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METHODS FOR TENSOR NETWORKS AND APPLICATIONS IN

STATISTICAL PHYSICS

Pieter A.W. Bogaert

Supervisors: prof. dr. Frank Verstraete & dr. Jutho Haegeman

Abstract − In this article, a summary is given of the results of the
author’s master’s dissertation. In that dissertation, tensor networks
were used to study the classical Ising model in two and three dimen-
sions.
Keywords − Tensor Networks, Matrix Product States, Projected En-
tangled Pair States, Ising Model, Iterative Methods

I. INTRODUCTION

The tensor network formalism [1] is successfully used to
describe quantum many-body systems with entanglement.
Through quantum-classical mapping, methods for a quan-
tum system in n dimensions can also be applied to clas-
sical systems in n + 1 dimensions. In this article, Matrix
Product States and Projected Entangled Pair States are ap-
plied to the classical Ising model in respectively two and
three dimensions.

II. COMPUTATIONAL METHODS

Given a classical Hamiltonian defined on a lattice, one
can compute the partition function by using transfer matri-
ces. Suppose that the Hamiltonian only contains nearest-
neighbour terms and one-site terms, then such a transfer
matrix should be positioned between every two neigh-
bouring sites. This results in a tensor network, which then
needs to be contracted in order to calculate the partition
function. Once this has been found, other physical quan-
tities, such as the magnetisation or the energy, can be cal-
culated.
Thus, the crucial step is the contraction of a given tensor
network (which is always translationally invariant for our
purposes). Therefore, algorithms were constructed that
accomplish this in two and three dimensions. In order
to circumvent an exponential scaling of the bond dimen-
sions, truncation is an important step in these algorithms
and it is the aspiration of every algorithm to find a physi-
cally justifiable way of truncating the bond dimension.

A. 2D Network Contraction

In 2D, we propose a corner method where the truncation
comes down to calculating the singular value decomposi-
tion (SVD) of a certain matrix and discarding the lowest
singular values. A scheme of the method is drawn in fig-
ure (1), where T is the tensor of the network we wish to
contract.
Starting from two initial guesses for the horizontal fix-
point (L) and the vertical fixpoint (R) and an initial guess

for the matrix S, in each stepL, S,R and T are contracted
to form a tensor with four open indices, as shown in the
right upper corner of figure (1). In order to maximise (up
to normalisation) the overlap with this tensor, M is cho-
sen to be equal to it. An SVD of M is then calculated and
the inner indices are truncated. The fixpoints L and R are
then updated as shown on the left, and S is replaced by
S′. This procedure is repeated until convergence.

Figure 1: Some important steps in the corner method.

B. 3D Network Contraction

In 3D, there is no suitable generalisation of SVD for the
truncation step. Instead, the procedure sketched in fig-
ure (2) is followed. In each iteration step, the ‘vertical’
fixpoint E is updated with a tensor T to form E′. The
double-layer version of E′ is then constructed, and the
‘planar’ fixpoints for the resulting 2D network are calcu-
lated using the 2D corner method.
In order to truncate the bond dimension, a projector (P =
WW †, with W an isometry) is placed on the planar in-
dices of E′, projecting onto a subspace of a certain given
dimension. The isometries W , which may differ in the
two planar directions, are then optimised iteratively. A
truncatedE is finally obtained as shown by the dotted line
in figure (2).
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Figure 2: Schematic overview of the contraction algorithm in
3D. (In the bottom network, not all the tensors are
drawn so as not to overload the picture.)

III. CLASSICAL ISING MODEL

The Ising model [2] studied in this article is given by the
Hamiltonian

H = −J
∑

<i,j>

SiSj − h
∑

i

Si (1)

defined on a lattice of spins Si = ±1. J is the interaction
strength, which is chosen +1 (the plus sign ensures fer-
romagnetic coupling), and h is an external field. The first
sum goes over all lattice sites i and its nearest neighbours
j. The lattice on which the Ising model is defined, is a
cartesian lattice in two and three dimensions. In addition,
we always work in the thermodynamical limit.

IV. THE ISING MODEL IN 2D

Figure (3) shows the average magnetisation per site of the
2D Ising model, together with the analytical result. The
numerical results show an excellent agreement with the
theoretical curve [3]. The estimate for the critical tem-
perature from these numerical data yields Tc = 2.7 for a
temperature step of 0.001, which agrees with the theoret-
ical value Tc ≈ 2.269. Analogous results can be obtained
for the energy and the free energy, and for the h 6= 0 case.

V. THE ISING MODEL IN 3D

An analytical solution for the Ising model is lacking in
3D. However, it is easy to show that the free energy should
obey the following limits: (1) for T → 0, f → −3 − h,
and (2) for T →∞, f → −T ln(2). It can be seen in fig-
ure (4) that the numerical results indeed conform to these
limits.
Because the 3D algorithms become computationally very

Figure 3: Magnetisation of the 2D Ising model. The solid curve
is the theoretical result.

demanding, the bond dimension cannot be increased very
much. For the magnetisation, this is mostly an issue
around the phase transition.

Figure 4: Free energy of the 3D Ising model. The straight line
is the high-temperature limit.

VI. CONCLUSIONS

In this article, tensor networks were successfully applied
to statistical physics. The computational methods gener-
ally give good results. In three dimensions, further re-
search should be able to improve them within the con-
straints of the available computational power.
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Dutch Summary

1 Inleiding

Het tensornetwerkformalisme [1] wordt met succes gebruikt om kwantumveeldeeltjessystemen
met verstrengeling te beschrijven. Door quantum-classical mapping kunnen methodes voor
kwantumsystemen in n dimensies overgezet worden naar klassieke systemen in n + 1 dimen-
sies. Deze noodzakelijke achtergrondkennis wordt beschreven in Hoofdstuk 2.
In deze thesis werden Matrix Product States en Projected Entangled Pair States toegepast op
het klassieke Isingmodel in respectievelijk twee en drie dimensies.

2 Computationele Methodes

Vertrekkend van een klassieke Hamiltoniaan gedefinieerd op een rooster, kan men de parti-
tiefunctie berekenen door gebruik te maken van transfermatrices. Laat ons aannemen dat de
Hamiltoniaan enkel dichtste-nabuur termen bevat, alsook termen werkend op één roosterpositie,
dan kan zo een transfermatrix gepositioneerd worden tussen elke twee aangrenzende roosterpo-
sities. Het resultaat is een tensornetwerk, wat vervolgens gecontraheerd dient te worden om de
partitiefunctie te bekomen. Eens die berekend is, kan men ook andere fysische grootheden, zoals
de magnetisatie of de energie, berekenen.
De cruciale stap is bijgevolg het contraheren van een gegeven tensornetwerk, dat in onze gevallen
steeds translatie-invariant is. Hiervoor werden algoritmes opgesteld, die dit bewerkstelligen in
twee en drie dimensies (zie Hoofdstuk 3). Om exponentiële schaling van de bonddimensie met
het aantal roosterposities te vermijden, is het trunceren van de bonddimensie een belangrijke
stap in deze algoritmes en het is hun doel om het trunceren uit te voeren op fysisch verantwoorde
wijze.

2.1 Contractie van een 2D Netwerk

In 2D stellen we een hoekmethode voor waarin het trunceren neerkomt op het berekenen van
een SVD van een zeker matrix en vervolgens de laagste singuliere waarden te elimineren. Een
schema van de methode is gegeven in figuur (1), waar T de tensor is waaruit het netwerk dat
we willen contraheren, is opgebouwd. Beginnend met een initiële waarde voor de horizontale
en verticale fixpoints L en R, en een initiële matrix S, worden in elke iteratiestep L, S, R en
T gecontraheerd tot een tensor met vier open indices, zoals in de rechterbovenhoek van figuur
(1). Om de overlap met deze tensor te maximaliseren, op normalisatie na, wordt M eraan
gelijkgesteld. Na het berekenen van de SVD van M worden de binnenindices getrunceerd. The
fixpoints L en R worden dan geüpdatet zoals links getoond, en S wordt vervangen door S′. Dit
wordt herhaald tot convergentie.
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Figuur 1: Enkele belangrijke stappen in de hoekmethode.

2.2 Contractie van een 3D Netwerk

In 3D is er geen geschikte veralgemening van SVD voor het trunceren. In de plaats daarvan wordt
de procedure gevolgd die geschetst wordt in figuur (2). In elke iteratiestap, wordt de ‘verticale’
fixpoint E geüpdatet met een tensor T tot E′. Van E′ wordt de double layer geconstrueerd, en de
‘planaire’ fixpoints voor het resulterende 2D netwerk worden berekend met de hoekmethode. Om
de bonddimensie te trunceren, worden projectoren (P = WW †, met W een isometrie) geplaatst
op de bondindices van E′, die projecteren op een deelruimte van een zekere dimensie. De
isometrieën W , die kunnen verschillen in de twee planaire richtingen, worden vervolgens iteratief
geoptimaliseerd. De getrunceerde E wordt dan bekomen zoals aangeduid door de stippellijn in
figuur (2).

Figuur 2: Schematisch overzicht van het contractie-algoritme in3D. (In het onderste netwerk worden
niet alle tensoren weergegeven om de figuur niet te overladen.)
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3 Klassiek Isingmodel

Het Isingmodel [2] wordt in deze thesis bestudeerd onder de vorm van volgende Hamiltoniaan,
zie Hoofdstuk 4:

H = −J
∑

<i,j>

SiSj − h
∑

i

Si (1)

gedefinieerd op een rooster van spins Si = ±1. J is de interactiesterkte, die +1 gekozen wordt
(het plusteken zorgt voor ferromagnetische koppeling), en h is een extern veld. De eerste som-
matie gaat over alle roosterposities i en hun dichtste naburen j. Het anisotrope Isingmodel,
waar J varieert met de richting, werd ook in beperkte mate bestudeerd.
Het rooster waarop het Isingmodel was gedefinieerd, was een cartesiaans rooster in één, twee
en drie dimensies. De oplossing van het 1D geval is eenvoudig en wordt niet besproken in deze
samenvatting. In 2D is een analytische oplossing enkel gekend voor h = 0 [3], en in 3D ontbreekt
elke analytische oplossing.

4 Het Isingmodel in 2D

In Hoofdstuk 5 worden numerieke resultaten voor het 2D Ising model besproken. Figuur (3)
toont de gemiddelde magnetisatie per roosterpositie voor het 2D Isingmodel, samen met de
analytische oplossing. De numerieke resultaten vertonen een goede overeenkomst met de theore-
tische curve. Uit deze numerieke simulatie werd een waarde Tc = 2.7 bekomen voor de kritische
temperatuur, met een temperatuurdiscretisatie van 0.001. Dit komt goed overeen met de the-
oretische waarde Tc ≈ 2.269. Analoge resultaten worden bekomen voor de energie en de vrije
energie, en voor het geval waar h 6= 0.

Figuur 3: Magnetisatie van het 2D Isingmodel. De doorlopende curve is het theoretische resultaat.

5 Het Isingmodel in 3D

In analogie met Hoofdstuk 5, wordt in Hoofdstuk 6 het 3D Ising model behandeld. Zoals eerder
al gezegd is er geen analytische oplossing gekend in 3D. Men kan echter gemakkelijk aantonen
dat de vrije energie moet voldoen aan de volgende limieten: (1) voor T → 0, f → −3 − h, en
(2) voor T → ∞, f → −T ln(2). Het volgt duidelijk uit figuur (4) dat de numerieke resultaten
inderdaad aan deze limieten gehoorzamen.
Omdat de 3D algoritmes computationeel veeleisend zijn, kan de bonddimensie maar beperkt
verhoogd worden. Voor de magnetisatie heeft dit vooral gevolgen rond de fasetransitie.
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Figuur 4: Vrije energie van het 3D Isingmodel. De rechte lijn is de hogetemperatuurslimiet.

6 Conclusies

In deze thesis werden tensornetwerken met succes toegepast op statistische fysica. De com-
putationele methodes leveren over het algemeen goede resultaten op. In drie dimensies moet
het mogelijk zijn ze na verder onderzoek te verbeteren, binnen de grenzen van de beschikbare
rekencapaciteit.
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Chapter 1

Introduction

1.1 Situation of the Topic

Quello che a noi è difficilissimo a intendersi, alla Natura è agevolissimo a farsi.1 [14] Galileo

Galilei (1564-1642) writes this on the fourth day of his Dialogue, when he discusses the tides.

However, this quote is also well-suited to describe many-body physics. Even when the underlying

Hamiltonian only contains ‘simple’ terms, the large number of constituents in a many-body

system can cause it to become exceedingly intricate and hence computationally difficult to

solve. Therefore, approximations need to be made, while still retaining the relevant physical

behaviour.

It is the goal of this dissertation to analyse how tensor networks, a formalism which originated

in quantum many-body physics, can be applied to study classical models in statistical physics.

In particular, the two- and three-dimensional Ising model will be studied.

This will provide us with insight on two levels. First, by comparing the numerical results to

the analytical solution where it exists, i.e. for the most simple case of the 2D Ising model,

information is acquired on the applicability and accuracy of tensor network simulations. In the

second place, where analytical solutions are unknown, the numerical results are able to provide

us with a more detailed insight into the physics of the Ising model.

1.2 Origin and Use of Tensor Networks

The next chapter deals with the background on many-body physics and tensor networks that

is needed for this dissertation. In this section, some non-technical remarks are made on the

physical origin of tensor networks and why they are useful.

The force of tensor networks lies in the description of systems with entanglement. If there is

not much entanglement in a system, it can be described using a mean field ansatz [42]. Because

physically relevant Hamiltonians are composed of local terms, the ground states of those Hamil-

tonians occupy only a small part of the Hilbert space on which they are defined. In relation to

this, bounds on the entanglement can be derived, such as in [20] for gapped Hamiltonians2 in

1What is very difficult to understand for us, is very easy for Nature to make.
2‘Gapped’ means that there is a finite separation between the lowest eigenvalue of the Hamiltonian, which may

be degenerate, and its second lowest eigenvalue.

1



2 CHAPTER 1. INTRODUCTION

one dimension. In many cases, these bounds are so-called area laws: the entanglement entropy

between two regions scales like the size of the boundary between them [9].

When constructing an ansatz, it therefore makes sense to concentrate all the entanglement at

the boundary. For example, for a one-dimensional system, a linear chain of N sites, this can

be achieved by maximally entangling the two sites on either side of the boundary. Since, of

course, the boundary could lie between any two sites, every two neighbouring sites need to be

maximally entangled. As such, each site has been split into two virtual subsystems, one of which

is maximally entangled with a virtual subsystem in the site on its left and one with a virtual

subsystem in the site on its right. These maximally entangled pairs are called bonds and their

dimension is quite naturally called the bond dimension.

If the original sites are d-level spins, the last step is to map (project) the virtual subsystems

from CD×CD back to Cd. This mapping can be written using a D×D×d-tensor on every site.

Hence, when writing a state as a linear combination of basis states, the coefficients are given by

a product of D ×D matrices. Therefore, these states are called Matrix Product States [41] [6].

It is easy to see that, indeed, this ansatz automatically complies with the area law: when cut-

ting a Matrix Product State in two, the only entanglement between the two parts is due to the

maximally entangled pair at the boundary. Hence, the entanglement is bounded by the bond

dimension, but is independent of the number of sites in either region.

This procedure can be repeated in two dimensions [45]. In the case of a square lattice, every

lattice site needs to be replaced by four virtual subsystems, each of them maximally entangled to

a virtual subsystem in one of the four neighbouring sites. Nomenclature-wise, in two dimensions

emphasis is laid on the projection aspect and the entangled pairs, as the states are there called

Projected Entangled Pair States3.

