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Abstract

Global warming leads to a growing awareness that greenhouse gas emissions should be
strongly reduced. To accomplish this, an increasing share of intermittent renewables
is being integrated in the electricity network. The intermittent character of these
sources demands a high degree of flexibility of the power system. With the advent of
smart grids a new form of flexibility becomes available, namely the active participation
of the demand side. A major challenge for the power system operator is to schedule
this new flexibility ex-ante in the market. To be able to do this, this flexibility has
to be quantified. In this thesis, a method is developed to quantify this flexibility for
the residential sector through price elasticities, using a bottom-up approach. This is
applied to Belgium, for a fully electrified, de-carbonized society in 2050.

Three types of flexible devices are considered: heating (heat pumps and electric
heaters), electric vehicles and wet appliances (washing machine, dishwasher and
tumble dryer). These appliances are grouped into houses according to their expected
penetration rates. A household receives a varying price signal and automatically
optimizes the energy consumption of its flexible devices towards minimal electricity
cost, with regard to user constraints. In order to correctly represent the population
structure and the penetration rates of the devices, houses are grouped together
in neighbourhoods. Regarding such a neighbourhood, each price signal yields a
corresponding electricity consumption pattern. In this thesis, a linear relationship
is determined between a relative change of a price signal and a relative change in
electricity consumption regarding a reference scenario. This yields price elasticities for
a specific neighbourhood. A selective regression is applied which enables to determine
the time interval in which price changes have an influence on the demand. By
performing a Monte Carlo simulation, the characteristics of an average neighbourhood
can be determined. This allows to scale up the results to the level of a country.
The Monte Carlo simulation is performed for the four different seasons and both
weekdays and weekends to assess their influence on the flexibility.

The annual electricity consumption that results from our model increases by a
factor of 2 compared to the current one, due to the full electrification. The peak power
consumption can increase by a factor 5 to 8 (depending on the season) due to load
syncing and the new loads (heat pumps and EVs). The elasticity matrices point out
that the most flexibility is available in winter and the least in summer. The maximum
time that demand is shifted is found to be seven hours. Most flexibility originates
from the heaters. EVs mainly provide flexibility at night, while wet appliances do
not contribute much to the available flexibility.
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Samenvatting

De opwarming van de aarde leidt tot een groeiende bewustwording dat de uitstoot
van broeikasgassen sterk verminderd moet worden om de globale temperatuurstijging
te beperken. Dit zorgt ervoor dat het aandeel van fluctuerende hernieuwbare ener-
giebronnen in de elektriciteitsproductie toeneemt. Opdat het elektriciteitssysteem
zou kunnen omgaan met deze onvoorspelbare, variërende energiebronnen heeft het
een grote graad van flexibiliteit nodig. Door het ontwikkelen van nieuwe concepten
als slimme elektriciteitsnetwerken ontstaan er nieuwe manieren om in deze nood
aan flexibiliteit te voorzien, zoals de actieve deelname van de vraagzijde op de
elektriciteitsmarkt. De netwerkbeheerder staat hier voor de grote uitdaging om
deze flexibiliteit vooraf in de markt in te plannen. Zo kan bijvoorbeeld het gebruik
van dure piekcentrales worden vermeden. Om dit mogelijk te maken moet deze
flexibiliteit echter eerst bepaald en gekwantificeerd worden. In deze thesis wordt een
methode ontwikkeld om de flexibiliteit van de residentiële vraagzijde te kwantificeren
door middel van prijselasticiteiten m.b.v. een bottom-up aanpak. Deze methode
wordt dan toegepast op een volledig geëlektrificeerde, CO2-vrije maatschappij in
2050 voor België.

Deze thesis bestaat uit twee delen, namelijk 1) de modellering van de verschillende
flexibele apparaten en de optimalisatie van hun elektriciteitsverbruik met het oog
op kostenminimalisatie, en 2) het bepalen van de prijselasticiteiten met behulp van
statistische methodes gebruik makende van de resultaten van voorgaande optimalisa-
ties. Drie types van flexibele apparaten zijn geïmplementeerd: verwarming (d.m.v.
warmtepompen en elektrische bijverwarming), elektrische voertuigen en witgoedtoe-
stellen (wasmachines, droogkasten en vaatwassers). Deze apparaten worden samen
gegroepeerd in huizen, rekening houdend met hun verwachte penetratiegraad. Elk
huishouden krijgt een variërende elektriciteitsprijs doorgestuurd (bv. één dag op
voorhand). Het elektriciteitsverbruik van hun flexibele apparaten wordt dan zo
gepland zodat de elektriciteitskost minimaal is voor de verbruiker. Om een correcte
weergave te krijgen van de bevolkingsstructuur en van de penetratiegraden van de
verschillende apparaten worden huizen per 70 gegroepeerd in een wijk. Een wijk
heeft voor elk prijssignaal een overeenkomstig elektriciteitsverbruik. In deze thesis
wordt gezocht naar een lineair verband tussen een relatieve prijsverandering en een
relatieve verandering in elektriciteitsverbruik voor een wijk, ten opzichte van een
referentiescenario. Dit verband wordt gelegd m.b.v. lineaire regressies. De resultaten
van deze regressies leiden dan tot de gezochte prijselasticiteiten voor een specfieke
wijk. Deze prijselasticiteiten worden gegroepeerd in een ‘elasticiteitenmatrix’. De dia-
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Samenvatting

gonaal van deze matrix bevat de eigen prijselasticiteiten per uur, de waarden buiten
de diagonaal worden kruiselasticiteiten genoemd. De eigen prijselasticiteiten drukken
het verband uit tussen de procentuele verandering van de prijs op een bepaald uur
en de procentuele verandering in elektriciteitsverbruik op hetzelfde uur. Deze eigen
elasticiteiten zijn doorgaans negatief. De kruiselasticiteiten drukken het verband uit
tussen de procentuele verandering van de prijs op een bepaald uur en de procentuele
verandering in elektriciteitsverbruik op ander uur. Deze zijn in het algemeen positief,
met grote waarden nabij de diagonaal en kleinere waarden verder van de diagonaal.
Verder wordt er een selectieve regressie toegepast om op een statistische manier het
tijdsinterval te bepalen waarbinnen een verandering van de elektriciteitsprijs effect
heeft op het elektriciteitsverbruik. Aangezien elke wijk is opgebouwd uit verschillende
stochastische elementen (penetratiegraden van apparaten, bezetting van huizen, enz.),
kunnen de karakteristieken van een ‘gemiddelde’ wijk bepaald worden via een Monte
Carlo simulatie. De bekomen resultaten van een gemiddelde wijk kunnen dan worden
opgeschaald naar het niveau van een regio of een land, in deze thesis toegepast
op België. De Monte Carlo simulatie wordt uitgevoerd voor de vier verschillende
seizoenen, zowel voor weekdagen als weekenddagen om de invloed op de flexibiliteit
na te gaan.

Het gemiddeld jaarlijks elektriciteitsverbruik volgens het model in deze thesis
verdubbelt t.o.v. de huidige residentiële elektriciteitsvraag. Dit is vooral te wijten
aan de volledige elektrificatie. Verwarming en transport gebeuren nu immers vooral
met fossiele brandstoffen, waar ze in ons model nieuwe elektrische lasten vormen
met warmtepompen en elektrische voertuigen. Het piekvermogen neemt toe met
een factor 5 tot 8, afhankelijk van het seizoen. Dit komt wederom door de nieuwe
elektrische lasten en door de prijsstrategie die ervoor zorgt dat zoveel mogelijk lasten
naar hetzelfde (goedkope) moment worden verschoven. De prijselasticiteiten tonen
aan dat er in de winter het meeste flexibiliteit voorhanden is en in de zomer het
minste. Dit is voornamelijk te wijten aan de belangrijke bijdrage van de elektrische
verwarmingsapparaten tot de flexibiliteit. De grootste tijdspanne waarin een prijsver-
andering invloed heeft op de vraag volgens ons model is zeven uur. Dit wil zeggen dat
(een deel van) de elektriciteitsvraag maximaal zeven uur verschoven wordt in de tijd
t.o.v. zijn originele verbruikstijdstip bij de referentieprijs. De meeste flexibiliteit die
beschikbaar is komt van de verwarmingsapparaten. Deze varieert zoals eerder gezegd
naargelang het seizoen. Elektrische voertuigen zorgen ook voor een aanzienlijk deel
van de totale flexibiliteit, voornamelijk tijdens de nacht. Witgoedtoestellen leveren
een eerder beperkte bijdrage.

De bekomen elasticiteitsmatrices kunnen in een verdere stap gebruikt worden in
een unit commitment model om de flexibele vraag mee te plannen in de elektrici-
teitsvoorziening.
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Chapter 1

Introduction

1.1 Context

In order to limit the global temperature rise to an average of 2℃, the leaders
of the European Union and the G8 announced in July 2009 their objective to
reduce greenhouse gas emissions at least 80% below 1990 levels by 2050 [1]. This
is in accordance with the 450 ppm scenario of the 4th Assessment Report of the
International Panel on Climate Change (IPCC). The European Commission translated
this objective into two separate roadmaps: the Energy Roadmap 2050 [2] and the
roadmap for moving to a low-carbon economy in 2050 [3], both implying near carbon
neutrality for the power sector in 2050. Several major stakeholders in the energy
sector have issued studies, either predating or following the Commissions roadmaps,
with the goal of establishing scenarios for reaching this low-carbon energy system by
2050. Influential examples, besides the two aforementioned roadmaps, include the
Power Choices study by Eurelectric [4], the Roadmap 2050 study by the European
Climate Foundation [1] and the Energy [r]evolution study by Greenpeace [5]. In the
outcome of these studies, as a result of the emissions constraint, a significant share of
the electricity production in 2050 comes from Renewable Energy Sources (RES). To
cope with these intermittent sources and to be able to balance electricity supply and
demand, the electric power system will need to possess a high degree of operational
flexibility. Fig. 1.1 summarizes the different tools of flexibility of which an operator
disposes. Nowadays, flexibility is mostly provided by conventional (peak) power
units and power exchange, although energy storage in the form of pumped hydro is
also used extensively in some countries. Currently, demand side management (DSM)
is mainly applied in the industry, and mostly in the form of ancillary services. In the
future, especially with the advent of smart grids, this form of flexibility is expected
to increase in importance, and is expected to also incorporate residential demand.
In this thesis we will focus on the flexibility that can be obtained through DSM.

Our thesis is situated in the context of a project [7] at KU Leuven, which
investigates whether it is possible to supply all end energy as demanded by the
overall society without emitting any greenhouse gases by 2050. The vision in this
study is a dominantly electric society at the end-consumer level, wherever possible.
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1. Introduction

Fig. 1.1: Different forms of operational flexibility in power systems [6]

Consequently, in this thesis we assume that the energy system is 100 % carbon-neutral.
This means e.g. that common energy consuming devices like gas boilers and passenger
cars, which currently use fossil fuels to function, will be substituted by electric heat
pumps and electric vehicles.

DSM is a corner stone of the aforementioned study and will be the field on which
we will focus in this thesis. Through DSM, a certain amount of flexibility can be
provided by the end-consumers. This flexibility should be quantified such that the
system operator has an idea of the amount of available flexibility at a given time
and of the corresponding costs. The aforementioned studies, as well as many others,
have integrated this flexibility using a top-down approach (see section 2.4.1) in which
a presumed percentage of the energy demand can be shifted. Since this is a very
coarse approximation, it leaves some obvious room for improvement. In this thesis
we will develop a method which allows to quantify the amount of flexibility available
at each moment more accurately.

Since the purpose of this quantification is integration into other linear models
that are part of the project [7], an important constraint is that the flexibility has to
be quantified in a linear way.

1.2 Problem Statement

In this section we will narrow down the subject of this thesis in order to define more
precisely the general problem. This problem was stated as: quantifying the flexible
electricity demand in 2050. We refer to chapter 2 for a more in-depth discussion
about relevant topics and an extensive justification on the choices we made.

In order to really empower the potential of demand side flexibility, a smart
grid environment is needed. Within such a smart grid, several mechanisms, or
demand response (DR) programs, exist to address the flexibility of the demand. Of
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these DR programs, many economists believe that real time pricing (RTP) is the
most effective [8]. Also, we believe that RTP will free up the most flexibility as this
is the most advanced pricing mechanism. Therefore, we decided to implement this
mechanism in our thesis.

In this thesis, we will only consider the flexibility of the residential electricity
demand. Numerous devices are suitable to participate in a DR program. The ones
that we considered to be suited for our purposes are:

• Heat pumps and electric auxiliary heaters

• Electric vehicles

• Washing machines, dishwashers and tumble dryers

Flexibility can be represented in different manners. Since we had to keep our
model linear, and because of the direct link with an RTP program, we chose to
quantify the flexibility by determining price elasticities. Besides, determining price
elasticities in a smart grid context is still a research gap [9].

These price elasticities can be used to estimate the effect of price changes on
the residential electricity demand. This could be employed in some kind of unit
commitment model that schedules generation while taking into account this flexible
demand. This should result in new prices that incorporate the effects of this flexible
demand.

It is important to realize that some concepts often discussed in the context of
demand response or smart grids are not incorporated in this thesis:

• We are investigating the full potential of residential electric flexibility. Therefore,
we have considered the future distribution grid as if it would have been designed
to facilitate this full potential. Grid constraints are thus not taken into account.

• This also means that e.g. load syncing is not punished in our model. At
moments with a lot of renewable production, it might be desired to schedule
as many loads as possible at a same moment. Peak shaving is not necessarily
the purpose.

• We do not assume that electricity demand influences the price. The price signal
received by the houses should already incorporate the effect of the flexible
demand.

1.3 Goals of the Thesis
In this thesis, we aim to quantify the residential electric flexibility in 2050. Several
DR programs exist to create this flexibility and flexibility can be modelled in different
manners, as will be discussed in chapter 2. As the results of our research will be used
as input in a linear model, an important constraint was the linearity of our model.
Therefore, we decided to represent flexibility by price elasticity matrices (see section
2.4.3) and an RTP program. This flexibility will be quantified using a bottom-up
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approach, which allows taking the technical characteristics of the different flexible
devices into account.

In order for this thesis to succeed and to attain the stated target, some research
questions will need to be answered. The main research question is:

What is the potential for flexibility of residential electricity de-
mand in 2050 when taking into account the technical charac-
teristics of devices?

This question cannot be answered immediately. Some sub questions can be raised
to help answering the main research question:

1. Which devices are considered as ‘flexible’ and how to model them?

2. In which way do we represent the so called ‘flexibility’?

3. What influences the amount of flexibility available?

4. What is the absolute minimum and maximum amount of this flexibility?

5. What is the time interval in which demand is shifted?

6. What is the influence of each separate device on the flexibility?

7. How sensitive are the results to an increase/decrease in devices’ penetration
rates?

These questions will be answered during the course of this thesis text and will
help to draw some general conclusions.

1.4 Main Contributions

Flexibility can be represented by different modelling approaches. Most of the
approaches found in the literature model either only one type of flexible device [10,11]
or use an economic approach without considering the technical characteristics of the
devices [12]. This thesis aims to combine the best of both worlds, using a bottom-up
approach to quantify price elasticities of electricity demand. In more detail, our main
contributions are:

• An object-oriented model programmed in matlab combining separate models
of different flexible devices in one overall optimization problem. This was
written in such a way that it could be easily adapted and extended. The model
takes into account different stochastic parameters like e.g. penetration rates,
occupancy, etc. It also allows to capture the interaction between the different
devices. The model and some results of the optimization are presented in
chapter 3.
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• A way to calculate price elasticity matrices taking into account the technical
characteristics of devices. The price elasticities in this thesis are determined
by performing linear regressions on the data obtained by the optimizations.
By performing a selective linear regression we are able to give a statistical
interpretation of the time span in which a price change influences demand.

• In order to obtain results that are not specific to a certain configuration, we
performed a Monte Carlo simulation. This allows to calculate averages of the
results independent of a specific configuration. The results of these Monte Carlo
simulations can then be scaled up to a Belgian level or another region.

1.5 Structure of the Text
In this section we give a brief overview of the structure of this thesis text.

Chapter 2 gives an extensive overview of the studied literature. In this chapter,
we point out current gaps in research and synthesize the elements that we will use
further on in this thesis. Also, we justify the choices we made to set up our model as
used in later chapters.

Chapter 3 describes the modelling of flexible demand. First, we describe the
separate models of all considered devices. Then, these devices are grouped together
into houses according to their penetration rates. Each household is subject to
the same RTP signal and its flexible energy consumption is optimized towards
minimal electricity cost, subject to user constraints. The mathematical rigour of the
mixed-integer problem is elaborated and demonstrated by examples.

In chapter 4 we build on this model and perform regressions in order to quantify
the own- and cross-price elasticities. As our model contains several stochastic
elements, we repeat this process using a Monte Carlo simulation to estimate the
averages and the distribution of these elasticities. This allows scaling up the results
to a whole region or country.

In chapter 5 we discuss the results of this bottom-up approach. The separate
influences of the different devices are determined, and the seasonal impact is discussed.
Furthermore, a sensitivity analysis on the penetration rate of EVs is performed.

Finally, in chapter 6, we draw some general conclusions and point out some
possibilities for future work.
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Chapter 2

Literature Review

2.1 Introduction
In this chapter, we summarize our literature study that gave us an insight in the
research field and led to the models used for implementation in chapter 3 and 4.
First, we give an overview of relevant aspects of smart grids and different demand
response programs. Subsequently, we discuss potential flexible devices in section
2.3. Different modelling approaches to represent electric flexibility are presented in
section 2.4. We made a comparison to assess which approach is best suited for our
purposes. Along this chapter, gaps and shortcomings in existing research are pointed
out. Finally, we conclude with an overview of the methodology and the different
models that we considered best suited, which are further elaborated in chapter 3 and
chapter 4.

2.2 Smart Grids & Demand Side Management
Historically, the electricity grid is built according to the idea that supply will always
follow demand. In the traditional electricity grid, this resulted in a unidirectional
energy flow from centralized production parks to the end consumers. Nowadays
however, there is a need for changing the way the current electricity grid works.
According to [13] there are three main drivers for this change. First, the government
policies regarding climate change cause more decentralized renewable generation to
be installed. Secondly, customer behaviour is changing. The growing number and
increasing energy requirements of electrical devices is pushing up the peak demands
in the networks. Thirdly, new technologies are available. These technologies include
e.g. small scale solar generation and electric vehicles. They offer higher functionality
and will have to be supported by the network. In the context of these changing
needs, the concept of a smart grid is developed.

The European Technology Platform Smart Grid (ETPSG) [14] defines the smart
grid as follows:

A Smart Grid is an electricity network that can intelligently integrate the
actions of all users connected to it – generators, consumers and those
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that do both – in order to efficiently deliver sustainable, economic and se-
cure electricity supplies.

The smart grid is supposed to support the wide-spread distributed energy re-
sources (DER) and the increased penetration of EVs by managing bi-directional
energy flows of power and real time information. One of the main benefits is that
demand and supply will be able to be balanced to a certain extent within the dis-
tribution network. End consumers will receive more detailed information and will
be able to optimize their energy use and participate actively in the market to meet
demand response signals.

Demand side management is a very general term used in many applications and
contexts. In its most broad sense DSM encompasses all utility activities designed
to intervene in the end-use consumption pattern of electricity [15]. E.g. the utility
paying of industrial customers to shut down their processes as a secondary reserve,
raising awareness to reduce energy consumption, energy efficiency measures, etc.
Demand Response is mostly used to indicate the more recent forms of DSM. The
literature is not very consistent and both terms are often mixed up. In this thesis
we will use the term DSM in its most broad sense as defined above, and DR as the
DSM applications that become possible in a smart grid context.

Fig. 2.1 shows a structured overview of all possible DSM programs and the
benefits of applying DSM as described by Albadi et al. [16]. A clear difference is
made between incentive based programs (IBP) and price based programs (PBP).
Incentive based programs can be further divided in classical programs and market
based programs. In classical IBP, participating customers receive participation
payments, e.g. in direct load control (DLC) where loads are switched off and on by a
system operator. Although this program is very effective, it is difficult to implement
on a wide scale because the operator needs a lot of information of each consumer.
This is inherently in conflict with the privacy rights of consumers and has triggered
public resistance in the past [17]. In market based IBP, participants are rewarded
money on a more market based approach, depending on the amount of the load
reduction realised. PBP are based on dynamic pricing rates in which electricity tariffs
are fluctuating. These programs can be implemented in a decentralized manner and
thus do not suffer from privacy concerns and a lack of scalability. The most advanced
form of these PBP is Real Time Pricing (RTP). In this program, customers are
charged hourly fluctuating prices reflecting the real cost of electricity in the wholesale
market. RTP customers are typically informed about the prices on a day-ahead
basis. In the other PBP, prices do not vary as much. Therefore RTP will free up
the most flexibility of all the PBP programs and allows to estimate this flexibility
on a more precise time scale. Also, many economists believe that RTP is the most
direct and efficient demand response mechanism, and therefore should be the focus
of policy makers [8]. These arguments, together with the fact that privacy rights are
not violated, are the main reasons why we chose to implement the RTP program as
the demand response program in our thesis.

Several benefits can be attributed to demand side management. These can be
divided into four main categories: participant, market-wide, reliability and market
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Fig. 2.1: Overview of different DSM programs and DSM benefits [16].

performance benefits (see Fig. 2.1). The participants, or customers can expect a
lower electricity bill, as is also the case in our model (see section 3.5.6). An example
of market-wide benefits is the overall reduction of the electricity price. This is due
to a more efficient utilization of the available infrastructure. DSM is also expected
to increase the reliability of the electricity system, as participants will have the
opportunity to help reducing the risk of outages. Also, DSM improves the market
performance, consumers will be able to better manage their consumption since they
have the opportunity to affect the market.

