-time login token is only valid for 24 hours, after
which it will expire and is no longer usable. This token is generated by the
user_pass_rehash function, which can be seen in Example [3.2}

function user_pass_rehash ($password, S$timestamp, $login)

{

3| return drupal_hmac_base64($timestamp . $login ,
drupal_get_hash_salt () . $password);

Example 3.2: Drupal’s user_pass_rehash function

The one-time login token is based on the user’s current password hash, the
timestamp of the password reset request, and the timestamp of the user’s last
login time, which is obtained from the database. Using the timestamp of the
user’s last login time to calculate the hash is of significance when the token
is regenerated in the verification step of the password reset procedure. The
user_pass_rehash function creates this one-time login token by concatenating
the timestamp of the password reset request to the timestamp of the user’s last
login time and uses these as the data to be hashed by the drupal_hmac_base64
function. This function hashes the provided data in SHA-256, using the HMAC
method. The key needed by the hash function is generated by concatenating
the Drupal Hash Salt value, which is generated when Drupal is installed, to the
user’s current password hash. The resulting hash is encoded in Base64.

Shttps://api.drupal.org/api/drupal/modules'user!user.module/function/user_
1ogin_authenticate_validate/7

60

https://api.drupal.org/api/drupal/modules!user!user.module/function/user_login_authenticate_validate/7
https://api.drupal.org/api/drupal/modules!user!user.module/function/user_login_authenticate_validate/7

The e-mail that’s sent to the e-mail address of the user for whom a password
request was issued, contains a link to a password reset page. This link is made
up of GET parameters, which contain the user’s ID, the timestamp on which
the password reset request was issued, and the one-time login token. If the user
clicks on the link, the application will first check if the one-time login token
hasn’t expired. If the token is still valid, another token will be generated by
using the provided GET parameters and the timestamp of the user’s last login,
which is obtained from the database. If this timestamp is different from the
one used when generating the original token, it can be assumed that the user
has logged in since the password reset request was issued. This means that
the user either remembered their password, or someone else made the password
reset request in their place. The application checks if the newly generated token
matches the one that’s obtained from the GET parameters. If the tokens match,
the user will be logged in, and the one-time login token expires. The user will
then be redirected to their profile page where they can change their password.
At no point in time are passwords stored in plain text.

User Privileges

Drupal contains a system of user Roles and Permissions. Each of these Roles
can be granted certain Permissions such as creating and editing content, or
the ability to make configuration changes. This functionality is visualised in

Figure [3.6]

ANONYMOUS ~ AUTHENTICATED

PERMISSION USER USER ADMINISTRATOR
Block

Administer blocks J |
Comment

Administer comments and comment

settings

View comments O .

Figure 3.6: Granting Permissions to certain Roles in Drupal 7.x

Two types of users are recognized by default: authenticated users (those who
are logged in) and anonymous users (those who are not). A third type of user,
the administrator, is created when installing Drupal. By default, this is the
only user who can edit user Roles and Permissions and perform any update
to the site (content creation, installing new modules, configuration changes,
etc.). New users can register freely, but administrative approval is required.
Anonymous and authenticated users’ Permissions are very limited by default.
Both can view comments and published content, but only authenticated users

61

can post comments. Trying to access any unpublished content or unauthorized
functionality will result in the Access denied error mentioned previously.

Added Components

Drupal core functionality can be extended by installing Modules and Themes.
Drupal provides a Modules directory which contains over 23000 modules [I5].
Modules can range from extending controls over how certain content gets shown
on a web page, to adding new text editors for writing posts or comments.

A new Module will be reviewed manually by code reviewers before it is
allowed to be released. These code reviewers will examine the code and provide
feedback to the developer. Any requested changes must be implemented before
the module can be accepted. Once the module has been fully approved, it may
be uploaded to the Drupal Module repository [I5] and can be downloaded and
installed by others.

62

Chapter 4

CMSs and the OWASP Top
10

As concluded in Chapter [2| writing secure web applications requires a lot of
effort, and many different aspects must be considered. Using web content man-
agement systems is a popular solution for website developers and maintainers
because a website no longer needs to be built from the ground up. Web content
management systems enable inexperienced users to set up and maintain their
own website, even without having any programming knowledge.

This chapter is structured so that each section talks about a different con-
tent management system. Each section is divided up into subsections that
correspond to the OWASP Top 10 security risks described in Chapter [2| Each
subsection contains a detailed description of the techniques used to mitigate
these security risks. We will focus on the criteria set forth in the conclusion
of Chapter [2| to review these open source content management systems in a
well-structured, and objective way. We can then use the results of this research
to compare content management systems with each other and try to figure out
which is the most secure at which fields. We can assume that if these mitigation
techniques are implemented correctly, the application will be relatively well pro-
tected against the most common security vulnerabilities. If no citation is given
for a certain example, this means that the provided information was obtained
from directly analysing the source code of the application. In most cases, the
source code was analysed to ensure that the provided documentation was not
out of date or contained wrong information.

4.1 WordPress

In Section we provided a general introduction to the WordPress frame-
work. In this section, we will provide more technical details concerning the

techniques implemented to ensure safety against the security risks mentioned in
the OWASP Top 10 [1].

63

4.1.1 Injection

In this subsection, we will continue our review of WordPress’s database system.
In Subsection [3.1.1] we had already mentioned that WordPress doesn’t contain
a Database Abstraction Layer and requires a MySQL database. As will see
further on in this subsection, WordPress does provide some level of abstraction
for different types of queries. First we will take a look at the general way
of executing queries, after which we will take a look at the abstraction layer.
Formatting SQL statements in WordPress requires two steps:

e Actively sanitizing the input variables, preferably by using the prepare
function.

e Executing the query using the query function.

WordPress’s query function doesn’t use prepared statements, but rather as-
sumes that the provided query string has been sanitized beforehand. The
query function doesn’t sanitize input data automatically, making it to more
likely that an unsafe query could get executed (for instance if a developer for-
gets to perform the extra sanitisation step). The prepare function prepares the
query for execution and escapes all input data by feeding it through either the
addslashes function, or through the deprecated — and soon to be removed [51] -
mysql_real_escape_string function. It does this based on whether a MySQL
database handleﬂ is available and on a boolean value that’s set to false by
default, causing the addslashes method to be used primarily.

Using the prepare function is comparable to PHP’s sprintjﬂ function. Its
function signature and an example of its usage can be found in Example

function prepare($query, $args = null);

3|wpdb:: prepare(”SELECT % FROM ‘table * WHERE ‘column‘ = %s
AND ‘field * = %d”, ’foo’, 1337);

Example 4.1: WordPress’s prepare function signature and usageE|

The query parameter contains the SQL statement to be sanitized, which can
contain the following sprintf-like directives:

e %d — for decimal numbers
e %f — for floating-point numbers
e %s — for strings

e %% - literal percentage sign, no argument needed

IThe object returned by the mysql_connect function, representing the database connection

2More information about the sprintf function can be found at: http://php.net/manual/
en/function.sprintf.php

SMore information about the prepare function can be found at: http://codex.wordpress.
org/Class_Reference/wpdb

64

http://php.net/manual/en/function.sprintf.php
http://php.net/manual/en/function.sprintf.php
http://codex.wordpress.org/Class_Reference/wpdb
http://codex.wordpress.org/Class_Reference/wpdb

© 00 J O Ut =~ W N

— e
w N = O

This behaviour emulates that of prepared statements, where the actual values
are entered separately from the query. The prepare function sanitizes each
variable and replaces the corresponding directive in the query. The query is then
safe to be executed by the query function. As mentioned previously, WordPress
contains a certain level of abstraction, as it provides different functions for
different types of queries. The query function, however, can be used to perform
any type of query on the database [59]. For clarity, we provide Example
which shows the function signature of WordPress’s insert function and an
example of its usage.

function insert($table, $data, S$format);

$wpdb—>insert (
"table ',
array (
‘columnl’ => ’valuel’,
‘column2’ => 123

)

array (
’%S) ,
7(70d7

Example 4.2: WordPress’s insert function signature and usageE|

The first parameter of the insert function is the name of the table on which the
insertion will occur. The data parameter is an array of column, value pairs that
are to be inserted. The WordPress API reference [59] clearly states that these
values should not be sanitized prior to being supplied to the insert function
as sanitisation will occur when the prepare function is called internally. This
means that GET and POST variables must be actively stripped of slashes before
inserting them in the database. This is true because WordPress automatically
escapes GET, POST, and COOKIE values. We will provide more information about
this behaviour in the next paragraph. The final (optional) parameter is an array
of formats to be mapped to each of the values in the data parameter. Specifying
the format can provide an extra level of security as string values will be filtered
from variables expected to be numbers. If the format parameter is omitted,
all variables will be assumed to be of type string. The insert function will
then transform the list of arguments into an INSERT statement with placeholder
directives where the values are to be inserted. This query is then fed through
the prepare function together with the array of column, value pairs, and finally
the query is executed using the query function.

WordPress emulates PHP’s magic_quotes_gpc functionality by first strip-
ping any slashes from GET, POST, and COOKIE values that might have been
added, for instance those inserted by magic_quotes_gpc. It then actively sani-
tizes these and the SERVER superglobal variables by escaping their values using

4Source: http://codex.wordpress.org/Class_Reference/wpdb

65

http://codex.wordpress.org/Class_Reference/wpdb

the addslashes function. The magic_quotes_gpc function has been deprecated
as of PHP version 5.3.0 and was removed as of PHP version 5.4.0 [52]. When
enabled, this function would automatically escape single and double quotes,
backslashes and NULs from GET, POST, and COOKIE variables by adding a back-
slash in front of those characters. WordPress forcing this behaviour on all GET,
POST, REQUEST, COOKIE, and SERVER variables means that they must first be
stripped of slashes before using them in the prepare function. Not removing
the slashes added by the magic quotes functionality could potentially corrupt
the data, as unsafe characters will be sanitised again by the prepare function.
Furthermore, automatically escaping data can give developers a false sense of
security, causing them to use these variables directly in a query, bypassing the
prepare function. For instance, in Example we saw that escaping input
expected to be a number, will not prevent SQL injection.

On a final note, the WordPress Coding Standards Handbook [65] recommends
that developers should avoid touching the database directly, and states that:

If there is a defined function that can get the data you need, use it.
Database abstraction (using functions instead of queries) helps keep
your code forward-compatible and, in cases where results are cached
in memory, it can be many times faster.

Least privilege

Although WordPress core requires only the SELECT, INSERT an UPDATE priv-
ileges, sometimes changes have to be made to the database when upgrading
WordPress. Therefore it is recommended that CREATE and ALTER privileges are
also enabled [5]. Some plugins might require CREATE, DROP or DELETE privileges,
but as these are not required by WordPress core, they needn’t be enabled by
default.

Suggested by the WordPress installation guideﬂ

In step 2 of the WordPress installation guide, Create the Database and a User,
they offer instructions for three different database/user creation methods. How-
ever, the creation methods that are mentioned (namely cPanel, phpMyAd-
min and MySQL command line), suggest granting ALL PRIVILEGES to the
database user. Given that only SELECT, INSERT and UPDATE privileges are re-
quired for WordPress core to function correctly, granting the database user ALL
PRIVILEGES is highly unnecessary.

4.1.2 Authentication and session management

In this subsection, we will provide more information about how WordPress’s
authentication and session management mechanism works. In Subsection [3.1.1]
we took a look at User registration and credentials, providing more informa-
tion about the registration procedure. Then we talked about how the Password
recovery mechanism works. We will now continue on, explaining more about

Shttp://codex.wordpress.org/Installing_WordPress

66

http://codex.wordpress.org/Installing_WordPress

WordPress Sessions. We will use elements from the OWASP ASVS Authentica-
tion Verification Requirements and Session Management Verification Require-
ments as a benchmark to test how secure these mechanisms are.

Sessions

WordPress’s session management mechanism uses cookies only. By default, a
cookie’s expiration date will be set so the cookie gets deleted once the browser
closes. If the Remember me option was checked, the cookie will expire after 2
weeks. Up to four cookies will be set at a time, each with a specific purpose,
and each with the http only flag set to true, making it harder for attackers to
gain access to the session cookie value. We will now provide more information
on each of the cookies that are set by WordPress when a user logs in.

1. Plugins cookie: wordpress,[siteurl—hash]lﬂ (always)

e Contains: Clear text username|expiration date|random hash.
e Applies to: /[wordpress-root]/wp-content/plugins

e Purpose: Unknown. No information concerning the purpose of this
cookie could be obtained. Removing the cookie did not seem to have
an effect on any functionality.

2. Admin area cookie: wordpress_[siteurl-hash] (always)

e Contains: Clear text usernamel|expiration date|same hash as plugins
e Applies to: /[wordpress-root]/wp-admin

e Purpose: This cookie applies only to the administrative area and
allows a user to change their settings, view and edit their post, or
in the case of more privileged users: allow them to view, edit and
approve other users’ posts. Because contributed posts are always
shown sanitized in the administrative area, it is more unlikely that
this cookie could get stolen. Posts by users with the Editor user role
or higher have the unfiltered html capability, which means that
their posts will be shown unsanitized in front facing web pages. In
the administrative area, however, even posts by these users are shown
sanitized [73]. Ounly users with valid Logged in and Admin cookies are
allowed access to the administrative area. If an attacker is somehow
able to steal the Logged in cookie from the front facing web pages,
they still will not be able to access the administrative area for that
particular user.

3. Logged in cookie: wordpress_logged in_[siteurl-hash] (always)

e Contains: Clear text username|expiration date|different hash

e Applies to: /[wordpress-root]/

6[siteurl-hash] is an MD5 hash of the site URL

67

e Purpose: This cookie applies to the WordPress root directory and
allows the application to determine which user is logged in. All front
facing pages are kept completely separated from any administrative
functionality. The administrative area requires both the Logged in
and Admin cookies to be validated before access is granted to the
administrative area. This is possible because the Logged in cookie
applies to the WordPress root directory, meaning it will also be avail-
able in the administrative area. In case either of the cookies is invalid,
a user will automatically be logged out and redirected to the login
page [63].

4. Logged in cookie: wordpress_logged_in_[siteurl-hash] (under certain
circumstances)

e Contains: Clear text username|expiration date|same hash as logged
in

e Applies to: /[wordpress-home]/

e Purpose: This cookie is set in case the home page differs from the
install directory. For instance, the site home page might be located
at http://www.example.com/, while WordPress is installed in http:
//www .example.com/wordpress. By default, [wordpress-root] and
[wordpress-home]| are the same.

Other cookies that are set by WordPress are a wordpress_test_cookie and
a wp-settings-time- [UID]E] cookie. The first cookie is used to check if the
browser supports setting cookies. The second cookie is used to customize the
user’s view of the admin and main site interface [63].

Cookie values

Authorization cookie hashes are generated by using the wp_generate_hash func-
tion, which uses a keyed Hash Message Authentication Code (HMAC). Message
Authentication Codes are generally used to verify the data integrity and the
authenticity of a message [2]. It involves using a cryptographic hash function
in combination with a secret cryptographic key. In WordPress, authentication
cookies are generated in three steps:

1. A key is generated by concatenating the user’s username, a fragment of
their password, and the expiration time of the cookie. The result of this
concatenation is hashed using the hash hmac PHP function. The key used
during this step is generated by concatenating a secret AUTH_KEY and
AUTH_SALT, which are generated during installation. The cryptographic
function used is MD5.

2. A cookie hash is generated by concatenating the user’s username with the
expiration time of the cookie. The result is then hashed using hash_hmac
with the key generated in Step 1. The cryptographic function used is
MD5.

7[UID] is the user’s unique user ID

68

http://www.example.com/
http://www.example.com/wordpress
http://www.example.com/wordpress

3. The final cookie value is obtained and set by concatenating the user’s
username, the expiration time of the cookie, and the hash generated in
Step 2.

Because a secret key is used in conjunction with a cryptographic function, it’s
unlikely that an attacker would be able to guess the cookie value. For instance,
in [2] Mihir Bellare et al. provided an example of the infeasibility of a Birthday
Attack on the HMAC method when MD5 is used as the cryptographic function.
It would require an attacker to obtain the authentication of 264 blocks of data
using the same key. Furthermore, it would take 250000 years on a 1 Gbit/sec
communication link to process all the data required by such an attack.