A priori, one could try to describe a two-dimensional system as a Matrix Product State by

enumerating the lattice sites4 [45]. However, as nearest-neighbour interactions become long-

range then, and because the entropy does not present the right scaling for the area law, this

description is inherently less suitable. Indeed, it seems more logical and natural to describe a two-

dimensional state with Projected Entangled Pair States rather than forcing a one-dimensional

structure upon it. That is an important point concerning the tensor network formalism: given a

certain behaviour of the entanglement, they offer a very natural way to describe natural states

that often emerge in many-body systems.

1.3 Overview of the Next Chapters

In Chapter 2, tensor networks are introduced in a more formal way. As they originally arose

in the study of quantum many-body physics, the chapter includes the elements from quantum

many-body physics needed to understand how this works. Two basic classes of tensor networks

3Technically, one could call Matrix Product States a particular instance of Projected Entangled Pair States,
e.g. [6]. Yet in the literature, the term Projected Entangled Pair States is usually reserved for the two-dimensional
case.

4E.g., row per row, alternatingly from left to right and from right to left (not unlike the ancient Greek bi-
directional writing style βoυςτρoϕηδóν, meaning like an ox turning when ploughing).
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are studied in some more detail, namely Matrix Product States and Projected Entangled Pair

States, as those two kinds are needed in the subsequent chapters. The chapter concludes with

an explanation of how these results from quantum physics can be applied to classical statistical

physics.

Chapter 3 is computationally oriented and includes various algorithms to contract tensor net-

works in 1D, 2D and 3D. The algorithms are described, but apart from some convergence prop-

erties, the results of their application to physical systems (the classical Ising model in various

dimensions) are postponed until later chapters.

The classical Ising model is introduced in Chapter 4. As an analytical solution is only known

in a limited number of cases, particular attention is given to theoretical constraints, e.g. low-

and high-temperature limits, which the results from the simulations should obey. As a first

numerical example, results for the 1D Ising model are given at the end of the chapter.

In Chapter 5, the numerical results for the 2D Ising model are discussed. The first few sections

discuss how the Ising model fits into a tensor network description. Afterwards, the numerical

results are presented and analysed, both without an external field - which allows for a compari-

son with the analytical solution - and with an external field - for which no analytical solution is

known. At the end of the chapter, a short comparison of the tensor network method to Monte

Carlo methods is given.

Monte Carlo methods are further used in Chapter 6, as analytical solutions are totally lacking

in 3D. Similarly to Chapter 5, the numerical results for the 3D Ising model are presented in that

chapter.

Finally, an overview of this dissertation and some concluding remarks are given in the conclusion,

Chapter 7.
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Chapter 2

Tensor Networks

This chapter discusses the relevant theoretical background to the methods used afterwards. In

the first section, tensor networks are introduced and some remarks are made on index contrac-

tion. The justification for the use of tensor networks in many-body physics is given in the next

section, followed by the introduction of two important classes of tensor networks, namely Ma-

trix Product States and Projected Entangled States. Afterwards, some mathematical results on

power methods are reviewed. In the last section, the link between quantum many-body physics

and classical statistical physics is elucidated. Reference is made to [9], [18], [33], [34], [35], [39],

[41], [47] throughout this chapter.

2.1 Introducing Tensor Networks

2.1.1 Diagrammatic Notation for Tensors

At the risk of irritating many a mathematician, a tensor can for the purposes of this work be

considered as a multidimensional array of complex or real numbers. The number of indices is

called the rank of the tensor, such that a rank-0 tensor is a scalar, a rank-1 tensor a vector,

and a rank-2 tensor a matrix. Since writing out tensor equations can become quite lengthy, we

shall use a diagrammatic notation reminiscent of Penrose’s more elaborate diagrams applicable

to general relativity. Because we don’t need a metric tensor et cetera, a very limited drawing

scheme suffices.

Figure (2.1) shows tensors of rank zero to three. Dependent on whether the vertical index points

‘up’ or ‘down’, we can make a distinction between a bra and a ket vector (when using such a

drawing convention, it should not be forgot to take the complex conjugate of the bra side). The

same goes for higher-rank tensors, e.g. the rank-3 tensors drawn in figure (2.1).

In general, the dimensions of the different indices are not equal. There is, however, not always

a need to make this explicit in the diagram. Nevertheless, figure (2.2) shows different options

to do that, should the need arise.

5



6 CHAPTER 2. TENSOR NETWORKS

Figure 2.1: Tensors of rank 0 (scalar), 1 (vector), 2 (matrix) and 3. For rank 1 and 3, a possible
convention for the distinction of kets and bras is shown.

Figure 2.2: Possible ways to depict differences in the bond dimension. The bond dimension is higher
on the left side than on the right side.

2.1.2 Index Contraction

The most important operation on tensors needed here, is index contraction. This is a straight-

forward generalisation of the matrix product

(AB)ij =
∑

k

AikBkj (2.1)

which is depicted in diagrammatic form in figure (2.3). By assembling various tensors through

Figure 2.3: Diagrammatic notation for the matrix product.

index contraction, a tensor network - from now on called TN - can be built up. An example is

shown in figure (2.4). It should be clear that such a representation often provides more insight

than an expansive non-graphical notation.

Figure 2.4: A simple two-dimensional TN.

2.1.3 Computational Cost of Index Contraction

It is important to note that even though the order of the internal contractions is not fixed

theoretically, it does have an influence on the computational cost of the contraction. An example

of a simple contraction is shown in figure (2.5). Let us suppose that all the index dimensions d

are equal.
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The first way to contract the network is to contract all vertical indices first, followed by a

contraction over the horizontal indices from left to right, hence incurring a computational cost

of O(d5) for the vertical contractions and O(d4) for the horizontal contractions.

A more efficient method, on the other hand, is to start from the left and to add one tensor at a

time, alternating between the top and the bottom layer, which scales only as O(d4). Since many

contractions need to be calculated, it is important to contract in the right order1.

Figure 2.5: The contraction order has an influence on the number of operations required for the con-
traction.

2.2 Elements from Many-Body Physics

2.2.1 Hilbert Space of a Many-Body System

Let us look at a quantum many-body system consisting of N subsystems or sites. The thermo-

dynamical limit, i.e. N → ∞, will also be discussed as the methods and applications treated

in the following chapters are precisely concerned with the thermodynamical limit. The term

‘site’ is especially natural for many-body systems defined on a lattice L , i.e. a discrete subset

of Rn with n the dimension of L . In this work, we shall look only at integer lattices Zn for

n = {1, 2, 3}. In these dimensions, we call those lattices a linear chain, a square lattice and a

cubic lattice respectively.

Each lattice site k, where in lattices of more than one dimension k is a multi-index, is occupied

by a subsystem, namely a dk-dimensional ‘spin’ variable, the state of which belongs to a Hilbert

space Hk. The Hilbert space H of the whole system can then be written as H =
⊗N

i=1Hk.
In practice, often the same d-dimensional subsystem occupies every site. In the classical Ising

model, for example, each site is occupied by a scalar two-valued spin.

If {|ik〉 , ik = 1, . . . , d} is a basis for Hk, then the product basis for H is

{|i1i2 . . . iN 〉} = {|i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iN 〉 |ik = 1, . . . , d, ∀k = 1, . . . , N} (2.2)

and consequently a general pure state |ψ〉 ∈ H can be written as

|ψ〉 =

d∑

i1,i2,...,iN=1

ci1,i2,...,iN |i1i2 . . . iN 〉 (2.3)

with the coefficients ci1,i2,...,iN ∈ C. From this formula, it is immediately clear what causes

the difficulty for numerical simulations of (quantum) many-body systems. In order to fully

1I did not write my own algorithm for tensor contraction; this was kindly provided by my supervisor.
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characterise a general state |ψ〉 ∈ H, dN numbers ci1,i2,...,iN are needed, i.e. scaling exponentially

with the lattice size. A straightforward numerical method would have an exponentially increasing

memory and computational cost. Therefore, methods to circumvent this exponential scaling are

a key component of simulations in many-body physics. The methods used in this work are

discussed in Chapter 3.

Approximative methods (can) work because not the whole Hilbert spaceH is relevant, as already

discussed in Chapter 1. The essential reason for this is that states that actually occur in Nature

are not random. Because physically ‘relevant’ Hamiltonians consist of local few-body terms,

relevant states occupy only a ‘corner’ of the whole Hilbert space H.

2.2.2 Schmidt Decomposition

The general expansion of a pure state |ψ〉 was given in equation (2.3). A pure state is called a

product state if it can be expanded as

|ψ〉 = |φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φN 〉 (2.4)

with |φk〉 states ∈ Hk. Otherwise, it is called entangled.

Suppose that H = HA⊗HB, then a pure state |ψ〉 ∈ H can be written using only one summation

instead of two, by performing a Schmidt decomposition:

|ψ〉 =

l∑

i=1

λi |φiA〉 |φiB〉 (2.5)

In this decomposition, |φiA〉 and |φiB〉 are orthonormal states for subsystems A and B respectively.

The coefficients λi ∈ R+ ∪ {0} are called the Schmidt coefficients, for which
∑l

i λ
2
i = 1.

Proof. As |ψ〉 is by definition a pure state, it can be expanded as

|ψ〉 =
∑

iA,iB

ciA,iB |iA〉 |iB〉 (2.6)

If dA = dim(HA) and dB = dim(HB) then c is a dA × dB-matrix. Performing a Singular Value

Decomposition (henceforth SVD), c = uσv†, the expansion becomes

|ψ〉 =
∑

iA,i,iB

uiA,iσi,iv
∗
iB ,i
|iA〉 |iB〉 =

l∑

i=1

σi,i |φiA〉 |φiB〉 (2.7)

with l=min(dA, dB) and

|φiA〉 =

dA∑

iA

uiA,i |iA〉 (2.8)

|φiB〉 =

dB∑

iB

v∗iB ,i |iB〉 (2.9)

By setting λi = σi,i, we retrieve the form of equation (2.5).

Since u (respectively v) us unitary and the |iA〉 (|iB〉) form an orthonormal basis for the sub-
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system A (B), the states |φiA〉 (|φiB〉) are still orthonormal. Lastly, because of normalisation,∑l
i λ

2
i = 1.

By successive application of this Schmidt decomposition, this can be extended to larger systems

consisting of more subsystems. This is explained in more detail in section 2.3.5 when discussing

the canonical form of an MPS.

2.2.3 Tensor Networks in Many-Body Physics

The coefficients ci1,i2,...,iN in equation (2.3) form a tensor of rank N . Let us call its N indices the

physical indices. In order to be able to compute the coefficients more efficiently, the tensor c can

be replaced by a tensor network with internal bond (or ancillary) indices2, as shown in figure

(2.6). The dimensions of the bond indices are called their bond dimensions, and the maximal

bond dimension occurring in a TN is called the bond dimension of the TN. A handy convention

is to write physical dimensions in small letters (usually d) and bond dimensions in capital letters

(usually D).

For systems on a lattice, it is natural to assign one building block-tensor to each lattice site,

Figure 2.6: Possible TNs that can replace the original coefficient tensor c. The bond dimension is D,
the physical index dimension is d.

thus scaling as O(N). Each tensor then has one physical index and k bond indices (k is the

coordination number), so that each tensor has at most O(dDk) coefficients, if D is the bond

dimension of the TN. The overall scaling in system size N has now been reduced from the

exponential scaling O(dN ) to a polynomial scaling O(NdDk).

After contraction of the TN, the same number of coefficients is retrieved. However, they are not

independent anymore as there has been added some structure through the TN. Even though

they have no physical meaning, the bond indices are important in the way that through them,

many-body entanglement is expressed (this was explained a little more in the introductory

Chapter 1). There are two types of freedom in this description. Firstly, the topology of the

TN influences the entanglement properties. As mentioned before, it is often logical for lattice

systems to take the same topology for the TN. Secondly, the bond dimension has an impact on

the entanglement properties as well. In the trivial case of a TN with bond dimension D = 1,

no entanglement can be described. Therefore, the states are product states and we retrieve

2See also section 1.2 for an explanation of the bond indices in terms of maximally entangled pairs.
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mean field theory. On the other hand, one could also increase the bond dimension so much

(exponentially) that O(NdDk)≥O(dN ). In this way, the TN representation is exact, but the

advance in computational efficiency is then lost, of course. Understandably, the goal is to find,

within the desired accuracy constraints, the description with the lowest possible bond dimension.

2.3 Matrix Product States

2.3.1 Definition

Given a one-dimensional system of N equivalent sites, a Matrix Product State or MPS |ψ〉 ∈
H =

⊗N
i=1Hk is defined as

|ψ〉 ,
d∑

i1,i2,...,iN=1

tr
(
A

(1)
i1
A

(2)
i2
. . . A

(N)
iN

)
|i1i2 . . . iN 〉 (2.10)

so that the coefficients ci1,i2,...,iN are given by

ci1,i2,...,iN = tr
(
A

(1)
i1
A

(2)
i2
. . . A

(N)
iN

)
=

∑

α,β,...,ω

A
(1)
i1;αβA

(2)
i2;βγ . . . A

(N)
iN ;ωα (2.11)

where the summation goes over the appropriate bond dimensions to be discussed shortly. The

physical indices are denoted by a subscript ik, while the tensors are labelled according to their

position via the superscript. The tensors A can then be interpreted as an array of d matrices

with bond indices as their rows and columns; it is in this respect that the matrix product and

trace are used in equations (2.10) and (2.11).

When dealing with MPS, sometimes the terminology single layer and double layer is used. By

single layer, the MPS as defined in equation (2.10) is meant. The double layer of an MPS

designates the bra-ket structure 〈ψ|ψ〉, used for example in the calculation of expectation values

〈ψ|Ô|ψ〉, where the operator is inserted between the bra and the ket.

2.3.2 Boundary Conditions

In the general case, the bond dimensions of the different A’s are not equal. A
(k)
ik

is then a

Dk−1×Dk-matrix. For the first and the last site, two types of boundary conditions are possible,

as drawn in figure (2.7).

• Periodic Boundary Conditions (PBC): The first tensor/matrix A
(1)
i1

is connected to the

last one A
(N)
iN

by a summation over α. Therefore D0 = DN . The linear chain is in this

case actually a ring.

• Open Boundary Conditions (OBC): If the index α is trivial, i.e. D0 = DN = 1, then the

end matrices are vectors and therefore not connected to each other3. For finite systems,

the question arises what determines the tensors at the boundary. In the thermodynamical

limit, by contrast, we shall see in section 2.5 that (almost) all the effects of the boundary

tensors are lost.

3Although the index α is superfluous for OBC, equations (2.10) and (2.11) are still correct.
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Figure 2.7: Above: MPS with periodic boundary conditions. Below: MPS with open boundary condi-
tions.

