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Summary

In recent years, a novel class of artificial nanostructured materials, better known as
metamaterials, has proven to be very efficient inmolding the flow of light. Metamaterials
consist of nanostructured arrays, whose electromagnetic response depends on the shape
and composition of artificial meta-atoms, e.g., small resonant electric circuits. The
design involves many degrees of freedom, which allows them to implement several
revolutionary optical devices.

The enormous freedom inmetamaterial properties requires efficient design tools. Trans-
formation optics is such a framework, which relates geometrical specifications of optical
devices to metamaterial properties. To this aim, transformation optics uses a coordinate
transformation to deform the space surrounding a familiar optical device such that light
is bent along a desired trajectory.

Recently, several research groups have been trying to apply transformation optics to
confined electromagnetic waves on a thin material slab. The energy of these waves is
localized within a thin material sheet and does not extend far in the direction normal to
the material. In this way, confined waves are forced to propagate in two dimensions,
within the plane of the slab.

However, the traditional transformation-optical framework does not allow for the ma-
nipulation of two-dimensional confined waves in a consistent way. Indeed, to trans-
form confined waves propagating along a thin nonmagnetic material slab waveguide,
it applies a global coordinate transformation, acting on both the slab material and the
vacuum above and below. As a consequence, the equivalence relations impose that the
transformation-optical device contains nontrivialmaterials, not only in the slab, but also
in the vacuumregions. This is highly impractical and conflictswith the two-dimensional
picture of a confined wave.

Therefore, this dissertation establishes a new mathematical framework, guided transforma-
tion optics, which only affects the slab material of the waveguide by a two-dimensional
coordinate transformation. We achieve this by defining new equivalence relations.
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Our guided transformation-optical framework takes into account that only the char-
acteristics of guided mode propagation need to be fundamentally conserved by the
equivalence relations. Therefore, we only modify the electric material parameter in-
side the slab in such a way that the Helmholtz equation is identical to the one of the
coordinate-designed space.

In addition, we introduce an analytical equivalence relation on the thickness of the
waveguide. Technically, this thickness variation maps the phase velocity of the desired
guidedwaves in the coordinate-designed space to that of guidedwaveswithin our two-
dimensional transformation-optical device. Because of this reason, it is not necessary to
imposematerial to the vacuum regions above and below thematerial slab tomanipulate
guided mode propagation.
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Samenvatting

Recente ontwikkelingen in de nanotechnologie hebben het afgelopen decennium aan-
leiding gegeven tot een nieuwe klasse van artificiële nanogestructureerde materialen:
metamaterialen. Deze materialen bestaan uit een verzameling nanostructuren, bijvoor-
beeld kleine resonante elektrische circuits, die meestal aangeduid worden als "meta-
atomen". De eigenschappen van metamaterialen kunnen zeer gevarieerd zijn, omdat
de elektromagnetische respons vanmeta-atomen afhangt van hun geometrie en samen-
stelling. Door deze flexibiliteit kan men metamaterialen inzetten om revolutionaire
optische componenten te implementeren.

Door de grote vrijheid bij het ontwerp is er echter ook nood aan een efficiënte ont-
werptechniek, bijvoorbeeld de transformatieoptica. Dit formalisme brengt specificaties
over het gedrag van licht binnen een optische component in verband met eigenschap-
pen vanmetamaterialen. Om dit te verwezenlijken vervormt de transformatieoptica de
omgeving van een welbekende optische component, bijvoorbeeld een vlakke golfgelei-
der, met behulp van een coördinatentransformatie.

De afgelopen jaren hebben verschillende onderzoeksgroepen geprobeerd om de trans-
formatieoptica toe te passen op een specifiek soort lichtgolven, nl. oppervlaktegolven.
Deze golven worden gedragen door een dun laagje materiaal — de golfgeleider — en
concentreren hun energie binnenin de golfgeleider. Buiten dit laagje materiaal neemt
de energie van de oppervlaktegolf sterk af. Daarom zijn oppervlaktegolven in essentie
tweedimensionaal.

Voorlopig is het formalisme van de transformatieoptica er echter niet in geslaagd om
tweedimensionale gelokaliseerde golven op een consistentemanier te manipuleren. Dit
komt omdat het traditionele formalisme een globale coördinatentransformatie toepast
op de niet-magnetische golfgeleider. De equivalentierelaties van de transformatieoptica
eisen dan dat de materiaaleigenschappen allesbehalve triviaal zijn, niet alleen binnenin
het materiaal maar ook in de oorspronkelijke vacuümgebieden. Het gebruik van meta-
materialen buiten de oorspronkelijke golfgeleider is niet alleen onpraktisch, maar druist
ook in tegen het tweedimensionale karakter van een oppervlaktegolf.
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Om deze inconsistentie op te lossen ontwikkelt dit afstudeerwerk een nieuw wiskundig
formalisme, nl. geleide transformatieoptica, die een tweedimensionale coördinatentransfor-
matie gebruikt om niet-triviale materiaaleigenschappen op te leggen die enkel in het
materiaallaagje van de geleider moeten geïmplementeerd worden.

Om dit te verwezenlijken formuleren we nieuwe equivalentierelaties. Deze werden
zo opgesteld dat ze enkel inwerken op de cruciale karakteristieke eigenschappen van
de geleide oppervlaktegolven. Zo is het mogelijk om de Helmholtzvergelijking van
de golfgeleider precies te laten overeenstemmen met die van de ontworpen, getrans-
formeerde ruimte, waarbij enkel gebruik gemaakt wordt van een zuiver elektrische
respons in de golfgeleider.

Daarnaast is het cruciaal om een bijkomende analytische equivalentierelatie in te voeren
die een verband legt tussen dedikte vande golfgeleider en de coördinatentransformatie.
Hierdoor is de fasesnelheid van de oppervlaktegolf in de getransformeerde ruimte
identiek aan de fasesnelheid van de oppervlaktegolven die zich binnenin ons geleide
tweedimensionale ontwerp voortbewegen.

Door de dikte van het metamateriaallaagje te variëren, zoals beschreven door de
regels van de geleide transformatieoptica, kunnenwe oppervlaktegolven efficiëntmani-
puleren met niet-magnetische metamaterialen zonder de vacuümgebieden boven en
onder de golfgeleider te moeten veranderen.
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“I call our world Flatland,
not because we call it so, but to make its nature clearer to you,

my happy readers, who are privileged to live in Space.”

— Edwin A. Abott, Flatland:
A Romance of Many Dimensions



Chapter 1

Introduction

1.1

Context

In the past decade, many photonic devices have become an essential part of our every-
day life, includingmode-locked lasers for high-precision spectroscopy, solar cells for re-
newable energy, and optical fibers for broadband telecommunication technology. How-
ever, these applications still suffer from a fundamental limitation due to the rather
limited electromagnetic response of naturally occurring materials. For instance, at op-
tical frequencies, natural materials only manipulate the electric component of light and
are blind to its magnetic component. Furthermore, natural materials exhibit only a very
small anisotropic response.

Advances in condensed matter physics, nanotechnology, and material science are now
revolutionizing our ability to control electromagnetic waves through the development
of metamaterials. Metamaterials use nanostructured arrays of artificial meta-atoms—
e.g., small resonant electric circuits with electric and magnetic response depending on
specific geometrical andmaterial parameters—tomanipulate light to an unprecedented
degree.

Since the response of each meta-atom may be tuned individually, metamaterials have
position-dependent and directionally-dependentmaterial parameters, which are able to
mold the flow of light in unconventional ways. Their design involves many degrees of
freedom, including large anisotropy, chirality, and nonlinearity, which allow for the im-
plementation of several novel optical devices such as invisibility cloaks, subwavelength
imaging systems, and optical isolators.
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1.2. MOTIVATION

1.2

Motivation

To be able to exploit these many degrees of freedom of metamaterials in an efficient
way, transformation optics provides a mathematical framework to determine how the
electromagnetic material properties of metamaterials should be modified in an optical
device in order to achieve novel functionalities. The framework identifies the material
parameters based on a coordinate transformation of the background space. To this
aim, transformation optics establishes equivalence relations between metric tensors
and electromagnetic material tensors. These equivalence relations lie at the heart of
the transformation-optical framework. The technique was first applied to the design
of an invisibility cloak, where the coordinate transformation stretches straight light
trajectories in free space into a desired trajectory such that they bend around the object
to be hidden.

In recent years, there is a growing need to manipulate electromagnetic waves that are
confined to a two-dimensional interface. Indeed, such material interfaces are becoming
increasingly important in several photonic applications like biosensing, subwavelength
imaging and spectroscopy. In addition, the potential of miniaturized high-speed com-
puter chips provides a compelling motivation for developing flatland metamaterials
capable of manipulating two-dimensional waves.

Nowadays, computer chips are mostly implemented using electronic devices. The
performance of these systems is fundamentally limited by the bandwidth of metallic
wires connecting various electronic components on the chip. Because light is a fast and
broadband carrier of information, integration of electronic and photonic devices on a
single chip may resolve current speed limits and performance in integrated systems.
However, integrated photonic devices should be compatible with miniaturization of
electronic components. Therefore, electromagnetic waves in integrated photonic de-
vices should be highly confined to two-dimensional surfaces.

These are the arguments that motivate the research for an extension of the scope of
transformation optics towards the manipulation of electromagnetic guided waves.

1.3

Guided Transformation Optics: a Novel Paradigm to Manipu-
late Two-Dimensional Surface Waves

In thisdissertation,we investigatehowcoordinate transformations affect two-dimensional
waves confined to a nonmagnetic material slab waveguide in a consistent way. In fact,
the traditional frameworkof transformation optics acts on the slabwaveguide in a global
way, as it transforms both the guiding material and the vacuum above and below. In
this way, the equivalence relations impose nontrivial electromagnetic parameters, both

2



1.3. GUIDED TRANSFORMATION OPTICS: A NOVEL PARADIGM TO
MANIPULATE TWO-DIMENSIONAL SURFACE WAVES

in and out of the slab. Obviously, this is not compatible with practical realizations of
two-dimensional transformation-optical waveguides.

Therefore, we propose a novel mathematical framework—guided transformation optics—
in which only the slab material of the waveguide is affected by a two-dimensional co-
ordinate transformation. Contrary to traditional transformation optics, our framework
is capable of molding guided wave propagation without magnetic response and without
the need for changing the vacuum regions surrounding the waveguide. This greatly simplifies
the metamaterial design and reduces losses that are intrinsically present in magnetic
metamaterials. To this aim, guided transformation optics introduces the thickness of
the waveguide as a crucial parameter in the equivalence relations.

In this way, this dissertation establishes new equivalence relations relating the electric
material parameter and the thickness of the slab to a two-dimensional coordinate trans-
formation. Subsequently, we apply these analytical equivalence relations to the design
of a nonmagnetic beam bender of 30 and 45 degrees, which may contribute to efficient
guiding of confined waves in on-chip applications.

3



Chapter 2

The Geometry of Light

Metamaterials provide many degrees of freedom to manipulate the flow of light.
As a consequence, efficient metamaterial optical devices require dedicated

designing tools, e.g., transformation optics, that relate their functionality to specific
metamaterial parameters. The mathematical framework of transformation optics re-
lies on techniques which are also fundamental to the theory of general relativity. As
a first objective, this chapter explains how three-dimensional transformation-optical
media appear to electromagnetic waves as if they are a deformed geometry. Such
geometries are generated by coordinate transformations, e.g., quasi-conformal co-
ordinate transformations which are particularly useful for realistic metamaterial de-
signs. As a second objective, we focus on several attempts in literature to develop
a two-dimensional transformation-optical framework which molds the flow of sur-
face waves on a metal-dielectric interface, e.g., surface plasmon polaritons. Also,
graphene provides interesting opportunities as a one-atom thick platform to two-
dimensional transformation optics.

2.1

Introduction

2.1.1 A Geometrical View on Wave Propagation

Throughout history, geometrical arguments have contributed to our fundamental un-
derstanding of light propagation inmacroscopic media. Until recently, these arguments
relied on the ray approximation [1], which is valid if the parameters of the electromag-
netic medium change slowly with respect to the wavelength. In this approximation, the
propagation of light can be effectively described by the behavior of light rays—narrow
pencils of light aligned with the propagation direction.

The principle of Fermat is the corner stone of these geometrical arguments. It states that
the physical trajectory of a light ray, going from a point A to a point B, extremizes the

4



2.1. INTRODUCTION

optical path length OPL

OPL =

∫ B

A
n(r) dl, (2.1)

determined by the refractive index n(r) of an inhomogeneous medium.

When looking at these observations from a geometrical point of view, a fundamentally
new interpretation arises which is closely related to how distances are measured in a
curved space, i.e. a Riemannian geometry.∗ Loosely speaking, a Riemannian geometry
can be described by an intrinsic measure of lengths, a metric gij, which determines the
distance between two vectors dxi and dxj [2]

ds2 = gij dxidxj. (2.2)

Since the principle of Fermat (2.1) also establishes an optical path length between the
source A and the receiver B

ds2 = n2δi j dxidxj,

the medium n(r) acts on light in the same way as a geometry gij = n2δi j. Then, light
extremizes the distance traveled with respect to this new measure of length which
clearly differs from the Euclidean length observed by the experimenter. In particular,
it is well known that light trajectories through inhomogeneous media bend towards
regions with high refractive index.

This geometrical observation underpins the conceptual turnaround established by transformation
optics [3] [4]. According to the extended version of Fermat’s principle (2.2), there exist
a special kind of media—transformation media—whose involved material parameters
impose an effective optical length to light using an optical analogue of a Riemannian
geometry gij. They use their inherent geometry gij to select physical trajectories xi(λ),
geodesics parameterized by a scalar λ, which extremize the electromagnetic length s

s =
∫ B

A
dλ

√
gij

dxi

dλ
dxj

dλ
. (2.3)

This electromagnetic length is defined for any metric gij and therefore generalizes the
optical path length introduced by the principle of Fermat. It defines geodesic trajectories
of light in an identical way as the trajectories of test particles within a gravitational field
in general relativity.

2.1.2 Intuitive Transformation Optics: How to Design an Invisibility Cloak

Before we develop the framework of transformation optics in a mathematical way, we
provide an intuitive explanation of how transformation optics allows for the design of

∗As explained in Appendix A, we continue with a differential-geometric notation which simplifies
notations thanks to the Einstein summation convention. Readers who are unfamiliar with differential-
geometrical techniques might have a look at Appendix B.
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2.1. INTRODUCTION

Figure 2.1: The first experimental realization of an invisibility cloak implemented
by split-ring resonators with anisotropic permeabilities μr, μθ and permittivity εz.

Figure reproduced with permission from Ref. [10].

deviceswith unexpected behavior, such as sharp, lossless beambends [5], beam splitters
[6], sub-diffraction-limited lensing systems [7] [8], and last but not least, revolutionary
invisibility cloaks [3]-[9].

To illustrate the methodology of transformation optics, we consider how a cylindrical
cloak hides an object, e.g., a copper cylinder, inside a cylindrical region surrounded by
a transformation-optical medium. This medium bends light in such a way that it never
reaches the central object (Fig. 2.1). Additionally, perfect invisibility is only achieved if
all kinds of reflections and scattering during bending, which would reveal the cloaking
device, are avoided.

As mentioned in the previous subsection, transformation-optical media use metamate-
rials to impose a Riemannian geometry which manipulates electromagnetic waves in a
desired way. We call this geometry the ‘physical space’ associated to the optical device
and provide it with coordinates xμ.∗

The framework of transformation optics consists of a two-step procedure. First, it uses
differential-geometrical techniques to design an appropriate Riemannian geometry gij
of physical space conform to the specifications of the invisibility cloak. Second, the
framework provides equivalence relations, which relate the material parameters of the
device, i.e. anisotropic and inhomogeneous permittivities εi j and permeabilities μi j, to
the geometry of physical space. These parameters identify theMaxwell equationswhich
describe propagation of light in physical space to the Maxwell equations of the device.
Such a transformation-optical device imposes identical light propagation as physical
space.

∗Appendix A.2 discusses two approaches for defining auxiliary spaces in the transformation-optical
framework. This dissertation makes uses of the convention by Ref. [4].
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2.1. INTRODUCTION

Xμ(xμ
′
)

←
→

X(−1) μ′(xμ)

Figure 2.2: Determination of light propagation in physical space with coordinates
xμ (right) using a coordinate transformation Xμ′ of a cylindrical invisibility cloak
(Eq. 2.4 obtained from Ref. [10]) acting on an auxiliary electromagnetic space with

coordinates xμ′ (left).

To design Riemannian geometry in physical space, we make use of another auxiliary
‘electromagnetic space’ with coordinates xμ

′
(Fig. 2.2). The electromagnetic space deter-

mines the coordinates xμ of physical space using an invertible, differentiable coordinate
transformation Xμ

xμ = Xμ
(
xμ
′)
,

xμ
′
= X(−1) μ′ (xμ) ,

with a Jacobian matrix Λ
μ
μ′ =

∂xμ
∂xμ′

and nonzero determinant Λ with μ, μ′ ∈ {0, . . . 3}.
Fig. 2.2 illustrates how such a coordinate transformation indeed affects the geometry
of physical space as it maps lines of constant coordinates in electromagnetic space to a
specific configuration in physical space. Light rays which follow the coordinate lines
are bent around the object hidden at the center.

This approach to finding a suitable physical space geometry fundamentally relies on the
principle of covariance [2]. This principle implies all physical theories—including those
of electromagnetism—do not fundamentally rely on the coordinates used to describe
them. According to this coordinate-independent, covariant formulation of electromag-
netism, the electromagnetic and physical space are equivalent representations of the very same
space-time. Therefore, the fundamental characteristics of wave propagation in electro-
magnetic space are identical to those of physical space as these are transferred by the
coordinate transformation. For example, if waves propagate through electromagnetic
space without reflections or perturbations, this is also the case in physical space irre-
spective of the detailed form of the coordinate transformation.

The equivalence relations guarantee these fundamental properties of light propagation
are transfered to the transformation-optical device. In this way, the basic geometry
and material parameters within electromagnetic space directly affect the functionality

7



2.1. INTRODUCTION

of the device. The geometrical and material properties of electromagnetic space must
be chosen with great care.

In the case of an invisibility cloak, the waves need to be insensitive to changes in
material parameters—necessary to bend the light— and should behave as if they never
encountered any obstruction. The device should appear as an empty vacuum which
does not scatter light in any way. This is why the first invisibility cloak [10] uses a
flat and empty electromagnetic space to impose reflectionless propagation within an
invisibility device.

A coordinate transformation Xμ
′
acts on the electromagnetic space in such a way that

the wave propagation in physical space xμ exactly corresponds to the desired function-
ality of the device. Fig. 2.2 shows how the invisibility device stretches the cylindrical
coordinates (r′, θ′, z) at the origin such that the singularity at r′ = 0 is mapped into the
inner radius R1—forming the inner region of the device—and such that the outer radius
R2 of the device is matched to the surrounding flat geometry of vacuum in a continuous
way, [10] ⎧⎪⎪⎪⎨⎪⎪⎪⎩

r′ = R2
r−R1

R2−R1
,

θ′ = θ,
z′ = z.

(2.4)

In doing so, the light trajectories (geodesics) of electromagnetic space are transformed
into light trajectories (geodesics) of physical space. Light is guided around and never
enters the central region.

In summary, the electromagnetic space guarantees the fundamental reflectionless prop-
agation within the invisibility device while the coordinate transformation determines
light propagation. The coordinate transformation directly determines the geometry
of physical space in such a way that the geodesics, the trajectories followed by light,
correspond to the desired wave propagation inside the device. Appendix B proves that
this is another consequence of the covariant formulation of electromagnetism on curved
space-times.

Although the invisibility cloak convinced the electromagnetic community of the im-
portance of transformation optics, both in designing innovative optical devices and
increasing understanding of fundamental laws in electromagnetism [11], it does not
completely express the impressive flexibility transformation optics offers.

Nontrivial electromagnetic spaces provide many degrees of freedom, as theymight posses non-
Euclidean geometries and nontrivial material parameters. On a conceptual level, non-
Euclidean electromagnetic spaces provide optical analogues tomany general relativistic
geometries, such as compactified De Sitter spaces [12]. From a design perspective, non-
Euclidean electromagnetic spacesmight be chosen in a cleverway to improve Euclidean
transformation-optical material parameters. In this way, non-Euclidean transformation
optics has led to broadband implementations of invisibility devices [13] and thin direc-
tional lenses [14].

8



2.2. THREE-DIMENSIONAL TRANSFORMATION OPTICS

Nontrivial materials and material interfaces extend the scope of transformation optics
in another important way. Traditional empty electromagnetic spaces sustain three-
dimensional unconstrained electromagnetic waves, which are usually expanded with
respect to plane waves. Therefore, transformation-optical devices based on empty
electromagnetic spaces do not introduce reflections because the medium appears to
them as if it is a vacuum. It simply bends them [5], steers them [6] or guides them
around obstructions [3] after which they emerge unaffected.

On the other hand, if electromagnetic spaces contain inhomogeneous media [9] or a
planarmirror [15], lightwaves in the transformation-opticalmediumare fundamentally
modified. Because they experience the materials of electromagnetic space, they will
respectively refract in exactly the right way to avoid a central object—this has led to
an optimized conformal invisibility cloak—or reflect from a distorted metallic surface
in physical space as if they meet the planar mirror in electromagnetic space before
distortion [15].

Additionally, it is also possible to introducematerial interfaces to electromagnetic space.
These sustain a zoo of confined, two-dimensional electromagnetic waves, e.g., plas-
monic surface waves on metal-dielectric interfaces [16], guided modes in dielectric
waveguides [17], Dyakonov waves at the interface of media with different anisotropy
[18], etc.

Recent research focusses on how plasmonic surface waves sustained bymetal-dielectric
interfaces [19] are manipulated by transformation-optical media. In this chapter, we
review the contributions of transformation optics to the manipulation of these surface
waves. However, we believe that substantial progress in the development of transfor-
mation optics is to be made at the level of dielectric waveguides and light propagation
through optic fibers [20].

2.2

Three-Dimensional Transformation Optics

This section explains in a mathematical way how transformation optics allows for the
design of unconstrained three-dimensional electromagnetic media.

2.2.1 Electromagnetism on Curved Spaces

In the introduction, we motivated how an electromagnetic space with coordinates xμ
′

uses a coordinate transformation with Jacobian Λ
μ
μ′ =

∂xμ
∂xμ′

and nonzero determinant

Λ = detΛμμ′ to impose the geometry, geodesics and fundamental behavior of light to a
physical space with coordinates xμ. However, we still need to relate the geometry of
physical space to the metamaterial parameters of the transformation-optical device.

9



2.2. THREE-DIMENSIONAL TRANSFORMATION OPTICS

Because the transformation-optical medium should establish the very same electric
fields E, magnetic fields H and power flow as in the designed physical space, the
Maxwell equations corresponding to this medium

∂i

(
εi jEj

)
= 0, (2.5)

∂i

(
μi jHj

)
= 0, (2.6)

[i jk] ∂ jEk = −μ0 ∂t
(
μirHr

)
, (2.7)

[i jk] ∂ jHk = ε0 ∂t
(
εirEr

)
. (2.8)

should be identical to those of physical space derived in appendix B

∂i

(√
g ε̃gijEj

)
= 0, (2.9)

∂i

(√
g gijHj

)
= 0, (2.10)

[i jk] ∂ jEk = −μ0 ∂t
(√

g girHr
)
, (2.11)

[i jk] ∂ jHk = ε0 ∂t
(√

g ε̃girEr
)
, (2.12)

We limit the discussion to purely spatial metrics and coordinate transformations such
that all Greek space-time indices μ are replaced by Roman indices m. Also, we as-
sume that the electromagnetic space contains an isotropic homogeneous dielectric with
relative permittivity ε̃ as this allows extending our results to electromagnetic spaces
containing a dielectric slab waveguide (Chapter 4).

To achieve this mapping, we compare the Maxwell equations of physical space to those
of an electromagneticmediumwith anisotropic and inhomogeneous relative permittivi-
ties εi j and permeabilities μi j. The Maxwell equations which describe the device indeed
agree with those which describe physical space if its material parameters are related to
the metric of physical space gij with determinant g

εi j =
√

g ε̃ gij, (2.13)
μi j =

√
g gij. (2.14)

Although we used the principle of Fermat (2.1) to motivate the geometrical ideas be-
hind transformation optics, the scope of transformation optics does extend beyond the
ray approximation (subsection A.3.3). The equivalence relations are imposed at the
level of the full macroscopic Maxwell equations and retain their validity even in the
subwavelength regime [21]. Therefore, plasmonic systems, graphene sheets and thin
waveguides are also amendable to the ideas discussed above.

Once these equivalence relations (2.13) and (2.14) are implemented by metamaterials,
the transformation-optical medium truly behaves as if it is a Riemannian geometry. We now
understand in a physical way how an invisibility cloak modifies wave propagation
without inducing reflections. In the presence of inhomogeneous materials, solutions to

10



2.2. THREE-DIMENSIONAL TRANSFORMATION OPTICS

the Maxwell equations are both determined by a refractive index, which takes prop-
agation into account, and an impedance, which determines how waves reflect and
refract as a consequence of boundary conditions imposed by material interfaces as is
clear from the laws of Fresnel. In particular, the impedance measures the difference
in electric and magnetic responses of a material. Because the equivalence relations
imply the invisibility cloak has equal electric and magnetic responses, i.e., the medium
is impedance-matched, reflections are completely suppressed.

The equivalence relations lead to another important observation. In principle, any
coordinate transformation on a flat electromagnetic space induces nontrivial metrics
(B.12)

gij = Λi′
i Λ

j′

j δi′ j′ ,

and as a result transformation-optical devices are inherently magnetic (2.14). Unfor-
tunately, traditional resonant metamaterials (subsection 2.4.1) suffer from substantial
losses if they need to reach high relative permeabilities associated to strong resonances.

At the level of transformation optics, literature provides two approaches to avoid mag-
netic materials in order to mitigate these losses. First, the required response strongly
depends on the initial polarization of the wave. Because the macroscopic Maxwell
equations use a permeability μi j to couple the magnetic field strength H to the magnetic
field B

Bi = μ0μ
i jHj,

one might choose the polarization of the magnetic field parallel to one of the principal
axes, e.g.,

H = Hyey.

In this way, only one element of the permeability tensor truly matters [10].

Second, there exists a particular set of coordinate transformations—(quasi)-conformal
transformations—which relyon techniques fromcomplex analysis to reduce the anisotropy
of material parameters. These techniques are discussed in the following subsection.

2.2.2 (Quasi)-Conformal Transformations

A conformal map Xi of electromagnetic to physical space has the desired property that
the physical metric gij is proportional to the metric of electromagnetic space gi′ j′ , with
some spatially dependent factor n(xi)

gij =
[
n(xi)

]2
gi′ j′ .

Therefore, if the electromagnetic space is flat gi′ j′ = δi′ j′ , the resulting material parame-
ters (2.13) and (2.14) are isotropic

ε = n(xi) ε̃,
μ = n(xi),

11



2.2. THREE-DIMENSIONAL TRANSFORMATION OPTICS

Figure 2.3: Permittivity map (left) and transmitted electric field (right) of a
‘squeezed’ bend. Figure reproduced with permission from Ref. [22].

and a nonmagnetic implementation of transformation-optics is readily available, i.e.
εe f f = n(xi)2 and μe f f = 1.

Mathematically, however, the Liouville theorem restricts such maps to simple Möbius
transformations—constant rescalings, rotations and translations—as soon as three- or
higher-dimensional spaces are considered. Instead, one might use optimizations of
three-dimensional coordinate transformations, quasi-conformal maps, which only ap-
proximately achieve isotropicmaterial parameters because theyminimize the anisotropy
of the transformation [22].

Quasi-conformal maps have been widely applied to several disciplines in computation,
aerodynamics, hydrodynamics and even electromagnetism [23], long before the advent
of transformation optics. Therefore, numerical optimization techniques are readily
available and provide an efficient tool to determine dielectric transformation media.
Since (quasi)-conformal maps are particularly adapted to map any initial rectangular
space, e.g., electromagnetic space, to a simply connected domain of arbitrary shape,
e.g., physical space, dielectric materials may squeeze light through arbitrarily shaped
waveguides or bend light in an arbitrary way (Fig. 2.3). Quasi-conformal techniques
were also applied in designing a planar invisibility cloak at optical frequencies [24].

