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Summary  
Understanding catchment sediment yield is essential for several reasons: it plays a crucial 

role in landscape evolution as well as in several important biogeochemical cycles and 

affects human infrastructure. Sediment yield is assumed to be controlled by factors such 

as catchment area, climate, land use, topography and lithology. Recently however, several 

studies also revealed that seismic activity can strongly influence sediment yield, e.g. 

through earthquake-induced landsliding. Despite its suggested importance, this impact of 

earthquake-induced landslides on sediment yields is poorly understood and remains 

currently unquantified. Therefore, the aim of this thesis is to explore the impact of 

earthquake-induced landslides on catchment sediment yield. 

 

On that account, a large global dataset (239 events) of earthquake events with information 

on associated landsliding was constructed. Compilation of this dataset was based on an 

extensive literature review. Subsets of these data were used to construct models that 

predict the total volume, number and likely spatial distribution of landslides associated with 

a given earthquake. The first two models were based on information of 77 earthquake 

events, while the latter was based on 25 earthquake-induced landslide inventories. 

Integration of these models allows simulating landslide volumes associated with a given 

earthquake in a spatially distributed way, based on the earthquake magnitude, earthquake 

epicenter and the local topography. 

 

Despite large uncertainties on the originally reported landslide numbers and volumes and 

despite a lack of detailed data on potentially relevant variables such as main faults and 

lithology, these models allow for robust predictions. (1) Our total landslide volume model 

explained about 75% of the variation in reported volumes. (2) Deviations between the 

predicted and reported landslide volumes, which ranged over seven orders of magnitude, 
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were smaller than an order of magnitude for 64 of the 77 events. (3) For 24 out of 25 

events our landslide distribution model performed better than a random prediction model 

(mean ROC value: 0.78). (4) Validation of the integrated model showed that errors on the 

spatial distribution of landslide versus non-landslide pixels can be mainly attributed to 

errors on the estimated total number of landslides.  

 

The integrated model was applied to the Siret basin in Romania, which encompasses the 

seismic active Vrancea region. Simulated earthquake induced landslide masses (range of 

median values: 200-13000 t/km²/y) are mostly higher than the sediment yield (250-1800 

t/km²/y) for catchments in the Vrancea region and are mostly lower (range of median 

values: 0-100 t/km²/y) than the sediment yield (55-400 t/km²/y) for catchments outside this 

region. The largest earthquake during the considered period (1977, Mw 7.4) contributed 

largely (20-50%) to the total generated landslide masses during this period in some of the 

catchments outside the Vrancea region, but little (0.4-10%) in most of the catchments in 

this region. 

 

Referring to the aim of this thesis, the constructed models can be used as a global tool to 

investigate the impact of earthquake-induced landslides on the catchment sediment yield. 

To improve this model, further research should focus on a refinement of the volume 

estimates, rather than on the improvement of the allocation procedure. 

 

Samenvatting 
Inzicht in de sedimentexport in een rivierbekken is essentieel om verschillende redenen: 

het speelt een cruciale rol in zowel landschapsevolutie als verscheidene belangrijke 

biogeochemische cycli en het beïnvloedt menselijke infrastructuur. Het wordt 

verondersteld dat sedimentexport wordt gecontroleerd door factoren als bekken-

oppervlakte, klimaat, landgebruik, topografie en lithologie. Recent echter, hebben 

verschillende studies aan het licht gebracht dat ook seismische activiteit de 

sedimentexport sterk kan beïnvloeden, bijvoorbeeld via grondverschuivingen veroorzaakt 

door deze aardbevingen. Ondanks het gesuggereerde belang, is de impact van deze 

grondverschuivingen op de sedimentexport slecht begrepen en is het tot nog toe niet 

gekwantificeerd. Daarom heeft deze thesis tot doel te onderzoeken wat de impact is van 

grondverschuivingen veroorzaakt door aardbevingen op de sedimentexport in een 

rivierbekken. 

 

Om die reden werd een uitgebreide globale dataset samengesteld van 239 aardbevingen 

waarvan informatie omtrent veroorzaakte grondverschuivingen beschikbaar was. Deze 

dataset werd samengesteld op basis van een uitgebreid literatuuronderzoek. Subsets van 

deze gegevens werden vervolgens gebruikt om modellen op te stellen die het totale 

volume, het aantal en het ruimtelijk patroon van grondverschuivingen veroorzaakt door 
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een zekere aardbeving, voorspellen. De twee eerste modellen werden opgesteld op basis 

van 77 aardbevingen, terwijl het derde model gebasseerd is op 25 inventarissen van 

gronderverschuivingen veroorzaakt door één welbepaalde aardbeving. Het integreren van 

deze modellen laat dan toe om grondverschuivingsvolumes veroorzaakt door een zekere 

aardbeving te simuleren op een ruimtelijke manier. Vereiste parameters voor dit model zijn 

de moment magnitude, het aardbevings epicentrum en de lokale topografie in het 

getroffen gebied.  

 

Deze modellen laten toe om robuuste voorspellingen te maken, ondanks de grote 

onzekerheden op de gerapporteerde grondverschuivingsaantallen en -volumes en 

ondanks het gebrek aan gedetailleerde gegevens omtrent potentieel relevante variabelen 

zoals de voornaamste breuklijnen en lithologie. (1) Het opgestelde grondverschuivings-

volume model verklaarde ongeveer 75% van de variatie in de gerapporteerde volumes. (2) 

Afwijkingen tussen de voorspelde en gerapporteerde grondverschuivingsvolumes, die 

zeven grootteordes overspanden, zijn kleiner dan een factor tien voor 64 van de 77 

aardbevingen. (3) Het grondverschuivings-distributie model scoort beter dan een 

willekeurig model voor 24 van de 25 aardbevingen (gemiddelde ROC-waarde: 0,78). (4) 

Validatie van het geïntegreerde model toonde aan dat de fouten op de voorspelde 

ruimtelijke verdeling van grondverschuivings- versus niet-grondverschuivingspixels 

voornamelijk konden worden toegeschreven aan fouten op de schatting van het aantal 

grondverschuivingen. 

 

Het geïntegreerde model werd toegepast op het Siret bekken in Roemenië, dat de 

aardbevingsgevoelige Vrancea regio omvat. De gesimuleerde massa  grondverschuivings-

materiaal (spreiding mediane waardes: 200-13000 t/km²/j) is meestal groter dan de 

sedimentexport (250-1800 t/km²/j) voor bekkens in de Vrancea regio en is meestal kleiner 

(spreiding mediane waardes: 0-100 t/km²/j) dan de sedimentexport (55-400 t/km²/j) voor 

bekkens buiten deze regio. De grootste aardbeving tijdens de beschouwde periode (1977, 

Mw 7,4) droeg sterk (20-50%) bij aan het totale gegenereerde grondverschuivingsvolume 

tijdens deze periode in verscheidene bekkens buiten de Vrancea regio, maar droeg 

slechts weinig (0,4-10%) bij in bekkens binnen deze regio. 

 

De  opgestelde modellen kunnen dus worden gebruikt als een globaal instrument om de 

impact van grondverschuivingen veroorzaakt door een aardbeving  op de sedimentexport 

na te gaan. Om het model te verbeteren, zou verder onderzoek zich moeten toeleggen op 

het verfijnen van de volume schattingen, eerder dan op een verbetering van de ruimtelijke 

toewijzingsprocedure. 
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1 Introduction 

1.1 Problem statement 

Sediment discharge (SD) or sediment export (SE), i.e. the mass of solid material reaching 

the outlet of a catchment expressed in t/day or kg/s (Porterfield, 1972), and consequently 

also sediment yield (SY) in t/ha/y, are controlled by different factors, such as catchment 

area, climate, land use, topography and lithology (Vanmaercke et al., 2011b). Recently a 

number of studies revealed that also seismic activity (SA) is often important for explaining 

differences in sediment discharge of rivers (Chuang et al., 2009; Hovius et al., 2011; 

Korup, 2012; Vanmaercke, 2012; Vanmaercke et al., 2014a; Vanmaercke et al., 2014b). 

This relation is often explained by the fact that SA induces landslides that contribute to the 

SD (e.g. Burbank et al., 1996, Chuang et al., 2009; Hovius et al., 2011). Nevertheless, also 

other mechanisms may explain observed correlations between spatial patterns of seismic 

activity and sediment discharge, including rock fracturing (Scholz, 1968; Molnar et al., 

2007) and rock uplift (Burbank et al., 1996; Hubbard & Shaw, 2009). Likewise, also 

Lavakas (i.e. large erosional gullies), were found to strongly correlate with SA in 

Madagascar, although the mechanisms explaining this correlation are currently poorly 

understood (Cox et al., 2010).  
 

Earthquake-induced landslides (EIL) are defined as the movement of a mass of rock, earth 

or debris down a slope, under the influence of gravity and induced by an earthquake (EQ) 

(Cruden, 1991). EIL can be characterized by their volume and location. The location 

determines whether sediment is deposited directly into the river channel or at the hillslope, 

which will cause a different impact on the SD. Hovius et al. (2011) investigated the effect 

of the large Chi-Chi earthquake of 1999 in Taiwan by confronting detailed mapped 

landslides with the fluvial SD. They state that the observed, sudden pulse in SD (Figure 1) 

can be attributed to these EIL. However, other research questioned these findings (Huang 

& Montgomery, 2012). They argued that it is doubtful to attribute the landslides primarily to 

the effects of the Chi-Chi EQ, as it is also possible that the increased SD after 2000 

resulted from climatic factors. Furthermore, the only studies that are currently available 

regarding the impact of earthquakes on temporal variations in SD, are case studies of 

highly tectonically active and steep catchments in Taiwan, which are strongly affected by 

typhoons (e.g. Hovius et al., 2011; Huang & Montgomery, 2012; Chuang et al., 2009).   
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Figure 1: Evolution (1984-2008) of the unit sediment concentration in major storm floods (Kstorm) at four 

stations in the Choshui catchment (error bars show 1σ range). For direct comparison, values have been 

normalized to the mean of values prior to September 1999 at a station.  The linear least squares best fit to the 

post-earthquake data (R
2
=0.54) shows relaxation of the unit sediment concentrations from a peak after the 

earthquake in 6±0.8 y (1σ shown in grey). Water discharge, normalized to the average of 1984–2007 (~150 m
3 

s
−1

), 

is shown in the background (Hovius et al., 2011, p 3). 

 

Despite the suggested importance of EIL (Burbank et al., 1996, Chuang et al., 2009; 

Hovius et al., 2011), their actual impact on SD and SY for catchments under different 

environmental and tectonic conditions remains poorly understood and unquantified. There 

is therefore a need for more studies in other regions, similar to Hovius et al. (2011) that 

compare detailed spatially distributed EIL inventories, with detailed SD data. However, 

detailed spatially distributed EIL inventories are scarce (Harp et al., 2011). This problem 

could be circumvented, if we succeed in correctly simulating volumes and spatial 

distributions of EIL, under different environmental and tectonic conditions. Recent 

advances concerning EIL (e.g. Malamud et al., 2004a, Parker, 2013) may make this 

possible. Therefore, the correct simulation of earthquake-induced landslide volumes and 

their spatial distribution is the aim of this thesis. 

 

1.2 Background 

1.2.1 Earthquake specific parameters 

Earthquakes can be characterized by a number of different parameters. A first important 

parameter is the epicenter, which is defined as the point at the earth surface, vertically 

projected from the hypocenter, which is the point in the earth crust where a seismic rupture 

originates (USGS, 2012). The distance between the hypocenter in the earth crust and the 

epicenter at the earth surface is defined as the focal depth (FD). Another parameter is the 

earthquake magnitude (M), a number indicating the size of an EQ or the energy released 

by an earthquake. Different scales have been developed, mostly used are: local 

magnitude (Ml) or Richter magnitude, surface-wave magnitude (Ms), body-wave magnitude 
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(Mb) and moment magnitude (Mw) (USGS, 2012). The first three scales are directly based 

on registered amplitudes of different waves (e.g. body waves travelling through the earth 

or surface waves travelling through the earth’s upper layers) generated by an EQ and 

measured by a seismograph (Richter, 1935; Gutenberg & Richter, 2010). The fourth 

important scale (Mw) was introduced to cope with the problem of saturation at higher 

magnitudes and inadequate representation of greater (>100 km) rupture lengths 

(Kanamori, 1977; Campbell, 1997). Contrary to the other scales Mw is not based on the 

amplitude of the generated earthquake waves, but on the seismic moment (Mo), which is 

seen as one of the most precise measures of earthquake size. As explained before, Mw is 

more appropriate for large magnitudes compared to other measures, but approximates 

these measures for lower magnitudes (Mw < 7.5) (Kanamori, 1977; Keefer, 1994; 

Campbell, 1997). Mo and Mw are defined as follows (respectively: Kanamori, 1977; Hanks 

& Kanamori, 1979): 

        ̅                   (1) 

   
 

  
                    (2) 

 

With µ the rigidity,  ̅ the average fault slip and s the rupture area. The rigidity of a material 

(rock) is defined as the materials resistance to deformation and is expressed as the ratio 

between the normal stress and the strain (Baumgart, 2000). The fault slip is the relative 

displacement of two sides of a fault, ranging from centimeters for small earthquakes to 

tens of meters for large earthquakes (Ammon, 2014). The rupture area is the area at the 

earth surface that slipped (Ammon, 2014). Keefer (1994) states that a Mw of 4 is required 

to induce landsliding, with Mw smaller than 5 usually causing only a few landslides. 

Another frequently used type of parameters to characterize earthquakes is intensity. This 

measure indicates the severity of an EQ in terms of effects to human infrastructure and the 

earth’s surface (USGS, 2012). The Modified Mercalli Intensity (MMI) scale is most 

commonly used and is associated with peak ground acceleration (PGA) and peak ground 

velocity (PGV) triggering damage at the earth surface (Keefer, 1984; USGS, 2013b). 

Unlike the characterization of an EQ by a single magnitude, MMI depends on the location 

in the earthquake region. 

 

1.2.2 Landslide parameters linked to earthquake activity 

The epicenter, magnitude and intensity can be used to assess the impact of an EQ in 

terms of landslides. Important characteristics of the earthquake-induced landslides are the  

total landslide volume (LV), the total number of landslides (LN), the total landslide area 

(LA), the landslide distribution (LD), the area affected by landslides (LAA) and the 

maximum distance from the epicenter over which landslides are triggered (Dmax) LAA is 

defined as the area of a polygon enclosing all observed landslides. However, sometimes a 

rougher best fit polygon is applied, resulting in a larger reported LAA (LAAr) (Jibson & 

Harp, 2012).  
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1.2.3 Predicting the total landslide volume 

Current best estimates of earthquake-induced landslide volumes (LV) are based on the 

moment magnitude as an explanatory variable (e.g. Keefer, 1994; Malamud et al., 2004a). 

A first relation was constructed by Keefer (1994), based on fifteen historical earthquake 

events for which LV was determined from detailed field investigations and from 

interpretation of aerial photographs. All events occurred in areas with high historical 

seismicity, but would represent a wide variety of climatic and geologic conditions (Keefer, 

1994). This empirical relationship was only slightly modified with the inclusion of the 

Northridge EQ (United States, 1994, Mw 6.7) by Malamud et al. (2004a). The proposed 

relation is presented in Figure 2 and shows a good power-law dependence of LV on Mw. 

However, the relation is based on relatively few events with a Mw ranging from 5.3 to 8.6 

(Malamud et al., 2004a). This small amount of available data on LV is explained by the 

difficulty to produce comprehensive landslide inventories (Harp et al., 2011).  

 
Figure 2: Total landslide volume generated by an earthquake (LV) as a function of the moment magnitude (Mw) 

(Malamud et al., 2004a, p 50). 

 

Next to the relation between Mw and LV, Malamud et al. (2004a) proposed a probability 

density distribution function of landslide sizes for events triggering landslides (e.g. rainfall, 

snowmelt or earthquake). In Figure 3 it is shown that different events follow the same 

probability density distribution. The fitted function is the following (Malamud et al., 2004a):  

 

 (        )   
 

  ( )
(
 

    
)
   

   ( 
 

    
)    (3) 

With  ( ) the gamma function,   the parameter controlling the power-law decay for 

medium and large values of the three parameter inverse-gamma probability distribution, a 

the parameter controlling the location of maximum probability in the three parameter 

inverse-gamma probability distribution, s the parameter controlling the exponential rollover 
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for small values in the three-parameter inverse-gamma probability distribution and with Al 

the individual area of a landslide (Malamud et al., 2004b).  

 
Figure 3: Dependence of the landslide probability densities (p) on the landslide area (AL) for three landslide 

inventories (1) 11,111 landslides triggered by the 17 January 1994 Northridge earthquake in California; (2) 4233 

landslides triggered by rapid snowmelt in the Umbria region of Italy in January 1997; (3) 9594 landslides 

triggered by heavy rainfall from Hurricane Mitch in Guatemala in late October and early November 1998 

(Malamud et al., 2004a). 

 

Based on this general distribution function, Malamud et al. (2004a) report a good 

agreement between LV and LN, regardless of the location or triggering mechanism of the 

landslide event. They derive the following equation (Malamud et al., 2004a): 

 

                         (4) 

 

Finally an empirical scaling relationship between the individual landslide area (Al, km²) and 

the individual landslide volume (Vl, km³), is proposed (Malamud et al., 2004a): 

 

          
          (5) 

 

1.2.4 Predicting the spatial patterns of earthquake-induced landslides 

Besides LV prediction, considerable work has been done on predicting the location where 

landslides are most likely to occur (e.g. Vanacker et al., 2003; Guzzetti et al., 2006; Van 

Den Eeckhaut et al., 2006; Miles & Keefer, 2009; Parker, 2013). However, most of these 

efforts were conducted in specific areas and require detailed input data that is unavailable 

on a global level (Miles & Keefer, 2009; Parker, 2013). Hence, these models are generally 

not appropriate for application in other regions. Parker (2013) made a first attempt towards 
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a general applicable EIL probability model. Different variables characterizing the local 

seismic forcing (e.g. fault plane distance and hillslope orientation with respect to seismic 

source) and the local stability of hillslopes (e.g. local hillslope gradient, solar radiation and 

precipitation) were tested.  Based on his analyses, Parker (2013) constructed a model that 

predicts the susceptibility of landslides related to a given earthquake event based on Mw, 

the distance to the main fault (DF) and the local hillslope gradient. Still, this model was 

only based on landslide inventories from 5 relatively large earthquake events (Mw 6.7-7.9). 

Furthermore, this model requires spatially explicit information on the main faults. 

 

Landslide distribution research concerning LAA, Dmax and the landslide concentration with 

respect to distance to the epicenter (LC-D) can also give a better insight in the zones of 

landslide occurrence. Similar to LV, LAA and Dmax are generally related to Mw (Keefer 

1984; Keefer, 2002). The results presented in Figure 4, show increasing LAA and Dmax 

with increasing Mw. Nonetheless, the scatter on these trends is large. Jibson & Harp 

(2012) suggest that part of this scatter might be explained by different tectonic settings, 

with smaller attenuation in non-plate-boundary settings explaining for greater LAA and 

Dmax. It is also this attenuation of seismic waves that is put forward to explain for the 

observed decreasing landslide concentration away from the epicenter (Meunier et al., 

2013). Indeed, different authors (e.g. Keefer, 2002; Guzzetti et al., 2009b; Gorum et al., 

2011) find an exponentially decreasing LC in function of the distance to the epicenter. This 

is shown for the Wenchuan EQ (China, 2008, Mw 7.9) in Figure 5. 

 

 
Figure 4: (left) Upper bounds for landslide-affected area (LAA) in function of moment magnitude (Mw). The solid 

line is an upper bound of Keefer (1984), the dashed line is an upper bound of Rodriguez et al. (1999). (right) 

Upper bounds for the maximum distance from the epicenter over which landslides are triggered (Dmax) in 

function of the moment magnitude (Mw) in three major landslide categories (defined in Keefer, 1984) based on 40 

historical earthquakes (Keefer, 2002, p 487). 
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Figure 5: Landslide concentration (LC) in function of the distance to the epicenter (D, km) for the Wenchuan 

earthquake (China, 2008, Mw 7.9). D is displayed in x-axis in kilometer (Gorum et al., 2011, p 162). 

 

1.2.5 Important factors for the occurrence of earthquake-induced 

landslides 

The previous two sections already revealed the importance of magnitude, slope and 

distance to the seismic source. This section provides a general overview of factors that are 

stated to be important for the occurrence of EIL. These factors should be considered for 

both LD and LV prediction with the following difference. LD prediction requires the 

knowledge of predictor variables coupled to individual locations in order to investigate the 

locations susceptibility for EIL. For LV prediction on the other hand, the knowledge of 

certain predictor variables has to be integrated over the potential LAA, to assess the 

overall susceptibility of the affected area. 

 

1.2.5.a Magnitude, distance to seismic source and focal depth 

All current research finds log-linear positive relationships between Mw on the one hand and 

LV, LN and LAA on the other hand (e.g. Keefer, 1994; Rodriguze et al. 1999; Malamud et 

al., 2004a). Observed increasing strength and duration of ground motions can explain for 

the larger landslide concentration at a certain distance from the epicenter and the larger 

affected area with increasing M (e.g. Bommer & Martinez-Pereira, 1999; Jibson, 2007). 

Therefore, M provides a direct measure for the LV potential, whereas distance to the 

seismic source (D or DF) is useful to delineate areas of increased landsliding. In this 

context, Keefer (1994) states that the smallest earthquakes likely to trigger landslides have 

Mw of about 4 and that typically more than 95% of the EIL are concentrated in less than 

half of the LAA. Furthermore most of the generated landslide volume over time in a certain 

region is caused by a few large earthquakes (92% of volume by events with Mw>7) 
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(Keefer, 1994). For individual events the total volumes are dominated by a small number 

of large landslides (Guzzetti, 2008).  

 

A parameter related with distance to the seismic source is focal depth. Similar to 

increasing distances from the epicenter, LN is stated to decrease with increasing FD 

(Parker, 2013). 

 

1.2.5.b Seismic history and peak ground acceleration 

Parker (2013) suggests that the seismic history might influence the amount of landslides 

triggered. He states that the same EQ could trigger a different LV depending on the 

accumulated damage by previous earthquakes. A detailed earthquake history preceding 

the event of interest, would then contribute to a better insight in the triggered landslide 

volume. Peak ground acceleration is another measure that could account for the seismicity 

of a region if it is used as an integrated measure. PGA represents how strong the ground 

accelerates (m/s²). In this way a dataset of expected PGA, compiled based on historic 

earthquake events (Shedlock et al., 2000), is a good proxy for the seismicity of a region in 

general (Vanmaercke et al., 2014a).  

 

Besides, PGA itself can be used to indicate the intensity of shaking at each location for a 

single earthquake event (Meunier et al., 2013). The United States Geological Survey 

(USGS, 2013b) uses PGA to compile so called ‘Shakemaps’. These maps are a more 

detailed proxy for the attenuation of seismic waves, compared to the distance to the 

epicenter. For instance, Meunier et al. (2008) demonstrated that the amplification of PGA 

near ridge crests resulted in the occurrence of more landslides, which would not be 

accounted for by D. However, shakemaps are unavailable for many historical and smaller 

earthquakes.  

 

1.2.5.c Topography 

Landslide probability increases with increasing slope gradient (Keefer, 2000; Parker, 

2013). Also many other topographic variables were used in previous landslide probability 

studies, for instance: slope aspect, catchment elevation, profile and plan curvature,… (e.g. 

Vanacker et al., 2003; Van Den Eeckhaut et al., 2006; Parker, 2013). However, most of 

these variables require high resolution input data, which is unavailable and 

computationally expensive on a global scale. Moreover, the results of their research 

indicate that the slope gradient is the most important factor. Apart from slope gradient, also 

local relief (LR) can be used to indicate the overall topography in a region. The advantage 

is that LR is still relevant when it is calculated based on coarser resolution data (e.g. 

GTOPO30). LR is defined as the maximum difference in elevation within a radius of five 

kilometer (Montgomery & Brandon, 2002; Vanmaercke et al., 2012).  The work of 

Montgomery and Brandon (2002) suggests that next to LR, threshold variables focusing on 
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steep reliefs can be interesting to assess the overall susceptibility of a region for 

landsliding. They found a strong non-linear relation between mean local relief  (MLR) and 

erosion rates, suggesting that certain thresholds in topography might explain for significant 

increases in erosion, for instance by landsliding.  

 

1.2.5.d Lithology, land cover and climatic factors. 

Different research demonstrates that landslide occurrence is influenced by the substrate 

underlying the landside area (e.g. Keefer, 2000; Alfaro et al., 2012; Meunier et al., 2013). 

Concerning land cover, Stokes et al. (2009) state that trees have more potential to prevent 

landsliding than other vegetation, by anchoring the ground. Also related to land cover is 

the fraction of water surfaces in the LAA. Keefer (1994) points out that earthquake 

epicenters might be located offshore, consequently severely limiting the potential areas of 

subaerial landsliding. Finally, also certain climatic conditions or weather events, such as 

extreme rainfall or rapid snowmelt can trigger landslides (e.g. Malamud, 2004a; TRIGS, 

2009). As a consequence, it can be expected that reinforcing effects might occur when 

such events occur before, during or after an earthquake events (e.g. Hovius et al., 2011). 

 

1.3 Relevance 

This study will contribute to a better quantification of earthquake-induced landslides as a 

possible important factor in the erosion budget (Keefer, 1994). Consequently, it can also 

contribute to a better understanding of the observed seismic control on SY (Hovius et al., 

2011; de Vente et al., 2013; Vanmaercke et al., 2014a). The results of this thesis will 

contribute to SY models that incorporate the role of EIL and may consequently yield 

predictions that are more spatially and temporally accurate.  Furthermore, it might improve 

our knowledge about the effect of earthquakes on long-term landscape evolution, which is 

currently unconsidered (National Research Council, 2010). For instance, large amounts of 

earthquake-induced sediment reaching the river channel may influence the rate of bedrock 

incision for a long period after the EQ (Koi et al., 2008; National Research Council, 2010). 

