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Abstract

A comparison of two clinical correlation models for dynamic tumor tracking
with a focus on geometrical accuracy

Jennifer Dhont, Master in Biomedical Engineering, 2014

Keywords: Radiotherapy, Tracking

Objective In radiation therapy, respiration induced motion of tumors in or near the tho-
racic region compromises the treatment accuracy. For this reason, several techniques have
been introduced over the past few decades to compensate or manage respiratory motion.
The most recent technique proposed is real-time tumor tracking (RTTT), a technique
in which the position of the radiation beam is adjusted in real-time to assure that the
tumor remains aligned with the beam at all time. To allow for this kind of treatment,
the position of the internal target has to be known at all time, while maintaining a low
dose to the surrounding healthy tissue. This can be achieved using a surrogate breathing
signal and a correlation model that correlates the surrogate signal to the motion of the
target.

There are currently two systems clinically in use that are capable of performing RTTT,
the SRTS Cyberknife system and the Vero SBRT system. In both systems a different
correlation algorithm is implemented. The objective of this study is to compare these
algorithms in terms of geometrical accuracy.

Methods Both correlation models were simulated off-line and log files from a patient
population of 10 patients, previously treated on the Vero system with RTTT, were used.
With each model, internal target positions were estimated and compared with the actual
target positions to compute the correlation model errors. This was done for three different
intra-fraction update scenarios of the correlation model and in each scenario the errors
were compared.

Results In two of the three update scenarios, a significant difference was found between
the accuracy of the Vero model and that of the Cyberknife model. It was observed that
the difference in build and the difference in dimension of the input data to the model, as
well as the difference between the three update scenarios, influenced the accuracy of the
two models. It could also be observed that variations of the breathing cycle over time
significantly decreased the accuracy of both models.

Conclusion Despite the higher complexity of the Cyberknife model, the Vero model
performed slightly better for our patient population in two of the three update scenarios.
The higher accuracy is most likely due to a more extensive data set to build the model
and the higher dimension of the input data to the model during treatment. We can
also conclude that for both models, some form of intra-fraction updating is required
to compensate for variations in the correlation between the internal target motion and
surrogate signal over time.



Samenvatting

A comparison of two clinical correlation models for dynamic tumor tracking
with a focus on geometrical accuracy

Jennifer Dhont, Master in Biomedical Engineering, 2014

Keywords: Radiotherapy, Tracking

Objectief In de radiotherapie kan ademhaling-geinduceerde beweging van tumoren in
of nabij de thorax de accuraatheid van de behandeling in het gedrang brengen. Voor die
reden zijn de voorbije jaren nieuwe technieken voorgesteld om ademhalingsbeweging te
compenseren of onder controle te houden. De meest recente techniek is real-time tumor
tracking (RTTT), een techniek waarbij de positie van het stralingsveld in real-time wordt
aangepast zodat de tumor zich steeds in dit veld bevindt. Om deze techniek mogelijk
te maken dient het systeem ten allen tijde de locatie van het target te kennen, terwijl
de stralingsdosis in het gezond weefsel van de patiént zo laag mogelijk blijft. Om dit
te verwezenlijken wordt gebruik gemaakt van een surrogaat ademhalingssignaal en een
correlatiemodel om het surrogaat signaal te correleren met de beweging van het target.

Momenteel zijn er klinisch twee toestellen in gebruik die RTTT kunnen toepassen,
het Cyberknife SRTS systeem en het Vero SBRT systeem. Beiden beschikken over een
verschillend correlatie algoritme. Het doel van deze studie is deze algoritmes te vergelijken
op basis van geometrische accuraatheid.

Methode Beide correlatiemodellen werden offline gesimuleerd en logbestanden van een
populatie van 10 patiénten die eerder met RTTT op het Vero systeem werden behandeld
werden toegepast. Met elk model werden tumor posities bepaald die konden vergeleken
worden met de werkelijke tumor posities om zo correlatiefouten te berekenen. Dit werd
toegepast in drie verschillende update scenario’s en in elk scenario werden de fouten met
elkaar vergeleken.

Resultaten Bij twee van de drie update scenario’s kon een significant verschil worden
vastgesteld tussen de accuraatheid van het Cyberknife model en dat van het Vero model.
Er kon ook worden vastgesteld dat het verschil in opbouw en het verschil in dimensie
van de input data in het model tijdens de behandeling, als ook de verschillen tussen de
drie update scenario’s, invloed hadden op de accuraatheid van de modellen. Een laatste
vaststelling was dat ook de variaties van de ademhalingscyclus een significante invloed
hadden op de accuraatheid.

Conclusie Ondanks dat het Vero model eenvoudiger is dan het Cyberknife model,
presteerde het Vero model toch beter in twee van de drie scenario’s. De hogere ac-
curaatheid is hoogst waarschijnlijk te wijten aan de grotere dataset om het model te
bouwen en de hogere dimensie van de input data in het model tijdens de behandeling.
Een laatste conclusie is dat voor beide modellen een update methode noodzakelijk is om
te compenseren voor variaties van de ademhalingscyclus die optreden na verloop van tijd.
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Chapter 1

Introduction

1.1 Cancer and Radiation Therapy

Cancer comprises over one hundred different pathologies that are all character-
ized by abnormal and uncontrolled cell growth. Since the beginning of the 21st
century, the number of cancer incidences has increased on both a national and in-
ternational level. In 2011, 64 thousand Belgians and 14 million people worldwide
were diagnosed with some form of cancer [1][2]. On a worldwide scale it is esti-
mated that, if this trend of increasing incidences continues, by 2030 20 million new
cancer diagnoses will be made annually [3]. Besides a high incidence rate, cancer
is also the second most important cause of death in both Europe and America.
In Belgium, lung-cancer in men and breast-cancer in women are the number one
causes of death for the middle-aged population [4].

Fortunately, over the past few decades great progress has been made in treating
and curing cancer [5]. Diagnostic and surgical techniques but also chemotherapeu-
tic treatments and radiation therapy have advanced tremendously.

Radiation therapy or radiotherapy is a treatment technique in which ionizing ra-
diation is used to control and/or kill cancerous cells in the body. Ionizing radiation
comprises all types of radiation that have sufficient energy to create ions in matter
by removing electrons from a stable atom. As such, damage can be inflicted on a
sub-cellular level. The most significant damage and the damage that one wants to
create in cancerous cells is that of the DNA (Deoxyribonucleic acid) [6][7]. DNA
damage by ionizing radiation can either occur direct or, more frequently, indirect.
Direct DNA damage occurs when the ionizing radiation impinges on a part of the
DNA molecule and ionizes the DNA molecule at that location. Indirect damage
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Chapter 1 Introduction

occurs when the ionizing radiation ionizes the water molecules around the DNA
molecule and produces radicals which chemically damage the DNA. When the
DNA of a cell is damaged, different scenarios can occur depending on the severity
of the damage. A correct repair of the DNA is possible and most probable in the
case of single stranded breaks as the complementary strand is still intact. A wrong-
ful repair can result in either a non-viable mutation which will lead to apoptosis
or in a viable mutation which can proliferate and lead to possible malignancies or
birth deficiencies depending on the cell type.

The interaction mechanism between ionizing radiation and healthy or cancerous
tissue is very similar as ionizing radiation is not selective for the type of exposed tis-
sue [8]. However, the biological consequences after radiation damage differ among
different types of healthy tissue and tumor cells. External factors such as heat and
the environment of the cells can also influence the cells radio-sensitivity. These
differences can be used during radiotherapy to spare healthy adjacent tissue while
still sufficiently treating the target. A way to differentiate the biological response
of healthy tissue and malignant cells is by fractionating the delivery of the radia-
tion dose. Dividing the necessary therapeutic dose in small amounts has shown to
induce fewer short- and long-term complications in the surrounding healthy tissue.
This is believed to be the consequence of a better repair mechanism for sub-lethal
damage in normal tissue compared to cancerous tissue. Fractionation can thus
result in a greater cumulative damage in tumor cells than in the healthy nearby
tissue, leaving the possibility to treat tumors with ionizing radiation.

Standard fractionation was long considered the only safe option to treat cancer-
ous tissue with ionizing radiation as single large doses lead to the uncontrollable
risk of acute and long-term complications of the healthy nearby tissue. However,
mid-twentieth century, a new approach was successfully introduced called stereo-
tactic radiosurgery (SRS) which broke with the conventional fractionation scheme.
It was a technique that used large-dose single sessions of radiation, delivered to the
central nervous system (CNS) [9]. The main factor that allowed this kind of ad-
ministration was the technique with which the radiation was delivered. Techniques
taken from stereotactic surgery using stereotactic frames fixed to the patient with
an attached 3D coordinate system enabled a high spatial accuracy. The dose was
delivered with a large number of non-overlapping beams, each carrying a rela-
tively low weight and consequently causing little damage to the normal tissue they
crossed to reach the deep seated tumor. The cumulation of these multiple beams
created a hot-spot in the tumor and a steep dose fall-off was generated outside
the target towards adjacent healthy tissue. Delivering these higher, more potent
doses resulted in a lower re-population of the cancerous cells, resulting in a more
effective treatment.
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The technique of SRS and hypo-fractionation was later extended with the help
of newly developed treatment devices targeting the tumor with a high spatial ac-
curacy. The so-called stereotactic body radiotherapy (SBRT) is now being applied
to many other treatment cites besides the CNS, where the four main requirements
of hypo-fractionation are met; effective patient immobilization, precise target lo-
calization, accurate dose delivery and the ability to produce a steep dose fall-off
towards the surrounding healthy tissue [10][11].

