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Preface

Cataclysmic variables are binary systems consisting of a low-mass red dwarf and an ac-
creting white dwarf. Mass is transferred from the red dwarf to the white dwarf in these
systems, resulting in the formation of an accretion disc around the white dwarf. Aperiodic
broadband flickering variability is generated by the accretion disc. Flickering variability
has previously been studied in great detail in X-ray binaries (XRBs) and Active Galactic
Nuclei (AGN). In these systems, the accreting object is respectively a neutron star or
a black hole. Because these accreting systems all show flickering variability and other
accretion-induced variabilities, it is thought that the physics governing the accretion in-
duced variability is independent of the accreting object.

One of the properties of flickering variability is the linear rms-flux relation, which re-
lates the rms amplitude of the variability of a light curve to its mean flux. The rms-flux
relation has been detected in several XRBs and AGN, and so far in only one CV. With
the advent of the NASA Kepler mission, large amounts of data suitable for its detection
in CVs are now available. The aim of this thesis is to detect the rms-flux relation in as
many CVs as possible in the Kepler field-of-view and to enforce the hypothesis of the
universal nature of accretion.

I would like to thank my promotor Simone Scaringi and co-promotor Christian Knigge.
The more I worked on this thesis, the more interesting the subject became. This is in
great part due to their supervision and extensive knowledge on the subject. Part of this
thesis is made during an Erasmus exchange to the University of Southampton. The Eras-
mus coordinators of KU Leuven and the University of Southampton have helped me a lot
during the application process, for which I am thankful. I would like to thank the staff
of the Institute for Astronomy of KU Leuven and the School of Physics and Astronomy
of the University of Southampton for the pleasant atmosphere, in which the long days of
work did not seem as long. And last but not least, I would like to thank my family and
friends, who have supported me not only during the making of this thesis but throughout
my entire studies.

This research has made use of the SIMBAD database, operated at CDS, Strasbourg,
France. This paper includes data collected by the Kepler mission. Funding for the Kepler
mission is provided by the NASA Science Mission directorate. All of the data presented
in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST).
STScI is operated by the Association of Universities for Research in Astronomy, Inc.,
under NASA contract NAS5-26555. Support for MAST for non-HST data is provided
by the NASA Office of Space Science via grant NNX13AC07G and by other grants and
contracts.
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Summary

The physics governing accretion discs surrounding compact objects is thought to be inde-
pendent of the mass, size or type of the central compact object: the nature of accretion
is thought to be universal. This hypothesis is built on the common characteristics that
all accreting compact objects share, such as similar aperiodic broad-band variability, also
referred to as flickering. One of the fundamental properties of this flickering is the rms-
flux relation, which is a linear relation between the rms amplitude of the variability of a
light curve and its mean flux. The presence of the rms-flux relation in accreting compact
objects can be used to rule out some accretion disc models, as it implies that short and
long time scale flickering are coupled together multiplicatively. The rms-flux relation has
previously been detected in the X-ray light curves of active galactic nuclei and X-ray
binaries. By using Kepler data, it was recently shown that the cataclysmic variable (CV,
accreting white dwarf) MV Lyrae also displays this relation at optical wavelengths. In
this thesis, we search for the rms-flux relation within all CVs in the Kepler field. We
find that the rms-flux relation is consistently found in systems where the data quality
allows its detection. This result strongly enforces the hypothesis of the universal nature
of accretion onto compact objects.

Er wordt gedacht dat de natuurwetten die accretieschijven omheen compacte objecten
beschrijven onafhankelijk zijn van de massa, grootte en type van het centrale compacte
object, of met andere woorden, dat de aard van massaoverdracht universeel is. Deze hy-
pothese is gebaseerd op de gemeenschappelijke eigenschappen die alle compacte systemen
met massaoverdracht delen, zoals aperiodische breedband variabiliteit, ook “flickering”
genoemd. Eén van de fundamentele eigenschappen van flickering is de rms-flux relatie
bij accreterende compacte objecten. Dit is een lineaire relatie tussen de rms amplitude
van de variabiliteit van een lichtcurve en haar gemiddelde flux: hoe meer variabiliteit,
hoe helderder. De aanwezigheid van de rms-flux relatie kan gebruikt worden om enkele
accretieschijfmodellen uit te sluiten, aangezien dit impliceert dat de flickering op korte en
lange tijdsschaal dienen vermengivuldigd te worden. De rms-flux relatie is reeds ontdekt
in de lichtcurves in het X-stralen domein van “active galactic nuclei” en “X-ray binaries”.
Door middel van Kepler data is er recent ontdekt geweest dat de cataclysmische variabele
(CV, accreterende witte dwerg) MV Lyrae ook de rms-flux relatie vertoont in het optisch
domein. In deze thesis zoeken we naar de rms-flux relatie in alle CVs waarvoor Kepler
data beschikbaar is. We vinden dat de rms-flux relatie steeds gevonden wordt in syste-
men waarvan de kwaliteit van de data haar detectie toelaat. Dit resultaat versterkt de
hypothese van de universele aard van massaoverdracht.



Vulgariserende samenvatting

Cataclysmische variabelen (CVs) zijn dubbelsterren die bestaan uit een doorsnee ster en
een witte dwerg (het massieve eindstadium in de evolutie van de meeste sterren). De
meeste dubbelsterren bestaan uit twee sterren, maar bij CVs is er nog een derde compo-
nent: een accretieschijf. Deze schijf ontstaat omdat de doorsnee ster massa overdraagt
aan de witte dwerg. De materie valt echter niet rechtstreeks op de witte dwerg in, maar
cirkelt er omheen en vormt zo een schijf omheen de witte dwerg. Binnen deze accretieschijf
beweegt de materie zich in zo goed als cirkelvormige bewegingen naar het oppervlak van
de witte dwerg toe.

De accretieschijf is de oorzaak van de tot de verbeelding sprekende naam “cataclysmis-
che variabelen”. Geregeld vindt er een plotse uitbarsting van energie plaats. Tijdens zulke
uitbarsting neemt de helderheid van de CV zo hard toe dat ze oorspronkelijk novae, oftewel
nieuwe sterren, werden genoemd. In deze thesis zijn we echter gëınteresseerd in de perio-
den tussen uitbarstingen in, de inactieve perioden. Tijdens inactieve perioden kunnen we
de variabiliteit die door de accretieschijf wordt uitgezonden bestuderen. Deze variabiliteit
wordt ook “flickering” genoemd. Dit soort variabiliteit wordt niet alleen gevonden in CVs,
maar ook in andere dubbelsterren met een accretieschijf, zoals “X-ray binaries” (XRBs)
en “Active Galactic Nuclei” (AGN), waarin de accretieschijf respectievelijk omheen een
neutronenster en een zwart gat is. Naast flickering delen deze drie verschillende syste-
men nog andere eigenschappen. Deze eigenschappen hebben allemaal te maken met de
massaoverdracht en de accretieschijf in deze systemen. Dit leidt tot de hypothese dat de
natuurwetten die de massaoverdracht beschrijven onafhankelijk zijn van het object waar
de massa op invalt, de hypothese van de universele aard van massaoverdacht.

Eén van de eigenschappen van flickering is de rms-flux relatie. Dit is een lineaire
relatie tussen de variabiliteit van een lichtcurve en haar gemiddelde helderheid: hoe meer
variabel, hoe helderder. De rms-flux relatie is meerdere malen gevonden in XRBs en
AGN. Met behulp van de grote hoeveelheden data van NASA’s Kepler satelliet, is het nu
mogelijk om flickering ook in CVs te bestuderen. Desondanks is de rms-flux relatie nog
maar één keer ontdekt in een CV.

In deze thesis worden acht CVs waarvoor Kepler data beschikbaar is bestudeerd.
De rms-flux relatie wordt teruggevonden in twee van hen. Voor de overige CVs laat de
kwaliteit van de data ons niet toe om de relatie te ontdekken. Onze bevindingen brengen
het totale aantal CVs met een ontdekte rms-flux relatie van één naar drie. Bovendien
bevestigen ze de hypothese van de universele aard van massaoverdracht.
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Chapter 1

Introduction

1.1 Cataclysmic variables

Cataclysmic variables (CVs) are binary systems consisting of a white dwarf and a low-mass
red dwarf. Following conventions, the more massive white dwarf is also called the primary
and the low-mass red dwarf the secondary of the system. Unlike most binary systems,
these two stars are not the only components of CVs: the white dwarf is surrounded by
an accretion disc, created by mass transferred from the secondary to the white dwarf. It
is the accretion disc that gives rise to their captivating name and to the wide range of
astrophysical phenomena that CVs display on a wide range of time scales [19, 55].

Thermonuclear runaways of matter piling up on the white dwarf (classical nova erup-
tions) and large releases of gravitational energy within the disc (dwarf nova outbursts) are
the namesake of CVs. These events are violent and sudden: they increase the brightness
of the system dramatically for a period of time ranging from several hours to a couple of
weeks. A classification can be made by means of the type of eruption that a system shows,
together with their durations and recurrences [55]. This classification will be explained
in section 1.1.3.

In this thesis, we are interested in the periods of time in between outbursts rather
than the outbursts themselves. During these quiescent intervals, we are able to probe the
characteristics of the accretion disc surrounding the white dwarf. We are interested in
particular in the linear rms-flux relation which is associated with flickering variability [48,
43]. We will introduce the characteristics of accretion and accretion-induced variability
in section 1.2.

We will now discuss CVs in more detail. Section 1.1.1 expands on the mechanisms
underlying accretion in binary systems, the formation of the accretion disc and the physics
within the disc itself. Section 1.1.2 describes the evolution of CVs and the processes that
drive it. The classification system for CVs will be explained in section 1.1.3.

1.1.1 Accretion in binary systems

Compact interacting binaries are binary systems in which matter from the secondary
accretes onto the central compact object. This central object can be a white dwarf,
neutron star or black hole. A CV is hence a compact interacting binary with a white
dwarf as central object. Binary systems with a neutron star or black hole as central
object are called X-ray binaries (XRBs).

1



CHAPTER 1. INTRODUCTION 2

Roche-lobe overflow

Accretion in these binary systems occurs via Roche-lobe overflow. In order to explain this
mechanism, we need to introduce the Roche potential. The Roche potential approximates
the total force of the binary acting on a test particle. It is an approximation since it
assumes that the orbit of the components of the system is circular and that the components
themselves are point masses. CVs, and compact interacting binaries in general, have
circular orbits as we will see in section 1.1.2. Its components are not point masses, but
are in general sufficiently centrally condensed for this approximation to hold. In a frame
of reference rotating with the binary, the Roche potential can be written as

ΦR(~r) = − GM1

|~r − ~r1|
− GM2

|~r − ~r2|
− 1

2
(ω × ~r)2 ,

with G the gravitational constant, M1 and M2 the masses of the primary and the sec-
ondary, and ~r1 and ~r2 the position vectors of their centres. The angular velocity of the
binary, relative to an inertial frame, is denoted by ω [19, 12].

Figure 1.1: The Roche potential of a binary system with a mass ratio q = 0.25. Shown
are the centres of mass of the primary and secondary (M1, M2), the centre of mass of the
binary (CM) and the Lagrangian points L1, L2 and L3. L4 and L5 are local maxima of the
Roche potential. The equipotentials are labelled in order of increasing Roche potential.
The heavy line marks the Roche-lobes surrounding the components. Figure from [12].

Figure 1.1 shows a contour plot of the Roche potential for a system with mass ratio q =
M2/M1 = 0.25. The primary of this system is hence four times as massive as its secondary.
The contours plotted are equipotential surfaces. The binary system is surrounded by a
dumbbell-shaped critical equipotential surface, the part surrounding each component is
known as its Roche-lobe. Within the Roche-lobe, the motion of matter is dominated by
the gravitational pull of the component. It is therefore the largest equipotential surface
that can contain the mass of that component before it becomes unbound. The shape of
the Roche-lobes of a binary system is solely determined by its mass ratio. Three physically
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meaningful parts of the Roche potential are denoted on figure 1.1: the inner Lagrangian
point L1 and the outer Lagrangian points L2 and L3. At the Lagrangian points, the total
force acting on the test particle is zero. Matter associated with a star can hence escape
from its Roche-lobe via one of these Lagrangian points. The inner Lagrangian point lies
in between the Roche-lobes surrounding the binary components and is a saddle point in
the Roche potential. In CVs and all other compact interacting binaries, the secondary
overflows its Roche-lobe. Matter can hence freely flow over into the Roche-lobe of the
primary via the inner Lagrangian point: this process is called Roche-lobe overflow [12, 55].

Formation of the accretion disc

As material from the secondary enters the Roche-lobe of the white dwarf via the inner
Lagrangian point, it has non-zero angular momentum with respect to the white dwarf. It
therefore does not directly accrete onto the surface of the white dwarf. From the viewpoint
of the white dwarf, it is as if material escapes through a nozzle rotating around it in the
binary plane [12, 55]. This is visualised in figure 1.2.

Figure 1.2: Visualisation of Roche-lobe overflow from the secondary to the primary
through the inner Lagrangian point L1. M1 and M2 are the masses of the primary and
secondary, CM denotes the centre of mass. Figure from [12].

