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Abstract

Thanks to rapid advances in technologies like GPS and WiFi positioning, smart-
phone users are now able to determine their location almost anywhere they go. This
is not true, however, of people who are travelling in underground public transporta-
tion networks, one of the few types of high-traffic areas where smartphones do not
have access to accurate position information. In this thesis, we introduce the prob-
lem of underground transport positioning on smartphones and present SubwayPS, an
accelerometer-based positioning technique that allows smartphones to determine their
location substantially better than baseline approaches, even deep beneath city streets.
We highlight several immediate applications of positioning in subway networks in do-
mains ranging from mobile advertising to mobile maps and present MetroNavigator,
a proof-of-concept smartphone and smartwatch application that notifies users of up-
coming points-of-interest and alerts them when it is time to get ready to exit the
train.
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Publications

A major part of the research mentioned in this thesis was submitted as a paper to the

2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing.

Ubicomp is the premier outlet for novel research contributions that advance the state

of the art in the design, development, deployment, evaluation and understanding of

ubiquitous computing systems. The paper was in the top 23% of all submitted papers

and was invited to the “revise and resubmit” track. At the time of publication of this

thesis, the final decision was still pending.
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Dutch summary

The following Dutch summary was submitted to the Vlaamse Scriptieprijs and is

aimed towards an audience aged 16. Technical details are omitted to make the sum-

mary more understandable for this age group.

Nooit meer verdwalen in de metro

Introductie

Dankzij de razendsnelle evolutie van technologieën als GPS en WiFi kunnen smart-

phonegebruikers bijna overal hun locatie bepalen. Ondergronds werken deze tech-

nieken echter niet en slaan bestaande apps zoals Google Maps de bal helemaal mis.

Nochtans zijn er verschillende toepassingen mogelijk als we de locatie van een

gebruiker kunnen bepalen. Om te beginnen zou een gebruiker zijn locatie kunnen

bekijken in bestaande apps zoals Google Maps. Stel je dan voor dat dit uitgebreid

wordt met een GPS-achtige applicatie voor de metro. Zo kun je perfect je weg vinden

in buitenlandse metronetwerken, ook al ben je er nog nooit geweest. En geloof ons,

we hebben dit in 4 steden wereldwijd getest!

Ondergrondse localisatie

SubwayPS (of Subway Positioning System voluit) is een nieuwe methode om de lo-

catie van een smartphone te bepalen zonder dat hier extra hulpmiddelen voor nodig

zijn. Hiervoor wordt dezelfde sensor gebruikt als bij verschillende games, namelijk de

accelerometer. Deze sensor “voelt” trillingen en zwaartekracht en zorgt er ook voor

dat je bij race-games bochten kan maken door je smartphone schuin te houden.

Door een paar wiskundige berekeningen uit te voeren op de metingen van deze

sensor, kan bepaald worden of het metrotoestel waar je op zit momenteel aan het

rijden is of niet. Omdat we met de hulp van uurroosters weten hoe lang het ongeveer

duurt alvorens de gebruiker in het volgende station aankomt, kunnen we een relatieve

positie berekenen tussen het vorige en het volgende station. Doordat we de uurroost-

ers gebruiken, kunnen we zelfs weten of de metro stopt in de tunnel in plaats van
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aan een station. Zo kunnen we de gebruiker altijd een nauwkeurige locatie geven van

waar hij of zij zich bevindt.

Android app

MetroNavigator is een voorbeeld app voor Android toestellen en toont aan hoe Sub-

wayPS gebruikt kan worden. De app werkt als een soort ondergrondse GPS: de

gebruiker kiest een start- en eind-station en kan verder volledig volgen waar hij zich

bevindt. MetroNavigator brengt de gebruiker ook op de hoogte van interessante

bezienswaardigheden in de buurt zoals musea of andere toeristische attracties. Als

je de smartphone toch maar liever in je zak laat steken, kan je ook een smartwatch

versie gebruiken. Als de smartwatch verbonden is met de smartphone, toont deze

dezelfde meldingen.

Testen, testen, testen...

SubwayPS is getest in 3 verschillende studies. In de eerste studie werd gekeken

naar hoe nauwkeurig de detectie van stations is. Hierbij werd aangetoond dat 85.8%

van alle stations goed gedetecteerd werden. Vergelijkbare technieken haalden tot nu

slechts een percentage van ca. 55%. Deze studie werd uitgevoerd in maar liefst 4

verschillende steden: Brussel, Keulen, Londen en Minneapolis.

In de tweede studie maakten verschillende testpersonen gebruik van de Metro-

Navigator app en gaven hierbij hun feedback. Als we in deze studie eerst weer kijken

naar accuraatheid komen we uit bij 85.7%, wat heel vergelijkbaar is met de resultaten

uit de eerste studie. We kregen feedback als “Aangezien GPS hier niet werkt, lijkt

dit op een GPS voor ondergrondse treinen Ik wil dit in Google Maps!” en “Het is

echt cool om te zien waar de trein beweegt en stopt Ik voel mij veiliger als ik kan

zien dat we dicht bij het volgende station gestopt zijn wanneer we stil staan in een

tunnel”. Het grootste voordeel van MetroNavigator was de functie om mensen naar

hun eindbestemming te leiden (14 van de 16 participanten), en het weten waar men

zich bevindt (12 van de 16 participanten). Een enkele participant zei “Wow, dit is

net magie” toen de visualisatie van de trein stopte wanneer de echte trein dat ook
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deed. Ze zei verder: “... Eerst dacht ik dat deze app een beetje saai was aangezien het

gewoon een metro-icoontje bewoog volgens de uurrooster, maar nu zie ik dat het GPS

heeft”. In de derde studie werd bestudeerd of er een verschil is tussen het gebruik van

SubwayPS en het gebruik van de uurroosters. Hierbij werden 50 ritten gemaakt met

de metro, waarbij de resultaten van SubwayPS vergeleken werden met de uurroosters.

SubwayPS detecteerde 85.0% van de stations correct, of 78% volledig juiste ritten.

Echter, slechts 42% van de ritten was juist volgens de uurroosters. Om dat dit niet

eerlijk is ten opzichte van treinen die al met vertraging vertrekken, hebben we ook

gekeken naar de relatieve tijd tussen de stations. Het uur van aankomst maakt in

dit geval niets uit, zolang de reistijd tussen de stations maar overeenkomt met de

uurroosters. Ook hier haalde de uurroosters slechts een accuraatheid van 50%. Deze

studie toonde aan dat SubwayPS maar liefst 28% nauwkeuriger is dan zich te baseren

op gemiddelde reistijd of uurroosters.

Conclusie

SubwayPS is een nieuwe techniek die het mogelijk maakt om de locatie van een smart-

phone te bepalen op ondergrondse metronetwerken. Enkel sensoren die al aanwezig

zijn op een smartphone worden gebruikt, dus er zijn geen extra kosten voor de ver-

voersmaatschappijen. Er werd aangetoond dat SubwayPS werkt in vier verschillende

metronetwerken uit twee verschillende continenten, en accurater is dan de officile

uurroosters voorzien door de vervoersmaatschappijen.
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Chapter 1

Introduction and motivation

Localization techniques have been the subject of research for decades. The most pop-

ular technique for outdoor localization is the Global Positioning System (GPS). It

was developed in 1973 and was created by the U.S. Department of Defense. Origi-

nally it ran with 24 satellites and became fully operational in 1995. After a Boeing

747 carrying 269 cilivians was shot down in 1983 for entering the USSR’s prohib-

ited airspace, U.S. President Ronald Reagan issued a directive to make GPS freely

available for civilian use once it was sufficiently developed [19]. At first the highest

quality of signal was reserved for military use while the signal available to the public

was intentionally degraded, called Selective Availability (SA). This changed in 2000

when U.S. President Bill Clinton ordered SA to be turned off, which improved the

precision of civilian GPS from about 100 meters to approximately 20 meters, the

same accuracy that was already available to the military.

The result was a large increase in the production of GPS devices for private

use. Multiple companies started to develop GPS receivers that included a navigation

component which made GPS available to a much larger audience, like devices created

for in-car use.

In November 2004, Qualcomm1 announced that they successfully tested assisted

GPS for mobile phones, in which the startup performance or Time-To-First-Fix

(TTFF) of GPS receivers was improved greatly by using data available from the net-

1http://www.qualcomm.com/
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work. The inclusion of GPS receivers in mobile phones was another great leap in the

availability of GPS-enabled devices to a large audience. The arrival of smartphones

has seen a huge choice in mobile applications each with the possibility to use the GPS

receiver included in the mobile device. Applications which make use of GPS include

Google Maps for Mobile2 and iOS Maps3 (both map and navigation software by big

technology companies like Google and Apple), but also applications like Foursquare4,

Facebook5 and Twitter6 make use of the GPS receiver to allow context-aware content

based on the location of the user. There are also open source mapping applications

available, e.g. OpenStreetMap7.

The availability of the GPS to such a wide audience has made navigation systems

everyday tools. Applications like mentioned above added more possibilities to GPS-

equipped mobile devices than just localization. A GPS navigation system was no

longer useless outside of a car, but could be used on foot, while biking and even on

public transport. The possibilities of devices equipped with a GPS receiver are still

increasing.

1.1 Problem

GPS satellites transmit two radio signals named L1 and L2. The L1 signal frequency

of 1575.42 MHz in the UHF band is used by civilian GPS devices. Newer satellites

and military-grade GPS devices make use of the L2 signal frequency of 1227.60 MHz.

However, the system was designed for outdoor locations and therefore has four main

problems when trying to use it for indoor localization which are also shown in figure

1-1:

• Line of sight: These signals travel by line of sight which means that they can-

not travel through solid objects like buildings and mountains, but can pass

through clouds, glass and plastic. This causes GPS to be unreliable in indoor

or underground locations.

2http://www.google.com/mobile/maps/
3http://www.apple.com/ios/maps/
4https://foursquare.com/

5https://www.facebook.com/
6https://twitter.com/
7http://www.openstreetmap.org/

24



Figure 1-1: GPS signals cannot travel through solid objects due do their frequency.

