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1. Introduction 

1.1. Landscape genetics 

Since the dawn of mankind, humans have been influencing their environment. The 
urbanization process, that spread over Europe since 700 B.C., has drastically changed the 
way humans interact with the ecosystem. The evolution to densely populated urban zones 
and more scarcely populated rural areas, brought with it some geographical changes. 
Urbanized regions would have to be connected to each other for instance, causing transport 
systems to dissect the rural landscape (Antrop, 2004). The emergence of vast transportation 
systems throughout a landscape directly affects the ecosystem by destroying, removing or 
reconfiguring local landforms. Transportation networks, roads in particular, increasingly have 
indirect effects on the ecosystem as well. The nature of a road network makes it so that it 
renders vast areas of the landscape as road-affected. It is estimated that in the 
conterminous United States, approximately 83% of the land area lies within slightly more 
than 1km from a road (Coffin, 2007).  

In attempts to counteract the effects of these road networks, different types of mitigation 
measures have been devised. Overpasses, culverts and underpasses have been built (Mata 
et al., 2008). The changes in land use have also lead to the onset of a new discipline: “Road 
Ecology” (Coffin, 2007). Whilst road ecology focuses on all ecological processes affected by 
roads, it doesn’t quantify the influences roads actually have on the dispersion and 
interconnectivity of wild animal herds. Measuring these impacts shows to be rather difficult 
using simple observational techniques. That’s where genetics come into the picture. 
Monitoring the gene flow in and between populations provides tangible information about 
their interactions. However gathering useful data proved to be difficult in the past, as 
population genetics methods required discrete populations.  

Landscape genetics made an end to this issue, as it doesn’t require a priori knowledge about 
discrete populations. In landscape genetics observed spatial genetic patterns are explained 
by using landscape variables (Manel et al., 2003). It can in fact be used to test landscape 
connectivity and study gene flow (Holderegger and Wagner, 2008), not only based on 
geographical distances, but on estimates of functional connectivity. Landscape genetics also 
made it possible to investigate the environmental factors driving adaptation in wild and 
domestic species (Manel and Holderegger, 2013).  

However, studies that investigate road effects using genetic data use only a fraction of the 
available molecular approaches (Balkenhol and Waits, 2009). In terms of statistical 
possibilities, things have also changed dramatically. Where in the past simple Chi-squared 
tests and multiple regressions were used to investigate the effects of landscape change on 
the decline in animal population sizes (van der Zee et al., 1992), many more statistical 
techniques are available. Although redundancy analyses (RDA) (van den Wollenberg, 1977) 
have been used extensively in community ecology, especially when partitioning the 
explained variance into independent contributions of spatial and environmental effects 
(Borcard et al., 1992, Borcard et al., 2004, Cottenie, 2005). Their application in population 
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genetics is still rather rare, despite the enormous potential of this approach to disentangle 
the drivers of population genetic patterns (Manel et al., 2012, Orsini et al., 2013). 

1.2. Redundancy analysis 

Redundancy analysis (RDA) is a technique used to explain variation in a response dataset by 
building a model out of explanatory variables. RDA combines multivariate multiple linear 
regression and principal component analysis (PCA). It works on two centred matrices, X, 
containing explanatory variables, and Y, containing response data. Each RDA consists of 
three or four steps (Borcard et al., 2011).  

 Each variable y is regressed on the explanatory matrix X to produce ŷ, the fitted 
vector, and yres, the residual vector. All vectors ŷ are assembled into a matrix Ŷ.  

 A PCA of the Ŷ matrix is computed, producing a vector of eigenvalues and a matrix U 
of canonical eigenvectors. 

 Two types of ordination site scores can now be computed using U. The first is to use 
Y to obtain a spatial ordination and the second is done using Ŷ, this results in an 
ordination in the space of variables Y and X respectively. 

 The fourth step is technically not a part of the RDA, but a PCA may also be performed 
on Yres, resulting in an unconstrained ordination of the residuals. 

Thus RDA results in a series of axes, linear combinations of the explanatory variables, that, in 
successive order, best explain the variation of the response matrix. These axes are all 
orthogonal to one another, therefore making RDA a constrained ordination procedure 
(Borcard et al., 2011). 

1.2.1. Distance-based redundancy analysis 

Distance-based redundancy analysis was introduced as a method that aimed at “testing the 
significance of individual terms in a multifactorial analysis-of-variance model for multispecies 
response variables” (Legendre and Anderson, 1999). Although it was initially intended to be 
used to measure the response of multiple species to the same structured multifactorial 
experimental designs, it can also be used to measure the extent to which the genetic 
structure of a population is affected by a set of independent variables, such as spatial 
structures (Vangestel et al., 2012). A db-RDA is an ordination method that typically consists 
of five steps (Legendre and Anderson, 1999): 

 Calculating distances among replicates in the response dataset, using a distance 
measure of choice. These distances are stored in a matrix. 

 Performing a principal coordinate analysis (PCoA) on this matrix. 

 Select a priori relevant explanatory variables. In a landscape genetic study these can 
consist of the spatial information of the sampled individuals, or of specific landscape 
elements that are expected to influence the genetic structure. This depends entirely 
on the design of the experiment. 
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 Performing an RDA to analyse the relationship between the principal coordinates and 
the explanatory variables. 

 Conducting a permutation test corresponding to the particular terms in the model. 

In population genetics, db-RDA is used as a tool to find spatial genetic effects. Raw genetic 
data can not be used in RDA as such because different alleles on the same locus are 
interdependent. Transforming these genetic data into distance-based variables makes it 
possible to perform a RDA, which is exactly what db-RDA does. 

1.2.2. Principal component analysis 

PCA is a method of data complexity reduction. The technique transforms a given dataset 
from an original system of axes, defined by the variables, to a system of successive new axes 
that are all orthogonal to each other. The number of axes can be at most equal to the 
number of original variables. Each axis consecutively corresponds to the dimension of the 
highest variance in the scatter of points. This means that the earlier axes describe more of 
the total spreading of observations than the subsequent axes. This is represented in the 
form of eigenvalues (Pearson, 1901). The method can solely detect linear relationships, 
therefore linear regression is performed before using PCA in an RDA (Borcard et al., 2011). 

1.2.3. Principal coordinate analysis 

PCoA is similar to PCA in that it transforms a dataset into a set of successive orthogonal axes. 
The importance of each axis is also measured by eigenvalues (Gower, 1966). The big 
difference is that PCoA can be performed on non-regressed data, as it is based on an 
association matrix. Providing the data put into the analysis consists of Euclidean distances, it 
will output Euclidean axes (Borcard et al., 2011), making the result identical to PCA. 

1.3. Moran’s eigenvector maps 

Moran’s eigenvector map analyses represent a type of spatial eigenfunction analysis that 
attempts to model the spatial relations among points (Legendre and Legendre, 2012). A 
MEM contains a number of successive eigenvectors with their corresponding eigenvalues. 
These eigenvectors describe structures on a scale going from global for those with large 
positive eigenvalues to local for those with the negative eigenvalues. The absolute value of 
the eigenvalue also quantifies the intensity of spatial autocorrelation of the corresponding 
eigenvector. As can be seen in Fig. 1, eigenvectors with high positive eigenvalues, being the 
first eigenvectors in consecutive order, describe large scale trends in a dataset, whereas 
eigenvectors with negative eigenvalues, being the last eigenvectors in consecutive order, 
describe local trends (Dray et al., 2006). 
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Fig. 1 A selection of distance based MEM eigenfunctions for a time series with 50 equispaced points, as taken from 
Legendre and Gauthier (2014). 

Of course not all datasets will consist of equispaced points, datasets consisting out of more 
randomly placed samples will produces eigenvectors as can be observed in Fig. 2 (MEM1 and 
MEM15). The data in Fig. 2 being spatial distances allows it to be handled in a different way. 
The use of principal coordinates of neighbouring matrices (PCNM) is actually nothing more 
than a distance-based approach to MEM (Borcard et al., 2011). The PCNM technique was 
introduced to detect and quantify spatial patterns over a wide range of scales in a dataset 
(Borcard and Legendre, 2002). 
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Fig. 2 Comparisons of the eigenvectors obtained for two different spatial weighting matrices. Two irregular samples 
of 100 sites randomly positioned along a straight line are considered (a and b). For each sample, the first (1) and fifteenth 
(2) eigenvectors obtained by the original PCNM approach are presented. The first (3) and fifteenth (4) Moran’s 
eigenvectors (MEM) are also given for a spatial weighting matrix. As taken from (Dray et al., 2006). 

The PCNM method consists of four steps (Borcard et al., 2011): 

 The construction of a matrix containing Euclidean distances between sample sites. 

 The truncation of the matrix to retain only distances between close neighbours. The 
truncation level can be chosen at will, although all sites have to be connected to at 
least one neighbour with a connection with equal or smaller length than the 
truncation level. Overall the truncation level is chosen to be the smallest possible 
value, while still considering the criterion. All other values are automatically set to an 
arbitrary “large” distance. 

 The computation of a PCoA of the database with truncation values. 