Because the matter has non-zero angular momentum with respect to the white dwarf,
it starts orbiting the white dwarf. It follows an elliptical orbit in the binary plane. The
presence of the secondary causes this orbit to precess through tidal effects. The stream
of matter hence intersects itself, resulting in energy dissipation via shocks. Angular mo-
mentum is not dissipated as easily. The matter will therefore tend to the orbit associated
with the least energy for its angular momentum: a circular orbit. The white dwarf is now
surrounded by a ring of matter [12].

The matter within the ring experiences dissipative processes such as collisions, shocks,
and viscous dissipation. These processes convert some of the energy of the bulk orbital
motion into heat, which will be partly radiated away. The orbital energy of the ring hence
decreases, making the ring spread out to smaller radii (closer to the white dwarf). As a
circular orbit has the least energy, the matter spirals slowly inwards to the white dwarf
through a series of approximately circular orbits in the binary plane. The spiralling-in of
matter implicates a loss of angular momentum. The time scale on which the matter can
redistribute its angular momentum is in general much longer than both the time scale on
which it loses energy by radiative cooling and the orbital time scale. The matter will hence
lose as much energy as possible at a given angular momentum. As no external torques
are present, angular momentum can only be lost by internal torques which transfer it
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outwards. The outer part of the disc will therefore regain angular momentum and spiral
outwards [12, 55].

The original ring will hence have spread out to both smaller and larger radii: the
accretion disc has formed. Figure 1.3 illustrates the various processes described above in
a schematical way.

Figure 1.3: Illustration of the initial formation of a ring around the primary and its
evolution into an accretion disc. Figure from [52].

Accretion disc physics

In general, we can neglect the self-gravity of the disc as its total mass is sufficiently
small and its mean density is much lower than that of the primary and of the secondary.
The circular orbits within the disc are therefore Keplerian. These Keplerian orbits imply
differential rotation within the disc, as the angular velocity of matter depends on the
radius of its orbit. Since adjacent rings in the disc move past each other with different
velocities, any viscous processes in the flow will generate heat from the shearing flow.
As explained in the previous section, the dissipation of the heat generated by viscous
processes decreases the orbital energy within the disc, making matter spiral inwards. The
angular momentum redistribution associated with this process causes matter to move to
larger radii [12, 55].

The viscosity in the disc can be described by the α-formalism of Shakura & Sunyaev
(1973). In this formalism, viscosity ν is given by

ν = αcsH

with cs the speed of sound and H the thickness of the disc. Viscosity is hence linearly
proportional to the thickness of the disc, which is related to its total pressure within a
Keplerian disc. The α-formalism is a parametrisation of viscosity rather than a physical
prescription: everything we do not know about the process is encoded in the viscosity
parameter α [44]. The main viscous process at work in the disk is thought to be turbulent
viscosity, caused by the turbulent motions of the matter in the disk [19, 55].
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At the inner and outer edges of the accretion disc, two interesting features occur: the
boundary layer and the bright spot. As the matter approaches the surface of the white
dwarf, its velocity remains equal to the Keplerian velocity. When it enters the boundary
layer, the matter decelerates to the white dwarf’s surface velocity. A large amount of
energy is released during this deceleration, as much so that the boundary layer can emit
up to half of the total luminosity of the system. How the energy is radiated away depends
on the optical depth of the boundary layer. For an optically thick boundary layer, the
radiation has to diffuse through a distance H within the disc before emerging. Figure
1.4 gives a schematic view of this process. Emission of optically thick boundary layers is
typically in the soft X-ray domain. If the boundary layer is optically thin, the radiation
can escape directly from the shock front formed where the matter meets the white dwarf’s
surface. The radiation is emitted at the shock temperature, giving in general rise to hard
X-ray emission [55].

Figure 1.4: Schematic view of an optically thick boundary layer, shown in a plane per-
pendicular to the disc. Figure from [13].

At the outer edge of the accretion disc, the Roche-lobe overflow of the secondary crashes
into the disc. This creates a shock-heated area at the outer rim of the disc, also called the
bright spot. The bright spot hence also emits radiation, and in some systems it emits more
energy at optical wavelengths than the primary, secondary and accretion disc combined
[55].

Eruptions and outbursts

We have previously mentioned that we can distinguish between two types of cataclysmic
events: nova eruptions and dwarf nova outbursts. Nova eruptions are caused by hydrogen-
rich matter from the secondary piling up on the surface of the white dwarf. As the
matter piles up on the surface and forms a non-degenerate layer, its pressure increases
and it subsequently becomes degenerate. The equation of state of degenerate matter
is independent of temperature: if the temperature and density of the degenerate layer
are high enough for hydrogen fusion to occur, any small increase in temperature leads
to runaway hydrogen fusion. The runaway ends when the temperature of the layer is
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sufficiently high to end degeneracy. The layer expands to reduce the overpressure: the
layer “explodes” [19, 55].

Dwarf nova outbursts are caused by disc instabilities. The energy released originates
from the gravitational field of the white dwarf rather than a thermonuclear runaway.
During a quiescent interval, the accretion disc has a low viscosity and hence an inefficient
exchange of angular momentum. The mass transfer rate through the disc is therefore
smaller than the mass transfer rate from the secondary. This results in matter accumu-
lating in the disc, which increases the density and the temperature in one of its annuli.
When a critical surface density is reached, the temperature of the annulus is sufficiently
high to ionise hydrogen. The ionisation of hydrogen makes the matter transition to a
high-viscosity state. This high-viscosity state propagates inward and outward in the disc
until the entire disk is in this state. Angular momentum and mass transport now occurs
very efficiently through the disc: the accumulated matter in the disc is drained onto the
white dwarf, releasing a large amount of gravitational energy [58, 19, 55].

1.1.2 Evolution of cataclysmic variables

CVs are close binary systems, meaning that the distance between the components is suf-
ficiently small so that a force additional to the gravitational force governs the system as
well. In this case the additional force is the tidal force, which circularises the system’s
orbit, one of the assumptions made in the Roche potential. Tidal effects also strongly
distort the shape of the secondary, making it tear-shaped instead of spherical. CVs are
also semi-detached binary systems since the secondary overflows its Roche-lobe, which
causes an accretion disc to be formed [55].

CVs are close, semi-detached binary systems because of orbital angular momentum loss,
causing its components to slowly spiral towards each other. This decrease in orbit is a
remnant of the common envelope phase of their binary evolution, which we will not ex-
pand on as it lies beyond the scope of this thesis. Angular momentum loss hence decreases
the separation of the components, making them interact more strongly. Note that as the
orbit decreases in size, the orbital period of the system decreases as well.

Initially, the angular momentum loss is caused by magnetic braking. For this to occur
the secondary needs to have a magnetic field and a stellar wind. The magnetic field is
generated by a “dynamo” located between its radiative core and convective envelope.
The magnetic field lines can be thought to be frozen in to the bulk of the secondary,
making them co-rotate with the star. The secondary’s stellar wind consists of hot ionized
matter and is hence strongly coupled to the magnetic field. Because of this, the wind
gains angular momentum when it moves outwards. When its kinetic energy exceeds the
magnetic energy, the wind breaks free and carries off the angular momentum. The strong
tidal interaction between the components implies that angular momentum carried away
from the secondary reduces the orbital angular momentum of the system [19, 55].

While the orbit of the system is reduced, the secondary loses mass via Roche-lobe over-
flow. When its mass reaches approximately 0.2 M�, the interior becomes fully convective.
This destroys the secondary’s magnetic field and stops the angular momentum loss via
magnetic breaking. The mass loss rate of the secondary is subsequently reduced, causing
the secondary to contract and eventually lose contact with its Roche-lobe, stopping mass
loss all together. The system, now a detached binary, still loses angular momentum but
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via a different mechanism: gravitational radiation. At an orbital period of about 3 h, the
components are sufficiently close together for gravitational radiation to cause significant
angular momentum loss. The orbital period hence continues to decrease. At an orbital pe-
riod of about 2 h, mass transfer starts again since the secondary’s Roche-lobe has shrunk
sufficiently for it to overflow again. When the period lies between about 2 and 3 h, the
system lacks mass transfer, which decreases the flux emitted drastically and makes the
system hard to detect. This range in period is hence called the period gap [19, 55, 31].

The decrease in orbital period through angular momentum loss stops when a period
of approximately 80 min, also known as the period minimum, is reached. The secondary
can be characterised by the exponent α of the mass-radius relationship (in solar units).
In main sequence stars, α is approximately equal to one. At the period minimum, the α
characteristic to the secondary is reduced from its near-main sequence value to 1/3. This
is because the severe mass loss it has experienced during the evolution has driven the
secondary away from thermal equilibrium. In CVs, the period minimum coincidentally
occurs when the secondary star has evolved into a brown dwarf. The CV now consists
of two degenerate objects, namely the white dwarf primary and brown dwarf secondary.
Since a brown dwarf responds to mass loss by expanding (instead of contracting), the
period of the system starts to increase. CVs that have evolved beyond the period minimum
are therefore called period bouncers [19, 55, 30].

1.1.3 Classification of cataclysmic variables

Several classification systems have been used to order the CV zoo, where the oldest
systems merely rely on the general characteristics of the light curve. As new insights
into the physics governing CVs and their accretion discs were obtained, many of the old
classes had to be merged or redefined [55]. This resulted in a simpler system, which we
will briefly discuss.

Classical novae Classical novae (CN) have only one observed eruption. As mentioned
in section 1.1.1, the eruption is caused by a thermonuclear runaway of the hydrogen-
rich matter of the secondary piling up on the white dwarf’s surface. The increase in
brightness during the eruption ranges from 6 to 19 magnitudes and is inversely correlated
to the duration of the eruption [55].

Dwarf novae The cataclysmic events of dwarf novae (DN) are outbursts which are, as
mentioned in section 1.1.1, large releases of gravitational energy. During the outburst,
the increase in brightness ranges from 2 to 5 magnitudes. Every system has a well-defined
quiescent interval between outbursts, which ranges from a couple of days to several years.
The duration of the outburst ranges from 2 to 20 days, and is correlated with the duration
of the quiescent interval between them. The dwarf novae consist of three subclasses, based
on the morphology of their light curve [55]:

• SU UMa stars have occasional superoutbursts. These outbursts are both brighter
and longer than the normal dwarf nova outbursts and appear to occur more regularly.
We will expand on the origin of superoutbursts in chapter 2.
• Z Cam stars have long standstills at about 0.7 times the maximal brightness. Out-

bursts do not occur during a standstill.
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• U Gem stars are dwarf novae that are neither SU UMa or Z Cam stars.

Recurrent novae Recurrent novae (RN) are systems that were previously thought to
be CN, but have been found to repeat their eruptions. The distinction between DN and
RN can be made spectroscopically: during RN and CN eruptions a large shell is ejected,
which is not the case during DN outbursts [55].

Nova-like variables Nova-like variables (NLs) include all CVs without outbursts or
eruptions. The lack of cataclysmic events is due to the stable rate of mass transfer
through their discs. These systems include pre-novae, post-novae and Z Cam stars in
permanent standstill [55].

Magnetic CVs In magnetic CVs (mCVs), the white dwarf has a magnetic field. As
the accreted matter is hot and ionized, it follows the magnetic field lines of the white
dwarf and does not form an accretion disc, either partly or completely. The formation
of an accretion disc depends on the strength of the magnetic field: very strong fields
force matter to accrete directly onto the magnetic poles of the white dwarf, while more
moderate fields only partly disrupt the accretion disc. Even with a partial accretion disc,
the behaviour of mCVs differs strongly from non-magnetic CVs [55].

1.2 Accretion-induced variability

Periodic variability (quasi-periodic oscillations and periodic modulations) and aperiodic
broadband variability (flickering variability) have been observed in compact interacting
binaries and in active galactic nuclei (AGN, galaxies with a central accreting supermassive
black hole). These types of variability are accretion-induced: they are generated by the
flow of matter from the secondary passing through the accretion disc surrounding the
central object. Flickering variability has several properties, such as frequency dependent
time lags, a lognormal flux distribution and a linear rms-flux relation [48, 8, 43]. The
rms-flux relation is the main topic of this thesis, which will be introduced in section 1.2.1.
The time scale and energy range at which flickering variability can be observed depends on
the object: for XRBs and AGN, flickering variability ranges respectively from milliseconds
to minutes and from days to years in the X-ray domain, for CVs it ranges from seconds
to days in the optical and UV domain. The difference in energy can be explained by
the size of the central accreting object: in smaller compact objects, the inner rim of the
accretion disc surrounding them is smaller. The material therefore falls much deeper
into the gravitational potential well of the compact object, emitting radiation at higher
energies. As the radius of a white dwarf is over an order of magnitude larger than that of
a neutron star or the Schwarzschild radius of a black hole, XRBs and AGN emit in the
X-ray domain, while CVs emit in the optical or UV domain. In smaller compact objects
a larger portion of the disc is located at smaller radii, giving the flickering variability a
larger high-frequency component. The Schwarzschild radius of a black hole scales linearly
with mass, so the inner rim of the accretion disc in AGN is smaller that that in XRBs,
which explains the difference in time scales [4, 41].