1.2 Respiratory-induced motion in radiotherapy

The average respiratory rate of a healthy human being at rest is around 12 to
16 breaths per minute. During respiration, the thoracic region expands to induce
an expansion of the lungs so air is drawn in. The process of respiration not only
causes the lung tissue to move, it also causes the displacement of several other
organs situated near the thoracic region such as the liver and pancreas [12][13]. A
tumor located in the lungs or in these nearby organs often exerts a similar motion
as the tissue it is surrounded with. Non-small cell lung cancers (NSCLC) located
closely near the diaphragm for example have shown to make displacements in the
order of centimetres with each breath.

As a consequence of this intra-fraction motion, treating tumors in or near the
thoracic region with static external beam radiotherapy can cause serious complica-
tions. Not only is there a higher probability that the tumor volume is insufficiently
irradiated, there is also an increase in the probability of irradiating surrounding
healthy tissue. The fact that these kind of pathologies, accounting for about a
fifth of all new cancer diagnoses, are also often inoperable or unresponsive to other
treatments gives them a particularly poor outcome with an overall 5-year survival
rate of 6-16% [14][15]. However, radiation therapy has shown to improve the lo-
cal control probability of static non-small cell lung cancers and so there has been
a significant amount of research around accurately treating moving targets with
ionizing radiation.
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1.3 Current technologies in radiotherapy for treat-
ing moving targets

The variety of radiotherapy techniques to treat moving targets situated in the
thoracic region only is quite extensive. The treatment option is mainly chosen
based on the amount of movement, the location of the target and the options
available in the medical center. An overview of all motion management and motion
compensating techniques is given next. It should be noted that all techniques are
classified in the field of stereotactic body radiation therapy (SBRT) and image-
guided radiation therapy (IGRT) [16][17].

Motion management using margins - the ITV approach

In general, a safety or treatment margin is applied to the clinical target volume
(CTV) to ensure that the complete CTV receives the prescribed dose. This margin
is applied to account for inaccuracies during imaging, treatment planning and
delivery. It does not only take into account the uncertainties in position, size and
shape of the target, it also includes variations in patient and beam positions. The
CTV plus safety margins result in the planned target volume or PTV [18]. Taking
into account substantial movement of the target can be done using an additional
margin in the PTV definition, resulting in the internal target volume or I'TV. This
kind of motion management can be applied when the respiratory-induced motion
of the target is in the order of a few millimetres. It is not advised to be used
for more extensive motions as the amount of healthy tissue irradiated can become
significant, increasing the normal tissue complication probability (NTCP) [19][20].

Abdominal compression techniques

Abdominal compression is a technique that is used to reduce diaphragmatic mo-
tion during treatment delivery. A stereotactic body frame with a pressure plate
that is pressed against the abdomen of the patient is applied to immobilize and
position the patient and to induce forced shallow breathing [21][22]. As such the
thoracic motion is limited, while still allowing the patient limited normal breathing.
Markers and other indications on the stereotactic body frame can also be used to
reproduce the patient position at each fraction, however, imaging is still essential
before each treatment fraction to ensure correct tumor positioning. Studies have
shown that this approach is capable of reducing the motion of certain tumors to
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under 5 mm [23]. However, depending on the location of the tumor and the prin-
cipal directions of movement, certain tumor motions can not be compressed under
acceptable levels. The reproducibility of the compression system and the level of
comfort of the patient during treatment are two other adverse characteristics of
this motion management approach.

Breath-hold and free-breathing gating techniques

Gated radiotherapy is an image-guided radiotherapy technique in which there is
only an administration of radiation at a selected moment in the breathing cycle.
Meaning that only at a certain phase in the breathing cycle the radiation beam
is on and the target is irradiated, while at all other breathing phases the beam is
off. The position and width of the treatment window or gate are determined based
on the periodic movement of the target and is a trade-off between time efficacy
and irradiating nearby healthy tissue. Localisation of the target with respect to
the treatment window is performed using external or internal respiratory signals,
with or without fiducial markers implanted in or near the malignant tissue [24][25].
Although the additional dose of radiation in image-guided gating is not that high,
it is still a concern to some clinicians. The less invasive gating option using an
external surrogate signal is therefore preferred.

As the beam is not always on while the patient is treated, the treatment time
of one fraction can be prolonged remarkably compared to non-gated treatments.
This makes it a sub-optimal treatment technique in terms of economical factors and
patient-comfort. A combination of gating with voluntary breath-hold or shallow-
breathing techniques can be applied to optimize the duty cycle and decrease treat-
ment time [26][27][28].

Motion compensation through tracking

The most recent technique for respiratory-induced motion compensation is real-
time tumor tracking (RTTT) [29]. During RTTT the position of the radiation
beam is continuously adjusted in real-time so that the target remains in the same
relative position with respect to the beam. As such, highly conformal treatment
plans can be applied to a moving target. Compared to gating, the beam remains on
at all time and the patient is allowed to breath freely during each entire treatment
fraction.

Real-time tumor tracking can be performed in several ways. Assuring that the
target and the beam remain aligned at all time can be achieved by either mo-
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ving the patient support system with respect to a static beam or by moving the
beam with respect to a stable patient position. The first has shown to be feasible,
however, comfort of the patient in such case is questionable and it is not certain
that the target position is not influenced by this kind of constant patient move-
ment. The latter has shown to be feasible with real-time adjusted moving linear
accelerators and is clinically in use right now in two different systems. Another
approach is with the use of a dynamic multi-leaf collimator (DMLC). However,
DMLC tracking has shown to be very dependent of the orientation of the tumor
motion with respect to the leaf motion direction. The maximum leaf speed is also
a limiting factor in DMLC tracking and the combination of intensity modulated
radiation therapy (IMRT) with DMLC might be an unrealistic demand on the
MLC [30].

A main requirement in applying tracking to treat moving tumors is to know at all
time where the tumor is located. Although respiratory motion can be assumed to
be approximately periodic, realistically it is not. Continuously imaging the target
and a part of its surrounding to determine its location would be the most straight-
forward approach. However, as treatment times per fraction can go up to half an
hour and more, the imaging dose to the patient, which would mainly consist of
dose to the skin and other healthy tissue, would reach unacceptable levels [31][32].
Especially because a high temporal resolution of the target position is required
as input to a prediction algorithm implemented to compensate for unavoidable
system latency. Therefore, instead of imaging, a surrogate breathing signal that
shows a strong relation with the motion of the target has to be used to determine
the target positions. This indirect way of tumor localization entails an increase in
uncertainty of the dose delivery during tracking.
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1.4 Purpose of this work and thesis outline

The use of a surrogate breathing signal in real-time tumor tracking requires the
application of a motion model to correlate the surrogate signal to the motion of
the target. Many different motion models, more often called correlation models,
have been proposed and sometimes tested on clinical data.

Two of these correlation models are those implemented in the only two current
systems clinically performing RTTT, the Vero SBRT System and the Cyberknife
(CK) Robotic Radiosurgery system. Both systems are equipped with a correlation
model (CM) to estimate the internal target positions based on an external surro-
gate signal. Both CMs have been sufficiently described and evaluated in the past
[33][34][35][36][37], but to our knowledge they have never been compared in the
same clinical setting. The purpose of this work is to simulate, validate and com-
pare both correlation models in terms of geometrical accuracy, for a population of
patients previously treated with RTTT on the Vero SBRT system.

In Chapter 2, the use of correlation models is further explained, together with
a general introduction to motion models that could be used in real-time tumor
tracking. Linear and polynomial correlation models will be discussed in more
detail as the Cyberknife and Vero CMs are based on this type of models. After this
general overview, both the Vero system and the Cyberknife system are explained,
together with an extensive description of their correlation model. Finally, an
overview of how the comparison was carried out is described.

All results of the comparison together with the conclusions that could be drawn
from them can be found in chapter 3 and 4, respectively. In Chapter 5, a discussion
is started concerning the outcome of this comparison, its limitations and some
future work that could be carried out to continue this study on motion models for
real-time tumour tracking.
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Chapter 2

Correlation Models

2.1 General overview

Correlation models are used in both gating and real-time tumor tracking. They are
applied to define the relation between a surrogate breathing signal and the motion
of the internal target [38]. It is a mathematical algorithm that is built before the
start of each treatment by using both internal target and surrogate data. During
the treatment, the surrogate signal is used as input to the correlation model (CM)
and tumor positions are calculated as output. Due to the strong interaction, a
correlation model might be considered as the combination of 3 equally important
components; a surrogate signal, a correlation algorithm and a motion signal of the
target [39].

Surrogate Signal Surrogate Signal

\ \ , \ Target

v / Correlation Model ‘t / Motion data
Target Correlation Model

Motion data

Figure 2.1: The correlation model is defined before treatment using both the surrogate
breathing signal and the target motion data. During treatment, the surrogate breathing
data is used as input to the correlation model to determine the target motion.