4.1.3 Cross-site scripting

WordPress’s approach to mitigating cross-site scripting attacks works on mul-
tiple levels. Whether or not filters are applied is dependent on the user role of
the user creating the content. Users with the Editor role or higher have the
unsanitized html capability, which allows them to post content (pages, posts,
links, comments, etc.) that contain HTML and JavaScript code. This means
that data from these users is neither sanitized when being inserted into the
database, nor when it is retrieved and displayed on front facing pages. Con-
tributed content from users with less privileged roles will get properly sanitized,
both on insertion and retrieval. As suggested in the OWASP XSS Prevention
Cheat Sheet, WordPress provides multiple filtering methods to be used based on
the type of data and the HTML context in which it is used [6I]. These filtering
methods are listed in Table E.11

We will provide some more information about the wp_kses filter, whose
function signature can be found in Example

wp_kses($fragment, $allowed_html, $protocols = null);

Example 4.3: WordPress’s wp_kses function signatureﬁ

This function will sanitize the value in the first parameter, based on the allowed
HTML tags provided in the second parameter. An array of allowed HTML
tags based on a given context can be retrieved using the wp_kses_allowed_html
function, which will also supply a list of allowed attributes for each tag. The
third parameter is an optional array of allowed protocols. If this parameter is
not set, WordPress will use a default set of allowed protocols, namely: http,
https, ftp, ftps, mailto, news, irc, gopher, nntp, feed, telnet, mms, rtsp,
svn, tel, fax, and xmpp.

The wp_kses function will first remove all NULL characters from the input.
It will then remove any HTML JavaScript entities found in early versions of
Netscape 4, using the wp_kses_js_entities function, after which it will nor-
malize HTML entities. The second to last step is to call wp_kses_hook, allowing

8More information about the wp_kses function can be found at: http://codex.wordpress.
org/Function_Reference/wp_kses

69

http://codex.wordpress.org/Function_Reference/wp_kses
http://codex.wordpress.org/Function_Reference/wp_kses

any other sanitisation filters registered to the pre_kses hook to run. As a final
step, all HTML tags, including malformed HTML tags, will be split into an
element and an attribute list, after which all illegal attributes will be removed.

Source Target Function What It Does
Format Format
Plain text HTML esc_html Encodes special characters into

HTML entities and validates
string as UTF-8

esc_attr Same as esc_html. Used when es-
caping HTML attribute values

esc_textarea Encodes text for use inside a
<textarea> element

sanitize_text_field Sanitizes a string from user in-
put or from the database. Checks
for invalid UTF-8, converts sin-
gle < characters to entity, strips
all tags, removes line breaks, tabs
and extra white space, and strips
octets

HTML HTML wp_kses Makes sure that only the allowed
HTML element names, attribute
names, and attribute values will
occur. Any slashes from PHP’s
magic quotes must be removed be-
fore calling this function

Plain text JavaScript esc_js Escapes text strings for echoing in
JavaScript. It is intended to be
used for inline JavaScript

Plain text URL urlencode_deep Encodes an array of strings for use
in a URL. Calls the urlencode
PHP function on each element of
the array.

URL HTML esc_url Encodes characters as HTML en-
tities and strips out harmful pro-
tocols, such as javascript:

Table 4.1: WordPress’s Data Validation Filterd?]

4.1.4 Direct object references

As mentioned in Chapter [3, WordPress contains a system of Roles and Capa-
bilities. The default user roles are listed below and are ordered from most to
least allowed Capabilities:

9Source: [http://codex.wordpress.org/Data_Validation

70

http://codex.wordpress.org/Data_Validation

e Super Admins can access all features. This user role is only available
when running a network of WordPress sites.

e Administrators can access all the administration features within a single
site.

e Editors can publish and manage posts, including other users’ posts.
e Authors can only publish and manage their own posts.

e Contributors can write and manage their own posts, but cannot publish
them.

e Subscribers can only manage their profile.

4.1.5 Security misconfiguration
Default settings

There are no default accounts or passwords used by WordPress. WordPress
comes installed with two default plug-ins, and two default themes. Neither of
the plug-ins are active by default, and only one of the two themes is active.
By default, all PHP or MySQL error reporting is turned off during the boot-
strapping phase of a page load, so that no information is leaked through error
messages. If the WP_DEBUG constant (global variable) is set to true, all error
messages and warning will be displayed. By default, this constant is set to
false [64].

Updating core, plug-ins, and themes

When a new version of WordPress core is available, all authenticated users will
get a notification when they visit the administrative area. Anyone except a
user with the Administrator role will get a message to notify the site admin-
istrator about the update. An administrator is able to update the site either
manually or automatically. Updating automatically will replace all files except
the wp_config.php file containing the site’s configuration preferences [62]. It’s
recommended to back up the database and files prior to updating.

[] Akismet
You have version 2.5.6 installed. Update to 2 5.8. View version 2.5 8 details.
Compatibility with WordPress 3.4: 100% (according to its author)
Compatibility with WordPress 3.5.2; Unknown

Figure 4.1: WordPress update indicator for the Akismet plug-in

71

] — Twenty Eleven
g You have version 1.4 installed. Update to 1.5

Figure 4.2: WordPress update indicator for the Twenty Eleven theme

WordPress release cycle
WordPress is developed using a release cycle which lasts about 4 months. This
means that there should be about 3 planned releases per year. In reality, how-
ever, there is an average of about 10 core releases per year, and just over 34
days between releases. These in-between releases fix reported bugs and security
issues and will be discussed further in Chapter A release cycle follows the
following pattern [70]:

e Phase 1: Planning and securing team leads
e Phase 2: Development work begins

e Phase 3: Beta

Phase 4: Release Candidate

Phase 5: Launch.

4.1.6 Sensitive data exposure
User credentials

User credentials are stored in two different tables of the database. The wp_users
table stores user ID, username, password, nice name, e-mail address, website and
display name together with the date on which the user registered, an activation
key in case a password recovery request was made, and their current status.
The wp_usermeta table stores meta data about each user like preferences and
user role (see Section [4.1.4). Passwords are hashed using the portable fallback
MD5 algorithm in the Portable PHP Password Hashing Framework (phpass, see
Appendix. WordPress uses phpass’s final MD5 fallback by default in order to
remain compatible with older PHP versions [66]. Passwords are salted using an
8 byte string of random characters and stretched by performing 8192 iterations.
All other credentials are saved in plain text.

4.1.7 Function level access control

Before accessing certain sensitive resources, the current_user_can function is
called. Its function signature can be found in Example

function current_user_can($capability , $args);

Example 4.4: WordPress’s insert function signature and usagelﬂ

72

N O U e W N =

The current_user_can function will check if the current user has the appropri-
ate capability or role to access the requested resource. It takes two arguments,
the first of which is a string containing the necessary capability. The second ar-
gument is optional and is capability-dependent. For instance, if one wants to find
out of a certain user is allowed to edit a post with ID 123, the current_user_can
function will be called as follows: current_user_can(’edit_post’, 123). If
an unauthenticated user tries to access a restricted page, they will first be redi-
rected to the login page. After successfully logging in, they will be redirected to
the resource they were trying to access, whereupon user access will be checked.

4.1.8 Cross-site request forgery

In order to prevent Cross-site request forgery exploits, WordPress uses a form
of CSRF challenge tokens, called nonce [67], included in a hidden form field.
This token is valid for up to 24 hours and is generated by the wp_create_nonce
function, which is shown in Example [£.5]

function wp_create_nonce($action = —1) {
$user = wp_get_current_user () ;
$uid = (int) Suser—ID;
$i = wp_nonce_tick () ;
return substr(wp_hash($i . $action . $uid, ’nonce’),
~12, 10);

Example 4.5: WordPress’s wp_create_nonce function

A nonce tick is equal to ceil(time() / (86400 / 2))E The hash function
that’s used is the same HMAC hash function used to generate cookie values,
which uses secret keys generated during installation (see Subsection . Be-
cause of the workings of these functions, nonces are unique to the WordPress
install, to the user, to the action, to the object of the action, and to the time
of the action. If any of these things variables changes, the nonce is considered
invalid. If it is considered invalid, the nonce value will not be reset, however, as
suggested in the OWASP Cross-Site Request Forgery Prevention Cheat Sheet.

Another way that WordPress’s nonces are not up to par with OWASP’s rec-
ommendations is that they are not associated with the user’s current session [42],
nor are they invalidated if the user’s session ends. WordPress nonces are valid
for a 24 hour period, meaning that if a user logs out and back in within a 24
hour period of the nonce’s creation, it will still have the same value as beford 2]

10Source: |http://codex.wordpress.org/Function_Reference/current_user_can

1186400 seconds = 24 hours

12For a full security advisory of this vulnerability, visit http://www.webapp-security.com/
wp-content/uploads/2012/04/Wordpress-3.3.1-Multiple-CSRF-Vulnerabilities6.txt

73

http://codex.wordpress.org/Function_Reference/current_user_can
http://www.webapp-security.com/wp-content/uploads/2012/04/Wordpress-3.3.1-Multiple-CSRF-Vulnerabilities6.txt
http://www.webapp-security.com/wp-content/uploads/2012/04/Wordpress-3.3.1-Multiple-CSRF-Vulnerabilities6.txt

4.1.9 Components with known vulnerabilities

WordPress will show notifications to all registered users who enter the admin-
istrative area, when updates are available to either core or plug-ins. Less priv-
ileged users will be prompted to report this to an administrator, while more
privileged users will be able to install the updates from the administrative in-
terface. This subsection is structured somewhat differently from the others, as
we will answer the criteria set forth in the conclusion of Chapter [2] directly:

e Is there a versioning system in place where the current version
of an added component can easily be identified?
There are clear versioning systems in place indicating to the administrator
or anyone with the appropriate privileges which version of a certain plug-
in is currently in use, and the version number of the latest version. There
is also an indication that specifies to what extent the plug-in is compatible
with the current and latest version of WordPress core (Figure . There
is a comparable indication for any theme that might be installed. Plug-
ins and themes can also be automatically updated from the Plugin and
Themes pages in the administrative area.

e Are security issues disclosed publicly?
Security issues are not disclosed publicly, but there is a security issue
reporting system available where security issues in WordPress core can be
reported. Security issues found in plug-ins should be e-mailed to a special
e-mail address.

e Is there a project or security mailing list in place to warn users
about new vulnerabilities?
No, there is not. The only announcement given is when there is a new
version of WordPress core available.

e Are there any manual or automated checks in place in order to

detect vulnerabilities before the components are released pub-
licly?
Any plug-in uploaded to be hosted on the WordPress website, but will be
manually checked before being allowed. Plug-in developers can be e-mailed
and asked to provide more information. After approval, the developer will
be allowed to upload the plug-in to a Subversion repository, after which
the plug-in will appear in the plug-ins browser automatically [69].

e Is there any indication or warning given when searching for or
trying to install components with known vulnerabilities?
There is no indication when searching for and installing the plug-in from
the administrative area. A known vulnerable plug-in can be installed just
as easily as any other. There is a warning given, however, when visiting the
plug-in page in a browser. For instance, in the case of the Spicy Blogroll
example provided in Section the following warning is given:

This plugin hasn’t been updated in over 2 years. It may no
longer be maintained or supported and may have compatibility
issues when used with more recent versions of WordPress. -
Source: http://wordpress.org/plugins/spicy-blogroll/

74

http://wordpress.org/plugins/spicy-blogroll/

e How are vulnerability reports dealt with and how quickly do
flaws get fixed?
Fixing vulnerabilities in plug-ins is up to its developer. A vulnerability
report should be sent to both a special e-mail address for vulnerabilities
in plug-ins and to the developer, if their e-mail address is available. Oth-
erwise, issues can be reported in the support forum of the plug-in page.
Reported vulnerabilities in WordPress core should get reviewed within 24
hours.

e Are updates easy to install?
Yes, updates to either core, plug-ins, or themes are installed automatically
by the click of a button.

4.1.10 Redirects and forwards

WordPress often uses redirects and forwards to redirect users after performing
certain actions. For instance, when an unauthenticated user tries to access a
page that requires authentication, they will be redirected to the login page.
The URL they were trying to access is appended to the current URL in a GET
parameter. After successfully logging in, they will be redirected to the page they
were trying to access. Before rendering the page, however, the access control
mechanism will check if the user has the appropriate capabilities to access the
requested page. If no redirect parameter is supplied on the login page, the user
will be redirected to the administrative dashboard.

WordPress provides two redirect functions that can be used to redirect users
to different pages, in response to their actions on the site: wp_redirect and
wp_safe_redirect. The wp_redirect function can be used to redirect users
both internally and externally to a different domain. The wp_safe_redirect
function can also be used to redirect users to internal locations, but only allows
redirects to external domains if they are in a white-list of accepted domains. By
default, this list contains only the domain of the current website, meaning that
wp-_safe_redirect doesn’t allow redirects to any other domain.

In the conclusion of Chapter 2] we supplied multiple best practices to prevent
flaws in redirects and forwards. We will now show how WordPress lives up to
these best practices.

e Don’t use redirects and forwards — WordPress uses redirects and
forwards extensively throughout the application’s core.

e Don’t base redirects and forwards on user parameters — WordPress
rarely bases the redirect location on user parameters. When it does, the
wp_safe_redirect function is used to prevent redirecting users to external
domains.

e Make sure that the supplied value is valid — wp_sanitize redirect
is used for both redirect methods. This function sanitizes a URL for use
in a redirect by removing invalid characters. When wp_safe redirect is
used, the domain of the redirect URL will be checked against a white-list
of trusted domains.

75

(o2 I U R

-3

10
11
12
13

e Make sure the user is authorized to be redirected there — Access
control is not checked before a user is redirected, but rather when the
request to the redirect location is being processed. WordPress’s access
control mechanism is discussed in subsection [£.1.4l

4.2 Joomla

In Section [3:2] we provided a general introduction to the Joomla framework. In
this section, we will provide more technical details concerning the techniques im-
plemented to ensure safety against the security risks mentioned in the OWASP
Top 10 [IJ.

4.2.1 Injection

In Subsection [3.2.1] we explained that Joomla provides a Database Abstraction
Layer. We also briefly mentioned that although string queries are supported,
the preferred method of building queries is by query chaining. Query chaining
consists of connecting a number of methods, with each method returning an
object that can support the next method. The Joomla developers claim that
this improves readability and simplifies the code. Joomla queries do not use
prepared statements, but rather expect developers to actively sanitise untrusted
data. An example of query chaining can be found in Example

$db = JFactory :: getDbo();
$query = $db—>getQuery (true);
$query
—>select (array (’user-id’, ’profile_key’, ’
profile_value’, ’ordering’))
—>from ('#__user_profiles’)

—>where(’profile_key LIKE \’custom.%\’ ")
—>order (’ordering ASC’);

$db—>setQuery ($query) ;

$results = $db—>loadObjectList () ;

Example 4.6: Joomla query chaininﬁ

First a database connection is set up, by calling the JFactory: : getDbo function.
This function will return an instance of the JDatabaseDriver object, which is
used as an abstraction for the actual database connection. This object is then
used to create a new query. If the boolean value fed to the getQuery function

13Source: http://docs.joomla.org/J3.1:Accessing_the_database_using_JDatabase

76

http://docs.joomla.org/J3.1:Accessing_the_database_using_JDatabase

were false, the last query that was created will be returned in stead of a new,
blank query.

Each query object is made up of multiple query elements. Query elements
are an abstraction for SQL statements, clauses and keywords. When a query is
executed, all of these query elements will be put together to create a regular,
valid SQL query. Each method fills in a specific query element. When executing
a query, these query elements will be transformed into corresponding statements,
clauses and keywords. For instance, in the example above, the select method
is used to supply an array of column names to the SELECT query element of
the query. The from method will add a table name to the FROM clause of the
query, while the where method adds a conditional clause to the query. Finally,
the order method specifies the order in which to present the results. When
executed, the query in the example above will select all records from the user
profile table where key begins with custom.. All types of queries, including
INSERT, SELECT, UPDATE, DELETE, etc. use the same kind of query object, but
use their own specific object methods to transform the query object into the
desired query type.