The properties of flickering variability in XRBs and AGN have been studied in great
detail. This is mainly thanks to the NASA Rossi X-ray Timing Explorer mission dedicated
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to observing in the X-ray domain, which has yielded data suitable for the detection and
analysis of flickering variability [23]. Flickering variability has not yet been studied in
such detail in CVs as long, uninterrupted high-quality optical data is needed in order to
study flickering variability in these systems. The launch of the NASA Kepler mission in
2009 has provided the scientific community with enormous amounts of such data, hence
facilitating CV research [41]. We will discuss the Kepler mission in chapter 3. Figure 1.5
shows a quiescent interval in the Kepler light curve of V1504 Cyg, one of the CVs that
will be studied in this thesis. Flickering variability is clearly visible during this quiescent
interval.

Figure 1.5: A quiescent interval in the Kepler light curve of V1504 Cyg. Flickering
variability is clearly visible throughout the interval. The average error is equal to 20.3
electrons/second and is therefore not visible in the plot.

1.2.1 The linear rms-flux relation

The linear rms-flux relation is the property of flickering variability on which we will
focus in this thesis. The relation relates the absolute root-mean-square (rms) variability
amplitude of the light curve to its flux in a linear way: the stronger the variability, the
brighter the system [48].

Together with the lognormal flux distribution, the rms-flux relation implies that the
short and long time scales of flickering are coupled. The coupling of time scales is im-
portant when modelling flickering variability. It is achieved by multiplying all variations,
where the variations occur over all time scales. This is done in the fluctuating accretion
model, which will be expanded on in chapter 2. When all variations are added together,
as is done in the shot noise model, the time scales are not coupled. The rms-flux relation
is hence not present, and the flux distribution will be normal instead of lognormal [4].

The rms-flux relation was first discovered in the X-ray light curves of the black hole
XRB Cyg X-1 and the neutron star XRB SAX J1808.4-3658 is by Uttley & McHardy in
2001. The light curves used were obtained by the RXTE mission and have a length of
18 ksec and 23 ksec respectively. Figure 1.6 shows the rms-flux relations found in these
systems [48].
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Figure 1.6: The rms-flux relation detected Cyg X-1 and SAX J1808.4-3658, using RXTE
light curves of respectively 18 ksec and 23 ksec. The dotted lines mark the best-fit models.
Figure from [48].

1.2.2 Universal nature of accretion-induced variability

It is thought that the physics governing accretion onto compact objects is independent
of the type, mass or size of the central accreting object. In other words, accretion onto
compact objects is thought to be universal. This hypothesis is built on the similarities
detected in the accretion-induced variability observed in XRBs, AGN and CVs [43, 39].

Both periodic variability and aperiodic flickering variability have been observed in
all these systems. However, because of the availability of high-quality X-ray data, the
characteristics of flickering variability have been studied in more detail only for XRBs
and AGN. More specifically, the rms-flux relation has been found in multiple XRBs and
AGN [48, 51, 15]. With the advent of the NASA Kepler mission, large amounts of high-
quality data suitable for its detection in CVs are now available. Nonetheless, so far only
one CV has been shown to exhibit the rms-flux relation: MV Lyrae. In figure 1.7, the
rms-flux relation detected in this system is shown. Scaringi et al. (2012) used a Kepler
light curve spanning 10 days for its detection [43].

Figure 1.7: The rms-flux relation detected in MV Lyrae, using a Kepler light curve of 10
days. The dotted line marks the best fitted model. Figure from [43].
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The aim of this thesis is to detect the rms-flux relation in as many CVs in the Kepler field-
of-view as possible. Its detection in other CVs would effectively enforce the hypothesis of
the universal nature of accretion-induced variability. In chapter 2, we will expand on both
the periodic and aperiodic component of accretion-induced variability. The selection of
the CVs that will be analysed and the collection of their Kepler data will be discussed in
chapter 3. The methods used to analyse the data will be explained in detail in chapter 4.
The results of the data analysis will be given in chapter 5. These results will be discussed
in chapter 6.



Chapter 2

Accretion-induced variability in
binary systems

In this chapter we will expand on the nature of accretion-induced variability in compact
interacting binary systems and its origin. Before we can do so, we will discuss the tech-
niques used to examine time series in section 2.1. We then continue with discussing and
simulating the several types of noise relevant to this thesis in section 2.2. Accretion-
induced variability can be split into a periodic and an aperiodic component. In section
2.3, we will discuss the periodic component. The aperiodic component, also known as
flickering variability, will be discussed in section 2.4.

2.1 The power-spectral density function

Consider a time series composed of multiple signals, each with their own specific frequency.
The power of a signal tells us how much this signal contributes to the total power of the
time series. This can be estimated with the power-spectral density function (PSD), which
describes the distribution of power as a function of frequency f . We will use Fourier
techniques to examine time series. By using these techniques we inherently assume that
the time series can be modelled by multiple sinusoids. Note that when using Fourier
techniques, we are working in the frequency-domain instead of the time-domain.

The PSD is calculated as the squared modulus of the discrete Fourier transform of the
time series x(t):

PSD(f) =
1

N
|
N∑
t=1

x(t) e2πift|2,

with N the number of data points [47]. The PSD is then normalised using the rms-
normalisation, in which the PSD is divided by the square of the mean flux level of the time
series. This specific normalisation is used so that the square root of the PSD integrated
over a specific frequency range gives us the fractional rms (root-mean-square) variability in
this range. The units of the PSD in the rms-normalisation are (rms/flux)2/Hz. [5, 34, 43].

Periodic and aperiodic processes in a time series give rise to distinctly different PSDs.
An example of a periodic process is the orbit of a binary system. Depending on the
inclination angle at which the system is observed, this can give rise to a periodic signal
in its light curve with a frequency corresponding to the orbital period. The PSD of
a time series including such a periodic process would show a finite number of peaks,

12
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corresponding to the frequency of the process and its harmonics. Harmonics are present
when a single periodic signal needs to be described by multiple sinusoids. Examples of
aperiodic processes are noise and flickering variability. The PSD of a time series including
an aperiodic process is a smooth function of frequency [47]. In the following section,
various examples of PSDs will be given.

2.2 Types of noise

In this section, we will describe and simulate three types of noise: white, red and zero-
centred Lorentzian-shaped noise. The simulations are performed using the algorithm of
Timmer & König (1995), hereafter T&K, in the programming language Python [22]. After
specifying the PSD-shape, the T&K algorithm simulates a time series that displays the
desired PSD-shape. The time series produced is only one of all possible time series that
satisfy this condition. The T&K algorithm consists of the following steps [47]:

• Specification of the desired PSD-shape that the simulated time series should display
and of the number of Fourier frequencies, i.e. the frequencies in the Fourier domain,
that need to be generated. The Fourier frequencies to be used are evenly spaced
between 0 and 1 Hz.
• For each frequency f , two standard normal distributed random numbers are chosen,

which are then multiplied by
√

1
2
PSD(f), with PSD(f) the desired PSD shape.

The result is used as the real and imaginary part of the Fourier transform of the
to-be-simulated time series.
• In order to obtain a real-valued time series, the Fourier components of the nega-

tive Fourier frequencies are chosen to be the complex conjugate of the previously
obtained Fourier transform. The Fourier components of the positive Fourier fre-
quencies are chosen to be equal to the Fourier transform.
• The time series is obtained by inverse discrete Fourier transformation.

We will convert the units of frequency and time to realistic units for Kepler data. This
is done by multiplying the initial Fourier frequency range with half the Kepler short
cadence sampling interval. Chapter 3 will expand on the short cadence sampling and
other characteristics of the Kepler mission. The unit of flux could be converted to a
realistic unit for Kepler data by adding the average flux observed in the Kepler light
curves of the CVs analysed in this thesis to the generated time series. However, the
average flux observed depends on the brightness of the object and other factors, which
will be discussed in chapter 3. We will hence keep the “virtual” unit of flux, relative
counts, as the main objective of the simulations is to visualise noise time series and their
PSDs rather than to simulate realistic Kepler light curves. Note that the PSDs obtained
for a simulated time series will not be rms-normalised.

2.2.1 White noise

White noise is essential to all astronomical observations. It is mainly an inconvenience as
it is mostly caused by instrumental Poisson noise. Poisson noise differs from white noise,
but this difference decreases with increasing number of measurements. Given the extent
of the Kepler data sets we will analyse, we can say that Poisson noise is equal to white
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noise [16]. The general shape of the PSD of white noise is flat. The PSD is therefore very
simple [47]:

PSD(f) = constant .

In figure 2.1, a white noise time series and its corresponding PSD simulated by the T&K
algorithm are shown. In the simulation, the constant has been given a value of 1. The
flat shape of the PSD is clearly visible in figure 2.1b.

(a) Time series (b) PSD

Figure 2.1: Simulated white noise time series and its corresponding PSD.

The level of Poisson noise of a light curve can be estimated when calculating its PSD in
the rms-normalisation. Using this normalisation, the level of Poisson noise P of a Kepler
light curve x(t) is given by

P (x(t)) = 2

(
1

N

N∑
i=1

xi(t)

)−1

,

where N is equal to the number of data points out of which the light curve x(t) consists.
It has the same units as the rms-normalised PSD [5, 34, 43].

2.2.2 Red noise

The PSD of red noise is given by [47]:

PSD(f) ∼ 1

f
. (2.1)

For the T&K simulation of red noise, we choose the proportionality constant to be equal
to one. The simulated time series and its corresponding PSD are shown in figure 2.2.
Figure 2.2b clearly shows the 1/f relation in the PSD. Red noise is an approximate way
to model flickering variability; its PSD-shape approximates the PSDs observed of XRBs,
AGN and CVs [48, 42].
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(a) Time series (b) PSD

Figure 2.2: Simulated red noise time series and its corresponding PSD.

2.2.3 Zero-centred Lorentzian-shaped noise

Zero-centred Lorentzian-shaped noise is named after the shape of its PSD, which is a
zero-centred Lorentzian in function of frequency. The Lorentzian is characterised by its
break-frequency fb. The shape of the PSD will be equal to the PSD of red noise for
frequencies below fb, with a slope of -1. For frequencies above fb the slope will be -2,
the break frequency hence “kinks” the PSD. The PSD of zero-centred Lorentzian-shaped
noise is given by [6]:

PSD(f) ∼ 1

f
(

1 + f
fb

) .
We will again choose the proportionality constant to be equal to one in the T&K sim-
ulation. Two time series and their corresponding PSDs with different break frequencies
have been simulated: in figure 2.3 the simulated noise has a break frequency of 10−3 Hz,
in figure 2.4 it has a break frequency of 10−4 Hz. The break frequency has a physical
meaning, which will be discussed in section 2.4. Zero-centred Lorentzian-shaped noise
can also be used to model flickering variability [42].

The break frequency has an effect on both time series and PSD. In the PSDs, figures
2.3b and 2.4b, the “kink” is clearly located at their respective break frequency. Note that
the PSDs are now plotted as power × frequency instead of power. This is done so that
the “kink” caused by the break frequency is more noticeable. The time series, figures 2.3a
and 2.4a, show more variability for a higher break frequencies.
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(a) Time series (b) PSD

Figure 2.3: Simulated zero-centred Lorentzian-shaped noise time series with break fre-
quency 10−3 Hz and its corresponding PSD. The dashed line marks the break frequency.

(a) Time series (b) PSD

Figure 2.4: Simulated zero-centred Lorentzian-shaped noise time series with break fre-
quency 10−4 Hz and its corresponding PSD. The dashed line marks the break frequency.

2.3 Periodic variability

As previously mentioned, accretion-induced variability has both a periodic and an ape-
riodic component. Both components of accretion-induced variability, together with their
respective characteristics, have been observed in XRBs, AGN, and CVs. These obser-
vations play a large role in the hypothesis of the universal nature of accretion-induced
variability.

Various periodic phenomena can be categorised as periodic variability. In this section,
we will discuss three types of periodic variability that differ both in origin and manifesta-
tion in the light curve: quasi-periodic oscillations, superhumps and superoutbursts [19].
The aperiodic component of accretion-induced variability will be discussed in the next
section.
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2.3.1 Quasi-periodic oscillations

Quasi-periodic oscillations (QPOs) are periodic modulations with periods ranging over
100s of seconds, observed in the light curve of certain CVs. These modulations vanish
after a couple of periods, hence their name, and are characterised by a low coherence
[53, 7]. A signal is coherent when its phase is constant in time, which gives rise to a
clear peak in the PSD located at the signal’s frequency. In an incoherent signal, its phase
changes with time. As the incoherence increases, the peak in the PSD spreads out over a
wider range of frequencies. It is their poor coherence that makes QPOs difficult to detect.
Generally 5 to 10 moderately coherent QPO cycles are observed to be clearly visible,
before their characteristics change or they disappear altogether [54]. Figure 2.5 shows a
QPO with a period of 185 s observed in the CV WX Hyi. A sinusoidal least-squares fit
to the light curve is superimposed on the light curve [54].

Figure 2.5: Light curve of the CV WX Hyi, showing a QPO with a period of 185 s. The
result from the sinusoidal least-squares fit is superimposed. Figure from [54].

There appear to be several kinds of modulations: modulations with almost constant
periods and frequent large changes in phase, some of them with a clear growth and decay
in amplitude between the phase jumps, and modulations whose period and amplitude
constantly vary over a limited range. However, a classification of QPOs has not yet
been made as the aperiodic flickering variability hampers their analysis. Several possible
mechanisms may be responsible for these modulations. One of the possible mechanisms are
non-radial oscillations of the secondary, which causes a modulation in the mass accretion
rate. Also, some QPOs have periods comparable to the rotation period of the outer edge
of the disk, but no model has yet been proposed for these modulations [19, 12, 55, 53].