Currently, earthquakes are mostly seen as a process modifying landforms by landsliding, 

but not directly as interfering in the process of landscape evolution, which is considered to 

be controlled by long term tectonic uplift and associated river incision (Schumm, 2005). 

 

This master thesis also has practical relevance in the field of catchment management and 

landslide hazard assessments. More precise SY estimates lead to better assessment of 

the sustainability of human infrastructure (e.g. water reservoirs). Better insight in SD 

variability (e.g. sediment pulses) allows for the adaptation of this human infrastructure to 

accommodate for this variability and to enlarge their lifespan. This is important because 

many people are dependent on these reservoirs for hydroelectricity, water for agriculture 

or for other purposes. Besides, insight in landsliding and SY is also important for: an 

adequate land planning, predicting the impact of management interventions, assessing 
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flooding risk, export of sediment-fixed nutrients and sediment pollution, which underlines 

the ecological relevance of this study (Meybeck, 2003; Vanmaercke et al., 2011a; de 

Vente et al., 2013).  

 

Apart from their significant contribution to the SD (Koi et al., 2008), landslides form an 

important direct threat to human lives and infrastructure. Therefore, this thesis may also 

contribute to a better understanding of natural hazard by EIL. This may facilitate or result 

in the creation of landslide susceptibility maps (e.g. Van Den Eeckhaut et al., 2006). 

Another severe risk is the occurrence of landslide dams in rivers triggered by earthquakes. 

These dams may cause a secondary hazard of subsequent flooding (e.g. Xu et al., 2009; 

Dong et al., 2009). Finally, this research may also contribute to a better prediction of 

earthquake risk. Better analysis of the sedimentary record, may contribute to better 

quantifications of EQ magnitudes on historical and geological timescales (Malamud et al., 

2004b; Moernaut et al., 2007) In this context, one can also use the landslide distribution 

pattern, to supplement ground motion records, if accelerometers are lacking (Meunier et 

al., 2013). 

 

1.4 Objectives 

The overall objective is to get a better insight in the total generated landslide volume and 

landslide distribution as the result of an earthquake and to explore the link between 

earthquake-induced landslides (EIL) and sediment yield. More specific the objectives are: 

 

1.  To compile an earthquake-landslide (E-L) dataset with information on earthquakes and 

associated landslide properties (For the earthquake: name, country, date of 

occurrence, epicenter location, magnitude, intensity and focal depth. For the landslide 

properties: landslide-affected area, maximum distance from the epicenter over which 

landslides are triggered, total number of landslides, total landslide volume and volume 

of the largest individual landslide). 

2. To construct a model that allows simulating the total earthquake-induced landslide 

volume (LV model) and distribution (LD model). Both models will be constructed 

separately and will be integrated afterwards as a spatially distributed landslide volume 

model (DLV model). 

3. To apply this integrated model to historical earthquake events and to confront it with 

measured SD data at the catchment scale. The application will be performed for the 

subcatchments of the Siret river in Romania, since daily sediment discharge data for a 

long measuring period is available and because a first analysis of this data is provided 

by Vanmaercke et al. (2014b). 
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1.5 Research question and hypotheses 

The main research question of this thesis is: 

‘Which factors determine the total generated landslide volume and landslide distribution 

caused by an earthquake?’ 

 

The hypotheses underlying this study are: 

1. Overall higher average sediment yields in seismically active regions can at least partly 

be attributed to an increase in sediment supply by earthquake-induced landslides (EIL) 

(section 1.1).  

2. EIL will result in ‘pulse’ of sediment discharge after the earthquake, which will fade 

away over time (section 1.1).  

3. The occurrence and magnitude of such pulses depend on catchment characteristics, 

the properties of an earthquake and the seismicity of the region.  

4. The total earthquake-induced landslide volume (LV) can be estimated, based on 

properties of the earthquake (e.g. magnitude) and environmental characteristics (e.g. 

topography, lithology and climate) (section 1.2.5). 

5. The spatial distribution of EIL can be estimated, based on properties of the earthquake 

(e.g. magnitude) and environmental characteristics (e.g. topography, lithology and 

climate) (section 1.2.5). 

6. Both constructed models can be integrated to one model that can simulate spatially 

distributed landslide volumes. 

7. Such an integrated model can be used to explore the impact of EIL on the sediment 

discharge. 
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2 Materials and Methods 

2.1 Study area and time frame 

Compilation of an E-L dataset and consequently the integrated spatially distributed 

landslide volume model are based on data that can be found in scientific literature. Still a 

time-space frame is useful to position the different parts of this thesis (Figure 6). The data 

collection is carried out on a global scale with data going as far back as the 16th century. 

Model application is carried out for the subcatchments of the Siret river in Romania, since 

daily SD data is available and because a first analysis of this data is provided by 

Vanmaercke et al. (2014b). SD is measured for several decades at 38 subcatchments (59-

4092 km²) that were unaffected by reservoirs (Vanmaercke et al., 2014b). Considered EQ 

events in the region span a time period of several decades (1965-2014).  

 

Regarding the considered processes in this study, individual EIL occur on the hillslope 

level, but the process can affect whole regions. Most EIL are very fast to relatively fast 

moving processes (Keefer, 1984). SD takes place at the catchment level and refers to the 

transport of solid material on the short term (t/day or kg/s) (section 1.1). Finally, seismic 

activity occurs on a regional to sub-continental scale. Single earthquakes are short lived, 

but the swarm of earthquakes with foreshocks and aftershocks included can last for 

several months (Guzzetti et al., 2009b). 

 
Figure 6: Time-space frame for the different parts and processes under consideration in this master thesis. With 

E-L: earthquake-landslide, EIL: earthquake-induced landslides, SD: sediment discharge and SA: seismic activity 

(own processing). 
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2.2 Compilation of an earthquake-landslide dataset 

In order to construct our spatially distributed landslide volume model, an extensive 

literature review was conducted (section 1.4). The focus was on scientific publications 

containing information on landslides associated with specific and known earthquake 

events (e.g. USGS, 2013a). The minimum requirement to include an EQ event in the 

dataset is the availability of information on the earthquake data, epicenter location and 

magnitude, together with one of the following parameters: total landslide volume (LV), total 

landslide number (LN), total landslide area (LA), landslide-affected area (LAA) or 

maximum distance from the epicenter over which landslides are triggered (Dmax). 

Supplementary information on the earthquake intensity, focal depth, volume of the largest 

individual landslide and remarks on landslide density, lithology and landslide type was 

added to the dataset as well. Earlier published review articles (e.g. Keefer, 1994; 

Rodriguez et al., 1999) were used to retrieve original sources. Next, also a thorough 

literature search was undertaken to retrieve more recent publications. Finally, to expand 

the coverage of the dataset, also specific literature published in other languages was 

searched for. Since it can be expected that certain, especially older, literature is not 

published in English (e.g. Spanish and Italian literature aiming for tectonically active 

regions in Southern Europe and Latin-America).  

 

Some additional remarks on the compilation of this dataset have to be made. Compiling a 

large dataset from a variety of different sources is not easy and not entirely objective. For 

example, we noted quite often that different research on the same events reports different 

values for parameters such as epicenter location, M, LN, Dmax and FD. Each time we tried 

to select the most recent or reliable data and, where possible, included a range of the 

reported values. Additionally also different measures are reported for the same parameter. 

For instance, Ms, Ml, Mb and Mw are used to define the magnitude, but it is not always 

mentioned, which specific magnitude is reported. However, for most events this is not a 

problem because the measures of magnitude approximate each other for lower 

magnitudes (section 1.2.1). Finally, in the case of imprecise epicenter locations (e.g. a 

location indicated on an undetailed map) or the total absence of reported epicenters, 

coordinates of the USGS (2013a) were used.  

 

2.3 Predicting the total volume of earthquake-induced 

landslides associated with a specific earthquake event 

2.3.1 Data selection and volume estimates 

In order to develop a model that empirically predicts the total volume of landslides 

triggered by an earthquake, we selected case-studies from our compiled database (section 

2.2), for which a total volume of the earthquake triggered landslides could be estimated. 

Some studies reported estimates of the total landslide volume (LV). Some studies reported 
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a range of LV. In these cases, the average of the range was used. Other studies do not 

report a total landslide volume but only (an estimate of) the total landslide number (LN). 

We only considered studies for which this LN was deemed to be complete (e.g. a clear 

counting of the number of landslides), or for which the range of estimated LN was limited 

to about one order of magnitude (e.g. 100 to 1000 landslides). In the latter case, we used 

the average of this range as the representative value. Reported landslide numbers were 

converted to a total landslide volume, using equation 4 (section 1.2.3). If possible, the LV 

estimates obtained with this equation were further refined with available information on the 

volume of the largest landslide. LN was then reduced by 1 and after converting to LV, the 

volume of this largest landslide was added.  

 

In order to account for the uncertainty of the data with respect to the different LV 

acquisition methods, different weights were given to the earthquake events. The LV subset 

is given a weight of four, the LN subset is given a weight of two, and the LN range subset 

gets a weight of one. Even though this is an arbitrary choice, it is also a logic choice to rely 

more on better data. 

 

2.3.2 Moment magnitude – maximum landslide distance to epicenter 

relation and mask file creation 

In order to analyze which factors, other than earthquake magnitude (section 1.2.5.a), 

control the LV associated with a specific earthquake event, information on additional 

potentially relevant environmental characteristics was extracted for each earthquake event 

with a total LV estimate available (see previous section). To extract these characteristics, 

we required to know which area to consider (mask area). Therefore, a magnitude-distance 

relationship was developed, based on reported Dmax values for specific events in our 

database. This relationship was used to determine the radius of a circle around the 

epicenter, which we considered as the zone in which environmental characteristics could 

have a relevant influence on the amount of earthquake-triggered landslides. 

 

For several events, also the extent of the total landslide-affected area was reported. It 

could be argued that this presents a better measure to determine the area relevant for 

earthquake triggered landslides. However, there are two reasons why it is better to use 

maximum distances. First, it is easier to determine Dmax more correctly, since it is just an 

Euclidean distance. The exact shape or delineation method of LAA on the other hand, was 

generally unknown, which entrained much uncertainty (section 1.2.2). Secondly, if no 

knowledge exists about the shape of the LAA, this area should be converted to a circular 

area, as the best approximation. As a consequence, it could result in calculating 

environmental characteristics for the wrong area. Using Dmax as a basis for a circular mask 

area, at least guarantees that the whole LAA is taken into account, with the only drawback 

that partially non-affected marginal areas might be included in the mask. To cope with this 
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drawback, the analysis was repeated with circular areas determined by half of the radius. 

Previous research already indicated that most of the triggered landslides occur close to the 

epicenter (section 1.2.4). Consequently, it can be expected that the environmental 

characteristics in this central area are more important to explain for the total triggered 

landslide volume.  

 

To create mask areas, epicenters were first located in GoogleTM Earth (2013) for a manual 

check on the location. The actual mask area creation was then performed in ArcMap (Esri, 

2013) with the BUFFER module. The resulting mask files were imported in IDRISI 

(Clarklabs, 2013). 

 

2.3.3 Determination of environmental characteristics and earthquake 

event parameters 

Table 1 lists the different variables we considered in our correlation and partial correlation 

(after correction for Mw) analyses with LV. These variables are further discussed in the 

subsections below. 

 

Table 1: Overview of the considered variables for the correlation analyses, with indicated units and sources 

(own processing). 

variable unit source 

slope  % CGIAR-CSI, 2004 

local relief (LR) m USGS-EROS, 2013 

peak ground acceleration (PGA) m/s² Giardini et al., 1999 

mean annual temperature (T) °C New et al., 2002 

mean annual precipitation (P) mm/y New et al., 2002 

modified Fournier index (MFI) - New et al., 2002 

tree cover % Defries et al., 2000 
land fraction 
 

% 
 

CGIAR-CSI, 2004; USGS-EROS, 
2013  

lithology erodibility factor - Dürr et al., 2005 
lithology classes 
 

- 
 

Dürr et al., 2005; Hartmann & 
Moosdorf, 2012 

moment magnitude (Mw) - various sources (Appendix 1) 

focal depth (FD) km various sources (Appendix 1) 

 

By means of IDRISI (Clarklabs, 2013) the environmental characteristics for each mask file 

could be determined. The procedure of analysis was similar for the different environmental 

characteristics and is illustrated in Figure 7. This procedure was automatized my means of 

so called ‘macro’s’ in the IDRISI software (Clarklabs, 2013). AVL-output files contained all 

required information for further processing in MATLAB (2013), in order to determine the 

average, minimum, maximum and standard deviation of the considered environmental 

characteristics in the mask area (e.g. mean slope and maximum slope). For the 



     16 

 

earthquake specific parameters of M and FD no analysis was required, as data was 

directly available from scientific literature (section 2.2).  

 

 

 

Figure 7: Schematic overview of the procedure to determine the environmental characteristics in IDRISI 

(Clarklabs, 2013) (own processing). 

 

2.3.3.a Topography  

Two topographic variables were considered: slope and LR (section 1.2.5.c). LR 

calculations were based on GTOPO30, a global digital elevation model (DEM) with a 

horizontal resolution of about 1000 meter (USGS-EROS, 2013). In a second phase also 

slope parameters were calculated, but based on higher resolution data: i.e. NASA’s 

‘Shuttle Radar Topography Mission’ (SRTM) data, with a resolution of about 90 meter 

(CGIAR-CSI, 2004). However, the coverage of this dataset extents only as far as 60° 

north, so that for the Denali earthquake in Alaska (United States, 2002, Mw 7.9), other data 

were required. For this event we used DEM data provided by de Ferranti & Hormann 

(2013) with the same resolution as SRTM.  

 

Since our first analyses showed that slope and LR explained little of the variation in LV 

(see section 3.2.3.c) additional topographic variables were considered. For this purpose 

some slope-and LR derived threshold variables were added to provide robust measures 

that focus on the steep topography in the mask areas (section 1.2.5.c). The idea is that a 

measure as MLR might be too general for a large and diverse area, while a measure as 

maximum LR is less robust. The added variables were: (1) the fraction of land pixels in the 

mask area, surpassing a certain slope or LR threshold. With thresholds for LR set to 200, 

500, 1000, 1500, and 2000 m and for slopes thresholds ranging from 10 to 100% with 
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increment of 10%. (2) Mean values of all pixels surpassing the 80th and 90th percentile for 

the slope and LR variable. Both type of measures are robust and focus on steep 

topography in the same time.  

 

2.3.3.b Peak ground acceleration  

As stated in section 1.2.5.b. The seismic history of the study area might influence the LV. 

However, this would require an individual earthquake history preceding each earthquake 

event. Reconstructing such histories was beyond the practical possibilities of this thesis. 

We therefore used a dataset of expected PGA (Shedlock et al. 2000) as a proxy for the 

general rate of seismic activity in the region around the epicenter. This map (Figure 8; 

resolution: 0.1°) indicates the expected PGA with a 10% exceedance probability (EP) in 50 

years. It was based on a compilation of different studies taking into account historical 

earthquakes, active faulting and soil characteristics.  

 
Figure 8: The Global Seismic Hazard Map. Peak ground acceleration (PGA) with a 10% chance of exceedance in 

50 years is depicted in m/s². White and green correspond to low seismic hazard (0% - 8% g), yellow and orange 

correspond to moderate seismic hazard (8%-24%g), pink and dark pink correspond to high seismic hazard (24% 

- 40%g) and red and brown correspond to very high seismic hazard (>40%g) with g the acceleration of gravity 

(Shedlock et al., 2000, p 683).  

 

2.3.3.c Mean annual air temperature, mean annual precipitation and modified 

Fournier index  

To account for the potential role of climatic factors (section 1.2.5.d) several parameters 

were considered. Similar as for the seismic history it would be ideal to have detailed 

information on these weather conditions shortly before and after the earthquake events. 

These data were however not available. We therefore relied on long term climatic data. 

Mean annual air temperature (T) and mean annual precipitation (T) were derived from the 

“CRU-CL 2.0” climate dataset (New et al. 2002). These datasets contain average monthly 

rainfall and temperature data for the period 1961-1990. Not all earthquake events occur in 

the period whereupon this data is based, but it can be expected that the climate at a 
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certain location is a good proxy for earlier and later dates as well.  Additionally, the 

Modified Fournier Index (MFI) was determined. This variable is expected to better 

represent intense rainfall events and rainfall variability throughout the year and 

consequently to better account for the importance of extreme weather conditions 

(section1.2.5.d). MFI is defined as (Arnoldus, 1980): 

 

    ∑
    

     

  
                (6) 

 

2.3.3.d Tree cover and land fraction 

Concerning land cover, especially tree cover and the fraction of land in the affected area 

might influence the LV (section 1.2.5.d). The tree cover data, with a resolution of about 1 

km, is described in Defries et al. (2000), Hansen et al. (2000) and is based on data from 

the Advanced Very High Resolution Radiometer (AVHRR) from the years 1992-1993. 

Similar to the climate data, these data are not ideal for earthquake events occurring much 

earlier or later. However, opposed to slow changes in the climate (IPCC, 2014), tree cover 

changes can be very large over several decennia induced by human intervention 

(Vanacker et al., 2003). On the other hand, these induced changes might be rather local, 

limiting the impact over large areas represented by the mask areas.  

 

Land fractions for each mask area are calculated based on SRTM and GTOPO30 data 

(CGIAR-CSI, 2004; USGS-EROS, 2013). SRTM data is preferable, because of the higher 

resolution and the consequent better representation of inland water bodies. However, for 4 

events, the SRTM data was lacking for a part of the mask area. These 4 SRTM fractions 

could be calculated based on a regression function between GTOPO30 and SRTM land 

fractions of events for which both fractions are known. All reported landslide volumes were 

then linearly corrected by dividing them by their SRTM land fraction in the mask area 

(LVlc).  

 

2.3.3.e Lithology 

To explore the role of lithology, three different datasets were used. Firstly, we used a 

global dataset compiled by Dürr et al. (2005), representing 15 different rock types as well 

as a class for water and for ice surfaces. The resolution of the map is 0.5°. A second 

dataset was a more recent lithology map, again available on a resolution of 0.5°, including 

16 different classes (Hartmann & Moosdorf, 2012). As a third variable, the global dataset 

of Dürr et al. (2005) with nominal classes was reclassified based on the classification 

system of Syvitski & Milliman (2007). A score was assigned to each lithology, depending 

on the erodibility. This resulted in 6 new classes with values ranging from 0.5 for erosion 

resistant rock (e.g. metamorphic rocks) to 3 for very erodible lithologies (e.g. loess) 

(Syvitski & Milliman, 2007).  Finally, based on the two nominal lithology datasets, a binary 

variable was created with weak lithologies on the one hand and stronger lithologies on the 
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other hand. A soil variable was not considered, because no good worldwide data was 

available for soil classes.  

 

2.3.3.f Moment magnitude and focal depth 

Finally, also two important EQ specific parameters: Mw and FD were considered (section 

1.2.5.a). Both variables were retrieved from scientific publications (Appendix 1) and require 

no further processing. If multiple values for the FD were reported the average value of 

these was taken. For about 10% of the considered events no reported FD was available, 

but could be retrieved via the USGS (2013a). 

 

2.4 Predicting the spatial distribution of earthquake-induced 

landslides 

2.4.1 Obtaining earthquake-induced landslide inventories 

In order to model the expected spatial distribution of the volumes associated with EIL, we 

compiled inventories of mapped landslides associated with specific earthquake events. 

These inventories were found in scientific literature, but were in most cases only available 

as a published map. Therefore, these maps were first georeferenced, before the landslides 

could be digitized. Since the quality of the georeferencing determines the accuracy of the 

eventually digitized landslides, this was done very carefully. Georeferencing was carried 

out with the module RESAMPLE in IDRISI (Clarklabs, 2013) with the number of selected 

ground control points ranging from 7 to 41. The module gives an indication of the overall 

accuracy of the georeferencing by means of a total root mean squared error (RMSE). This 

error should be minimized, but is not a very good indicator for the average location error of 

elements on the map, because georeferencing is often based on a grid, which can be 

more accurate than the map itself. Moreover, RMSE also strongly depends on the number 

of georeferenced points, i.e. it generally increases with the number of reference points. 

Both factors may result in an underestimation of the error on the mapped elements such 

as landslides. Therefore, the georeferenced image was converted to a KML-file to display 

in GoogleTM Earth (2013). In this way, the error on the image could be estimated by 

selecting 5 points that were well distributed over the map and clearly recognizable on both 

the image and GoogleTM Earth (2013). Based on these 5 points, an indication of the 

average absolute error (in meters) and the error range could be calculated. Also the 

dimensions of the image were measured in Google Earth to assess its resolution (i.e. for 

each image, only the number of rows and columns was known). Again this is an 

approximation, but the resolution error was estimated to be smaller than 1 m, which is 

more than sufficient.  

 

After the image was georeferenced, the landslides were digitized. Mostly, landslides were 

digitized as separate points, but depending on the source map, also landslide areas were 

digitized. These areas were either digitized manually or, if possible, automatically using a 
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supervised classification method. The latter was done, using the RECLASS, MAKESIG 

and MAXLIKE modules in IDRISI (Clarklabs, 2013). Automatic digitization required 

additional corrections. For example, pixels representing a landslide area might by overlain 

by other map elements such as fault lines (e.g. for the 2008 Wenchuan earthquake; 

Parker, 2013), resulting in wrongly classified pixels. Also the epicenter, the study area (if 

provided, otherwise the original map boundaries were used) and (if available) major fault 

lines were digitized. Apart from georeferencing errors, the overall quality of the inventory 

was assessed, paying attention to the overall level of detail and original scale of the 

digitized map; the likely completeness of the landslide inventory; whether the mapped area 

was accurately indicated or not; the spatial extent of the investigated area in relation to the 

earthquake magnitude; and the quality of the digitization (e.g. are there zones where many 

indicated landslides overlap). 

 

2.4.2 Determination of predictor variables 

In order to model the likely distribution of landslides associated with specific earthquake 

events, data on potentially relevant factors were extracted (section 1.2.5) for every 

landslide and non-landslide pixel of the digitized landslide inventories (section 2.4.1). The 

area taken into account for each event is the study area as determined in the previous 

section. First, all inventories were rescaled to the same resolution of 500 meter in the 

Universal Transverse Mercator (UTM) projection. On the one hand this resolution is 

chosen in order to reduce the local errors of landslide locations (section 2.4.1). On the 

other hand, it is also a compromise between a sufficiently detailed and sufficiently robust 

and feasible model, taking into account the dimensions of some LAA.  

 

Further processing of the data layers was carried out in IDRISI (Clarklabs, 2013) and 

Arcmap (Esri, 2013). For each event, all data layers were trimmed to the same window 

extent as the landslide inventory datasets (module: WINDOW) and converted to the 

appropriate UTM projection system (PROJECT). The projection to UTM was necessary to 

ensure that distances and topographic measures were uniformly calculated for all the 

globally distributed events. All layers were rescaled to a 500m resolution, except for the 

topographic variables. Those were retained on a 100m resolution, with a perfect 

correspondence between the pixels on the 500m resolution (IDRISI modules: PROJECT 

and CONTRACT). Analysis of the resulting data layers is carried out in MATLAB (2013) to 

compile a large total dataset, with each row representing a different landslide or non-

landslide pixel and with the columns representing all predictor variables. 

 

For each 500m x 500m pixel the following parameters were calculated: 

 Distance to epicenter (D). This parameter was obtained using the DISTANCE 

module in IDRISI (Clarklabs, 2013). 
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 Standardized distance to epicenter (DS). This variable is included since the 

distance over which landslides are likely to occur depends on the earthquake 

magnitude (section 1.2.4). Standardization was based on Dmax, which was 

calculated using the empirical relation indicated in Figure 16. This equation was 

obtained from our E-L dataset and will be further discussed in section 3.2.3.a. 

 Topographic variables: mean slope (SME), maximum slope (SMA), slope range 

(SR) and mean elevation (EM) (based on SRTM data: section 2.3.3.a, CGIAR-CSI, 

2004). Slope range is defined as the difference between the minimum and 

maximum slope in an area. EM is taken into account, as a rough proxy for the 

position on the hillslope (rather in valley or rather close to ridges) to account for 

potential PGA amplification effects towards the ridge crest (section1.2.5.b). All 

topographic variables were calculated on a rescaled SRTM resolution of 100 m in 

UTM projection. This implies that the variables were calculated based on 25 pixels 

in each 500 m resolution pixel. 

 The fraction of tree cover (TC) (section 1.2.5.d) 

 Earthquake moment magnitude (Mw) (various sources:  Appendix 1) 

 Focal depth (FD) (various sources:  Appendix 1) 

 Distance to river (DR) (based on SRTM HydroSHEDS data (USGS, 2010a) and 

processing in IDRISI (Clarklabs, 2013) with the DISTANCE module). Similar to the 

variable EM, distance to river might account for the position on the hillslope 

between the ridge crest and the river. 

 

2.4.3 Theoretical background of logistic regression  

Logistic regression techniques were applied to link the observed spatial patterns of EIL to 

the extracted parameters. Logistic regression is a widely used technique in landslide 

distribution/ susceptibility modeling (e.g. Dai & Lee et al., 2003; Vanacker et al., 2003; 

Ayalew & Yamagishi, 2005; Van Den Eeckhaut et al., 2006; Parker, 2013). The technique 

can be used to predict the outcome of a dichotomous dependent variable, in this case the 

occurrence or absence of landslides, based on one or more independent categorical 

and/or numerical predictor variables (Ayalew & Yamagishi, 2005; Parker, 2013). The 

general logistic function can be expressed as follows (Parker, 2013): 

 

 (   )   
 

    (                   )
                    (7) 

  

With p representing the probability, xi the dependent variables, bi the regression 

coefficients and y the known dependent variable (y = 1 or 0). The regression coefficients 

are estimated based on the maximum likelihood (ML) principle, much in accordance with 

the least square regression, which can however not be applied because of the 

dichotomous dependent variable. Moreover the ML principle can be used for nonlinear 
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models, since the logistic model is nonlinear; this is an appropriate technique (Kleinbaum 

& Klein, 2002). Figure 9 shows the logistic function (with ‘z’ representing the the exponent 

                    of equation 7). The function illustrates the advantage of the 

logistic modeling approach; i.e. the output value f(z) will always between 0 and 1, 

regardless of the range of predictor variables. Values between 0 and 1 can be interpreted 

as probabilities (Kleinbaum & Klein, 2002; Parker, 2013). 