Unfortunately, the Joomla API documentation is not consistent in the in-
formation they provide to developers. For instance, the example above makes
proper use of the Joomla DBAL, using query chaining to build and execute
queries [26]. On the other hand, examples shown in the Joomla documentation
on secure coding guidelines [32], are provided as shown in Example

//casting expected integer wvalues
$query = ’SELECT % FROM #__table WHERE ‘id‘=’ . (int) $id

b

4| //escaping string wvalues
$query = ’SELECT x FROM #__table WHERE ‘field * = * . $db
—>quote($field);

Example 4.7: Joomla secure coding guidelines: Constructing SQL queries{EI

This is inconsistent and could cause developers to write insecure code. Properly
escaping user data is not mentioned in the Joomla DBAL documentation [26],
which could cause developers to assume that proper sanitisation is being handled
automatically. As this is not the case, developers must make sure to escape
all untrusted data themselves, for instance by casting expected integer values
to int, and using the quote function. This function will add quotes around
string values and escape the contents of the string dependent on the underlying
database escaping scheme.

Because both the query chaining and regular query methods are allowed,
developers could potentially use queries in an insecure way. Example about
using the Drupal db_query in an insecure way is also applicable here. An equally
insecure SQL query could be fed into Joomla’s setQuery method, leaving no
reason and no way for the DBAL to block such a query.

MSource: http://docs.joomla.org/J3.1:Accessing_the_database_using_JDatabase

7

http://docs.joomla.org/J3.1:Accessing_the_database_using_JDatabase

Least privilege

Joomla core requires only the following privileges: SELECT, INSERT, UPDATE,
DELETE, CREATE, DROP, INDEX, ALTER, CREATE TEMPORARY TABLES, LOCK TABLES [50].

Suggested by Joomla! installation guidﬂ

Joomla doesn’t provide any official instructions for creating a database or database
user in their installation guide. Instead they refer their inexperienced users to
the web server provider. Joomla used to provide official instructionﬁ but these
were considered redundant and removed as of April 2013.

4.2.2 Authentication and session management

In Subsection [3.2.1] we provided more information about Joomla’s authentica-
tion and session management systems. We took a look at Joomla’s default user
registration procedure, and which user credentials are obtained. Then we anal-
ysed the password recovery system, to make sure that this is also implemented
securely. In this subsection, we will continue our analysis, taking a closer look
at Joomla’s session management mechanism.

Sessions

Joomla uses PHP sessions and session cookies. It uses default PHP session IDs,
which are stored in the database and associates with the user. Before a new
session is started, any existing session data is destroyed. Privileged users can
change the session lifetime from within the administrative interface. Sessions
are set to invalidate after 15 minutes of inactivity by default. Session cookies
are destroyed when a user closes her browser.

Joomla is comprised of two distinct areas: a public front facing interface
and a back end administrative interface. The front facing interface provides
some limited functionality to certain users, like creating, editing, or publishing
posts, while the back end interface provides administrative functionality to more
privileged users. A user has to explicitly authenticate in order to gain access to
the administrative interface. A different session will be started, and a different
session cookie will be set. This means a user could be logged in to the front facing
interface with one account and to the administrative interface with another.
This also means that a user has to explicitly log out of the administrative
interface, as only logging out on the front facing interface will not cause the
user to be logged out of the administrative interface.

4.2.3 Cross-site scripting

Joomla provides filtering techniques for both input and output filtering. Finding
the correct information on Joomla’s filtering techniques proved to be quite cum-

5http://help. joomla.org/content/view/37/132/
16http://docs. joomla.org/Goals: Installation

78

http://help.joomla.org/content/view/37/132/
http://docs.joomla.org/Goals:Installation

bersome. The primary search results always returned an outdated API docu-
ment [32], containing filtering techniques using a deprecated Joomla class, called
JRequest. This class accounted for the fact that PHP’s magic_quotes_gpc func-
tionality might have been enabled. It is for this reason that all core components
in Joomla 2.5.x still use JRequest. As of Joomla 3.0+ magic quotes is required
to be disabled. Now the JInput class is used for sanitising untrusted input data
instead [31]. The JInput class is a wrapper around PHP globalﬂ providing
automatic input sanitisation, based on a requested filter. The way a value is
retrieved using JInput is shown in Example [£.8

$jinput = JFactory:: getApplication ()—>input;

3| $jinput —>get (varname’, ’default_value’, ’filter’);

Example 4.8: Joomla JInput usage

The first parameter of the get function is the name of the variable to be re-
trieved. The second parameter is a default value to be returned if the variable
to be retrieved doesn’t exist. The final parameter dictates which filter must be
used. By default, the filter is set to CMD, but can be set to any of the follow-
ing [31]:

e INT or INTEGER — Returns the first positive or negative integer value found
in the input data, ignoring any non-integer values. If multiple integer
values are contained in the same input variable, for instance divided by
spaces, only the first integer will be returned. The value is casted to int
prior to being returned.

e UINT — Does the same as the INT or INTEGER filter, but returns the modulus
of the integer value, ensuring only positive integers are returned.

e FLOAT or DOUBLE — Returns the first positive or negative floating point
value found in the input data, ignoring any non-numeric characters except
the floating point. If multiple floating point values are contained in the
same input variable, for instance divided by spaces, commas, or dots, only
the first matched floating point value will be returned. The value is casted
to float prior to being returned.

e BOOL or BOOLEAN — Casts the input to a boolean value. Non boolean input
will automatically be converted into a true or false value.

e WORD — Makes sure that the input data is a word. Only alphabetic charac-
ters™ and underscores are allowed. All other characters will be removed
from the input data.

e ALNUM — Makes sure that the input data is alphanumeric. Only alphabetic
characters and numbers are allowed. All other characters will be removed
from the input data.

17GET, POST, COOKIE, etc.
18characters a through z, and A through Z

79

e CMD — Removes any non-alphanumeric characters, except underscores, dots,
and hyphens from the input data. Whitespaces at the beginning of the
value are trimmed prior to being returned.

e BASE64 — Makes sure that the input data is a valid Base64 encoded value.
Any non-alphanumeric characters, except =" will be removed.

e STRING — Tries to convert the input data to plain text before removing all
disallowed and malformed HTML tags and attributes from the input.

e HTML — Removes all disallowed and malformed HTML tags and attributes
from the input data.

e ARRAY — Casts the input data to an array.
e PATH — Makes sure that the input data is a valid path.
e RAW — No filtering is applied. The original input data is returned as is.

e USERNAME — Makes sure the input data is a valid username. All disallowed
ASCII characters will be removed from the input datalﬂ

Most of the filtering techniques rely on matching the input data against a regu-
lar expression, either ignoring or removing disallowed characters. The filtering
techniques used for string and HTML filtering, however, use input sanitisation
techniques based on black-listing disallowed tags and attributes. Different kinds
of users have different privileges when it comes to input validation. In Subsec-
tion [£:2.4] we will provide more information about these different kinds of users,
called User Groups. For now, we will just list the kinds of filter types available
in Joomla by default, and which User Groups they apply to by default:

e Default Black List — Input data is filtered using a default black list of
disallowed HTML tag and attribute names. Default tags include applet,
iframe, script, etc. and will be removed from the input data. Default
black listed attributes include action, background, codebase, etc. Addi-
tional black listed tags can be added to Groups by more privileged users.
User Groups that use this filtering type by default are Guest, Manager,
Author, Editor, and Publisher.

e Custom Black List — Input data is filtered using a custom black list of
disallowed tag and attribute names. Custom tags and attributes can be
supplied in the same way as the additional black list items for the Default
Black List, but now the tags and attributes in the default blacklist will be
ignored. No User Groups use this type of filtering by default.

e White List — Input data is filtered using a custom white list of supplied
tags and attributes. These tags and attributes must be supplied by a more
privileged user. Items in the Default Black List will be ignored. There
is no Default White List. No User Groups use this type of filtering by
default.

19 Any character from the input data that matches to the following regular expression is
removed: /[\x00-\x1F\x7F<>"’%&]/i

80

e No HTML — Input data is stripped of all HTML tags when it is saved.
This filtering type applies to the Registered User Group.

e No Filtering — Raw input data will be used without being filtered at
all. This filtering type applies to the Administrator and Super Users User
Groups.

Tag and attribute names are converted to all lower case characters before being
compared to the disallowed tags and attributes in the black list, and the allowed
tags in the white list. This makes sure that a malicious user will not be able
to trick the system by randomly capitalising certain characters in the tag or
attribute names. Attribute values are stripped of disallowed characters and
checked for malformedness.

4.2.4 Direct object references

In Subsection of the previous chapter, more general information was pro-
vided about Joomla’s mechanism to distinguish user privileges from one another.
In this subsection, we will provide even more information, specifically concerning
the hierarchical system of User Groups.

More on User Groups

By default, Joomla contains nine User Groups. Which Actions are allowed is
dependent on the Permissions defined on each Action of a certain Group and
its parent. Access Levels are automatically inherited down the hierarchy. For
example, a user of the Manager User Group and its children are allowed to
see an overview of all registered members. This is defined as an Access Level.
The Administrator User Group, who is the child of the Manager User Group,
inherits the Access Levels from its parent, allowing its members to view the
list of registered users. The Administrator User Group also inherits Permis-
sions from the Manager User Group, but redefines certain Permissions allowing
Administrators to not only view a list of registered users, but to edit these
user’s credentials as well. By default, Joomla contains the following hierarchy
of Groups [33]:

- Public — Defines the top level of the hierarchy. This top level User Group
is assigned to the Public Access Level, making all Public content visible
to all Groups.

- Guest — The Guest Group is assigned to the Guest Access Level.
Unauthenticated users are considered Guests.

- Manager — A member of the Manager Group can access the back
end administrative area through the administrator interface. Their
Permissions and Access Levels are restricted to content management:
they can create or edit any content, and access back end features such
as adding, deleting, and editing Sections and editing the Front Page.
Managers are not allowed access to any user management controls,

81

and are denied the ability to install components and modules. If a
manager logs in through the front end interface, they are considered
Publishers, with the same Permissions and Access Levels.

- Administrator — This Group is allowed access to administrative
functionality. Because an Administrator inherits from a Man-
ager, they have at least the same Permissions in the back end
interface as a Manager. Administrators, however, can also set
options, install and delete components, and have access to user
management controls. When an Administrator logs in through
the front end interface, they will be treated like a Publisher, just
like a Manager would.

- Registered — Members of the Registered User Group are allowed
to log in through the front end interface. Registered users can’t
contribute content, but may be allowed access to areas such as a
forum or a download section. Authenticated users are placed in the
Registered Group by default.

- Author — A member of the Author Group can post content
through the front end interface, but is not allowed access to the
back end administrative interface. They can submit content,
but cannot directly publish any content. Content submitted by
Authors must be approved by more privileged users. Authors can
edit their own posts, but only after they have been published.

- Editor — This Group allows its members to post and edit any
content from the front end interface, including other people’s
content. They can also edit unpublished content, but cannot
publish any content.

- Publisher — This Group allows its members to post, edit
and publish any content from the front end interface, in-
cluding other people’s content. Publishers can review and
edit content, change publishing options, and determine
when an article may be published. Publishers have the
highest privileges of all front end users, without having
access to the back end interface.

- Super Users — Super Users are allowed access to all administrative
functionality, and are granted full access to all areas and content.
Super Users can block users and change users credentials. When a
Super User logs in through the front end interface, they are consid-
ered Publishers.

4.2.5 Security misconfiguration
Default settings
As a security feature, Joomla requires the installation folder to be removed

after installation. The installation procedure will not continue as long as the
installation folder is not removed. If someone were able to access the installation

82

folder, they could potentially overwrite the installation by running the installer
again [23].

Joomla doesn’t contain any default accounts or passwords. A primary Super
User account is created when Joomla is installed, but the person installing
Joomla has full control over their username, password, and other credentials.
By default, Joomla comes installed with a whole range of extensions, ranging
from login Modules to layout Templates.

Joomla contains a Debug System which displays diagnostic information, lan-
guage translation, and SQL errors. By default, the Debug System is disabled,
ensuring that no information can leak through error messages. Joomla recom-
mends leaving this option disabled on sites that are live and accessible by others,
but provides the option to display debug information for development purposes.

As mentioned previously in Subsection Joomla contains a system of
User Groups, Actions, and Permissions that define which types of users can
perform certain actions on the website. These settings are set securely by de-
fault, but they are highly customisable. For instance, care must be taken that
no administrative functionality is granted to certain User Groups by accident.

Updating core, plug-ins, and themes

Extensions can be updated from the administrative area by users with the right
Permissions. The Update section of the Fxtensions Manager will display a list
of Extensions that require updating, and allows one to perform an in-place
update without having to upload and install the updated files directly. This
system makes keeping core and extensions up to date significantly easier for
experienced and inexperienced users alike.

Joomla release cycle

Joomla is developed using a fixed release cycle. Every six months, the Joomla
project releases a new minor or major version of Joomla [34]. Each released
version is supported for a limited amount of time, whereby each fourth release
is assigned long term support:

e STS (short term support) releases are supported for seven months.
Their support ends one month after the next release of Joomla is released.
They are one click upgrades to the next STS or LTS version.

e LTS (long term support) releases are supported for twenty-seven months.

STS versions are released in between LTS releases and introduce new features
and changes that potentially break compatibility with the previous LTS. The
LTS release that’s released at the end of the cycle finalizes the work of the three
STS releases. Extra updates and released versions are considered maintenance
updates and include fixes for security issues. Usually, multiple vulnerability
issues are fixed in a single maintenance update. There is an average of about
7.5 releases per year, and just above 42 days between releases of Joomla core,
including maintenance updates.

83

4.2.6 Sensitive data exposure
User credentials

Joomla stores users’ password using salted MD5 hashes. Other user credentials
including full name, username, e-mail address, etc. are stored together with the
password in the users table. The primary Super User account does not have
ID 1, but rather is given a random ID. Both Drupal’s and WordPress’s primary
account have ID 1, which makes these account easier for attackers to target, as
they know for certain which ID is associated with the primary administrator
account.

A code snippet that shows how plain text passwords are hashed is shown in

Example

$salt = JUserHelper :: genRandomPassword (32) ;

3| $crypt = JUserHelper :: getCryptedPassword ($array [’password
"1, $salt);

4| $array ['password’] = $crypt . ':’ . $salt;

Example 4.9: Code snippet of Joomla’s password hashing algorithnﬂ

Firstly, a salt value with a length of 32 characters is randomly generated, us-
ing the genRandomPassword function. The getCryptedPassword function will
append the salt to the plain text password, and hash the result using MD5.
Finally, the salt is appended to the resulting hash, separated with a ”:” sym-
bol, to indicate where the hash ends and the salt begins. This result of this

concatenation is then stored in the database.

As Joomla core contains no mechanism to limit the number of login at-
tempts, and seeing as MD5 is a very fast hashing algorithm, this method of
password hashing is very prone to brute force attacks. Unlike Drupal or Word-
Press, Joomla doesn’t use a password hashing framework like phpass, which
uses stretching in conjunction to salting to make brute force attacks slower (see
Appendix . This means that brute force attacks could crack a weak password
very quickly.

4.2.7 Function level access control

As mentioned in Subsection Joomla contains a very extensive access con-
trol mechanism comprised of User Groups, Access Levels, Actions, and Permis-
sions. Access Levels define which item@ a user can view, while Actions and
Permissions define what a user can do. Any time a user wants to view a certain
item, the application checks whether or not the user has the right privileges

20Source: libraries/joomla/user/user.php
21 Articles, menu items, modules, etc.

84

and acts accordingly. Checking if a user has the right privileges is done as
follows [25]:

e Create a list of all the Access Levels that the user has access to, based on
all Groups that the user belongs to. Also, if a Group has a parent Group,
Access Levels for the parent Group are also included in the list.

e Check whether the Access Level for the item is on that list. If yes, then
the item is displayed to the user. If no, then the item is not displayed.

