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Abstract

Epilepsy is a very diverse neurological disorder, characterized by recurrent seizures.
Two specific types are considered in this study, namely absence seizures and mesial
temporal lobe epilepsy (MTLE). The most common treatments for epilepsy are
medication and surgery. Since these are not effective for all the patients, there is a lot
of current research aimed towards the development of alternative treatments. Com-
putational modeling can play a major role in this development. Two computational
models from the literature are therefore implemented in this study.

The first model is a thalamocortical model for absence seizures. This model
can simulate normal and epileptic activity. It very well mimics the dynamics that
are in play during transitions from one type of activity to the other. This allows
some interaction with the model. A control system is designed for this model, with
the goal of disrupting a started seizure. Absence seizures have a sudden onset and
can therefore not be predicted. The control system consists of a detection and
a stimulation part. The detection happens purely based on the amplitude of the
electroencephalography (EEG). This allows for a fast detection, but unfortunately
lacks the possibility for generalization towards real life signals. The stimulation
part will send pulses into the model, to interrupt the seizures. This fits perfectly
in the framework of brain stimulation techniques as an alternative treatment for
epilepsy. The obtained results show that the seizures can be controlled very well,
if a fast detection is possible. However, this is only the case for some well tuned,
patient-specific, parameters of the control system.

The second model is a hippocampal model for MTLE. This model can simulate
six different types of behavior. It is used to generate artificial data to build a
prediction framework for MTLE. Interictal (between seizures), preictal (right before
a seizure) and ictal (during a seizure) periods of the EEG are simulated. The EEG
of MTLE, unlike for absence seizures, shows some dynamical changes prior to seizure
onset. These changes can be used to find the preictal periods of the EEG. Predicting
a seizure thus boils down to a classification problem. There is a lot of neuronal
synchrony during the preictal and ictal periods. Therefore, measures that characterize
synchrony are computed from the EEG channels. These measures are used to classify
the EEG. Classification is first done by thresholding the synchrony measures, with a
resulting classification accuracy of 95%. This method is however very likely to fail
on real life signals. Classification is therefore also performed with support vector
machines (SVMs) after including some filtered versions of the synchrony measures.
An accuracy of 98% is obtained on independent test signals.
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Samenvatting

Epilepsie is een zeer diverse neurologische ziekte, gekarakteriseerd door terugkerende
aanvallen. Twee specifieke types worden beschouwd in deze studie, namelijk absences
en mesiale temporale kwab epilepsie (MTLE). De meest gebruikte behandelingen
tegen epilepsie zijn medicatie en chirurgie. Aangezien deze niet doeltreffend zijn voor
alle patiénten, is er tegenwoordig veel onderzoek naar de ontwikkeling van alternatieve
behandelingen. Computationele modellen kunnen hier een belangrijke rol in spelen.
Daarom zijn twee computationele modellen uit de literatuur geimplementeerd in deze
studie.

Het eerste model is een thalamocorticaal model voor absences. Dit model kan
normale en epileptische activiteit simuleren. Het model imiteert de dynamische
aspecten die in het spel zijn tijdens de overgang van één type van activiteit naar de
andere zeer goed. Dit laat enige interactie met het model toe. Een controlesysteem
is ontwikkeld voor dit model, met als doel het verstoren van begonnen aanvallen.
Absences hebben een plotselinge aanvang en kunnen daarom niet voorspeld worden.
Het controlesysteem bestaat uit een detectie- en een stimulatiegedeelte De detectie
gebeurt volledig gebaseerd op de amplitude van de elektro-encefalografie (EEG).
Dit laat een zeer snelle detectie toe, maar is jammer genoeg niet uitbreidbaar naar
signalen uit het echte leven. Het stimulatiegedeelte zal pulsen in het model sturen
en proberen om de aanvallen te controleren. Dit past perfect in de denkwijze
van hersenstimulatie technieken als een alternatieve behandeling voor epilepsie. De
behaalde resultaten tonen dat de aanvallen goed gecontroleerd kunnen worden, indien
een snelle detectie mogelijk is. Dit is echter enkel het geval voor goed afgestelde,
patiént specifieke, parameters van het controlesysteem.

Het tweede model is een hippocampaal model voor MTLE. Dit model kan zes
verschillende types van gedrag simuleren. Het wordt gebruikt om artificiéle data te
genereren en zo een voorspellingsmethode voor MTLE op te bouwen. Interictale
(tussen aanvallen), pre-ictale (net voor een aanval) en ictale (tijdens een aanval)
periodes van de EEG worden gesimuleerd. De EEG van MTLE toont, in tegenstelling
tot die van absences, enkele dynamische veranderingen voor de aanvang van een
aanval. Deze veranderingen kunnen worden benut om de pre-ictale periodes in de
EEG te vinden. Een aanval voorspellen komt dus neer op een classificatieprobleem.
Er is heel wat synchronie tijdens de pre-ictale periode en sommige ictale periodes.
Daarom worden maten die synchronie karakteriseren berekend uit de EEG. Deze
maten worden gebruikt om de EEG te classificeren. Classificatie gebeurt eerst door
een drempelwaarde te kiezen voor elke maat. De nauwkeurigheid van deze methode



SAMENVATTING

is 95%, maar deze zal waarschijnlijk falen op signalen uit het echte leven. Daarom
wordt classificatie ook gedaan aan de hand van support vector machines (SVMs)
nadat sommige gefilterde versies van de maten zijn inbegrepen. Een nauwkeurigheid
van 98% wordt bekomen op onafhankelijke test signalen.

vi
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Chapter 1

Introduction

1.1 Epilepsy

Epilepsy is a neurological disorder, characterized by recurrent seizures. About 50
million people around the world are affected by epilepsy, that is approximately 0.8%
of the total world population [1]. Not only normal living is disrupted by these seizures,
they can also cause mental and physical damage and even death. There are many
different kinds of epileptic seizures, so epilepsy is a very diverse disease. Something
that all kinds of seizures have in common is that they all involve abnormal excessive
firing and synchrony of neurons in a part of the brain. The most common way to start
the classification is to distinguish between focal (partial) and generalized seizures [2].
The onset of the seizure is localized in one hemisphere of the brain for focal seizures
and involves both hemispheres for generalized seizures. Focal seizures can be further
divided based on the location of seizure onset and the extent to which consciousness
is affected. Awareness is unaffected for a simple partial seizure and affected for a
complex partial seizure. A seizure can start local and eventually diverge into the
entire brain, this is called a secondary generalized seizure. Generalized seizures can
be further divided based on the effect that they have on the body. The different kinds
of generalized seizures are absence, tonic, clonic, tonic-clonic, myoclonic and atonic
seizures. All these seizures involve a loss of consciousness. This way of classification,
based on clinical and electrographic observations, is in accordance with the scheme
proposed by the International League Against Epilepsy (ILAE) in 1981 [3]. To sum
up, epileptic seizures are classified as follows:

1. Focal seizures

a) Simple partial seizures: no reduced consciousness
b) Complex partial seizures: reduced consciousness

i. Simple partial onset followed by reduction of consciousness

ii. Reduced consciousness at onset
c¢) Secondary generalized seizures

i. Simple partial onset that evolves to a generalized seizure
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ii. Complex partial onset that evolves to a generalized seirure

iii. Simple partial onset that evolves to a complex partial seizure and
afterwards to a generalized seizure

2. Generalized seizures (convulsive or non-convulsive)

a) Absence seizures (petit mal): brief loss and return of consciousness

=3

Myoclonic seizures: unintentional twitching of muscles

o

o,

)
)
) Clonic seizures: involuntary rhythmic jerking of muscles
) Tonic seizures: involuntary stiffening of muscles

)

e) Tonic-clonic seizures (grand mal): alternation between a tonic and clonic

phase

f) Atonic seizures: unintentional loss of muscle tone (extreme relaxation)
3. Unclassified epileptic seizures

This list shows that epilepsy is not just one specific disease, but a very diverse
disorder. Both focal and generalized seizures will be considered in this thesis. The
specific type for focal seizures will be mesial temporal lobe epilepsy (MTLE), because
it is the most common type of focal epilepsy. MTLE has its onset in the inner
part of the temporal lobe of the brain. It can express itself as a simple or complex
partial seizure or as a secondary generalized seizure. The specific type for generalized
seizures will be absence seizures, because this seizure can occur up to one hundred
times a day.

There are various methods to treat epilepsy nowadays [1]. The most common
are medication and surgery. Many epileptic patients have seizures that are well
controlled by anti-epileptic-drugs (AEDs). Approximately 30% of the patients suffer
from medically refractory epilepsy [5]. For these patients, the seizures can not
be controlled by AEDs. This has caused a lot of modern epilepsy research to be
focused at the understanding of the underlying mechanisms of these seizures and
the development of alternative treatments. Computational modeling has become
an important tool in this context. There are a lot of good reasons for this. First
of all, a model can be used to check assumptions that follow from experiments. A
model can also generate a new hypothesis, that can be checked by experiments. This
implies that computational modeling will not replace experiments, but that they will
work together to generate new insights into pathogenesis and treatment of epilepsy.
Another reason for computational modeling is the fact that experiments that are
hard to perform in real life can be simulated on a computer. Also experiments that
are ethically not allowed on people can easily be simulated. Computational modeling
of epilepsy has been used a lot in the past for different purposes: getting insights
into cellular and network mechanisms of epileptic seizures [0], predicting epileptic
seizures [7] and developing strategies for therapy [3].

Alternative strategies for treatment are very important for the patients that have
seizures that can not be controlled by AEDs. This thesis will hopefully contribute to
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this field of research. The motive to do all this is to improve the quality of life for
epileptic patients. It will turn out that looking at epilepsy as a dynamical disease
is very useful [9]. The basic idea is to look at an evolving brain as going from one
attractor to another in a multi-stable phase plane. These transitions can be the result
of changes in the parameters of the system (bifurcation) or external disturbances to
the system. Since not every reader may have a background in neuroscience, this thesis
includes an appendix that introduces the basic concepts. It is highly recommended
to read Appendix A before continuing to the next section if the reader does not have
any background in neuroscience.

1.1.1 Absence seizures in a thalamocortical circuit

Absence seizures are generalized epileptic seizures of a brief duration (often less than
twenty seconds) that start and end abruptly. The number of occurrences can range
from a few times a day to one hundred times a day. During the seizure the patient has
a loss of consciousness, but he usually does not suffer from convulsions. These types
of seizures normally occur during childhood and often disappear with adolescence.
This is however not always the case. Absence seizures have a very characteristic EEG-
pattern, namely spike and wave (SW) discharges [10]. Intracellular recordings have
shown that the ‘spike’ and ‘wave’ components are associated with neuronal firing and
neuronal silence respectively [11]. This neuronal silence is due to hyperpolarization,
which corresponds to a change in the membrane potential of a neuron towards more
negative voltages. This already suggested an active role of inhibitory processes
and y-aminobutyric (GABA) receptors. These are the receptors that respond to
the neurotransmitter GABA, which is the main inhibitory neurotransmitter in the
brain (see Appendix A for more information about hyperpolarization and GABA).
Experimental models from the last decades made it possible to identify the brain
structures that are involved in absence seizures. A lot of these experiments have
pointed out that the thalamus plays a critical role in the generation of absence
seizures:

e Lesions or inactivation of the thalamus caused SW seizures to disappear [12—14].

e [t is possible to gradually transform spindle oscillations into SW discharges
[15,16]. Spindle oscillations are waxing-and-waning oscillations of 7-14 Hz that
are generated in the thalamic circuits [17,18].

e Thalamic and cortical neurons fired in phase with the ‘spike’ component and
during the ‘wave’ component all cell types were silent [11,19,20].

e Mice that were genetically modified so that they lacked the gene for the T-
type calcium current in thalamic relay cells showed a resistance to absence
seizures [21]. The T-type current is responsible for the bursting behavior of
thalamic cells and is essential to generate absence seizures.

Just like for the thalamus, experimental models showed that the cortex is necessary
for the generation of absence seizures:
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e There were no SW discharges when high doses of GABA A antagonists were
injected in the thalamus. A cortical injection of the same drug did led to SW
patterns [22,23].

e The threshold for generating absence seizures was much higher in the thalamus
compared with the cortex [23].

e During a cortical seizure with SW patterns, a large fraction of the thalamic
cells were completely silent [24,25].

These experimental models show that the thalamus and cortex are both actively
involved in the generation of absence seizures. They also have led to more insights into
the basic neuronal mechanisms of absence seizures. The thalamocortical (thalamus
and cortex) mechanisms of sleep spindle generation are currently believed to lie at the
basis of SW discharges [17,26,27]. The development of some computational models,
namely a couple of thalamic and thalamocortical models, also resulted in more
insight into the basic neuronal mechanisms of SW discharges [24,28-30]. However,
these models did not address a very important subject, namely the mechanisms of
the spontaneous transitions between normal spindle oscillations and epileptic SW
discharges. The model that will be used in this thesis can make the transitions
between normal and epileptic activity and will be introduced in Chapter 2 (Section
2.1).

1.1.2 Temporal lobe epilepsy in the hippocampus

Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy. The onset
of TLE is located in the temporal lobe of the brain. There are two main types
of TLE: mesial temporal lobe epilepsy (MTLE) and lateral temporal lobe epilepsy
(LTLE). MTLE has its onset in the inner aspect of the temporal lobe, namely the
hippocampus or the amygdala. The onset of LTLE is located in the neocortex, which
is the outer surface of the temporal lobe. Because different regions within the brain
are strongly interconnected, seizures starting in one part can always diverge into
the other parts and also in further regions of the brain. MTLE is the most common
form of TLE and will therefore be considered further in this thesis. AEDs are often
inefficient for patients with TLE. The surgical removal of the epileptogenic region
(the region that causes the seizure) is often the only way to eliminate or reduce the
seizures [31]. Unfortunately, such a surgery is only effective in approximately 50% of
the cases [32]. The study of mechanisms that trigger these seizures is essential to
improve the efficiency of surgery and the development of new therapeutic strategies.
For being able to remove the epileptogenic region, the location of this area first has
to be determined. For generalized seizures this is often not possible, because the
onset for these seizures is not localized. In these cases pathways that consistently
contribute to the propagation of seizures can be removed.

MTLE has a characteristic electrophysiological pattern during the onset of a
seizure. Typically, there is a development of spikes with a high amplitude and a low
frequency. This activity is then succeeded by oscillations of a low amplitude and
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a high frequency (low voltage rapid discharges). When EEG signals are recorded
with intracerebral (inside the cerebrum) electrodes during a presurgical evaluation,
both types of signals are often observed at seizure onset [33,34]. It is also possible
that only the high-frequency oscillations develop at seizure onset [35,36]. These
high-frequency signals contain maximum frequencies belonging to the ~-band (30-
100 Hz) and originate from epileptogenic regions. Experimental and computational
studies provided new findings in the neuronal mechanisms that are responsible
for these low voltage rapid discharges. First of all, inhibitory interneurons in the
hippocamus or neocortex were shown to have close relations with these high-frequency
oscillations [37,38]. Secondly, it was stated that two different kinds of GABA
responses played an important role in the generation of y-rhythms [39]. Wendling
et al. showed that neuronal population models could explain different rhythms of
depth-EEG signals [10]. This model consisted of three interacting populations. There
was a population of main cells (excitatory pyramidal neurons in the hippocamus),
a population of other excitatory pyramidal cells and an inhibitory population of
interneurons. The second population of pyramidal cells is included because there are
a lot of excitatory connections from pyramidal cells to other pyramidal cells in CA1
(a particular region in the hippocampus) [11]. In this study however, they were not
able to generate y-rhythms. The model that will be used in this thesis is an extended
version of that model [42]. This model will be introduced in Chapter 2 (Section 2.2).

1.2 Modeling framework for epilepsy

It is a general trend in the world of engineering to build mathematical models of
dynamical systems that need to be analyzed. It is important to bear in mind that
every model is a simplification of the real world. This degree of simplification is a
very important choice of the designer. In the ideal case, the model is the most simple
model possible, while giving good results that are relevant to the questions that are
asked. Based on the amount of simplification, two classes of computational models
can be distinguished: micro-scale and macro-scale models.

In the framework of micro-scale models, neuronal networks are built from models
of individual neurons with a certain degree of biophysical reality. These individual
neurons are often based on the Hodgkin-Huxley framework [13]. The dynamics of
the entire network then follow from the activity of the individual neurons and their
interconnections. These models are used to answer questions that are related to the
dynamical behavior of the membrane potential of individual neurons. This approach
is usually used for modeling neuronal networks within a given brain region. The focus
at single neuron level can be on changes in the kinetic properties of ion-channels or
the role of neuronal morphology (by building the individual neuron out of several
compartments). At network level the focus is on network topology and synaptic
interactions between neurons. This type of modeling can become computationally
expensive, especially when a network consists of thousands of neurons. For this reason
there are various simplified neuronal models available. These models are designed
to reduce the complexity of the system. Some examples are the Morris-Lecar [11],
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Hindmarsh-Rose [15] and FitzHugh-Nagumo [16,47] models.

A macro-scale model does not try to model the dynamics of individual neurons,
but the dynamics of neuronal populations. These models are much more suitable to
answer questions about interactions between different brain regions. The framework
of macro-scale modeling started with Wilson and Cowan in the 1970s [18,19]. In
macro-scale modeling, the degrees of freedom in a dynamical system (a population of
neurons) are reduced to a distribution function. This distribution function describes
the probabilistic evolution of neuronal states in the population [50]. This approach can
be simplified further by only taking into account the first moment of the distribution
function. This is equivalent to the center of mass and represents the mean firing rate
of the neuronal population. These models are known as neural mass models [51] and
have become a very successful tool in the field of computational neuroscience [52-54].
The average presynaptic firing rate r(t) of a subpopulation is transformed into the
average postsynaptic firing rate of the same subpopulation in two steps. First,
the average postsynaptic membrane potential (PSP) v(t) of this subpopulation is
obtained as the convolution of the average presynaptic firing rate with an impulse
response function:

v(t) =r(t) * h(t) (1.1)

where the impulse response function has the next form:
h(t)=A-a-t-e . (1.2)

The constant A determines the amplitude of the average voltage and the constant a
determines the rise time of the average voltage. In the second step, this average
PSP v(t) is transformed into the average postsynaptic firing rate of the subpopulation.
This is done by a nonlinear sigmoidal function that generates s(v(t)) from v(¢). The
most common form for this sigmoid function is given by:

€0
s(v(t)) = 15 i) (1.3)
The parameter eg represents the maximal firing rate of the subpopulation, vy acts as
a threshold for firing and p is the slope of the sigmoid. Maybe a little clarification
of terminology is needed here. The average presynaptic firing rate of a population
is the firing rate of incoming signals to a population. These signals are coming
from neurons which are presynaptic neurons for the considered population. The
average postsynaptic firing rate of a population is the firing rate which the considered
population sends to its postsynaptic neurons. The average PSP of a population is
just the average of all the membrane potentials of the neurons within a population.

A lot of experimental techniques for measuring brain activity involve large
populations of neurons. Some examples are Electroencephalography (EEG) and field
potential recordings. The results of macro-scale models can be compared directly
with these experimental findings. The control and prediction of epileptic seizures
will be based on EEG-data. For this reason, the models studied in this thesis will be
macro-scale models (neural mass models).
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1.3 Treatments for epilepsy

There are few alternative treatments for patients suffering from epileptic seizures
which are not controlled by AEDs. A careful analysis is performed to check if a
surgery is possible for such a patient. An extensive evaluation is required to ensure
that the operation is likely to reduce or eliminate the epileptic seizures without
causing any damage to essential functions of the brain. Several tests, including long
EEG monitoring, are necessary to locate the damaged region of the brain that is
causing the seizures. This location determines if surgery is a possibility and what
type of surgery should be used. For focal seizures, the location of onset of a seizure
is confined to a small region. This is the reason why surgery is used mostly in the
case of focal seizures. This means that surgery is not possible in all types of epilepsy
and if it is possible, it is not always effective [32,55]. Therefore it is important that
alternative treatments are found for these patients.

The ketogenic diet is a high-fat, adequate-protein, low-carbohydrate diet which is
mainly used to treat refractory epilepsy in children [56]. This diet is effective in about
30% of the patients that remained on the diet, but only 55% of the patients keep on
following the diet [57]. Most patients that discontinue the diet do this because it is
not effective enough or too restrictive.

The successes of brain stimulation as a treatment for Parkinson’s disease have
encouraged the search for brain stimulation techniques to treat epilepsy [58]. Two
alternative treatments will be discussed here: electrical stimulation and optogenetic
techniques.

1.3.1 Electrical stimulation

Two very important parameters for electrical stimulations to the brain are the brain
structure to be stimulated and the stimulation protocols (type of pulses, frequency,
amplitude,. .. ). Nowadays there are a couple of different types of electrical stimulation
techniques [59, 60].

Vagus nerve stimulation (VINS) The vagus nerve is the tenth of twelve cranial
nerves. The cranial nerves are nerves that emerge from the brain and not
from the spinal cord (spinal nerves). VNS is applied by an electrical device,
implanted in the chest, that connects to the left vagus nerve in the neck.
It is an indirect electrical stimulation of the brain and is currently the only
stimulation therapy for epilepsy approved by the Food and Drug Administration
(FDA). VNS is an open-loop stimulation technique, which means that there are
automatic intermittent stimulations. The patient can also generate on-demand
stimulations by the use of a magnet.

