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Abstract 
 
The welfare of animals in livestock houses is usually monitored manually by the farmers. 
There was a scientific method developed by ethologists via performing some standardised 
measures on chosen welfare indicators; however, a large set of measures need increased 
workload by manual observers or stockmen in order to provide a useful indication of an 
animal’s quality of life. The use of technology will help not only reduce manual workload 
but also provide continuous monitoring with a more accurate image of livestock health and 
welfare. 

The primary objective of this thesis was to show that image processing technology and 
mathematical modelling lead to more frequent monitoring of health and welfare related 
responses of livestock animals. Animal responses were monitored using a single camera per 
pen with an increasing frequency of data sampling. Manual observations once in a growth 
period were increased to automatic capturing of one data point per second. The aim was to 
prove that automated measurements give way to early warning systems and provide 
greater input into the modern livestock production. Consequently, these methods give a 
greater insight into the effectiveness of welfare measures. 

A general methodology labelled as elliptical (or geometrical) modelling was introduced. 
The use of this model evolved throughout the thesis. The first step for continuous 
measuring of livestock variables was to localise them. In Chapter 2, this model was 
employed to localise pigs in a pen. Pigs were painted with unique patterns to be identifiable 
for research purposes using automated image analysis. Pigs were tracked in their feeder, 
drinker, resting and defecating zones. 

In the next step, the movement of animals within their living area was examined. This 
aspect was researched in chapter 3 by using the elliptical model in order to measure pig 
locomotion. As a result, the pigs’ statuses were divided to In-Locomotion and Not-In-
Locomotion. 
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Although variables such as location and locomotion of animals are important, the reason 
why the animals prefer to appear in certain zones is more meaningful for the farmer. In 
chapter 4, elliptical modelling was used to investigate if laying hens prefer to attend 
chambers with lower ammonia levels. 

Because the use of the elliptical model could explain why animals choose certain zones 
in their living area, the effect on their performance became of interest. To understand this, 
two important indicators of animal’s performance were selected: namely weight gain and 
water volume usage. In chapter 5, the topview body area of pigs were measured using  
“real-time” image analysis. This area was linked to actual body weight using mathematical 
modelling. In chapter 6, the number of visits pigs give to their drinker and how long they 
stay at the drinker was measured by image processing. In this case, real-time mathematical 
modelling helped link drinking visits and duration to actual water volume used by the pigs. 
In both cases, mathematical modelling helped interpret livestock variables extracted from 
the images and linked them to physical variables that indicate the performance of pigs. 

In all of the previous chapters, individual animals within a group were studied. However, 
there are variables (e.g. distribution) that are only meaningful for groups of animals. 
Additionally, the impact of individual animal performance on groups was examined. In 
chapter 7, the distribution of broiler chickens was studied. The geometrical model was used 
to measure how chickens spread around the house and a real-time mathematical model 
was developed to predict future distribution. Therefore, abnormalities in how group of 
broilers are distributed could be detected and reported in format of a warning system. 

These automatic monitoring techniques developed can be used to complement the 
manual welfare measures and provide the farmer with relevant management information. 
Specifically, early warning systems can assist the farmer and the veterinarians to take early 
action for securing health and welfare of farm animals. 
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Samenvatting 
 

Het welzijn van dieren in de veehouderij wordt in de praktijk doorgaans manueel 
gecontroleerd door de boeren. Er werd ook een wetenschappelijke methode ontwikkeld 
door ethologen via het evalueren van gestandaardiseerde maten voor welzijn op basis van 
een gekozen set welzijnsindicatoren. Om een volledig beeld te krijgen van de 
levenskwaliteit van een dier moet echter een groot aantal maten voor welzijn beoordeeld 
worden, wat een grote werkdruk teweegbrengt voor de waarnemers of de boeren. Het 
gebruik van technologie zal niet enkel de manuele werkdruk verlagen, maar geeft ook 
continue monitoring met een accurater beeld van de gezondheid en het welzijn van het 
vee.  