Although quasi-conformal maps are numerically very effective, it does not provide an
analytical method to reduce anisotropy. Luckily, coordinate transformations related
to two-dimensional devices—such as beam benders, beam shifters and cylindrical in-
visibility cloaks—always preserve one orthogonal direction of electromagnetic space,

12



2.2. THREE-DIMENSIONAL TRANSFORMATION OPTICS

Figure 2.4: An illustration of a finite-embedded transformation by a conformal
exponentialmap ez. Themappreserves right angles between coordinate lineswhich
correspond to fixed y′ (red) and x′ (blue) coordinates in electromagnetic space
(upper figure). Light which propagates along the blue trajectory in electromagnetic
space is bent by the transformation in physical space (lower figure). Light which
enters from below is not reflected if the geometry along the boundary is equal to

that of the vacuum, i.e. Euclidean flat space.

which we call z ⎧⎪⎪⎪⎨⎪⎪⎪⎩
x′ = X(x, y),
y′ = Y(x, y),
z′ =

√
gzz z.

(2.15)

Such two-dimensional transformations have been used to manipulate surface wave
propagation at plasmonic interfaces (section 2.3) and guided waves along waveguides
(chapter 4). Because the orthogonal direction z is separated from the in-plane directions
xy, the metric transformation rule (B.12) implies that geometries of two-dimensional
transformation optics generally contain an induced metric γi j and a component gzz
orthogonal to it

gij =

(
γi j 0
0 gzz

)
. (2.16)
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2.2. THREE-DIMENSIONAL TRANSFORMATION OPTICS

Since Liouville’s theorem does not prohibit the existence of perfectly conformal trans-
formations (X(x, y),Y(x, y)) in two dimensions, Eq. (2.15) may be optimized to achieve
perfectly isotropic material parameters in the plane of the waveguide. These conformal
maps are elegantly represented by analytic functions

f (x + iy) = X(x, y) + iY(x, y).

Analyticity of conformal maps has two profound implications. First, a differentiable
complex function is subject to Cauchy-Rieman conditions, which relate components of
the Jacobian in the following way

∂xX(x, y) = ∂yY(x, y), (2.17)
∂yX(x, y) = −∂xY(x, y),

and guarantee the two-dimensional metric γi j is isotropic

γi j =
[
(∂xX)2 + (∂xY)2

]
,

= γ(x, y) δi j. (2.18)

As a consequence, material parameters associated a conformal transformation-optical
medium are uniaxial (Eq. ((2.13) and Eq. (2.14))

εi j =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
ε̃ 0 0
0 ε̃ 0
0 0 γ(x, y)ε̃

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (2.19)

μi j =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 0 γ(x, y)ε̃

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (2.20)

Fig. 2.4 illustrates how a conformal exponential map f (z) = ez,{
x = cos(y′) ex′ ,
y = sin(y′) ex′ ,

(2.21)

preserves angles—in particular orthogonal angles—between coordinate lines before
and after transformation.

A second implication of analyticity is connected to the concept of finite-embedded co-
ordinate transformations [6]. As shown in Fig. 2.4, a finite-embedded transformation is
a local transformation which acts on a finite area in electromagnetic space. Then, physi-
cal space also contains a finite region with nontrivial transformation-optical parameters
which is embedded into vacuum, the medium of the untransformed electromagnetic
space. Fig. 2.4 shows how geodesics of a finite region in electromagnetic space appear
to be bent in physical space due to a conformal coordinate transformation.

To ensure waves couple in and out of a transformation-optical device without being
reflected, the metric components of physical space gij parallel to the interface—i.e. the
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induced metric of gij on the surface separating the device from vacuum—should be
identical to those of the surrounding medium δi j. In this way, the transversal electro-
magnetic fields do not notice any change in geometry until they are already inside the
impedance-matched medium. Traditionally, this continuity of the metric is achieved if
the coordinate transformation within the device reduces continuously to the identity
transformation outside of the device. However, the analyticity of a conformal trans-
formation prevents a continuous transition. Analytical continuation would imply the
transformation is equal to the identity transformation both within and outside of the
device. Therefore, analytic conformal transformations inherently suffer from insertion
and extraction loss when applied to a finite region.

As explained in chapter 4, two-dimensional conformal transformations are compati-
ble with two-dimensional surface waves, e.g., sustained by metal-dielectric interfaces.
These plasmonic surface waves are discussed in the following section.

2.3

Plasmonic Transformation Optics

2.3.1 Introduction

The main motivation for applying transformation optics to two-dimensional systems,
is provided by intense research efforts to produce integrated optical circuits [16], fully
compatible with electronic Very Large Scale Integrated (VLSI) systems. Currently, com-
putational speed is limited by metallic interconnects in VLSI. As a fast and broadband
carrier for digital information, two-dimensional confined waves would greatly increase
computational speed of such circuits. Because electronic circuits already make use of
metals, investigations mainly focus on metal-dielectric optical circuits, i.e. plasmonics
which sustain confined waves thanks to collective motions of free electrons within the
metal (Fig. 2.5). These waves are also known as surface plasmons polaritons (SPP) and
play a crucial role in optical sensing systems, spectroscopy, subdiffractional imaging
and enhancement of fluorescence and Raman scattering [19].

On the conceptual level, two-dimensional systems are also interesting for investigating
optical analogues of fundamentally curvedRiemannian geometries such as two-spheres
[25]. These investigations provide newways formanipulating and preserving the shape
of wave packets sustained by dielectric waveguides which may be applied to optical
fiber telecommunication.

This section describes how several decisive applications of three-dimensional trans-
formation optics, using two-dimensional coordinate transformations Eq.(2.15), are ex-
tended to plasmonic systems which sustain surface waves. We consider the metal-
dielectric interface of Fig. 2.5 with permittivities εM of the metallic layer and εD of the
dielectric layer having opposite signs.
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2.3. PLASMONIC TRANSFORMATION OPTICS

Figure 2.5: Illustration of a realistic metal-dielectric interface with metallic layer
εM ∈ C, dielectric layer εD and vacuum layer εV. The dielectric layer is sufficiently
thick such that the surface wave profile (red) extinguishes over several decay

lengths 1
2Im(kD)

before reaching the vacuum.

Because the skin depth 1
2Im(kM) of the metal layer is only several nanometers long, e.g.,

23 nm for gold at wavelengths of 1.5μm, current manufacturing techniques do not al-
low implementing transformation-optical media in the metallic layer. To our opinion,
literature provides two different approaches to SPP manipulation with transformation
optics. The most conservative extension of three-dimensional transformation optics to
plasmonics simply uses the three-dimensional transformation-optical material param-
eters inside the dielectric and does not change the metallic layer [26] [27]. Another
approach uses quasi-conformal transformations and thickness variations of the homo-
geneous dielectric layer to manipulate SPP’s [27]. The latter approach is, however, only
valid in the ray approximation.

2.3.2 Surface Plasmon Polaritons

Before considering the aforementioned implementations, we briefly consider how SPP
surface waves propagate along a metal-dielectric layer normal to the z-direction. We
choose our x-direction such that it coincideswith the propagation direction as in Fig. 2.5.
These surface waves are only consistent with boundary conditions of the Maxwell
equations if they have the following electric fields [16]

ED = ED0 eiβxe−ikDz, (2.22)
EM = EM0 eiβxeikMz, (2.23)

and propagation constant β

β =
ω
c

√
εMεD
εM + εD

, (2.24)
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depending on the frequencyω andmaterial parameters in themetal εM and the dielectric
εD. Because the permittivity of the metal is complex, the SPP decays at propagation
length scales 1

2Im(β) . This restricts SPP propagation lengths of 1mm and provides an
upper bound to the physical extent of optical devices. The orthogonal wave vectors

k2M/D = εM/D
ω2

c2
− β2, (2.25)

increase with frequency. Therefore, high frequencies and small wavelengths result
in strong confinement, while low frequencies and large wavelengths result in weak
confinement.

2.3.3 Dielectric Permittivity Variations

A first attempt [26] to manipulate surface waves on a metal-dielectric interface with
transformation optics simply limits the implementation of the desired material param-
eters (Eq. (2.13) - Eq. (2.14)) to the dielectric layer.

Fig. 2.6 shows the efficiency of such a limited implementation iswavelength-dependent.
At a wavelength of λ = 1.5μm the device performs particularly well because the decay
length of the surface wave within the dielectric layer is larger than the skin depth of
the metal (Eq. (2.25)). The electromagnetic energy mostly resides within the dielec-
tric layer and the lack of a transformation-optical medium in the metal barely affects
performance. In contrast, shorter wavelengths and higher frequencies increase the
confinement. Therefore, the contribution of the skin depth of the metal becomes in-
creasingly important when compared to the decay length within the dielectric. The
performance of the device decreases as wavelengths become shorter.

Additionally, the metallic layer is intrinsically incompatible with the requirements of
a cylindrical invisibility cloak as reflections should be avoided at all costs. Thus, the
performance also depends on the nature of the transformation-optical device. For
example, the planar invisibility cloak—which hides bumps in metal surface with a
flat mirror in electromagnetic space—is completely compatible with the presence of a
metallic-dielectric layer. The planar cloak does not show a degradation in performance
with decreasing wavelength.

Ref. [27] considers a plasmonic 90-degree beam bend [27] and compares two coordinate
transformations, a straightforward anisotropic transformation and a quasi-conformal
transformation. As for the beam bend considered before (2.4), the anisotropic trans-
formation from electromagnetic space xi′ =

{
x′, y′, z′

}
to physical space with cylindrical

coordinates xi =
{
r, φ, z

}
⎧⎪⎪⎪⎨⎪⎪⎪⎩

r = y′,
φ = π

2 (1 −
x′
b ),

z = z′,
(2.26)
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Figure 2.6: Plasmonic cylindrical invisibility cloak (a) with transformation-optical
medium in the dielectric layer. Performance increases for λ = 1.5μm (b) at the
metal-dielectric interface and (c) at the surface of the dielectric layer, with respect
to the performance at λ = 600nm d) at the metal-dielectric interface and (e) at the
surface of the dielectric layer. Figure reproduced with permission from Ref. [26].

is a finite-embedded transformation. As shown by the inset of (Fig. 2.7), a rectangular
area [0, b]× [a, b] in electromagnetic space is transformed to a circular arc of outer radius
b. Note the transformation is also two-dimensional in the sense of Eq. (2.15).

Before we move on to another attempt in literature to manipulate surface waves with
thickness variations, we illustrate the power of transformation optics as a problem
solving tool. We reconsider the simple example of a beam bender.

Fig. 2.4 and Fig. 2.7 show how plane waves propagating in the x′-direction in electro-
magnetic space, i.e. x′ increases with time and y′ is a constant, are transformed by the
bender to trajectories in physical space which turn about the z-direction at a constant
radius r. Generally, it is very difficult to find an analytic solution to wave propagation
in a bi-anisotropic electromagnetic medium with εi j and μi j. Thanks to the coordinate
transformation (2.26) and the transformation rules of a covector (B.7), this is most easily
achieved within the framework of transformation optics.

First, we solve the problem in electromagnetic space, which is simply flat and empty.
Propagating waves are thus represented by plane waves, e.g., polarized along the y-
direction∗

E = E0 eiβ̃x′ey′ ,

propagating in the x′-direction.

∗We ignore the z-dependence of the surface wave as it is not crucial to the argument considered here.
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Figure 2.7: A 90-degree beam bend of plasmonic waves with anisotropic mate-
rial parameters (up) and isotropic parameters (down) due to a quasi-conformal

transformation. Figure reproduced with permission from Ref. [27].

Second, since electric fields are covectors, they transform according to the Jacobian of
the coordinate transformation

Ei = Λi′
i Ei′ ,

= Λ
y′

i Ey′ ,

Er = E0 eiβ̃ b (1− 2
πφ), (2.27)

where the y′-polarization of the electric field is transformed to a radial polarization and
the phase advances with the azimuthal angle φ instead of x′.

Since the equivalence relationsmap the physical-spaceMaxwell equations onto those of
the transformation-optical device, Eq. (2.27) is a solution of the involvedwave equations
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of a bi-anisotropic transformation-optical device. The fields propagate inside the device
as if they are a ‘turning’ plane wave, in agreement with the principle of covariance.

Alternatively, a quasi-conformal proposal for a 90-degree bender uses the refractive
index

n(r) =
2
π

b
r
. (2.28)

Fig. 2.7 shows the corresponding field amplitudes. Ref. [27] confirms that the trans-
mission (95%) is slightly reduced with respect to the anisotropic implementation due to
impedance-mismatches at the interfaces of the finitely-embedded coordinate transfor-
mation. This is in agreement with analytic coordinate transformations as discussed in
section 2.2.2.

Although a partial implementation of traditional transformation-optical material pa-
rameters is successful from a practical point of view, it lacks conceptual strength and
is less efficient at optical frequencies. These drawbacks appear because this approach
does not take boundary conditions of the metal-dielectric interface into account. We
resolve this in chapter 4.

2.3.4 Thickness Variations of the Dielectric Layer

As discussed in chapter 3 and Ref. [17], traditional two-dimensional devices use step-
wise or continuous thickness variations of the dielectric layer to manipulate the propa-
gation of surface waves through refraction or diffraction. Some of these devices are par-
ticularly effective, e.g., a Luneburg lens focuses light at its perimeter with a continuous
thickness variation (Fig. 2.8). In retrospect, these devices were actually transformation-
optical devices [17].

We illustrate the importance of thickness variations for a quasi-conformal Luneburg
lens with an effective index of refraction

n(r) =

√
2 −

( r
R

)2
, (2.29)

depending on the radial coordinate r with respect to the center of the lens and the radius
R of the lens. Instead of implementing this refractive index, Ref. [28] proposes tomodify
the propagation constant βwith a thickness variation.

Using the insights of our research on the slab waveguide (chapter 4 and chapter 5), we
give a prelude to how thickness variations may become a part of a two-dimensional
guided transformation optics, capable of manipulating surface waves in an effective
way.

The relevant parameters of an electromagnetic device, in this case the refractive index
profile and/or the thickness of the dielectric layer, are to be varied in such a way that
it sustains a particular desired solution, e.g., provided by transformation optics (2.27).
In agreement with thickness variations as a way to manipulate guided modes, we
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Figure 2.8: A 13μm diameter plasmonic Luneburg lens at λ = 810nm designed
with two-dimensional transformation optics using a thickness variation and a ho-
mogeneous medium: a) Scanning Electron Microscopy image b) effective index
profile c) calibration of height versus mode index d) Normalized magnetic field
with metal-dielectric interface in the xz-plane. Figure reproduced with permission

from Ref. [28].
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introduce a second step in the formulation of equivalence relations which includes the
geometrical thickness of the dielectric slab as a parameter.

In the case of a 90-degree beam bender, the transformation-optical solutions (2.27)
have an inhomogeneous phase φ(xi). In the ray approximation, this is related to the
propagation vector β of the plane wave eiφ(xi)[1]

β = ∇φ(xi), (2.30)

=
1
r
2b
π
β̃, (2.31)

were we use the gradient operator in cylindrical coordinates. The propagation constant
in the device β contains the propagation constant β̃ of the incident wave which would
remain unmodified if there was no thickness variation.

Aswill be explained inmore detail in chapters 3 and 4, the dispersion relation ofmaterial
interfaces relates the thickness a of the dielectric layer to the propagation vector β. For
the metal-dielectric-air interface in Fig. 2.5, this dispersion relation is equal to [16]

tanh(kDa) =
αVαD + αDαM

α2D + αVαM
, (2.32)

with coefficients αi for each i ∈ {M,D,V} (2.25)

αi =
ki

εi
=

√
β2 − εiω

2

c2

εi
.

It is therefore possible to solve (2.32) for the thickness a, if β is replaced by (2.31).

Finally,wepoint out the result (2.31) is, at first, very surprising. Althoughwederived the
transformation of the electric field (2.27) from anisotropic coordinate transformations,
the propagation vector β is equal to

β = n(r)β̃,

with the quasi-conformal index n(r) of Eq. (2.28). Our reasoning, however, depends
on the ray approximation due to Eq. (2.30) so that both transformations yield identical
results. Appendix A.3.3 summarizes the relevant assumptions and consequences of this
approximation.
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Figure 2.9: Difference between natural electromagnetic media (left) and metama-
terials (right) as they impose macroscopic electromagnetic responses on light with

large wavelengths. Picture reproduced with permission from Ref. [29].

2.4

Flatland Metamaterials

In the beginning of this chapter, we illustrated how transformation optics determines
material parameters (2.13) and (2.14) of an optical device starting from the desired light
propagation and fundamental behavior of light within the device.

These transformation-optical parameters are however highly nontrivial. For exam-
ple, many devices require magnetic responses as imposed by Eq. (2.14) which are
simply not accessible to natural materials at optical frequencies. Therefore, artificial
materials—better known as metamaterials [29]—have been developed with fascinating
electromagnetic properties which greatly extend those of natural materials [30] [31].

This section gives a general introduction to metamaterials. Additionally, we consider
how graphene sheets provide a one-atom thick platform for two-dimensional transfor-
mation optics to manipulate electromagnetic waves confined to its surface.

2.4.1 Bulk Metamaterials

In the past decade, advancements in material design and nanofabrication techniques
have given rise to a new class of artificial opticalmaterials, metamaterials. Conceptually,
metamaterials respond to light much in the same way as natural materials (Fig. 2.9).
They consist of a structured array of fundamental constituents, meta-atoms, incor-
porated in a host matrix. The geometry and constitution of each meta-atom may vary
throughout thematerial so that the local response to light is tuned in an inhomogeneous
way.
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Generally, metamaterials are a collection of artificial scatterers whose optical properties
are determined by local responses due to each individual meta-atom. However, if the
incident light has a long wavelength compared to the dimensions of the meta-atoms
and their spacing, the electromagnetic responses of this collection of scatterers average
so that the metamaterial is effectively described by a limited set of macroscopic ma-
terial parameters, the permittivity εi j and permeability μi j of the metamaterial. This
approximation is known as the effective medium approximation. It relates local re-
sponses, determined by the geometry and constitution of meta-atoms, to an averaged
macroscopic description. Therefore, metamaterial properties directly affect the material
parameters of the macroscopic Maxwell equations ((A.16) - (A.19)) which are designed
by transformation optics.

Several homogenization techniques have been used to relate the local responses of each
meta-atom to these averaged macroscopic responses. Some of them are analytical and
existed long before metamaterials were conceived, such as the Clausius-Mosotti the-
ory [32]—well-known for describing the polarization of an isotropic material—and the
Maxwell Garnett theory [33]—applied to metallic spherical inclusions in a dielectric
matrix. Other, more accurate determinations of macroscopic material parameters are
provided by numerical calculations [34] or an experimental parameter retrieval tech-
nique which measures the transmission and reflection of light from a metamaterial slab
to probe its material parameters [35].

The split-ring resonator (SRR), which was crucial to the first implementation of a cylin-
drical metamaterial cloak (Fig. 2.1), was the first meta-atomwhich effectively produced
nontrivial and anisotropic magnetic responses. It consists of a metallic circuit with
resonance frequency ω0 =

1√
LC

derived from an electrostatic RLC model.

To obtain high magnetic responses, the split-ring resonators need to be excited by
electromagnetic waves whose frequencies are close to the resonance frequency ω0.
However, resonance frequencies naturally induce dissipation losses in the meta-atom
circuits [36]. In total, attenuations up to 10 dB per wavelength at optical frequencies
have been observed for this kind of metamaterials. Generally, magnetic metamaterials
are always adversely affected by loss. This motivates our search for two-dimensional
nonmagnetic metamaterials.

Literature provides three solutions to mitigate dissipative losses of resonant metamate-
rials. First, one might avoid metallic resonant meta-atoms altogether and explore other
promising materials such as high-temperature superconductors [37] and graphene [38].
However, a comparative study [36] pointed out that noble metals still outperform these
materials at infrared and visible frequencies so that they are not suited for metamaterial
implementations of integrated optical devices on photonic circuits as envisioned by this
dissertation.

Because noble metals are expected to remain part of most metamaterial designs, liter-
ature contains various proposals for optimizing metallic meta-atoms as illustrated by
Fig. 2.10. Thesemeta-atoms implement a specific kind of hyperbolic metamaterials [39],
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Figure 2.10: Examples of several hyperbolic metamaterials: a) Layered metal-
dielectric structure, b) hyperlens, c) multilayer fishnet, d) nanorod arrays, e) arrays
of metal-dielectric nanopyramids, f) graphene metamaterials. Picture reproduced

with permission from Ref. [39].

which are important to applications in quantum optics, i.e. enhancement of stimulated
Raman emission, and allowed designing subwavelength lensing systems. In particular,
the meta-atom nanorods provide inhomogeneous uniaxial metamaterials which may
be of great use to implement our beam bend design in chapter 5.

A second approach to eliminating losses of metamaterial implementations simply op-
timizes the design of the envisioned device, e.g., with quasi-conformal techniques, in
such a way that anisotropic metamaterials are not required (subsection 2.2.2). This is
indeed a promising approach at optical frequencies, as illustrated by the fabrication of
a planar invisibility cloak [15].

Finally, onemight use thinmaterial sheets instead of bulkmetamaterials, such that light
is only slightly attenuated [40]. In this respect, two-dimensional meta-surfaces provide
a newperspective tometamaterial applications. At infrared frequencies, one-atom thick
material layers such as grapheneprovide interestingplatforms to transformation-optical
devices as discussed in the following subsection.

2.4.2 Graphene, a One-Atom Thick Platform

Although graphene has only been discovered a decade ago, its robustness and versatile
chemical and optical properties make sure it is a key element to many nanophotonic
optical devices [38]. Compared to metallic metamaterials, such as traditional split-ring
resonators, graphene has the advantage that its response to light is tunable by external
electric fields or bias potentials. Externally applied fields change the number of charge
carriers which affect graphene’s complex conductivity σ = σr + iσi through variations
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2.4. FLATLAND METAMATERIALS

Figure 2.11: A hyrbid graphene split-ring resonator metamaterial which allows
shifting the resonance and transmission efficiency of the resonator array: a
schematic view (top), a microscopic image (middle) and a Raman spectrum (bot-

tom). Figure obtained from Ref. [41]

in its chemical potential. Therefore, electrostatic doping affects the electromagnetic
properties of the graphene sheet.

In combination with resonant metallic circuits, e.g., split-ring resonators, graphene is
an attractive material as they allow to tune the resonance frequency and hence the
response of the metamaterial. An example of such metamaterials is shown in inset f) of
Fig. 2.11. Themetallic circuits produce locally confinedfieldswhich enhance graphene’s
weak electromagnetic response, whichmay bemodulated by external bias voltages [41].
These hybrid metamaterials are very important to plasmonic circuitry as they provide
fast surface wave modulators and sensitive photodetectors.

In the context of two-dimensional metamaterials, the tunability of graphene may as-
sume another important role [42]. Transverse magnetic surface waves on graphene—
containing one in-plane magnetic component orthogonal to the propagation vector
β—are only allowed by Maxwell’s equations if they satisfy the following dispersion
relation which contains the vacuum impedance η0 =

μ0
ε0

and conductivity σ

β2 =
ω2

c2

⎡⎢⎢⎢⎢⎣1 −
(

2
η0σ

)2⎤⎥⎥⎥⎥⎦ . (2.33)
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2.4. FLATLAND METAMATERIALS

Figure 2.12: A beam splitter for transverse magnetic confined waves on a sheet of
graphene with geometrical properties L1 = 1077nm, L2 = 560nm and w1+w2+w3 =

600 + 200 + 600nm. Figure reproduced with permission from Ref. [42].

Figure 2.13: Creation of metallic scatterers on graphene for transversal-magnetic
confined waves on the sheet. Figure reproduced with permission from Ref. [42].

At terahertz frequencies, however, the imaginary part of the conductivity σi might
becomenegative for sufficiently strong local electric fields, such that transversemagnetic
waves are no longer sustained. Fig. 2.12 shows how inhomogeneous local fields, arising
from different thicknesses of the substrate layer material, select locations of negative σi
in such a way that a beam splitter is implemented on a one-atom thick platform.

Next to truly two-dimensional transformation-optical devices, graphenealso contributes
to new kinds of flatlandmeta-atoms (Fig. 2.13). If bias potentials are applied in the right
way, the sheet contains spherical islands which do not sustain transverse magnetic
waves and act as a collection of local metallic scatterers which provide a homogenized
response after field averaging.

The remainder of this dissertation develops a new framework to design material prop-
erties of another important two-dimensional medium, a slab waveguide.
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Chapter 3

The Slab Waveguide

Dielectric slab waveguides provide a familiar platform for two-dimensional guided
waves. Because the slab problem is similar to that of a quantum well, Maxwell’s

equations identify a particular orthogonal class of guided waves, the guided modes,
with respect to which arbitrary confined waves may be investigated. On the con-
ceptual level, this chapter provides the foundations of guided mode propagation
in order to understand how they are to be manipulated. This provides us with
tools to formulate a consistent two-dimensional transformation-optical framework in
chapter 4. Numerically, we establish three criteria to interpret and evaluate finite-
element simulations. In chapter 5 we apply these criteria to the design of a beam
bender.

3.1

Macroscopic Maxwell Equations

As explained in appendix A, sufficiently dense media are described by the macroscopic
Maxwell equations in the presence of free charges ρfree and currents jfree

∇ ·D = ρfree, (3.1)
∇ ·B = 0, (3.2)
∇ × E = −∂tB, (3.3)
∇ ×H = jfree + ∂tD. (3.4)

We use a curly typeset for expressiong of the electric field E and the magnetic field
strengthH in the time domain.∗

This chapter investigates solutions to these Maxwell equations which are confined to a
homogeneous, isotropic slab wave guide shown in Fig. 3.1. A slab waveguide consists
of three discrete dielectric material layers—a substrate layer, a guiding layer and a cover

∗Notational conventions are listed in table A.1 of appendix A.
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3.1. MACROSCOPIC MAXWELL EQUATIONS

Figure 3.1: A slab waveguide, consisting of a cover layer ε1, a guiding layer ε2 and
a substrate layer ε3 parallel to the xy plane. The fundamental mode propagates in

the plane with a propagation vector β.

layer—which are orthogonal to the z-axis in our reference frame. Therefore, we impose
linear, local and instantaneous constitutive relations

D = ε0 ε(z) E, (3.5)
B = μ0 H , (3.6)

with a stepwise relative permittivity profile ε(z) in the orthogonal coordinate z

ε(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε1 z > a,
ε2 −a ≤ z ≤ a,
ε3 z < −a.

(3.7)

The slab waveguide is fundamentally different from bulk, infinitely extended media.
Because bulk media are translationally invariant in every direction, all monochromatic
solutions with frequency ω are expandable with respect to a complete basis of plane
waves

E =
1

(2π)3

∫
dk Ẽ(k) ei(k · r) e−iωt, (3.8)

H =
1

(2π)3

∫
dk H̃(k) ei(k · r) e−iωt, (3.9)

where the magnitude of wave vector k is fixed by a dispersion relation depending on
the refractive index n of the medium

k2 = n2 ω
2

c2
. (3.10)

Eqs. (3.8)- (3.9) are crucial to the plane wave expansion technique which solves for the
coefficients Ẽ(k) and H̃(k) to determine wave propagation within an unconstrained
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3.1. MACROSCOPIC MAXWELL EQUATIONS

medium. Each plane wave component Ẽ(k) and H̃(k) has a transverse polarization with
respect to its propagation direction and does not depend on the coordinates parallel to
that direction.

In contrast, the slab waveguide of thickness 2a in Fig. 3.1 is a constrained medium. The
permittivity profile (3.7) breaks the translation symmetry in the orthogonal direction
z with respect to a bulk material. Therefore, solutions to the Maxwell equations are
subject to boundary conditions at dielectric interfaces with normal n

n × E = 0 Continuous tangential E components, (3.11)
n ×H = 0 Continuous tangentialH components, (3.12)

n ·D = 0 Continuous normalD component, (3.13)
n · B = 0 Continuous normal B component. (3.14)

These conditions introduce geometrical dependencies to the slab waveguide solutions,
i. e. the location of the material interfaces.

This chapter explains how—analogous to the plane wave expansions (3.8)-(3.9)— prop-
agation of an initial confined wave profile is determined by monochromatic two-
dimensional (guided) modes with angular frequency ω

E = E(x, y, z) e−iωt, H = H(x, y, z) e−iωt.