 
Figure 9: Schematic representation of the logistic model function with the term ‘z’ representing the exponent 

                    of equation 7 (Kleinbaum & Klein, 2002, p 19). 

 

Another advantage of the logistic model for modeling landslide probabilities is the S-shape 

of the function. This means that for negative ‘z’ values the landslide probability remains 

low until a certain threshold value is reached. At that point the probability increases rapidly, 

until a second threshold is reached where increase flattens again. This threshold idea is 

conform to the idea of threshold values for slope stability (Kleinbaum & Klein, 2002; 

Parker, 2013). Logistic regression assumes the following conditions, after Chen et al. 

(2014): 

 

1) The true conditional probabilities are a logistic function of the independent 

variables. 

2) No important variables are omitted. 

3) No extraneous variables are included. 

4) The independent variables are measured without error. 

5) The observations are independent. 

6) The independent variables are not linear combinations of each other. 

 

The first assumption can be best understood by considering the linear form of the model 

equation (equation 7) (Parker, 2013): 

 

  (
 (   )

   (    )
)                           (8) 
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Where the left hand sight is defined as the log(odds) or logit(p), being a linear combination 

of the independent variables (Parker, 2013). With odds for a certain pixel defined as the 

probability of landsliding divided by the probability of no landsliding (Kleinbaum & Klein, 

2002). The condition is met when the relationship between the logit of the outcome 

variable and the independent variables is linear. However, in practice this is often 

assumed since possible non-linearity is not a severe problem (Chen et al., 2014).  

 

The second condition can be met by testing relevant predictor variables, but as discussed 

in the previous section some limitations arise because of data availability on a global 

scale. 

 

The third condition will be validated with the likelihood ratio (lr) statistic (Kleinbaum & Klein, 

2002) : 

 

         ̂  (     ̂  )       (
 ̂ 

 ̂ 
)      (9) 

 

With  ̂ the total likelihood, which is analogue to the coefficient of determination (R²) for 

linear regression. -2ln  ̂ is defined as the log likelihood statistic.  ̂ is defined as the 

probability of occurrence of all observations.  For testing the significance of individual 

predictor variables the log likelihood statistic of the full model (1: a model with one or more 

predictor variables) is subtracted from the log likelihood statistic of the null model (0: model 

without any predictor variables) (Kleinbaum & Klein, 2002). Interesting is that lr follows a χ² 

distribution, with the degrees of freedom determined by the difference of predictor 

variables taken into account in the models. Consequently, lr can be used to validate the 

null hypothesis ‘there is no significant relationship between the predictor variable and the 

occurrence of landsliding’. Another test statistic can be used for the same purpose, i.e. the 

Wald test statistic (W) (Kleinbaum & Klein, 2002): 

 

   (
  

    
)
 

      (10) 

 

With      the standard error of coefficient bi. Similar to lr, W follows χ² distribution and both 

parameters give large and positive values for significant variables accordingly. It is shown 

that lr is preferable in situations with small data samples (how small has however never 

been documented: Kleinbaum and Klein, 2002). For large samples lr and W are similar. 

However, W is more convenient to use, since only the specification of the full model is 

required (Kleinbaum and Klein, 2002). For the sake of completeness and for preventing 

unreliable evaluations in the case of a small dataset, both measures were considered. 
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Condition 4 depends on the input data layers: i.e. the manually digitized landslide 

datasets, reporting of Mw and FD and the SRTM data. The accuracy of the landslide 

datasets is considered in section 3.3.1. Furthermore, the model resolution was determined 

so that the error of false positives and false negatives was reduced (section 2.4.2). 

 

Condition 5 states that the data should be statistically independent, but auto-correlation 

between landslide and non-landslide pixels is common when landslide areas are taken into 

account (Van Den Eeckhaut et al., 2006). However, in the study by Van Den Eeckhaut et 

al. (2006) the problem arises because individual landslides cover many pixels of detailed 

DEMs. Since such a cluster of landslide pixels only represents one landslide, they 

resolved the problem, by selecting only one pixel for all mapped landslides. In our case 

this problem is avoided: mostly landslides in the datasets are digitized as point locations. 

Moreover, even if landslide areas are defined, they are generally resolved to a single pixel 

with a resolution of 500m. Of course, as a result, the accuracy of our data does not allow 

differentiating between landslide depletion and deposition zone, while it is preferable to 

focus on the depletion zones (Van Den Eeckhaut et al., 2006; Parker, 2013).  

 

Condition 6, can be validated by measures testing for multicollinearity such as the variance 

inflation factor (VIF) (PennState, 2014): 

 

     
 

    
         (11) 

 

With   
  the coefficient of determination of the regression between the ith variable as 

independent variable and the remaining variables as predictor variables (PennState, 

2014). 

 

2.4.4 Practical application of logistic regression for individual landslide 

inventories 

Practically the following steps were undertaken to construct the logistic LD model, based 

on the compiled LD datasets. Analyses were carried out in MATLAB (2013) with the ‘glmfit’ 

function. Required testing, as discussed in the previous paragraph, was based on own 

processing of the output and MATLAB code since MATLAB does not provide functions for 

basic statistics such as lr, W or VIF. Moreover, own MATLAB code was required to prevent 

underflow. Underflow means that very small values were rounded down to zero, since the 

total likelihood of a large amount of pixels can become very small and the number of bits 

used in MATLAB to store numbers is limited. 

 

In order to get a first idea of the relative significance of the predictor variables under 

consideration (section 2.4.2), some explorative logistic regression was performed on all 
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inventories, considering all predictor variables. A technique of random sampling was 

repeatedly performed to also change the number of selected observations. Next, 

univariate logistic regression analysis of all independent variables for all datasets 

separately was carried out, with calculation of lr and W statistics to determine their 

significance. Additionally comparison plots were constructed representing the coefficients 

of the logistic model for each predictor variable for the different events. This allowed 

judging the physical plausibility and consistency of the predictor variables.  

 

Based on the knowledge of the first two analysis steps, MCFadden’s pseudo R² (    
 ) 

were iteratively calculated for the separate datasets, each time adding an additional 

predictor variable to the model to observe the predictive improvement of the extended 

model. A similar strategy was followed by Parker (2013), who stated that      
  was the 

preferred statistic to indicate the improvement offered by the full model over the null model 

(Allison, 2013; Parker, 2013): 

 

    
    

   ̂ 

   ̂ 
       (12) 

 

With  ̂  the probability of occurrence of all observations for the full model and  ̂  the 

probability of occurrence of all observations for the null model. The sequence of added 

variables was determined by the relative significance (lr, equation 9) of a variable for the 

considered event, each time adding the variable with highest lr based on the univariate 

logistic regression analyses. With each added variable, both lr and VIF were checked to 

assure the validity of the model.  

 

2.4.5 Construction of a spatially distributed landslide model based on 

integrated landslide inventories. 

The next step was the selection (based on previous analyses) and testing of the 

appropriate combination of predictor variables for the integrated landslide inventories 

(594546 pixels). In this way, also Mw, DS and FD can be taken into account. Three 

different ‘subset selection procedures’ (SSP) were used for randomly selecting sub 

datasets for model calibration and model validation. The following terms will be used to 

refer to these procedures: ‘fixed’, ‘fraction’, ‘root’; respectively meaning that that for all 

events the same amount of pixels is taken, the same fraction of total pixels per event is 

taken or the square root of the total number of pixels per event is taken.  

 

For all SSP the sub datasets were split in a calibration subset (2/3) and a validation subset 

(1/3). For the ‘fixed’ SSP, it was chosen to take the total amount of pixels from the smallest 

dataset (event 133: Japan, 2011, Mw 6.7: 826 pixels) for the four events with lowest 

assessed quality (ID’s 11, 95, 133 and 240: see Table 5,) and double this amount (i.e. 
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1652 pixels) for all other events. This results in a calibration subset of 25300 pixels. For 

the ‘fraction’ SSP, 30% of each dataset was used, resulting in a calibration subset of 

118909 pixels. The ‘root’ SSP takes the root of the total amount of pixels of each event, 

multiplied by 20. This factor was considered to be a compromise between a sufficiently 

large number of pixels and the smallest event dataset (826 < 20*sqrt(826) ). This results in 

a calibration subset of 42609 pixels. This ‘root’ SSP is used to give a sufficiently large 

weight to large events (as they generate the largest volumes), but still do not neglect the 

smaller events. 

 

Monte Carlo simulations with 50 or 100 iterations were carried out for every SSP, for all 

different variable combinations. Each iteration the     
  was calculated. Additionally, the 

VIF was checked to test for multicollinearity. Next, to test for the influence of individual 

events on the total model outcome, separate Monte Carlo simulations were carried out for 

specific variable combinations with iteratively leaving out 1 of the earthquake-triggered 

landslide inventories. After this, a Monte Carlo simulation, with 101 iterations, was 

performed for the most appropriate SSP and variable combination, which results in 101 

possible variable coefficient sets. Eventually, the median coefficient of the most significant 

variable was determined. It is this coefficient, together with the corresponding coefficients 

of the other predictor variables, which define the LD model. 

 

2.4.6 Application and validation of the landslide distribution model  

The final LD model was applied to the compiled LD datasets (2.4.1) by creating the right 

raster images on a 500 m resolution: a distance map, a slope map and a study area mask 

file. In this way, probability maps were generated. Additionally, for each event a relative 

operating characteristic (ROC) curve was constructed as a means of validation. ROC 

compares an observed landslide pattern with a predicted landslide pattern in the form of a 

probability map (Pontius & Schneider, 2001). To calculate this statistic, 100 random 

selections of the 101 coefficient sets were performed. The resulting 100 probability maps 

were summed. Secondly, the summed probability pixels were ordered towards descending 

probability. Next, 20 equal classes are determined; with for each class the determination of 

the fraction of false negatives and true positives. The fraction of true positives in each 

probability class is the number of observed landslide pixels in that class, divided by the 

total number of landslide pixels. The fraction of false negatives in each probability class is 

the number of observed non-landslide pixels in that class, divided by the total number of 

non-landslide pixels. These values are then cumulatively plotted with the false negatives 

on the x-axis and true positives on the y-axis, resulting in a graph starting at (0,0) and 

ending at (1,1). The ROC value is defined as the area under the curve, with values larger 

than 0.5 indicating that the models scores better than random (Van Dessel et al., 2008). 
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2.5 Construction of an integrated spatially distributed 

landslide volume model  

2.5.1 Predicting landslide numbers based on the landslide distribution 

model 

Previous sections described the steps towards the construction of a LV and a LD model. 

For the construction of a LV model (section 2.3), a large amount of variables were tested 

and some ‘semi-subjective’ but well considered choices had to be made. For example, the 

considered area was arbitrarily defined as a circle, the reported LV was corrected for the 

fraction of water in the mask area and different weights were assigned to different events 

according to the way of LV acquisition. Even though, this gave a well constrained and 

useful model, it is worth to apply a different approach based on the LD model.  

 

Since the LD model predicts the probability of landsliding at a certain location, the total 

probability sum (PS) for all pixels of an event could be used to correlate with reported total 

landslide volumes (LVr) or with reported total landslide numbers (LNr). The advantage is 

that no arbitrary area had to be delineated, since the LD model automatically sets the 

borders in the form of decreasing probabilities. These decreasing probabilities also mean 

that the model gives larger weight to pixels closer to the epicenter, which is a favorable 

characteristic, since landslide concentrations exponentially decrease with distance to the 

epicenter (section 1.2.4). Secondly, it also implied that no correction for the water fraction 

is required. Finally, it was also interesting to construct a model for predicting LN rather 

than LV, since more of the reported data is in the form of LN (section 2.3.1) and because 

the integrated model required LN as input, since LN needs to be converted to LV based on 

the inverse gamma distribution function for landslide size (section 1.2.3). Additionally, no 

weights had to be assigned to the different events according to the way of LV acquisition. 

 

The first step to construct this model was the processing of the predictor variable data 

needed to construct landslide probability maps. This was similar to the method described 

in section 2.4.2. The subsequent probability map construction and probability sum 

calculation, was carried out in MATLAB (2013) for all events included in the LV model 

(section 2.3.1). To make this computationally feasible, it was made sure that at least all 

pixels with values larger than or equal to a probability of 0.01 were included in the image. 

Even though this is an arbitrary threshold, some arguments can be put forward for this 

choice. First of all, analyses of the LD model results (see section 603.3.4) showed that 

very few landslides occurred on pixels with probabilities lower than 0.01. Secondly, testing 

for the event with the largest Mw: i.e. the Valdivia earthquake (Chile, 1960) with an Mw of 

9.5, showed that these probabilities reach as far as about 800 km, which surpasses Dmax 

for such magnitude (section 1.2.4). Thirdly, correlation analysis between LN and PS for 

different thresholds (0.005, 0.02, 0.05) gave similar results.  
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2.5.2 The Monte Carlo simulation approach 

At this point all required input for the construction of an integrated spatially distributed 

earthquake-induced landslide volume (DLV) model was available. This model can be 

applied to any region in the world, with the only prerequisite of a known earthquake 

epicenter and Mw. The model consists of four different simulation steps, which were 

integrated in a MATLAB (2013) script: 

(1) landslide number determination; 

(2) landslide probability map generation; 

(3) landslide volume determination;  

(4) landslide to pixel assignment.  

For all four steps, the model uncertainties were taken into account by means of the Monte 

Carlo simulation approach. Such iterative simulation, by random number generation, gave 

a numerical estimate of the possible model outcomes, of which statistical parameters such 

as the average, median and range could be derived (Binder, 2005). 

 

Step 1 required LN as input for the simulation; different models could be used here (see 

sections 2.3 and 2.5.1). For the integrated DLV, the LN model determined in the previous 

section was used, supported by the argumentation in that section. As a first step the model 

uncertainty was determined by means of model residues (observed LN/ predicted LN). The 

residues appeared to be best described by a logarithmic distribution, i.e. with no clear 

trend in the relative deviation of LN with increasing LN, but with an increase in the absolute 

deviation of LN with increasing LN. Consequently, the normal parameter estimates: mean 

(µ) and standard deviation (σ) of the 10th logarithm of the residues could be determined. 

Random LN selection was then performed as follows (own processing): 

 

         ( (           )  (            ))      (13) 

 

The first factor on the right hand side of the equation represents the LN model (see Figure 

35 in section 3.4.1) and the second factor generates a normally distributed pseudorandom 

number (MATLAB, 2013).  

 

For assessing the uncertainty on the second step, one of the model coefficient sets 

(section 2.4.5) was randomly selected, for the calculation of a probability map. For a 

comparison with the landslide inventories (section 2.4.1), probability maps are delineated 

by the study areas. For the model application (see section 2.6) no boundary is set. 

 

Step 3 made use of equation 3 (section 1.2.3). The individual landslide area (Al) range was 

discretized in 1000 classes, between 10-5 and 100 km², with a logarithmic increment. A 

logarithmic increment was preferred to a linear increment, since the Al range spans 7 

orders of magnitude. The probability per Al class was then calculated by integrating the 
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probability densities over the different classes. Next, an empirical scaling relationship 

between Al and the individual landslide volume (Vl) (equation 5) determined Vl for each 

class. As a last part of this step volumes needed to be assigned to each landslide. 

Therefore, the cumulative probability (pcum) for the different classes was calculated, based 

on equation 3 (Figure 10). For each landslide a random number between 0 and 0.9996 

(the probability sum of all 1000 classes is slightly smaller than 1 because of the 

discretization and infinite tails) was assigned. The volume corresponding to the class with 

the closest, but larger pcum value of this number was then selected for the landslide. This 

method implied that Vl with a higher probability of occurrence had a higher probability of 

being selected. It can be seen in Figure 10 that about 95% of pcum falls within the Vl range 

of 1E-07 to 1E-04. 

 
Figure 10: Cumulative probability (p) function for the different individual landslide volumes (Vl). The Vl range 

was discretized in 1000 classes with logarithmic increment (own processing). 

 

Step 4 finally, is the most computationally intensive with the allocation of the landslides 

and corresponding volumes to pixels in the considered area. According to a procedure 

proposed by Van Rompaey et al. (2002), a random number between 0 and the maximum 

probability was generated. Secondly, a random pixel was selected. Both probability values 

were then compared, if the random number was smaller than the probability for the pixel, 

the landslide was assigned to that pixel, if not, the procedure was repeated and this until 

all landslides were spatially assigned. Pixels with assigned landslides were not excluded 

for subsequent landslide assignment, so that more than one landslide could be assigned 

to the same pixel. This method implied that pixels with higher probabilities for landslide 

occurrence had higher probability of landslide assignment (Van Rompaey et al., 2002). 

Also for this last step randomization was important, because this allowed for the 

generation of likely LV distribution patterns rather than one fixed pattern, which gives a 

false idea of model preciseness.  

 

1E-09

1E-08

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

0 0.5 1

Vl 

 (km³) 

p 



     30 

 

2.5.3 Validation of the integrated model 

In the specific case of an earthquake event with mapped landslides the Kappa index of 

agreement (K) can be calculated (Pontius, 2000): 

 

  
                   

                  
      (14) 

 

With MP the model performance: i.e. the number of correctly predicted pixels (landslide or 

no-landslide) divided by the total number of pixels. K is a measure for the pixel to pixel 

correctness of the landslide assignment, with values larger than 0 indicating that the model 

scores better than a random model and values of 1 indicating a perfect model (Pontius et 

al., 2004). Chance agreement is the agreement between an observed landslide pattern 

and a simulated pattern with no information on the location, but with information on the 

quantity. The chance agreement is calculated as follows (Pontius 2000): 

 

                                          (15) 

 

With Sls and Ols the fraction of landslide pixels in respectively the simulated and observed 

landslide pattern and with Snols and Onols the fraction non-landslide pixels in respectively 

the simulated and observed pattern. 

 

In the case of landslide modelling it is more interesting to use more specific parameters 

such as a Kappa index of agreement for location (Kl) (Pontius, 2000) and an error budget 

for a predicted landslide map (Pontius et al., 2004). Kl is a measure for the ability of the 

model to correctly predict the location of landslide/non-landslide pixels, regardless the 

error due to quantity (Pontius, 2000): 

 

   
                   

(   (       )     (           ))                 
     (16) 

 

The error budget is complementary to Kl, as it indicates how much the simulation can be 

improved by a better quantification (disagreement due to quantity) and with a better 

allocation procedure (disagreement due to location), regardless the evaluation by Kl. For 

the error budget, the agreement due to chance, i.e. in this case with no information on 

quantity or location, for a two category model is 50%. Consequently, a model classifying 

more than 50% correct pixels scores better than a random model with no information. For 

a thorough explanation on the error budget methodology, see Pontius et al. (2004).  

 

 

 



     31 

 

2.6 Model application and comparison with catchment 

sediment yields  

2.6.1 Case study: the Siret basin 

To apply the integrated spatially distributed landslide model, the Siret basin (45000 km²; 

Figure 11) in Romania was considered as a study area (section 2.1). The Siret river and its 

tributaries drain the central and eastern part of the Eastern Carpathians, Eastern Sub-

Carpathians, Moldavian Plateau and the Siret Lower Plain (Vanmaercke et al., 2014b). 

The Carpathians resulted from convergent activity of several micro-plates with the 

Eurasian plate during the closure of the Tethys Ocean (Airinei, 1977). Currently, the 

subduction of the Black Sea micro-plate under the Carpathians is responsible for the 

tectonic activity in this region (Sandulescu, 1984), which makes it one of the most seismic 

active regions in Europe (see Figure 8). Several large earthquakes have taken place in the 

region during the past hundred years (Table 2, Vanmaercke et al., 2014b). In general 

earthquake epicenters are confined to a relatively small region of 40x80 km in the Vrancea 

region (Figure 11). 

 

 
Figure 11: Map of the Siret basin. (a) Subcatchments of the Siret basin (n = 38) of which sediment yield 

observations were retrieved. Numbers correspond to those of Table 3 and grey shadings indicate major 

lithological units. (b) Location of the Siret basin within Romania. (c) Seismic activity in the Siret basin. Grey 

shadings indicate the expected peak ground acceleration (PGA) with a recurrence interval of 100 years (Lungu 

et al., 2004). Superimposed are all earthquakes with a magnitude (M) of 0.5 or higher, registered between 1900 

and 2010. Stars and their corresponding years indicate the epicenters of major earthquakes indicated in Table 2 

(Vanmaercke et al., 2014b). 

 



     32 

 

Table 2: Major earthquakes in the Vrancea Region during the past 100 years (see Figure 11 for epicenter 

locations, Vanmaercke et al., 2014b). 

 

 

2.6.2 Model application and confrontation with sediment yield 

Two model simulations were carried out with the integrated spatially distributed landslide 

model as explained in section 2.5.2. The first simulation considered the 1977 earthquake 

(Table 2). This earthquake was chosen because it is the largest earthquake that occurred 

during the measuring period of sediment yield in the subcatchments (Table 3). The second 

simulation considered all earthquakes with magnitude larger than or equal to four that 

affected the Siret basin in the period 1965 till April 2014 (n = 292). These events were 

retrieved from the USGS (2013a) and NCEDC (2013). Systematic earthquake registration 

for this region was available from 1965 onwards, which corresponds quite well to the start 

of SY measurements (Table 3).  

 

For both analyses 50 Monte Carlo simulations were carried out. Landslide probability 

maps were generated for a wide area as the earthquake impact might extend beyond the 

basins borders. Restriction of the simulations to the Siret subcatchments would result in an 

overestimation of the assigned landslide numbers and volumes. However, to make 

computations feasible, a probability threshold of 0.0001 was set for the landslide to pixel 

assignment (section 2.5.2). This means that only pixels with a probability larger than 

0.0001 can get a landslide assigned. For the 1977 earthquake (Mw 7.4) such a threshold 

corresponds to a distance limit of about 240 km, which is in agreement with the upper 

bound limit of landslide occurrence (Figure 4, section 1.2.4). In order to determine LN and 

LV for each subcatchment, mask files were created based on data received from 

Vanmaercke et al. (2014b). By integrating all pixels over each subcatchment, catchment 

specific LN and LV could be obtained. In this way, simulated catchment LN and LV could 

be compared with other catchment characteristics (Table 4). 

 

 

 

 

 

Latitude (°) Longitude (°)

10.11.1940 7.6 150 45.7994 26.6975

04.03.1977 7.4 94 45.7692 26.7575

30.08.1986 7.1 132 45.5189 26.4881

30.05.1990 6.9 91 45.8297 26.8883

Geographical coordinates
Date

Magnitude 

(Mw)

Epicenter 

depth (km)
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Table 3: Measured average annual runoff (Ro) and sediment yield (SY) for the 38 considered subcatchments in 

the Siret river basin. ‘Nr.’ indicates the gauging station number, corresponding with Figure 11 (Vanmaercke et 

al., 2014b). 

 

 

 

 

 

 

 

 

 

 

Latitude (°) Longitude (°)

1 SUCEAVA BRODINA 47.8867 25.4219 1971-2010 371 284.5

2 SOLONEŢ PĂRHĂUŢI 47.7119 26.0861 1973-2010 192 464.1

3 SUCEAVA IŢCANI 47.6719 26.2472 1957-2010 228 208.2

4 MOLDOVA PRISACA DORNEI 47.5400 25.6611 1958-2010 426 152.1

5 MOLDOVIŢA DRAGOŞA 47.6147 25.6081 1971-2010 345 204.5

6 RÂŞCA BOGDĂNEŞTI 47.3606 26.2503 1965-2010 260 174.4

7 MOLDOVA TUPILAŢI 47.0847 26.6483 1959-2010 262 298.9

8 BISTRIŢA DORNA GIUMALĂU 47.3608 25.3497 1956-2010 499 87.4

9 DORNA DORNA CANDRENI 47.3556 25.2817 1959-2010 421 55.9

10 BISTRIŢA DORNA ARINI 47.3433 25.4089 1960-2010 469 76.6

11 NEAGRA BROŞTENI 47.1992 25.6833 1965-2010 411 58.4

12 BISTRŢA FRUMOSU 47.1422 25.8622 1967-2010 421 101.6

13 BOLĂTĂU POIANA LARGULUI 47.0950 25.9731 1978-2010 257 214.0

14 BISTRICIOARA TULGHEŞ 46.9647 25.7581 1965-2010 240 59.6

15 BISTRICIOARA BISTRICIOARA 47.0572 25.9128 1974-2010 259 112.9

16 CRACĂU SLOBOZIA 46.8393 26.5298 1956-2010 128 163.1

17 TROTUŞ LUNCA DE SUS 46.5347 25.9553 1976-2010 285 100.4

18 TROTUŞ GOIOASA 46.4447 26.2997 1980-2010 264 194.0

19 ASĂU ASĂU 46.4508 26.4008 1977-2010 315 324.9

20 UZ VALEA UZULUI 46.3428 26.2608 1969-2010 350 84.2

21 TROTUŞ TÂRGU OCNA 46.2769 26.6047 1957-2010 262 270.1

22 OITUZ FERĂSTRĂU 46.2042 26.5867 1973-2010 367 248.2

23 TROTUŞ VRÂNCENI 46.2097 26.8950 1966-2010 267 342.4

24 TAZLĂU HELEGIU 46.3514 26.7417 1971-2010 213 401.6

25 SUŞIŢA CIURUC 45.9984 26.8305 1961-2010 234 836.8

26 PUTNA TULNICI 45.9078 26.6647 1959-2010 208 363.0

27 ZĂBALA   NEREJU 45.7169 26.7369 1974-2010 210 1163.9

28 PUTNA COLACU 45.8883 26.8403 1974-2010 164 1141.0

29 PUTNA BOTÂRLĂU 45.6331 27.3864 1956-2010 117 1137.4

30 MILCOV GOLEŞTI 45.6672 27.1622 1957-2010 55 1710.0

31 RÂMNA JILIŞTE 45.6037 27.2405 1971-2010 42.6 1784.0

32 RĂMNICU SĂRAT TULBUREA 45.5603 26.8317 1964-2010 268 1603.2

33 RĂMNICU SĂRAT TĂTARU 45.5036 27.4889 1956-2010 76.2 816.0

34 BUZAU SITA BUZAU 45.6608 26.0686 1950-2010 509 318.2

35 CALNAU POTARNICHESTI 45.2200 26.8542 1965-2010 63.8 1345.3

36 SLANIC CERNATESTI 45.2692 26.7550 1968-2010 103 1151.6

37 BASCA  BASCA ROZILEI 45.4525 26.3383 1960-2010 494 376.0

38 BASCA MICA VARLAAM II 45.5200 26.4489 1963-2010 466 533.4

SY (t km
-2

y
-1

)
Measuring 

Period
Ro (mm y

-1
)Nr. River

Gauging

station

Location Gauging Station
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Table 4: Properties of the 38 considered subcatchments of the Siret basin. ‘Nr.’ refers to the numbers indicated 

in Figure 11. A = catchment area; ED = earthquake density; CMD = cumulative magnitude density; PGA = 

expected peak ground acceleration with a recurrence interval of 100 years; L = lithology score; R = total 

catchment relief. Slope = average catchment slope; MLR = mean local relief; Forest = percentage forest cover in 

1990; AL = percentage of arable land in 1990; P = average annual rainfall depth; Ro = average measured runoff 

depth (Vanmaercke et al., 2014b). 