Het doel van deze thesis was om aan te tonen dat beeldverwerkingstechnologie en 
wiskundig modelleren leiden tot het frequenter monitoren van gezondheid en welzijn 
gerelateerde dierlijke responsies. Dierlijke responsies werden gemonitord gebruik makend 
van een enkele camera per hok met een toenemende samplefrequentie. Eenmalige manuele 
observaties per groeiperiode werden verhoogd tot het automatisch vastleggen van één 
meetpunt per seconde. Het objectief was om te bewijzen dat geautomatiseerde metingen 
een vroegtijdige waarschuwingen systeem mogelijk maken en een grotere bijdrage leveren 
tot de moderne veehouderij . Bijgevolg geven deze methoden een groter inzicht in de 
effectiviteit van maten voor dierenwelzijn. 

Een algemene methodologie gelabeld als elliptisch (of geometrisch) modelleren werd 
geïntroduceerd. Het gebruik van dit model evolueerde gedurende de thesis. De eerste stap 
voor het continue meten van diervariabelen bestond uit het lokaliseren van het vee. In 
Hoofdstuk 2 werd dit model toegepast voor het lokaliseren van varkens in hun hok. 
Varkens werden gemerkt met unieke rug merktekens om voor onderzoeksdoeleinden 
identificeerbaar te zijn door middel van automatische beeldverwerking. Vervolgens 
werden de varkens gevolgd in hun voeder-, drink- en ontlastingszones. 

In de volgende stap werd de beweging van dieren in hun leefomgeving bestudeerd. Dit 
aspect werd onderzocht in Hoofdstuk 3 door gebruik te maken van het elliptische model 
om de beweging van de varkens te meten. Vervolgens werd voor de status van de varkens 
onderscheid gemaakt tussen In-Beweging en Niet-In-Beweging.  
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Hoewel variabelen zoals positie en beweging van dieren belangrijk zijn, is de reden 
waarom dieren liever in bepaalde zones verblijven betekenisvoller voor de boer. In 
Hoofdstuk 4 werd het elliptisch model gebruikt om te onderzoeken of legkippen een 
voorkeur tonen voor het verblijven in kamers met een lagere ammoniakconcentratie.  

Aangezien het gebruik van het elliptisch model kon verklaren waarom dieren bepaalde 
zones in hun leefruimte verkiezen, ontstond de belangstelling voor het effect hiervan op 
hun prestatie. Om dit te begrijpen, werden twee belangrijke indicatoren voor dierprestatie 
geselecteerd, namelijk gewichtstoename en waterconsumptie. In Hoofdstuk 5 werd de 
lichaamsoppervlakte vanuit bovenaanzicht gemeten met behulp van “real-time” 
beeldverwerking. Deze oppervlakte werd gekoppeld aan het werkelijke lichaamsgewicht 
doormiddel van wiskundige modellen. In Hoofdstuk 6 werd het aantal bezoeken van 
varkens aan de drinkbak en de tijdsduur van ieder bezoek gemeten met behulp van 
beeldverwerking. In dit geval hielp een real-time wiskundig model om het aantal bezoeken 
en hun tijdsduur te koppelen aan de werkelijke waterconsumptie van de varkens. In beide 
gevallen hielp wiskundig modelleren bij het interpreteren van diervariabelen die berekend 
werden uit de beelden en bij het vinden van een verband tussen deze diervariabelen en de 
fysische variabelen die een indicator zijn voor de prestatie van varkens.  

In alle voorafgaande hoofdstukken werden individuele dieren binnen een groep 
bestudeerd. Er bestaan echter variabelen die slechts betekenisvol zijn wanneer ze op 
groepsniveau bekeken worden, zoals ruimtelijke verdeling van de dieren. Daarnaast werd 
de impact van de individuele dierprestatie op groepen onderzocht. In Hoofdstuk 7 werd de 
verdeling van vleeskippen bestudeerd. Het geometrische model werd gebruikt om te meten 
hoe kippen zich over de stal verdelen. Een real-time wiskundig model werd ontwikkeld om 
toekomstige ruimtelijke verdeling te voorspellen. Bijgevolg konden abnormaliteiten in de 
ruimtelijke verdeling van vleeskippen gedetecteerd worden en gerapporteerd worden in de 
vorm van een waarschuwingssysteem. 

Deze ontwikkelde automatische monitoring technieken kunnen gebruikt worden om de 
manuele maten voor dierenwelzijn aan te vullen en de boer te voorzien van relevante 
managementinformatie. In het bijzonder kunnen vroegtijdige waarschuwingen systemen 
de boer en de veeartsen helpen om vroeg actie te ondernemen om gezondheid en welzijn 
van dieren te waarborgen. 
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Chapter 1     Introduction 
 

 

“Engineers like to solve problems. If there are no problems handily available, they will 
create their own problems!” 