This thesis is situated in the context of a greenhouse gas emission-free energy
system [7]. Because of the carbon-neutrality, a large share of renewable energy
sources (RES) is expected in the energy supply. By consequence the energy supply
will fluctuate and prices will become more volatile. One of the benefits of applying
DR is the ability of managing the demand-supply balance in systems with such
intermittent renewables [18]. This will thus be the main purpose of demand response
in our thesis. In the context of 100% carbon-neutrality this shifting of demand shall
have to be scheduled in advance so it can be used to balance forecast shortages
in the demand-supply equation. We will examine this application, rather than
other applications where DR is used for immediate balancing of shortages due to
forecasting errors with respect to real time generation on a shorter time scale. We
can reformulate the objective of this thesis as:

Investigating the ability of using demand response on a transmission
level to adjust demand to supply such that the TSO is able to plan this
flexibility ex-ante in the market.

In this context, DR could be seen as a new type of tertiary reserves that will eliminate
the need for using expensive peak units.
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2.3 Potential Flexible Loads

In this section we give an overview of the different loads that could be used in a
demand response program. We can make a first distinction between industrial loads
and residential loads. Residential loads can be classified into flexible and non-flexible
loads. Loads are called flexible when they allow to (partially) shift their energy
consumption to a different point in time. Not all loads are equally suited for this
purpose. Some are subjected to a more stringent user behaviour as the user is not
always willing to employ them at a different time, e.g. cooking a meal, watching
TV,... These type of loads are called non-flexible. Flexible residential loads can
be divided into loads that require changes in user behaviour1 and loads that can
be adjusted automatically, without affecting user behaviour. In this thesis we will
focus solely on flexible loads that do not require change in user behaviour. Different
flexible loads are considered in this thesis and will be studied in more detail in the
sections below. Fig. 2.2 gives an overview of the different types of loads.

Fig. 2.2: Classification of different types of loads

2.3.1 Industrial Loads

Large industrial customers typically have a big potential for flexibility, due to the size
of their loads and their ability to control a large part of it [19]. Industrial loads can
be divided into controllable loads and non-controllable loads (e.g. uninterruptible
processes). The controllable loads can be grouped into process independent loads,
process-interlocked loads, storage constraint loads and sequential loads [20]. Each
industrial process is very specific and it is difficult to assess the flexibility of these
processes on a large scale. Most analyses of DSM in industrial processes are limited
because they are case studies for a single industrial plant or sector and do not
investigate interdependencies between DSM potentials and the total power market.
Paulus [21] investigates the technical and economic potential of DSM in industries
in Germany. He classifies the processes that can be used for DSM according to two

1Examples are turning down the heating because of high energy prices, doing the laundry in the
weekend, knowing that the electricity price is cheaper then.
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criteria: overall DSM potential and economic efficiency. He concludes that high
energy intensity is the main lever for DSM to be attractive and withholds eight types
of industrial processes. These processes could be able to provide approximately 50 %
of German capacity reserves for the positive tertiary balancing market in 2020. This
study proves that industrial loads have an enormous potential for participating in
the power market.

There is a great variety of industrial processes and it is difficult to model them
all separately. They are mainly used in DSM programs for ancillary services [22] and
this is not the goal of our thesis. Although they have a large potential for flexibility,
industrial loads fall out of the scope of this thesis.

2.3.2 HVAC

A first category of residential flexible devices are HVAC apparatus, consisting of
Heating, Ventilation and Air Conditioning. As we are examining the Belgian case,
only heating is considered. The amount of installed Ventilation and Air Conditioning
systems in Belgian residences is a marginal part (currently < 1%) of the total energy
consumption in Belgian residences [23]. Because these devices would complicate our
model considerably and they are of minor importance, we excluded them from our
model. Of course when investigating more southern countries they might have to be
taken into account.

As the background of our thesis is a carbon-neutral energy system, gas or other
fossil fuels can no longer be used for heating purposes, as is the case now2. The
heating of buildings will thus have to be provided by other sources. The most credible
source of future heating is electrical heating. One alternative could be sun boilers
but they can only be employed for water heating (no space heating) and they will
always need a back up electric heater [23] so we would need electric heating anyway.
We did not consider the usage of sun boilers further in this thesis. Hence, we assume
that all Belgian residences will use electrical heating. This heating can be provided
by two types of devices: heat pumps and ordinary electrical heaters. These heaters
will represent a big part of future domestic electricity consumption and therefore the
demand response of these devices will be of great importance.

Electrical heaters allow for flexibility by modifying their load pattern without
affecting the thermal energy service they deliver. Different options are available to
create this flexibility. A first option is to allow the temperature in the buildings to
stay within certain limits. The heaters provide then some flexibility by using only the
thermal inertia of the building. Since the temperature can vary between its limits,
the heater can make the temperature increase higher than minimal required at a
certain moment such that it does not have to work at another moment. A second
option is to provide flexibility by a thermal storage tank [24]. One should only use
this thermal flexibility if the benefits of a demand shift exceed the drawbacks that
are associated with the energy losses of this thermal storage.

2Carbon capture and storage (CCS) has not been considered in this thesis, since micro-CHPs
with some kind of residential CCS grid will then probably be needed, which falls our of the scope of
this thesis.
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DSM applied to electrical heaters has to be studied with detailed dynamic models.
These models need to include a thermal model of the building, the HVAC system itself
and the user behaviour. The last one is needed to know when the right temperature
constraints have to be set. The first two items are required for capturing the
interaction between the heating system and the building, the effects of ambient and
inside temperatures, etc. [25]. Models of buildings can get pretty complex, depending
on how many factors one is willing to integrate. An example of such a complex
model is Energy+ of the US Department of Energy [26]. Although this model is
very precise, it is difficult to integrate with DR algorithms and computationally
expensive. A widely used model to capture the thermal behaviour of a building is
a second-order equivalent electric circuit containing resistances and capacitances,
whose parameters depend on the building geometry and the thermal properties of its
materials. Because this is a linear model, this is much less computationally expensive
and allows easier for integrating with DR algorithms [24,27].

Since we did not include ventilation and air conditioning, our HVAC model only
consists of ordinary electric heaters and heat pumps. The former are easily modelled:
one only needs an efficiency (usually 100 %). The latter can be modelled based on
its coefficient of performance (COP). In reality, this COP depends in a non-linear
way on the ambient temperature. However, a linear approximation depending only
on ambient temperature is permitted [25,28].

2.3.3 Cold Appliances

Cold appliances refer to refrigerators and fridges. Just as with HVAC devices, load
shifting of cold appliances is enabled by the thermal storage they incorporate. With
respect to the average annual energy consumption at the residential level (in EU-27),
the cold appliances correspond to a share of 15.2 %, i.e. ranked second place after
heating systems/electric boilers [29]. Fridges have a penetration rate of 106 %, freezers
are somewhat less represented with a penetration rate of 52 % in the EU [30]. Hence,
although the power demand of an individual fridge or freezer is relatively small,
the aggregate effect of large numbers of them can have a significant potential for
flexibility.

Typical shifting periods of cold appliances are 15 to 30 minutes [31] as the stored
food may not heat up too much. This is actually too short for our purposes (we are
considering an hourly varying RTP, and so demand shifting with a time resolution of
at least one hour). Also, consumers seem to be very reluctant to accept interference
in their cold appliances because of health concerns [32]. Because of these last two
reasons, we regard cold appliances as non-flexible.

2.3.4 Electric Vehicles

By 2050, plug-in electric vehicles and electric vehicles are expected to constitute
around 60 % of the global car sales [33]. Because of this shift in technology, domestic
electricity consumption will rise inevitably. For instance in Belgium, assuming an
EV with a consumption of 200 Wh/km and an annually driven distance between
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15 000 and 20 000 km, the energy required for the vehicle is of the same magnitude
as the yearly household electric energy consumption as it is now [34]. EVs provide a
flexibility, if one acknowledges that it does not matter when exactly they are charged,
as long as they are charged sufficiently when they have to leave. DR applied to EVs
offers thus a big opportunity for managing fluctuations in electricity generation and
consumption [35]. Controlling charging of electric vehicles in a smart grid is therefore
an important research topic. Apart from shifting their charging time, EVs could
also offer ancillary services to the grid in the form of ‘vehicle-to-grid’ services (V2G).
However, V2G operation falls out of the scope of this thesis.

In order to ensure that the EV users’ driving requirements are met, it is necessary
to study the driving patterns. Knowing these driving patterns, EV charge profiles can
be constructed. The most important variables to construct these charge profiles are
daily driving distance, home arrival times and home departure times assuming that
EVs can only be charged at home. At this moment, EVs are not yet widespread but it
is acceptable to assume that EV users will more or less have the same driving pattern
as drivers of conventional cars. See [36], [37] and [38] for studies that construct EV
charge profiles based on respectively Flemish, Dutch and Danish driving patterns.

An increasing share of EVs in the vehicle fleet will obviously have an increasing
impact on the electricity system. A significant amount of research has already been
performed on the charging of EVs. This charging can happen in a coordinated or an
uncoordinated way (if charged immediately when arriving). Charging coordination
strategies can reduce the impact on the power system by making more efficient
use of the system’s capacity [39]. Many different coordination strategies exist and
different objectives can be taken into consideration. They can be subdivided in
technical, economical and techno-economical objectives. Technical objectives include
e.g. minimization of energy losses, minimal voltage deviations etc. Economical
objectives are linked to the energy-market stakeholders (consumers, producers)
and include financial benefits by shifting the charging process in response to price
fluctuations. Techno-economical objectives are a combination of both. A comparative
analysis of these strategies has been carried out by Leemput et al. [34].

2.3.5 Wet Appliances

Wet appliances include washing machines, dishwashers and tumble dryers. The
electricity demand of these appliances is described extensively by Stamminger et
al. [30]. This project assesses the possibilities for load shifting of wet appliances
across Europe. It also features a detailed assessment of the acceptance of demand
response applied to wet appliances by the end-user. The report includes starting
probabilities of the different appliances, derived from a survey of 2500 customers
from 10 countries in Europe.

According to Timpe [32], washing machines, dishwashers and tumble dryers are
well suited for load shifting. The expected typical time shift of the cycle of a washing
machine or a tumble dryer is 3 to 6 hours. For a dishwasher this amounts to 3 to 8
hours. Although the availability of these appliances is low, in practice this could be
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compensated by large numbers of controllable appliances leading to an aggregated
potential for flexibility that is not negligible.

Labeeuw [40] estimates the average potential for flexibility in Belgium to be
92 MW with peaks up to 353 MW. This is low when compared to the total installed
capacity of 19 627 GW, but compared to the primary and secondary reserves this
potential is not negligible.

2.4 Modelling Flexibility

In this section, we describe different modelling approaches to estimate electric
flexibility enabled by smart grids. Three approaches are being considered. First,
the top-down approach roughly estimates how much of the demand can be shifted
in time. Secondly, aggregate models like the tank model and quantized population
model are examined. Finally, we discuss flexibility from a more economical point of
view, using price elasticities of demand. At the end we make a comparison between
the different approaches to see which one is best suited for our purposes.

2.4.1 Top-Down Approach

Several studies model the flexibility obtained through DR explicitly using a top-down
approach. Here, DR is represented as a given percentage of the energy demand which
can be shifted in a time window of 24 hours as this is estimated to represent the
expected aggregated capability of DR technologies [41,42] . In Roadmap 2050 [1] for
instance, DR has been capped at 20% of the daily energy demand. This modelling
strategy does not consider the technical characteristics of flexible devices. Hence,
there is some room left for improvement.

2.4.2 Aggregate Models

In order to represent the flexible demand at the wholesale level, we need a concrete,
yet simple model that can capture the flexible demand offered by a large population
of deferrable loads. This flexible demand consists of the sum of load contributions
from each individual appliance whose load can be deferred. One could model the
contribution of each appliance by looking at customer usage behaviour. However, this
does not scale well. At the wholesale level, we cannot consider individual customer
behavioural parameters because of computational complexity [43]. Aggregators are
entities that interact with the wholesale market providing an interface to manage
populations of flexible demand and can overcome this problem [44]. These aggregators
are faced with three main challenges: dealing with a heterogeneous population, real
time control of the appliances and the ex-ante modelling of flexibility in the market.
The next paragraphs discuss some aggregate models. The concept of an aggregator
directly influencing the loads of its population is in accordance with the direct load
control program of Fig. 2.1.
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Tank Model A first modelling approach for aggregating flexible demand on the
wholesale level is to represent the deferrable load by a tank that has to be filled at
the end of the day [45]. Fig. 2.3 shows a schematic representation of this model. The
power system injects energy into a tank of finite capacity. Energy drains out of this
tank to serve the deferrable load. In this model, some constraints of the load have
to be specified. Since we’re looking at an aggregated model, the average deferrable
load has to be specified, which is the rate at which energy drains out of the tank.
Furthermore, the storage capacity (i.e. the size of the tank) and the maximum and
minimum rate at which power can be injected in the tank must be specified. Note
that the tank model is just an analogy. The actual flexible load may have nothing to
do with a tank (e.g. an electric vehicle).

This is a very coarse approximation, as all the valuable temporal information
about the individual contributions is lost. These include appliance arrival patterns,
the time evolution of their energy consumption and their time flexibility. However,
it is a good model to just quantify the economic benefits [44].

Fig. 2.3: Deferrable load tank analogy [45]

Quantized Population Model A third aggregate model is named quantized pop-
ulation model. It is named as such because several appliances of a population are
grouped together according to a certain property. A first example of this is a state
space model for Thermostatically Controllable Loads (TCL) [10,27,46]. Here, local
device states are described in discrete temperature-related state bins. The aggre-
gated probability mass is allowed to move through these bins. Each TCL in the
population is in a certain temperature interval and can be either ON or OFF. The
TCL population can now be represented by a discrete linear time invariant system in
state space form: x(t) = Ax(t − 1) + Bu(t). The state vector x contains the number
of TCLs in each state bin. The A matrix can be thought of as a Markov transition
matrix describing the probability of TCLs moving from one state to the next. The
vector u(t) controls what to turn off. A schematic of this state bin transition model
is shown in Fig. 2.4.

Another example of such an aggregate model is the queuing of a fleet of EVs to
be charged. In [11] a direct load control mechanism is provided in which individual
requests for energy are unbundled. Rather than storing energy or interrupting the
charging, requests for energy are hold in queues and the service time of individual
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Fig. 2.4: State bin transition model [10]

appliances is optimized. A neighbourhood scheduler (aggregator) has to optimize
the time at which the EVs start to function. This model can also be extended to
other deferrable loads such as washing machines, dishwashers, etc.

Multi-Agent Bidding In this approach, every participant, operating in a virtual
power market, is represented by an agent who places priority bids. Agents represent
the interests of the participants and ensure that local constraints are met. Bid
functions of multiple agents are aggregated by an aggregator agent. In this hierarchical
structure all bid functions are aggregated at the top and a clearing priority is
determined based upon a balance between production and consumption. This
approach is mostly applied for coordinated charging of EVs. Examples are Intelligator
[39] and [47].

2.4.3 Price Elasticities

Another way to represent flexibility is through price elasticities. In economics, price
elasticity of demand is a measure to indicate the change in the quantity demanded
of a good in response to a price change [48]. These quantities are expressed relative
w.r.t. the current market equilibrium. The larger the relative change in demand
after a price change, the more elastic is the demand. Presently, residential demand
is almost completely unresponsive to price in power markets because wholesale price
fluctuations are not usually passed on to retail customers. As mentioned earlier, the
introduction of smart grids will enable the consumer to participate in the market.
When introducing smart pricing strategies (e.g. RTP, TOU, ...), the customers will
become responsive to price changes. The demand curves of both a responsive and
unresponsive user are shown in Fig. 2.5.

Classically, two types of elasticities can be defined: long-term and short-term
price elasticity. Long-term price elasticity indicates the willingness of consumers to
adjust their general behaviour in response to electricity price changes. Short-term
price elasticities represent the responsiveness to short-term price signals (e.g. price
signals varying each hour). Currently, these are typically lower than long-term price
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Fig. 2.5: Supply and demand curve when users are not responding to price changes
(vertical line) and when users are price responsive with elasticity εii. The reference
price pref,i is taken as the market equilibrium when demand is inelastic. When
demand becomes flexible, a new equilibrium price pnew,i is established. Also, note
that there is a minimum (non flexible) demand qmin,i and a maximum demand qmax,i

beyond which demand becomes inelastic.

elasticities. They result from changes in the operation of electric equipment [12]
triggered by e.g. demand response programs. Short-term price elasticities will
therefore be interesting in the context of this thesis.

When considering short-time price elasticities, one has to make a difference
between own-price elasticities and cross-price elasticities [12]. Given e.g. hourly time
steps, the own-price elasticity εii indicates the relative change in the demand q at
the hour i in response to a change in the price p in the same hour i. It is defined as:

εii = ∂qi(pref,i)
∂pi

· pref,i

qref,i
(2.1)

where pref,i and qref,i are respectively the reference price and the reference demand
in hour i. This elasticity is typically negative as an increase in electricity price yields
a decrease in consumption.

Cross-price elasticities εij express the change in demand in hour i in response to
a price change in another hour j and is defined as:

εij = ∂qi(pref,j)
∂pj

· pref,j

qref,i
(2.2)

Positive cross elasticities mean that an increase in the price of an hour j stimulates
an increase in the demand at hour i. In the electricity sector these cross elasticities
between electricity consumption in different periods are typically positive [49].The
electricity demand at two different hours i and j can thus be thought of as substitutes
[48]. However, negative cross-price elasticities have been found too [50]. The
cross-price elasticities can be seen as a measure for the willingness of load shifting.
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During a time horizon N , all the time-periods’ price influence on electricity
demand can be summarized in a price elasticity matrix (PEM) as [9]:

εN×N =

 ε11 · · · ε1N
... . . . ...

εN1 · · · εNN

 (2.3)

The change in demand ∆q in response to a change in price ∆p can then be calculated
as εN×N · ∆p = ∆q. End-user response depends on the end-user load type. Three
different load types can be distinguished and they are all described by a unique PEM
topology. First, fixed loads are inelastic to price and all entries for this load type will
be zero in the PEM. Second, curtailable loads can be shed and they are represented
by a PEM with negative values along the diagonal and zeros for all off-diagonal
entries. Third, shiftable loads can be moved to other periods during the day. They
are expected to be represented by a PEM with negative on-diagonal entries and
positive off-diagonal entries. These shiftable loads will be the main focus of this
thesis. Real world consumers have a higher preference to schedule their load close to
the originally scheduled time period. By consequence, their PEM is expected to be a
band matrix with nonzero entries only within a range around the diagonal where the
consumer is willing to shift to [51].

One major research gap is the determination of the price elasticity values for
a PEM for given smart grid technologies. According to Wang et al. [9] they can
potentially be determined by the user-end load control algorithms or be estimated
through loads’ consumption data collected by smart meters. Interesting research can
be done in this area by taking into account the technical characteristics of flexible
loads. The determination of PEM in a smart grid context will be the main research
goal for this thesis.

2.4.4 Comparison

Three main methods to model electric flexibility have been described in the previous
sections. The top-down approach presumes a certain amount of flexibility. As it is
the purpose of this thesis to quantify this flexibility, this method is of little use for
us. We are left with the choice between an aggregate model and price elasticities.
Aggregate models are scalable methods, computationally not intensive and can
represent flexibility in an accurate manner. However, these models also suffer from
some drawbacks. First, they are all mainly suited to only represent one type of
appliance which causes the interaction between different devices to get lost (e.g.
at a household level). Secondly, these models suggest DLC programs which might
lead to privacy issues, as explained in section 2.4.2. Price elasticities are a linear
approximation of flexibility. They link the electricity consumption with the price of
electricity and thus suggest using an RTP program, which we pointed out earlier as
the most efficient DR mechanism (see section 2.2). Also, we believe that RTP will
free up the most flexibility of all PBP. Because of this link, it is possible to obtain
an economical value of this flexibility. It would be possible to get the real cost of
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shifting demand, which makes comparison with other types of electrical flexibility
(Fig. 1.1) possible. This is a flaw of the other methods. Besides, since we have to
keep our model linear (see 1.3) price elasticities are a logical choice. Furthermore
Wang [9] pointed out that the determination of the PEM in a smart grid is still a
gap in current research. Because of these reasons stated above, we chose to quantify
the residential electric flexibility using price elasticity matrices.

2.5 Summary
In this section, we briefly summarize the literature review and the elements that we
retain to build our model upon. First, we chose RTP from the different applicable
DR programs, as this is believed to be the most direct and efficient, and the most
realistic with regard to privacy concerns. Looking back to Fig. 2.2, we can now
identify the load types that we chose to take further into account. We decided to
focus only on quantifying residential flexibility and thus excluded industrial loads
from possible flexible loads. The flexible residential loads that are considered further
in this thesis are:

• Heat pumps and electric heaters (part of HVAC): buildings will be modelled
by second-order RC models, heat pumps by their COP and electric heaters by
their efficiency.

• Wet appliances (washing machines, dishwashers, tumble dryers) will be repre-
sented by particular load cycles.

• Electric vehicles: charging of EVs will be modelled based on driving patterns
of users. V2G will not be possible in our model.