 The selection of eigenvectors that model positive spatial correlation. 

These eigenvectors can then be used as explanatory variables in a multiple regression or 
RDA. Contrary to regular MEM, the relationship between the sign of the eigenvalues and the 
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sign of the spatial correlation is not univocal. The value of Moran’s I (Moran, 1950), however 
is a linear function of the eigenvalue in standard MEM eigenfunctions. Therefore Moran’s I 
will be used as a criterion in selecting the eigenvectors that represent positive spatial 
correlation. 

1.4. Forward selection 

The downside of using MEM is the fact that it generates a lot of eigenvectors (or axes) that 
are not contributing to the power of the overall model. It is therefore necessary to 
objectively select only those eigenvectors that are necessary to achieve the highest possible 
level of explanation of variance by the model (Bellier et al., 2007). However, the use of the 
classical forward selection method (Diehr and Hoflin, 1974) has two major flaws: Type I 
errors are highly inflated, meaning significant models are found when none should be found, 
and the amount of explained variance is overestimated.  

The solution to the first problem is addressed by first performing a global test using all 
eigenvectors as explaining variables. Only if this test turns out to be significant, forward 
selection will be performed. To reduce the overestimation of explained variance, R²adj. is 
used as an extra stop criterion (Blanchet et al., 2008). Contrary to the original stop criterion, 

the significance level , which depends on R² (Diehr and Hoflin, 1974), R²adj. is influenced 
very little by the addition of unimportant variables. This means that the forward selection 
procedure stops after adding an extra eigenvector to the selected model made the R²adj. of 
the selected model exceed the R²adj. from the global test (Blanchet et al., 2008). This double 
stop criterion will therefore assure that the forward selection procedure delivers a model 
without redundant variables, whilst still containing those variables important to the overall 
structure of the dataset (Borcard et al., 2011). 

1.5. History of wild boar (Sus scrofa) and red deer (Cervus elaphus) in 
Belgium 

Belgian big game species are exclusively composed of deer (red (Cervus elaphus), roe 
(Capreolus capreolus) and fallow (Dama dama), mouflon (Ovis amon mussimon) and wild 
boar (Sus scrofa) (Prévot and Licoppe, 2013). Wild boars have been common across Europe 
for ages, although they were exterminated in many parts of Europe for at least some time in 
the past. Except for the northern territories and the high mountains, they can in theory be 
found across the entire European continent, even strongly cultivated ones (Lyneborg and 
den Hoed, 1972). Though they are found frequently in the Walloon part of Belgium and have 
recently expanded into Flanders as well, their populations are rather unbalanced, as the 
older animals are mostly hunted for (Verkem et al., 2003). Wild boar populations managed 
to survive despite this prosecution, mostly thanks to their high fertility and endurance 
(Lyneborg and den Hoed, 1972).  

Red deer can also be found across Europe. In contrast to wild boars however, they avoid 
strongly cultivated areas. Populations observed in Belgium today are probably resulting from 
introductions and human selection (Lyneborg and den Hoed, 1972). Red deer also seem to 
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be heavily influenced by habitat fragmentation. They don’t live in the Belgian and Dutch 
provinces of Limburg, though the habitat would appear to be suiting and populations of red 
deer live within range. This could probably be explained by the fact that red deer can’t reach 
these areas without suitable corridors (Verkem et al., 2003). The reason for past red deer 
introductions is their popularity as hunting game (Lyneborg and den Hoed, 1972).  

During the last decades, both red deer and wild boar populations have grown in numbers 
and range (Prévot and Licoppe, 2013). The size of the Walloon wild boar population has even 
quadrupled over the past 30 years (Prévot and Morelle, 2012). Both species can be 
considered as non-migratory in southern Belgium (Prévot and Licoppe, 2013). However 
during their natal dispersion, young male individuals may travel for several kilometres. Most 
young males never migrate more than 10 km from their native territory though (Prévot and 
Morelle, 2012). Daily movement distances for wild boar in agro-forested landscapes range 
from 3 to 4 km on average up to 12 km at most (Morelle et al., 2015). During their dispersal, 
red deer and wild boars face different challenges, as red deer could more easily jump 
agricultural fences, wild boars seem to cross motorways more easily (Prévot and Licoppe, 
2013). Prévot and Morelle (2012) found that a number of tagged wild boars had crossed the 
E411 motorway during the course of their research. Through genetic analyses, it was shown 
that dispersion of roe deer is influenced by fenced transportation networks such as 
motorways (Coulon et al., 2004, Coulon et al., 2006, Kuehn et al., 2007, Hepenstrick et al., 
2012) 

1.6. Objectives of this master thesis 

This thesis will focus on supplementing to the conclusions drawn by Frantz et al. (2012b) 
concerning the influence of the E411 motorway on gene flow in wild boar and red deer 
populations. Also I will try to compare distance-based redundancy analyses to previous 
results obtained through Bayesian cluster analyses (Binder, 1978). Bayesian cluster analyses 
are a derivative of the statistical clustering technique first introduced by Driver and Kroeber 
(1932). Here, genetic data of Walloon populations of wild boar and red deer will be used 
(Frantz et al., 2012a). Since Frantz et al. (2012b) already performed several Bayesian cluster 
analyses, only the distance-based redundancy analyses will be performed. This will allow me 
to compare the results of both statistical methods to each other. In this comparison, special 
attention will be given to statistical power of each method and practical concerns whilst 
using them.   
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2. Materials and methods 

2.1. Acquiring data and initial statistical standpoint 

Frantz et al. (2012b) extracted DNA markers from tissue samples of 875 red deer (Cervus 
elaphus) and 325 wild boar (Sus scrofa). All samples were collected from harvested animals 
during legal hunts in roughly the same area in Wallonia, bisected by the E411 motorway. The 
E411 is a four lane motorway connecting Brussels with the Luxembourg border. It is fenced 
along stretches that are close to forested areas and was finished in the mid-1980s. The 
motorway does not feature any purpose-built wildlife passages along the section that was 
relevant for this study. Tunnels and underpasses for local traffic do exist. For the genotyping 
of the red deer samples, 13 microsatellite loci were used, whilst for the wild boar samples 14 
microsatellite loci were utilized. Frantz et al. (2012b) performed a thorough data analysis in 
order to find if the motorway had a detectable and significant effect on the genetic 
differentiation within the sampled populations. Their analyses focused primarily on an 
elaborate implementation of tests for isolation by distance (IBD) (Wright, 1943) on the one 
hand, and Bayesian clustering methods on the other hand: STRUCTURE 2.3.1 (Pritchard et 
al., 2000) was used with and without sampling location as prior, GENELAND 3.2.4 (Guillot et 
al., 2005), which natively considers geographic coordinates, and BAPS 5.2 (Corander et al., 
2008), a program that implements a spatially explicit clustering method, were employed as 
well. These Bayesian clustering methods were then repeated on random subsamples taken 
out of the red deer dataset. This way these techniques were tested for their statistical 
power. 

2.2. Statistical analysis 

All statistical processes were performed using R 3.1.2 (R Core Team, 2014). Also R-packages 
“PCNM” (Legendre et al., 2013), “vegan” (Oksanen et al., 2014), “adegenet” (Jombart, 2008), 
“ade4” (Dray and Dufour, 2007) and “gap” (Zhao, 2007) were used. The required data files 
were retrieved from the Dryad repository (Frantz et al., 2012a).  

2.2.1. Redundancy analyses 

Redundancy analysis is a multiple linear regression method whereby a matrix of response 
variables (here genotypic data) is regressed against a matrix of explanatory variables, 
thereby yielding a number of successive orthogonal axes that indicate how and how well the 
explanatory variables relate to the response variables. These axes correspond to the 
consecutive dimensions responsible for the highest variance observed in said dataset. The 
distance-based redundancy analysis is an adaptation of this method, starting from ecological 
or genetic distances among data points (yielding an association matrix) instead of directly 
using the sample values from a species times sampling site matrix (Legendre and Legendre, 
2012). Several db-RDA were performed on both the red deer and the wild boar data. 
Genotypic information was first transformed to principal coordinates by performing a PCoA, 
preceded by the calculation of Euclidean differences between the samples. When using 
genotypic data, each allele at each locus can have the value 0, 1 or 2, yielding an intrinsic 
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dependency among alleles. Moreover, when using highly diverse loci (such as with 
microsatellites), the genotypic data matrix has a lot of zero cells. This in turn makes PCA, 
PCoA or RDA methods unsuitable due to the so-called “double zero problem” (Legendre and 
Legendre, 2012). By transforming the raw genotypic data into an association matrix and 
computing a PCoA, this problem was circumvented. The resulting principal coordinates then 
served as response variables in all subsequent RDA, making these essentially distance-based 
RDA. The other two datasets, containing the position relative to the motorway and the 
geographic coordinates respectively, were used as explanatory variables. A schematic 
representation of all db-RDA that were performed on the red deer and wild boar datasets 
can be seen in Fig. 3. 