2.3.3 Translational Invariance and Symmetry Breaking

Many interesting hamiltonians are translationally invariant (TI). We shall now analyse what

the consequences are for MPS. A TI Hamiltonian with only nearest-neighbour interactions on a

linear chain of N sites can be written as

Ĥ =

N∑

i=1

ĥi (2.12)

where supp(ĥi)={i, i+ 1} (N + 1 ≡ 1 in the finite case with PBC4):

ĥi = 11 ⊗ 12 ⊗ · · · ⊗ 1i−1 ⊗ ĥ⊗ 1i+2 ⊗ · · · ⊗ 1N (2.13)

Defining the translation operator T̂ such that it acts on a basis state as

T̂ |i1i2· · ·N 〉 = |iN i1· · ·N−1〉 (2.14)

then

ĥi = T̂ ĥi−1T̂ † (2.15)

such that indeed the Hamiltonian is TI:

Ĥ = T̂ ĤT̂ † (2.16)

[Ĥ, T̂ ] = 0 (2.17)

The normalised ground state |ψ0〉 defined as

|ψ0〉 ∈ H, ‖ |ψ0〉 ‖ = 1 : 〈ψ0| Ĥ |ψ0〉 = min
|ψ〉∈H

〈ψ| Ĥ |ψ〉
〈ψ|ψ〉 (2.18)

is TI as well, i.e. T̂ |ψ0〉 = |ψ0〉. However, it may be a superposition of terms that lack

translational invariance, or are only translationally invariant over multiple-site translations.

This is just one example of the more general concept of symmetry breaking. Another instance

of this universal concept is the ±1 magnetisation in the ferromagnetic phase of the Ising model,

discussed in section 4.2.6.

Without going into the group theoretical aspects of symmetry breaking, figure (2.8) shows a

very simple case of symmetry breaking. Suppose that we have a TI Hamiltonian defined on a

system of two-valued ‘spins’ (red/green), and that the first two states in the figure correspond to

the lowest energy. Both states are only translationally invariant over even-site translations, but

4Note that in the finite case PBC are needed for TI.
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by taking the symmetrical combination, a fully translationally invariant state is easily obtained.

Returning to MPS, it is clear that an MPS constructed of site-independent tensors A is TI. The

Figure 2.8: A simple instance of symmetry breaking states and the formation of a symmetric state as
a combination of them.

question then remains whether a TI state can always be written with site-independent tensors.

A proof that this is indeed possible, is given in [39].

2.3.4 Gauge Freedom

Finding a site-independent description is very much related to the concept of gauge freedom:

an MPS is fixed when its constituent tensors are known, but the converse is not true. Because

the bond dimensions are not physically relevant, gauge transformations that leave the physical

indices undisturbed, don’t alter the state. In practical calculations, the translation symmetry

may be thus be impaired by site-dependent gauge transformations X(k):

∀ik : A
(1)
i1
A

(2)
i2
. . . A

(N)
iN

= Ã
(1)
i1
X(1)X

−1
(1) Ã

(2)
i2
X(2)X

−1
(2) . . . X(N−1)X

−1
(N−1)Ã

(N)
iN

(2.19)

In this equation, there is no gauge transformation between the first and the last sites because

(i) in PBC there is still the freedom of a global gauge transformation, (ii) in OBC these are

vectors.

2.3.5 Canonical Form

The gauge freedom can be employed to bring an MPS into a canonical form. The canonical

form discussed in this section is applicable to infinite TI MPS. In section 2.2.2, the Schmidt

decomposition was defined for H = HA⊗HB. The canonical form MPS corresponds to labelling

each bond index according to the Schmidt basis. On each bond index, a matrix containing the

Schmidt coefficients λ is placed, and as such the TN of tensors A is replaced by the canonical

form {Γ, λ} as shown in figure (2.9). Defining the right and left transfer matrices

(TR)(αα′)(ββ′) ,
d∑

i=1

(Γi;αβλβ)(Γi;α′β′λβ′)
∗ (2.20)

(TL)(αα′)(ββ′) ,
d∑

i=1

(λαΓi;αβ)(λα′Γi;α′β′)
∗ (2.21)
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then the canonical form has to obey the following conditions

∑

β,β′

(TR)(αα′)(ββ′)δββ′ = cδαα′ (2.22)

∑

α,α′

δαα′(TL)(αα′)(ββ′) = cδββ′ (2.23)

This means that the identity operator δαα′ is a right eigenvector of TR and a left eigenvector of

TL, with c the dominant eigenvalue, equal to unity to normalise the MPS. An algorithm that

determines the canonical form starting from a given TI MPS, is given in section 3.1.3.

There are two advantages for using the canonical form. First, it makes calculating expectation

Figure 2.9: Top to bottom: (i) form of the canonical form, (ii) conditions on the canonical form, (iii)
expectation value of a two-site operator using the canonical form.

values for local operators computationally easier. As an example, on the bottom of figure (2.9)

the expectation value of a two-site operator is shown. Secondly, it offers a natural and physically

justified way to truncate the bond dimension (see section 3.1.4).

Although in the applications of Chapters 4 through 6 the canonical form is not explicitly used,

these two elements are incorporated in the algorithms. The former advantage is used in the one-

dimensional single layer contraction algorithm of section 3.1.2, while the latter is used extensively

in the two-dimensional corner method of section 3.2.

2.3.6 Matrix Product Operators

One can circumvent the restriction of dealing only with pure states by generalising the concept

of MPS to an Matrix Product Operator or MPO Ô:

Ô ,
d̃∑

i1,i2,...,iN=1

tr
(
A

(1)
i1
A

(2)
i2
. . . A

(N)
iN

)
ôi1 ⊗ ôi2 ⊗ · · · ⊗ ôiN (2.24)

where the operators {ôi, i = 1, . . . , d̃} form a single particle basis (such as the Pauli matrices for

spin-1/2 particles5). Graphically, an MPO is depicted in the same way as an MPS, but with an

extra set of physical indices. Rather than using MPOs to describe mixed states, we shall need

5Note that for a given MPS with physical dimension d, the MPO typically has d̃ = d2. Indeed, for a spin-1/2
particle, there are three Pauli matrices and the identity matrix.



14 CHAPTER 2. TENSOR NETWORKS

them as transfer matrices (of infinite dimensions) working on an MPS as displayed in figure

(2.10)6. This is instrumental in the quantum-classical mapping described in section 2.6.

Figure 2.10: MPOs working on an MPS.

2.4 Projected Entangled Pair States

The natural generalisation of MPS to two dimensions, are Projected Entangled Pair States or

PEPS. One can write down a definition analogous to the definition of MPS in equation (2.10),

but it should be clear that certainly in the case of TN, a picture is often worth a thousand

words.

Therefore, a PEPS is shown on the left side of figure (2.11). In general, the tensors at different

lattices may be different, but as in the one-dimensional case, we will only work with TI descrip-

tions. On the right side of figure (2.11), the generalisation of MPOs is shown.

As for MPS, OBC and PBC can be defined for PEPS (the boundary conditions are left unde-

termined in the figure). Just as a linear MPS in OBC becomes a ring in PBC, a PEPS in PBC

has the shape of a torus.

Figure 2.11: Left: PEPS. Right: PEPS operator

6So that the ‘row’ index d̃ is now equal to d, like in the figure.



2.5. TRANSFER MATRIX AND POWER METHODS 15

2.5 Transfer Matrix and Power Methods

2.5.1 Thermodynamical Limit and Transfer Matrix

In the applications taking up Chapters 4 through 6, we shall always work in the thermodynam-

ical limit, namely a number of lattice sites N →∞. Given a TI TN, be it in one, two or three

dimensions, the first goal will be to contract it. Let us take the example of a two-dimensional

TN without open indices, i.e. a PEPS without physical indices. Let us say that we want to

contract in the vertical dimension first. The TN can then be thought of as consisting of an

infinite number of copies of the same MPO and this contraction then amounts to finding the

fixpoint of that MPO. This fixpoint is the dominant eigenvector of the MPO. The dominant

eigenvector denotes the eigenvector corresponding to the dominant eigenvalue (supposing it is

non-degenerate), which is the eigenvalue largest in absolute value. In the language of TN, this

fixpoint takes the form of an MPS.

The same basic concept of fixpoint applies to the one- and three-dimensional case as well. Also,

in section 3.2, a corner method is described that contracts a two-dimensional TN in a diagonal

way. Even though the TN can then not be thought of as the repeated application of an MPO,

the same basic concept of finding fixpoints still applies.

In order to determine the relevant fixpoints, we turn to power methods. The basic form of

a power method, power iteration, allows to find the dominant eigenvector of a matrix A. To

accomplish this, one should start with an initial guess x0. Through repeated application of A,

xi = Aix0 will converge to the dominant eigenvector, as long as it was not perpendicular to the

dominant eigenvector7. The mathematical theorem that proves the efficacy of the power method

is given in the next section. In higher dimensions, additional steps such as bond truncation need

to be added, but are in essence very similar to power iteration. The precise details are explained

in Chapter 3.

2.5.2 Subspace Iteration

The mathematical result supporting power iteration is commonly referred to as subspace itera-

tion. The theorem and proof [7] are given here in full, for two reasons. Firstly because of the

importance of this theorem, underlying most of the methods of Chapter 3, and secondly because

the proof gives information on the convergence error.

Theorem. Given A ∈ Kn×n with spectrum {λi, i = 1, . . . , n} such that

|λ1| ≥ · · · ≥ |λm| > |λm+1| ≥ · · · ≥ |λn| (2.25)

and {xi ∈ Kn×1, i = 1, . . . ,m} a set of linearly independent vectors (with an extra condition

arising in the course of the proof). If X0 = [x1, . . . , xm], then under the iteration Xk = AXk−1,

KXk will converge to sum of the generalised eigenspaces
⊕
|λj |≥|λm|M

λj .

Proof. Defining the invariant subspaces M1 =
⊕
|λj |≥|λm|M

λj and M2 =
⊕
|λj |<|λm|M

λj , we

choose a Jordan basis in each of them. With these vectors, we construct the matrices V1 ∈ Kn×m

7As a result of numerical inaccuracies, this condition is relaxed in numerical simulations.
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and V2 ∈ Kn×(n−m). A can then be brought into the Jordan canonical form by [V1, V2]−1A[V1, V2] =

J . As J =

[
J1 0

0 J2

]
, AVi = ViJi.

The vectors xi can be uniquely decomposed as a linear combination of the Jordan basis vectors

of V1 and V2: X0 = V1C1 + V2C2, with C1 ∈ Km×m and C2 ∈ K(n−m)×m. As the rank of X0

is m, C1 is generally non-singular, but in the case it is singular, we can change X0 (this is the

condition on X0 hinted at in the theorem). It follows that

Xk = AkX0 = AkV1C1 +AkV2C2 = V1J
k
1C1 + V2J

k
2C2 = (V1 + Ek)J

k
1C1

with Ek = V2J
k
2C2C

−1
1 J−k1 . Given that the spectral radii are ρ(J−1

1 ) = |λm|−1 and ρ(J2) =

|λm+1|, we get that ‖J−k1 ‖ ≤ ε1|λm|−k and ‖Jk2 ‖ ≤ ε2|λm+1|k for sufficient k.

Hence,

‖Ek‖ ≤ ε
∣∣∣∣
λm+1

λm

∣∣∣∣
k

such that limk→∞ ‖Ek‖ = 0.

As Im(Xk)=Im(V1 + Ek), we get that for sufficient k Im(Xk)≈Im(V1)=M1.

For the purposes of this dissertation, m = 1. This means that the convergence rate depends

on the ratio |λ2λ1 |. The matrix C1 is then just a scalar and the condition that it be non-singular

means that C1 must not be zero. Hence, the condition on X0 is that it have a component

along V1. In practical circumstances however, this condition can be relaxed due to numerical

inaccuracies which supply Xk with a component along V1.

2.6 From Quantum to Classical Problems

So far, TN and related concepts have been introduced, but it has remained rather vague what

we want to do with them. It has been mentioned that the first step is to contract the network.

Indeed, in this section, it is shown how the contraction of a TN leads to the partition function

of a canonical8 ensemble.

We shall first have a look at general quantum-classical mapping. Let us consider a quantumme-

chanical system (quantum field theory in 0 dimensions), with Hamiltonian Ĥq. The transition

amplitude between an initial state |i〉 and a final state |f〉 is given by 〈f | e−itĤq |i〉. By perform-

ing a Wick rotation τ = it in the complex plane, we arrive at imaginary time evolution. The

transition amplitude can now be expanded as an imaginary-time path integral9

〈f | e−τĤq |i〉 =
∑

j1,...,jN

〈f | e−δτĤq |j1〉 〈j1| . . . |jN 〉 〈jN | e−δτĤq |i〉 (2.26)

where Nδτ = τ and δτ should be small compared to τ . On the other hand, for a classical system

at inverse temperature β and with Hamiltonian Hc, the partition function Z is defined as

Z = tr(e−βHc) (2.27)

8This use of the word ‘canonical’ bears no relation to the canonical form, of course. It means that the physical
system is studied at fixed temperature, volume and number of particles (the latter two being infinite in our case).

9We write discrete equations as the classical systems of interest in this dissertation are defined on a lattice.
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For a one-dimensional system of spins on a linear chain with nearest-neighbour interaction, one

can define a transfer matrix T between two adjacent sites (this is explained in greater detail in

Chapter 4). With this transfer matrix, the partition function can be rewritten as

Z =
∑

s2,...,sN−1

〈s1|T |s2〉 〈s2| . . . |sN−1〉 〈sN−1|T |sN 〉 (2.28)

where {si} denote the spins and s1 and sN are fixed (OBC). In PBC, an extra T should be

inserted between the first and the last site, and the sum over their spins should also be taken.

It is clear that with the proper renaming between equations (2.26) and (2.28), the 0D quantum

case corresponds to the 1D classical case with transfer matrix T = e−δτĤq .
The same procedure can be followed in higher dimension, such that in general a d-dimensional

quantum system corresponds to a (d+ 1)-dimensional classical system.

Returning to TN, let us take the example of a 1D quantum state, i.e. an MPS. The imaginary-

time evolution similar to equation (2.26) corresponds to the repeated application of an MPO. In

the manner we just explained, this corresponds to calculating the partition function of a classical

system. So indeed, the partition function is obtained when contracting the TN constructed by

joining the nearest neighbours in a lattice by the appropriate transfer matrix. More explicit

details on how this is achieved, can be found in section 5.1, where we shall also discuss how one

can calculate the expectation value of operators.



18 CHAPTER 2. TENSOR NETWORKS



Chapter 3

Computational Methods

In this chapter, several algorithms are discussed, mainly for contraction of TI networks in 1D,

2D and 3D. These algorithms are always for the thermodynamical limit. Therefore, without

exception their core is some kind of a power method. The focus of this chapter lies on the

concepts and convergence properties of the algorithms, while in chapters 5 and 6, the classical

Ising model is discussed as an application of these algorithms.

Most generally, these methods work for complex tensors. However, for applications in statistical

physics, real numbers are sometimes sufficient1. For that reason, the complex conjugate in the

bra side is not always explicitly written. However, even in the real case complex terminology

(unitarity, Hermitian conjugate) is used instead of real terminology (orthogonality, transpose).

In addition, the field over which the tensors are defined is, where necessary, denoted by K which

can stand for either C or R.

3.1 One-Dimensional Methods

In this section, a few one-dimensional algorithms are discussed. They will not be used for

the applications of the next chapters, but are nonetheless given here for two reasons. Firstly,

the more involved algorithms of the next sections draw on many of the concepts which appear

clearly in these simpler algorithms. Secondly, due to their relative simplicity, it was with these

algorithms that I started my explorations into the world of TN.

3.1.1 Determining the Fixpoint of an MPS - Double Layer

We first discuss two algorithms to calculate the left or right fixpoint of a double-layer MPS with

tensors A. These fixpoints are needed, for instance, in the calculation of expectation values of

local operators. The simplest method to achieve this is a power iteration in the double layer, a

scheme of which is shown in figure (3.1). Defining the transfer operator E as

Eαα′,ββ′ =

d∑

i=1

Ai;α,βA
∗
i;α′,β′ (3.1)

1Though not always, see section 3.3.1.