The surrogate signals proposed in literature to be used in tumor tracking come in
a wide variety. From the use of spirometry [40][41][42], to markers indicating the
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displacement of the chest or abdomen, to the use of ultrasound, surface monitoring
or magnetic resonance imaging (MRI). The main requirement is that the surrogate
signal shows a strong correlation with the motion of the target, together with the
ability to be easily acquired and processed with a high temporal resolution, causing
no harm to the patient.

The motion data of the internal target can also be acquired in a number of
ways. However, these are most often simply different imaging modalities. Only
one exception was proposed in which the use of an electromagnetic signal was
described [43]. The most common imaging modalities are X-ray imaging, CT and
cone-beam CT (CBCT) and MRI. Due to poor image resolution compared to CT,
ultra-sound (US) has not generally been used to obtain motion data, however, it
has been proposed as a surrogate signal due to its high temporal resolution and
the use of sound waves instead of ionizing radiation [44][45].

The choice of correlation model strongly depends on the surrogate signal, the
motion data and how accurate the user wants to model the relationship between
both and over which period of time. It is also a question whether the model
should be patient-specific or used cross-population. Although the latter seems
fairly impossible due to strong variations in breathing motion among patients, not
to mention the differences in pathology, they have been proposed by Ehrhardt et
al., Fayad et al. and others [46][47][48][49]. Also, as mentioned before, breathing
motion might be assumed to be periodical, but realistically it is not. There are
both intra-cycle and inter-cycle variations that might influence the accuracy of
the correlation model. Intra-cycle variations or variations occurring during one
breathing cycle are for example the different trajectories during inhalation and
exhalation, also called hysteresis. Inter-cycle variations or differences between
several breathing cycles are for example a more extensive maximum exhalation or
inhalation compared to the previous cycles. Both phenomena can be observed in
Figure 2.2.

In general, any direct correlation model (f) can be represented as follows

T = £(8) (2.1)

In which T is the 3D target position estimation and S is the surrogate signal.
The capabilities of the correlation model strongly depend on the surrogate signal
and the motion data. Intra-cycle variations for example can only be modelled
if the surrogate signal is able to distinguish between in- and exhalation, if the
motion data samples both breathing phases and if the model can make different
estimations for in- and exhalation. If for example, f is one linear function (f :
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Figure 2.2: Two breathing cycles represented by the surrogate breathing signal in the
vertical and medial direction of patient 1. The presence of hysteresis can be observed,
as well as a difference in maximum inhalation between the two subsequent cycles.

R — R3), it is not capable to make different estimations for in- and exhalation
as each complete breathing cycle is modelled as a straight line. In this case the
relation between the target position and the surrogate signal is represented as
follows

Ay; and As; are coéfficients determined when the model is fitted to the target
motion and surrogate data. The linear correlation model is robust and easy and
relatively fast to build. Although it doesn’t represent a very realistic breathing
signal, for some patients it models the relation between the motion of the surrogate
signal and the target motion well and provides accurate tracking results. However,
the majority of patients requires a more complex model.

This model can be extended to higher order polynomials and/or a combination
of multiple polynomials of similar or different degree. Depending on the degree
of the polynomials, the number of polynomials used and the type and dimension
of the surrogate data, a breathing loop can be modelled and a distinction can be
made between in- and exhalation. These models offer more flexibility and therefore
model the internal target motion of most patients with a higher accuracy compared
to linear models.
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It was already briefly mentioned that the correlation model is built before the
treatment. Clinically, this is done before each treatment fraction. The motion data
and surrogate data are obtained in a synchronized way, and the correlation model
is fitted to this data. In most cases, a least square optimization process is applied.
The amount of data obtained for the build of the correlation model is another factor
that influences the accuracy of the model. If the data is only obtained during one
breathing cycle, inter-cycle variations are difficult to be included in the model,
depending on the model. The same goes for intra-cycle variations if the data is
only obtained during inhalation or exhalation. A dataset obtained over several
breathing cycles at a sampling rate high enough to sample intra-cycle variations is
therefore most optimal. However, it should also be noted that models requiring a
rather large amount of training data, such as models based on neural networks or
single-vector regression, are clinically unfavourable or even inapplicable, although
they might model the breathing motion with a higher accuracy [50][51][52].

A final point that should be addressed concerning correlation models is the im-
plementation of updates. Most models correlate the surrogate motion to the target
motion with a so-called black-box approach in which only the input and output
data are considered, but not the actual underlying physical system and its be-
haviour and characteristics. As such, not all variations of the correlation between
the surrogate signal and the target motion can be handled by the model, meaning
that they can cause an increase in modelling error. Therefore, most models have to
be updated regularly during one treatment fraction, if not completely rebuild. The
downside to updating and rebuilding is that these can increase the treatment time
significantly, influencing patient comfort which in turn can influence the patient’s
breathing. Coaching methods based on audio-visual signals, or one of the two,
have shown to decrease these inter-cycle variations, but including them in the cor-
relation model itself would be a more straight-forward and less patient-dependent
approach.

For that reason the physico-mechanical model proposed by Wilson and Meyer
[53] is definitely worth mentioning as an example that is not based on polyno-
mial functions. This model approaches the problem of unknown target location by
modelling lung tumor motion, or more precisely the spatio-temporal relationship
between chest motion and tumor motion, as a contact problem of elasticity the-
ory by describing the physiology using an arrangement of springs and dash-pots.
Solving the model is done by solving three coupled non-dimensional differential
equations through an optimization routine. While the mathematical model is ge-
neral for any tumor in the lung, the parameters are obtained specifically for every
patient and every tumor-location with a set of 2 min training data during the op-
timization process. Adjustments were done by Ackerley et al. [54] who simplified
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the three-dimensional model to a one-dimensional model, shown possible again by
Wilson and Meyer in case the tumor motion is predominantly in endangeringthe
superior-inferior (SI) direction. The most remarkable feature of these physico-
mechanical models was described by Ackerley et al. when they tested their model
on clinical data of 10 patients previously treated on a Mitsubishi Real-Time Ra-
diation Therapy System with up to ten fractions and 4 beams per fraction. It was
shown in Stage 2 of their study that not only was the physico-mechanical model
able to model the correlation well, it was also possible to use the parameters, ob-
tained at the first fraction, throughout the entire treatment session with only a
small increase of the tracking error. Meaning that this model is not only capable
of taking into account inter-cycle variations, but also inter-fraction variations.

What follows in the next two sections is a more detailed description of the two
clinical correlation models that were compared in this study, together with a de-
scription of the systems in which they are implemented.

2.2 Dynamic tumor tracking on the Vero SBRT
System

One of the correlation models that was evaluated in this study is that of the
Dynamic Tracking (DT) on the Vero SBRT System. The next few sections contain
a short description of the Vero system and the workflow during RTTT, together
with an extensive description of its implemented correlation model, the surrogate
signal and the acquisition of the target motion data.

The Vero SBRT System

The Vero SBRT System is a joint product of BrainLAB (BrainLAB AG, Feld-
kirchen, Germany) and MHI (Mitsubishi Heavy Industries, Tokyo, Japan). It is a
four-dimensional IGRT system designed with a gimbaled X-ray head [56][57]. It
consists of a small and light 6 MV C-band linear accelerator (LINAC) with a fast
MLC mounted on an O-ring gantry, permitting a full 360° rotation. The MLC
allows for a maximum field size of 150 by 150 mm, with a maximum leaf speed of
50 mm/s. Two orthogonal gimbals support the linac-MLC assembly which can be
driven to rotate in a perpendicular and parallel direction with respect to the couch.
This mechanism enables the possibility to perform RTTT of moving targets, de-
coupled from the DMLC intensity modulation. The maximum excursion of the
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beam axis is 4.4 cm (2.5°) at the isocenter plane in both perpendicular and paral-
lel direction. Besides an electronic portal imaging device (EPID) for MV imaging,
the Vero system is also equipped with two on-board orthogonal kV radiograph and
fluoroscopy devices that are attached to the O-ring gantry at 45° from the MV
beam axis. This imaging system allows for cone-beam CT and simultaneous acqui-
sition of orthogonal X-ray images at 15 frames/second. An ExacTrac (BrainLAB
AG, Feldkirchen, Germany) automated infra-red (IR) reflective marker-based op-
tical tracking system with a 5 degrees of freedom robotic treatment couch is also
integrated into the Vero system. This optical tracking system is used for both pre-
treatment patient positioning and for the acquisition of the surrogate breathing
signal of the patient.

Figure 2.3: The Vero SBRT System with robotic couch and ExacTrac infra-red camera
with a detailed representation of the gimbaled X-ray head and two orthogonal kV imaging
systems. Image courtesy of Brainlab AG (BrainLAB AG, Feldkirchen, Germany).