To assess the role of the E411 motorway (“Motorway”), a db-RDA, using the position relative 
to the motorway as a categorical explanatory variable, was performed. This analysis provides 
information on the amount of genetic structure that is explained by separating all samples 
into two populations according to their position relative to the motorway. 

In order to use the geographic coordinates in a RDA, they first need to be transformed into a 
distance matrix. This distance matrix was then be used to perform a principal coordinates of 
neighbouring matrices analysis (PCNM) (Borcard and Legendre, 2002), which is a special case 
of a distance-based MEM (Borcard et al., 2011). This PCNM analysis gives a number of spatial 
predictors going from a very broad to a very fine scale. Each predictor gets a Moran’s I value 
(Moran, 1950), which is a measure of spatial autocorrelation. Only those PCNM predictors 
with a positive value for Moran’s I should be selected, as only they offer information on 
positive spatial autocorrelation. A db-RDA can then be performed, using the selected PCNM 
predictors as continuous explanatory variables. This analysis provides information on the 
amount of genetic structure that is explained by spatial genetic structure. Using the double 
stop criterion (Blanchet et al., 2008), the spatial predictors, contributing to the overall 
ordering, can then be selected. This shows which predictors form the best spatial genetic 
explanations for the given dataset. 

In a third analysis, the explanatory variables consist of the forward selected MEM-variables 
and the dummy variable Motorway. Again a db-RDA was performed, this analysis is to show 
the total genetic diversity that can be explained by the geographical structure of the dataset. 
This also allows to determine the amount of diversity that is explained by the PCNM 
predictors whilst also being explained by the location of the motorway. Finally another 
forward selection (Blanchet et al., 2008) is performed on the dataset of explanatory 
variables. This way the importance of Motorway can be quantified, relative to the overall 
spatial genetic explanation. 
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Fig. 3 Schematic representation of all distance-based redundancy analyses performed on the red deer and wild boar 
datasets. 

2.2.2. Permutation tests 

In order to test for IBD, Frantz et al. (2012b), simulated multiple straight roads bisecting the 
study area and tested their explanatory value on the genetic datasets. Contrary to the 
aforementioned study, the roads simulated here are not completely random. All generated 
roads intersect the middle of the study area, with their angles arranged in such a way that 
together they fill a complete circle. For each simulated road, a db-RDA was performed as in 
section 2.2.1. This gives a measure for IBD in all directions across the dataset. To 
differentiate between the obtained values, a number of Chow tests (Chow, 1960) were 
performed, showing which of the generated roads has a significantly different explanatory 
value from the road with the highest and lowest value respectively (Ghilagaber, 2004). This 
provides information on the motorway as an isolating factor, as it can be coupled to the 
most approximate generated line. 

2.2.3. Subsampling 

To allow the deduction of a minimal sample size to detect a positive spatial genetic result, or 
in other words avoid a type II error, using Motorway as an explanatory variable, a power-
analysis was performed (Kutner et al., 2005). Frantz et al. (2012b) performed a similar test to 
determine the statistical power of the Bayesian clustering tools that were used. This also 
allows us to compare these Bayesian tools to the db-RDA used in this study. As the wild boar 
dataset never gave a positive result, Frantz et al. (Frantz et al., 2012b) used only the red deer 
dataset in their power-analysis. Therefore we as well performed this analysis on the red deer 
dataset only. Several subsamples were taken semi-randomly from the red deer dataset, such 
that an equal amount of samples was taken at each side of the motorway. This way datasets 
were formed with 100, 200, 300 and 450 samples as was done by Frantz et al. (2012b). For 
each dataset size, ten replicates were created. Each of these replicates was then subjected 
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to the procedures described in 2.2.1. To test the limits of the RDA even more, the dataset 
was subsampled further to 50, 25 and 10 samples. 

2.2.4. Balancing the design of the wild boar dataset 

As the wild boar dataset showed a rather unbalanced sampling design, it was downscaled to 
a more homogenous set in which the expected neutral spatial structure is as important in all 
directions. The original dataset spans around 100km from west to east and around 60km 
from north to south. After removing the samples that were furthest away from the 
motorway, a dataset spanning around 44 km from west to east and around 60km from north 
to south was retained. This dataset was then subjected to the procedure for finding effects 
of the position relative to the motorway described in 2.2.1. Since the dataset showed a large 
empty area in the middle, this process was repeated two times to generate a dataset for the 
top and bottom half of the remaining data. The downscaling criteria can be seen in Fig. 4. 

 

Fig. 4 Downscaling criteria for the wild boar dataset. The reduced dataset (Reduced) consisted of all samples shown 
in green, omitting the samples shown in red. This dataset was subsequently divided in two along the red line to produce 
a top (Top) and a bottom half (Bottom) of the reduced dataset. The motorway is depicted in orange. 
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2.2.5. Comparing the red deer database to the wild boar database 

To enable a comparison between both the red deer and the wild boar dataset with as little 
interference from sampling effects as possible, a number of additional db-RDA were 
executed. To reduce sampling effects as much as possible, subsamples were taken from both 
datasets. In the subsampling procedure, special attention was given to taking an equal 
sample size in both subsamples and making sure each subsample consists of an equal 
amount of samples on both sides of the motorway. Furthermore the samples were all taken 
from the same 900km² area in the middle of the original research area (Fig. 5). This allowed 
for a more balanced comparison between the results for the red deer and the wild boar 
datasets. This comparison was done by following the procedures described in 2.2.1 and 
2.2.2. 

 

Fig. 5 Subsampling area used in comparing the red deer database to the wild boar database. Red deer samples are 
indicated as red squares, wild boar samples are drawn as blue dots. The black frame indicates the area used to take 
samples from. The motorway is indicated in orange. 

2.3. Risk analysis 

Since this paper only required thorough statistical work, no tangible dangers were 
encountered. All of the work was performed at a desk using a computer.  
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3. Results 

3.1. Red deer dataset 

3.1.1. db-RDA 

All db-RDA performed on the red deer dataset yielded significant genetic structure. The 
spatial predictors resulting from the MEM analysis (55 variables with positive values for 
Moran’s I out of 402 total variables) had a higher coefficient of determination than the 
position relative to the motorway (Table 1). 

Table 1. Significance levels and coefficients of determination for all models generated using db-RDA on the red deer 
dataset. 

Explanatory variables Adjusted R² ANOVA p-value 

1. Motorway 0.0174 0.001 

2. Global MEM-model (55 variables) 0.0415 0.001 

3. Selected MEMs (MEMs 1, 5, 2, 4, 10, 31, 6, 9) 0.0415 0.001 

4. Motorway + selected MEMs 0.0414 0.001 

5. Selected variables from 4  
(Motorway + MEMs 1, 5, 2, 10, 31) 

0.0400 0.001 

Forward selection of the MEM predictors resulted in a reduced model containing eight 
MEM-variables. Variables 1, 5, 2, 4, 10, 31, 6 and 9 were selected in descending order of 
contribution to the overall value of R²adj. (Table 2). 

Table 2. Contributions of each individual MEM-variable to the overall R²adj. of the model, after forward selection was 
conducted. Only MEM-variables were used to construct the global model. 

MEM-variable Contribution to R²adj. 

1 0.015 
5 0.0075 
2 0.0067 
4 0.0056 
10 0.0024 
31 0.0016 
6 0.0013 
9 0.0012 

The first three RDA axes were significant canonical axes, which all correlated significantly 
with the position relative to the motorway (Fig. 6). 
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Fig. 6 Plot of the fitted scores of the three canonical axes (A-C) from the db-RDA using the selected MEM spatial 
predictors as explanatory variables for the red deer data. Linear regression of these fitted scores on the position relative 
to the motorway gives a p-value of <2.2x10

-16
 for the first canonical axis (MEM1) (A), p<2.2x10

-16
 for the second axis 

(MEM5) (B) and p=0.003604 for the third canonical axis (MEM2) (C). The motorway (E411) is indicated with an orange 
line. 

Forward selection performed on the model using the MEM axes as well as Motorway as 
explanatory variables, resulted in a reduced model containing six axes. Motorway 
contributed the most to the overall value of R², followed by MEM axes 1, 5, 2, 10 and 31 
(Table 3). 

Table 3. Contributions of each individual variable to the overall R²adj. of the model, after forward selection was 
conducted. Pre-selected MEM-variables and Motorway were used to construct the global model. 

Variable Contribution to R²adj. 

Motorway 0.017 
MEM 1 0.0076 
MEM 5 0.0070 
MEM 2 0.0051 
MEM 10 0.0019 
MEM 31 0.0010 

3.1.2. Effect of simulated motorway 

Since one can expect patterns of IBD along all spatial axes, I tested which spatial axis 
explained the genetic structure best, by simulating 100 motorways along the radius of a 
circle with centre in the centre of our study region and testing the strength of each 
regression. The lines with the highest and lowest value for R² are plotted in Fig. 7. The best 
fitting line (green in Fig. 7) fitting closely to the E411 yielded an R2=0.0164 (p=0.001), 
whereas the worst, nearly perpendicular to the best, yielded an R²=0.0017 (p=0.012). 
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Fig. 7 Overview of the sampling location for the red deer dataset. Samples are shown in black and blue (indicating 
their location relative to the motorway), the motorway (E411) is displayed in orange. The green line corresponds to the 
generated road that showed the highest coefficient of determination. The red line corresponds to the generated road 
that showed the lowest coefficient of determination. Coefficients of determination were calculated on the results of db-
RDA conducted using the generated roads as explanatory variables. 