Cold appliances are considered non-flexible because of health concerns. Ventilation
and air conditioning are excluded too because they are of minor importance in
Belgium. The modelling and scheduling of these flexible devices will be explained
further in chapter 3.
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Chapter 3

Modelling Residential Demand

3.1 Introduction

This chapter discusses the models of the different household devices taken into
account for the evaluation of demand response. A distinction can be made between
flexible and non-flexible demand. Non-flexible demand is subjected to user behaviour
and cannot be shifted in time. Flexible devices are all the devices whose consumption
can be shifted in time, subject to the comfort constraints imposed by the users.
This group of appliances can be further divided in continuous and discrete devices.
Continuous devices can be interrupted and their power consumption may vary, e.g.
a heat pump. With discrete devices we mean those devices that draw a predefined
load cycle once switched on, e.g. a washing machine. We modelled and programmed
all household devices in matlab, following an object-oriented approach. A house
is equipped with these devices in function of assumed appliance penetration rates.
Subsequently, the household receives a RTP signal which allows for scheduling the
flexible devices towards minimal electricity cost for the user. This results in a mixed
integer problem. In section 3.5.6, we perform a case study of a house subject to RTP
and compare the scheduling and energy consumption when subject to a flat price
and when subject to a varying price. Finally, households are grouped together into
neighbourhoods, taking into account the population structure of Belgium. This is
explained in section 3.6 followed by an example of the mixed integer problem on a
neighbourhood level.

3.2 Non-flexible Demand

The non-flexible consumption is the part of a household’s electricity consumption
that cannot be influenced by demand response. These appliances typically are
subjected to user behaviour. It would require a change in consumer behaviour to
shift their consumption but we did not consider this in our research. Examples
include switching the lights, watching TV, cooking a meal, etc. Usage of those
appliances typically depends on the occupancy of the house, which in turn depends
on the number of residents. We assume that a household counts between one and
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3. Modelling Residential Demand

five persons. The model for non-flexible electricity use is based upon Richardson et
al. [52] and consists of two different parts. On the one side the occupancy profile
during a day is generated based on [53]. The model generates realistic statistical
occupancy time-series data and takes account for a difference between weekdays and
weekends. Given the occupancy profile, the non-flexible electricity consumption for
a house is generated. This non-flexible consumption is generated by two different
models. The first model generates the use of lighting, the second one generates the
usage of all other non-flexible appliances. The use of lighting in the residential sector
mainly depends on the level of natural light incoming from outdoors and the activity
of the residents. Hence, the model for lighting usage couples the occupancy profile
and the weather data and is based on [54]. The usage of other electrical appliances
only depends on the activity and this model is based on [55].

The model is calibrated in order to have a certain average annual electricity
consumption per household. This should correspond to an estimate of the residential
electricity use in 2050 and it is calculated as follows. According to the IEA [56], the
total residential electricity consumption in Belgium amounted to 20 210 GWh in
2012. Following the predictions of [42] (see table 3.1), this will rise to 21 544 GWh
in2050. In 2009, there were 4 606 544 private households in Belgium [57] . Assuming
that this number remains constant, we obtain a total average annual consumption of
4 677 kWh per household. Subtracting the energy consumption of appliances that
we consider flexible (see section 3.3), this leads to an average non flexible electricity
consumption of 3 091 kWh. All aforementioned models were available in Excel. To
ease the integration with our own model we translated them to matlab code.

Period 2010-2020 2020-2030 2030-2040 2040-2050
Growth rate [%] 0.3 0.0 0.2 0.2

Table 3.1: Average annual growth rate prediction per decade of residential electricity
demand in Belgium [42]

3.3 Flexible Devices

Flexible devices are those devices whose consumption can be influenced by demand
response. Two groups of flexible appliances can be identified. The first group consists
of those appliances that have to run a complete predefined cycle once started and
that cannot be interrupted. We call them discrete devices. Secondly, there are
appliances that can run continuously and that can draw a variable power. We call
them continuous devices. Two characteristics are common to all flexible devices:

• Penetration rate: In order to estimate the amount of flexibility for each
flexible device, we have to know how many of them are installed. To this end,
the penetration rate of each appliance is an important input parameter and it
is defined as the percentage of households that own a certain appliance.
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3.3. Flexible Devices

• Willingness: Not everyone may be willing to shift their electricity consump-
tion. Because we want to explore the limits of electric flexibility, we assume
that by 2050 demand response will be accepted by the public and that there
is a willingness of 100 %, meaning that every household participates in the
demand response program.

3.3.1 Discrete Devices

Discrete devices must run their entire load cycle at a time. In this thesis, three
different discrete devices are considered: a washing machine, a dishwasher and a
tumble dryer. Further in this text these are also referred to as wet appliances. Before
continuing, several properties have to be known in order to model the wet appliances
correctly:

• Load cycle: Every discrete device has its own load cycle which has to be run
entirely when started. The power sequence drawn is not the same in every
time step. For instance, a washing machine draws more power at the beginning
of its cycle while heating up the water than at the end when it’s rinsing.

• Start - Stop time: Depending on the preferences of the user, an appliance
has a certain start- and stop time. The start time is the moment that the user
would start the appliance when no incentive is given to shift to a later time.
The stop time is the time when the appliance has to be finished at the latest.
The load cycle can then be shifted within these two boundaries.

• # Cycles per week: Not all appliances run every day. Knowing the number
of cycles per week, the usage of an appliance in a certain day can be determined.

All data is taken from the Smart-A project [30]. This data contains a set of 5000
appliances of each type, which all differ in their load cycle, start and stop times.
According to the penetration degree, a household is or is not in possession of a certain
appliance. When an appliance is owned by the household, it is first determined
whether it runs that day or not on the basis of the number of cycles per week. If
this is the case, one of the 5000 cycles is drawn at random.

Washing Machine For washing machines in the EU-151, the following data are
available. The penetration level of a washing machine is assumed to be 95 % with an
average of 4.9 cycles in a week. Washing machines differ in start and stop times and
in their programme. An example of a load cycle of a washing machine is shown in
Fig. 3.1.

1No recent specific data for the penetration rates of wet appliances in Belgium were available.
The penetration rates assumed here date back to 2003, but no big changes in these penetration rates
are expected.
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Fig. 3.1: Typical load cycle of a washing machine

Dishwasher For dishwashers, the same approach is used. According to Stamminger
et al. [30] a penetration level of 42 % is assumed with on average 4.06 cycles in a
week.

Tumble Dryer Similarly, for tumble dryers a penetration level of 34.4 % is assumed
with an average of 1.96 cycles a week.

3.3.2 Continuous Devices

Continuous devices do not run a predefined load cycle but will react to the comfort
constraints that are imposed by the user. These devices can be interrupted as much
as desired and can draw a varying power. Continuous devices taken into account in
this thesis are a heat pump, electric auxiliary heaters and electric vehicles.

Heat pump and Auxiliary Heaters

Each residence is equipped with an air coupled heat pump (HP) that can deliver
both space heating Q̇HP,SHand domestic hot water Q̇HP,DHW . To ensure that
the temperature constraints set by the inhabitants can always be met, the heat
pump is backed up with two auxiliary electric heaters AUX1 and AUX2. The first
electric heater can be used for space heating (Q̇AUX1,SH) and for domestic hot
water production (Q̇AUX1,DHW ). The second electric heater is placed directly in the
room and is only able to deliver space heating (Q̇AUX2) The system is schematically
represented in Fig. 3.2. The building model and the DHW model are both based
on [58].

Building Model The building model consists of one zone, heated by a floor
heating system and is represented by an RC model [59] as described by Fig. 3.3.
The resistances represent the thermal conductivity in the house, the capacitances
represent the thermal mass of the different parts. Since we use a linear approach, the
evolution of each temperature indicated in Fig. 3.3 can be described by a first-order
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differential equation. This can be discretized in order to obtain the thermal behaviour
of the building in a linear state space model with time step j:

∀j : Tj+1 = A · Tj + B · Uj + E · Dj (3.1)

This model allows to relate the states Tj , the inputs Uj and the known disturbances
Dj through the state space matrices A,B and E, which are based on the model found
in Van Oevelen [59]. Three different house types (i.e. different values in A,B and E)
are considered in this thesis. The first dwelling is a typical newly built residential
building in Belgium. Model parameters taken from [59]. The second one is a typical
Belgian single family house (SFH III from [60]). The third house type is a multi
family house (MFH III from [60]). Based on the current building stock in Belgium,
25 % of the houses is assumed to be a multi family house and 75 % of the houses are
assumed to be single family houses. Of these single family houses, half of them is
assumed to be of the first type, the other half of the second type. The model is built
up in such a way that it could be easily expanded if a larger building stock would be
available. The state space vector Tj contains all modelled temperatures in the house:

Tj = {T w2
j , T w1

j , T r2
j , T r1

j , T z
j , T f2

j , T f1
j , T ret

j , T sup
j }. (3.2)

In this vector T w2
j , T w1

j , T r2
j and T r1

j are temperatures of specific layers in the walls
and the roof. T z

j is the zone temperature, which is bounded by certain limits (see
section 3.5). T f2

j and T f1
j are floor temperatures and the hydronic floor heating system

is described by T ret
j (i.e. temperature of the water returning) and T sup

j (temperature
of the water supplied to floor heating system). The input vector Uj holds all thermal
powers supplied by the heating system:

Uj = {Q̇HP
j , Q̇AUX1

j , Q̇AUX2
j }. (3.3)

with Q̇HP
j the thermal power supplied by the heat pump and Q̇AUX1,2

j the thermal
power coming from the auxiliary units during time j. Finally, the disturbances vector
Dj contains the surrounding temperatures and other heat gains:

Dj = {T amb
j , Q̇gains

j , T ground
j }. (3.4)

T amb
j is the ambient temperature. Q̇gains

j = Q̇sol
j +Q̇int

j are the thermal heat gains due
to solar radiation Q̇sol

j and internal heat gains due to occupants and appliances Q̇int
j .

Weather data needed to model T amb and Q̇sol are obtained from Meteonorm [61].
The internal heat gains depend on the presence of occupants in the house. When
the house is occupied, each resident represents a heat gain of 50 W and appliances
produce unit[250]W. When all residents are absent or sleeping, internal heat gains
are set to zero. T ground

j is the ground temperature at time j and is taken to be
constant at 10℃. All the aforementioned heat gains are schematically presented in
Fig. 3.2. Hereby the thermal behaviour of the building is entirely modelled. We
have thus a linear system of the form:

Tj+1 = fd(Tj , Uj , Dj). (3.5)

25



3. Modelling Residential Demand

Fig. 3.2: Heating system of a residence [58]

Fig. 3.3: The thermal behaviour of the building is represented by an RC model [59]
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Domestic Hot Water Model The domestic hot water is supplied by and stored
in a hot water storage tank. This tank is assumed to be perfectly stirred. The
water in this tank can be heated up by the heat pump (Q̇HP,DHW ) and by first the
auxiliary electric heater (Q̇AUX1,DHW ). Applying the law of energy conservation for
the water tank leads to:

ρ·Vtank ·cp · dT tank

dt
= Q̇HP,DHW +Q̇AUX1,DHW −Q̇dem,DHW −G·(T tank−Tsur) (3.6)

with ρ and cp the density and heat capacity of the water. The volume of the water
in the tank, Vtankm3, is assumed to be constant. When hot water is taken from the
tank, it is immediately replaced by an equal amount of cold water. The last term
G · (T tank − T sur) represents the heat loss Q̇loss,DHW of the tank to the surroundings
at T sur. The temperature of the cold water T cold and the water demanded by the
occupants at T dem are both assumed to be constant. A three way valve is used to
mix the water of the tank at T tank with cold water to get water at temperature T dem.
The thermal power Q̇dem

j that needs to be supplied to the hot water tank at each
time step j can be calculated from the energy equation as:

Q̇dem
j = ρ · cp · (T tank − T cold) · V̇ tank

j (3.7)

with V̇ tank
j the volume of water extracted from the tank in time step j. It is assumed

that the first two inhabitants use 50 liter per person per day. Each next inhabitant
consumes an extra 30 liter per day. Per person 2 to 3 tapping moments per day are
assumed and the probability of hot water consumption over a day is based on Peuser
et al. [62] (see Fig. 3.4).

Fig. 3.4: Typical daily regime of domestic hot water consumption [62].

In the same way as with the building model, (3.6) can be discretized and written
in the same form as (3.1):

T tank
j+1 = A · T tank

j + B · Uj + E · Dj (3.8)

with the inputs Uj the same as in (3.1) and disturbance vector Dj = {Q̇dem,DHW , T sur
j }.
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Electric Vehicles

Because we investigate the electric flexibility in 2050, we assume that electric vehicles
will be a substantial part of residential electricity demand. According to the IEA [33],
electric vehicles will have a market share of 60% in 2050 and we assume an average
number of 1.19 cars per household [63]. Combining these two numbers gives a
probability of 71.4% of having an EV per household. It is assumed that a household
does not possess more than one EV. A lot of research has already been done in the
field of electric vehicles (see chapter 2). In order to take into account its energy
consumption, yet not to overload our model, we implemented a simplified model.

The moments when EVs can charge depend on the driving behaviour. Data of
the driving behaviour is based on [36] and include 100 different driving patterns
for each day of the year. These data include the moments when an EV is at home
(and thus can be charged), when it’s driving and how much energy is needed to
drive the desired distance. However, as these driving patterns are based on an other
model than the occupancy of the house, we did not link those two in our model. If
a household owns an EV, one of the hundred possible driving patterns is drawn at
random. All EVs have an equal battery capacity of 60 kWh and a maximum charge
rate of P charge,max = 3.3 kW, assuming that an EV can only be charged at home
on a regular household connection. Some of the electric input power is lost and
converted to heat due to battery charging losses and losses in the rectifier. Both the
charging efficiency and the rectifier efficiency are assumed to be 95%. This results in
a total charging efficiency of ηcharge = 90.25%. Knowing the departure and arrival
times during the day, the EV will be charged at minimum cost and such that it will
always be able to drive the desired trips (see Section 3.5). The state of charge (SOC)
of an EV at each time step j is governed by the following equation:

SOCj+1 = SOCj + ηcharge ·
P charge

j · ∆t

cap · 60 −
Ereq

j

cap
(3.9)

with SOC between 0 and 1, P charge
j in Watt and ∆t the time resolution of each time

step in minutes. Ereq
j is the required energy in kWh at time step j and cap is the

battery capacity. One of the two last terms in the equation above is always zero.
When the EV is getting charged, it stands still and no energy is required to drive
some distance. Consequently, the last term is zero. When driving, it cannot be
charged and the second term will be zero.

3.4 Solar Panels

Our thesis is situated in a carbon-neutral energy system [7] and by consequence,
strict limits will be imposed on greenhouse gas emissions for 2050. Renewable energy
sources (RES) will be a significant part of the energy supply. In this thesis we assume
that solar panels will represent the only important RES in the distribution grid.
According to the projections of the IEA [64], the efficiency of solar panels in the
residential sector ηP V will be around 25 % in 2050 and it is assumed that 70 % of
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the households will have solar panels on their roof. The nominal power of these PV
installations has a distribution according to the probabilities in table 3.2. Because
special measures are needed to connect PV installations with a nominal power higher
than 10 kVA [65], it is assumed that they are connected at the medium voltage grid,
hence they are not taken into account in this thesis.

Nominal Power (kW) Probability(%)

0-1 0.2
1-3 90.7
3-6 6.7
6-9 2.4

Table 3.2: Nominal power distribution of solar panels [66]

We assume that each of the solar panels is oriented and inclined optimally. The
nominal power is measured at a light intensity of 1 000 W/m2, so the area of the
photovoltaic panels on a house is determined as:

AP V = P nom,P V

1000 · ηP V
m2. (3.10)

The actual electric power produced depends on the weather conditions. Data for
incoming solar irradiation Q̇sol are taken from Meteonorm [61]. The electric power
produced from photovoltaic panels at each time step j is then calculated as:

P el,P V
j = AP V · Q̇sol

j · ηP V . (3.11)

In this thesis we will assume that residential electricity production from PV can
be sold at the same price as electricity can be bought. This means prices passed
on to the houses should already incorporate the effect of the PV production. The
houses will thus have no incentives to use their own PV production instead of buying
from the grid.

3.5 Scheduling Household Devices

All devices are grouped into a house according to their penetration rate. This house
receives an RTP signal and a central optimizer schedules the flexible devices with the
aim of minimizing the electricity cost. Daily price profiles are taken from Belpex [67].
A typical price profile for one day is shown in Fig. 3.5. The devices are scheduled
with a time resolution of 15 minutes.
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Fig. 3.5: Typical price profile from Belpex [67]

The objective of the optimization is to minimize the electricity cost with regard
to the comfort constraints imposed by the user. This yields solving a mixed integer
linear program (MILP), which can be written in the following general form:

min
x

cT · x
subject to A · x = beq

H · x ≤ bineq

xl ≤ x ≤ xu.

(3.12)

where c is the coefficient vector and x the vector containing all variables. This is a
mixed integer problem because of the discrete devices that are either on (1) or off (0).
The detailed composition of these vectors and matrices is explained in appendix A.
The constraints for the optimization will be explained in the sections below.

3.5.1 Wet Appliances

Each wet appliance owned by the household, either a washing machine, dishwasher
or tumble dryer, has a certain start time tstart and a stop time tstop, when the user
wants the cycle to be completed at the latest (see Section 3.3.1). Between these two
moments the cycle can be shifted so that it is as cheap as possible for the user. This
is the only constraint on wet appliances and it can be written as:

tstart ≤ cycle ≤ tstop. (3.13)

3.5.2 Space Heating and Hot Water Production

The heat pump and auxiliary heaters are used for both space heating and domestic
hot water production. First we describe the space heating, then the domestic hot
water and finally the devices’ power constraints.

Space heating The temperature evolution in the house is governed by (3.1) and
the temperature evolution of the water in the tank by (3.8). As thermal comfort
must be achieved, the temperatures in the room must always be within bounds that
are perceived as comfortable. The zone temperature T z

j in (3.2) must each time step
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lie between 16℃ and 22℃ when occupants are absent or sleeping and between 20℃
and 23℃ when the house is occupied. On a warm summer day the temperature
in the room can exceed these bounds because the solar gains Q̇sol and the ambient
temperature T amb can be high, making the zone temperature T z

j exceed 23℃ without
any heating appliance turned on. Since we did not consider cooling devices (see
section 2.3.2), the zone temperature has to be able to exceed the upper bound of
23℃ on such a warm summer day. To enable this, a binary dummy variable xSH

j

is introduced. When a space heating appliance is turned on (either the HP, AUX1
or AUX2) at a time step j, xSH

j equals 1. When the room is not heated by any
appliance, xSH

j equals zero. The comfort constraint on the zone temperature T z for
each time step j can then be written as:

∀j : T z,min
j ≤ T z

j ≤ xSH
j · T z,max

j + (1 − xSH
j ) · T z,nhmax, (3.14)

with T z,min and T z,max the minimum and maximum zone temperatures depending
on the occupancy as explained earlier. T z,nhmax is the maximum temperature when
no space heating is applied and it is set high enough such that the optimization
will always be feasible. The thermal power delivered by each of the electric heating
systems is limited by their rated electric power:

∀j :
Q̇HP,SH

j

COP HP,SH
j

≤ xSH
j · P HP,max, (3.15a)

Q̇AUX1,SH
j

ηAUX1 ≤ xSH
j · P AUX1,max, (3.15b)

Q̇AUX2
j

ηAUX2 ≤ xSH
j · P AUX2,max. (3.15c)

Because of the thermal mass of the building, it can happen that a heater is turned
on at time step j, and the temperature increases at a next time step j + 1 above the
limit of 23℃ . This is of course not desired, and to eliminate this effect, equation
(3.14) is complemented with:

∀j : T z,min
j+1 ≤ T z

j+1 ≤ xSH
j · T z,max

j+1 + (1 − xSH
j ) · T z,nhmax, (3.16a)

∀j : T z,min
j+2 ≤ T z

j+2 ≤ xSH
j · T z,max

j+2 + (1 − xSH
j ) · T z,nhmax, (3.16b)

∀j : T z,min
j+3 ≤ T z

j+3 ≤ xSH
j · T z,max

j+3 + (1 − xSH
j ) · T z,nhmax. (3.16c)

In practice, the zone temperature never exceeds 25.5℃ , even on the hottest summer
day.

Domestic hot water The temperature of the water in the tank depends on the
residents’ water usage. When hot water is requested, the temperature in the tank
must be at least T dem, which is assumed to be 60℃. If no hot water is needed, the
temperature in the tank may be as low as the cold water temperature T cold = 10℃.
The heat pump can only deliver water up to a temperature of T HP,max, which is
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taken to be 65 ℃. This is lower than the maximum allowed temperature of the water
in the tank T tank,max = 90℃. To raise the tank temperature higher than 65 ℃, the
first auxiliary heater AUX1 must be turned on. Mathematically this is included in
the constraints by adding an binary dummy variable xDHW :

T tank
j + ∆t

ρ · Vtank · cp
· Q̇HP,DHW ≤ (1 − xDHW

j ) · T HP,max + xDHW
j · T tank,max,

(3.17)
Q̇HP,DHW

COP HP,DHW
≤ (1 − xDHW

j ) · P HP,max.1 (3.18)

If xDHW
j is zero, T tank

j is lower than T HP,max and the heat pump is limited by
its rated electric power. If xDHW

j is one, the water temperature in the tank exceeds
T HP,max and the heat pump’s output for domestic hot water is set to zero.