 

 

 

1 BRODINA (SUCEAVA) 366 0.000 0.000 0.90 F 1.0 952 14.8 561 33.2 784 371

2 PĂRHĂUŢI (SOLONEŢ) 204 0.000 0.000 1.18 P & Q 1.4 643 6.8 294 33.5 627 192

3 IŢCANI (SUCEAVA) 2334 0.000 0.000 1.34 P & Q 1.3 1265 8.2 350 32.9 680 228

4 PRISACA DORNEI (MOLDOVA ) 664 0.002 0.006 0.86 C 0.7 1272 14.9 644 55.8 772 426

5 DRAGOŞA (MOLDOVIŢA ) 463 0.002 0.010 1.08 F 1.0 888 13.7 531 80.2 747 345

6 BOGDĂNEŞTI (RÂŞCA) 181 0.006 0.014 1.57 F 1.4 821 11.5 489 89.3 634 260

7 TUPILAŢI (MOLDOVA) 3928 0.003 0.010 1.55 F 1.2 1611 10.6 469 55.8 670 262

8 DORNA GIUMALĂU (BISTRIŢA ) 758 0.001 0.003 0.78 C 0.5 1445 17.1 680 75.5 831 499

9 DORNA CANDRENI (DORNA ) 565 0.014 0.038 0.78 V 0.6 1158 12.0 603 74.4 801 421

10 DORNA ARINI (BISTRIŢA ) 1690 0.006 0.016 0.78 C 0.6 1458 14.7 669 59.5 818 469

11 BROŞTENI (NEAGRA) 292 0.014 0.046 0.84 C 0.5 1264 18.1 749 84.7 791 411

12 FRUMOSU (BISTRŢA) 2858 0.005 0.015 1.06 C 0.6 1698 16.5 737 69.8 798 421

13 POIANA LARGULUI (BOLĂTĂU) 59 0.000 0.000 1.57 F 1.0 799 14.8 647 66.3 677 257

14 TULGHEŞ (BISTRICIOARA) 408 0.000 0.000 0.92 C 0.5 1010 16.3 690 61.9 768 240

15 BISTRICIOARA (BISTRICIOARA) 760 0.003 0.006 1.27 C 0.6 1145 17.3 740 66.5 751 259

16 SLOBOZIA (CRACĂU) 445 0.002 0.007 1.97 M 1.7 945 7.5 340 33.4 605 128

17 LUNCA DE SUS (TROTUŞ) 88 0.000 0.000 1.57 F 0.8 568 14.7 458 13.4 742 285

18 GOIOASA (TROTUŞ ) 781 0.003 0.007 1.85 F 1.0 1167 16.2 711 45.7 745 264

19 ASĂU (ASĂU) 204 0.000 0.000 2.23 F 1.0 980 17.1 671 90.9 703 315

20 VALEA UZULUI (UZ) 150 0.007 0.015 1.96 F 1.0 906 15.7 605 77.1 743 350

21 TÂRGU OCNA (TROTUŞ ) 2091 0.009 0.022 2.42 F 1.0 1406 15.2 685 56.2 711 262

22 FERĂSTRĂU (OITUZ) 267 0.015 0.032 2.52 F 1.0 1206 15.0 684 65.8 709 367

23 VRÂNCENI (TROTUŞ) 4092 0.010 0.022 2.82 F 1.6 1495 12.9 586 54.8 665 267

24 HELEGIU (TAZLĂU) 998 0.004 0.009 2.64 M 1.6 1221 10.4 435 48.8 605 213

25 CIURUC (SUŞIŢA) 178 0.163 0.379 3.01 M 1.8 985 10.6 499 62.6 645 234

26 TULNICI (PUTNA) 313 0.236 0.623 2.53 F 1.0 1280 16.8 753 88.5 759 208

27 NEREJU (ZĂBALA   ) 263 6.091 20.430 2.83 F 1.1 1253 14.8 714 84.3 781 210

28 COLACU (PUTNA) 1087 2.435 7.749 2.87 F 1.3 1508 14.9 719 71.0 735 164

29 BOTÂRLĂU (PUTNA) 2450 1.511 4.608 3.00 P & Q 1.5 1755 10.3 506 51.3 642 117

30 GOLEŞTI (MILCOV) 406 1.426 4.180 3.14 M 1.9 1219 10.3 472 55.8 595 55

31 JILIŞTE (RÂMNA) 398 0.611 1.482 3.14 P & Q 1.9 860 7.5 325 36.9 570 42.6

32 TULBUREA (RĂMNICU SĂRAT) 187 1.610 4.652 3.14 M 1.6 1033 14.5 650 65.1 709 268

33 TĂTARU (RĂMNICU SĂRAT) 1048 0.659 1.727 2.95 P & Q 1.9 1375 5.1 242 26.1 569 76.2

34 SITA BUZAU (BUZAU) 360 0.144 0.329 2.19 F 1.0 1250 12.0 550 39.9 788 509

35 POTARNICHESTI (CALNAU) 194 0.423 1.036 3.14 M 1.9 627 7.7 313 17.6 585 63.8

36 CERNATESTI (SLANIC) 422 1.225 3.474 3.13 M 1.8 1210 12.0 521 35.6 661 103

37 BASCA ROZILEI (BASCA  ) 783 2.126 6.561 2.62 F 1.0 1360 14.4 660 82.4 803 494

38 VARLAAM II (BASCA MICA) 239 3.339 10.435 2.72 F 1.0 1211 14.6 701 84.1 824 466

* Dominant Lithology: F = Flysch, P & Q = Platform and Quaternary sedimens, C = Crystalline, V = Volcanic, M = Molasse
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3 Results 

3.1 The earthquake-landslide dataset  

Appendix 1 summarizes the E-L dataset and reports the country, year, magnitude and 

consulted sources for each event. The table also indicates which events were used for the 

LV model, LD model and M-D relation. In total, 239 events with at least information on one 

of the landslide parameters: LV, LN, LA, LAA or Dmax are included in this dataset. These 

239 events are likely to represent the largest part of earthquakes with available information 

on associated landslides being reported in scientific literature. The epicenter locations, 

with indication of their magnitude are shown in Figure 10 (for 3 events, the epicenter could 

not be located). Earthquake prone regions such as the ring of fire and the southern margin 

of the Eurasian plate are clearly represented in the dataset. Figure 13 indicates for what 

purposes each event was used. 

 

Additional descriptive statistics are presented in Figure 14. The left pane presents a bar 

chart, indicating the amount of EQ events that contain information on the indicated 

landslide variables. LAA, Dmax and LN (including ranges and minimum or maximum 

estimates) were often reported, whereas information on LV (including ranges and 

minimum or maximum estimates), Vlmax and a published landslide distribution inventory is 

rather scarce. The right pane presents the exceedance probability (EP) of the magnitude 

and year of occurrence of earthquake events in the dataset (Appendix 1). All retrieved EQ 

events have magnitudes larger than four. Only about 20% of the events have a magnitude 

smaller than 6 and just about 5% has a magnitude larger than 8. It is clear that most of the 

events in the dataset are from more recent years, more than 50% of the investigated 

events occurred after 1975.  
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Figure 12: Epicenters of earthquakes in the earthquake-landslide dataset with indication of magnitude. 236 of 239 earthquake events in the dataset are displayed on the 

map. For the other three, the epicenter location was unknown. Countries where epicenters are located are marked in gray (Appendix 1, own processing). 
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Figure 13: Epicenters of earthquakes in the earthquake-landslide dataset with indication of the models wherein the events are used. Countries where epicenters are 

located, which are used in one of the models are marked in gray. Model codes are: n: not used, d: used in moment magnitude – maximum landslide distance to epicenter 

relation, v: used for the total landslide volume model and i: used for the landslide distribution model as an inventory dataset (Appendix 1,  own processing). 
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 Figure 14: (left) Number of earthquakes (EQ nr) in the dataset containing information on: landslide-affected area 

(LAA), maximum distance from the epicenter over which landslides are triggered (Dmax), landslide number (LN), 

total landslide volume (LV), maximum individual landslide volume (Vlmax) and the published landslide 

distribution inventory (LD). The sum of events with information on the different parameters exceeds 239, as for 

one event more parameters can be reported. (right) Exceedance probability (EP) of the magnitude (black) and 

year of occurrence (grey) of earthquake events from the dataset (Appendix 1, own processing). 

 

3.2 Predicting the total earthquake-induced landslide volume 

3.2.1 Data selection and preparation 

77 earthquake events were retained from the earthquake-landslide dataset (indicated in 

Appendix 1 and Figure 13) to construct a landslide volume model: 25 with a reported LV 

(of which two with a LV range), 30 with a reported landslide number and 22 with a reported 

landslide number range. Figure 15 shows a comparison between reported LV (LVr) and 

calculated LV (LVc) (section 2.3.1) for events with both known LV and LN. This provides an 

assessment of the goodness of the LN-to-LV conversion with equation 4 and the additional 

refinement with the largest individual landslide (Vlmax) (section 2.3.1). Especially the extra 

refinement of the LV with Vlmax (diamonds) proves useful, resulting in deviations usually 

smaller than a factor three. Still, some deviations are slightly higher than a factor ten and 

one deviation even amounts to a factor 100. This last case concerns the Coalinga 

earthquake (United States, 1983, Mw 6.7). 
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Figure 15: Comparison between reported total landslide volumes (LVr) generated by an earthquake and 

calculated total landslide volumes (LVc), given the total number of landslides (LN) (section 2.3.1). Open squares 

represent LVc based on equation 4, while filled diamonds also take refinements of the  maximum individual 

landslide volume into account (Appendix 1, own processing). 

 

3.2.2 Delineation of the landslide-affected area 

The EQ events used to construct the moment magnitude – maximum landslide distance to 

epicenter (M-D) relation are indicated in Appendix 1 and Figure 13. 91 events containing 

information on Dmax could be used for this purpose, resulting in the relation presented in 

Figure 16. This relationship was used to delineate mask areas as a proxy of the LAA in 

which environmental characteristics were considered (section 2.3.2).  

 

Figure 16: Relation between moment magnitude (Mw) and maximum distance from the epicenter over which 

landslides are triggered (Dmax). The events used to construct this relation are indicated in Appendix 1 (own 

processing). 

0.01

0.1

1

10

100

1000

10000

0.01 0.1 1 10 100 1000 10000

LVc  
(10 E6 m³) 

 

LVr (10 E6 m³) 

reference 
lines: 
y = 0,1 x 
y = x 
y = 10x 

(n = 13) 

Dmax = 0.11e0.91Mw 

R² = 0.51 

1

10

100

1000

4 5 6 7 8 9

Dmax  
(km) 

Mw 

(n = 91 ) 



     40 

 

Also a relatively good relationship between moment magnitude and total landslide-affected 

area (LAA) could be established based on 132 earthquake events (Figure 17). Figure 18 

compares the calculated landslide-affected areas based on Dmax (LAAc) (section 2.3.2) with 

the reported LAA (LAAr). Even though a strong correlation exists, it is clear that LAAc 

generally overestimates the LAAr. 

 

 
Figure 17: Relation between moment magnitude (Mw) and total landslide-affected area (LAA) (Appendix 1, own 

processing). 
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Figure 18: Relationship between reported landslide-affected area (LAAr) of earthquake events and calculated 

affected areas (LAAc) based on the maximum distance from the epicenter over which landslides are triggered 

(Dmax) of that event (Appendix 1, own processing). 

 

Figure 19 presents the mask areas of events taken into account for the LV model. Both 

circular masks with radii directly derived from the relation presented in Figure 16 and 

masks with half of these radii are shown (section 2.3.2). The mask areas give a good 

indication of the large difference in landslide affected area between the events, with some 

very large events in Japan, China and South America, but with mask areas that are hardly 

discernable on this scale in Italy and Spain. The inset maps illustrate the longitudinal 

extension of the circular mask areas towards the poles. 
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Figure 19: Overview map of all 77 mask areas for events used in the analyses with both full and half radius (determined by the relation in Figure 16) masks displayed, the inset 

maps indicate the flattening of mask areas towards the poles. The countries where epicenters are located are marked in green (Appendix 1, own processing). 
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3.2.3 Factors controlling earthquake-induced landslide volumes 

3.2.3.a Moment magnitude 

Similar to previous research (section 1.2.3) a moment magnitude – total landslide volume 

(M-V) relationship is presented in Figure 20. A strong positive relationship exists between 

both variables, where Mw can explain about 59% of the variation in LV. 

 

 
Figure 20: Relation between earthquake moment magnitude (Mw) and total generated landslide volume (LV). A 

distinction is made based on the type of LV acquisition. LV: reported total volume, LN: reported total landslide 

number, LN range: reported total landslide number range (Appendix 1, own processing). 

 

3.2.3.b Land fraction 

Before carrying out correlation analyses, the LV was linearly corrected for the land fraction 

in each mask area (LVlc) (section 2.4.2). Figure 21 presents the relation between LVlc and 

Mw. For comparative purposes the original volumes are shown as well. After this correction 

Mw explains about 63% of the variation in LVlc. It is these corrected volumes that were 

used for the further correlation analyses. 
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Figure 21: Relation between earthquake moment magnitude (Mw) and total generated landslide volume linearly 

corrected for the land fraction in the mask area (LVlc). The original (uncorrected) volumes are indicated by open 

squares (Appendix 1, own processing). 

 

3.2.3.c Correlation and partial correlation analysis: testing other predictor 

variables 

After correction for the land fraction, a general correlation analysis and a partial correlation 

analysis were carried out for both mask areas with full radius and with half this radius 

(section 2.3.2). The correlation matrices showed slightly better results for the smaller mask 

areas. Therefore and because of earlier considerations (section 2.3.2), it was decided to 

work with these data to construct the LV model. Additionally, we tested whether variables 

show stronger correlations on a linear basis, a log-linear basis or a logarithmic basis. A 

log-linear relation (in agreement with the relation presented in Figure 20) shows the 

strongest correlation for most variables. This means that linear predictor variables explain 

for the logarithmic variation in volume. 

 

The correlation analysis shows that Mw, mean precipitation, mean MFI and mean slope, 

with respectively a correlation coefficient (R) of 0.81, 0.25, 0.29 and 0.24, are significant 

on the 0.05 significance level to explain for LVlc. Except for the correlation with Mw, these 

correlations are very weak, as shown in Figure 22 for mean P and mean slope. For many 

of the considered variables, the minimum, maximum and standard deviations showed 

significant correlation with LVlc. However, these values are strongly determined by the size 

of the different mask areas and consequently also strongly autocorrelated with Mw. 
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Figure 22: (left) Correlation between precipitation and total landslide volume, linearly corrected for the land 

fraction in the mask area (LVlc) and (right) between slope and LVlc (Appendix 1, own processing). 

 

Because Mw is by far the most significant variable explaining the observed variability of 

LVlc, a partial correlation analysis was carried out with correction for Mw. In this case only 

three variables remain significant on the 0.01 significance level: standard deviation of LR 

(LRstdev), maximum temperature and the lithology class ‘acid plutonic rocks’ (Hartmann & 

Moosdorf, 2012), with respective partial-R values of 0.39, 0.29 and 0.30. The fact that all 

previously significant variables describing the minimum, maximum and standard deviations 

of a considered factor within the mask area, are no longer significant, confirms their 

dependence on Mw through the mask size. 

 

Further analysis of the residue plots after correction for Mw (Figure 23) shows a robust 

positive relation between LRstdev and LVlc. Also a robust, but weak relation exists between 

the maximum temperature and LVlc. The lithology factor (acid plutonic rocks) however is 

not robust, depending only on a few events. Furthermore, other factors related to lithology 

(e.g. the fraction of hard rocks in each affected area) showed no significant (partial) 

correlation with LVlc. Therefore, this factor was not taken further into account.  

 

Based on these results, we conducted another partial correlation analysis, correcting for 

both Mw and LRstdev. In this case also the maximum temperature turns insignificant on the 

0.05 significance level. Consequently only Mw and LRstdev could be identified as significant 

variables for explaining the variability in LVlc. 
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Figure 23: Scatter plots of predictor variable residues after correction for the moment magnitude (Mw) with 

relations between the standard deviation of the local relief (LRstdev) and the landslide volume linearly corrected 

for the land fraction in the mask area (LVlc), between the maximum annual air temperature (Tmax) and LV and 

between the lithology class acid plutonic rocks (APR) and LV (Appendix 1, own processing). 

 

3.2.4 Landslide volume model  

Based on the analyses explained in the previous sections, a model could be established 

between the independent variable (LVlc) and the other significant predictor variables (the 

moment magnitude and the standard deviation of the local relief). As explained in section 

2.3.1, a weighted calibration was applied during model calibration, with weights depending 

on the expected accuracy of the LV estimates. 

y = 0.09e1.89x 
R² = 0.22 

0.01

0.1

1

10

100

0 0.5 1 1.5 2 2.5

LVlc 
 residue 

LRstdev residue 

(n = 77) 

y = 0.22e1.0x 
R² = 0.06 

0.01

0.1

1

10

100

-0.5 0.5 1.5 2.5

LVlc 
 residue 

Tmax residue 

(n = 77) 

y = 0.49e0.19x 
R² = 0.08 

0.01

0.1

1

10

100

0 5 10 15 20

LVlc 
 residue 

APR residue 

(n = 77) 



     47 

 

Figure 24 presents the eventual relationship between the modeled landslide volume (LVm) 

on the on hand and the reported landslide volumes (after linearly correcting for the fraction 

of land in the affected area) on the other hand. Symbols in this figure are shaded 

according to the way of LV acquisition (reported LV, reported LN or reported LN range). A 

vast increase in R² from 0.59 to 0.75 compared to the M-V relation (Figure 20) is observed. 

Deviations are in general smaller than an order of magnitude and also smaller compared 

to the M-V relation; about 80% of the predictions falls within an order of magnitude, and 

97.5% falls more or less within an order of magnitude, with only two strongly deviating data 

points. Furthermore the predictions show no bias for large or small LVlc, with a trend 

closely to the 1:1 reference line. The additional factors taken into account compared to the 

M-V relation, i.e. a linear correction for the land fraction in the mask area, LRstdev and 

weighting the model, respectively explain an additional 4.5%, 7.5% and 4% of the variation 

in LV. The resulting model equation is the following (own processing):  

 

       
                                     (17) 

 

  
Figure 24: Relation between the modeled landslide volume (LVm) and the reported or derived landslide volume 

linearly corrected for the fraction of land in the mask area (LVlc) (equation 17).  Model variables are the moment 

magnitude (Mw) and the standard deviation of the local relief (LRstdev). The regression is weighted according to 

the quality of the three different input datasets. The trendline of the combined data is not plotted as it does not 

take into account these different weights. The displayed R² referes to the model fit of equation 17 (Appendix 1, 

own processing). 
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3.3 Predicting the spatial distribution of earthquake-induced 

landslides 

3.3.1 Overview of the earthquake-induced landslide inventories 

The effort of georeferencing and digitizing LD maps resulted initially in 28 datasets that 

could be used to construct the LD model. Table 5 gives an overview of these events and 

Table 6 provides an indication of the quality of the data for the most important assessed 

parameters. According to this table, the quality of the different datasets appears quite 

variable for the different parameters. Based on this assessment it was found that events 

with ID’s: 51, 87 and 139 did not meet the quality requirements. Event 51 lacks a major 

part of the LAA, event 87 depicts large landslide areas, which are too large to deduce 

meaningful environmental characterization of landslide versus non-landslide pixels and 

event 139 could not be digitized with sufficient accuracy for analyses on a 500m 

resolution. The final selection of 25 events resulted in a dataset of 594546 pixels that were 

categorically classified as either a ‘landslide’-or ‘no-landslide’ pixel. The contribution of 

each of the 25 subsets to this total dataset is shown in Figure 25. The overall contribution 

is largest for event 123, whereas event 91 contributes mostly when only landslide pixels 

are considered. 

 

 
 

Figure 25: Amount of landslide and non-landslide pixels for each landslide inventory. Events (ID) are sorted by 

increasing total pixel number (Table 5, own processing).  
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Table 5: Overview table of digitized landslide inventories (n = 28), with indicated identifier (ID) referring to Appendix 1, event name or location, country, year, moment 

magnitude (Mw), an overal quality assessment and source of the dataset. The quality assesment is an overall score based on indivdual quality parameters, whereof the 

most important parameters are displayed in Table 6, the classes are: excellent, very good, good, sufficient and insufficient. Events not used for constructing the landslide 

distribution (LD) model are displayed in italic (own processing). 

ID  name/location country year Mw overal quality source 

1 Lorca Spain 2011 5.1 excellent Alfaro et al., 2012 

8 Buller New Zealand 1929 7.7 excellent Parker, 2013 

9 Inangahua New Zealand 1968 7.1 excellent Parker, 2013 

118 Northridge United States 1994 6.7 excellent Harp & Jibson, 1995 

140 Haiti Haiti 2010 7.0 excellent Gorum et al., 2013 

181 Mammoth Lakes United States 1980 6.2 excellent Harp et al., 1984 

182 Coalinga United States 1983 6.7 excellent Rymer & Ellsworht, 1990 

239 Lake Rotoehu New Zealand 2004 5.4 excellent Hancox et al., 2004 

10 Umbria-Marche (Sept.) Italy 1997 5.8 very good Guzzetti et al., 2009 

86 Zhaotong China 1974 7.1 very good Chen et al., 2012 

92 Chi-Chi Taiwan 1999 7.6 very good Parker, 2013 

125 L'aquila Italy 2009 6.3 very good Guzzetti et al., 2009 

130 Dusky Sound New Zealand 2009 7.6 very good Fry et al., 2010 

131 Krn Mountains Slovenia 1998 5.6 very good Gosar, 2012 

143 Loma Prieta United States 1989 7.0 very good Keefer, 1998 

150 Krn Mountains Slovenia 2004 5.2 very good Mikos et al., 2006 

238 Umbria-Marche (Oct.) Italy 1997 5.7 very good Guzzetti et al., 2009 

51 Guatemala Guatemala 1976 7.6 good Harp et al.,1981 

85 Luhuo China 1973 7.6 good Chen et al., 2012 

87 Longling China 1976 7.4 good Chen et al., 2012 

91 Wenchuan China 2008 7.9 good Parker, 2013 

114 Avaj Iran 2002 6.5 good Mahdavifar et al., 2006 

123 Pisco Peru 2007 8.0 good Lacroix et al., 2013 

11 Irpinia Italy 1930 6.7 sufficient Esposito et al., 2009 

95 Niigata Chuetsu-Oki Japan 2007 6.6 sufficient Collins et al., 2012 

133 Northern Nagone Prefecture Japan 2011 6.7 sufficient Has et al., 2013 

240 Fiorland New Zealand 2003 7.2 sufficient Trigs, 2009;  Fry et al., 2010 

139 Ancash Peru 1970 7.9 insufficient Plafker et al., 1971 
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Table 6: Quality overview table of digitized landslide inventories indicated in Table 5. With the identifier (ID) referring to Appendix 1. The determination of landslide 

numbers (LN) with ‘field’ refering to mapping in the field,  ‘aerial’ referring to aerial photography and ‘satellite’ referring to satellite imagery. The completeness of the 

reported landslide inventory, an assessment of the completeness of the landslide-affected area (LAA), the goodness of digitization (i.e. the ability to digitize all indicated 

landslides on the map), the map resolution and the average error of the map. Errors are determined based on a comparison between 5 locations on the map and 5 

locations in google earth (section 2.4.1). Asterix: * in  column 7, indicates inventories where no 5 exact locations for comparison could be found, but for which the 

indicated topograpy on the maps allowed estimating the  average error (own processing). 