Scott Adams 
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1.1 Modern livestock production 

Livestock is one of the fastest-growing sectors in agriculture, potentially presenting 
opportunities for economic growth, poverty reduction and changing diets in rural areas. 
Dealing with the important social, environmental and public health issues linked to, sector 
growth will require solutions that embrace the way in which the livestock sector grows to 
meet increasing demand for animal-source foods. It is important therefore to understand 
where growth in demand for livestock commodities is likely to occur, and how and where 
production of livestock commodities will be increased in order to meet it (Otte et al., 2007). 

As countries have become more affluent, the demand for livestock-derived food has 
substantially increased, leading to a major transformation of global animal food 
production. The linkage between sub-sectors of the animal industry, such as feed 
manufacturers, breeding companies, livestock keepers and processors, as well as 
production practices have changed significantly over the past decades, with potentially 
serious consequences for disease risks. These changes include significant increases in 
livestock populations and densities, using fewer but more productive livestock breeds and 
lines, with, in the case of poultry and pigs, hybrid animals providing the end product, 
specialisation in and vertical integration of stages of production (e.g. breeding, raising, 
finishing), and major changes in the design of animal housing facilities. 

Intensive animal production involves high throughput animal husbandry in which 
thousands of animals of similar genotypes are raised for one purpose (such as pigs, layer 
hens, broiler chickens, ducks, turkeys) with rapid population turnover at one site under 
highly controlled conditions, often in confined housing, with nutrient dense, industrial 
feeds replacing access to forage crops. In the US, these facilities are known as Animal 
Feeding Operations (AFOs). Concentrated Animal Feeding Operations (CAFOs) are a type of 
AFO, which have a regulatory definition in the US as facilities that have animals stabled or 
confined for at least 45 days out of any 12 month period and holding at least 1000 Animal 
Units (AUs) (1 AU = 1000 pounds body weight = 45.36 kg body weight).  

Globally, pig and poultry production are the fastest growing and industrializing 
livestock subsectors with annual production growth rates of 2.6 and 3.7 per cent over the 
past decade (table 1-1). As a consequence, in the developed countries, the vast majority of 
chickens and turkeys are now produced in houses in which between 15000 and 50000 birds 
are confined throughout their lifespan. Increasingly, pigs and cattle are also raised under 
similar conditions of confinement and high density. The trend towards industrialisation of 
livestock production can also be observed in developing countries, where traditional 
systems are being replaced by intensive units at a rate of 4.3 per cent of animal holding 
units per year, with much of that increase occurring in Asia, South America and North 
Africa (Otte et al., 2007). In developing countries a large proportion of industrial units are 
sited in or close to human population centres. Over the same time, the human population 
has grown by almost 700 million people, again, with much of this growth occurring in the 
developing world and in particular affecting urban populations. 
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Table 1-1. Changes in global human population, pig and poultry inventories, and 
production and international trade of pig and poultry meat between 2006 and 2014. Source: 

FAOSTAT website (faostat.fao.org) 

 2006 2014 Annual 
growth (%) 

Human population 5 762 6 451 1.1 
Inventory    
 Pigs (million) 859 963 1.1 
 Poultry (million) 14 949 18 428 2.1 
Production    
 Pig meat (thousand tons) 79 375 103 226 2.6 
 Poultry meant (thousand tons) 56 408 81 856 3.7 
International trade    
 Pig meat (thousand tons) 6 398 9 557 4.0 
 Poultry meant (thousand tons) 5 359 9 234 5.3 

 