2.3.2 Superoutbursts and superhumps

Superoutbursts and superhumps are phenomena that occur in SU UMa stars, a subclass
of the dwarf novae. These systems hence also experience normal DN outbursts. Super-
outbursts are both brighter and longer than normal outbursts and appear to occur more
regularly. During a superoutburst, the light curve shows hump-shaped modulations: su-
perhumps. These appear near the maximum of the superoutburst and continue until the
system has returned to its quiescent state. Superhumps have a period slightly longer or
shorter than the orbital period [19].

During a normal outburst, all the excess mass in the disc is dumped onto the white
dwarf, so that the disc after the outburst is similar to the disc before. This is not the
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case in SU UMa stars: after every normal outburst, the disc grows more massive and
expands to larger radii because of angular momentum transport. The disc continues to
grow until it has become large enough for the secondary to distort it via tidal effects.
The tidal distortion causes the disc to become unstable at a 3:1 resonance. At the 3:1
resonance, the material in the disc completes its orbit around the WD three times for
every orbital cycle. These tidal instabilities deform the disc to an elliptical shape and
cause it to progradely precess along its long axis. The oscillation of the disc at a 3:1
resonance forms tidal bulges within the disc. When the secondary sweeps by such a
tidal bulge, its material gets compressed, causing collisions within the material and hence
energy dissipation. These increases in brightness of the disc are the positive superhumps
and have a period slightly longer than the orbital period. If the disc is tilted in the orbital
plane, it does not only precess about its long axis. The disc now also precesses about its
node, which is the intersection of the disc with the orbital plane. This is a retrograde
precession, causing the negative superhumps to have a period slightly shorter than the
orbital period. [19, 58, 55].

Because of the elliptical deformation of the disc, the tidal torques within the disc
greatly increase its angular momentum transport, which in turn increases the mass flow
through the disc. The matter that has been built up after several normal outbursts
gets dumped on the white dwarf; this is the superoutburst [19, 58]. In figure 2.6, the
Kepler light curve of the SU UMa star V344 Lyr is shown. Both normal outbursts and
superoutbursts are clearly visible.

Figure 2.6: Kepler light curve of V344 Lyr showing both normal outbursts and superout-
bursts. The outbursts are labelled from 1 to 19. Figure from [58].

2.4 Aperiodic flickering variability

Aperiodic flickering variability can be modelled by using a simple power law, such as
red noise, or by using zero-centred Lorentzian-shaped noise. Figure 2.7 shows the rms-
normalised PSD of all quiescent intervals in the fourth Kepler quarter of observations
combined of V1504 Cyg. When we compare it to the simulated PSD of red noise and
Lorentzian-shaped noise (figures 2.2b, 2.3b, and 2.4b), we can deduce that models using
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zero-centred Lorentzian-shaped noise will be more appropriate than those using red noise
[41].

Figure 2.7: Rms-normalised PSD of all quiescent intervals in the fourth Kepler quarter
of observations of V1504 Cyg combined.

Besides its PSD shape, flickering variability has several other characteristics such as
frequency-dependent time lags, a lognormal flux distribution and of course the linear
rms-flux relation [50, 49, 8, 41]. When one models the accretion disc surrounding the
accreting object, all characteristics of flickering variability have to be taken into account
and need to be reproduced by the model. Flickering variability is currently best modelled
by the fluctuating accretion model [4, 39]. We will expand on the details of this model
and explain why it is favoured in the following section.

2.4.1 Fluctuating accretion model

Flickering variability shows large-amplitude variations both on short and long time scales.
According to accretion theory, the bulk of the emission of the disc originates close to the
central object. This is supported by the observation of large amplitude variations at short
time scales. However, large amplitude variations at time scales orders of magnitudes larger
than the viscous time scale of the inner disc are observed as well, which suggests that
these variations originate at larger radii within the disc. It is this discrepancy in origin
that motivated the fluctuating accretion model. In the fluctuating accretion model, the
bulk of the emission of the disc is produced at the inner boundary layer, while flickering
variability originates throughout the disc and modulates the central emission. Flickering
variability can hence originate over a wide range of radii, explaining the wide range of
time scales on which it appears [33, 32, 4].

The main assumption of the model is a fluctuating accretion flow throughout the disc.
The time scales of the fluctuations in the accretion flow are related to the viscous time
scale within the disc at their radius of origin. Every independent annulus within the disc,
consisting of radii over which the time scales are uncorrelated, hence produces a pattern of
fluctuations, ṁ(r, t), which has the most variability power at the local viscous frequency
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of their radius of origin. The local viscous frequency fvisc is given by

fvisc(r) = r−
3
2

(
H

R

)2
α

2π
,

with (H/R) the ratio of the disc height to its radius, α the viscosity parameter and r
the radial position in units of gravitational radii. These accretion rate fluctuations are
modelled by Lorentzian-shaped noise with the break frequency corresponding to the local
viscous frequency.

Another essential part of the model is that all accretion flow fluctuations are coupled
together multiplicatively as they travel towards the white dwarf. When we divide the ac-
cretion disc into discrete annuli, the accretion rate at a given annulus Ṁ(ri, t) is therefore
given by

Ṁ(ri, t) = Ṁ0

i∏
j=1

(1 + ṁ(rj, t))

with Ṁ0 the accretion flow leaving the inner Lagrangian point L1. The outer annulus
of the disc corresponds to r1. The accretion rate at a given annulus is hence given
by the multiplication of the contribution to the fluctuations of the annulus itself with
the contribution of its outer neighbouring annulus. This annulus in turn includes all
fluctuations of all the outer annuli [4].

The fluctuating accretion model reproduces all characteristics of flickering variability.
Not only does the model reproduce the shape of the PSD and the linear-rms flux rela-
tion, the multiplicative coupling of the accretion flow fluctuations naturally produces a
lognormal flux distribution [4, 49].

The predecessor of the fluctuating accretion model, the shot-noise model, is based on
the additive combination of flares or shots within the accretion disk. This model repro-
duces the PSD of flickering variability, but fails in reproducing both the rms-flux relation
and the lognormal flux distribution. The rms-flux relation and lognormal flux distribu-
tion imply that the short and long time scales of flickering variability are coupled, which
cannot be achieved through the addition of variations [49].



Chapter 3

Object selection and data collection

In this chapter, we will expand on how we selected the CVs that will be investigated and
the data collection process. As we are working with Kepler data, a small introduction to
the mission and its characteristics will be given as well.

3.1 NASA Kepler mission

The NASA Kepler mission was successfully launched on March 7 2009. Its main objective
was the discovery of Earth-sized exoplanets in and near the habitable zone of Sun-like
stars. The habitable zone of a star is the region in which planetary temperatures are
suitable for water to exist on the planet’s surface [18].

The Kepler satellite carries a telescope with a 0.95-metre aperture and a photometer
consisting of an array of 42 CCD cameras arranged in 21 modules. It is pointed towards
the same field-of-view (FOV) at all times [14]. The FOV, together with the 21 modules,
is visualised superimposed on the night sky in figure 3.1. Kepler was launched in an
Earth-trailing heliocentric orbit. In order for the solar arrays to stay illuminated and for
the focal plane to stay pointed away from the Sun, the satellite must be rolled by 90◦

about its axis approximately every three months. The period of time between two rolls
is therefore called a quarter (Q).

Figure 3.1: The Kepler field-of-view superimposed on the night sky. By Carter Roberts,
from http://kepler.nasa.gov/multimedia/Images/photogallery/

21
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Kepler can observe up to 150,000 objects simultaneously. Every object has a unique
Kepler Input Catalogue (KIC) number. Light curves are obtained in two cadences: in
long cadence, the sampling interval equals approximately 29.4 min whereas in short ca-
dence, the sampling interval equals approximately 58.8 s. Not every object is observed
at both cadences; more objects are observed at long cadence [18]. NASA’s Science Oper-
ation Centre provides two calibrated light curves for every object each quarter at every
observed cadence: single aperture photometry (SAP) and pre-search data conditioning
module single aperture photometry. The latter is produced specifically to search for exo-
planets: signatures correlated with systematic error sources are removed, while preserving
the signature of planet transits. This might lead to the removal of flickering variability
in the light curves of CVs [16]. We will therefore use the less processed SAP light curve
in this thesis. The light curves obtained by Kepler are housed in the Archive at the
Space Telescope Science Institute and can be downloaded from the Mikulski Archive for
Space Telescopes (MAST) [18, 14]. The fast photometric cadence in short cadence mode,
the continuous monitoring and the high photometric accuracy of Kepler make the short
cadence SAP data ideal for observing flickering variability in CVs [40].

Unfortunately, Kepler entered a prolonged safe mode in May 2013 where it does not
record any data. In order to perform the quarterly rolls and to stabilise the pointing to
the single FOV, Kepler needs at least three of its four reaction wheels. In May 2013, a
second reaction wheel had failed. Nevertheless, the satellite is not lost: the K2 mission
uses solar photon pressure to stabilise the two-wheel satellite. This implies that it is now
limited to pointing near the ecliptic plane and it cannot observe a single FOV any more:
the K2 mission observes a sequence of fields as it orbits the Sun. The K2 mission became
operational in June 2014 [20, 46]. From the point of view of CV research, the K2 mission
is an improvement as high quality data will be available for more CVs.

3.2 Object selection

Even though the Kepler mission’s main objective was the discovery of exoplanets, some
CVs can be found in the input catalogue. Our search for CVs in the FOV was based
on the paper by Still et al. (2010). There, the authors listed all objects that are found
both in the input catalogue and the CV catalogue made by Downes et al. (2001) [45, 9].
Additions to Still’s list were made by Williams et al. (2010), Feldmeier et al. (2011),
Ramsay et al. (2012) and Ramsay et al. (2014) [57, 11, 37, 36]. Howell et al. (2013)
checked spectroscopically if these objects were indeed CVs, checking four more objects at
the same time [21].

We have used the MAST archive to find Kepler data on the objects listed in the papers
mentioned above. Only objects for which short cadence data is available were selected.
Table 3.1 contains all objects that will be analysed in this thesis. Together with the
nova-like variable MV Lyrae, this table lists all known CVs in the Kepler field-of-view for
which short cadence Kepler data is available. As KIC numbers are easily confused, we
will use the object’s name as it is listed in the General Catalogue of Variable Stars [38].
One object is not listed in this catalogue, and for this object we will use its KIC number
as name. Note that all CVs listed are non-magnetic. Flickering variability is generated in
the accretion disc, and mCVs do not always have an accretion disc: it is either absent or
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formed only partially. Their behaviour hence strongly differs from that of non-magnetic
CVs (see also section 1.1.3). No mCVs were found in the Kepler FOV.

Name [38] KIC number Type Kepler Source
magnitude

BOKS 45906 9778689 DN 19.046 [11, 36]
V344 Lyr 7659570 SU UMa 14.881 [29, 45, 58]
V363 Lyr 7431243 SU UMa 16.672 [36]
V447 Lyr 8415923 U Gem 18.430 [37]
V516 Lyr 2436450 DN 18.798 [21, 28]
V585 Lyr 5523157 SU UMa 19.489 [21, 28]
V1504 Cyg 7446357 SU UMa 15.805 [35, 59]

8751494 NL 16.269 [57, 27]

Table 3.1: All CVs under consideration in this thesis. The nova-like variable MV Lyrae
is not included, as it has been studied by Scaringi et al. (2012) [43].

3.3 Data collection: selection of quiescent intervals

We will now expand on the collection of data for all CVs listed in table 3.1. For every
CV listed in table 3.1, all short cadence SAP Kepler light curves available on the MAST
archive are downloaded. As we wish to detect the rms-flux relation in as many CVs
within the Kepler FOV, we need to analyse the quiescent intervals in the light curves of
all CVs under consideration. Any outbursts or eruptions present in the light curve need
to be neglected: these events dominate the light curve, making it very difficult to probe
flickering variability and therefore detect the rms-flux relation.

Figure 3.2: Selection of a quiescent interval of V1504 Cyg. The selected quiescent interval
is plotted in gray and can also be seen in figure 1.5. The average error is equal to 21.5
electrons/s and is therefore not visible in the plot.
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The selection of quiescent intervals between dwarf nova outbursts or nova eruptions
has been done by eye: all light curves have been visually inspected in order to determine
the start and end of each quiescent interval. An example can be seen in figure 3.2. This
figure shows a part of the light curve of V1504 Cyg, with two dwarf nova outbursts clearly
visible. The selected quiescent interval is plotted in gray. For the detection of the rms-
flux relation, it is very important that the outbursts are not included, as this influences
the flux distribution and hence also the rms-flux relation. In order to ensure that the
system was fully in its quiescent state, we have used conservative ranges for the selection
of quiescent intervals.

Table 3.2 lists the data available for each object. Both the total data, which includes
outbursts and eruptions, and the data in quiescent intervals are listed. The number of
quiescent intervals and the quarters over which they are observed are listed as well. Qui-
escent intervals observed in the same quarter can be combined into a single data set,
increasing the total number of available data sets for each object with the number of
quarters. We cannot combine the quiescent intervals over all quarters, as there are jumps
in the mean flux level in between quarters. These jumps are due to Kepler entering safe
mode during the quarterly rolls, after which the instrument needs to point and be cali-
brated again. Moreover, the objects move from detector to detector after each roll-over,
which also plays a role [25].