ID  determination of LN 
completeness of  
reported LN 

completeness  
of LAA 

goodness of  
digitization 

resolution of   
input map (m) 

average  
error (m) 

       

1 very detailed in field  complete complete very good 20 26 

8 field + aerial probably quite complete probably quite complete perfect 76 69 

9 field + aerial probably quite complete probably complete perfect 76 69 

118 very detailed field + aerial not entirely complete probably complete perfect - 0 

140 extremely detailed aerial  probably complete  complete perfect 61 79 

181 detailed field + aerial probably complete probably complete perfect 7 <100* 

182 - probably complete probably complete perfect 11 <100* 

239 aerial only main landslides probably complete perfect 23 49 

10 field, aerial probably quite complete probably complete very good 42 <100* 

86 detailed field probably quite complete probably complete very good 29 - 

92 very detailed aerial  landslides larger than 625m² complete very good 151 - 

125 field, aerial, satellite probably quite complete probably complete very good 65 ±100* 

130 aerial probably quite complete probably complete perfect 175 140 

131 very detailed field + aerial complete probably complete very good 19 92 

143 very detailed field probably complete probably complete good 17 138 

150 very detailed field probably complete probably complete very good 43 67 

238 field, aerial probably quite complete probably complete perfect 42 <100* 

51 very detailed field + aerial not entirely complete incomplete very good 4 91 

85 detailed field  unlikely to be complete probably complete very good 65 249 

87 detailed field  probably quite complete probably complete perfect  94 - 

91 field + aerial incomplete incomplete perfect 159 - 

114 detailed field probably complete probably complete perfect 63 234 

123 field + aerial landslides larger than 100m² for aerial probably complete very good 283 285 

11 - unlikely to be complete probably complete perfect 223 336 

95 field + aerial incomplete: no small roadcut failures probably quite complete good 35-60 270 

133 aerial  maybe some missing, selective area maybe not entirely complete good 60 100-200* 

240 - not entirely complete probably complete good 613 333 

139 field + aerial maybe some missing incomplete very good 107 1318 
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3.3.2 Evaluation of the potential predictor variables, based on individual 

landslide inventories 

Figure 26 and Figure 27 display comparison plots of the likelihood ratio, the Wald test 

statistic and the logistic model coefficients (respectively equations 9, 10 and 7 in section 

2.4.3) of the univariate logistic regression analysis for all 25 datasets. For a good 

comparison, lr and W statistics of the same variable are plotted next to each other. Many 

of the lr and W values surpass the display limit of 30, but this limit is set for visualization 

purposes of smaller values. Moreover, higher values are of no importance, since the 

interest goes to the significance level of 0.01 which is reached at the value of 6.635 for a χ² 

distributed parameter with one degree of freedom (Beirlant et al., 2005).  
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Figure 26: Comparison plots of likelihood ratio’s (lr, left column) and Wald statistics (W, right column) for all 25 

events (for ID’s see Table 5) for 7 different predictor variables. The y-axis limit is set to 30 to allow for a better 

comparison between the smaller values. The 0.01 significance level of 6.635 is indicated by the grey line. Values 

not reaching this limit are displayed in grey, values surpassing this limit are displayed in black. (Table 5, own 

processing). 
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Figure 27: Comparison plots of the logistic model coefficients for all 25 events (for ID’s see Table 5), obtained 

after separately testing each single variable for each event (see section 2.4.4) (Table 5, own processing).  

 

Figure 26 clearly shows that W and lr approach each other. For all seven variables and all 

25 events they are in agreement on whether or not the variable is significant on a 

significance level of 0.01. The variable ‘tree cover’ for events 11 and 114 (respectively 

Irpinia earthquake: Italy, 1930, Mw 6.7 and Avaj earthquake: Iran, 2002, Mw 6.5), is not 

appropriate for logistic regression analysis. The reason is that for these events the 

landslide pixels all have the same value of 5% treecover. In this way no variation in 

treecover values exists so that the predictor variable is not useful to differentiate between 

landslide and non-landslide pixels.  

 

Figure 26 and Figure 27 also show that for the same variable, the lr, W and coefficients 

strongly vary between different events. However, a consistent picture is apparent: D, SME, 

SMA, and ER, are for most events significant on the 0.01 significance level and have 

consistently positive or negative coefficients for the different events. Only event 85 (Luhuo 

earthquake: China, 1973, Mw 7.6) behaves as an exception for the coefficients of the 

topographic variables (Figure 27) and event 239 (Lake Rotoehu earthquake: New Zealand, 

2004, Mw 5.4) has a very low lr and W for these topographic variables. The other three 

variables (DR, TC and EM), on the other hand, are often insignificant on the 0.01 

significance level and are, depending on the event, either negative or positive.  

 

Figure 28 presents the model improvement by adding the indicated predictor variables for 

the full model compared to the null model (section 2.4.3 and 2.4.4) for four of the 25 

events. The 25 obtained models are interesting results in itself, but the aim is to combine 

the different events in one model. Therefore, these individual results are not discussed in 

detail. The events presented in Figure 28 were chosen for comparison with results of 

Parker (2013) and in the light of the discussion of the two previous analysis steps. In 

general (for all 25 events), the full model is significantly better than the null model, with 

    
  ranging from about 0.1 to about 0.5. Overall, it was found that especially D and the 
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relief variables SMA, SME and ER mostly contribute to the improvement of the full model. 

Event 85 forms an exception with a large improvement provided by EM.  

 

Finally a comparison between the     
  of models taking into account the variables 

distance to epicenter, the distance to the main fault lines and both, is shown in Figure 29. 

For this figure, the analysis was carried out for earthquake events with mapped main faults 

on the published landslide inventory maps. The results for D appear very variable, 

whereas DF appears more robust and also scores better than D for six of the nine events. 

The combination of both shows no large improvement compared to DF. 

 

 

 

 

Figure 28: Plots showing the contribution (expressed as Mc Fadden’s Pseudo R² (     
  , section 2.4.4) of 

different predictor variables for predicting landslide occurrence of the full model compared to the null model, for 

a selection of events. Variables indicated on the x-axis have to be read from left to right, indicating which 

variable is added to the model taking into account all previous variables as well. The sequence was determined 

by the likelihood ratio (lr), each time adding the variable with the highest lr based on the univariate logistic 

regression analysis of each event individually. For event ID’s see Table 5 (own processing). 
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Figure 29: Comparison of Mc Fadden’s Pseudo R² (     

  , section 2.4.4) between models taking into account 

distance to the epicenter (D), distance to faults (DF) or their combination. The analysis is performed for events 

with mapped main faults on the published landslide inventory maps (Table 5, own processing). 

 

3.3.3 Construction of a spatially distributed landslide model based on 

integrated landslide inventories 

Previous analyses demonstrated that D, SME and SMA are the most important predictor 

variables (section 3.3.2). Together with the additional variables (Mw, FD, DS), which only 

become relevant when different earthquake events are considered, this results in 12 

variable combinations that should be tested. Figure 30 shows the calibration and validation 

results of the Monte Carlo simulations for the three different subset selection procedures 

(SSP) ‘fixed’, ‘fraction’ and ‘root’ (explained in section 2.4.5) for these 12 different variable 

combinations.  

 

A first general finding is that, validation performance is very similar to the calibration 

performance. Overall, highest     
  are found for the ‘fraction’ SSP, with lower values for 

the ‘root’ SSP and lowest values for the ‘fixed amount’ approach. Regarding the parameter 

combinations, models with the standardized distance (i.e. DS instead of D), score 

markedly better. Likewise, models with Mw score better than models where the 

earthquake magnitude is not explicitly included. Depending on the subset selection 

procedure used, models with focal depth (FD) give better or worse results than models 

without. Furthermore, maximum slope (SMA) generally leads to somewhat better model 

performances than mean slope (SME). 
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Figure 30: Boxplot charts displaying the contribution (expressed as Mc Fadden’s Pseudo R²:      
 , section 

2.4.4) of the full model relative to the null model of different predictor variable combinations. Boxplots are based 

on 100 iterations for the ‘fixed amount’ subset selection procedure (SSP) and on 50 iterations for the ‘fraction’ 

and ‘root’ SSP (see section 2.4.5). The different predictor variables are the following: moment magnitude (Mw), 

distance to the epicenter (D), standardized distance to the epicenter (DS), mean slope (SME), maximum slope 

(SMA) and focal depth (FD). Dots inside the boxplots indicate the mean. The black rectangle indicates the 

eventual selected model setup (Table 5, own processing). 

 

Based on the results shown in Figure 30, the eventual model set up was selected: i.e. the 

‘root’ procedure with variable combination: Mw, DS and SMA (indicated in Figure 30 by the 

rectangle). To obtain a representative set of final model coefficients, additional Monte 

Carlo simulations with 101 iterations were carried out. This resulted in 101 coefficient sets 

that give an idea of the coefficient range for each predictor variable. Boxplots of these 

coefficients are shown in Figure 31.  

 

  

  
 

Figure 31: Boxplots displaying the range in coefficients (n = 101) for the variables taken into account in the 

landslide distribution model (equation 18) (Table 5, own processing). 
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To determine the most important predictor variable, univariate Monte Carlo simulations 

were carried out for the model variables Mw, DS and SMA. The calculated      
  indicate 

that DS is the most important predictor variable for the model. It is the median coefficient 

of this variable together with the corresponding coefficients for the other variables that is 

used as the central coefficient set for the LD model. The resulting logistic regression 

equation is the following (own processing): 

 

 (   )   
 

    (                                 )
   (18) 

 

 

Figure 32 shows two boxplot charts, where the variable combination Mw, DS and SMA are 

tested for the impact of excluding each time one of the 25 landslide inventories from the 

calibration, for respectively the ‘fraction’ and ‘root’ SSP. Overall the deviations from the 

average     
  are small, with some larger deviations (especially for the ‘fraction’ SSP) for 

events 8, 11, 85, 91 and 130.  
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Figure 32: Boxplot charts to test for the impact of specific events, by iteratively leaving out 1 of the 25 landslide 

inventories. Two different subset selection procedures (SSP): ‘fraction’ and ‘root’ (section 2.4.5 ) are displayed 

for both calibration and validation datasets. On the x-axis the ID’s of the event not taken into account are 

displayed (Table 5). The variable combination for this simulation is the combination of moment magnitude (Mw) 

with standardized distance to the epicenter (DS) and with maximum slope (SMA). Each boxplot is based on 20 

iterations for both SSP, with dots in the boxplots indicating the mean. The reference line indicates the mean 

    
  of the corresponding procedures and variable combination in Figure 30, with respectively values of 0.1698 

and 0.1429 for the ‘fraction’ and ‘root’ SSP (Table 5, own processing). 

 

 

3.3.4 Application and validation of the landslide distribution model  

Figure 33 shows two of the resulting probability maps for two selected events (event 85: 

Luhuo: China, 1973, Mw 7.6 and event 181: Mammoth Lakes: United States, 1980, Mw 

6.2). For comparison also the originally mapped landslide distribution is indicated. These 

two figures illustrate two clearly contrasting examples of the performance of our model 

(equation 18): spatial patterns are generally badly predicted for event 85, while the model 

performs well for event 181. The remaining 23 probability maps are shown in appendix.  

 

Visual interpretation of all maps shows that the model scores well to very well for most 

events. Only for events 91, 92 and 114 poorer results are obtained and for event 85 the 

model scores badly. Figure 34 shows ROC curves for events 85 and 181. It is again clear 

that the model scores bad (ROC value < 0.5) for event 85 and very good (ROC value > 

0.9) for event 181. The ROC values for all other events are also displayed, only for event 

85, a value smaller than 0.5 is obtained. 
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Figure 33: Landslide probability maps for event 85 and 181 (for ID’s see Table 5). Mapped landslides are 

indicated by black dots, coordinates are in the UTM projection (Table 5, own processing). 
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ID 1 8 9 10 11 85 86 91 92 95 114 118 123 
ROC 0.86 0.80 0.86 0.83 0.82 0.44 0.76 0.74 0.71 0.75 0.65 0.79 0.80 

ID 125 130 131 133 140 143 150 181 182 238 239 240   
ROC 0.80 0.78 0.75 0.73 0.83 0.82 0.83 0.91 0.62 0.86 0.83 0.82   

 

Figure 34: Relative operating characteristic (ROC) curves for event 85 and 181 (for ID’s see Table 5), based on 

summed probabilities of 100 iterations with each time randomly selecting 1 of the 101 coefficient sets and with 

the 1:1 reference line indicated in grey corresponding with a ROC value of 0.5. ROC values for all events are 

shown in the table (Table 5, own processing). 

 

3.4 The integrated spatially distributed landslide volume 

model 

3.4.1 Predicting landslide numbers based on the distribution model 

As explained in section 2.5.1, the LD model can be used to predict landslide numbers (LN) 

based on the simulated total probability sum (PS). Figure 35 shows the resulting relation 

between the modeled total landslide number (LNm) and the reported or derived LN. The 

model equation is the following: 

 

                  (Appendix 1, own processing)   (19) 

 

The model can explain about 59% of the variation in LN and seems robust with no 

deviating trend towards low or high landslide numbers. Only 9 LNm deviate more than an 

order of magnitude from LN, with the largest deviation for event 85. 
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Figure 35: Relation between the modeled total landslide number (LNm) and the reported or derived total landslide 

number (LN) (equation 19). PS is the total probability sum, calculated via the LD model (equation 19) (Appendix 

1, own processing). 

 

3.4.2 Model application and comparison with available inventories 

The integrated model was applied to the 23 events that are both included in the LN model 

(Appendix 1) and the LD model (Table 5). These are all events from the LD model except 

for event 11 and event 240, for which no reliable LN was found. Simulations for each event 

were based on 100 iterations and the assigned LN and LV were summed for each pixel 

over these 100 iterations. 

 

As a means of validation for the correctness of the simulated LN and LV, a comparison of 

the model landslide number (LNm) (equation 19) and model landslide volume (LVm) (the 

model equation for predicting LV based on PS is not used in the integrated model and is 

therefore not further discussed in this thesis, but is analogue to the procedure for the LN 

model described in section 2.5.1) is made with the simulated LV (LVs) and the simulated 

LN (LNs) (Figure 4). Such a validation is required to check whether no systematic bias in 

the LNs or LVs exists, after adding a random factor to account for the model uncertainty 

(section 2.5.2). Both mean and median values of the 100 simulations for each event are 

plotted. It can be observed that mean values are systematically higher compared to the 

median values of the simulations. Besides, median LNs and LVs are consistent with LNm 

and LVm. Finally, it can also be observed that the deviation between mean LVs and LVm is 

relatively larger than the deviation between mean LNs and LNm.  
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Figure 36: (left) Comparison of the total landslide number predicted by the LN model (equation 19, LNm) with the 

mean and median values of the simulated LN (LNs). (right) Comparison of the total landslide volume predicted 

by a LV model based on the probability sum (PS) (the model equation for predicting this LV based on PS is not 

used in the integrated model and is therefore not discussed in this thesis, but is analogue to the procedure for 

the LN model described in section 2.5.1) with the mean and median values of the simulated LV (LVs). Mean and 

median values are based on 100 iterations of the integrated model for each event (Table 5 and Appendix 1, own 

processing). 

 

To allow for a comparison with event 181 in Figure 33, the simulation results for this event 

are shown in Figure 37. Presenting as well the maps with cumulatively added LNs and LVs 

for 100 iterations as a possible landslide and volume induced pattern for one iteration. For 

the cumulative maps a clear pattern corresponding to the probability map in Figure 33 

arises, with especially for the LNs a clear correspondence. Obviously the pattern contains 

more scatter for a single iteration, but still higher concentration of LNs and larger LVs can 

be observed in the high probability zones. The simulation statistics in the table confirm the 

larger mean values than median values, show the very large range between minimum and 

maximum values and also indicate the more moderate range for 50% of the simulations 

between the 25th percentile (Q25) and 75th percentile (Q75). 
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  reported mean median minimum maximum Q25 Q75 

LN 5253 1.74E+03 349 9 72186 114 892 

LV (km³) 0.012 0.0689 0.0075 4.97E-05 3.7736 0.002 0.0229 

 

 Figure 37: Model simulations for event 181, with cumulative number (left) and volume (right) maps for 1 iteration 

on top and 100 iterations in the bottom maps. The selected iteration is the iteration with LNs closest to the 

median LNs of the 100 iterations. Mapped landslides are indicated by the black dots and axes values specify the 

UTM-11N coordinates. Statistical properties of the simulation are shown in the bottom of the figure, with Q25 the 

25
th

 percentile and Q75 the 75
th

 percentile (Table 5, own processing). 

 

A general evaluation of the model is provided by means of the Kappa index of agreement 

for location (Kl) in Figure 38 and by an error budget in Figure 39. All events, except for 

event 85, have positive median and mean Kl values. For all events, larger mean than 

median values can be observed. Figure 39 shows that most events have more than 50% 

of the pixels correctly classified, although large differences between individual events can 

be observed. For most events disagreement due to quantity is larger than disagreement 

due to location. This means that a wrong classification of individual pixels is mostly caused 

by errors in the landslide quantity assessment rather than due to a wrong spatial allocation 

of these landslides. 
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Figure 38: Mean and median values of the kappa index of agreement for location (Kl, equation 16). Mean and 

median values are calculated from 100 simulations carried out for each event (Table 5, own processing). 

 

 
Figure 39: Error budget of the simulated earthquake-induced landslide maps based on 100 simulations for each 

event. Plotted agreement and disagreement values are the median values of all simulations. The total agreement 

or model performance (MP) is the fraction of correctly simulated pixels, compared to the mapped pattern. 

Disagreement due to location is the disagreement that can be attributed to wrong landslide allocation, and 

disagreement due to quantity can be attributed to a wrong landslide number prediction. The dashed line 

indicates the 0.5 threshold as a reference for a random model with no information on quantity and location 

(Table 5, own processing). 
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3.5 Model application and comparison with sediment yield 

Simulation results for the Siret catchment are displayed in Figure 40. On the left, annual 

average landslide volumes of all earthquakes (with magnitude larger than or equal to four) 

of the considered period (section 2.6.2) are displayed. On the right, average landslide 

volumes for the 1977 earthquake (Mw 7.4) are shown. A clear pattern is observed with 

highest annual average volumes in the region with largest seismic activity (Figure 11), and 

much smaller volumes outside this region. For the 1977 earthquake this pattern is less 

pronounced. A comparison between both maps learns that the 1977 event generated 

larger volumes than the annual average for parts of the area outside the region of highest 

seismicity.  

 

  
Figure 40: Simulated landslide volumes in the Siret basin for 292 earthquakes in the period 1965 till April 2014 

(left) and for the 1977 earthquake (right). Volumes for all events are yearly averages based on 50 simulations of 

all 292 events, the volumes for the 1977 event are the average of 50 simulations for this event (own processing). 

 

The simulated landslide volumes were converted to annual catchment weighted landslide 

masses (LM, t/km²/y) for all events and to catchment weighted landslide masses (LM, 

t/km²) for the 1977 event, to allow for a better comparison with the SY. A dry bulk density 

of 1.8 g/cm³ was assumed. Figure 41 presents resulting correlations with the average 
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annual SY (Table 3), expected PGA (Table 4), average slope (Table 4) and average 

catchment distance to the center of highest seismicity in the Vrancea region (Dc). The 

center of highest seismicity was arbitrarily determined as the most central earthquake 

epicenter (45.658°N, 26.527°E) in this region. However, to illustrate that LM decreases 

with increasing Dc, it is not important if the real center would slightly deviate from this 

location. 

 

  

 
 

   

Figure 41: Scatter plots of simulated median (50 iterations) annual landslide masses (LM) per catchment in the 

Siret basin (n = 34) for 292 earthquakes in the period 1965 till April 2014 (section 2.6.2) and other catchment 

characteristics. (upper left) average annual sediment yield (SY), (upper right) expected peak ground acceleration 

with a recurrence interval of 100 years (PGA), (lower left) average catchment distance to the center of highest 

seismicity in the Vrancea region (Dc, Figure 11)) and (lower right)  average slope (S). Error bars indicate the 5
th

-

95
th

 percentile (Q5-Q95) interval of the simulations. Four catchments with median landslide volumes being zero 

were discarded from the analysis (Nr.: 1, 2, 8, 13: see Table 3) because these cannot be displayed on a log scale. 

For the same reason Q5 could not always be displayed. (Table 3 and Table 4, own processing). 
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All but the correlation with the average slope are significant on the 0.01 significance level. 

SY and PGA show strong positive correlations with LM and Dc shows a strong negative 

correlation. Although a clear positive relationship between LM and SY is observed, the 

reference line shows that LM is lower than SY for small LM and larger than or equal to SY 

for high LM. A comparison with Figure 42 learns that the landslide mass generated by the 

1977 earthquake is for more of these catchments larger than the average annual SY. This 

confirms the observations in Figure 40. However, error bars also show that the uncertainty 

on the landslide masses for the 1977 event is larger than the uncertainty on annual 

average LM for all events, especially for larger LM. 

 

 

Figure 42: Scatter plot of the simulated median (50 iterations) landslide masses (LM) per catchment in the Siret 

basin (n = 28) for the 1977 earthquake and the average annual sediment yield (SY). Error bars indicate the 5
th

-

95
th

 percentile (Q5-Q95) interval of the simulations. 10 catchments with median landslide volumes being zero 

were discarded from the analysis because these cannot be displayed on a log scale. For the same reason Q5 

could not always be displayed (Table 3, own processing). 

 

Figure 43 displays the median landslide mass per catchment for both the 1977 earthquake 

and all considered earthquakes in the region. Additionally the fraction of the generated LM 

by the 1977 event as a part of the LM generated by all earthquakes is shown. It can be 

observed that in absolute terms LM decreases with increasing Dc for both the 1977 event 

and all events together. On the other hand the fraction of the 1977 event as part of the LM 

of all events increases with increasing Dc. In this way the 1977 event contributes only little 

to the total LM of all events in catchments in the central area, whereas for catchments 

further from this center it often contributes largely. The median fraction for all catchments 

together is 2.1% with a Q5-Q95 range of: 0.1-40.2%. Finally, it was calculated that median 

simulated landslide masses (dry bulk density 1.8 g/cm³) amount to 1.44E+09 ton (Q5 - 

Q95: 6.48E+08 – 6E+09) and 6.41E+07 ton (Q5 – Q95: 5.58E+06 – 1.73E+09) for 
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respectively all events and for the 1977 event (for this purpose also simulated landslides 

outside the Siret basin were considered). 

 

 

 

Figure 43: (top) Simulated median (50 iterations) landslide masses per catchment (LM) (n = 34) for all considered 

earthquakes together (All, section 2.6.2), and for the 1977 earthquake separately (1977). (bottom) Fraction of LM 

generated by all earthquakes, induced by the 1977 earthquake. Catchments are ordered according to distance to 

the center of highest seismicity in the Vrancea region (Dc, Figure 11) and catchment numbers are indicated on 

top of each bar (own processing). 
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4 Discussion 

4.1 The earthquake-landslide dataset: Reliability and 

representativeness 

A compilation of a dataset from many different sources always entrains uncertainty 

(section 2.2). Comparing different sources, selecting the most reliable data (e.g. recent or 

well-explained) and omitting unreliable or incomplete data resulted in a useful dataset for 

data extraction concerning earthquake-induced landslides. 

 

One of the most important factors for the reliability is the completeness of the investigated 

area. The literature study revealed that many studies focused on specific areas or 

landslides rather than the total impact of EQ events in terms of landsliding  (e.g. Barnard et 

al., 2001; Pan et al., 2004; Lee & Evangelista, 2006; Miyagi et al., 2011). These are often 

very detailed studies, but could not be used since they represent just a fraction of the 

landslide-affected area. On the other hand, many studies just report some information on 

the landslides (e.g. LN or LAA), without further explanation on how the data was acquired 

or an indication of the uncertainties on these values. Nonetheless, it is highly likely that 

most inventories are incomplete to a certain extent (Keefer, 2002). This incompleteness 

can be caused by technical limitations related to detecting the smallest landslides (e.g. 

Pisco earthquake: Peru, 2007, Mw 8.0: Lacroix et al., 2013), because of incomplete 

coverage of high resolution satellite imagery (Harp et al., 2011; e.g. Wenchuan 

earthquake: China, 2008, Mw 7.9) or because some landslides resulting from older 

earthquake events could no longer be detected (e.g. Irpinia earthquake, Italy, 1930, Mw  

6.7). These limitations are only occasionally reported and may give a false idea of 

completeness. Reports concerning the Northridge earthquake (United States, 1994, Mw 

6.7: Harp & Jibson, 1995; Harp & Jibson, 1996) and the Pisco earthquake (Lacroix et al., 

2013) on the other hand give an assessment of these limitations. Both datasets were 

assessed to be very reliable. Nevertheless, they give the idea that smaller landslides might 

be missing by reporting detection limits of respectively 1-10m across and 100m².  

 

The previous examples illustrate that a careful consideration of the data quality is required 

and that one may not be misled by the absence of information on data limitations, since 

the most reliable investigations are often those, reporting these limitations. Besides it also 

indicates that reported landslide numbers and consequently also reported landslide 

volumes are likely to give an underestimation of the total landslide volume triggered by an 

earthquake. On the other hand, it is suggested that directly estimated landslide volumes, 

are overestimations of the actual triggered volumes (Vanmaercke, pers. comm.). These 

estimates are often based on empirical relationships between LA and LV (e.g. equation 5). 

However, disentangling different landslides based on aerial photography is often difficult. 

In this way many smaller landslides might be taken together as one large landslide, 
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resulting in an overestimation of the landslide depth and a consequent overestimation of 

the landslide volume (Vanmaercke, pers. comm.). 

 

Figure 12 and Figure 14 give an indication of the representativeness of the compiled E-L 

dataset. A comparison with the expected PGA map (Figure 8) indicates that the most 

seismic active regions in the world are well represented on the map. Additionally, it shows 

that these events span a wide range of magnitudes (M 4.2 – 9.5).  

 

Important is the exceedance probability (EP) of the events in the dataset with respect to 

magnitude. It is stated that the smallest magnitude for earthquakes triggering landslides is 

four (section 1.2.5.a). This threshold corresponds very well to the smallest events in our 

dataset shown in Figure 14. Even though the range in magnitude in our dataset spans the 

entire range of magnitudes likely to trigger landslides, we want to test if our dataset is 

representative for all registered earthquake events in this magnitude range. In order to do 

so all registered earthquakes with M larger than or equal to four were retrieved for the 

period 1950-2013 (NCEDC, 2013). The EP for these data is shown in Figure 44 in 

comparison to the EP of our dataset. 

 
Figure 44: Exceedance probability (EP) of the magnitude for all earthquake events with magnitude larger than or 

equal to four for the period 1950-2013 as derived from the NCEDC database (solid line, n = 373106) and for all 

earthquake events in the dataset compiled in the framework of this thesis (dotted line, n = 239) (NCEDC, 2013: 

own processing). 