Power constraint The thermal power the heat pump and auxiliary heaters can
produce is limited by their maximum rated electric power. The heating system is sized
based on the maximal heat demand at the design operation temperature. Following
the same approach as in [58], this is taken at an ambient temperature of -10℃ and a
room temperature of 20℃. This leads to P HP,max = 3.8 kWe, P AUX1,max = 6.6 kWe
and P AUX2,max = 2 kWe. The maximum constraints on the heating appliances can
now be written as:

∀j :
Q̇HP,SH

j

COP HP,SH
j

+
Q̇HP,DHW

j

COP HP,DHW
j

≤ P HP,max, (3.19a)

Q̇AUX1,SH
j

ηAUX1 +
Q̇AUX1,DHW

j

ηAUX1 ≤ P AUX1,max, (3.19b)

Q̇AUX2,SH
j

ηAUX2 ≤ P AUX2,max, (3.19c)

with ηAUX1,2 = 1 as all electric energy is converted into heat. The COP at each time
step j can be obtained following the approach of Verhelst et al. [68], which states
that the COP depends in a linear way on the ambient temperature T amb and on the
expected supply temperature Tsup,exp:

COPj = c0 + c1 · T amb
j + c2 · Tsup,exp. (3.20)

The coefficients ci in (3.20) are constants fitted to catalogue data [58]. The expected
supply temperature for space heating is 35℃ and for domestic hot water 60℃. The
heat pump and auxiliary heaters can only consume energy, so:

Q̇HP,SH
j , Q̇HP,DHW

j , Q̇AUX1,SH
j Q̇AUX1,DHW

j , Q̇AUX2
j ≥ 0. (3.21)
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3.5.3 Electric Vehicles

The evolution of the state of charge of the EV’s battery is governed by (3.9). For
the sake of a longer battery life, the battery may not be depleted entirely and the
SOC has to be at least 20%:

0.2 ≤ SOCj ≤ 1. (3.22)

It is assumed that an EV can only be charged when it is at home. So P charge
j = 0 if

the vehicle is driving or at another location. We did not include the possibility of
vehicle to grid operation, hence P charge cannot be negative. When the vehicle is at
home, the following constraint is active for each time step j:

0 ≤ P charge
j ≤ P charge,max (3.23)

3.5.4 Overall Power Constraint

Every dwelling can only draw a certain amount of power. According to the Flemish
regulator of electricity and gas (VREG) [69], a single phase connection of P tot,max =
9.2 kVA at the low voltage level is the standard for an average household. Of course,
self-consumed PV power has to be added to this maximum. Hence, we can impose
one last overall constraint for the entire house for each time step j:

P W etApps
j + P HP

j + P AUX1
j + P AUX2

j + P charge
j + P nonflex

j ≤ P tot,max + P P V
j . (3.24)

3.5.5 Cyclical Constraints

Equation 3.12 represents the optimization problem for a single house within a finite
horizon N . This means that start and end conditions have to be imposed. This
should be done carefully: e.g. a washing machine that wants to start in the last
time step N of the scheduling horizon should be able to do so and take into account
that electricity has also a cost in the next time step N + 1, although no prices are
(yet) available. Therefore we impose extra cyclical constraints to all variables. This
is justified by the fact that the electricity consumption at a certain time j is only
influenced by the electricity prices on time steps that are close to time step j, as will
be demonstrated in section 4.2.2. The electricity consumption of the last time step
N of the scheduling horizon will therefore never be influenced by the electricity price
of the first time step, but rather by the first following time step N + 1, which is not
considered in the scheduling horizon. By imposing cyclical constraints, the influence
of this first following time step N + 1 is taken care of by the first time step, which is
an actual part of the optimization problem (3.12).

The cyclical constraint for a scheduling horizon of N time steps is implemented
as follows. The wet appliances that are scheduled to have at least a part of their
cycle at time steps t > N , will be scheduled further during the first time steps of the
scheduling horizon. The temperatures of the building model (3.2) and T tank

j of the
DHW model (3.6) are imposed an extra constraint:

T1 = TN+1. (3.25)

This is analogous for the SOC of an EV (3.9).
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3. Modelling Residential Demand

3.5.6 Case Study: an Average Winter Day

In this section, we perform a short case study of a single family house with three
occupants. The flexible electricity consumption is optimized for an average winter
weekday. Apart from the heating devices owned by every house, this household
owns a washing machine and a tumble dryer that run both during the optimized day.
Furthermore, this family is in possession of an electric vehicle and a PV installation.
In order to gain a good understanding of the influence of a varying price, one can
compare it with a flat price with the same average value. The varying price signal
that is given to the house is the same as the one displayed on Fig. 3.5, the flat price
signal is taken as the average value of the RTP.

When no varying price signal is given to the users, the washing machine would
start at 8h45 (tstart). The load cycle of this machine has a duration of one hour and
it has to be finished by 13h15 at the latest (tstop). The tumble dryer’s earliest start
time in this case is 16h45. Its cycle has a duration of one hour and a half and it has
to be finished by 20h30 ultimately. The EV leaves the house at 13h30 and arrives
back at home at 23h45 in the evening. In between these two moments, it cannot be
charged.

When occupants are sleeping or not at home, the temperature may fall to 16℃
and when they are at home the temperature must always be higher than 20℃. From
Fig. 3.6, one can see clearly that the temperature constraints are not violated, nor
with a flat price, nor with a real time price. Notice the difference between the
temperature at the real time price and the flat price. The temperature with real time
pricing is almost always higher and reaches higher peaks than the temperature with
a flat price. The areas between these two temperatures can be seen as a measure for
the ‘superfluous’ heat energy consumed when subject to RTP as will be explained
later.

Take for example the temperature rise to 22℃ around 7h00. Although no
occupants are awake, the heat pump heats up the room until the maximum allowed
temperature. This is because at later hours, when occupants wake up, it is more
expensive to heat up the room (see Fig. 3.6a). In fact, it is unnecessary to heat up
the room to such a high temperature. Hence, this heating behaviour is accompanied
by a higher energy consumption but the cheaper price compensates for the final price
the customer has to pay.

The total electricity consumption during the day of each appliance is shown in
Fig. 3.7a and Fig. 3.7b for the average flat price and the real time price respectively.
For both price profiles, the PV production and the non flexible consumption remain
the same. Notice the big peak at 4h45 in Fig. 3.7b, which can be explained by
the very cheap electricity price at that moment. When receiving the RTP, the heat
pump’s energy consumption is shifted to earlier hours w.r.t. the consumption when
subject to the flat price. Also, the room is heated for a longer time as explained
above. For a flat price profile, energy is consumed only when it is really needed. As
mentioned earlier the total energy consumption will be higher when the user receives
a real time price signal. In this case, the usage of the heat pump in the morning
is of particular importance. The house heats up more than necessary, hence there
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Fig. 3.6: Price profile (a), occupancy (b) and room temperature (c) for the real time
price profile and the flat price profile

Flat price RTP

Total Price [AC] 2.12 1.70
Total Energy [kWh] 43.16 44.43

Table 3.3: Total energy consumption and total price paid by the user for a real time
price and an average price

are more energy losses. Nevertheless, the residents will have to pay less because
electricity is consumed at cheap moments (see table 3.3).

As it is a winter day, the heat pump is working quite often. The heat pump
is preferred over the auxiliary heaters because the COP is much higher than the
efficiency ηAUX of the auxiliary heaters. The peak of AUX1 that can be noticed
around the 4h45 is due to heating up water in the hot water tank. As it is very cheap
to heat up the tank then, and the heat pump is being used at its full power for space
heating, the water tank is heated up by the auxiliary heater. The washing machine’s
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Fig. 3.7: Total electricity consumption on a average winter day for (a) the average
flat price and (b) a real time price. The price signal and its mean average price are
repeated in (c)
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3.6. Neighbourhood

consumption is shifted by 1h15 to 10h00 (not visible on the figure). This makes sense
as this is the cheapest moment before 13h00 (stop time of the washingmachine). The
tumble dryer starts at its normal start time. The EV’s consumption in not shifted
much and it is charged at full power overnight. At 7h00 the price is more expensive
and the EV stops charging. At 10h00 it resumes to charge its last needed energy.
When receiving a flat price, it doesn’t matter when wet appliances are used and
EVs are charged. Also notice that the overall power constraint of the house is never
violated. Only during the morning peak the maximum amount of power is drawn.

3.6 Neighbourhood

In the previous sections, the model of a house and all the devices it may contain were
described. In this model, several parameters are stochastically defined. Among these
parameters are penetration rates of the appliances and different types of houses (the
matrices A and B in (3.1)). An additional parameter that needs to be defined is
the number of occupants per household. This number is also defined as a stochastic
parameter in each house and is inspired on the population structure of Belgium,
which is shown in table 3.4. Because of these stochastic parameters, multiple houses
have to be created to represent the reality more or less correctly. These houses can
be grouped together into a neighbourhood.

# occupants per household 1 2 3 4 ≥ 5
% of total households 33.6 31.8 15.2 12.7 6.7

Table 3.4: The percentage of private households per household size inspired by the
population structure in Belgium [57]

Also, the profiles of individual consumers are unique, but for a large number of
customers, individual peak demands are levelled out. According to Veldman [70]
individual peaks are flattened out from 70 households and more. In order to obtain
more aggregated profiles, we create neighbourhoods. A neighbourhood consists
of several stochastic generated, thus different houses. The neighbourhood can be
seen as a group of customers that are all connected to the low voltage transformer.
Following Veldman [70], all neighbourhoods will consist of 70 individual households.
A neighbourhood’s energy consumption can be optimized in the same way as an
individual household. An RTP is sent to the neighbourhood, which in turn sends
this to all households which then optimize individually their electricity consumption
as described in section 3.5. Hence, this results in 70 small optimizations instead of
one big optimization. This was done in this way because of computational reasons.

Also, by writing the optimization in this way, it could be extended in future work,
e.g. taking into account the limit of a distribution transformer of a neighbourhood
and taking into account more characteristics of the distribution network. Introducing
nodal pricing [71] or distributed algorithms for smart grids like those in [72] would
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3. Modelling Residential Demand

also be improvements that could be made to our model in the future as they will
lead to a more economical use of the grid.

3.6.1 Minimum and Maximum Power Consumption

In chapter 4 the amount of flexibility in residential electricity demand for each hour
will be determined. However, every hour there is a minimum amount of power P NH

min

(e.g. non flexible appliances) that must be consumed and a maximum amount of
power P NH

max (e.g. the overall constraint on a dwelling) that can be consumed. In
order to get these limits for a neighbourhood for each time step, we impose price
signals like those in Fig. 3.8. To determine the maximum power limit in hour j, the
price is set to zero at this hour and to one at all other hours. The inverse is done for
determining the minimum power limit at hour j.
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Fig. 3.8: Price signals for (a) determining the minimum possible electricity consump-
tion and (b) the maximum possible electricity consumption at the 15th hour

3.6.2 Example: Optimization of a Neighbourhood

Here, we give an example of the optimization of a neighbourhood of 70 households.
We do this for three subsequent typical winter weekdays to show the daily patterns.
The electricity consumption for the average flat price and for an RTP signal are
plotted in Fig. 3.9. Note the difference in peak consumption between these two
figures. The biggest peak in the RTP case is twice as big as the one when the
neighbourhood is subject to a flat price. This can be explained by the load syncing of
the heat pumps and EVs at the moments when the price is cheap, which is allowed
since we did not implement any hard grid constraints. As explained earlier, we
assume that our load shifting does not influence the price. For such a massive shift
in demand this assumption will obviously not hold. Production will be rescheduled
and the price profile will smooth out. This will reduce the load syncing behaviour.

For every household, one could draw the same conclusions as made in section 3.5.6.
In every house of this neighbourhood, all comfort constraints will be satisfied. Since
we are looking at the aggregate neighbourhood level, these individual constraints are
of less interest. However, we can draw some overall qualitative conclusions:
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Fig. 3.9: Total electricity consumption for a neighbourhood of 70 households for
three subsequent winter weekdays for (a) the average flat price and (b) RTP. The
RTP and its average flat price are shown in (c)
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• When the households are subject to a flat price (no incentive to shift consump-
tion) the electricity consumption of heat pumps and EVs is spread out more or
less equally over all time slots. Imposing an RTP induces load syncing of these
devices when prices are cheapest. Although difficult to see, wet appliances are
shifted as much as possible to these moments too.

• One can notice a peak in the consumption of auxiliary heaters each day when
the price is cheapest. This is due to extra space heating and heating the water
in the tank in order to heat less later. As explained in section 3.5.6 this will
cause more energy losses than in the flat price case.

• We did not include a distribution transformer limit or other grid constraints.
Hence, the maximum allowed amount of power would be the overall power
constraint for each house, namely 644 kW (70 · 9.2 kW). As can be noticed in
Fig. 3.9b this limit is not, and will almost never be reached.

3.7 Conclusion
In this chapter, we described the models for the different devices taken into account.
The part of electricity demand that we consider to be non-flexible and the occupancy
of the different houses is based on a stochastic model. Flexible demand consists
of part discrete devices and part continuous devices whose electricity consumption
can be shifted in time. Discrete devices include washing machines, tumble dryers
and dishwashers. Continuous devices include EVs and heating. These devices are
grouped together into a house based on their penetration rates. A house can be
one of the three types we consider as explained in section 3.3.2. Then, a house’s
flexible demand is optimized to least cost considering a RTP signal (e.g. this is
known on a day-ahead basis). This results in a mixed-integer problem where flexible
appliances can be shifted within the comfort constraints imposed by the users. These
comfort constraints are mathematically elaborated in section 3.5. We can perform
this optimization for any day of the year. For each day the ambient temperature
and incoming solar radiation are different and hence the energy needs differ. An
example of the optimization of a single house is presented in section 3.5.6. In order
to represent a correct population structure, level out individual peaks and to have a
correct penetration rate of devices, a neighbourhood consisting of multiple houses is
created. The flexible demand of such a neighbourhood can again be optimized in the
same way as a single house as was explained in section 3.6.2. In the next chapter
the optimization of such neighbourhoods will be used further to quantify the electric
flexibility in the form of price elasticities.
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Chapter 4

Linear Regression and Monte
Carlo Simulation

4.1 Introduction

In chapter 3 we have explained how we have designed a bottom-up model of a
neighbourhood with three types of flexible devices allocated in different houses:
electric heating equipment, EVs and wet appliances. The neighbourhood is able
to react to a RTP signal: the energy consumption of the flexible devices of each
household is scheduled in such a way as to minimize cost. This results in a certain
electricity consumption that is related to the price signal given.

In a first part, this chapter discusses how the relationship between the given price
signal and the electricity output for a particular neighbourhood can be approximated
in a linear way. First, we explain the processes needed to prepare the data for
the regression. Subsequently, we perform a linear regression on this data to get
an estimate of the price elasticity matrix. This PEM determines the relationship
between a relative increase in price and a relative increase in electricity consumption
w.r.t. a reference scenario (a reference price signal and corresponding electricity
consumption). Then, we perform a selective regression in order to retain only the
significant values in the final model. This allows to determine the time span in
which prices have an influence on the electricity consumption of a certain hour.
Subsequently, we explain how we can determine the influence of the three different
types of appliances, by calculating their separate elasticities. Finally, we discuss
a logistic regression as a higher order approximation. This gives insight in the
limitations of the linear regression. Throughout this section the same neighbourhood

— a neighbourhood on an average winter weekday of 70 households — is used to give
some illustrative examples.

In a second part, we explain the Monte Carlo simulation. This is used to
obtain an estimation of average values over all possible neighbourhoods, since every
neighbourhood is different. The goal is to obtain an estimate of the mean and the
statistical variance of the values of the elasticity matrix, the minimal and maximal
electricity use and the reference electricity use at a certain reference price.
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4. Linear Regression and Monte Carlo Simulation

4.2 Linear Regression
Elasticities The goal of the linear regression is to obtain the elasticity matrix
εN×N as described in 2.4.3. This matrix assumes a linear relationship between a
relative change in price and a relative change in electricity demand, at a certain
point (pref , qref ) on the demand curve:

εN×N · ∆p = ∆q (4.1)

with

εN×N =

 ε11 · · · ε1N
... . . . ...

εN1 · · · εNN

 (4.2)

and:

∆q = q − qref

qref
(4.3a)

∆p = p − pref

pref
(4.3b)

the relative differences in electricity consumption and price respectively. In this
equation, q = (q1, . . . , qN ) is the hourly electricity consumption vector in Watt
corresponding to the electricity price vector per hour p = (p1, . . . , pN ) and qref the
known reference electricity consumption vector with pref as a reference electricity
price vector.

Price elasticities are formally defined in a point (pref , qref ) as:

εij = ∂qi(pref )
∂pj

· pref,j

qref,i
. (4.4)

If we assume a linear demand curve (qi =
∑N

j=1 αjpj), the partial derivative in (4.4)
is just the coefficient αj , and the same as a finite difference. The elasticity εij can
then be calculated as εij = ∆qi/∆pj . This justifies the use of equation (4.1) and the
linear regression as a linear approximation of the real price elasticity. Of course this
omits higher order effects, but since the goal of this thesis is a linear model, this
will always be the case. Further on in this chapter (section 4.2.4) we will discuss a
non-linear, logistic model that offers more insight in the limitations of assuming a
linear demand curve.

Cyclical Constraints The cyclical constraints (see section 3.5.5) need some extra
attention. For the electricity use at hour 1 (q1) for example, the price at hour N
will have a negligible effect on q1. However, because of the cyclical constraint this
price has actually also the function of an hypothetical price at hour 0, of which the
influence will be much stronger, since it is an adjacent hour. This means that the
prices at the upper right triangle of the elasticity matrix have actually the function of
being left of the matrix. This is analogous for the lower left triangle, as is displayed
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Fig. 4.1: Effect of the cyclical constraints on the elasticity matrix (4.2).

in Fig. 4.1. So, given a time horizon N , we are actually investigating the effect
of the prices j = i . . . i ± (N − 1)/2 around the hour i. We can thus speak of the
diagonal values εii as the middle ones, since the other elements are really placed
symmetrically around them. With this in mind, different days can be put after each
other, in order to get a long shifted band of values that spans more than the original
time horizon N .

The time horizon N of prices that have an influence on the electricity use needs
to be determined, since this sets the size of the elasticity matrix. An intuitive
answer would be N = 24 since the typical cycle of residential electricity use repeats
itself every 24 hours. Also the wholesale market works with day ahead scheduling.
However, it might be possible that electricity use can be shifted more than 24 hours
if sufficient big storage would be available in some form. Later on in this chapter
(section 4.2.2) we will prove however that these influences are not significant in our
approach and a horizon of N = 24 is sufficient.

4.2.1 Data Gathering and Processing

First thing needed for performing a regression is data: in our case a sufficient big
number of price vectors p and their corresponding electricity consumption vectors
q, for a specific neighbourhood. We will refer to such a couple as a specific (p, q)
point. The price vectors p used here are obtained from Belpex prices [67]. In order
to have a sufficient amount of price vectors we use the spot prices of the wholesale
market of 2012 and 2013. We will use the superscript k to denote a specific price pk

with corresponding electricity use qk, further also referred to as samples. The total
sample size used is then n = 728, which is the total number of prices available for
2012 and 2013.

Relative Prices The cost of a house’s or a neighbourhood’s energy consumption
is minimized within a given time horizon N (e.g. one day). The relative price values,
rather than the absolute ones, determine the final electricity use. We observe indeed
that price vectors with the same course but different average values return the same
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Fig. 4.2: Convergence of the standard deviance σεii of the own price elasticity εii, in
function of the number of samples n used. Each line represents one own elasticity.

electricity use as output. This is logical since we are not considering a decrease in
electricity consumption caused by an increased average price over the time horizon N
(i.e. the long-term elasticities), but rather the shifting of electricity consumption
within this time horizon (the short-term elasticities). To eliminate this effect of prices
with a different mean value, each price vector pk is rescaled so it has a mean value of
one:

pk
rel = pk

p̄k
= pk

N∑
i=1

pk
i /N

, k = 1, ..., n (4.5)

with p̄k the average value of the price vector pk.
To not let them influence the regression, extreme situations or outliers — price

vectors with a price more than 3 times the standard deviation of the mean value for
that hour1 — are removed. For a time period of 1 day (N = 24), 635 price vectors
are remaining after this step.

Sample Size The price signals pk
rel are passed on to the neighbourhood which

optimizes consumption every time, as described in section 3.6. The corresponding
electricity use of the neighbourhood is retained as the corresponding qk vector. This
is the most time-consuming step of the simulation so a compromise had to be made
between the number of (pk, qk) samples n needed and the computational time. A
higher number of samples will result in a better regression, but the computational
time increases linearly with n. To get an idea of the number of samples needed, we
performed 635 optimizations on a particular neighbourhood and calculated every
time an elasticity matrix εn

N×N . The coefficients εij and their statistical error σεij

(as explained further, equation (4.17)) should converge with a larger number of
samples. Since the own-price elasticities εii are the most important ones, we look at
the convergence of their standard deviation σεii . These are plotted in Fig. 4.2, with

1Three times the standard deviation includes 99.7 % of the values in a normal distribution.
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Fig. 4.3: Box plot of all price vectors pk
rel with mean reference price pref (a) and

electricity use qk with corresponding reference electricity use qref (b). Neighbourhood
of 70 houses on a winter weekday.

respect to the σεii obtained after all 635 samples used. One can clearly see a trend
of convergence, and we chose n = 350 as a good number of samples, which is further
used for the regressions.