Note that for three objects, the total data is equal to the quiescent data. For KIC
8751494, this is because the object is a nova-like variable and hence does not show any
outbursts. The SU UMa stars V363 Lyr and V585 Lyr do not display any outbursts
during their observations. These objects have “quiescent quarters” instead of quiescent
intervals: the number of data sets is equal to the number of quarters.

Object Total data (d) Quiescent data (d) # Quiesc. states Quarters

V1504 Cyg 1316 549.4 121 2-16
KIC 8751494 226.5 226.5 - 2-3, 5, 15
BOKS 45906 434.0 319.4 6 6-8, 11, 15
V344 Lyr 1343 111.1 37 2-17
V363 Lyr 5.210 5.210 - 16
V447 Lyr 608.8 516.5 16 8-11, 13-17
V516 Lyr 163.0 88.03 11 8-9
V585 Lyr 191.1 191.1 - 9, 14

Table 3.2: Kepler short cadence data available for the CVs listed in table 3.1 in the FOV.
The length of the total data set is listed. When applicable, the total amount of quiescent
data is given, together with the number of quiescent states. The quarters during which
the data was collected are listed as well.
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3.3.1 Removal of outliers

Outliers are unfortunately always a part of astronomical observations. For example sys-
tematic errors, such as pointing drift and focus changes, are one of their many possible
causes [16, 14]. Irrespective of their cause, all outliers need to be identified and removed
before analysing the data.

As light curves produced by flickering variability are very noise-like, only extreme
outliers can be identified by eye. Moreover, the total amount of data for the eight objects
is so large that this time-consuming method would not be feasible. Sigma clipping is
another possible way to detect outliers, but we have opted for a more visual method
of identifying the outliers. For every quiescent interval, the flux distribution has been
plotted on a semi-log scale. Using this scaling, any discrepancies to the flux distribution
can be spotted more easily. These discrepancies correspond to the outliers in the data
set. By visually inspecting the flux distribution of each data set, we can hence determine
the range in flux without outliers and remove any measurements outside this range. An
example is shown in figure 3.3, in which the outliers of a quiescent interval of V1504 Cyg
are determined. This method has of course its disadvantages: the identification of outliers
is not quantified, and the determination of the outlier-free flux range is still done visually.
However, we have used this method to remove the outliers in all quiescent intervals since
it is faster and more accurately detects outliers than visually inspecting the light curve.

Figure 3.3: Outlier identification in a quiescent interval of V1504 Cyg. The lower panel
shows the quiescent interval, the upper panel shows a semi-log plot of its flux distribution.
There are clearly a few outliers below a flux of approximately 900 electrons/s and above
a flux of approximately 2500 electrons/s. The average error on the observed flux is equal
to 30.9 electrons/s and is therefore not visible in the lower figure.
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Data analysis methods

In this chapter we will discuss the computational methods used to analyse all quiescent
intervals or quarters of the objects listed in table 3.1. The programming language Python
is used to perform all methods. In section 4.1, we describe how we search for the rms-flux
relation in a light curve. We then statistically determine whether there is a real correlation
between rms variability and mean flux, and if so, whether the correlation is best described
by a linear model. In section 4.2, we describe how the bootstrapping method is used to
calculate the errors on the gradient and intercept of the fitted rms-flux relation.

4.1 Finding the rms-flux relation

To demonstrate how the rms-flux relation is recovered from a data set, we have used
artificial light curves simulated according to the T&K algorithm (see chapter 2). By mul-
tiplying zero-centred Lorentzian-shaped noise time series with different break frequencies,
the resulting light curve will display the rms-flux relation since all time scales are cou-
pled. This is a very approximate model of an accretion disk, where the number of noise
time series used corresponds to the number of annuli within the disc. We therefore use
such an artificial light curve to design the method since we know that it must show a
rms-flux relation. The light curve used in this section consists of the multiplication of ten
zero-centred Lorentzian-shaped noise time series of which break frequencies ranging from
300 to 900 Hz.

In section 4.1.1, the initial calculations of the rms variability and mean flux will be
done. The scatter of these results will be reduced and the resulting rms-flux relation
will be fit in section 4.1.2. In section 4.1.3, we will statistically quantify the correlation
between rms variability and mean flux and measure the goodness-of-fit of the linear model.

4.1.1 Initial calculation

The first step in the detection of the rms-flux relation consists of splitting the light curve
into a certain number of bins. The number of flux measurements in each bin gives us the
time scale at which we investigate flickering variability, since every measurement is taken
at the short cadence sampling frequency. The number of bins is therefore calculated by
dividing the number of data points through the desired time scale, given in multiples of
the short cadence sampling frequency, which is equal to 58.8 s.

26
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The artificial light curve L(t) is split into B bins with each N measurements. For each
of the B bins, we want to calculate the mean flux and the intrinsic variability of the flux
measurements within the bin. The mean flux µ1 and variance σ2

1 of the measurements
within each bin are given by:

µ1 =
1

N

N∑
i=0

L(ti),

σ2
1 =

1

N − 1

N∑
i=0

(L(ti)− µ1)
2 .

In order to obtain the intrinsic variance σ2
1,intr within each bin, we subtract the Poisson

noise from the total variance:
σ2
1,intr = σ2

1 − µ1,

since we have for Poisson noise that σ2 = µ. This step will not be performed when using
simulated data as simulated time series do not include Poisson noise: the variance of the
measurements within each bin is equal to its intrinsic variance. It will be performed when
applying the method to Kepler data. The error on the intrinsic variance ε1,intr within
each bin is calculated by [2]:

ε1,intr = σ2
intr

√
2

N − 1
.

The intrinsic variance is subsequently converted to the rms variability of the bin by taking
the square root:

σ1,rms =
√
σ2
1,intr .

The error on the rms variability is calculated by error propagation

ε1,rms =
1

2
σ1,rms

ε1,intr
σ2
1,intr

. (4.1)

The first step in recovering the rms-flux relation is hence a binning over time of the
light curve. The results of the first binning of the simulated time series are shown in
figure 4.1. The time scale under investigation corresponds to approximately ten minutes.
Even though the rms-flux data in figure 4.1 is scattered, especially at higher mean fluxes,
a monotonically increasing trend is visible.

4.1.2 Reduction of scatter and fitting

The B bins, each with its mean flux and rms variability, are then sorted in order of
ascending mean flux. This is done because the second binning, performed to reduce the
scatter of the rms-flux data and increase the signal-to-noise ratio (SNR) per bin, is a
binning over flux. In the second binning, the results are averaged out by rebinning the
rms-flux data into ten bins. The number of original bins in each final bin is therefore
equal to B/10 = n. The choice for ten final bins is made in accordance to Scaringi et al.
(2012) [43]. It is made on an ad hoc basis without any statistical justification: a smaller
or greater number of bins can be chosen, which will not significantly change the result.
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Figure 4.1: The rms-flux results after the first binning of the simulated data, consisting
of the multiplication of ten zero-centred Lorentzian-shaped noise time series. The time
scale under investigation corresponds to approximately 10 min.

We thus average the mean fluxes and intrinsic variabilities of the first binning results
within each final bin. The mean flux and intrinsic variance of each of the ten final bins is
calculated by

µ2 =
1

n

n∑
j=0

µj1 = µ1,

σ2
2,intr =

1

n

n∑
j=0

σ2
(1,intr)j = σ2

1,intr .

The error on the intrinsic variance σ2
2,intr is equal to the scatter of the intrinsic variances

within each bin, divided through the square root of the number of data points n within
each bin [2]:

ε2,intr =

√√√√ 1

n

∑n
j=0

(
σ2
(1,intr)j − σ2

1,intr

)2
n− 1

.

Again, the rms variability σ2,rms of each bin is calculated by taking the square root of its
intrinsic variability. The error on the rms variability is calculated as in equation 4.1 by
error propagation.

A linear model is fitted to the ten resulting rms-flux data points using a linear regression
method of the IvS Python repository. The linear regression method fits a straight line to
the data by minimising the sum of the squared residuals [24]. Applying the method to the
ten rms-flux data points gives us the gradient and intercept of the fitted rms-flux relation,
together with their errors. The errors given by the linear regression method will not be
used when fitting the rms-flux relation in Kepler data. We will expand on bootstrapping
in section 4.2, which will be used to calculate more accurate errors on the parameters of
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the rms-flux relation.

Figure 4.2 shows the results of the final binning. Compared to the results of the first
binning shown in figure 4.1, the scatter of the rms-flux points has clearly been reduced: a
linear relation is now clearly visible. Using the linear regression method, a linear fit with
a gradient of 0.104± 0.006 and an intercept of (2± 6)× 10−6 is found. The errors quoted
are those obtained from the linear regression method.

When the method is applied to Kepler data of a quiescent interval, we will first subtract
the mean flux value of the entire quiescent interval from the light curve. This removes the
correlation between gradient and intercept, which reduces the error on the fitted intercept
significantly.

Figure 4.2: The rms-flux results after the second binning of the simulated data, consisting
of the multiplication of three Lorentzian-shaped noise time series. The time scale under
investigation corresponds to approximately 10 min. The relation found by linear regression
has a gradient of 0.104± 0.006 and an intercept of (2± 6)× 10−6.

4.1.3 Quantifying the relation and its linearity

We want to statistically quantify whether the rms variabilities and mean fluxes are indeed
correlated, and if so, whether the underlying relation is linear. To determine the corre-
lation between both data sets, we calculate the Spearman’s rank correlation coefficient
ρ. This is a non-parametric test that uses statistical ranks of the data rather than their
actual values. These statistical ranks are obtained by putting the data in ascending order
and assigning them their corresponding rank. The Spearman’s rank correlation coefficient
is given by

ρ = 1− 6
∑N

i=0 d
2
i

N(N2 − 1)
,
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with di the difference in rank of corresponding variables and N the number of data, which
is in our case equal to ten. The coefficient has values between -1 and 1, corresponding
respectively to a positive or negative correlation, with 0 corresponding to no correlation
at all [56]. The rms-flux relation would hence ideally result in ρ = 1.

We have made use of a Python SciPy method to calculate ρ. This method also
calculates the p-value corresponding to ρ. This value indicates the probability that an
uncorrelated system produces a data set with a Spearman’s rank coefficient as extreme
as the coefficient computed from the analysed data set. A coefficient close to one with a
small p-value hence strongly indicates a positive correlation [26].

To determine if the correlation is best described by a linear model, we use the reduced
chi-squared χ2

red of the fitted model to determine the goodness-of-fit. This is calculated
by

χ2
red =

1

K

N∑
i

(
σ2
2,rms − yi
ε2,rms

)2

with yi the expected measurement given by the linear fit and K the degrees of freedom of
the model. As there are ten data points and the linear fit has two parameters (gradient
and intercept), we have that K = 8 [3].

When the model is correct and fits the data as expected, we should have χ2
red ' 1.

The error on the prediction of χ2
red = 1 is given by

√
2/K: when an obtained χ2

red value
lies within ∆χ2

red = 1± 0.5, the fit can be considered as good. When χ2
red < 1, the model

“overfits” the data by describing the errors on the data rather than the data itself. When
χ2
red > 1, the model resulted in a “bad” fit to the data [3].

When calculating the reduced chi-squared of a linear fit to the rms-flux relation found
in a light curve, it will most likely not be exactly equal to one because of the intrinsic
scatter of the data. Whenever χ2

red . 1 or χ2
red & 1, we need to take the visual evidence

of a plot of the fitted rms-flux relation into account.

For the fit to the rms-flux data of the simulated data performed in this section, the
Spearman’s rank coefficient is equal to 0.99 with a p-value of 9.3× 10−8. Rms variability
and mean flux are hence positively correlated. The reduced chi-squared of the linear fit
is equal to 1.11. This lies within ∆χ2

red = 1.5, and we can therefore state that the linear
model provides a good fit to the rms-flux data: as expected, there is a linear rms-flux
relation in the simulated data.

4.2 Error determination via bootstrapping

When fitting the rms-flux relation to a linear model by linear regression, we obtain the in-
tercept and gradient of the relation together with the errors on these parameters. However,
we will use a more reliable statistical method called bootstrapping for the determination
of the errors on the fitted gradient and intercept.

In section 4.2.1, we will introduce the bootstrapping method and compare it to Monte
Carlo methods. Bootstrapping is then applied to determine the errors of the gradient and
intercept of the fitted rms-flux relation in section 4.2.2.
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4.2.1 Bootstrapping and Monte Carlo methods

Bootstrapping is a non-parametric resampling method used to estimate the sampling
distribution underlying a statistic of interest. As it is non-parametric, the distribution
underlying the statistic of interest does not need to be known. The population from which
the resampling is done is the original data set. Simplistically put, bootstrapping lets the
data speak for itself since the method does not rely on any a priori assumptions on the
distribution of the statistic of interest [10, 3].

Monte Carlo methods are resampling methods as well, but are parametric in nature:
they require that the distribution of the statistic of interest is known. This is essential to
the resampling process, as the Monte Carlo method does not resample the original data
set but relies on the generation of artificial data. This has the practical implication that
Monte Carlo methods are more time-consuming since they require more computations
than bootstrapping methods [1].