 

There is clearly a bias towards an overrepresentation of large events between 

earthquakes in our dataset and earthquakes in general. For instance EQ events with a 

magnitude of seven have an EP of about 40% in our dataset, while only about 0.1% of all 

earthquakes with magnitude larger than four exceeds magnitude seven. This may indicate 

several things. 
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First, it indicates that previous research especially focused on large events with a vast 

impact. Secondly, it might also suggest that earthquakes with a certain magnitude not 

always trigger landslides. For instance, Jibson et al. (2006) state that the Denali 

earthquake (United States, 2002, Mw 7.9) triggered an exceptionally small amount of 

landslides. Related to this, it might also point to a bias in the location (with respect to 

topography) of earthquake events in our dataset. This was tested by comparing the local 

relief (LR) for all NCEDC earthquake epicenters (with location on land) with the local relief 

of the data we used in the LV model (Figure 45). The boxplots indicate that our data 

indeed shows a bias towards larger topographic relief. A Wilcoxon rank sum test was 

performed under the null hypothesis that both datasets are continuous distributions with 

equal medians (Beirlant et al., 2005). This null hypothesis was rejected on the 0.01 

significance level. Such a bias could explain why the topographic variables (besides 

LRstdev: section 4.2.3.d) are not significant to explain for LV after correction for the 

magnitude: i.e. the variation in relief for all 77 events is too small.  

 

Thirdly, the bias in magnitudes can also point to the fact that many earthquakes that 

trigger landslides were not investigated. The truth will possibly be in between these 

explanations. On the one hand, it can be expected that some earthquakes trigger less or 

no landslides (e.g. Denali) and that research focusses on locations where more landslides 

were triggered. On the other hand, it is almost certain that EQ events in deserted places, 

older EQ events or rather small earthquakes may have triggered a substantial amount of 

landslides, which remains unstudied. As observed for the Siret basin, also these small 

earthquakes may significantly contribute to the total triggered landslide volume, exactly 

because they are so many (section 3.5). Additionally most recent inventory studies are 

based on satellite imagery, tracing distortions in the vegetation (e.g. Lacroix et al., 2013). 

This as well leads to a bias in studies, since for arid to semi-arid regions such as Turkey or 

Iran, it is more difficult to apply such techniques. Finally, one should also keep in mind 

that, a vast fraction of the earthquakes occurs offshore, limiting their impact for landsliding. 

 

Figure 45: Comparison between local relief (LR) for all earthquake events with magnitude larger than or equal to 

four for the period 1950-2013 as derived from the NCEDC database (n = 115473) and LR for all earthquake events 

in the dataset compiled in the framework of this thesis (n = 66). Only epicenter locations on land are considered. 
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4.2 Predicting the total earthquake-induced landslide volume 

4.2.1 Data selection and uncertainties 

Because of the scarcity of events with directly reported landslide volumes, a LN-to-LV 

conversion was used to expand the dataset (section2.3.1 and 3.2.1). Testing of this 

conversion in Figure 15 shows one outlier, the Coalinga earthquake (United States, 1983, 

Mw 6.7). An explanation for the large deviation between the reported and calculated LV 

might be the very detailed mapping of landslides in the field and on aerial photographs, 

also including the smallest ones. On the other hand also the very large amount of small 

landslides or the absence of larger landslides (Harp & Keefer, 1990) might play a role. The 

first reason would indicate that the proposed relationship by Malamud et al. (2004a) is 

based on events lacking a detailed inventory of the smallest landslides, which is not the 

case. The second reason indicates that significant variability in the landslide size-

frequency distribution might exist between different events with the same magnitude. 

Therefore, a conversion between LN-to-LV should always be applied with care. 

Nevertheless, the error is acceptable, taking into account that also uncertainties on the 

direct measurements of LV exist, which are often unknown. Nonetheless, for individual 

landslides the uncertainties on the volume estimate can be in the same order of magnitude 

as the estimated volume itself (Brunetti et al., 2009; Guzzetti et al., 2009a). Moreover, the 

applied relation is the only practical applicable conversion method that is currently 

available. 

 

Still, a LN-to-LV conversion as used in this thesis (section 2.3.1) is more prone to the in 

general underestimation of the LV for a specific EQ event (section 4.1), which is explained 

as follows. Imagine an earthquake triggering landslides, of which the 20% smallest is not 

detected (200 landslides out of 1000). A direct assessment of the volume of the largest 

80% of the landslides, will account for almost 100% of the total landslide volume, since this 

total volume heavily depends on a few large landslides (section 1.2.5.d). For the LN-to-LV 

conversion on the other hand, the size of the landslide does not play a role in the total 

count. In this case the LN-to-LV conversion with equation 4 would give an underestimation 

of the triggered volume of about 22%. Therefore, LN-to-LV conversion is likely to give an 

underestimation of the volume for incomplete datasets. On the other hand, the bias in 

scientific research towards events with a significant impact (section 4.1) may counter this 

underestimation in the total dataset of 77 EQ events. All in all it can be concluded that 

potential biases exist on the constructed relation (equation 17), induced by probable 

underestimations of the total landslide volume for events were only a number of landslides 

was reported, and by overrepresentation of earthquake events having a disproportionally 

large impact in terms of landsliding. However, these potential biases may to some extent 

counteract each other. 
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4.2.2 Delineation of the landslide-affected area 

To determine the radius of the mask areas around each epicenter, the least square fit of 

the relation between Mw and Dmax (Figure 16) was used. Some events show significantly 

larger maximum distances, much in accordance with the relations shown in Figure 4. 

Nevertheless, an upper bound function was not used since it is not necessarily better to 

consider a larger area for some marginal landslides (section 1.2.4). Furthermore, the 

calculated LAA in Figure 18 was based on this least square fit and still shows a systematic 

overestimation of the area. Therefore, the use of half of the radius, as suggested in section 

2.3.2, is justified. This approach focusses better on the area of interest, i.e. closer to the 

epicenter since this is generally where the majority of landslides occurs (section 1.2.4). 

One step further would be that distance weighted environmental characteristics are taken 

into account, but this requires a better insight in the landslide distribution. In this way 

different weights could be given to locations according to a relation between landslide 

concentration and distance to the epicenter, calibrated for many earthquake inventories. 

Therefore in a second phase, a similar approach was applied to construct a LN model 

based on the knowledge of the LD (section 2.5.1). 

 

4.2.3 Factors controlling earthquake-induced landslide volumes 

4.2.3.a Moment magnitude 

The distribution of delineated areas in Figure 19 and Figure 12 indicates a good 

representation of the seismic active regions in the world (Figure 8) by the events used for 

the LV model. Main data gaps only exist for the East African graben region and the 

Indonesian archipelago. Earlier proposed M-V models were determined without including 

any data for a seismic active region such as Japan and with only one event for the whole 

Eurasian continent (section 1.2.3). As a result, the better representation together with the 

vast increase of the number of events (16 compared to 77) is a clear improvement for the 

robustness of the relationship between Mw and LV. Nevertheless, our M-V relation scores 

not better than these previous M-V models. On the one hand, this can be attributed to the 

uncertainties on the data (section 4.2.1). On the other hand, this can also be attributed to 

the fact that more events are taken into account, expanding the range of variability in other 

factors (e.g. topography, lithology, land cover, climatic conditions, earthquake mechanics, 

etc.). 

 

The different subsets indicating how LV was estimated (LV, LN and LN range: section 

2.3.1), show no large bias for LV as a function of Mw. Still, a slightly steeper trend appears 

for the LV sub dataset. The question is whether this deviation is (1) inherent to the applied 

relationship of Malamud (2004a and 2004b: equation 3), (2) because of the variation in the 

earthquake events, i.e. different environmental conditions and/or (3) because of the limited 

amount of events in each class and the uncertainty on all the estimates. It was explained 

in section 4.2.1, that an underestimation can be expected when calculating LV based on 
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LN. However, if this would explain the deviation, the LN based volume estimates should be 

systematically below the directly obtained volumes and this is not observed. Still, it could 

be that equation 3 systematically overestimates LV for small landslide numbers, and 

underestimates LV for large landslide numbers. For this purpose it would be interesting to 

further validate this function with other very good landslide inventories, which is also 

encouraged by the authors themselves (Malamud et al., 2004b). The second and third 

argument are in the same line and it can be expected that the deviations will be reduced 

by taking into account other environmental characteristics. Furthermore, weighting of the 

subsets also partially accounted for these potential biases (section 2.3.1). 

 

4.2.3.b Land fraction 

A first additional variable to take into account is the land fraction, shown in Figure 21. It 

was chosen to directly correct the reported landslide volumes with the land fraction in each 

mask area to avoid over fitting of the model (LVlc), when this factor would be taken into 

account as an additional predictor variable. Correcting for the land fraction clearly 

improves the relation between Mw and LV with a 4.5% increase of R². Especially two 

events, at the high end of the magnitude scale (Tohoku: Japan, 2011, Mw 9.0; Valdivia: 

Chile, 1960, Mw 9.5), contribute to the increased R², because they have a relatively large 

fraction of the mask area in the sea and because they are the only data points for these 

large magnitudes. 

 

4.2.3.c Correlation and partial correlation analysis: the importance of other 

predictor variables 

Correlation and partial correlation analysis with correction for Mw gave better results for the 

smaller mask areas. This confirms the importance of the areas closer to the epicenter as 

discussed in section 4.2.2. 

 

An interesting result is the fact that none of the considered variables, besides Mw shows a 

strong correlation with the total landslide volume, linearly corrected for the fraction of land 

in the mask area (LVlc), despite their stated importance by earlier research (section 1.2.5). 

This clearly underlines the importance of the magnitude to explain for the variability in LV 

at a global scale. The absence of other important variables might be surprising, taking into 

account the large variability in LV for a specific magnitude (sections 4.1 and 4.2.1). 

However, three main reasons might explain this. First, the uncertainty on the input LV 

data, should not be underestimated. There is clearly room for improvement on the LV data 

(section 4.1 and 4.2.1), which would be likely to result in a better correspondence with 

factors such as mean slope and lithology for a certain LAA. On the other hand, also the 

input data of the predictor variables is not always ideal (section 2.3.3.c and section 

2.3.3.d). In the case of PGA, climate and tree cover data, for example, an important 

limitation is the time frame of these data which is not adapted to the occurrence of each 
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earthquake event. Especially in the case of heavy precipitation events, which were found 

to be important (section 1.2.5.d), it is clear that such a stochastic process can hardly be 

captured by a measure such as mean annual precipitation or even by the modified 

Fournier index. Additionally, these factors do not accurately focus on their potential 

different state or role before and after the earthquake.  A second way in which the 

predictor data is not ideal is the resolution of the data. This was a strong limitation in the 

case of lithology maps with data on a resolution of about 50 km, which is for many events 

even larger than the LAA. A third reason is the fact that different environmental factors 

interfere and might counteract each other. For example, weaker lithologies might result in 

more moderate topography. 

 

4.2.3.d Possible role of the ‘standard deviation of local relief’ as a predictor 

variable. 

Even though no very strong correlating factors were found, still some additional variation in 

LVlc could be explained by the topography after correction for Mw. It was not one of the 

more obvious topographic variables, such as maximum, or mean slope, but the standard 

deviation of local relief (LRstdev) which showed to be a significant, but also robust predictor 

variable (Figure 23).  

 

It should be asked why the standard deviation of local relief is a significant variable, as one 

needs a physical ground, and not just a statistical principle of correlation, to proof this 

factor can play a role. LRstdev indicates how much the LR varies within the considered 

mask area, which means that both areas with a low and high local relief should be present 

in the area to get a high LRstdev. It is especially surprising that LRstdev performed better than 

variables describing the average or maximum local relief in the considered mask area. 

Even though it is generally known that landslide probability increases with increasing 

topography (e.g. slope gradient; see section 1.2.5.c), this does not explain why the LRstdev 

performs better than variables describing the average rate of topographic differences. 

 

The reason for its better correlation with LVlc than measures as MLR or maximum LR, 

might be that it combines the best of both of these measures. On the one hand MLR is a 

more robust measure of relief, but it might be averaged out too much by contrasting 

landscapes in the mask area. The maximum LR on the other hand better represents the 

importance of large LR, which is more relevant for landsliding, but it is not so robust as it 

gives only the maximum value in the mask area.  However, in this case also the other 

topographic measures that were introduced to quantify the proportion of very steep 

topography in the mask area (section 2.3.3.a), should score at least as good. These 

variables indeed score better than MLR and maximum LR, but score significantly worse 

than LRstdev. This is an interesting observation: LRstdev is a significant factor, but (at least 

partially) not because it focusses on steep topography.  
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In order to find an explanation, it might be interesting to consider which real world 

situations result in high LRstdev. For this purpose we focused on the 5 earthquake events 

with highest and the 5 events with lowest LRstdev of our LV model. It is found that the five 

events with highest LRstdev, respectively: 91, 15, 92, 188, 175 (Table 5), are located at 

highly active subduction zones: Himalayan, Taiwanese and Andean orogeny (Chai, 1972; 

Kao & Chen, 2000). The five events with the lowest LRstdev on the other hand, respectively: 

192, 239, 196, 179, 3 (see Table 5), are located along transform boundaries (San Andreas 

Fault in United States, Alpine Fault in New Zealand) or at the margin of a convergent 

boundary, with also mainly strike-slip faulting (Betic Cordillera in Spain) (Weijermars, 1991; 

Zoback, 1992; Norris & Cooper, 2000). These observations suggest that high landslide 

volumes for a given earthquake magnitude are inherent to a specific geographical setting, 

which is reflected by LRstdev. Indeed active subduction zones typically consist of a relatively 

flat foreland basin, bordering very steep mountain ranges. Figure 30 shows the example of 

the Wenchuan earthquake (China, 2008, Mw 7.9) and the Assam earthquake (Tibet, 1950, 

Mw 8.6) with respectively the highest and second highest LRstdev. The first one is located 

along a fold-and-thrust belt, representing the eastern margin of the Himalayan orogeny 

(Hubbard & Shaw, 2009), the second one at the eastern margin of the collision zone 

between the Indian and Eurasian plate (Ben-Menahem et al., 1974). The relief maps 

created with Earth Explorer 6.1 (2009) clearly show their location at the mountain margin 

and an associated positive skewness for the LR histograms. The large amount of small LR 

values might be attributed to the the relatively flat foreland basins in the area. 

 

Of course these observations need more rigorous testing, but some ideas can be put 

forward to explain this observation. The main hypothesis could be that after correcting for 

the magnitude of an earthquake event, earthquakes with epicenters located closer to 

active margins of converging plates (i.e. at the interface between the foreland basin and 

mountain range) generate larger LV. Physically this could be explained by specific 

conditions that might be structurally different from conditions further away from the active 

margins, for instance: different lithologies, different geological structure or a systematic 

difference in the distance of the steepest slopes from the epicenter. Another hypothesis is 

that a specific mechanism such as ‘hillslope memory’ might play an important role (Parker, 

2013). This means that areas close to the subduction zone are also more often struck by 

smaller earthquakes, compared to more distant areas. This frequent occurrence of smaller 

earthquakes can weaken the substrate (Molnar et al., 2007). Consequently, with a 

subsequent large earthquake, the subduction area can be expected to generate more 

landslides. Moreover, Molnar et al. (2007) state that the amount of fracturing in the 

hanging wall of a fault system depends on the amount of time this lithological layer spends 

in the so called ‘bend’ (Figure 47, between the two red lines). Since this bend zone 

becomes larger with increasing depth and since deeper layers are exposed at the surface 
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closer to the main fault, this implies that the exposed rock closer to the main fault (in the 

area of high LRstdev) is more fractured and hence more prone to landsliding.  

 

  

   
Figure 46: Relief maps for the Wenchuan (left) and Assam (right) earthquakes, respectively in China in 2008 

(LRstdev: 848m) and in Tibet in 1950 (LRstdev: 689m) (Earth Explorer 6.1, 2009). Red dots indicate the earthquake 

epicenters. Below the associated histograms of the local relief (LR) are displayed, indicating the number of 

pixels sorted into 10 equally spaced LR classes (Appendix 1, own processing). 

 

 

 

Figure 47: Conceptual illustration of the hanging wall at a subduction zone. While the rock layers move to the 

left, significant cracking occurs when the layers are bended (between the two red lines). The rate of fracturing is 

proportional to the depth of the layer. This results in the exhumation of more fractured rock closer to the main 

fault (Molnar et al., 2007, p. 3). 
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4.2.4 Landslide volume model 

4.2.4.a Overall model performance 

A robust LV model (Figure 24), which reduced some of uncertainty of the M-V relation 

(Figure 20), could be established.  Moreover it is a fairly simple model to apply as it only 

requires information on the magnitude and the topography. Since the model is calibrated 

based on data distributed over most of the seismic active regions in the world (section 

4.2.2.a), it can be used as a global tool to assess the LV generated by a certain 

earthquake event at a specific location (Objective 2).  

 

To come back to the earlier discussion on the different subsets (directly reported landslide 

volumes, reported total landslide number, and reported total landslide number range) in 

section 4.2.3.a, it can be observed in Figure 24 that the slight deviations between the 

different subsets apparent in Figure 20, are further reduced. The remaining bias is largest 

for large magnitudes, but falls clearly within the uncertainty level of an order of magnitude. 

Moreover, the data scarcity for such large magnitudes makes that the three subsets 

heavily depend on only a few input data points. Additionally, it also seems reasonable that 

earthquake events triggering large LV or large LN attract more attention leading to more in 

detail investigations (i.e. LV assessments), possibly explaining why the largest LV data 

points were based on directly reported LV. Next to this, directly reported LV incline to 

overestimations when calculated based on a LA-LV relationship (section 4.1). 

 

Even though, it is demonstrated that all available data should be used. We also tested the 

model for other input datasets. The explanatory power of the model is not significantly 

affected by subsequently leaving out data based on LN ranges and based on LN. Despite 

the smaller datasets, R² for these reduced models are in the range of 0.73-0.77 (compared 

to 0.75 for our model (equation 17)).  

 

4.2.4.b Deviation from the trend for the Zhaotong and Luhuo earthquake 

As mentioned in section 3.2.4, two events show larger deviations between the modeled 

and predicted LV, i.e. the Zhaotong earthquake (China, 1974, Mw 7.1 ) for which the 

predicted volume was 30 times higher than the reported LV and the Luhuo earthquake 

(China, 1973, Mw 7.6) which was overestimated by a factor 60. Both events had a large 

magnitude and were situated in a mountainous regions. Therefore, the reported number of 

landslides is surprisingly low, especially, compared to other events in the same region. 

E.g. Maowen (China, 1933, Mw 7.5) and Wenchuan (China, 2008, Mw 7.9). Two events 

with a similar or slightly higher magnitude, but inducing 50 to 4500 times larger LV 

according to the reports (USGS, 2010b; Parker et al., 2011; Chen et al., 2012).  

 

Personal communication with the authors (Chen et al., 2012), suggests three possible 

explanations. First, it is a relatively detailed inventory, but only based on field 
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investigations in remote regions, which makes the omission of some of the landslides 

unavoidable. This suggest that the inventory of the Luhuo earthquake was only carried out 

in more accessible terrain, i.e the flatter area close to the fault along the river. This could 

explain why only landslides were reported in this relatively flat area and not even one 

landslide in the very mountainous areas at both sides of the alluvial plane. Secondly, the 

geological setting would contribute to the low LN. With all landslides occurring in 

Quaternary gravel layers, which are only found close to the river (Chen et al., 2012). 

However, also for the Wenchuan earthquake in the same region main lithologies were 

granitic, schist and limestone rock, which were on the other hand largely affected by 

landsliding after the event. Thirdly, it is suggested that smaller slope failures were not 

considered as being actual landslides. This last remark is also fundamental; if smaller 

slope failures are just omitted because of their size, this may distort the LN record. 

However, no information is available on which threshold would have been applied. 

 

Even though these explanations strongly suggest an incomplete inventory, there is no 

objective ground (e.g. threshold size, or an explicit statement that only a limited area was 

investigated) to state that this investigation would be inferior to other studies, where it is 

also likely that smaller landslides are missing (section 4.1). It is observed that a model 

without event 85 and 86 has an R² of 0.78 (compared to 0.75 for our model), the 

regression is not largely affected as it concerns two data points in the center of the LV 

range. 

 

4.3 The spatial distribution of earthquake-induced landslides 

4.3.1 Reliability of the earthquake-induced landslide inventories 

After georeferencing, most landslide inventories were assessed sufficiently accurate to 

develop a LD model, with assessed errors (column 7, Table 6) usually far below the model 

resolution of 500m. Moreover, there are several reasons, why the assessed error is likely 

to be an overestimation of the real error. First, reference points are often roads or rivers. 

These are digitized line features on the map entraining generalization errors. On the 

contrary, such a generalization error does not apply for landslides which are point 

elements. Secondly, validation of known reported landslide locations showed much 

smaller errors than the used georeferencing points. Thirdly, georeferencing points are 

often land-sea borders, located more in the periphery of the images. It is found that errors 

are sometimes larger in these peripheries because of the lack of georeferenced points. 

However the area of interest with landslides is mostly central in the map. 

 

Some additional problems with data accuracy were apparent. As discussed in section 2.2, 

epicenter locations are often imprecisely reported. Likewise, reported epicenter 

coordinates sometimes did not match with the epicenter displayed on the published maps. 

Of course this location is highly important, as it indirectly influences all other factors in our 
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model. In order to be as consistent as possible, we always used the mapped epicenters, 

assuming that reported coordinates might be rounded sometimes. Indeed, many reported 

epicenters were rounded to a tenth of a degree, which can result in errors up to more than 

six kilometers 

 

A second problem concerns the landslides displayed on the maps (column 5 in Table 6). 

Accurate digitalization was sometimes impeded by the fact that symbols indicating 

mapped landslides overlapped. This resulted in inconsistencies between the reported LN 

and the digitized LN of sometimes several dozens of landslides for smaller events (e.g. 

Lorca (Spain, 2011, Mw 5.1)) and several hundreds of landslides for larger events (e.g. 

Loma Prieta (United States, 1989, Mw 7.0)). This is not necessarily a problem; the largest 

fraction of landslides is displayed, which will already give a good representation of the 

spatial distribution.  

 

4.3.2 Evaluation of the potential predictor variables based on individual 

landslide inventories 

4.3.2.a Significance of the considered variables 

As indicated in section 2.4.3, the considered landslide inventories need to be large enough 

to allow for reliable statistical testing. The fact that the Wald test statistic (W) and the 

likelihood ratio (lr) are in such a good agreement indicates that this is indeed the case 

(section 3.3.2). Hence, the more convenient statistic of W could be used to assess the 

variables’ significance (Kleinbaum & Klein, 2002).   

 

Based on the results of lr, W, the variable coefficients and     
  in Figure 26, Figure 27 

and Figure 28 it was found that D, SMA, SME and ER are the most appropriate 

parameters for assessing landslide probabilities. These results are in agreement with 

earlier research (section 1.2.5). However, the variables: SME, SMA and ER should not be 

taken into account together, as they all represent the topographic susceptibility of a pixel to 

landsliding. Analysis of the variance inflation factor (VIF, section 2.4.3) pointed out that 

multicollinearity exists for these variables, which is not the case for any of the other 

variable combinations. Moreover, it was found that each time only one of these variables 

significantly contributed to the logistic regression models (Figure 28).  

  

On the other hand, the analysis also demonstrates that for individual events other factors 

can be very important. For instance, DR seems to be a crucial factor for events 85 and 86. 

For event 85 (Luhuo: China, 1973, Mw 7.6) this directly explains the inverse trend for the 

slope coefficients in Figure 27; all landslides are located, very close to the river, which is at 

lower elevation close to the alluvial plain. Another control on the absence of landslides in 

the relief rich surroundings might be the geological setting, with an important fault structure 

along the river or a substrate more prone to landsliding (Chen et al., 2012).  
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Also the other exception: event 239 (Rotoehu: New Zealand, 2004, Mw 5.4) with low lr and 

W for the topographic variables, was foreseen. The strongest control for this event seem to 

be ‘roads’ (see next section), with also ‘topography’ as a causative factor because of steep 

road cuts. This means that both events 85 and 239 can be clearly explained and probably 

modeled accurately individually, because of specific circumstances. However, exactly 

because of these specific conditions that cannot be taken into account in the combined 

model, both events might be wrongly represented by the variables taken into account 

based on their general significance. This is the limitation and in the same time the strength 

of the model, since it confirms its simplicity and global applicability not precisely meant for 

susceptibility hazard mapping for individual events, but rather to depict important landslide 

areas on a regional or continental scale (objective 3). This also indicates that a small 

fraction of landsliding might occur in relatively flat terrain, because of other influencing 

factors such as lithology, geological structure or roads.  

 

Altogether this means that only D and one measure representing relief should be taken 

into account in the combined model. SMA and SME are found to be the best of these three 

relief measures based on analysis step one and two and consequently need to be tested 

for the combined model (see section 4.3.3). These findings are in line with Parker’s (2013) 

suggestions to come to a global applicable model where distance to the seismic source 

and slope are the most important variables.  

 

Finally, it is interesting to compare our results with those of Parker (2013) for events 8 (the 

Buller earthquake; New Zealand, 1929, Mw 7.7) and 9 (the Inangahua earthquake; New 

Zealand, 1968, Mw 7.1). For our models as well as for Parker’s models two main important 

factors: D and a slope measure are found.     
  for these events are in agreement 

between both investigations (Buller: 0.22  and 0.18 Inanaghua: 0.32 and 0.25 , both for 

respectively our model and Parker’s model). These     
  indicate that our model scores at 

least as good unlike the original data used by Parker (2013). However, the important 

difference is that Parker’s model performs on a resolution of 30m whereas our model 

resolution is 500m. 

 

4.3.2.b Potential relevance of other unconsidered variables 

Because of data limitations two other potentially relevant factors could not be taken into 

account in the model: distance to faults (DF) and distance to roads. Especially DF is 

suggested to be an important factor. Parker (2013) states that the distance to the epicenter 

(D) gives a poor characterization for earthquake events with Mw larger than seven. This is 

confirmed by Figure 29, which shows that it is preferable to use DF instead of D, especially 

for larger events. Largest improvement in model performance were found for events 8, 85 

and 92, with respectively Mw of 7.7, 7.3 and 7.6, being the three largest Mw of the nine 
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analyzed events. The better performance of DF asks for a global fault dataset to improve 

the current LD model.  