The Permissions system defines what a user can do. When a user wants
to initiate a specific action against an item, the system checks the permission
for this combination of user, item, and action. If it is allowed, then the user
can proceed. Otherwise, the action is not allowed [25]. Access control is imple-
mented using the authorise function, whose function signature can be seen in

Example

1‘function authorise ($action, $assetname = null);

Example 4.10: Joomla access control function signature: authorise

The first parameter is the name of the action to check for permission. The second
parameter is optional and defines the name of the asset on which to perform
the action. The function will first check if the current user is the primary Super
User. If this is the case, it will return true no matter what. Otherwise, it
will check if the current user has the appropriate Permission defined on the
requested Action. If the requested Action doesn’t exist, or the user doesn’t
have the appropriate Permissions, access will be denied by default, making sure
that the access control mechanism fails securely.

4.2.8 Cross-site request forgery

Joomla attempts to protect against CSRF by inserting an anti-CSRF token into
each POST form and each GET query string that is able to modify something
in the Joomla system [28]. Tokens change with each session and each user. A
token is created using the getFormToken function. The code that is used to
generate an anti-CSRF token is shown in Example

1| $hash = JApplication :: getHash ($user—>get(’id’, 0)
$session —>getToken ($forceNew)) ;

Example 4.11: Joomla anti-CSRF token generation

The getToken function will either create a new form token, or reuse an old
one, based on the value of the forceNew variable. The token generated by this
function is created by concatenating a randomly generated 32 character string
to the current session name, and hashing the results using MD5. This generated
token is then concatenated to the current user’s ID. It is then used as the seed

85

value for the getHash function. This function will concatenate the seed value to
a random application secret, which is generated when Joomla is installed. The
result of the concatenation is hashed using MD5 and returned. After all these
steps are performed, the form token will be ready to use.

As suggested by the OWASP Cross-Site Request Forgery Prevention Cheat
Sheet, Joomla’s anti-CSRF tokens are associated with the current session. If
the token is incorrect, the request will be ignored but the token will not be
invalidated or regenerated.

4.2.9 Components with known vulnerabilities

As mentioned in Subsection Joomla contains five types of extensions.
Each of these types of extensions could potentially open security holes in the
web application. It’s important that these extensions can be kept up to date
easily, so that the website’s maintainers are encouraged to do so. We will now
answer the criteria set forth earlier in the conclusion of Chapter [2]

e Is there a versioning system in place where the current version
of an added component can easily be identified?
The Joomla administrative area contains an FEztension Manager. This
Extension Manager provides a full overview of all installed Components,
Modules, Plug-ins, Templates, Languages, etc. with their version numbers
clearly visualised. Figure [£.3] shows part of the Extension Manager.

[] Name = Location Status Type Version

[] Authentication Site (] Flugin 300
- LDAF

[] Banners Site W Module 3.0.0

[] Banners Administrator v Component 300

Figure 4.3: Joomla Extension Manager

e Are security issues disclosed publicly?
All known vulnerabilities are listed in the Joomla Vulnerable Extensions
List (VEL) [29]. This list contains vulnerability reports for Joomla core
and extensions, but does not claim to be an up to date or complete list
The Joomla Vulnerable Extensions List states the following:

1. We do NOT promise to test or validate these reports.

2. We do NOT guarantee the quality or effectiveness of any updates
reported to us or listed here.

86

Information is gathered from other sources, like vulnerability databases
(see Section and compiled into the Joomla VEL.

e Is there a project or security mailing list in place to warn users
about new vulnerabilities?
People can register to the Joomla! Security - Vulnerable Extensions or
Joomla! Security - Recently Resolved Vulnerable Extensions mailing lists
in order to stay informed about recent vulnerabilities, or receive notices
when vulnerabilities have been resolved.

e Are there any manual or automated checks in place in order to
detect vulnerabilities before the components are released pub-
licly?

The added extension will be checked according to four checklists. More
information on this process can be found in Subsection [3.2.1

e Is there any indication or warning given when searching for or
trying to install components with known vulnerabilities?
Vulnerable components are removed from the extensions repository un-
til the vulnerability has been resolved. Once it has been resolved, the
extension can be resubmitted.

e How are vulnerability reports dealt with and how quickly do
flaws get fixed?
Joomla has a Security Strike Team which focusses solely on managing
and improving Joomla security. Once a vulnerability has been confirmed,
a rough timeline will be sent to the person reporting the vulnerability,
and they will be asked not to disclose the vulnerability to anyone else.
A go-public date will be determined for announcing the vulnerability and
the fix, before publicly announcing it to the world.

e Are updates easy to install?
As mentioned earlier, Joomla contains an Extension Manager, which makes
installing updates much easier. Extensions that require updating will be
shown in a list, where they can be updated with the click of a button.

4.2.10 Redirects and forwards

Joomla makes use of redirects and forwards to direct users to different parts of
the website. For instance, after successfully logging in, a user will be redirected
to the home page of the website. If an unauthenticated user tries to access a
resource that requires authentication, they will be prompted to log in before
being redirected to the resource they were trying to access. Before the resource
is shown, however, Joomla’s Access Levels mechanism (see Subsection [4.2.4)
will first check if the user has the appropriate privileges to view the requested
resource and act accordingly.

Joomla’s redirect functionality is implemented in the aptly named redirect
function. This function can redirect users to both internal and external URLs.
The function will first check if the URL is a relative internal link. If this is
the case, the relative internal link will transformed into an absolute link before

87

proceeding. The URL will be checked for validity. If the URL is invalid, the
function will attempt to fix the URL. If the URL is valid, the user will be
redirected to that location.

e Don’t use redirects and forwards — Joomla uses redirects and forwards
extensively throughout the application.

e Don’t base redirects and forwards on user parameters — Redirects
are sometimes based on GET parameters in the URL. The only require-
ment is that they are encoded in Base64, but redirection to an external
domains is not blocked.

e Make sure that the supplied value is valid — The supplied URL
will be checked for validity in the redirect function, prior to being used.
Relative internal URLs will be transformed into full absolute URLs, and
an attempt will be made to fix malformed URLs.

e Make sure the user is authorized to be redirected there — Access
control is not checked before a user is redirected, but rather when the
request to the redirect location is being processed. Joomla’s access control
mechanism is discussed in Subsection 2.7

88

© 00 J O U A W N

_ =
N = O

4.3 Drupal

In Section we provided a general introduction to the Drupal framework. In
this section, we will provide more technical details concerning the techniques im-
plemented to ensure safety against the security risks mentioned in the OWASP
Top 10 [1J.

4.3.1 Injection

In Subsection of the previous chapter, we mentioned that Drupal contains
a Database Abstraction Layer to ensure that Drupal can be used with multiple
kinds of database systems. In this subsection we will provide more technical
information about Drupal’s database API and how security risks concerning
injection attacks are handled.

Prepared statements

Most Drupal SELECT queries either use db_query () or db_query_range () [10].
These queries are based on PHP prepared statements (Section , making
their usage comparable to prepared statements, but with some minor differences.
In Example[d.12] two ways of selecting a list of the most recent 10 nodes authored
by a given user are shown. Line 1 show the use of an unsafe static query, while
line 6 shows the use of Drupal’s db_query_range () method.

$basic_sql_query =
"SELECT n.nid, n.title, n.created
FROM node n
WHERE n.uid = $uid LIMIT 0, 10;”

$result = db_query_range (
'SELECT n.nid, n.title, n.created
FROM {node} n
WHERE n.uid = :uid’,
0, 10,
array (’:uid’ => $uid));

Example 4.12: Usage of Drupal’s db_query_range () method

We will now explain each parameter of this method in some more detail. The
first parameter is the SELECT statement and is quite self-explanatory. Apart
from a specific syntactical difference, Drupal’s method is identical to a normal
prepared statement. Drupal’s method uses curly braces around the node table
name in order to provide table prefixing, for when multiple installations of
Drupal are run from the same database [8].

89

© 00 J O Ut A W N

D UL R W N

Instead of inserting the uid variable directly into the query, a named place-
holder (:uid) is used, which will be filled in later. The second and third argu-
ments are in place to provide an abstraction to the LIMIT syntax, as this may
vary between database servers [I0]. The last parameter is an array of all the
named placeholders and the values that should be inserted into these placehold-
ers. The database driver handles inserting the values into the query in a secure
fashion, which means a value should never be quoted or escaped (Section
before being inserted into the query [10].

INSERT, UPDATE, and DELETE queries need special care in order to
behave consistently across all different databases. Therefore, they use a special
object-oriented APIE for defining a query structurally [10]. Exampleshows
the usage of the db_insert method. UPDATE or DELETE statements use
a similar pattern, but the db_update() and db_delete() methods are used
instead respectively.

$basic_sql_query =
"INSERT INTO node (nid, title , body)
VALUES (1, ’'my title’, ’'my body’);”

$fields = array(
"nid”’ = 1,
"title’ = ‘'my title’,
"body’ => ’‘my body’);
db_insert ('node’)—>fields ($fields)—>execute () ;

Example 4.13: Usage of Drupal’s db_insert() method

Unfortunately, there is nothing stopping a developer from using the db_query ()
and db_query_range() methods in an insecure way. This issue is one of the
main causes for SQL injection vulnerabilities in 3rd party modules and will be
explored further in Section [£:3.9] Example [£.14] shows an insecure — but valid —
way of using the db_query () method.

$searchterm = $.GET|[’searchterm’|;

$result = db_query (
"SELECT nid, title
FROM {node}
WHERE title LIKE '%$searchterm%’”)—>fetchAssoc ()

i

Example 4.14: Insecure usage of Drupal’s db_query() method

Because this is a valid SQL statement, there is no reason and no way for Drupal’s
DBAL to block the execution of this query, despite it being susceptible to SQL
injection. Internally, the query will still get translated into a prepared statement,
but as it has already been altered before it gets to this point in execution, turning

22https://drupal.org/developing/api/database

90

https://drupal.org/developing/api/database

the query into a prepared statement no longer provides any security benefits.
For instance, injecting the following string will enable an attacker to access all
usernames and passwords from the users table: ”? UNION SELECT name, pass
FROM users -- 7 (notice the trailing space).

Least privilege

Drupal core requires only the SELECT, INSERT, UPDATE, DELETE, CREATE, DROP,
INDEX, ALTER, LOCK TABLES and CREATE TEMPORARY TABLES privileges [14].

Suggested by the Drupal installation guidﬂ

Drupal differentiates between certain database/user creation methods. When
using phpMyAdmin they suggest granting ALL PRIVILEGES to the database user
and even propose just using the root user’s credentials for the new database.
However, in the instructions for creating a new database/user from the MySQL
command line, they suggest limiting the required privileges to the ones stated
above.

4.3.2 Authentication and session management

In Subsection [3:3.1] we provided more information about Drupal’s authentica-
tion and session management systems. First we took a look at Drupal’s default
user registration procedure, and which user credentials are obtained. Then we
examined the password recovery system, to make sure that this is also imple-
mented securely. In this subsection, we will take a look at Drupal’s session
management mechanism.

Sessions

Drupal’s session management system uses PHP sessions and session cookies,
using the database as session handler. Session lifetime is set to 200000 seconds,
or just over 55 hours. This means that if a user is inactive for over 55 hours, the
session will expire. The cookie lifetime is set to 2000000 seconds, just over 23
days, which is the maximum lifetime of a session. These numbers can be changed
in the settings.php file, but are not configurable through the administrative
interface. After the maximum lifetime has elapsed, the session will expire and
the user will have to re-authenticate. The httponly flag is set, making it harder
for attackers to gain access to the session cookie value. Sessions are generated
upon login and destroyed upon logout [22] or if a user gets blocked. Session IDs
are destroyed and regenerated when a user changes their password or when user
permissions change.

Session ID

The session ID is generated by appending a string of 55 randomized bytes,
generated by Drupal’s drupal_random bytes function, to the return value of
PHP’s uniqid function. The uniqid method is supplied with a random prefix

23http://drupal.org/documentation/install

91

http://drupal.org/documentation/install

generated by PHP’s mt_rand function, which generates a random integer value
between 0 and the value returned by mt,getrandmaﬂ The more_entropy
boolean is set to TRUE, causing the uniqid function to generate a 23 character
long unique identifier, rather than the 13 character long identifier that’s gener-
ated by default. This identifier is appended to the supplied prefix. The result
of concatenating the return values of the uniqid and drupal_random bytes
functions is finally hashed using SHA-256 and encoded in Base64, using the
drupal_hash base64 function. The code used to generate the session ID is

shown in Example

$session_id = drupal_hash_base64 (
uniqid (mt_rand () , TRUE) . drupal_-random_bytes(55));

Example 4.15: Session ID generation in Drupal 7.x

Because the session ID is generated randomly, it should be different each time
a user logs in. Drupal sets only one cookie that’s used on both front facing
web pages and the administrative area. This is in contrast to WordPress, for
example, which sets multiple cookies, each serving a certain purpose (see Sec-
tion . Drupal’s administrative area is not kept separate from the front
facing web pages, but rather integrated in a hybrid view of administrative func-
tionality and front facing web pages. This makes it impossible for Drupal to
implement a system whereby an Admin cookie could be set in conjunction with
a Logged in cookie, like in WordPress.

4.3.3 Cross-site scripting

Drupal’s approach to mitigating cross-site scripting attacks can be summarized
as store the original; filter on output [54]. This means that it is false to assume
that the data stored in the database is safe and that it should not be trusted.
Data stored in the database must first be explicitly filtered before rendering it
in the web page. This could prove extremely dangerous as a core or module
developer could potentially forget to do proper sanitizing on the returned data.
Drupal contains several API functions for filtering output to prevent XSS at-
tacks, each applying to a different use case (HTML context), and each using
white-list input validation or replacement patterns. These filters can be found
in Table Reflected XSS attacks can be mitigated using the same filters,
but could be easier to forget as properly handling GET and POST variables is not
mentioned in the API.

24The return value of mt_getrandmax on both 32- and 64-bit versions of OSX, Linux,
and Windows 7 is equal to 2147483647 (=~ 23'). Source: http://be2.php.net/manual/en/
function.mt-getrandmax.php

92

http://be2.php.net/manual/en/function.mt-getrandmax.php
http://be2.php.net/manual/en/function.mt-getrandmax.php

Source Target Function ‘What It Does
Format Format

Plain text HTML check_plain Encodes special characters into
HTML entities and validates
strings at UTF-8

HTML HTML filter_xss Removes characters and constructs
that can trick browsers. Makes
sure that all HT ML entities are well
formed. Makes sure that all HTML
tags and attributes are well formed,
and makes sure that no HTML tags
contain URLs with a disallowed
protocol (e.g. JavaScript)

Rich text ~HTML check_markup Runs text through all enabled fil-
ters

Plain text URL drupal_encode_path Encodes a Drupal path for use in a
URL

URL HTML check_url Strips out harmful protocols, such

as javascript:

Plain text MIME mime header encode Encodes non-ASCII, UTF-8 en-
coded characters

Table 4.2: Secure Conversions from One Text Type to Another™]

These filters align with the rules set forth in the OWASP Cross-site Scripting
Prevention Cheat Sheet, meaning they should be used based on the HTML
context the user supplied data will appear in. We will take a closer look at the
filter_xss function, as this filter was built specifically to prevent XSS attacks
coming from input that’s expected to contain HTML content. The function
signature of filter xss is as follows:

9)

filter_xss ($string, $allowed_tags = array(’a’, ’em’,

strong’, ’cite’, ’blockquote’, ’code’, 'ul’, ’ol’, ’li

7’ 7(1]‘77 ’dt” 7dd7))

Example 4.16: Drupal’s filter_xss function Signatur@

25Source: Pro Drupal 7 Development, third Edition
26 More information about the filter_xss function can be found at: https://api.drupal.
org/api/drupal/includes’21common.inc/function/filter_xss/7

93

https://api.drupal.org/api/drupal/includes%21common.inc/function/filter_xss/7
https://api.drupal.org/api/drupal/includes%21common.inc/function/filter_xss/7

The allowed_tags variable is an array of allowed tags that the value of the
string variable will be checked against. The filter_xss function performs a
number of operations to ensure that XSS is not possible. The most important
operation is removing all tags from the input string that are not in the white-
list allowed_tags array and removing any tag attribute starting with orﬂ as
these are most likely JavaScript event-handler definitions [54]. It further makes
sure the text being filtered is valid UTF—@ (to avoid a bug in Internet Explorer
6), removes odd characters (such as NULL) and makes sure that HTML entities
(such as &) are well-formed [54].