• Multi path signal: Occurs when the GPS signal has been reflected off objects like

buildings or other surfaces before reaching the receiver which increases travel

time.

• Number of visible satellites: A GPS receiver needs at least four visible satellites

to be accurate.

• Interference: Electronic devices like TV antennas which work with UHF signals

can conflict with the GPS signal.

Multiple enhancements to GPS have already been developed to allow solutions for

signal problems.

Assisted GPS (AGPS) has been developed specifically for mobile phones which

can use their cell signal to improve or quicken GPS localization. The AGPS archi-

tecture increases the capability of a stand-alone receiver to conserve battery power,

acquire and track more satellites thereby improving observation geometry, and in-

crease sensitivity over a conventional GPS architecture. These enhancements come

from knowledge of satellite position and velocity, the initial receiver position, and

timestamps supplied by an assistance server.
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Another GPS enhancement is the use of a custom build GPS antenna which

tries to solve the multipath signal problem. A new antenna developed by the Air

Force Institute of Technology is able to recognize and ignore multipath GPS signals.

However, this design requires a large receiver, making it practical only in military

applications8.

To allow localization and navigation in indoor and underground locations, other

hardware than GPS receivers should be used, which should be independent of recep-

tion quality and preferably infrastructure independent due to cost.

A smartphone’s ability to detect its location is the cornerstone of mobile applica-

tions in domains ranging from location-based services to mobile crowdsourcing. While

technologies like GPS and WiFi triangulation have made location detection possible

in most places smartphone users go, this is not true everywhere. Underground public

transportation systems, which are largely inaccessible to GPS signals and often out

of range of WiFi networks, represent a particularly important type of space in which

smartphones cannot reliably determine their location. As a result, the millions of

locals and tourists who ride subways around the world each day [30] cannot take full

advantage of popular location-aware smartphone applications - including mobile map

apps - while travelling to and from their destinations.

1.2 Goals

In this thesis we want to locate a user in an underground public transport system

with a mobile device by using the accelerometer. For doing so, we developed an

Android application for mobile devices. In an initial phase, we collected data on

how the underground trains travel on a certain track. We then defined methods

to differentiate movement and stations and finally used a machine relative approach

based on interpolation to track the user’s location. The resulting application is shown

in figure 1-3.

8http://www.technologyreview.com/news/519811/a-
cure-for-urban-gps-a-3-d-antenna/
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Figure 1-2: A screenshot of the Google Maps iPhone application used on the Blue Line
subway in Chicago. The gray dot shows the smartphone’s estimated position, while
the green dot shows the actual position of the user’s train. Red dots are underground
stations. One could easily miss their stop if they relied solely on current positioning
technology. SubwayPS works towards addressing this issue by providing improved
positioning while travelling in underground public transport networks (Base map
c© Google Maps 2014).

Thus, we present SubwayPS, the first positioning technique that allows modern

smartphones to determine their location while travelling in an underground public

transportation network. Our technique, which we demonstrate can achieve reasonable

- though not perfect - accuracy, does not depend on any instrumentation of the

environment. Instead, SubwayPS merely requires an accelerometer and gyroscope

and an input origin location and end destination. Accelerometers and gyroscopes are
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Figure 1-3: Screenshot of the final application.

included in most recent smartphones. Origins and destinations can be easily extracted

from routing requests (especially if this type of positioning technology is built into

a mobile OS) or inferred from user behavior (as in context-aware technologies like

Google Now [10] or similar technologies [16]).

Smartphone positioning in underground public transportation networks allows for

wide-ranging benefits. The most basic of those benefits is that SubwayPS simply puts

subway riders “back on the map”. Figure 1-2 shows the result of using Google Maps

for iOS while travelling through the underground portion of the Chicago Blue Line.
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Because the app cannot obtain position information, it is rendered effectively useless

for navigation and orientation purposes.

Our technique can make mobile maps as useful in underground transportation

networks as they are above ground. For example, a SubwayPS -enabled navigation app

could much more effectively help tourists navigate foreign subway systems, especially

when they do not speak and/or cannot read the native language. Such an app could,

for instance, inform tourists who cannot understand the announcements of when to

prepare to exit the train, an especially important concern when the train is crowded.

SubwayPS can also be used to provide detailed navigation support in complicated

subway networks, in which its positioning allows the creation of navigation apps that

help users with changing lines.

SubwayPS can also enable location-based applications beyond basic navigation

and orientation. For instance, if our technique were built into the location API of

a mobile OS, smartphone users would be able to use cached content from apps like

Wikipedia or Yelp to easily see the restaurants that are available if they were to get

off at the next stop. In addition, mobile advertising becomes possible underground

(e.g. “Exit at the next stop to get to restaurant X and receive e 5 off”).

The core contribution of this thesis is our underground public transportation

positioning technique SubwayPS, along with three evaluations that show that our

technique can achieve reasonable accuracy and substantially outperforms baseline

approaches on multiple subway systems.

1.3 Structure of the thesis

This thesis is structured as follows:

In chapter two we put our core contribution in the context of related work. It has

been informed by research from three areas: inertial navigation, transportation mode

detection, and other approaches to positioning in public transportation networks.

In chapter three we present SubwayPS in detail, which is the core contribution

of this thesis and allows positioning on underground public transport systems with
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reasonable accuracy.

This is followed by chapter four, in which we introduce MetroNavigator, a proof-

of-concept application based on SubwayPS.

In chapter five we demonstrate the accuracy of SubwayPS using (1) accelerometer

and gyroscope log data collected from four subway systems across two continents, (2)

an “in the wild” user study conducted with MetroNavigator in the Cologne, Germany

subway system, and (3) a third study to compare the application against a time-table

only approach.

Finally, we close with chapter 6 and 7, drawing our conclusions and highlighting

the many applications of subway positioning in more detail, together with discussion

regarding several means by which SubwayPS ’s accuracy can be improved in future

work.
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Chapter 2

Related work

The work presented here is informed by research from three areas: inertial naviga-

tion, transportation mode detection, and other approaches to positioning in public

transportation networks. Below, we will discuss each of these areas in turn, but first

we will provide a list of localization methods and technologies so all related work can

be easily categorized.

2.1 Categorization of related work

This section consists of two subsections. In the first subsection we describe localization

techniques in general. The second subsection gives a brief overview on the most

prominent localization technologies for indoor and outdoor use.

2.1.1 Localization techniques

Dead reckoning

Dead reckoning is a localization technique that calculates a user’s position based

on a previous location and a certain change with respect to the previous location.

This change is a certain length over time (speed) in a certain heading (direction).

Without any other localization help, dead reckoning will build up a cumulative error

in positioning and is therefore not seen as an accurate localization technique. How
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longer the technique is used, the larger the cumulative errors will be. If any mistake

or error occurs during localization, it will influence all following calculations.

Proximity

Proximity is a technique often used when the technology does not allow to calculate

distance between the subject and a known set of points. It uses the concept of

nearness to this set of points. An easy way to explain this concept is by giving an

example. If a method using the WiFi technology does not make use of the signal

strength but instead just uses the notion of being connected to a certain access point,

the method is based on the proximity technique.

Trilateration

Trilateration is a localization method which uses the measurement of distances using

the geometry of circles, spheres, or triangles. It is based on the fact that in two-

dimensional geometry, if a point lies on two circles, the circle centers and the two

radii provide sufficient information to narrow the possible locations down to two. The

same technique can be used in three-dimensional geometry, where it is known that if a

point lies on the surfaces of three spheres, the centers of these spheres along with their

radii provide sufficient information to narrow the possible locations down to no more

than two (unless the centers lie on a straight line). This technique can be used with

different types of signals, as long as they provide a measurement of distance (or signal

strength). However, it is obvious that this technique is infrastructure dependent.

Triangulation

Triangulation on the other hand involves the measurement of angles to a point from

other known points at the end of a fixed baseline rather than using distance directly.

The point can be located as the third point of a triangle with one known side and

two angles. Triangulation methods were used for accurate large-scale land surveying

until the rise of GPS.
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Scene analysis

In this technique, a view is examined from a particular point and direction. This

can be combined with computer vision to interpret the view and allow localization

by calculating where a user is based on his view.

2.1.2 Localization technologies

GPS

In basic GPS operation, trilateration (see subsection 2.1.1) is used to locate the

user. GPS receivers calculate their position by timing signals sent by GPS satellites.

Each satellite continually transmits messages that include the time the message was

transmitted, as well as the satellite position at the time of transmission. These are

converted to sphere centers and radii and therefore trilateration is used to calculate

the position. More advanced GPS receivers also implement extra techniques like dead

reckoning to still provide positioning when fewer than four satellites are visible.

Infrared

One of the first localization implementations was the Active Badge location system,

developed at Olivetti Research Laboratory [29], and used diffuse infrared signals. It

is based on the proximity method mentioned in subsection 2.1.1. The user can be

located by a infrared badge that emits a unique identifier every few seconds. This

data is collected by several fixed infrared sensors which are connected to a central

server, and the location of the user is defined as near the last infrared sensor that

picked up the signal of his badge. Typical to diffuse infrared signals are issues in

locations with fluorescent lighting or sunlight because these light sources also emit

infrared signals. The effective range of such diffuse infrared signals is several meters,

so a lot of sensors are required to cover a large area. It is obvious that this technology

requires specific hardware and is infrastructure dependent, so therefore quite costly.
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Figure 2-1: Ultrasound waves are bounced off of objects and received after a specific
amount of time so distance can be calculated between these objects and the ultrasound
sender/receiver.

Ultrasound

An improvement of the Active Badge location system has been developed by AT&T

researches, called the Active Bat location system. It uses ultrasound time-of-flight

lateration to allow for more accurate positioning by equipping the user with a Bat,

consisting of a radio transceiver and an ultrasonic transducer [8]. Ultrasound receiver

units are placed at known points in the ceiling, so this system is also infrastructure

dependent. Using the times-of-flight of these ultrasound pulses, the distance between

a Bat and the receivers can be calculated and its position can be calculated in 3D

space using multilateration (see subsection 2.1.1). Disadvantages are the numerous

hardware requirements including a base station for sending radio signals, ultrasound

receivers and the Bats themselves. Incorrect measurements of distance can also be

an issue, caused by reflections of ultrasonic signals in the environment. Finally, no

more than one Bat can be located at the same time.