19
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Figure 3.1: Double-layer algorithm for the contraction of a double-layer MPS.

determining the left and right fixpoints equates to finding the left and right dominant eigen-

vectors l and r of E. Starting with a vector v as an initial guess, the right eigenvector can be

found by repeated multiplication of E on the left with v until convergence, whereby the new

v is normalised in each iteration step to avoid a build-up of a factor λN with N the iteration

step and λ a short-hand notation for the subsequent approximations of the dominant eigenvalue.

It was mentioned in section 2.5.2 that a necessary condition for this method to work, is that

v 6∈ K{u2, . . . , un}, or again v†u1 6= 0, where {u1, u2, . . . , un} are all the eigenvectors, with u1

the dominant one. Therefore, a good ansatz is to take a random vector as the initial guess. It

should be noted in this respect that, due to numerical inaccuracies, even when the projection of

the initial guess on the dominant eigenvector is zero, the right convergence can be obtained.

Let us now have a look at the scaling of this algorithm. The dimensions of the transfer opera-

tor are D2 ×D2 so that each multiplication with E requires O(D4) operations. However, it is

computationally advantageous to use the bra-ket structure of E and add one A at a time. This

corresponds to the way of contraction shown in the right half of figure (2.5). The number of

operations needed in that case scales as O(dD3).

3.1.2 Determining the Fixpoint of an MPS - Single Layer

When working in the single layer picture on the other hand, another approach is possible. The

proposed method is still essentially a power method, but is not anymore the straightforward

construction of the dominant eigenvector of a matrix. This is because in the single layer, all

the physical indices are left dangling. Yet through a proper choice of the gauge, one can avoid

having to store all the results of the previous iterations steps.

To show this, let us look at an iteration from the left again. If the tensors of the MPS ket were

all left-unitary (Q†Q = 1, but not necessarily QQ† = 1), contraction from the left with their

bra counterpart would result in unity, as shown in figure (3.2).

A way to mould the given TI MPS into that form is by repeated QR-decomposition as drawn
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Figure 3.2: Contraction property of left-unitary tensors.

in figure (3.3). For the QR-decomposition A = QR, the physical index is considered part of the

row index of A. For the QR-decomposition of square matrices, R is an upper-triangular matrix.

In this case where the number of rows exceeds the number of columns, we get that

A = QR =
[
Q1 Q2

] [R1

0

]
= Q1R1 (3.2)

where R1 is an upper-triangular matrix. Mathematically, this economical form, sometimes called

the thin QR-decomposition is not mandatory, but in view of the structure of the MPS, it is.

Keeping the full indices would result in a meaningless increase in the bond dimension. The

consequence is that Q1 is not unitary anymore: its columns are still orthogonal, but its rows

not necessarily so. Therefore, Q1 is left-unitary, which satisfies our demands.

After its QR-decomposition, A is replaced by Q, and R is added to the A of the next site. Again,

Figure 3.3: Above: Thin QR-decomposition of A. Below: Iteration step in the single-layer algorithm
to find the fixpoints of an MPS using QR-decomposition.

to avoid a divergence of numerical factors, R is normalised in every iteration step. Yet, there

is still some freedom in this gauge: if A is full rank in its columns, the thin QR-decomposition

is unique up to the phase of the diagonal elements of R1. Therefore, this phase is fixed in the

algorithm to zero such that R1 has real diagonal elements.

In Appendix A, an estimate for the number of operations required for thin QR-decomposition

is given. It turns out that this requires O(dD3), and the multiplication RA also scales as

O(dD3) (the multiplication of R with a diagonal phase matrix only scales as O(D2); the once-

only contraction of the final R with R∗ scales as O(D3)). Therefore, the overall complexity is

O(dD3). Consequently, this algorithm has the same scaling as the double-layer algorithm. Yet

there is one big advantage to work in the single layer: it preserves the bra-ket structure of the

fixpoint, i.e. it ensures that the fixpoints are Hermitian and non-negative when considered as a

matrix. This is not a priori so in the double-layer algorithm.
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3.1.3 Bringing an MPS into Canonical Form

The algorithm discussed in the previous section incorporates some elements of the canonical

form as presented in section 2.3.5. In this section, we shall examine an algorithm [35] that really

constructs the canonical form of an MPS:

i. Construct the dominant left and right eigenvectors vL and vR of the transfer operator E

and let us call the dominant eigenvalue µ.

ii. Due to the special bra-ket structure of the transfer operator E, vL and vR are hermitian and

non-negative. Hence, they can be decomposed as vR = XX† and vL = Y †Y . A possible way

to accomplish this, is by calculating the eigenvalue decomposition vR = UΛU † and taking

X = U
√

Λ.

iii. Place the identities XX−1 and (Y T )−1Y T to the left and right of the tensor A. Calculate

the SVD of Y TX = UλV †.

iv. The canonical form {Γ, λ} is given by (1) Γi = V †X−1Ai(Y
T )−1U (the subscript i stands

for the physical index) and (2) λ the Schmidt coefficients as found in the previous step.

This procedure is outlined in figure (3.4). It can easily be checked by direct substitution that

this {Γ, λ} fulfils the conditions of the canonical form of section 2.3.5.

Figure 3.4: Algorithm to bring a TI MPS into canonical form {Γ, λ}.

3.1.4 Working with an MPO on an MPS

The canonical form offers a first possibility to contract a two-dimensional double-layer TN

consisting of tensors T of rank four. To see how this comes about, the contraction should be

split up into a horizontal and a vertical one. Let us assume that we start with the vertical
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contraction2 from top to bottom. This boils down to finding the fixpoint of a horizontal layer

of the TN. Since such a layer is nothing else but an MPO, and the environment is an MPS, the

crucial part of the contraction is the update of an MPS after an MPO has worked on it. When

the MPS is in canonical form, this can be done in an efficient way.

Since the bond dimensions of the MPS increase after an MPO is applied to it, truncation will

be necessary. Otherwise, it would be computationally not feasible to apply a whole series of

MPO. The explicit presence of the Schmidt coefficients in the canonical form, is what makes it

suitable for this purpose.

There are three steps to the algorithm [35], as summarised in figure (3.5):

i. Update: After contraction with a horizontal layer of tensors T , {Γ, λ} is replaced by {Γ̇, λ̇}.
Γ̇ is given by

Γ̇j;α̇β̇ =

d∑

i=1

Γi;αβTij;µν (3.3)

with α̇ = (α, µ) and β̇ = (β, ν). λ on the other hand is not influenced by the MPO such

that

λ̇α̇ = λα, ∀µ (3.4)

where λ̇ and λ only have one index because they are diagonal.

If the bond dimensions of {Γ, λ} is D, and the index dimensions of T are d3, then the new

bond dimension is dD.

ii. Writing in the canonical form: The updated MPS {Γ̇, λ̇} is brought into canonical form

{Γ̈, λ̈}. In the algorithm for constructing the canonical form, the old MPS now contains a

λ-matrix as well. To incorporate this, in step (iii) the SVD should be calculated of Y TλX

rather than of Y TX. Additionally, the transfer operator E should be adapted such that (1)

for the right eigenvector it is composed of A = Γλ (and its bra version), and (2) for the left

eigenvector it is composed of A = λΓ (and its bra version).

iii. Truncation: By keeping only the D′ < dD largest Schmidt coefficients, all bond indices are

truncated and the end result is an approximate MPS {Γ′, λ′}4. The characterisation of D′

can vary. A first choice is to keep the bond dimension equal in every iteration step, i.e.

D′ = D. Secondly, D′ could follow a fixed prescription, such as a linear increase with the

iteration step. Lastly, D′ could be determined dynamically such that in every step all the

Schmidt coefficients smaller than a certain cut-off value are discarded.

The same procedure is repeated for the upwards contraction. The result of the vertical con-

tractions is therefore a ket-MPS and a bra-MPS. A priori, these may be different, so that the

single-layer algorithm for one-dimensional contraction does not apply. For that reason, in the

general case a double-layer contraction algorithm needs to be used. In the presence of symmetry,

the two fixpoints can be equal, in which case a single-layer contraction is possible.

2To avoid all ambiguity, vertical contraction is understood such that the result is a horizontal chain.
3The vertical and horizontal index dimension may vary, but are always equal in the applications discussed in

this work.
4Again, to avoid ambiguity, ‘approximate’ does not mean that {Γ′, λ′} is not a real MPS. If the MPS originally

describes |ψ〉, the new MPS should describe a new state |ψ′〉. {Γ′, λ′} is approximate in the sense that it only
approximately corresponds to |ψ′〉 due to the truncation step.
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Figure 3.5: Working with an MPO on an MPS.

3.2 Corner Method for Network Contraction in 2D

In addition to a straight-forward contraction of a two-dimensional tensor network as a repeated

application of the same MPO, other methods can be constructed that explicitly take the two

dimensions together. Such methods can be found in the literature [33] [36], and a variant is

presented here. Again, we work with a 2D TN without physical indices, which means it could

either be the double layer version of a PEPS, or a classical partition function (an application of

which will take up chapter 5).

3.2.1 Basic Idea

We start with an infinite two-dimensional tensor network of tensors T . The basic idea is to

add, in every iteration step, not a flat layer, but a layer with a right angle in it ( L-shaped). As

shown in figure (3.6), the environment is described by horizontal tensors A and vertical tensors

B, which may of course be equal in the presence of symmetries. The same environment is then

placed on the other side of the added layer. Since the lattice size is increased by adding a layer

of T s, an A and B are missing at the angle, depicted by M in the figure. A new A, B and S are

then constructed, and this procedure is repeated until convergence. Of course, if the solution

has not converged yet, the different As and Bs will not be the same. After convergence, it is

still not trivial that the As and Bs should have converged themselves, but that is in fact so, can

be seen in section 3.2.3 (hence the fact that they are drawn equally in the figure). In the next

section, a more detailed account of the method is given.

3.2.2 Details of the Method

In the following description of the algorithm, reference is made to figure (3.7).

Initialisation

Suppose the dimension of T is d4. A random d3-tensor is chosen as initial environments L and

R. Since the proposed method is a power method, we expect that the precise choice of the

environment does not matter as long as its projection on the dominant eigenvector with largest

eigenvalue is non-zero (which is, as mentioned before in section 2.5.2, not strictly required due
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Figure 3.6: One update step in the corner method

Figure 3.7: Some important steps in the corner method.

to numerical inaccuracies).

And yet, the initial choice of the environment can still have an influence on the outcome. An

example of this is the Ising model, where the choice of the environment determines the symmetry

breaking in the ferromagnetic phase (see section 4.2.6).

For S, the initial guess is just the identity matrix.

Construction of M

Let us first look at the meaning of placing the environment at the other side of the T -layer in

figure (3.6). This can be interpreted as an overlap between (1) the old environment updated

with a layer of T s and (2) the new environment, where convergence is anticipated by using the

same tensors for the new environment as for the old environment, except at the angle. The
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required value for the overlap is one, of course, when all the tensors are properly normalised.

Therefore, tensors L, S, R and T are contracted and interpreted as a d2 × d2-matrix. The

overlap with M is maximised by taking it equal to this matrix. M is then normalised to avoid

divergence.

Construction of a new A, B and S by truncation

An SVD of M gives M = UΣV † = Ã′S̃′B̃′, where all matrices are d2×d2. Truncation is achieved

by selecting only the biggest singular values and the corresponding columns of Ã′ and B̃′, which

gives us S′, A′ and B′. Let us call the new bond dimension D.

The new environments are computed by adding an A′ − T −A′ and B′ − T −B′ layer to L and

R, respectively, making the new dimensions d2D.

Convergence criterion

Since the property that the old environment contracted with a T -layer should equal the new

environment, is used in the algorithm, a new convergence criterion is needed. To that end, the

overlap of the old and the new environment are calculated without the intermediary T -layer,

as shown in figure (3.8). Even though the old environment is one site shorter than the new

environment, this does not matter, since, again, the overlap is closed on the left by a random

environment.

Figure 3.8: Overlap matrix for the As.

Figure 3.9: Overlap between the old and new environment used for convergence.

The same is done for the Bs, and the final overlap between the old and new environment is

shown in figure (3.9). Denoting the overlap by x, the error is defined as (x − 1)2. A typical

example of the convergence is shown in figure (3.10), where x is shown as a function of the

iteration step.



3.2. CORNER METHOD FOR NETWORK CONTRACTION IN 2D 27

Figure 3.10: Typical convergence behaviour of the corner method.

3.2.3 Convergence of A and B

After convergence of this method, it is desirable that the tensors A and B converge as well. A

priori, it is not clear, however, that this should be the case, since the repeated SVD may induce

site-independent gauge transformations.

To test whether this is the case, one can calculate the overlap of the old A (or B) with the

new A (or B). Since the bond dimensions are a priori not equal in different iteration steps5,

we hereby truncate the biggest bond dimension to match the smaller one. Because the As and

Bs originate from an SVD, this truncation corresponds to throwing away extra Schmidt vectors

corresponding to the smallest Schmidt coefficients. As such, this truncation is relatively safe

when checking the convergence of A and B. Figure (3.11) shows an example of the convergence

of A, for the two-dimensional Ising model around the critical temperature (see Chapter 5).

Figure 3.11: Convergence of the tensor A in the corner method. The inset shows a magnified version
of the bigger curve.

5Although, at least away from critical points, the bond dimension was found to converge.
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3.2.4 Expectation Values

The next step is to calculate expectation values, for which this method is used to calculate the

proper environments. In the most general case, the corner method needs to be applied four

times, as shown in figure (3.12) for a one-site operator O. Afterwards, a one-dimensional con-

traction method, such as the ones proposed in section 3.1, is needed to find an environment for

the four arms of the cross.

However, if the tensors T are left-right and (or) up-down symmetric, only one (two) environ-

Figure 3.12: Expectation value of a one-site operator using the corner method.

ment(s) need to be calculated. Suppose both symmetries are present, then it is clear that no

extra one-dimensional method is needed, as the required environments are generated in the cor-

ner method.

The generalisation to multi-site operators is straightforward. For the two-site operators used in

the Ising model, the modified environments were also calculated directly in the corner method

instead of applying a one-dimensional method afterwards.

3.3 Network Contraction in 3D

Lastly, we shall have a look at the contraction of a three-dimensional TN of tensors T of rank

six. Similarly to the two-dimensional MPS/MPO algorithm in section 3.1.4, we can look at

the three-dimensional case as follows. The contraction over the first index is performed by

finding the two-dimensional environment (a PEPS) which corresponds to the eigenvector with

the largest eigenvalue of the transfer matrix consisting of a two-dimensional layer of tensors

T . For the remaining contractions, the two-dimensional corner method mentioned above (or

another method) can be used. The main conceptual difference to the two-dimensional case is

that, due to the absence of a suitable generalisation of singular value decomposition in higher

dimensions, a different approach to truncation is needed here.
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3.3.1 Method

A schematic overview of some key steps is shown in figure (3.13).

Figure 3.13: Schematic overview of the contraction algorithm in 3D. (In the bottom network, not all
the tensors are drawn so as not to overload the picture.)

Update

We start with an initial guess for the environment, namely a TI PEPS of tensors E. By

contracting E with T (above in figure (3.13)), we get the new environment tensor E′. A two-

dimensional contraction is then performed on the double layer version of E′. The result is shown

in the middle of figure (3.13).

Truncation (1): concept

Due to the absence of a suitable SVD in higher dimensions, an alternative method of truncation

is needed. To that end, an orthogonal projection matrix P = WW † is inserted at the four bond

indices of the ket E, with a distinction between the horizontal Wh and the vertical Wv (i.e.,

horizontal and vertical in the plane). This is shown in the bottom part of figure (3.13), but only

for the horizontal Wh to keep the figure simple.