Industrialisation of food animal production has led to major increases in livestock 
productivity, which is, to a large extent, the result of genetic progress and the development 
of diets tailored to specific stages of production. For poultry and pigs, industrial production 
is organised in stages that separate primary breeders, multipliers and producers which are 
a small number of globally operating companies forming the apex of the breeding pyramid. 
Different production stages are often undertaken at different sites, leading to significant 
movement of live animals, at times across national borders. In 2005, for example, more 
than 25 million live pigs, i.e. more than 2 million pigs per month, were traded 
internationally (Prakash and Stigler, 2012). In the US, there is a huge movement of 
unfinished animals, for example feeder pigs1 from the Carolinas to the Cornbelt. In 2001, 
27 per cent of pigs in the US were moved from one state to another (or more) (Hennessy et 
al., 2004). Investigations in relation to the recent HPAI2 outbreak in the UK revealed that 
links in poultry production within one enterprise between facilities located in the UK and 
in Hungary involved movement of hatching eggs, birds and poultry products four times 
before the final product reached retail (Lucas, 2007). Animal slaughter operations have also 
become concentrated, leading to larger average distances for transport to slaughter 
(Burrell, 2002). 

Consequences of intensive farming in Europe are also obvious. Industrial broiler 
chickens are bred to reach a weight of 2.2 kilograms in just five weeks (Lymbery, 2012). This 
is well beyond their natural limits and causes great suffering. A typical stocking density in 
the UK and Europe for broiler chickens is equivalent to around 17–20 birds per square 
metre as they approach slaughter weight, i.e. a space allowance of less than one A4 sheet of 
paper per chicken. Every year, an area of forest equivalent to half the UK is cleared, much 
of it to grow animal feed and for cattle ranching. An area of land equivalent to the size of 
the European Union is used to grow feed for farm animals globally. Piglets born into factory 
farms often have their tails docked and their teeth clipped, usually without any form of 
anaesthesia. There are over 260 million cows used to produce milk in the world, including 

                                                        
1 Feeder pig is a weaned gilt or barrow weighing between 18 kg and 37 kg at 6 to 8 weeks of age that is sold to 

be finished for slaughter (Pitcher and Springer, 1997) 
2 Highly Pathogenic Avian Influenza 
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24 million in the European Union (EU). A kilogram of beef takes the equivalent of 90 
bathtubs of water to produce. More than 326 million rabbits are farmed for food in the EU 
every year, with the majority being kept in cramped barren battery cages. For the 
production of “foie gras”1, force-feeding geese increases the size of the liver by up to ten 
times and the fat content of the liver exceeds 50% (Lymbery, 2012). 

The consolidation of poultry and pig production for reasons of competitive advantage 
has also affected the geography of food animal populations. Over the past 60 years, the 
geographic distribution of both pig and poultry production in the US, for example, has 
become more clustered, with poultry production now being highly concentrated in the 
south eastern states and pig production concentrated in some of these same states, as well 
as in the Midwest. Similar trends have occurred worldwide with pig and poultry 
populations increasingly concentrated in particular locations that are often geographically 
coincident. An approximate overview of the global distribution of poultry and cattle 
population densities is provided by figure 1-1 a and b. 

Geographical concentration of pig and poultry production has seen an associated 
increase in global trade and movement of pig and poultry meat products, which over the 
past decade has increased at an annual rate of 4.0 and 5.3 per cent, respectively (table 1-1). 
Although trade can be considered safe when conducted in line with OIE2 regulations, 
poultry trade has been implicated in the cross-border spread of H5N1 in Asia and Africa 
(Kilpatrick et al., 2006). 

 

(a) 

                                                        
1 French for “fat liver” 
2 OIE stands for “Office International des Epizooties” which is translated as “World Organisation for Animal 

Health” 
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(b) 

Figure 1-1. Global poultry (a) and cattle (b) distributions (Courtesy of FAOSTAT: 
faostat.fao.org) 

It can be more profitable to raise or move animals for ‘finishing’ to locations where 
animal feed is abundant, e.g. close to feed mills, than to continuously move feed over large 
distances. Therefore, areas of high livestock density have emerged in a number of regions 
worldwide. Semi-vertical integration of production processes, where a large company 
supplies young stock and feed, while farmers provide animal housing and labour, has often 
not been accompanied by systematic spatial planning of the units in the system. Although 
spatial concentration is convenient from an organisational point of view, as illustrated in 
the case of the HPAI outbreaks in DPPAs1, it has serious drawbacks for the control of 
epidemic diseases. In the EU, location specific disease risks, as for example determined by 
concentration of production units or proximity to wildlife reservoirs, are not factored into 
the cost of production because the current tax-financed system of disease outbreak 
response acts as a free insurance of last resort, and thereby results in the generation of 
avoidable amounts of ‘risky’ production (Jansson et al., 2006). The same authors show that 
although moving to risk-based compulsory insurance for FMD2, financed by the livestock 
sector, would not result in major relocation of dairy production within the EU, it would 
lead to a fairer distribution of disease control costs between member countries and 
between consumers and producers. The location of poultry and pig production, which does 
not rely on the availability of grazing land, may shift in response to a risk-based insurance 
system. 