Electromagnetic tracking

Tracking systems which use electromagnetic sensing can sense precise physical posi-

tions relative to a magnetic transmitting antenna [21]. These systems generate axial

magnetic-field pulses from an antenna that is placed in a fixed location. The user’s
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position is computed from the position of receiving antennas by measuring response

to the field pulse in three orthogonal axes. Of course, the influence of the earth’s own

magnetic field must be taken into consideration for these computations. Other dis-

advantages include the implementation costs and the limited range of the technique

(up to a few meters). The presence of metallic objects also influences the accuracy

greatly. Therefore these systems are not scalable for use in large locations.

Computer Vision

A number of localization approaches are based on the optical signal. Advantages of

image matching algorithms are the inclusion of cameras in current generation mobile

device hardware and the lack of infrastructure requirements. However, techniques

based on this method are not usable in the scope of this thesis. Localization by image

matching algorithms is done by interpreting the immediate environment of the user.

But since the immediate environment of a user on underground public transport (the

inside of a metro car) does not change while movement happens, it is impossible to

provide localization. Techniques based on image matching algorithms can be used to

determine a users location within a metro car, but not within an entire underground

public transport network. Laser ranging techniques on the other hand require specific

hardware that is not available for a large audience and are infrastructure dependent.

Because of these disadvantages the practical use of methods based on the optical

signal is limited. Examples that use these technologies are vSLAM [11] and the

orientation part of Kourogi’s algorithm[14].

Radio frequency waves including WiFi

Very high frequency radio waves are used in omni-directional ranging techniques by

air traffic control. Aircraft can determine their position by receiving radio signals

transmitted by a network of fixed ground radio beacons. These ground stations

send out a master signal and a highly directional second signal that varies in phase

compared to the master. The second signal is timed so that it varies together with

the rotation of a secondary antenna. This causes the signal to be out of phase with
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the master signal. For example, the signal will be 90 degrees out of phase with the

master when the antenna is 90 degrees from north. By comparing the phase of the

secondary signal with the master, the bearing of the aircraft can be calculated. By

using triangulation and comparing the angle with two different ground stations, the

position of the aircraft is calculated. It is rather obvious that the infrastructure for

this technique is very expensive, and the range is limited to line of sight. WiFi on the

other hand is a very low-strength signal in the radio frequency domain, which causes

it to be cheaper but also decreases the range immensely.

Bluetooth

Bluetooth uses short-wavelength microwave transmissions in the ISM band from 2400-

2480 MHz1. It allows the use of location techniques like trilateration and proximity.

One of the latest commercial localization solutions using Bluetooth is the iBeacon by

Apple. It uses the proximity technique by showing notifications on a user’s mobile

device when it is in range of certain iBeacon. Software on the mobile device is able

to calculate an estimate distance to the iBeacon based on signal strength. Bluetooth

technology is included in most mobile devices but it still requires infrastructure like

beacons to function as a localization method.

2.2 Inertial Navigation

SubwayPS uses an approach to positioning motivated by the literature on accelerometer-

and gyroscope-based inertial navigation. Although inertial navigation approaches

have not been adapted to the context of public transportation positioning as they are

here, they have shown to be succesful for other purposes, especially pedestrian indoor

navigation (e.g. [1, 6, 22, 23]).

Step detection For instance, Robertson et al. [22] presented a simultaneous local-

ization and mapping (SLAM) approach for pedestrians by using only foot-mounted

1http://www.bluetooth.com/Pages/Fast-
Facts.aspx
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Figure 2-2: The signal flow of the wireless assisted dead reckoning algorithm in the
NavMote Experience method. Image courtesy of Fang et al [5].

inertial sensors. Their method, FootSLAM, can be used to generate an approximate

2D map of an indoor layout with just 10 minutes of walking. Along the same lines,

Grejner-Brzezinka et al. [7] developed a neural network- and fuzzy logic-based inertial

positioning system for military and rescue ground personnel. In their implementation

the user was equipped with a backpack containing a GPS receiver, an IMU containing

a gyroscope and accelerometer, a barometer, and a magnetometer. In addition, the

user was equipped with step sensors on the toes and heels to allow for more detailed

step detection.

Other accelerometer-based approaches have combined inertial navigation with

GPS and other positioning signals for improved accuracy. The NavMote Experi-

ence [5], for example, combines accelerometer inertial navigation with other tech-

niques to allow for improved accuracy. It involves a Dead Reckoning Module (DR

Module), self-organizing wireless ad hoc networks (sensor Mote network) and an in-

formation center with a map database.[5]. The DR module includes an accelerometer

and a magnetic compass together with a wireless controller board which integrates

radio, processing and power. It combines the samples of the magnetometer with the

accelerometer to calculate a heading. Steps can be detected by only using the accel-

eration signal in the z-axis. This signal has double or triple peaks in every step but

since the frequency of normal walking is no more than 3 Hz, a low-pass FIR filter or
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moving average can smooth the acceleration samples. When the steps are detected,

the step length can be calculated with the same z-axis samples. The amplitude of the

signal in the vertical axis is influenced by the walking speed. Based on step length

and heading estimation the entire trajectory is reconstructed by displaying it on a

map of the region. In the implementation the step detection was done on the Nav-

Mote while the other calculations were done on the infrastructure. The sensors in

the infrastructure were also used to improve the localization of the mobile device by

measuring which sensor was closest. Matching the information of the step length and

heading on the map was done manually by a human operator by recognizing certain

feature in the maps in the data measured by the NavMote. The whole process is

shown in figure 2-2.

Another example is the Embedded GPS/RFID/Self-contained Sensor System by

Kourogi et al,[14]. As described in the name of their system, Kourogi and colleagues

integrated self-contained dead reckoning sensors (accelerometers, gyrosensors, and

magnetometers) with GPS and an RFID tag system to adjust for errors in position-

ing and direction that occur in the dead reckoning process. The self-contained sensors

are used to estimate relative displacement by analyzing the human walking locomo-

tion by a dead-reckoning method in the Kalman filter framework [13]. Their system

uses the GPS in outdoor locations to adjust errors in position and direction that have

been accumulated by the dead-reckoning. While indoors it uses the RFID tag system

by having tags integrated in key spot areas. This means that this method is infras-

tructure dependent for indoor environments while being infrastructure independent

for outdoor locations since GPS is available there.

A number of inertial navigation-based positioning techniques for indoor navigation

and related purposes have been developed for smartphones. These techniques, how-

ever, use the detection of walking steps (“step detection”), together with a method

of heading determination to provide indoor navigation. Such techniques have seen

huge accuracy improvements in recent research but are unsuitable for localization on

underground public transport systems where step detection is not an option.

Prominent examples of step detection positioning techniques are for example Serra
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et al. [25], who developed an application that calibrates and downloads a map when

the user scans a datamatrix with the integrated camera, on which the user’s movement

is visualized. Other example of smartphone specific work are PhotoMap [24] and

PINwI [17], which both use the integrated camera to take a picture of a map and

allow inertial navigation by step detection on the image of the map.

Over time these inertial navigation systems have seen various improvements in

recent research (e.g. [12, 17, 18, 24, 25, 26]), allowing them to provide meter-level

positioning accuracy without any infrastructure assistance. Li et al. [15] have built

such an end-to-end localization system with a decent mean accuracy of 1.5m or 2m

depending on whether or not the device is hand-held or in-pocket, but again by im-

proving step detection and heading detection algorithms. The recently announced

Google Project Tango also promises to allow indoor positioning with a high preci-

sion. Their custom smartphone hardware provides a dead reckoning approach based

on integrated accelerometers and gyroscopes and combines them with a computer vi-

sion algorithm that uses the integrated camera to notice movement. However, these

techniques are unsuitable for localization in underground public transport systems

where step detection is not an option. In contrast, our system will focus solely on

accelerometer and gyroscope input and use this data to allow localization on an un-

derground public transport system where step detection nor other existing techniques

are valid options.

2.3 Transportation Mode Detection

Besides positioning, Wang et al. [28] showed that accelerometers on mobile devices

can be used to detect a user’s mode of transport (e.g. walking vs. biking vs. driv-

ing). In this research, they used a formula for acceleration synthesization to learn

the patterns of different transportation modes. We implement their formula in our

SubwayPS technique by using it to detect if a train is moving or not. Hemminki et

al. [9] have recently achieved improved accuracy on transport mode detection by pro-

viding a new algorithm for estimating the gravity component and key characteristic
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pattern detection, which involves the detection of mode-specific patterns such as step

detection for walking and smooth accelerations for vehicle movements.

Since transport mode detection methods have currently not achieved an accuracy

for underground public transport detection of at least 80%, our method is dependent

on user input to confirm when the user is on underground transport, since the focus

of this paper is on positioning assuming that the user is underground, and not on

transport mode detection.

2.4 Positioning in Public Transportation Systems

The final area of work related to SubwayPS comes from the literature on positioning

in public transportation systems. For instance, the EasyTracker system by Biagioni

et al. [2] provides a location tracker for public transport that uses GPS traces from

above ground transit vehicles (busses), but requires all vehicles to be instrumented

with equipment such as GPS receivers and inertial navigation sensors. Zhou et al. [31]

developed a positioning technique that combines a variety of sensor measurements

from the multiple mobile devices owned by the people on an above-ground transit

vehicle to calculate an average location. Thiagarajan et al. [27] describe a crowd-

sourced transit tracking system intended to improve real-time arrival and departure

estimates. As part of this research, Thiagarajan and colleagues looked at subway

systems, but their approach is not designed for positioning on mobile devices and

requires a connection to a tracking server, which is often not available while on a

subway.