Resulting Data Fig. 4.3b shows a box plot2 of all the qk vectors obtained from
the neighbourhood, corresponding to all the price profiles of Fig. 4.3a. Notice that
there is a lot of variation in electricity consumption during the night, notably less
during the day and again more during the evening. This might be interpreted as
more flexibility being available during the night and less during the day, which can
mainly be explained by the fact that more EVs are available then, and the heat
pumps that are active since they need to warm up the houses for the morning, when
people wake up.

2In the box plots, the box itself is defined by the 25th percentile q1 as lower border and the 75th

percentile q3 as upper border. Outliers, the crosses, are then defined as points > q3 + 1.5(q3 − q1) or
< q1 − 1.5(q3 − q1).
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Fig. 4.4: Box plot of ∆q for a neighbourhood of 70 houses on a winter weekday,
for 350 prices. The upper black line is ∆qmax and the lower black line ∆qmin, the
maximal and minimal relative shift in electricity consumption possible.

The (pk, qk) pairs obtained from the optimizations described above have to be
made relative w.r.t. a reference price pref and related electricity consumption qref

respectively, in order to meet equation 4.1. This can be done with regard to any
reference price pref possible. The reference price we use is the mean value of all 635
price vectors, as shown in Fig. 4.3a. The differences between the prices and this
reference price are then minimal and a more linear behaviour can be expected, but
of course other reference prices are possible.

The reference electricity consumption qref is the electricity use of the neighbour-
hood when subject to the reference price pref . The electricity use without PV is
taken as qref , as plotted in Fig. 4.3b. This because the PV production makes the
electricity demand drop below zero around noon. If we then would apply (4.3a), the
sign of ∆qi would reverse and so would the sign of εij . Furthermore, at the zero
crossing of qref,withP V , (4.3a) would become very big because of the division through
a small value qref,i. Both cases are unwanted, and with choosing qref without the
effect of PV production, these issues do not occur. The qref for the neighbourhood
is plotted in Fig. 4.3b and peaks can clearly be observed during the cheap hours.

Once a reference price and related electricity use are determined, (4.3) can be
applied to all (pk, qk) pairs in order to get (∆pk, ∆qk) pairs, which can be used for
the linear regression.

As a last step, outliers, samples ∆qk
i that differ more than 3 times the standard

deviations from the mean value of ∆qi, are also removed from the sample set3. An
example of all resulting ∆qk after performing these steps is given in Fig. 4.4 for the
same neighbourhood as in Fig. 4.3b. The small values during noon are as expected,
since in absolute values (Fig. 4.3b) deviations are small too. The small variations at
hours 4–6 can be explained by the high qref at those moments. Hour 8 has many
higher values because qref is small there, and in many situations a lot of demand
can be shifted to this hour.

3Three times the standard deviation includes 99.7 % of the values in a normal distribution.
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The minimum and maximum relative shift in electric consumption possible for a
neighbourhood, ∆qmin,i and ∆qmax,i respectively, need to be determined, since these
values limit the linear range of the price-demand curves. These are calculated by
performing (4.3a) on P NH

max,i and P NH
min,i from section 3.6. Fig. 4.4 also plots these

values. One can see that the electricity shift ∆qi is indeed never below the minimum
value ∆qmin, but does equal it sometimes. This is in contrast to the maximum shift
∆qmax which is never reached.

For each time step i, ∆qi, can thus only take on values in between ∆qmin,i and
∆qmax,i. Since we are only interested in determining the slope of the linear part of
∆qi, samples ∆qk

i that are equal to ∆qmin,i or ∆qmax,i are removed from the sample
set as they are not part of the linear slope and would bias the regression.

Different Price Profile The price profiles imposed on the neighbourhood (Fig.
4.3a) have an influence on the results obtained from the optimizations and conse-
quently affect the points that are taken into account in the regression. The regression
determines the values of the price elasticities and thus the final values of these elas-
ticities depend on the price profiles used. In this thesis, we have used wholesale price
profiles from Belpex [67] of 2012 and 2013 as this was the only data available. In 2050,
however, one can imagine that the course of the price profiles will be different from
the one we experience today due to the integration of a large share of intermittent
RES. A question that can be raised now is whether our regression will still be valid
if a price profile with a completely different course would be imposed.

Take for example a price profile that is cheap during noon (e.g. when the sun is
shining and a large amount of cheap PV power is produced) and more expensive in
the morning and the evening. This course is more or less the opposite of the reference
price signal we used throughout this thesis (see Fig. 4.3a). Such an (artificial)
price profile and the corresponding electricity demand for a neighbourhood of 70
households are shown in Fig. 4.5. The box plots represent the 350 different points
used in the regression and are the same as in Fig. 4.3b.

As can be seen from Fig. 4.5b, the resulting demand profile from this new price
signal still lies comfortably within the range of points we included in our regression.
This is of particular interest from hour 10 to 13 as in these hours the consumption
only varies slightly. It is clear now that this is not the consequence of the price
profiles we imposed, but rather of less electricity that can be consumed during these
hours. Only in the 14th hour (when the price is cheapest), the demand attains a
value that exceeds slightly the biggest outlier taken into account in our regression.
Overall, we can say that the regression will also take into account values that occur
with completely different price profiles.

4.2.2 Regression

To obtain the linear price elasticities, we perform a linear regression that relates a
vector ∆p of size N (24 in case of one day) to a vector ∆q, also of size N . These
are actually N independent regressions for each ∆qi, i = 1, . . . , N if we assume that
each element ∆qi is only dependent on ∆p. Hence, we have to perform N multiple
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Fig. 4.5: Example price profile in 2050 (a) and box plot of electricity use qk as
displayed in Fig. 4.3b with the electricity use q2050 subject to the example price
profile denoted by the black diamond line.

linear regressions. This means finding a vector εi = (εi1, εi2, . . . , εiN ) such that:

∆qk
i = εi∆pk + errk

i (4.6)

with errk
i the error on the linear model for time step i and sample k.

If we define:

erri = (err1
i , . . . , errn

i ) (4.7)
∆qi = (∆q1

i , ∆q2
i , . . . , ∆qn

i ), ∀i = 1, . . . , N (4.8)

and:

∆p =

∆p1
1 · · · ∆pn

1
...

...
∆p1

N · · · ∆pn
N

 = (∆p1, . . . , ∆pn) (4.9)

we have a linear multiple regression from ∆p to ∆qi, which can be completely
summarized as:

∆qi = εi∆p + erri, ∀i = 1, . . . , N (4.10)

Least Squares

An unbiased estimator for εi is the least square estimator ε̂i:

ε̂i = (∆pT ∆p)−1∆pT ∆qi (4.11)
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Fig. 4.6: Price elasticities of electric demand at hour 12 for a neighbourhood of 70
houses during a winter weekday

Since we applied (4.5) on each pk, the matrix ∆p has only N − 1 independent rows.
The classical linear model cannot be applied to matrices less than full row rank
N [73], because ∆pT ∆p from (4.11) is then singular. We can bypass this problem
by using the Moore-Penrose pseudo inverse [74]:

∆p+ = V S+UT (4.12)

with ∆p = USV T the singular value decomposition of ∆p. The estimator ε̂i is then:

ε̂i = ∆p+∆qi (4.13)

An example of ε̂i calculated for i = 12 for a specific neighbourhood of 70 houses
during a winter weekday is given in Fig. 4.6. It can be clearly noticed that the
own-price elasticity ε12,12 is negative and has the most influence. The values ε12,13
and ε12,11 are both positive and still fairly big, meaning that if the price is high in
these adjacent hours, electricity consumption at hour 12 will rise. The other values
of ε12,i further away from hour 12 are smaller, so less important. This confirms our
intuition that the electricity consumption at an hour i is only influenced by prices
close to this hour i.

In a linear regression, the coefficient of determination R2 would be a good
indicator of the quality of the fit. Here, however, this is not the case since we are
performing a regression without intercept4 [75]. The R2 value is quite meaningless
then, so other indicators have to be used. A general test that can be performed
to check if the linear regression is meaningful, is the test of significance. This is a
statistical test that checks if all coefficients of the multiple linear regression (4.10)
are significant. The null hypothesis is then defined as:

H0 : εi1 = εi2 = . . . = εiN = 0

4Equation (4.1) does not have an intercept. If ∆p is zero, ∆q should also be zero, since this is
the reference scenario.
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This results in the following F-statistic [75]:

F = MSreg

MSerr
= SSreg/N

SSerr/(n − N) =

n∑
k=1

(∆q̂k
i − ∆q̄k

i )2/N

n∑
k=1

(errk)2/(n − N)
(4.14)

with MSreg the mean sum of squares of the regression model, MSerr the mean
sum of squares of the error, SSreg the sum of squares of the model, SSerr the sum
of squares of the errors, ∆q̂i the calculated ∆qk

i according to the regression.
This F-statistic has an F-distribution with N and (n − N) degrees of freedom.

This is also written as: F ∼ F (N, n − N). The p-value is then defined as the
significance level or the probability that the null hypothesis H0 is true. Applying
(4.14) to our regression (4.13) results in p-values of approximately zero for every
∆qi, meaning that we can reject H0 with a very strong presumption. Hence, we can
conclude that the linear regression is indeed meaningful.

Selective Regression

As can be seen in Fig. 4.6, not every hour contributes the same to the resultant ∆qi.
We would obtain a better5 model if we could exclude the hours that do not contribute
to ∆qi, and only retain the hours that are really significant. The result would be
interesting, as it allows to determine the time span of prices around the middle value
that have an influence on the electricity consumption. This can be done formally by
performing a selective regression, in which only the variables that are statistically
relevant are taken into account. This results in a reduced linear model εsel

N×N . Since
the full matrix εfull

N×N from (4.13) contains all coefficients εij , j = 1, . . . , N , the matrix
εsel
N×N can be thought of as a linear model ‘nested’ inside the full linear model εfull

N×N .
A statistical F-test can be used to determine if a full model (with more coefficients)

really fits the data better than the nested model (with less coefficients). Let εsub be
the vector of all εij that are zero in the nested model. The hypothesis test is then:

H0 : εsub = 0 against H1 : εsub 6= 0 (4.15)

This results in an F-statistic with p2 − p1 and n − p2 degrees of freedom [76]:

F = (SSerr1 − SSerr2)/(p2 − p1)
SSerr2/(n − p2) (4.16)

with SSerr1 and SSerr2 the sum of squares of the errors of the nested model 1 and
the full model 2 respectively, p1 and p2 the number of coefficients of model 1 and 2,
so that p2 > p1.

Of course it is desired that the full model εfull
i does not fit the data better than

the reduced model εsel
i . A high p-value of (4.16) is then needed, in order not to

reject the null hypothesis (4.15). In that case there is no reason to keep using the
full model, and the reduced model can be used instead.

5The model would become ‘better’ in the way that it has almost the same predictive power with
less coefficients needed.
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Conventional Forward Selection A general method to perform this selection,
is the stepwise selection technique [77]. The result of performing the conventional
forward selection procedure is displayed in Fig. 4.7. As desired, a selection is made
and only the values εij that are statistically significant are retained. However, one
can see that the remaining values εij are not as centred around the middle values εii

as one would expect. Also many values εij are present that are far from this middle
value εii. This can be explained by the fact that this selection method does not know
that we really are looking for the relevant values εij centred around εii. It assumes
a-priori equality of importance of every value εij , while we actually want a model
that assumes that values close to the middle values are more important.

The p-values of the hypothesis test (4.16) are shown in Fig. 4.8. They are always
greater than 0.056 so there is no need to reject the null hypothesis H0 (4.16), meaning
that the full model εfull

i is not a better fit than the reduced model εsel
i . The values

of coefficients that are common to both models are all quite similar. The selective
regression does thus not really change the values, but just eliminates the ones that
are not necessary.

Adapted Selection Procedure What we really want is a matrix εsel
N×N with only

the statistically relevant coefficients εij centred around the middle value εii of each
row i. Of course the model εsel

N×N should be as good as the full model εfull
N×N . We

adapt the forward selection procedure to better follow this reasoning. The adapted
procedure is as follows.

We know that the own elasticity εii is the most important coefficient for each hour,
so we start by performing a regression with only this coefficient. We assume that the
importance of coefficients decreases when moving away from εii. So the first step will
be adding the coefficient εi,i+1 to the right. Determining if this added coefficient is
significant can be done by applying (4.16), where model 1 is the model with only εii

and model 2 the model with the two coefficients εii and εi,i+1. If the p-value is lower
than 0.05, the added coefficient εi,i+1 is said to be significant, because we then have
to reject the null hypothesis H0 (4.15), meaning that the added coefficient is not
equal to zero. If this is the case, the model is extended with εi,i+1, and if this is not
the case the model is kept as it was (now only with εii). Subsequently, we add the
coefficient to the left εi,i−1. The same test is done, and if this coefficient is significant
it is kept in the model. Next a new coefficient to the right εi,i+2 is investigated and
added if significant and so on. These steps are repeated until we can be sure that the
new model εsel

i is as good as the full model εfull
i . This can be tested by performing

(4.16) every time, with the full model as reference. The algorithm is then stopped
once (4.16) with εfull

i as reference gives a p-value greater than 0.05.
The final model εsel

N×N is displayed in Fig. 4.7, by the blue circles. One can
clearly notice that the values are much more centred around the middle value εii.
The influence of prices is clearly limited to less than i ± 12. This means that we can
work with only one day (N = 24) as time horizon, since only the influence of prices

6Since the p-value is defined as the probability that the null hypothesis is true, a p-value lower
than 0.05 would mean that one can reject the null hypothesis with a probability of 95 %.
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Fig. 4.7: Elasticity matrix for one day (N=24), with the conventional forward
selection procedure and the adapted selection procedure. The black lines denote the
values i ± 12. Neighbourhood of 70 houses in a winter weekday.
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Fig. 4.8: P-values of (4.16) for the conventional forward selection and the adapted
selection procedure, when compared to the full model εfull

i (4.13). The lower black
line denotes a p-value of 0.05.
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Fig. 4.9: Own elasticities εii and their confidence intervals, from (4.17)

at hours j > i + 12 or j < i − 12 are statistically relevant. This is an important
result, as it gives insight in the time interval in which electricity use is shifted. The
p-values (Fig. 4.8) for every hour are higher than 0.05. so one can say that this
model is also as good as the full model, and there is no need to take neither the full
model nor the model from the conventional forwards selection.

Standard Error Because of the singularity of ∆pT ∆p, it was not possible to
calculate the error on the estimates of the simple least squares regression. The
selective regression does allow this, and one can calculate the covariance matrix of
the coefficients εi:

Cov(εi) = σ2(∆pT ∆p)−1 (4.17)

with
σ2 = SSerr

n − p
= errT

i erri

n − p
(4.18)

the error variance of the estimate ∆qi, n being the sample size and p the number of
coefficients taken into account in hour i [73]. The diagonal of the covariance matrix
Cov(εi) gives then the variance and thus also the standard error of the calculated
coefficients: diag(Cov(εi)) = (σ2

εi1 , . . . , σ2
εiN

). This is a useful metric since it allows
to calculate confidence intervals for the estimates εij . A confidence interval is given
by εij ± p · σεij , with p = 1 for a 68% confidence interval and p = 2 for a 95%
confidence interval. A plot of the own elasticities εii (the diagonal of εN×N ) and
their confidence intervals is illustrated in Fig. 4.9, for the same neighbourhood as
described above. Notice the very low value of the own elasticity at hour 8. This can
be explained by looking at Fig. 4.3b, where one can see that qref is low at hour 8,
but there is a lot of potential to shift more electricity consumption to that hour. The
confidence interval is the largest in hour 8, meaning that the estimate is least good
there. This is probably because of the high amount of outliers at that hour, which
can be seen in Fig. 4.3b and Fig. 4.4. However, this value σε8,8 = 0.91 is still fairly
small when compared to the absolute value of the elasticity itself (ε8,8 = −9.91).
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Fig. 4.10: Scatter plots of ∆q9 against ∆p9 and the linear regression line through
the origin, for all devices together (a), only heating devices (b), EVs (c) and wet
appliances (d). The blue dotted line in (a) has a slope that is the sum of the slopes of
the lines in (b), (c) and (d). The black lines denote the ∆qmin,9 and ∆qmax,9 limits.

Since this is the largest standard deviation, this means that our estimates εii are all
quite good (within 10 %).

4.2.3 Elasticity of Separate Devices

In order to be able to tell the influence of the three different types of flexible devices
discussed (wet appliances, EVs and heaters), it is possible to calculate the elasticity
matrix εN×N for each type of device separately. This can be seen when considering
following equation:
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εN×N · ∆p = ∆q = q − qref

qref
=

qW A − qW A
ref

qref
+

qEV − qEV
ref

qref
+

qHeat − qHeat
ref

qref

= εW A
N×N · ∆p + εEV

N×N · ∆p + εHeat
N×N · ∆p, (4.19)

where qW A, qEV and qHeat is the electricity use of the wet appliances, EVs and
heaters respectively. The elasticity matrix can thus be split up into 3 ‘sub-matrices’,
one for each device, which are expected to sum up to the total matrix εN×N .

This means three separate linear regressions can be performed, in the same way
as explained in section 4.2.2, but with ∆q each time calculated as indicated in (4.19).
The results of these regressions are shown in Fig 4.10, for hour 9 and the same
neighbourhood as used previously. The results for the other hours are given later in
section 5.4.3, after a Monte Carlo simulation has been performed on them.

Fig. 4.10 shows a scatter plot ∆q9 against ∆p9 for each device separately, as
indicated in (4.19), and also one for all devices together. All plots give the linear
regression curve through the origin, so the slope indicates every time the own elasticity
ε9,9. The dotted blue line in Fig. 4.10a has a slope εsum

9,9 that is the sum of the slopes
of the other elasticities: εsum

9,9 = εHeat
9,9 + εEV

9,9 + εW A
9,9 , as designated by (4.19). One

can see that this sum does not fully coincides with the elasticity determined by the
regression on ∆q9 of all devices together. This is caused by the the tail in Fig. 4.10a
(the tail are the lower right values that are close to the lower limit ∆qmin,9). In Fig.
4.10b, Fig. 4.10c and Fig. 4.10d, these values reaching ∆qmin,9 are eliminated from
the regression so they have no influence. In Fig. 4.10a , however, not all values in
the tail are eliminated since e.g. values in the tail reaching ∆qEV

min,9 from Fig. 4.10c
are not necessarily also reaching ∆qmin,9 in Fig. 4.10a. This is because when looking
at the whole neighbourhood it can for example occur that the EVs are all at their
lowest energy consumption, but there is still one wet appliance that can be turned
off. The neighbourhood as a whole is thus not at its minimum and the values that
are actually belonging to this tail are not eliminated. Hence, they influence the linear
regression. This leads to a lower slope or a less negative value of the own elasticity
than expected when calculating the sum of the elasticities of the different devices
(4.19).

4.2.4 Intermezzo: Logistic Regression

When looking at the scatter plots of Fig. 4.10, one can see that the (∆p, ∆q) points
do not have a completely linear character, but rather follow a logistic function [78].
One can perform a transformation on the data in order to obtain a new linear
relationship:

log
[ (∆q − ∆qmin) · ∆qmax

(∆qmax − ∆q) · (−∆qmin)

]
=

N∑
i=1

αi∆pi. (4.20)

We observe indeed that this transformation makes our data points behave more
linearly and this regression gives a better overall result. A fitted logistic curve through
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the data points of Fig. 4.10a is displayed in Fig. 4.11. This clearly gives a good fit
and a good description of the ∆p–∆q behaviour of a residential neighbourhood with
flexible demand. However, a major drawback of using (4.20) is that it is not a linear
equation. Since one of the objectives of this thesis is to find a quantification of the
residential flexibility in a linear way, the logistic curve as it is cannot be used.

It would be possible though to use tangents in specific points which would result in
a first order approximation of the logistic curve. These tangents are linear equations
and a good approximation of the logistic curve close to the tangent point. One can
take this slope as an estimate for the elasticity εij , which would also be in accordance
to the definition (4.4). As example, two of these tangents are plotted in Fig. 4.11.
Although the tangents are a good approximation close to the tangent point, further
away from this point the approximation becomes quickly very coarse. Take for
instance the tangent in the origin (0, 0). The slope of this line is very small, which
would result in very small elasticities, indicating little flexibility. However, one can
see that there is quite some flexibility available in this hour, just not around the
point (0,0), which would be the reference scenario. Using this slope as estimation for
the elasticity would therefore result in a serious underestimation of the flexibility.
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Fig. 4.11: Fit of a logistic curve through the data points and the origin at hour
9, according to (4.20). The blue lines are the tangents in the points (0,0) and
(-0.30,4.36). The green solid line is the line of the linear regression as determined
before.

When looking at the tangent in the point (-0.30,4.36), one can see the opposite
behaviour. The slope of this tangent indicates a very big elasticity, thus very much
flexibility, more than in reality is available. The slopes of the tangent lines of this
logistic curve are thus not good estimators of the available flexibility over the whole
range. The estimate made by the purely linear regression might not be the best
curve to fit through the data points. However, as a linear approximation it gives
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a balanced estimate of the flexibility over the whole range, in between the more
extreme values one obtains when considering first order approximations of the logistic
curve. We can conclude that the logistic curve is a more appropriate fit to estimate
the price-demand curves that result from our simulations. However, as a linear
estimate of the flexibility, the linear regression as explained in section 4.2.2 is a good
compromise and we thus choose to keep on using this approach.