Fig. 8  shows a plot of all adjusted R² values. The value of the actual motorway is R²=0.0174. 

 

Fig. 8 Coefficients of determination for all 100 simulated motorways. Coefficients of determination were calculated 
on the results of db-RDA conducted using the generated lines as explanatory variables. Analysis performed on the red 
deer dataset. 
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Using Chow’s test, all simulated roads were compared to the line with the highest and 
lowest R² value respectively. Fig. 9 shows the lines with the highest and lowest value for R² 
and their respective significantly differing lines. 

 

Fig. 9 Plots of the simulated roads with the highest (A) and the lowest (B) coefficient of determination for the red 
deer data (Fig. 8) in green, with their corresponding significantly differing roads in red.  Blue dots correspond to samples 
taken on one side (SW) of the motorway, black dots originate from the other side (NE) of the motorway. Significant 
differences calculated using Chow’s test.  

3.1.3. Subsampling 

To test the sensitivity of the db-RDA to sample size (determining the degrees of freedom of 
the analyses), subsampling was performed as in Frantz et al. (2012b) (Table 4). In contrast to 
Frantz et al. (2012b), we not only test for significance, but also determine the effect size of 
the test. 

Table 4. Results of analyses of population genetic structure when reducing the size of the red deer data set. Results 
taken from Frantz et al. (2012b). 

Method Sample size Frequency of 
inference of no 
substructure 

Frequency of 
inference of two 
genetic clusters 

STRUCTURE without 
location priors 

450 0 10 
300 7 3 
200 9 1 
100 10 0 

    

STRUCTURE with 
sampling location 
priors 

450 0 10 
300 0 10 
200 0 10 
100 5 5 

    

GENELAND 450 0 10 
300 0 10 



17 

 

200 6 4 
100 10 0 

    

BAPS 450 1 9 
300 9 1 
200 10 0 
100 10 0 

In addition to having the dataset downsized to 450, 300, 200 and 100 samples, as was done 
by Frantz et al. (Frantz et al., 2012b), the dataset was also further reduced to 50, 25 and 10 
samples (Table 5). This was done to really test the correlation between sample size and 
statistical power for db-RDA. 

Table 5. Results of RDA when reducing the size of the red deer data set. 

Method Sample size Frequency of no 
significant effect of 
the motorway 

Frequency of 
significant effect of 
the motorway 

RDA 450 0 10 
300 0 10 
200 0 10 
175 0 10 
150 1 9 
100 1 9 
75 2 8 
50 6 4 
25 8 2 
10 7 3 

3.2. Wild boar dataset 

3.2.1. db-RDA 

No db-RDA performed on the wild boar dataset yielded significant genetic structure. The 
spatial predictors resulting from the MEM analysis (57 variables with positive values for 
Moran’s I out of 181 total variables) had a higher coefficient of determination than the 
position relative to the motorway (Table 6). 

Table 6. Significance levels and coefficients of determination for all models generated using db-RDA on the wild boar 
dataset. No values were found for the selected variables, as according to the double-stop criterion (Blanchet et al., 2008) 
forward selection can not be performed if the global model shows no significance. 

Explanatory variables Adjusted R² ANOVA p-value 

1. Motorway 0.000251 0.338 

2. Global MEM-model (57 variables) 0.00616 0.416 

3. Selected MEMs NA NA 

4. Motorway + global MEM-model 0.00375 0.446 

5. Selected variables from 4  NA NA 
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3.2.2. Effect of simulated motorway 

The permutation test was executed similarly to the one done on the red deer dataset. The 
lines with the highest and lowest value for R² were plotted in Fig. 10. The simulated road 
with the highest adjusted R² (0.00422) explained the genetic distances significantly, with an 
ANOVA p-value of 0.01. Whilst the road with the lowest adjusted R² (-0.00109) did not offer 
a significant explanation for the genetic distances (ANOVA p=0.845). 

 

Fig. 10 Overview of the sampling location for the wild boar dataset. Samples are shown in black and blue (indicating 
their location relative to the motorway),  the motorway (E411) is displayed in orange. The green line corresponds to the 
generated road that showed the highest coefficient of determination. The red line corresponds to the generated road 
that showed the lowest coefficient of determination. Coefficients of determination were calculated on the results of db-
RDA conducted using the generated roads as explanatory variables. 

Fig. 11 shows a plot of all adjusted R² values. The value of the actual motorway is 
R²=0.000251. 
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Fig. 11 Coefficients of determination for all 100 simulated roads for the wild boar dataset. Coefficients of 
determination were calculated on the results of db-RDA conducted using the generated lines as explanatory variables.  

Using Chow’s test, all generated roads were compared to the road with the highest and 
lowest R² value respectively. Fig. 12 shows the roads with the highest and lowest value for R² 
and their respective significantly differing roads. 

 

Fig. 12 Plots of the simulated roads with the highest (A) and the lowest (B) coefficient of determination for the wild 
boar dataset (Fig. 8) in green, with their corresponding significantly differing roads in red.  Blue dots correspond to 
samples taken to the west of the motorway, black dots are taken to the east of the motorway. Significant differences 
calculated using Chow’s test.  

3.2.3. Balancing the spatial design 

In order to find effects that are possibly hidden by the rather unbalanced design of the wild 
boar dataset, the dataset was split into more homogenously distributed subsets. Sample 
selection was done using the criteria shown in Fig. 13. 
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Fig. 13 Downscaling criteria for the wild boar dataset. The reduced dataset (Reduced) consisted of all samples shown 
in green, omitting the samples shown in red. This dataset was subsequently divided in two along the red line to produce 
a north-western (NW) and a south-eastern half (SE) of the reduced dataset. The motorway is depicted in orange. 

None of the db-RDA performed on the newly formed datasets significantly explained the 
genetic distances between the samples. The effect size was highest in NW, although still 
being very low (Table 7). 

Table 7. Significance levels and coefficients of determination generated using db-RDA on the reduced wild boar 
datasets. Results for complete dataset are included for comparison. All db-RDA were performed using the position 
relative to the motorway as explanatory variable. 

Dataset Adjusted R² ANOVA p-value 

All (325) samples 0.000251 0.338 
Reduced (294 samples) -0.000259 0.497 
NW (113 samples) 0.00676 0.051 
SE (181 samples) -0.00102 0.561 

 

3.3. Comparing the red deer dataset to the wild boar dataset 

Both datasets were reduced to datasets containing 50 samples, taken from the marked area 
in Fig. 5. These samples were obtained by randomly taking 25 samples within the marked 
area from each side of the motorway. 



21 

 

3.3.1. db-RDA 

Using the subsampled datasets for red deer and wild boar, db-RDA were performed in order 
to explain the variation in genetic structure. Only Motorway in the deer dataset offered a 
significant explanation. Overall the models had higher significance and effect size for red 
deer than for wild boar (Table 8).  

Table 8. Significance levels and coefficients of determination generated using db-RDA on the subsampled datasets of 
red deer and wild boar. 

Explanatory variables Adjusted R² ANOVA p-value 

Motorway (deer) 0.0465 0.002 

Motorway (boar) 0.00165 0.385 

MEM (deer) 0.0431 0.07 

MEM (boar) 0.000616 0.476 

3.3.2. Effect of simulated motorway 

The simulation tests were executed similarly to the ones done on the full datasets. For the 
red deer dataset, the simulated road with the highest effect size (R²adj.=0.0704, p=0.001) 
explained the genetic distances significantly. Whilst the simulated road with the lowest 
effect size (R²adj.=-0.00803, p=0.838) did not offer a significant explanation for the genetic 
distances. For the wild boar dataset, neither of these simulated roads explained the genetic 
distances significantly (highest effect size: R²adj.=0.00433, p=0.271; lowest effect size: R²adj.=-
0.0111, p=0.957). Fig. 14 shows the orientation of the simulated roads with the highest and 
lowest effect sizes. 

 

Fig. 14 Graphical representation of the generated roads with the highest and lowest effect sizes using the reduced 
datasets for red deer (A) and wild boar (B). The green lines show the generated roads with the highest effect sizes. The 
red lines correspond to the generated roads with the lowest effect sizes. Blue dots correspond to samples taken to the 
west of the motorway, black dots are taken to the east of the motorway. 
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Chow’s test was used to compare all simulated roads for the reduced red deer dataset to the 
simulated road that had the highest effect size (Fig. 15). 

 

Fig. 15 Plot of the simulated roads with the highest coefficient of determination for the reduced red deer dataset in 
green, with its corresponding significantly differing roads in red.  Blue dots correspond to samples taken to the west of 
the motorway, black dots are taken to the east of the motorway. Significant differences calculated using Chow’s test. 