When fitting the rms-flux relation, the statistics of interest are the gradient and in-
tercept of the linear fit. The model describing their distributions is still subject to a
lot of uncertainty [4, 39]. The bootstrapping method is hence more robust than Monte
Carlo methods, and we have therefore chosen for the bootstrapping method for the error
determination of the gradient and intercept of the fitted rms-flux relation.

4.2.2 Bootstrapping the rms-flux relation

As mentioned earlier, the statistics of interest of the fitted rms-flux relation are its gradient
and intercept. We estimate the sampling distributions of these parameters by bootstrap-
ping the light curve. The standard deviations of the sampling distributions are then
adopted as the errors of the parameters.

A bootstrapped data set is produced by resampling the original light curve with re-
placement: a measurement is hence allowed to appear multiple times or not at all in
the bootstrapped data set. We then determine and fit the rms-flux relation in the boot-
strapped data set using the methods described in section 4.1. The resulting gradient
aboot and intercept bboot are considered to be manifestations of their underlying sampling
distribution. The light curve is bootstrapped 500 times in total: all 500 gradients and
intercepts give us an estimate of the sampling distribution. The standard deviations of
these distributions are then taken as the error on their respective parameters.

An illustration of the bootstrapping method can be seen in figure 4.3, which shows the
distributions obtained for the gradient and intercept of the fitted rms-flux relation. The
artificial light curve used is the same as in section 4.1. We will use the standard deviation
of these distributions as errors on the gradient and intercept: for the simulated light curve
of section 4.1, we hence find a linear rms-flux relation with a gradient of 0.10± 0.02 and
an intercept of (2± 1)× 10−6.

When working with Kepler data, we subtract the average flux value from the light
curve. The bootstrapping method needs to be slightly modified in this case, as the mean
flux value of the bootstrapped data set will most likely differ from that of the original data
set. Subtracting a different mean flux value implies that the zero point in flux differs for
each bootstrapped data set and the original light curve. This does not affect the gradient
of the fitted rms-flux relation, but it does affect the intercept. We therefore need to make
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(a) Bootstrapped gradient aboot
σ = 0.02

(b) Bootstrapped intercept bboot
σ = 1× 10−6

Figure 4.3: Distributions of the gradient and intercept of the rms-flux relation obtained
through bootstrapping. The vertical line corresponds to the parameters found in the orig-
inal data set. The light curve consists of the multiplication of ten zero-centred Lorentzian-
shaped noise time series. The time scale under investigation corresponds to approximately
10 minutes.

a correction to the calculation of the intercept obtained from the bootstrapped data set, so
that all intercepts are with respect to the same zero point in flux. The corrected intercept
bcorr obtained from a bootstrapped data set is given by

bcorr = (Lorig − Lboot)× aboot + bfit (4.2)

with Lorig the mean of the original light curve, Lboot the mean of the bootstrapped light
curve, and bfit the intercept of the fitted rms-flux relation found in the original data set.



Chapter 5

Detection of the rms-flux relation

In this chapter, we will discuss the results of the analysis of all quiescent data of the
objects listed in table 3.1. The rms-flux relation is detected in two of the eight CVs under
consideration, namely V1504 Cyg and KIC 8751494. Section 5.1 will expand on and
illustrate the detection. The other six CVs however do not show the rms-flux relation.
This will be illustrated in section 5.2. We investigate why three quarters of the CVs under
consideration do not have an observed rms-flux relation in section 5.3.

5.1 The rms-flux relation in V1504 Cyg

and KIC 8751494

We have detected the rms-flux relation in the SU UMa star V1504 Cyg and the nova-like
variable KIC 8751494. The relation is visible in every quiescent interval of V1504 Cyg,
both separately and combined according to the quarter in which they are observed, and in
all quiescent quarters of KIC 8751494. Moreover, the data has been analysed at multiple
time scales and the rms-flux relation was found at every time scale.

In table 3.2, the number of data sets are listed: for KIC 8751494, we have 4 quar-
ters, and for V1504 Cyg, we have 121 quiescent intervals which can be combined into 16
quarters. Because of the large amount of data sets, it is impossible to show all detected
rms-flux relations. For both objects, we will therefore show the rms-flux relation found
in one of their data sets at several time scales. The rms-flux relations shown are repre-
sentative of those detected in all other data sets of the object at other sampled time scales.

In figure 5.1, we show the rms-flux relation detected in the combined quiescent inter-
vals in Q4 of V1504 Cyg. The time scales shown correspond to 10, 40, 60, and 100 times
the Kepler short cadence frequency. The Spearman’s rank coefficients of the rms variabil-
ities and mean fluxes are listed in the caption of each figure. For the four time scales, we
have either ρ = 1 or ρ ≈ 1 with very small p-values: we can state that there is a positive
correlation between rms variability and mean flux. The goodness-of-fit of the linear model
fitted to rms and flux is expressed by its reduced chi-squared, which is also listed in the
caption. All fitted relations have a χ2

red within ∆χ2
red = 1±0.5: the linear model produces

a good fit to the rms-flux data. Based on the values of ρ and χ2
red for every time scale,

we can state that we have detected the rms-flux relation at multiple time scales.
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(a) Time scale ≈ 10 min
a = 0.072 ± 0.002, b = 111.7 ± 0.1
ρ = 1, p-value = 0 – χ2

red = 1.02

(b) Time scale ≈ 40 min
a = 0.117 ± 0.004, b = 165.2 ± 0.2
ρ = 1, p-value = 0 – χ2

red = 1.05

(c) Time scale ≈ 60 min
a = 0.140 ± 0.005, b = 178.7 ± 0.2

ρ = 0.99, p-value = 9.3× 10−8 – χ2
red = 1.23

(d) Time scale ≈ 100 min
a = 0.130 ± 0.006, b = 195.0± 0.2
ρ = 1, p-value = 0 – χ2

red = 0.57

Figure 5.1: The rms-flux relation detected in the combined quiescent intervals of Q1 of
V1504 Cyg for four different time scales. A mean flux value of 1628.7 electrons/s has been
subtracted from the data set. The Spearman’s rank coefficient ρ is given along with its
p-value. The gradient a and intercept b of the linear fit are given as well, together with
its reduced chi-squared value χ2

red.
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Figure 5.2a displays the reduced chi-squared distribution obtained after fitting the
rms-flux relation in all quiescent intervals of V1504 Cyg The time scale under investiga-
tion corresponds to approximately 10 minutes. From the distribution, it is clear that the
linear model is a good fit to the rms-flux data of most quiescent intervals. However, in
some quiescent intervals, the fit resulted in χ2

red � 1. This is because the orbital period
is clearly visible during those quiescent intervals, which gives the general shape of their
light curves a sinusoidal trend. The presence of this trend affects the flux distribution,
and hence the rms-flux relation. We will expand on the periods characteristic to V1504
Cyg and all other CVs in the appendix.

(a) V1504 Cyg (b) KIC 8751494

Figure 5.2: Reduced chi-squared distribution obtained after fitting the rms-flux relation
detected in all quiescent intervals of V1504 Cyg and all quiescent quarters of KIC 8751494.
The time scale under investigation corresponds to approximately 10 minutes.

In figure 5.3, we show the rms-flux relation detected in the quiescent quarter Q16 of KIC
8751494. The time scales sampled are the same as before, and correspond to approxi-
mately 10, 40, 60, and 100 minutes. The Spearman’s rank coefficient and its corresponding
p-value of the rms-variabilities and mean fluxes are again listed in each caption. They
enable us to state that there is indeed a correlation between rms and flux at every time
scale. The χ2

red of the linear models fitted to rms and flux at every time scale are within
∆χ2

red = 1± 0.5. Based on the values of ρ and χ2
red for every time scale, we can state that

we have detected the rms-flux relation at multiple time scales.
The reduced chi-squared values obtained after fitting the rms-flux relation detected

in all quiescent quarters of KIC 8751494 is shown in figure 5.2b. The time scale under
investigation corresponds to approximately 10 minutes. Due to the smaller number of
data sets, we cannot consider this figure to be a distribution. However, all χ2

red values
correspond to a good fit of the linear model to the rms-flux data.

From figures 5.1 and 5.3, we see that the gradient and intercept of the fitted rms-flux
relation vary with time scale at which the data set is sampled in both objects. The
variation of gradient and intercept with time scale will be discussed in chapter 6.
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(a) Time scale ≈ 10 min
a = 0.051 ± 0.003, b = 103.48 ± 0.03

ρ = 0.98, p-value = 1.5× 10−6– χ2
red = 0.71

(b) Time scale ≈ 40 min
a = 0.062 ± 0.003, b = 120.3 ± 0.03

ρ = 0.98, p-value = 1.5× 10−6 – χ2
red = 1.00

(c) Time scale ≈ 60 min
a = 0.066 ± 0.004, b = 124.66 ± 0.03

ρ = 0.99, p-value = 9.3× 10−8–χ2
red = 0.85

(d) Time scale ≈ 100 min
a = 0.058 ± 0.005, a = 131.35 ± 0.03

ρ = 0.94, p-value = 5.5× 10−5–χ2
red = 0.98

Figure 5.3: The rms-flux relation detected in quiescent quarter Q16 of KIC 8751494 for
four different time scales. A mean flux value of 3368.9 electrons/s has been subtracted
from the data set. The Spearman’s rank coefficient ρ is given along with its p-value. The
gradient a and intercept b of the linear fit are given as well, together with its reduced
chi-squared value χ2

red.
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5.2 The rms-flux relation in the other CVs

We would expect all eight CVs in table 3.1 to show the rms-flux relation. However, all
data sets of the other six CVs were analysed in the same way as V1504 Cyg and KIC
8751494, but do not show the rms-flux relation on any sampled time scale. The total
data set is too large to illustrate this for every quiescent interval of every object. We
have selected the combined quiescent intervals in Q6 of the dwarf nova BOKS 45906 for
illustration. The results from the analysis of this data set are representative for those
from all other data sets in the other objects.

Figure 5.4 shows the results of the analysis of the combined quiescent intervals in Q6
of the dwarf nova BOKS 45906, sampled at time scales corresponding to approximately
10 and 60 minutes. For both time scales, the Spearman’s rank coefficient of the rms
variabilities and the mean fluxes imply that there is no correlation between them. The
rms-flux relation is hence not present. These results are representative of those obtained
at other time scales in all quiescent intervals of the six CVs in which the rms-flux relation
is not detected.

(a) Time scale ≈ 10 min
ρ = −0.22, p-value = 0.53

(b) Time scale ≈ 60 min
ρ = −0.05, p-value = 0.14

Figure 5.4: Results of the analysis of Q6 of BOKS 45906 at time scales of approximately
10 min and 60 min. A mean flux value of 80.3 electrons/s has been subtracted from the
data. The Spearman’s rank coefficient ρ is given along with its p-value.

5.3 Conditions for detection of the rms-flux relation

Out of the eight CVs listed in table 3.1, we have only detected the rms-flux relation in
V1504 Cyg and KIC 8751494. We would expect all CVs under consideration to show the
rms-flux relation, since flickering is thought to be a property of the quiescent intervals in
CVs and the rms-flux relation is inherent to flickering. Not detecting the rms-flux relation
can point towards the CV not showing any intrinsic flickering, but it is also possible that
the quality of the data does not allow us to detect any intrinsic flickering.

Since CVs are thought to always show flickering, it is important that we determine why
the rms-flux relation is not detected in three quarters of the CVs under consideration.
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This will be done in three different ways, each complementing the others. In section
5.3.1, we will determine whether the light curves are dominated by instrumental noise.
In section 5.3.2, we will compare the Poisson noise level of a light curve to its observed
variability in order to determine whether any intrinsic variability is present in the light
curve. The question will be approached in a more visual way in section 5.3.3, where we
will compare PSDs of all objects.

5.3.1 Intrumental noise

In order to determine whether a light curve is dominated by instrumental noise, we fit the
light curve with a linear model. When the reduced chi-squared of the fit is approximately
equal to one, the data and its errors are accurately represented by the linear model.
This implies that the variability visible in the light curve can be described by Gaussian
distributed white noise [3]. In this case, the rms-flux relation cannot be detected as no
intrinsic variability is visible in the light curve.

A linear model is fit to every quiescent interval or quarter of every object. We then
average over all χ2

red obtained from one object, so that each object is characterised by
a single χ2

red. The results are listed in table 5.1. We find that the average χ2
red for the

CVs with a detected rms-flux relation are much larger than one: the variability in the
quiescent intervals or quarter is not due to white noise, but is intrinsic to the object.

For most CVs without a detected rms-flux relation, the average χ2
red is approximately

equal to one: the observed data and its errors of the quiescent intervals or quarters can
be described by white noise. The CVs V334 Lyr and V363 Lyr have values of χ2

red larger
than one. The discrepancy of their χ2

red is due to the orbital period of these systems
being clearly visible during some of their quiescent intervals. As mentioned earlier, the
sinusoidal trend that is present in the data affects the flux distribution and hence the
rms-flux relation. From the results in table 5.1, we conclude that the rms-flux relation is
only detected in CVs of which the light curves cannot be described by white noise.