4.3 Monte Carlo

4.3.1 Overview of the Monte Carlo Methodology

The Monte Carlo technique is essentially a methodology that uses sample means
to estimate population means [79]. Since population means can be described by
integrals, the Monte Carlo method can also be used to evaluate an integral. Consider
the function z(x), which depends on a stochastic variable x with a probability density
function (PDF) f(x). Its mean, or expected value is then:

〈z〉 =
∫ b

a
z(x)f(x)dx, (4.21)

where f(x)dx is the probability the random variable has a value within dx about x,
and the values x are in the range [a, b]. In the Monte Carlo method this integral is
approximated by the sample mean of z:

z̄ = 1
Nm

Nm∑
i=1

z(xi), (4.22)

where xi are Nm randomly sampled values of the variable x according to its PDF
f(x). It can be shown then that limNm→∞ z̄ = 〈z〉 [79].

A difference has to be made between the Monte Carlo method and a Monte Carlo
simulation. In the former, the problem is explicitly stated as an integral (4.21), in the
latter this formulation is hidden or unspecified. The simulation approach can really
be seen as a stochastic simulation of some kind of physical process or mathematical
model with a source of randomness. The result of a simulation is then a value z(xi),
which is used in (4.22) to estimate the population mean 〈z〉. In fact, all Monte Carlo
problems can be seen as a simulation or stated as an integral (4.21) but due to the
distinct approach of the problem this differentiation makes sense.

Besides an estimate for the expected value 〈z〉 of the function z(x), it is useful
to have some information about the variance of the distribution of this value z(x).
This population variance σ2(z) depends on the unknown 〈z〉, but can be estimated
by using the sample variance s2:

s2 = 1
Nm − 1

Nm∑
i=1

[z(xi) − z̄]2 = Nm

Nm − 1(z2 − z̄2), (4.23)

with z̄ as in (4.22) and z2 = (1/Nm)
∑Nm

i=1 z(xi)2. The sample standard deviation is
then s(z) =

√
s2(z).
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In order to have an idea of how good the estimate (4.22) of 〈z〉 is, the variance
σ(z̄)2 of z̄ is needed. The standard deviation σ(z̄) can be estimated by [80]:

σ(z̄) ≈ s(z)√
Nm

≈

√
z2 − z̄2

Nm
, (4.24)

with z̄ as in (4.22) and z2 = (1/Nm)
∑Nm

i=1 z(xi)2. This variance is a measure for the
goodness of the estimate and converges to zero with a rate ∼

√
1/Nm.

The central limit theorem tells us that z̄ is asymptotically distributed as a normal
distribution with a mean 〈z〉. The confidence intervals of the Monte Carlo estimate
z̄ of 〈z〉 can then be defined as:

Prob [z̄ − λσ(z̄) ≤ 〈z〉 ≤ z̄ + λσ(z̄)] = P, (4.25)

where P = 68% for λ = 1 and P = 95% for λ = 2.

4.3.2 Applying Monte Carlo

The model of a house described in chapter 3 contains a lot of stochastic elements.
These are summarized in table 4.1. Since we combine these houses into a neigh-
bourhood, each neighbourhood is different and so will be the elasticity matrix from
section 4.2. The whole process can be thought of as a simulation with stochastic
variables x. To be able to make conclusions for a whole region consisting of a lot of
different neighbourhoods, the average behaviour of these neighbourhoods has to be
known. This can be found by applying a Monte Carlo simulation as explained in
section 4.3.1. The stochastic variables x are then the ones listed in table 4.1. The
results from the simulation — namely the elasticity matrix εN×N , the minimum and
maximum electricity use P NH

min and P NH
max and the reference electricity use qref — are

then the dependent values z(x).

House Number inhabitants EV Penetration
Occupancy Energy needed
Non flexible loads Time to charge

Wet appliances Penetrations DHW Hot water demand
Load cycle SH Type house
Start & stop times PV Penetration & size

Table 4.1: Stochastic elements in the model

We want to get an estimate of all the averages of the values stated above. These
values are obtained by performing the regressions of section 4.2 on a particular
neighbourhood. By performing the same simulation for different neighbourhoods,
one can obtain different samples z(xi) of these values. Applying equation (4.22) on
these values gives a Monte Carlo estimate of the real average value we are looking
for. In order to obtain a good estimate, a sufficient amount of neighbourhoods
has to be created. However, performing the regression on a neighbourhood is
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Fig. 4.12: Box plot of the elasticity values ε7,j from 104 neighbourhoods and the
Monte Carlo estimate of the mean ε7,j (a) and a histogram of all the values of ε7,11
(b)

already computationally very expensive, so again a compromise has to be made.
If we perform at least Nm = 100 simulations then the standard error of the mean
σ(z̄) ≈ s(z)/

√
100 = 0.10 · s(z) is brought down to 10 % of its variance. Since the

estimate of an elasticity εij from the regression (section 4.2.2) has a standard deviance
(4.17) of at maximum σεij ≤ 0.1, there is no need to perform more than Nm = 100
simulations to reduce this error (4.23) further.

As an example, this is done for 104 neighbourhoods on a winter weekday. A
Monte Carlo estimate ε7,j of the values ε7,j according to (4.22) is denoted by the
black line in Fig. 4.12a. The box plots depict the distribution of the obtained values
from the 104 simulations each hour. Special attention has to be paid to hours with a
zero median. Take for example hour 11. A detailed histogram is given in Fig. 4.12b.
The median is indeed zero, since more than 65 % of the values are zero. These are
the times this hour is insignificant, according to the selective regression explained in
section 4.2.2. Since every time a new neighbourhood is used, it is possible that in
some cases these values are indeed significant, and thus have a value different from
zero. Since the mean is influenced by these values, in contrary to the median, the
mean value is also different from zero although in the majority of the cases the values
are not significant. If the mean value is retained for the overall elasticity matrix, one
would obtain a matrix with very little zero values, and thus undo the effect of the
selective regression, which is unwanted. Therefore, we use following approach: if in
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4. Linear Regression and Monte Carlo Simulation

more than half of the neighbourhoods, the elasticity εij is zero — meaning that in
more than half of the neighbourhoods this hour is not relevant — we say that in the
overall elasticity matrix εN×N , this value is also not relevant, thus set to zero. If the
median is not zero, this value is relevant and we take the sample mean εij from (4.22)
as an estimate of the real average value 〈εij〉 of the overall elasticity matrix εN×N .

It is also possible to get the confidence intervals of the estimate εij by applying
equation (4.25). The biggest standard deviation σεij = 0.21 occurs at a value of
εij = −5.75, which is an error of 3 %. The Monte Carlo estimates of the mean
are thus quite good and there is indeed no need to simulate more than Nm = 100
neighbourhoods. If we plot a histogram of all samples of a certain value, it is even
possible to get an idea of the distribution of this value over all the neighbourhoods.
An example of the distribution of the own elasticity ε7,7 is given in Fig. 4.13.
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Fig. 4.13: Histogram of ε7,7

4.4 Conclusion

In this chapter, we have explained the methodology for obtaining the price elasticity
matrices. This is done in two parts. First, a linear regression needs to be performed
that relates an applied price signal to a corresponding electricity consumption vector
for a specific neighbourhood, in a linear way. By performing a selective regression, we
are able to retain only those elements of the elasticity matrix that are significant. This
allows to determine the time span of prices that influence the electricity consumption
at a certain hour. This time span is always well below 24 hours, which led us to the
conclusion that an elasticity matrix for one day (24 × 24) is sufficient.

In order to make a compromise between computational cost and a better estima-
tion of the regression coefficients, the regression is performed on 350 samples. By
performing an F-test, we were able to prove that the obtained regression coefficients
are statistically relevant. The error variance of the coefficients could also be deter-
mined, and gives standard deviations smaller than 10 %. We can thus say that the
estimate of the obtained coefficients is quite good.

By calculating the separate elasticities of the three different types of appliances,
the influence of each type on the total can be determined. Also, a logistic regression
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4.4. Conclusion

is discussed, which gives a better fit for the price-demand curves. However, this
does not result in a linear equation. A first order approximation of the logistic
regression, gives quickly an over- or under-estimation of the elasticities and the
related flexibility. The regular linear regression gives a good compromise and is thus
kept as an estimator of the elasticities.

In a second part, we explained the Monte Carlo simulation. This is used to
obtain an estimation of average values over all possible neighbourhoods, since every
neighbourhood is different. A sample size of at least 100 neighbourhoods is needed
to reduce the error on the estimates sufficiently. The outcomes of the Monte Carlo
simulation are an estimate of the average and the statistical variance of the values of
the elasticity matrix, the minimum and maximum electricity use and the electricity
use at a certain reference price. The error on these estimates is always smaller than
10 %. The Monte Carlo method also allows to get an idea of the distribution of the
obtained values over the different neighbourhoods.

The results of the Monte Carlo simulations will be discussed in detail in the next
chapter, for different weather conditions, weekdays and weekend days.
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Chapter 5

Results and Discussion

5.1 Introduction

In chapter 4 we explained the Monte Carlo simulation, which allows to obtain an
estimation of the average values for the elasticity matrix, the reference electricity
consumption resulting from the reference price and a maximum and minimum possible
electricity consumption for each hour. The values resulting from such a Monte Carlo
simulation thus represent the average neighbourhood, consisting of 70 households.
We performed this Monte Carlo simulation for an average day of each season for
both a weekday and a weekend day.

This chapter discusses the main results of these Monte Carlo simulations. First, we
discuss the electricity consumption resulting from the reference price, as determined
in chapter 4. The average electricity consumption of one neighbourhood will be
scaled up to get an estimate of the residential electricity consumption for the whole
of Belgium. We will put these results into its proper context and compare them to
the current consumption. Furthermore, we will point out the consequences of having
a fully electrified residential energy consumption.

Subsequently, we consider the elasticity matrices and we quantify the amount of
available flexibility at each hour. We assess the influence of the different seasons on
these values and quantify the contribution to the elasticities of the separate devices.
Furthermore, we compare our results to the existing literature in this research field
and point out some differences.

Then, we discuss the minimum and maximum possible electricity consumption.
These are the values that can be reached in extreme circumstances. Also, the factors
that limit this minimum and maximum will be indicated.

Finally, we perform a sensitivity analysis in section 5.6. The penetration of EVs
is varied in a particular neighbourhood from 0 % to 100 % and we check the influence
on the values of the elasticity matrices.
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Fig. 5.1: Ambient temperatures used of the average days of the four seasons

5.2 Intermezzo: Seasonal Influence

As indicated in the introduction, the Monte Carlo simulations are performed for an
average day1 of each season, as this is an important factor that influences the energy
consumption. The main difference between the seasons is the ambient temperature
and the amount of solar radiation. In our model, heating is responsible for a main
part of the flexible residential electricity consumption and the ambient temperature
is a very determining factor when considering the amount of heating needed. The
available flexibility and energy consumption from these heaters will thus be depending
on the ambient temperature. Fig. 5.1 shows the average temperature profiles of the
four seasons that we used.

For each season a different simulation is performed for a weekday and a weekend
day. This difference is made because people tend to be more at home in weekends
and this might have an impact on the available flexibility.

5.3 Electricity Consumption with Reference Price

In this section we will discuss the average reference electricity consumption qref

occurring when neighbourhoods are subjected to the reference price pref (shown
in Fig. 4.3a), which is determined in section 4.2.1. This average is obtained by
performing a Monte Carlo simulation on the reference electricity consumption qref

for at least 100 neighbourhoods, as explained in section 4.3.2.
Since this is an estimate of the average of all neighbourhoods, this can be scaled

up to the level of a country. We will do this for Belgium. To put this in context,
we compare these results with the present ones in terms of average annual energy
consumption and peak power consumption. This will give some insight in the
consequences of having a fully electrified residential energy consumption subject to a
real time pricing scheme.

1We calculated the average day as the average of all days of a season.
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5.3. Electricity Consumption with Reference Price

5.3.1 Scaling Up

As mentioned in section 3.2, we assume that there will be 4 606 544 private households
in 2050. We can then scale up the reference electricity consumption to a Belgian
level as follows. The Monte Carlo simulation with 100 neighbourhoods gives a good
estimate of the average qref . Since each neighbourhood consists of 70 households, we
can simply multiply this average reference electricity consumption qref by a factor
4 606 544/70. As indicated before, this is performed for an average weekend and
weekday of each season.

Fig. 5.2 shows the reference electricity consumption in Belgium for all seasons on
a weekday. The contribution of each type of device is also shown. One can clearly
see the big contribution of the heaters, especially in winter and autumn. Also notice
that almost all EVs are charged during the night and that the wet appliances only
contribute little, mostly in the late afternoon. The electricity consumption in this
figure does not include PV production. We do this to be able to compare to the
current electricity consumption profile.

Fig. 5.2 shows the same trends for all seasons: a big peak in consumption at
hour 5, little consumption during noon and some smaller peaks in the evening. This
is of course because the price signal pref used here is the same for all seasons and is
low during these peak hours (see Fig. 4.3a). The peak in the summer amounts to
approximately 14 GW whereas in autumn and winter a maximum power of around
25 GW is consumed. In spring this peak is somewhat lower, about 22 GW. The
difference in peak power consumption between the seasons is clearly due to differences
in heating. The contributions of other devices are almost the same in every season.

Appendix B.1 repeats the same plots for a weekend day. The consumption in
the weekend is always a few GWh higher, which can be related to the fact that
more people are at home in the weekends. Hence, more electricity is used in general,
specifically for the non-flexible appliances (light,TV,etc.) and electric heating.

The peak loads observed here are much higher than the ones that we experience
nowadays on the Belgian network and even higher than the current total installed
capacity. However, we have to put these results into its proper perspective. Res-
idential electricity consumption amounted to 20 210 GWh in 2012 as pointed out
earlier (section 3.2). With 4 606 544 private households, this leads to an average
yearly energy consumption of 4 387 kWh per household. It is important to recognize
that in this number no EVs are included. Besides, today 83.3 % of the residential
energy consumption in Flanders consists of space heating and DHW heating. Most
of the space heating and part of DHW heating in Belgium is provided by non-electric
boilers [23]. In our model, however, heating is completely electrified and is, together
with the EVs, responsible for a big part of the yearly energy demand as we will show
below. As can be seen, these two additional electric loads are almost exclusively
responsible for the high peaks observed.

To get more insight in this increase in energy consumption, we compared the
average annual electricity consumption and the peak power consumption resulting
from our model with the ones we observe today.
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Fig. 5.2: Reference residential electricity consumption scaled up towards a Belgian
level in summer, spring, autumn and winter.

66



5.3. Electricity Consumption with Reference Price

Average Annual Electricity Consumption As explained earlier, we performed
a Monte Carlo simulation to obtain an estimate of the average electricity consumption
over all neighbourhoods. We did this for an average day of each season, and for both
a weekday and a weekend day.

The non-flexible demand was calibrated as stated in section 3.2. The energy
consumed by electric heaters (heat pumps and auxiliary heaters) depends strongly
on the time of the year. When solar radiation and ambient temperatures are
higher, it is obvious that less heating is required. Also, the occupancy of a house,
and consequently the required temperature in the house, depends on whether it is
weekend or a weekday. Hence, to obtain the average annual electricity consumption
of a neighbourhood, these influences have to be taken into account. To obtain the
average annual consumption for a household, this number is then divided by 70.

The energy consumption of EVs depends on the driving patterns, as described
in section 3.3.2. These driving patterns are provided for each day and consequently
also depend on time of the year. One can imagine for instance that an EV in winter
will drive more than in summer. Hence, to obtain the average annual consumption
of EVs we proceed in the same way as with the electric heaters. A similar reasoning
could be applied to the usage of wet appliances (e.g. the tumble dryer is less often
used in the summer). However, the data in our model did not include the dependence
on time of the year for wet appliances.

An overview of the average annual energy consumption of the different household
devices for one household subject to the reference price is shown in table 5.1.

Type of Demand Energy consumption [kWh/year]

Non-Flexible 3 091
Electric Heating 3 587
Electric Vehicle 2 146
Wet appliances 304
Total 9 128

Table 5.1: Breakdown of the average annual residential electricity consumption for
one household subject to the reference price.

Comparing this average total household consumption of 9 128 kWh to the one
that we observe today (4 387 kWh), we see that residential electricity demand more
than doubles due to the electrification. From this higher energy consumption, it
follows that power demand will be much higher in our model than it is now.

One might expect that the average electricity demand would rise by more than a
factor two as all heating is electrified and EVs are an important new electric load.
The fact that this is not the case could be explained by:

• Heat pumps are much more energy efficient than the current gas boilers. The
average COP for space heating is 3.89 and for DHW 2.24. These numbers are
to be compared with the efficiencies of the most modern condensing boilers
(around 98 % thermal efficiency [81]). This implies that heat pumps for space
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5. Results and Discussion

heating are almost four times more efficient than classical boilers and for space
heating double as efficient. As space heating represents the most important
part we can assume that there will be around four times less energy consumed
for space heating than we do nowadays.

• A second important fact is that the dwellings in our model are all newly built.
They are better isolated than the average building nowadays in reality and will
therefore consume even less heat.

The total annual residential electricity consumption for the whole of Belgium in
our model can be obtained by scaling up the average consumption of a household as
explained above, and results in 42 048.5 GWh.

Peak Power Consumption Although the total yearly electricity consumption
will only double, the peak power demand in our reference scenario increases much
more. It is thus also interesting to compare the instantaneous power consumption.
First thing needed to compare are the residential load curves of the current situation.
As residential customers are not yet equipped with smart meters, their consumption
is not exactly known. However, today synthetic load profiles (SLP) are used in order
to have an estimate of the consumption profile. We took the SLP for a residential
customer from [82] of 2014 and averaged them for each season. The averaged SLP can
be found in appendix B.2. For each time step, the SLP gives the fraction of yearly
electricity demand consumed. Multiplying these average SLP by the annual electricity
demand results in the power consumption curves for the average days of each season
as they are nowadays. These demand profiles are presented in appendix B.3. The
current peak power consumption and the one obtained in our model are compared
in table 5.2 below.

SLP [GW] Model [GW] Model/SLP [-]

Summer 2.57 13.87 5.39
Spring 2.82 22.12 7.84
Autumn 3.75 25.06 6.68
Winter 4.15 25.56 6.15

Table 5.2: Residential peak power consumption as it is nowadays and the one obtained
in our model.

A first thing that strikes us is the big difference between the current peak
power consumption and the one obtained in our model. Although the average
energy consumption in our model is only twice as much as the current one, the
ratio between the peak power consumption in our model and the current one varies
between 5 and 8. This can be explained by the fact that in our model, we use an
RTP strategy with automatic demand response, whereas currently there is only a
day and night tariff. Due to this strategy, flexible demand will massively shift to the
moments where electricity is cheapest. The bulk of this flexible demand consists of
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5.3. Electricity Consumption with Reference Price

heat pumps and EVs as mentioned previously. As these loads are not yet present in
the current load curve (or to a very small extent), they do not appear in the peak
now. Hence, the presence of these new loads and the RTP strategy combined cause
the peak to be much higher in our model.

While nowadays, the residential peak in power consumption can be observed
around 19h00 (see appendix B.3), the peak resulting from our model occurs between
4h00 and 5h00 in the reference scenario because:

• The reference price is at its cheapest then (see Fig. 4.3a).

• Most EVs leave a few hours later, charging of these EVs is thus shifted to the
cheapest hours before their departure times.

• Most of the occupants wake up a few hours later. Space heating is turned on a
few hours earlier and houses are heated up more than necessary in the fifth
hour such that the temperature is still high enough when occupants awake
(and when prices are higher).

5.3.2 Remarks

The results from our model have to be put in the right perspective. We do not want
to state that the electricity grid will have to be dimensioned based on the peak power
demand as obtained in the sections above. The goal of this thesis was to obtain a
quantification of the potential residential flexibility in 2050, not to obtain an estimate
for the absolute power profiles. Certain assumptions we made during this thesis will
also influence the absolute power demand:

• We have assumed that our load shifting does not influence the price. However,
for such a massive shift in demand this assumption will not hold. Production
would be rescheduled and this rescheduling would have its influence on the
price. The price profile would become more smooth than the one shown in Fig.
4.3a. The households would react differently to this new price profile, leading
to peaks that will probably not be as high as shown in Fig. 5.2.

• We assumed a real time pricing program that incorporates automatic demand
response. All devices thus react automatically on a change in price, creating
an electricity consumption profile that is very sensitive to the price signal, as
will also be demonstrated below.

• Since in this reference scenario, all users respond to the same price signal, a
huge amount of load syncing can be seen. This is a desired consequence, as
power is cheap and more consumption is needed. However, grid constraints
are not taken into account as not to overload the model, but they will limit
these peaks. This could be implemented by adding specialized distributed
algorithms [72].

• We assumed the willingness of consumers to participate in a DR program to
be 100%. However, it is likely that not every consumer is willing to do this.

69



5. Results and Discussion

A decreased participation willingness will reduce the power peaks, and so the
available flexibility.

• Other (non-electric) technologies like for instance solar boilers were not consid-
ered in this thesis. It is possible that part of the energy demand we considered
to be electric will be provided by such technologies.

5.4 Price Elasticities

In this section we will discuss the values of the price elasticities obtained from the
Monte Carlo simulation, as described in section 4.3.2. First, we shortly repeat
the general interpretation of these elasticities. Then, we discuss the values for the
different seasons in more detail. Finally, we take a look at the absolute shift in power
consumption resulting from these elasticities.