  



23 

 

4. Discussion 

I tried to supplement to the conclusions drawn by Frantz et al. (2012b), regarding the 
influence of the E411 motorway on gene flow in wild boar and red deer populations (Frantz 
et al., 2012b). I also compared distance-based redundancy analyses to Bayesian cluster 
analyses using genetic data from wild boar and red deer populations in Wallonia (Frantz et 
al., 2012a).  

4.1. Red deer dataset 

4.1.1. db-RDA 

The results from the db-RDA performed on the red deer dataset confirm the findings of 
Frantz et al. (2012b). The E411 motorway has a significant influence on the spatial genetic 
structure of the red deer dataset (Table 1). The motorway explains 1.7% of the total genetic 
structure, where 4.2 % of this genetic structure is explainable by the overall spatial structure 
of the dataset. When looking at the breakdown of the MEM-variables (Table 2), it is 
apparent that most of the spatial genetic structure (1.5%) is to be found at a broad scale 
(MEM1). When Motorway is included in the model and forward selection is performed, 
Motorway is the first selected variable, indicating that it explains the genetic variance better 
than any of the spatial eigenvector functions (Table 3). Looking at the plot of the fitted 
scores of the three canonical axes (Fig. 6), the overlap in spatial structural information 
between Motorway and MEM1 is quite clear. This all leads me to conclude that the E411 
motorway indeed impacts the genetic structure of the red deer population. This coincides 
with information about roe deer populations. Coulon et al. (2004) found that gene flow 
within a roe deer population is influenced by fragmentation of the wooded areas. The type 
of barrier that bisects this wooded area determines the magnitude of the impact that 
fragmentation has on the genetic structure of the population. Coulon et al. (2006) did not 
find an absolute barrier, but rather attributed it to an accumulation of factors (a fenced 
highway and several rivers and canals). Kuehn et al. (2007) on the other hand did not find a 
significant influence on genetic diversity at all, but they did find an influence of a fenced 
motorway on genetic divergence in roe deer. Hepenstrick et al. (2012), finally, did find that a 
fenced highway influences the spatial genetic structure of a roe deer population. They also 
found that an unfenced railway has absolutely no influence, whereas a wide river still shows 
to be somewhat of a barrier. This would mean that the fact that the E411 motorway acts as a 
gene flow barrier correlates to the fact that it is completely fenced off.  

4.1.2. Effect of simulated motorways 

To test if Motorway merely represents isolation-by-distance perpendicular to the axis of the 
E411, I performed simulations whereby 100 differently oriented highways were simulated. 
At least for red deer, the simulated motorways reveal a significant impact on the spatial 
genetic structure at the position of the motorway. The simulated motorway with the highest 
R²adj.=0.016 corresponds to the position of the real E411 motorway (Fig. 7). The fact that the 
real motorway has a slightly higher R²adj.=0.017 is explained by the fact that the real 
motorway is not completely straight in contrast to the simulated motorway. This fact also 
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tells me that the effect is likely due to the E411 motorway, as a straight line that approaches 
the location of the motorway closely still has a lower R²adj. than the original curved shape of 
the road. The values for R²adj. also drop when turning away from the direction of the E411 
(Fig. 8). This means that there is a clear trend towards higher genetic differences between 
samples across the motorway than between samples on the same side of the motorway. 
Looking at the results of the Chow’s tests, it is clear that the motorway has a higher 
influence on spatial genetic structure than the spatial structures perpendicular to its 
direction (Fig. 9A). Perpendicular to the motorway, the R²adj. has the significantly lowest 
value, meaning the influence of spatial structures on genetic structure clearly is the lowest in 
this direction (Fig. 9B). This all corroborates the hypothesis that the E411 motorway acts as a 
strong barrier to gene flow. 

4.1.3. Subsampling 

Subsampling the red deer dataset allowed me to determine the minimal amount of samples 
needed to find spatial genetic structure using distance-based redundancy analyses. Table 5 
shows that the effect of the motorway remains significant in all ten pseudoreplicates of 175 
samples or more. Even sample sizes of 100 yielded only a falsely non-significant effect (a 
type II error) in a single pseudoreplicate (10%). This contrasts with results of the Bayesian 
analyses of Frantz et al. (2012b), which failed to detect (depending on the clustering 
algorithm used) the true effect of the motorway in 50% to 100% of the pseudoreplicates 
consisting of 100 samples. This shows the superiority of redundancy analyses over Bayesian 
clustering methods. 

4.2. Wild boar dataset 

4.2.1. db-RDA 

The db-RDA performed on the wild boar dataset did not return any significant spatial genetic 
effects. Neither the E411 motorway, nor the spatial distribution of the samples seems to 
significantly affect the genetic structure of the wild boar population. This can be due to a 
number of factors. An explanation could be found in sampling design or in the actual 
distribution of wild boar in the region. Fig. 10 shows a rather large gap between the north-
western and south-eastern parts of the dataset, which may cause interferences in the db-
RDA. Also, the spatial extent of sampling is wider (east to west) for wild boars than for red 
deer. However, both would yield a stronger spatial genetic structure, and this gap, if it had a 
strong effect on the genetic structure, should have been detected with the RDA. Since we 
didn’t detect such a pattern, the sampling design is not a likely cause of this difference. 
Secondly, the wild boar dataset may be too small (N=325) to detect significant patterns. This 
is likely the case, but the effect (R²adj.) of the motorway is also much smaller anyway, even 
when the red deer dataset is downscaled to similar size as the wild boar dataset. This shows 
that the motorway has a much stronger impact on red deer than on wild boar. This leaves us 
with the third explanation, that wild boars are intrinsically more mobile (as indicated by the 
much shallower and non-significant overall neutral spatial genetic structure) and are less 
hindered by the motorway (as indicated by the lack of a significant effect of the motorway 
itself). On average a wild boar has a daily range of 1.3km², which goes up to 2.4km² in 
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urbanized areas (Morelle et al., 2015), which would allow for the occurrence of wild boars 
crossing the motorway. This is supported by Prévot and Morelle (2012), who found that 
tagged individuals were found on the other side of the E411 motorway after recapture.  

4.2.2. Effect of simulated motorways 

The highest value for R²adj.=0.00422 is found for the simulated motorway running through 
the gap dividing the wild boar dataset in two (Fig. 10). This indicates that this gap has a 
stronger influence on genetic structure than the E411 motorway. This is confirmed when 
Chow’s test is used to compare the simulated motorways (Fig. 12). This means that the 
spatial gap inside the wild boar dataset could mask a possible effect of the E411 motorway. 
Fig. 11 shows that R²adj. has a rather narrow range, meaning there is little difference in 
genetic impact from any spatial structure. The absolute values of R²adj. are also quite low, 
indicating the spatial genetic structure in the wild boar dataset is not very profound. 

4.2.3. Balancing the spatial design 

To test the hypothesis that the absence of spatial genetic structure is to be explained by the 
way the sampling was done, the wild boar dataset was scaled down to form three new 
datasets (Fig. 13). Whilst none of the newly formed datasets yielded significant results, the 
results for NW are promising. With a p-value of 0.051, the R²adj.=0.00676 is as good as 
significant, tiny it may be. This would show a slight effect of the E411 motorway on the 
genetic structure of the wild boar population. Although the value for R²adj. is very low 
compared to the value in the red deer dataset, it is higher than the value for R²adj. found for 
the simulated motorway corresponding to the spatial gap in the dataset. This could mean 
there is a weak effect of the motorway on the genetic structure of the wild boar dataset. As 
shown in section 4.1.3, sample size is sufficient (113 samples) to be able to find significant 
results in the red deer dataset. This means that a potential effect in the wild boar dataset is 
in any case lower than the effect in the red deer dataset. There still is a possibility though, 
that the lack of significance in NW can be explained by its low sample size. The fact that SE 
and Reduced still distinctly show non-significant results, leads me to conclude that, although 
sample design might influence results for the wild boar dataset, the E411 motorway 
probably does not influence spatial genetic structure of the surrounding wild boar 
population by much. 

4.3. Comparing the red deer dataset to the wild boar dataset 

When comparing the results for the red deer dataset to those for the wild boar dataset, 
sampling design might play a role in explaining the differences found. To be able to avoid 
sampling design as a factor, both the red deer and the wild boar dataset were reduced to the 
same amount of samples (50), which were equally distributed on both sides of the motorway 
and came from the same area (Fig. 5). This way both datasets would be comparable in 
sampling design, leaving differences in statistical results dependent on the actual spatial 
genetic structure of the dataset. As I showed earlier (4.1.3), the optimal dataset for db-RDA 
consists of a minimum of 175 samples for red deer, with datasets consisting of down to 100 
samples still performing reasonably well. These datasets only consisted of 50 samples as 
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otherwise it would not have been possible to create datasets for both species with equal 
amounts of samples on both sides of the motorway in the same area. This means a lack of 
statistical power will almost certainly be a problem. However, for the sake of comparison, 
these analyses were retained. 