Deep brain stimulation (DBS) DBS is applied by an electrical device, also im-
planted in the chest, that delivers electrical stimulations to deep brain structures
(the anterior nuclei of thalamus). This is done by depth electrodes that are im-
planted through the skull. DBS stimulates the brain directly and is a promising
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technique, but it is not yet approved by the FDA. It is, like VNS, an open-loop
stimulation technique.

Responsive neurostimulation system (RNS) The RNS is an electrical device
that is implanted in the skull and delivers electrical stimulations to epileptic
foci. The implanted electrodes send EEG signals to the RNS and when the
RNS detects a seizure, it will stimulate the brain with the goal of disrupting the
seizure. This is a closed-loop stimulation technique, so there is only electrical
stimulation when the device detects a seizure. RNS is also not yet approved by
the FDA.

Transcranial Magnetic Stimulation (TMS) TMS is a noninvasive method that
can be used to depolarize or hyperpolarize neurons in the brain through
electromagnetic induction. The therapeutic results of this method are however
not so encouraging.

The ultimate goal of these methods is to create an implantable device (‘a brain
pacemaker’) that can control the epileptic seizures. A lot of research in epilepsy is
directed towards the application of control engineering practices to prevent epileptic
seizures. These practices can be integrated perfectly in the framework of computa-
tional modeling [61-63]. One of the goals in this thesis is to develop and implement
a control system for absence seizures. This will be done in Chapter 3. The model
for absence seizures, introduced in Section 2.1, will be used to develop the control
system.

1.3.2 Optogenetic techniques

Optogenetics is a new technology that combines optics and genetics and allows
to control the behavior of single neurons in the living brain with a high degree of
temporal and spatial resolution [6]. Neurons can be genetically modified so that they
contain a certain light-sensitive protein. This makes the neurons sensitive to light of a
certain frequency. Blue light opens the channelrhodopsin-2 (ChR2) ion-channels and
causes a ChR2-expressing neuron to spike. Yellow light activates the chloride pump
halorhodopsin (NpHR) and this causes a NpHR~expressing neuron to be silent (no
spiking activity). The reader is referred to [65] for details about these mechanisms.
Since optogenetics can be used to regulate the network excitability, it can become
a very important tool for the treatment of epilepsy. This is especially the case for
partial seizures, where the epileptogenic region is confined. A lot of studies proved
that the optogenetic approach can be useful to control epileptic activity [66,67]. In
this thesis two macro-scale models are considered. This means that one of the great
properties of optogenetics, namely the high spatial resolution, can not be used. For
this reason, optogenetic control will not be considered further in this thesis, but it
deserved to be described shortly.
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1.4 Prediction framework for epilepsy

It is clear that detecting and controlling a seizure is not enough to make patients
completely free of seizures. In order to do this, the seizure needs to be predicted
well in time so that actions can be taken to avoid the upcoming seizure. If this all
is to happen on an implantable device, a low computational cost is very important.
There has been a lot of research aimed towards the prediction of epileptic seizures.
An extensive overview of this topic can be found in [68]. As stated before, it is not
always possible to predict an incoming seizure, because there are two different ways
for a seizure to develop [9]. Take for example absence seizures, they show sudden
transitions between interictal and ictal stages. In this case the EEG does not contain
any dynamical changes that can be used to detect the seizure before it starts. Partial
seizures like TLE on the other hand, show gradual changes in EEG dynamics that
can be detected and used to predict the seizure.

The first work on seizure prediction was carried out by Viglione and Walsh
in the 1970s [69]. Quickly, different groups of researchers followed their example.
During these early stages, linear measures were used to find seizure precursors. These
measures are derived from the signal in the time-domain or the frequency-domain.
An example in the time-domain is autoregressive (AR) modeling. An AR model is
defined by

p
T; = § AnTi—n + €
n=1

and states that the current value of a time series is the linear combination of p past
values and a random noise term ¢;. The parameters {a,}} need to be estimated by
fitting the model to the data. Studies have used these parameters to predict seizures
either directly [70] or by giving these parameters as features to a support vector
machine (SVM) [71]. Some other linear measures that have been used are: statistical
moments, spectral band power and accumulated energy [68].

In the 1980s there was an emergence of non-linear system theory. Non-linear
approaches are of course much better suited to describe complex behavior than
linear approaches. Thanks to this, non-linear measures were introduced in the field
of seizure prediction. In contrast with linear ones, non-linear measures are often
not calculated directly from the signal in the time-domain or frequency-domain.
Non-linear measures are usually derived from state space trajectories of a dynamical
system. This means that the time series {x;}}" must be transformed into a state space
trajectory. A popular way to achieve this, is by using ‘the method of delays’ [72]. In
this method the discrete signal is assumed to be sampled from a continuous signal

x; =x(its) i=1...N
with 75 the sampling time. The trajectory, x(¢), in m dimensions is given by
x(t) = (x(t),z(t — 14)y ..., x(t — (m — 1)1y))

where the delay time 7,4 is an integer multiple of 75. The largest Lyapunov exponent
was used to describe the chaotic behavior of an EEG and it was shown that there
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was a decrease before seizure onset [73]. Another non-linear measure, the correlation
density, was shown to decrease during the pre-ictal stage [74]. Some other non-
linear measures are the correlation dimension, correlation entropy and the dynamical
similarity index [68]. All the measures (linear and non-linear) defined thus far
are univariate measures. There also exist bivariate measures that can be used
for seizure prediction. Some linear bivariate measures are the maximum linear
cross-correlation and the linear coherence [08]. Both of these quantify the amount
of synchronization between two signals. Some bivariate non-linear measures are
the non-linear interdependence (quantify generalized synchronization), dynamical
entrainment (entrainment between two brain regions based on the difference between
the largest Lyapunov exponents) and phase synchronization [68]. All these measures
can be used directly by defining thresholds or they can be used as input features for
a classifier, for example an SVM or a neural network (NN).

In a perfect world, a method for predicting an epileptic seizure would give the
exact moment in time when the seizure will occur. This is however not possible with
the current prediction methods. This uncertainty will be incorporated by talking
about the seizure occurrence period (SOP). The SOP is the period in which the
seizure is expected to occur. In order to be able to avoid the seizure (by electrical
stimulation for example) or to warn the patient, there has to be some time between
the alarm signal of the prediction method and the moment that the SOP starts.
This time interval will be defined as the seizure prediction horizon (SPH). When
evaluating a seizure prediction method, one always has to consider sensitivity and
specificity together. Sensitivity (S) is the proportion of correctly predicted seizures
with respect to all the seizures. An appropriate measure for the specificity in this case
is the number of false predictions in a given time interval. This is also called the false
prediction rate (FPR). When lowering some threshold value, the method will predict
more seizures in the pre-ictal stages, but will also generate more false predictions in the
interictal stages. Too much false predictions could lead to side-effects resulting from
the unneeded interventions or the patient’s ignorance towards the alarm. Therefore
the false prediction rate should be kept below a maximum allowed value (FPRyax)-
A seizure prediction method should not only have good results in terms of sensitivity
and specificity, but should also be statistically valid: it should at least perform better
than a random or periodic predictor. All these important characteristics led to the
development of the seizure prediction characteristic (SPC) for comparing different
prediction methods. The SPC shows the dependence of the sensitivity with respect
to the maximum allowed false prediction rate, the seizure occurence period and
the seizure prediction horizon: S = f(F PRy, SOP,SPH) [75]. This can actually
be seen as a type of receiver operating characteristic (ROC), but then specifically
designed for seizure prediction purposes.

One of the goals in this thesis is to develop a prediction method for MTLE.
Artificial data is generated with the model for MTLE, which is introduced in Section
2.2. This data will then be used in Chapter 4 to develop the prediction method.
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Chapter 2

Modeling epileptic seizures

This chapter is about building computational models for epileptic seizures. Both
models that will be used throughout this thesis will be introduced here. In Section
2.1, the model for absence seizures is presented. The general outline of the model as
well as the possible types of activity will discussed in that section. Mathematical
details about this model can be found in Appendix B. It turns out that this model
mimics the dynamics of absence seizures very well. This allows the user to interact
with the model and see what the effect on the seizures is. In Chapter 3, a control
system for this model will be designed and implemented. In Section 2.2, the model
for MTLE will be introduced. The general outline of the model is presented together
with the types of signals that this model can produce. Mathematical details about
this model can be found in Appendix C. This model will be used to develop a
prediction framework for MTLE in Chapter 4.

2.1 Model for absence seizures

2.1.1 Introduction

As already mentioned in Section 1.1.1, there were no computational models that
addressed the mechanisms of the spontaneous transitions between normal spindle
oscillations and epileptic SW discharges. Suffczynski et al. presented a computational
model that made a novel contribution to the research field for this aspect of absence
seizures [70].

2.1.2 Methods

Suffczynski et al. built a computational model for SW discharges that were recorded
from the Wistar albino Glaxo from Rijswijk (WAG/Rij) rat [77]. A WAG/R]j rat
is a genetic animal model of absence epilepsy and has similar characteristics as the
generalized absence epilepsy rat from Strasbourg (GAERS) [78]. Both are inbred
strain of rats that suffer from spontaneous absence seizures with SW discharges. The
model of Suffczynski et al. is an extended model of that one proposed by Lopes
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da Silva et al. [79]. In the new model there are three very important extensions
incorporated with respect to absence seizures:

e The model is built out of two interconnected populations, a cortical and a
thalamic one. As already explained by the experimental models in Section
1.1.1, both of these regions are necessary to generate absence seizures with SW
discharges.

e The burst firing of thalamic cells is taken into account when transforming the
mean membrane potential to the mean firing rate in the thalamic populations.
This is done by incorporating the low threshold It calcium current in this
transformation. Knock-out mice that were lacking the gene for this It current
did not suffer from absence seizures [21].

e The GABA receptor is subdivided in a fast GABAA and a slow GABAp
receptor type. The GABAg receptors have nonlinear activation properties [30].

The cortical module of the model consists of an excitatory population of pyramidal
neurons (PY) and an inhibitory population of interneurons (IN). These populations
are interconnected, so the PY cells excite the IN cells and the IN cells inhibit the
PY cells. The thalamic module of the model consists of an excitatory population of
thalamocortical relay cells (T'C) and an inhibitory population of reticular thalamic
neurons (RE). These two populations are also interconnected. So the TC cells
excite the RE cells and the RE cells inhibit the TC cells. The cortical and thalamic
module are further also connected to each other. The PY cells excite the TC and
RE cells, while the TC cells excite the PY and IN cells. There are three external
inputs to the model. The RE population receives an inhibitory external input,
which represents neighboring RE cells. The TC population receives an external
excitatory input, which represents sensory inputs. The PY population also receives
an external excitatory input, which represents the input from other PY cells. All
the excitatory synaptic connections are regulated by glutamate a-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) receptors. All the inhibitory synaptic
interactions are regulated by the y-aminobutyric acid (GABA) receptor. As already
mentioned, the GABA receptor mediates a fast response to GABA, while the
GABAGg receptor mediates slow responses to GABA. Note that for the inhibitory
case the neurotransmitter and the receptor are both named GABA. In the excitatory
case the neurotransmitter is glutamate and the receptor is named AMPA. The model
of Suffczynski et al. is shown in Figure 2.1. The four populations are framed (green
for the excitatory and red for the inhibitory populations). The input and the output
of these colored boxes are respectively the average presynaptic firing rate and the
average postsynaptic firing rate of the populations. The blocks AMPA, GABAa and
GABAD transform the average presynaptic firing rate into the average postsynaptic
current. The integrator turns this into the mean membrane potential (average
postsynaptic potential) and the saturation block transforms this into the average
postsynaptic firing rate. All these quantities are defined as an average over the entire
population, not for individual neurons inside a population. The mathematical details
of this model can be found in Appendix B.
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Figure 2.1: The thalamocortical model of Suffczynski et al. [76]. The cortical module
consists of an excitatory population of PY cells and an inhibitory population of IN
cells. The thalamic module is built from an excitatory population of TC cells and an
inhibitory population of RE cells. A mathematical description of this model can be
found in Appendix B.

2.1.3 Results

The model can generate two qualitatively different types of signals. These are in
accordance with what is seen in animal models (WAG/Rij and GAERS). On the one
hand there is the waxing-and-waning spindle oscillations with a frequency around
11 Hz. On the other hand there is the seizure activity with high amplitudes and a
frequency around 9 Hz. The first one is the normal activity and the second one is the
epileptic activity. A terminology that is often used when talking about signals that
contain seizures is ‘interictal’ and ‘ictal’. The ictal part of the signal is the part that
contains the seizures while the interictal part refers to the intervals between seizures.
It is important to note that the goal of this model was not to simulate realistic
waveforms, but to be able to investigate the transitions from normal spindle activity
to SW discharges. The waxing-and-waning form of the spindle oscillations however
looks realistic. The typical SW pattern is not visible in the simulated epileptic
activity, instead it is a quasi-sinusoidal wave of the right frequency (9 Hz). These
two different types of signals are shown in Figure 2.2. Figure 2.2a shows both types
of signals with spontaneous transitions. It can be seen that, just like in real life, the
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Figure 2.2: The simulated signals of the thalamocortical model of absence seizures.
a) The time evolution of the mean membrane potential of the PY cells in the cortex.
This output represents the dynamics of an EEG and shows both interictal and
ictal activity with spontaneous transitions between them. The parts with a high
amplitude are the ictal parts. b) A close-up of an ictal part of the EEG, where the
quasi-sinusoidal activity is clearly visible. ¢) The PSD for the ictal activity shows
a clear peak at 9 Hz. d) A close-up of an interictal part of the EEG, which clearly
shows the waxing-and-waning progress of the interictal signals. e) The PSD of the
interictal activity is centered around 11 Hz. This shows that the interictal activity
has a slightly higher frequency than the ictal activity.

signal shows long periods of normal EEG activity with epileptic activity intermingled
only occasionally. Figure 2.2b shows a close-up of the epileptic activity. This is a
quasi-sinusoidal signal with a frequency around 9 Hz (see Figure 2.2¢). Figure 2.2d
shows a close-up of the normal activity. The waxing-and-waning pattern is clearly
visible and the frequency of this signal is 11 Hz (see Figure 2.2¢). The fact that only
these two types of behavior are simulated is justified by the observations that SW
discharges predominantly occur during sleep spindle oscillations [81,82]. This type
of oscillations usually occur when a person is somewhat drowsy or sleepy.

The model can operate in bistable mode: it can generate both types of activity
and spontaneous transitions between them. The bistability is a result of specific
properties of GABAgp receptors and It current in TC neurons. A lot of studies on
animal models of absence epilepsy have confirmed the necessity of GABAp activation
to generate seizures [33,31]. GABAp receptors have non-linear activation properties,
so they need a strong stimulus to be activated. This strong stimulus is not the case
during normal activity. The seizure starts when GABAg receptors in TC cells are
activated. The long lasting inhibition caused by these receptors results in a prolonged
hyperpolarization. Because of this long hyperpolarization, the inactivation of It
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current in TC cells is removed. This causes burst firing in TC cells and these bursts
activate the RE cells strongly. These RE cells can then again activate the GABAgp
receptors and the cycle can start again. The seizure stops when this cycle fails to
reinitiate. This mechanism was also found to be responsible for absence seizures
in other studies [85,86]. A bifurcation analysis shows that an equilibrium point
(normal activity) and a limit cycle (seizure activity) are present simultaneously in the
phase plane. It also points out that random fluctuations in the external inputs are
responsible for transitions between these two types of behavior. The phase portrait
of the system is illustrated in Figures 2.3a-c for respectively the case without noise, a
very low level of noise and a high level of noise on the external input to the TC cells.
The value of the external input to the PY cells was, in the case of Figures 2.3a-b, kept
constant to a certain value so that the system was in the state of normal behavior
(red) or seizure activity (blue). To be able to switch from one attractor to the other,
there are noise terms needed in both the external inputs. Since these transitions
are produced by a random process, they are inherently unpredictable. The goal in
this thesis for this model is to detect a seizure and to control it. The detection of
a seizure can be based on two criteria: the activation level of GABApR receptors in
TC cells and the amplitude of the mean membrane potential of the PY cells. In
this model, both can be measured, but in real life the activation level of GABAg
receptors can not be used to detect seizures. Only the mean membrane potential of
the PY cells will be used for this reason and the activation level of GABAg receptors
can be used afterwards to check the results. An EEG is a recording of the electrical
activity of a large neuronal population in the cortex. The mean membrane potential
of the PY cells is assumed to have the same dynamics as the EEG recordings. This
is an important reason to base the detection of a seizure on the mean membrane
potential of the PY cells, because the detection in real life can then be done by using
recorded EEG signals. Once detected, the seizure has to be controlled. This will be
done by giving stimuli to the brain (brain stimulation therapy).

An important thing to do when starting to work with a model is to check if the
model is valid with respect to what researchers found out by carrying out experiments.
This was done by changing parameters in the model and checking if the seizure
activity behaved as in real experiments. The most important ones are given in the
list below. The model with the reference set of parameters was used as the control
for the comparisons:

e Increasing the AMPA conductances in the PY neurons led to more SW dis-
charges, for the simple reason that this causes cortex hyperexcitability. During
an epileptic seizure there is an increased neuronal excitability. This causes
more feedback in the thalamocortical system and is a possible mechanism for
absence seizures [37].

e Increasing the GABA conductances in the PY cells led to less SW discharges.
There will only be sleep spindles if the cortex stays under strict control of
GABA, [38]. The cortical hyperexcitability can be due to the decrease of
GABA, inhibition [39].
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Figure 2.3: The phase portrait for the model of absence seizures. The state space
trajectories were obtained by using the method of delays with 7 = 20 ms and m = 2.
The mean membrane potential of the PY cells in the cortex (Vpy) is plotted against
a delayed version of itself. a) The state space trajectories when there is no noise
on the external inputs. There will be no transitions from interictal to ictal (or vice
versa) in this case. The red dot represents the interictal activity and clearly forms
an equilibrium point. The blue curve represents the ictal activity and forms a limit
cycle. b) After introducing a low level of noise on the external input to the TC cells,
the equilibrium point and limit cycle can be seen to deviate a little bit from their
previous path. This low level of noise is however not high enough to cause transitions
from the equilibrium point to the limit cycle (or vice versa). ¢) Transitions from one
attractor to the other start to happen when the noise level is increased. This implies
that transitions from interictal to ictal activity (and vice versa) are possible for these
noise levels.

e The blocking of GABAg receptors in the PY and TC cells resulted in an
activity free of seizures. This is because the GABAp receptors are necessary
for seizure generation as stated before.

e The increase of AMPA conductances in the RE cells led to more SW discharges.
This is because a stronger activation of RE cells results in a bigger possibility
that the GABAgp receptors in the TC cells are activated.

e An increase of the GABA 4 conductance in RE cells led to less SW discharges.
This decreased the pacemaking property of these cells as stated in [35]. It can
also be seen as the opposite of the previous point.

e An increase of GABA, in TC cells led to the opposite effect as in the RE
cells, namely more SW discharges. This is consistent with the findings of other
studies [90].
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e The parameters of the sigmoids also have a big effect on SW discharges. The
sigmoids are used to convert the mean membrane potential into the average
postsynaptic firing rate in the cortical populations (see Appendix B). The
maximum firing rate parameter and the parameter for the threshold of firing
are easy to understand. Increasing the maximum firing rate will increase the
number of SW discharges, because of cortical hyperexcitability. Increasing the
threshold parameter for firing will decrease the number of SW discharges. The
effect of changing the slope of the sigmoid is not so obvious. Increasing the
slope will narrow the distribution of firing thresholds in a neuronal population.
This will cause more neuronal synchrony and this is a typical characteristic of
epileptic activity in the brain [11,19,20].

e An increase of calcium currents in the thalamic modules led to more SW
discharges. There will be more bursts because of this increase. This is in
accordance with experimental findings [91].

e The importance of the coupling between thalamus and cortex was also confirmed
by this model. The coupling could be changed by changing the coupling
constants or by playing with the time-delay between these modules. In every
case, a reduced coupling between the two resulted in less SW discharges.

2.1.4 Conclusion

This model generates two qualitatively different types of behavior (ictal and interictal)
with spontaneous transitions between them. It is not a problem that the generated
waveforms for the ictal part do not look like the typical SW pattern that is seen
in real life. The most important job for this model is to mimic the dynamics that
are in play for absence seizures. The above list shows that the model captures the
important aspects of absence seizures. This means that the model is a good starting
point for trying to detect and control the seizures. The fact that the model can
operate in bistable mode suggests that it should be possible to switch from one
attractor to another by sending external stimuli to the model (brain).
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2.2 Model for temporal lobe epilepsy

2.2.1 Introduction

As stated in Section 1.1.2, the problem with the first model of Wendling et al.
was the fact that 7-rhythms could not be simulated by their model [10]. To cope
with this problem, Wendling et al. extended their original model [12]. In their
original model there were three populations: two excitatory and one inhibitory. In
the new model, a fourth subset was added that represented another population of
inhibitory interneurons. This new inhibitory population had faster dynamics than
the one already included in the previous model. These two inhibitory populations
represented two different types of GABA 5 responses. There is a fast response for the
neurons that form synapses close to the soma (GABA4 f.t) and a slow response for
neurons forming synapses on the dendrites (GABA gow). By making this distinction,
~-rhythms could be simulated by their model.