Because the material parameters, e.g., the permittivity profile ε(z), distinguish between
planar xy and orthogonal z coordinates, we assume that these guided modes conform
to separation of variables

E(x, y, z) = ZE(z) eiβx, H(x, y, z) = ZH(z) eiβx. (3.15)

Before we derive guidedmode solutions, it is instructive to eliminate some redundancy
which is inherent to the complete set of Maxwell equations. Because the dielectric does
not contain free charges ρfree or currents jfree, the electric and magnetic Gauss laws Eqs.
(3.1)-(3.2) are automatically taken into account by the law of Faraday Eq. (3.3) and Am-
père Eq. (3.4). These reduce to the following six coupled scalar equations when applied
to the separated solutions (3.15),

∂zHy = iωε0 ε(z) Ex,

ωμ0 Hy = ∂zEx − iβ Ez, (3.16)
β Hy = −ωε0 ε(z) Ez.

∂zEy = −iωμ0 Hx,

ωε0 ε(z) Ey = iβ Hz − ∂zHx, (3.17)
β Ey = ωμ0 Hz.

Eq. (3.16) and Eq. (3.17) identify two sets of self-contained solutions which are distin-
guished by their polarization. The transverse magnetic polarization (TM) with Ex,Ez
and Hy is sensitive to the transversal permittivity profile thanks to the orthogonal
electric field Ez, while the transverse electric polarization with Hx,Hz and Ey is not
fundamentally affected by the permittivity profile.
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The TM and TE solutions are respectively determined by the transverse components Hy
or Ey. Thus, Eq. (3.16) and Eq. (3.17) decouple into two independent scalar equations
for each region i ∈ {1, 2, 3}

∂2xHy + ∂
2
zHy + εi

ω2

c2
Hy = 0, (3.18)

∂2xEy + ∂
2
zEy + εi

ω2

c2
Ey = 0, (3.19)

which completely determine the confined solutions without any additional approxima-
tion. These equations are particular examples of the general Helmholtz equations in
homogeneous media

ΔHy + εi
ω2

c2
Hy = 0, (3.20)

ΔEy + εi
ω2

c2
Ey = 0,

with Laplacian

Δ = ∂2x + ∂
2
y + ∂

2
z ,

= Δxy + ∂
2
z . (3.21)

Importantly, separability of the electromagnetic fields implies the Laplacian operator
also splits into an in-plane Δxy and an orthogonal ∂2z operator. Transformation optics
will be used to modify the in-plane Laplacian in chapter 4. For now, we established that
confined solutions with a particular TM polarization are crucially determined by one
Helmholtz equation. This equation is valid at the same level as the original Maxwell
equations describing the waveguide (3.1)-(3.4).

3.2

Guided Modes

3.2.1 Implications of Separability

As suggested by (3.21), the generalizedHelmholtz equation (3.20) splits into twodistinct
parts when acting on a separable solution

Hy = ΦH(x, y) ZH(z).

If we define a separation constant β, the in-plane propagation equation

ΔxyΦH(x, y) = −β2ΦH(x, y), (3.22)
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is solved by a two-dimensional infinitely-extended plane wave while the orthogonal
modal equation remains to be solved

∂2zZH(z) +
[
ε(z)
ω2

c2
− β2

]
ZH(z) = 0. (3.23)

For a plane wave ansatz (3.15), the TMMaxwell equations (3.16) reduce to

E =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
−i
ε0ω εi

∂zZH(z)
0

−β
ε0ω εi

ZH(z)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ H =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0

ZH(z)
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
Similar to a plane wave expansion, we investigate the propagation of arbitrary confined
waves Hy in in terms of a superposition of independently propagating guided modes
Z(m)

H enumerated by an integer positive number m ∈N

Hy in(x, z) =
N∑
m

H̃m Z(m)
H (z) eiβ

(m)x. (3.24)

To this aim, we require a norm that selects the parts of Hy in which belong to a specific
guided mode [1]. Fortunately, guided waves are confined to the waveguide such that
the time-averaged Poynting vector

S =
1
2
Re [ E ×H∗ ] ,

=
β

2ωε0 εi
|ZH(z)|2 ex,

corresponds to a finite power

P =
β

2ε0ω

∫
dz

1
ε(z)
|ZH(z)|2 < ∞. (3.25)

Therefore, it is possible to construct a Hilbert spacewith a norm associated to TMwaves

〈 f , g〉 =
∫

dz
1
ε(z)

f (z)g∗(z). (3.26)

The modal wave equation (3.23) reduces to a one-dimensional eigenvalue problem
connected to the Hermitian mode operator L̂

L̂ =
[
∂2z + εi

]
with discrete eigenvalues β(m) and an orthogonal set of eigenfunctions Z(m)

H

L̂Z(m)
H = (β(m))2Z(m)

H . (3.27)
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Thus, when applied to eigenmodes Z(m)
H (z), Eq. (3.25) expresses the modal power Pm

corresponding to the order m,

Pm =
β

2ε0ω

∫
dz

1
ε(z)
|Z(m)

H (z)|2, (3.28)

associated to a guided mode of order m. This coefficient provides an effective way to
measure the efficiency with which a waveguide transports a particular guided mode.
We will keep track of the fundamental mode Z(0)

H which we want to manipulate with a
consistent, two-dimensional, guided transformation optics.

3.2.2 Transverse Magnetic Modes

We now present a traditional approach to finding the guided modes of a planar slab
waveguide [2]. Since the modal equation (3.23) in each region i ∈ {1, 2, 3} of the slab
contains constant coefficients ki

k21 = β
2 − ε1

ω2

c2
, (3.29)

k22 = ε2
ω2

c2
− β2, (3.30)

k23 = β
2 − ε3

ω2

c2
, (3.31)

thewaveequations (3.23) are readily solvedby the followingansatz for themagnetic field ZH(z)

i = 1 ZH(z) = A ek1z + B e−k1z,

i = 2 ZH(z) = C cos(k2z) + D sin(k2z), (3.32)
i = 3 ZH(z) = E ek3z + F e−k3z.

Thewave vector coefficients k1, k2 and k3 crucially determine the orthogonal dependence
of the magnetic field. Fig. 3.2 distinguishes three situations.

In this dissertation, we investigate the manipulation of guided modes. A guided mode is
confined to the slab and propagates in a parallel direction with respect to its interfaces.
Therefore, the coefficients (3.29)-(3.31) are necessarily positive. In combination with
the wave equations of the slab and surrounding layers, these coefficients restrict the
allowed range of the effective in-plane propagation vector β at a fixed frequency. More
specifically, Fig. 3.3 shows the propagation vector β lies in between three light cones,
associated to free propagation in the substrate, cover and slab

ε1
ω
c
< β < ε2

ω
c

and ε3
ω
c
< β < ε2

ω
c
.

Therefore, the effective wavelength λe f f =
2π
β is smaller than that of free waves in the

cover or the substrate layer. We notice the guiding layer only sustains guided mode
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Figure 3.2: Comparison of (a) guided modes, (b) radiation modes and (c) leaky
modes in a one-dimensional waveguide. Independent from detailed index varia-
tionswithin theguide, themodalpower (solid lines) decays exponentially, oscillates
or increases outside the slab. Figure reproduced with permission from Ref. [3].

solutions if it is denser than the surrounding media

ε1, ε3 < ε2. (3.33)

Second, we distinguish radiation modes. These modes radiate energy to infinity. The co-
efficients k1 and k3 are pure imaginary numbers and the propagation vector β is smaller
than that on the cover and substrate light cones. In contrast to guided modes, the nor-
mal wave vectors k1 and k3 take continuous values. The argument of subsection 3.2.1,
which leads to discrete propagation vectors, breaks down because the power operator
(3.25) does not approach zero at infinity.
Finally, the propagation vector within the slab may take complex values with non-
vanishing real and imaginary components. The electromagnetic energy decays expo-
nentially at a characteristic length 1

Im(β) . Therefore, conservation of energy imposes that
the extinction coefficients k1 and k3 are also partially imaginary. These solutions are
called leaky modes despite the fact that they are no true eigenmodes of the slab waveg-
uide. In fact, they are a linear superposition of radiation and guided modes which form
a basis for all confined solutions to the slab waveguide.
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Figure 3.3: Numerical determination of TM fundamental (green), first (orange) and
second order (brown) guided mode dispersion in a symmetric slab waveguide for
simulational parameters of table 3.1. The light cones of the vacuum/cover (blue)
and the light cone of the guiding layer (red) restrict the values of guided mode

propagation constants β.

We now return to finding the guided modes associated to a particular slab waveguide.
To obtain their profiles and their effective propagation vector, we apply tangential
boundary conditions (3.11) and (3.12) to both interfaces z = a and z = −a of the slab
waveguide in Fig. 3.1.

First, we dealwith the problem of determining a unique solution to theHelmholtz equa-
tions. This is not guaranteed by the aforementioned boundary conditions at thematerial
interface. Generally, a scalar field u, subject to external boundary conditions, requires
a Sommerfeld radiation condition [4] at infinity which selects ’outwardly propagating’
solutions. If the wave vector k associated to u is complex, the extended Sommerfeld
radiation condition requires r3e−ikr

[(
ik − 1

r

)
u − ∂ru

]
is bounded. This is particularly im-

portant when deriving ’radiation modes’ of a waveguide, with imaginary coefficients
k1 and k3.

Because we are interested in purely confined guided modes, we circumvent this tech-
nical complication if we impose that

lim
z→±∞

ZH(z) = 0.

Therefore, the A and F are set to zero in Eq. (3.32). The continuity of the magnetic field
strength (3.12) at z = ±a provides the following constraints

Be−k1a = (C cos(k2a) + D sin(k2a)) , (3.34)
Ee−k3a = (C cos(k2a) −D sin(k2a)) , (3.35)
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to the ansatz (3.32). Additionally, the continuity of the tangential electric field

ZEx =
1

ωε0 εi
∂zZHy (3.36)

amounts to

k1Be−k1a =
k2ε1
ε2

(C sin(k2a) −D cos(k2a)) , (3.37)

k3Ee−k3a = −k2ε3
ε2

(C sin(k2a) + D cos(k2a)) . (3.38)

To obtain a nontrivial solution, at least one of the coefficients B, C, D and E is different
from zero. Therefore, the determinant of the four-by-four matrix associated to Eq.
((3.34)-(3.38)) vanishes if

tan(2k2a) =
k2
ε2

(
k1
ε1
+ k3
ε3

)
((

k2
ε2

)2
− k1
ε1

k3
ε3

) . (3.39)

This is a dispersion relation. Together with the Helmholtz equation, it (3.39) completely
characterizes guided modes.

The dispersion relation determines the phase velocity vφ of themode through its relation
to the propagation vector β

vφ(ω) =
ω
β
=

c
ne f f
. (3.40)

In this way, it imposes a global refractive index ne f f which is not related in an analytical
way to the refractive indices of the media in the guiding structure. It is because of this
effective index, which removes the constraints of the guiding problem, that traditional
guided wave optical devices work in much the same way as free three-dimensional
optical devices [2].

Since boundary conditions of a TM wave

Hy continuous ;
1
ε(z)
∂zHy continuous, (3.41)

only differ from those of a TE wave through exchange of ε(z) and μ

Ey continuous ;
1
μ(z)
∂zEy continuous,

the dispersion relation of a TE guided mode is readily obtained from the TM dispersion
relation (3.39)

tan(2k2a) =
k2 (k1 + k3)(
k22 − k1k3

) , (3.42)

where all permittivities εi are replaced by permeabilities μi. In deriving Eq. (3.42), we
assume the slab is nonmagnetic with μi = 1.
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Figure 3.4: TM (orange) and TE (green) dispersion relations of the fundamental
guided mode for simulation parameters of table 3.1.

After specifying some key properties of the waveguide—material parameters εi, the
slab thickness 2a and the frequency ω—the dispersion relation determines which prop-
agation vector β corresponds to a guided mode. In particular, Fig. 3.4 compares the
fundamental TM and TE modes of the waveguide for our preferred simulation param-
eters of Table 3.1.

For a symmetric slab waveguide with

ε2 > ε1 ε2 = ε3,

the right-hand side of the TM dispersion relation (3.39) is larger than that of the TE
dispersion relation 3.42. Therefore, the TM orthogonal slab coefficient k2 deviates more
strongly from the light cone of the guiding layer than that of TE. It follows the TMmode
is less sub-wavelength than the TE mode. Additionally, because both modes do not
have a cut-off frequency ωc, they always coexist in a waveguide. This has important
implicationswhen the slabwaveguide is slightly perturbed, e.g. by thickness variations.
Coupling between TE and TM modes is an important point of attention in subsection
3.3.3 and chapter 5.

3.2.3 A Symmetric Slab Waveguide

In the case of a symmetric slab waveguide, with identical substrate and cover layers,

ε1 = ε3 and k1 = k3,

fields are expected to be purely (anti)-symmetric with respect to the symmetry plane
z = 0. Therefore, one material interface, e.g., z = a, imposes all relevant boundary
conditions.
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Frequency Propagation Constant Permittivity profile

f0 = 200THz β = 4.68 106 1
m Cover layer ε1 = 1

ω̃ = 0.848 β̃ = 0.935 Guiding layer ε2 = 2.25
Substrate layer ε3 = 1

Table 3.1: Parameters of the single-mode slab waveguide with thickness d = 2a =
0.4 μm.

The dispersion relation (3.39) now corresponds to a polynomial of second order with
two non-degenerate solutions,

tan(k2a)2 + tan(k2a)
α21 − α

2
2

α1α2
− 1 = 0. (3.43)

For simplicity, we express the dispersion relation with respect to the following parame-
ters α1 =

k1
ε1
and α2 =

k2
ε2
. The discriminant of this equation is always positive and yields

two independent solutions

tan(k2a) =
ε2
ε1

k1
k2

even TM modes, (3.44)

tan(k2a) = −ε1
ε2

k2
k1

odd TM modes, (3.45)

which are either even or odd and orthogonal to each other.

Using the technical computing software Mathematica, we solved the dispersion relation
up to third-order guided modes (Fig. 3.3) using the parameters of table 3.1.

Apart from the absence of cut-offs for the fundamental mode, the scale-invariance of the
guiding problem is extremely important. It is possible to rewrite the dispersion relation
(3.39) in terms of two dimensionless parameters, a dimensionless frequency ωe f f

ωe f f =
ωa
c
, (3.46)

and an effective propagation vector βe f f of the mode

βe f f = βa. (3.47)

Indeed, if the right hand side of the dispersion relation (3.3) is multiplied and divided
by half the slab thickness a, this constant a may be combined with the k1, k2 and k3
coefficients (3.29)-(3.31) which are expressed as a function of ωe f f and βe f f .

We now have a look at two important consequences of scale-invariance. First, the
guide always sustains guided modes, even when the slab thickness is deeply subwave-
length. This is very interesting for integrated applications,which currently rely on single
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metal-dielectric interfaces [5]. Second, thickness variations perturb the mode profile,
determined by kia for each layer i, because they affect the magnitude of the propagation
vector. Then, field profile mismatches initiate reflection and refraction processes [2].
Our new technique developed in chapter 4 will combine two sources of scattering to
guidedmodes, a variation in the permittivity tensor of the guiding layer and a variation
in thickness, in such a way that they compensate each other. To obtain an intuition for
the effects of thickness variations on guided modes, we establish an analogy between
the time-independent Schrödinger equation and the Helmholtz equation (3.18).

3.2.4 A Quantum Analogy

If a particle with effective mass m∗ and energy E is affected by a one-dimensional
potential V(z), its wave equation is a solution to the time-independent Schrödinger
equation

− �
2

2m∗
∂2zΨ+ [V(z) − E] = 0. (3.48)

This is mathematically equivalent to the Helmholtz equation (3.18) if one identifies

E = − �
2

2m∗
β2,

V(z) = − �
2

2m∗
ω2

c2
ε(z).

The permittivity profile of the slab acts as a confining potential with a geometrical
thickness 2a and a depth

�2

2m∗
ω2

c2
[ε2 − ε1] .

If both equations are written in a dimensionless form through a rescaling of the orthog-
onal coordinate ξ = z

a , an effective potential Ve f f and energy Ee f f appear

Ee f f = −
�2

2m∗
β2e f f ,

Ve f f (z) = −
�2

2m∗
ω2

e f f ε(z). (3.49)

We immediately recognize the dimensionless parameters, βe f f and ωe f f .

To establish a full analogy between the constrained waveguide and a quantumwell, we
also need consistent boundary conditions next to matched wave equations. Luckily, the
boundary conditions of the quantum problem —these impose continuous probability
densities and currents—

Ψ continuous ;
1

m∗
∂zΨ continuous,
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Mode order m Analytical cutoff ω̃(m)
c Numerical cutoff ω̃(m)

c

0 0.000 0.0000
1 1.4050 1.4052
2 2.8099 2.8102

Table 3.2: Comparison of numerically predicted cutoff frequencies obtained from
the dispersion relation (3.52) to numerically obtained cut-offs of finite-element

simulations in Fig. 3.3.

are identical to the boundary conditions of the guiding problem (3.41) if the effective
mass m∗ plays a similar role in quantum mechanics as the permittivity in electromag-
netism. This observation lies at the heart of transformation-optical applications to
effective quantum systems [6].

The previous subsection already identified the thickness as a key parameter of the
dispersion relation. We now return to the effect of a thickness variation on confined
waves. A thickness variation affects the effective potential and energy of the guided
mode (Eq. (3.49)). On the one hand, a decrease in slab thickness also decreases the
depth of the confining potential. The guided modes extend further into the outer
regions and have lower extinction coefficients k1 and k3. On the other hand, as the
thickness increases, the potential well deepens and highly confines the mode to the
guide.

We distinguish three regimes. First, when the thickness is small, guidedmode propaga-
tion is mostly influenced by the permittivities of the cover and the substrate. Intuitively,
this is a result of low confinement when the energy of the mode mostly resides outside
of the slab. Second, the high-thickness regime is dominated by the permittivity of the
slab and the energy is mostly confined within the slab. Third, in the intermediate case,
the guide is necessarily described by its effective index lying in between the slab and
outer layer refractive indices. These observations become very relevant in chapter 5
because the importance of boundary conditions increases as the thickness decreases.

3.2.5 Field profiles and cut-off frequencies

In this subsection, we establish analytical predictions of field profiles and cut-off fre-
quenties to benchmark numerical simulations explained in the following section. As
shown in Fig. 3.3, higher order modes Z(m)

H with propagation vectors β(m) have a cut-off
frequency ω(m)

c when the extinction coefficient

(
k(m)
1

)2
= (β(m))2 − ε1

ω2

c2
,

= [ε2 − ε1]
ω2

c2
− (k(m)

2 )2, (3.50)
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Figure 3.5: Fundamental (lower), first (middle) and second order (upper) field
profiles for a frequency 1.80PHz and slab thickness 2a = 0.4μm.

is zero. The dispersion relations ((3.44)-(3.45)) determine the associated values of the
orthogonal wave-vector k(m)

2 for eigenmodes of order m

k2a = m
π
2

m ∈N. (3.51)

If Eqs. (3.50) and (3.51) are combined, the locations of the cut-off are obtained. Table 3.2
compares the numerically obtained cut-off effective frequenciesω(m)

c, eff to those predicted
by (3.52). It turns out they are determined by the value of the effective potential (3.49)

V(m)
c = a2(k(m)

2 )2,

= m2π
2

4
, (3.52)

and the associated energy Ee f f is equal to that of a free wave propagating through the
cover and the substrate.

Intuitively, cut-offs occur when the particle-analogue of the guided mode experiences
no potential depth. Therefore, the V-parameter

V = ωe f f
√
ε2 − ε1, (3.53)

is related to the threshold potential for which all higher-order modes are not bound. It
estimates how many modes a waveguide supports. Next to the number of supported
modes, it is also an important parameter to estimate bending losses in optical fibers [2].
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The field profiles are found when substituting the numerical solutions of ω and β into
the ansatz (3.32)

Z(m)
H =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cos(k2a + mπ2 ) e−k1(z−a) z ≥ a,

cos(k2z + mπ2 ) |z| ≤ a,
(−1)m cos(k2a + mπ2 ) ek1(z+a) z ≤ −a

, (3.54)

using Eq. (3.29) and Eq. (3.30) to determine k1 and k2. Fig. 3.5 shows three modes
at 1.80PHz corresponding to an effective potential Ve f f = 71.06. Since the effective
potential of sixth-order modes V(6)

c e f f = 88 is larger than the V-parameter, all orders
larger than m = 5 are not sustained for this frequency by this particular waveguide.

3.3

Numerical Verification of the Dispersion Relation

We now compare our analytical predictions to numerically simulated guided modes.
In this way we confirm the accuracy of our numerical solution of the dispersion rela-
tion before we continue to the actual derivation and confirmation of our new guided
transformation-optical technique.

The commercial software Comsol Multiphysics provides an efficient finite-element soft-
ware to solve arbitrary partial differential equations. In particular, Comsol is equipped
with a dedicated radio-frequency (RF) module capable of solving Helmholtz equa-
tions in the frequency domain. Details about the solution method are provided in
Appendix C.

Fig. 3.6 shows the two-dimensional simulation domain, which represents the cross-
section of the slab waveguide geometry corresponding to the parameters of Table 3.1.
The cross-section comprises the propagation direction and the direction normal to the
slab. Thus, the TM-magnetic field lies in the direction pointing out of the page while
nonzero electric field components are parallel to the propagation direction and orthog-
onal to the slab.

The simulation domain is highly reduced by two symmetries of the guiding problem
C.2. First, infinitely extended plane waves preserve translation symmetry in the y-
direction. This simplification is not applicable to diffracting waves (section 3.4) and
does not include inhomogeneous media which depend on the y-coordinate (chapter 5).
Second, the waveguide material parameters and fundamental modes are symmetric
with respect to the xy-plane. Using appropriate boundary conditions which respect this
symmetry, e.g,. Perfect Electric Conductor boundaries, the upper half of the simulation
domain completely determines the guidedmode solutions. Thus, the domain is half the
size of the original domain. As a consequence, all our analytical and numerical results
are expressed in terms of half the thickness of the waveguide d = 2a.
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Figure 3.6: Slab waveguide simulation geometry consisting of a field-excitation at
the input port (left) and a Perfectly Matched Layer (PML) to absorb the field at the
right. We see the complete cover layer (dark and light gray) and the guiding layer
(black) with differential mesh sizes, dense in the waveguide and coarser outside

the waveguide.

To verify the accuracy of the propagation vector β as predicted by the dispersion relation,
we excite magnetic fields profiles (3.54) at frequencies f0 = ω

2π of 200THz and 1.80PHz.
The former only sustains one fundamental TMmodewhile the latter sustainsmore than
three guided modes as illustrated in Fig. 3.5.

In subsection 3.3.3, we explain how inaccurate solutions of the dispersion relation split
the incident profile decomposes into several other TM, TE or radiation modes. In other
words, the incident profile is sensitive to mode coupling. Therefore, the numerical results
are analyzed in three ways.

First, we apply a PEC condition to the upper boundary of the domain such that any
radiationmode, which approaches this boundary unattenuated, is reflected. The result-
ing standing wave provides evidence for radiation modes and numerical inaccuracies.
A second way to verify mode conservation, investigates reflections occurring during
propagation. This results in intensity modulations which are detected by the Volt-
age Standing Wave Ratio (VSWR) associated to the magnetic field. Thus, the VSWR
provides an estimation of the reflection induced by material inhomogeneities, mesh
structures and boundary conditions (subsection 3.3.2). Third, we introduce the concept
of modal decomposition as a way to measure how the total power P is redistributed
among different guided modes with modal power Pm (3.28) during propagation. Per-
fect guided mode propagation preserves the modal power. Additionally, we verify the
in-plane electric field is always parallel to the direction of propagation as is required
for TM-modes. These TE-components arise from reflections when TM and TE modes
couple (subsection 3.3.3).

3.3.1 Modal Field Profiles

Fig. 3.7 compares the numerically obtained electromagnetic fields to the theoretical
predictions using the propagation vector and the frequency from the dispersion relation.
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Figure 3.7: TM-fields of the fundamental mode 200THz below cut-off as a function
of the orthogonal coordinate z for finite-element simulations (blue) and analytical

predictions (red).

They are in excellent agreement. The exponential tails do not decouple into radiative
modes, even at the logarithmic scale. Additionally, the fields Ey, Hx and Hz are zero, as
expected for a TM polarization.

The higher-order modal solutions at 1.80PHz in Fig. 3.8 also agree with the analyti-
cal model. Because both odd and even magnetic fields are considered, the simulation
domain comprises the complete transversal extent of the slab. The mode number is
readily observed from the number of nodes in the guiding layer and confinement is
much stronger than that of the modes in Fig. 3.7 at a lower frequency. At high fre-
quencies, the internal reflections from the edges of the guiding layer induce additional
interference effects, as is observed in the xz-plane images of Fig. 3.8. Enhanced con-
finement with increasing effective frequency ω̃, i. e. increasing the frequency or slab
thickness, is indeed a consequence of the dispersion curve moving away from the light
cone of the cover/substrate (Fig. 3.3). It also implies higher-order modes are less con-
fined than modes of lower order. The simulation in Fig. 3.8 also shows higher-order
modes have increased effective wavelengths as the absorptive Perfectly Matched Layer
(PML) on the right of the xz-plane attenuates the wave at larger distances.

3.3.2 Voltage Standing Wave Ratio (VSWR)

The Voltage Standing Wave Ratio (VSWR) is an important tool to estimate whether
our transformation-optical waveguides induce reflections. We use two-dimensional
simulations to calibrate guided mode propagation in an unperturbed guide.
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Figure 3.8: Finite-element simulations of magnetic field profiles in the xz-plane
comprising the propagation direction and the normal to the slab at 1.80PHz. The
number of nodes identifies fundamental mode (m = 0 on the left), the first-order

mode (m = 1 on the right) and the second-order mode (m = 2 in the middle).

Suppose the incident magnetic field

Hin = Hin(x, z) ey,

is partially reflected due to material inhomogeneities, interfaces or mesh irregularities.
We assume the reflected field

Hr = Hr(x, z) ey,

= r eiφ(x)Hin(x, z) ey,

preserves the TM polarization and is proportional to the incoming field. The reflection
introduces a phase difference φ(x) and a reflection coefficient r = |Hr|

|Hin| . These approxi-
mations are valid for a single-mode guide if the coupling to the fundamental TE mode
is weak.

Because of reflections, the magnetic field amplitude is modulated along the guide

|Hin(x, z) + Hr(x, z)| = |Hin|
√
1 + r2 + 2 r cos(φ(x)). (3.55)

As is generally known [7], the VSWR

VSWR =
Hmax

Hmin
=

1 + r
1 − r

, (3.56)

allows estimating the reflected power with respect to incoming power

Pr

Pin
=

(VSWR − 1
VSWR + 1

)2
.
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Figure 3.9: The VSWR for two different meshes, a quadrilateral (left) and a tetra-
hedral (right) mesh corresponding to reflection coefficients in Table 3.3. The ampli-
tudes are strongly suppressed in the case of a tetrahedral mesh as shown by the

inset.

Combining Eq. 3.55 and Eq.3.56 leads to the global reflection coefficient r of the pertur-
bations

r =
Hmax −Hmin

Hmax + Hmin
. (3.57)

An important contribution to reflections occurs due to limited resolution of the numer-
ical simulations. Fig. 3.9 shows the norm of the total magnetic field—which allows
determining the VSWR using Eq. 3.56—obtained by identical simulation domains with
two different meshes, a quadrilateral and a tetrahedral mesh. Meshes consist of finite
surface or volume elements covering the entire simulation domain. They are crucial to
the finite-element technique which reduces continuous Maxwell equations to discrete
equations through integration over each infinitesimal mesh element (Appendix C). Re-
flections occur either through coarse mesh subdivisions, which distort the VSWR with
spiky jumps, or reflections from the PML in Fig. 3.6. The estimated reflections are small
and decreasewith the size of the coarsestmesh element (Table 3.3). Still, it is not possible
to keep on reducing the mesh distortion because the solution time and required mem-
ory capacity increase exponentially for large three-dimensional simulations discussed
in chapter 5.