Hence, the truncated environment tensor is E with a matrix W on its four bond indices. The

second W matrix that is placed on every bond index belongs to the truncated E of the neigh-

bouring sites. If the original overlap is normalised to unity, the goal is to find W s such that the
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new overlap approaches unity.

Since idempotence is a necessary and sufficient condition for a matrix (endomorphism) to be

a projection, it is clear that P is indeed a projection if W is left-unitary, i.e. W †W = 1D×D
(we shall further discuss the matrices W in a minute). Let us denote the D-dimensional vector

space on which P acts, by V . P then accomplishes a projection onto the D̃-dimensional subspace

Im(P ) ≺ V along the subspace N(P ) ≺ V , with V = Im(P )⊕N(P ).

In this case, P is an orthogonal projection. A necessary and sufficient condition is that P be

self-adjoint (as an endomorphism) or hermitian (as a matrix). Due to the special decomposition

into W and W †, this is indeed the case. We can therefore write U = Im(P ), U⊥ = N(P ), and

V = U ⊕⊥ U⊥.

As we just mentioned, left-unitarity of W is a sufficient condition for P to be a projection. When

thinking of W as a transformation W : U → V , it is an isometry. This means that ∀u1, u2 ∈ U

〈Wu1,Wu2〉V = 〈u1, u2〉U (3.5)

As W is left-unitary, this holds indeed6.

Truncation (2): iteration

The question remains how the matrices W should be constructed. Starting from an initial left-

unitary guess (e.g. an identity matrix supplemented with rows of zeros), they are converged in

an iteration loop. As all the horizontal isometries are equal, as are all the vertical ones7, only

two isometries need to be updated in every iteration step. In every step, first the horizontal

isometry is updated while keeping all the others fixed and then the same is repeated for the

vertical isometry (or vice versa, of course).

Figure 3.14: TN for the update of Wh.

In figure (3.14), the situation for an update of Wh is shown. On the left, the network without

one Wh is drawn (the bra side is not explicitly drawn). As there are only two open indices, this

6Yet W is not right-unitary, however, so the transformation W † is no isometry.
7In the presence of symmetry, the horizontal and vertical projectors may naturally be equal.
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is basically a matrix M , of which an SVD M = UΣV † can be calculated as shown on the right.

The two indices are numbered to show the relation of the indices between the two forms. In the

SVD, U has dimensions D× D̃, and Σ and V are D̃× D̃. This means that U is left-unitary and

V is unitary.

In order to optimise Wh, the overlap tr(W †hM) with M = UΣV † should be maximised. In

general, when Wh is complex as in the next paragraph, the overlap is complex as well. In

that case, the real part of the overlap should be maximised, which then minimises the norm

‖Wh−M‖2F = ‖Wh‖2F +‖M‖2F −tr(W †hM+M †Wh). In the case of square matrices, this problem

is known as finding the closest unitary matrix to a given matrix [16]. In our case, M is not

square, and Wh is only left-unitary, but the same results hold.

Given that M = UΣV †, we can write

tr(W †hM + h.c.) = tr((V †W †hU)Σ + h.c.) = tr(XΣ + h.c.) =
∑

i

(xii + x∗ii)σi (3.6)

where

xii =
∑

j,k

V ∗ji(W
∗
h )kjUki (3.7)

As the norms of the rows and columns of Wh, U and V are bounded by unity, |xii| ≤ 1.

Therefore, the expression in equation (3.6) is maximised when xii = 1. The left-unitary Wh that

accomplishes this, is given by Wh = UV †. With this choice for Wh, the overlap becomes

tr(W †hUΣV †) = tr(V U †UΣV †) = tr(V †V U †UΣ) = tr(Σ) (3.8)

As a test for convergence, the overlap between the old and new E, as partly shown in the bottom

of figure (3.13), is calculated. This overlap should converge to unity, with a certain precision

dependent on the truncated bond dimension.

Truncation (3): stability

In order to increase the stability of the truncation algorithm, a relaxation step can be added

to the update. Care should be taken that the relaxed Wrelax matrices are still isometries.

Geometrically, the update Wupdate can be thought of as a rotation of the old W . A relaxed

Wrelax corresponds to the old W rotated around the same axis, but over a smaller angle.

Since Pupdate = WupdateW
†
update and P = WW † are both orthogonal projections from a D-

dimensional vector space to a D̃-dimensional subspace, they are unitarily equivalent. This is

because they share the same spectrum (eigenvalue 1 with multiplicity D̃, and eigenvalue 0 with

multiplicity D − D̃). Hence, we can write

WupdateW
†
update = UWW †U † (3.9)

so that Wupdate = UW , with U a unitary matrix. Taking the eigenvalue decompositions

WupdateW
†
update = VupdateΛV

†
update and WW † = V ΛV †, we can write

Vupdate = UV (3.10)

U = VupdateV
† (3.11)
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Since U is unitary, it can be reformulated as U = exp(iK) with K a Hermitian matrix. This

means that

iK = log(VupdateV
†) (3.12)

A relaxed rotation Urelax is constructed

Urelax = exp(iαK) (3.13)

by taking α ∈ (0, 1). Finally, Wrelax = UrelaxW .

Convergence

Once a truncated E has been found, it is update with T again, et cetera, until convergence.

The measure for convergence is x as defined in figure (3.15). Starting from the environment E,

M and m are constructed as shown in the figure. On these two tensors, the corner method is

applied, in which the environments L and l (which are normalised) are calculated. The ratio

x may at first sight seem to appear out of thin air, but in Chapter 6, it is shown that x leads

directly to the free energy and is as such actually a very physical measure for convergence.

Figure 3.15: Convergence measure for the 3D contraction algorithm.

3.3.2 Relating SVD to Projectors

One can wonder how the method of keeping the largest Schmidt coefficients relates to finding

the projection on an optimal subspace of a certain dimension. In the corner method, see figure

(3.7), the new A′ and B′ are obtained by taking an SVD of M and discarding a certain amount

of small Schmidt coefficients.

Figure (3.16) shows an alternative way of truncation using projectors: M is the original matrix

and M ′ is the truncated approximation. As U and V are unitary, they drop out of the figure.

In a certain basis, the projector P = WW † is diagonal, consisting of ones and zeros. It is in

that basis that the overlap is maximised, as Σ is diagonal as well. The overlap of figure (3.16)

then reduces to

tr(ΣPΣP ) = tr(Σ2P 2) = tr(Σ2P ) (3.14)

which is clearly maximised if the ones in P occupy the upper entries, and the zeros the lower

entries, provided that Σ is ordered from the greatest to the smallest singular value. There is
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Figure 3.16: Alternative truncation step for the corner method.

gauge freedom in the choice of W , but the easiest choice is to choose W as an identity matrix

with rows of zeroes added as necessary. In this manner, the original truncation is retrieved.

This argument also validates the disposal of the smallest singular values. The elegant form of P

is due to the fact that through the SVD, M is rewritten in the basis of the left- and right-unitary

vectors. If one desires to retain the largest singular values in order to maximise equation (3.14),

precisely the projection on those vectors is needed.
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Chapter 4

Classical Ising Model

This chapter provides the necessary theoretical aspects of the classical Ising needed in the

numerical simulations. This encompasses both analytical solutions - for 1D and the most simple

2D case - and other theoretical considerations such as Peierls bounds on the critical temperature.

The simulations themselves are discussed in Chapter 5 for the 2D case, and Chapter 6 for the

3D case. The numerical results for 1D are included at the end of this chapter, since they are so

simple and merely act as an illustration of straightforward power iteration.

4.1 History and Importance of the Ising Model

The Ising model is arguably the most famous model in statistical physics. Originally proposed

by Wilhelm Lenz (1888-1957) and developed by his student Ernst Ising (1900-1998) in 1924, the

initial goal of the Ising model was to describe ferromagnetism. Despite its failure to provide a

satisfactory explanation for that phenomenon, the Ising model is still a fruitful research topic in

a variety of scientific branches.

Through a nearest-neighbour term in the Hamiltonian, the Ising model is capable of describing

interactions in a many-particle system. As such, it can be used as a simplification of complex

interactions in many-particle systems. Many examples can be found in the literature, on a vari-

ety of subjects. I present a short list of examples to get a feeling of the possibilities of applying

the Ising model in (1) biology: hydrophobicity structures in protein chains [22]; (2) genetics:

analysis of genetic markers [28]; (3) economy: the value of money resulting from trading [4]; et

cetera.

Probably the most attractive feature of the Ising model is its simplicity. It is one of the select

group of models for which some analytical solutions do exist, while still showing a phase tran-

sition. This makes the Ising model useful for testing whether a given computational method

works in the correct way (which is exactly what will be done in this chapter).

In his thesis of 1924 and the subsequent publication in 1925 [23], Ising solved ‘his’ model in one

dimension. This does not give rise to a phase transition, from which Ising concluded, through

a wrong generalisation, that no phase transitions would occur in any dimension. Sir Rudolf

Peierls (1907-1995) discovered in 1936 that such a phase transition was possible after all in

two dimensions, by what is now called a Peierls argument [37]. Finally, in 1944, Lars Onsager

(1903-1976), solved the two-dimensional case in zero field analytically [32].

35
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4.2 Theoretical Results

4.2.1 Ising Hamiltonian

The most general form of the Ising Hamiltonian on a general n-dimensional spin lattice is given

by

H = −
∑

<i,j>

JijSiSj − µ
∑

i

hiSi (4.1)

where i runs over all the lattice sites. < i, j > means that site j should be a nearest-neighbour

of site i (counting each pair only once). As this is a classical model, spin S is just a scalar

assigned to each lattice site, where Si = ±1. Jij is the interaction strength between sites i and

j; hi is the external magnetic field on site i and µ is the magnetic moment.

In the following, several simplifications will be made. Firstly, we will only consider cartesian

lattices, giving two nearest neighbours in 1D, four in 2D, and six in 3D. Secondly, we will consider

the case where the interaction strength and external field are constant, i.e. the Hamiltonian is

translation invariant:

H = −J
∑

<i,j>

SiSj − h
∑

i

Si (4.2)

where h has been redefined to include µ. Furthermore, the energy unit is chosen such that

J = ±1. Positive J means that parallel alignment of two neighbouring spins lowers their

interaction energy. This means that taking J = +1 leads to a ferromagnetic model.

4.2.2 Useful Results from Statistical Physics and Thermodynamics

Of course, the goal of looking at the Ising model is to calculate some interesting physical quan-

tities. Therefore, a brief summary of useful results from statistical physics and thermodynamics

is given here [1]. We work at a fixed temperature, and with a fixed volume and number of parti-

cles (taking the thermodynamical limit afterwards), so in a canonical ensemble. The canonical

partition function Z is then given by

Z =
∑

s

e−βHs (4.3)

where the sum over s stands for a sum over all possible configurations (microstates) of the lattice.

β is the reciprocal temperature; in all formulæ and calculations kB = 1. The probability that

the system is in a certain configuration is given by

Ps =
e−βHs

Z (4.4)

The expectation value of an operator O, i.e. the energy or magnetisation, can then be calculated

according to

〈O〉 =
∑

s

PsOs (4.5)

The Helmholtz free energy F ≡ U −TS can also be rewritten in terms of the partition function:

F = −T ln(Z) (4.6)
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If the partition function is known (however, in the numerical solutions, the expectation values

will rather be calculated directly), the expectation values for the energy U and magnetisation

M =
∑

i Si can also be found by:

〈U〉 = −∂ ln(Z)

∂β
(4.7)

〈M〉 = T
∂ ln(Z)

∂h
(4.8)

4.2.3 Solution in 1D

Before going to higher dimensions, it is useful to look at the analytical solution in 1D, i.e. for a

chain of N sites. The solution given here uses the transfer matrix technique1, which allows for

quantum-classical mapping on tensor networks as discussed in section 2.6. We begin by rewriting

the Hamiltonian in a more symmetrical way, at the same time imposing PBC SN+1 = S1:

Hs = −J
N∑

i=1

SiSi+1 −
h

2

N∑

i=1

(Si + Si+1) (4.9)

In order to calculate the partition function, we need to sum e−βHs over the states. This sum is

more explicitly given by ∑

s

=
∑

S1=±1

∑

S2=±1

· · ·
∑

SN=±1

(4.10)

We can now write each sum as a matrix product. Let us consider the transfer matrix

T =

[
eβJ+βh e−βJ

e−βJ eβJ−βh

]
(4.11)

where the (1,1) element stands for (Si=1, Si+1 = 1), et cetera. Starting with T , describing, let

us say, the interaction between sites N and N + 1 ≡ 1, each sum can be replaced by a further

multiplication with T . Eliminating all sums except for the first one, we get

ZN =
∑

S1=±1

TN = tr(TN ) = λN1 + λN2 (4.12)

with λ1,2 the eigenvalues of T . This procedure is shown in figure (4.1).

Figure 4.1: Transfer matrix formulation of the 1D Ising model.

After some elementary algebra, we arrive at the following expression for the eigenvalues of T :

λ1,2 = eβJ
(

cosh(βh)±
√

sinh2(βh) + e−4βJ

)
(4.13)

1To avoid confusion, it should be noted that this transfer matrix is not the same as the MPO transfer matrix
of section 2.5.
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We are interested in the thermodynamical limit, i.e. N → ∞, so we only need to consider the

plus sign. Both the partition function and the total free energy diverge in this limit. However,

Z diverges exponentially, while F only increases linearly with N . Therefore it makes sense to

look at the free energy per site, f :

f ≡ F

N
= −T

(
βJ + ln

(
cosh(βh) +

√
sinh2(βh) + e−4βJ

))
(4.14)

In absence of an external field, this reduces to

fh=0 = −T ln(2 cosh(βJ)) (4.15)

From equations (4.7) and (4.8), we see that the expectation value of the energy and magnetisation

also increase linearly with N . In the same way as for the free energy, we now define and calculate

the average energy and magnetisation per site (in absence of an external field):

uh=0 ≡
〈U〉h=0

N
= −J

2
tanh(βJ) (4.16)

mh=0 ≡
〈M〉h=0

N
=

sinh(βh)√
sinh2(βh) + e−4βJ

∣∣∣∣∣∣
h=0

(4.17)

where different terms in mh=0 have already been replaced by their value for h = 0. For finite

temperatures, mh=0 = 0. However, if T → 0 or β → ∞, then mh=0 = ±1 depending on the

sign of h. At first sight, it is slightly odd that the sign of h comes into play even though h = 0.

Mathematically, this is just a consequence of taking the limit either from the left or from the

right. Physically, this can be interpreted as spontaneous symmetry breaking: a priori, neither

value for m is preferred (note that the zero-field Ising Hamiltonian is invariant under global spin

flips), but in the physical realisation one of both values is chosen.

Apart from this subtlety around T = 0, there is no phase transition in one dimension: there

appears no ferromagnetic phase, only a paramagnetic phase. Or in other words, the phase

transition occurs at zero temperature and the system is in the paramagnetic phase for all finite

temperatures.

4.2.4 Presence of a Phase Transition in Higher Dimensions and Peierls Ar-

guments

In higher dimensions, a phase transition does appear. As mentioned in the introduction to this

chapter, this was shown by Peierls for the two-dimensional case before the analytical solution

was known. The fact that an analytical solution has been found, does not make the Peierls

arguments (the plural denoting similar arguments by other authors, which are all commonly

referred to as Peierls arguments) lose all their interest. Since in higher dimensions, no analytical

solution is known, Peierls arguments are useful in those cases. A rigorous approach would lead

us too far off the main topic, but can be found in the literature, e.g. [8], [17], [3]. Instead, I give

a more intuitive argument for the existence of a phase transition.