2.2.2 Methods

The entire model of the hippocampus is built out of four populations: the main cells
(excitatory pyramidal neurons), distant excitatory pyramidal cells, slow inhibitory
interneurons and fast inhibitory interneurons. The slow inhibitory interneurons are
projecting on the dendrites of the main cells, while the fast inhibitory interneurons
are projecting on the soma of the main cells. All these populations are interconnected
with each other. The main cells excite the three other populations. The distant
pyramidal cells excite the main cells and both inhibitory populations inhibit the main
cells. The inhibitory populations also interact with each other: the fast interneurons
are inhibited by the slow interneurons. There is also an external noise input included
in the model that represents excitatory input from neighboring and more distant
areas. The excitatory synaptic connections are mediated by AMPA receptors and
the inhibitory connections are mediated by GABA receptors. The model is shown in
Figure 2.4. The four different populations are framed, the two excitatory populations
in green and the two inhibitory ones in red. The mean membrane potential of the
main cells is interpreted as an EEG signal. The transformation of presyaptic firing
rate to postsynaptic firing rate happens like explained in Section 1.2 by Formulas 1.2
and 1.3. The mathematical details about the model can be found in Appendix C.

There are three different impulse responses for the three different types of
interaction:

e hpxc(t)=A-a-t e for the excitatory synaptic interactions,
e hspr(t) =B -b-t-e " for the slow dendritic inhibition (SDI) and
o hpsr(t) =G -g-t-e 9 for the fast somatic inhibition (FSI).

The somatic time constant (1/g) is smaller than the dendritic time constant (1/b),
giving the interneurons projecting on the soma faster kinetics than the ones projecting
on the dendrites. The three different impulse responses are shown in Figure 2.5 for
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Figure 2.4: The model of the hippocampus of Wendling et al. [12]. There are two
excitatory populations: the main cells and the distant PY cells. There are also two
inhibitory populations: the slow dendritic and the fast somatic inhibitory neurons.
A mathematical description of this model can be found in Appendix C.

A= B=G=10 and a, b and g equal to their reference values. It can be seen that
hrgr has the fastest dynamics and hgpr the slowest. The amplitudes for the impulse
responses were randomly chosen equal to each other, just to show the influence of
the time constants.

The model as described so far, built from four populations, represents a certain
region of the hippocampus. The output (namely the mean membrane potential of
the main cells) represents the EEG signal that can be measured at this region. In
this thesis, a small extension is made to this model. The eventual goal is to use
this model for deriving a predicting framework for temporal lobe epilepsy. As will
become clear further on in Chapter 4, bivariate measures are well suited to do this.
For that reason, the model is extended to be able to generate a multi-channel EEG
signal as output. This is done by taking six different models as they have been
described so far and interconnecting them with each other. The output of each of the
six models serves as an extra input for each of the other models. Every population
incorporates a time delay on its efferent connections, because the signals have to
propagate from one region to another and this takes time. The parameters for each
model now consist of a fixed term in combination with a random term. This random
term can not be too large because the different models still need to produce the same
type of activity. In this way a large model that consists of six modules is created.
The output of every single module of the extended model can now be seen as the
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Figure 2.5: The impulse responses for the three different types of synaptic interaction.
Fast somatic inhibition (blue) has the fastest dynamics, followed by excitatory
synaptic transmission (green). The slow dendritic inhibition (red) has the slowest
dynamics.

EEG signal that is measured in a certain region of the hippocampus. These are six
different regions, one for each module. The output of this extended model can thus
be interpreted as a 6-channel EEG.

2.2.3 Results

The model can generate six qualitatively different kinds of EEG signals by adjusting
the parameters A, B and G. These parameters are the synaptic gains in the impulse
response functions for the specific synaptic interactions. The six types of signals
are: normal background activity (type 1), slow rhythmic activity (type 2), sporadic
spikes (type 3), sustained spikes (type 4), low voltage rapid discharge (type 5) and
slow quasi-sinusoidal activity (type 6). Type 1, 2 and 3 are signals typically seen
during interictal periods. Type 4 can often be seen right before the beginning of
a seizure (preictal). Type 5 usually appears at seizure onset and type 6 normally
follows the rapid activity and represents ictal activity. These different types of signals
are illustrated in Figure 2.6. The frequency of the low voltage rapid activity signal
lies in the range 30-40 Hz, which is indeed in the + band.

Wendling et al. used their model to explain the neuronal mechanisms responsible
for low voltage rapid discharges [12] and the transition from interictal to ictal stages
in human MTLE [92]. An increase of excitation and a decrease of inhibition was not
sufficient to explain the high-frequency EEG activity. It turned out that the division
of inhibitory interneurons in fast and slow populations was crucial for generating
~v-rhythms. While the dendritic inhibition went down, the somatic inhibition had to
stay above a certain level to be able to generate the high-frequency behavior [93].
This means that the GABAergic inhibition decreased, but not uniformly in the
dendrites and the soma. Right before the onset of the seizure, the dendritic inhibition
increased to compensate the increasing excitation. At seizure onset this dendritic
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Figure 2.6: The six different types of EEG behavior generated by the model of
Wendling et al. [12]. a) Type 1: normal background activity (interictal). b) Type 2:
slow rhythmic activity (interictal). ¢) Type 3: sporadic spikes (interictal). d) Type
4: sustained spikes (preictal). e) Type 5: low voltage rapid activity (ictal). f) Type
6: quasi-sinusoidal activity (ictal).

inhibition made a huge drop due to a ‘fatigue process’, while the somatic inhibition
remained constant or increased. The high-frequency ictal oscillations are generated
by the feedback loop consisting of the pyramidal cells and the inhibitory interneurons
that project on the soma of these cells. For details the readers are referred to the
papers of Wendling et al. [12,92].

Figure 2.7 shows an example of a 6-channel EEG recording, generated by the
extended model proposed in this thesis. Five seconds of each type were simulated
and afterwards concatenated. The order or the signals is first type 1, then type 2 and
so on until type 6. There is clearly a large difference in the amplitude of the different
types of signals. Because of this the types 1, 2 and 5 are not clearly visible on the
figure. Close-ups on the different kind of signals can already be seen on Figure 2.6.
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Figure 2.7: A 6-channel EEG recording that contains the six qualitatively different types of signals that can be produced by the
model. The channels are labeled Chl up to Ch6. Every type of possible activity is simulated for five seconds (type 1 up to type
6).
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2.2.4 Conclusion

The model for TLE can generate six qualitatively different kinds of EEG signals.
These different types of signals correspond to different stages in the development of
the seizure. Next to an ictal and interictal stage there also exists a pre-ictal stage
for TLE. This stage comes between the interictal and ictal stage and can be used to
predict seizures before they are actually happening. This was not the case for the
spontaneous transitions in absence seizures. The goal of this model in this thesis
is to generate artificial (but realistic) EEG data that can be used to work out a
prediction framework for MTLE.
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Chapter 3

Controlling epileptic seizures

This chapter deals with the control of epileptic seizures via brain stimulation tech-
niques. More specifically, a control system for the model of absence seizures (intro-
duced in Section 2.1) will be designed and implemented. The control system consists
of a detection part and a stimulation part. In Section 3.1, a short introduction is
presented on the subject. The detection and the stimulation part of the control
system are explained in Section 3.2. The overall picture of the control system is
presented and the important parameters are emphasized. The results of the control
system are presented in Section 3.3. The influence of parameter changes are also
shown in this section. It turns out that the control system works very good, but
only for well tuned parameters. The performance drops when the parameters are
not chosen optimally. To end this chapter, a conclusion and some remarks are given
in Section 3.4.

3.1 Introduction

The most common treatments for epilepsy that are used nowadays are medication
and surgery. These are unfortunately, as stated in Chapter 1, not effective for
all the patients. For this reason, there is a lot of research aimed at developing
alternative treatments. In this chapter a brain stimulation therapy will be developed
and implemented for the thalamocortical model of absence seizures. This model very
well mimics the dynamics that are in play during absence seizures. This allows the
user to interact with the model: it makes it possible to send pulses into the model
with the goal of controlling the seizures. The objective in this case is to hinder a
seizure after its onset. There is no possibility for prediction, because absence seizures
are generalized seizures. The best that can be done is an early detection. Pulses will
only be sent into the model when a seizure is detected. This makes the developed
control system a closed-loop system. In an open-loop system, intermittent pulses
would be sent into the model without making use of any kind of detection system. A
closed-loop system is chosen because it disturbs the brain of the patient less than an
open-loop system.
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3.2 Methods

Both the detection system and the stimulation protocol will be described in this
section. The overall outline of the detection system and its parameters are presented
in Section 3.2.1. The regions to stimulate and also the type of pulses that are used
are presented in Section 3.2.2.

3.2.1 Detection

The model for absence seizures generates two different types of EEG behavior. On
the one hand there are the interictal spindle oscillations with a low amplitude. On
the other hand there are the ictal quasi-sinusoidal oscillations with a larger amplitude.
Detecting a seizure in the model implies being able to make the distinction between
these types of activity. The interictal and ictal activity clearly have a different order
of amplitude. This is because during the ictal activity there is a lot of synchrony in
the brain and this causes the EEG to have larger amplitudes. A simple detection
system is therefore based on the amplitude of the EEG output signal. When the
amplitude gets larger than a certain threshold value, a seizure is detected. This
method for detection can of course only be used in this model. Other types of EEG
behavior with a large amplitude that do not represent ictal activity will wrongly
cause a seizure detection. Because the model only generates two types of activity,
this simple method can be used. The big advantage of this method is a very fast
detection. The seizure is detected right after it starts. This would not be the case
if some type of sliding window had to be used. The delay between the start of a
seizure and the actual detection would then probably be larger. This simple method
therefore allows to check if a patient can be made free of seizures if a very fast
detection is possible.

The Simulink diagram of the detection system is shown in Figure 3.1. There are
three conditions that have to be satisfied so that the system will output a seizure
detection. First of all, the incoming EEG signal has to be decreasing. Why this
condition has to be satisfied will become clear in the next section. Secondly, the
absolute value of the difference between the incoming EEG signal and the average of
the EEG signal has to be larger than a couple of times the standard deviation of
the EEG signal. This causes a detection when the EEG signal deviates a lot from
its mean value, which indicates that the amplitude of the EEG signal has passed
some threshold. The average and the standard deviation of the EEG signal are
computed during a pre-processing step. The average is measured from a signal that
contains interictal and ictal activity while the standard deviation is measured from
a signal that contains only interictal activity. This is done in this way because the
ictal activity is not completely symmetric. The average will therefore be a little bit
smaller if ictal activity is included with respect to only interictal activity. The third
condition that has to be satisfied is that the previous point in the signal would not
cause a seizure detection according to condition two. This will cause the output of
the detection system to be 1 at the time of seizure detection and 0 afterwards. If
this third condition was not included, a series of ones would be generated after a
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Figure 3.1: The detection system to detect a seizure in the model for absence seizures.

seizure detection.

Once the average and standard deviation of the EEG signal are measured, this
system contains one important parameter. The deviation of the incoming EEG signal
from its average is compared with a couple of times the standard deviation. This
‘couple of times’ is an important parameter. If this is chosen too low, the system will
generate a lot of false detections. If on the other hand this value is too high, the
system will not detect a seizure or detect it too late. Careful tuning of this parameter
is therefore required.

3.2.2 Stimulation

Once a seizure is detected, it has to be controlled. External stimuli are sent into
the model to do this. The stimuli can be sent into the cortical or into the thalamic
module of the model. The thalamus lies deep inside the brain. Sending stimuli
to the thalamus therefore requires depth electrodes which penetrate into this deep
brain structure. The cortex is the outer surface of the brain, which makes cortical
stimulation a much less invasive method. For this reason, the external control stimuli
are sent into the cortical module of the model. The type of signal that is used is a
block pulse of a certain amplitude and duration. These are two important parameters
that also have to be tuned very carefully. When the amplitude of the pulse is chosen
too small, it will not have any disrupting effect on the starting seizure. When on the
other hand the amplitude is chosen too large, the entire system will be disorganized.
In real life it is also not advisable to send pulses of a too large amplitude inside a
patient’s brain. The amplitude can also take a positive or a negative value. This
is because a seizure can be detected during an increasing or during a decreasing
progress of the EEG signal. When the detection happens on a rising EEG signal,
the pulse will have a negative amplitude. If the detection happens on a decaying
EEG signal, the pulse will have a positive amplitude. This means that there are two
detection systems like in Figure 3.1. The one in this figure had as first condition
that the EEG signal had to be decreasing. In the second detection system, this
condition is replaced with the condition that the EEG signal has to be increasing.
The two different detection systems will each generate their pulses when needed.
Afterwards these signals are combined and sent into the model as one control signal.
An important note about the units of the amplitude has to be made here. Since the
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Figure 3.2: The control system together with the model. The model is included
in the light blue subsystem. Both the detection systems are shown in green. The
stimulation part is indicated in yellow. The red addition element combines the two
control signals into one signal. The switch element determines whether the control
signal is sent into the model or not.

model that is being used is a macro-scale model, the units of the amplitude of the
control signal will be pulses per second (pps). This is in accordance with the units of
the incoming signals of other populations in the model, which represent firing rates.
A negative amount of pps might seem strange at first sight. A positive amplitude is
therefore interpreted as sending an amount of depolarizing pulses (per second), while
a negative amplitude is interpreted as sending an amount of hyperpolarizing pulses
(per second). The duration of the control pulse is also important to tune. The pulse
can not be too short or too long. The generation of the pulse happens by sending the
output of the detection system through a delay bank. In this way the duration of the
pulse can take on a discrete multiple of the used sample time with which the model
is simulated. In real life the calculations will of course also be done in a discrete way.

Tuning of all the parameters was done by trial and error. The entire control system
together with the model is shown in Figure 3.2. The model itself is included in the
light blue subsystem. Both the detection systems are shown in green. They are driven
by the average membrane potential of the PY population (EEG). The stimulation
part for each detection system is indicated in yellow. The red addition element
combines the two control signals into one signal. The switch element determines if
the control signal is sent into the model or not, based on an external parameter.
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3.3 Results

As already mentioned, careful tuning is needed for some parameters in the control
system. In real life, this tuning will be done for every patient individually and not
just one tuning for all the patients. The reason therefore is that every patient has
slightly different EEG recordings. Considering this control system, the average and
standard deviation of the EEG signal are of importance. To incorporate this into
the model, the tuning is done for a certain fixed seed for the random inputs to the
model and for fixed parameters in the model of absence seizures. When one of all
these parameters changes, the tuning has to be done again, because this represents
the EEG recordings of a different patient.

There won’t be a lot of ictal activity when the reference set of parameters is used
in the model of absence seizures. This means that the simulation would have to be
done on a large interval to very well see the effect of the control system. When the
results are shown for large intervals, the visibility will of course not be very good.
So, for the sake of better visibility, a certain parameter in the model (the gain for
AMPA receptors in the PY population) will be enlarged a little bit. This will cause
a lot more ictal activity and allows to see the effect of the control system on smaller
simulation intervals. Note however that no patient in the world will have this much
of ictal activity on short intervals. This is purely to be able to show the results of
the control system in a clear fashion.

In Figure 3.3 the results are shown when the control system is not connected
to the model. The average membrane potential of the PY population in the cortex
is shown in Figure 3.3a, together with the thresholds of the detection system (in
red). This represents the activity which would be measured during an EEG. Both
the ictal and interical activity can be seen in this signal. The ictal part of the
signal clearly has a larger amplitude than the interictal part. Also the asymmetry of
the ictal part can be seen in this figure. In Figure 3.3b one can see the activation
of the GABAg receptor in the PY population. Remember that activation of this
receptor was necessary to generate seizures in the model. In this figure one can
clearly see that activation of the GABAR receptor corresponds to ictal activity in
the EEG signal. This activation represents the current that is generated by these
receptors. That explains why it has a negative value, since these receptors will cause
hyperpolarization. In Figure 3.3c, the pulses that are generated by the control system
are shown. It can be seen that a pulse is fired every time the amplitude of the EEG
signal crosses the threshold that separates ictal and interictal amplitudes. Whether
the pulse is negative or positive depends on the fact whether the signal is rising
or decaying at that moment. Note however that these pulses are not sent into the
model since the control system is not connected to the model yet.

Now the control system is connected to the model. The results are shown in
Figure 3.4. It can be seen that the EEG signal does not contain any (noticeable)
ictal activity anymore. Only the interictal spindle-oscillations are present in this
signal. The conclusion that can be drawn here is that the control system is doing its
job very well. The same conclusion can also be drawn by looking at the GABAp
activation. There is still one well defined peak present in the beginning of the signal,
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Figure 3.3: The results when the control system is not connected to the model. a)
The average membrane potential of the PY population in the cortex (which represents
an EEG recording) clearly shows interictal and ictal activity. The ictal activity has a
noticeable higher amplitude compared to the interictal activity. The thresholds of the
detection system are shown as red horizontal lines. Below this threshold is classified
as interictal, above as ictal activity. b) The amount of GABAp activation. This
activation represents the postsynaptic current generated by the GABAgp receptor
and therefore corresponds to ictal activity. ¢) The amplitude of the control signal
over time. These pulses are generated when ictal activity is detected but they are
not sent into the model yet.

but its magnitude is of the order of 1073, This is very small when compared with
the magnitude of the order of 10 without the control system. There are also some
peaks of the order of 1076 present, but they are not very visible in the figure. It is
normal that there is still a little bit of GABAg activation. The system will control
a seizure when it is detected (after the onset of the seizure). A started seizure will
involve a little bit of GABAg activation. In Figure 3.4c¢ one can also see that from
all the pulses shown in Figure 3.3c, only a small part is actually sent into the model.
This means that a single pulse at the beginning of the seizure is often successful
in annihilating the entire seizure. These results are obtained with some well tuned
parameters. The threshold in the detection system is 2.4 - o, with ¢ the standard
deviation of the EEG. The amplitude of the pulses is 15 pps and the duration of
the pulses is 6 ms. The sensitivity of the detection system with respect to these
parameters will now be investigated. One parameter will be adapted while the others
are kept to their reference values.

First, the sensitivity of the performance with respect to the threshold is checked.
If the parameter for the threshold is chosen too small, there will be a lot of false
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Figure 3.4: The results when the control system is connected to the model. a)
The EEG recording does not show any noticeable ictal activity anymore, but only
spindle oscillations. The only type of signal that is present is the waxing-and-waning
interictal activity. This means that the control system has succeeded in annihilating
the seizures. b) There is almost no more GABAg activation. This also points towards
the absence op epileptic activity. ¢) Only a small part of the control pulses from
Figure 3.3c are needed to control the seizures. This implies that a single pulse at the
start of a seizure can annihilate the entire seizure.

detections. This will cause a lot of unwanted interference with the brain of the
patient. Results for a threshold of 1.2 - ¢ are shown in Figure 3.5 for a connected
control system. When looking at Figure 3.5¢, one can see that there are detections
throughout the entire signal, even in clearly interictal parts. It can also be seen that
a lot of these false detections are actually sent into the model by the control system.
This causes the EEG signal in Figure 3.5a to lose its waxing-and-waning character,
which is typical for the interictal signals of absence seizures. This waxing-and-waning
pattern was still clearly visible in Figure 3.4a. The GABAp activation in Figure 3.5b
may well be extremely small, the fact that the EEG signal is deformed does not give
this GABAg activation any physical meaning anymore. This implies that giving
too much unneeded stimuli to the brain is definitely not a good idea. Experimental
studies could examine what the effect of this would be on behavior. When on the
other hand the threshold is chosen too large, the detection system will not detect
a lot of seizures or it will detect them not as fast as with a well tuned threshold.
Results for a threshold of 3.6 - ¢ are shown in Figure 3.6 for a connected control
system. In Figure 3.6¢c, one can see that there are a lot less detections in this case. It
however seems that there is still at least one detection for each seizure. The problem
is that this detection happens too late. The seizure will already have developed for a
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long enough time to be noticable in the EEG recordings. This can be seen in Figure
3.6a. The seizure activity is certainly less prominent as without the control system,
but the high amplitudes of ictal activity are clearly visible. Also the GABAR receptor
activation takes on values of the order of 102, which points towards ictal activity.
This experimentation shows that it is very important to tune the parameter for the
threshold carefully. The performance of the control system will decrease firmly is this
parameter is not chosen optimally. The seizures will either not be blocked completely
or the patient’s brain goes crazy because of too much electrical interference of the
stimuli.

Next, the sensitivity of the performance of the system will be investigated with
respect to changes in the amplitude of the control pulse. The results for a connected
control system are shown in Figure 3.7 for an amplitude parameter of 3 pps. The
control system will in this case generate its signals on time to control the seizures,
because the parameter for the threshold is again well tuned. The problem in this
case is the fact that the control pulse his amplitude is not high enough to interrupt
the started seizure. As can be seen in Figure 3.7a, there is still some ictal activity
going on. This can also be confirmed by looking at the GABAp receptor activation.
Control pulses with a too small amplitude will not have enough impact on the brain
to control the seizures completely. When on the other hand the amplitude of the
control pulses is chosen too high, the brain of the patient will produce strange EEG
measurements. The results are shown in Figure 3.8 for a connected control system
and an amplitude parameter of 60 pps. Note that in this figure, the signals are
only shown on an interval of five seconds. This is to be able to clearly illustrate
the strange EEG activity. Every time a control pulse is sent into the model, the
produced EEG signal will show some high frequency behavior. This can be seen in
Figure 3.8a. This clearly is not the desired interictal activity. Again, to know what
the implication of this is on behavior, some experimental studies are necessary. It
can however be stated that it is not a good idea to use too high amplitudes. It is very
important to ensure the safety of the patient. The amplitude is therefore important
to tune. When this is not done carefully there won’t be enough interference with the
brain or there will be way too much interference with the patient’s brain.