For two-dimensional simulations, the computational concernsmentioned above are less
stringent. It is possible to attain extremely fine mesh resolutions for which the VSWR
loses its spikes and obtains a smooth sinusoidal behavior, as predicted by Eq. (3.55).
For extremely fine meshes we only observe reflections due to the PML layer, which is
0.1%. Also, Fig. 3.9 provides a check on the efficiency of the PML absorbing layer, which
attenuates the fields over four orders of magnitude in both simulations. Therefore, the
parameters of the PML layers lead to sufficient performance to become part of our
three-dimensional simulations.
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Relative mesh Tetrahedral Quadrilateral
resolution mesh mesh

Coarser (2X) 0.33% 2.4% (P)
Medium (1X) 0.20% (P) 1.6%
Finer (0.5X) 0.13% 0.7%

Table 3.3: Reflection coefficients r of unperturbed waveguides depending on the
relativemesh resolutiondefined for eachmeshing algorithm separately. Reflections

corresponding to Fig. 3.9 are indicated by (P).

3.3.3 Modal Decomposition and Coupling Efficiency

We now take another step to deepen our understanding of guided wave propagation
along a slab waveguide. As mentioned in the introduction, guided modes

H(m)(x, z) = Z(m)
H (z) eiβ

(m)x ey,

provide an orthogonal basis to any initial transverse magnetic profile H(x = 0, z) which
is expanded using coefficients H̃m. To be completely rigorous, one should also include
the radiation modes with a continuous range of orthogonal propagation vectors kz

Hy in(x = 0, z) =
N∑

m=1

H̃m Z(m)
H (z) +

1
2π

∫ ∞

−∞
H̃(x = 0, kz) eikzz. (3.58)

If the initial profile has a TE polarization, its electric field follows an analogous expan-
sion

Ey in(x = 0, z) =
N∑

m=1

Ẽm Z(m)
E (z) +

1
2π

∫ ∞

−∞
Ẽ(x = 0, kz) eikzz. (3.59)

Tomanipulate guidedmode propagation, wewillmodify the permittivity and thickness
of the guiding layer in an inhomogeneous way. Therefore, the expansion coefficients H̃m
and Ẽm will be perturbed during propagation and modes may exchange energy, even if
they have opposite polarizations. The aim of this dissertation is, of course, to choose
the appropriate variations which prohibit this mode coupling.

We generalize the expansions (3.58) and (3.59) to account for the evolution of an initial
profile with arbitrary polarization and expand it with respect to TM and TE modes. It
turns out the power flow still provides a means of constructing a generalized norm [8]

P =
1
2
Re

[∫
dy dz (E ×H∗) · β

]
, (3.60)

=
1
4

∫
dy dz [(E ×H∗) + (E∗ ×H)] · β.
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The Poynting vector is integrated over both transversal coordinates y and z, although
the y-coordinate only becomes important when including diffraction (section 3.4). In an
unperturbed guide energy conservation guarantees everymode is mutually orthogonal
to all othermodes irrespective of the TE or TM signature [2]. They do not couple and the
modal power is preserved. Additionally, only transversal field components contribute
to the power flow because the longitudinal field components (Eq. (3.61)-(3.62)) are
imaginary with respect to the other components. Thus, an arbitrarily polarized field
with transversal components

Et =
∑

m
αm E

(m)
t (x = 0, z),

Ht =
∑

m
αm H

(m)
t (x = 0, z),

is expanded with respect to transversal basis fields(
E
(m)
t ,H

(m)
t

)
,

corresponding to TMor TEmodes. If the guidedwave propagates along the x-direction,
the transversal TM-fields become

H
(m)
t (x, z) = Z(m)

H (z) eiβ(m)x ey ; E
(m)
t (x, z) =

−β
ε0ωε(z)

Hy(x, z) ez, (3.61)

while the transversal TE-fields are

H
(m)
t (x, z) =

β

μ0ω
Ey(x, z) ez ; E

(m)
t (x, z) = Z(m)

E (z) eiβ(m)x ey. (3.62)

We use a polarization-independent notation for the expansion coefficients αm as they
either belong to TMexpansionmodes, reducing to H̃m, or TE expansionmodes, reducing
to Ẽm.

Using the power (3.60) as a norm to the unpolarized initial profile, the expansion
coefficients are extracted

αm =

∫
dy dz

[(
Et ×H∗(m)

t

)
+

(
E∗(m)

t ×Ht
)]
· β∫

dy dz
[(

E∗(m)
t ×H∗(m)

t

)
+

(
E∗(m)

t ×H(m)t
)]
· β
. (3.63)

In the end, these coefficients determine how much a mode m is present in the guided
wave at a particular waveguide slice. We will use Eq. (3.63) to estimate the efficiency
with which the initial TM fundamental mode is maintained by our tranformation-
optical waveguide bend in chapter 5. Here, we validate Eq. (3.63) for the case of the
unperturbed waveguide which supports a fundamental TM and TE mode. This is a
final check of the accuracy of our two-dimensional simulations.
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If the initial profile propagates along the x-axis, the fundamental TM and TE mode
coefficients

H0 =
−1
2

∫
dy dz

[
Hy +

ε0ωε(z)
β Ez

]
H∗y

(0)(z)∫
dy dz |H∗y(0)(z)|2

, (3.64)

E0 =
1
2

∫
dy dz

[
Ey +

μ0ω
β Hz

]
E∗y

(0)(z)∫
dy dz|E∗y(0)(z)|2

,

rely respectively on the profiles ZH(z) and ZE(z) in Eq. (3.54).The contribution η of the
fundamental TM or TE mode is respectively

ηTM→TM = |H0|2 ; ηTM→TE = |E0|2. (3.65)

Since we excite a TM mode at the entrance of the slab, ηTM→TM represents the propa-
gation efficiency while ηTM→TE is the conversion efficiency. To obtain normalization-
independent results, we define a coupling efficiency ηc as the ratio

ηc
TM→TM =

ηL
TM→TM

η0TM→TM

; ηc
TE→TE =

ηL
TE→TE

η0TM→TM

, (3.66)

of the propagation efficiency after four effective wavelengths L = 4λe f f by the input
efficiency close to the excitation plane L = 0

η
output
TM→TM = 99.5% η

output
TM→TE = 0.

Except for a numerical inconsistency of 0.5%, which may be related to numerical errors
e.g., using a quadrilateral mesh, these coupling efficiencies confirm our simulations
solved for pure TM modes.

To conclude this section, wemention howguidedmodes respond to small perturbations
in a waveguide with small refractive index contrasts. In such a perturbed waveguide,
it is still possible to define guided modes locally with slowly varying amplitudes. The
corresponding coefficients αm satisfy the following coupled mode equations [2]

dαm

dz
= iβ(m)αm +

∑
m�n

αn
〈H(n)

y ∂zH(m)
y 〉

〈H(m)
y H(m)

y 〉
. (3.67)

Therefore, mode coupling is highly reduced if the waveguide preserves its normal sym-
metry. Then, the partial derivative ∂z with odd parity prevents coupling betweenmodes
of different parities. Second, the fundamental TMmode of a single-mode waveguide is
quite robust as it only couples to radiation modes or the fundamental TE mode. In the
remainder of this dissertation, we limit ourselves to single mode waveguides and pay
attention to maintain the orthogonal symmetry of the guide, with symmetric thickness
variations and permittivity profiles which only depend on in-plane coordinates.
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Figure 3.10: Numerically obtained diffracting guided waves as a consequence of
truncation in the excitation plane.

3.4

Diffractive Guided Modes

In real-life applications, the inserted confined profile

Hy(x, y, z) = ZH(z) Φ(x, y), (3.68)

consists of an orthogonal fundamental mode contribution ZH(z) and an in-plane xy
dependence Φ(x, y) due to truncation or diffraction in the y-direction orthogonal to the
propagation direction x. Fig. 3.10 illustrates these effects for a truncated plane wave
of width w after a propagation length L. The effects of diffraction are estimated by
the Fraunhofer diffraction angle Θ and the Fresnel factor NF–which distinguishes near
fields NF >> 1 from far fields NF << 1

NF =
β

2
w2

L
,

Θ =
π

wβ
.

This section has two objectives. First, we extend the plane wave expansion technique (Eq.
(3.8)-(3.9)) to diffracting guided waves such that we are able to predict the VSWR of a
diffracting beam. Due to energy spread, it is expected theVSWRdeviates fundamentally
from the planar dependence of eigenmodes which we obtained inFig. 3.9. Second, we
corroborate our resultswithfinite-element simulationsof two initial profiles: a truncated
plane wave of beam width w (Fig. 3.10)

ΦP(y) = Π
( y
w

)
, (3.69)
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Figure 3.11: Geometrical parameters of a fundamental Gaussian profile: The cur-
vature R(x) and waist w(x). Figure reproduced with permission from Ref. [9].

and a cylindrical Gauss-Hermite profilewhose parameters—beamwaistw(x), curvature
R(x) and Rayleigh range xR—are explained by Fig. 3.11

ΦG(x, y) = Y0

√
w(0)
w(x)

e−
( y

w(x)

)2
e
iβx + i βy2

2R(x) − i 12 arctan
(

x
xR

)
(3.70)

with w(x) = w(0)

√
1 +

( x
xR

)2
,

R(x) = x
(
1 +

( x
xR

)2)
.

Diffraction breaks translational symmetry in the y-direction. Therefore, the simulation
domain is affected in three ways. First, the simulation domain is inherently three-
dimensional. This increases computational demands. Second, the guide is completely
surrounded by absorbing PML layers since waves now propagate both in the x- and the
y-direction. Third, arbitrary initial profiles cannot rely on built-in excitation techniques
provided by Comsol. We developed an excitation technique, relying on surface currents,
although these currents pose additional constraints on the PML design (appendix C). In
total, these simulations require intense computational power. As a result, compromises
are made between increased resolution—number of mesh elements—and geometri-
cal dimensions of the simulation domain—sufficiently long to observe diffraction and
sufficiently wide to excite broad initial field profiles.

3.4.1 Plane Wave Expansion Technique

The study of gaussian beams, e.g. Gaussian-Hermite, Gaussian-Laguerre and Bessel
beams is currently leading to fascinating applications in laser beam optics, optical
tweezing, trapping of metallic and high refractive index particles, and diffractionless
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3.4. DIFFRACTIVE GUIDED MODES

Figure 3.12: Frequency-domain finite-element simulations showing the in-plane
magnetic field strength for a Gaussian-Hermite excitation of waist w(0) = 7.5a =
3.75μm (left) and a truncated planewavewith beamwidth w = 15a = 7.5μm (right).
Both profiles are initially compressed and only spread after a limited distance.

propagation. All these beam profiles may be derived from a fundamental gaussian
beam if appropriate differentiation operators act repeatedly on it [10]. Similarly to
Eq. 3.9, we describe the in-plane profile Φ(x, y) of an arbitrary guided wave as follows

Φ(x, y) =
1
2π

∫
dky A(ky) ei

√
β2−k2y (x−l)+iky y

. (3.71)

Finite-element simulations in Fig. 3.12 illustrate this in-plane dependence of gaussian
and truncatedplanewavemagnetic field strengthsHy. Wedon’t consider the orthogonal
dependence ZH(z) as it is fixed by boundary conditions and the in-plane propagation
constant β. The location of the excitation surface x = l provides an additional parameter
which is optimized to the case of plane or gaussian waves respectively.

The angular spectrum A(ky) depends on the orthogonal in-plane wave vector ky and is
equal to the Fourier transform of the initial profile

A(l, ky) =
∫

dy Φ(l, y) e−iky y. (3.72)

Then, Eq. 3.71 readily provides the magnetic norm at the center of the beam (y = 0)

|Φ(x, 0)| =

√∥∥∥∥∥∥ 1
2π

∫
dky A(ky) ei

√
β2−k2y (x−l)

∥∥∥∥∥∥
2

, (3.73)

which leads to the VSWR.

3.4.2 Truncated Planar Waves

Fig. 3.10 shows how our numerically predicted plane guided waves propagate after
excitation at l = 0. The angular spectrum (Eq. 3.72) is a simple Fourier transform of a
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3.4. DIFFRACTIVE GUIDED MODES

Figure 3.13: Comparison of the magnetic field strength norm determined by a
tetrahedrally-meshed finite-element simulation and the numerical plane wave ex-
pansion method (left) and the corresponding plane diffraction pattern in the xy-
plane (right). The beamwidth 15a = 3μm is expressed relative to the slab thickness

2a.

Heaviside profile (Eq. 3.69)

AP(ky) = w
sin(

kyw
2 )

kyw
2

, (3.74)

which is proportional to the familiar Sinc-function Sinc(x) = sin(x)
x .

Fig. 3.13 compares the numerical integral (Eq. (3.71)) ofMathematica, to thefinite-element
results for a tetrahedral mesh. Surprisingly, the dependence of the norm in Fig. 3.13
indicates a truncated plane wave initially compresses due to diffraction.The location of
the field excitation plane at l = −13a corresponds to a ’w’-shape of the magnetic norm
at the center y = 0. After reaching a maximum at the plane of focus x = −5a, the energy
spreads and the magnetic norm decreases again as expected. Therefore, a truncated
plane wave acts as if it has a radius of curvature and a waist similar to a gaussian
beam (3.70). This complex parameter imposes the same curved wave front as in the
real representation. Analogously, the curvature of a plane wave is caused by imaginary

contributions of
√
β2 − k2y in the plane wave expansion (3.71). This explains why the

truncated plane wave is not completely focused.

For calibration purposes, we investigate the magnetic norm of a realistic quadrilateral
mesh with reduced resolution. As seen in Fig. 3.14, the magnetic field strength norm
clearly suffers from reflections despite optimization of the simulation domain was with
thick PML layers and increased absorption strength. The oscillations have two scales,
a fast scale corresponding to the limited mesh resolution discussed in subsection 3.3.2
and a slow scale. Slow scale variations result from the absorbing layers at the sides of
the simulation domain, as these were not present in the two-dimensional simulations.
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3.4. DIFFRACTIVE GUIDED MODES

Figure 3.14: Comparison of the magnetic field strength norm determined by a
quadrilaterally-meshed finite-element simulation and the numerical plane wave
expansionmethod (left) and oscillations to the right of the excitation surface due to
reflections after subtraction of the background (right). The beam width 15a = 3μm

is expressed relative to the slab thickness 2a.

Because the plane wave components enter at an oblique angle, which increases with
the normal wave vector ky, the built-in PML absorbing layers of Comsol cannot reduce
reflections completely.

3.4.3 Gauss-Hermite Cylindrical Waves

The fundamental Gaussian beam Eq.(3.70) is a solution to the paraxial Helmholtz equa-
tion [9] [

2iβ∂x + ∂
2
y

]
ΦG(x, y) = 0,

which minimizes beam waist divergence in the spatial domain and the momentum
spread due to diffraction in the reciprocal domain [10]. Again, we derive the angular
spectrum using Eq. (3.72)

AG(l, ky) =
√
π

b(l)
e−

k2y
4b(l) , (3.75)

b(l) =

√
1

w(l)2 + i β2R(l)

,

which is a gaussian profile with reciprocal beam waist b(x). Since we want to limit
diffraction throughout the simulation domain, we optimize the location of the excitation
plane so that the coordinate of the zero-curvature plane coincides with the center of
the propagation domain. Fig. 3.12 shows the point of zero curvature and minimal
waist indeed occurs at a half the propagation distance L from the excitation surface,
corresponding to the coordinate x = 5a.
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3.5. CONCLUSION

Figure 3.15: Comparison of the magnetic field strength norm determined by a
finite-element simulation and the numerical plane wave expansion method. The

beam waist is 7.5a = 1.5μm is expressed relative to the slab thickness 2a.

Fig. 3.15 compares the result of the plane wave expansion to finite-element calculations
with a quadrilateral mesh. As expected by the choice of the initially excited profile,
diffraction initially focuses the wave and only spreads the energy after crossing a point
of zero curvature at x = 5a.

3.5

Conclusion

In this chapter, we discussed general concepts related to the guided waves in slab
waveguides. These concepts, e.g., beam diffraction, effective phase velocity and the
voltage standing wave ratio, will play a crucial role to interpret the results in the sub-
sequent chapters, where we introduce a two-dimensional extension of transformation
optics to develop slab waveguides that transform the propagation of guided waves.
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Chapter 4

Guided Transformation Optics

In this chapter, we develop a new kind of transformation optics, guided transfor-
mation optics, which modifies the wave propagation of fundamental TM modes

along a slab waveguide. Since the waveguide problem is, on the one hand, a prop-
agation problem described by an in-plane Helmholtz equation and, on the other
hand, an eigenvalue problem determined by boundary conditions in the orthogonal
direction, our newly developed approach deviates from traditional transformation
optics in two ways. First, we use Helmholtz equations instead of Maxwell equa-
tions to establish equivalence relations. These relations map Helmholtz equations
of physical space to Helmholtz equations of the device with electromagnetic mate-
rial parameters εi j and μi j. Second, a traditional implementation of transformation
optics modifies the cover and substrate layers of the waveguide. We provide a two-
dimensional implementation which only modifies the material parameters inside the
guiding layer. In this way, guided transformation optics does succeed in manipulat-
ing guided modes sustained by realistic, symmetric wave-guides with uniform cover
and substrate layers.

4.1

Introduction

The formalismofguided transformationopticsprovides analternative to three-dimensional
transformation optics which allows for realistic manipulation of guided mode propa-
gation along a slab waveguide. This introduction provides an overview of our newly
developed analytical methodwhich is further analyzed in the remainder of this chapter.
Additionally, we provide an intuitive explanation of why a homogeneous waveguide
bend is prone to decoupling and bending loss.

4.1.1 Guided Transformation Optics: an Overview

Fig. 4.1 illustrates two distinct stages when applying our new technique. As a first step,
we use differential-geometric techniques to determine the electromagnetic equivalence
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4.1. INTRODUCTION

parameters of the waveguide. An incident fundamental TM mode along the y-direction

H = Z(0)
H (z) ei β̃ y ex, (4.1)

should preserve its fundamental characteristics, e.g. mode order and dispersion rela-
tion, when propagating in the transformation-optical device. Therefore, we ensure that
the electromagnetic space contains a waveguide with identical properties, i.e. thickness
2ã, permittivity profile ε̃(z) and frequency ω, as the initial waveguide which guides
the modes towards the device. Together with the fundamental mode dispersion rela-
tion (3.44), these wave-guide properties determine the initial propagation vector β̃ as a
function of frequency ω.

As soon as the initial guided modes enter the device, they are manipulated by a finite-
embedded, two-dimensional coordinate transformation⎧⎪⎪⎪⎨⎪⎪⎪⎩

x′ = X(x, y),
y′ = Y(x, y),
z′ = z,

(4.2)

which distinguishes an in-plane transformation
(
X(x, y),Y(x, y)

)
from an orthogonal

trivial transformation z. This coordinate transformation transforms the fundamental
initial guided mode in electromagnetic space to a guided mode in physical space with
a Riemannian geometry.

To obtain novel electromagnetic equivalence relations, we use a different approach than
that of traditional transformation optics. Instead of identifying Maxwell equations of
the waveguide, we identify the in-plane Helmholtz wave equations of physical space

ΔxyΦH(x, y) = −
(
β̃
)2

ΦH(x, y), (4.3)

to those of the device. Because the laplacians Δ(x, y) in physical space are determined
by the coordinate tranformation and the Riemannian metric, these also determine our
equivalence relations.

Because of the strict distinction between in-plane and out-of-plane transformations, we
do not consider any orthogonal dependence on z to derive the Helmholtz equivalence
relations. At this stage, a full implementation of material parameters in each region of
the waveguide, i.e. the cover, the guiding layer and the substrate, is required to preserve
the mode profile after transformation (upper right Fig. 4.1). We refer to this situation as
’full’ transformation optics, as opposed to the partial implementation considered in the
next stage of the design.

In the second step, we limit the material parameters to the guiding layer only. This partial
implementation of transformation optics introduces boundary conditions to the prob-
lem. The thickness of the slab waveguide becomes another important transformation-
optical parameter as it tunes boundary conditions and the dispersion relation of the
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4.1. INTRODUCTION

Figure 4.1: Two distinct stages in guided transformation-optical design. The elec-
tromagnetic space (upper left) consists of an unperturbed waveguide identical to
that leading towards our device. First, this waveguide is transformed by a con-
formal coordinate transformation (upper right). Traditional ’full’ transformation
optics imposes the transformation with modified material parameters in both the
cover, guiding and substrate layer (dark blue shades). Second, we use a thickness
variation (lower) which imposes an identical dispersion relation as ’full’ trans-
formation optics while being compatible with vacuum cover and substrate layers

(light blue shades).
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guided device

tan(k2a) =
ε2
ε1

k1
k2
, (4.4)

k1 =

√
β(x, y)2 − ε1

ω2

c2
,

k2 =

√
ε2
ω2

c2
− β(x, y)2.

in such a way that the effective index of the guided mode (3.40)

ne f f =
cβ
ω
,

is identical to that of a full transformation-optical implementation. Only then, it is
possible to preserve the desired propagation properties which we know from three-
dimensional transformation optics.

The separability of the two-dimensional coordinate transformation (4.2) has important
consequences. Thanks to the transformation rule of the metric (B.12), the coordinate
transformation leads to an in-plane inducedmetric γi j and an out-of-plane contribution
gzz = 1 with i, j ∈ {

x, y
}

gij =

(
γi j 0
0 1

)
. (4.5)

It also transfers separable fields in electromagnetic space

H(x′, y′, z′) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
Φ(x′, y′) ZH(z′)

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (4.6)

to separable solutions in physical space thanks to the covector transformation rule (B.7)

H(x, y, z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
[
∂xX(x, y) Φ(x, y)

]
ZH(z)[

∂yX(x, y) Φ(x, y)
]

ZH(z)
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (4.7)

This is particularly true for the incident plane wave (4.1) on the guided transformation-
optical device.

To increase compatibility of the coordinate transformation with the slab waveguide, we
exclusively use conformal transformations (subsection 2.2.2) which constrain the Jacobian
Λi′

i = ∂xi′

∂xi in the following way

∂xX(x, y) = ∂yY(x, y), (4.8)
∂xY(x, y) = −∂xX(x, y). (4.9)
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These Cauchy-Riemann relations impose an isotropic, but inhomogeneous, induced
metric γi j to the plane of the slab (B.12)

gij =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
γ(x, y) 0 0

0 γ(x, y) 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (4.10)

The equivalence relations (2.19) yield uniaxial material parameters, which contain the
profile ε̃(z) of the waveguide in electromagnetic space (Fig. 4.1)

εi j =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
ε̃(z) 0 0
0 ε̃(z) 0
0 0 γ(x, y)ε̃(z)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ μi j =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 0 γ(x, y)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (4.11)

The advantages of conformal transformations are twofold. First, the coordinate transfor-
mation allows for nonmagneticmaterial parameterswhich otherwise require challenging
metamaterial to implement (section 2.4). Because the normal magnetic field strength Hz
vanishes (Eq.4.7), the magnetic contribution to the Maxwell equations (A.21)

Bi = μi jHj,

= μixHx + μ
iyHy,

does not contain the nontrivial uniaxial magnetic component μzz (Eq. (4.11)).

Second, another subtle advantage becomes clear when considering the boundary con-
ditions of the transformation-optical medium

Hx continuous ; Ex ∝
1
εxx(z)

∂zHy continuous,

Hy continuous ; Ey ∝
1
εyy(z)

∂zHy continuous.

Thanks to the in-plane symmetry of the relative permittivity εi j (Eq. (4.11))

εxx = ε̃(z) = εyy,

boundary conditions on the untransformed slab interfaces z = ±a are identical to those
of the fundamental waveguide in electromagnetic space with permittivity profile ε̃(z)
(Eq. (3.7)). Apparently, the conformal transformation and the boundary conditions are
independent degrees of freedom which are tuned by our two-step approach to guided
transformation optics. In particular, this separability leads to distinct in-plane (3.22)
and modal (3.23) wave equations in physical space.

The extraordinary component of the permittivity εzz = γ(x, y) ε̃(z) is exclusively respon-
sible for modifying propagation. As a part of the in-plane Helmholtz equation, this
permittivity component imposes an effective index of refraction to guided modes. In
addition, fundamental TE modes are not aware of the normal permittivity component
εzz as their electric field lies completely within the plane of the waveguide. Only TM
guided modes are amendable to guided transformation optics. Because of these observa-
tions, we conclude that the conformal coordinate transformation is compatible with the
geometry of the slab waveguide.
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Figure 4.2: Simplification of wave propagation in a homogeneous beam bend. A
conformal logarithmicmap transforms the homogeneous bend to a straightwaveg-
uidewith inhomogeneous electromagneticmaterial parameters to investigate bend
properties with a simplified geometry. Figure reproduced with permission from

Ref. [1].

4.1.2 Wave Equations and Transformation Optics

Before we derive the analytical motivations for the claims made so far, we put the ma-
nipulation of Helmholtz and other wave-equations into context. Even before transfor-
mation optics was conceived, conformal transformations were already used to simplify
physical problems in several scientific fields such as aerodynamics (calculating lift of
an airplane wings) fluid dynamics (manipulating the Navier-Stokes equation) acoustics
(studying vibrating membranes with inhomogeneous boundaries) and electrostatics
(reducing a capacitor with an inhomogeneous dielectric to a homogeneous capacitor of
different width) [1].

We illustrate the power of conformal transformations by considering a homogeneous
waveguide (Fig. 4.2) which is bent over an arbitrary angle. Because thewaveguide bend
breaks translation symmetry, itswave equations aredifficult to solve. Ifwe transform the
coordinates x and ywhichdescribe thehomogeneousbendwith a conformal exponential
map {

x = cos(v) eu,
y = sin(v) eu , (4.12)

the geometry simplifies to a straight waveguide although the homogeneous medium is
replaced by an inhomogeneous medium. Traditional three-dimensional transformation
optics is now capable of calculating these new parameters and demonstrates why a
homogeneous waveguide bend does not perform well for guided modes.
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Figure 4.3: The effective index ne f f of a mode sustained by a homogeneous beam
bend (left) compared to the effective index n′e f f of a straight beam bend with inho-
mogeneous refractive index profile n′ (right). Figure reproduced with permission

from Ref. [2]

According to the metric transformation rule (B.12), the geometry in electromagnetic
space is equal to

gi′ j′ = Λi
i′Λ

j
j′δi j, (4.13)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
e2u 0 0
0 e2u 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (4.14)

and electromagnetic parameters follow from the equivalence relations (2.13) and (2.14)

εi j =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
ε̃ 0 0
0 ε̃ 0
0 0 e2uε̃

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (4.15)

The modes propagating through a bent waveguide with refractive index n′ correspond
to the modes propagating through a straight waveguide of refractive index n

n′ = neu, (4.16)
≈ n(1 + u), (4.17)

where we assume the orthogonal coordinate u, which measures the separation of the
interfaces, is small [2].

If we now apply the quantumwell model which was established in subsection 3.2.4, we
notice the depth of the potential well (3.49) is directly affected by the inhomogeneous
refractive index

Ve f f (u) ∝ ω2
e f f ε̃ 2u, (4.18)

such that light is more confined at the outer edge of the guide than on the inner edge.

The quantum model allows drawing two conclusions regarding the bending loss of a
homogeneous waveguide. First, part of the electromagnetic energy at the inner bound-
ary is converted to radiation modes due to weak confinement. At the inner boundary
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the effective wavelength is close to that of vacuum so that tunneling is facilitated. Sec-
ond, the V parameter (3.53) and cut-off effective potentials V(m) (Eq. (3.52)) increase with
refractive index. Therefore, higher-order modes may be stripped from the guide during
bending as mentioned in Ref. [3].

The aforementioned examples use reverse engineering to understand a fixed physical
problem of physical space in terms of a simplified description in electromagnetic
space. Transformation optics contributes to these developments in exactly the op-
posite way. Transformation optics makes use of new degrees of freedom provided by
nano-structuredmedia (subsection 2.4.1) to design previously unknown optical devices
starting from simple electromagnetic spaces. Therefore, transformation optics changes
the old question ’How can we understand a device with complicated structure with
coordinate transformations’ to ’How can we find a coordinate transformation which
defines material parameters I want to implement’. The example of the beam bend is
striking. Instead of modeling bend losses with conformal transformations and beam
propagation methods (BPM) as in Ref. [2], an approach of transformation optics will
actively search for materials which suppress such losses or eliminate them completely
[3].

The importance of conformal transformations to several scientific fields, implies these
fields somehowhave the samemathematical foundation. Indeed, the physics of all these
situations fundamentally relies on differential-geometric operators, such as Laplacians,
divergences and rotors, within the wave equations. Therefore, derivations made in this
chapter might be directly applicable to other physical problems.