Let us start by returning to the zero-field one-dimensional case. Assume that all the spins are +1

(‘up’) and define a Peierls droplet as a region of L adjacent spins -1 (‘down’). If such a droplet
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has the tendency to decrease in size, the system is in a ferromagnetic phase; if the droplet size

increases, the system is in a paramagnetic phase.

The energy cost of creating a droplet is 4J , i.e. the cost of flipping two spins such that at the

boundaries we go from parallel alignment to antiparallel alignment. To determine the entropy

advantage, we have to count the number of microstates in which a given spin is part of a droplet

and take the logarithm. For droplets of size L, a given spin can be part of L droplets, so

δS = lnL. The total free energy change when creating a droplet becomes

δF = 4J − T lnL (4.18)

which means that, unless T = 0, the droplet tends to increase in size. Therefore, there is no

ferromagnetic phase at finite temperatures.

In two dimensions, we redefine L as the number of sites on the perimeter of a droplet. This

gives δE = 2JL. In order to determine the number of droplets nL of size L a site can belong

to, we look at the perimeter as a random walk problem of length L on the graph induced by

the lattice. At each site, there are four possibilities for the next move, hence the total number

of random walks 4L = eL ln 4.

Since the perimeter of a droplet is closed, this estimate is an upper bound, albeit a rather crude

one. It can be refined by banning back-tracking steps, i.e. allowing only three possibilities

at every vertex. In addition, the perimeter must not intersect, so at some vertices only two

directions are possible. Even with these two conditions, not all unwanted walks are eliminated,

but the upper bound is now restricted enough to be of interest. Replacing 4 in the first estimate

by 2 < C < 3, we get δS = L lnC and finally

δF = L(2J − T lnC) (4.19)

(i) If T < T ∗c ≡ 2J
lnC , with T ∗c the (approximation for the) Curie - or critical - temperature, after

Pierre Curie (1859-1906), δF > 0 which means that the droplet will decrease in size; the system

is in a ferromagnetic phase.

(ii) If T > Tc, the system behaves paramagnetically.

(iii) At T = Tc, there is no advantage in either way. This deserves more explanation, which can

be found in section 4.2.6.

In 1941, Kramers and Wannier [26] found an exact solution for Tc by what is now called Kramers-

Wannier duality. Their basic idea was to look at the dual system. The dual lattice of a square

lattice is square again, but by taking the dual one goes from high to low temperature (disorder

to order). A hand-waiving argument is that, through the Heisenberg relations for Fourier trans-

forms, a broad signal (corresponding to high temperature) is converted into a narrow signal (low

temperature). If one then lowers the temperature in one system, it increases in the other one.

When assuming only one phase transition, both systems meet in one point, namely Tc. The

result is Tc ≈ 2.269J (cf. (4.29)).

Comparing this to C = 2 and C = 3 we get

2J

ln 3
≈ 1.820J < Tc ≈ 2.269J <

2J

ln 2
≈ 2.885J (4.20)

while the exact C ≈ 2.414, which shows the agreement of the estimate with the exact solution.
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The intuitive Peierls argument looses its clarity in 3D and more involved calculations are nec-

essary. As an upper bound T+
c , we can use the following result from [11]:

T+
c =

2J

ln
(

z
z−2

) (4.21)

where z is the number of nearest neighbours. In two dimensions this gives precisely T+
c = 2.885J ;

in three dimensions T+
c = 4.933J . Even better bounds can be found, e.g. T+

c = 4.865J in [12].

As a lower bound, we use the result of [13]. This bound has not been found by looking at

random walk problems, but by finding a bound on the correlation 〈SiSj〉. The result temperature

estimate is T−c = 3.957J .

These two bounds are in accordance with Monte Carlo simulations as in [2], [10], [40], where

Tc = 4.511J .

4.2.5 Results in 2D

As mentioned in the introduction, the analytical zero-field solution for a two-dimensional square

lattice was published by Onsager in [32]. To be more precise, the partition function and energy

are solved there, with the possibility of a different interaction strength horizontally from verti-

cally (thus including the linear chain). Onsager’s solution is mathematically complex, involving

quaternions and Lie algebra’s in order to solve an eigenvalue problem as in the 1D case. Since

his solution, others have found simpler approaches, such as Schultz, Mattis and Lieb in [43] via

second quantisation for fermions. Obviously, we need not be concerned with the details in this

work, so only the results are given.

The energy is given by

u = −J coth 2Jβ

(
1 + (2 tanh2 2Jβ − 1)

2

π
K (x)

)
(4.22)

with K(x) the complete elliptical integral of the first kind, defined as

K(x) =

∫ π/2

0

dθ√
1− x2 sin2 θ

(4.23)

and

x =
2 sinh 2Jβ

cosh2 2Jβ
(4.24)

The partition function per site is constructed as follows:

λ = ln(2 cosh 2Jβ) +
1

π

∫ π/2

0
dθ ln

(
1

2

(
1 +

√
1− x2 sin2 θ

))
(4.25)

z ≡ lim
N→∞

(Z)1/N = eλ (4.26)

The free energy is of course

f = −T ln z = −Tλ (4.27)
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In 1952, Yang published the result for the magnetisation [53].

m = ±
(

1− (sinh 2Jβ)−4
) 1

8
(4.28)

for T ≤ Tc and 0 for T > Tc.

The Curie temperature itself is given [26] by

sinh 2Jβc = 1 (4.29)

or

Tc =
2J

ln
(
1 +
√

2
) ≈ 2.269J (4.30)

4.2.6 Behaviour at the Phase Transition(s) and Critical Exponents

All these quantities are continuous. Note that the energy and magnetisation are a first order

derivative of the logarithm of the partition function, i.e. of the free energy. The heat capacity

c = ∂e
∂T and magnetic susceptibility χ = ∂m

∂h

∣∣
h=0

on the other hand are second order derivatives.

These quantities are not continuous, hence the phase transition is second order.

The case h→ 0 is the critical point of a first-order transition: the magnetisation is not contin-

uous at this point but changes sign (for T < Tc) as h changes sign. Another way of looking at

the spontaneous symmetry breaking at h = 0, is to change the boundary conditions and place

the system in a bigger spin ±1 sea. One can then say that for T < Tc the system is dependent

on the boundary conditions, while for T > Tc it is not. This way, the notion of an external field

has been eliminated, while the influence of an environment will prove a useful concept when

discussing the numerical results.

Around the critical point, the different physical quantities may be described by critical exponents

[1], defined as follows:

t =
T − Tc
Tc

(4.31)

χ ∼ |t|−γ (4.32)

c ∼ |t|−α (4.33)

m ∼ (−t)β (4.34)

|m| ∼ |h| 1δ (4.35)

where the last one is defined at T = Tc itself, and the last but one is defined for T < Tc.

Away from the critical point, the correlation length ξ is defined as

〈SiSj〉 − 〈Si〉〈Sj〉 = e
− |i−j|

ξ (4.36)

and its critical exponent as

ξ ∼ |t|−ν (4.37)

This means that the correlation around the critical point scales with the distance (in the tem-

perature ‘space’) to the critical point as equation (4.37).
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On the critical point, the correlation length diverges, but for the correlation itself, a new critical

exponent η is introduced such that

〈S0Si〉 ∼
1

|i|d−2+η
(4.38)

with d the dimension of the lattice and |i| the distance of site 0 to site i.

These critical exponents obey some scaling laws

α+ 2β + γ = 2 (4.39)

βδ = β + γ (4.40)

and hyperscaling laws (‘hyper’ meaning that they involve d).

dν = 2− α (4.41)

2− η = d
δ − 1

δ + 1
(4.42)

In 2D, the values for these exponents are:

α = log β =
1

8
γ =

7

4
δ = 15 ν = 1 η =

1

4
(4.43)

where ”log” means that c ∼ − log(|t|). In the scaling laws, however, α counts for 0.

4.2.7 Low- and High-Temperature Limits of the Free Energy

In addition to Peierls arguments about a phase transition, we shall now have a look at low- and

high-temperature limits of the free energy. These two results combined enable us to make a first

assessment of computational results.

As f = u − Ts, we have to look at both the energy and the entropy. For the low-temperature

limit T → 0, only u needs to be considered. Since we know that for T → 0 the system is in

its ferromagnetic phase2 (for the case J = +1), we can take all spins +1. From equation (4.1),

it follows that U = −k
2N − hN , where k is the number of nearest-neighbours or coordination

number. Therefore, u = −k
2 − h, and as T → 0, f → −k

2 − h.

For T → ∞, U → 0 and only an entropic contribution f = −Ts is present. For high tempera-

tures, the fraction of spins +1 approaches N/2 (following a
√
N rule, such that this is exact in

the thermodynamical limit). As a consequence, the number of microstates corresponding to the

macroscopic non-magnetised state is given by

Ω =
N !(

N
2

)
!
(
N
2

)
!

(4.44)

Using Stirling’s approximation ln(x!) ≈ x ln(x) − x + O(ln(x)), we get for the (Boltzmann)

entropy S = ln(Ω)

S ≈ N ln(2) (4.45)

2For 1D, this only holds in the limit itself.
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so that f → −T ln(2) as T →∞.

4.3 Numerical Results in 1D

In order to give a brief example of how power iteration works in its most basic form, i.e. with

matrices, let us start by looking at the numerical results for the one-dimensional Ising model.

As can be seen in figure (4.2) for the free energy, the numerical results agree with the theoretical

solution. (The tolerated error in these simulations was 1.10−8). In figure (4.3) the effect of an

external field on the magnetisation is depicted. As expected, for h = 0, no ferromagnetic phase

is present. By increasing h, on the other hand, there is alignment in the low-temperature region.

It should be noted that the real purpose of this comparison between theory and simulation does

not lie in the agreement itself: we shall not forget that in the analytical solution too, a power

iteration was assumed by discarding the smallest eigenvalue of the transfer matrix. Therefore,

the real interest of figure (4.2) lies in the fact that even for a modest number of iterations n,

nearly perfect agreement can be obtained. Figure (4.4) shows the number of iterations needed

for a certain degree of accuracy. One can conclude that a high degree of accuracy is already

obtained after a low number of iterations. This means that, indeed, power iteration has practical

use.

The number of required iterations is not constant over the temperature domain: n has a maxi-

mum. This maximum is a marker for the temperature region where the thermal energy starts to

outweigh the effect of the external field, resulting in random alignment at higher temperatures.

Figure 4.2: Free energy of the 1D Ising model with h = 1. Solid line is the theoretical result.
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Figure 4.3: Magnetisation of the 1D Ising model for different external fields h.

Figure 4.4: Number of iterations needed for a certain degree of accuracy in power iteration.



Chapter 5

Numerical Results in 2D

In this chapter, the numerical results for the 2D Ising model are discussed. The first section

explains how the 2D Ising Model is translated into the TN formalism. In the next section, it

is explained how physical quantities such as the magnetisation are calculated. Afterwards, we

discuss the numerical results, starting with the convergence properties. The physical results

for the Ising model follow, both without and with an external field. Lastly, the TN results are

compared to Monte Carlo simulations.

5.1 Rewriting the Ising Model

In order to cast the Ising model in a form suitable for tensor network methods, we use the same

transfer matrix (4.11) as in the one-dimensional case, with h = 0. This leads to the network

shown in figure (5.1). That network is not suitable for calculations yet, for the transfer matrices

Figure 5.1: Tensor network describing the Ising model interactions.

appear between two vertices. The first question is what should happen at the vertices, where

four edges (indices of the transfer matrix) join. The physical meaning of a vertex is a ±1 spin. If

the vertex is interacting with its neighbours, it should take on the same spin value for all of them,

meaning it should interact through the same row column of the transfer matrix, depending on

its spin value. Therefore, at all vertex points a sort of Kronecker delta tensor should be placed:

δ(i, j, k, l) =

{
1 if i = j = k = l

0 elsewhere
(5.1)

45
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Next, the transfer matrices need to be contracted with the vertices. A general method can be,

for example, to contract every horizontal T with its left neighbour and every vertical T with its

upper neighbour. This is certainly an easy method, however, in this way, left/right and up/down

symmetry is lost. This means that in the numerical methods, more environments will need to

be calculated.

In the ferromagnetic case, T is positive definite and can be rewritten1 as T = t2. When this

square root has been found, a more symmetrical contraction of the transfer matrices is to put

one square root per T in both vertices, as shown in figure (5.2). The square root t itself can

Figure 5.2: Symmetrical composition of the final tensor network out of the transfer matrices.

be found after some algebra:

t =

√
1

2

[√
coshβ +

√
sinhβ

√
coshβ −√sinhβ√

coshβ −√sinhβ
√

coshβ +
√

sinhβ

]
(5.2)

On this tensor network, the methods of Chapter 3 can be applied.

5.2 Calculating Physical Properties

5.2.1 Magnetisation and Energy

Since the partition function diverges for increasing lattice size, a normalisation is required in

each iteration step. Therefore, we need to change the meaning of the normalisation in (4.4).

Since the environments are normalised, the new normalisation factor is shown in figure (5.3).

The easiest physical quantity to calculate is the average magnetisation m. Let us recall that

the partition function is given by the sum of the Boltzmann factors over all the states, cf. (4.3);

for the expectation value the spin operator is added to the summand, cf. (4.5). Therefore, the

delta tensor needs to be replaced at one vertex by a tensor describing the spin operator. This

is easily achieved by

δS(i, j, k, l) =





1 if i = j = k = l = 1

−1 if i = j = k = l = 2

0 elsewhere

(5.3)

1The square root is not unique, but there is only one positive definite square root of a positive definite matrix.
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Figure 5.3: New normalisation factor replacing the partition function.

By replacing M in figure (5.3) by the new MS which contains δS instead of δ, we obtain m after

division by the original factor.

In order to calculate the average energy e, we need to evaluate products of spin operators.

Therefore, a two-site environment is needed, as shown in figure (5.4). The same needs to be

done in the vertical dimension and after adding both terms, normalisation is now performed by

a two-site ‘partition function’.

Figure 5.4: Network for calculating the energy.

5.2.2 Free Energy

To calculate the free energy in 1D, one can see from equation (4.12) that in the thermodynamical

limit only the largest eigenvalue of the transfer matrix is needed. We shall now construct a similar

power method argument in 2D.

Let us contract the tensor network first in the vertical direction (Ny sites) and then horizontally

(Nx sites). As Ny →∞, the environment converges to the eigenvector with the largest eigenvalue

of the MPO consisting of one layer of sites. Each time we add a layer after convergence, the

eigenvector is multiplied by this eigenvalue, giving us Z = λNy . Doing this simultaneously from

top to bottom and vice versa, we end up with a double layer linear chain. By performing a

power method horizontally, through the same reasoning λ = µNx . In the end, Z = µNxNy . Since

z = Z1/(NxNy) = µ and f = −T ln z, we finally obtain f = −T lnµ.

It should first be noted that when all the environments are normalised (such that µ is rescaled to

unity in the previous formulæ), the free energy can be obtained by adding one site to the lattice2.

To find a way to insert this into the corner method for contraction, one can look at the update

2So, calculating the free energy in 2D amounts to a vertical contraction, with normalisation, followed by a
calculation of the free energy of the resulting linear chain.
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of L in figure (3.7). We should remind ourselves that A is left-orthogonal3. A corresponding

right-unitary update does not emerge naturally from the corner method: this method inherently

mixes the horizontal and vertical dimensions, which makes it difficult to implement the previous

argument for the free energy literally.