4.3.1. db-RDA 

The spatial predictors from the MEM analysis of the red deer dataset don’t show a 
significant effect when the data are downscaled to 50 samples, but this can be attributed to 
the low sample size of the reduced dataset. Table 8 does clearly show higher values for R²adj. 
for the red deer dataset using Motorway or MEM as explanatory variables. This implies that 
the spatial genetic effects are higher in the red deer population than they are in the wild 
boar population. The fact that for the red deer dataset only Motorway has a significant 
effect, underlines the significance of the impact of the E411 motorway on the spatial genetic 
structure of the red deer population. 

4.3.2. Effect of simulated motorways 

The simulated motorways confirm the fact that spatial genetic effects are higher in the red 
deer dataset. Only the red deer dataset shows significant effects, the orientation of the 
largest effects can be seen in Fig. 14. This orientation does not seem to correspond to the 
location of the motorway, however Chow’s test shows me that the real orientation of the 
E411 motorway does not yield a significantly different effect from the highest effect 
detected in this reduced dataset. This confirms the existence of a spatial genetic effect on 
the red deer population caused by the E411 motorway. Although the dataset does seem a 
bit too small to make a conclusion about the wild boar population, there does not seem to 
be an important genetic effect on the wild boar population from the motorway. 

4.3.3. Comparing the full-sized datasets 

When simply comparing the results found for the complete datasets of red deer (3.1) and 
wild boar (3.2), it becomes quite clear that the spatial genetic structure in the red deer 
dataset is more apparent than that in the wild boar dataset.  Not only is there a clear 
influence of the E411 motorway on the genetic structure of the red deer population, other 
spatial factors also play a significant role. For the wild boar dataset, the effects are less 
obvious. The fact that no significant effects were found might mean that no effects are to be 
found, but it might as well mean that sample size is too low to detect an effect. Considering 
the fact that no significant spatial effects were found at all, it is probable that this second 
hypothesis is true. However, in case a spatial genetic effect was to be found, provided that 
the sample size of the wild boar dataset was higher, this effect would be smaller than the 
one found in the red deer dataset. I have shown that the spatial genetic effects were still 
found in all pseudoreplicates of the red deer dataset when it was scaled down to 300 
samples (Table 5), proving that these effects are bigger than the potential spatial genetic 
effects in the wild boar population (as the wild boar dataset consisted of 325 samples). 
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4.4. Comparing db-RDA to Bayesian cluster analyses 

Revising the analyses done by Frantz et al. (2012b) and facing them with those I performed 
in this paper, it is possible to compare distance-based redundancy analyses to Bayesian 
cluster analyses. Overall I did not find substantial differences when it comes to conclusions, 
both types of analyses find a significant influence of the E411 motorway on the genetic 
structure of the red deer population, whilst no influence was found for the wild boar 
population. However, the subsampling procedure performed on the red deer database 
(2.2.3, 3.1.3 and 4.1.3) shows an important difference between both techniques. Looking at 
Table 4, it is clear cluster analyses suffer from type II errors when sample size is too low. For 
BAPS and STRUCTURE without priors the threshold lies around 450 samples, GENELAND still 
outputs reliable results down to 300 samples and STRUCTURE, using the sampling locations 
as priors, performs best with no type II errors at 200 samples. At 100 samples, however, only 
STRUCTURE with priors can still identify two genetic clusters, albeit with a type II error-
percentage of 50%. Table 5 shows the value of db-RDA as a powerful statistical tool for 
finding spatial genetic effects. With the dataset down to 175 samples still no type II errors 
occur. At 100 samples 90% of the db-RDA can still find a significant genetic effect of the 
motorway. Even with a dataset that is reduced to 10 samples, db-RDA can still find this effect 
in 30% of the trials. This clearly shows that db-RDA can find spatial genetic effects a lot 
easier with smaller sample sizes. Another important advantage to using db-RDA, is that it 
offers a measure for the effect size, whereas Bayesian cluster analyses can only identify the 
presence or absence of the effect. Overall, this indicates that the redundancy analyses are, 
at least in this study, far superior to the more commonly used Bayesian clustering methods. 
Moreover, the RDA method, by estimating effect sizes, allows one to compare the strength 
of a genetic barrier across species or across studies. And finally, RDA does not require very 
powerful computers or long computing time, whereas Bayesian analyses such as STRUCTURE 
do.  
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5. Conclusion 

In conclusion, my research demonstrates the power of redundancy analyses in landscape 
genetics compared to much more laborious Bayesian clustering approaches. As indicated by 
Frantz et al. (2012b), the E411 motorway does indeed affect gene flow in the red deer 
population that was monitored in the Walloon region of Belgium. The wild boar population 
that was monitored in the same area does not seem to undergo a similar influence from the 
motorway. However, the results for the wild boar population seem to imply possible type II 
errors due to sampling design. Focusing on a spatially better balanced subset of the wild 
boar data, a weak and marginally significant effect of the motorway was detected. 
Concerning the choice of statistical method for researching spatial genetic effects, distance-
based redundancy analyses showed their value. Not only does db-RDA offer a measure for 
effect size, which enables the comparison of importance for individual barriers, it also 
outperforms Bayesian cluster analyses when it comes to finding spatial effects in small 
datasets.  
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6. Summary 

Nature preservation has gained a lot of interest in the past decades. However quantifying 
the impact man has and finding the right measures to counteract the deterioration shows to 
be rather difficult. The first step in preserving natural populations of any kind of organism is 
identifying the factors that influence its life cycle. In western Europe, populations of large 
mammals mostly suffer from the consequences of habitat fragmentation. This fragmentation 
is caused not in the least by human transportation infrastructure. To counteract the 
deterioration of wildlife habitats, numerous countermeasures have been taken. Overpasses, 
culverts and underpasses have been built and their effectiveness has been shown (Mata et 
al., 2008). However the magnitude of the impact transportation networks have on the 
interconnectivity of mammalian populations has not been fully quantified. Frantz et al. 
(2012b) have tried to identify the effect of the E411 motorway on red deer (Cervus elaphus) 
and wild boar (Sus scrofa) in Wallonia. However they failed to fully quantify the effects they 
observed. In this paper I found a clear effect of the motorway on the red deer population, 
explaining 1.7% of the genetic structure of the population. In wild boar there was no clear 
effect apparent, this might however be caused by sampling design. The statistical technique I 
used, db-RDA (Legendre and Anderson, 1999), outperformed the Bayesian cluster 
techniques used by Frantz et al. (2012b) in two ways: it offers a measure for effect size and it 
is a powerful tool for finding effects in small datasets. 

7. Samenvatting 

Natuurbehoud heeft sterk aan belangstelling gewonnen de afgelopen jaren. Het opmeten 
van de menselijke impact op de natuur en het vinden van de juiste maatregelen blijft echter 
moeilijk. Het behouden van natuurlijke populaties van eender welke soort organisme begint 
bij het aanwijzen van de factoren die hun levenscyclus beïnvloeden. In West-Europa leiden 
grote zoogdieren vooral onder de gevolgen van habitat fragmentatie. Deze versnippering 
hangt sterk samen met de bouw van transportnetwerken. Om de achteruitgang van 
natuurgebieden tegen te gaan, werden tal van maatregelen genomen. Allerhande 
wildcorridors werden aangelegd en hun efficiëntie werd bewezen (Mata et al., 2008). De 
grootte van de impact die transportnetwerken hebben op de verbondenheid tussen 
zoogdierenpopulaties werd echter nog niet volledig bepaald. Frantz et al. (2012b) hebben 
het effect van de autosnelweg E411 op populaties van edelherten (Cervus elaphus) en wilde 
zwijnen (Sus scrofa) trachten te vinden. De grootte van dit effect hebben ze echter niet 
volledig kunnen bepalen. In deze Master-thesis vond ik een duidelijk effect van de 
autosnelweg, dat 1.7% van de totale genetische structuur van de populatie edelherten 
verklaarde. De populatie wilde zwijnen werd schijnbaar niet beïnvloed, al kan dit aan de 
manier van staalname liggen. De statistische methode die ik gebruikte, db-RDA (Legendre 
and Anderson, 1999), toonde zich beter geschikt dan de Bayesische clustertechnieken die 
gebruikt werden door Frantz et al. (2012b). Ten eerste biedt het een maat voor de gevonden 
effecten en ten tweede is deze techniek veel krachtiger waardoor effecten zelfs in kleine 
datasets gevonden kunnen worden.  
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9. Addendum 

9.1. R-script for db-RDA, simulating motorways and subsampling 
library(PCNM) 
library(vegan) 
library(adegenet) 
library(ade4) 
library(gap) 
 
################################## 
#Distance-based Redundancy Analysis Deer data 
################################## 
 