To summarize, in this thesis we present the first smartphone positioning technique

(SubwayPS ) for underground public transportation systems that relies solely on the

user’s mobile device. As a result, our technique does not require the infrastructure [2],

connectivity [27], or critical mass of users [31] needed by existing approaches in this

area. Instead, SubwayPS merely requires a single accelerometer and gyroscope, both

of which are built into most modern smartphones. In addition, SubwayPS has impor-

tant privacy benefits: because all calculations are done locally on the user’s mobile
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device, SubwayPS does not share a user’s position with any central server or third

parties.
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2.5 Overview of related work
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Table 2.1: Overview of the most important positioning or navigation methods men-

tioned as related work
43



44



Chapter 3

The SubwayPS Technique

With the SubwayPS technique, we show that it is possible to achieve reasonable

positioning accuracy on underground public transportation networks without the need

for any instrumentation of subway trains or tunnels. Our evidence suggests that

SubwayPS is usable as-is on most underground public transport systems in the world.

We also show how accuracy can be improved by fine-tuning certain parameters to the

characteristics of a specific underground public transport system.

3.1 Capturing vehicle movement

To realize this underground public positioning on mobile devices and accelerometers,

it is necessary to first find out how noisy and useful the accelerometer data of a mobile

device actually is. For this purpose, an Android application was created that could

capture and store accelerometer data for further analysis. This data was stored as

acceleration values in m/s2 for each axis (x, y, and z) together with the timestamp of

the measured accelerations.

3.1.1 Using acceleration data of each axis separately

Splitting the acceleration in three axes (being x, y and z) allows much more factors

to be used in a recognition method. By placing the mobile device in such a way
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that an axis is parallel with the movement of the vehicle, each acceleration value gets

another meaning than just acceleration at a certain time. For example, a positive

acceleration in the x-axis can stand for acceleration of the vehicle while a negative

value stands for breaking. Negative values in the y-axis can stand for bends to the

left while positive values stand for bends to the right. The third axis can be used

to identify bumps or movements up and down. This separation of the axes allows

for much more factors to identify certain tracks. The limitation of this method is

that the device should be hold in the same manner by all users, since the reason why

activity recognition works better with the combined accelerations is the inability to

perfectly determine the gravity vector. This also affects calculating the orientation

of the device. Therefore in this first phase it was the user’s task to hold and keep

the device in the correct orientation (z-axis parallel with movement of the vehicle, see

figure 3-1).

Initial data collection on bus

Due to the absence of underground public transport in the area of Hasselt University,

the first collection of data was done on other public transport, namely the autobus.

However, using an autobus to capture accelerometer data added a high number of en-

vironmental problems, influencing the measurements. These environmental influences

included

• the driver, each driver has his own way of driving, taking turns more sharply

or accelerating and breaking faster.

• the existence of gears, changing gears causes the acceleration to not be constant

and upon switching gears there is even a moment of deceleration.

• traffic, behaviour of other vehicles will influence the behaviour of your own

vehicle such as a car breaking before making a left turn while your bus just

needs to go straight ahead.
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Figure 3-1: Description and image provided by the app to define the required orien-
tation of the device.

• traffic lights which cause the vehicle to come to a halt while there might be

no stop nearby. If a traffic light is closely located to a stop it might even be

impossible to differentiate between them.

• the bus stops themselves, it is not required for a driver to halt at each stop if

there are no people waiting, upon which the data accelerometer will not measure

that there is a bus stop.

Due to these problems it is not possible to recognize bus stops by only looking at

accelerometer data. We hence updated the mobile application to also store GPS

location data so we can match the accelerometer data to certain locations. This

made the initial data much easier to process and comprehend.
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Figure 3-2: Screenshot of the Windows Store application to view and interpret the
accelerometer data of public transport by bus.

Interpreting bus data

To interpret the data captured by the first iteration of our application we created

a Windows Store application that supported touch to allow for multiple methods of

interaction with the data. The application displayed the accelerometer data in three

separate graphs, one for each axis. It also displayed a map that shows the tracked

route based on the GPS location data. These two views were connected to each other

so interacting with one of them also changes the other view. By using this application

to visualize the captured data it was possible to see what accelerometer values were

measured at an exact location. This connection also worked the other way around

so that it was also possible to see where the vehicle was at a specific accelerometer

value. A screenshot of this application is shown in figure 3-2.

Due to the limitations mentioned in the previous section, the results were rather

noisy and required a lot of manual checks to see if a peak was caused by the route

(bends, bus stops) or by traffic causes (red lights). To allow a much faster compre-

hension of the data, we added a function that changes the color of the data when it
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Figure 3-3: Screenshot of the Windows Store application to view and interpret the
accelerometer data of public transport by bus, with blue dots depicting bus locations
near bus stops.

was within hundred meters of a bus stop. It was now much easier to see if a certain

peak was caused by a bus stop or not. A screenshot of this functionality is shown in

figure 3-3.

The combination of the accelerometer data and GPS locations provided us with

a good reference of positioning of the user. Bends in the route as seen on GPS could

be easily mapped on timestamps in the accelerations. The next step was testing the

same capture algorithm on underground public transport.

Results on underground public transport

Running the same capture mechanism on underground public transport resulted in

several weak points. As mentioned previously, positioning via the accelerometer data

was easily matched because there was GPS data available. However, we did not have

this data on our underground trackings, making it much more difficult to recognize

events and patterns in the accelerometer data. Even worse, the movement of under-

ground vehicles is much smoother. On normal roads, most bends that were usable
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for route recognition were bends of 90 degrees, taken at a slow pace after a large

brake. However on underground public transport, most bends happen very gradually

without any slowdown of the vehicle.

The implementation by using all axes separately was also easily influenced by

even the slightest rotations of the device. This caused a change in the gravity vector

influencing the measurements. Calculating the orientation on the fly (on a moving

vehicle with multiple external forces not including gravity) would be cause of a large

amount of overhead. The combination with the slow bends of underground public

transport made it even more difficult to differentiate between a small rotational change

or a bend, resulting in accelerometer data that was very difficult to read or interpret.

The negative impact of these results proved so extensive that we looked at a

different method to use the acceleration data, which we applied directly on public

transport. Our previous method proved that accelerometer methods for above-ground

localization are not necessarily directly mappable to the underground public transport

domain.

3.1.2 Combining the data from all three acceleration axes

According to the research of Wang et al. accelerometer data can be generalized

which will result in better activity recognition than interpreting all three axes sep-

arately [28]. Capturing vehicle accelerations via this method resulted in more noise

and the inability to differentiate between bends, breaking or acceleration made by

the vehicle. However, this method is completely orientation independent and should

stay usable when the orientation of the mobile device changes. It is also based on the

observation that the noise increases on higher speeds instead of taking into account

different characteristics of the route.

Underground data collection

To allow for easier testing, we extended our Android application with multiple func-

tionalities that were useful for a testing audience, making it accessible to more people.
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Figure 3-4: Interface of the data capturing application for underground public trans-
port.

The application was updated to include underground transportation information of

four different cities namely London, Brussels, Cologne and Minneapolis. This in-

formation encompassed all underground lines in each city together with information

about all the stations on each line. This allowed the creation of a simple wizard

where the user can easily select a city, line, start-, and end-station. A screenshot

of the interface can be seen in figure 3-4. The users were still encouraged to avoid

making sudden movements so that there would be less noise in the data captured.

3.2 Interpreting measured data

SubwayPS makes use of a smartphone’s accelerometer and gyroscope (standard fea-

tures in recent smartphone models) by combining the accelerometer measurements on

all three axes to detect underground train movement. The gyroscope is used to filter
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the gravity factor out of the accelerometer measurements, meaning we measure the

acceleration applied to the sensor built-in into the device, excluding the force of grav-

ity, in m/s2. As such, the accelerometer reads (x = 0m/s2, y = 0m/s2, z = 0m/s2)

when the mobile device is in rest and the coordinate system is defined relative to a

default orientation of the accelerometer sensor. The axes are not swapped when the

device’s screen orientation changes.

In our implementation of SubwayPS, we made use of the virtual Linear Accelerom-

eter provided by the Android operating system, which handles the gravity removal

internally.

Collecting accelerometer data in a pretest on multiple underground public trans-

port systems showed that station locations overlapped with periods in our data collec-

tion where there was generally less acceleration on all axes of the accelerometer. This

is due to the fact that train movement results in multiple small accelerations in all

directions (e.g. think about the small amount of shaking back and forth experienced

by passengers when a train is at high speed). As such, by measuring the amount of

variance on all axes, it is possible to detect whether the train is moving or not.

Figure 3-5 demonstrates this phenomenon in more detail by showing an example

with data collected on the London Underground. Figure 3-5a shows the accelerations

measured on each axis of the accelerometer over the same period. Stations are clearly

visible in the data in that they have accelerations closer to zero and less variation

(around minute 1 and 2.7 in figure 3-5a).

By calculating a general acceleration value based on the three-axis input of the

linear accelerometer data it was possible to calculate a variable a that has a large

value if there is a large amount of acceleration on any (or all) of the axes. To calculate

this value we used the following formula for acceleration synthesization [28]:

a =
√
x2 + y2 + z2 (3.1)

The resulting a values are smoothed by a rolling average with a window of n samples.

We found n = 100 samples at 50 Hz to be an appropriate general window. Lower
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Figure 3-5: In graph a, a visualization of accelerometer values measured on each
axis is shown. The blue dotted lines indicate time in minutes while the red intervals
indicate stations. The data was collected on the Central Line in London. Graph b
shows the result of the acceleration synthesization used in SubwayPS, smoothed by a
moving average. This result is compared to the threshold to detect train movement.