A treatment fraction with real-time tumor tracking starts with pre-positioning
the patient laying on the robotic treatment couch. This is done by placing reflective
IR markers on several stable parts of the skin, e.g. sternum and rib-cage, which
were also placed during the acquisition of the planning CT. After initial pre-
positioning, a cone-beam CT (CBCT) or orthogonal kV X-ray set is acquired for
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image guided positioning based on bony structures. A Visicoil (IBA, Louvain-la-
Neuve, Belgium) gold marker, see Figure 2.4, is used as a fiducial and is implanted
in or near the tumor several days prior to the planning CT to ensure a stable
position during the course of treatment. Once the patient is set up close to the
isocenter, the 4D modelling is initiated. First, the surrogate breathing signal is
obtained from an additional set of IR markers positioned on the higher abdomen or
chest, moving with the breathing cycles of the patient. Once the breathing signal
is picked up, a synchronized acquisition of orthogonal X-ray images begins. This
can take between 20 to 40 s, covering at least 4 breathing cycles. A region-growing
based detection algorithm is used to localize the internal fiducial marker with an
accuracy of 0.5 mm or lower. The surrogate breathing signal and internal target
positions are then used to fit a correlation model that is used during treatment
to estimate the internal target position based on the surrogate breathing signal.
A linear forward prediction algorithm is also implemented to compensate for a
known 50 ms latency. The operator allows for a small level of deviation between
the estimated and actual target position, defined by a tolerance circle or error
threshold. The motion of the gimbals is recorded at a rate of 50 Hz in a log
file. Combining this data with the detected internal target positions from the
monitoring X-rays (0.5 frames/s) enables tracking error calculations [37][55].

Figure 2.4: Magnified image of a visicoil’™ implantable marker for real-time tumor
tracking. Image courtesy of IBA (IBA, Louvain-la-Neuve, Belgium,).

Important to note, with respect to the work performed in this study, is that
before and during each treatment fraction log files are generated. These log files
store, with the appropriate time stamps, the internal target positions and external
marker positions, as well as the internal target estimations by the correlation
model implemented in the Vero SBRT system. The estimated target positions and
those obtained through imaging are both three-dimensional while only the vertical
positions of the external markers are stored.
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Figure 2.5: Schematic representation of the Dynamic Tracking workflow on the Vero
SBRT System. The treatment beam is switched on only if the tracking error is smaller
than 3 mm in any direction, represented by a tolerance circle at both ends of the im-
planted visicoil marker. Image courtesy of Depuydt T., et al. [32]

The correlation model

As mentioned in the description and workflow of the Vero SBRT system, an optical
tracking device is present in the treatment room that is capable of tracking IR
markers positioned on the chest or higher abdomen of the patient. This signal
serves as the surrogate breathing signal that is applied as input to the correlation
model. The number of markers that is used is preferably five or six, however,
possible ambiguities resulting from the 3D reconstruction based on unsorted points
match in combination with intermittent loss of signal due to reflection issues or
lack of motion can decrease this number to four in the clinic.

The motion data of the internal target consists of the registration of the po-
sition of an implanted visicoil marker in or near the target. The implantation
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is rather invasive, but markerless tracking is not yet implemented in the system.
The visicoil positions are acquired through fluoroscopy using the orthogonal X-ray
imaging devices at a frequency of 11 Hz to build the model and at a frequency of
approximately 2 Hz for validation during the treatment.

The correlation model clinically implemented in the Vero SBRT system to con-
duct dynamic tracking is a second-degree polynomial function (F) with the 1-
dimensional external marker positions (x) and external marker derivatives of the
positions (&) as variables [58].

F(z,%) = az® + bx + c + di* + e (2.3)

The velocities are calculated by a weighted [1,...,1,3,5] fit of a first-degree polyno-
mial function through the last 15 IR data-points. Making direct use of the velocity
in the correlation model enables modelling possible hysteresis of the breathing sig-
nal as the velocity is opposite in sign for the different breathing phases. The
parameters a, b, ¢, d and e are computed before each treatment fraction through a
least-square gradient descent optimization process using a dataset containing both
internal target positions and external marker positions obtained through at least
20 s full fluorosopy (FF) at 11 Hz. A model is fitted for every external marker and
every direction of motion of the target. The use of 5 external markers for example
leads to 15 different correlation functions. The final target position estimation in
each direction is obtained by averaging over all markers.
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Figure 2.6: Baseline drift of the respiratory signal of patient 4 during fraction 1, over
a time-range of 11 min.
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The correlation model is used throughout the entire treatment fraction unless
the tracking error exceeds a threshold of 3 mm in any direction. At that moment
the treatment is manually interrupted and a completely new data set is obtained
to rebuild the correlation model. An important contribution to the increase in
tracking error over time is drift of the surrogate breathing signal and/or internal
target, the first shown in Figure 2.6. Baseline drift is the frequently occurring
phenomenon where the average position of the external marker lowers with time,
while the range of the target motion remains the same. This baseline drift of
the external markers is partially due to the patient who often relaxes after a few
minutes on the treatment table and relaxes his/her muscles, and partially due to
the internal anatomy that changes a little during that same time period after laying
down in a supine position. As a result, the target estimations by the correlation
model are also shifted compared to the actual target positions and a larger tracking
error is established. Other changes in the breathing cycle, such as variations in the
amount of hysteresis or an exceptionally deep in- or exhalation can also cause the
random error to exceed the predefined threshold. Important to note is that it is
always up to the system control operator whether or not to rebuild the correlation
model.

2.3 Tumor tracking on the SRTS Cyberknife Sys-
tem

The second correlation model that was evaluated in this study is that of the Syn-
chrony Respiration Tracking system integrated in the Cyberknife Robotic Ra-
diosurgery System. What follows is a short overview of the Cyberknife system,
together with an extensive description of its clinically implemented correlation
model.

The Cyberknife Robotic Radiosurgery System

The Cyberknife Robotic Radiosurgery System by Accuray Incorporated (Accu-
ray Incorporated, Sunnyvale, CA, USA) was initially designed to perform frame-
less stereotactic radiosurgery. It was only later that the Synchrony Respiratory
Tracking System for motion compensation was included. The Cyberknife system
consists of a miniature lightweight 6 MV X-band linac mounted to an industrial
multi-jointed robotic arm. The robotic arm moves freely and is capable of aiming
the radiation beam with six degrees of freedom, enabling the delivery of many
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independently targeted (non-isocentric) and non-coplanar treatment beams. To
ensure optimal dynamic tracking capabilities, the weight of the beam-line was
reduced to below 200 kg. In the compact design the bending magnet and the flat-
tening filter was removed and the collimation devices were limited to fixed cones of
various diameters. However, a first update allowed the implementation of an Iris
diaphragm-like collimator while a later update allowed the implementation of an
MLC. Two rigidly fixed off-board X-ray imaging systems are orthogonally confi-
gured in the treatment room at 45° and 315° from the vertical axis. This imaging
system is used to acquire the internal target positions, either with or without the
help of implanted fiducial markers. The surrogate breathing signal is acquired from
a set of multiple light emitting diode (LED) markers typically fixed on a tightly
fitting vest the patient wears during treatment, see Figure 2.8. The marker motion
is obtained at approximately 30 Hz, with a continuously measuring stereo-camera
containing 3 CCD camera’s [59][60].

o

Figure 2.7: The Cyberknife Robotic Radiosurgery System with off-board orthogonal
kV imaging systems, robotic couch and stereo-camera. Image courtesy of Accuray In-
corporated (Accuray Incorporated, Sunnyvale, CA, USA).

A first pre-positioning of the patient is done using the X-ray image guidance
system and an adjustable treatment table. A final fine alignment of the target
relative to each treatment beam is done by moving the robotic arm relative to the
patient. A set of both internal target data and external marker data is used to
build the correlation model before each treatment fraction. The system latency
of the Cyberknife/Synchrony system is 200 or 115 ms, depending on the version,
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which is compensated with an adaptive prediction algorithm [61]. Periodically
acquired X-ray images are used to calculate the tracking error and update the
target position estimation algorithms if necessary.

Figure 2.8: LED markers fixed on a tightly fitting vest the patient wears to obtain
a surrogate breathing signal during a real-time tumor tracking treatment on the SRTS
Cyberknife system. Image courtesy of Accuray Incorporated (Accuray Incorporated, Sun-
nyvale, CA, USA).

The correlation model

As mentioned in the description and workflow of the SRTS Cyberknife system, an
optical tracking device is present in the treatment room that is capable of tracking
LED markers fixed to a tightly fitting vest the patient wears during treatment,
similar to the previously described Vero approach except here the LED markers can
be individually identified (each having its own frequency) avoiding the problems
related to unsorted point matching. It is this signal that serves as the surrogate
breathing signal that is applied as input to the correlation model.

The motion data of the internal target consists of the registration of the position
of multiple markers implanted near the target. The marker positions are acquired
through X-ray imaging using the orthogonal X-ray imaging devices.

The correlation model implemented in the Cyberknife/synchrony system is built
from two second-degree and/or one first-degree polynomial function, with the 1D
external marker positions (x) as the only variable [51].

f(@) =9 feal)
flm(x)
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The functions of the correlation model are fitted before each treatment fraction
to a dataset containing maximum 15 data pairs of internal target data and external
marker data, obtained over several breathing cycles [62]. One quadratic function
is fitted to all data points obtained during inhalation (f;,) and one is fitted to all
data points obtained during exhalation ( f.;). A distinction between both breathing
phases is made based on the velocity (v) of the external markers which is opposite
in sign for the different breathing phases. So for all data points n:

Tp—1 — Tn+1
y = ————— 2.4
v 9Nt (24)
n € inhalation if Uy, > —4
n € exhalation if Uy < Uy

With At the sampling period of the surrogate signal (s) and v; a threshold speed.
Not taking v; equal to zero allows data points at slow speed to be assigned to both
in- and exhalation, the reason for which will become clear later on.