Future contributions of transformation optics to fields outside of electromagnetism
are expected to be relevant. In combination with ingenious techniques from material
science, the operators within wave-equations are now amendable to design. Trans-
formation optics currently extends its scope to other fields, e.g. cloaking applications
in hydrodynamics [4] and quantum physics [5], and has already contributed to opti-
mization of computing algorithms [6]. With these applications in mind, we explore the
transformation properties of one particular differential-geometric operator, the Lapla-
cian in Riemannian space-time.

4.2

Wave Equations in Spatial Geometries

In this section, we derive the covariant magnetic Helmholtz equation in physical space
for an arbitrary geometry gij. We will apply these general wave equations to metrics
which are generated by conformal transformations (Eq. (4.10)). These results are di-
rectly available for establishing the electromagnetic equivalence relations. For detailed
derivations, we refer the reader to Appendix B.
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4.2.1 A Covariant Wave Equation

The magnetic Helmholtz equation in physical space is derived from the generalized
laws of Faraday (B.41) and Ampère (B.42) on a Riemannian geometry

εi jk ∇ jEk = iωμ0 Hi, (4.19)

εi jk ∇ jHk = −iωε0
(
ε̃(z) girEr

)
, (4.20)

with totally antisymmetric Levi-Civita tensors (Eq. (B.16) and Eq. (B.18))

εi jk =
±1√

g
[i jk],

εi jk = ±
√

g
[
i jk

]
.

As in Euclidean space, we apply a generalized rotor (B.38) to the law of Ampère (4.20)
to decouple electric and magnetic fields in the Maxwell equations. Thanks to metric
compatibility (B.31), which allows putting metric components out of the covariant
derivatives, the left hand side of the law of Ampère (4.20) is equal to

[∇ × (∇ ×H)]i = εi jk∇ j
(
εklm∇lHm

)
,

=
∑
jklm

[
i jk

]
[klm]∇ j∇lHm, (4.21)

while the right hand side is simplified with the law of Faraday (4.19)

ε0 ε̃(z) ∂t [∇ × E] =
ε̃(z)ω2

c2
Hi. (4.22)

At this point, we derive the wave equations in the bulk of the material and ignore the
boundaries, i. e. z-dependence of the permittivity profile. Combining Eq. (4.21) and Eq.
(4.22), we obtain the magnetic wave equation on a Riemannian geometry

∇l∇lHi − ∇l∇iHl +
ε̃(z)ω2

c2
.

The second term is further simplified by the commutation rule of covariant derivatives
(B.36) and the magnetic Gauss law, i.e. ∇lHl = 0

∇l∇lHi − RilHl +
ε̃(z)ω2

c2
Hi = 0. (4.23)

In this way, the Ricci curvature tensor Ril directly influences the wave equation. Since
we consider a flat electromagnetic space, this term does not contribute

Ril = 0. (4.24)
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Wave equation (4.23) may be derived in a more elegant way which makes use of the
Principle of Equivalence. Any Riemannian geometry gij becomes locally flat at a space-
time point when described by normal coordinates. With respect to these coordinates,
Eq. (4.23) simplifies to the wave equation in a flat, Euclidean geometry

∂l∂lHi − ∂l∂iHl +
ε̃(z)ω2

c2
Hi = 0. (4.25)

The general expression of the wave equation with respect to arbitrary coordinates, e. g.,
those we use to describe our physical space, are found by ’changing’ partial derivatives
∂i to covariant derivatives ∇i. This is in agreement with the wave equation (Eq. (4.23))
we derived before from the Maxwell equations.

However, because partial derivatives commute in a flat space

∂l∂i = ∂i∂
l,

wave equation (4.25) is equivalently expressed in another way

∂l∂lHi − ∂i∂
lHl +

ε̃(z)ω2

c2
Hi = 0. (4.26)

If the Principle of Equivalence were applied to this equation, it would lead to another
covariant wave equation, different from Eq. (4.23) by a term containing the Ricci tensor
(B.36). This inconsistency due to commutating partial derivatives is better known as
curvature coupling [7]. It is resolved by postulating a fixed order of partial derivatives
∂l∂i such that Eq. (4.23) is indeed the correct extension of the Euclidean wave equation
to a wave equation in Riemannian geometry.

4.2.2 A Flat Perspective

Generally, transformation-optical devices are designed so that their Maxwell equations
in a flat Euclidean space ((2.5)-(2.8)) are identical to the Maxwell equations of a curved
physical space ((2.9)-(2.12)). To achieve a reliable match, both Maxwell equations need
to be expressed with respect to partial derivatives so that all contributions due to the
metric are clearly visible.

Similarly, we need to rewrite the covariant wave equation on physical space (4.23) in
such a way that it only contains partial derivatives. Since the Ricci tensor Rij disappears
for flat electromagnetic spaces, the only contribution of the Riemannian geometry to
the wave equation arises due to the Laplacian Δ acting on the covector magnetic field
strength H

(ΔH)r = ∇l∇lHr.

In particular, the Christoffel symbols Γr
i j (B.32) include geometrical dependencies in the

covariant derivatives of the Laplacian

∇ jHi = ∂ jHi − Γr
i jHr, (4.27)

Γi
jk =

1
2

gir
[
∂ jgrk + ∂kgjr − ∂rgjk

]
. (4.28)
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We use two approaches to establish the wave equation in terms of partial derivatives.
First, wedeveloped a computer code inMathematicawhich calculates the dependence on
geometry gij by brute force, inserting the Christoffel symbols into the Laplacian Δ. This
program is also capable of calculating general Laplacians for arbitrary differentiable
and invertible coordinate transformations on non-Euclidean geometries.

Second, we obtain an intuitive feel for the wave-equations when writing it in terms of
partial derivatives. Section B.4 derives these wave equations in an analytical way for
three distinct tensorial objects: a scalar φ(xi), a vector field Hi an a covector field Hi.
The scalar wave equation is most frequently used in (conformal) applications outside of
transformation optics andhas aLaplacianwhich is better knownas theLaplace-Beltrami
operator

1√
g
∂ j

(√
ggjr∂rφ(xi)

)
+
ε̃(z)ω2

c2
φ(xi) = 0. (4.29)

The vector equations (B.58) are rather complicated for a general Riemannian metric.
Still, they have been successfully applied to describe the propagation of wavepackets
in a waveguide glued onto a sphere [8].

We will however formulate the equivalence relations based upon the covector wave
equations in physical space (B.54)

√
ggjr∂r

(
1√
g
∂ jHi

)
− √ggjr∂r

(
1√
g
∂iHj

)

−
∑

j k s l m

gjr [i jk] [slm] Γk
rs ∂lHm +

ε̃(z)ω2

c2
Hi = 0, (4.30)

which consists of three coupled equations for i ∈ {
x, y, z

}
.

4.2.3 A Conformal Wave Equation

Using a conformal induced metric (4.10), the wave equations in physical space (Eq.
4.30) simplify considerably. As expected, the conformal transformation treats in-plane
magnetic field components in a similar way and yields x- and y-component wave
equations which are of the same form. We express them in one equation with index
i, j ∈ {

x, y
}
and j � i,

1
γ(x, y)

[
∂2x + ∂

2
y

]
Hi +

∂ jγ(x, y)

γ(x, y)2
[
∂iHj − ∂ jHi

]
+
∂iγ(x, y)
γ(x, y)

∂zHz + ∂
2
zHi +

ε̃(z)ω2

c2
Hi = 0.

On the other hand, the z-component is expected to behave fundamentally different

1
γ(x, y)

[
∂2x + ∂

2
y

]
Hz + ∂

2
zHz +

ε̃(z)ω2

c2
Hz = 0, (4.31)

and remains independent from the coupled x- and y- wave equations due to the two-
dimensional transformation (Eq. (4.2)). Because we consider transformed TM guided
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modes of electromagnetic space (4.7) with no magnetic field orthogonal to the waveg-
uide

Hz(x, y, z) = 0, (4.32)

we can safely ignore the z-component wave equation (4.31).

The remaining wave equations seem quite complicated. Still, because they were ob-
tained by a coordinate transformation acting on the Helmholtz equation in electromag-
netic space, they carry some of its fundamental characteristics. For example, separable
solutions which are consistent with the TM condition (Eq. (4.32)),

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
ΦHx(x, y)ZHx(z)
ΦHy(x, y)ZHy(z)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,
are still able to separate the wave equation into in-plane wave equations

1
γ(x, y)

[
∂2x + ∂

2
y

]
ΦHi +

∂ jγ(x, y)

γ(x, y)2
[
∂iΦHj − ∂ jΦHi

]
= −

(
β̃
)2

(4.33)

and distinct modal wave equations which are unaffected by the transformation (4.2)

∂2zZHi(z) +
[
ε̃(z)ω2

c2
−

(
β̃
)2]

ZHi(z) = 0. (4.34)

We might go a step further and wonder how the full transformation-optical device in
Fig. 4.1 manipulates initial plane guided modes (4.1). Similar to the example (2.27)
in chapter 2, we may calculate the transformed magnetic fields using the covector
transformation rule (B.7) and the Jacobian of the coordinate transformation (4.2)

ΦHx = ∂xX Φ(x, y),
ΦHy = −∂xY Φ(x, y),

ZHx(z) = Z(0)
H (z) = ZHy(z),

with

Φ(x, y) = eiβ̃y′(x,y),

= eiβ̃Y(x,y). (4.35)

Although the normal dependence of the fields Z(0)
H (z) is again not affected, the in-plane

dependence of solutions (4.35) does change with respect to electromagnetic space. The
fields obtain a spatially-dependent phase φ(x, y)

φ(x, y) = β̃ Y(x, y), (4.36)

which is proportional to the initial propagation vector β̃ of the mode, or equivalently,
proportional to the propagation vector of the guided mode in electromagnetic space.
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Within the ray approximation (A.30), this phase is related to the new, physical propa-
gation vector of the transformation-optical medium

β = ∇φ(x, y),
= ∂xφ(x, y) ex + ∂yφ(x, y) ey. (4.37)

Using the Cauchy-Riemann conditions of the conformal coordinate transformation (Eq.
(4.9)) and the expression of the in-plane induced metric (Eq. (B.12))

γ(x, y) = (∂xX)2 + (∂xY)2, (4.38)

Eq. (4.37) leads to the magnitude β of the physically realized propagation constant
inside the bend

β = β̃
√
(∂xX)2 + (∂xY)2,

= β̃
√
γ(x, y). (4.39)

Thus, we confirma coordinate transformation affects the propagation of amode through
changes in the effective index

ne f f =
√
γ(x, y) ñe f f , (4.40)

which depends on the induced metric γ(x, y) in the ray approximation A.3.3.

To conclude this section, we verify if the transformed solutions indeed solve both
wave equations (4.33) and (4.34). We already observed the normal z-dependence of a
fundamental TM mode

Z(0)
H (z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e−k1z z > a,

cos(k2z) |z| ≤ a,
ek1z z < −a

, (4.41)

and the modal wave equation (4.34) are both unaffected. The extinction coefficients
(3.29), (3.30) and (3.31) depend however on the in-plane wave equation through the
separation constant β̃

k21 =
(
β̃
)2
− ε̃1ω

2

c2
, (4.42)

k22 =
ε̃2ω2

c2
−

(
β̃
)2
. (4.43)

Luckily, quantum numbers, such as the propagation constant β̃ corresponding to the
energy of a particle-analogon in a quantum well (3.49), are conserved by full transfor-
mation optics as a consequence of the principle of covariance. Generally, this allows
describing eigenstates of a complicated system with respect to transformed base func-
tions of electromagnetic space, each associated to a conserved quantum number [9].

When the transformed solution (4.35) is inserted in the in-plane wave equation (4.33),
we observe the separation constant of electromagnetic space β̃ is identical to that of the
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wave equation in physical space. The logarithmic terms
∂ jγ(x,y)
γ(x,y) cancel contributions

from the Laplacian in such a way that the left-hand side is constant and equal to the
right hand side −β̃2. We come back to this observation in section 4.4 when we impose
homogeneous media in the cover and substrate layer such that a magical cancellation
is no longer possible.

In conclusion, full transformation optics changes the effective index of a guided mode
without affecting the boundary conditions, the normal dependence of the fields—
including the extinction coefficients ki connected to the in-plane wave equation—and
the normal wave equation. Because the orthogonal wave equations and field factors
have no fundamental impact on the in-plane propagation, traditional transformation optics
is obliged to modify both the cover, guiding and substrate layer of a waveguide.

4.3

Equivalence Relations

The equivalence relations of guided transformation optics are formulated in a two-
step procedure described by Fig. 4.1. First, we map the in-plane Helmholtz equations
between the physical space and an arbitrary electromagnetic medium to obtain the
electromagnetic material parameters. Second, we consider how boundary conditions
of a partial implementation deviate from the full transformation-optical design and
compensate this with an additional parameter, the thickness of the slab 2a.

4.3.1 Helmholtz Equations of an Arbitrary Electromagnetic Medium

To achieve the very same in-plane propagation with our transformation-optical device
as in our designed Riemannian geometry, we look for electromagnetic parameters εi j

and μi j which yield the very same in-plane wave equation (4.33) as that of physical
space derived in the previous subsection

1
γ(x, y)

[
∂2x + ∂

2
y

]
ΦHi +

∂ jγ(x, y)

γ(x, y)2
[
∂iΦHj − ∂ jΦHi

]
= −

(
β̃
)2
. (4.44)

The most general wave equation (A.28) corresponding to bi-anisotropic material pa-
rameters is derived in appendix A. It fully agrees with wave equations in literature
for the case of an inhomogeneous isotropic material (subsection A.3.3). Instead of this
bi-anisotropic medium, the conformal transformation suggests a uniaxial medium

εi j =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
ε̃ 0 0
0 ε̃ 0
0 0 εz

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ; μi j =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
μ̃ 0 0
0 μ̃ 0
0 0 μz

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,
which is most capable to mimick the physical space wave equation (4.44).

73



4.3. EQUIVALENCE RELATIONS

The uniaxial wave equation strictly distinguishes in-plane components Hi with i ∈ {
x, y

}
[
∂2x + ∂

2
y

]
Hi +

εz
ε̃
∂2zHi +

εzμ̃ω2

c2
Hi +

∂ jεz

εz

[
∂iHj − ∂ jHi

]
= 0, (4.45)

from the out-of-plane component z

[
∂2x + ∂

2
y

]
Hz + μz∂

2
zHz +

ε̃μzω2

c2
Hz (4.46)

+
∂xε̃
ε̃

[∂zHx − ∂xHz] +
∂yε̃

ε̃

[
∂zHy − ∂yHz

]
= 0.

To impose a vanishing z-component of the magnetic field strength for TM modes, Eq.
(4.46) implies the in-plane permittivity ε̃ are independent of x and y.

We rewrite Eq. (4.45) such that variables x and y are separated from z. If we divide
Eq. (4.45) by α = εz

ε̃ and introduce a separability constant β, this leads to the in-plane
uniaxial wave equation

1
α

[
∂2x + ∂

2
y

]
Hi +

∂ jα

α2

[
∂iHj − ∂ jHi

]
= −β2Hi,

and the modal uniaxial wave equation

∂2zHi +

[
ε̃ω2

c2
−

(
β̃
)2]

Hi = 0. (4.47)

In this form, we are able to compare the wave equation of the device (4.45) to that of
physical space (4.44). Mapping is achieved if the in-plane permittivity ε̃ is equal to the
profile of the guide in electromagnetic space ε̃(z) and if the extraordinary parameter εz
is linked to the conformal in-plane metric γ(x, y)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α = γ(x, y),
εz = γ(x, y) ε̃(z),
ε̃ = ε̃(z),
μ̃ = 1.

(4.48)

We notice there is no need for a magnetic material parameter, as the TMmode eliminates the
Hz component equation which couples to the extraordinary magnetic permeability μz.

4.3.2 Guided Transformation Optics

As a second step in Fig. 4.1, we implement the material parameters (4.48) in a partial
way. Instead of manipulating the complete profile in electromagnetic space⎧⎪⎪⎪⎨⎪⎪⎪⎩

ε̃1 z > a,
ε̃2 |z| < a,
ε̃1 z < −a,
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so that the cover, guiding and substrate layer are uniaxial media as in Eq. (4.48), we
retain the homogeneous and isotropic medium ε̃1 in the cover and substrate layer. We
only use the nonmagnetic equivalence relations for the guiding layer

ε
i j
2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
ε̃2 0 0
0 ε̃2 0
0 0 γ(x, y) ε̃2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (4.49)

Such a partial implementation should not prohibit some desirable characteristics which
were realized by full transformation optics: the TM mode should be preserved by the
device, i.e. Hz = 0, the effective index of the mode ne f f should contain an additional
metric contribution with respect to the effective index of the incident guide ñe f f

ne f f =
√
γ(x, y) ñe f f ,

and the orthogonal dependence (4.41) should not be modified in a fundamental way.
In this subsection, we will derive our results for a trivial constant isotropic rescaling X
in the plane of the slab ⎧⎪⎪⎪⎨⎪⎪⎪⎩

x′ = X x,
y′ = X y,
z′ = z,

(4.50)

which is the simplest implementation of a two-dimensional conformal transformation.
In the following section, wemotivate how the results of constant rescalings are extended
to inhomogeneous coordinate transformations.

Because we consider a symmetric slab waveguide, all boundary effects are contained
within one material interface, e.g., the cover-guiding layer interface at z = a. The in-
plane wave equation in the cover layer—which is simply an untransformed Helmholtz
equation— [

∂2x + ∂
2
y

]
H(1)

i = −β21H(1)
i , (4.51)

and the wave equation in the guiding layer obtained from (4.45) and (4.48)

1
γ(x, y)

[
∂2x + ∂

2
y

]
H(2)

i +
∂ jγ(x, y)

γ(x, y)2

[
∂iH

(2)
j − ∂ jH

(2)
i

]
= −β22H(2)

i , (4.52)

are separated by their modal equations by two distinct separation variables, β1 for the
cover layer and β2 for the guiding layer.

Two remarks are in order. Because we evaluate the performance of partial transforma-
tion optics at the level of the guided transformation-optical device—implemented by
material parameters in a flat, Euclidean space—the metric components in these equa-
tions are simple scalar functions which are defined by Eq. (4.48). Additionally, we
exploit the TM condition (4.32) and do not consider the z-component of the wave equa-
tions. The associated modal wave equations are identical to those of electromagnetic
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space

∂2zH(1)
i +

[
ε̃1ω2

c2
− β21

]
H(1)

i = 0, (4.53)

∂2zH(2)
i +

[
ε̃2ω2

c2
− β22

]
H(2)

i = 0. (4.54)

We distinguish the fields in the cover H(1)(x, y, z) from those in the guiding layer
H(2)(x, y, z) as they are solutions to distinct wave equations matched by boundary con-
ditions at the interface z = a. In fact, due to the logarithmic terms ∂iγ(x,y)

γ(x,y)2 in the in-plane
wave equation of the guiding layer, it is impossible to find exact separable solutions

Φ
(1)
Hi
(x, y)Z(1)

Hi
(x, y) ; Φ

(2)
Hi
(x, y)Z(2)

Hi
(x, y),

to decouple the modal wave equation from the in-plane wave equation. If exact sep-
arability were possible and boundary conditions were completely taken into account
by the orthogonal factor ZH(z), the continuity of the (in-plane) magnetic field strength
would imply the fields in the cover and the guiding layer are identical up to a constant
factor

Φ(1)(x, y) ∝ Φ(2)(x, y).

Therefore, the Laplacians [
∂2x + ∂

2
y

]
H(1)

i ∝
[
∂2x + ∂

2
y

]
H(2)

i ,

are also proportional and constant. The metric term in Eq. (4.52) now introduces a
spatial dependence to the separability constant β2 such that exact separation of variables
is violated. This is why we investigate the consequences of constant rescalings as
an intermediate step to obtain consistent boundary conditions. Section 4.4 considers
which conditions ensure approximately separable results for inhomogeneous conformal
transformations.

We now consider a constant coordinate rescaling (4.50). The induced metric follows
from the transformation rule (B.12)

γi j =

(
X2 0
0 X2

)
,

with γ(x, y) = X2. The electromagnetic equivalence relation implies the guiding layer
has a uniaxial permittivity (4.49) which is related both to the rescaling factor X and the
incident guiding layer permittivity ε̃2

εi j =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
ε̃2 0 0
0 ε̃2 0
0 0 X2 ε̃2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
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The thickness of thewaveguide now contributes to the guiding problem in the following
way. If the problem is separable, the in-plane fields in the vacuum and the guiding layer
are continuous at the interface

Φ
(1)
Hi
(x, y) = Φ

(2)
Hi
(x, y),

since the orthogonal dependence relies exclusively on separated ZHi(z) factors. In
addition, the Laplacian operators of the wave equations in the cover and the guiding
layer simplify to [

∂2x + ∂
2
y

]
H(1)

i = β21H(1), (4.55)[
∂2x + ∂

2
y

]
H(2)

i = X2β22H(2). (4.56)

Because the guiding layer is implemented by a transformation-optical medium, we
know the separation constant β2 is equal to the propagation vector β̃ of the electromag-
netic space β̃. To obtain a global effective index, the Laplacians (4.55) and (4.56) should
match

β21 = X2 β22
= X2(β̃)2. (4.57)

In this way, the separation constant β1 of the in-plane cover wave equation (4.55) is
identical to that of a guided mode which would exist in a ’full’ transformation-optical waveguide
(Eq. (4.39)). The thickness variation compensates for the modified, homogeneous cover
and substrate layer.

In a ’full’ transformation-optical approach, light is only aware of the electromagnetic
space. Therefore, a full transformation-optical device with modified parameters in the
cover, guiding and substrate layer preserves the dispersion relation of the electromag-
netic space β̃(ω). To achieve this with a partial implementation in the guiding layer only,
we make use of a relative and symmetric thickness variation a = Aã which is illustrated
in Fig. 4.1 with initial thickness 2ã and relative thickness A.

The dispersion relation for our partial implementation is derived from the modal wave
equations (4.47). As mentioned above, we assume the orthogonal dependence ZHi(z)
does not fundamentally change within the guiding device, i.e. it should still be possible
to use the modal wave equations to define extinction coefficients

k21 = β
2
1 −
ε̃1ω2

c2
,

k22 =
ε̃2ω2

c2
− β22,

which are identical to Eq. (4.42) and Eq. (4.43), except for a difference in separation
constants

β1 = Xβ̃, (4.58)
β2 = β̃. (4.59)
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Figure 4.4: Equivalence relation for a geometrical parameter: Dependence of the
relative slab thickness A on a rescale factor X for a uniaxial (blue) and an isotropic
(red) implementation for an initial effective frequency ωe f f = 0.8378 and propaga-
tion vector β̃e f f = 0.9352 corresponding to the numerical simulations in chapter 5.

A homogeneous rescaling maintains parallel interfaces z = ±a to the central plane of
symmetry. It only requires one discrete jump from z = ã to z = a at the entrance of
the device. Combined with preservation of boundary conditions by uniaxial media,
the dispersion relation (4.4) has the same appearance as for an untransformed slab
waveguide

tan(k2Aã) =
ε̃2
ε̃1

k1
k2
. (4.60)

Inverting the tangens function, a relative thickness variation A as a function of constant
rescaling X is obtained

A =
1√

ε̃2ω2
e f f − (β̃e f f )2

ArcTan

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ε̃2
ε̃1

√
X2(β̃e f f )2 − ε̃1ω2

e f f√
ε̃2ω2

e f f − (β̃e f f )2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4.61)

This is an additional equivalence relation of the guided transformation-optical device. Because
we calculate the relative thickness with respect to the initial thickness ã, Eq (4.61)
contains effective dimensionless frequencies ωe f f and propagation vectors β̃e f f which
are completely determined by the initial wave.

Fig. 4.4 shows the analytical dependence of relative slab thickness on the rescaling factor
X for two variations of guided transformation optics. The first variety comprises the
uniaxial electromagnetic equivalence relation (4.48) discussed before. However, it is also
possible to implement the guided device with an isotropic material if the TM condition
Hz = 0 is slightly relaxed. Isotropic materials also map the Hx and Hy wave equations
perfectly, but do not establish the TM condition Hz = 0 because they couple to the Hx
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Figure 4.5: Cut-off constant rescale factor Xc as a function of the effective frequency
at the entrance of the waveguide.

and Hy fields derived in the appendix (Eq. (A.29)). Only in the limit of thin slabs, when
the fundamental mode inside the guiding layer has a small orthogonal derivative

∂zZHi(z) ∝ k2a sin(k2a) << 1,

the guide realizes full transformation optical fields. We will briefly consider the perfor-
mance of an isotropic beam bender in chapter 5. However, the uniaxial medium is more
attractive because it is mathematically rigorous and implementable with hyperbolic
metamaterials (subsection 2.4.1).

Clearly, not all rescalings X lead to guided devices which are capable of sustaining the
initial fundamental mode. If the rescaling factor decreases, the extinction coefficients
k1 (4.58) becomes imaginary such that the modes radiate into the cover and substrate
layer. Therefore, transformation-optical deviceswhich require high phase velocities and
low effective indices—e.g., the traditional cylindrical invisibility cloak of chapter 2—
are not easily implemented by guided transformation optics because they require low
rescalings.

The cut-off rescaling Xc occurs when k1 reaches zero (Fig. 4.5)

X2
c =

1
β̃2e f f

ε̃1ω
2
e f f , (4.62)

and is calculated in a numerical way depending on the effective initial frequency ωe f f
and the associated propagation vector β̃e f f . According to our numerical solution in
Fig. 4.5, there are two important regimes. At high frequencies and guiding layer thick-
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ness, the threshold scaling factor Xc decreases until it saturates

Xc
ωe f f→∞→

√
ε̃1
ε̃2
.

For low frequencies or low thicknesses, the threshold value Xc increases but never
exceeds X = 1 which corresponds to an unperturbed waveguide manipulated by an
identity transformation. Therefore, a constant rescaling does not impose a fundamental
limit on the thickness of the waveguide in order to guarantee the guiding device works,
i.e., all rescalings which increase the effective index are allowed. We will verify the
behavior of a waveguide bend for various thicknesses in chapter 5.

These conclusions show that clever coordinate transformations, e.g., quasi-conformal
transformations and non-Euclidean transformations would greatly enhance the scope
of guided transformation optics as they are capable of reducing anisotropy (chapter 2).
To implement conventional invisibility devices, which require high internal velocities
v = c

ne f f
such that the inner cavity boundaries are crossed as if they are a point in elec-

tromagnetic space, highly confined incident modes on a thick and high-index guiding
layer at high frequencies are required. This is however a multimode regime.

4.4

Guided transformation optics

In this section, we extend our results from constant rescalings (Eq. (4.50)) to inhomo-
geneous two-dimensional conformal transformations of Eq. (4.2). We illustrate our
approach with the guided transformation-optical beam bend shown in Fig. 4.6. It im-
plements an exponential map from electromagnetic coordinates (u, v, z′) to physical
coordinates (x, y, z) ⎧⎪⎪⎪⎨⎪⎪⎪⎩

x = cos( v
R ) e

u
R ,

y = sin( v
R ) e

u
R ,

z = z,
(4.63)

determined by a parameter R representing the outer radius of the beam bender in the
guiding device. We have given the electromagnetic variables u, v, z′ alternative labels to
avoid notational confusion between xi′ and xi. Alternatively, this transformation could
be inverted, such that each location in electromagnetic space (u, v, z′) is described by
physical coordinates (x, y, z) ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u = R ln
(√

x2 + y2
)
,

v = ArcTan
( y

x

)
,

z′ = z,
(4.64)

and gives raise to an induced metric (B.12)

γi j =
R2

x2 + y2
δi j. (4.65)
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Figure 4.6: In-plane propagation of an incident plane guided mode on a finite-
embedded conformal beam bend. The outer radius is equals the parameter R to

achieve rescalings X which are larger than one.

Instead of discarding the logarithmic derivatives of the in-plane wave equations (4.52)
which prevent separation of variables—this amounts to a ray approximationwith scalar
wave equations (A.3.3)—we consider how a plane wave inserted in the bender

Hx(x, y, z) = eiβ̃ y ZHx(z) ex, (4.66)

propagates under influence of a linearized coordinate transformation with respect to an ar-
bitrary insertion point P = (x0, y0) in physical space. This will provide several intuitions
about the conditions which are required to apply our guided transformation-optical
approach.