World-wide London Cologne
γ 0.2m/s2 0.2m/s2 0.2m/s2

δbelow 250 samples at 50 Hz 250 samples at 50 Hz 250 samples at 50 Hz
δabove 350 samples at 50 Hz 250 samples at 50 Hz 500 samples at 50 Hz
n 100 samples at 50 Hz 100 samples at 50 Hz 100 samples at 50 Hz

Table 3.1: General, “world wide” parameters for SubwayPS, as well as those specifi-
cally tuned for London and Cologne.

values would confuse user movement of the smartphone as false train movement (see

Study 3 for more details), while higher values would increase the delay between events

(e.g. subway stops) and their detection by SubwayPS. Plotting out a results in a graph

like that shown in figure 3-5b.
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3.2.1 Mapping data on train movement

By comparing the smoothed data with a certain threshold, it is possible to conclude if

a train is moving or not. The SubwayPS technique uses multiple parameters to parse

the data and uses states to define if a train is moving or not, based on a window of

samples. The parameters considered are:

n = window size of moving average

γ = threshold

δbelow = minimum amount of samples below threshold

δabove = minimum amount of samples above threshold

The values for each of the four parameters were determined empirically using data

from four different subway systems as described in the evaluation chapter. SubwayPS

requires at least δbelow samples below the threshold before it marks the current ac-

celerometer measurements as a stop, while at least δabove samples above the threshold

are required for SubwayPS to conclude that the train is moving. These values are

used to prevent flagging user movement as train movement (Study 3), but can also im-

prove the accuracy for an individual underground public transport system by slightly

adjusting these values based on the characteristics of the trains.

For instance, increased accuracy for the London and Cologne subways can be

achieved by using the values in the second and third columns of Table 3.1, respectively.

Trains in London accelerated more slowly, resulting in a longer period required to

reach δabove, while in Cologne, trains accelerated rather quickly. Because the threshold

was reached much faster in Cologne, δabove could be increased to decrease the chance

of false positives.

While the “world-wide” parameters were empirically determined to work reason-

ably well on all subway systems tested (see below), the parameters specifically tuned

to the data we collected on each subway system can increase local performance. For

example, using the world-wide parameters for SubwayPS on data collected in London
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results in an accuracy of 74.2%, while using the London parameters increased the

accuracy percentage to 85% (Study 1).

3.2.2 Utilizing train schedules

Our stop detection method is complemented by a linear interpolation of the current

position based on the time intervals between stations as defined in official timeta-

bles. By interpolating over time, we can estimate the absolute location between the

previous and the next station. If SubwayPS detects a stop that is not scheduled,

SubwayPS marks it as an “in-between” stop and uses the interpolation of location

over estimated time to show a position to the user. Using this method we can pro-

vide the users with a position estimate of where exactly the train stopped between

two stations. We consider any stop that occurs with less than 70% of the estimated

time between stations to be an “in-between” stop, a number that was determined

empirically from our Study 1 data. This percentage can be set to a higher value if a

timetable is available with seconds-level precision, which was not the case with the

four subway systems considered here, all of which list timetables at the precision of

minutes.
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Chapter 4

Implementation

We implemented a working version of SubwayPS on the Android smartphone plat-

form, as well as a proof-of-concept SubwayPS -based Android application called Metro-

Navigator, which has both smartphone and smartwatch versions. We first describe

our implementation of core SubwayPS and then discuss MetroNavigator.

4.1 Implementation of SubwayPS

To start with the MetroNavigator application, an Android implementation of the

SubwayPS technique was required. This section describes the implementation of

SubwayPS for Android, together with the difficulties arisen during development.

4.1.1 SubwayPS on Android

SubwayPS makes use of the virtual Linear Accelerometer class provided by the An-

droid operating system. It measures the acceleration force in m/s2 that is applied

to a device on all three physical axes (x, y, and z) without the influence of gravity.

These accelerations, together with the timestamp of each measurement, were origi-

nally stored in a file for each tracking and were measured with an ideal sampling rate

of 50 Hz to supply us with data for Study 1.
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In our real-time implementation, these accelerometer measurements go through

various calculations before being interpreted:

1. A low-pass filter to minimize the basic noise in the accelerometer readings. If

a low-pass filter would not be used, even a device in rest would see changes in

accelerations due to the inaccuracies of the accelerometer. The code for this

low-pass filter can be seen in listing A.3.

2. The readings from the different accelerometer axes are combined using Wang’s

method for acceleration synthesization [28]. The code for this acceleration syn-

thesization can be seen in listing A.4.

3. A moving average is used to adjust the values. It is important that basic noise

is removed from the results, so only noise by train movement is visible in the

data. The code for this moving average is can be seen in listing A.5.

These accelerometer measurements are interpreted by the SubwayPS technique,

which is implemented in a background service and sends intents (messages) such

as StationDetected or MovingDetected to the Android OS, which forwards them to

all applications that implement a listener for these intents. Any application (e.g.

MetroNavigator) could implement an intent listener and make use of our detection

algorithm. This background service is just a proof of concept. Preferably the Sub-

wayPS technique would be implemented on an OS level such as within the location

services of Android.

The SubwayPS technique is implemented as a state machine in this background

service, where the state can be changed depending on accelerometer input. There are

four possible states:

1. Maybe no train movement

2. Definitely no train movement

3. Maybe train movement

4. Definitely train movement

58



The basic states are Maybe train movement and Maybe no train movement, these are

directly influenced by the latest input by the accelerometer. Every incoming sample

can change the state to one of these two. If SubwayPS stays in a Maybe state for a

certain period of time (this is a parameter of the SubwayPS technique as mentioned

in Chapter 3), the state is promoted to its corresponding Definitely state. Upon

reaching this state the Android OS will be notified of the new state and distribute

the notification to every application that wants to use it.

4.1.2 Difficulties during implementation

Each sample measured by the accelerometer is run through a low-pass filter and a

few other floating point calculations to synthesize a general sense of acceleration in

the combination of all three axes. Afterwards, a moving average algorithm is used

to smooth the resulting data, of which the result is used by the state machine of

the SubwayPS implementation. One of the issues during development was using a

sampling rate that was too high for the Android device to keep up with all these

calculations in real-time, resulting in a delay of detection and even memory issues

when testing during longer periods. However, testing showed that the sampling rate

could be easily lowered to 50 Hz instead of the maximum possible sampling rate,

without a negative impact on the detection algorithm.

Removing the gravity factor from the accelerometer readings is done by the An-

droid OS itself, since it provides the virtual Linear Accelerometer sensor which handles

the calculations. However, this sensor uses readings provided by a gyroscope, which

proved unreliable on some devices, especially those of Samsung make. Changing the

orientation on devices with such an unreliable gyroscope resulted in large changes in

measured accelerations due to the gravity factor not being correctly factored out. This

issue is however purely caused by incorrectly calibrated hardware. Utilizing certain

quality-labeled devices such as the Nexus-line by Google eliminated these errors.

59



4.2 Implementation of MetroNavigator

MetroNavigator is a proof-of-concept application we built that uses SubwayPS as

its positioning technology (by implementing an intent listener). In this section, we

describe how MetroNavigator utilises the SubwayPS implementation, how Metro-

Navigator is to be used, and more details about the implementation process.

4.2.1 Utilisation of SubwayPS

The MetroNavigator application uses these notifications provided by the SubwayPS

background service and provides a use case for our detection algorithm. It tries to

match these intents onto timetable data of the underground public transport system.

When stops are detected that are too early to be a next station according to the

timetables, the Definitely train movement will be interpreted as an “in-between”

stop instead of a station.

By differentiating between station and in-between stops it is also possible to visu-

alize the user’s position between two stations. Since we know the average time until

the next station we show a line to the user, which visualizes the distance between the

current and the next station. Upon movement an icon is animated on this line and

shows the relative position of the train between the two stations. If an in-between

stop is detected, this animation also stops, giving the user a sense of where the train

has stopped in the tunnel relative to the previous and next station and thus giving

the user a sense of location.

In the current implementation we do not make use of any “real-time” timetables

provided by transportation companies, but make use more relative values, namely

the average length of trips between two neighbouring stations.

Based on the intents MetroNavigator gets from our detection algorithm, it shows

event cards to the user such as a “current station” card that shows more information

of the current station, a “next station” card if the train starts moving, a “delay”

card that shows more information if the train has made an in-between stop, and

an “unexpected event” card if something out of the ordinary happens such as a
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Figure 4-1: MetroNavigator application showing different “event cards”.

very bumpy ride. These “event cards” are more broadly described in the following

subsection.

By providing a location between two stations it is possible to also position a user

on an above-ground map. MetroNavigator uses this above-ground location to provide

POI cards to the user. These can be triggered upon nearing a POI or moving under

one.

4.2.2 MetroNavigator usage and its interface

The MetroNavigator application’s UI consists of two main parts. The upper part

contains a miniature map with an indicator of the user’s current position between the

previous and next station, as well as the origin and destination station, the estimated

time of arrival, and the number of stops to the end station. This “information body”

always stays visible at the top of the UI. Below the information body, in the so-

called “information card section”, multiple event cards can be shown simultaneously

depending on the current position of the user. These cards can be swiped away

manually or trigger different third party apps such as Wikipedia or Twitter. Currently

our MetroNavigator application supports the following different types of event cards:
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Figure 4-2: Sharing an event card of MetroNavigator with a few clicks.

1. The first, and most-often-used type is the notification event card shown in figure

4-1b. When the train approaches the next station, it shows the name of the

next station and can indicate possible connections. When the train approaches

the final station, this is indicated with a prominent visual design.

2. The application also triggers event cards when the train undergoes unplanned

stops in between stations. This is shown in figure 4-1c.

3. Another event card type notifies the user of “rude” driving of the train conductor

based on measured accelerations. This is shown in figure 4-2 and one can share

this event on Twitter (once connectivity is obtained) with a direct mention of

the public transportation company.

4. MetroNavigator also contains point-of-interest (POI) event cards that contain

information about POIs that are located above the user or at the next station

(see figure 4-1e) and provide a link to more information about the POI on

Wikipedia, which is locally stored on the device.
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4.2.3 Development process

To start with the development of the MetroNavigator application, multiple parts of

code and UI from the data collection application mentioned in the previous chapter

were reused. Small adjustments to that code included:

• Instead of writing accelerometer data to a file they are now saved and used as

real-time input for the implementation of the SubwayPS method.

• Replacing the static tracking interface as shown in figure 3-1 with an interactive

interface showing real-time information.

• Implement methods so the background service of MetroNavigator would start

and stop automatically instead of depending on user input.