Another thing worth mentioning is that, when identified, common developer
errors that lead to XSS vulnerabilities are mitigated by building safer defaults.
For example, a page title function in Drupal 6 is the source of many XSS holes
due to a lack of proper escaping. In Drupal 7 this function escapes output by
default [22].

4.3.4 Direct object references

Drupal often provides direct object references in the URL, such as unique iden-
tifiers of user accounts or content. For instance, the original administrator ac-
count always has ID #1. This means anyone could try to access the profile page
of the administrator account by going to http://www.example.com/user/1,
but anyone other than the administrator will get an Access denied - You are
not authorized to access this page error. This is due to Drupal’s access control
mechanism preventing unauthorized requests. This mechanism is based on the
system of Roles and Permissions, which was mentioned in Subsection [3.3.1

Unauthorized functionality is hidden from unauthorized users through pre-
sentation level access control. Drupal doesn’t only provide this level of access
control, however. In Subsection [£.3.7, we will take a closer look at Drupal’s
function level access control mechanism and how it’s used to stop unauthorized
requests.

4.3.5 Security misconfiguration
Default settings

Drupal doesn’t use any default accounts or passwords. An administrator ac-
count is created when Drupal is installed. Account credentials are supplied
by the person installing the system. Drupal comes installed with a variety of
modules. Most of these modules are enabled by default, and are required to
use and customize the CMS. Pre-installed modules include a Search module, for
providing search functionality, an Update manager module, which can be used to
securely install or update modules and themes via a web interface, and a User
module, which can be used to manage the user registration and login system.
By default, only two of the four pre-installed themes are enabled. The first is

27e.g. onclick or onblur
28UTF-8 is a widely used variable-width encoding that can represent every character in the
Unicode character set

94

http://www.example.com/user/1

the site’s default theme, used for front facing web pages. The second theme is
used to show administrative functionality to more privileged users.

By default, Drupal is set so that all error messages are displayed, but recom-
mend that sites running on a production environment do not display any errors.
Users with the appropriate permissions can change which error messages are
displayed, or can disable displaying error messages completely. This can be
done in the Configuration administration settings.

As mentioned in Section [£:3.4] Drupal provides a Roles and Permissions
system that enables an administrator to define which users have which privi-
leges. These settings are set securely by default, but the Roles and Permissions
system is highly customisable, enabling an administrator to change any per-
mission for any type of user. For instance, settings could be changed so that
unauthenticated users have access to administrative functions or to full HTML
capabilities when entering comments.

Updating core, plug-ins, and themes

During installation, an option can be checked whether or not Drupal should
check for updates automatically, and if e-mail notifications should be sent if an
update is available to either Drupal core or modules.

Drupal update instructions state that core updates must occur manually by
deleting the old files and replacing them with the new. The Drupal Upgrading
Handbook states that installing minor updates is not required, but if a security
update is released, it should be installed as soon as possible. Updates that fix
security issues and bugs are considered minor updates. Minor updates do not
require that each individual update in between versions should be installed. For
instance, one could update directly from Drupal version 7.1 to 7.16 without hav-
ing to install intermediate updates [6], making the update procedure somewhat
less cumbersome. More information about how Drupal handles security issues
will be addressed in Section 3.9

Drupal contains a Warning System for displaying warnings when important
updates to core and modules are detected, or if there are problems with the
current configuration. When Administrators visit the Configuration part of the
administrative area and there are important issues that require the Administra-
tor’s attention, the Warning System will display a message comparable to the
one shown in Figure [£.4]

95

@ » There is a security update available for your version of Drupal. To ensure the security of
your server, you should update immediately! See the available updates page for more
information and to install your missing updates.

+ There are security updates available for one or more of your modules or themes. To
ensure the security of your server, you should update immediately! See the available
updates page for more information and to install your missing updates.

+ One or more problems were detected with your Drupal installation. Check the status
report for more information.

Figure 4.4: Drupal Warning System for important issues

Drupal release cycle
New stable releases of Drupal core are scheduled to occur within particular
release windows [11]:

e A bug fix release window is on the first Wednesday of each month.

e A security release window is on the third Wednesday of each month.

A release window doesn’t necessarily mean that a release will be made on that
date, but it gives Drupal users a general idea of when to look out for new
releases. Exceptions to the schedule may be made in case of severely critical
security vulnerabilities being actively exploited. In reality, there is an average
of about 9 core releases per year, and just under 40 days between releases.

4.3.6 Sensitive data exposure
User credentials

Drupal versions up to 6 used unsalted MD5 to store users’ passwords. From
Drupal version 7 onwards, a more secure password encryption method is used.
Drupal’s current password encryption method is based on the Portable PHP
Password Hashing Framework, or phpass (see Appendix@, but uses SHA-512
instead of MD5 as the underlying cryptographic function. The resulting hash is
encoded using Base64 and appended to the initial salt value, which starts with a
S identifier to indicate the use of SHA-512. The creator of phpass argues that
Drupal’s decision to use SHA-512 was unnecessary and doesn’t provide any
additional technical or security benefits, but rather was changed for political
reasons due to MD5’s bad reputation [49]. Indeed it is true that MD5 is not
collision resistant and is therefore considered unsafe, but the main problem
comes from the fact that MD5 is a very fast algorithm, which makes brute force
attacks easier to perform. By using the stretching technique in conjunction with
a random salt value, a brute force attack is made harder because it would take
a much longer time to perform. A snippet of the code needed to generate the
salted and stretched password hash is shown in Example

96

N O Ut R W N =

$hash = hash($algo, $salt . $password, TRUE);
do {
$hash = hash($algo, $hash . $password, TRUE);
} while (—$count);
$len = strlen($hash);
$output = $setting . _password_base64_encode($hash, $len)

b

Example 4.17: Password hash generation in Drupal 7.)@

4.3.7 Function level access control

Drupal hides functionality from unauthorized users through presentation level
access control. For instance, administrative functionality is not shown to users
without the proper permissions. Presentation level access control alone is not
enough. Malicious users might try to access certain resources directly, or by
tampering with user data supplied to the web application. Fortunately, Drupal
also contains function level access control, made possible by the roles and per-
missions system discussed in Subsection [4.3.4]

When accessing a page or resource, user permissions are checked and a de-
cision is made whether or not to allow access to the requested page or resource.
This is done by calling the user_access callback function, whose function sig-
nature can be seen in Example

user_access ($string , $account = NULL)

Example 4.18: Drupal’s user_access function signaturﬂ

This function will return a boolean value based on whether the requested per-
mission in the string variable is granted to the user requesting the resource.
The second argument (account) can be supplied to check if a certain user (other
than the current user) has permission to access the resource. Because the per-
mission to be checked is provided in a case sensitive string variable, care must
be taken that its name is spelled correctly, with correct capitalisation of char-
acters. Fortunately the user_access function will always return false when
dealing with unrecognised user permissions. However, if the user issuing the
request is the original administrator (with user ID #1), the function will always
return true, regardless of the permission’s existence.

The OWASP Application Security Verification Standard warns to check for
unauthorized directory listings. By default, Drupal core doesn’t allow direc-

29This code snippet was taken from Drupal’s _password_crypt function. More information
can be found at https://api.drupal.org/api/drupal/includesy21password.inc/function/
_password_crypt/7

SUMore information about the user_access function can be found at: https://api.drupal.
org/api/drupal/modules’21lusery2luser.module/function/user_access/7

97

https://api.drupal.org/api/drupal/includes%21password.inc/function/_password_crypt/7
https://api.drupal.org/api/drupal/includes%21password.inc/function/_password_crypt/7
https://api.drupal.org/api/drupal/modules%21user%21user.module/function/user_access/7
https://api.drupal.org/api/drupal/modules%21user%21user.module/function/user_access/7

tory browsing. A directive is put in the .htaccess file which will give a 403
Fordidden error message when someone tries to access a folder [9].

4.3.8 Cross-site request forgery

Drupal uses several techniques in order to prevent Cross-site request forgery
exploits. Drupal contains an API that must be used to generate forms. Forms
generated by this forms API work with POST submissions by default [12], mak-
ing CSRF attacks harder — but certainly not impossible — to perform. Aside
from using POST submission by default, Drupal implements CSRF challenge
tokens as described in the OWASP Cross-Site Request Forgery Prevention Cheat
Sheet [42]. An anti-CSRF token is generated by the drupal_get_token function,
which is shown in Example [£.19]

function drupal_get_token ($value =) {
return drupal_hmac_base64 ($value, session_id() .
drupal_get_private_key () . drupal_get_hash_salt ());

Example 4.19: Drupal’s drupal_get_token function

The value parameter is the form’s ID, which is used to create a unique token for
that form ID. The form ID is hashed with SHA-256, using the HMAC method.
The resulting hash is then encoded in Base64. The key needed by the hash
function is generated by concatenating the user’s session ID, a private key,
based on 55 random bytes created by the drupal_random_bytes function, and a
random hash salt that’s generated when Drupal is installed. Form token values
are dependent on the form’s ID. Tokens are added to the forms automatically
by the Drupal Forms API [12] and are valid for as long as the user’s session is
alive. When the user’s session expires and the user logs back in, a new session
ID will be generated (as explained in Section [4.3.2)), which causes the token
value to be different as well.

Drupal’s form API validates the form token during submission of the form
by comparing it to a hash for the same form ID. If the token doesn’t validate,
Drupal will stop form submission and respond with the following error message:
The form has become outdated. Copy any unsaved work in the form below and
then reload this page [7].

4.3.9 Components with known vulnerabilities

Drupal can be extended by themes and modules. Themes can be installed to give
the website a different look, while modules extend the application’s functionality
to fit the user’s needs. Modules can range from image uploaders to upload
multiple images at the same time, to CAPTCHA’@ for form submissions [I5].
We will now answer the criteria set forth in the conclusion of Chapter 2}

S3ICAPTCHA'’s are a type of challenge-response test to block form submissions by spam
bots

98

e Is there a versioning system in place where the current version
of an added component can easily be identified?
Yes. Drupal provides an overview of all installed modules, where they can
easily be activated and managed. This overview clearly shows the version
number of the installed modules. It doesn’t show the version number of
the latest version of the module, however.

e Are security issues disclosed publicly?

Security issues are kept private until there is a fix, or until it is apparent
that the maintainer of the module is not addressing the issue in a timely
manner. Public announcements are made when a secure version is avail-
able. If the maintainer does not provide a fix, a security advisory is issued,
recommending disabling the module. The project will then be marked as
unsupported on the Drupal website, announcing to everyone that wants to
install the module that it is possibly unsafe to use.

e Is there a project or security mailing list in place to warn users
about new vulnerabilities?
Yes, Drupal provides a security mailing list where all security issues will
be disclosed once certain criteria have been met. Drupal also provides a
list of security advisories, in response to vulnerability reports.

e Are there any manual or automated checks in place in order to

detect vulnerabilities before the components are released pub-
licly?
Before a module is allowed to be released, it will be reviewed manually
by reviewers, who will examine the code and provide feedback to the de-
veloper. Any requested changes must be implemented before the module
can be accepted. Once the module has been fully approved, it may be
uploaded to the Drupal module repository and can be downloaded and
installed by others.

e Is there any indication or warning given when searching for or
trying to install components with known vulnerabilities?
Modules with known vulnerabilities will be marked as Unsupported if the
security issues are not addressed by the module’s maintainer in due time.
Others will still be able to download and install the module, but a message
is shown that the module is currently unsupported.

e How are vulnerability reports dealt with and how quickly do
flaws get fixed?
The following steps are taken directly from the Drupal Security team doc-
umentation page [16].

— Review the issue and evaluate the potential impact on all supported
releases of Drupal. If it is indeed a valid problem, the security team
mobilizes the maintainer to eliminate it (whether for core or contrib).

— New versions are created, reviewed, and tested.
— New releases are created on Drupal.org.

— When an issue has been fixed, we use all available communication
channels to inform users of steps that must be taken to protect them-
selves.

99

— If the maintainer does not fix the problem within the deadline, an ad-
visory is issued, recommending disabling the module and the project
on Drupal.org is marked as unsupported.

e Are updates easy to install?
Updates to core and contributed modules are quite cumbersome to install.
The update installation guide [6] contains the following steps to be followed
when installing updated versions:

— Make a backup of your Drupal instance.

— Download the latest release of your current Drupal version.
— Extract the Drupal package.

— Set your site to maintenance mode

— Delete all the files & folders inside your original Drupal instance
except for /sites folder and any custom files you added elsewhere.

— Copy all the folders and files except /sites from inside the extracted
Drupal package into your original Drupal instance.

— If the update release includes changes to settings.php replace old
settings.php in .../sites/default/ with the new one, and edit
site-specific entries (e.g. database name, user, and password)

4.3.10 Redirects and forwards

Drupal frequently uses redirects and forwards, for instance when redirecting a
user to the home page after successfully logging in. The Drupal drupal_goto
function handles redirecting users to a different page. This function can be
used to redirect users to internal or external web pages. External destinations
supplied in a GET parameter are never allowed and are always sanitized using
drupal parse_url before being used [I3]. An internal URL must be supplied as
a relative path. The drupal_goto function will transform the relative path into
an absolute path before issuing the redirect. An array of options and an HTTP
response cod@ can be provided as well. The contents of the options array will
be appended to the URL as GET parameters, while the HTTP response coddﬂ
details the reason for the redirect.

e Don’t use redirects and forwards — Drupal uses redirects and forwards
extensively throughout the application’s core.

e Don’t base redirects and forwards on user parameters — The
drupal_goto function is configured so that redirections to external URLSs
obtained from GET parameters are never allowed.

e Make sure that the supplied value is valid — Drupal checks the
provided URL for validity using several functions.

32More information about Redirection response codes can be found at: http://www.w3.
org/Protocols/rfc2616/rfc2616-sec10.html

33More information about HTTP response codes can be found at: http://www.w3.org/
Protocols/rfc2616/rfc2616-sec10.html

100

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

e Make sure the user is authorized to be redirected there — Access
control is not checked before a user is redirected, but rather when the
request to the redirect location is being processed. Drupal’s access control
mechanism is discussed in Subsection

4.4 Conclusion

In this chapter we have seen the techniques used by each of the content man-
agement systems to mitigate the security risks described in the OWASP Top
10. While all CMSs are based on PHP, there are some differences in the way
certain problems are handled. For instance, WordPress and Joomla escape un-
trusted user input and sanitize input data before it is put into the database,
while Drupal uses prepared statements and stores user data unsanitized. In the
next chapter, we will compare the techniques used by the CMSs to each other to
provide a better comparison of how each CMS handles a certain security issue.

101

Chapter 5

Comparing Content
Management Systems

In this chapter we will compare the content management systems described in
Chapters |3 and [4] to each other based on a number of criteria. In the previous
chapter we provided an in depth overview of how each content management
system provides ways to mitigate the security risks described in the OWASP
Top 10, which we talked about in Chapter [2] To further help our analysis, we
will also compare other factors of each content management system with each
other. These factors include the data we scraped from vulnerability websites,
and information about the update frequency of CMS core. We will use the data
we scraped from vulnerability websites to try and give us an overview of how
many security issues are discovered in core and added components (modules,
plug-ins, themes, etc.) over a given period of time.

5.1 OWASP Top 10

1. Injection
Joomla and Drupal contain Database Abstraction Layers in order to en-
sure that their frameworks work on all kinds of database systems. Word-
Press does not, and requires a MySQL database, stating that it is not
a priority of the core development team to support additional database
engines [60]. This doesn’t necessarily form a problem, were it not for the
fact that WordPress still uses the deprecated mysql_real_escape_string
PHP function for escaping untrusted user data. The PHP manual clearly
states that MySQLi is strongly recommended when using MySQL versions
4.1.3 and above [56], but as WordPress supports down to version 4.1.2 of
MySQL [72], the MySQLi extension is not used. Because Joomla uses a
Database Abstraction Layer, escaping is based on the database engine that
is used. If a MySQL database is used, Joomla will also use the deprecated
mysql_real_escape_string function to escape untrusted user data. As
we have seen in Example escaping untrusted data isn’t always safe.