The linear function ( fy;,) is fitted to both in- and exhalation points. The eventual
combination of functions to model the breathing loop (bi-quadratic, quadratic-
linear or only linear) is chosen depending on the modelling error (e,,), slightly
favouring the more simpler models.

_ e (2.5)

With e; being the difference between the modelled point and the actual data
point, n being the number of points in the model dataset and m being the number
of parameters in the model, i.e. 2 for linear, 3 for quadratic. Important to note
is that not all markers should have the same correlation model. The breathing
motion of marker one can for example be better modelled with a fully linear
function while the breathing motion of marker 2 is more accurately modelled with
the bi-quadratic model [34].

In case the bi-quadratic model is most favourable, a breathing loop is modelled
using the quadratic inhalation and exhalation function. However, the linear model
is also used as a kind of fall-back mechanism. Over time, it is possible that
the amplitude of the breathing signal changes, reaching positions that were not
registered during the acquisition of the data that was used to fit the functions of
the model. The linear function is then applied during treatment to all this external
marker data that is located outside the range of external marker data that was used
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to fit the three functions (R), plus a predefined margin resulting in R*, see Figure
2.9. As such, large extrapolation errors are reduced which can be present when
using higher order polynomials. A blending mechanism is also implemented to
make sure that there is a smooth transition between the three main functions, and
a continuous breathing loop is modelled. This is also where the earlier mentioned
non-zero threshold speed comes in, allowing a smooth transition between the two
breathing phases.

The final bi-quadratic model can be represented as in Figure 2.10 and is made
up as follows, with R being the initial collection of external marker data used to
fit the model and o a parameter determining the amount of overlap between the
higher and lower order polynomials in the blending mechanism:

ry =minR, ry=maxR, r3=o0(ro—r1)
R~ = [r1 + 2r3,ro — 2r3)
Ry =[r +r3,m+2r3], Ry =[ro— 2r3,ro — 3]
S =r—rs,ri+rs, Ry =lro—rsry+rs)

RT=R; URTUR URIURY

r3rars r3r3rs3
1 Iy
R
— — — —
R2 Rl R1 Rz
l RT |

Figure 2.9: Representation of the ranges in the blending mechanism of the Cyberknife
correlation model. Image courtesy of Ernst F., et al. [63].
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During treatment, the velocity of the external breathing data is calculated to
determine if the data points originate from the exhalation (e.,) or inhalation (e;,)
breathing phase. Based on this division, they are used as input into the associated
correlation model to calculate the internal target position.
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The correlation functions are gradually updated during the treatment fraction
to reduce the tracking error. Every 30 seconds to five minutes, one of the 15 data
pairs used to fit the model is substituted with a new pair, based on a first-in first-
out principle. A complete rebuild can also be executed in case the tracking error
exceeds a predefined threshold of 5 mm two times in a row. During a Cyberknife
treatment, an increase in tracking error can originate from baseline drift of the
external markers or from other variations in the breathing cycle of the patient

[34)].

2

AP

Figure 2.10: Representation of the bi-quadratic CK model (red) built with maximum

15 data points (green) and patient breathing data (blue).
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2.4 Methodology of the comparison

In the first stage of the comparison, both the Cyberknife correlation model and
the Vero correlation model were simulated offline in MatLab (Natick, MA, USA).
For the Cyberknife model, this was performed based on descriptions of the model
found in literature [33][34][63][64]. The Vero model was simulated based on li-
terature and private communication with Brainlab (BrainLAB AG, Feldkirchen,
Germany)[37][58]. Both correlation models were also validated in some way to
ensure no errors had occurred during simulation. The Cyberknife model was val-
idated, to a certain extent, by comparing the outcomes of two models simulated
by two different people independently. If both were simulated as intended, there
should be no significant difference between the outcomes. The Vero model was
validated by comparing the outcomes of the simulated model, i.e. the target po-
sitions, to the outcomes of the clinically implemented model which are stored in
log files generated before treatment. It should however be noted that those target
positions were estimated after a forward prediction algorithm was applied to the
surrogate breathing signal, while the estimations with the simulated models were
made using a surrogate signal that was not forward predicted. Small discrepancies
between the outcomes of the simulated model and the outcomes stored in the log
files are therefore expected, mainly around the maximum inhale and maximum
exhale positions. However, despite this difference, it is expected that they agree
with sub-millimetric accuracy and a validation should be possible.

Log files, all listed below, from a patient population of 10 lung and liver patients
were used not only to validate the Vero model, but also to train both models and
to use the surrogate signals as input to the models so target positions could be
estimated. An overview of those log files is listed below. These 10 patients were
previously treated on the Vero SBRT system with real-time tumor tracking for a
maximum of 10 fractions per patient and maximum 9 beams per fraction.

e The correlation_model.log file contains the 20 - 40 s 3D internal target po-
sitions and 1D vertical external marker positions with which the correlation
model is built before the treatment fraction, together with corresponding
timestamps. It also contains 3D target position predictions, with time-
stamps, computed by the correlation model implemented in the Vero SBRT
system. These predictions were computed from external marker positions to
which the forward prediction algorithm was applied. All positions are stored
with a 0.01 mm precision and timestamps with a 1 ms precision.
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e The RespiratoryMotionTracking.csv file contains the 3D external marker po-
sitions recorded during treatment, stored with a 0.01 mm precision. Corre-
sponding time stamps are stored with a 1 ms precision.

e The TumorPositionTracking.csv file contains the 3D internal target positions
predicted by the clinically implemented correlation model, again stored with
a 0.01 mm precision. Corresponding time stamps are stored with a 1 ms
precision.

e The XrayTimeTracking.csv file contains the time stamps at which X-ray
images of the target are taken, with a precision of 1 ms.

The Cyberknife model was simulated so that only the bi-quadratic model with
fall-back and blending mechanism was applied. The complete linear model and
linear-quadratic models were omitted. As such, both correlation models repre-
sented a continuous breathing loop throughout the entire treatment to model the
relation between the surrogate breathing signal and the internal target motion.
While the linear and linear-quadratic models might be sufficient for some patients
or certain discrete parts of a treatment fraction, their accuracy will always be
inferior to that of a bi-quadratic model. Therefore, to ensure a fair comparison
and to be able to obtain unambiguous results about the spatial accuracy of both
models, the simulated Cyberknife model was not completely equal to the model
implemented in the clinical SRTS Cyberknife system.

Both correlation models were also simulated with three different update scena-
rios. In all three scenarios, the standard procedure of building the model before
each fraction was implemented. Then in the first scenario, no intra-fraction re-
training was allowed so that the initial models were used throughout the entire
fraction. As such, they were subjected to a substantial baseline drift of over 1 mm.
In a second scenario, a gradual update similar to that of the clinical Cyberknife
algorithm was implemented. Every minute, a selection of the data pairs to build
the model was substituted with new data from the same phase in the breathing
cycle, and the models were re-trained. For the Cyberknife model, one out of 12
data points were substituted while for the Vero model around 15 data points were
renewed. In a last scenario, a complete rebuild, the update implemented in the
clinical Vero algorithm, was implemented. This rebuild was performed every time
the tracking error acceded the predefined threshold of 3 mm in any direction. For
our population, this was after about 6 min.

Finally, the Cyberknife correlation model was also simulated in two different
ways. Once with the clinical Cyberknife build with 12 data points and once with
a dataset obtained through 20 - 40 s full fluoroscopy (FF), the clinical build of the
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Vero model. As such, it could be evaluated whether or not the difference in build
between the Vero and the Cyberknife model has any significant influence on the
geometrical accuracy of the model. Both Cyberknife models were simulated with
the three update scenarios described above.

Cyberknife FF
Correlation Model
(20 s fluoroscopy)

Clinical Cyberknife
Correlation Model
(12 points)

Vero
Correlation Model

Rebuild Rebuild Rebuild

Update Update Update

Figure 2.11: Three correlation models (CMs) were simulated; the Vero CM, the Cy-
berknife FF CM built from 20 s fluoroscopy and the clinical Cyberknife CM built with 12
data points. All three models were simulated in three different update scenarios; no up-
date throughout the treatment fraction, a gradual update every minute and a complete
rebuild when the tracking error exceeds a threshold of 3 mm in any direction.

In the second stage of the comparison, the data in the log files was used to simu-
late the behaviour of the correlation models during each treatment fraction that
was clinically delivered on the Vero system. This was carried out by retrospec-
tively applying the data that was used to train the correlation model during the
actual treatment, to train the models we had simulated in Matlab. Afterwards,
the surrogate breathing signal, which was also stored in the log files, was applied
to all three models, in the three different update scenarios, to estimate the internal
target positions. This resulted in nine sets of target position estimations.