MetroNavigator contains underground transportation information of four different

cities, namely Brussels, Cologne, London and Minneapolis. In the proof-of-concept

implementation this information is stored in local files, which we will call “information

files”. However, since this information is stored in seperate files in an assets folder

instead of being hard-coded, these information files can also easily be stored on a

remote location. Since all this information (both about stations, lines and timetables)

is stored in these external information files, MetroNavigator can be easily expanded

to work in more cities, just by providing more of these information files. One can see

a fragment of such an information file in the appendix (see listing A.1).

To allow more detailed detection, timetable info is required. Since it is not an obvi-

ous solution to download this information from a remote location while underground

due to probably no network being available, this timetable data is also stored in in-

formation files. Instead of storing full timetables which would require a large amount

of storage and are useless in case of delays or irregular train times, MetroNavigator

uses another kind of locally stored information files which contain, for each line, all

stations and the average relative time between these stations. These information files

have been manually created by using official timetables and are in a scale of minutes.

A fragment of such an information file can be seen in the appendix, listing A.2. Since
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creating these information files with timetable data proved time-consuming, these

were created not for entire cities but for certain lines. The MetroNavigator appli-

cation can still function without timetable data, but will detect more false positives

since in-between stops will be flagged as stations.

4.3 Limitations of the MetroNavigator application

The current implementation of the MetroNavigator application uses relative time

between two neighbouring stations, based upon official static timetables. This means

that they only have a precision in a scale of minutes for most of the public underground

transportation systems. This could cause stations being flagged as “in-between” stops

instead of as regular stations due to timetable imprecisions. By crowdsourcing we

could use the data already captured by our users to improve the precision to a scale

in seconds. For example, if official timetables state 2 minutes between stations while

the detection algorithm detects a stop at 1 min 40 secs for almost all users, we could

systematically lower the relative time used by our application until it averages around

the time measured by the detection algorithm.

4.4 Extra functionalities

This section describes extra functionalities for the MetroNavigator application to

either improve the user experience or allow better marketing in case of a public

release of the application.

4.4.1 The MetroNavigator Smartwatch Extension

We also implemented a smartwatch version of MetroNavigator that can be linked to

an Android device running SubwayPS via Bluetooth. SubwayPS can send messages

to the smartwatch application, which are then shown to the user. Due to screen

size constraints, the smartwatch version has a much simpler UI than the smartphone
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Figure 4-3: Screenshot of the SubwayPS smartwatch application that provides basic
feedback to the user without needing to take the smartphone out of their pocket.

Figure 4-4: Screenshot of the SubwayPS smartwatch application that provides guid-
ance on in which direction to exit the final station to reach a certain POI.

application. It displays only the current or next station to users, as well as the

estimated time of arrival. A screenshot is shown in figure 4-3.

The smartwatch version also has a feature not available in the smartphone version:

when users reach the final subway station of their trip, the smartwatch version tells

users in which direction to go to reach their destination (see figure 4-4). In addition,

when selecting a POI in the smartphone application, the smartwatch will show the

direction to go to to reach the POI once the user has reached the next station.
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4.4.2 Developing an application for marketing on Google Play

If it is planned to distribute an application to a wide audience, there are multiple

possibilities to do so. The most popular distribution method is via an application

“store”. Multiple companies provide application stores for Android devices, and

examples of these stores include the Amazon Appstore1, Google Play2, and even

application stores from different hardware manufacturers such as Samsung Apps3. Of

these application stores, Google’s Google Play is the most used and most popular

one, since it comes pre-installed on most Android devices. Google provides many

guidelines and utilities for Android application development. If these are utilised

in a great application, chances are it could be featured on Google Play, boosting

downloads immensely4. In this subsection, we will describe certain methods to fully

integrate Google guidelines and features which results in a better user experience on

an Android device, while also allowing the application to be selected for marketing

purposes.

Android UI Guidelines

MetroNavigator is compliant with the Android UI Guidelines and uses multiple design

patterns provided by Google. The usage of these patterns guarantees a consistent

experience for users.

Such patterns included in the MetroNavigator application include:

• the Action Bar. An Action Bar provides several key functions, it makes impor-

tant actions prominent and accessible in a predictable way. In MetroNavigator,

these actions include a shortcut to the Settings menu (which was used a lot

during the data collection phase), and a shortcut to the Achievements (more

on this later). The Action Bar also supports consistent navigation by allowing

direct access to the Navigation Drawer.

1http://www.amazon.com/mobile-
apps/b?node=2350149011

2https://play.google.com
3http://www.samsungapps.com

4http://techcrunch.com/2012/01/04/android-
markets-featured-apps-seeing-explosive-
download-numbers
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Figure 4-5: Usage of the Navigation Drawer. Images courtesy of Google.

Figure 4-6: Screenshot of the Ongoing Notification used by MetroNavigator.

• the Navigation Drawer is a panel that transitions in from the left edge of the

screen and displays the app’s main navigation options. As it expands, it overlays

the content but not the Action Bar and can be brought onto the screen by

swiping from the left edge of the screen or by touching the application icon on

the Action Bar. An example of a Navigation Drawer can be seen in figure 4-5.

• An Ongoing Notification is used to inform the users about the tracker running in

the background. These kind of notifications cannot be removed manually from

the notification drawer, but the notification implemented in MetroNavigator

contains an Action, meaning it contains a button to stop the background service

from the notification drawer directly. This notification is shown in figure 4-6.
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• Settings is a place in the app where users can indicate their preferences for how

MetroNavigator should behave. Using a seperate settings menu is recommended

due to two Android design principles:

– Decide for me but let me have the final say: Avoid interrupting the

user with the same questions over and over when certain situations arise.

The settings predetermine what will always happen in those situations.

– Let me make it mine: The user feels at home and in control.

The Settings can be seen in figure 4-7, and includes the following:

– Email address of the user: This was used during the initial data collection

phase. Volunteers who collected data with the application were eligable

for an Amazon coupon. This setting was implemented before the Google+

login (as mentioned in the following subsection).

– Default city: The user can select a default city here, which will cause the

UI of MetroNavigator to always preselect this city instead of a default

value.

– Enable GPS: MetroNavigator and the data collection application contains

a feature to track movement in an underground public transport system

not implemented in the application. However, since there are several parts

of underground public transport systems that run above ground for some

periods of time, an option was provided to let the application annotate the

accelerometer data with GPS data when available. GPS is only used when

tracking transport systems not included in MetroNavigator, meaning other

cities than London, Cologne, Brussels, and Minneapolis.

– Clear data: Selecting this option will clear all collected data that has

been locally stored on the phone. This data is always saved locally, since

there is no guarantee for a working internet connection while travelling

underground.
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Figure 4-7: Screenshot of the Settings of MetroNavigator.

– Send data to server: This option was used during the data collection phase

to send all stored accelerometer data to a server, where it could be inter-

preted to improve the detection algorithm. It can also still be used to up-

load data-sets when the detection algorithm made mistakes, so the cause

of the mistake can be researched.

• Pure Android : MetroNavigator is built to fully integrate in an Android de-

vice. It is completely themed like a stock Android application, uses the stock

platform-specific icons, and most importantly, uses the Share Action Provider

to integrate with other applications. Links to other applications are not hard-

coded but make use of Android’s intent API. For example, sharing a bumpy ride

through Twitter will launch the user’s preferred Twitter application instead of
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Figure 4-8: Example of the cards UI in Google Now and Google+.

only the stock Twitter client. This can be seen in figure 4-2. If no Twitter

client is installed, the user’s preferred browser will open to the Twitter website

with the tweet already filled in automatically.

• MetroNavigator also implements Google’s novel Cards UI, a custom layout used

by many Google applications running on the Android OS. A card contains

one piece of specific content, and these cards can be manipulated by swiping

them away. The most clear usage of such a card UI is in Google Now and the

Google+ applications (figure 4-8). For comparison we refer to figure 4-1 where

the MetroNavigator layout has already been shown.
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Figure 4-9: Progress of the Google+ Login implemented in MetroNavigator.

Google Play Services integration

Google also provides multiple services to allow better integration of an application

with the Android ecosystem and Google services. This section describes a few of

these services that have been tested and integrated in MetroNavigator. It should

be stated however, that these services are not required to use MetroNavigator, and

these have been tested purely for marketing purposes for the eventual public release

of MetroNavigator to a wider audience.

Google+ Login: Mentioned in the introduction of this paper, it would be great

for an application like MetroNavigator to “learn” from the user’s behaviour. This

would for example no longer require the user to manually enter a start and end
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location, since these can be inferred from user behaviour, as in technologies like Google

Now or similar context-aware recommender systems. To use such existing methods

like Google Now, a user should be recognised by the MetroNavigator application.

On Android, one of the most user-friendly methods to create user accounts for an

application is to use an existing Google account, because for being able to use online

services of an Android device, one needs a Google account. By integrating this Google

account in MetroNavigator, it would be easier to access information from a user’s

Google account, such as routing data stored in Google Maps or Google Now, if Google

chooses to make it available for third-party developers. This login system also avoids

forcing the user to make “yet another” account on an application/service, which might

be cause of a barrier to use MetroNavigator as mentioned in the evaluation, study 2.

This Google+ login only needs to happen once and is afterwards remembered for the

full period while MetroNavigator is installed on the device.

Last but not least, utilizing this Google+ login would allow MetroNavigator to

sync data between multiple devices of the same user. A screenshot of the login process

is shown in figure 4-9.

Achievements To allow for more “viral” marketing via social media and word

of mouth, achievements were implemented. These complement the raw informa-

tional usage of MetroNavigator by adding a gamification factor, challenging the user

and pushing them to keep using the application, while also allowing sharing these

achievements on social media to allow for viral marketing [4]. A screenshot of some

implemented achievements can be seen in figure 4-10.

Beta testing Google Play Beta-testing and staged rollouts were used to distribute

MetroNavigator and the data collection application to our testing audience. It allows

creating multiple communities which can each access a different version of the same

application. For example, the “Alpha-testers” group received the data-collection

application upon installing MetroNavigator through Google Play, while members of

the “Beta-testers” group received the real working implementation of MetroNavigator.
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Figure 4-10: Some implemented achievements in MetroNavigator.