                                                        
1 Densely Populated Poultry Production Areas 
2 Foot-and-Mouth Disease 
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Considering all above consequences that follow from intensive livestock farming, 
continuous monitoring of livestock health and welfare throughout the fattening process is 
crucial. Technology could facilitate this using frequent measurement of livestock 
variables1. 

1.2 Principles of Precision Livestock Farming 

The use of modern information technology (IT) can play a crucial role in the early detection 
of disease and assessment of welfare in modern livestock production. IT systems can 
supplement the skills of the farmers, veterinarians and inspectors. With the help of this 
technology, farmers and veterinarians can continuously and automatically collect and 
manage the information needed to make sure livestock production is safe, humane and 
environmentally sustainable (Banhazi et al., 2012). 

Sensing systems might facilitate monitoring of many variables in livestock production 
such as feeding times, feed intake, animal health and behaviour. Monitoring is carried out 
preferably in real-time, based on analysis of animal measurements such as sounds, images, 
live weight and condition score. The overall goal is to achieve a continuous assessment of 
the state of livestock and their environment in terms of health, welfare, performance and 
environmental related issues. Mathematical models are used for animal data evaluation in 
many livestock processes. 

Precision Livestock Farming (PLF), which is based on the above concepts, is the 
management of livestock by continuous automated real-time monitoring and/or 
controlling of production or reproduction, health and welfare of livestock (Berckmans, 
2012). Processes suitable for the PLF approach include animal growth, aspects of animal 
behaviour and the physical environment of a livestock building, such as its thermal micro-
environment and emissions of gaseous pollutants such as ammonia (Wathes et al., 2008). 

PLF consists of measuring variables on the animals, modelling these data to select 
information, and then using these models in real time for monitoring and controlling 
purposes. The PLF information provides an essential component of Farm Assurance 
Schemes throughout the food chain, helping to minimise risks to the consumer and 
guarantee product quality (Berckmans, 2009). This technology can be used for surveillance 
and monitoring at the level of the individual animals, pen, farm, region, or country. 
Thereby, PLF is currently regarded as the heart of the engineering endeavour towards 
sustainability in livestock related food production. Its application allows making optimal 
use of knowledge and information in the monitoring and control of processes with 
livestock (Berckmans, 2008). 

The main purpose of PLF is to improve the efficiency of production, while increasing 
animal and human welfare, via applying advanced Information and Communication 
Technologies (ICT), targeted resource use and precise control of the production process. In 
this section, a brief review of the current scientific state of art and, more importantly, the 

                                                        
1 Livestock variable is defined as an element which quantifies a status, behaviour or physical characteristic of 

an animal farm (Blokhuis et al., 2010) 
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implementation of PLF technologies with the view to facilitate more effective technology 
transfer between scientific and commercial organisations is given. 

1.2.1 The role of PLF 

Through the adoption of electronic data collection, processing and application, precision 
farming has the potential to improve production efficiency and reduce costs, as well as 
increase animal and human welfare. There is currently an abundance of information 
available to livestock managers, but it is not generally structured in a way that can be 
applied readily. For example, a survey of producers raising beef from pastures in southern 
Australia showed that over 400 types of information could be relevant for their farms. The 
information comes from many sources including academic organisations, government 
advisors, producer magazines, media sources, technical advisers and other producers. 
Consequently, farm managers tend to adopt procedures in areas where they have most 
interest or in which they believe they have most expertise and neglect many other areas 
that are also essential to drive productivity and profitability. Furthermore, many producers 
perceive that adopting high productive management systems involves increased risk. The 
perceived risks include financial failure because of unforeseen environment or market 
circumstances, damage to the farm infrastructure such as soils and pasture, compromises 
to animal health and welfare, and increased stress on farmers from managing an intensified 
system. These risks are real. Thus, it is important to develop a management system that 
ensures that the essential procedures are carried out, that they are all carried out correctly 
and consistently, and in a way that controls risk (Banhazi et al., 2012). 