Finally, the effect of changing the duration of the control pulses will be investigated.
The results that are obtained with a duration of 2 ms are shown in Figure 3.9 for
a connected control system. From this figure it can be seen that having a smaller
duration will have a negative effect on the performance. Almost all the upcoming
seizures can be stopped, except two. This means that a shorter pulse will usually
be sufficient, but not always. It is of course better to choose the parameter settings
such that every seizure can be controlled. In Figure 3.10 the results are shown for a
duration of 30 ms. Only five seconds are simulated to be able to clearly see the effect
on the control pulses. In Figure 3.10c, one can see that the positive and negative
control pulses follow each other very fast. There is no ‘quiet time’ between subsequent
pulses. This can have the negative effect of rather sustaining the seizure instead of
controlling it, as can be seen in Figure 3.10a. This will probably be caused by the
fact that there is too much interference with the brain. Therefore, it is important to
tune this parameter optimally.
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Figure 3.5: The results when the control system is connected to the model, but
with a too low threshold parameter. a) The recorded EEG shows some very strange
behavior. Neither ictal nor interictal activity are visible in this case. Too much
electrical stimulation has made the output of the model physically meaningless. b)
There is no GABAgp activation, but this has no biological meaning anymore. c)
There are way too much detections because of the too low threshold parameter. The
brain will therefore be overstimulated.

o 150

-200 .

Gaba,, activation ( HA)
»—‘- |
o a
o o o
—
—_—
—]
—_—
—=
B
—_—
R —
—_
P
L L

Amplitude (pps)
o

I
2 4 6 8 10 12 14 16 18 20
time (s)

Figure 3.6: The results when the control system is connected to the model, but with
a too high threshold parameter. a) The EEG still shows both interictal and ictal
activity. b) The GABAp activation points towards ictal activity. The seizures are
not well controlled in this case. ¢) The detection of ictal activity happens too late,
which allows the seizure to develop and become noticeable. Counter stimuli will be
sent too late by the control system.
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Figure 3.7: The results when the control system is connected to the model, but
with a too low amplitude parameter. a) The EEG still shows some ictal activity. b)
The GABAg activation also still shows some peaks with a high amplitude. These
both results point towards a poor performance of the control system with these
parameters. ¢) A lot of control signals are sent into the model, but the amplitude of
the signals is too small to interrupt every seizure.
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Figure 3.8: The results when the control system is connected to the model, but with
a too high amplitude parameter. a) Some strange high frequency signals are present
in the EEG recording. This is the result of a too large amplitude of the control
signal. The dynamics of the brain are tangled up. b) The GABAgp activation has
small values, but the physical meaning of these is gone since the dynamics of the
model are not respected anymore. c¢) The control pulses with a large amplitude that
cause the model to generate strange EEG measurements.
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Figure 3.9: The results when the control system is connected to the model, but with
a too low duration parameter. a) The measured EEG still shows some ictal activity.
The control pulse did not last long enough to control these seizures. b) There are
still some uncontrolled seizures that lead to large peaks of GABAgp activation. c)
The control pulses with a too short duration.
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Figure 3.10: The results when the control system is connected to the model, but
with a too high duration parameter. a) Some high frequency oscillations can be
seen in the EEG recording. The long duration of the control pulses has caused this
unwanted behavior. b) There is still some clear GABAg activation in this case. c)
The different pulses follow each other too fast which does not leave any ‘quiet time’
between them.
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All these experiments suggest that a careful tuning of the parameters of the
control system is crucial for its performance. The values that were chosen during
these experiments were a little bit exaggerated so that the effect could be clearly
illustrated. Every parameter has a small range wherein it has to be chosen to obtain a
good performance of the control system. This tuning of parameters is patient-specific
and will require long EEG monitoring during a pre-surgical evaluation.

Manually tuning the parameters for every patient can become a time-consuming
job. Letting an automated process take care of this tuning would save physicians a
lot of time. Automating this step will not be very easy in case of the thresholding
technique that is used in this chapter. The tuning system has to know when a seizure
is happening and when not to determine the optimal threshold of the detection
system. For applications in real life, this thresholding technique will not be used
for detection. Some more advanced methods, for example from the field of machine
learning, will be used to detect a seizure. These models can be learned from a set of
training data. For supervised methods, a physician would still need to generate a
set of training data with the appropriate class labels. From that point on however,
the model can be learned automatically. Automatic tuning of the parameters for
the stimulation part can be done by starting with low values and increasing them
until the seizures can be interrupted. It is very important that an upper boundary is
chosen for these values, because otherwise there can be too much interference with
the brain of the patient.

3.4 Conclusion

The suggested control system is able to do its job and interrupt all the started
seizures. To do this however, the parameters need to be tuned optimally. This is very
crucial for the overall performance of the system. If this is not done correctly, then
not all the seizures will be controlled. It was also shown that badly tuned parameters
can have even more severe consequences. If there was too much interference with
the brain, some strange EEG activities were recorded. Some experimental studies
could point out what the behavioral effects of these are. It is important to note that
the proposed detection system is limited in its application. The results obtained
can not just be generalized to every other model. The control system makes use
of the assumption that only two types of signals are encountered, namely some
high amplitude ictal activity and some low amplitude interictal activity. In real
life this will of course not be the case. The detection system will then need to be
extended to classify more types of EEG signals. The goal here however, was to see if
computational modeling can be useful for the development of alternative treatments
for epilepsy. By making use of computer models, one can see which treatments could
be useful and then evaluate them further based on real experiments. The control
system was successful in this respect and suggests that responsive neurostimulation
could become a very important treatment for epilepsy in the near future.
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Chapter 4

Predicting epileptic seizures

This chapter deals with the prediction of epileptic seizures based on EEG signals.
More specifically, a prediction framework for MTLE is developed, based on signals
generated from the hippocampal model (introduced in Section 2.2). In Section
4.1, a short introduction on the subject is presented. The methods used to do the
prediction are explained in Section 4.2. The different measures that are extracted
from the EEG are defined in this section. All these measures are bivariate measures
that characterize synchrony between two signals. The different methods for doing
classification are also introduced in this section. Both thresholding and support
vector machines (SVMs) are used for doing classification. The results are presented
in Section 4.3. It turns out that the bivariate measures for synchrony are well
suited to find preictal periods in EEG signals. Classification by thresholding these
measures shows accuracies up to 95%, but is limited in its generalization towards
real life signals. To solve this problem, SVMs are used to do the classification in a
more general way. By using the right type of SVMs and the right input features,
accuracies up to 98% are obtained. To finish this chapter, a general conclusion and
some remarks are given in Section 4.4.

4.1 Introduction

In the previous chapter a control system was developed which interrupted a seizure
as soon as possible after its onset. Doing the control in this way allows to annul the
started seizure, but it can not make the patient completely free of seizures. This
could be seen in Figure 3.4, where there was still a very small amount of GABAp
receptor activation. In order to make a patient completely free of seizures, a seizure
needs to be detected before its onset and not as soon as possible after its onset. This
means that the seizure needs to be predicted before it has actually started. It has to
be noted that this is not possible for all type of seizures. Only partial seizures show
gradual changes in EEG activity before the actual onset of the seizure. This implies
that for this type of epileptic seizures, one can try to analyze EEG signals of a patient
and hopefully see the seizure arising before it has actually started. The hippocampal
model for MTLE will be used to generate artificial EEG data. This data will then
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be used to develop a prediction framework for MTLE. After a seizure is predicted,
the next step would be to try to prevent the seizure from happening. This could
also be done by some brain stimulation techniques like in the previous chapter. The
model which is used for generating the data however, does not mimic the dynamics
that are in play during transitions from one type of EEG activity to another. For
this reason, it is not possible to interact with the model as it was the case in the
previous chapter. The goal here will be to build a reliable prediction system for
patients suffering from MTLE. The EEG signals recorded from the brain of patients
with MTLE can be divided in interictal, preictal and ictal segments. Predicting a
seizure then boils down to finding the preictal periods in the EEG recordings.

4.2 Methods

This section elaborates on the different steps that were followed to develop the
prediction framework. First of all, the data generation is described in Section 4.2.1.
From this data, a couple of features are extracted. How this is done and which
features are chosen will be explained in Section 4.2.2. Finally, these features will be
used to classify between interictal, preictal and ictal stages of the EEG signal. The
way this is done is presented in Section 4.2.3.

4.2.1 Data generation

The hippocampal model for MTLE is used to generate artificial EEG data. The
choice to let the data be generated artificially by a computational model has two
reasons. The first one is that it is not easy to get data for free nowadays. Most of the
datasets that were available for free in the past are now collected into bigger datasets
which are only available after purchase. An example is the former free dataset of
the Seizure Prediction Project Freiburg, which is now part of the bigger European
EPILEPSTAE database. Unfortunately, one has to pay a lot of money to gain access
to this database. The second reason to use a computational model is to show that
computational modeling can be a very convenient tool to solve real life problems
regarding epilepsy.

The model for TLE can generate six qualitatively different types of EEG activity.
Three of these six types represent interictal activity, one type represents preictal
activity and the other two represent ictal activity. Which of these is simulated
depends on the parameter settings of the model. There are three parameters that
determine the type of the output. By adjusting these, one can generate a segment of
each type. These segments are afterwards concatenated into one long signal. This
means that the signals are generated off-line. Afterwards, they are used to extract
features for the classification in an on-line fashion. Remember that the signals
represent a 6-channel EEG recording. The sampling rate was chosen to be 256 Hz,
which is in accordance with the dataset from the Seizure Prediction Project Freiburg.
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4.2.2 Feature extraction

Features are extracted from the generated EEG data and will serve as an input for the
classification algorithm. When choosing which features one is going to extract, it is
important to think about what one wants to do with them. In this case, the features
will serve as the input for a classification algorithm that needs to distinguish between
interictal, preictal and ictal stages of an EEG signal. It therefore is important to
choose features which will have a discriminative property regarding these three stages.
It is known that when a seizure starts to develop, a lot of regions in the brain will
organize in a synchronous manner. This means that there is a lot of synchrony
during preictal and ictal stages. This also implies that features which characterize
synchrony may be the key to a good classification. This is the reason why the
model of Wendling et al. was extended to generate a 6-channel EEG signal as output.
This allows one to extract bivariate features that characterize synchrony between
different channels. The detection of synchrony between two channels has the physical
meaning of detecting synchrony between different regions in the hippocampus. This
is an indication that a seizure is developing and that the signal has entered its
preictal stage. Linear as well as nonlinear measures for synchrony will be used.
The different measures that are used will be presented now. The maximum linear
cross-correlation and the linear coherence are both linear bivariate measures. The
nonlinear interdependence and the phase locking value (PLV) are both nonlinear
bivariate measures [63].

Maximum linear cross-correlation

The similarity of two signals {z;} and {y;} can be evaluated by computing the
maximum of the normalized cross-correlation function. It is defined by:
Cay(7)

VCon0)- Oy 0) } ®1)

and can be considered as a measure for lag synchronization. In Formula 4.1, the
linear cross-correlation is given by:

Crar = max {
T

1 N-—1
_ N—r Zizl LitrYi T2>0

with N the length of the signals. Cj,q, is bound to the interval [0,1]. Values close
to zero indicate that the signals are not similar. Values close to one on the other
hand, indicate that both signals have approximately the same progress in time. The
maximum is taken over a small range of 7 to allow some time lag between the signals.

Linear coherence

The amount of linear synchronization between two signals {z;} and {y;} can be
assessed by the linear coherence function. This function is defined as:
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Gay(f)
L(f) = d 4.3
S Ry o
where G, (f) is the cross-spectral density. This is given by:
Gay(f) = X(f)- Y () (4.4)

where X (f) and Y (f) denote the Fourier transform of {z;} and {y;} respectively
and the asterisk denotes a complex conjugation. The linear coherence function is
also bound to the interval [0, 1] and can be applied for specific frequencies. Again,
values close to zero correspond to very little synchronization and values close to one
denote a lot of synchronization between the signals.

Nonlinear interdependence

The amount of generalized synchronization between two signals {z;} and {y;} for
i=1,..., N can be evaluated by the nonlinear interdependence function. To calculate
this measure, one has to reconstruct state space trajectories {&;} and {y,} for both
time series. This can be done by the method of delays. A point in state space is
computed as: & = (i, Ti—r,- - -, Ti_(m-1).r) and similar for ;. The parameter m
is the embedding dimension and the parameter 7 represents the time delay. The
nonlinear interdependence actually measures how neighborhoods in one attractor
project into the other attractor. The time indices of the k nearest neighbors of &;
and gj; are denoted respectively by r;; and s;; for j = 1,..., k. The squared mean
Euclidian distance for every @&; to its k nearest neighbors is defined as:

k
Z |&; — a:r”
=1

The y-conditioned squared mean Euchdlan distance for every &; is calculated by
substituting r;; with s;; in Formula 4.5. This implies that the nearest neighbors of
&; are replaced by the corresponding time partners of the nearest neighbors of y;:

(4.5)

i $|y ki Z sz mngHQ (46)

Both ng) (y) and Rz(k) (y|x) are defined in an analogous way.
All the &; vectors together for a point cloud in state space with an average squared
radius R(x) = (1/N) Zi\il RN71(z). When the signals are strongly correlated with

each other, one has that Rl(k)(ac) R~ Rl(k)(x]y) < R(x). When the signals are

independent one has that Rz(k) (z]y) = R(x) > Rz(k) (x). This suggest that a measure
for the interdependence can be defined as:

(),
Daly) = 5 32 ot 12 (@)
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Starting from the above reasoning, it is easily verified that this measure will be close to

zero for independent signals and close to one for signals that are highly synchronized.

This means that S*)(z|y) is a normalized measure for the interdependence.
Another measure for the nonlinear interdependence is defined as:

R
M (xly) = Z o8 m

This measure produces small values for 1ndependent signals and high values for
synchronized time series. It is not normalized as the previous one however.
A third measure for nonlinear interdependence is given by:

(N— 1)
(=) (4.8)

N®(aly) = Z ")~ R () (49)
N R(N 1)( ) '

This measure is normalized in a certain way: it has an upper bound of 1. It is not
confined to the interval [0, 1] however, since it can take small negative values. Low
values (including the negative ones) indicate independence and values close to one
imply synchrony. The measures S® (y|z), H®) (y|z) and N*)(y|z) are defined in an
analogous way.

The measures N*)(z|y) and N*)(y|z) will be used because they are normalized in
some way, unlike the H measures, and they are more robust than the S measures [94].

Phase Locking Value (PLV)

The PLV is a measure that is often used to quantify the amount of phase synchro-
nization between two signals. The PLV separates the effects of amplitude and phase
when determining the correlation between two signals. This is useful when the two
signals have synchronized phases while their amplitudes are zero correlated. The
phase locking property has to be satisfied to be able to say that the phases of two
signals are synchronized:

|n - ¢z(t) —m - ¢y(t)| = const. (4.10)
In this equation, ¢, (t) and ¢, (t) denote the instantaneous phases of two signals z(t)
and y(t) respectively. Both n and m are integers in this equation and they define
the frequency equality (n¢!, = m%) The ratio of these two is fixed ton: m =1: 1.
This is because both phases are computed for signals that emerge out of the same
physiological system (i. e. the brain).
The PLV for two signals x(t) and y(¢) with instantaneous phases ¢, (t) and ¢, (t)
respectively, is defined as:

N-1
PLV — % Y efle-00=0(G-00) (4.11)
j=0

where N is the number of samples in both signals and At is the sampling period.
The PLV is bounded in the interval [0, 1], which makes it a normalized measure. Low
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values indicate that the signals are unsynchronized and high values point to a lot of
synchronization between the signals. The PLV can be applied directly to measure
synchrony over the entire frequency band, or after band-pass filtering the signal to
measure synchrony in a certain frequency band.

The instantaneous phases of both signals are needed to compute the PLV. There
are two different approaches that are often used for measuring the instantaneous
phase of a signal. The first one uses the Hilbert transform and the second one makes
use of the Wavelet transform. Both approaches are equivalent for the analysis of
EEG signals [95]. In this case, the Hilbert transform is used. The instantaneous
phase is defined as:

¢(t) = arctan jgg (4.12)

for any signal s(¢). In this equation, 5(t) represents the Hilbert transform of s(t) and
is defined by:

oo (7
5(t) = Lpw. / (™) 4r (4.13)

where p.v. stands for the Cauchy principal value [68]. This is a method to assign a
value to an integral which would otherwise take an undefined value.

Moving window

As already mentioned, the EEG signals are generated off-line. The different features
mentioned above are extracted in an on-line fashion by making use of a moving
window. A window of a certain length is placed on top of the EEG signal and the
features are then extracted for this segment of the signal. Hereafter, the window is
shifted to the next part of the EEG signal in a non-overlapping way and the features
are extracted for the next segment. This is repeated until the entire EEG signal is
treated. The length of the window is an important parameter that has to be chosen
carefully. The window can not be too short, because the signal needs to be long
enough to yield reliable values for the features. Another reason to avoid too short
windows is more computational. Remember that the ultimate goal in the research
community is to build an implantable device. One would like this device to be small
and this usually means limited computing power. If the lengths of the windows
are too short, the features will need to be calculated very often. This could pose a
problem when not enough computing power is available on the small device. The
length of the window can also not be too long. This would imply that the features
are only calculated once on a large interval. The values of the extracted features
will not have a very fluent progress in time in this case. The extracted value at the
end of this window might also not be very representative for the type of activity at
the end of the window in this case. It could be mainly determined by the type of
activity that was happening a while ago at the beginning of the window. Choosing
the right size of window is therefore very important.
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4.2.3 Classification

Once the features are extracted from the EEG, they serve as input to the classification
method. The classification is done by using two different approaches. The first one is
based on some simple thresholding. This allows the distinction between two different
classes. The second approach makes use of support vector machines (SVMs). Such
SVMs can be used to make the distinction between more than two classes (multiclass
classification).

Thresholding

By using a threshold, one can solve binary classification problems; the feature is
either below or above the threshold. There seems to be a problem here at first sight.
It was stated that the EEG signal consists of interictal, preictal and ictal periods.
This implies that one has to be able to make the distinction between three different
classes. This is not possible by performing a binary classification. Two of the three
classes are therefore merged into one ‘superclass’. Classifying between the other class
and the new superclass is hereby transformed into a binary classification problem,
which can be solved by thresholding. The question now is which two classes to merge.
Since the goal is to predict a seizure, the most important class to find is the preictal
one. Therefore the interictal and ictal classes are merged together. This allows one
to make the binary classification between ‘preictal’ versus ‘not preictal’.

All the defined measures for synchrony produce a high value for synchronized
signals and a low value for unsynchronized signals. When the measure is above a
certain threshold, one can conclude that there is synchrony present. The problem is
that preictal as well as ictal signals both exhibit synchrony. One could think of an
easy way to solve this by combining the preictal and ictal class in one superclass and
classifying this superclass against the interictal class. This would however cause that
one can no longer distinguish between the cases where a seizure is about to happen
and when a seizure is already taking place. A better solution is to keep the preictal
class alone and the two other classes in a superclass. The synchronous activity during
the preictal stage in the model is of a lower frequency than the synchronous activity
produced in the ictal stage. This is exploited by sending the output of the model
through a low-pass (LP) filter. Most of the synchronous activity that originated
from the ictal stage is therefore filtered out of the EEG signal. When this LP filtered
signal is then used to compute the features, one should see a clear distinction between
the preictal and ictal stages. This will help to distinguish between ‘preictal’ versus
‘not preictal’.

Support vector machine

SVMs originate from the field of machine learning. An SVM is a supervised learning
model that can analyze data and learn certain patterns that are present in this data.
Features together with their class labels are given to the SVM during the training
phase. Afterwards, a trained SVM can be used to detect these patterns in new,
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unseen data during the testing phase. The SVM will then predict the class labels for
new features.

Originally, SVMs were designed to accomplish binary linear classification. Such
an SVM constructs a hyperplane in the input space that can be used for classification
in the same way a threshold can be used. The hyperplane divides the input space in
two regions, so this is a higher dimensional equivalent of a threshold. This hyperplane
can be found by solving a quadratic programming problem. The objective function
and constraint of this optimization problem are defined as follows:

I R .
min o [|w)| +c;@ (414

st. yi(w-x;—b)>1-¢, 1<i<n

where x; and y; respectively denote the points to be classified and the corresponding
class labels, w is the normal vector to the hyperplane, b is the bias of the hyperplane
and &; denotes non-negative slack variables. The first term in the objective function
in Equation 4.14 is the factor that tries to maximize the margin of the classifier. The
margin is a term often used in SVM terminology and refers to the generalization
possibilities of the classifier. One does not want a classifier that only fits the training
data, but that generalizes well to other data as well. The second factor in this
objective function is a regularization term. This term is included to allow some
misclassification of data points, because the data will almost never be perfectly
classifiable. This is called the soft margin method [96]. A regularization constant C'
will then make the trade-off between the size of the margin and the amount of
misclassification. If not much misclassification is allowed (large C), the margin can
probably not become very large. If on the other hand a lot of misclassification is
allowed (small C'), most of the effort can be directed to maximizing the margin. This
regularization constant is therefore an important parameter to tune.

SVMs are also able to make nonlinear classifications by making use of the kernel
trick. The kernel trick implicitly maps the inputs into a high-dimensional feature
space. A linear classification in the feature space represents a nonlinear classification
in the original input space. Linear as well as Gaussian radial basis function (RBF)
kernels will be used. RBF kernels introduce a new parameter to tune. An RBF
kernel has the following form:

k(xi, ;) = exp(— ||z — x;]%) (4.15)

where v > 0 is an important parameter. This parameter will determine the width of
the Gaussian.