In the third and final stage, these target position estimations were compared with
the actual target positions obtained from orthogonal X-ray images (every 2 s) and
in-house developed marker detection software. As such, root-mean-square errors
(RMS) and 95th percentiles (E95), meaning the value below which 95% of the
errors are located, could be calculated. This was done for all three models in each
update scenario, per patient and averaged over the whole population. Comparing
the geometrical accuracy of all three models, with respect to the update scenarios,
is now a question of comparing the RMS and E95. T-tests were carried out to see
if the differences in RMS between models were statistically significant.
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Results

3.1 Validation

In the first stage of the comparison both models were simulated offline and vali-
dated. An independent simulation of the Cyberknife model was carried out and
results were compared. The internal target position estimations of the simulated
Vero model were compared with the internal target position predictions of the clini-
cally implemented Vero model which were stored in log files (correlation_model.log).

Vero correlation model

The root-mean-square errors between the target position estimations of the si-
mulated model and the target position predictions of the clinically implemented
model, and the 95th percentile (E95), averaged over all ten patients, can be found
in Table 3.1. The three directions of motion of the target; lateral, longitudinal
and vertical, show an error of 0.38, 0.79 and 0.44 mm, respectively. Paired t-tests
were performed to evaluate possible statistical significances.

For 7 out of 10 patients, there was no statistically significant difference (p>0.1),
in any direction, between the target positions of the simulated Vero model and
those of the clinically implemented model. Patient 2 showed a significant difference
in the lateral direction (p<0.02), patient 3 a significant difference in the vertical
direction (p<0.02) and patient 10 in both the lateral (p<0.02) and longitudinal
direction (p<0.02).
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‘ lateral ‘ longitudinal ‘ vertical

RMS [mm] [ 0.38 | 0.79 | 044
E95 [mm] | 0.70 | 1.50 | 0.79

Table 3.1: Validation of the Vero model; calculating the root-mean-square (RMS) errors
between the outcomes of the simulated model with those of the clinically implemented
model stored in log files before treatment.

Figures 3.1 and 3.2 show the estimated target motion (computed by the simu-
lated Vero model) and the predicted target motion (computed by the clinically
implemented Vero model) in the lateral, longitudinal and vertical direction during
fraction 2 in the treatment of patient 2. A difference between the computed target
positions of both models in the lateral direction can indeed be observed. However,
when comparing the lateral direction to the two other directions of motion, it can
be observed that the lateral direction is not the main component of motion. Al-
though the difference between both motion signals is statistically significant, the
root-mean square error (0.30 mm) remains sub-millimetric. During the two other
fractions, fraction 1 and 3, the correspondence between the two motion signals is
similar to those represented in Figures 3.1 and 3.2, with the largest discrepancy in
the lateral direction observed during fraction 2 and represented in Figure 3.1.

Figure 3.3 shows the target motion computed by the simulated Vero model and
computed by the clinically implemented model in the vertical direction during
fraction 1 in the treatment of patient 3, while Figure 3.4 shows the same but
during fractions 2, 3 and 4. Patient 3 was treated with 4 fractions in total. It
can be observed that a discrepancy between the results is present only during
fraction 1, where the predicted target motion by the clinically implemented Vero
model shows strong random variations and jumps. It can also be observed that
the vertical direction is not the main component of motion. While the difference
between the predictions of both models might be statistically significant, the root-
mean square error (0.32 mm) remains sub-millimetric.

For patient 10, there is a statistically significant difference between the results
from the simulated Vero model and those from the clinically implemented model
in both the lateral and longitudinal direction. These differences however are only
present during the first part of the first of 10 fractions. The first part is defined
as the part before the first complete rebuild of the correlation model. So far it is
unclear why the discrepancy, which is both a mismatch in amplitude and phase,
is present.
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Patient 2 - lateral direction
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Figure 3.1: The estimated target motion (green) and the predicted target motion
(blue) in the lateral direction during fraction 1 in the treatment of patient 2.
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Figure 3.2: The estimated target motion (green) and the predicted target motion
(blue) in the longitudinal (left) and vertical (right) direction during fraction 2 in the
treatment of patient 2
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Patient 3 - vertical direction
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Figure 3.3: The estimated target motion (green) and the predicted target motion
(blue) in the vertical direction during fraction 1 in the treatment of patient 3.
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Figure 3.4: The estimated target motion (green) and the predicted target motion
(blue) in the vertical direction during fraction 2 (top left), 3 (top right) and 4 (bottom)
in the treatment of patient 3.
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Cyberknife correlation model

The validation of the Cyberknife model had to be carried out based on two inde-
pendent simulations of the model by two different people. The main reason why no
validation was carried out based on log files is because there was no available ac-
cess to a Cyberknife system. Secondly, the Cyberknife correlation model that was
compared in this study was based on that implemented in the SRTS Cyberknife
system, but certain parts of the clinical model were deliberately omitted. Meaning
that a difference between target positions estimations of the simulated model and
those from the implemented model are to be expected, making a validation incon-
venient. Therefore, to ensure that the correct Cyberknife model was compared
with the Vero model, the CK model was simulated twice, independently, and the
outcomes were compared. Possible errors in the simulation were not likely to be
simulated twice and would be noticed by a significant difference in outcomes.

| CK FF Model 1 | CK FF Model 2
RMS [mm] | 1.94 \ 1.79

Table 3.2: Validation of the Cyberknife model; root-mean-square (RMS) tracking errors
averaged over the patient population of the simulated FF Cyberknife model 1 and the
simulated FF Cyberknife model 2, both in the rebuild scenario.

The independent simulation and comparison was carried out with the Cyberknife
model built with 20 s full-fluoroscopy in the complete rebuild scenario. The RMS
tracking errors were calculated, averaged over the patient population and com-
pared. Results can be found in Table 3.2. The RMS tracking error of the FF
Cyberknife model 1 averaged over the population equalled 1.94 mm, the error of
FF Cyberknife model 2 equalled 1.79 mm.

The difference of 0.15 mm was considered low enough to assume that the intended
Cyberknife model was simulated and a comparison with the Vero model could be
carried out.
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3.2 Comparison

The tracking errors, defined as the difference between the estimated target posi-
tions and the actual target positions, and 95" percentiles (E95) of the Vero cor-
relation model, the Cyberknife correlation model built with 20 s full fluoroscopy
(CK FF) and the Cyberknife correlation model built with 12 data points (CK
clin) can be found in Table 3.3 for all three update scenarios. The 95 percentiles
per patient can be found in Figures 3.5 to 3.10. Figures 3.5 to 3.7 show the 95th
percentiles per update scenario for all three models per patient, to compare the
geometrical accuracy amongst the 3 models at the same scenario. Figures 3.8 to
3.10 show the 95th percentile per model for all three scenarios per patient, to
compare the influence of the different update scenarios on each model.

In the next two sections, the models will be compared with each other per up-
date scenario and each model will be evaluated taking into account the influence
of each update scenario. More specifically, the Vero model will be compared with
the clinical Cyberknife model to evaluate their difference in response to baseline
drift, and the Cyberknife FF model will be compared with the clinical Cyberknife
model to evaluate the influence of the number of data used to build the model.

Vero | CK FF | CK clin t-test
RMS [mm)]
no update 2.53 2.70 2.86 p>0.1p>0.1
1-min update | 1.95 2.30 2.87 p < 0.02,p < 0.005
rebuild 1.73 1.94 2.21 p < 0.02,p < 0.02
E95 [mm]
no update 4.77 5.04 5.17
1-min update | 3.64 4.32 5.43
rebuild 3.17 3.52 3.79

Table 3.3: Geometrical accuracy of the Vero model, the clinical (clin) 12-point Cy-
berknife (CK) model and the CK model built with full fluoroscopy (FF) data. t-tests
were performed between the Vero model and respectively the FF CK model and the
clinical 12-point CK model.
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3.2.1 Evaluation of the three correlation models

In the no update scenario, see Table 3.3, the tracking error of the Vero model
(2.53 mm) and the Cyberknife FF model (2.70 mm) and the Vero model (2.53
mm) and the clinical Cyberknife model (2.86 mm) show no significant difference
(p>0.1, p>0.1). The geometrical accuracy of the models in this scenario, for our
population, is similar for all three models. Figure 3.5 illustrates the results for all
10 patients individually.

E95 [mm] - No Update

0 1 2 3 4 5 6 7 8 9 10

Figure 3.5: 95th percentiles of the Vero model (black), the Cyberknife FF model
(white) and the clinical Cyberknife model (grey) per patient (1—10) in the no update
scenario. No significant difference is observed between the Vero model and both Cy-
berknife models (p>0.1, p>0.1).

In this scenario all three models are subjected to a significant baseline drift (> 1
mm up to 6 mm). Meaning that after a certain time period the input data to the
correlation model, which is the external marker data, is partially located outside
the range of data that was used to build the model. This should lead to extrap-
olation errors due to the use of higher order polynomial functions. These errors
however should be reduced with the linear fall-back mechanism which is imple-
mented in the Cyberknife model only. Next to extrapolation errors, baseline drift
also leads to a shift in the estimated target positions that is not presented in the
actual positions, which largely contributes to the tracking error. The hypothesis
was that the Vero model would be more sensitive to baseline drifts, due to the lack
of a fall-back mechanism, and would potentially show larger tracking errors due to
extrapolation errors, this however is not the case. A shift between the estimated
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target positions and the actual target positions however was observed for some
patients.