The fact that humans tend to lose consistency with the application of repetitive tasks is 
one of the main reasons for failure of manually handled systems. Recording and checks of 
measurements and actions by other people is one way to help overcome the problem. The 
difficulty faced by many rural industries in industrialised countries is obtaining and 
retaining adequately trained and motivated staff. The lack of good staff frequently 
contributes to the failure of well-planned adoption programs1. 

The major role for PLF is to simplify this process of collecting, processing and analysing 
data so that the farm manager is presented with solutions to his/ her problems. Advances 
in the application of the outlined procedure for adoption of essential enterprise processes 
will depend more and more on the automated measurement, interpretation and control of 
these processes. The procedure should include automation of all measurement systems, 
interpretation of the measurements, identifying when critical measurement limits are 
breached and built-in automatic control systems for each essential process to bring it back 
inside the acceptable limits. A useful example of the type of change needed within the 
animal industries comes from the international steel industry. In the 1950s, all tasks were 
undertaken by humans compared with today when the whole process is controlled 
electronically, almost all manual work tasks are automated and monitored centrally. 
Workers are trained to work with machines instead of doing hazardous and heavy manual 
work themselves. This is a vision for PLF, where animal welfare, environmental 

                                                        
1 “Adoption programs” are programs designed to transfer between an old system to a better and more 

modern system 
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sustainability, productivity and profitability are all at an optimum using electronic 
measurement, interpretation and control systems. 

1.2.2 Technological developments and applications 

Many of the early PLF developments were predominantly instigated in EU/UK. Early 
pioneers of the PLF concept were researchers at Leuven University, Belgium, the Silsoe 
Research Institute, UK and University of Wageningen, The Netherlands. Additional 
developments took place in other EU countries, such as Germany, Denmark, Finland and 
the Volcani Research Centre, Israel (Devir et al., 1997). 

Recent developments in communication technology offer a huge potential benefit to the 
performance, design, application and value of PLF. In order to make use of these benefits 
the centralisation of data collection and management can play an important role. Whilst 
independent applications on individual farms may be desirable to some customers, the 
advantages of centralised data collection, processing, management and reporting are 
significant. For example, data collected by sensors on the farm can be sent to a central site 
for processing, storage and reporting. This could result in considerable time saving for 
farm managers to be allocated for more productive tasks, such as farm and animal 
husbandry related tasks. The centralised processing should supply him with only the data 
pertinent to his daily needs, with more detailed reports available as required, including 
through the centralised database the comparative performance of his unit, for example. In 
short, the benefits offered by a good PLF system should be obvious to the user and ideally 
should reduce his management workload (Lehr, 2011). 

In livestock production there are already a few examples of practical implementation of 
PLF techniques. Good examples of adoption of PLF techniques include the use of robotics in 
dairying, measurement of water usage, egg counting, bird weighing, better control of 
environment in poultry houses, computerised feed systems, climate control, automated 
disease detection, growth measurement and real-time production site data capture in 
piggeries (Guarino et al., 2008). The EU sponsored BrightAnimal project (Lehr, 2011) has 
looked for evidence of PLF technologies in laying hens, pigs, dairy and aquaculture used in 
a commercial environment in a number of countries, including Estonia, Denmark, Norway, 
United Kingdom, Australia, Malaysia, Vietnam and South Africa. In general, however, there 
was limited evidence of commercial PLF products used on farms. This was because, 
although PLF sensor systems were widely used to collect data, management systems which 
go one step further and “interpret” the data were rarely adopted on farms. As expected, 
farmers in techno-friendly countries like Estonia, are more inclined to use technology to 
reduce their dependency on hard-to-get and expensive workers and make their life more 
comfortable. However, even in there, the amount of deployed technology is very limited 
and key aspects of animal welfare or productivity are not monitored in an automated 
fashion routinely. 

The commercialisation principles of PLF technologies need to include (1) a verification 
of the benefits of the PLF technique being proposed, (2) a clear communication of those 
verified benefits to customers, (3) identification of principle beneficiaries (i.e. operator vs. 
owner of the business), (4) provision of appropriate training and technical support, (5) 
correct specification, installation, commissioning and monitoring of the installed system. 
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In order to increase the interest of suitable companies in providing services to farmers, 
collaboration between smaller specialist firms and larger generalist firms is desirable. 
Transferring PLF technologies to companies supplying and managing the systems is a 
significant step towards developing commercial PLF tools and products that are wanted by 
customers and sold with confidence. 