103

Drupal uses prepared statements, which are the safest option to use, if
used correctly. This doesn’t necessarily mean that the other frameworks
are unsafe, as other techniques are used in conjunction with escaping to
ensure that input data is safe, for instance casting expected numeric values
to integer or float, or using regular expressions. Using Drupal’s SQL injec-
tion mitigation technique in way ensures that queries cannot be altered.
On the other hand raw input data is stored unsanitised in the database,
which could leave the application vulnerable to other forms of attacks, like
XSS attacks.

. Broken Authentication and Session Management

As mentioned earlier, WordPress and Joomla are each comprised of two
distinct areas: a front facing interface and a back end administrative inter-
face. In Drupal, administrative functionality is embedded in front facing
pages. Joomla’s front facing interface provides some functionality like cre-
ating, editing, or publishing posts, but most administrative functionality
is provided in the back end interface. WordPress provides most function-
ality in the back end administrative area, with the exception of writing
comments on posts. In WordPress, anyone can visit the administrative in-
terface, albeit with reduced functionality for users with limited privileges.
Joomla only allows certain kinds of users to gain access to the adminis-
trative area. Another difference between the two is that a user has to
explicitly authenticate in order to gain access to Joomla’s administrative
interface, while in WordPress a session cookie will be set for both the front
facing area and the administrative area at the same time. When a user
logs out of either area in WordPress, all session cookies will be destroyed.
In Joomla, a user has to explicitly log out of both interfaces, which could
cause a user to forget to log out of the administrative interface.

WordPress requires that both a Logged in and Admin cookie are set and
are valid before access is allowed to the administrative area. Joomla re-
quires explicit authentication before access is allowed to the administrative
interface, and starts a new session. Joomla doesn’t require a user to be
logged in to both areas at the same time, however. Drupal starts only one
session and shows and allows functionality based on the user’s privileges.
Only Drupal contains a mechanism to limit the number of login attempts
and blocks IP addresses that try to log in more than an allowed number
of times using wrong credentials.

. Cross-Site Scripting

As described by the OWASP Cross-Site Scripting Prevention Cheat Sheet [42],
all three content management systems provide different sanitisation filters
based on the HTML context of the content. While WordPress and Drupal
both use white-list input validation, Joomla uses black-list input valida-
tion by default in stead. However, input data is converted to UTF-8 and to
lower case characters prior to being validated, making sure that different
encoding or capitalisation will not affect the black-list input validation.
Both WordPress and Joomla sanitize input data before placing it in the
database, dependent on user privileges. Drupal on the other hand stores
all raw input data unsanitized and requires that data coming from the
database must be sanitized before rendering it to a web page. Figure [5.5]

104

in the next subsection shows the ratio of the number of reported vulner-
abilities in Drupal core and added components. This figure shows that
most of the reported vulnerabilities in added components come from XSS
vulnerabilities.

. Insecure Direct Object References

All three systems contain mechanisms whereby users’ privileges can be
set. WordPress provides a mechanism of Roles and Capabilities. Joomla
provides a hierarchical mechanism of User Groups and Access Levels that
define what a user can view, and a hierarchical mechanism of User Groups,
Actions, and Permissions that define what a user can do. Lastly, Drupal
provides a mechanism of Roles and Permissions. WordPress doesn’t con-
tain any functionality to add, remove, or change any Roles. Joomla’s and
Drupal’s user privileges mechanisms are highly customisable, and allow a
privileged user to tailor these mechanisms to the application’s needs.

. Security Misconfiguration

Because these systems are highly customisable, it is important that default
settings are set securely. For instance, that newly registered members
get the least amount of privileges by default, and that displaying error
messages is turned off automatically. While all three systems do give
newly registered members the least amount of privileges, displaying error
messages is not turned off by default in Drupal.

At installation, all three content management systems check if the min-
imum requirements are met before the system is installed. If not, the
installation will not proceed. Joomla requires that the installation folder
be removed before installation can be completed, as an extra security fea-
ture. This makes it impossible for an attacker to somehow overwrite the
current installation.

. Sensitive Data Exposure

All three systems store minimal amounts of user data by default. User-
names and e-mail addresses are required, and stored as plain text in the
database. Passwords are all stored encrypted, using irreversible hashing
algorithms. Wordpress and Joomla both use MD5 as the underlying hash-
ing algorithm, while Drupal uses SHA-512. Both WordPress and Drupal
use the phpass framework, which provides salting and stretching tech-
niques, making brute force attacks harder. Joomla uses its own password
hashing algorithm, which also uses salting, but not stretching, making
brute force attacks possible.

. Missing Function Level Access Control

All systems contain a decent system of Function Level Access Control.
Access control is based on a user’s privileges, which are defined by the
mechanisms described in the part about Insecure Direct Object Refer-
ence. While all access control systems enforce both Function Level and
Presentation Level Access Control, Joomla contains a separate system of
Access Levels for Presentation Level Access Control, which defines what
a user can see. Both Joomla’s and Drupal’s access control mechanisms
are highly customisable, while WordPress only contains default user roles
which can’t be changed.

105

8.

10.

Cross-Site Request Forgery

In order to protect against CSRF attacks, both Joomla and Drupal use
anti-CSRF' tokens that expire together with the user’s session. In both
cases, this token is based on user and session data. WordPress uses Nonces
based on a form’s ID. Nonces do not expire together with the session, but
rather have a predefined lifetime of 24 hours. None of these systems reset
the token when a wrong value is supplied.

Using Components With Known Vulnerabilities

Joomla and WordPress contain mechanisms to update added components
and extensions with the click of a button, which is a lot more user friendly
than Drupal’s approach. Drupal requires that the old files be replaced
with the new ones manually, which is something that can scare novice
users to perform updates. Unlike Joomla and Drupal, WordPress doesn’t
disclose security vulnerabilities publicly, but rather just releases a new
update, referring to vulnerability databases such as the CVE. Joomla and
Drupal both provide security mailing lists, to which people can register
and be informed of important updates and new vulnerabilities. All content
management systems provide manual and automated checks on added
components before they are released, trying to ensure that no security
issues are contained within them.

Unvalidated Redirects and Forwards

All three content management systems use redirects extensively. Word-
Press contains two redirect functions: wp_redirect and wp_safe _redirect.
The function allows redirections to both internal and external locations.
The latter function allows redirects to internal locations, but requires
external locations to be contained in a white-list of accepted domains.
Joomla implements redirections in the redirect function and allows redi-
rections to external domains obtained from GET parameters. The only
requirement is that the URL is encoded in Base64, which makes it harder
for users to detect unwanted redirects. Drupal redirections are done via
the drupal_goto function, which can be used to redirect to both internal
and external locations, but only if the location of the redirection is not
based on a GET parameter. If redirection is based on a GET parameter,
external locations will not be allowed. All systems check the URL for
validity, but none of them check if the current user is allowed to be redi-
rected to the requested location before the redirection is actually carried
out.

Table and subsequent tables contain a summarised overview of a number of
relevant security-related concerns for each of the items on the OWASP Top 10,

and if and how each CMS handles them. The answers are colour-coded so that

a quick overview can be obtained for each of the concerns:

@ Positive
O Neutral

@ Negative

106

1. Injection

Criterion

‘WordPress

Joomla

Drupal

Prevention technique

Implemented securely?

Automatic sanitisation

Least privilege encour-
aged

O Escape input

@ Uses deprecated
MySQL functional-

ity

@ Yes, when not us-
ing the query func-
tion directly

@ No

O Escape input

O Dependent on
back end database

escaping scheme
(DBAL)

@ No

@® No information
provided

@ Prepared state-
ments

© Dependent on
back end database
scheme (DBAL)

@ No

O Sometimes

2. Broken Authentication

and Session Management

Criterion WordPress Joomla Drupal
Authentication secu- || @ Password salting | O Password salting | @ Password salting
rity and stretching and stretching

Brute force mitigation

Enforces strong pass-
word policy?

Session management
mechanism

Session ID randomness

Maximum session life-
time

Maximum cookie life-
time

Password
mechanism

recovery

Plain text passwords

O Password stretch-
ing

@ No

@ Cookies only

@ Uses the HMAC
hash method with
MD5 and a unique
secret key

O Same as cookie
lifetime

O Up to 48 hours.
If Remember me op-
tion is on, up to 2
weeks.

@ Sends verification
e-mail to user

@ Upon registration

@ None

O Somewhat

@ PHP sessions and
session cookies, us-
ing the database as
session handler

@ Default PHP ses-
sion ID

@ Up to 15 minutes
of inactivity

@ Same as session
lifetime

@ Sends verification
e-mail to user

O Optionally upon
registration (de-
fault: no)

@ Password stretch-
ing and maximum
login attempts

@ No

@ PHP sessions and
session cookies, us-
ing the database as
session handler

@ Several pieces
of random data,
hashed using SHA-
256

O Up to 55 hours of
inactivity

O Up to just over 23
hours

@ Sends verification
e-mail to user

@ Never

Table 5.1: Comparing content management systems based on the OWASP Top

10 (Part 1)

107

3. Cross-Site Scripting (XSS)

Filtering policy

Filtering strategy

Different filters based
on HTML Context

User data stored sani-
tised?

@ Validate input;
Sanitize output

@ White list input
validation

@ Yes

@ Yes

@ \Validate input;
Sanitize output

O Black list input
validation

@ Yes

@ Yes

O Store the original;
Filter on output

@ White list input
validation

@ Yes

@ No

4. Insecure Direct Object References

Distinguising user

privileges

@ Roles and Capa-
bilities

@ User Groups, Ac-
cess Levels, Actions,
and Permissions

@ Roles and Permis-
sions

Customisable by de- || O No @ Yes @ Yes
fault?

5. Security Misconfiguration
Criterion WordPress Joomla Drupal
Automated updates @ Yes @ Yes @ No
Displaying error mes- || @ Off @ Off @ On
sages
Automatic require- || @ Yes @ Yes @ Yes
ments checking
Minimal privileges || @ Yes @ Yes @ Yes

for default registered
users?

Table 5.2: Comparing content management systems based on the OWASP Top

10 (Part 2)

108

6. Sensitive Data Exposure

Criterion ‘WordPress Joomla Drupal
Autocomplete disabled || @ Yes @ Yes @ Yes
on forms that collect
sensitive data?
Minimal sensitive data || @ Yes @ Yes @ Yes
stored?
Strong cryptographic || © MD5 O MD5 @ SHA-512
algorithms?
Password stored || @ Yes @ Yes @ Yes
hashed and salted?
Master secret stored || @ Yes @ Yes @ Yes
securely?
7. Missing Function Level Access Control
Criterion ‘WordPress Joomla Drupal
Access control @ Mechanism of | @ Hierarchical | @ Mechanism of
User Roles and | mechanism of User | Roles and Permis-
Capabilities; No | Groups and Access | sions. More roles
mechanism in | Levels for presen- | can be defined.
WordPress core | tation level access
to add more User | control; Hierarchical
Roles. mechanism of User
Groups, Actions,
and Permissions
for Function Level
Access Control.
More User Groups
and Access Levels
can be defined.
Directory browsing || © No, but each | © No, but each | ® Yes
disabled? folder contains | folder contains
empty index.php empty index.html
Does the access con- || @ Yes @ Yes @ Yes

trol mechanism fail se-
curely?

Table 5.3: Comparing content management systems based on the OWASP Top

10 (Part 3)

109

8. Cross-Site Request Forgergy (CSRF)

Criterion WordPress Joomla Drupal
Token generation || O Nonce @ Anti-CSRF token | @ Anti-CSRF token
mechanism

Tokens based on user || @ Yes @ Yes O No
data?

Tokens based on ses- || © No @ Yes @ Yes
sion data?

Is the token different || @ No @ Yes @ Yes
when session informa-

tion changes?

Automatically added || @ No @ No @ Yes
to forms?

Automatic token veri- || @ No @ No @ Yes
fication?

Tokens used in GET || @ No @ Yes @ No
parameters?

Invalidated and regen- || @ No @ No @ No

erated when wrong to-
ken is supplied?

9. Using Components with Known Vulnerabilities

Criterion WordPress Joomla Drupal

Versioning system? @ Yes @ Yes @ Yes

Security issues dis- || @ No @ Yes @ Yes

closed publicly?

Security mailing list? @ No @ Yes @ Yes

Warnings when trying || @ Yes @ Vulnerable com- | @ Yes

to install wvulnerable ponents are removed

components? from the extensions
repository

Automated updates? @ Yes @ Yes @ No

Table 5.4: Comparing content management systems based on the OWASP Top

10 (Part 4)

110

10. Unvalidated Redirects and Forwards

Criterion WordPress Joomla Drupal
Are redirects and for- || O Yes O Yes O Yes
wards used?

Are redirects and for- || O Yes O Yes O Yes
wards sometimes based

on user parameters?

Are redirects and for- || @ Only if the lo- | @ Yes @ No
wards to external do- || cation belongs to a

mains obtained from || trusted domain

GET parameters al-

lowed?

Are URLs checked for || @ Yes @ Yes @ Yes
validity?

Authorisation checked || @ No @ No @ No
before redirection?

Table 5.5: Comparing content management systems based on the OWASP Top
10 (Part 5)

5.1.1 Conclusion

Although all three content management systems are written in PHP, they all
contain different techniques for mitigating certain security risks. WordPress con-
tains a lot legacy code to ensure backwards compatibility and forces outdated
mechanisms such as emulating PHP’s magic_quotes_gpc function to ensure that
older code that relies on this functionality being enabled will still work. Word-
Press and Drupal both uses a password hashing framework that is considered
one of the best for encrypting passwords, but both frameworks choose to only
use the least secure final fallback method. Joomla, on the other hand, uses their
own password hashing algorithm, using MD5. Another example could be that
all three content management systems contain anti-CSRF mechanisms for forms.
Joomla and Drupal implement anti-CSRF tokens as described by the OWASP
Cross-Site Request Forgery Prevention Cheat Sheet [42], but WordPress uses its
own variant, called nonces, which are valid for 24 hours and cannot be reset
inside that time frame.

Choosing which CMS to use depends on the needs of the user. Joomla and
WordPress are generally considered more user friendly [55], but WordPress core
is a lot less customisable by default. For instance, WordPress doesn’t allow
customisation of user privileges, while Drupal and Joomla are highly customis-
able. Drupal core gives their users a lot of control, but has a steeper learning
curve [55]. Core functionality can be considered secure for each of these content
management systems, which is not unsurprising as they are the most mature
and most used of all [57]. A novice user will probably be more comfortable using

111

either WordPress or Joomla, while a more advanced user might be better off
using Drupal [55].

5.2 Vulnerability Database

In this section we will analyse the prevalence of the types of security issues
reported for each content management system over the years. We will also pro-
vide a distinction between core and added components, and analyse the update
frequency of CMS releases. We will also provide a distinction between regular
and security releases. Regular releases include extra features and non-security
related bug fixes. Security releases are either fixes for specific vulnerability
reports, or regular updates with security updates included in them. These vul-
nerability reports were scraped from the CVE database and analysed according
to their description. Vulnerabilities labeled Other include arbitrary code execu-
tion, session fixation attacks, and other attacks that were not prevalent enough
to show as a label on the chart.

WordPress

Figure [5.1] shows an overview of the ratio between the number of vulnerability
reports for WordPress core and themes/plug-ins. We also show the prevalence
of each vulnerability type in both core and added components. This data is
based on 405 records from the Common Vulnerabilities and Exposures database.
Cross-Site Scripting vulnerabilities are one of the most reported vulnerabilities
in added components, certainly in the last years. This might be due to the
fact that developers must actively sanitize user input data using one of the
input filters provided by WordPress. Not including these filtered checks could
also easily be missed by reviewers, allowing these vulnerabilities to exist in
released added components. There are much less vulnerabilities detected in
core functionality than in added components, which is not surprising. Core
development goes through multiple internal and open development cycles before
a new version is released, which brings us to the chart shown in Figure[5.2] This
chart shows an overview of the number of regular and security-related releases
of WordPress over the past years [71].