When comparing in this no update scenario the accuracy of the models built with
20s FF data (Vero model and CK FF) with the accuracy of the clinical Cyberknife
model which used only 12 data points to build, no significant difference can be
observed. Building the model with more data for our population did not ensure a
better geometrical accuracy in the presence of substantial baseline drift.

In the gradual 1-min update scenario, the tracking error of the Vero model (1.95
mm) and the Cyberknife FF model (2.30 mm) and the Vero model (1.95 mm) and
the clinical Cyberknife model (2.87 mm) show a significant difference (p<0.02,
p<0.005). The geometrical accuracy of the Vero model in this update scenario is,
for our population, superior compared to both Cyberknife models. These findings
are illustrated per patient in Figure 3.6.

Similar results can be found for the complete rebuild scenario where the tracking
errors equal 1.73 mm (Vero model), 1.94 mm (Cyberknife FF model) and 2.21
mm (clinical Cyberknife model) with a significant difference between the Vero
model and both Cyberknife models (p<0.02, p<0.02). These findings can also
be observed per patient, represented in Figure 3.7. It can be observed that the
difference in accuracy between the Vero model and Cyberknife models is not as
extensive as in the gradual update scenario.

In the latter two scenarios all three models are gradually updated or rebuild and
thus less subjected to baseline drift, making the tracking error more dependent
on how good the correlation models are capable of modelling the breathing cycle
and the possible presence of hysteresis. The characteristics of the Vero model
such as directly using both the external marker positions and velocities seem to
ensure that this model is better at modelling the breathing cycles of our patient
population.

Comparing the models built with data obtained through 20 s FF at 11 Hz (Vero
model and CK FF) with the clinical Cyberknife model which used only 12 data
points, it is seen that the difference in build has a significant influence in both the
gradual update scenario and the rebuild scenario. Building the model with more
data did ensure a better modelling of the breathing cycle of our patients, which
was to be expected.
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E95 [mm] - 1min Update
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Figure 3.6: 95th percentiles of the Vero model (black), the Cyberknife FF model
(white) and the clinical Cyberknife model (grey) per patient (1—10) in the 1-min up-
date scenario. A significant difference is observed between the Vero model and both
Cyberknife models (p<0.02, p<0.005).

E95 [mm] - Rebuild
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Figure 3.7: 95th percentiles of the Vero model (black), the Cyberknife FF model
(white) and the clinical Cyberknife model (grey) per patient (1—10) in the rebuild sce-
nario. A significant difference is observed between the Vero model and both Cyberknife
models (p<0.02, p<0.02).
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3.2.2 Evaluation of the update scenarios

The Vero model root-mean-square errors (RMS) and 95th percentiles (E95) ave-
raged over all patients (Table 3.3) indicate that both a gradual update and a com-
plete rebuild of the model are superior to not updating the model. These results
were expected as both updating and rebuilding compensates for baseline drift and
as such decreases the tracking error. Looking at the patient specific representation
in Figure 3.8, it can be observed that for 9 out of 10 patients a gradual update
is more optimal compared to a complete rebuild, though with minor difference.
This might be an indication that for some patients treated on the Vero system an
automatic gradual update might have been more accurate than the implemented
rebuild methodology.

E95 [mm] - Vero CM

0 1 2 3 4 5 6 7 8 9 10

Figure 3.8: 95th percentiles of the Vero model per patient (1—10) for 3 update scena-
rios: no update (black), 1 min update (white), rebuild (grey).

The Cyberknife FF model RMS errors and E95 averaged over all patients (Table
3.3) indicates that both a gradual update and a complete rebuild of the model is
better than to not update the model, similar as with the Vero model. Both results
were again expected as updating and rebuilding compensates for baseline drift and
as such decreases the tracking error. Looking at the patient specific representation
in Figure 3.9, it can be observed that in the majority of cases (6 out of 10 patients)
a complete rebuild is better in terms of accuracy, compared to a gradual update.
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As the differences are minor, it can not be stated whether one update scenario is
superior over another.

E95 [mm] - CK FF

0o 1 2 3 4 5 6 7 8 9 10

Figure 3.9: 95th percentiles of the Cyberknife FF model per patient (1—10) for 3
update scenarios: no update (black), 1 min update (white), rebuild (grey).

The clinical Cyberknife model RMS errors and E95 averaged over all patients
(Table 3.3) indicate that only a complete rebuild of the model can improve its
performance. For our population, the geometrical accuracy did not improve when
applying a gradual 1-min update compared to a no update scenario. The pa-
tient specific representation (Figure 3.9) illustrates these findings. This is quite
remarkable as the gradual update is the one implemented in the actual Cyberknife
system. Most likely it is due to the fact that only 1 different data point can not
contain enough information to represent the changes in the breathing cycle.

Overall, it can be observed that the models built with 20 s FF data benefit from
both a gradual update and a complete rebuild, while the clinical Cyberknife model
only benefits from a complete rebuild.
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Figure 3.10: 95th percentiles of the clinical Cyberknife model per patient (1—10) for
3 update scenarios: no update (black), 1 min update (white), rebuild (grey).
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Conclusion

The first intention of this study was to simulate and validate the correlation models
implemented in the Vero SBRT system for Dynamic Tracking and the Synchrony
Respiration Tracking Cyberknife system. Simulating the Vero model was shown
feasible. The validation based on log files confirmed the correspondence between
the simulated correlation model and the one implemented in the Vero SBRT sys-
tem. Validation of the Cyberknife model was based on the comparison of an in-
dependent simulation of the FF model in the rebuild scenario. A correspondence
between the tracking errors averaged over the patient population was introduced
to quantify the validation.

After simulating and validating both correlation models, the comparison based on
geometrical accuracy and response to baseline drift and hysteresis of the respiratory
signal could be performed.

In the presence of significant baseline drift, the correlation model of the Vero
system without linear fall-back mechanism responded similar to the more complex
Cyberknife model with a linear fall-back mechanism. In the case of intra-fraction
re-training and updating and thus compensating for baseline drift, the geometrical
accuracy of the Vero model was shown to perform with a higher accuracy compared
to both the Cyberknife model build with 12 data points (clin CK) and that build
with data from 20 s full fluoroscopy (FF). From the complete rebuild scenario, it
could be observed that the models built with a relatively large set of data points
(20s FF - 11 Hz) are capable of modelling the breathing motion with a higher
accuracy than the Cyberknife model which is built with on average 12 data points.
More so, the Vero model which, besides their positions, also directly incorporates
the marker velocities, could estimate the target positions with a higher accuracy
than both Cyberknife models. It was also shown that the gradual update did not
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have any major influence on the clinical Cyberknife model, while an improvement
in geometrical accuracy could be observed for the models built with data from
20s full-fluoroscopy. A complete rebuild positively influenced the accuracy of all
models. However, based on the individual patient results, for the Vero model
there might be an indication that an automatic gradual update is superior over a
complete rebuild methodology, this was confirmed by Poels et al. [71].

Several conclusions can be drawn from these results. In general, it can be con-
cluded that baseline drift and other variations of the breathing motion over time,
such as amplitude and frequency changes, significantly decrease the accuracy of
all correlation models. As a decrease of the accuracy equals larger tracking errors
on the target position, this increase leads to the irradiation of adjacent healthy
tissue and, due to tight geometrical margins, a geographical miss and under-dose
of the target. This both increases the normal tissue complication probability and
decreases the tumor control probability. Compensating for the above mentioned
variations is thus absolutely necessary.

Two ways to do this is by introducing gradual updates or a complete rebuild of
the model once the error exceeds a certain threshold. However, from the results it
can be concluded that the impact of these intra-fraction retraining options strongly
depends on the correlation model itself. While a gradual update can decrease the
tracking error of models built with a relatively large data set, substituting only
one data point in models built with a limited amount of data does not seem
to influence the accuracy. A complete rebuild on the other hand can improve
the accuracy of all models. However, initiating a complete rebuild requires a
temporary interruption of the dose delivery, increasing the over-all treatment time.
During the RTTT treatments, it was seen that increasing the treatment time can
significantly decrease the comfort of patients, this and fatigue induced variations
in their breathing pattern which again decreased the tracking error.

When variations of the breathing signal over time are excluded, the conclusion is
that the models built with more data points are capable of modelling the breathing
motion with a significantly higher accuracy. Moreover, from the rebuild scenario
it could be concluded that for shorter treatment fractions, i.e. high dose rate de-
livery, models built with 20 s full-fluoroscopy are clinically favourable. If real-time
tumor tracking should be introduced in treatments such as VMAT (Volumetric
Modulated Arc Therapy), a correlation model built with a relatively large set of
data would be beneficial over models built with only a limited amount of data.
It should however be remarked that more data directly entails a larger imaging
dose to the skin of the patient, rendering the use of an external surrogate signal
and correlation model to be useless. A balance between this skin dose and the
amount of data to build the correlation model therefore has to be established.
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Also, among the models built with more data points, the model using both the
external marker positions and velocities, instead of just the positions, showed to
be capable of modelling the breathing motion with even yet a higher accuracy.