Without any approximation, the magnetic field strength (Eq. (4.66)) has the following
appearance in a full transformation-optical device

ΦHx(x, y) = Λu
x Φ(x

′, y′),

= γ(x, y)
x
R

eiβ̃ ArcTan( y
x ),

ΦHy(x, y) = Λu
y Φ(x

′, y′),

= γ(x, y)
y
R

eiβ̃ ArcTan( y
x ),

thanks to the covector transformation rule (B.7). As expected, orthogonal dependencies
ZH(z) are not mentioned here because they are not affected by the coordinate transfor-
mation. The transformed solution identifies two length scales according to which the
fields might deviate from those of a constant rescaling X

ΦX
Hi(x,y)

= X eiX β̃x for i ∈ {x, y}.
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4.4. GUIDED TRANSFORMATION OPTICS

A first length scale is incorporated by the Jacobian which induces variations of the
magnetic field strength amplitude

A(x, y) =
(
γ(x, y) x

R
γ(x, y) y

R

)
, (4.67)

while a second contribution is due to the phase variations determined by coordinate
line u = Cst in electromagnetic space

φ(x, y) = β̃ ArcTan
( y

x

)
.

Then, the propagation vector β = ∇φ(x, y) provides a distance scale at which the phase
changes significantly.

Because the plane modes in electromagnetic space do have homogeneous amplitudes
and linear phases, the coordinate transformation should preserve these propertieswhen
expressing them in physical coordinates. We linearize the transformation at a point
P = (x0, y0) in the following way

u(x, y) = u(x0, y0) + Λu
x

∣∣∣
P
(x − x0) + Λu

y

∣∣∣
P
(y − y0),

v(x, y) = v(x0, y0) + Λv
x

∣∣∣
P
(x − x0) + Λv

y

∣∣∣
P
(y − y0).

Themetric transformation rule (B.12) and Jacobian of the logarithmic map (4.67) readily
provide the linearized metric γP(x, y) in physical space

γP(x, y) = (Λu
x

∣∣∣
(x0,y0)

)2 + (Λu
y

∣∣∣
(x0,y0)

)2, (4.68)

which is simply equal to the metric evaluated at P

γP(x, y) = γ(x0, y0).

If the Jacobian is only slightly spatially dependent so that a linearized transformation
is a good approximation, the metric is approximately constant in a region surrounding
any arbitrary point P = (x0, y0)

γP(x, y) ≈ X2,

for length scales which are inversely proportional to the largest component of the
Jacobian or the magnitude of propagation vector β. Then, thickness variations are also
gradual andmodest so that the boundary conditions of the unperturbedwaveguide (Eq.
(3.11)-(3.12)) also apply to the partially implementedwaveguide. In those circumstances
we define an relative thickness equivalence relation (4.61)

A =
1√

ε̃2ω2
e f f − (β̃e f f )2

ArcTan

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ε̃2
ε̃1

√
γP(x0, y0)(β̃e f f )2 − ε̃1ω2

e f f√
ε̃2ω2

e f f − (β̃e f f )2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (4.69)
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in addition to the electromagnetic equivalence relation (Eq. (4.48)) derived before. These
are the two equivalence relations of our newly developed framework, guided transformation
optics.

Finally, we obtained several clues as to how our numerical simulations of a conformal
beam bend will behave. The threshold on constant rescalings in Fig. 4.5 requires the
radius of the beambender r is smaller than the parameterR. However, to staywithin the
ray approximation at the level of the boundary conditions, we minimize the Jacobian
(4.67) by staying close to the outer radius, i.e. γ(x, y) is approximately equal to one.
Increased beam width might deteriorate performance. Also, if the rescaling condition
X > 1 is fulfilled, we do not expect the thickness of the guiding layer affects performance
in a crucial way.
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Chapter 5

A Beam Bend

We demonstrate the validity of guided transformation optics with Comsol Mul-
tiphysics finite-element simulations of a 30- and 45- degree beam bend in

the frequency domain. Although a guided transformation-optical medium is only
operational in slowly varying regimes (chapter 4), the bender performs excellently
at both angles for various thicknesses of the guiding layer. To validate our results,
we rely on three benchmarking techniques explained in chapter 3: Investigating the
existence of radiation modes with the normal profile of magnetic and electric fields,
looking for reflections in the VSWR and investigating mode conversion with maps
of in-plane electric field distributions.

5.1

A Conformal Beam Bend

In this chapter, we demonstrate the performance of a guided transformation-optical
beam bend (Fig. 5.1) whose properties are described by table 5.1. Wemostly focus on 45-
degree beam bends because large propagation distances allow investigating cumulative
effects due to imperfections and approximations of the proposed equivalence relations.
Technical details about the numerical techniques can be found in appendix C, while
supplementary results, e.g., analysis of a 30-degree beambendanda full transformation-
optical concentrator of guided modes, are discussed within appendix D.

The simulation domain of a guided transformation-optical beam bend is intrinsically
three-dimensional (Fig. 5.1). A fundamental TM plane guided mode is excited by a
user-defined port at the leftmost side. Initially, the guided mode travels along an
unperturbed waveguide with thickness 2ã for one effective wavelength, until it reaches
the guided transformation-optical medium. After a 30- or 45-degree bend, the guided
mode is absorbed by a perfectly matched layer (PML).

We design the simulation domain, i.e., its boundary conditions (appendix C.2), in
such a way that they are compatible with monochromatic plane wave propagation.
Then, the numerical results can be directly compared to the analytical derivations of
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5.1. A CONFORMAL BEAM BEND

Figure 5.1: Simulation domain of a 30-degree beam bend without thickness vari-
ation. Along the orthogonal z-direction, there are three distinct layers. The wave-
guiding layer of thickness ã is densely meshed (bottom, in green), an auxiliary
vacuum layer of two decay lengths is used for intermediate meshing density (mid-
dle) and a top vacuum layer only requires a coarse mesh (top). An input port
excites an eigenmode of unperturbed waveguide which is bent towards a perfectly
matched layer (PML). We obtain our fields and VSWR from data points in the red

plane, lying in the center of the beam.

chapter 4. Diffractive effects will not be considered here—although they have been
investigated in the context of the concentrator (appendix D.2)—since they have no
addedvalue to verifying theguided transformation-optical parameters. Both traditional
three-dimensional transformation optics and guided optics do not take diffraction into
account when their equivalence relations are derived. Additionally, the description of
obliquely incident guidedmodes in uniaxial materials on PMLs is highly nontrivial and
requires an optimization of PMLs which falls outside the scope of this dissertation [1].

As explained in detail in section C.2, boundary conditions play a crucial role in trans-
lating physical guided wave propagation along an infinitely extended waveguide to a
numerical simulation domain of finite extent. Because we solve for guided plane waves
which propagate freely in two dimensions of the guiding layer, we need to truncate the
domain in the guiding layer without confining the light in the direction orthogonal to
the propagation. This is achieved by a Perfectly Magnetic Conductor (PMC) boundary
condition on the radial boundaries of the domain.

A PMC boundary condition acts as a mirror to magnetic field components parallel to
the boundary. Since Eq. (2.27) implies that the magnetic field of a TM mode only has
a radial component, the initial plane guided modes indeed remain unaffected by the
boundary. Similarly, we employ a Perfect Electric Boundary (PEC) condition in the
symmetry plane z = 0, which takes advantage of the antisymmetry of the electric field
to eliminate the lower half of the waveguide domain as explained in chapter 3 and
appendix C.
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5.1. A CONFORMAL BEAM BEND

Geometrical parameters

Initial thickness ã 0.2 μm
Max. relative thickness Amax 1.2448

Max. thickness amax 0.249μm
Outer radius R 42μm = 33 λe f f

Traveled distance d 45◦ : 22 λe f f
30◦ : 16 λe f f

Material parameters

ε̃1 1
ε̃2 2.25 = (1.5)2

εzz
max 2.868 = 1.275 ε̃2
εzz
min 2.25 = ε̃2

Initial guided mode

ωe f f 0.838
βe f f 0.983

beam width w 2.52μm = 24 ã

Table 5.1: Simulation parameters of a 30- and 45-degree beam bend, implemented
by guided transformation optics.

Before considering numerical results, we provide an overview of some relevant an-
alytical predictions of chapter 4. The beam bender was designed by an exponential
map (Eq. (4.64)), which leads to an uniaxial, radial permittivity profile

εi j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ε̃2 0 0
0 ε̃2 0
0 0 εzz = R2

x2+y2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (5.1)

Fig. 5.2 provides an overview of both the electromagnetic and geometric equivalence
relations of the beam bender. The anisotropy of the permittivity tensor increases for
small radii r with respect to the outer boundary R. Light has to travel more slowly such
that the planewave fronts are preservedwhile turning. This behavior is exactly opposite
to the permittivity profile of a uniform beam bend in Fig. 4.3. Guided transformation
optics thus compensates for bending losses as its electromagnetic space is a straight unperturbed
waveguide.

Additionally, a thickness variation (Eq. (4.69)) imposes that the phase velocity of the
guided mode is globally defined and equal to that of a full transformation-optical
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5.1. A CONFORMAL BEAM BEND

Figure 5.2: Guided transformation-optical parameters, the extraordinary permit-
tivity εzz (left) and the absolute thickness variation a (right) with respect to the

symmetry plane of the slab as a function of radius within the bend.

implementation

A =
1√

ε̃2ω2
e f f − (β̃e f f )2

ArcTan

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ε̃2
ε̃1

√
γ(x, y)(β̃e f f )2 − ε̃1ω2

e f f√
ε̃2ω2

e f f − (β̃e f f )2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (5.2)

To extract quantitative information about the coupling efficiency of the fundamental
TM mode, we extend the analytical coupling efficiency of planar waveguides (3.64) to
that of a beam bend of angle θ. The propagation vector β at the end of the bend is equal
to

β = β
[
sin(θ)ex − cos(θ)ey

]
,

when the mode propagates along the negative y-axis as in Fig. 5.1. Therefore, the TM
modal power coefficient H0 and the TE modal power coefficient E0 (Eq. (3.63)) depend
on the bending angle

H0 =
1
2

∫
dβ⊥ dz

([
sin(θ)Hy + cos(θ)Hx

]
+
ε0ωε̃(z)
β Ez

)
H∗x

(0)(z)∫
dz|H(0)

x (z)|2
, (5.3)

E0 =
1
2

∫
dβ⊥ dz

([
sin(θ)Ey + cos(θ)Ex

]
+
ε0ωε̃(z)
β Hz

)
E∗x

(0)(z)∫
dz|E(0)

x (z)|2
. (5.4)

Integration is now performed in a direction dβ⊥ in the plane of the guide but orthogonal
to the propagation vector.

Next to the basic simulation domain in Fig. 5.1, we introduce an extended simulation
domain that contains both an additional piece of unperturbed waveguide at the exit of
the bend and a specific kind of excitation port inside the domain (Fig. D.1). On the one
hand, the additional piece of unperturbedwaveguide allows estimating the throughput
of an initial TM mode and sustains analytically known TM and TE eigenmode fields
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5.1. A CONFORMAL BEAM BEND

Thickness Scattering coefficient S11

0.21μm 0.0595
0.20μm 0.0534
0.17μm 0.0303
0.15μm 0.0813

Table 5.2: Scattering coefficients on the input excitation port for a 30-degree beam
bend for several initial thicknesses.

H(0)
i (z) and E(0)

i (z) which need to be inserted in Eq. (5.4). On the other hand, the domain-
backed port automatically calculates the scattering coefficients between itself and other
ports. In particular, the S11 coefficient estimates the amplitude of the reflected waves
that reach the input port (table 5.2). These are mostly due to the initial waveguide/beam
bender interface.

There are two reasons why we will not use Eq. (5.4) to estimate mode conversion inside
the beam bend. First, the boundary conditions severely restrict the solutions solved
for. In particular, the PEC condition at the symmetry plane prevents any sustained
propagation of TE modes. Thus, TE modes appear as standing wave distortions in the
simulation domain. This is illustrated for several thicknesses by Fig. D.4. Second, the
waveguide/beam bender interface encourages energy transfer from TM to TE modes.
It is therefore not possible to relate the effectiveness of our equivalence relations, i.e.
reflectionless propagation within the bender, directly to the coupling efficiency at the
exit.

Still, there is another efficient and qualitativemeans for determiningwhether TMmodes
are preserved during the bend. The covector transformation rule (B.7) implies that the
radial electric field component should remain zero throughout the beam bend for a
perfectly guided mode. Fig. 5.3 shows this is indeed the case for a full transformation-
optical implementation. Thus, the ratio of the radial electric component with respect
to the maximal electric norm—evaluated along the central arc in the plane of the slab
z = 0 as shown in Fig. 5.1—provides a local measure of TM mode conversion.

Fig. 5.3 shows two important aspects of mode conversion in our guided transformation-
optical beam bender. First, there exist small fluctuations of about 1% of the total electric
norm. It is however not possible to pinpoint the exact cause of these fluctuations. They
may arise from reflected radiation modes from the upper PEC boundary of the domain
C.2 or from reflections within the guiding layer itself due to the combined effect of the
thickness variation and the inhomogeneous permittivity. Either way, they are related
to mode conversion. Second, Fig. 5.3 confirms the waveguide/beam bender interface
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5.2. EVALUATION OF A GUIDED BEAM BEND

Figure 5.3: Relative radial electric field distribution in a full transformation-optical
device (left) and a guided transformation-optical device (right) with specifications
of table 5.1. The enhanced ’radial’ components at the left side of the simulation
domain are a result of the plotting function, which onlymaintains orthogonal fields
to the propagation direction at the right side of the excitation port. The contribution

of the initial guided mode to the TE mode is smaller than 0.1%.

generates TE polarized modes. A full transformation-optical implementation does not
suffer from these conversions. This may be related to the fact that a full transformation-
optical device imposes a global jump in permittivity without any variation in thickness.
Then, both the evanescent tails and the oscillating fields inside the guiding layer are
affected in a similar way.

In conclusion, we established two measures for reflections. Globally, the VSWR or
the scattering coefficient of the domain-backed port C.3 provide quantitative estimates
while, locally, we use the radial electric field distributions for qualitative results.

5.2

Evaluation of a Guided Beam Bend

5.2.1 Verification of the Thickness Equivalence Relation

To verify if the thickness variation (Eq. (5.2)) is a good transformation-optical parameter,
we compare the performance of a full transformation-optical implementation—which
affects permittivities in both the cover and the guiding layer but maintains a constant
thickness—to our guided transformation-optical design—which only modifies the per-
mittivity in the guiding layer, but uses a thickness variation. Fig. 5.4 illustrates how
both implementations bend a guided mode over 45 degrees. An identical comparison
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5.2. EVALUATION OF A GUIDED BEAM BEND

for a 30 degree bend Fig. D.2 is found in appendix D. Because the figures of this section
span a full page, they are attached to the end of this chapter.

As shown in Fig. 5.4, the field distributions within the guiding layer are almost identical
for full and guided transformation optics. If one increases the distance between the
evaluation surface and the symmetryplaneof thewaveguide, however, both approaches
increasingly differ. This is shown in Fig. 5.6. Within a traditional full transformation-
optical device, the magnetic field strength distributions do not change fundamentally
with orthogonal distance as this would imply a violation of separability. Only the
amplitude decreases in an exponential way as the evaluation plane recedes from the
symmetry plane of the guide.

In contrast, guided transformation optics respects separability in an approximate way
for slowly varying thicknesses and amplitudes of the fields. Perturbations of separa-
bility are clearly visible as magnetic fields decay in an incoherent fashion when the
distance with respect to the symmetry plane increases.

In addition to Fig. 5.4 which implies that the thickness variation is compatible with
the beam bender design, Fig. 5.5 demonstrates that the thickness variation actually
provides a necessary condition when a partial implementation of transformation optics
is considered. The guided mode is only slightly affected by the medium and mostly
travels in a straight trajectory until it encounters a TM or TE boundary conditions after
which it suffers from reflections. The radial electric fields indeed show there is mode
conversion from a TM to a TE polarization.

Still, the guided beam bend is very effective in a qualitative way and relies in a crucial
way on the thickness variation. In the remainder of this section, we characterize the 30-
and 45-degree beam bend to get a quantitative feel of the performance and reflections
induced by the propagation. The measures which are thus obtained, should however
be considered as an order of magnitude as they depend on mesh resolution which is
intrinsically limited by our demand to use a direct solver which is capable to deal with
advanced three-dimensional simulations.

5.2.2 Radial Magnetic and Electric Field Distributions

Fig. 5.7 and Fig. 5.8 compare the full transformation-optical magnetic and electric fields
to those of guided transformation optics. Because of thickness variations, the orthogonal
fields are not expected to be identical to those of full transformation optics as they induce
spatially-varying extinction coefficients. Still, both fields should agree on exponentially
decaying evanescent tails while the presence of radiation modes, i.e. standing waves
between the upper and lower boundary of Fig. 5.1, should be avoided.

The magnetic field strength (Fig. 5.7) of the guided transformation-optical device does
not satisfy the exponential decay law. This may be due to the particular numerical
settings of this simulation, since several other simulations, for example Fig. D.5 for
different initial thicknesses of the slab waveguide, do establish exponential decay.
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5.2. EVALUATION OF A GUIDED BEAM BEND

Thickness VSWR

0.21μm 0.0336
0.20μm 0.0533
0.17μm 0.0438
0.15μm 0.1269

45 degree

Full TO /
Guided TO 0.08333

30 degree

Full TO /
Guided TO 0.04084

Table 5.3: VSWR estimates of reflections due to the guided transformation-optical
beambend. Following the observations of Fig. 5.9 and Fig.D.8, fast-scale reflections

are ignored as they appear also in the full transformation-optical device.

Fig. D.5 contains a numerical anomaly at the interface between the cover and guid-
ing layer. The spikes may be caused by a limited mesh resolution, e.g., when mesh
elements cross an abrupt material interface. However, in section C.4 we explain how
we optimized the mesh to avoid such circumstances. Then, if the cause of the peaks
is numerical, they should be linked to the limited mesh resolution, which cannot be
reduced with a direct solver considering the computational capacity of our server.

The electric field (Fig. 5.8) of the guided transformation-optical device contains a low-
amplitude standing wave which is consistent with the small nonzero in-plane electric
field distributions discussed earlier (Fig. 5.3).

In conclusion, the magnetic and electric fields do deviate from the full transformation-
optical device. The interface between the cover and substrate layer either induces
non-exponential decay, as in Fig. D.5 or suffers from limited mesh resolution which
creates spikes in the magnetic field strength amplitude. These observations are related
to the incompatibility of boundary conditions with separable field solutions which are
valid inside the guiding layer as discussed in section 4.3.2.

5.2.3 VSWR and Scattering Coefficients

The VSWR of the full transformation-optical device (Fig. 5.9) suggests only slow-scale
variations are due to reflections induced by our guided transformation-optical bend.
As in chapter 3, fast-scale fluctuations are related to a limited mesh resolution. Fol-
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lowing Eq. (3.57), table 5.3 contains estimated reflection amplitudes for various initial
thicknesses of the waveguide and for the 30-degree and 45-degree bend.

Generally, reflections are low, below 10% and decreasing, as the slab thickness increases.
Indeed, if the thickness of the guiding layer increases, guided modes are increasingly
confined so that the dielectric layer is increasingly effective in manipulating the mode.
This is also confirmed by electric field distributions in Fig. D.6, which are more pro-
nounced at lower slab thicknesses. However, as thickness increases above a certain
threshold, higher-ordermodes become available such that fundamental TMmode prop-
agation is adversely affected by mode coupling. To remain below the cut-off related
to the odd TM mode, initial thicknesses should never exceed 0.21μm for the numerical
parameters in Table 5.1. Additionally, Table 5.3 confirms bends of fixed radius and
increasing angle induce more reflections.
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Figure 5.4: Verification of the thickness equivalence relation for a 45-degree beam
bend. The in-plane propagation of an excited fundamental TM mode is compared
for a full transformation-optical implementation (up) and a guided transformation-
optical implementation with thickness variations in the guiding layer (down).
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Figure 5.5: Radial magnetic fields (up) and radial electric fields (down) in the
plane of the guiding layer with an inhomogeneous permittivity (5.1) but without a

thickness variation.
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Figure 5.6: In-plane magnetic field strength distributions at distances ã = 0.2μm,
2ã = 0.4μm, 3ã = 0.6μm and 4ã = 0.8μm from the plane of symmetry of the guide for
a full transformation-optical implementation (left) and a guided transformation-

optical implementation (right).
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Figure 5.7: Orthogonal dependence of radialmagnetic field strengths between a full
transformation-optical implementation (up) and a guided transformation-optical

implementation (down).

97



REFERENCES

Figure 5.8: Orthogonal dependence of radial electric fields between a full
transformation-optical implementation (up) and a guided transformation-optical

implementation (down).
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Figure 5.9: VSWR of a 45-degree beam bend for a full transformation-optical
implementation (up) and a guided transformation-optical implementation (down).
The (radial) magnetic field strength norm is evaluated long a circular arc which
comprises the center of the beam and lies in the plane of the guiding layer (Fig. 5.1).
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Chapter 6

Conclusion and Outlook

In this dissertation, we started from the observation that the traditional framework of
transformation optics does not allow for the manipulation of confined electromagnetic
waves along two-dimensional material sheets in a self-consistent way. Indeed, when
applied to a nonmagnetic slab waveguide, transformation optics imposes nontrivial
electromagnetic material parameters in the guiding layer of the waveguide as well as in
the surrounding cover and substrate layers. Traditionally, transformation optics ignores
the guiding/cover and guiding/substrate interfaces of thewaveguide and altersmaterial
parameters without taking geometrical parameters, like the thickness of thewaveguide,
into account.

For this reason, we developed a new kind of transformation optics—guided transfor-
mation optics— which is compatible with guided waves confined to a nonmagnetic
slab waveguide. To design the desired trajectories of a transverse magnetic mode
supported by a guided transformation-optical device, we apply a two-dimensional
conformal coordinate transformation, which only depends on the in-plane coordinates
of the waveguide, to a traditional homogeneous waveguide. The straight trajectories
of guided modes within the familiar waveguide are then deformed in such a way that
they correspond to those required by the application.

To achieve the very same trajectories within our guided transformation-optical device
as those of the coordinate-designedwaveguide, we established new equivalence relations,
which relate the refractive index and the thickness of the guiding layer of the waveguide to the
two-dimensional coordinate transformation.

First, the equivalence relation that determines the refractive index was obtained in a
novel way. Traditionally, three-dimensional transformation optics defines the mate-
rial equivalence relations so that the macroscopic Maxwell equations, which describe
all electromagnetic phenomena within our guided transformation-optical device, are
identical to those of the coordinate-designed waveguide. However, in guided wave
transformation optics, only the characteristics of guided mode propagation need to be
conserved. Therefore, our framework only modifies the permittivity inside the slab in
such a way that the wave equations inside the guided transformation-optical device are
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identical to those of the deformed waveguide that was designed with the coordinate
transformation.

Second, we introduced a geometric equivalence relation, which relates the thickness
of the waveguide to the two-dimensional coordinate transformation and thus allows
distinguishing the slab from the surrounding vacuum. The additional thickness vari-
ation matches the phase velocity of the guided mode within our device to that of the
coordinate-designed waveguide. With the phase velocities matched, there is no further
need to implement nontrivial electromagnetic responses in the surrounding vacuum.
To validate our analytical equivalence relations, we investigated the performance of a
30◦ and 45◦ beam bender with finite-element simulations using the numerical software
Comsol Multiphysics. The equivalence relations predict that the slab of a beam bender is
nonmagnetic and slightly anisotropic, i.e., its material properties normal to the slab are
different from those in the plane of the waveguide. The material parameters could be
efficiently implemented by low-loss flatland hyperbolic metasurfaces or SiC inclusions.
Therefore, our technique may indeed prove to be useful for developing transformation-
optical systems in, e.g., photonic integrated circuits. Future work will also include the
effects of a nontrivial substrate layer below the slab to achieve a design that naturally
lends itself to such applications.

Our numerical finite-element simulations confirmed that the flatland metamaterial
beam bender performs very well, both for the 30 and the 45 degree turns. In par-
ticular, we demonstrated that thickness variations are a crucial transformation-optical
parameter without which the bending cannot be achieved.

Guided two-dimensional transformation optics paves the way towards guided mode
manipulation with thin, flatland metamaterials. The analytical formalism that is devel-
oped in this dissertation offers a set of geometrical tools in thedesign of two-dimensional
waveguide systems, which may be of great interest in the design of future photonic in-
tegrated circuits.

Moreover, because of the fact that wave equations and boundary conditions are a
fundamental part of many disciplines in engineering and physics, like hydrodynamics,
acoustics and quantum optics, we anticipate that the results of this dissertation might
also be relevant to those fields.
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Appendix A

Notations and Conventions

This appendix provides an overview of several notations and conventions regarding
differential geometry, transformation optics and the Maxwell equations.

A.1

Coordinate Systems and Vectors

This dissertation makes use of two different notations to describe a point P in space-
time. When dealing with wave propagation in an optical device or metamaterial, it is
convenient to use a euclidean notation P = (t, x) with time t and location x

x = x ex + y ey + z ez.

Directions are indicated by unit vectors ei for i ∈ {
x, y, z

}
.

When differential techniques are applied as in chapters 2 and 4, the relativistic notation
P = (x0, x1, x2, x3) is most appropriate and consists of a time coordinate x0 = ct and space
coordinates xi =

{
x, y, z

}
for i ∈ {1, 2, 3}. As explained in appendix B, coordinates define

coordinate bases dx0 = cdt and dxi =
{
ex, ey, ez

}
with respect to which vectors V are

expressed

V =

μ=3∑
μ=0

Vμdxμ, (A.1)

= Vμdxμ.

We use the Einstein summation convention to sum over contracted, i.e. repeated, upper
and lower indices. Greek upper and lower indices indicate a summation over all space-
time coordinates, including the time component, while Roman indices imply spatial
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Mathematical Object Time- and space-dependent Purely space-dependent

Scalar U U
Vector V V

Vμ Vm

Covector W W
Wμ Wm

Tensor of rank
(

l
k

)
T T

Tμ1μ2...μl
ν1ν2...νk

Tm1m2...ml
n1n2...nk

Table A.1: Conventions of tensorial notation. Time-dependent objects are denoted
with a curly type set while purely spatially dependent objects are straight. The

components distinguish themselves through Greek or Roman indices.

summations only

V =

m=3∑
m=1

Vmdxm, (A.2)

= Vmdxm.

To distinguish vectors which depend on both space and time from those which are
purely space-dependent, the former are expressed with a curly typeset, i.e. P, while
the latter have a plain typeset, i.e. P. Table A.1 provides an overview of different
typesetting conventions. We refer to appendix B for the mathematical meaning of the
differential-geometric objects.

A.1.1 Geometrical Objects

The applications of transformation optics throughout this dissertation are restricted to
time-independent geometries. Therefore, we consider a spatial metric g with determi-
nant g and components gij (appendix B). These are incorporated into a four-dimensional
spacetime geometries Gwith orthogonal time and spatial components

Gμ,ν =
(
−g00 0
0 g

)
,

with g0i = 0 = gi0 for i ∈ {1, . . . , 3}. Our spatial metric g corresponds to the particular
case for which g00 = 1. The familiar flat, euclidean space is obtained when the spatial
metric reduces to an identity matrix

gE =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
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The Kronecker delta δi j provides the component-based notation of this metric

δi j =

{
1 i = j,
0 otherwise. (A.3)

The inverse of the spatial metric gij is defined as

gijgjk = δ
i
k,

similar to the notion of an inverse matrix. It is frequently used to raise indices of
tensorial objects, e.g., Vi = gikVk, so that they can be used for contraction to a scalar s

s = ViVi.

Another important tensorial object is provided by the totally anti-symmetric symbol

[i jk] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+1 if [i jk] is an even permutation of [123],
−1 if [i jk] is an odd permutation of [123],
0 Otherwise,

(A.4)

which provides a compact notation for the rotor of vectors V and W

(V ×W)i = [i jk] VjWk. (A.5)

In Riemannian geometries with a curved space instead of a flat space, this symbol is
replaced by the Levi-Civita tensor εi jk (B.16).

A.1.2 Derivatives

We use the following shorthand notation for the partial derivative operator

∂μ =
∂
∂xμ
,

with μ ∈ {0, . . . , 3}. Because partial derivatives are not tensors, however, the notion of
’raised index’ needs to be defined with care

∂μ = gμν∂ν.

The order of appearance is important as the geometries may be spatially dependent.