 

Concerning distance to roads, different authors have stated its importance for landsliding 

because of a tremendous steepening of the slopes at roadcuts (e.g. Hancox et al., 2004; 

Ayalew & Yamagishi, 2005; Mahdavifar et al., 2006). It is certain that for some of the 

events, this factor is very important (e.g. Avaj: Iran, 2002, Mw 6.5 and Rotoehu: New 

Zealand, 2004, Mw 5.4). The difficulty however, is that many of the earthquake events 

occurred a couple of decennia ago, and no data on all these road networks at different 

times is available. On the other hand landslide inventories might be biased, with only 

landslides mapped along roads as these are more accessible. For most events however, 

the impact of roads might be limited as these are often absent or only marginal in the 

affected areas 

 

4.3.3 Construction of a spatially distributed landslide model based on 

integrated landslide inventories 

Figure 30 displays the results of the three different subset selection procedures (section 

2.4.5) for different variable combinations of LD prediction. Similar model performances can 

be noted for the calibration validation datasets. This indicates that the calibrated model 

coefficients are representative for other pixel datasets and that our model is robust and not 

over fitted. Secondly, it can be observed that the subset selection procedure (SSP) has 

important implications for the modelling results. The ‘fixed’ SSP gives equal weights to 

each event, which seams a fair approach. However, this means that for the smaller events, 

almost the entire dataset is selected, whereas for larger datasets only a minor fraction 

(sometimes less than 1%) is selected. Moreover, the total amount of pixels taken into 

account for calibration is only about 4% of the total dataset. The ‘fraction’ SSP avoids this 

problem, by taking an equal fraction for each dataset into account, consequently resulting 

in a sub dataset that includes about 20% of the total number of pixels. However, this way 

the smaller events are almost neglected as they contribute less than 0.5% to the subset, 

while the largest event (ID 123) contributes about 30% to the sub dataset (Figure 25). The 

‘root’ SSP therefore seems an attractive compromise. Datasets of smaller events still 

contribute significantly to the sub dataset, while large events still receive relatively more 

weight. The latter is clearly justifiable, since it is these events that generate the largest 

landslide volumes and consequently have the highest potential impact on the sediment 

discharge. Therefore, even though it is found that the ‘fraction’ approach gives highest 

    
 , the ‘root’ SSP was preferred. Testing for the influence of individual events (Figure 

28), supports this choice, with on average larger deviations from the mean trend for the 

‘fraction’ approach compared to the ‘root’ approach,  
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Together with a selection of the SSP, also the best variable combination should be 

selected. Standardized distance is a better variable than distance, which can be 

understood because of the large range in moment magnitude for the different events taken 

into account. Also Mw should be taken into account: larger earthquakes have a stronger 

impact at a certain place and a larger affected area (section 1.2.5.a). Finally the slightly 

better results for maximum slope compared to mean slope can be simply understood. 

Imagine a situation with one landslide pixel (500x500m) containing 3 pixels (100x100m) 

with very steep slopes and 22 pixels (100x100m) with rather gentle slopes. This means 

that the pixel is very prone to landsliding, which is correctly represented by a high 

maximum slope, but incorrectly represented by a rather small mean slope. 

 

Taking previous considerations into account this means that the modeling results of the 

‘root’ SSP for the variable combination ‘Mw + DS + SMA’ should be used to construct a 

final LD model.  

 

4.3.4 Application and validation of the landslide distribution model 

Application of the LD model to the 25 events for which landslide patterns were known 

(Table 2), gives in general good results, (Figure 33, Figure 34 and Appendix 2). Only event 

85 gives very poor results, with a ROC value below 0.5, which means that it is better to 

invert the model so that mapped landslides correspond to further distances from the 

epicenter and to lower slopes. Besides, only event 91, 92, 114 and 182, score less well, 

but ROC values are still clearly above 0.5, ranging between 0.62 and 0.74, indicating that 

the model can at least partially explain for the observed distribution.  

 

For event 91 and 92, (respectively Wenchuan earthquake: China, 2008, Mw 7.9 and Chi-

Chi earthquake: Taiwan, 1999, Mw 7.6) faults were mapped. These suggest that distance 

to the epicenter (D) gives a poor characterization with respect to landslide location. Indeed 

this is what can be expected for very large events as discussed in section 4.3.2.b. 

Concerning event 114 (Avaj earthquake: Iran, 2002, Mw 6.5), roads are an important 

factor, which is not taken into account by the model. Finally, event 182 (Coalinga: United 

States, 1982), shows a quite good agreement, but has some mapped landslides in the 

north west of the affected area, where probabilities are predicted low, and has a lack of 

landslides in the central east, with high probabilities. More in detail analysis of the region 

learns that the central east region is a relatively flat area, but with the epicenter located 

there, resulting in higher probabilities. In the north western area lower probabilities are 

found, because it is far from the epicenter. However, this area is clearly identified as a 

badland landscape, with quite high relief and absence of vegetation, explaining for the 

observed landslides. Nevertheless, it seems that the relief is expressed on such a small 

scale (gully erosion on meter to decameter scale) that 100 m resolution slope maps, 

cannot entirely capture the topography, resulting in an underestimation of the relief.  
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Events 8, 9, 91, 92 and 118 (for ID’s see Table 5), were also investigated by Parker 

(2013). This allows for a direct comparison between his probability maps and our results 

(given in Appendix 2). As discussed in section 4.3.2.a,     
  values are comparable for 

both studies. It is observed that also the generated probability patterns are comparable, 

especially for events 8 and 9. The other three events show larger differences, with higher 

probabilities predicted by the model of Parker along the fault structures for events 91 and 

92 and with clearly lower probabilities close to the epicenter for event 118. For this last 

event however, the observed landslide pattern, seems to better correspond with the 

predictions by our model, demonstrating that for events of lower magnitude standardized 

distance to the epicenter can be a valuable predictor variable for landslide occurrence.  

 

All these observations lead to the conclusion that the our model overall performs well. For 

24 of the 25 considered events it results in clearly better predictions compared to a 

random model. Nevertheless better data on main faults, roads, vegetation and higher 

resolution topographic data are welcome to improve predictions. 

 

4.4 The integrated spatially distributed landslide volume 

model 

4.4.1 Predicting landslide numbers based on the distribution model 

The resulting LN model (Figure 35) can be compared with the LV model (Figure 24). It is 

clear that the R² is significantly lower for the LN model. However, the range in LV values is 

about 2 orders of magnitudes larger, which is favorable for the R² (Figueiredo Filho et al., 

2011). Moreover, the LV relation is determined by a few events for very high LV, which 

might also affect the R². Besides, it makes the relation less robust, which is not so much 

the case for the LN model with a better representation of events over the entire LN range. 

When we consider the deviation from the least square fit, the LN relation in fact shows a 

more consistent picture, with only few observations deviating more than an one order of 

magnitude. All in all both relations are useful, but for the integrated model the LN model 

was chosen. First because it gives more conservative estimates and second because the 

landslide number and not the total landslide volume is required as the basis input for the 

integrated model (section 2.5.2). 

 

4.4.2 Model application and comparison with available inventories 

Figure 36 compared the landslide number and volume predicted by the model (LNm and 

LVm, equation 19) with the simulated landslide number and volume (LNs, LVs). It shows the 

correctness of the integrated simulation model: the median LNs and LVs correspond to LNm 

and LVm, while the mean values are larger. The explanation for larger mean values is the 

fact that the randomization of LNm in the first place and the random factor for Vl 
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assignment in the second place (section 2.5.2), causes larger positive absolute deviations 

than negative absolute deviations. The same is true for the assignment of volumes. 

However, the observed larger relative deviation between mean LVs and LVm than the 

deviation between mean LNs and LNm, has to do with the double increase in mean values 

for the final LVs, i.e. first by the LN randomization and second by the volume 

randomization (inverse gamma distribution, equation 3). It is important to realize that the 

inherent larger absolute positive LVs deviations imply that the model uncertainty for 

earthquake-induced landslide volumes is in absolute terms larger towards the positive end. 

 

The results in Figure 37 reveal the probability pattern, presented in Figure 33 and a 

correspondence with the mapped landslides plotted on top. More scatter for the volume 

map results from the extra randomization step, whereby it is possible that a peripheral 

pixel gets only one landslide assigned, but with a volume larger than the summed volume 

of for instance 20 landslides in a central pixel with higher probability. In this respect future 

improvement for the spatial distribution of volumes can be expected from a better 

understanding of the relation between the size of landslides and the landslide 

susceptibility. As an hypothesis, it can be put forward that larger landslides are triggered 

closer to the epicenter (i.e. on locations with higher susceptibility). This was observed for 

one of the landslide inventories (ID 130, Table 5). Fry et al. (2010) namely gave an 

indication of the landslide size for the mapped landslides resulting from the Dusky Sound 

earthquake (New Zealand, 2009, Mw 7.6). 

 

Based on 100 iterations, a better insight in the likely generated landslide numbers and 

landslide volumes could be obtained (Figure 37). In this respect the range between 

minimum and maximum LNs and LVs might raise questions about the usefulness of the 

model. It is true that the range is very large and it is true that this is correct with respect to 

the normally distributed uncertainty term included in the model. Still, it has to be kept in 

mind that the obtained minimum and maximum simulated values are highly unlikely. Since 

it concerns values in the tail of the normal distribution with more than 3.5 and 2.5 standard 

deviations from the mean value for respectively the maximum and minimum obtained LNs. 

On the other hand the range between Q25 and Q75, spans only about an order of 

magnitude and by definition contains 50% of the iterations.  

 

In practice this means that generated volumes by real world earthquakes have a 

significant chance (i.e. 50%) of deviating less than 5 times from the median volumes 

predicted by our model, but are unlikely (i.e. chance of 0.1%) to deviate more than 100 

times from the median model volume. 

 

Referring to the objectives it was not the intention to predict exact locations of individual 

landslides, but rather simulate the patterns of sediment mobilization by EIL. In this respect 
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the earlier validation by means of ROC values provides a good indication of the model 

performance. Nonetheless, given the rather coarse model resolution of 500m it is still 

useful to assess the pixel to pixel accuracy of the model. In this respect the Kl values in 

Figure 38 clearly show the model’s ability to perform better than random in predicting 

landslide locations. This also confirms that the model is able to simulate more general 

patterns of sediment mobilization by EIL (objective 2). Only events 85 and 114 score very 

poor. Earlier discussion on these events explains for these shortcomings (section 4.2.4.b 

and 4.3.2.b). Secondly, the error budget (section 2.5.3) in Figure 39, learns that most of 

the improvement for correctly simulating landslide and non-landslide pixels, can be 

expected from a better quantification of the landslide number. This has an important 

implication: Even if the allocation procedure would be optimized (i.e. Kl = 1), still the largest 

fraction of currently wrongly classified pixels will remain. Therefore, it is recommended to 

concentrate efforts on a better landslide number and volume prediction. 

 

4.5 Model application and comparison with sediment yield 

Correlation analysis in Figure 41 demonstrates the potential importance of earthquake-

induced landslides for observed higher average sediment yields. Not surprisingly these 

landslide masses (LM) are strongly correlated with areas of high expected peak ground 

acceleration and decrease with distance from the regions of highest seismicity (Dc, section 

1.2.5.a and 1.2.5.b). Somewhat surprising might be the (negative) insignificant, trend of LV 

with average catchment slope. Two reasons might explain this. First, the range in average 

slope is fairly limited (5-18°). Secondly, the decrease in relief of the Siret basin from north 

to south (Vanmaercke et al., 2014b), is opposite to the increase in seismic activity along 

this transect (Figure 11). This demonstrates that earthquakes and associated landsliding 

are not always reflected in the topography and that distance to epicenter is more important 

than topography in terms of landsliding. Therefore, tectonic activity should be considered 

to explain for the spatial variation in SY as also stated by Vanmaercke et al. (2014b).  

 

Figure 40 and Figure 43, allow for a comparison between the 1977 event and all events 

together. It is noteworthy that the largest earthquake during this period only contributed 

about 2.1% to the total LM, with however a large uncertainty on the Q5-Q95 interval ( 0.1-

40.2%). Figure 40 and Figure 43 indicated that the contribution of the 1977 is location 

dependent. For some catchments with larger Dc the 1977 earthquake contributes 

significantly to the total volume (up to 50%), but for other catchments with lower Dc this 

share is indeed very limited. This observation demonstrates that many smaller earthquake 

events can contribute significantly to the total generated landslide volume. 

 

A comparison between the upper left graph in Figure 41 and Figure 42 illustrates the 

importance of earthquake induced landslides in terms of denudation and SY. It is shown 

that earthquakes generate more sediment than what is transported by the river for 



     89 

 

catchments in the region of highest seismicity. This implies that at least part of the 

generated sediment does not reach the river channel. Especially for the 1977 event, 

generated landslide masses surpass the annual average SY for catchments in the region 

of highest seismicity. Nevertheless, no clear pulse in the SD was observed after this event. 

Only the Nereju catchment (ID 38) showed a significant increase after the earthquake 

(Vanmaercke et al., 2014b), despite the low contribution to the total LM of the 1977 event 

in this catchment (Figure 43). A possible explanation is the large difference between the 

relatively low SY (533.4 t/km²/y) and the large LM (3494 t/km²) generated by the 1977 

earthquake in this catchment. Also the relatively small size of this catchment might play a 

role. On the other hand, explanations for the absence of a clear increase in SD for most of 

the catchments are: (1) the saturation of rivers with sediment induced by previous 

earthquakes, (2) the importance of connectivity (landslides not necessarily reach the river 

channel), (3) the higher location on hillslopes for EIL compared to rainfall triggered 

landslides and (4) the fact that only suspended sediment concentration is considered, 

whereas landslides might significantly contribute to the bedload of the river (Vanmaercke 

et al., 2014b). 

 

Finally, Figure 41 and Figure 42 also give an indication of the actual landscape 

denudation. Median annual LM for some catchments are as high as 10000 t/km²/y. 

Assuming a denudation of 1 mm for 15 t/ha, annual denudation due to earthquake induced 

landslides equals 6.7 mm/y in these catchments. A similar calculation for the 1977 event 

demonstrates a denudation of 2-3 mm in many of the catchments. These denudation rates 

are in the same order of magnitude as other important erosion processes such as gully 

erosion (Poesen et al., 2003). Once more, this confirms the importance of considering 

earthquake induced landslides in terms of erosion and in terms of sediment yield of a river.  
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5 Conclusions and scope for further research 

5.3 Conclusions 

The aim of this thesis was to construct a model that predicts landslide volumes associated 

with a given earthquake in a spatially explicit way, so that it can be used to explore the 

impact of earthquake induced-landslides on catchment sediment yields.  

 

As a first step a dataset that contains information on 239 earthquakes and associated 

landslide parameters was compiled (objective 1). A substantial amount of data is available, 

but a bias exists towards data that induced many landslides. These data cover most of the 

seismic active regions in the world, with major data gaps on the African continent and the 

Indonesian Archipelago. 

 

The constructed model (objective 2) only requires moment magnitude and slope as input 

variables. It was calibrated based on 77 globally distributed earthquake events and can 

consequently be used as a global tool (resolution 500m) to trace the impact of earthquake 

induced landslides on the sediment yield of a catchment. The model is far from perfect, but 

the applied Monte Carlo simulation approach, accounts for the existing uncertainty. Model 

validation based on 23 earthquake inventories, showed that landslide allocation performs 

better than random for 22 of the 23 inventories. 

 

We applied our model to the Siret basin (Romania) in order to estimate the likely landslide 

volumes induced by earthquakes in the period 1965-2014, including a Mw 7.4 earthquake 

in 1977. These volumes were confronted with measured sediment yield data from 38 

subcatchments (objective 3). It is found that simulated earthquake induced landslide 

masses (range of median values: 200-13000 t/km²/y) are mostly higher than the sediment 

yield (250-1800 t/km²/y) for catchments in the most seismically active region and are 

mostly lower (range of median values: 0-100 t/km²/y) than the sediment yield (55-400 

t/km²/y) for catchments outside this region. The 1977 event contributed largely (20-50%) to 

the total generated landslide masses for this period in some of the catchments outside the 

region of highest seismicity, but little (0.4-10%) to most of the catchments in this region.   

 

This application to the Siret basin demonstrates the practical relevance of our model that 

can also be applied to other regions in the world. 

 

Referring to the research question and the different hypotheses (section 1.5), our research 

showed the following: 

1) The main factors determining the total landslide volume and the landslide 

distribution induced by an earthquake are: the moment magnitude and related to 

this factor distance to the epicenter. The topography and the fraction of land in the 
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affected area should also be considered, but are less important. Other factors such 

as: lithology, treecover and precipitation were found to be insignificant, under 

reservation of data uncertainties. 

2) Environmental characteristics and properties of an earthquake can be used to 

construct robust landslide volume and landslide distribution models, be it with an 

uncertainty in the order of a factor 10 for the volume predictions. 

3) Such models can be integrated and can be applied to provide estimates of 

generated landslide volumes on the catchment scale as a result of a certain 

earthquake or a series of earthquakes at any location in the world.  

4) A strong positive relation exists between the earthquake-induced landslide volume 

and the sediment yield in a catchment. This suggests the importance of these 

landslides for the overall higher average sediment yields in seismically active 

regions (section 4.5). 

5) Pulses of sediment discharge after an earthquake are not always pronounced. The 

proportion between the earthquake-induced landslide volume and the sediment 

yield and size of a catchment might play an important role. 

 

5.4 Scope for further reserach 

Uncertainties exist on the constructed relationships that were taken into account by the 

integrated model simulations. Further model improvement can mainly be expected from 

better predictions of the total number and volume of landslides associated with an 

earthquake event, rather than a better spatial allocation of these landslides (section 4.4.2). 

Therefore we recommend future researchers to mainly focus on a better assessment and 

prediction of the total earthquake-induced landslide number and volume. 

 

Further recommendations for future research are: 

 Information on earthquake-induced landslide volumes and landslide numbers, 

should be reported more accurately. More detailed data is often available, but it is 

mostly difficult to assess the reliability of these data due to incomplete or undetailed 

reporting on the investigated area, on the applied techniques and on the general 

uncertainties. 

 Since all earthquake events with information on the landslide volume, number and 

distribution were (partially) used to calibrate the constructed models in this thesis, 

further calibration and especially validation is recommended, when new data 

becomes available.  

 Additional model improvement can also be expected from better data on the 

predictor variables. Especially, data on the main faults, data on the actual peak 

ground acceleration and higher resolution topographical and lithological data on a 

global scale can be expected to contribute to better predictions. 
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 Focusing on the research need for better total volume predictions, it should be 

investigated to what extent landslide number, area and volume are under-or 

overestimated as e result of the applied mapping techniques. Next to this there is 

also a need for more detailed landslide inventories of smaller earthquakes (MW 4-5). 

These events occur most frequently, but are clearly underrepresented in current 

research. 

 The somewhat strange role of topography trough ‘the standard deviation of local 

relief’ should be further investigated. Is it coincidence, or is there a physical 

mechanism behind (section 4.2.3.d)? 

 A further refinement of the relation between spatially distributed landslide 

susceptibility and the size of landslides might be required. Are large landslides more 

likely to occur on locations with higher susceptibility? 

 Finally, the model should be applied to other regions to investigate when pulses in 

sediment yield occur. Can we relate this to catchment characteristics? 
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Appendix 1 

Overview of all earthquake events (n = 239) included in the earthquake landslide (E-L) dataset, ordered according to country, year of occurrence and magnitude. For each 

event the identifier (ID), date (year, month, day), epicenter location and magnitude (M) are indicated. It is also mentioned which events were used in the landslide volume 

(LV) model,  moment magnitude – maximum landslide distance to epicenter (M-D)  model and  landslide distribution (LD) model (landslide inventory) with respectively 

‘v’,’d’,’i’ (own processing). 

ID Country Date 
  

epicenter 
 

M models sources 

     

(°) 
 

(a) (b) 

 

  
Year Month Day latitude longitude 

             
201 Afghanistan 1976 Mar 19 36.610 67.790 5.5 v Keefer, 1984; NOAA, 2013; USGS, 2013 

113 Algeria 2003 May 21 36.964 3.634 6.8 d Delgado et al., 2011a; Bouhadad et al., 2004;  
NOAA, 2013 

205 Argentina 1977 Nov 23 -31.030 -67.770 7,4*  Keefer, 1984; NOAA, 2013 

222 Armenia 1988 Dec 7 40.987 44.185 6.7  Rodriguez et al., 1999; NOAA, 2013 

190 Canada 1946 Jun 23 49.87 -124.92 7.6 v Keefer, 1984; NOAA, 2013; USGS, 2013 

221 Canada 1988 Nov 25 48.117 -71.183 5.8  Rodriguez et al., 1999; NOAA, 2013 

185 Chile 1960 May  22 -38.29 -73.05 9.5 v Keefer, 1984; USGS, 2012b; USGS, 2010 

213 Chile 1985 Mar 3 -33.132 -71.708 8.1  Rodriguez et al., 1999; NOAA, 2013 

122 Chile 2007 Apr 21 -45.240 -72.670 6.2 v,d Delgado et al., 2011a; Sepulveda et al., 2010; 
USGS, 2013 

126 Chile 2010 Feb 27 -35.9 -72.7 8.8 d Wick et al., 2010; Delgado et al., 2011a 

127 Chile 2010 Mar 11 -34.3 -71.9 6.9 d Wick et al., 2010; Delgado et al., 2011a 

128 Chile 2010 Mar 11 -34.3 -71.8 6.7 d Wick et al., 2010; Delgado et al., 2011a 

68 China 1515 Jun 27 26.7 100.7 7.75  Chen et al., 2012 

69 China 1588 Aug 9 24 102.8 7  Chen et al., 2012 

70 China 1652 Jul 13 25.2 100.6 7  Chen et al., 2012 

71 China 1733 Aug 2 26.3 103.1 7.75  Chen et al., 2012 

72 China 1789 Jun 7 24.2 102.9 7  Chen et al., 2012 

73 China 1799 Aug 27 23.8 102.4 7  Chen et al., 2012 

74 China 1833 Sep 6 25 103 8  Chen et al., 2012 

75 China 1850 Sep 12 27.7 102.4 7.5  Chen et al., 2012 
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76 China 1887 Dec 16 23.7 102.5 7  Chen et al., 2012 

77 China 1913 Dec 21 24.15 102.45 7  Chen et al., 2012 

138 China 1920 Dec 16 36.601 105.317 7.8 v Havenith & Bourdeau, 2010; USGS, 2013 

78 China 1923 Mar 24 31.3 100.8 7.3  Chen et al., 2012 

79 China 1925 Mar 16 25.7 100.2 7  Chen et al., 2012 

80 China 1933 Aug 25 32 103.7 7.5 v Chen et al., 2012; USGS, 2010; USGS, 2013 

81 China 1941 May 16 23.7 99.4 7  Chen et al., 2012 

82 China 1948 May 25 29.5 100.5 7.3  Chen et al., 2012 

83 China 1955 Apr 14 30 101.9 7.5  Chen et al., 2012 

84 China 1970 Jan 5 24 102.7 7.8  Chen et al., 2012 

85 China 1973 Feb 6 31.48 100.53 7.6 v,i Chen et al., 2012 

86 China 1974 May 11 28.181 103.994 7.1 v,i Chen et al., 2012; USGS, 2013 

203 China 1976 Jul 27 39.570 117.980 7.5  Keefer, 1984; Kanamori, 1977; NOAA, 2013 

87 China 1976 May 29 24.45 98.87 7.4  Chen et al., 2012 

88 China 1976 Aug 16 32.61 104.13 7.2  Chen et al., 2012 

215 China 1987 Jan 7 34.22 103.30 5.3  Rodriguez et al., 1999; cnki, 2006 

89 China 1988 Nov 6 23.37 99.5 7.2  Chen et al., 2012 

90 China 1996 Feb 3 27.083 100.267 7  Chen et al., 2012 

91 China 2008 May 12 31.214 103.618 7.9 v,i Chen et al., 2012; Dai et al., 2011; Parker et al.,  
2011; Chigira et al., 2010; Gorum et al., 2011; 
Qi et al., 2010; Tang et al., 2011; Yin, 2009;  
Parker, 2013; USGS, 2013 

176 China 2010 Apr 14 33.165 96.548 6.9 v Xu & Xu, 2012; Xu & Xu, 2013; NOAA, 2013; USGS, 2013 

157 Colombia 1644 Mar 16 7.6 -73 6,0*  Rodriguez, 2006; FindTheData, 2013 

158 Colombia 1785 Jul 12 4.6 -74 6,5*  Rodriguez, 2006; NOAA, 2013 

159 Colombia 1834 Jan 20 1.2 -77 7,0*  Rodriguez, 2006; FindTheData, 2013 

160 Colombia 1875 May 18 7.9 -72.5 7,5*  Rodriguez, 2006; NOAA, 2013 

161 Colombia 1883 Mar 8 7 -76 6,0*  Rodriguez, 2006; NOAA, 2013 

162 Colombia 1903 Dec 1 - - 5,0*  Rodriguez, 2006 

164 Colombia 1936 Jan 9 1.1 -77.6 7,0*  Rodriguez, 2006; NOAA, 2013 

165 Colombia 1947 Jul 14 1.2 -77.2 5,5*  Rodriguez, 2006; NOAA, 2013 

166 Colombia 1950 Jul 9 7.8 -72.5 7.0 d Rodriguez, 2006; USGS, 2013; NOAA, 2013 
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167 Colombia 1962 Jul 30 5.2 -76.4 6.7  Rodriguez, 2006; USGS, 2013; NOAA, 2013 