However, it is sufficient to calculate the norm of L′, as L′ contains precisely one extra T compared

to L. Although we can only access
√
µ2 in this way, we know that the free energy should be

real, and hence µ should be positive. Lastly, it should be noted that it is generally not possible

to take the overlap of L′ with L, as the left and right bond dimensions of A need not be equal.

5.3 Convergence Properties

Before showing the physical results, it is useful to look at the convergence properties of the simu-

lations. As a first test of the number of iterations necessary for convergence, the bond dimension

was increased by one in each iteration step, bounded by a pre-determined maximum. Figure

(5.5) shows temperature sweep for a variable maximum of iteration steps. There is of course a

one-to-one correspondence between the number of iterations, n, and the bond dimension, n+ 1.

Not surprisingly, it is clear from the figure that a higher bond dimension is needed around the

Figure 5.5: Number of iterations necessary for convergence.

critical point, whereas a bond dimension of around 20 suffices in the low and high temperature

limits.

In addition to a linear increase, other methods for truncation are possible. For example, one

could set a maximum bond dimension and postpone truncation until this maximum value has

been achieved, after which the bond dimension is kept constant at the maximum value. This is

computationally not very smart, as those high bond dimension are not always needed.

A more adaptive method is what we shall call singular value-induced truncation. In this method,

a minimum value σmin is set for the Schmidt coefficients. In each iteration step, the bond dimen-

sion is truncated such that only the Schmidt coefficients larger than this minimum are preserved.

3Or left-unitary when working over the complex field, which we will use for the calculation of the free energy
in 3D.
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Analogously to figure (5.5), a temperature sweep of the bond dimension needed for convergence

when using singular value-induced truncation is shown in figure (5.6).

Even though a linear increase of the bond dimension and a singular-value induced truncation

Figure 5.6: Singular value-induced bond dimension needed for convergence with σmin = 1.10−6 and
maximally 150 iterations.

do not show notable differences except for the free energy (vide infra), the latter method is

nevertheless more apt for conceptual reasons. There is no physical reason why the bond di-

mension should be increased linearly. On the other hand, the truncation step is centred around

discarding the smallest Schmidt coefficients, such that it makes sense to control the truncation

directly at that level.

On top of that, the peak in graphs is more defined for singular-value induced truncation. This

means that from this graph a potentially better estimate for the critical temperature can be

distilled. For example, when using the results from figure (5.6), this gives Tc = 2.27±0.01 which

is in agreement with the theoretical results Tc ≈ 2.269.

5.4 Physical Results Without an External Field

5.4.1 Thermodynamical Properties

Figure (5.7) shows the magnetisation for a maximal bond dimension of 200. It is clear that the

numerical method reproduces the theoretical result.

The influence of the environment mentioned in section 4.2.6 is clear when considering the mag-

netisation. Depending on the initial value for the environments, the ferromagnetic phase acquires

either +1 or -1 magnetisation. In the figures of this text, however, the absolute value is drawn

for easier comparison.

The influence of the maximal bond dimension is shown in figure (5.8) where it is varied from 50

to 500. When increasing the bond dimension, the accuracy increases, but it is also noteworthy

that the improvement slows down.

Plotting the difference between the numerical and the theoretical value for the magnetisation

is a second way to quantify Tc as the maximum of the error is expected to occur at the phase
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Figure 5.7: Magnetisation of the 2D Ising model for a maximal bond dimension of 200. The solid line
is the theoretical result.

Figure 5.8: Influence of the bond dimension (n) on the magnetisation.

transition4. This is shown in figure (5.9) and yields Tc=2.27 for a temperature step of 0.001

around Tc.

For the energy, the results are shown in figure (5.10) for a maximal bond dimension of 150. It is

clearly visible that the theoretical results are well reproduced, and with less inaccuracies around

the critical point than for the magnetisation.

The results for the free energy are shown in figure (5.11). Two simulations are displayed there:

the first one with a linearly increasing bond dimension, the second one with singular value-

induced truncation. It is clear from the figure that the latter performs better. The free energy

is the only physical quantity discussed here where such a notable difference was visible between

the two truncation methods.

4So, basically, we are using inaccuracies to our advantage.
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Figure 5.9: Absolute value of the difference between the numerical and theoretical magnetisation of the
2D Ising model. The peak corresponds to T = 2.27.

Figure 5.10: Energy of the 2D Ising model for a maximal bond dimension of 150. The solid line is the
theoretical result.

Figure 5.11: Free energy of the 2D Ising model.

5.4.2 Correlations and Magnetic Susceptibility

The magnetic susceptibility χ can be written as [1]

χ =
1

NT
〈(M − 〈M〉)2〉 =

1

NT
(〈M2〉 − 〈M〉2) (5.4)



52 CHAPTER 5. NUMERICAL RESULTS IN 2D

As M =
∑

k Sk, χ is a sum of correlations 〈SiSj〉 − 〈Si〉〈Sj〉. Because of translation invariance,

site i can be fixed at a central site, and the sum over i cancels with the factor 1/N .

In order to obtain an estimate for the magnetic susceptibility, correlations up to three sites

away were calculated as shown in figure (5.12). To this end, three-site environments were

needed (due to the symmetry of the quadrants in figure (5.12)). The separate contributions to

the susceptibility (i.e. correlations divided by the temperature) themselves are given in figure

(5.13).

After taking into account the number of neighbours of a particular kind, the estimate for the

magnetic susceptibility is drawn in figure (5.14). There, we have also divided by the number of

sites to obtain the magnetic susceptibility per site.

The decay to zero in the paramagnetic phase is not fast enough, but as the correlations with

more distant sites decay faster (cf. figure (5.13)), it is expected that this be remedied by taking

into account more sites.

In comparison to the previous physical quantities, the results for the susceptibility appear to

be much less accurate. As the only ‘interesting’ temperature region for the susceptibility lies

around the critical temperature, this shows again how the behaviour at the phase transition is

the most difficult part of the simulation.

d3 d33

d22d2

d22d2

3 322

d3 d33

Figure 5.12: Identification of the tensors used in the approximation for the susceptibility.

Figure 5.13: Correlations divided by the temperature. The legend matches the labelling of figure (5.12)
where the sites ‘offd3’ are the non-marked, light-coloured ones.
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Figure 5.14: Estimate for the magnetic susceptibility

5.4.3 Critical Exponents

With the previous results, we shall now have a look at some of the critical exponents given in

section 4.2.6, namely β for the magnetisation as a function of temperature, δ for the magneti-

sation as a function of the external field, and γ for the susceptibility. Through a fit of the data,

a value for these critical exponents can be obtained. In addition, Tc was also treated as an

unknown fitting parameter to estimate that as well.

First, the results for m ∼ (−t)β are shown in figure (5.15). With a goodness of fit R2 = 1,

Tc = 2.267 with 95% confidence bounds (2.267; 2.267) which is not exactly right, but still in

good agreement with the theoretical value. The fitting value of β = 0.1132 (0.1124; 0.114) is

nearly 10% off the correct value β = 1
8 .

The fitting for |m| ∼ |h| 1δ yields δ = 14.78 (14.55; 15.01) with R2 = 0.9996 and thus shows a

Figure 5.15: Fit for the critical exponent β and Tc.

much better agreement with the theoretical value δ = 15.

As a last example, for χ ∼ |t|−γ we get a worse estimate for the critical temperature, Tc = 2.343

(2.32; 2.366). The result for γ=1.771 (1.4307; 2.105) lies very close to the theoretical value

γ = 7
4 , but it needs to be noted that the confidence interval is wide (nearly 40% of γ itself).
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Figure 5.16: Fit for the critical exponent δ.

Figure 5.17: Fit for the critical exponent γ and Tc.

5.5 2D Ising Model in the Presence of an External Field

When h 6= 0, the complete transfer matrix from equation (4.11) needs to be used. Determining

the square root is more complicated now, and the result is given in Appendix B. An important

remark on the right way to include h in the transfer matrix is also made in that Appendix.

A first effect of the external field is the fixation of the symmetry breaking: the low-temperature

magnetisation is in the same direction as the external field. Secondly, through the ordering

effect of the external field, the critical temperature increases and the phase transition becomes

smoother. The results for the magnetisation are shown in figure (5.18); in those simulations the

minimum singular value in the truncation σmin = 1.10−6, the tolerance on the error (as defined

in section 3.2.2) was 1.10−18 and the maximal number of iterations was 200.

An analogous plot for the free energy is given in figure (5.19). It can easily be seen that the

correct limits, as derived in section 4.2.7 are retrieved: the low-temperature limit is f = −2−h,

while in the high-temperature limit f approaches −T ln(2). Another comparison of the limits

is shown in figure (5.20), where the free energy for both the 1D and 2D Ising model are shown

for a few values of h. In that figure, the curves are grouped in colour by their low-temperature

limit: the free energy in 1D for an external field h resembles the free energy in 2D for h − 1.

Of course, for the magnetisation one does not find the same degree of resemblance due to the

absence of a phase transition in 1D. But nonetheless, and certainly as h increases, the same

grouping as for the free energy is found.
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Figure 5.18: Magnetisation of the 2D Ising model with an external field h.

Figure 5.19: Free energy of the 2D Ising model with an external field h.

It is expected that in 3D, the case h− 2 will correspond to h− 1 in 2D and h in 1D. That this

is indeed the case, is shown in figure (6.7).

Figure (5.22) shows how the number of iterations needed for convergence changes as h is

Figure 5.20: Free energy of the 1D and 2D Ising model for various external fields h.

increased. It is clear that this number decreases, and the maxima of the curves move to the

right as h grows. This is consistent with the slower and smoother decrease of the magnetisation
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Figure 5.21: Magnetisation of the 1D and 2D Ising model for various external fields h.

shown in figure (5.18). It is noteworthy that the curves are adapted in such a way that they are

all enveloped by the curve for h = 0, and that each curve bounds all the curves for higher h.

Physically, this can easily be explained, e.g. for high temperatures all curves approach the h = 0

curve since at high temperatures the ordering effect of h is cancelled due to thermal fluctuations.

This physical rationale is transferred to the ‘computational level’ of the simulation through the

convergence rate of subspace iterations, see section 2.5.2.

Figure 5.22: Number of iterations needed for convergence, for various external fields h.

5.6 Monte Carlo Simulations

Monte Carlo methods are a widespread approach to problems in statistical physics. As there

exists a vast variety of algorithms, a rigorous comparison of TN methods to Monte Carlo methods

is not straightforward. Therefore, only a short introduction to Monte Carlo methods is given

in this section, followed by some numerical results. The main interest for using Monte Carlo

methods within this dissertation is to provide us with some results in the three-dimensional

case. In two dimensions, where an analytical solution is known, it was easy to check whether

the numerical solution gives the proper results, at least when h = 0. In three dimensions, we
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shall use a Monte Carlo solution instead.

5.6.1 Introduction to Monte Carlo Methods - Metropolis-Hastings Algo-

rithm

Basic Idea

The exact calculation of the partition function in equation (4.3) would require a sum over

all the possible configurations of the lattice, i.e. 2N terms for an N × N -lattice. As this

is generally not feasible, in Monte Carlo simulations they are replaced by a limited number

of ‘representative’ configurations. This requires sampling from the configurations that give the

greatest contributions and is called importance sampling. Of course, various technical conditions

need to be fulfilled, for which we refer to the literature [51].

There exist a variety of Monte Carlo algorithms that can be used in statistical physics. We have

used a simple method, namely the Metropolis-Hastings algorithm [29] [21].

Metropolis-Hastings Algorithm

Initially, the lattice is configured in a random state with a certain probability for the spin to be

+1. An order at which to look at the lattice sites is also determined at random.

When considering a site, the energy advantage of a spin flip is calculated. This depends on

the neighbouring sites, so for each site the neighbours are stored in a N2 × 4-matrix. If it is

energetically advantageous, the spin is flipped. However, if a spin flip raises the energy, a spin

flip is not excluded. In that case, the spin flip is accepted with a Boltzmann probability e−β∆E .

The magnetisation is obtained by summing all the spins and dividing that sum by the number

of sites. For the energy, each spin is multiplied by the spins on the neighbouring sites and then,

again, the normalised sum over the whole lattice is taken. This is then repeated for a number

of iterations to average out fluctuations. Having said that, sampling is only started after the

lattice has come into equilibrium. Indeed, when starting from a random initial configuration, it

takes a number of iteration steps for the lattice to evolve towards an equilibrium state.

Discussion

It should be clear that the approach used in Monte Carlo methods is very different from the

one used in TN algorithms. In addition to the freedom of choice in Monte Carlo algorithms,

this further hinders a comparison between the two strategies. For example, the precision of TN

methods is determined by the bond dimension and the number of iterations. In contrast, the

accuracy of Monte Carlo methods depends on the lattice size and the number of iterations.

To avoid comparing cheese and chalk, one could therefore - in the case where an analytical

solution is known - impose a certain accuracy and determine the corresponding bond dimension

and lattice size respectively. The computational efficiency of the two approaches could then be

compared by using these values for the bond dimension and lattice size5.

It is also noteworthy that there are physical quantities that are more suited to one method than

5Of course, one should also be wary of the influence of the programming language.
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to the other. For example, as the lattice configuration is explicitly constructed in the Metropolis-

Hastings algorithm, correlations are easily calculated, and hence the magnetic susceptibility as

well. The corresponding calculation in the TN viewpoint is more involved, as explained in

section 5.4.2. On the other hand, with TNs it is easy and natural to calculate the free energy

(see section 5.2), while this is not straightforward in Monte Carlo simulations as the free energy

cannot be expressed as a canonical ensemble average.

5.6.2 Some Results and Their Comparison with TN Simulations

Figures (5.23) and (5.24) show some results of Monte Carlo methods compared to the results

using the corner method. For the Monte Carlo simulations, 500 iteration steps were used to

allow the lattice to equilibrate, followed by another 500 iteration steps for calculating the mag-

netisation and free energy. This was done for three lattice sizes, namely 10 × 10, 20 × 20 and

50× 50. A good agreement between TN and Monte Carlo results can be seen, quantitatively for

the free energy and the ferromagnetic magnetisation, and at least qualitatively for the magneti-

sation around the phase transition6. As expected, the accuracy of the Monte Carlo simulations

increases with increasing lattice size.

Figure 5.23: Magnetisation for the 2D Ising model resulting from TN and Monte Carlo methods.

6The fluctuations in the Monte Carlo simulations can be reduced by increasing the number of iterations or by
increasing the lattice size. However, as the Metropolis-Hastings algorithm suffers from so-called critical slowing
down around the phase transition, other approaches such as cluster algorithms can give better results there.
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Figure 5.24: Free energy for the 2D Ising model resulting from TN and Monte Carlo methods.



60 CHAPTER 5. NUMERICAL RESULTS IN 2D



Chapter 6

Numerical Results in 3D

After having discussed the 2D Ising model in the previous chapter, we now continue with the

3D case. In the first section, details on the calculations are given, similarly to the first two

sections of Chapter 5. In the second section, the physical results themselves are given, and they

are compared to a Monte Carlo simulation as well.

6.1 Calculations in 3D

When tackling the 3D Ising model, many of the concepts used in the 2D case can be transferred.

In 2D, the tensors M of the TN were composed of four t matrices and one central δ-tensor. Now,

in one extra dimension, M has six indices and is hence built up out of six t matrices and a δ.

The calculation of the magnetisation is a straightforward generalisation of section 5.2.1 as well.

The normalisation factor shown in figure (5.3) is replaced by the network drawn in figure (6.1).