In the following evaluation section, study 1 users were part of the “Alpha-testers”,

while the MetroNavigator version for study 2 was distributed to the “Beta-testers”.

To manage these groups, Google+ communities were used for their synergy with

Google Accounts and easy methods of feedback.
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Chapter 5

Evaluation

To evaluate SubwayPS we conducted three separate studies with the help of the

MetroNavigator application. The first study, our technical evaluation, was focused

on assessing the technical soundness of the positioning technique in a variety of public

transportation systems around the globe using log data. The second evaluation, our

user study, was focused on understanding the accuracy and user experience of the

MetroNavigator application in the context of actual subway journeys made by locals

and tourists. The third study was designed to compare SubwayPS against a timetable-

only baseline and to evaluate the effect of arbitrary movements of the smartphone by

users.

5.1 Study 1

To goal of the first study was to collect accelerometer data from a variety of diverse

subway systems and use this data to inform and evaluate SubwayPS.

5.1.1 Participants & Apparatus

For the data collection process, we developed an Android application that captures

and stores the data measured by the accelerometer sensor of the mobile device. The

application runs on Android devices with Android OS 4.x and higher. The data
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collection application supports the public underground transportation networks of

four major cities, namely Brussels, London, Cologne, and Minneapolis. Each of these

subway systems has unique characteristics: they use different trains, some go above

ground, and others merge with vehicular traffic. We wanted to study a diverse set of

subway systems in order to support broader generalizability.

To record data, participants first selected a city, a line, and an origin and desti-

nation station as seen in figure 4-1a of the MetroNavigator application. Please note,

that the users did not have access to the features provided in figure 4-1b - 4-1e, as

this first phase was done to focus on the robustness of our approach. Participants

were advised to select the start and end station of their journey before boarding the

train and were told to mainly place their phone in their pockets.

We recruited twelve participants that downloaded the data collection application

to their mobile device and asked them to record data “whenever they use an under-

ground public transport system” and also to record very long tracking segments to

get tracks that are longer than normal underground rides, so our algorithm could

be tested exhaustively (21.51 minutes trip length vs. about 9 minutes in the follow

up studies). Most of the participants were Android developers and computer sci-

ence students who collected the data on a voluntary basis on their daily commutes

or on business trips. These users collected a total of about 70 tracks in a period of

around two months and we received tracks from every underground transport system

supported by the application.

To interpret and analyse the data captured, we created a Windows Store appli-

cation that displays the accelerometer data in three separate graphs, one for each

axis, similar to figure 3-5b. A full screenshot of this application can be seen in figure

5-1. It also displays a map that shows the tracked route based on the entered start

and end location of the journey. The graphs and map are connected to each other so

interacting with one of them also changes the other view. By using this application

to visualize the captured data it was possible to see what accelerometer values were

measured over time. The values and our interpretation of them have already been

explained in the previous chapter about the SubwayPS technique.
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Figure 5-1: Windows store application used for Study 1. In the top left, a map of
the subway line is shown. On the right, the accelerometer data is visualised in graphs
similar as in figure 3-5. Finally in the bottom left corner, “event cards” are shown as
if the data was being handled in real time by the MetroNavigator application.

5.1.2 Results

The average number of stations per track was 9.23 and the average tracking length

was 21.51 minutes. We analyzed this data to determine the values for each of the

SubwayPS parameters described in chapter 3 (e.g. δbelow, δabove). Using the subway

system specific values as shown in Table 3.1, we found that for London, 103 out of

120 stops (105 stations and 15 “in-between” stops) were classified correctly (85.8%

excluding the start stations). 10 stations and 7 “in-between” stops were missed. No

false positives (detection of a stop where there was none) were recorded.

This can be directly compared to the results of the same tracks tested with the

“world-wide” parameters, which caused SubwayPS to correctly detect and classify

about 74.17% of these stops.

Similar results (around 85% in comparison to around 75% for “world-wide” para-

meters) were measured in the other three subway systems.
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Figure 5-2: Example of day-to-day variability measured on the Piccadilly Line in
London. Both graphs picture the data calculated by SubwayPS. Stations A, B, and
C are clearly visible. These graphs provide a great example of how much variability
there is in the measurements. Times between the same two stations can vary greatly
(see Track A-B) with a difference of almost one minute. The period during which a
train is halted at a station can also vary greatly (see B).

These results are somewhat comparable to those of a study done by Thiagarajan et

al. [27]. Using four tracks in the subway system of the Chicago public transportation

network (as opposed to our 70 tracks across four subway systems), Thiagarajan et

al. were able to achieve around 55% accuracy (compared to our 85.8%), although it

is important to note that their focus was on station detection rather than location

prediction (which involves detection in-between stops). In Study 3, we show that

SubwayPS also strongly outperforms a “timetable” baseline.

Examining where SubwayPS failed, we noticed that the trains run “smoother” on

certain lines (such as parts of the Hammersmith & City line in London) than others

in a given subway network. Because SubwayPS ’s parameters were tuned on a system-

wide basis, this variation resulted in errors throughout a given subway system. As

noted later, future work could include implementing track-level parameters, which

should increase accuracy by a substantial margin.

Another issue arose out of huge variations in travel time for trips between the

same two stations. We recorded multiple readings over multiple days for some lines
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and noticed a standard deviation of about 7.12 minutes for a trip that normally takes

29 minutes. We looked into this particular case, and found out that this was due

to extensive waiting times at stations when trains were overcrowded. These delays

could cause misclassification due to the integrated time-tables, as “in-between” stops

could be classified as a station if the trip takes too long.

An example of these variations in trip length is visible in figure 5-2. The graphs

depict two trips between the same stations and differ greatly in the in-between mea-

surements.

Finally, another source of error was the quality of accelerometer data. For ex-

ample, badly calibrated gyroscopes in all data captured by Samsung devices resulted

in incorrect measurements by the virtual Linear Accelerometer (e.g. accelerations of

above 1 m/s2 on some axes while in rest). It would be straightforward to correct for

these errors on a device-by-device basis if these errors are known a-priori.

5.2 Study 2

To test the “in the wild” feasibility and appeal of SubwayPS and its proof-of-concept

implementation in MetroNavigator, a user study was conducted. MetroNavigator

was pre-installed on a Google Nexus 4 device (as the device has a rather good quality

accelerometer and gyroscope built in) and the device was handed out to randomly

selected passengers waiting at different station in the Cologne, Germany subway sys-

tem(Kölner U-Bahn, see figure 5-3). Due to novelty effect concerns and the delay

induced by training participants to use a novel UI, we focused on the smartphone

version of MetroNavigator (instead of the smartwatch version) and restricted our

participant population to subway riders who were already using an Android device.

Sixteen participants (8 male, 8 female) with an average age of 39 years took

part in the study. Eight participants were employees at different local companies

in Cologne, seven participants were tourists, and one participant was a student at

a local university. The study was conducted across two days between 8 and 10 am

(peak travel time) within the period of a week in February 2014.
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Figure 5-3: Photograph taken at a station of the Cologne (Germany) underground
public transport system where the user study took place.

5.2.1 Procedure

The experimenter approached passengers that were using Android devices at one of

the selected subway stations to invite them to participate in the study. If they agreed,

the experimenter read a quick script that explained the purpose and functionality

of MetroNavigator and informed the participant that the experimenter would be

riding with him/her to their final destination. Participants were then asked to enter

their start and end subway stops and were also requested to “think aloud” when

interacting with the application. The script was kept short as we did not want to

cause our participants to miss their train. The experimenter boarded the train with

the participants and recorded their reactions during the ride.

Due to the relatively short nature of subway trips and our desire to have partic-

ipants engage with the application, the participants were asked to hold the device

in their hands during the trip and not store it in their pockets. The robustness of

SubwayPS to normal user movement is established in Study 3. We decided to follow

this procedure as otherwise the people would just occasionally look at the device in

their often short travel and we wanted to collect their feedback on the application

and its functionalities. While in the future, we envision that the people would store

the device in their pockets and just use it a couple of times during a ride, or use the
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smartwatch extension. After leaving the train, participants filled out a background

questionnaire about their age, gender, and occupation, and the experimenter con-

ducted a semi-structured interview. The experimenter also explained how the system

derives position information by using the accelerometer of the smartphone and the

smartwatch extension was explained to the participants to get feedback on its possible

uses.

5.2.2 Results - Accuracy

The participants took the train for an average of 6.37 stations (including the start

and end stations) and the average time on the train was about 8.75 minutes. This

was in contrast to our data collectors of the first study who were instructed to stay on

the trains for longer periods to collect more continuous data sets. 78 out of 91 stops

(80 stations and 11 “in-between” stops) were classified correctly (85.7% excluding

the start stations; 87.9% also including the start stations). Eight stations and 5 “in-

between” stops were missed. No false positives were recorded. These results are in

line with our previous obtained data of the first study.

5.2.3 Results - Qualitative feedback

During the interviews, 15 participants expressed a positive opinion of SubwayPS and

were interested in using MetroNavigator (or other applications using its SubwayPS

engine) in the future. We received comments like “As my GPS does not work here,

this is like a GPS for underground trains - I want to have it integrated in Google

Maps” (P3) or “It is just cool to see the train moving and stopping on the map - I

feel safer when I can see that we have stopped close to the next station when we’re

stopped in the middle of a tunnel” (P11). The main advantage of MetroNavigator for

most participants was the ability to be guided to their destination stop (14 out of

16 participants) and the general location awareness (12 out of 16 participants), both

of which were mentioned by more than 75% of the participants and both of which

are core SubwayPS functions. “Wow - This is like magic” (P3) was the comment of
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one participant when the visualization of her current position stopped between two

stations as the train did. She commented “... at first, I thought this app is a bit

boring as it just moves a metro along with the schedule from station to station, but

now I see, that it has GPS”.

Participants also enjoyed specific features of the MetroNavigator app. In particu-

lar, several of the tourists found value in MetroNavigator ’s POI information cards “as

(they) can easily build local knowledge of a city” (P2). The smartwatch was generally

thought to be a useful extension for such an application. One participant remarked

“as I do not want to look at my smartphone all the time, this (SubwayPS) could be

the killer app for smartwatches in the future” (P13, an IT consultant).