The Jacobian Λi
i′ of a coordinate transformation Xi which expresses coordinates xi in

terms of coordinates xi′ , ⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1 = X1(xi′),
x2 = X2(xi′),
x3 = X3(xi′),

(A.6)

is key to the framework of transformation optics. It is defined as

Λi
i′ =
∂xi

∂xi′ . (A.7)
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A.2

Conventions of Auxiliary Spaces in Transformation Optics

As explained in chapter 2, the transformation-optical framework predicts which electric
and magnetic material parameters εi j and μi j impose the same light propagation as that
within a curved design space. Indeed, the equivalence relations ((2.13)-(2.14)) impose
identical Maxwell equations to the deformed space ((2.9)-(2.12)) and the device ((2.5)-
(2.8)).

Literature provides two ways (Ref. [1] and [2]) to interpret the mechanism behind the
transformation-optical design.

A.2.1 An active coordinate transformation with three auxiliary spaces

This dissertation describes the metamaterial design of transformation optics with the
convention of Ref. [1]. As discussed in chapter 2, a coordinate transformation acts
on a flat ’electromagnetic space’ to design the ’deformed physical space’ with desired
light propagation. This nomenclature emphasizes the difference in appearance which
is induced by the change of coordinates. The transformation is active.

To impose the material parameters, the Maxwell equations of ’physical space’ are sub-
sequently imposed to the space of the device. This equivalence is achieved by the
aforementioned equivalence relations.

A.2.2 A passive coordinate transformation with two auxiliary spaces

In contrast, the convention of Ref. [2] emphasizes that, according to the principle of
covariance, a change in coordinates does not alter the underlying physics of both spaces.
In essence, the deformed space is equivalent to the undeformed space so that both are
referred to as the ’electromagnetic space’. The coordinate transformation is considered
to be passive.

The equivalence relations now define material parameters of the device. The actual
environment, the flat euclidean space, which contains the metamaterial, is physically
present in the lab. Therefore, this space is referred to as the ’physical space’.

Both conventions use identical words with different meanings. Hence, it is important
to identify which convention applies to which literature.
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A.3

The Maxwell Equations

A.3.1 Unit Conventions

In literature, the microscopic Maxwell equations are often expressed with respect to
three different unit conventions: SI units, Heaviside units and Gaussian units.

The SI convention aremostly used throughout this dissertation. Using thematerial prop-
erties of the vacuum, the permittivity ε0 and permeabilityμ0, the electricE andmagnetic
fieldsB of different dimensions are related by the microscopic Maxwell equations

∇ ·E =
ρtot
ε0
, (A.8)

∇ ·B = 0, (A.9)
∇ × E = −∂tB, (A.10)

∇ ×B = μ0jtot +
1
c2
∂tE. (A.11)

Heaviside units, are partially used in Appendix B because they provide an efficient way
to deal with special and general relativistic systems. In this unit system, magnetic and
electric fields have equal dimensions thanks to the speed of light in vacuum c = 1√

ε0μ0
.

∇ ·E = ρtot, (A.12)
∇ ·B = 0, (A.13)

∇ × E = −1
c
∂tB, (A.14)

∇ ×B =
1
c

jtot +
1
c
∂tE. (A.15)

Finally, we do not consider the Gaussian units as the additional factors of 4π only serve
to symplify integrations in spherical coordinates.

Becausewe considermonochromaticwaves of fixed frequencyω, this dissertationworks
in the frequency domain with time-independent fields

E(t, x, y, z) = E(x, y, z) e−iωt,

H (t, x, y, z) = H(x, y, z) e−iωt,

D(t, x, y, z) = D(x, y, z) e−iωt,

B(t, x, y, z) = B(x, y, z) e−iωt.

The macroscopic fields D and H appear when considering the macroscopic Maxwell
equations.
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A.3.2 Macroscopic Maxwell Equations

In the presence of a medium, the microscopic fields describe the local responses of all
charges ρtot and jtot. We assume these responses are instantaneous, such that we work
in the frequency domain. When the wavelength of the radiation is sufficiently long,
the macroscopic Maxwell equations provide a more economical way to describe the
medium (subsection 2.4.1)

∇ ·D = ρfree, (A.16)
∇ ·B = 0, (A.17)
∇ × E = iω B, (A.18)
∇ ×H = jfree − iωε0D. (A.19)

They introduce averaged fields and averaged electric and magnetic responses such that
only free charges ρ f ree and currents j f ree due to metallic particles or defects appear as
source terms of four macroscopic fields, the electric field E, the magnetic field B, the
dielectric displacementD and the magnetic field strengthH .

Because theMaxwell equations only contain six independent equations, when assuming
charge-current conservation, two of these fields are related by constitutive relations

Di = ε0ε
i jEj, (A.20)

Bi = μ0μ
i jHj. (A.21)

In this dissertation, we frequently use an isotropic, dielectric constitutive relation

Di = ε0ε(z) δi jEj Bi = μ0 δ
i jHj,

with a permittivity profile corresponding to a slab waveguide (3.7).

Using Eq. (A.20) and Eq. (A.21), the macroscopic Maxwell equations of a nonmetallic
medium—ρ f ree and j f ree equal to zero—have the following component notation

∂i

(
ε0ε

i jEj

)
= 0, (A.22)

∂i

(
μ0μ

i jHj

)
= 0, (A.23)∑

jk

[i jk]∂ jEk = iω μ0μirHr, (A.24)

∑
jk

[i jk]∂ jHk = −iωε0εirEr. (A.25)

The rotor is expressed by the Levi-Civita symbol according to Eq. (A.5).

A.3.3 Macroscopic Wave Equations

The remainder of this appendix derives thewave equation of themagnetic field strength
for an arbitrary electromagnetic medium within its principal axes reference frame.
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We assume the electric and magnetic responses are anisotropic, inhomogeneous and
simultaneously diagonalized

εi j =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
ε1 0 0
0 ε2 0
0 0 ε3

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (A.26)

μi j =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
μ1 0 0
0 μ2 0
0 0 μ3

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (A.27)

From the perspective of transformation optics (Eq. (2.13) and Eq. (2.14)), the material
parameters are only consistent with diagonal metrics.

The magnetic wave equation follows from the rotor of the law of Ampère (A.25) in
combination with the law of Faraday (A.24) to simplify the results. Exceptionally, we
will not apply the Einstein summation convention as it is confusing for flat euclidean
spaces. The left hand side of (A.25) leads to

∇ × [∇ ×H] =
∑

m
∂i (∂mHm) − ∂2mHm,

a divergence term on the left and a Laplacian operator on the right. The right-hand side
is simplified after substantial algebraic manipulations

−iε0ω ∇ ×
(
εi jEj

)
= −iε0ω

∑
jk

[i jk]
(
εk∂ jEk + ∂ jε

kEk

)
,

=
∑
k�i

εkμiω2

c2
Hi − iωε0

⎛⎜⎜⎜⎜⎜⎜⎝
∑

jk

[i jk]εk∂kEj + ∂ j

(
εk

)
Ek

⎞⎟⎟⎟⎟⎟⎟⎠ .
The remaining electric fields are now simplified by using the law of Ampère (A.25),
such that we arrive at thewave equations in a principal axes system for fully anisotropic
materials for each i ∈ {1, . . . , 3}∑

m
∂2mHi −

∑
m
∂i∂mHm +

∑
k�i

εkμiω2

c2
Hi

+
∑

jk

|[i jk]|
∂ jεk

εk

[
∂iHj − ∂ jHi

]
+

∑
jk

|[i jk]| ε j∂ j

( 1
εk

[
∂ jHi − ∂iHj

])
. (A.28)

Isotropic Wave Equation and the Ray Approximation

In particular, we are interested in wave equations corresponding to isotropic and uni-
axial materials. For an isotropic material ε = εi and μi = μ with i ∈ {1 . . . 3}, the wave
equation (A.28) reduces to

[
∂2x + ∂

2
y

]
Hi + ∂

2
zHi +

εμω2

c2
Hi + ∂i

[∇μ
μ
·H

]
+

[∇ε
ε
× (∇ ×H)

]
.
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We recognize the refractive index n =
√
εμ in front of the frequency-dependent term

and logarithmic terms ∇μμ and ∇εε , due to the inhomogeneous medium.

We are now able to understand the ray approximation in more detail. If the mag-
netic field contains a slowly varying amplitude H0(x, y, z) and a quickly varying phase
φ(x, y, z)

H(x, y, z) = H0(x, y, z) eiφ(x,y,z) (A.29)

and propagation vector β

β = ∇φ(x, y, z), (A.30)

β = ne f f
ω
c
, (A.31)

the full wave equation splits into a zeroth-order A, first-order B and second-order C
contribution in ωc ,

A + B + C = 0,

A = ΔH0 +
∇ε
ε
× (∇ ×H0) +

(∇μ
μ
· ∇

)
H0,

B =
[
∇ ·β −

(∇ε
ε
·β

)]
H0 + β

[
∇ε
ε

+
∇μ
μ

]
·H0

C =
(
εμ − n2

e f f

) ω2

c2
.

These results are similar to the derivation of Ref. [3] which derives the electric wave
equation directly from theMaxwell equations of an isotropic, inhomogeneous medium.
The zeroth order operator A only acts on the amplitudes, the first-order operator B acts
once on the phase and once on the inhomogeneous amplitude while the second order
operator C acts twice on phase.

In the limit of the ray approximation, when the wavelength becomes negligibly small
and the phase oscillates rapidly, the wave equation reduces to the operator C. This
equation is often referred to as the eikonal equation. Because the polarization of the field
does not affect C—the fields do not couple—the ray approximation treats fields as if
they are scalars. In this scalar approximation, the wave equation in physical space is
equal to (4.29) and the propagation vector (A.30) determines the fields completely.

Uniaxial Material Parameters

In case of uniaxial constitutive relations

εi j =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
ε̃ 0 0
0 ε̃ 0
0 0 εz

⎞⎟⎟⎟⎟⎟⎟⎟⎠ μi j =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
μ̃ 0 0
0 μ̃ 0
0 0 μz

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (A.32)
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wave equation (A.28) changes into two separate expressions, one for in-plane magnetic
field strength components i, j ∈ {

x, y
}
and j � i

[
∂2x + ∂

2
y

]
Hi +

εz
ε̃
∂2zHi +

εzμ̃ω2

c2
Hi +

∂ jεz

εz

[
∂iHj − ∂ jHi

]
= 0, (A.33)

and one for the orthogonal component of the wave equation

[
∂2x + ∂

2
y

]
Hz + μz∂

2
zHz +

ε̃μzω2

c2
Hz (A.34)

+
∂xε̃
ε̃

[∂zHx − ∂xHz] +
∂yε̃

ε̃

[
∂zHy − ∂yHz

]
= 0. (A.35)

We notice the extraordinary magnetic component only appears in the z-component
wave equation which is completely decoupled from the other wave equations. Thus, if
the fields have no orthogonal Hz component, as for TMmodes in a slab waveguide, one
might use an isotropic magnetic material with μ = μ̃. Additionally, if μ̃ is equal to one,
the material is nonmagnetic.
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Appendix B

Differential Geometry

In this Appendix, we derive the Maxwell equations on a curved space. In doing so,
we establish several differential-geometrical relations which are important when

adapting the traditional transformation-optical framework for manipulating a realistic
slab waveguide. We will relate the time-independent results of this dissertation to the
relativistic formulation valid within a curved space-time.

B.1

Coordinate Bases and Transformations

Before we are able to understand how a coordinate transformation, and a Riemannian
geometry, modify the Maxwell equations on a flat space, we investigate what coor-
dinates, vectors and coordinate bases really represent in a curved geometry.∗ Each
space-time pointP is expressed with respect to a set of coordinates xμ which define four
independent directions corresponding to base components dxμ. Technically, these base
components are part of a coordinate base, constructed by partial differential operators
dxμ = ∂

∂xμ . Therefore, Fig. B.1 shows how these bases change

dxμ =
∂xμ

′

∂xμ
dxμ′ (B.1)

when an inversible, differentiable coordinate transformation

xμ = Xμ(xμ
′
), (B.2)

swaps the coordinate system xμ
′
for another coordinate system xμ with μ, μ′ ∈ {0, . . . , 3}.

Because of its reversibility, the Jacobian Λ
μ′

μ = ∂xμ
′

∂xμ has a nonzero determinant Λ =

det∂x
μ′

∂xμ . Thanks to the covariance of physical theories, each vectorV at the point P

V = Vμeμ, (B.3)

∗For notational conventions, we refer to Appendix A
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Figure B.1: The effects of a coordinate transformation on two coordinate basis
covectors dx1′ and dx2′ .

expressedwith respect to a particular basis and coordinate system xμ, should not funda-
mentally change because of this coordinate transformation. To achieve this, the vector
components Vμ transform in the following way

Vμ = Λ
μ
μ′V

μ′ , (B.4)

dxμ = Λ
μ′

μ dxμ, (B.5)

if Λμ
′

ν is the inverse of the Jacobian Λ
μ
μ′

Λ
μ
μ′Λ

μ′

ν = δ
μ
ν .

The reader might verify the vector (B.3) indeed does not change due to a coordinate
transformation because the Jacobians of Eq. (B.4) and (B.5) cancel exactly.

B.2

Vectors, Covectors and Tensorial Objects

In addition to vectors, there are several other tensorial objects which are relevant to
transformation optics. Similar to vectors, these tensorial objects use the Jacobian Λ

μ
μ′

of an arbitrary coordinate transformation (B.2) to maintain a coordinate-independent
meaning. We shortly describe these transformation properties for two different mathe-
matical objects, covectors and tensors, and refer to [1] for a detailed treatment.

AcovectorWwith componentsWμ is dual to thenotionof avector andwill play a crucial
role throughout this dissertation. Its transformation rule is derived by contracting it
with a vector Vμ to produce a scalar s

s = WμVμ. (B.6)
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Because scalars do not depend on coordinate systems in any way, the covector trans-
forms according to

Wμ = Λ
μ′

μ Wμ′ . (B.7)

as it needs to compensate the change of the vector components (B.4).

The most general tensorial object T of rank (l, k) has l upper and k lower indices. When
such a tensor is contracted with l different covectors Wνi with i ∈ {1 . . . l} and k arbitrary
vector components Vμ j with j ∈ {1 . . . k}

s = Tν1...νl
μ1...μk

Vμ1 . . .Vμk Wν1 . . .Wνl ,

it also produces a scalar which remains invariation under coordinate transformations.
Therefore, Tν1...νl

μ1...μk
transforms in the following way

Tν1...νl
μ1...μk

= Λν1ν1 . . .Λ
νl
ν′l
Λ
μ′1
μ1 . . .Λ

μ′k
μk

T
ν′1...ν

′
l
μ′1...μ

′
k
. (B.8)

All upper indices transform as vector components while all lower indices transform as
covector components. In particular, this dissertation makes use of two tensorial objects,
themetric tensor gμν and the three-dimensional totally antisymmetric Levi-Civita tensor
εi jk.

B.2.1 The Metric Tensor gμν

As explained in chapter 2, the effect of transformation-optical metamaterials on light is
identical to that of a Riemannian geometry with metric tensor gij. This metric tensor
determines a distance between, or a norm of, two vectors dxμ and dxν

ds2 = gμνdxμdxν. (B.9)

Because the order of the vectors dxμ and dxν does not affect the value of the distance ds2,
the metric is necessarily symmetric gμν = gνμ. According to the tensor transformation
rule, the metric changes in the following way

gμν = Λ
μ′

μ Λ
ν′
ν gμ′ν′ (B.10)

with initial coordinates xμ
′
expressed as a function of the final coordinates xμ. The

determinant g is not a scalar
g = Λ2g′, (B.11)

as there is a factor Λ = detΛμ
′

μ which depends on the coordinate transformation. In
particular, if the initial space has a flat, spatial geometry gij = δi j —as is mostly the case
for the electromagnetic space in transformation optics—the coordinate transformation
induces the following spatial metric

gij = Λi′
i Λ

j′

j δi′ j′ , (B.12)

g = Λ2. (B.13)
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Finally, the metric gμν has one other important property. Together with the inverse
metric gij which determines distances between covectors dxμ and dxν

ds2 = gμνdxμdxν,
δ
μ
ρ = gμνgνρ,

it has the capacity to raise and lower indices of vectors V, covectorsW and tensorial
components as illustrated below

Vμ = gμνVν Tμ1... μl−1
ν0ν1...νk

= gν0μlT
μ1...μl

ν1...νk
,

Wμ = gμνWν Tμ1... μl+1
ν2...νk

= gμl+1ν1Tμ1...μl
ν1...νk
.

Therefore, a metric is capable of producing covectors out of vectors and vice versa.

B.2.2 The Levi-Civita Tensor εi jk

In a flat space, the cross product of two covectors V and W

(V ×W)i = [i jk] VjWk, (B.14)

is written in component form using a totally antisymmetric symbol with respect to a
right-handed coordinate system

[i jk] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+1 if [i jk] is an even permutation of [123],
−1 if [i jk] is an odd permutation of [123],
0 Otherwise

(B.15)

with i, j, k ∈ {1, 2, 3}. If the cross-product is generalized such that it still is a vector on
a Riemannian geometry, the antisymmetric symbol ε̃i jk = [i jk] should be a 3-tensor.
However, as a consequence of the relation between the determinant of a matrix and the
totally antisymmetric symbol, [i′ j′k′] transforms according to [2]

ε̃i jk = Λi
i′Λ

j
j′Λ

k
k′ [i

′ j′k′],

= ±detΛ [i jk],
� [i jk],

with Jacobian Λ = det xμ
xμ′

. The plus sign corresponds to a transformation which pre-
serves the handedness of the coordinate system while the minus sign is associated to a
transformation which reverses the handedness of the coordinate system. Though there
is an anomalous factor detΛwhich prevents [i jk] from being a 3-tensor, Eq. (B.13) shows
how to correct it. We use the determinant of the metric to omit the Jacobian factor and
define the Levi-Civita tensor εi jk as follows

εi jk =
±1√

g
[i jk]. (B.16)
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In this way, the generalized cross product of two covectors on a three-dimensional
spatial Riemannian geometry is equal to

V×W = εi jkVjWk. (B.17)

and agrees with Eq. (B.17) in the case of a flat space, g = 1. When all indices of the
Levi-Civita tensor are lower case, i.e. the tensor is ’inversed’, the metric factor appears
in the nominator instead

εi jk = ±
√

g
[
i jk

]
. (B.18)

As a consequence, the Levi-Civita tensors with upper indices and lower indices (Eq.
(B.16)) contract independent from the geometry

εi jkεklm =
∑

j k l m

[i jk][klm], (B.19)

= δi
lδ

j
m − δi

mδ
j
l .

B.3

Covariant Maxwell Equations on a Spatial Geometry

We now use the Principle of Equivalence to derive the Maxwell equations on a spa-
tial, three-dimensional Riemannian geometry with metric gij. Next to covariance, this
Principle states each point P in space has a particular coordinate system xi′ with respect
to which the geometry becomes locally flat gi′, j′ = δi′ j′ . In the presence of an isotropic
dielectric ε̃, the macroscopic Maxwell equations are equal to

∂i′
(
ε̃Ei′

)
= 0, (B.20)

∂i′Hi′ = 0, (B.21)
[i′ j′k′] ∂ j′Ek′ = −μ0 ∂t

(
Hi′

)
, (B.22)

[i′ j′k′] ∂ j′Hk′ = ε0 ∂t
(
ε̃Ei′

)
. (B.23)

This component notation guarantees the Gauss laws ((B.20)-(B.21)) are scalar equations,
due to the Einstein summation convention, while the expression of the cross-product in
terms of components (Eq. (B.14)) is applied to the left hand sides of the laws of Faraday
(B.22) and Ampère (B.23). Only when the differential operators, i.e. the divergence and
rotor operators on a flat space

∇ ·V = ∂iVi, (B.24)
[∇ ×W]i = [i jk] ∂ jWk, (B.25)

are generalized to a Riemannian geometry, we obtain spatially covariantMaxwell equa-
tions ((B.39)-(B.42)).
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B.3.1 The Covariant Derivative

Intuitively, Fig. B.1 implies the derivative of a vector V = Vidxi, i.e., the infinitesimal
change in the vector as it is moved along a coordinate line, contains two contributions

∂ jV =
(
∂ jVi

)
dxi + Vi

(
∂ j [dxi]

)
, (B.26)

one due to the change of vector components Vi and one due to the base component dxi.
To simplify this expression, we define a connection Γi

jk, a set of 27 coefficients which
expand the derivative of dxi in a linear way with respect to the complete coordinate
basis dxk

∂ j [dxi] = Γk
jidxk. (B.27)

After relabeling some dummy indices, Eq. (B.26) and (B.27) define the covariant deriva-
tive ∇ jVi of a vector

∂ jV =
(
∂ jVi + Γi

jkVk
)

dxi, (B.28)

∇ jVi = ∂ jVi + Γi
jkVk, (B.29)

which is indeed a 2-tensor because of the definition of the Christoffel symbols (B.27).

The derivative of a covector W then immediately follows from the Leibniz rule of
differentiation applied to Eq. (B.6)

∇ jWi = ∂ jWi − Γk
jiWk. (B.30)

Notice that the covariant derivative yields another 2-rank tensor, with two lower indices
and a minus sign as compared to Eq. (B.29).

B.3.2 Geometrical Assumptions

The divergence and rotor on aRiemannian geometry gij now follow from two additional
geometrical assumptions [1]. Firstly, we assume the connection (B.27) is torsionless,
i.e. symmetric in the lower indices Γi j. Secondly, the covariant derivative is metric
compatible

∇gij = 0. (B.31)

Both assumptions are very restrictive and relate the connection coefficients in a unique
way to the metric components

Γi
jk =

1
2

gir
[
∂ jgrk + ∂kgjr − ∂rgjk

]
. (B.32)

Since this particular connection Γi
jk is very important to General Relativity, they have

several names among which Christoffel symbols and Levi-Civiita symbols occur most
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often. We will use the symmetry Γi
jk = Γi

k j in Section B.4 to simplify the derivation of
the wave equations on a Riemannian geometry considerably.

The aforementioned assumptions influence the nature of theRiemanniangeometry in an
important way. Generally, the curvature of a space is characterized by the Riemannian
4-tensor Ri

jkl. In a flat space, any vector Vi that is parallel transported around a small
closed loop, has exactly the same ’orientation’ when it arrives at the starting point.
Curvature, however, twists the space and induces a change δVi between the initial and
the final vector

δVi = Ri
jklV

j,

if it is moved along a quadrilateral curve with sides along the k and l direction. Mathe-
matically, this change is expressed by the commutator of covariant derivatives

[∇k∇l − ∇l∇k]Vi = Ri
jklV

j, (B.33)

which defines the Riemannian tensor

Ri
jkl = ∂kΓ

j
il − ∂lΓ

j
ik + Γi

krΓ
r
l j − Γ

i
lrΓ

r
k j. (B.34)

As expected, it is antisymmetric with respect to the indices k and l since the loop is
transversed in the opposite direction if these are exchanged.

TheRieman tensor produces two important lower-dimensional tensors. TheRicci tensor
Rkl is obtained when contracting one pair of indices

Rjl = Ri
jil. (B.35)

Therefore it changes the commutator (B.33) into

RjlVl =
[
∇ j∇l − ∇l∇ j

]
Vl. (B.36)

This relation will play an important role in chapter 4 when deriving the wave equation
in a Riemannian geometry. From the Ricci tensor, it is possible to derive the second
important ’tensorial’ object. This is simply the scalar curvature R

R = Ri
i.

Because the curvature is described by tensorial objects, clearly these vanish in any space
which is connected by an invertible, differentiable coordinate transformation to a flat
space. Therefore, in this dissertation, we assume

Ri
jkl = 0,

Rij = 0,
R = 0,

such that covariant derivatives commute.
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B.3.3 Differential Operators

Because the covariant derivative is a tensorial object, the divergence (B.24) and ro-
tor (B.25) are immediately generalized to a Riemannian geometry gij when the partial
derivatives are replaced by covariant derivatives and the antisymmetric symbol is ex-
pressed by the Levi-Civita tensor B.16

∇ ·V = ∇iVi,

[∇ ×W]i = εi jk∇ jWk.

Using the symmetry of the lower indices in the Christoffel connection (B.32), these
equations are elegantly expressed with respect to partial derivatives

∇ ·V =
1√
g
∂i

(√
ggijVj

)
, (B.37)

∇ ×W = ±
[i jk]
√

g
∂ jWk. (B.38)

When using Eq. (B.37) and Eq. (B.38) it is extremely important never to swap the partial
derivatives with metric components. Metric compatibility is only guaranteed by the
full covariant derivative (Eq. (B.29) and Eq. (B.30)).

B.3.4 Spatially Covariant Maxwell Equations

Using the generalized definitions of the divergence (B.37) and rotor (B.38), the Maxwell
equations ((B.20)-(B.23)) in righthanded locally flat coordinates xi′ may now be ex-
pressed with respect to arbitrary righthanded coordinates xi with nontrivial metric gij

∂i

(√
g ε̃gijEj

)
= 0, (B.39)

∂i

(√
g gijHj

)
= 0, (B.40)

[i jk] ∂ jEk = −μ0 ∂t
(√

ggirHr
)
, (B.41)

[i jk] ∂ jHk = ε0 ∂t
(√

gε̃girEr
)
. (B.42)

These equations implicitly assume themetric determinant is time-independent such that
it can be exchanged with the time derivative in the laws of Faraday and Ampère. Both
sets of Maxwell equations, those in a flat geometry with an isotropic dielectric ε̃ ((B.20)-
(B.23)) and those in aRiemannian geometry ((B.39)-(B.42)), are respectively related to the
electromagnetic space and the physical space of the transformation optical framework
(Chapter 2) [2].

Although we obtained the correct Maxwell equations on a Riemannian geometry, there
are some ambiguities which are only resolved by a fully covariant relativistic treatment.
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In writing down the Maxwell equations ((B.20)-(B.23)), we implicitely assumed the
physical observables

Di = ε̃Ei,

Bi = μ0Hi,

are vectors with upper indices as they appear on equal footing with the electric current
density j. This has important consequences for the expression of the equivalence rela-
tions as these require an accurate description of the vectorial or covectorial nature of
the fields in flat space. Therefore, we have derived an alternative explanation to that of
literature to confirm this picture.

The relativistic, covariant Maxwell equations are expressed by one anti-symmetric two-
form [3]

F = Fμνdxμdxν, (B.43)

in the following way

∇νFμν = Jμ, (B.44)
∂[ρFμν] = 0, (B.45)

using a microscopic 4-vector current Jμ =
(
ρ, j

)
containing all charges and currents

with respect to a particular coordinate system. The second equation (B.45)—known as
the Bianchi identity—uses the totally antisymmetric symbol

[
ρμν

]
which has a similar

definition as Eq. (B.15). Therefore, the symmetry of the Christoffel symbols allows
writing it with partial derivatives instead of covariant ones.

We now apply the partial derivative formulation of the divergence (B.37) to the first
equation (B.44), and distinguish between space- and temporal values of μ

∂ν
(√

g F0ν
)
=
√

g ρ,

∂ν
(√

g Fmν
)
=
√

g jm.

If we assume the presence of a dielectric, with bound charges ρP = −∇ ·P and currents
jP = ∂tP with Pm = χF0m, the covariant Maxwell equations in a curved space are equal
to

∂n
(√

g [1 + χ] F0n
)
= 0, (B.46)

∂n
(√

g Fmn
)
= ∂t

(
[1 + χ] jm

)
. (B.47)

The first Eq. (B.46) does not contain a temporal index ν = 0 because Fμν is antisymmetric.
Similarly, the second Eq. (B.47) requires m is different from zero and from n. Then, Eq.
(B.46) and (B.47) respectively reduce to the macroscopic Gauss law (B.39) and the law
of Ampère (B.42) if we define

Dn =
√

g ε̃ F0n, (B.48)

Bn =

√
g
2
εnlmFlm, (B.49)
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using the Levi-Civita tensor εnlm (B.16) and permittivity ε̃ = 1 + χ. The macroscopic
fields D and B indeed have upper indices. However, because of the transformation
rule of the metric (B.11), an additional factor det Λ appears with respect to a purely
(spatial) vectorial transformation. Thus, these fields transform as pseudo-vectors, or
more generally, tensor densities of weight +1. Similarly, the Bianchi identity (B.45)
identifies an electric field En and magnetic field strength Hn

En = Fn0, (B.50)

Hn =
εnlm

2
Fim. (B.51)

Thesefields transformas spatial covectors. Therefore, the component notation in ((B.20)-
(B.23)) is uniquely defined by the vectorial character of the current density and the
relativistic Maxwell equations. Throughout this dissertation, the curved geometry acts
on the magnetic fields strength (B.51) as if it is a covector.