5.4.1 Monte Carlo Results

Interpretation In this thesis we have derived own-price elasticities εii and cross-
price elasticities εij as:

εii · ∆pi = ∆qi, εij · ∆pj = ∆qi, (5.1)

with ∆pi = (pi −pref,i)/pref,i the relative difference in price with regard to a reference
price and ∆qi = (qi − qref,i)/qref,i the relative difference in electricity consumption
with regard to a corresponding reference electricity consumption.

These elasticities thus define a linear relationship between the deviation of a
price at a certain hour j from a reference price and the deviation of the associated
electricity consumption at the hour i. E.g. an own elasticity of εii = −3 means that
an increase in price of 1% at hour i leads to a decreased electricity consumption of
3 % at that same hour i. A cross-price elasticity of εij = 3 means that an increase in
price of 1 % at hour j leads to an increase in electricity consumption of 3 % in hour i.
As explained in section 2.4.3, own-price elasticities are expected to be negative and
cross-price elasticities to be positive.

The own- and cross-price elasticities can be grouped into an elasticity matrix
ε24×24 for one day, as explained in chapter 4. Each row i of this matrix contains the
elasticities that determine the electricity consumption at the hour i. A column j of
this matrix expresses the amount of influence a price at hour j has on all hourly elec-
tricity consumptions. As demonstrated in section 4.2.2, most of the cross elasticities
εij further away from the diagonal are zero, meaning that a price change at the hour
j has no influence on the electricity consumption at hour i.

Discussion In order to get a good estimate of the average elasticity values, a
Monte Carlo simulation is performed on the elasticity matrices of at least 100
different neighbourhoods. Fig. 5.3 shows a heat map of the resulting average
elasticity matrices for an average weekday in all four seasons. In appendix C the
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for a weekday in the winter, autumn, spring and summer

numeric values of all the resulting matrices are tabulated. One can see that in
each matrix the diagonal is indeed negative, and most of the off-diagonal values are
positive. Only a few off-diagonal values are negative. As these are all further away
from the diagonal itself, and are close to zero, they do not contribute much.

The most extreme values are found in winter, both positive and negative. This
is caused by the heat pumps and electric heaters that are operating then and that
provide a lot of flexibility. The smallest values are found in summer, since almost no
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space heating can be used here. All available flexibility is then provided by EVs and
wet appliances. In spring and autumn, the values lie in between the ones in summer
and winter with in autumn greater values than in spring (positive and negative).
This can again be explained by looking at the temperature profiles in Fig. 5.1.
The average temperature in spring is little higher, so less heating is required. The
values of the elasticity matrix are thus highly influenced by the weather conditions,
specifically the ambient temperature and solar heat gains. A clear trend can be seen:
when temperatures and solar irradiance decrease, elasticities are bigger (in absolute
value). For a same difference in electricity price, more electricity consumption will
be shifted when temperatures are colder. Hence, more flexibility is available. This
can indeed be explained by the amount of electric heaters that are operating more
when temperatures are lower.

The own-price elasticities are the biggest and thus the most influential. However,
the cross elasticities are also important. They allow to determine how much and
how far in time the electricity consumption could be displaced. Take for example an
increase in electricity price of 1% at hour 7 on a winter weekday. This increase in price
will lead to a decrease in electricity consumption at hour 7 of 5.49% (ε7,7 = −5.49),
but also to an increase in electricity consumption at hour 8 of 1.32% (ε8,7 = 1.32), at
hour 9 of 0.80% and so on until hour 12 where the electricity consumption will raise
by 0.29%. Also, more electricity will be consumed in the hours before, at hour 3 and
4, as these cross-price elasticities are also positive. It is thus possible to obtain an
idea of the time interval in which a price change has an influence on the demand.
The furthest shift in demand in reaction to a price change is 7 hours, from hour 7 to
hour 14 on an autumn weekday.

It can be seen that in all seasons, generally electricity consumption can be
displaced from the early morning (hours 4–6) towards the first hours of the night
(hours 1–4) but a price change in the first hours of the night does not lead to an
equal demand change in the early morning. In other words, the PEMs are not
symmetric. Electricity consumption at hour 8 is almost only determined by its
own-price elasticity, and a few cross-price elasticities in winter and autumn, meaning
that not much electricity can be shifted to this point in time. This can be explained
by the fact that most people start their day around this time. Hence, the house
needs to be at the right temperature and the EVs need to be charged. These two
big sources of flexibility will thus not be available any longer. There are a lot of
cross-price elasticity values to the left hours 10–14, meaning that it is possible to
shift electricity towards these hours from the earlier morning.

The own-price elasticities are the most negative at hour 7,8 and hour 16, especially
in the winter and the autumn. However, this does not allow to conclude that these
are the hours with the most or the cheapest flexibility available. Care has to be
taken when interpreting these elasticities, since they are depending on a reference
electricity consumption qref,i. A small elasticity value with a high reference electricity
consumption might still lead to a relatively large absolute difference in electricity
consumption ∆qi, and a large elasticity with a small reference consumption might
lead to only a small absolute difference ∆qi. These absolute shifts in consumption
will be investigated in the next paragraph.
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Fig. 5.4: Absolute shift in electricity consumption qi − qref,i with a price decrease of
∆pi = −1%, at every hour i and for the four seasons, on a weekday and a weekend
day. The numbers are scaled up to a Belgian level.

Absolute Demand Shift The flexibility that is independent of the reference
electricity consumption will allow a better comparison between the different hours.
The absolute shift in electricity demand is calculated as qi − qref,i = (εij∆pj) · qref,i.
Since the own-price elasticities are the most influential we will look at the absolute
increase in electricity consumption qi − qref,i with a relative decrease of 1% of the
electricity price ∆pi at the same hour. Fig. 5.4 illustrates the absolute shift in
electricity demand for this case. The numbers in this figure are scaled up to a Belgian
level, representing 4 606 544 households (see section 5.3).

This figure allows to draw different conclusions. First, one can see that there is
indeed very little difference between a weekday and a weekend day. At most hours,
the shift in electricity consumption is only slightly greater in the weekend than during
the weekdays. This can be explained by the fact that more people are at home in
the weekends and thus more devices might be available for shifting. However, the
difference is rather small and thus can be neglected.

The trend noticed before is also visible here: for a same difference in electricity
price, the difference in electricity consumption will be the biggest in winter and the
smallest in summer. More flexibility is available in the winter as explained earlier.
This difference in shifting possibilities between summer and winter can amount to
more than 200 MW in power.

In all four seasons one can notice two main peaks: one during the night, around
hour 5, and one in the afternoon, around hour 17. The highest peak at night occurs
in spring, which might be counter-intuitive (we could have expected this for winter).
This can be explained by the fact that in winter during the night, a lot of heat
pumps are already powered on to reach the desired temperature. Hence, when prices
decrease, less additional heating can be added. This is in contrary to spring, when
less heaters are active during the night, and thus more can be powered on when the
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Fig. 5.5: New electricity consumption qi with a price change of -30 % at hour 7, and
at hour 15, and the reference electricity consumption qref , for the average winter
weekday. The numbers are scaled up to a Belgian level.

price decreases.
The peak in the afternoon can be explained by the fact that the houses need

to be heated up by the evening, when people are returning home. Hence, a lot of
flexible heaters are available just before the evening, in the afternoon. A smaller
peak can be noticed around hour 22 in the evening. During the day — between hour
9 and hour 15 — relatively little flexibility is available.

The values of Fig. 5.4 are in general quite big, since this represents the absolute
difference in electricity with a difference in price of only 1 %. A small difference in
electricity price will thus already result in a big difference in residential electricity
consumption in our model. This can also be seen by the big values of the elasticities
from Fig. 5.3. A price vector used in this real time pricing scheme shall thus have to
be designed very carefully. Demand subject to a real RTP scheme as implemented in
our model is thus found to be very sensitive to price changes. This could mean that
the flexibility resulting from such a scheme is rather cheap.

A remark should be made about the fact that the elasticities obtained in this
thesis are designed for day-ahead forecasts of the flexibility. They are thus not
designed to predict sudden changes in electricity prices, or to compensate for forecast
errors of e.g. wind production as a primary or secondary reserve.

Influence of Cross Elasticities To get insight in the influence of the cross
elasticities in absolute demand shift, we have simulated two price signals. One
has a decrease of ∆p7 = −30 % at hour 7, and the other the same decrease of
∆p15 = −30 % at hour 15, with regard to the reference price. The resulting electricity
demand for a winter weekday, obtained by multiplication with the elasticity matrix,
is given in Fig. 5.5. One can clearly see the influence of the cross elasticities. A price
decrease at hour 7, with a lot of cross elasticities εi,7, leads to a decrease in electricity
consumption at hour 4 and 5 but also to some smaller decreases at hours 8–12. One
can thus say that electricity consumption of hours 4 and 5 and hours 8–12 is being
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Fig. 5.6: Own-price elasticities of the whole Belgian electricity demand with only
residential demand flexible, according to (5.2).

shifted towards hour 7. A price decrease at hour 15 has less influence. It leads only
to a decrease in electricity consumption at hours 14 and 16.

5.4.2 Comparison with Literature

The elasticities obtained from the Monte Carlo simulations can be compared with
price elasticities from the literature. De Jonghe [12] gives an overview of cross- and
own-price elasticities, both on long-term and short-term. In the literature, there exists
a lot of variation in the obtained short-term own-price elasticities. They range from
-0.02 to -0.83, depending on the study. This variance is caused by the differences in
model specification, data source and design of the experiment. Some studies focus on
historical data from residential time-of-use (TOU) pricing experiments: [83] obtains
values of -0.30 to -0.47 while the values in [84] range from -0.76 to -0.83 for short-term
own-price elasticities. The time-of-use pricing relates slightly to the real time pricing
scheme that we have considered, so could be a good base for comparison. However,
the values in the literature are all rather low, especially compared to the values we
obtained (see Fig. 5.3). This is because in the literature the elasticities describe
behavioural changes of customers, e.g. doing the laundry at night because of the
cheaper night tariff, while we are describing potential automatic demand response,
where the customer behaviour is not changing. Since customer behaviour will only
react slowly and automatic demand response will result in a direct change with only
a small price variation, this explains partly the big difference. Another part is the
fact that our model includes a lot devices that can react to price fluctuations. In
fact, more than half of the residential electricity consumption is made flexible.

One should also notice that the elasticities we obtained are pure residential
elasticities, they describe the change in residential electricity consumption only. One
can transform these values to a full Belgian level by adding the non-residential
electricity consumption to the reference consumption from (5.1). The elasticities for
the total Belgium electricity consumption are then:
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∆qBE
i = εBE

ij ∆pj =
(

qref,i

qBE
ref,i

εij

)
∆pj , (5.2)

where the superscript BE denotes the values for Belgium. The elasticities have thus to
be scaled with a factor qref,i/qBE

ref,i, where qref,i is the reference residential electricity
use of Belgium as discussed in section 5.3. qBE

ref,i is the total reference electricity
use of Belgium, thus the same residential electricity use plus the non-residential
electricity use as given by [85] and projected to 2050 by use of [42]. The resulting own
elasticities are plotted in Fig. 5.6. The values are smaller, and peaks as previously
noted at e.g. hour 8 in the winter have disappeared. The reason is that this peak was
rather caused by a small reference electricity consumption than by a high flexibility.
Since in (5.2) the whole Belgian electricity consumption is taken as a reference, a
fairly big base load is added to all hours, eliminating the effect of low residential
reference consumption.

The elasticities from (5.2) have to be interpreted with care. They are rather
indicative than real elasticities for the whole of Belgium, since they describe only
the residential flexible electricity demand. It is indeed assumed in (5.2) that the
rest of the Belgian electricity consumption is not reacting to a variable price and
behaves as a non-flexible load. Also, in (5.2) the residential sector is assumed to be
completely electrified while the rest is not, leading to a higher ratio of residential
electricity consumption to total electricity consumption than would the real case.

5.4.3 Influence of Different Devices

To get an idea of the contribution of the different types of devices on the flexibility,
the elasticity matrix ε24×24 can be split up into three separate matrices εW A

24×24,
εEV
24×24 and εHeat

24×24, for the wet appliances, EVs and heaters respectively. This can
be done according to (4.19), as explained in section 4.2.3. We have performed the
same Monte Carlo simulation as described in section 4.3.2 on these matrices. Since
summer and winter are the most extreme seasons, we will only discuss the results
of those two seasons here. The difference between a weekday and a weekend day
has been shown to be minimal, so only a weekday will be considered. Since the own
elasticities are the most crucial ones, only these will be examined in order to be able
to make an easy comparison and draw some clear conclusions.

A plot with the own elasticities for the three types of devices is shown in Fig. 5.7
for both summer and winter. The reason that the sum of the different elasticities
does not always coincide with the elasticities from the total matrix is explained in
section 4.2.3.

Fig. 5.7 is an interesting plot since it allows to determine the separate influences
of the three different types of devices on the flexibility. One can see that the heaters
are the ones that determine the flexibility almost completely during winter. During
the night the EVs also contribute to the flexibility, but during the day their elasticity
is almost zero. The wet appliances have a relatively small influence in winter. The
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Fig. 5.7: Own elasticities of the different devices, their sum and the own elasticities
of all appliances together (4.19), for a summer and winter weekday. The bands
designate the 95% confidence interval.

large negative peak around hour 7 is mostly due to the low value of the reference
electricity consumption at that moment.

In the summer time, the contribution of the heaters is brought down to almost
zero during the day. Only around hours 3–6, they still contribute and have own
elasticity values around −1. Nevertheless, this is less negative the values in winter.
Since the heaters were responsible for the major part of the flexibility in winter, far
less flexibility is available in summer. This means the relative contribution of the
EVs and the wet appliances is much higher in summer. The EVs mainly determine
the flexibility during the night but also provide some flexibility around noon. The
own elasticities of the wet appliances are still very close to zero during the night, but
in daytime they are really significant and contribute a lot.

These results confirm our previous observations and assumptions: the heaters
determine the major part of the flexibility, the EVs are mostly important during the
night and the contribution of the wet appliances is relatively small.
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Fig. 5.8: Average maximum (a) and minimum (b) electricity consumption for 1
household. The black line in (a) denotes the household limit of 9.2kW

5.5 Minimum and Maximum Power Consumption

In section 3.6.1 it is explained how the minimum and maximum amount of power
P NH

min and P NH
max that can be consumed every hour, can be determined for a single

neighbourhood. By performing a Monte Carlo simulation (section 4.3) on this
data, we obtain an estimate of the mean values over the different neighbourhoods.
The resulting average Pmin and Pmax is given in Fig. 5.8, for one household. The
minimum amount of power P NH

min,i is often reached with the price vectors we imposed
on the neighbourhoods (see also the boxplot of Fig. 4.4). The upper value P NH

max,i,
however, is in reality almost never reached. This can be explained by looking at the
price profile that is applied in order to calculated P NH

max,i (Fig. 3.8), which has a value
that is zero on the hour i. The heaters will therefore heat up the house until the
maximum allowed temperature during that hour, which is very unlikely to happen
with realistic price profiles. The maximum amount of power Pmax,i can thus be
rather seen as some kind of theoretical maximum power that can be consumed during
one hour i in rare, extreme circumstances, when price profiles are like Fig. 3.8b.

It should be noticed that during noon in winter and around hour 7 during spring,
Pmax,i can be higher than the household limit of 9.2 kW (Fig. 5.8a). This is caused
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by the PV installations. These are integrated in our model in such a way that if
a house consumes its own PV production, this is not a part of the household limit
of 9.2 kW that it can draw from the distribution grid. During the evening and the
night, thus at moments without PV electricity production, Pmax,i is restricted by
the household limit of 9.2 kW. It might thus be that when increasing this limit, an
even higher Pmax,i can be obtained.

From Fig. 5.8a, it is clear that the maximum amount of power Pmax,i that can
be consumed is the highest in winter and the lowest in summer, with spring and
autumn in between. This can again be related to the amount of electric heating that
can be turned on, and thus to the weather conditions. This also explains why Pmax,i

is lower during the day in the autumn, spring and summer: the ambient temperature
is higher around noon, thus less electric heating is available.

The minimum amount of power that has to be consumed Pmin,i is plotted in
Fig. 5.8b. This is almost entirely determined by the non-flexible load. Only during
the night it is slightly higher, as a certain amount of EVs has to charge the whole
night in order to be completely charge in the morning. The difference in Pmin,i

between the seasons is thus not really big, since the non-flexible load is only slightly
influenced by the season.

5.6 Sensitivity Analysis

In this section, we perform a sensitivity analysis to investigate the dependence of the
elasticities on a change of appliance penetration rates. Due to the high computational
cost of a full Monte Carlo simulation, this sensitivity analysis was only performed
for one neighbourhood. We investigated the influence of a changing penetration rate
of EVs on the price elasticities.

Fig. 5.9 shows the own-price elasticities for penetration rates of EVs ranging
between 0 % and 100 % with steps of 20 % in the summer and the winter. From
these figures we can conclude that a variation in the share of EVs has a negligible
influence on the values of the elasticities, as they have more or less the same values
for different penetration rates in all hours of the day. A reason is that the elasticities
determine the relative increase in electricity consumption with a relative increase in
price. With less EVs available, one has less flexibility available in general. However,
the reference electricity consumption will also be lower with a lower penetration
degree of EVs. The effect of less flexibility will thus mainly be cancelled by the effect
of having a lower reference electricity consumption.

Only in the summer with no EVs present, one can notice some deviant behaviour
in the fourth and the sixth. This can be explained by the very low reference electricity
consumption caused by the zero amount of EVs, while there is still a lot of possibility
for shifting, coming from the heaters that are scheduled at hour 4 in the reference
scenario. Looking back at the definition of price elasticities (4.4), this results in high
(in absolute value) own-price elasticities.

It is not because the difference in price elasticities is small with different pen-
etration rates of EVs, that the difference in absolute electricity shift is also small.
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Fig. 5.9: Own-price price elasticities of a neighbourhood in (a) summer and (b)
winter for different penetration rates of EVs
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Fig. 5.10: Absolute shift in electricity consumption qi − qref,i of all devices, with
a price decrease of ∆pi = −1%, at every hour i for (a) summer and (b) winter for
different EV penetration rates.
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This can be seen in Fig. 5.9b. It shows the absolute difference in electricity demand
qi − qref,i with a price decrease of ∆pi = −1 %, for different EV penetration rates
in summer and winter. As in summer the power consumption of heating devices
is far less than in winter, one can clearly see the effect of the penetration rate of
EVs on the absolute demand shift. An increasing EV penetration rate leads to a
greater absolute demand shift, which makes sense since more EVs can be charged
when prices are cheaper. Since most of the EVs are charged at night, the difference
between the distinct penetration degrees is the biggest at these moments. During
the other hours of the day the curves are almost all coincident, since in all cases
almost no EVs are available to charge at these hours.

5.7 Conclusions

In this chapter, the results of the Monte Carlo simulation are discussed and scaled
up to a level Belgian level. This simulation has three main outcomes, namely the
scaled up reference electricity consumption, the price elasticity matrices and the
minimum and maximum possible power consumption.

The first outcome, the scaled up reference electricity consumption resulting
from our model, was discussed in section 5.3 for all four seasons. To put this
result in context, two resulting parameters were compared to the current electricity
consumption, namely the average annual energy consumption and the instant peak
power consumption. Due to the electrification in our model, the annual residential
energy consumption in our model is slightly more than double compared to that of
2012. Electrified space heating and EVs are the devices that contribute the most to
this result. Although the annual energy consumption only doubles, the residential
peak power consumption resulting from our model is a factor 5 to 8 higher than the
residential peak power consumed today. This enormous rise in power consumption
must be put in its proper context. The RTP strategy leads to load syncing of
different devices. This happens in the fifth hour in every season as most EVs have to
be charged and the houses heated up a few hours later. Hence, the RTP strategy
in combination with these new electric loads explains the big rise in peak power
consumption.

The second and most important outcome of the Monte Carlo simulation and this
thesis are the price elasticity matrices. The results of these matrices were described
in section 5.4 for the four seasons. Different conclusions can be drawn from these
PEM:

• The own-price elasticities are all negative and the cross-price elasticities are
mostly positive as expected.

• The PEMs are different for each season, as they are influenced by the weather
conditions. The most extreme values (both positive and negative) are found
in winter while the values in summer are smaller in absolute value. This is a
consequence of the higher flexibility provided by the heat pumps and electric
heaters when it’s colder.
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• The maximum time length over which demand is shifted from the reference
scenario in reaction to a price change is 7 hours. Outside this range of influence,
all cross-price elasticities are zero.

• The absolute shift in demand at a certain hour in reaction to a price change at
the same hour reveals that during the night and in the late afternoon there
are a lot of shifting possibilities. During noon, not much flexibility is available.
Again, the ambient temperature influences this absolute shift in demand as in
winter more flexibility is provided by the electric heaters.

• The elasticity values obtained are relatively big, meaning that the RTP scheme
we considered is very sensitive to the price signal. This price signal should be
thus carefully designed in order to reach the expected response. This could
be partly due to the fact that the elasticities we obtained are representing
day-ahead forecasts of the flexibility, and cannot be used to predict the response
on sudden price changes.

• When comparing the results with the literature, we find that our elasticities have
a much bigger value. This is because in the literature, elasticities describe the
behavioural reaction to a changing price, while we are investigating automatic
demand response with a lot more flexible devices available.

• The influence of the three different type of devices on the flexibility is investi-
gated. The heaters offer the most flexibility in all seasons but the summer. The
EVs are mainly available for load shifting during the night. The wet appliances
have only a small contribution, mainly during the day.