# Input data was retrieved from the dryad depository (Frantz et al., 2012a). 
# This script is based on Borcard et al. (2011) "7.4.2.3 PCNM analysis of the mite data" 
 
dat<-read.csv("Input_data_deer.csv",header=TRUE,sep=";",row.names=1) 
pos<-read.csv("Input_pos_deer.csv",header=TRUE,sep=";",row.names=1) 
road<-read.csv("Input_pos_0_1_deer.csv",header=TRUE,sep=";",row.names=1) 
 
dat.dist<-vegdist(dat,method="euclidean",diag=TRUE,na.rm=TRUE) 
dat.pcoa<-pcoa(dat.dist) 
dat.ax<-dat.pcoa$vectors 
 
road.rda<-rda(dat.ax,road) 
anova(road.rda,step=1000) 
road.r2a<-RsquareAdj(road.rda)$adj.r.squared  
 
pos.dist<-dist(pos,method="euclidean",diag=TRUE) 
View(as.matrix(pos.dist)) 
 
pos.PCNM<-PCNM(pos.dist) 
plot(pos.PCNM$spanning,pos) 
dmin<-pos.PCNM$thresh  
nb.ev<-length(pos.PCNM$values)  
 
select<-which(pos.PCNM$Moran_I$Positive==TRUE) 
length(select)  
pos.PCNM.plus<-as.data.frame(pos.PCNM$vectors)[,select] 
 
dat.rda<-rda(dat.ax,pos.PCNM.plus) 
anova(dat.rda,step=1000) 
dat.r2a<-RsquareAdj(dat.rda)$adj.r.squared  
 
dat.fwd<-forward.sel(dat.ax,as.matrix(pos.PCNM.plus),adjR2thresh=dat.r2a) 
nb.sig.PCNM <- nrow(dat.fwd) #8 
PCNM.sign <- sort(dat.fwd[,2]) #1  2  4  5  6  9 10 31 
PCNM.red <- pos.PCNM.plus[,c(PCNM.sign)] 
 
dat.rda2<-rda(dat.ax~.,data=PCNM.red) 
anova(dat.rda2,step=1000) 
dat.fwd.r2a<-RsquareAdj(dat.rda2)$adj.r.squared  
 
axes.test <- anova(dat.rda2, by="axis", step=1000) 
nb.ax <- length(which(axes.test[,4] <= 0.05))  
 
dat.axes <- scores(dat.rda2, choices=c(1:nb.ax), display="lc", scaling=1) 
png(filename="deer selected PCNM axes.png",width=1500,height=600,units="px") 
par(mfrow=c(1,3),cex=1) 
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s.value(pos, 
dat.axes[,1],grid=FALSE,include.origin=FALSE,xlim=c(172000,265000),ylim=c(40000,120000)) 
axis(1,pos=40000) 
axis(2,pos=180000) 
s.value(pos, 
dat.axes[,2],grid=FALSE,include.origin=FALSE,xlim=c(172000,265000),ylim=c(40000,120000)) 
axis(1,pos=40000) 
axis(2,pos=180000) 
s.value(pos, 
dat.axes[,3],grid=FALSE,include.origin=FALSE,xlim=c(172000,265000),ylim=c(40000,120000)) 
axis(1,pos=40000) 
axis(2,pos=180000) 
dev.off() 
 
shapiro.test(resid(lm(dat.axes[,1] ~ ., data=road))) 
dat.axis1.road <- lm(dat.axes[,1]~., data=road)  
summary(dat.axis1.road) 
 
shapiro.test(resid(lm(dat.axes[,2] ~ ., data=road))) 
dat.axis2.road <- lm(dat.axes[,2]~., data=road)  
summary(dat.axis2.road) 
 
shapiro.test(resid(lm(dat.axes[,3] ~ ., data=road))) 
dat.axis3.road <- lm(dat.axes[,3]~., data=road)  
summary(dat.axis3.road) 
 
road_PCNM<-
read.csv("Input_road_PCNM_fwd_deer.csv",header=TRUE,sep=";",row.names=1,dec=",") 
road_PCNM.rda<-rda(dat.ax,road_PCNM) 
anova(road_PCNM.rda,step=1000) 
road_PCNM.r2a<-RsquareAdj(road_PCNM.rda)$adj.r.squared  
 
road_PCNM.fwd<-forward.sel(dat.ax,as.matrix(road_PCNM),adjR2thresh=road_PCNM.r2a) 
nb.sig.road_PCNM <- nrow(road_PCNM.fwd)  
road_PCNM.sign <- sort(road_PCNM.fwd[,2])  
road_PCNM.red <- road_PCNM[,c(road_PCNM.sign)] 
 
road_PCNM.rda2<-rda(dat.ax~.,data=road_PCNM.red) 
anova(road_PCNM.rda2,step=1000) 
road_PCNM.fwd.r2a<-RsquareAdj(road_PCNM.rda2)$adj.r.squared  
 
################################## 
#Simulating motorways 
################################## 
 
# This script is loosely based on the random barrier script by Frantz et al. (2010). 
 
n.roads<-100 
 
mid.x<-mean(pos[,1]) 
mid.y<-mean(pos[,2]) 
mid<-data.frame(mid.x,mid.y) 
names(mid)<-c("x","y") 
 
circle.points<-data.frame(matrix(0,nrow=n.roads,ncol=2)) 
names(circle.points)<-c("x","y") 
 
circle.points[1,1]<-mid.x+1 
circle.points[1,2]<-mid.y 
for(i in 2:n.roads){ 
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  circle.points[i,1]<-circle.points[i-1,1]-(2/n.roads) 
  ifelse(i>(n.roads/2)+1,circle.points[i,2]<-circle.points[i-1,2]-(2/n.roads),circle.points[i,2]<-
circle.points[i-1,2]+(2/n.roads)) 
} 
 
rnd.roads<-data.frame(matrix(0,nrow=nrow(pos),ncol=n.roads)) 
rownames(rnd.roads)<-row.names(pos) 
for(i in 1:nrow(pos)){ 
  for(j in 1:n.roads){ 
    k<-((circle.points[j,2]-mid[1,2])*pos[i,1]-(circle.points[j,1]-
mid[1,1])*pos[i,2]+circle.points[j,1]*mid[1,2]-circle.points[j,2]*mid[1,1])/sqrt((circle.points[j,2]-
mid[1,2])^2+(circle.points[j,1]-mid[1,1])^2) 
    ifelse(k==0,rnd.roads[i,j]<-NA,ifelse(k<0,rnd.roads[i,j]<-0,rnd.roads[i,j]<-1)) 
  } 
} 
 
rnd.roads.r2a<-data.frame(matrix(0,nrow=1,ncol=n.roads)) 
for(i in 1:n.roads){ 
  rnd.roads.rda<-rda(dat.ax,rnd.roads[,i]) 
  capture.output(anova(rnd.roads.rda,step=1000),file="Random roads anova's.txt",append=TRUE) 
  rnd.roads.r2a[1,i]<-RsquareAdj(rnd.roads.rda)$adj.r.squared 
} 
shapiro.test(as.numeric(rnd.roads.r2a))  
 
rnd.roads.diff<-data.frame(matrix(0,nrow=n.roads,ncol=n.roads)) 
for(i in 1:n.roads){ 
  for(j in 1:n.roads){ 
    rnd.roads.diff[i,j]<-chow.test(rnd.roads[,i],dat.ax,rnd.roads[,j],dat.ax)[4] 
  } 
} 
rnd.roads.diff.sign<-which(rnd.roads.diff<=0.05,arr.ind=TRUE) 
 
road.max<-which.max(rnd.roads.r2a)  
max<-max(rnd.roads.r2a)  
road.min<-which.min(rnd.roads.r2a)  
min<-min(rnd.roads.r2a)  
road.max.coord<-circle.points[road.max,]  
slope.max<-(mid[1,2]-road.max.coord[1,2])/(mid[1,1]-road.max.coord[1,1]) 
road.min.coord<-circle.points[road.min,] 
slope.min<-(mid[1,2]-road.min.coord[1,2])/(mid[1,1]-road.min.coord[1,1])  
 
png(filename="deer rnd roads sign diff max.png",width=800,height=800,units="px") 
par(pty="s") 
plot(pos,col=ifelse(road[row(pos),1]==0,"black","blue"),asp=1,pch=16,cex=2) 
rnd.roads.diff.sign.max<-which(rnd.roads.diff.sign[,2]==road.max) 
slope<-(mid[1,2]-circle.points[road.max,2])/(mid[1,1]-circle.points[road.max,1]) 
abline(a=mid[1,2]-slope*mid[1,1],b=slope,col="green") 
for(i in 1:length(rnd.roads.diff.sign.max)){ 
  slope<-(mid[1,2]-circle.points[rnd.roads.diff.sign[rnd.roads.diff.sign.max[i],1],2])/(mid[1,1]-
circle.points[rnd.roads.diff.sign[rnd.roads.diff.sign.max[i],1],1]) 
  abline(a=mid[1,2]-slope*mid[1,1],b=slope,col="red") 
} 
dev.off() 
 