From this it follows that for an RBF kernel, there are two important parameters
to tune: C and 7, whereas a linear kernel only needs C. It is very important to
tune these parameters carefully for obtaining a good classifier. Just choosing these
values at random will very likely give poor classification results. Because of the
importance of these parameters, they will be determined by N-fold cross-validation.
The training data will first be divided in N subsets. The classifier is then trained
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(for certain parameter settings) on N-1 of these subsets and the remaining subset is
used for validation. This is done for every of the N subsets as validation set and the
performance is averaged over these N runs. This averaging over N runs is done to
make sure that the results are not dependent on the chosen subset for validation.
This will be done for different parameter settings and the parameters that yield the
best results are chosen for the eventual classifier. A linear classifier only needs a
value for C' and the best one is found by performing a line search over a certain
range. An RBF SVM uses both C and v as parameters and the values for these are
found by performing a grid search.

As already stated, SVMs were originally developed for binary classification
problems. One could use the same technique as with the thresholding method to
obtain a classification between ‘preictal’ versus ‘not preictal’. In the case of SVMs
one can do better however, because it is possible to do multiclass classification. The
most common approach is to transform the original classification problem into the
combination of multiple binary classification problems. T'wo very often used methods
are one-versus-one (OVO) and one-versus-all (OVA) classification. In the OVO case,
one designs binary classifiers that distinguish between every pair of classes. In the
OVA case, one designs binary classifiers that make the distinction between one class
and all the other classes. For classification in the OVO case, one uses a voting
strategy. Every trained SVM chooses a class and the class with the most votes is
chosen as the class to which the input belongs. Classification in the OVA case is done
by choosing the SVM with the highest output function. The input is then assigned
to the class that is represented by this SVM. Both OVO and OVA will be explored.

The implementations for SVM classification are done by making use of LIB-
SVM [97]. LIBSVM is a library for support vector machines and can be used for
classification purposes. The extracted features from the EEG are used on their own
as well as combined together in large feature vectors as input to the SVMs. The
effect of using only a single channel combination or all the channel combinations
from the 6-channel EEG is also investigated.

4.3 Results

The results for data generation were actually already shown in Section 2.2.3. Here
the focus will be on the results of feature extraction and classification.

Feature extraction

A 2-channel EEG recording is generated to illustrate the results of feature extraction.
The signals from channel one and two are respectively shown in Figure 4.1a and
Figure 4.1b. In both channels, every type of activity that the model for MTLE
can produce is present. Type 1 up to type 6 are all simulated for 200 seconds (in
increasing order of type). These signals are actually a long variant of the ones shown
in Figure 2.7. So for having a more clear view on the signals, one can again take a
look at that figure. The simulation time was increased to be able to clearly show
the evolution of the features over time. The class labels for every point of the EEG
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Figure 4.1: The 2-channel EEG recording that was used to calculate the synchrony
measures and the corresponding class labels of every type of activity. a) The first
EEG channel. Every type of activity (type 1 up to type 6) is simulated for 200
seconds. b) The second EEG channel. Also here every type of activity is simulated
for 200 seconds. c¢) The class labels that belong to the different types of EEG activity.
The labels 1, -1 and 0 respectively correspond to interictal, preictal and ictal activity.

are shown in Figure 4.1c. Label 1 is chosen for interictal, label -1 for preictal and
label 0 for ictal activity. After extracting the measures one hopes that they have a
distinctive property to separate the preictal, interictal and ictal part of the signal.

The time evolution of the four previously described measures for synchrony are
shown in Figure 4.2. All the measures are computed for non-overlapping time windows
of five seconds. For the nonlinear interdependence, the following parameters are used:
m =10, 7 = 2 and k = 10. When computing the nonlinear interdependence, one
searches for vector pairs that are close together in state space. The vector pairs that
are simply close together because they are close together in time have to be excluded
in this search. In order to do this, a Theiler correction term of 50 is used. The time
evolution of the maximal cross-correlation, coherence, nonlinear interdependence
and PLV are respectively shown in Figures 4.2a-d. All these measures clearly show
that there is a lot of synchrony during the preictal part (from 600 to 800 seconds)
and during one type of ictal activity (from 1000 to 1200 seconds). One can also see
that all the measures have their values in the interval [0, 1], except the nonlinear
interdependence, which also contains small negative values.

The aforementioned problem of synchrony during both the preictal and interictal
stage is clearly illustrated in Figure 4.2. This problem can be overcome by first
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Figure 4.2: The evolution over time of the four synchrony measures for the 2-channel
EEG of Figure 4.1. High values indicate synchrony and can be found during preictal
activity (600 — 800 s) and one type of ictal activity (1000 — 1200 s). a) The time
evolution of the maximal cross-correlation. b) The time evolution of the coherence.
c¢) The time evolution of the nonlinear interdependence (blue for N(X|Y), red for
N(Y|X)). d) The time evolution of the PLV.

LP filtering the EEG signals before computing the synchrony measures. The cutoff
frequency of the LP filter is set to 9 Hz. Using this approach, the preictal synchronous
activity is passed while the ictal one is filtered out. The time evolution of the measures
after LP filtering the EEG channels is shown in Figure 4.3. The problem is solved
for all the measures. These measures can now be directly used to search the preictal
stages by choosing a well tuned threshold. A very big assumption is made here
however, namely the assumption that all ictal synchronous activity will be filtered
out by this LP filter. This is the case for the signals that are generated by the
used model, but this might not always be the case for real life signals. This is a
first big shortcoming for doing the classification with a threshold. The second big
shortcoming will be described shortly.

Since the entire prediction system has to run in real time, a fast extraction of
features is very important. The time needed to calculate the specified measures for
an EEG recording of 5 seconds is shown in Table 4.1. All these times are in the order
of tens of milliseconds except for the nonlinear interdependence. Computing the
nonlinear interdependence for a signal of 5 seconds takes more than one second. This
seems far from optimal for usage in an application that has to run in real time. The
classification possibilities for this measure will be examined when classifying with a
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Figure 4.3: The evolution over time of the synchrony measures for the 2-channel EEG
of Figure 4.1 after LP filtering (cut-off frequency 9 Hz). High values are now only
found during the preictal segment of the signal (600 — 800 s). a) The time evolution
of the maximal cross-correlation after LP filtering. b) The time evolution of the
coherence after LP filtering. ¢) The time evolution of the nonlinear interdependence
after LP filtering (blue for N(X]Y), red for N(Y|X)). d) The time evolution of the
PLV after LP filtering.

Time (msec)
Maximal cross-correlation 42.1
Coherence 13.2
Nonlinear interdependence 1143.7
PLV 28.7

Table 4.1: The time needed (in msec) to calculate the different measures for a window
of 5 seconds. Timed on a laptop with an Intel Core i5 processor, a clock rate of
2.40 GHz and 4 GB of RAM.

threshold, but because of the expensive computation it will no longer be considered
when doing the classification with SVMs.

Classification with a threshold

Simply putting a threshold on one of the measures in Figure 4.3 is probably not
a good idea. It can be seen that the measures can be quite noisy, which results
in the presence of outliers. These points can easily fall on the wrong side of the
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Figure 4.4: The evolution over time of the synchrony measures for the 2-channel EEG
of Figure 4.1 after LP filtering and aggregating the measures over multiple windows.
These measures now show a much more smooth progress, without outliers. a) The
time evolution of the maximal cross-correlation after LP filtering and aggregation. b)
The time evolution of the coherence after LP filtering and aggregation. c¢) The time
evolution of the nonlinear interdependence after LP filtering and aggregation (blue
for N(X[Y), red for N(Y|X)). d) The time evolution of the PLV after LP filtering
and aggregation.

threshold. This is something that needs to be avoided at all times, because it will
result in wrongly classified points. A solution for this problem is to smooth the time
evolution of the measures. Measures that are calculated from different time windows
are aggregated by making use of an overlapping moving window. The aggregated
value is the average of the measures that fall into this new window. An example
where the aggregation happened over 12 measures is show in Figure 4.4. A point in
this figure is calculated from the passed minute of EEG activity, since 12 measures
are used which each were calculated from time windows of 5 seconds. The time
evolution now shows a much smoother behavior and there are no outliers anymore.
The price that has to be paid is that the preictal stage will be detected a little bit
later. This does not have to be a problem in general, because preictal stages typically
last from a couple of minutes up to an hour.

The results for doing classification with a threshold are shown in Figure 4.5. The
PLV is used as an example, but the other measures can also be used. The obtained
results will not vary much between the different measures. The time evolution of the
PLV together with the chosen threshold can be seen in Figure 4.5a. The threshold
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Figure 4.5: The classification results by using a threshold and the PLV as an example
(other measures can also be used). a) The time evolution of the PLV after LP filtering
and aggregation (blue) together with the chosen threshold of 0.42 (black). This
threshold was chosen after some tuning. Values of the PLV above the threshold are
classified as preictal, while values of the PLV below the threshold are classified as
‘not preictal’. b) The predicted labels (red) together with the true labels (blue). The
labels were chosen to be 1 and -1 for respectively ‘not preictal’ and ‘preictal’.

is chosen to be equal to 0.42 after some experimentation with this parameter. The
predicted labels together with the true labels are shown in Figure 4.5b. A label of 1
is chosen for the ‘not preictal’ superclass and a label of -1 represents the ‘preictal’
class. One can clearly see that the predicted label is -1 whenever the PLV is above
the threshold and 1 when the PLV is below this threshold. The obtained prediction
accuracy is 95.63%. The only errors that are made are situated in the transition
areas from one class to the other. This is because the measure at each moment is
calculated from the passed EEG activity and some time is needed for the new type
of activity to become dominant in this window. The results for longer signals are
also calculated and an accuracy of at least 95% could be obtained consistently. A
comparison for the different measures can be found in Table 4.2. The optimal range
of the threshold as well as the obtained accuracy on a long test simulation are shown
in this table. These optimal ranges are found by changing the thresholds manually
and stopping when the accuracy decreased. These results are very positive, but
unfortunately, this method has another big shortcoming.

The second big shortcoming of using this thresholding method is that one can
only make the distinction between ‘preictal’ versus ‘not preictal’. When a prediction
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Optimal threshold range | Accuracy
Maximal cross-correlation [0.44,0.47] 96.19%
Coherence [0.14,0.16] 96.33%
Nonlinear interdependence [0.36,0.42] 95.49%
PLV [0.40,0.43] 95.91%

Table 4.2: The results for classification with thresholding on the different measures.
The optimal threshold range and the obtained accuracy are shown for every measure.

system is implemented in an implantable device, it can also be useful to be able to
make the distinction between interictal and ictal. During interictal periods such a
device has to do nothing. But if for some reason, the prediction system failed to
prevent the seizure and the patient has entered the ictal stage, then some type of
control would come in very handy. By using such a thresholding technique, this will
not be possible. At least not by using only one threshold.

Because of the two big shortcomings of using a thresholding technique, the switch
is now made to a more sophisticated way of doing classification, namely with SVMs.

Classification with SVMs

Both problems that limit the applicability of thresholding can be solved by using
SVMs with the right inputs. It is very important to choose good inputs, since the
classifier will be trained on this data. A well known saying states this perfectly:
‘garbage in is garbage out’. By combining multiple binary SVMs, one can obtain
multiclass classification models. This will allow the classifier to make a distinction
between interictal, preictal and ictal instead of just ‘preictal’ versus ‘not preictal’.
The problem associated with distinguishing between preictal and ictal synchronous
activity can be solved by replacing the LP filter with a filter bank. Often used
frequency bands for EEG analysis are:

e Delta: 0.1-4 Hz,

e Theta: 4-7 Hz,

e Alpha: 7-13 Hz,

e Low Beta: 13-15 Hz,

e High Beta: 14-30 Hz,

e Low Gamma: 30-45 Hz and
e High Gamma: 45-100 Hz.

These will be used as passband for the different band-pass filters in the filter bank.
The PLV will then be computed for the unfiltered EEG signal and for the seven
filtered signals. This results in ten different measures: maximal cross-correlation,
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coherence and eight variants of the PLV. Filtered versions are only computed for
the PLV, because the time evolution of the two other measures is very similar to
that of the PLV. It therefore is assumed that only using the filtered versions of one
measure will be sufficient. These measures are computed for all the different channel
combinations. There are fifteen possible combinations, since the model generates six
channels. All these different measures are combined into a feature vector for input to
the SVM. The dimension of such a feature vector is 150 (10 measures for 15 channel
combinations).

It is impossible to show the effect of the filter bank on the distinctiveness of the
features in 150 dimensions. Therefore, principal component analysis (PCA) was
performed on the features to extract the three principal components. This was done
for the features without the filtered versions of the PLV and for the features including
the seven filtered versions of the PLV. The results without and with the filtered
versions can be seen in Figure 4.6 and 4.7 respectively. The green circles represent
features extracted from interictal stages, blue ones from preictal stages and red ones
from ictal stages. The first thing that one notices, is the fact that there are two
clusters for the ictal activity in both cases. That is because during ictal activity
two very different types of EEG signals are produced. On the one hand there is
the low voltage rapid activity and on the other hand there is the quasi sinusoidal
synchronous activity. The first of these two is represented by the red cluster that lies
close to the green one, while the second type is represented by the red cluster close to
the blue one. In Figure 4.6 it is clearly visible that the preictal synchronous activity
and the ictal synchronous activity can not be separated from each other. Figure
4.7 shows that using band-pass filtered version of the PLV can solve this problem.
The blue and red cluster that were intermingled first are now separated by a gap.
This way of band-pass filtering the signals is a much more general approach than
LP filtering and will normally generalize better towards real life signals. Another
effect of including the filtered versions is that the three types of interictal activity
now form three smaller clusters instead of one big cluster. That is because slightly
different frequencies are in play during the three types of interictal activity. This
does not form a problem however. As one can see in Figure 4.7, the clusters are still
situated close to each other.

From the previous figures it is clear which inputs to the SVMs are suited for
the classification task. The training and testing of the SVMs can start now. A
dataset for training is generated that contains three periods of successive interictal,
preictal and ictal activity. Every of the six possible types is simulated 400 seconds
in each period. This implies that there are respectively 1200, 400 and 800 seconds
of interictal, preictal and ictal activity in one period. Since there are three periods,
this boils down to 3600, 1200 and 2400 seconds for the interictal, preictal and ictal
parts. In total this dataset has a duration of two hours, with one hour of interictal
data, twenty minutes of preictal data and forty minutes of ictal data. Half of the
data points in the training set belong to the interictal class. This might not seem a
good idea at first, because it may cause a slight bias of the trained SVM towards the
interictal class. The trained SVM however, will be applied to real life signals and
will encounter mostly interictal signals. This slight bias towards the interictal class
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Figure 4.6: PCA on the input features when the filtered versions of the PLV are not
included. Green, blue and red circles respectively represent features from interictal,
preictal and ictal stages from the EEG. The red cluster close to the green one
represents the ictal low voltage rapid activity, while the red cluster close to the blue
one represent the ictal synchronous activity. a) The distribution of the features
according to principal component one and two. b) The distribution of the features
according to principal component one and three. ¢) The distribution of the features
according to principal component two and three. d) The distribution of the features
according to principal component one, two and three. From these figures it is clear
that the preictal and ictal synchronous activity can not be separated from each other.

can therefore be interpreted as a larger prior probability of this class with respect to
the other ones.

SVMs with both linear and RBF kernels will be used. The training phase will
start with the estimation of the parameters of the SVM via 5-fold cross validation.
For the linear kernel, only the regularization constant C' needs to be determined.
In addition to this parameter, another one has to be estimated for the RBF kernel,
namely ~. In the linear case, the best value for C' is found by performing a line search
over the interval [275, 274 ... 2!5]. For the parameters of the RBF kernel, a grid
search is performed over the grid C = [275,274 ... 215 x vy =[2715 214 23]
Once these parameters are estimated, the entire training dataset is used to train the
SVM.
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Figure 4.7: PCA on the input features when the filtered versions of the PLV are
included. Green, blue and red circles respectively represent features from interictal,
preictal and ictal stages from the EEG. The red cluster close to the green one
represents the ictal low voltage rapid activity, while the red cluster close to the blue
one represent the ictal synchronous activity. a) The distribution of the features
according to principal component one and two. b) The distribution of the features
according to principal component one and three. ¢) The distribution of the features
according to principal component two and three. d) The distribution of the features
according to principal component one, two and three. From these figures it is clear
that including the band-pass filtered versions of the PLV leads to the possibility of
separating the preictal and ictal synchronous clusters. These two clusters are no
longer mixed with each other, but separated by a gap.
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Once the SVM is trained on the training data, it will be tested on some unseen
test data. Ten different datasets are generated to evaluate the performance of the
SVM. By using ten different sets, it is possible to average the performance over these
sets. In this way the obtained result is not specific for one dataset. Every dataset
for testing is generated in a similar, but slightly different way as the training dataset.
Every dataset again consists of three periods. Within these periods, every of the six
possible types is simulated once for 100 seconds. This boils down to respectively 300,
100 and 200 seconds of interictal, preictal and ictal activity in each period. The order
of these different types within each period is now however chosen randomly. In the
training dataset every period consisted of first the three interictal types, followed by
the preictal type and finally the two ictal types. In the test dataset this order within
each period is not preserved, but permuted randomly. Every single test dataset has
a total duration of thirty minutes, from which fifteen minutes are ictal, five minutes
are preictal and ten minutes are ictal activity. This random permutation within the
test signals is done to make sure that the order of the activities does not matter for
classification.

The feature vector that serves as input to the SVM has a dimension of 150 (10
measures for 15 channel combinations). This is a rather high dimension and therefore
subsets of this feature vector are taken and compared to the performance of using the
entire feature vector. The accuracy results for classification with linear/RBF kernels
and OVO/OVA multiclass strategies are shown in Figure 4.8, for different subsets of
features. The numerical result can be found in Table 4.3. The results for linear OVO,
RBF OVO, linear OVA and RBF OVA SVMs are shown respectively in dark blue,
light blue, yellow and bordeaux in the bar graph. The results for a certain subset of
features are grouped together for these four possibilities. The used subset of features
is denoted on the x-axis. The labels ‘Corr’, ‘Coh’ and ‘PLV’ respectively mean that
only the maximal cross-correlation, the coherence or the PLV is used as measure.
The number that completes the label indicates how many channel combinations are
used in the feature vector. The number ‘1’ implies that only one channel combination
is used, while ‘15’ means that all the channel combinations are used. This means
that the subsets ‘Corr 1’, ‘Coh 1’ and ‘PLV 1’ are no longer a vector, but just a
scalar. The label ‘Filt’ means that the seven filtered versions of the PLV are used
and the label ‘All’ implies that all the ten measures are used. So the subset ‘All
15’ is nothing else than the entire 150-dimensional feature vector. From Figure 4.8,
one can see that the accuracy results for linear/RBF OVO/OVA SVMs for a certain
subset of features are very comparable. Only the linear OVO SVM sometimes shows
considerable less accurate classification results when compared to the three other
types. Which type of SVM reaches the highest accuracy depends on the particular
subset of features. Further it can be noticed that the maximal cross-correlation and
coherence give similar accuracy results. The PLV can obtain an accuracy that is a
little bit higher compared to these two. It can also be seen that the accuracy starts
to reach its highest values only when the filtered versions of the PLV are included
in the features. It is, as expected, very important to include these measures in the
feature vector. The differences in accuracy between the labels ‘Filt’ and ‘All’ are
very small. This implies that including the maximal cross-correlation, the coherence
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and (the unfiltered version of) the PLV does not yield a lot of profit when the filtered
versions of the PLV are already included in the feature vector. Excluding these three
measures for fifteen channels immediately reduces the dimension of the feature vector
from 150 to 105. In this way, the dimensionality of the feature vector is reduced by
30%, leading to an accuracy reduction of only 1% approximately.

The effect of the number of channels combinations used in the feature vector will
be investigated now. The seven filtered versions of the PLV will be used as measures.
The maximal cross-correlation, coherence and (unfiltered) PLV are excluded from the
feature vector for a moment. So far, only the extreme possibilities are tested. Either
one channel combination is used or all of the fifteen combinations are used. The best
results in this case are obtained by incorporating all the channel combinations in
the feature vector. This can be seen in Figure 4.8 and Table 4.3 when comparing
label ‘X 1’ with ‘X 15’. It might be, just like in real life, not be optimal to use all
the channel combinations. Whether synchrony is present between different channels
of a multi-channel EEG recording depends on the locations of the electrodes in the
brain. When two electrodes are both situated in the epileptogenic region, there is
a very large chance that there will be some synchrony between their EEG signals.
This is not the case when one electrode is situated in the epileptogenic region and
the other one in a region that is not involved in the seizure. The EEG signals from
these two regions will not show any synchrony, unless occasionally some accidental
synchronous activity. Including these uninformative channel combinations in the
feature vector will not contribute to a better accuracy result. On the contrary,
including uninformative measures in the feature vector will have an unfavorable
effect on the accuracy. For this reason, the most informative channel combinations
are searched. Several of these are combined in a feature vector and the SVM is
trained and tested. The accuracy results for four channel combinations are shown
in the column ‘Filt 4’ of Table 4.4. The combinations that are used are: Chl+Ch2,
Ch2+Ch3, Ch34+Ch6 and Ch5+Ch6. Excluding one of these combinations caused the
accuracy to decrease, while including another combination did not cause a notable
increase of the accuracy. When comparing the column ‘Filt 4’ of Table 4.4 with the
column ‘Filt 15’ from Table 4.3, it can be seen that the results obtained with ‘Filt
4’ are better for three out of the four types of SVMs. The dimension of the feature
vector is now 28. This is pretty low when compared to the original dimension of
150. This 28-dimensional feature vector obtains results that are very close to those
obtained with the original 150-dimensional feature vector.