168 Colombia 1967 Feb 9 2.9 -74.9 7.2 d Rodriguez, 2006; USGS, 2013; NOAA, 2013 

169 Colombia 1970 Sep  26 6.2 -77.6 6.6 d Rodriguez, 2006; USGS, 2013; NOAA, 2013 

170 Colombia 1973 Apr 3 - - 6.1 d Rodriguez, 2006; USGS, 2013 

172 Colombia 1979 Dec 12 1.598 -79.358 8.1 d Rodriguez, 2006; USGS, 2013; NOAA, 2013 

171 Colombia 1979 Nov 23 4.805 -76.217 7.2 d Rodriguez, 2006; USGS, 2013; NOAA, 2013 

173 Colombia 1983 Mar 31 2.461 -76.686 5.5 d Rodriguez, 2006; USGS, 2013; NOAA, 2013 

228 Colombia 1992 Oct 17 6.845 -76.806 6.7 d Rodriguez et al., 1999; Rodriguez, 2006; NOAA, 2013 

233 Colombia 1994 Jun 6 2.917 -76.057 6.8 d Rodriguez et al., 1999; Rodriguez, 2006 

235 Colombia 1995 Jan 19 5.050 -72.916 6.5 d Rodriguez et al., 1999; Rodriguez, 2006; NOAA, 2013 

174 Colombia 1999 Jan 25 4.461 -75.724 6.1 d Rodriguez, 2006; USGS, 2013; NOAA, 2013 

21 Costa Rica 1911 Oct 10 10.61 -84.89 6,5*  Bommer & Rodriguez, 2002 

20 Costa Rica 1911 Aug 29 10.22 -84.30 5,8*  Bommer & Rodriguez, 2002 

22 Costa Rica 1912 Jun 6 10.25 -84.30 5,1*  Bommer & Rodriguez, 2002 

26 Costa Rica 1916 Feb 27 11.0 -86.0 7.3 d Bommer & Rodriguez, 2002; USGS, 2013 

30 Costa Rica 1924 Mar 4 9.8 -84.7 7.0 d Bommer & Rodriguez, 2002; USGS, 2013 

39 Costa Rica 1950 Oct 5 10.0 -85.7 7.8 d Bommer & Rodriguez, 2002; USGS, 2013 

41 Costa Rica 1952 Dec 30 10.05 -83.92 5,9*  Bommer & Rodriguez, 2002 

42 Costa Rica 1955 Sep 1 10.25 -84.25 5,9*  Bommer & Rodriguez, 2002 

48 Costa Rica 1973 Apr 14 10.47 -84.97 6.5 d Bommer & Rodriguez, 2002; USGS, 2013 

56 Costa Rica 1983 Apr 3 8.80 -83.11 7.5 d Bommer & Rodriguez, 2002; USGS, 2013 

57 Costa Rica 1983 Jul 3 9.40 -83.65 6.1 d Bommer & Rodriguez, 2002; USGS, 2013 

60 Costa Rica 1990 Jun 3 9.86 -84.38 5,1*  Bommer & Rodriguez, 2002 

59 Costa Rica 1990 Mar 25 9.81 -84.83 7.1 d Bommer & Rodriguez, 2002; USGS, 2013 

61 Costa Rica 1991 Apr 22 9.69 -83.07 7.6 d Bommer & Rodriguez, 2002; USGS, 2013 

225 Costa Rica 1991 Apr 22 9.685 -83.073 7.5  Rodriguez et al., 1999; NOAA, 2013 

62 Costa Rica 1993 Jul 10 9.80 -83.60 5.6 d Bommer & Rodriguez, 2002; USGS, 2013 

175 Ecuador 1987 Mar 5 0.083 -77.785 7.2 v Schuster et al., 1995; Tibaldi et al., 1995;  
Keefer, 1994; Rodriguez et al., 1999; NOAA, 2013 

163 Ecuador/Colombia 1906 Jan 31 1.0 -81.5 8.6 d Rodriguez, 2006;  USGS, 2013 

25 El Salvador 1915 Sep 7 13.9 -89.6 7.4 d Bommer & Rodriguez, 2002; USGS, 2013 

29 El Salvador 1919 Apr 28 13.69 -89.19 5,9*  Bommer & Rodriguez, 2002 
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34 El Salvador 1936 Dec 20 13.72 -88.93 6,1*  Bommer & Rodriguez, 2002 

40 El Salvador 1951 May 6 13.50 -88.36 5,9*  Bommer & Rodriguez, 2002 

44 El Salvador 1965 May 3 13.70 -89.17 6,0*  Bommer & Rodriguez, 2002 

55 El Salvador 1982 Jun 19 13.29 -89.39 7.3 d Bommer & Rodriguez, 2002; USGS, 2013 

58 El Salvador 1986 Oct 10 13.67 -89.18 5.4 v,d Bommer & Rodriguez, 2002; Keefer, 1994;  
Keefer, 2002; Rodriguez et al., 1999 

65 El Salvador 2001 Jan  13 13.049 -88.660 7.7  Bommer & Rodriguez, 2002; Bommer et al., 2002;  
Jibson et al., 2004 

66 El Salvador 2001 Feb 13 13.671 -88.938 6.5 v Bommer et al., 2002; Jibson et al., 2004 

142 Georgia 1991 Apr 29 42.453 43.673 7.1 v Jibson et al., 1994 

214 Greece 1986 Sep 13 37.014 22.176 6.0  Rodriguez et al., 1999; NOAA, 2013 

220 Greece 1988 Oct 16 37.938 20.932 5.9  Rodriguez et al., 1999; NOAA, 2013 

145 Greece 1993 Mar 26 37.7 21.5 5.4 v Koukouvelas et al., 1996; USGS, 2013 

120 Greece 2003 Aug 14 38.79 20.56 6.2 d Delgado et al., 2011a; Papathanassiou et al., 2005 

18 Guatemala 1902 Apr 19 14.9 -91.5 7.5 d Bommer & Rodriguez, 2002; USGS, 2013 

28 Guatemala 1917 Dec 26 14.53 -90.53 5,6*  Bommer & Rodriguez, 2002 

36 Guatemala 1942 Aug 6 14.8 -91.3 7.7 d Bommer & Rodriguez, 2002; USGS, 2013 

37 Guatemala 1945 Aug 10 15.25 -89.13 5,7*  Bommer & Rodriguez, 2002 

51 Guatemala 1976 Feb 4 15.28 -89.19 7.6 v,d Bommer & Rodriguez, 2002: Keefer, 2002; Godt  
et al., 2008; Keefer, 1984;  Keefer, 1994; USGS, 2012a 

140 Haiti 2010 Jan 12 18.443 -72.571 7 v,d,i USGS, 2011, Jibson & Harp, 2011;  
Gorum et al., 2013; USGS, 2013 

198 Hawaii 1973 Apr 26 19.936 -155.098 6,1*  Keefer, 1984; NOAA, 2013 

200 Hawaii 1975 Nov 29 19.334 -155.024 7.5 v Keefer, 1984; NOAA, 2013; USGS, 2013 

16 India 1991 Oct 19 30.780 78.774 7,0* v Bhandari, 2010; NOAA, 2013 

17 India 1999 Mar 29 30.49 79.28 6.8 v Bhandari, 2010; Jain et al., 1999;  
Ravindran & Philip, 1999; Saraf, 2000 

13 India 1999 Mar 28 30.49 79.29 6.5  Barnard et al., 2001; USGS, 2013 

204 Iran 1977 Mar 21 27.610 56.390 6.7 v Keefer, 1984; NOAA, 2013; USGS, 2013 

148 Iran 1990 June 21 36.820 49.410 7.3 v Mahdavifar & Memarian, 2013; Mousavi et al.,  
2011; Rodriguez et al., 1999; USGS, 2013 

114 Iran 2002 Jun 22 35.67 48.93 6.5 v,d,i Delgado et al., 2011a; Mahdavifar et al., 2006 

154 Italy 1805 Jul 26 41.5 14.47 6.8  Porfido et al., 2002; INGV, 2013 
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155 Italy 1857 Dec 16 40.35 15.85 6.9 d Porfido et al., 2002; INGV, 2013 

152 Italy 1908 Dec 28 38.15 15.68 7.0 v,d Murphy, 1995; INGV, 2013; USGS, 2013 

11 Italy 1930 Jul 23 41.050 15.370 6.7 d,i  Esposito et al., 2009; Delgado et al., 2011a 

202 Italy 1976 May 6 46.241 13.119 6.5 v Keefer, 1984; INGV, 2013; USGS, 2013 

12 Italy 1980 Nov 23 41.083 15.617 6.9 v,d Esposito et al., 2000; Parise & Wasowski, 2002;  
Esposito et al., 1980;  
Rodriguez et al., 1999; Porfido et al., 2002 

10 Italy 1997 Sep 26 42.970 12.840 6 v,d,i Antonini et al., 2002; Esposito et al., 2000,  
Rodriguez et al., 1999; Guzzetti et al., 2009 

238 Italy 1997 Oct 14 42.930 12.875 5.6 v,i  Guzzetti et al., 2009; USGS, 2013 

115 Italy 2002 Sep 6 38.081 13.422 5.89 d Delgado et al., 2011a; INGV, 2013 

116 Italy 2002 Oct 31 41.694 14.925 5.78 d Delgado et al., 2011a; INGV, 2013 

156 Italy 2004 Nov 24 45.6 10.5 5  Esposito et al., 2005 

125 Italy 2009 Apr 6 42.334 13.334 6.3 v,d,i Blumetti et al., 2009; Guzzetti et al., 2009;  
NOAA, 2013 

237 Jamaica 1993 Jan 13 18.060 -76.766 5.4  Ahmad, 1995; Wiggins-Grandison, 1993 

191 Japan 1948 Jun 28 36.142 136.144 7.0 v Keefer, 1984; USGS, 2013 

195 Japan 1964 Jun 16 38.65 139.19 7,3*  Keefer, 1984; FindTheData, 2013 

206 Japan 1978 Jan 14 34.809 139.259 6.7 v Keefer, 1984; NOAA, 2013; USGS, 2013 

212 Japan 1984 Sep 14 35.789 137.488 6.2  Rodriguez et al., 1999; USGS, 2013 

229 Japan 1993 Jul 12 42.851 139.197 7.8  Rodriguez et al., 1999; NOAA, 2013 

184 Japan 1995 Jan 17 34.583 135.018 6.9 v Keefer, 2002; Rodriguez, 1999; Malamud et al,  
2004a; Gerolymos, 2010; NOAA, 2013 

93 Japan 2004 Oct 23 37.226 138.779 6.6 v,d Chigira & Yagi, 2006; NOAA, 2013 

95 Japan 2007 Jul 16 37.493 138.603 6.6 v,d,i Collins et al., 2012; Lei, 2012; USGS, 2013 

153 Japan 2007 Mar 25 37.340 136.540 6.6 v Okada et al., 2008; USGS, 2013 

124 Japan 2008 Jun 14 39.02 140.88 7.2 v Yagi et al., 2009 

94 Japan 2011 Mar 11 38.10 142.86 9.0 v,d Chigira et al., 2013; Wartman et al., 2013; 
Furumura et al., 2011; Lei, 2012; Sato et al., 2013 

133 Japan 2011 Mar 12 37.0 138.6 6.7 v,d,i Has et al., 2013 

207 Japan  1978 Jun 12 38.190 142.028 7,4*  Keefer, 1984; NOAA, 2013 

134 Kazakhstan 1911 Jan 3 43.5 77.5 7.8  Havenith & Bourdeau, 2010; Delvaux et al., 2001;  
USGS, 2013 
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137 Kyrgyzstan 1992 Aug 19 42.110 73.607 7 v Havenith & Bourdeau, 2010; Kuchai et al., 2002;  
Rodriguez et al., 1999; USGS, 2013 

31 Mexico 1931 Jan 15 16.10 -96.64 7.8 d Bommer & Rodriguez, 2002; USGS, 2013 

43 Mexico 1959 Aug 26 18.45 -94.27 6.7 d Bommer & Rodriguez, 2002; USGS, 2013 

47 Mexico 1973 Jan 30 18.53 -102.93 7.6 d Bommer & Rodriguez, 2002; USGS, 2013 

53 Mexico 1978 Nov 29 15.76 -96.78 7.8 d Bommer & Rodriguez, 2002; USGS, 2013 

54 Mexico 1979 Mar 14 17.76 -101.29 7.5 d Bommer & Rodriguez, 2002; USGS, 2013 

63 Mexico 1995 Oct 9 19.06 -104.21 8.0 d Bommer & Rodriguez, 2002; USGS, 2013 

64 Mexico 1999 Jun 15 18.41 -97.34 7.0 d Bommer & Rodriguez, 2002; USGS, 2013 

119 Mexico 2003 Jan 21 18.770 -104.104 7.6 v,d Keefer et al., 2006; Delgado et al., 2011a;  
NOAA, 2013 

188 Nepal 1934 Jan 15 26.773 86.762 8.1 v Keefer, 1984; NOAA, 2013 

219 Nepal 1988 Aug 21 26.755 86.616 6.8  Rodriguez et al., 1999; NOAA, 2013 

146 Nepal 2011 Sep 18 27.73 88.08 6.9   Dahal et al., 2013; USGS, 2013 

5 New Zealand 1820 - - -41.6 171.8 7.4  Adams, 1980 

6 New Zealand 1855 Jan - -41.0 175.4 8  Adams, 1980 

7 New Zealand 1929 Mar 9 -42.8 171.85 6.9 v Adams, 1980; Keefer, 1994; Rodriguez et al., 1999 

8 New Zealand 1929 Jun 17 -41.7 172.2 7.7 v,i Adams, 1980; Keefer, 1994; Anderson et al., 1994;  
Pearce & Loughlin, 1985; Parker, 2013; USGS, 2013 

9 New Zealand 1968 May 23 -41.83 171.97 7.1 v,i Adams, 1980; Keefer, 1984; Keefer, 1994;  
Parker, 2013 

216 New Zealand 1987 Mar 2 -37.965 176.765 6.5  Rodriguez et al., 1999; NOAA, 2013 

231 New Zealand 1993 Aug 10 -45.219 167.007 6.8  Rodriguez et al., 1999 

230 New Zealand 1993 Aug 10 -38.495 177.795 6.2  Rodriguez et al., 1999 

234 New Zealand 1994 Jun 18 -42.963 171.658 6.8  Rodriguez et al., 1999; NOAA, 2013 

236 New Zealand 1995 May 29 -40.90 171.40 6,5*  Rodriguez et al., 1999; Paterson & Berrill, 1995 

132 New Zealand 2003 Aug 22 -45.13 166.93 7.2 v,d Hancox et al., 2003 

240 New Zealand 2003 Aug 21 -45.200 167.140 7 i Trigs, 2009; USGS, 2013 

239 New Zealand 2004 Jul 18 -38.00 176.53 5.4 v,i Hancox et al., 2004; USGS, 2013 

130 New Zealand 2009 Jul 15 -45.762 166.562 7.6 v,d,i Fry et al., 2010; NOAA, 2013 

147 New Zealand 2011 Feb 22 -43.583 172.680 6.3  Lei, 2012; USGS, 2013 

32 Nicaragua 1931 Mar 31 12.15 -86.28 6,2*  Bommer & Rodriguez, 2002 

38 Nicaragua 1947 Jan 26 12.2 -86.3 7.0 d Bommer & Rodriguez, 2002; USGS, 2013 
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45 Nicaragua 1968 Jan 4 11.76 -86.61 4,6"  Bommer & Rodriguez, 2002 

46 Nicaragua 1972 Dec 23 12.15 -86.28 6.2 d Bommer & Rodriguez, 2002; USGS, 2013 

49 Nicaragua 1974 Mar 6 12.33 -86.42 5.7 d Bommer & Rodriguez, 2002; USGS, 2013 

199 Pakistan 1974 Dec 28 35.025 72.901 6.2 v Keefer, 1984; USGS, 2013 

67 Pakistan 2005 Oct 8 34.493 73.629 7.6 v Dunning et al., 2007; Kamp et al., 2008;  
Owen et al., 2008; Lei, 2012; Sato et al., 2007 

19 Panama 1904 Dec 20 7.0 -82.0 7.2 d Bommer & Rodriguez, 2002; USGS, 2013 

23 Panama 1913 Oct 2 7.1 -80.6 6,7*  Bommer & Rodriguez, 2002 

24 Panama 1914 May 28 8.0 -80.0 6.9 d Bommer & Rodriguez, 2002; USGS, 2013 

27 Panama 1916 Apr 26 9.2 -83.1 7.1 d Bommer & Rodriguez, 2002; USGS, 2013 

33 Panama 1934 Jul 18 8.1 -82.6 7.6 d Bommer & Rodriguez, 2002; USGS, 2013 

35 Panama 1941 Dec 5 8.7 -83.2 7.3 d Bommer & Rodriguez, 2002; USGS, 2013 

50 Panama 1974 Jul 13 7.76 -77.57 7.2 d Bommer & Rodriguez, 2002; USGS, 2013 

52 Panama 1976 Jul 11 7.48 -78.28 7.0 v,d Bommer & Rodriguez, 2002; Keefer, 1984;  
Keefer, 1994 

178 Papua New Guinea 1935 Sep 20 -3.920 141.330 7.9 v Keefer, 1994; USGS, 2013 

180 Papua New Guinea 1970 Oct 31 -4.907 145.469 7.1 v Keefer, 1984; Keefer, 1994; USGS, 2013 

144 Papua New Guinea 1985 May 11 -5.579 151.081 7.2 d King et al., 1989; USGS, 2013 

149 Papua New Guinea 1993 Oct 13 -5.889 146.020 6.9 v Meunier et al., 2007; NOAA, 2013 

139 Peru 1970 May 31 -9.248 -78.842 7.9 v Havenith & Bourdeau, 2010; Plafker et al., 1971;  
Keefer, 1984; Keefer, 1994; USGS, 2010; USGS, 2013 

123 Peru 2007 Aug 15 -13.66 -76.75 7.9 v,d,i Zavala et al., 2009; Delgado et al., 2011a;  
Lacroix et al., 2013 

224 Philippines 1990 Jul 16 15.679 121.172 7.7  Rodriguez et al., 1999; NOAA, 2013 

121 Russia 2006 Apr 20 60.949 167.089 7.6  Rogozhin et al., 2009; Delgado et al., 2011a;  
NOAA, 2013 

131 Slovenia 1998 Apr 12 46.309 13.632 5.6 v,i Mikos & Fazarinc, 2000; Zupancic et al., 2001;  
Gosar, 2012 

150 Slovenia 2004 Jul 12 46.32 13.63 5.2 v,i Mikos et al., 2006; Vidrih & Ribicic, 2004;  
USGS, 2013 

96 Spain 1504 Apr 5 37.383 -5.467 6.9 d Delgado et al., 2011b 

97 Spain 1518 Nov 9 37.233 -1.867 6.1 d Delgado et al., 2011b 

98 Spain 1620 Dec 2 38.700 -0.467 5.5 d Delgado et al., 2011b 

99 Spain 1680 Oct 9 36.800 -4.600 6.8 d Delgado et al., 2011b 
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100 Spain 1748 Mar 23 39.033 -0.633 6.2 d Delgado et al., 2011b 

101 Spain 1755 Nov 1 36.500 -10.000 8.7 d Delgado et al., 2011b 

102 Spain 1804 Aug 25 36.767 -2.833 6.4 d Delgado et al., 2011b 

103 Spain 1829 Mar 21 38.083 -0.683 6.6 d Delgado et al., 2011b 

104 Spain 1863 Jun 10 37.367 -1.933 4.2 d Delgado et al., 2011b 

105 Spain 1884 Dec 25 37.000 -3.983 6.5 d Delgado et al., 2011b 

106 Spain 1945 Jul 1 38.800 -0.583 4.8 d Delgado et al., 2011b 

107 Spain 1956 Apr 19 37.192 -3.683 5 d Delgado et al., 2011b 

108 Spain 1964 Jun 9 37.737 -2.567 4.8 d Delgado et al., 2011b 

109 Spain 1984 Jun 24 36.838 -3.738 5 d Delgado et al., 2011b 

2 Spain 1999 Feb 2 38.11 -1.49 4.7 v Alfaro et al., 2012 

110 Spain 1999 Feb 2 38.096 -1.501 4.7 d Delgado et al., 2011b 

3 Spain 2002 Aug 6 37.88 -1.83 5.0 v Alfaro et al., 2012 

111 Spain 2002 Aug 6 37.883 -1.830 5 d Delgado et al., 2011b 

4 Spain 2005 Jan 29 37.93 -1.76 4.8 v Alfaro et al., 2012 

112 Spain 2005 Jan 29 37.854 -1.756 4.8 d Delgado et al., 2011b 

1 Spain 2011 May 11 37.69 -1.68 5.1 v,d,i Alfaro et al., 2012 

92 Taiwan 1999 Sep 21 23.85 120.82 7.6 v,d,i Yu et al., 2001; Wang et al., 2003; Keefer, 2002, 
 Hovius et al., 2011; Cheng, 2009 ; Delgado  
et al., 2011a; Hung, 2010; Dadson et al., 2004 

135 Tajikistan 1911 Feb 18 39 71.5 7,6*  Havenith & Bourdeau, 2010; ADRC, 2013;  
Oldham, 1923 

129 Tajikistan 1949 Jul 10 39.180 70.708 7.4 v Evans et al., 2009;  USGS, 2013 

223 Tajikistan 1989 Jan 23 38.465 68.694 5.5  Rodriguez et al., 1999; NOAA, 2013; USGS, 2013 

15 Tibet 1950 Aug 15 28.290 96.657 8.6 v Bhandari, 2010; USGS, 2012a; Keefer, 1994; 
 Keefer, 1984; USGS, 2013 

226 Turkey 1992 Mar 13 39.710 39.605 6.7  Rodriguez et al., 1999; NOAA, 2013 

177 United States 1812 Feb 7 - - 7,8*  Keefer, 1984 

186 United States 1886 Sep 1 32.9 -80.0 6,8*  Keefer, 1984; USGS, 2013 

187 United States 1906 Apr 18 37.75 -122.55 7.9  Keefer, 1984; Kanamori, 1977; Alomax, 2006 

189 United States 1940 May 19 32.733 -115.5 7.1 v Keefer, 1984; NOAA, 2013; USGS, 2013 

192 United States 1949 Apr 13 47.167 -122.617 6.5 v Keefer, 1984; NOAA, 2013; USGS, 2013 

179 United States 1957 Mar 22 37.67 -122.48 5.3 v  Keefer, 1984; Keefer, 1994; Keefer, 2002; IRIS, 2012 
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193 United States 1958 Jul 10 58.34 -136.52 7.7  Keefer, 1984; Kanamori, 1977; NOAA, 2013 

194 United States 1959 Aug 18 44.712 -111.215 7,1*  Keefer, 1984; NOAA, 2013 

14 United States 1964 Mar 27 61.06 -147.44 9.2 d Barnhardt&Kayen, 2000; Plafker, 1969;  
Jibson et al., 2006; Keefer, 1984; USGS, 2010 

196 United States 1965 Apr 29 47.400 -122.300 6.5 v Keefer, 1984; NOAA, 2013; USGS, 2013 

197 United States 1966 Jun 28 35.87 -120.48 5.6 v Keefer, 1984; IRIS, 2012 

151 United States 1971 Feb 9 34.412 -118.4 6.5 v U.S. Geological Survey, 1971; Keefer, 1984;  
USGS, 2013; NOAA, 2013 

208 United States 1978 Aug 13 34.350 -119.700 5,6*  Keefer, 1984; NOAA, 2013 

209 United States 1979 Mar  15 34.317 -116.450 5.6 v Keefer, 1984; USGS, 2013 

210 United States 1979 Aug 6 37.070 -121.598 5.5 v Keefer, 1984; USGS, 2013 

181 United States 1980 May 25 37.600 -118.840 6.2 v,i  Keefer, 1984; Keefer, 1994; Keefer, 2002;  
NOAA, 2013 

183 United States 1980 Jan 24 37.855 -121.816 5.6 v Keefer, 1984; Keefer, 2002; NOAA, 2013; USGS, 2013 

211 United States 1983 Oct 28 43.974 -113.916 6.9  Rodriguez et al., 1999; NOAA, 2013 

182 United States 1983 May 2 36.219 -120.317 6.5 v,i Keefer, 1994; Keefer, 2002; Rodriguez et al., 1999;  
NOAA, 2013 

218 United States 1987 Nov 24 33.082 -115.775 6.2  Rodriguez et al., 1999; NOAA, 2013 

217 United States 1987 Oct 1 34.061 -118.078 6.1  Rodriguez et al., 1999; NOAA, 2013 

143 United States 1989 Oct 17 37.036 -121.883 7.0 v,i Cole et al., 1998; Keefer, 1994; Keefer, 2002;  
Keefer, 2000; Rodriguez et al., 1999; NOAA, 2013 

227 United States 1992 Apr 25 40.368 -124.316 7.0  Rodriguez et al., 1999; NOAA, 2013 

232 United States 1993 Sep 21 42.314 -122.012 5.9  Rodriguez et al., 1999; NOAA, 2013 

118 United States 1994 Jan 17 34.213 -118.537 6.7 v,i Jibson et al., 2006; Keefer, 2002; Godt et al., 2008; 
Harp & Jibson 1996; Rodriguez et al., 1999; 
 Malamud et al., 2004a; NOAA, 2013; Parker, 2013 

117 United States 2002 Nov 3 63.517 -147.444 7.9 v,d Delgado et al., 2011a; Jibson et al., 2006;  
NOAA, 2013 

141 United States 2011 Aug 23 37.936 -77.933 5.8 d Jibson & Harp, 2012; USGS, 2013 

(a) Magnitudes are expressed in moment magnitude (Mw) be it conditionally as some might not be real moment magnitudes according to the USGS 
(2013a). Next to this, surface-wave magnitudes (Ms) are indicated by an asterisk (*) and body-wave magnitudes (Mb) are indicated by a quotation 
mark (“).  
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Appendix 2 

Landslide probability maps for all events in Table 5, except from events 85 and 181 displayed in Figure 33,  with 
mapped landslides indicated by the black dots or by a separate plot at the left for events 8, 9, 91, 92 (for ID’s see 
Table 5), coordinates are in the UTM projection (Table 5, own processing).  
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