The third outcome of the Monte Carlo simulation is the minimum power that
must be consumed and the maximum amount of power that could be consumed.
The minimum amount of power is largely determined by the non-flexible load, in
all seasons. Except during the night, when a part of the EVs always has to charge.
The maximum amount of power that could be consumed is mostly restricted by the
household limit of 9.2 kW and related to the weather conditions, since when the
ambient temperature is higher, less heaters can be turned on.

A sensitivity analysis was performed to assess the influence of the penetration
rate of EVs on the values of the price elasticity matrices. From this, we can conclude
that the price elasticities are quite insensitive to a changing penetration rate of EVs.
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Chapter 6

General Conclusions

This chapter summarizes all conclusions that were drawn throughout this thesis and
revisits the research questions as posed in section 1.3. We approach the results in a
critical way and point out possible flaws in our modelling approach. Finally, some
possible topics for further research are discussed.

6.1 Summary and Recapitulation

This thesis has investigated and quantified the potential flexibility of residential
electricity demand in 2050 through price elasticities, which are grouped into price
elasticity matrices. These price elasticities of residential demand were determined
following a bottom-up approach, taking into account the technical characteristics
and constraints of different devices. First, we performed an extensive literature study
from which we synthesized important information to build our own model upon.

The total residential electricity demand consists partly of non-flexible and partly
of flexible demand. The non-flexible demand was modelled following the approach of
Richardson et al. [52]. A lot of different potentially flexible loads exist, as pointed
out in section 2.3. In our model, three types of flexible devices are implemented:
heating devices (heat pumps and back-up electric heaters), electric vehicles and wet
appliances. We implemented these three devices since they seem the most probable
to be used for demand response, and could have considerable impact in Belgium (see
chapter 2 for a more detailed explanation). This answers the question of the types
of devices that we can consider to be flexible, or the first sub question of section 1.3.

Different demand response programs exist in smart grids. We chose to implement
a real time pricing scheme, since it is believed to be the most efficient and most
advanced price based program that can free up the most flexibility (see section 2.2).
The term ‘flexibility’ is quite vague and can be represented in different manners
(section 2.4). Price elasticities are considered a good method as they make up a
linear relationship between a price change and a change in electricity demand. This
addresses the second sub question of section 1.3: in which way to represent the
flexibility.
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All devices are grouped together in houses according to their penetration rates.
Subsequently, houses are grouped together in neighbourhoods in order to represent
a correct population structure. Each house is subject to the same real time price
and optimizes its flexible electricity consumption towards minimal electricity cost.
Examples for a single house and an entire neighbourhood were discussed in chapter 3.
From these examples it can be seen that flexible devices shift their consumption to
the cheapest moment, which causes enormous peaks in the power consumption. This
is called load syncing and might be a desired consequence, as power is cheap and
more consumption is needed. However, the grid should be able to bear such high
peaks. In our model only a maximum amount of power for a house is incorporated
while other grid constraints are neglected. This is a major flaw in our model, and
can be improved by implementing specialised distributed algorithms. A question
arises thus about the grid strength in the future. Hence, our result can be seen as
the maximum potential, as if a future grid has been designed to facilitate these flows.

A variety of prices are passed on to a neighbourhood yielding corresponding
electricity consumption patterns. A linear relationship between the applied prices and
electricity consumption is sought, in the form of elasticities. Since price elasticities
are defined in a certain reference point, in this thesis the reference price is chosen to
be the average of all price signals applied, but of course other reference prices can be
applied.

A selective linear regression is then performed which relates the changes in price
to the changes in electricity consumption, relative to this reference point. This
yields the required elasticity matrix for the examined neighbourhood. The selective
regression allows to assess the length of the time interval in which a price change
still influences a change in demand in a statistical manner. The error variance of the
obtained coefficients gives standard deviations smaller than 10 %.

We found that a (higher-order) logistic regression gives a better fit to the absolute
price-demand points, but this is not a linear model, and the first-order approximation
of this curve quickly over- or underestimates the elasticities. The regular linear
regression was found to be a good compromise.

Since each neighbourhood comprises a number of stochastic elements and is
thus different, a Monte Carlo simulation was performed on 100 neighbourhoods, in
order to give an estimate of average the desired results. Since these are averages
over all possible neighbourhoods, this allows scaling up the results to the level of a
whole country. This Monte Carlo simulation was repeated for each season and both
weekend and weekdays in order to assess their influence on the flexibility.

The outcomes of this Monte Carlo simulation are an estimate of the average
and the statistical variance of the values of the elasticity matrix, the minimum and
maximum electricity use and the electricity use at the applied reference price. The
results are discussed in chapter 5. All results are scaled up towards a Belgian level.
The main conclusions are:

• The annual residential electricity consumption more or less doubles w.r.t. the
one we experience today. The peak power demand increases by a factor 5 to
8. This is due to the electrification of residential energy demand and the load
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syncing that occurs when all households schedule day-ahead to the same RTP
signal, which they are assumed not to influence.

• The price elasticity matrices (and thus flexibility) are strongly influenced by
weather conditions. A higher flexibility is available in winter (because more
heating appliances are available), the least flexibility is available in summer.
There is little difference between weekdays and weekends. This is an answer to
the influences on the amount of flexibility available, the third sub question.

• The elasticity values are quite large, meaning that a RTP scheme is very
sensitive to the price signal applied, when implementing automatic demand
response. This means that this price signal, which results from a day-ahead
forecast, should be carefully designed.

• The maximum shift in time of (a part of) the electricity demand to another
hour from the reference scenario is found to be 7 hours. This differs for every
season and can be read from the obtained elasticity matrices from the Monte
Carlo simulation. This provides an answer to sub question 5 regarding the
time interval demand is shifted.

• The absolute minimum of electricity consumption is almost completely defined
be the non-flexible load except during the night, when a part of the EVs has
to charge no matter what. This is found to be true for all seasons.

• The absolute maximum electricity consumption possible is found to be limited
by the households’ power limit rather than the appliances’, except for the
summer, when heaters cannot be turned on. This defines the absolute maximum
amount of flexibility, sub question 4.

• Heaters provide the most flexibility in each season but the summer. EVs in
this residential context are mainly available for load shifting during the night
and wet appliances only contribute little to the overall flexibility during the
day. This is explained in section 5.4.3 and addresses the sixth sub question:
the separate influence of each devices.

• A sensitivity analysis assessing the influence of EVs concludes that the price
elasticities are quite insensitive to a changing penetration rate, which addresses
the final sub question.

6.2 Further Research
The methodology and results of this study could be used in further research to
improve the estimation of the flexibility. Possible adaptations and enhancements to
our model would be:

• A better estimation of parameters that are inputs in our model, like penetration
and cycles of wet appliances or EVs, or a better estimation of the building
stock with related building models.
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• Design and integration of non-considered devices and applications, for instance
air conditioning, V2G or solar boilers.

• Application of the model to other regions in Europe.

• The incorporation of distributed algorithms such as in [72]. These algorithms
can be applied to the level of a neighbourhood, in order to take into account
hard grid constraints, for instance the distribution transformer limit, voltage
limits etc.

• This can be elaborated into a real nodal pricing algorithm, in which for instance
losses or grid reinforcements due to DER are appropriately priced.

• Quantification of the flexibility for industrial and commercial electricity demand,
and possible incorporation of a medium voltage (MV) grid. The residential
neighbourhoods can also be integrated in the MV grid by sampling neighbour-
hoods from the distributions resulting from the Monte Carlo simulations, and
allocating them in the MV grid. This would then allow taking into account its
constraints and limitations.

• A better estimation of the price elasticities via more elaborate regression
methods.

• Combination with a unit commitment model that can manage price elasticity
matrices in order to calculate a new price that incorporates the flexible demand.
This could flatten the power peaks we now observe.
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Appendix A

Household Level Optimization

In this appendix the structure of the optimization problem of section 3.5 as it is
solved in matlab is elaborated in further detail. The optimization problem was
stated in (3.12) as follows:

min
x

cT · x
subject to A · x = beq

H · x ≤ bineq

xl ≤ x ≤ xu

(A.1)

The structure of the vectors is explained here for optimizing one day. When optimizing
multiple days in a row, this structure is simply repeated. We assume that one day
is split up in N time steps. The price vector pT for a particular day can then be
written as pT = (p1, ..., pN ).

The vector x and c in this equation can be further divided in variables for
wet appliances (WA), space heating (SH), domestic hot water (DHW) and EVs
respectively:

x = (xT
W A|xT

SH |xT
DHW |xT

EV ) (A.2)
c = (cT

W A|cT
SH |cT

DHW |cT
EV ) (A.3)

The equality constraints could now be written in matrix form as:
AW A 0 0 0

0 ASH 0 0
0 0 ADHW 0
0 0 0 AEV

 · x =


bW A

bSH

bDHW

bEV

 (A.4)

Similarly, for the inequality constraints:
0 Aineq,SH 0 0
0 HSH HDHW 0
0 0 Aineq,DHW 0

HW A,max HSH,max HDHW,max HEV,max

 · x ≤


bineq,SH

bineq,SH,DHW

bineq,DHW

boverall,max

 (A.5)
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Finally, the upper and lower boundaries in vector form can be noted as:
xl,W A

xl,SH

xl,DHW

xl,EV

 ≤


xW A

xSH

xDHW

xEV

 ≤


xu,W A

xu,SH

xu,DHW

xu,EV

 (A.6)

A.1 Wet Appliances
The vector xW A can be further split up in variables for a washing machine (WM), a
dishwasher (DW) and a tumble dryer (TD) if present and running on that particular
day:

xW A = (xT
W M |xT

DW |xT
T D). (A.7)

These are binary variables which equal 1 when a machine is running and zero when
not running. This is included in the boundaries of (A.6). For each device there are
as many variables as timesteps where the cycle is possible to shift to (see (3.13)). In
other words, the variables of the wet appliances represent each possible start time of
the appliance. The same breakdown can be used on the coefficient vector cW A. In
order to obtain the coefficients, the start of the power cycle of the appliance is placed
at each possible start time and each time subsequently multiplied by the price vector
and summed up. Each wet appliance can only run one time a day. This constraint
is included in the equality matrices AW A and bW A by saying that

∑
j xW M,j = 1,∑

j xDW,j = 1 and
∑

j xT D,j = 1.

A.2 Space Heating and Domestic Hot Water
The vector for space heating xT

SH consists of N times the same variable structure
repeated (xT

SH,1, ..., xT
SH,N ) because there are N time steps. For time step j, xT

SH,j con-
sists of the vector Tj stated in (3.2), the vector USH

j = (Q̇HP,SH
j , Q̇AUX1,SH

j , Q̇AUX2,SH
j )

and the binary variable for space heating xSH
j :

xT
SH,j = (Tj , USH

j , xSH
j )T . (A.8)

The variable vector for domestic hot water is made up in an analogous way. For time
step j, xDHW,j is built up as follows:

xT
DHW,j = (T tank

j , Q̇HP,DHW
j , Q̇AUX1,DHW

j , Q̇AUX2,DHW
j , xDHW

j )T (A.9)

and this structure is again repeated N times in xDHW . The coefficient vectors for
space heating and domestic hot water respectively can be written as:

cT
SH = (01×9,

p1

COP HP,SH
j

,
p1

ηAUX1 ,
p1

ηAUX2 , ..., 01×9,
pN

COP HP,SH
N

,
pN

ηAUX1 ,
pN

ηAUX2 , 01×9)T

(A.10)
cT

DHW = (0,
p1

COP HP,DHW
j

,
p1

ηAUX1 ,
p1

ηAUX2 , 0, ..., 0,
pN

COP HP,DHW
j

,
p1

ηAUX1 ,
pN

ηAUX2 , 0)T

(A.11)
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A.3. EVs

• The matrices ASH and bSH in (A.4) contain the thermal dynamic behaviour
of the building as described by (3.1). The matrices Aeq,DHW and beq,DHW

hold the dynamic behaviour of the tank as described by (3.8).

• The first line in the inequality matrix of (A.5) holds equations (3.14), (3.15) and
(3.16) for each time step. The second line holds the maximimum constraints
on the electric heating devices (3.19) by adding the contributions of the space
heating and domestic hot water. The third line represents (3.18).

• The minimum constraint on the power output (3.21) and the minimum tempera-
ture constraints are taken care of in the lower boundaries in (A.6). Furthermore,
the boundaries xl,DHW and xu,DHW set the minimum and maximum tempera-
ture in the storage tank and assure that Q̇AUX2,DHW = 0 at all time steps as
this heater cannot heat up the water in the tank.

A.3 EVs
The variable vector of the EV xEV contains two variables for each time step. The
variable vector and the coefficient vector cEV in vector form are:

xT
EV = (SOC1, P charge

1 , ..., SOCN , P charge
N )T (A.12)

cT
EV = (0, 1, ..., 0, 1)T (A.13)

• The evolution of the SOC in time governed by (3.9) is contained in the matrix
AEV of equation A.4.

• The upper and lower limits on the SOC (3.22) and the charging power P charge

(3.23) are taken care of in the boundaries xu,EV and xl,EV .

A.4 Overall Power Constraint
The overall power constraint of (3.24) is handled in the last line of the inequality
matrix in (A.5) where all contributing electric powers are added for each time step.
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Appendix B

Electricity Consumption in
Belgium

In this appendix, we show some figures that help to interpret the total electricity
use as obtained in our model. We refer to section 5.3 for the related interpretations
of the figures shown below. Appendix B.1 shows the electricity consumption at the
reference price for each season in the weekend. The same figure is presented in the
text for weekdays. In appendix B.2 we show modified synthetic load profiles for
each season, which represent the fraction of yearly energy consumed on an average
seasonal day as it is nowadays. With these modified profiles we can obtain the
absolute residential electricity demand for an average day in a certain season. We
used these absolute demand profiles as a base to compare the electricity demand
obtained by our model with. The residential electricity demand profiles as they are
nowadays are plotted in appendix B.3.
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B. Electricity Consumption in Belgium

B.1 Weekend Consumption
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Fig. B.1: Reference residential electricity consumption scaled up towards a Belgian
level in summer, spring, autumn and winter for a weekend day.

94



B.2. Modified SLP

B.2 Modified SLP
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Fig. B.2: Synthetic load profiles showing the fraction of yearly electricity demand for
the average day in (a) summer (b) spring (c) autumn (d) winter
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B. Electricity Consumption in Belgium

B.3 Absolute Demand Profiles 2014
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Fig. B.3: Absolute power demand in 2014 for the average day in (a) spring (b)
summer (c) autumn (d) winter
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Appendix C

Price Elasticity Matrices

In this appendix, the values of the resulting price elasticity matrices are shown in
tables, two each season: a weekday and a weekend day.

-2.0 0.5 0.0 0.0 0.0 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3
0.0 -2.4 0.7 0.1 0.2 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.4 -2.8 0.8 0.1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.0 0.0 -2.9 1.9 0.4 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.7 -1.6 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.4 0.5 0.7 1.3 -3.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.6 0.0 0.3 0.2 0.2 0.4 -2.7-0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 -0.9 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 -1.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 -0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 -0.9 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 -1.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 -1.8 0.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 -2.7 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -1.8-0.1 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.3 0.0 0.0 0.1 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 -0.2 0.0 0.0 0.1 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 -0.3 0.0 0.2 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 -0.5 0.1 0.2 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 -1.2 0.2 0.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 -0.7 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 -1.3

Table C.1: Price elasticity matrix of the average summer weekday
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C. Price Elasticity Matrices

-1.6 0.5 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
0.0 -2.2 0.7 0.1 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.3 -2.7 0.7 0.1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.0 0.0 -2.9 1.9 0.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.7 -1.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.4 0.8 1.3 -3.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.6 0.0 0.3 0.3 0.2 0.5 -3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 -2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.3 0.0 0.0 0.0 0.0 0.0 0.0 -0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 -0.9 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 -0.8 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 -0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 -0.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.1 -1.1 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 -1.7 0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 -2.5 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -1.7-0.1 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.4 0.0 0.0 0.1 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.0-0.0 0.0 -0.2 0.0 0.0 0.1 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 -0.3 0.0 0.2 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 -0.4 0.1 0.1 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 -1.0 0.1 0.3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 -0.7 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 -1.2

Table C.2: Price elasticity matrix of the average summer weekend day

-2.2 0.6 0.0 0.0 0.0 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5
0.0 -2.6 0.9 0.1 0.2 0.2 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.5 -3.3 0.7 0.4 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.2 0.2 -4.8 2.4 0.9 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.7 -1.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.3 2.3 -5.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.6 0.0 0.4 0.3 0.2 1.1 -4.1-0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.1 -2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 -0.9 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 -1.3 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3 -1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.2 -1.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 -1.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 -2.4 0.9 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 -5.1 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 -3.5 0.7 0.3 0.1 0.5 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -2.3 0.2 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.2 0.2 -1.0 0.0 0.2 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.4 0.0 -2.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 -2.0 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 -2.3 0.4 0.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 -2.3 0.0
0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.6 -2.0

Table C.3: Price elasticity matrix of the average spring weekday
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-2.1 0.7 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6
0.3 -2.5 0.8 0.1 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.7 -3.5 0.8 0.4 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.3 0.0 0.3 -4.9 2.5 0.9 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.7 -2.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.2 2.3 -5.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.8 0.0 0.5 0.5 0.4 1.8 -6.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.5 -3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 -1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 -1.0 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 -1.1 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3 -1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 -1.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.2 -1.3 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 -1.9 0.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 -4.2 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -3.4 0.6 0.3 0.1 0.6 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -2.4 0.2 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 -1.0 0.0 0.2 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.4 0.0 -1.7 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 -1.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 -2.2 0.4 0.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 -2.2 0.0
0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.5 -1.9

Table C.4: Price elasticity matrix of the average spring weekend day

-2.8 0.9 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7
0.3 -3.2 1.2 0.1 0.4 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
0.0 0.9 -4.2 0.6 0.8 1.2 0.0 -0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.0 0.0 -2.8 0.8 1.1 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.1 0.5 -1.3 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.7 1.0 -2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.2 0.0
0.0 0.0 0.0 0.0 1.1 2.6 -9.8 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.5 -4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.5 -2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.4 -2.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.2 0.6 0.3 0.2 0.6 -3.7 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.1 0.2 0.5 1.2 -4.1 1.3 0.2 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.2 0.0 0.2 1.0 -3.4 1.2 0.0 0.0 0.0 0.0 0.0 -0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.8 -4.0 2.3 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 -4.7 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 -8.4 5.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 -2.8 0.6 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 -4.1 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.4 0.4 -2.0 0.0 0.5 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.7 0.0 -3.3 0.8 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.4 -2.1 0.9 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 -2.2 0.5 0.3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 -3.1 0.0
0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.7 -2.2

Table C.5: Price elasticity matrix of the average autumn weekday
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C. Price Elasticity Matrices

-2.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8
0.4 -2.9 1.0 0.0 0.3 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 -4.3 0.5 0.9 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.0 0.0 -3.4 0.9 1.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.6 -1.6 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.9 1.1 -2.8 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.5 3.0 -11.1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.2 -8.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 -3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.4 -2.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.1 0.5 0.2 0.2 0.6 -3.4 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1 0.4 1.2 -3.6 1.1 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.2 1.0 -3.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.7 -3.4 1.9 0.0 0.0 0.0 -0.1-0.1 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 -4.3 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 -8.4 5.6 0.3 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 -3.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 -4.3 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.3 0.4 -1.8 0.0 0.4 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.7 -0.1-2.7 0.6 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.4 -2.3 1.1 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 -2.5 0.7 0.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 -2.9 0.0
0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.6 -2.1

Table C.6: Price elasticity matrix of the average autumn weekend day

-3.1 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9
0.4 -3.6 1.3 -0.0 0.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0
0.0 1.1 -4.6 0.5 0.6 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
0.0 0.0 0.0 -2.2 0.6 0.7 0.6 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.6 -1.3 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.2 0.6 0.6 -1.9 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.3 0.6 1.2 -5.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.3 -8.9 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.7 -5.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.2 1.1 -4.8 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.6 0.4 1.4 -6.1 2.4 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.3 0.7 2.0 -5.7 2.1 0.2 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 1.5 -4.2 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 1.2 -4.4 2.6 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 -4.9 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 -7.2 4.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 -2.9 0.8 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 1.2 -4.7 0.0 0.9 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.5 0.9 -3.6 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.9 0.6 -5.8 1.9 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.2 0.6 -2.9 1.4 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 -2.9 0.8 0.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 -4.2 0.0
0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.8 -2.4

Table C.7: Price elasticity matrix of the average winter weekday
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-2.9 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.5 -3.4 1.1 -0.0 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0
0.0 1.2 -4.7 0.4 0.7 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
0.0 0.0 0.0 -2.3 0.6 0.7 0.6 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.6 -1.3 0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.2 0.6 0.6 -1.9 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.4 0.5 1.2 -5.2 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 2.2 -14.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.8 -7.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.3 1.2 -4.7 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.6 0.4 1.4 -5.5 2.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.6 2.1 -5.4 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.2 1.5 -4.2 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 1.2 -3.9 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 -4.6 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 -7.2 4.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 -2.9 0.8 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 1.1 -4.6 0.0 0.8 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.8 -3.4 0.0 0.9 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.9 0.4 -5.2 1.8 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.6 -2.7 1.2 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -2.7 0.9 0.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 -4.0 0.0
0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.8 -2.4

Table C.8: Price elasticity matrix of the average winter weekend day
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