Finally, the effect of adding the maximal cross-correlation, coherence and PLV
to the feature vector ‘Filt 4’ for the matching channels is examined. This feature
vector will be defined as ‘All 4’ and the accuracy results are shown in column ‘All 4’
in Table 4.4. For all the types of SVMs, the accuracy of the subset ‘All 4’ is better
than the subset ‘Filt 4’. When ‘All 4’ is compared with ‘All 15’ from Table 4.3, one
can see that both subsets are most accurate for two out of the four types of SVMs.
The differences are very small however. This implies that the 40-dimensional feature
vector ‘All 4’ is equally well suited to do the classification as the 150-dimensional
feature vector ‘All 15°. Therefore the feature vector ‘All 4’ is chosen to do the
classification.
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Figure 4.8: The prediction accuracy (in %) for the different types of SVMs and
different subsets of features. Linear OVO, RBF OVO, linear OVA and RBF OVA
SVMs are respectively represented by dark blue, light blue, yellow and bordeaux
bars. The different feature subsets are denoted on the x-axis. ‘Corr’, ‘Coh’ and ‘PLV’
respectively imply that only the maximal cross-correlation, coherence or PLV is used
as measure. The label ‘Filt’ means that the seven filtered versions of the PLV are
used and ‘All’ implies that all the measures are used. The number that completes
the label indicates how much channel combinations are used in the feature vector.
The accuracy results for linear/RBF OVO/OVA SVMs are very comparable for a
specific feature subset. The linear OVO SVM sometimes obtains a substantially
smaller accuracy compared to the three others. This figure clearly shows that it is
very important to include the filtered versions of the PLV in the feature vector to
obtain high accuracy results. The numerical values can be found in Table 4.3.
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Corr1l | Corr15 | Coh1l | Coh 15 | PLV 1
Lin OVO 62.47% | 65.69% | 63.22% | 71.11% | 64.11%
RBF OVO | 65.42% | 74.39% | 62.83% | 73.94% | 66.03%
Lin OVA 63.56% | 73.83% | 62.27% | 71.83% | 65.92%
RBF OVA | 64.36% | 73.56% | 62.39% | 74.22% | 65.97%
PLV 15| Filt1 | Filt 15 | All1l All 15
Lin OVO 67.33% | 83.33% | 95.19% | 87.08% | 96.33%
RBF OVO | 79.86% | 88.33% | 96.86% | 88.22% | 97.58%
Lin OVA 80.83% | 88.69% | 96.83% | 89.19% | 97.08%
RBF OVA | 79.72% | 88.67% | 96.89% | 89.28% 98%

Table 4.3: The numerical result of Figure 4.8. The prediction accuracy (in %) for
the different types of SVMs and different subsets of features. The subsets of features
are denoted by the same labels as in Figure 4.8.

Filt 4 All 4

Lin OVO | 95.47% | 96.06%
RBF OVO | 97.72% | 98.06%
Lin OVA 95.97% | 96.86%
RBF OVA | 97.72% | 98.31%

Table 4.4: The prediction accuracy (in %) for the different types of SVMs and specific
subsets of features. The subset ‘Filt 4’ contains the seven filtered versions of the
PLV for the following channel combinations: Chl14+Ch2, Ch2+Ch3, Ch34+Ch6 and
Ch5+Ch6. The subset ‘All 4’ contains the maximal cross-correlation, coherence,
(unfiltered) PLV and the seven filtered versions of the PLV for the following channel
combinations: Chl4+Ch2, Ch24+Ch3, Ch34+Ch6 and Ch5+Ch6.

There still is a choice to be made about the type of SVM that will be used.
From Table 4.4, it can be seen that the RBF kernels achieve a higher accuracy of
approximately 2%. The accuracy is however not the only criterion that is important
to make this choice. The training and prediction timings for the different SVMs on
the feature subset ‘All 4’ are shown in Table 4.5. These timings are recorded from a
laptop with an Intel Core i5 processor, a clock rate of 2.40 GHz and 4 GB of RAM.
Training happens on a signal with a total duration of two hours and prediction on a
signal of half an hour. Note that the units for the training timing is seconds, while
the units for prediction timing is milliseconds. These result agree very well with
what was to be expected. When the training timings for a linear and an RBF kernel
are compared (for the same multiclass strategy), one can see that it takes a lot longer
to train an SVM with an RBF kernel. That is because one has to perform a grid
search for the parameters during the 5-fold cross validation for an RBF kernel. For
linear kernels, only a line search is needed. Forming the eventual decision boundaries
is also more complex for the RBF kernel than for the linear one. The prediction
timings are, just like the training timings, also higher for RBF kernels than for
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Training time (in s) | Prediction time (in ms)
Lin OVO 2.6 4.2
RBF OVO 154.6 11.6
Lin OVA 15.2 6.9
RBF OVA 334.8 21.9

Table 4.5: The training (in s) and prediction timings (in ms) for different types of
SVMs for the feature subset ‘All 4’. Note that the units for both are not the same (s
versus ms). The SVMs with linear kernels are trained and predicted a lot faster than
those with RBF kernels. The OVO strategy is clearly faster than the OVA strategy
for both training and prediction.

linear ones. The evaluation is more complex in case of the RBF kernels. The OVO
multiclass strategy is faster than the OVA strategy, both for training and prediction.
This seems intuitive, because in both cases three binary SVMs are trained. In the
OVO case, these SVMs are trained on smaller datasets because only two classes are
considered per SVM. In the OVA case, all data points from the three classes are used
for every SVM. Training an SVM is a supervised learning method and will therefore
happen off-line. The fact that training an RBF SVM is much slower than a linear
SVM is therefore not such a big disadvantage, because it does not have to happen
on-line. The extra accuracy obtained with the RBF kernel is worth the extra training
time. Prediction can be seen to be very fast for every type of SVM. To obtain the
optimal mix between accuracy and speed, the RBF OVO SVM is chosen to do the
classification. The classifier will eventually be implemented on an implantable device.
Computing exponentials might turn out to be a limiting factor if this device has
very low computational power. In this case, a linear SVM would be a more suitable
choice.

The results of using the RBF OVO SVM with ‘All 4’ as feature subset are shown
in Figure 4.9. Figures 4.9a-j show the result on one of the ten different test datasets.
The true class labels are denoted by blue circles, while the predicted class labels
are represented by red stars. The obtained accuracy for every dataset is noted to
the right of every figure. Remember that label 1, -1 and 0 respectively denoted
interictal, preictal and ictal periods of the EEG. From this figure it is clear that
the most occurring error is classifying ictal points (0) as interictal (1). The reason
for this becomes clear when one looks back at Figure 4.7. The red cluster of ictal
points that lies close to the green cluster of interictal points and this green cluster
are overlapping a little bit. Because of this, a classification error can be made pretty
fast. When the results of the linear kernel were examined, this problem only became
larger. That is because the linear decision boundary is a lot less flexible than the
RBF decision boundary. This flexibility is very much needed for slightly overlapping
classes. A false alarm occurs when an interictal or ictal point is classified as preictal.
This only happens twice, both times in Figure 4.9b. Having as few as possible false
alarms is very important for a good prediction system.

59



4. PREDICTING EPILEPTIC SEIZURES

Taking this altogether, it can be stated that classification with SVMs is a
reliable, good method to predict epileptic seizures. High accuracies are obtained
on independent test sets. The results can also be generalized much better towards
real life signals. This is thanks to the band-pass filtering in specific frequency bands
for EEG analysis. This is a lot more general than the LP filtering used in the
thresholding method.

4.4 Conclusion

When trying to predict epileptic seizures, one first has to extract useful features from
the EEG recording. This chapter has shown that bivariate measures that characterize
synchrony between two signals are a good choice. After this feature extraction, the
features need to be used to classify the EEG data in interictal, preictal and ictal
periods. Two ways to do this were investigated, namely by thresholding and by using
SVMs. The method that used thresholds showed high accuracies (around 95%), but
there were two very big downsides to using this method. First of all, one could only
distinguish between two classes, namely ‘not preictal’ versus ‘preictal’. When the
signal was classified as ‘not preictal’, then it was impossible to know if the EEG was
in an interictal or ictal segment. Secondly, this method could probably not generalize
very well towards real life signals, because of the LP filtering. The method that uses
SVMs solved these two problems and is therefore much more suited for usage on real
life signals. Different types of SVMs and different subsets of features were tested.
Eventually, the RBF OVO SVM with all the measures for four specific channel
combinations (Chl+Ch2, Ch2+4-Ch3, Ch3+Ch6 and Ch5+Ch6) yielded accuracy
results of 98%. This is of course still on signals generated by the model. The next
step would be to use the developed framework on real life signals from patients with
MTLE. Predicting epileptic seizures does not stop completely after the classification
that was discussed here. This is a very important step, but when the EEG signal is
in the preictal stage, one only knows that a seizure is coming. The problem is that
the preictal stage can last from a couple of minutes up to an hour. To predict the
time of occurrence of a seizure is another problem and is currently under a lot of
research. This could unfortunately not be handled in this chapter due to a lack of
time and would be a topic for future research.
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Figure 4.9: The classification results for the ten different test datasets when using the
RBF OVO SVM with the ‘All 4’ feature subset. The true class labels are represented
by blue circles and the predicted ones by red stars. The accuracy obtained for every
dataset is shown to the right of the figure. a) - j) The results for test dataset 1 up to

test dataset 10.
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Chapter 5

Conclusion and discussion

5.1 Modeling epileptic seizures

The first computational model that was presented was the thalamocortical model for
absence seizures. Two qualitatively different types of EEG signals can be simulated
by this model. On the one hand there are the interictal waxing-and-waning spindle
oscillations, while on the other hand there is the ictal quasi-sinusoidal activity. The
typical SW waveform that is present during epileptic activity in real life signals can
not be simulated by this model. Instead, some quasi-sinusoidal activity of the right
frequency is produced. The most important aspect about this model is the fact
that it operates in a bistable mode. It can therefore exhibit spontaneous transitions
from one type of activity to the other. The dynamics that are in play during these
transitions were shown to be well described by the model. This is very important
given that this model will be used in combination with a control system. Therefore,
it should be possible to interact with the model to try and stop a started seizure.
A possible extension for this model could be to try to simulate the SW discharges
in the ictal parts of the signal instead of the quasi-sinusoidal activity. The model
already incorporates a couple of biological important factors, like the subdivision
in two GABA receptors and the burst firing character of thalamic neurons (thanks
to the I calcium current). To account for the SW waveform, the model has to
incorporate even more biophysical reality. Other types of receptors (for example
NMDA) and currents (for example Mg?™ currents) will be needed and one will have
to model neurotransmitter concentrations in the synaptic cleft. Another extension
to the model could be the simulation of more than two types of behavior. Although
absence seizures occur predominantly during spindle oscillations (when a person is
sleepy or drowsy), it would make the model more general towards real life signals.

The second computational model that was introduced was the hippocampal model
for MTLE. This model can simulate six qualitatively different types of EEG activity
by adjusting some parameters of the model. These types are normal background
activity, slow rhythmic activity, sporadic spikes, sustained spikes, low voltage rapid
discharge and quasi-sinusoidal activity. The first three types are typically seen during
interictal periods. The fourth type is typical for preictal periods and the last two
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types represent ictal periods. This model was extended to be able to produce a
6-channel EEG recording as output. The output of every module is interpreted as
one of the six channels. The model is unfortunately not able to make transitions
from one type to another, because these biological relations are not incorporated.
Different types of activity are simulated and afterwards concatenated to form long
EEG recordings with different types of signals in it. The model is used to generate
training and test data for the classification algorithms used for prediction. After
making a prediction about an upcoming seizure, the next step would be to try to
prevent the seizure from happening. In order to do this, one would need to be able
to interact with the model. Thus, a useful extension for this model would be to
make the transitions from one type to another possible, according to the biological
processes that are in play. However, this will not be so easy, since there are fifteen
possible transitions that have to be modeled. If this could be accomplished, it would
be possible to use the prediction system on the model and try to prevent any seizure
from happening.

5.2 Controlling epileptic seizures

A control system for the thalamocortical model for absence seizures was designed
and implemented. It was shown that the system is very successful in controlling
the seizures. The EEG did not show any sign of ictal activity, only waxing-and-
waning spindle oscillations were present. The activation of the GABAgp receptor was
maximally of the order of 1073, while the order was 10 without the control system.
This good performance is only obtained when some important parameters are tuned
carefully. These are the threshold for detection and the duration and amplitude of
the control signal. The threshold in the detection system was set to 2.4 - o, where
o is the standard deviation of the EEG signal without seizures. The amplitude
of the control signal was set to 15 pps and the duration to 6 ms. This tuning is
only optimal for a specific set of model parameters. If the parameters of the model
change, the tuning has to be executed again. In real life this tuning will also be
patient specific. Setting a too low threshold in the detection system caused too much
unneeded interaction with the model and led to strange EEG signals. Choosing the
threshold too high on the other hand, caused seizures to be detected too late (or not
at al). This allowed the seizures to develop long enough to become noticeable in the
EEG recordings. When the amplitude of the control signal was chosen too low, not
all the seizures could be controlled. The problem in this case, is the fact that the
stimulus is not strong enough to restore the balance. When the amplitude was chosen
too high, there was again too much interference with the model. The stimuli were
too strong and caused the model to leave its normal working regime. It is of course
a bad idea to send pulses with a too high amplitude into a person’s brain. Choosing
the duration of the control signal too short made it possible for some seizures to
develop and become noticeable in the EEG. Choosing the duration too long caused
continuous stimulation at some moments. This had the effect of rather sustaining a
seizure than annihilating it. These parameters are clearly very important to tune
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optimally for obtaining a good performance of the control system. A shortcoming
of the used method for detection is a lack of generalization towards real life signals.
The detection is based on the amplitude of the EEG signal for the used model. In
real life, doing this will often cause false alarms and unneeded stimulations as a
result. Better detection methods could make use of machine learning methods. The
SVMs used for prediction in this thesis are an example of these type of methods. It
is however very important that the detection can happen very fast, since the goal is
to control a seizure after its onset. The method used in this thesis shows that this
control is possible after an early detection. A topic for future research could now be
to develop a more general, but very fast detection algorithm.

5.3 Predicting epileptic seizures

A prediction framework was developed for MTLE, by making use of the hippocampal
model for MTLE to generate data. Predicting a seizure boils down to finding preictal
periods in the EEG. Several bivariate measures were extracted from the EEG record-
ings and were used as features for the classification algorithms. The used measures
are the maximal cross-correlation, the coherence, the nonlinear interdependence and
the PLV. All these measures were shown to produce high values for synchronous
signals and low values for independent signals. Since there is a lot of synchrony
during preictal periods, these measures are very well suited for the classification task.
All these measures can be calculated very quickly, except the nonlinear interdepen-
dence. Since the prediction system will have to run in real-time, this measure was
excluded from the study. The classification was first done by using a threshold on
the smoothed time evolutions of the synchrony measures. A problem here is the fact
that there is also synchrony in the EEG during ictal periods. For the used model,
this can be solved by first LP filtering the EEG signals. In this way, the preictal
synchronous activity is passed, while the ictal synchronous activity is blocked. The
obtained classification accuracy between ‘preictal’ and ‘not preictal’ is approximately
95%. Unfortunately, this method has a lack of generalization towards real life signals.
Simply LP filtering will not suffice for all the possible types of EEG activity. Also the
fact that only binary classification is possible with a threshold limits its applicability.
To solve these problems, SVMs were used to do the classification between interictal,
preictal and ictal periods. In order to be able to make the distinction between
preictal and ictal synchronous activity, the PLV was computed for the unfiltered
EEG signal and for seven band-pass filtered EEG signals. PCA analysis showed that
using these seven filtered versions allowed one to make this distinction. Different
types of SVMs (linear/RBF and OVO/OVA) were tested. Also different subsets
of the 150-dimensional (10 measures and 15 channel combinations) feature vector
were tested. The subset of features that gave the best accuracy results was the
40-dimensional vector with all the ten measures for four specific channel combinations
(Ch14-Ch2, Ch2+Ch3, Ch34+Ch6 and Ch54+Ch6). The RBF OVO SVM is chosen,
because it offered the best trade-off between accuracy and speed. The obtained
classification accuracy, averaged over ten different test sets, is approximately 98%.
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This is a very promising result. The next step for this prediction method is to test
it on real life signals. It is expected that this method will generalize much better
towards real life signals than the thresholding method would do. If applying this
prediction framework on real life signals gives promising results, one could compare
its performance with existing prediction algorithms. This can be done with the
seizure prediction characteristic (SPC) framework. This works in the same way as
the receiver operating characteristic (ROC) framework, but is specifically designed
for the prediction of epileptic seizures. When the preictal periods can be accurately
found in EEG signals, there is still one step to be done. A preictal period can last
from a couple of minutes up to an hour. Determining the actual moment of onset of
the seizure (once it is know that the signal is in a preictal period) is therefore the
last step. This would finish the framework for predicting epileptic seizures and is a
topic for future research.
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Appendix A

Introduction to neuroscience

This appendix is an overview of the fundamental concepts in (computational) neuro-
science and is based on courses taken by the author.

The brain consists of a lot of different regions, all with different functions. The
regions of main interest in this study are the cerebral cortex, the thalamus and the
hippocampus. The cerebral cortex is the outer part of the cerebrum (the big brain)
and can be divided into four lobes: the frontal lobe, the parietal lobe, the occipital
lobe and the temporal lobe. All these lobes have different functions. The occipital
lobe, for example, is responsible for, among other things, vision and perception. The
thalamus lies deeper inside the brain and has a couple of important functions. The
thalamus sends incoming sensory signals to the cerebral cortex and regulates the
level of consciousness, alertness and sleep. The hippocampus is part of the limbic
system, which is located near the thalamus. The hippocampus is important regarding
emotions and memory.

In 1887, Santiago Ramén Y Cajal proposed the neuron doctrine by using the
staining method of Golgi. This doctrine stated that the nervous system is built from
individual building blocks and that these blocks are interconnected somehow. Later,
these individual building blocks were named neurons and the interconnections were
called synapses. From an engineering point of view, the neurons are the central
processing units of the brain. A neuron consists of three parts: the soma, the
dendrites and the axon. The soma or cell body contains the nucleous and other
organelles. The dendrites are short, branched extensions of the soma that receive
signals from other neurons. The axon is a long (sometimes short) extension of the
soma that sends signals to other neurons. This topology can be seen in Figure A.1.
The big blue circle is the soma, the long extension on the right is the axon and
the branched blue extensions on the left are the dendrites. In this way, the neuron
can be seen as an input-output device: it gets input from other neurons via the
dendrites and it sends output to other neurons via the axon. These connections
between neurons result in the formation of synapses, indicated on Figure A.1 as
little yellow dots. The red and green neurons are called presynaptic neurons and the
blue one is the postsynaptic neuron. This blue neuron is of course also a presynaptic
neuron for other neurons (not in this figure), just as the red and green neurons are
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postsynaptic neurons to other neurons (not in this figure). There is a big difference
between the red and the green neurons. The red neurons are inhibitory neurons and
the green ones are excitatory neurons. The terminology is very clear: excitatory
presynaptic neurons try to excite the postsynaptic neuron, while inhibitory ones
try to inhibit the postsynaptic neuron. How this happens will become clear in a
minute, first there has to be said a word about what kind of signals are propagating
over these neurons. In Figure A.1 two different kinds of signals can be seen: the
black bars and the red/green waves. The black bars are called action potentials and
are used to send information over the entire brain. Every action potential has the
same shape, amplitude and duration. So this is a digital (1 or 0) signal: there is an
action potential (1) or there is not (0). The red/green waves are called postsynaptic
potentials (PSPs). These signals are analog. So actually, there is an A/D conversion
at the soma. An action potential is fired if the total PSP is above a certain threshold.
If the total PSP is below this threshold, the neuron will stay quiet. This shows
that a neuron will fire action potentials if it is excited enough. Since there is an
A /D conversion, there also needs to be a D/A conversion. This D/A conversion
happens at the synaps. It is important to note that the axons and dendrites do
not touch each other at the synaps. There is a little space between them, called
the synaptic cleft. When an action potential of the presynaptic neuron arrives at
the synaps, neurotransmitters are released into the synaptic cleft. There are a lot
of different neurotransmitters. Glutamate is the major excitatory neurotransmitter
and y-aminobutyric acid (GABA) is the major inhibitory neurotransmitter of the
brain. When these neurotransmitters bind to receptors in the postsynaptic neuron,
ion-channels open and the potential changes. The major excitatory receptors are
the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor and
the N-methyl-D-aspartate (NMDA) receptor. The major inhibitory receptor has
the same name as the neurotransmitter, namely the GABA receptor. When the
neurotransmitters are excitatory, the ion-channels will allow the flow of sodium ions
(Na™) into the cell (because of diffusion) and an excitatory PSP (EPSP) is generated
locally. This makes the cell more positive than its resting potential and is called
depolarization. When the neurotransmitters are inhibitory, the ion-channels will
allow the flow of potassium ions (K ™) out of the cell and generate a local inhibitory
PSP (IPSP). This makes the cell more negative and is called hyperpolarization.
These mechanisms are not the important part to remember from this appendix. The
important concepts are the distinction between excitatory vs. inhibitory, presynaptic
vs. postsynaptic, depolarizations vs. hyperpolarization and the notion of a PSP and
neurotransmitters.
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IJ—L. Inhibitory neuron

Dendrites

Figure A.1: A neuron as an input-output device. A neuron consists of three parts:
dendrites (for input), the soma and an axon (for output). A neuron gets its input
from presynaptic neurons and sends its output to postsynaptic neurons. Excitatory
presynaptic neurons (green in the figure) will generate an excitatory postsynaptic
potential (EPSP) and will depolarize the neuron. Inhibitory presynaptic neurons
(red in the figure) will generate an inhibitory postsynaptic potential (IPSP) and will
hyperpolarize the neuron. A summation of all these PSPs happens at the soma. If
the neuron is depolarized above a threshold, it will fire an action potential (the black
bars in the figure).