png(filename="deer rnd roads sign diff min.png",width=800,height=800,units="px") 
par(pty="s") 
plot(pos,col=ifelse(road[row(pos),1]==0,"black","blue"),asp=1,pch=16,cex=2) 
rnd.roads.diff.sign.min<-which(rnd.roads.diff.sign[,2]==road.min) 
slope<-(mid[1,2]-circle.points[road.min,2])/(mid[1,1]-circle.points[road.min,1]) 
abline(a=mid[1,2]-slope*mid[1,1],b=slope,col="green") 
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for(i in 1:length(rnd.roads.diff.sign.min)){ 
  slope<-(mid[1,2]-circle.points[rnd.roads.diff.sign[rnd.roads.diff.sign.min[i],1],2])/(mid[1,1]-
circle.points[rnd.roads.diff.sign[rnd.roads.diff.sign.min[i],1],1]) 
  abline(a=mid[1,2]-slope*mid[1,1],b=slope,col="red") 
} 
dev.off() 
 
rnd.roads.r2a.plot<-c(rnd.roads.r2a[,road.min:n.roads],rnd.roads.r2a[,1:road.min-1]) 
png(filename="deer R² rnd roads.png",width=800,height=400,units="px") 
boxplot(rnd.roads.r2a.plot,names=NULL) 
dev.off() 
 
png(filename="deer rnd roads.png",width=800,height=800,units="px") 
par(pty="s") 
plot(pos,col=ifelse(road[row(pos),1]==0,"black","blue"),asp=1,pch=16,cex=2) 
abline(a=mid[1,2]-slope.max*mid[1,1],b=slope.max,col="green") 
abline(a=mid[1,2]-slope.min*mid[1,1],b=slope.min,col="red") 
dev.off() 
 
png(filename="deer all rnd roads.png",width=800,height=800,units="px") 
par(pty="s") 
plot(pos,col=ifelse(road[row(pos),1]==0,"black","blue"),asp=1,pch=16,cex=2) 
for(i in 1:n.roads){ 
  slope<-(mid[1,2]-circle.points[i,2])/(mid[1,1]-circle.points[i,1]) 
  percentage<-(rnd.roads.r2a[1,i]-min)/(max-min) 
  colour<-rgb(1-percentage,percentage,0) 
  abline(a=mid[1,2]-slope*mid[1,1],b=slope,col=colour) 
} 
dev.off() 
 
################################## 
#Subsampling 
################################## 
 
# This script reiterates several key steps from the db-RDA script, using a number of smaller datasets. 
 
n.datasets<-10 
dataset.size<-10 
 
west<-which(road==1) 
east<-which(road==0) 
red.roads.r2a<-data.frame(matrix(0,nrow=1,ncol=n.datasets)) 
dat.new.r2a<-data.frame(matrix(0,nrow=1,ncol=n.datasets)) 
write("\n",file="Reduced data road anova's.txt",append=TRUE) 
write.table(dataset.size,file="Reduced data road 
anova's.txt",append=TRUE,row.names=FALSE,col.names=FALSE) 
write(" samples\n\n",file="Reduced data road anova's.txt",append=TRUE) 
write("\n",file="Reduced data anova's.txt",append=TRUE) 
write.table(dataset.size,file="Reduced data 
anova's.txt",append=TRUE,row.names=FALSE,col.names=FALSE) 
write(" samples\n\n",file="Reduced data anova's.txt",append=TRUE) 
for(i in 1:n.datasets){ 
  select.west<-sample(west,dataset.size%/%2,replace=FALSE) 
  select.east<-sample(east,dataset.size%/%2,replace=FALSE) 
  dat.new.west<-dat[select.west,] 
  dat.new.east<-dat[select.east,] 
  dat.new<-rbind(dat.new.west,dat.new.east) 
  pos.new.west<-pos[select.west,] 
  pos.new.east<-pos[select.east,] 
  pos.new<-rbind(pos.new.west,pos.new.east) 
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  road.new.west<-road[select.west,] 
  road.new.east<-road[select.east,] 
  road.new<-as.data.frame(c(road.new.west,road.new.east)) 
   
  dat.new.dist<-vegdist(dat.new,method="euclidean",diag=TRUE,na.rm=TRUE) 
   
  dat.new.pcoa<-pcoa(dat.new.dist) 
  dat.new.ax<-dat.new.pcoa$vectors 
   
  road.new.rda<-rda(dat.new.ax,road.new) 
  capture.output(anova(road.new.rda,step=1000),file="Reduced data road 
anova's.txt",append=TRUE) 
  red.roads.r2a[1,i]<-RsquareAdj(road.new.rda)$adj.r.squared 
   
  pos.new.dist<-dist(pos.new,method="euclidean",diag=TRUE) 
   
  pos.new.PCNM<-PCNM(pos.new.dist) 
  plot(pos.new.PCNM$spanning,pos.new) 
  dmin.new<-pos.new.PCNM$thresh  
  nb.ev.new<-length(pos.new.PCNM$values) 
   
  select<-which(pos.new.PCNM$Moran_I$Positive==TRUE) 
  pos.new.PCNM.plus<-as.data.frame(pos.new.PCNM$vectors)[,select] 
   
  dat.new.rda<-rda(dat.new.ax,pos.new.PCNM.plus) 
  capture.output(anova(dat.new.rda,step=1000),file="Reduced data anova's.txt",append=TRUE) 
  dat.new.r2a[1,i]<-RsquareAdj(dat.new.rda)$adj.r.squared 
} 

R-scripts used on the wild boar data are roughly identical, except for the amount of 
canonical axes, the file names and the exclusion of the subsampling script. 

9.2. R-script for downscaling the wild boar database 
################################## 
#Downscaling the wild boar database 
################################## 
 
dat<-read.csv("Input_data_boar.csv",header=TRUE,sep=";",row.names=1) 
pos<-read.csv("Input_pos_boar.csv",header=TRUE,sep=";",row.names=1) 
road<-read.csv("Input_pos_0_1_boar.csv",header=TRUE,sep=";",row.names=1) 
 
select.pos<-which(pos[,1]>180000) 
pos<-pos[select.pos,] 
dat<-dat[select.pos,] 
road<-as.data.frame(road[select.pos,]) 
select.pos<-which(pos[,1]<235000) 
pos<-pos[select.pos,] 
dat<-dat[select.pos,] 
road<-as.data.frame(road[select.pos,]) 
 
# The reduced database was formed using the script above. This database was then split up into two  
# new databases using the script below. As described in 2.2.4 and Fout! Verwijzingsbron niet 
gevonden.. 
 
select.pos<-data.frame(matrix(0,nrow=nrow(pos),ncol=1)) 
rownames(select.pos)<-row.names(pos) 
for(i in 1:nrow(pos)){ 
  k<-((100000-50000)*pos[i,1]-(210000-190000)*pos[i,2]+210000*50000-
100000*190000)/sqrt((100000-50000)^2+(210000-190000)^2) 
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  ifelse(k==0,select.pos[i,1]<-NA,ifelse(k<0,select.pos[i,1]<-0,select.pos[i,1]<-1)) 
} 
 
select.pos<-which(select.pos[,1]==1)  
# To distinguish between the eastern and western part of the reduced database, the value indicated  
# in red needs to be changed between 1 and 0 respectively. 
pos<-pos[select.pos,] 
dat<-dat[select.pos,] 
road<-as.data.frame(road[select.pos,]) 

After creating the reduced databases, the script used for the complete database (see 9.1) 
was executed on the newly formed databases. 

9.3. R-script for making an unbiased comparison between the red deer 
and the wild boar database 

################################## 
#Subsampling deer database for comparison 
################################## 
 
dat<-read.csv("Input_data_deer.csv",header=TRUE,sep=";",row.names=1) 
pos<-read.csv("Input_pos_deer.csv",header=TRUE,sep=";",row.names=1) 
road<-read.csv("Input_pos_0_1_deer.csv",header=TRUE,sep=";",row.names=1) 
 
select.pos<-which(pos[,1]>190000) 
pos<-pos[select.pos,] 
dat<-dat[select.pos,] 
road<-as.data.frame(road[select.pos,]) 
select.pos<-which(pos[,1]<220000) 
pos<-pos[select.pos,] 
dat<-dat[select.pos,] 
road<-as.data.frame(road[select.pos,]) 
select.pos<-which(pos[,2]>65000) 
pos<-pos[select.pos,] 
dat<-dat[select.pos,] 
road<-as.data.frame(road[select.pos,]) 
select.pos<-which(pos[,2]<95000) 
pos<-pos[select.pos,] 
dat<-dat[select.pos,] 
road<-as.data.frame(road[select.pos,]) 
 
west<-which(road==1) 
east<-which(road==0) 
select.west<-sample(west,25,replace=FALSE) 
select.east<-sample(east,25,replace=FALSE) 
dat.new.west<-dat[select.west,] 
dat.new.east<-dat[select.east,] 
dat<-rbind(dat.new.west,dat.new.east) 
pos.new.west<-pos[select.west,] 
pos.new.east<-pos[select.east,] 
pos<-rbind(pos.new.west,pos.new.east) 
road.new.west<-road[select.west,] 
road.new.east<-road[select.east,] 
road<-as.data.frame(c(road.new.west,road.new.east)) 

The subsampled wild boar database was formed using the same script. Both new datasets 
were then subjected to the script described in 9.1. 
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