During the ride of one participant, the MetroNavigator application missed three

stops in a row. She commented on that by saying “Oops, it seems that the system

missed a stop - that is not good. I would also be happy to help the system to detect

the stops, if the system could help me to get out at the right station. That would be

totally fine with me” (P3, a tourist). She continued, that “even so the system is not

perfect, it still can help me a lot on my next trip”. Other critical comments were

targeted at the limited set of POI’s in the app (e.g. “Can it also show shops and café

places?”, P3). In our prototype, we stored just a few POI’s and the dataset can be

easily extended.

5.3 Study 3

A third user study was conducted with the MetroNavigator application to directly

compare the use of SubwayPS against an approach that merely interpolated from an

official timeline.

5.3.1 Procedure

The study was conducted across two consecutive days between 8 and 6 pm in May

2014 on the Cologne, Germany subway. One experimenter engaged in 50 trips with

similar trip length and travel time as measured in the second study. The experimenter
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randomly boarded a train, travelled with it for exactly 7 stations and then left the

train and boarded the next one arriving at that station. In order to compare against

a timetable baseline, the experimenter recorded the exact time at which the train

he was riding arrived at each station. No restrictions were placed on the position or

orientation of the smartphone in this study. The Study 3 experimenter performed

common activities normally executed on a smartphone as reported by Böhmer et

al. [3], which involved periodically having the phone in his hands and storing the

phone in his pocket during the trips.

5.3.2 Results

The average time on the train was about 9 minutes in total. Across all 50 trips, 282

out of 335 stops (300 stations and 35 “in-between” stops) where classified correctly

(82.7% excluding the start stations; 85.0% including the start stations). 35 stations

and 18 “in-between” stops were missed. Again, no false positive stops were recorded.

These results are in line with our previous results from Study 1 and Study 2.

To evaluate SubwayPS against the timetable baseline, we compared the actual

arrival time at each stop on all 50 trips to (1) the arrival time indicated by SubwayPS

and (2) the arrival time indicated by the official subway schedule. Using a 30-second

“tolerance” window, we found that SubwayPS tracked 39 entire trips with perfect

accuracy (78% of trips), while using the official timetable only 21 entire trips (42%)

were accurate.

The challenges presented to timetables from the “ripple effects” of a single delay

have led some public transport systems to abandon timetables for an “interval”-based

approach. In this approach, which was recently examined by Pritchard et al. [20],

service is guaranteed every n minutes rather than at specific times.

To understand SubwayPS ’s performance in this type of subway network, we also

evaluated SubwayPS against a relative time baseline, which used just the reported

travel time between stations. This baseline was able to track 25 out of 50 trips

correctly (50%), as opposed to SubwayPS ’s 39 out of 50.

The trip-level accuracy of SubwayPS is directly influenced by trip length and

83



accumulation errors (if one station is missed, the trip is not tracked correctly), which

are known issues for inertial navigation techniques (i.e. “drift” errors). Fortunately,

there has been extensive research on solutions for recalibration in inertial navigation.

In the Future Work section, some of these solutions applicable to SubwayPS are

mentioned.
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Chapter 6

Conclusion

In this thesis, we presented SubwayPS, a smartphone positioning system that puts

users “back on the map” when they are travelling in underground public transporta-

tion networks. SubwayPS does not require any instrumentation of the environment,

meaning it can be implemented without any expense of the often-cash-strapped oper-

ators of public transportation systems. SubwayPS merely requires an accelerometer

and a gyroscope - both of which are standard on many modern smartphones - and

a start and end destination as input, which can be inferred from user behaviour or

extracted from routing requests.

Our evaluation showed that SubwayPS works “out of the box” with four subway

systems from two different continents. However, we also showed that SubwayPS ’s

accuracy can be increased if its four parameters are tuned specifically for an indi-

vidual subway network. This tuning is simple, and merely requires a single user to

collect accelerometer data as they travel on the subway and use our Windows Store

application to identify the appropriate values for these parameters.

In the short term, SubwayPS is straightforward enough to be implemented directly

into a mobile app as we have done with MetroNavigator, our proof-of-concept Sub-

wayPS application. We have taken care to ensure that any developer who wishes to

implement SubwayPS can do so by following the instructions (and using the para-
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meters) laid out in the SubwayPS chapter. However, if SubwayPS (or a technology

like it) were built into a mobile OS, it would have the greatest impact, allowing all

location-aware mobile apps - including mobile map apps - to function while their

users travel in subway networks.

That said, before OS integration can occur, several limitations of SubwayPS must

be addressed. In its current implementation, accuracy at a trip level is highly de-

pendent on trip length due to accumulation errors. Fortunately, there are various

solutions to this issue. For instance, in many subway networks, subway stations have

localized WiFi coverage. This means that traditional WiFi positioning techniques

can be used to correct any errors before they accumulate.

In our three studies we have shown that SubwayPS is about 30% more accurate than

previous existing methods or timetable approaches. Also, user feedback proved very

positive, showing that there is an audience for an application such as MetroNavigator.

This also confirms that following the official Android UI guildelines and implementing

optional Google services has no negative effects on the user experience, while provid-

ing developers with great marketing options for a world-wide public release of such

an application.
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Chapter 7

Future work

Future work can proceed along four directions.

7.1 Addressing accumulation errors

There are multiple options to address the accumulation (drift) errors that are possible

with the current implementation of SubwayPS. It is possible to implement WiFi-based

positioning correction directly into the SubwayPS technique. This should drastically

increase per-trip accuracy rates. Implementing SubwayPS on an OS-level like part of

the Android localization services could automate this process, since a huge number

of WiFi hotspots are known to Google’s localization services. Traditional WiFi posi-

tioning techniques can also be integrated manually since in many subway networks,

the subway stations have localized WiFi coverage.

There are a lot of solutions already implemented in the different papers in the

Related Work section. As mentioned earlier, the different characteristics of certain

subway stations could also provide solutions, as some subway lines have parts running

above ground. Since underground positioning is possible with SubwayPS, GPS could

be automatically enabled on above-ground parts of the track.

Other examples could include a smartphone’s integrated microphone, as most

subway systems have an automated “announcer” calling out at which station the

train arrives. Since these messages are static and do not change over the years, an
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audio recognition technique by acoustic fingerprint might also be usable.

7.2 Smartwatch extension

In the future it would be great to develop a smartwatch-only version of SubwayPS

as we believe such a version would serve as a superior navigational aid on crowded

subway networks. Doing so will involve learning to filter out arm movements and

facing other smartwatch-specific challenges.

The current version of MetroNavigator for the smartwatch has the SubwayPS ser-

vice still running on the connected smartphone and has a limited number of features.

Running a full MetroNavigator + SubwayPS build on the smartwatch would increase

the feature set of the smartwatch application.

7.3 External accelerometers

To help protect SubwayPS against user movements, a solution could be to use external

sensors. For example, an embedded sensor such as the WAX91 could be used and

placed in locations that don’t require much interaction, such as on the chest of the

user. Extracting the accelerometers allows the user to keep using his device for

“active” applications such as games without influencing the measurements of the

accelerometer.

7.4 SubwayPS data

Finally, we are considering the means by which crowdsourcing may be used to collect

training data. This would provide us with multiple opportunities, such as using

different relative times based on time-of-day, and would improve the accuracy of the

“in-between” stop detection since the available timetable data would slowly change

from a minute-scale precision to a second-scale precision.

1https://code.google.com/p/openmovement/wiki/WAX9
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Apart from the time scale, data could also be split up from “subway system”-

level to “subway track”-level, with different parameters for each track instead of for

each subway system. This would increase stop detection accuracy on each line, but

a decent amount of tracks from the same line would be necessary, something we did

not have during the writing of this thesis. Last but not least, crowdsourcing could

easily allow SubwayPS to support more subway networks, while we were now limited

to the area’s of residence of our participants of Study 1.
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Appendix A

Code snippets

1 Line : Waterloo & City :#95CDBA

2 Waterloo

3 Bank

Listing A.1: Example of how an underground transportation line with corresponding

stations is stored in an information file. One information file contains this kind

of information for every line in a city. This specific fragment details the Waterloo

& City line which has only two stations and is part of the information file named

”london.txt”.

1 Weiden West , 1

2 Weiden Schu l s t r . , 2

3 Weiden Zentrum ( Stadtbahn ) , 1

4 Weiden Bahnstr . , 2

5 Junkersdor f Mohnweg , 2

6 Junkersdor f , 1

Listing A.2: Example of how timetable data is stored in an information file. This

specific example is a fragment from Cologne Line 1. The numbers after each station

declare the number of minutes between that station and the next one.”.
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1 protected f loat [ ] lowPass ( f loat [ ] input , f loat [ ] output ) {

2 i f ( output == null ) return input ;

3

4 for ( int i =0; i<input . l ength ; i++ ) {

5 output [ i ] = output [ i ] + ALPHA ∗ ( input [ i ] − output [ i ] ) ;

6 }

7

8 return output ;

9 }

Listing A.3: Low-pass filter used to smooth data of the accelerometer.

1 double a = Math . sq r t (

2 Math . pow(x , 2) +

3 Math . pow(y , 2) +

4 Math . pow( z , 2)

5 ) ;

Listing A.4: Implementation of Wang’s method for acceleration synthesization with

x y and z being accelerometer data already smoothed by the low-pass filter.

1 i f ( /∗ not enough samples yet ∗/ ) {

2 sum += a ;

3 smoothed = (mSamplecount == per i od s − 1) ? sum / (double ) pe r i od s : 0 ;

4 smoothedData . add ( smoothed ) ;

5 } else {

6 // remove o l d e s t data , add newest

7 sum = sum − data . get ( ( int )mSamplecount − pe r i od s ) + a ;

8 smoothed = sum / (double ) pe r i od s ;

9 smoothedData . add ( smoothed ) ;

10 }

Listing A.5: Moving average calculation of the synthesizated accelerations.
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