In computational neuroscience, it is often not so convenient to talk about sequences
of action potentials. It is very hard to model the exact spiking pattern of a neuron.
For that reason, often a switch is made to the firing rate of a neuron. In this case
the model can show how often a neuron is firing action potentials, without having
to worry about the exact moments of these spikes. When talking about neuronal
populations instead of a single neuron, the concept of a firing rate is extended to the
average firing rate of the population.
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Appendix B

Mathematical details of the
model for absence seizures

This appendix gives a mathematical description of the model of Suffczynski et al. [70].
Specific parameter values are not included in this appendix for the next reason. The
interested reader who wants to use this model is encouraged to have a look at the
original paper of Suffczynski and his colleagues.

B.1 The model
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Figure B.1: The thalamocortical model of Suffczynski et al. [70]
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B. MATHEMATICAL DETAILS OF THE MODEL FOR ABSENCE SEIZURES

The model is shown in Figure B.1 and consists of four neuronal populations which are
interconnected with each other. The excitatory pyramidal neurons of the cortex (PY)
excite all the other three populations. The inhibitory population of interneurons of the
cortex (IN) inhibits this PY population. The excitatory thalamocortical relay cells of
the thalamus (TC) excite all the three other populations. The inhibitory population
of reticular thalamic neurons (RE) inhibits the TC cells. In every population, the
conversion from average presynaptic firing rate into average postsynaptic firing
rate follows the next steps. First the presynaptic firing rates are converted into
postsynaptic currents. These currents are integrated to form the mean membrane
potential of the population. This membrane potential is then finally transformed
into the average postsynaptic firing rate. The first two steps will be described in
Section B.2 and the third step in Section B.3.

B.2 From presynaptic firing rate to membrane
potential

The evolution of the average membrane potential of a population over time is modeled
by the next general equation:

(@) . , ,
C,, - avr _ _ IO Grear - (VO — V}Ej) )

a

dt i (B.1)
i ={PY,IN,TC,RE}, syn={AMPA,GABA,,GABAR)}.

The synaptic currents in this equation are given by:

I = 95 - (V9 = V). (B2)

In Equations B.1 and B.2, (), represents the membrane capacitance, V is the average
membrane potential of the population, gjeqr is the conductance of the leak current,
Vieak is the reversal potential of the leak current, g, is the conductance of the
synaptic current and Vi, is the reversal potential of the synaptic current. The
membrane potential for which there is no net flow of an ion across the membrane is
called the reversal potential of that ion.

The conductances of the synaptic currents are modeled by taking the convolution
of the presynaptic firing rate (74, (t)) with a synaptic impulse response function

(han8) t
S (® = [ halt = 1) 1G(r) - ar (©.3)

—0o0

The synaptic impulse response function is given by:

hsyn(t) = Asyn : [exp(_al,syn ' t) - exp(_a2,syn : t)],

B4
a2 syn > 01,syn, syn ={AMPA ,GABA,,GABAR}. (B4)

In this equation the parameters Agyy, a1,syn and ag syn are respectively the ampli-
tude, decay and rise time of the considered synaptic conductance. The synaptic
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B.3. From membrane potential to postsynaptic firing rate

conductance, defined by Equations B.3 and B.4, can be obtained by solving a second
order ordinary differential equation:

d*g(t) dg(t)

72 + (a1 + az) - g +ap-az-g(t)=A-(aa —a1)-r(t). (B.5)

The subscript syn should be placed with g(t), a1, a2, A and r(t), but this was not
done to avoid to overload the equation. The transfer function that corresponds to
this equation can be found by taking the Laplace transformation:

G(s) A-(ag —ar)

_ . B.6
R(s) s+ (a1+az)-s+ay-ay (B:6)

It can easily be checked that this is the Laplace transformation of Ay, (t), which is
defined by Equation B.4.

In Section 2.1.2 is was stated that GABAp receptors have nonlinear activation
properties. This means that the amplitude of the postsynaptic GABAg-mediated
currents increases nonlinearly with the incoming firing rate. This nonlinear activation

function is given by:
1

N0 = et =700

This is a logistic function where 7 is the incoming firing rate and N is the nonlinear
activation (always between 0 and 1). This nonlinear activation will act as a gatekeeper
for giving the incoming firing rate as an input to the transfer function defined in
Equation B.6. The passed firing rate can range continuously from 0 to 100% of the
incoming firing rate. The parameter 6, acts as a threshold for the activation and o,
determines the slope of the function.

(B.7)

B.3 From membrane potential to postsynaptic firing
rate
In the cortical populations, the conversion from mean membrane potential into

average postsynaptic firing rate can be done with a sigmoidal function (also see
Section 1.2):

, G
S(v@y = .S
(™) 1+ exp((U(J) - 95)/03)’

j={PY,IN}. (B.8)
In this logistic function, v is the mean membrane potential of the population
and S (v(j)) is the resulting average postsynaptic firing rate. The parameter Gy
determines the maximal firing rate, the parameter 6, acts as a threshold for firing
and the parameter os determines the slope of the function.

The situation is not that simple for the thalamic populations. That is because
the burst firing of thalamic cells is taken into account in this model. A burst is the
result of the combination of a low threshold spike (LTS), which is mediated by It
calcium currents, and fast sodium-mediated spikes. The fast sodium spikes seem
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B. MATHEMATICAL DETAILS OF THE MODEL FOR ABSENCE SEIZURES

to ride on top of the LTS. These types of burst occur at hyperpolarized membrane
potentials. A neuron can fire a LTS when the It current is de-inactivated and, at
the same time, the neuron is depolarized above the threshold for generating a LTS.
To be able to model this behavior, two new functions are introduced: nj,¢(v) and
mins(v). These express the proportion of cells (in steady-state) in which It current is
de-inactivated and activated respectively, as a function of the voltage. Both functions
have a logistic form:

1
" 1+ eap((0® — 6) /o)’

1
1+ exp((v®) —0,) /o)’

The parameter 6,, will have a positive value and the parameter o, will be negative.
This means that mj,¢(v) will start at 0 for v = —oo and will be equal to 1 for v = +00.
The rise from 0 to 1 happens in the region around 6,,, so there are positive voltages
needed for activation. This situation is opposite to the case of de-inactivation. The
parameter 6,, will have a negative value and the parameter o, will be positive. This
means that n;,¢(v) will start at 1 for v = —oo and will be equal to 0 at v = +o0.
The fall from 1 to 0 happens around 6, so the voltages can not be to large or the It
current will be inactivated.

It is assumed that the activation of the It current happens instantaneously. This
means that miye(v(t)) gives the proportion of cells in which It current is activated at
a certain time ¢t. Furthermore it is assumed that It current de-inactivation reaches
its steady-state with a delay with respect to the change in membrane potential.
To account for this delay, the steady state function for de-inactivation (nis(v)) is
convolved with a delay function (hy,). A final assumption is that each TLS will
trigger a burst of fast spikes with a certain frequency G. This all taken together
gives that the average postsynaptic firing rate for thalamic populations in function
of the mean membrane potential is given by:

Ming (V) k= {TC,RE}, (B.9)

k= {TC,RE}. (B.10)

Ninf (v(k) )

S(®) = G- mig(v®) -n(v¥), k= {TC, RE}. (B.11)

The delayed de-inactivation function is given by:

t
n(v) = / h(t = 7) * Mine (v) - d7 (B.12)
—0o0
in which the delay function has the next form:
ni-n9
hn(t) = N - (exp(—nq - t) — exp(—ng - t)), ngo >n; N = o (B.13)
2 — 11

In this equation the parameters n; and ny are the decay and rise time of the It
de-inactivation delay function for the TC and RE cells.
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Appendix C

Mathematical details of the
model for TLE

This appendix gives a mathematical description of the model of Wendling et al. [12].
Also in this appendix, no specific parameter values are given. This is because the
author encourages the interested reader who wants to make use of this model to take
a look at the paper of Wendling and his colleagues.

C.1 The model

\]
2 Saturation ol
numgs) Distant PY

Figure C.1: The model of the hippocampus of Wendling et al. [12]
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C. MATHEMATICAL DETAILS OF THE MODEL FOR TLE

The model of the hippocampus is show in Figure C.1. It is built from four intercon-
nected neuronal populations. The main cells (excitatory pyramidal neurons) excite
the three other populations. The distant excitatory pyramidal neurons excite these
main cells. Next to these two excitatory populations, there are also two inhibitory
populations included in the model. One of these represents inhibitory interneurons
that project to the soma of the main cells. The other one represents inhibitory
interneurons that project to the dendrites of the main cells. This means that both
inhibitory populations inhibit the main cells. The dendritic projecting interneurons
furthermore also inhibit the somatic projecting interneurons. These two types of
interneurons are included because there are two types of GABA 4 synaptic responses
in the pyramidal neurons of the hippocampus. The interneurons projecting to the
soma have faster dynamics than the interneurons projecting to the dendrites of the
main cells. In all four the populations, the average presynaptic firing rate is converted
into an average postsynaptic firing rate in two steps. First, the average presynaptic
firing rate is transformed into the mean membrane potential of the population. Next,
this mean membrane potential is converted into the average postsynaptic firing rate
of the population. This first step is described in Section C.2 and the second step is
described in Section C.3.

C.2 From presynaptic firing rate to membrane
potential

The conversion from the average presynaptic firing rate of a population into its
mean membrane potential is done like explained in Section 1.2. A second order
linear transfer function is used. The impulse response function for this transfer
function depends on the type of synaptic interaction. There is one type of excitatory
interaction and there are two types of inhibitory interactions. All the three types
of interaction have an impulse response function of the same form. The differences
lie in the values of the parameters, which are different for each impulse response
function:

o hpxc(t)=A-a-t-e  for the excitatory synaptic interactions,
e hspr(t) = B-b-t-e % for the slow dendritic inhibition (SDI) and
e hpsr(t)=G-g-t-e 9 for the fast somatic inhibition (FSI).

The parameters A, B and G are the synaptic gains for each type of synaptic
interaction. These three parameters are the ones that define which type of EEG
behavior is simulated by the model. The parameters a, b and g are the inverses of
the synaptic time constants for each type of interaction. As already shown in Figure
2.5, the FSI has the fastest dynamics and the SDI has the slowest dynamics.

The transfer function for each of these impulse response functions can be found
by taking the Laplace transform of the impulse response function. This gives the
following second order linear transfer functions:
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C.3. From membrane potential to postsynaptic firing rate

o Hpxc(t)=(A-a)/((s*> +2-a- s+ a?) for the excitatory synaptic interactions,
e Hspir(t) = (B-b)/((s*>+2-b-s+b?) for the slow dendritic inhibition (SDI) and

e Hrsi(t)=(G-9)/((s>+2-g-s+ g?) for the fast somatic inhibition (FSI).

C.3 From membrane potential to postsynaptic firing
rate

Once the mean membrane potential of a population is know, this has to be transformed
into the postsynaptic firing rate of this population. This is done by a static nonlinear
function, namely an asymmetric sigmoid of the following form:

2-60

Sv) = 1+ exp(p- (vg —v))

(C.1)

The input to this function, v, is the mean membrane potential and the output S(v)
is the average postsynaptic firing rate. The parameter ey determines the maximal
firing rate of the population. The parameter vy acts as a threshold for firing and the
parameter p determines the slope of the sigmoid function.
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Modelleren, voorspellen en controleren van
epileptische aanvallen.

Henckaerts Roel

Samenvatting—De huidige behandelingen voor epilepsie zijn
nog steeds ineffectief voor vele patiénten. De nood aan alternatieve
behandelingen is dus zeer groot. Hersenstimulatie technieken
krijgen veel aandacht tegenwoordig dankzij de successen van
deze technieken in de strijd tegen de ziekte van Parkinson.
In deze studie zal een controlesysteem voor absences worden
ontwikkeld op basis van een computationeel model. Controle zal
gebeuren door stimuli in het model te sturen nadat een aanval
wordt gedetecteerd. Het blijkt dat externe stimuli in staat zijn
om een begonnen aanval te beéindigen. Dit is enkel zo voor
goed afgestelde parameters van het controlesysteem. Deze zijn de
drempelwaarde voor detectie en de amplitude en tijdsduur van
het controlesignaal. Voor sommige soorten aanvallen is er meer
dan detectie mogelijk, namelijk de voorspelling van de aanval.
Een computationeel model van de hippocampus wordt gebruikt
om typische elektro-encefalografische (EEG) signalen van tempo-
rale kwab epilepsie te genereren. Uit deze signalen worden maten
voor synchronie tussen verschillende EEG kanalen berekend. De
gebruikte maten zijn de maximale Kruiscorrelatie, de coherentie,
de niet-lineaire interdependentie en de phase locking value (PLV).
Deze worden gebruikt om de aanval te voorspellen, aangezien er
voor de aanvang veel synchronie ontstaat in de hersenen. Support
vector machines (SVMs) worden gebruikt om deze periodes in
de signalen te vinden. Er wordt een classificatie nauwkeurigheid
van 98% bekomen op ongeziene test signalen.

I. INTRODUCTIE

PILEPSIE is een zeer diverse neurologische aandoening,
gekarakteriseerd door terugkerende aanvallen. Ongeveer
50 miljoen mensen over de hele wereld lijden aan een soort van
epilepsie [1]. Aangezien er zoveel verschillende soorten zijn,
is er een onderverdeling in verschillende types van epilepsie
nodig. Eerst en vooral wordt er een onderscheid gemaakt tus-
sen focale en gegeneraliseerde aanvallen [2]. De aanvang van
een gegeneraliseerde aanval vindt plaats in beide hersenhelften.
Een patiént verliest altijd het bewustzijn tijdens zo een aanval.
Bij een partiéle aanval is de aanvang gelokaliseerd in een
bepaald deel van de hersenen. Het effect van zo’n aanval op
de patiént hangt af van de betrokken hersendelen. Een typisch
kenmerk voor elke soort van epilepsie is het uitvoerig en
synchroon vuren van neuronen in bepaalde hersendelen.
Tegenwoordig zijn er verschillende behandelingen voor epi-
lepsie [3]. De meest voorkomende zijn medicatie en chirurgie.
Ongeveer 30% van de patiénten lijdt aan refractaire epilepsie.
Bij deze groep kunnen de aanvallen niet onder controle worden
gehouden door anti-epileptica. Voor een patiént met refractaire
epilepsie is er een zorgvuldige analyse nodig, waarin de
mogelijkheden van een operatie worden nagegaan. Deze moet
namelijk een grote kans hebben op slagen zonder schade aan
andere hersenfuncties te berokkenen. Aangezien de plaats van

aanvang gelokaliseerd is voor focale aanvallen, is hier de kans
groter dat een operatie effectief zal zijn. Een chirurgische
ingreep is dus niet altijd mogelijk en levert ook niet in alle
gevallen het gewenste resultaat [4]. Het is dus zeer belangrijk
dat er alternatieve behandelingen worden ontwikkeld. Een
voorbeeld hiervan is het ketogeen dieet, wat vooral bij kinderen
wordt voorgeschreven [5]. De successen van hersenstimula-
tie, als behandeling voor de ziekte van Parkinson, hebben
de zoektocht naar hersenstimulatie technieken voor epilepsie
gestimuleerd [6]. Ondertussen zijn er verschillende methodes
voor hersenstimulatie ontwikkeld (nervus vagus stimulatie)
of onder ontwikkeling (diepe hersenstimulatie en responsieve
neurostimulator) [7], [8].

Absences zijn gegeneraliseerde aanvallen die abrupt be-
ginnen en eindigen. Zo een aanval kan tot honderd keren
op een dag voorkomen. Een patiént verliest tijdens een aan-
val altijd het bewustzijn, maar heeft normaal geen last van
convulsies. Absences hebben een zeer karakteristiek EEG-
patroon, namelijk piek en golf ontladingen [9]. Intracellulaire
opnames hebben aangetoond dat de ‘piek’ en golf” component
respectievelijk overeenkomen met neuraal vuren en neurale
stilte [10]. Experimentele modellen van de laatste decennia
hebben aangetoond dat zowel de thalamus [10], [11] als de
cortex [12], [13] een belangrijke rol spelen in het ontstaan
van absences. In deze studie wordt het thalamocorticale model
van Suffczynski et al. [14] gebruikt om een controlesysteem
voor absences te ontwikkelen. Dit model kan zowel interictale
(tussen de aanvallen) als ictale (tijdens een aanval) activiteit
simuleren.

Temporale kwab epilepsie (TLE) is de meest voorkomende
vorm van focale epilepsie. Er zijn twee vormen van TLE,
namelijk mesiale (MTLE) en laterale TLE (LTLE). De aanvang
van MTLE is gelokaliseerd in het binnenste gedeelte van
de temporale kwab, namelijk de hippocampus of amygdala.
De aanvang van LTLE is gelokaliseerd in de neocortex (de
buitenste laag van de temporale kwab). MTLE heeft een
karakteristiek EEG-patroon net voor en tijdens de aanvang van
een aanval [15], [16]. Er is typisch de ontwikkeling van pieken
met een hoge amplitude en een lage frequentie. Deze activiteit
wordt vaak gevolgd door oscillaties met een lage amplitude en
hoge frequentie. Een model van de hippocampus van Wendling
et al. [17] wordt gebruikt om dat soort typische signalen te
genereren. Naast een interictale en ictale fase, bestaat er bij
TLE ook een pre-ictale (net voor de aanvang van een aanval)
fase. Het model kan deze drie types van activiteit simuleren.
Deze signalen zullen in deze studie gebruikt worden om een
voorspellingsmethode voor TLE te ontwikkelen. Een overzicht
van de geschiedenis van het voorspellen van epileptische
aanvallen kan worden gevonden in [18].



II. MATERIAAL EN METHODEN

A. Modellen van epileptische aanvallen

Beide modellen die worden gebruikt in deze studie zijn ma-
croschaal modellen. Bij deze soort van modellen wordt er
typisch gesproken over populaties van neuronen in plaats van
individuele neuronen. De output van zo een model zal de
gemiddelde potentiaal van een populatie zijn. Deze kan worden
geinterpreteerd als een EEG-meting.

1) Absences: Suffczynski et al. [14] hebben een computa-
tioneel model ontwikkeld voor absences bij ratten van de
WAG/Rij stam [19]. Het model bestaan uit een corticale en
thalamische module, elk opgebouwd uit een exciterende en in-
hiberende populatie van neuronen. Deze populaties interageren
met elkaar via synaptische transmissie. De exciterende interac-
ties worden gemodelleerd door de neurotransmitter glutamaat
en de «-amino-3-hydroxy-5-methyl-4-isoxazole-propionzuur
(AMPA) receptoren. De inhiberende interacties worden gemo-
delleerd door de neurotransmitter y-aminoboterzuur (GABA)
en de GABA, en GABAg receptoren. Het model kan twee
kwalitatief verschillende soorten signalen simuleren (interictaal
en ictaal) met spontane overgangen tussen deze twee. De inte-
rictale signalen zijn oscillaties met een frequentie van ongeveer
11 Hz en een typisch toenemend en afnemend verloop van
de amplitude. De ictale signalen zijn quasi sinusoidaal met
een frequentie van ongeveer 9 Hz. De typische piek en golf
ontladingen van absences zijn echter niet zichtbaar. De twee
soorten signalen zijn getoond in Figuur 1. Het belangrijkste
aan dit model is dat de overgangen van interictaal naar ictaal
en omgekeerd op een biologisch plausibele manier worden
gemodelleerd.
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Figuur 1. De signalen gegenereerd door het thalamocorticale model voor
absences. a) De tijdsevolutie van de output van het model (EEG). b) Een
close-up van het ictale deel. c) Het frequentiespectrum voor het ictale deel.
d) Een close-up van het interictale deel. e) Het frequentiespectrum van het
interictale deel.

2) TLE: Wendling et al. hebben een model van de hip-
pocampus ontwikkeld dat typische signalen van TLE kan
simuleren. Het model bestaat uit twee exciterende en inhibe-
rende populaties, die met elkaar interageren. Exciterende trans-
missie wordt ook hier gemodelleerd door glutamaat AMPA
receptoren. Inhiberende transmissie wordt gemodelleerd door
de neurotransmitter GABA en twee verschillende GABA4
receptoren. Er is een groot verschil in dynamiek tussen de twee
inhiberende populaties. De ene populatie stelt neuronen voor
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die synapsen vormen op de dendrieten van andere neuronen,
terwijl de andere populatie neuronen voorstelt die synapsen
vormen op het cellichaam van andere neuronen. De eerste
groep heeft daardoor invloed op de GABA4 yraa¢ TECEDtOrEN €N
de tweede groep op de GABA4 gl receptoren. Het model kan
zes kwalitatief verschillende soorten van activiteit simuleren.
Drie hiervan zijn interictale signalen, één is een pre-ictaal
signaal en de andere twee zijn ictale signalen. De verschillende
types van activiteit zijn weergegeven in Figuur 2. In deze studie
werd dit model uvitgebreid om een meerkanaal-EEG te kunnen
simuleren. Zes verschillende modellen werden als modules aan
elkaar gekoppeld. De output van elk model dient als extra input
voor de andere modellen. De output van elke module wordt
nu geinterpreteerd als één van de zes kanalen van het EEG.
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Figuur 2. De signalen gegenereerd door het hippocampale model voor TLE.
a) Normale achtergrondactiviteit (interictaal). b) Trage ritmische activiteit
(interictaal). ¢) Sporadische pieken (interictaal). d) Aanhoudende pieken (pre-
ictaal). e) Hoogfrequente oscillaties met lage amplitude (ictaal). f) Quasi
sinusoidale oscillaties (ictaal).