1.3 Image processing technology in PLF technique 

Animals require individual care, attention, and measurement. With the growing number of 
livestock mentioned in section 1.1, this cannot be done by famers themselves because 
number of animals per caretaker is highly increased compared with only 10-15 years ago 
(Lundborg, 2004). Therefore, technology can assist them in managing their farm animals. 

Fortunately, new technology is now reaching the point where its application to 
biological processes has become realistic. Wireless data transmission, for example, is 
becoming cheap and reliable. The sensor and sensing technologies (e.g. camera, 
microphone) that are needed to develop products have become small and reliable enough 
to be used within the harsh environment of livestock production. Unit costs are also 
decreasing. For example, the worldwide success of devices such as mobile phones has 
reduced the cost of wireless communication and is pushing this technology into other 
applications such as monitoring livestock health and welfare technologies. Moreover, the 
livestock market involves huge numbers of animals and processes, making it possible to 
produce customised, applied technology at reduced costs. One might wonder why the 
producers of smart phones have not started by providing wearable technology for over 60 
billion animals that are slaughtered every year for food production. An automated system 
is cheaper than the cost of experts such as veterinarians and feed consultants visiting 
farms: a fully automated system, 24 hours (h) a day, seven days a week, costs the same as 
just four farm visits by experts (Berckmans, 2014). 

Automatic monitoring of animals based on real-time image analysis is an approach, 
which has been applied in various animal species (DeShazer et al., 1988; Tillett et al., 1997). 
It can also be useful to farm managers (Burke et al., 2004; Aydin et al., 2010; Venter and 
Hanekom, 2010). 

Farm managers gain a great deal of information from the appearance of an animal. The 
purpose of real-time image processing technology is to enable some of the available 
information to be extracted automatically by connecting a camera to a processing platform 
equipped with the appropriate hardware and software. Computer algorithms segment the 
objects of interest and interpret the visual scene. This is particularly difficult for biological 
objects. The visual characteristics of biological objects exhibit a variability that is not 
generally present in manufactured objects. The mobility and deformability of animals 
contribute extra visual variability. Further difficulties are due to the rather uncontrolled 
conditions in which animals are kept, meaning that it is difficult to arrange for the animal 
to be presented to the camera under favourable lighting conditions and against a 
background which makes segmentation easy (Frost et al., 1997). 

Substantial progress has been made researching these generic problem areas. For 
instance, an approach for locating an object is to match a model of it with candidate objects 
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in the image. For manufactured items it is usually straightforward to construct the model, 
since the dimensions are known. However, animals have variable dimensions and can adopt 
various poses. The model must therefore be deformable. This approach has been 
demonstrated (Tillett, 1991) by an algorithm in which a model of a pig can be rotated, 
translated, scaled and bent laterally to find a good match within an image containing a pig. 

Algorithms have also been developed to enable the outline of an animal to be 
constructed from an image in which the animal has an indistinct or incomplete boundary. 
A particularly useful technique is based on the snake algorithm, in which the mechanics of 
an elastic loop stretched around the image of the animal are simulated. Consideration of 
the energies involved has enabled a boundary to be located in situations where 
conventional techniques have failed (Marchant et al., 1999). 

An extension of image analysis research, which has relevance for monitoring animal 
behaviour, is the segmentation and tracking of moving objects. Tracking animals is 
nontrivial as they are difficult to identify and their movements are often unpredictable. 
One approach is to use image differencing with respect to a time-averaged background. In 
this technique the current image is compared with a reference image, based on previous 
images. This enables areas of change within the image to be differentiated from an 
invariant background. The areas of change are candidate animals, which can then be 
confirmed or rejected by model-based algorithms (McFarlane and Schofield, 1995). Tillett et 
al. (1997) have extended the idea of using a trainable flexible model for locating pigs in 
images to tracking animal movements through sequences of images. The technique was 
used to model subtle motions such as bending and head nodding, as well as position and 
rotation. This approach could be used to characterise animal behaviour over time. 