Object Average χ2
red

BOKS 45906 1.06
V344 Lyr 3.21
V363 Lyr 7.66
V447 Lyr 1.15
V516 Lyr 1.35
V585 Lyr 1.31

V1504 Cyg 229
KIC 8751494 148

Table 5.1: Average χ2
red of a linear fit to the quiescent intervals or quiescent quarters of

all objects under consideration. CVs in which the rms-flux relation is detected are listed
at the bottom.
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5.3.2 Comparison of rms-variability to Poisson noise

Another way of determining whether any flickering variability is present in a light curve
is by comparing its observed rms variability to its Poisson noise level. Flickering cannot
be detected in a quiescent interval or quarter when its Poisson noise is larger than its rms
variability, as the instrumental errors “overpower” the intrinsic variability in that case.
We therefore calculate the Poisson noise, given by the square root of the average flux,
of every quiescent interval or quarter together with its rms variability. The results of all
quiescent intervals of an object are then averaged over, so that each object is characterised
by a single value for average flux, Poisson noise, and rms variability. Note that averaging
over several quarters will result in errors on these values, as the average flux observed of
an object varies depends on the quarter. We will not calculate these errors, but will keep
them in mind when comparing the objects.

In table 5.2, the average values of flux, Poisson noise, and observed rms variability are
listed together with the fraction of Poisson noise to observed rms variability for every CV
under consideration. It is clear that the average fluxes of V1504 Cyg and KIC 8751494 are
at least an order of magnitude larger than those of all the other objects. Although this
increases the level of Poisson noise for these objects, it also implies that the statistical
errors on the measurements are smaller as more photons are detected. Whether the
Poisson noise within a data set can hide any intrinsic scatter the object might show,
is measured by the fraction of average Poisson noise level to average rms. When the
fraction is approximately equal to one, the rms-flux relation cannot be detected as we
cannot distinguish between Poisson noise and intrinsic variability from the object. These
fractions are smaller than one for all CVs: the variability observed in all objects hence
cannot be explained by Poisson noise only. Note that this analysis does not isolate the
frequency range over which Poisson noise dominates any intrinsic variability in the light
curve. In the next section, this frequency range will be visually determined by analysing
its PSD.

The fractions for V1504 Cyg and KIC 8751494 are smaller than those of the other
CVs by at least a factor of two. A larger fraction of the variability observed in these CVs
is therefore due to intrinsic variability. We conclude that the rms-flux relation cannot be
detected in the quiescent intervals or quarters of CVs of which the Poisson noise level is
a large fraction of the rms variability of the measured data.

Object Mean flux Mean Poisson noise Mean rms variability Poisson/rms
(electrons/s) (electrons/s) (electrons/s)

BOKS 45906 81.6 9.02 14.8 0.61
V344 Lyr 391 19.5 31.0 0.66
V363 Lyr 404 20.1 31.7 0.63
V447 Lyr 31.6 5.61 11.4 0.50
V516 Lyr 55.6 7.26 12.0 0.61
V585 Lyr 235 15.3 22.5 0.71

V1504 Cyg 1.90 ×103 43.5 299.9 0.15
KIC 8751494 3.81 ×103 61.7 174.9 0.35

Table 5.2: Mean flux level, rms variability and Poisson noise of all quiescent intervals, and
the ratio of the average Poisson noise detected in all quiescent intervals and their average
rms variability. The CVs with a detected rms-flux relation are listed at the bottom.
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5.3.3 Visual analysis of the PSD

The PSD of a light curve is a visual way to determine whether an object shows intrinsic
flickering variability or is overpowered by Poisson noise. If flickering variability is present,
the PSD has the shape of zero-centred Lorentzian noise (figures 2.3b and 2.4b). Up to
the break frequency, which is related to the viscous frequencies within the accretion disc,
the object displays flickering variability. For frequencies above the break frequency, the
variability falls off. Note that when plotting the PSDs as power × frequency, flickering
variability has a flat shape in the PSD. If a light curve is overpowered by Poisson noise,
this is clearly visible in its PSD. A simulation can be seen in figure 2.1b. When plotting
the PSDs as power × frequency, Poisson noise increases with frequency in the PSD.

For each object, we calculate the PSD of each data set available. It is infeasible to show
all obtained PSDs. We illustrate the results of each object with one PSD, representative
of all other PSDs for that object. The results are shown in figures 5.5 and 5.6, together
with the frequency corresponding to the longest time scale at which the rms-flux relation
has been analysed, approximately 140 minutes. We have hence only searched for the
rms-flux relation at frequencies above this frequency.

Figure 5.5 shows PSDs for V1504 Cyg and KIC 8751494. Intrinsic flickering variability
is clearly visible in both objects, as is expected since these systems show the rms-flux
relation. The break frequency is different for both objects, which might point towards
differences in the accretion discs of these two systems. This is possibly due to the fact
that V1504 Cyg is a SU UMa dwarf nova and KIC 8751494 a nova-like variable. A peak
and its harmonics are visible in the PSD of KIC 8751494. We will determine the period
corresponding to these peaks in the appendix.

(a) V1504 Cyg
PSD of combined quiescent intervals of Q2

(b) KIC 8751494
PSD of quiescent quarter Q3

Figure 5.5: Representative PSDs of the CVs with a detected rms-flux relation. The rms-
flux relation is calculated for frequencies above the marked frequency, which corresponds
to a time scale of approximately 140 minutes.

Figure 5.6 shows PSDs for the six CVs in which the rms-flux relation was not detected.
The light curves under investigation are clearly dominated by Poisson noise. The rms-flux
relation can therefore not be determined in these objects. Peaks are visible in the PSDs
of BOKS 45906 and V447 Lyr. These peaks correspond to periods characteristic to these
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(a) BOKS 45906
PSD of combined quiescent intervals of Q6

(b) V344 Lyr
PSD of combined quiescent intervals of Q7

(c) V366 Lyr
PSD of quiescent quarter Q16

(d) V447 Lyr
PSD of quiescent quarter Q13

(e) V516 Lyr
PSD of quiescent quarter Q9

(f) V585 Lyr
PSD of quiescent quarter Q14

Figure 5.6: Representative PSDs of the CVs without a detected rms-flux relation. The
rms-flux relation is calculated for frequencies above the marked frequency, which corre-
sponds to a time scale of approximately 140 minutes.
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systems, and will be discussed in the appendix. At high frequencies, peaks are clearly
visible in the PSDs of BOKS 45906, V363 Lyr, V447 Lyr, and V585 Lyr. These peaks
moreover occur at the same frequencies. They are caused by an artefact in the data, and
correspond to the inverse of the long cadence sampling period and its harmonics [17].

The previous method of comparing the Poisson noise level to the measured rms vari-
ability tells us which fraction of the observed variability is due to Poisson noise. However,
it does not constrain the range of frequencies over which the Poisson noise overpowers any
intrinsic variability. It is clear that for the six CVs without a detected rms-flux relation,
the power in the sampled frequency range is dominated by Poissonian noise.

Taking the results of all previously discussed methods into account, we can conclude
that the rms-flux relation has been detected in the objects for which the data allowed for
its detection. Only the quiescent intervals and quarters of V1504 Cyg and KIC 8751494
display flickering variability, enabling us to detect the rms-flux relation in these systems.
The quiescent intervals and quarters of all other CVs are dominated by Poisson noise,
making it impossible detect the rms-flux relation in these systems. The rms-flux relation
is therefore not not detected in these systems.



Chapter 6

Discussion

When analysing the rms-flux relation of V1504 Cyg and KIC 8751494, we found that
the gradient and intercept of the linear fit vary with the time scale sampled during the
analysis. This can be seen in figures 5.1 and 5.3. Parameters found at a specific time scale
also vary with the data set analysed; in other words, the parameters vary with time. The
variation of the parameters of the linear fit with time scale will be discussed in section
6.1. Their variation with time will be discussed in section 6.2.

The detection of the rms-flux relation is only one of the properties of flickering which
points towards the coupling of the short and long time scales within the accretion disc.
This coupling is also indicated by a lognormal flux distribution. We will briefly discuss
the flux distribution of the CVs under investigation in section 6.3.

6.1 Variation of the parameters of the fitted rms-flux

relation with time scale

When the rms-flux relation of a quiescent interval or quarter is sampled at several time
scales, the gradient and intercept of the linear fit to the rms-flux relation vary with the
time scale under consideration. This is observed in both V1504 Cyg and KIC 8751494.
The variations however depend on the object. We will illustrate these variations in V1504
Cyg by analysing the combined quiescent intervals of Q4 and in KIC 8751494 by analysing
the quiescent quarter Q2. The variations found in these data sets are representative of
those found in all other data sets for both objects.

In figure 6.1, the variation of the intercept of the fitted rms-flux relation with the time
scale sampled is shown for V1504 Cyg and KIC 8751494. The time scales sampled range
from approximately 5 to 140 minutes. It is clear that the intercept increases with time
scale in both CVs. At longer time scales, the increase appears to flatten. At shorter time
scales, the increase steepens.

The intercept of the rms-flux relation is a measure of the constant variability power
observed, as it corresponds to the rms variability at zero flux. The flattening observed
in figure 6.1 hence corresponds to the PSD flattening at frequencies below the local vis-
cous frequencies within the disc. At frequencies below this “kink”, the total variability
observed does not increase any more with decreasing frequency, equivalent to increasing
time scale. This is illustrated in figure 6.2, which shows the PSD corresponding to the
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data sets analysed in figure 6.1. Time scales corresponding to approximately 30 and 100
minutes are plotted onto the PSDs. At shorter time scales, the number of flux measure-
ments in each bin after the first binning is smaller. The measured variability within each
bin is then smaller, while the level of Poisson noise is the same at all time scales. Sub-
tracting the Poisson noise from the measured variability in order to obtain the intrinsic
variability therefore has a larger influence at the shortest time scales, which explains the
steep increase of the intercept.

(a) V1504 Cyg
Combined quiescent intervals of Q4

(b) KIC 8751494
Quiescent quarter Q2

Figure 6.1: Variation of the intercept of the fitted rms-flux relation with time scale in
V1504 Cyg and KIC 8751494. The errors on the intercept are too small to be visible. For
V1504 Cyg, the average error is 0.2 electrons/s. For KIC 8751494, the average error is
0.08 electrons/s.

(a) V1504 Cyg
PSD of combined quiescent intervals of Q4

(b) KIC 8751494
PSD of quiescent quarter Q2

Figure 6.2: Representative PSDs of V1504 Cyg and KIC 8751494. The striped-dotted lines
correspond to a time scale of approximately 30 minutes. The striped lines correspond to
a time scale of approximately 100 minutes.
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In figure 6.3, the variation of the gradient of the fitted rms-flux relation with the time scale
sampled is shown for V1504 Cyg and KIC 8751494. The time scales sampled range from
approximately 5 to 140 minutes. The variation observed depends on the object: in V1504
Cyg, the gradient increases with increasing time scale, while in KIC 8751494 the gradient
decreases with time scale until approximately 80 minutes, after which it increases.

The gradient of the rms-flux relation is a measure of how fast the total variability
power increases with increasing flux. This cannot be explained as straightforwardly as
the variation of the intercept, as the PSD does not provide us with information on how
fast the total variability power increases. Moreover, as the variation is different for both
objects, this might point towards different properties of their respective accretion discs.
Again, this is possibly due to the fact that V1504 Cyg is a SU UMa dwarf nova and KIC
8751494 a nova-like variable. Further research is required to explain the variation of the
gradient of the fitted rms-flux relation with time scale.

(a) V1504 Cyg
Combined quiescent intervals of Q4

(b) KIC 8751494
Quiescent quarter Q2

Figure 6.3: Variation of the gradient of the fitted rms-flux relation with time scale in
V1504 Cyg and KIC 8751494.

6.2 Variation of the parameters of the fitted rms-flux

relation with time

When determining the rms-flux relation at a single time scale in all quiescent data sets
of V1504 Cyg and KIC 8751494, the gradient and intercept of the fitted relation vary
with the data set under consideration. As every data set is observed at a different time,
the parameters of the fitted relation vary with time. Since there are only four data sets
available for KIC 8751494, it is difficult to determine whether the gradient and intercept
actually vary with time. V1504 Cyg has 121 quiescent intervals, which can be combined
into 16 quarters. With this amount of data sets, any variation of gradient and intercept
with time will be clearly visible.

Figure 6.4 shows the variation of the gradient of fitted the rms-flux relation with time
in V1504 Cyg. The time scale sampled corresponds to approximately 10 minutes. The
gradients of the rms-flux relation found in the quiescent intervals combined into quarters
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and in the quiescent intervals separately are both shown in the figure. Between 2455200
and 2455600 JD, about one year, the gradient of the rms-flux relation appears to decrease
with time. This might be due to changes within the accretion disc, but further research
is needed. Before and after this period, the measured gradients appear scattered.

Figure 6.5 shows the variation of the intercept of the fitted rms-flux relation with time
in V1504 Cyg. The time scale sampled corresponds to approximately 10 minutes. The
intercepts of the rms-flux relation found in both the quiescent intervals separately and
combined into quarters are both shown in the figure. There appears to be a downward
trend, but the data is scattered. Further research is needed in order to quantify any
present variations of gradient and intercept with time and determine their origin.