B. Controle van epileptische aanvallen

In deze studie wordt een controlesysteem ontwikkeld voor
het model van absences. Deze aanvallen hebben een abrupte
aanvang en kunnen daardoor niet voorspeld worden. Het is mo-
gelijk om met het model te interageren dankzij de biologisch
plausibele manier waarmee de overgangen tussen interictaal en
ictaal (en visa versa) zijn gemodelleerd. Het controlesysteem
zal bestaan uit een detectiegedeelte en een stimulatiegedeelte.
Het gaat hier dus om een gesloten lus systeem.

1) Detectie: Het model simuleert twee soorten van activiteit:
interictale signalen met een lage amplitude en ictale signalen
met een hoge amplitude. De detectie van een aanval kan
daarom gebeuren op basis van de amplitude van het EEG. Wan-
neer deze groter wordt dan een bepaalde drempelwaarde, dan
wordt de detectie van een aanval gesignaleerd. Deze methode
van detectie is jammer genoeg niet zomaar uitbreidbaar naar
signalen uit het dagelijkse leven. Niet-ictale activiteit met een
hoge amplitude zou namelijk een valse detectie veroorzaken.
Voor dit model is deze methode echter voldoende. Het grote
voordeel van de voorgestelde methode is een snelle detectie.
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Deze laat dus toe om na te gaan of absences kunnen worden
onderbroken na een snelle detectie. Een goede keuze van de
drempelwaarde voor detectie is zeer belangrijk. Deze moet
daarom zorgvuldig worden afgesteld.

2) Stimulatie: Na een detectie zal het model gestimuleerd
worden, met als doel de begonnen aanval te onderbreken. De
voorgestelde controlemethode sluit dus nauw aan bij de her-
senstimulatie technieken die tegenwoordig zeer populair zijn.
De corticale module zal worden gestimuleerd, aangezien het
minder invasief is om de cortex te stimuleren dan de thalamus.
Het type signaal is een blokpuls met een bepaalde amplitude en
tijdsduur. Dit zijn twee belangrijke parameters en deze moeten
nauwkeurig worden afgesteld. De amplitude kan een positieve
of negatieve waarde aannemen. Indien de detectie gebeurt
tijdens een stijgend EEG signaal, dan zal er een negatieve puls
worden gegenereerd. Gebeurt de detectie tijdens een afnemend
EEG signaal, dan wordt er een positieve puls gegenereerd.
Aangezien er met een macroschaal model wordt gewerkt, zal
de eenheid van de amplitude ‘pulsen per seconde’ (pps) zijn.
Een positief aantal pps kan worden geinterpreteerd als een
groep depolariserende pulsen, terwijl een negatief aantal pps
een groep hyperpolariserende pulsen voorsteld. De positieve
en negatieve pulsen worden elk door een apart detectiesysteem
opgewekt. Het volledige controlesysteem samen met het model
is weergegeven in Figuur 3.
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Figuur 3. Het controlesysteem samen met het model voor absences. Het
model is inbegrepen in het lichtblauwe subsysteem. De twee detectie- en
stimulatiesystemen zijn respectievelijk weergegeven in het groen en geel. Het
rode additie-element zorgt voor de combinatie van beide controlesignalen. De
schakelaar beslist op basis van een externe parameter of de pulsen in het model
worden gestuurd of niet.

C. Voorspellen van epileptische aanvallen

In deze studie zal ook een voorspellingsmethode voor TLE
worden ontwikkeld. Deze kunnen, in tegenstelling tot absen-
ces, wel worden opgemerkt in het EEG voor de eigenlijke
aanvang van de aanval. De nodige data voor de ontwikkeling
van de voorspellingsmethode worden gegenereerd met het
computationele model voor TLE. Deze data stellen een 6-
kanaal EEG voor aan een samplefrequentie van 256 Hz. Het
voorspellen van een aanval komt neer op het vinden van
de pre-ictale periodes in de EEG en is dus eigenlijk een

classificatieprobleem. Er is veel synchrone activiteit in de
hersenen net voor en tijdens een epileptische aanval. Daarom
zullen er bivariate maten voor synchronie worden gebruikt in
het classificatieprobleem [18]. Al deze maten worden via een
bewegend venster berekend uit het EEG.

1) Maximale lineaire kruiscorrelatie: De similariteit tussen
twee signalen {z;} en {y;} kan worden geévalueerd door het
maximum te nemen van de genormaliseerde kruiscorrelatie:

Cinaz = mMax Cay(7)

T \% Caz(0) - ny(O)

De lineaire kruiscorrelatie wordt in deze formule gegeven door:

ey

T7>0

<0 @

ny(T) — { Nl_T Zij\i; LTit1Yi
Cya(—7)
met N de lengte van beide signalen. C,,,, is gelegen in het
interval [0, 1]. Lage waarden tonen aan dat de signalen niet op
elkaar lijken, terwijl hoge waarden impliceren dat de signalen
een gelijkaardig verloop in de tijd vertonen. Het maximum
wordt genomen over een klein bereik van 7 om wat vertraging
tussen de signalen toe te laten.
2) Lineaire coherentie: De hoeveelheid lineaire synchroni-
satie tussen twee signalen {x;} en {y;} kan worden berekend
aan de hand van de coherentie:

Gay(f)

Glay(f) is de kruisspectrale densiteit en word gegeven door:

I'(f) =

(€)

Gay(f) = X () - Y (f) Q)

waarin X (f) en Y (f) de Fouriertransformaties voorstellen
van respectievelijk {x;} en {y;} en het sterretje de complexe
conjugatie aanduidt. De coherentie neemt altijd een waarde aan
in het interval [0, 1] en kan worden berekend voor specifieke
frequenties. Kleine waarden wijzen op weinig synchronisatie
tussen de signalen, terwijl grote waarden veel synchronisatie
impliceren.

3) Niet-lineaire interdependentie: De hoeveelheid gegene-
raliseerde synchronie tussen twee signalen {x;} en {y;} voor
1 =1,..., N kan worden berekend aan de hand van de niet-
lineaire interdependentie. Hiervoor moeten beide tijdsignalen
eerst worden omgezet in toestandsruimte trajecten {&;} en
{y,;}. Een punt in de toestandsruimte wordt berekend als:
T = (i, %7y, Ti—(m—1).r) en gelijkaardig voor ;.
De parameter m is de dimensie van de toestandsruimte en
de parameter 7 is de vertraging in de tijd. De niet-lineaire
interdependentie gaat na hoe omgevingen in de ene attractor
projecteren in de andere attractor en is gedefinieerd als:

N (N-1) (k)
1 on RV (z) — R (aly)
N® (zly) = d g
g RNV ()

NG,

Hierin worden ng) (x) en REk)(x|y) gegeven door:
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met r;; en s;; de t1JdSlndlces van de k dichtstbijzijnde buren
van respectievelijk &; en g, voor j = 1,..., k. De niet-lineaire
interdependentie uit Formule 5 heeft een bovengrens van 1 en
kan licht negatieve waarden aannemen. Lage waarden wijzen
op onafhankelijkheid van de signalen, terwijl grote waarden
veel synchronie impliceren.

4) Phase locking value (PLV): De hoeveelheid synchroni-
satie tussen de fases van twee signalen x(t) en y(t) wordt
gedefinieerd als:

2
(6)
R(k) (z|y) =

2

1 N-1
< Z (¢ (G-At) =y (5:At)) @)
j=0

PLV =

met N het aantal samples in beide signalen, At de sample-
periode en ¢, (t) en ¢,(t) respectievelijk de fase van z(¢)
en y(t). De PLV ligt in het interval [0,1]. Lage waarden
impliceren geen synchronie, terwijl hoge waarden wijzen op
veel synchronie. De fase van ieder signaal is nodig om de PLV
te berekenen. Hiervoor wordt de Hilberttransformatie gebruikt.
De fase van een signaal s(t) is gedefinieerd als:
5(1)
@(t) = arctan 5 8

waarin §(t) de Hilberttransformatie voorstelt van s(t):

+oo
5(t) = %p.v./ ﬂdr ©)

o T
In deze formule staat p.v. voor Cauchy’s principale waarde,
een methode om een waarde toe te kennen aan een anders
ongedefinieerde integraal.

Deze maten voor synchronie worden in het classificatie-
probleem gebruikt om het onderscheid te maken tussen de
interictale, pre-ictale en ictale periodes van het EEG. Classifi-
catie zal gebeuren door gebruik te maken van support vector
machines (SVMs) [20]. De verschillende maten voor synchro-
nie worden gecombineerd (eventueel ook over verschillende
kanaalcombinaties van het EEG) in een vector voor input
aan de SVM. Zowel lineaire als Gaussische kernels (RBF
kernels) zullen worden gebruikt. Een SVM is een binaire
classifier. Meerdere SVMs moeten worden gecombineerd om
het onderscheid tussen meer dan twee klassen te maken. Twee
verschillende meerklassen-strategién zullen worden gebruikt:
één-versus-één (OVO) en één-versus-allen (OVA). Het zoeken
van de optimale parameters van de SVM zal gebeuren via
5-voudige kruisvalidatie. Enkel de regularisatieconstante C' is
nodig voor de lineaire kernel. Deze zal worden gezocht aan
de hand van een line search Voor de RBF kernel is zowel C
nodig als een parameter voor de Gaussische functie, namelijk
~. Deze worden gezocht via een grid search. De implementatie
van de SVMs gebeurde met behulp van LIBSVM [21].
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III. RESULTATEN
A. Controleren van absences

In Figuur 4 zijn de resultaten weergegeven wanneer het contro-
lesysteem niet is verbonden met het model. In Figuur 4a is er
duidelijk interictale (lage amplitudes) en ictale activiteit (hoge
amplitudes) zichtbaar. De drempelwaarden van het detectiesys-
teem zijn weergegeven als rode horizontale lijnen. Deze zijn
handmatig afgesteld op 2.4 -0, met o de standaarddeviatie van
een interictaal EEG-segment. Alle activiteit die buiten deze
band treedt, wordt beschouwd als een aanval. In Figuur 4b is
de activatie van de GABAp receptor getoond. Activatie van
deze receptor is noodzakelijk voor het ontstaan van absences
[22]. De waardes in deze figuur zijn negatief omdat het om
een inhiberende receptor gaat. In Figuur 4c zijn tenslotte de
gegenereerde controlepulsen getoond. De amplitude en tijds-
duur van deze zijn ingesteld op 15 pps en 6 ms respectievelijk.
Deze pulsen worden echter nog niet in het model gestuurd.

In Figuur 5 zijn de resultaten weergegeven wanneer het
controlesysteem wel wordt verbonden met het model. In Figuur
5a is er in dit geval geen merkbare ictale activiteit meer. Er
is enkel de interictale activiteit met het typische toenemend
en afnemend karakter van de amplitude. In Figuur 5b is er
ook nog amper GABAg activatie te zien. De ordegrootte is
gereduceerd van 102 tot 1073, Dit wijst ook op de afwezigheid
van absences. In Figuur 5c kan er tenslotte worden gezien dat
maar een klein deel van de gegenereerde pulsen uit Figuur 4c
nodig zijn om alle aanvallen te onderbreken.

De goede resultaten uit Figuur 5 worden enkel bekomen
voor nauwkeurig afgestelde parameters. Indien de drempel-
waarde voor detectie te laag wordt gekozen, of de amplitude
of tijdsduur van het controlesignaal te hoog, dan zal het EEG
vervormen door te veel onnodige stimulaties. Omgekeerd wor-
den aanvallen te laat gedetecteerd of is het controlesignaal zijn
invloed niet groot genoeg. Dan is er wel nog ictale activiteit
zichtbaar. Een nauwkeurige afstelling is dus noodzakelijk.

GabaB activatie (UA)
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Figuur 4. De resultaten wanneer het controlesysteem niet verbonden is

met het model. a) Het EEG bevat zowel interictale als ictale activiteit. De
ictale activiteit heeft een hogere amplitude dan de interictale activiteit. De
drempelwaarden van het detectiesysteem zijn aangeduid als rode horizontale
lijnen. b) De hoeveelheid GABAg activatie (stroom opgewekt door de GABAp
receptor). ¢) De pulsen gegenereerd door het controlesysteem.
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Figuur 5. De resultaten wanneer het controlesysteem wel verbonden is met

het model. a) Het EEG bevat nu geen merkbare ictale activiteit meer. Enkel
interictale activiteit kan worden gezien. b) Er is zo goed als geen GABAp
activatie meer. ¢) De controlepulsen die effectief in het model worden gestuurd.

B. Voorspellen van TLE

In Figuur 6 is de tijdsevolutie van de vier maten voor
synchronie weergegeven. Deze zijn berekend op een signaal
dat 200 seconden bevat van elk type van activiteit dat het
model kan simuleren. Dit komt neer op eerst 600 seconden
interictale activiteit, dan 200 seconden pre-ictale en daarna
400 seconden ictale activiteit. De maten werden berekend
uit niet-overlappende tijdsvensters van 5 seconden. Voor de
niet-lineaire interdependentie werden de volgende parameters
gekozen: m = 10, 7 = 2 en k = 10. Er kan duidelijk worden
gezien dat er veel synchronie is tijdens de pre-ictale periode
en tijdens één van de twee types van ictale activiteit.
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Figuur 6. Het verloop van de vier maten voor synchronie, berekend voor een
EEG die 200 seconden van elk type van activiteit simuleert. Hoge waarden
duiden op synchronie en kunnen gevonden worden voor twee intervallen:
600 — 800 s (pre-ictaal) en 1000 — 1200 s (ictaal). a) De maximale
kruiscorrelatie. b) De coherentie. ¢) De niet-lineaire interdependentie (blauw
voor N(X|Y), rood voor N(Y|X)). d) De PLV.

De pre-ictale en ictale synchrone activiteit is van een
verschillende frequentie. Om het onderscheid tussen deze te
kunnen maken zal de PLV worden berekend op een ongefilterd
EEG, maar ook op zeven gefilterde EEG-signalen. De frequen-
tiebanden die worden gekozen zijn de volgende: delta (0.1-
4 Hz), theta (4-7 Hz), alpha (7-13 Hz), lage beta (13-15 Hz),
hoge beta (14-30 Hz), lage gamma (30-45 Hz) en hoge gamma
(45-100 Hz). Deze frequentiebanden worden vaak gebruikt
voor de analyse van een EEG. Principale componenten analyse
(PCA) heeft aangetoond dat het gebruiken van de gefilterde
versies van de PLV ertoe leidt dat de pre-ictale en ictale
synchrone activiteit kunnen worden gescheiden.

De niet-lineaire interdependentie wordt verder niet gebruikt
omdat het lang duurt om deze te berekenen. Voor een signaal
van 5 seconden duurt het langer dan een seconde om deze
te berekenen (Intel Core i5 processor, kloksnelheid 2.40 GHz,
4 GB RAM). Aangezien de voorspelling in real-time moet
gebeuren op een klein apparaat is dit te traag. De andere maten
kunnen in enkele tientallen milliseconden worden berekend. Er
zijn dus tien maten: de kruiscorrelatie, de coherentie, de (niet-
gefilterde) PLV en zeven gefilterde versies van de PLV.

In totaal zijn er 15 kanaalcombinaties, aangezien er zes
EEG-kanalen zijn. Niet elk van deze combinaties is echter
een nuttige combinate. Athankelijk van de locaties van de
meetelectrodes kan er wel of geen synchronie tussen kanalen
optreden. De beste kanaalcombinaties worden gezocht en de
maten van deze combinaties worden in een vector samengeno-
men. De beste kanaalcombinaties zijn: Kal+Ka2, Ka2+Ka3,
Ka3+Ka6 en Ka5+Ka6. De uiteindelijke vector is dus 40-
dimensionaal (4 combinaties van 10 maten).

De resultaten voor verschillende soorten SVMs zijn weer-
gegeven in Tabel 1. Dit is de gemiddelde nauwkeurigheid over
10 ongeziene datasets. De RBF SVMs zijn iets nauwkeuriger
dan de lineaire SVMs. De nauwkeurigheid is echter niet
het enige aspect dat belangrijk is. Ook de snelheid van een
SVM is belangrijk. De trainings- en voorspellingstijden zijn
weergegeven in Tabel II. De data voor training was 2 uur
lang, die voor het testen een half uur. De lineaire SVMs zijn
sneller dan de RBF SVMs. De OVO strategie is sneller dan
de OVA strategie. Training zal normaal off-line gebeuren, dus
vooral de voorspellingstijd is belangrijk. Om een optimale
mix tussen nauwkeurigheid en snelheid te bekomen, wordt er
gekozen voor de RBF OVO SVM. Resultaten zijn weergegeven
in Figuur 7 voor 10 verschillende test signalen.

Nauwkeurigheid
Lin OVO 96.06%
RBF OVO 98.06%
Lin OVA 96.86%
RBF OVA 98.31%
Tabel 1. NAUWKEURIGHEID VOOR VERSCHILLENDE SOORTEN SVMS.
Trainingstijd (in s) | Voorspellingstijd (in ms)
Lin OVO 2.6 42
RBF OVO 154.6 11.6
Lin OVA 15.2 6.9
RBF OVA 334.8 21.9
Tabel II. DE TRAININGSTIID (IN S) EN VOORSPELLINGSTIID (IN MS)

VOOR VERSCHILLENDE SOORTEN SVMSs.
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Figuur 7. De resultaten voor 10 ongeziene test datasets. Blauwe cirkels zijn

de echte labels (1 interictaal, -1 pre-ictaal en O ictaal) en de rode sterren
de voorspelde labels. De nauwkeurigheid op elke dataset staat rechts van de
figuren.

IV. DISCUSSIE

Het controlesysteem voor absences is in staat om alle aanvallen
te onderbreken. Om dit uit te breiden naar signalen uit het
echte leven is er wel een meer algemeen detectiesysteem nodig.
Enkel op basis van amplitude detecteren zal vaak een vals
alarm teweeg brengen. Met behulp van het model is het wel
duidelijk geworden dat een aanval gecontroleerd kan worden
na een snelle detectie.

De voorspellingsmethode slaagt er in om de pre-ictale
periodes van de EEG te vinden. De laatste nodige stap is
het voorspellen van de aanvangstijd van de aanval. Een pre-
ictale periode kan namelijk enkele minuten duren, maar ook
een uur. Eens een pre-ictale periode gevonden is, zal er dus een
andere methode moeten worden gebruikt om de aanvangstijd
te schatten. Dit is een mogelijkheid voor verder onderzoek in
dit gebied.
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Modeling, predicting and controlling epileptic seizures

* Neurological disorder

e Characterized by recurrent seizures
* 50 million people affected

e Lots of different types of epilepsy

e Excessive firing and synchrony of
neurons

» Classification: focal/generalized
seizures (ILAE)

e Treatments: medication, surgery and
brain stimulation

e Why? Improve quality of life for
patients

o

Responsive Neurostimulation System
(In development by NeuroPace, Inc.)

EEG (absence seizures)

EEG types (temporal lobe epilepsy)

e Build a mathematical model of an
epileptic brain

e Simplification! = micro/macro-scale

* Presynaptic firing rate

2

Postsynaptic potential

2

Postsynaptic firing rate
¢ Generalized seizures

e Eg., absence seizure (thalamocortical)
¢ Model of Suffczynski et. al.

Conical |
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¢ Focal seizures

¢ Eg., temporal lobe epilepsy
(hippocampus)
¢ Model of Wendling et. al.

7" Main cells \
\_ (Pyramidal)

Va £ T

A QF H / Other
Inhibitory ™ \ yramida

< interneurans ,>-..,~
/

* Focal Seizures
¢ Interictal-preictal-ictal
* Predict?
» - find preictal periods
e Extract bivariate features from multi-
channel EEG
e Search synchrony
¢ Cross-corr, coherence, phase sync,...
e Classification with SVM
e Linear/RBF-kernel, OVO/OVA

Controlling

® Generalized seizures
¢ |nterictal-ictal

* No preictal periods
¢ - prediction impossible
e Early detection
e Control by brain stimulation after
detection

Implantable device

e Ultimate goal for research
community

e Extra care for computational
complexity
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the model. A control system is designed for this model, with the goal of disrupting
a started seizure. Absence seizures have a sudden onset and can therefore not be
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detection happens purely based on the amplitude of the electroencephalography
(EEG). This allows for a fast detection, but unfortunately lacks the possibility for
generalization towards real life signals. The stimulation part will send pulses into
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used to classify the EEG. Classification is first done by thresholding the synchrony
measures, with a resulting classification accuracy of 95%. This method is however
very likely to fail on real life signals. Classification is therefore also performed
with support vector machines (SVMs) after including some filtered versions of the
synchrony measures. An accuracy of 98% is obtained on independent test signals.
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