We can deduce from these statistics that there have been more security
releases on average in years that have more reported vulnerabilities in WordPress
core. For instance, with a peak of 36 reported vulnerabilities in WordPress core
in 2007, there have been 10 security-related core releases. There were only 4
regular releases in the same year, 6 less than the number of security-related
releases. A large amount of regular updates like in 2011 is due to public betas
and multiple publicly released release candidates. Of a total of 20 releases in
2011, only 7 were actual full releases. These betas and release candidates are
not recommended for use on production sites, but rather for WordPress core
developers to get a large security and usability assessment. Early testers can
give feedback, which allows the developers to further enhance WordPress.

112

B0

W X55

W S0L Injection

M Other

i File Inclusion

W CSRF
M Arbitrary File Upload

c
w
[
=
o
—
o
E
o

Theme /Plug-in
Theme /Plug-in
Theme /Plug-in
Theme /Plug-in
Theme/Plug-in
Theme /Plug-in
Theme /Plug-in
Theme /Plug-in

Figure 5.1: WordPress Vulnerabilities Types and Core/Extension Ratio (CVE)

Figure[5.1]shows us that most vulnerability reports concern plug-ins and themes.
On average, in both core and extensions, most vulnerabilities are XSS vulnera-
bilities. SQL injection vulnerabilities are not as prevalent in recent years, which
could be related to the fact that they are considered the most critical of all se-
curity risks according to the OWASP Top 10. This could mean that more effort
is being placed in trying to prevent SQL injections, making them less prevalent

in real-world applications.

113

25

20

15
W Security

10 W FRegular

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Figure 5.2: WordPress Core Releases [71]

There are many security-related releases in between regular WordPress updates.
For instance, in the last year there have been more security-related releases for
WordPress core than regular releases.

Joomla

Figure [5.3] shows an overview of the ratio between the number of vulnerabil-
ity reports for Joomla core and extensions. This data is based on 631 entries
from the Common Vulnerabilities and Exposures database. As described in
the previous subsection about WordPress, it is not unsurprising that the most
vulnerabilities are found in extensions. Extensions are checked for security is-
sues before they are released, but as this is driven by people, sometimes certain
things are overlooked. SQL injection attacks seem to be the most prevalent
attacks in Joomla extensions, with the exception of the large amount of sen-
sitive data exposure vulnerabilities in 2011. However, these are essentially all
the same vulnerability, but exploited using different extensions. While many
security issues were reported in earlier years, there have been much less reports
in the most recent years, which could be due to many reasons. As we can see in
Figure there haven’t necessarily been less security-related updates in recent
years. For instance, while the CVE vulnerability database doesn’t contain a
lot of entries for 2012, releases of the same year have been almost exclusively
security updates. The CVE isn’t necessarily a complete list, but this remains a
remarkable result nonetheless.

Figure [5.4] shows the ratio of regular and security releases. A release marked
as Unknown means that there are no release notes available for that particular
release. This is mostly true for earlier versions of Joomla. Almost all other

114

releases fix some sort of security issue. As with WordPress, regular releases in-
clude security-unrelated bug fixes and added features. Security-related updates
can be either releases that only fix certain important security issues, or regular
updates that include fixes to minor or major security issues.

W Sensitive Data Exposure

WXss

W5AL Injection
W Other

W File Inclusion

W CSRF
mArbitrary File Upload

Extension
Extension
Extension
Extension
Extension
Extension
Extension
Extension
Extension

Figure 5.3: Joomla Vulnerabilities Types and Core/Extension Ratio (CVE)

One of the most prevalent types of vulnerabilities in Joomla extensions have been
SQL injection vulnerabilities. However, vulnerability reports have been scarce in
recent years, with XSS vulnerabilities being more prevalent in both Joomla core
and extensions. The large number of Sensitive Data Ezrposure vulnerabilities
are due to the same attack vector being applied to multiple extensions: directly
accessing a PHP file in the extension caused an error message to disclose the
installation path.

115

14
12
10
B
B Unknown
W Security
B 4
W Regular
4
2 .
0 .
2005 2006 2007 2008 2009 2010 2011 2012 2013

Figure 5.4: Joomla Core Releases

Figure[5.4]shows a large number of the Unknown release type. This is due to the
fact that no release notes were available for these earlier versions. Release notes
for more recent releases are available, showing the number of security-related
releases often far exceeds that of regular releases. For instance, there have been
exclusively security-related releases in 2009.

Drupal

Figure 5.5 shows an overview of the ratio between the number of vulnerability
reports for Drupal core and extensions. This data is based on 649 entries from
the Common Vulnerabilities and Exposures database. Again, there are much
more vulnerability reports for modules and themes than for Drupal Core. Be-
cause Drupal provides a Security Advisories database, where security issues are
disclosed publicly once a fix has been released. We have provided an overview
of the types of vulnerabilities found in these Security Advisories in Figure [5.6
What is apparent from both the CVE database results and Drupal’s own secu-
rity advisories is that there are barely any reported SQL Injection vulnerabilities
in Drupal core, and very few have been reported for modules too. This confirms
our previous statement that Drupal’s SQL Injection mitigation techniques are
the most secure. Many of the security issues reported and fixed in the advi-
sories, certainly in recent years, have been Access Bypass vulnerabilities. The
advisories also state that in some cases, these Access Bypass issues are mitigated
by keeping the security settings set to their secure default values.

116

250

200

150

HEX55
W SAL Injection

100
W Other

W CSRF

50
W Arbitrary File Upload

Theme/Maodule
Theme/Maodule
Theme/Module
Theme/Module
Theme/Module
Theme/Module

w w
E E
= =
L=3 L=3
= =
= =
= =
E E
T T
E E

Figure 5.5: Drupal Vulnerabilities Types and Core/Extension Ratio (CVE)

The CVE contains very little data about Drupal core, which is why we have
also included Figure [5.6] that shows the vulnerabilities disclosed in Drupal’s
Security Advisories. It is again not unsurprising that there are more reported
vulnerabilities for modules and themes than for Drupal core. One of the most
prevalent kinds of vulnerabilities over the years have been XSS attacks. This
could be due to the fact that Drupal stores user input data unsanitised, and
developers forget to sanitise the user data before rendering it to the web page.

117

25

20

15

10

2005 2006 2007 2008 2009 2010

2011

2012

2013

Figure 5.6: Drupal Core Security Advisories

WX55

W 50L Injection
W Other

W CSRF

W AccessBypass

Figure [5.0] shows an overview of the vulnerabilities disclosed by Drupal’s own
Security Advisories. It shows that XSS vulnerabilities have been most prevalent,
even in core functionality. In more recent years, unauthorised access bypass has

become a more critical issue.

The Other vulnerability type includes session

fixation and other attacks that were not prevalent enough to display on the
chart. It also shows that there were a lot of reported vulnerabilities in 2008 and
2009, but that the number of reported vulnerabilities seems to be dropping in
recent years.

118

20

18

16

14

12

10 M Security

W Regular

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Figure 5.7: Drupal Core Releases

Figure shows an overview of the number of regular and security-related re-
leases of Drupal over the years. This chart shows that there have been more
and more releases, and increasingly more security-related releases since the be-
ginning. In 2009 and 2013, all new releases fixed some kind of security issue.
Upgrading Drupal can be quite cumbersome because it requires manually delet-
ing all the old files and replacing them with the new. This could potentially
cause Drupal users to ignore important updates and keep using their older ver-
sion, because updating would require too much work.

5.2.1 Conclusion

Although many efforts are made to make core functionality as secure as possible,
there are still a lot of reported security issues. API documentation, manual and
automated checks are in place for added components to ensure that they are
implemented securely, but there are still plenty of vulnerability reports for added
components. Security-related updates are released multiple times per year for
each CMS in addition to regular updates and releases. In any case it is a good
idea to keep a close look at new releases and updates for core and any added
components that are used, and keep everything up to date as much as possible.

119

Chapter 6

Conclusion

In Subsection of Chapter |1} we defined our problem statement as follows:
”How safe are open source web content management systems”. Throughout the
contents of this thesis, we have tried to answer this question. In Chapter
we provided an overview of the OWASP Top 10, the ten most critical security
risks associated with web applications, which was used as a set of objective
criteria for our comparison. In Chapter [3] we provided an introduction to the
three most used web content management systems at the moment: WordPress,
Joomla, and Drupal. We extended our review of these systems in Chapter
by analysing each CMS in terms of the security risks on the OWASP Top 10
list and which mitigation techniques they implement. Lastly, in Chapter [5| we
compared the results of each individual analysis with each other to provide a
clearer view of the differences and similarities between each system. To further
help the comparison, we used the statistics we gathered from the Common
Vulnerabilities and Exposures (CVE) database, and the release statements from
core releases of each CMS, to get an overview of the most reported vulnerability
types and number of security-related core releases over the years.

In this chapter, we will conclude our analysis by providing a more high-level
overview of our results. Each of these PHP based systems does attempt to pre-
vent security vulnerabilities, but there are still plenty of vulnerability reports
for both core and added components. These added components are not tested
and retested as much as core functionality, causing the number of vulnerability
reports for added components to far exceed that of core functionality. While
each CMS provides a system of manual and automated reviewing of added
components before they are released publicly, there still seem to be a lot of
vulnerabilities that get overlooked. The fact remains that there is a great num-
ber of added components for each CMS. The number of added components for
Joomla exceeds 7000, while WordPress and Drupal each host over 20000 added
components. Therefore, it is not unsurprising that the number of vulnerabilities
included in publicly released added components is still quite high.

By reading through the API documentation and source code of each CMS,
we obtained an overview of how each CMS tackles the problems associated
with web security. Designating one of these CMSs as the most secure is not

121

an easy task, and is not particularly relevant to the problem statement defined
in the introductory section. What is clear, however, is that the open source
web CMSs discussed in this thesis have a strong focus on security. Some things
could be improved, for instance the fact that both WordPress and Drupal use the
least secure fallback method of the phpass framework for encrypting passwords,
and Joomla allowing redirects to external domains. WordPress and Joomla are
considered to be more user friendly, for instance because they include automated
update processes, but Drupal is perhaps more suitable for more experienced
users. In the end, it depends on user preference, as all systems are secure in
their own merit.

122

© 0 N O U W N

Appendix A

Portable PHP Password
Hashing Framework

The Portable PHP Password Hashing Framework, or phpass, is a password hash-
ing framework for use in web applications using PHP3 and above [49]. The
phpass framework supports three different hashing methods, the last of which
makes use of salting and stretching techniques to provide more security.

The preferred hashing method, and first to be tried if available, is the
OpenBSD-style Blowfish-based bcrypiﬂ the second method, which is a fallback
in case the first method isn’t supported, is an extended DES-based hash. The
third method, a final last resort fallback, uses MDb5-based hashes. MD5 is
included for portability, providing support for systems using PHP3 and above.
This final fallback method is used in both WordPress and Drupal, and is demon-

strated in Example

$hash = md5($salt . $password, TRUE) ;
do {

$hash = md5($hash . $password, TRUE) ;
} while (——S$count);

$output = substr($setting , 0, 12);
$output .= $this—>encode64 ($hash, 16);

return $output;

Example A.1: phpass’s MD5 fallback method uses salting and StretchingE]

The salt variable contains a random salt value, which is prepended to the
password and hashed using MDb5. The resulting hash is then used as salt,
prepended to the password, and hashed again. This process is repeated for

LFor more information on bcrypt, visit http://berypt.sourceforge.net/
2Source: http://joncave.co.uk/2011/01/password-storage-in-drupal-and-
wordpress/

123

http://bcrypt.sourceforge.net/
http://joncave.co.uk/2011/01/password-storage-in-drupal-and-wordpress/
http://joncave.co.uk/2011/01/password-storage-in-drupal-and-wordpress/

O J O Ut kW N =

count number of iterations [4]. This technique is called stretching and makes
brute-force attacks on passwords harder, because calculating the hash for each
attempt takes a longer amount of time.

The final hash value is encoded using the Base64 encoding schemeﬂ and
prepended by the salt value, which starts with an identifier and a single Base64
character indicating the number of iterations used. The identifier indicates
which of the three encryption algorithms was used. The portable MD5 mode
uses P as an identifier. Identifier $2a$ is used to indicate that the hash was
constructed using the Blowfish method.

A.1 Validating passwords

Checking a given plain text password for validity can be achieved by using the
CheckPassword function. Example shows the workings of this function.

function CheckPassword ($password, $stored_hash)

{

$hash = $this—>crypt_private ($password, $stored_hash);
if ($Shash[0] = ’x7)
$hash = crypt($password, $stored_hash);

return $hash = $stored_hash;

}

Example A.2: phpass’s CheckPassword function

The password parameter contains the plain text password to be hashed and
checked against the stored password, which is provided in the stored_hash
parameter. The stored hash contains the identifier, the salt, and optionally the
number of iterations if the password was hashed using the portable fallback
method. The plain text password is hashed dependent on these variables and
compared against the stored hash. If the two hashes match, the plain text
password was correct and deemed valid.

3More information about the Base64 encoding scheme can be found at https://en.
wikipedia.org/wiki/Base64

124

https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64

Bibliography

[1]

OWASP Top 10 - 2013, author = Williams, Jeff, organization = OWASP,
year = 2013, note = Awvailable from: http: //owasptopl0. googlecode.
com/ files/ OWASPY 20Top 2010 20- 4202013. pdf),.

Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions
for Message Authentication. http://cseweb.ucsd.edu/~mihir/papers/
kmd5 . pdf, June 1996.

Bram Bonné. Improving session security in web applications, 2011.

Jon Cave. Drupal 7: Secure password storage by default at
last. http://joncave.co.uk/2011/01/password-storage-in-drupal-
and-wordpress/, 2011.

Daniel Chrysostomos. How to Configure Secure WordPress Database Per-
missions. http://www.websitedefender.com/faq/configure-secure-
wordpress-database-permissions/|, 2012.

Drupal. Drupal Upgrading Handbook. https://drupal.org/upgrade,
2002.

Drupal. Detailed response to publicly posted CSRF concerns in Drupal
7.12. https://groups.drupal.org/node/216314, 2012.

Drupal. Drupal Database API. https://drupal.org/developing/api/
database), 2012.

Drupal. Hiding information from visitors. https://drupal.org/node/
244642, 2012.

Drupal. Drupal API Database Abstraction Layer. https:
//api.drupal.org/api/drupal/includes!database!database.inc/
group/database/7, 2013.

Drupal. Drupal Core Release Windows. https://drupal.org/
documentation/version-info, 2013.

Drupal. Drupal Form API Reference. https://api.drupal.org/api/
drupal/developery2itopics%21forms_api_reference.html/7, 2013.

Drupal. Drupal Function Reference: Drupal goto. https://api.drupal.
org/api/drupal/includes’21lcommon.inc/function/drupal_goto/7,
2013.

125

http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf
http://cseweb.ucsd.edu/~mihir/papers/kmd5.pdf
http://cseweb.ucsd.edu/~mihir/papers/kmd5.pdf
http://joncave.co.uk/2011/01/password-storage-in-drupal-and-wordpress/
http://joncave.co.uk/2011/01/password-storage-in-drupal-and-wordpress/
http://www.websitedefender.com/faq/configure-secure-wordpress-database-permissions/
http://www.websitedefender.com/faq/configure-secure-wordpress-database-permissions/
https://drupal.org/upgrade
https://groups.drupal.org/node/216314
https://drupal.org/developing/api/database
https://drupal.org/developing/api/database
https://drupal.org/node/244642
https://drupal.org/node/244642
https://api.drupal.org/api/drupal/includes!database!database.inc/group/database/7
https://api.drupal.org/api/drupal/includes!database!database.inc/group/database/7
https://api.drupal.org/api/drupal/includes!database!database.inc/group/database/7
https://drupal.org/documentation/version-info
https://drupal.org/documentation/version-info
https://api.drupal.org/api/drupal/developer%21topics%21forms_api_reference.html/7
https://api.drupal.org/api/drupal/developer%21topics%21forms_api_reference.html/7
https://api.drupal.org/api/drupal/includes%21common.inc/function/drupal_goto/7
https://api.drupal.org/api/drupal/includes%21common.inc/function/drupal_goto/7

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[27]

[28]

[29]

Drupal. Drupal Installation Guide, Step 2: Create the database. http:
//drupal.org/documentation/install/create-database, 2013.