In general, the conclusion is that polynomial models built with sufficient data
obtained over multiple breathing cycles, and if possible multiple surrogate signal
parameters, are capable of modelling the relation between external marker motion
and the internal target motion with a high accuracy. However, an update and/or
rebuild scenario is still required to overcome variations over time. The imple-
mentation of an automatic gradual update might be more optimal than a rebuild
methodology both in terms of accuracy, patient comfort, and economical factors
as this does not require a temporary interruption of the dose delivery during the
treatment fraction.
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Discussion

5.1 Discussion of the results

Input data to the correlation model

In both the Vero and Cyberknife tracking systems, optical markers positioned
closely to the skin of the patient at a location moving strongly with respiration,
are used to generate a surrogate breathing signal. The input to the correlation
model however is different between the two. While the Vero model uses both
the vertical marker positions and velocities, the Cyberknife model uses only their
vertical positions.

It is believed that this difference can have a large impact on the correlation
model accuracy. Ernst et al. stated that modelling respiratory motion should not
be done by regarding only spatial displacement, but that including additional data
will improve the accuracy [51]. Other options besides marker velocity or vectors
indicating the direction of motion are for example parameters such as airflow and
tidal volume, obtained through spirometry. It has been reported that surrogate
data from spirometry shows a more linear relation with the internal target motion
than optical markers [65][66]. A disadvantage of spirometry is that there can
be considerable drift in the spirometry signals due to instrumentation errors or
escaping air. These could however be corrected with the help of signals obtained
with optical markers, meaning that an interplay of both spirometry and an optical
marker tracking system would be ideal, but also rather cumbersome in clinical
practice.
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Tracking a fiducial marker

While the goal of real-time tumor tracking is to follow and treat a patient-specific
moving volume of cancerous cells, in reality it is the movement of an implanted
fiducial marker with a fixed volume on which the whole treatment is based. The
internal target positions mentioned in this study are those of an implanted marker
that can be automatically detected by the treatment system, not of the target
itself. It was assumed that the relative position of the marker with respect to the
PTYV shape and location remained stable throughout the entire treatment period.
Studies by Imura et al. and Brown et al. reported that this assumption is justified
and that the fiducial position is stable and robust, but only over a limited period
of time [67][68].

Despite the justification of our assumption, relying on a fiducial markers gives you
motion information only at that location and not over the whole PTV, increasing
treatment uncertainties. Also, these justifications only apply to certain markers
and certain ways of implantation. A worst-case scenario would be if the marker
starts to serve as a pivot point around which the tumor would start to rotate. In
that case the tracked marker would be registered as stable while the target that
has to be treated moves around. Also, implanting the fiducial marker is considered
to be an invasive procedure. For those reasons, marker-less tracking is currently a
much studied topic [69][70].

Inter-patient variability

An aspect that was not considered during the research performed in this study
is the inter-patient variability. It was not the intention to evaluate these possible
variations, unless inconsistencies with the results of the comparison were present
among the patient population. The latter was not the case. It can however be
noted, when evaluating the results, that certain inter-patient variations should be
mentioned as they seem to be influenced by the different update scenarios evaluated
in this study.

Going back to Figures 3.5 to 3.7, though not statistically evaluated, it can be ob-
served that the accuracy of all models differs quite significantly among the patient
population. In the no update scenario for example, the difference in accuracy of all
models between patient 6 and patient 10 is a factor 3. This immediately raises the
question of applying patient-specific margins, which are applied to overcome po-
sition uncertainties still present during RTTT. A similar conclusion was made by

54



Chapter 5 Discussion

Pepin et al. when studying the Cyberknife Synchrony respiratory tracking system
[33].

More so, when comparing Figure 3.5 with Figure 3.7, it can be observed that
the inter-patient variability decreases when the rebuild scenario is applied. The
influence of rebuilding on the accuracy of the models is thus different among the
patient population. For patients having an already relatively high accuracy during
the no update scenario, the increase in accuracy due to rebuild is not as significant
as for those patients showing a low accuracy during the no update scenario. Patient
6 for example shows almost no improvement from no update to rebuild, while the
accuracy of patient 10 has doubled.

Overall, the accuracy of the models can vary quite significantly among the pa-
tient population when no updates are applied, while the accuracy of the different
models per patient is consistent. However, the inter-patient variability diminishes
when a complete rebuild is applied to improve the accuracy of the models. This
is due to a smaller improvement of the accuracy of the models for those patient
who already showed a relatively high accuracy when the models were not updated.
Thus, patients showing a low accuracy when the models are not updated bene-
fit significantly more from a rebuild scenario than those already showing a high
accuracy with no update.

5.2 Limitations and future work

Validation of the Cyberknife model

Validating the simulated correlation models was part of the initial research per-
formed in this thesis. While the Vero model could be validated based on log files,
giving a decisive answer whether or not the simulated model corresponded to the
model implemented in the system, the validation of the Cyberknife model was less
conclusive.

Having log files at our disposal which were generated during a real-time tumor
tracking treatment on the SRTS Cyberknife system would have greatly reinforced
the validation process. This in turn would strengthen the conclusions which were
drawn from the comparison of the simulated correlation models. However, it was
never our intention to use the exact same model as the one implemented in the
SRTS Cyberknife system in our comparison, making a validation based on Cy-
berknife log files less critical for this study.
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Difference between the implemented and simulated Cyberknife model

While it was already mentioned a few times, it should be noted again that the
Cyberknife correlation model which was simulated and used in the comparison is
not completely equal to the model implemented in the Cyberknife SRTS system.
Only the bi-quadratic part of the correlation model was simulated, while the linear
model and linear-quadratic model were left out. The reason being that we wanted
to compare only those models that represent a continuous breathing loop, making
the comparison more meaningful. While a linear or linear-quadratic model might
be sufficient for some patients during certain limited periods in the treatment,
the accuracy of a more complex model representing a continuous breathing loop
shows more continuity over a patient population and over the entire duration of
a treatment. It is therefore mostly this component of the model that determines
the overall accuracy. As such, comparing the Vero model with the bi-quadratic
part of the Cyberknife model instead of the complete Cyberknife model makes the
results less ambiguous.

Although this comparison is more straightforward, it is important to note that
as such it is not correct to state that the model implemented in the Vero SBRT
system is superior or inferior compared to the model implemented in the SRTS
Cyberknife system, as the latter was not the model we simulated and used in the
comparison.

Prediction and latency

Both correlation models, that of the Cyberknife and that of the Vero system,
were simulated without their respective prediction algorithm. This prediction is
present in both systems to compensate for system latency. Not including the
prediction algorithms gave the advantage that we were able to conclude which
simulated correlation model is capable of modelling breathing motion with a higher
accuracy, without having to consider the influence of the prediction algorithms
and the difference in latency (50 ms - 200 ms). In general, limiting the amount of
variations between both models made it easier to evaluate which differences among
the two models caused the difference in geometrical accuracy.

However, in a next stage it would be interesting to see the influence on the ge-
ometrical accuracy when the prediction algorithms are added to the correlation
models. Moreover, when the goal is to make a comparison of the clinical perfor-
mance of both systems, the implementation of the prediction algorithms would
be required. The difference in latency can have such an impact on the accuracy
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that the difference in performance of the correlation models might be negligible.
For the Vero system, this could be tested by benchmarking the results of these
simulations against the experimental verifications performed earlier by Depuydt
T. et al [58].

If the prediction algorithm is included in the simulation, it might also be in-
teresting to evaluate the influence of including the prediction in the build of the
model. In the current workflow, the correlation models are built using external
marker data to which no prediction is applied. In contrary, during the treatment,
the external marker data is first forward predicted, which introduces an error,
before it is used as input to the correlation model. Implementing the prediction
to the external marker data that is used to build the model might result in more
accurate target predictions, an approach which is used in correlation models based
on neural networks and single vector regression [50][51].

Sensitivity tests

Using real patient data instead of artificial breathing data gave the opportunity
to evaluate the models in real clinical circumstances. A downside to real patient
data is that the breathing signals contain both hysteresis, baseline drift and other
random variations over time. Making quantitative conclusions about the tracking
error solely in terms of baseline drift or hysteresis is therefore not possible without
excessive data manipulation.

An alternative would be to generate artificial breathing data with the help of a
phantom, and introduce different levels of hysteresis or baseline drift, while keeping
other variations to a minimum or completely exclude them. Using this data on
the simulated models could yield more conclusive results about the response of the
models to the different breathing phenomena. More so, possible differences in the
response of both models could be observed.

Clinical implications

After comparing two types of polynomial correlation models in clinical circum-
stances, it has become clear that certain characteristics of the models, such as
the type of build and the kind of input data or the type of update scenario, have
a significant influence on the geometrical accuracy of the target tracking. This
comparison has given an insight to which characteristics might be beneficial and
which are absolutely required in order to have sufficient spatial accuracy. These
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Chapter 5 Discussion

results are particularly interesting when considering treatment methods such as
hypo-fractionation, where accurate target localization and precise dose delivery
are crucial.

The work performed in this study was only a start to more extensive evaluations
of the framework behind real-time tumor tracking systems and other treatment
modalities that make use of a surrogate signal and correlation model, e.g. gating.
Further evaluation of correlation algorithms together with the prediction algo-
rithms and other input data and target position acquisition options should yield
more information on how to perform more accurate target localization and precise
treatment delivery. This eventually might lead to the possibility to extend real-
time tumor tracking to moving targets located near other critical organs such as
the heart.
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