In that network, L, S and R are obtained by applying the corner method to the central tensor

E −M − E∗. The magnetisation itself is given by the ratio of (1) the network of figure (6.1)

with MS (cf. equation (5.3)) instead of M , to (2) the original network of figure (6.1).

In order to access the free energy, we need the influence of adding one site again. The contraction

Figure 6.1: TN needed for the calculation of the magnetisation.

over the first, ‘vertical’, dimension is shown in figure (6.2). This has reduced the original three-

dimensional network to a two-dimensional network with the appropriate normalisation factor.

The next step is to reduce both two-dimensional networks so that, within them, only the influence

of adding one site is retained. In similarity to the two-dimensional case as put forward in section

5.2.2, this requires the calculation of the ‘free energy’ of the resulting C- and c-networks. So
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indeed, the free energy is finally obtained by f = −T ln(
√
x) with x defined as in figure (3.15),

where this quantity was used as the convergence measure in the three-dimensional contraction

algorithm.

Figure 6.2: First contraction for the free energy in 3D.

6.2 Physical Results

6.2.1 2D Ising Model Using Projectors

As the algorithm for contraction in 3D involves applying the 2D corner method to the tensor

E−T −T ∗−E∗, the computational cost is high. Indeed, in 2D the corner method was used on

a tensor of rank four with index dimension 2, whereas the index dimension of E − T − T ∗ −E∗
is 4D2 with D the bond dimension of the environment E. Increasing the bond dimension as

much as in 2D will therefore be impossible. As this in itself sets a limit on the accuracy of the

final result, we shall first apply the projector-based method to the 2D case1. This provides us

with the assurance that the method works properly.

Before showing a result, a small remark on the truncation should be made. When optimising

the projector, the dimension of the subspace on which it projects, is fixed. For 2D, this is a

drawback compared to singular value induced truncation. In the 3D case, however, very limited

increase in bond dimension is possible, so fixing it to a certain (low) value is a necessity anyway.

Figure (6.3) shows, as an example, the magnetisation for the 2D Ising model. The graph contains

three results: one obtained from the corner method with increasing the bond dimension, a second

one from the corner method without an increase in the bond dimension. The third set of data

are the results of the projector method, also without an increasing bond dimension. It is clearly

visible that the projector method is less stable than the corner method, but nonetheless, there

is an obvious agreement between the two methods.

6.2.2 The Anisotropic Ising Model

In the most general formulation of the Ising Hamiltonian, cf. equation (4.1), the interaction

strength Jij can depend on the lattice sites. Until now, we have alway considered the interaction

to be constant, but it is interesting to add anisotropy to the interaction. Going back to the two-

dimensional Ising model, we can take Jx 6= Jy where x and y denote the two dimensions of the

lattice. Jx is, as in the constant-J case, rescaled to unity, and Jy is allowed to vary in [0,1].

1The details of this algorithm were not given in Chapter 3, but it requires no great effort to derive them from
the 3D algorithm.
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Figure 6.3: Comparison of the magnetisation as obtained (1) in the corner method, (2) in the corner
method without increasing the bond dimension, and (3) in the projector method without
an increase in the bond dimension.

Of course, it is very easy to implement this: it suffices to use t with a different J horizontally

and vertically in the construction of the tensor M in figure (5.2). Because the corner method for

network contraction works with As horizontally and Bs vertically, it can cope with anisotropy

without further adaptations.

The Ising model can then be studied for varying Jy, just as several physical quantities were

discussed for the isotropic case in section 5.2. However, that is not what interests us here.

It is the special case Jy = 0 that is of interest here. Taking Jy = 0 means that instead of

being properly two-dimensional, the lattice can better be thought of as an infinite collection

of non-interacting linear chains. Hence, when performing the calculations, the results from the

one-dimensional model should be obtained. An example for the free energy is shown in figure

(6.4). It is straightforward to derive that the low-temperature limit for the free energy is now

equal to f = −Jx − Jy = −1− Jy, which agrees with the graph.

Studying the one-dimensional model using a method devised for use in two dimensions is of

Figure 6.4: Free energy for the anisotropic Ising model in two dimensions.

course complete overkill. But if an analytical solution is not known in a certain dimension, this

procedure allows us to verify the method in a lower dimension. This is precisely what we shall

now do in three dimensions. By putting Jx = Jy = 1 and Jz = 0, we should get the results of
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the two-dimensional case. As an example, this is shown for the magnetisation in figure (6.5).

Figure 6.5: Magnetisation for the 2D model by studying the 3D model for Jz = 0.

6.2.3 Results for the 3D Ising Model Itself

Finally, we shall now discuss the results for the three-dimensional Ising model itself, both without

an external field and with an external field. Just like in two dimensions, the presence of an

external field makes the problem computationally easier. As described in section 6.1, the measure

for convergence x leads to the free energy by f = −T ln(
√
x). Inaccuracies can hereby be inflated

and therefore
√
x itself is also plotted here. In lower dimensions, this was not necessary because

the simulations were more accurate and stable there.

Figures (6.6), (6.7) and (6.8) respectively show the magnetisation, free energy and
√
x for a

bond dimension equal to two. These results qualitatively fulfil the expectations and obey the

right low- and high-temperature limits on the magnetisation and the free energy. For the free

energy, results from 1D and 2D are added to the figure, as in figure (5.20). It was seen in that

figure that the free energy of the 1D case with field h is slightly lower than the free energy for

the 2D case with field h− 1 (in the mid-temperature region). Now, we can also see how the free

energy of the 3D case with field h − 2 is still a little higher (by about the same amount as the

difference between the 1D and 2D curves). It is by no means proven here that this should be

the case, but it is an indication that good results are obtained for the free energy.

A shortcoming is the lack of a well-defined phase transition in the magnetisation when h = 0. In

figure (6.6), a Monte Carlo simulation is included that does show a clear phase transition. The

vertical line is positioned at the approximate critical temperature Tc ≈ 4.5. The fact that the

TN simulation does not show a clear phase transition is probably due to the low bond dimension,

as a similar effect was observed in 2D (see figure (5.8) for the influence of the bond dimension

on the phase transition).

When looking back at the contraction method as described in section 3.3.1, the isometries used

in the truncation step are not necessarily equal in the two planar directions. However, for the

Ising model, there is π/2 rotational symmetry and one could therefore force the horizontal and

vertical isometries to be equal. When comparing this to the case where they are allowed to

be different, it was found that more stable results were obtained in the latter case. Indeed,

when relaxing the rotational symmetry, more degrees of freedom are available to improve the
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truncation step.

It is clear from these results for the magnetisation that there is room for improvement, in spite

of the qualitatively good results. Further research should shed light on how to increase the

accuracy of the 3D method without increasing the computational cost to unattainable heights.

Figure 6.6: Magnetisation for the 3D Ising model for various external fields h. A Monte Carlo simulation
(h = 0) is also included, as is a vertical line at the position Tc ≈ 4.5.

Figure 6.7: Free energy for the 1D, 2D and 3D Ising models for various external fields h.
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Figure 6.8:
√
x = e−f/T for the 3D Ising model for various external fields h.



Chapter 7

Conclusions

Now that we have come to the end of this dissertation, this chapter provides the reader with a

concise non-technical overview of the past chapters and a few concluding remarks.

In this dissertation, a classical system, i.e. the classical Ising model, was examined. The ten-

sor network formalism was used to address this model. This formalism springs from quantum

many-body physics, where it is used in classical simulations of quantum systems. These simu-

lation methods in quantum physics find their way into classical physics via quantum-classical

mapping. The elements from quantum many-body physics and the tensor netwerk formalism

that are needed for the understanding of this dissertation were given in Chapter 2.

The reason for choosing the Ising model is that it behaves in a physically interesting way despite

its very simple Hamiltonian (e.g. there is a phase transition in two and higher dimensions). As

such, it is ubiquitous in statistical physics and the numerical results obtained in this work can

be compared to the expansive literature on the Ising model. Some theoretical elements were

therefore presented in Chapter 4.

In Chapters 5 and 6 the results of the simulations for, respectively, the two-dimensional and

three-dimensional Ising model were presented and discussed. It was found that these results

concur with the theoretical results, certainly in two dimensions. In three dimensions, good re-

sults were obtained for the free energy. However, as an increase in the bond dimension is very

restricted due to the high computational cost of the 3D algorithm, the magnetisation did not

show a well-defined phase transition in the absence of an external field. Further improvements

should be made in order to remedy this.

Of course, in the application of the methods described in Chapter 3, we need not limit ourselves

to the Ising model. It should be interesting to explore the performance of the computational

methods when applied to other physical systems, be they of classical or quantum-mechanical

nature.
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Appendix A

Scaling of QR-decomposition

In this appendix, we give an estimate for the number of operations needed to perform a thin

QR-decomposition of an m× n-matrix. As we do not need Q explicitly, we only consider at the

steps needed to find R.

Here, we analyse a QR-algorithm based on Householder transformations. There are other possi-

ble approaches, but with this algorithm it is found that QR-decomposition is not computationally

more demanding than the RA step in the single-layer contraction algorithm. Possible more effi-

cient QR-algorithms would a fortiori comply with this observation, thus not changing the overall

computational cost of the single-layer contraction algorithm.

Householder transformations are unitary linear transformations that perform reflections through

hyperplanes through the origin. If n is a unit vector orthogonal to the hyperplane, the reflection

of a vector x through the hyperplane is given by

x− 2 〈x, n〉n (A.1)

In our case, we can look at the first column of A ∈ Km×n as a vector. By applying a suit-

able Householder transformation, this vector can be projected onto the basis vector e1 =

(1, 0, . . . , 0)T . The hyperplane corresponding to this projection is a bisection plane of e1 and x,

the non-normalised normal of which is given by x − ‖x‖e1. Next, the same procedure can be

repeated on the submatrix of the new A where the first row and column are discarded, and so

on until the new A is upper-triangular (this takes min(m− 1, n) steps). This is R in A = QR,

and all the unitary Householder matrices together form Q.

In order to determine the scaling of a QR-decomposition, we want to determine the number of

operations needed in the following algorithm.
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Algorithm 1 QR-decomposition using Householder transformations

[m,n]=size(A)

1: for i=1:min(m-1,n) do
2: x=A(i:m,i) . vector to be projected
3: N=x
4: N(1)=N(1)-norm(x)
5: N=N/norm(N) . normal to the hyperplane
6: A(i:m,i:n)=A(i:m,i:n)-2*N*N’*A(i:m,i:n) . actual Householder transformation
7: end for

Let us denote the size of the submatrix of A under consideration in the ith step by k × l with

k = m− i+ 1 and l = n− i+ 1.

1. The construction of N in line 4 requires the calculation of the norm of a k-dimensional

vector and one subtraction. The norm consists of a square root, k multiplications and

k − 1 additions. Let us count the square root as one operation, even though it is compu-

tationally more demanding than an addition or a multiplication (but even when counting

for a square root a number of operations up to the order kl, our final estimate will not

change). The norm requires 2k operations in total.

2. In line 5, another norm is calculated (2k operations), and k divisions are needed.

3. l inner products of length-k vectors need to be calculated in line 6, requiring l(2k − 1)

operations. k more operations are needed for the scalar multiplication of 2 with N . Every

inner product also needs to be multiplied with N (kl operations) and finally subtracted

(again, kl operations).

The total number of operations per iteration step is 4kl+ 6k− l+ 1, in which the term 4kl will

dominate. The sum over i yields

n∑

i=1

4kl =
n∑

i=1

4(m− i+ 1)(n− i+ 1) ≈ 2mn2 − 2n3

3
(A.2)

where it was assumed that n ≤ m− 1. In this result, the two third-order terms are shown, but

the dominant one will be the first one in our case.

In the single-layer contraction algorithm, A is a dD ×D-matrix, so the final scaling is O(dD3).



Appendix B

Transfer Matrix in the Presence of

an External Field

B.1 Square Root

The transfer matrix T for the Ising hamiltonian in the presence of an external field is given by

T =

[
exp(βJ + βh) exp(−βJ)

exp(−βJ) exp(βJ − βh)

]
(B.1)

In order to have a symmetrical TN, we need a square root of T . In the first place, we check

whether T is positive definite and whether consequently, there exists a unique positive-definite

square root t. According to Sylvester’s criterion, a necessary and sufficient condition for T to

be positive definite is that all its leading principal minors are positive1.

Therefore, exp(βJ + βh) and exp(2βJ) − exp(−2βJ) should be positive, which is indeed the

case. As β →∞, the second term becomes zero. It is tempting to assert that in that case, T is

positive-semidefinite. In this case, that is true, but in Sylvester’s criterion, one needs to check

if all principal minors are non-negative, i.e. also exp(βJ − βh) ≥ 0.

Defining the square root t as

t =

[
t11 t12

t21 t22

]
(B.2)

it is easily verifiable through direct calculation of t2 that t12 = t21. Opposed to the h = 0 case,

however, t11 6= t22. The expressions for the components of t are lengthy and were calculated

using Maple2. By putting

x = exp(4βJ + 4βh)− 2 exp(4βJ + 2βh) + exp(4βJ) + 4 exp(2βh) (B.3)

and

y = exp(2βJ) + exp(2βJ + 2βh) (B.4)

1As a reminder: ‘principal’ means that the same rows as columns are deleted and ‘leading’ means that the last
several rows and columns are deleted

2It is therefore very well possible that the expressions may be simplified.
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we get

t11 =

√
2

4

1√
x

[
exp

(
−βJ

2
− βh

2

)(√
y −√x+

√
y +
√
x

)√
x (B.5)

+ exp

(
3βJ

2
+

3βh

2

)(√
y +
√
x−

√
y −√x

)

+ exp

(
3βJ

2
− βh

2

)(√
y −√x−

√
y +
√
x

)]

t12 = t21 =

√
2

2
exp

(
−βJ

2
+
βh

2

) √
y +
√
x−

√
y −√x√

x
(B.6)

t22 =

√
2

4

1√
x

[
exp

(
−βJ

2
− βh

2

)(√
y −√x√x+

√
y +
√
x
√
x

)
(B.7)

+ exp

(
3βJ

2
+

3βh

2

)(√
y −√x−

√
y +
√
x

)

+ exp

(
3βJ

2
− βh

2

)(√
y +
√
x−

√
y −√x

)]

The zero-field expression of equation (5.2) can easily be retrieved. When h = 0, the last two

terms of t11 and t22 cancel each other. In the remaining terms,
√
y ±√x can be rewritten as

a term proportional to
√

cosh(βJ) or
√

sinh(βJ). All the remaining factors cancel up to the

overall factor 1√
2
.

B.2 Rescaling of the External Field

The discussion up till now was mathematically correct, but equation (B.1) is in fact only in

1D the right transfer matrix. The Ising Hamiltonian (4.1) consists of interaction terms - the

J-terms - and one-site terms - the h-terms. In the TN description, a matrix T is placed on each

bond index, in the first instance to describe the interaction between neighbouring sites.

If one wants to add an external field, it is straightforward to see that terms similar to exp(±βh)

need to be added to the diagonal of T . Indeed, this was shown for the one-dimensional case in

section 4.2.3. However, care should be taken that exactly one unit h of energy is assigned to

every site. In 1D, there are as many T s as there are sites (ignoring potential variations at the

boundaries), so each T needs exp(±βh).

When going to 2D, there are twice as many T s as sites, so each T is only responsible for an

energy amount of h
2 . Therefore, in the previous results, h needs to be replaced by h

2 for the 2D

case. Similarly, in 3D h→ h
3 because there are six nearest-neighbours per site.
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