Drupal. Drupal Modules. https://drupal.org/project/modules, 2013.

Drupal. Drupal Security Team. https://drupal.org/security-team,
2013.

Drupal. Usage statistics for Drupal core. https://drupal.org/project/
usage/drupall 2013.

Faronics. Blacklist-based Software versus Whitelist-based Software. Tech-
nical report, Faronics, 2011. Available from: http://www.faronics.com/
assets/blacklistvswhitelist2.pdf|

The PHP Group. Prepared statements and stored procedures. http://
php.net/manual/en/pdo.prepared-statements.php, 2013.

The PHP Group. Stored Procedures. |http://php.net/manual/en/
mysqli.quickstart.stored-procedures.php, 2013.

Infosec Institute. What is an SQL Injection? SQL Injection: An Intro-
duction. http://resources.infosecinstitute.com/sql-injections-
introduction/, 2013.

Benjamin James Jeavons and Gregory James Knaddison. Drupal Se-
curity White Paper. Technical report, Drupal, 2010. Available from:
http://drupalsecurityreport.org/sites/drupalsecurityreport.
org/files/drupal-security-white-paper-1-1.pdfl

Joomla. Delete Installation folder. http://docs.joomla.org/Delete
Installation_folder, 2012.

Joomla. Leadership Highlights from March 2012. http://magazine.
joomla.org/issues/Issue-Apr-2012/item/736-Leadership-
Highlights-from-March-2012, 2012.

Joomla. Access Control List Tutorial. http://docs. joomla.org/J2.5:
Access_Control_List_Tutorial, 2013.

Joomla. Accessing the database using JDatabase. http://docs. joomla.
org/J3.1:Accessing_the_database_using_JDatabasel 2013.

Joomla. Extension types (general definitions). http://docs. joomla.org/
Extension_types_(general_definitions), 2013.

Joomla. How to add CSRF anti-spoofing to forms. http://docs. joomla.
org/How_to_add_CSRF_anti-spoofing_to_forms, 2013.

Joomla. Joomla! Vulnerable Extensions List. http://vel.joomla.org/,
2013.

Joomla. Publishing to JED. http://docs.joomla.org/Publishing_to_
JED, 2013.

126

http://drupal.org/documentation/install/create-database
http://drupal.org/documentation/install/create-database
https://drupal.org/project/modules
https://drupal.org/security-team
https://drupal.org/project/usage/drupal
https://drupal.org/project/usage/drupal
http://www.faronics.com/assets/blacklistvswhitelist2.pdf
http://www.faronics.com/assets/blacklistvswhitelist2.pdf
http://php.net/manual/en/pdo.prepared-statements.php
http://php.net/manual/en/pdo.prepared-statements.php
http://php.net/manual/en/mysqli.quickstart.stored-procedures.php
http://php.net/manual/en/mysqli.quickstart.stored-procedures.php
http://resources.infosecinstitute.com/sql-injections-introduction/
http://resources.infosecinstitute.com/sql-injections-introduction/
http://drupalsecurityreport.org/sites/drupalsecurityreport.org/files/drupal-security-white-paper-1-1.pdf
http://drupalsecurityreport.org/sites/drupalsecurityreport.org/files/drupal-security-white-paper-1-1.pdf
http://docs.joomla.org/Delete_Installation_folder
http://docs.joomla.org/Delete_Installation_folder
http://magazine.joomla.org/issues/Issue-Apr-2012/item/736-Leadership-Highlights-from-March-2012
http://magazine.joomla.org/issues/Issue-Apr-2012/item/736-Leadership-Highlights-from-March-2012
http://magazine.joomla.org/issues/Issue-Apr-2012/item/736-Leadership-Highlights-from-March-2012
http://docs.joomla.org/J2.5:Access_Control_List_Tutorial
http://docs.joomla.org/J2.5:Access_Control_List_Tutorial
http://docs.joomla.org/J3.1:Accessing_the_database_using_JDatabase
http://docs.joomla.org/J3.1:Accessing_the_database_using_JDatabase
http://docs.joomla.org/Extension_types_(general_definitions)
http://docs.joomla.org/Extension_types_(general_definitions)
http://docs.joomla.org/How_to_add_CSRF_anti-spoofing_to_forms
http://docs.joomla.org/How_to_add_CSRF_anti-spoofing_to_forms
http://vel.joomla.org/
http://docs.joomla.org/Publishing_to_JED
http://docs.joomla.org/Publishing_to_JED

[31]

[32]

[33]

Joomla. Retrieving request data using JInput. http://docs.joomla.org/
Retrieving_request_data_using_JInput) 2013.

Joomla. Secure coding guidelines. http://docs.joomla.org/Secure_
coding_guidelines| 2013.

Joomla. User Group Access Levels explained in simple terms.
http://docs. joomla.org/User_Group_Access_levels_explained_
in_simple_terms, 2013.

Joomla. What version of joomla! should you use? http://docs.joomla.
org/What_version_of_Joomla!_should_you_use%3F, 2013.

Amit Klein. Cross Site Scripting Explained. http://crypto.stanford.
edu/cs155/papers/CSS.pdf, 2002.

MITRE. Common Vulnerabilities and Exposures. http://cve.mitre.
org/l, 2013.

OWASP. About The Open Web application Security Project. https:
//www.owasp.org/index.php/About_0OWASP, 2009.

OWASP. OWASP Application Security Verification Standard Project.
https://www.owasp.org/images/4/4e/0WASP_ASVS_2009_Web_App_
Std_Release.pdf] 2009.

OWASP. Cross-site Scripting (XSS). https://www.owasp.org/index.
php/Cross-site_Scripting_(XSS), 2011.

OWASP. Input Validation Cheat Sheet. https://www.owasp.org/index.
php/Input_Validation_Cheat_Sheet| 2012.

OWASP. Cross Site Request Forgery (CSRF). https://wuw.owasp.org/
index.php/Cross-Site_Request_Forgery_(CSRF), 2013.

OWASP. Cross Site Request Forgery (CSRF) Prevention Cheat Sheet.
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_
(CSRF) _Prevention_Cheat_Sheet, 2013.

OWASP. Cryptographic Storage Cheat Sheet. https://www.owasp.org/
index.php/Cryptographic_Storage_Cheat_Sheet) 2013.

OWASP. Injection Theory. https://www.owasp.org/index.php/
Injection_Theory, 2013.

OWASP. Password Storage Cheat Sheet. https://www.owasp.org/index.
php/Password_Storage_Cheat_Sheet| 2013.

OWASP. SQL Injection. |https://www.owasp.org/index.php/SQL_
Injection, 2013.

OWASP. SQL Injection Prevention Cheat Sheet. https://www.owasp.
org/index.php/SQL_Injection_Prevention_Cheat_Sheet, 2013.

127

http://docs.joomla.org/Retrieving_request_data_using_JInput
http://docs.joomla.org/Retrieving_request_data_using_JInput
http://docs.joomla.org/Secure_coding_guidelines
http://docs.joomla.org/Secure_coding_guidelines
http://docs.joomla.org/User_Group_Access_levels_explained_in_simple_terms
http://docs.joomla.org/User_Group_Access_levels_explained_in_simple_terms
http://docs.joomla.org/What_version_of_Joomla!_should_you_use%3F
http://docs.joomla.org/What_version_of_Joomla!_should_you_use%3F
http://crypto.stanford.edu/cs155/papers/CSS.pdf
http://crypto.stanford.edu/cs155/papers/CSS.pdf
http://cve.mitre.org/
http://cve.mitre.org/
https://www.owasp.org/index.php/About_OWASP
https://www.owasp.org/index.php/About_OWASP
https://www.owasp.org/images/4/4e/OWASP_ASVS_2009_Web_App_Std_Release.pdf
https://www.owasp.org/images/4/4e/OWASP_ASVS_2009_Web_App_Std_Release.pdf
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Injection_Theory
https://www.owasp.org/index.php/Injection_Theory
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

[48]

[49]

[50]

[51]

OWASP. XSS (Cross Site Scripting) Prevention Cheat Sheet.
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)
_Prevention_Cheat_Sheet, 2013.

Alexander Peslyak. Portable PHP password hashing framework. http:
//www.openwall . com/phpass/, 2010.

PhilD. MySQL user privileges. http://forum. joomla.org/viewtopic.
php?f=432%p=2692532#p2692532, 2011.

PHP. mysql_real escape_string. http://php.net/manual/en/function.
mysql-real-escape-string.phpl 2013.

PHP. PHP Runtime Configuration. http://www.php.net/manual/en/
info.configuration.php#ini.magic-quotes-gpc, 2013.

Alexander Sotirov, Marc Stevens, Jacob Appelbaum, Arjen Lenstra, David
Molnar, Dag Arne Osvik, and Benne de Weger. MD5 considered harmful
today. http://www.win.tue.nl/hashclash/rogue-ca/, 2011.

Todd Timlinson and John K. VanDyk. Pro Drupal 7 Development. Paul
Manning, 2010.

udemy. Drupal vs Joomla vs WordPress: CMS Showdown. https://wuw.
udemy . com/blog/drupal-vs-joomla-vs-wordpress/, 2013.

W3Techs. PHP Manual: Overview. http://www.php.net/manual/en/
mysqli.overview.php, 2013.

W3Techs. Usage of content management systems for websites. http://
w3techs.com/technologies/overview/content_management/all, 2013.

WebAppSec.org. Cross site scripting. http://projects.webappsec.org/
w/page/13246920/Cross’20Site’,20Scripting, 2011.

WordPress. WordPress.

WordPress. WordPress API: Uusing Alternative Databases. http://
codex.wordpress.org/Using_Alternative_Databases, 2006.

WordPress. WordPress API: Data Validation. http://codex.wordpress.
org/Data_Validation, 2013.

WordPress. WordPress API: Updating WordPress. http://codex.
wordpress.org/Updating_WordPress| 2013.

WordPress. WordPress API: WordPress Cookies. http://codex.
wordpress.org/WordPress_Cookies, 2013.

WordPress. WordPress API: WP DEBUG. http://codex.wordpress.
org/WP_DEBUG, 2013.

WordPress. WordPress Coding Standards Handbook. http://make.
wordpress.org/core/handbook/coding-standards/php/, 2013.

128

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.openwall.com/phpass/
http://www.openwall.com/phpass/
http://forum.joomla.org/viewtopic.php?f=432&p=2692532#p2692532
http://forum.joomla.org/viewtopic.php?f=432&p=2692532#p2692532
http://php.net/manual/en/function.mysql-real-escape-string.php
http://php.net/manual/en/function.mysql-real-escape-string.php
http://www.php.net/manual/en/info.configuration.php#ini.magic-quotes-gpc
http://www.php.net/manual/en/info.configuration.php#ini.magic-quotes-gpc
http://www.win.tue.nl/hashclash/rogue-ca/
https://www.udemy.com/blog/drupal-vs-joomla-vs-wordpress/
https://www.udemy.com/blog/drupal-vs-joomla-vs-wordpress/
http://www.php.net/manual/en/mysqli.overview.php
http://www.php.net/manual/en/mysqli.overview.php
http://w3techs.com/technologies/overview/content_management/all
http://w3techs.com/technologies/overview/content_management/all
http://projects.webappsec.org/w/page/13246920/Cross%20Site%20Scripting
http://projects.webappsec.org/w/page/13246920/Cross%20Site%20Scripting
http://codex.wordpress.org/Using_Alternative_Databases
http://codex.wordpress.org/Using_Alternative_Databases
http://codex.wordpress.org/Data_Validation
http://codex.wordpress.org/Data_Validation
http://codex.wordpress.org/Updating_WordPress
http://codex.wordpress.org/Updating_WordPress
http://codex.wordpress.org/WordPress_Cookies
http://codex.wordpress.org/WordPress_Cookies
http://codex.wordpress.org/WP_DEBUG
http://codex.wordpress.org/WP_DEBUG
http://make.wordpress.org/core/handbook/coding-standards/php/
http://make.wordpress.org/core/handbook/coding-standards/php/

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

WordPress. WordPress Function Reference: Hash Password. http://
codex.wordpress.org/Function_Reference/wp_hash_password, 2013.

WordPress. WordPress Glossary. http://codex.wordpress.org/
Glossary, 2013.

WordPress. WordPress Plugin Directory. http://wordpress.org/
plugins/, 2013.

WordPress. WordPress Plugin Directory: About. http://wordpress.
org/plugins/about/, 2013.

WordPress. WordPress Release Cycle. http://make.wordpress.org/
core/handbook/how-the-release-cycle-works/, 2013.

WordPress. WordPress Release History. http://wordpress.org/news/
category/releases/, 2013.

WordPress. WordPress Requirements. http://wordpress.org/about/
requirements/, 2013.

WordPress. WordPress Security FAQ. http://codex.wordpress.org/
FAQ_Security, 2013.

129

http://codex.wordpress.org/Function_Reference/wp_hash_password
http://codex.wordpress.org/Function_Reference/wp_hash_password
http://codex.wordpress.org/Glossary
http://codex.wordpress.org/Glossary
http://wordpress.org/plugins/
http://wordpress.org/plugins/
http://wordpress.org/plugins/about/
http://wordpress.org/plugins/about/
http://make.wordpress.org/core/handbook/how-the-release-cycle-works/
http://make.wordpress.org/core/handbook/how-the-release-cycle-works/
http://wordpress.org/news/category/releases/
http://wordpress.org/news/category/releases/
http://wordpress.org/about/requirements/
http://wordpress.org/about/requirements/
http://codex.wordpress.org/FAQ_Security
http://codex.wordpress.org/FAQ_Security

	Preface
	Abstract
	Nederlandse samenvatting
	Introduction
	Problem statement and type of thesis
	OWASP
	OWASP Top 10

	Common Vulnerabilities and Exposures (CVE) Database

	OWASP Top 10
	Injection
	What is SQL injection
	Dangers of SQL injection
	Preventing SQL injection

	Broken Authentication and Session Management
	Dangers of broken authentication and session management
	Preventing authentication and session management flaws

	Cross-Site Scripting (XSS)
	Types of XSS
	Dangers of XSS
	Preventing XSS

	Insecure Direct Object References
	Dangers of insecure direct object references
	Preventing insecure direct object references

	Security Misconfiguration
	Dangers of security misconfiguration
	Preventing security misconfiguration

	Sensitive Data Exposure
	Dangers of sensitive data exposure
	Preventing sensitive data exposure

	Missing Function Level Access Control
	Dangers of missing function level access control
	Preventing missing function level access control

	Cross-Site Request Forgery (CSRF)
	Dangers of cross-site request forgery
	Preventing cross-site request forgery

	Using Components with Known Vulnerabilities
	Dangers of using components with known vulnerabilities
	Preventing using components with known vulnerabilities

	Unvalidated Redirects and Forwards
	Dangers of unvalidated redirects and forwards
	Preventing unvalidated redirects and forwards

	Conclusion

	Content Management Systems
	WordPress
	WordPress Core Functionality

	Joomla
	Joomla Core Functionality

	Drupal
	Drupal Core Functionality

	CMSs and the OWASP Top 10
	WordPress
	Injection
	Authentication and session management
	Cross-site scripting
	Direct object references
	Security misconfiguration
	Sensitive data exposure
	Function level access control
	Cross-site request forgery
	Components with known vulnerabilities
	Redirects and forwards

	Joomla
	Injection
	Authentication and session management
	Cross-site scripting
	Direct object references
	Security misconfiguration
	Sensitive data exposure
	Function level access control
	Cross-site request forgery
	Components with known vulnerabilities
	Redirects and forwards

	Drupal
	Injection
	Authentication and session management
	Cross-site scripting
	Direct object references
	Security misconfiguration
	Sensitive data exposure
	Function level access control
	Cross-site request forgery
	Components with known vulnerabilities
	Redirects and forwards

	Conclusion

	Comparing Content Management Systems
	OWASP Top 10
	Conclusion

	Vulnerability Database
	Conclusion

	Conclusion
	Portable PHP Password Hashing Framework
	Validating passwords