(a) Quiescent intervals combined into quarters (b) Quiescent intervals separately

Figure 6.4: Variation of the gradient of the fitted rms-flux relation with time in V1504
Cyg. The time scale sampled is approximately 10 minutes.

(a) Quiescent intervals combined into quarters (b) Quiescent intervals separately

Figure 6.5: Variation of the intercept of the fitted rms-flux relation with time in V1504
Cyg. The time scale sampled is approximately 10 minutes. The errors on the intercept
are too small to be visible. For the quiescent intervals combined into quarters, the average
error is 0.09 electrons/s. For the quiescent intervals separately, the average error is 0.3
electrons/s.
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6.3 Flux distribution of V1504 Cyg and KIC 8751494

According to the fluctuating accretion model, objects with a detected rms-flux relation
also have a lognormal flux distribution. The rms-flux relation indicates that the short
and long time scales of flickering within the accretion disc are coupled. In the fluctuating
accretion model, this is achieved by multiplying all variations. The multiplicative coupling
naturally produces a lognormal flux distribution.

Figure 6.6 shows the normalised flux distribution for the combined quiescent intervals
of Q5 of V1504 Cyg and the quiescent quarter Q2 of KIC 8751494. The flux is normalised
by dividing the measured flux through the average measured flux value. These distribu-
tions are representative for the flux distributions found in all other data sets. It is clear
that both objects display a lognormal flux distribution, especially in the distribution of
V1504 Cyg. This enforces the fluctuating accretion model. However, the distribution
needs to be fit in order to obtain the goodness-of-fit of a lognormal distribution.

(a) V1504 Cyg (b) KIC 8751494

Figure 6.6: Normalised flux distribution of V1504 Cyg and KIC 8751494. For V1504 Cyg,
the combined quiescent intervals of Q5 are analysed. For KIC 8751494, the quiescent
quarter Q2 is analysed.
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Conclusion

In this master’s thesis, we have probed the flickering variability of eight CVs in the
Kepler field-of-view. CVs are not the only systems that display flickering variability.
Other compact interacting binaries, such as XRBs and AGN, also display this type of
aperiodic broadband variability. Flickering variability is accretion-induced and originates
in the accretion disc surrounding the central object. Other types of accretion-induced
variability have also been observed in CVs, XRBs, and AGN. These shared properties
lead to the hypothesis that the physics governing accretion discs is independent of mass,
size or type of the central compact object. In other words, the nature of accretion is
thought to be universal.

Because of the availability of high quality X-ray light curves, mainly thanks to the
NASA Rossi X-ray Timing Explorer mission, flickering variability has been studied in
more detail in XRBs and AGN. The rms-flux relation is one of the properties of flickering
variability. It is a linear relation between the rms amplitude of the variability of a light
curve and its mean flux. The rms-flux relation has been detected in multiple XRBs and
AGN. For the analysis of flickering variability in CVs, long uninterrupted light curves at
optical wavelengths are needed. Since the launch of the Kepler satellite, large amounts
of high-quality data suitable for its analysis in CVs became available. Nevertheless, only
one CV has an observed rms-flux relation: MV Lyr, which is in the Kepler field-of-view.
The aim of this thesis is to detect the rms-flux relation in as many CVs in the Kepler
field-of-view as possible.

We have found eight CVs in the Kepler field-of-view for which short cadence data are
available, excluding MV Lyr. Since we want to analyse flickering variability, any outbursts
and eruptions need to be neglected. These cataclysmic events dominate the light curve,
making it difficult to detect flickering variability. Also, they influence the flux distribu-
tion and hence the rms-flux relation. For all eight CVs, the quiescent intervals have been
selected using a conservative range, making sure that the system is fully in its quiescent
state. These quiescent intervals have also been combined according to the Kepler quarter
in which they were observed. Not all CVs displayed outbursts, for these systems the light
curve has been split into quiescent quarters.

The rms-flux relation is detected in two CVs: V1504 Cyg and KIC 8751494. Moreover,
we have detected the rms-flux relation in every quiescent data set of both objects. The
rms-flux relation could not be detected in the other six CVs. This might point towards
these CVs not displaying any flickering variability, which would not be expected. All data
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sets have been analysed and we found that the rms-flux relation is not detected in light
curves in which instrumental noise overpowers any intrinsic variability of the object. The
rms-flux relation is hence not not detected in those six CVs.

When analysing the rms-flux relation in V1504 Cyg and KIC 8751494, we found that
the gradient and intercept of the fitted rms-flux relation of a quiescent data set vary with
the time scale sampled. The variation of the intercept is mainly caused by the PSD shape
of the data set, as the intercept is a measure of the constant variability power observed.
The variation of the gradient cannot be explained in a similar manner. The variation
observed for V1504 Cyg is different from that observed for KIC 8751494, which might
point towards a difference in accretion disc between these two objects. This is possibly
due to the fact that V1504 Cyg is a SU UMa dwarf nova and KIC 8751494 a nova-like
variable. However, further research is needed.

When sampling a single time scale, the gradient and intercept of the fitted rms-flux
relation also vary with the quiescent data set under consideration. As different data sets
are observed at different times, the parameters of the fitted rms-flux relation vary with
time. For KIC 8751494, only four quiescent data sets are available. In order to deter-
mine any variation, more data is needed. For V1504 Cyg, there is a clear variation of
gradient with time, but only over a period of approximately a year. Before and after this
period, the measured gradients appear scattered. The intercept appears to decrease with
time, but the data is again scattered. Further research is needed in order to quantify any
present variations of gradient and intercept with time and determine their origin.

The rms-flux relation implies that short and long flickering time scales are coupled to-
gether. This is reproduced by the fluctuating accretion model. In this model, flickering
variability originates throughout the accretion disc and modulates the central emission.
The different time scales at which flickering variability occur are coupled together multi-
plicatively, hence coupling short and long time scales and producing the rms-flux relation.
The multiplicative coupling of time scales also produces a lognormal flux distribution, an-
other property of flickering variability. When different time scales are added together
instead of multiplied, as is done in the shot noise model, the short and long time scales
are not coupled. The shot noise model hence does not replicate the rms-flux relation and
the lognormal flux distribution.

We have briefly analysed the flux distribution of V1504 Cyg and KIC 8751494. The
distributions of all quiescent data sets appear to be lognormal. However, a lognormal
model needs to be fit to these distributions in order to obtain a goodness-of-fit.

The detection of the rms-flux relation in V1504 Cyg and KIC 8751494, together with
its detection in MV Lyr, brings the total number of CVs with a detected rms-flux rela-
tion to three. This enforces the hypothesis of the universal nature of accretion-induced
variability. It is very likely that the rms-flux relation will be observed in the other six
CVs when data of sufficient quality will be available for these systems.
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Appendix A

Period determination

Peaks are clearly visible in some of the PSDs shown in figures 5.5 and 5.6. These peaks may
correspond to the periods characteristic to the system, such as the orbital and superhump
period, and their harmonics. In this appendix, we investigate all PSDs of all quiescent
data sets of the CVs listed in 3.1, and determine the periods corresponding to any clearly
visible peaks. We then compare the periods found to those listed in literature. The
periods found in literature are given in table A.1.

In section A.1, we will expand on the data analysis method used to find the periods
corresponding to the peaks. In section A.2, the periods found will be discussed and
compared to those found in literature.

Object Porb PSH,+ PSH,− Source

BOKS 45906 56.5574 ± 0.0014 min [36]
V344 Lyr 2.11 h 2.20 h 2.06 h [58]
V363 Lyr 4.68 h 4.47 h [36]
V447 Lyr 3.74 h [37]
V516 Lyr 2.0159952 ± 0.000005 h [28]
V1504 Cyg 1.66971 ± 0.00002 h 1.74 h 1.63 h [59]
KIC 8751494 2.7451008 ± 0.0000002 h 2.9388 h [27]

Table A.1: Orbital period Porb, positive superhump period PSH,+, and negative superhump
period PSH,− found in literature for the CVs listed in table 3.1. No periods were found
for V452 Lyr and V585 Lyr.

A.1 Data analysis method

The programming language Python is used to perform the data analysis. For every object,
we first calculate the PSD for every data set available. Whenever a peak is clearly visible
in a PSD, we plot the periodogram of that data set. A periodogram is calculated in the
same way as the PSD, but it is plotted on a linear scale instead of a logarithmic scale.
The different scale makes it easier to detect the peak, which will be illustrated in the
following section.
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The location of the peak is determined by searching for the frequency with the most
power in a certain frequency range, and the frequency corresponding to it is found ac-
cordingly. In order to determine the error on the frequency, the data is bootstrapped.
The frequency is then converted to a period, as this is more conventional in CVs. The
error is converted via error propagation. This is done via

P =
f

3600
, δP = P

δf

f
=

δf

3600f 2
, (A.1)

with P the period in hours, f the frequency in Hz, and δP and δf their respective errors.

A.2 Results

We will now discuss the results of the data analysis of all CVs. As expected, no periods
were visible in V585 Lyr. For V363 Lyr and V516 Lyr, periods are listed in literature,
but we could not detect them in their respective quiescent intervals. Their characteristic
periods most likely have not been detected as we only considered the quiescent intervals
in the data analysis [28, 36]. The detection of the periods of the other five CVs will be
discussed in the following sections.

A.2.1 BOKS 45906

Figure A.1 shows the PSD and periodogram of the combined quiescent intervals of Q7 of
BOKS 45906. A peak is clearly visible in both. This peak is visible in all data sets and
corresponds to the orbital period of the system. After analysing all data sets, we find that
Porb = 0.94 ± 0.03 h. This period corresponds to the orbital period found in literature
[36].

(a) Rms-normalised PSD (b) Periodogram

Figure A.1: The rms-normalised PSD and periodogram of the combined quiescent inter-
vals of Q7 of BOKS 45906 are shown. The peak in the PSD under investigation is marked
by the shaded region. This region marks the range over which the periodogram is plotted.
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A.2.2 V344 Lyr

The PSD and periodogram of the combined quiescent intervals of Q2 of V344 Lyr are
shown in figure A.2. The highest peak is not as narrow as the peak found in the data
sets of BOKS 45906. This is because the orbital period, positive superhump period and
negative superhump period do not differ that much, giving rise to a broadened peak.
Harmonics of the orbital period are also clearly visible.

Not all data sets of V344 Lyr show visible peaks. The orbital period could be detected,
but the period and its error depend on the data set analysed. The most conservative
period is 2.12± 0.05 h, which corresponds to the period found in literature. The positive
and negative superhump period have been detected in some data sets. We find a positive
superhump period of 2.19 ± 0.08 h and a negative superhump period of 2.06 ± 0.02 h.
These values also in correspond to the periods found in literature [58]. The period causing
the peak with the highest power varies over all data sets. This is because the relative
power the orbital period, positive and negative superhump period varies with time [45].

(a) Rms-normalised PSD (b) Periodogram

Figure A.2: The rms-normalised PSD and periodogram of the combined quiescent inter-
vals of Q2 of V344 Lyr are shown. TThe peak in the PSD under investigation is marked
by the shaded region. This region marks the range over which the periodogram is plotted.

A.2.3 V447 Lyr

In figure A.3, the PSD and periodogram of one of the quiescent intervals of V447 Lyr are
shown. A peak and its harmonics are clearly visible in the PSD, and are caused by the
orbital period of the system. These peaks are visible in all data sets. However, the period
and its error determined by the data analysis depends on the data set analysed. The most
conservative period found is 3.72 ± 0.03 h. This period corresponds to the period found
in literature [37].
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(a) Rms-normalised PSD (b) Periodogram

Figure A.3: The rms-normalised PSD and periodogram of the combined quiescent inter-
vals of Q15 in V447 Lyr are shown. The peak in the PSD under investigation is marked
by the shaded region. This region marks the range over which the periodogram is plotted.

A.2.4 V1504 Cyg

In figure A.4 the PSD and periodogram of the combined quiescent intervals of Q15 of
V1504 Cyg. In this data set, the orbital period of the system is clearly visible. The
negative superhump period is also visible in the periodogram.

Not all data sets of V1504 Cyg show visible peaks. The orbital period could be
detected, but the period and its error depend on the data set analysed. The most con-
servative period found is 1.66± 0.03 h. The positive superhump period was visible in few
data sets, in each of these data sets we found a period of 1.72 ± 0.03 h. The negative
superhump period was also visible in few data sets, the most conservative period found is
1.63± 0.03 h. All periods found correspond to those found in literature [59].

(a) Rms-normalised PSD (b) Periodogram

Figure A.4: The rms-normalised PSD and periodogram of the combined quiescent inter-
vals of Q15 of V1504 Cyg are shown. The peak in the PSD under investigation is marked
by the shaded region. This region marks the range over which the periodogram is plotted.
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A.2.5 KIC 8751494

Figure A.5 shows the PSD and periodogram of the combined quiescent intervals of Q2 of
KIC 8751494. A peak is clearly visible in both, and is caused by the positive superhump
period. We find that this peak corresponds to 2.93 ± 0.03 h, which corresponds to the
positive superhump period found in literature [27]. The orbital period of the system was
not found.

(a) Rms-normalised PSD (b) Periodogram

Figure A.5: The rms-normalised PSD and periodogram of the combined quiescent in-
tervals of Q16 of KIC 8751494 are shown. The peak in the PSD under investigation is
marked by the shaded region. This region marks the range over which the periodogram
is plotted.
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