B.4

Wave Equations on a Riemannian Geometry

In this Section, we derive the wave equations related to the laws of Faraday (B.41) and
Ampère (B.42) on a Riemannian geometry in terms of partial derivatives. Since the
covariant derivative acts differently on scalars, vectors (B.4) and covectors (B.7), the
resulting wave equations have different signatures related to the tensorial nature of the
object on which they act. The covector wave equation is in particular important as it
provides the Helmholtz equation in physical space of the TMmode with magnetic field
strength H.

B.4.1 Covector Wave Equation

As in Subsection 4.2.1, we obtain the wave-equation of a covector magnetic field H
when acting on the law of Ampr̀e with a generalized rotor (B.38)

εi jk∇ j
(
εklm∇lHm

)
− ε̃(z)ω

2

c2
Hi = 0. (B.52)

We now focus on the geometrical dependence of the first term. Instead of exploiting the
metric compatibility (B.31) as in Subsection 4.2.1, we explicitely introduce the covariant
derivatives into the rotor operators. The inner covariant derivative of Eq. (B.52)

(
εklm∇lHm

)
=

∑
l m

[klm]√
g
∂lHm,

simplifies to a partial derivative because the symmetric Christoffel symbol Γk
lr (B.32)

contracts with the totally antisymmetric symbol [klm]. More importantly, the outer
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covariant derivative does not simplify because it acts on a vector

Vk =
∑
lm

[klm]√
g
∂lHm

in the following way (B.29) ∑
j k l m

[i jk]
√

ggjr
[
∂rVk + Γk

rsV
s
]
,

∑
j k l m s

[i jk][slm]
√

ggjr
[
δs

k ∂r

(
1√
g
∂lHm

)
+

1√
g
Γk

rs ∂lHm

]
. (B.53)

Using the contraction property of totally antisymmetric symbols (B.19), we obtain a
general expression for the rotor dependent terms of the wave equation (B.52)

√
ggjr∂r

(
1√
g
∂ jHi

)
− √ggjr∂r

(
1√
g
∂iHj

)

−
∑

j k s l m

gjr [i jk] [slm] Γk
rs ∂lHm +

ε̃(z)ω2

c2
Hi = 0, (B.54)

which consists of a laplacian term (upper left), a term related to the divergence (upper
right) and a term due to the nontrivial geometry of physical space (lower left) together
with the frequency-dependent term of Eq. (B.52).

B.4.2 Other Wave Equations

All other wave equations are derived in a similar way. If the electromagnetic field
components are approximately described by a scalar function φ(xi)—an assumption
which is valid in the ray approximation—thewave equation simply contains a laplacian
operator Δ

Δφ(xi) +
ε̃(z)ω2

c2
φ(xi) = 0,

Δφ(xi) = ∇ j∇ jφ(xi).

Because φ(xi) does not connect to any coordinate base component dxi, its covariant
derivative ∇i is equal to a partial derivative ∂i. The gradient vector is obtained when
the index is raised

∇ jφ(xi) = gir∂rφ(xi),

such that the wave equation is equal to

1√
g
∂ j

(√
ggjr∂rφ(xi)

)
+
ε̃(z)ω2

c2
φ(xi) = 0. (B.55)
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The vector wave equation is derived in a similar way to the covector wave equation.
The covariant wave equation

εi jk∇ j

(
εklm∇lHm

)
− ε̃(z)ω

2

c2
Hi = 0, (B.56)

differs from the covector equation (B.52) in that all upper indices become lower indices
and vice versa. This has important consequences for the inner rotor

εklm∇lHm = εklmglr [∂rHm + Γm
rsH

s] ,
which does not reduce to a simple partial derivative because the Christoffel coefficients
have no symmetry in the upper-indices. Therefore, the general wave equation in a
Riemannian geometry contains an additional dependence on the Christoffel symbol as
compared to the covector wave equation (B.54)

1√
g
∂k

[√
ggir∂rHk

]
− 1√

g
∂k

[√
ggkr∂rHi

]
(B.57)

1√
g
∂k

[√
ggirΓk

rsH
s
]
− 1√

g
∂k

[√
ggkrΓi

rsH
s
]
. (B.58)

The covariant formulation (B.52) provides an important check on the covector (B.54) and
the vector wave equations (B.58). Due to metric compatibility, the covector magnetic
field strength Hi

Hi = gisHs, (B.59)

in Eq. B.52 may be replaced by a vector Hs since metric components are easily put
outside of the differential operators. Therefore, the vector equation on Hs emerges from
the covector equation on Hi. Our partial derivative formulations of the covector (B.54)
and vector (B.58) wave equations indeed reduce to one another when substituting Hi
by Eq. (B.59). It is however not allowed to put the metric components out of the partial
derivatives, such that calculations are rather long.
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Appendix C

Comsol Multiphysics

To corraborate the analytical predictions of this dissertation,we reliedon twonumer-
ical softwares, Wolfram Mathematica 7 and Comsol Multiphysics 4v. This appendix

provides an overview of the relevant simulational and numerical techniques. Because
Mathematica is mainly a postprocessing tool, we focus on finite-element simulations in
the frequency domain as implemented by the Radio-Frequency (RF) module of Comsol.

C.1

The Finite-Element Method

Continuous partial differential equations, i.e., the electromagnetic wave equation with
initial conditions and boundary conditions, posses an infinite number of degrees of
freedom. Therefore, to solve these equation in a numerical way, the infinite number of
degrees of freedom should be reduced to a finite number of variables which a computer
can handle [1]. This is done by discretization of the simulation domain which contains
the subject or configuration of study together with appropriate boundary conditions.

To discretize and solve the Maxwell equations in a one-dimensional simulation domain
with N subdivisions, the solver needs to determine 3N field components, e.g., three
independent components of the electric fields which in turn determine the magnetic
fields through the law of Faraday. Additionally, spatial information is obtained by N
coordinate values associated to positions of different subdivisions. From now on, such
subdivisions are called mesh vertices. If now, we extend the simulation to d dimen-
sions, a homogeneous subdivision of the simulation domain requires Nd elements and
discretization of partial becomes increasingly nontrivial. Our simulation domains are
three-dimensional which requires efficient discretization, i.e. differential meshing, to
guarantee efficient computing. Differential meshes are inhomogeneous subdivisions
of the simulation domain which anticipate regions of intense fields or small geomet-
rical features require more mesh elements to guarantee a stable numerical solution
(subsection C.4).
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A discretized wave equation may be solved in two ways. Finite-difference methods
translate the initial continuous differential equations into difference equations at each
node/vertex. In this way, all partial derivatives are replaced by differences between
fields evaluated at neighboring nodes.

In this master dissertation we apply the finite-element method in the frequency do-
main. The finite-element method uses an integral formulation of the partial differential
equation. It defines volume elements, e.g., tetrahedral or quadrilateral elements which
are bound by vertices, such that the material properties and fields are approximately
constant within such a volume element. Then, it integrates the equations within such
a homogeneous element to obtain local, discretized Maxwell equations which depend
on the content of the mesh unit. Next to efficient meshing, the finite-element approach
demands the mesh is sufficiently fine such that the integral formulation is indeed valid.

After discretization, a large but finite number of variables, e.g., fields at vertices, need
to be solved. There are two types of solvers: a direct solver and an indirect solver.
Indirect solvers impose an initial solution to the discretized domain and reduce a merit
function in an iterative way [1]. We initially relied on this kind of solver as they require
less computational power. Therefore, they are capable to deal with large sets of vertices
and mesh elements which is convenient as our waveguide problem consists of various
length scales at which variations occur (subsection C.4). The success of indirect solvers
depends however on the quality of the initial guess and does not provide a guarantee
to a solution. We noticed that crucial simulations did not converge or only reached
solutions after long computation times.

Direct solvers use discretized physical equations to construct a stiffness matrix which
is inverted in a direct way to access the solutions. This type of solvers is fast but
requires more computational power and RAMmemory. Hence, they are not capable of
solving large meshes above 200.000 elements. However, because they certainly provide
a solution, we switched to direct solvers, and the PARDISO solver in particular, for the
beam bender simulations. This required substantial optimization of meshes, favoring a
quadrilateral mesh instead of a tetrahedral mesh (subsection C.4).

The remainder of this appendix considers how the numerical simulations deal with
boundary conditions, the infinite extent of the waveguide and meshing optimization.
Additionally, we mention a custom-made technique to excite and study diffractive
guidedmodeswhich are a collectionof several eigenfunctions to theHelmholtz equation
(chapter 3).

C.2

Infinitely Extended Domains

The slab waveguide (Fig. 3.1) and the waveguide bend (Fig. C.1) are infinitely-extended
systems. Therefore, numerical simulation domains should capture the physics of their
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Figure C.1: Simulation domain of a 30-degree beam bend without thickness varia-
tion. Along the orthogonal z-direction, there are three distinct layers. The waveg-
uiding layer of thickness ã is densely meshed (bottom, in green), an auxiliary
vacuum layer of two decay lengths is used for intermediate meshing density (mid-
dle) and a top vacuum layer has a coarser mesh (top). An input port excites
an eigenmode on an unperturbed waveguide which is bent towards a perfectly
matched layer (PML). We obtain our fields and VSWR from data points in the red

plane, lying in the center of the beam.

infinite extent despite truncation of the simulation domain. This requires appropriate
boundary conditions or ’reflectionless’ absorbing layers (PML) which are consistent
with the problem at hand.

C.2.1 Boundary Conditions

In this dissertation, boundary conditions are not only useful to truncate the domain
but also provide a selection mechanism for the guided modes we are looking for. We
will use perfect magnetic conductor (PMC) and the perfect electric conductor (PEC)
boundary conditions which are readily derived from extended laws of Faraday and
Ampère A.3.2

∇ × E = −jM − ∂tB, (C.1)
∇ ×H = jE + ∂tD, (C.2)

and include a magnetic current jM. Although scientists are convinced there does not
exist a fundamental type of magnetic charge, it is frequently used in computational
electromagnetism as they introduce duality into the Maxwell equations which allows
modeling magnetic fields in a similar way as electric fields. In the context of metama-
terials 2.4.1 such magnetic currents arise as a reinterpretation of antisymmetric electric
currents. Fig. C.2 illustrates this for a fishnet structure whose parallel planes have
opposite surface current densities.

The PMC and PEC conditions are respectively derived from the boundary condition
on an interface between our simulation domain and a perfect magnetical or electric
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Figure C.2: A Fishnet metamaterial unit (left) consisting of two metallic planes
at opposite sides of a dielectric which sustain current densities of opposite sign

(right). Picture obtained from Reference [2].

conductor. Then, the tangential components of the left hand sides of (C.1) and (C.2)
which contribute to the surface current should vanish. Thus, when the interface has a
normal vector n, we obtain the following boundary condition

n ×H = 0 and n × E = 0.

The profile of the TM fundamental mode (4.41) is compatible with those boundary
conditions in two ways. From Eq. (2.27) in chapter 2 we learn the magnetic field
strength obtains a radial component within the beam bend. Therefore, if we apply
a TM condition to the inner and outer radial boundary of the bend, solutions which
agree with the fundamental mode profile are favored at the expense of other modes or
sustained fields. Equivalently, for a straight waveguide, a PMC condition is applied to
the side planes which contain the propagation direction.

Importantly, these boundary conditions also induce reflections as soon as the tangential
magnetic field component to the boundary is not zero. When implementing the beam
bend without a thickness variation, these reflections are clearly visible (Fig. 5.4). Addi-
tionally, the PMCcondition allows arbitrarymagnetic fields orthogonal to the boundary.
This is an effective way to simulate infinitely extended plane waves as the amplitude
does not vary orthogonal to the boundary even when looking at fields close to it.

Secondly, the electromagnetic field component along the propagation direction of a
fundamental even TM mode is antisymmetric. Since z = 0 is the symmetry plane of
the waveguide, this implies all electric fields are orthogonal at that plane. Therefore
a PEC condition is applied without loss of generality. The boundary condition then
guarantees all electric fields are orthogonal to the plane such that the symmetry of the
guiding problem allows eliminating the lower half of the slab waveguide. Therefore,
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all our simulations and results are expressed with respect to half the thickness of the
waveguide d = 2a.

Although the in-plane PEC condition is extremely useful to reduce the simulation do-
main and the number of mesh elements in favor of numerical instability and computing
time, the PEC does change the physical problem the simulation solves for. If the com-
plete domain is considered without this boundary condition, odd magnetic modes are
also sustained by the guide. When imposing the PEC, this mode is eliminated as its
electric field is symmetric with respect to the symmetry plane and is nonzero at the PEC
plane. This does not affect the results of this dissertation because we work below the
cut-off frequency of the odd mode.

Finally, we also use a PEC condition on the upper boundary z = L of the waveguide.
This is not compatible with the evanescent tails of the TMmode which will reflect from
the boundary. Still, if L is sufficiently large, i.e. 5 decay lengths, the fields are heavily
attenuated below the numerical noise floor of the solver such that they are effectively
’zero’ at the upper boundary. Although Comsol is equipped with advanced absorbing
boundary conditions, e.g. the scattering boundary conditions and perfectly matched
layers (PML), these have trouble dealing with purely evanescent tails and cannot be
used to remedy the situation.

C.2.2 Perfectly Matched Layers

Ideally, if a truncated simulation domain should pretend to extend to infinity, one
might design a boundary layer which absorbs all incoming radiation without inducing
reflections. Then, the boundary acts as if the waves have simply propagated through it
towards infinity. It is generally very difficult to design such Perfectly Matched Layers
(PML’s). PML’s are defined as boundary layers which achieve perfect reflectionless
absorption if their thickness is increased together with the resolution of the mesh.
Many implementations claim to be a ’PML’ while they are simply good absorbers [3].

Computational problems such as efficient mesh generation and PML design lie at the
origin of transformation optics. Comsol Multiphysics implements their PML by the
following wavelength dependent coordinate transformation

t′ =
( t
ΔW

)n
(1 − i) λ F, (C.3)

where they define an order n, a scale factor F and a geometric width ΔW to relate
the coordinate of the simulation domain t′ to the coordinate of an infinitely stretched
medium t. We might interpret the coordinates t as a part of the electromagnetic space
which represents the infinite space of the original physical problem.

Eq. (C.3) is sensitively dependent on ’the’ wavelength λ of the simulation, is quite
sensitive. If we use the effective wavelength instead of the wavelength in vacuum
associated to the initial frequency, this leads to reflections. Additionally, in the context
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of diffraction (Section 3.4), we noticed the PML has difficulties dealing with oblique
incidence of various wavelengths.

Because the PML layer is linked to a transformation-optical interpretation, we slightly
modified it to be compatible with the profile of a slab waveguide in our simulation
domain. If this waveguide should appear in electromagnetic space with infinite extent,
Eq. (2.13) suggests the transformation should contain the refractive index profile n(z)
of the waveguide,

n(z) =
{ √
ε̃1 z > |a|,√
ε̃2 z < |a|. (C.4)

To achieve this, we multiply the scale factor F with the refractive index profile of the
guide and verify if the PML absorbs an incident guided mode perfectly (Fig. 3.9).

Because we are interested inminimizing reflections, we briefly consider how the PML is
interpreted in terms of the effective transformation-optical material parameters which
implement the PML in the simulation domain. According to Equivalence relations
(2.13) and (2.14), the transformation should indeed extend the physical coordinates into
the complex plane to obtain absorptive complex material parameters [3].

Generally, PML’s are designed by the following coordinate transformation

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x =

(
κx +

i
ωσx

)
x′,

y =
(
κy +

i
ωσy

)
y′,

z =
(
κz +

i
ωσz

)
z′,

(C.5)

where σx is the conductivity of the PML and κ attenuates evanescent waves. The
conductivity, i.e. absorption of radiative waves, is turned on gradually to avoid reflec-
tions. At finite mesh resolution or small thickness ΔW of the PML layer, reflections still
persist and have two contributions. Firstly, the back side of the PML contains a PEC
boundary condition which reflects incident waves which are not sufficiently attenuated
by the boundary layer. Reflections are observed if they emerge from the PML with
sufficient intensity after one round trip. Secondly, electromagnetic waves experience
reflections as they cross the interface towards the PML layer. Although transformation-
optics achieves impedance-matching which prohibits such transition reflections, as we
demonstrated in chapter 2 for the invisibility cloak, the finitemesh resolution discretizes
the conductivity profile and distorts impedance-matching in such a way that reflections
do occur.
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C.3

Mode Excitation

C.3.1 Excitation Ports

Comsol contains a default electromagnetic port which uses and eigenmode calculation
to determine propagating solutions of the Maxwell equations if one field, either electric
or magnetic, and a propagation vector are specified.

These ports exist in two varieties. The default implementation, which we use in all sim-
ulation domains except the extended domain in Fig. D.1, acts as a boundary condition
to incoming waves. Incoming waves are only absorbed if their field profiles match that
of the excited port. Otherwise, they are reflected.

Recently, Comsol released an alternative implementation, a domain-backed assembly
port,whichmaybeused inside the simulationdomain. Insteadof absorbingor reflecting
the incidentwaves, it calculates scattering parameters Sij between itself i and other ports
j in the geometry. Therefore, if one port is used inside the simulation domain, as in
Fig. D.1, the scattering coefficient S11 takes reflections into account from the reminder
of the domain. In particular, the S11 dominantly measures the relfections induced by
the waveguide/beam bender interface which is closest to the port.

C.3.2 Generation of non-eigenmodal field excitation

In Section 3.4, wementioned diffracting guidedwaves are a (plane-wave) superposition
of eigenmodes with distinct propagation vectors. Therefore, the electromagnetic port is
not equipped for exciting general confined waves.

When there are no background fields, i.e. D = 0, a conducting sheet with electric current
jE might produce different magnetic fields across its surface

∇ ×H = jM, (C.6)

due to the boundary condition in a non-dielectric medium. Therefore, desired initial
magnetic profiles specify the currents which excite them. In particular, we inserted
the truncated plane wave (3.69) and the Gauss-Hermite profile (3.70) which led to the
results of Chapter 3.

C.4

Meshing Considerations

When dividing a simulation domain into many volume elements, each element should
be sufficiently small such that variations inmaterial parameters, ingeometrical structures—
such as the interfaces of a thin guiding layer—and variations in amplitude or phase
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during propagation are negligible over each separate mesh element. To account for
variations in phase and amplitude, the Nyquist sampling theorem imposes that any
band-limited signal, e.g., a guided mode with upper frequency ω, should be computed
or measured in at least N = 1

2ω different sampling points to reconstruct the wave in an
unambiguous way. As a rule of thumb, the theorem suggests to take at least two, but
preferably five, mesh elements within one wavelength.

We identify four contributions to variations of electromagnetic fields and material pa-
rameters in the simulation domain. Three of them are related to the profile of the guided
mode (4.41) because it has an in-plane propagation vector β, related to an effectivewave-
length of about 1.2μm, an oscillating contribution within the guiding layer due to k2
(3.30) and an extinction coefficient which imposes the decay length 1

2k1
in vacuum. The

fourth contribution consists of the dimension a of the thin dielectric layer in the guide.
This layer is at least two times smaller than all other length scales and dominates mesh
resolution constraints.

Our meshing procedure conforms to the separation of in-plane dependence from or-
thogonal dependence in a slab waveguide (Fig. C.3). Firstly, material interfaces parallel
to the symmetry plane z = 0 are meshed. In this way we prevent mesh elements from
crossing the discontinuity inmaterial parameters such that they indeed remain constant
within one mesh element. Secondly, we sweep the in-plane mesh in the orthogonal di-
rection. This second step involves differential meshes to ensure Nyquist’s theorem is
satisfied. We use 10 elements within the guiding layer of thickness a, 8 elements to
sample the initial decay length from the slab-vacuum interface and 30 elements to mesh
the orthogonal coordinate of the remaining vacuum. The in-plane mesh is created in
such a way that themesh elements follow the circular propagation of the guidedwaves.
Then, the mesh resolution is in principle determined by the order of magnitude of the
effective propagation constant. However, we notice mesh sizes need to exceed those
predicted by Nyquist considerably, both in the orthogonal and in-plane direction.

Finally, when performing simulations with inhomogeneous thickness variations be-
tween two distinct media, meshing sequences should pay care never to cross such an
interface. Therefore, we first meshed the two-dimensional inhomogeneous interface be-
tween the guiding and cover layer before sweeping themesh in the orthogonal direction.
Additionally, we defined the medium parameters separately for each cover/guiding
layer such that these follow the mesh closely. Though this approach takes all possible
measures to avoid different material parameters within one mesh element, the radial
magnetic (Fig. D.5) and electric field solutions at an interface (Fig. D.4) still contain
suspicious spikes. These may be explained by interpolation errors, which are always
present at finite resolution. To be sure, mesh size should be decreased. In practice, this
is not possible if one insists on using the direct solver.
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Figure C.3: Two views on a meshed beam bend: A top-view which shows the in-
plane mesh consisting of quadrilateral elements following circular arcs (top) and a
side-view showing the differential meshing in the orthogonal direction determined

by the slab thickness and extinction coefficients (bottom).

131



REFERENCES

References

[1] S. Moaveni, Finite Element Analysis: Theory and Application with ANSYS, Pearson
Education India, 2003.

[2] M. Kafesaki, I. T. N. Katsarakis, T. Koschny, C. Soukoulis, and E. Economou, “Left-
handed metamaterials: The fishnet structure and its variations,” Physical Review
B 75, 235114–235120, 2007.

[3] A. Oskooi, and S. G. Johnson, “Distinguishing correct from incorrect pml proposals
and a corrected unsplit pml for anisotropic, dispersive media,” Journal of Computa-
tional Physics 230, 2369–2377, 2011.

132



Appendix D

Supplementary Material

ThisAppendix contains supplementarymaterial to motivate the claims of chapter 5,
which were based on the performance of a 45-degree bend.

D.1

A Thirty-Degree Beam Bend

Instead of the basic simulation domain inFig. 5.1, the 30-degree beam bend consists of
an extended simulation domain Fig. D.1 with an additional unperturbed waveguide at
the exit and a domain-backed port. The following figures are interpreted in a similar
way as the results of the 45-degree bend.

D.1.1 Equivalence Relations

As for the 45 degree bend, Fig. D.2 compares the in-plane radial magnetic fields of
the full transformation-optical implementation with our guided transformation-optical
implementation. Qualitatively, both field distributions agree better than for a 45 degree
bend as expected since the propagation lengthwithin the bender is decreased (Table 3.1).
Unsurprisingly, Fig. D.3 additionally shows the thickness variation remains a crucial
transformation-optical parameter to establish the desired propagation within the plane.
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D.1. A THIRTY-DEGREE BEAM BEND

Figure D.1: An extended simulation domain of a 30-degree beam bend without
thickness variation to investigate how light couples into and out of the beam bend
to an unperturbedwaveguide (Table 5.1). A domain-backed input port now excites
modes in one direction and allows determining the scattering coefficients because

of the waveguide/beam bender interface.

D.1.2 Variations in Guiding Layer Thickness

To estimate how the beam bender performance depends on the initial thickness ã of the
slab, we performed several simulations for ã = 0.21μm, ã = 0.20μm, ã = 0.17μm and
ã = 0.15μm.

In this section, we use four additional figures to illustrate the in-plane and orthog-
onal dependence of the radial magnetic and electric field strengths in the guided
transformation-optical beam bender. Fig. D.4 and Fig. D.5 show the electric and mag-
netic fields at 0.1μm height with respect to the symmetry plane of the slab for several
initial thicknesses of the waveguide. Because the radial magnetic field strength does
not diminish with propagation distance, we prove the guided wave is efficiently turned
over 30 degrees. Still, there might be some reflections or other contributions which
convert the initial TM mode to a TE mode. The observed radial electric field strengths
are small, approximately 1% of the total electric field norm, which implies the beam
bender turns the guided mode in an efficient way.

The final two figures verify the orthogonal dependence with respect to the waveguide.
As explained in the main text, the peaks at the interface between the cover and the
guiding layer are probably caused by numerical errors due to finite mesh resolution.
The electric field oscillations are low, i.e. comparable to those of the full transformation-
optical implementation. These might point to radiative modes which are reflected by
the upper PEC boundary.
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D.1.3 Estimations of Reflections

The VSWR of a 30-degree bend yield the same qualitative results as the 45-bend dis-
cussed in the main text. Table 5.3 estimates the additional reflections due to the beam
bend to 4% which is comparable to reflections induced by glass with orthogonally
incident light.

D.2

A Concentrator

Next to the beam bender, the guided concentrator Fig. D.9 was another application pur-
sued by thismaster dissertation. It came as a surprise that the concentrator is also imple-
mented by the exponential map (4.64). In literature, finite-embedment transformation-
optical devices mostly consist of a three-dimensional transformation-optical device
which is surrounded by vacuum (subsection 2.2.2). The trajectories within the device
are thought to be continuous extensions of the straight trajectories in the surrounding
vacuum. Our concentrator demonstrates it is possible to connect to any set of geodesics
in physical space as long as the boundary of the transformation-optical medium is cho-
sen in a considered way. In this particular case, one might couple to circular trajectories
or to radial trajectories as shown in (Fig. 2.4).

The realization of a guided transformation-optical concentrator was delayed by two
numerical difficulties. Firstly, diffraction counters the concentrating effect of the device.
When the propagation length within the concentrator is increased—to ensure gradual
thickness variations and slowly concentrating beams—diffraction effects dominate and
the gaussian beams do not concentrate. Secondly, if one decreases the propagation
length within the device, mesh resolutions have to increase to resolve fine thickness
variations. It is then necessary to use an indirect, iterative solver. However, for an
indirect solver we did not reach convergence as we expect the initial guess deviates
strongly from the desired solution.

The concentrator simulations did contribute to determining the phase velocitymatching
4.58 with three key simulational results Fig. D.9. To achieve homogeneous materials
in the bounding PML layers of the simulation domain, the thickness variation and
the permittivity profile were only applied to a wedge-shaped region in the center of
the domain. This shape was terminated by steep edges, using a step-function. This
arbitrary wedge shape is clearly visible in Fig. D.10 when phase velocity matching is
satisfied. The first observation of phase velocity matching in a guided transformation-
optical device, was established by a map of the gaussian field profiles between a full
transformation-optical simulation and another simulationwith thickness variation (5.2).
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Figure D.2: Verification of the thickness equivalence relation for a 30-degree beam
bend. The in-plane propagation of an excited fundamental TM mode is compared
for a full transformation-optical implementation (up) and a guided transformation-

optical implementation with thickness variations in the guiding layer (low).
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Figure D.3: Radial magnetic fields (up) and radial electric fields (down) in the
plane of the guiding layer with an inhomogeneous permittivity (5.1) but without a

thickness variation.
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Figure D.4: Radial electric fields along the normal vector of waveguide relative to
the maximal electric norm in the propagation plane of the guided transformation-
optical beam bender for different thicknesses a: 0.21μm (upper left), 0.2μm (upper

right), 0.17μm (lower left), 0.15μm (lower right)
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Figure D.5: Radial magnetic strengths along the normal vector of the waveguide
relative to the maximal magnetic strength norm in the propagation plane of the
guided transformation-optical beam bender for different thicknesses a: 0.21μm

(upper left), 0.2μm (upper right), 0.17μm (lower left), 0.15μm (lower right)
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Figure D.6: In-plane radial electric fields relative to themaximal electric field norm
of guided transformation-optical beam benders for different thicknesses a: 0.21μm

(upper left), 0.2μm (upper right), 0.17μm (lower left), 0.15μm (lower right)
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Figure D.7: In-plane radial magnetic field strengths relative to the maximal mag-
netic field strength norm of guided transformation-optical beam benders for dif-
ferent thicknesses a: 0.21μm (upper left), 0.2μm (upper right), 0.17μm (lower left),

0.15μm (lower right)
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Figure D.8: VSWRdata for a 30-degree beam bend for a full transformation-optical
implementation (up) and a guided transformation-optical implementation (down).
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Figure D.9: Finite-difference simulation in the frequency domain of a full
transformation-optical conformal concentrator acting on a diffractive gaussian

beam with 3μm beam waist.
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Figure D.10: Comparison of three simulations based upon the design of a con-
formal concentrator. The guiding layer has a particular thickness profile which is
resolved by a full transformation-optical implementation (upper left) and a par-
tial implementation with thickness variation (4.69) (upper right). If no thickness

variation is imposed, the gaussian beam propagates unaffected (lower).
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