Some of the current applications with potential of being implemented in animal 
production in future in particular include feather sexing poultry chicks, in which 
accuracies of up to 89% have so far been achieved (Tao and Walker, 2002), evaluating meat 
quality (Tan, 2004), determining carcass quality of live pigs (Doeschl-Wilson et al., 2004), 
determining live fish size (Zion et al., 2007) in which the lengths of swimming fish have 
been measured and monitoring cattle behaviour (Cangar et al., 2008). 

Potential applications usually include extraction of information relating to the shapes of 
animals which could be used, for example, in conformation assessment in pigs and cattle, 
and body condition scoring in dairy cattle. Repeatable quantitative measurements of 
animal conformation would be valuable on the farm for monitoring production, and will be 
increasingly valuable in association with electronic marketing of stock. Analysis of the 
movement of individual animals could give early warning of abnormal conditions such as 
lameness (Poursaberi et al., 2010). 

Most of above applications rely on 2D images. But progress has also been made in the 
extraction of three-dimensional information from the livestock. This could be implemented 
through the extraction of three dimensional information from two dimensional images or 
by using 3D cameras such as Kinect (Van Hertem et al., 2014). In the former, deductions 
relating to the structure or conformation of the object can be made. One approach has been 
through the use of stereo imaging. Two cameras are used to produce pairs of images of the 
object. The cameras are arranged so that points on the object can be identified and located 
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in both images. From a knowledge of the geometrical arrangement of the cameras and the 
locations of the corresponding points in the pairs of images the three dimensional 
coordinates of the points can be calculated. An alternative approach involves the analysis 
of the deformation caused to structured lighting when it is projected onto a three 
dimensional object. 

Nowadays, stereo imaging systems have been mostly replaced by direct 3D image 
acquisition cameras such as Kinect which has recently gained popularity. Kinect is a 
composite device consisting of a near-infrared laser pattern projector, an Infra-Red (IR) 
camera and a colour (RGB1) camera. The IR camera and projector are used as a stereo pair 
to triangulate points in 3D space. The RGB camera can be then used to texture the 3D points 
or to recognise the image content. As a measuring device Kinect delivers three outputs: IR 
image, RGB image, and a depth image. The latter has appeared to be a very useful Visual 
Image Analysis (VIA) variable in monitoring performance and behaviour of livestock 
(Viazzi et al., 2014). 

Using VIA, farm managers not only can monitor their animal’s performance and 
behaviour in real-time, but they will also be able to predict these behaviours and 
potentially avoid welfare problems using image-based early warning systems. To achieve 
this goal, boundary conditions in livestock production could be monitored using camera 
technology in order to optimise desired outputs and minimise undesired outputs. 

Figure 1-2 illustrates the livestock production as a process with inputs used to produce 
relevant outputs (bio-responses). Improving animal health and welfare (boundary 
conditions) using VIA technology could improve desired outputs, i.e. product quality, 
quantity and safety. This can be achieved by ensuring good health and welfare. Health and 
welfare are closely linked to animal behaviour and performance that could be measured by 
VIA. 

 

Figure 1-2. Livestock production process with inputs and outputs 

A straightforward example of behaviours that could be measured using VIA is drinking 
behaviour and water volume usage. Water is a fundamental need for pigs and inadequate 
access to it may result in reduced feed intake, reduced production and increased health 
problems (Gonyou, 1996). Monitoring of the drinking behaviour of young pigs, has proved 

                                                        
1 Red-Green-Blue: The RGB colour model is an additive colour model in which red, green, and blue light are 

added together to reproduce a broad array of colours. 
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to be a useful tool in detection of diseases and other production related problems too. For 
instance, it is known that by on-line monitoring of drinking behaviour of young pigs, an 
outbreak of diarrhoea can be detected approximately one day before physical signs are 
seen on the pigs (Madsen and Kristensen, 2005b). Thus, a camera as a non-contact sensor 
could be used for disease prediction through monitoring drinking behaviour. In conclusion, 
it is beneficial to develop an automated monitor for drinking behaviour of pigs in a pen. 

Monitoring animal’s performance could also be an indication of welfare and health 
status. An important performance indicator is individual weight gain. However, individual 
weight measurements suffer from a number of drawbacks when performed manually. 
Gathering performance data using a manual scale is therefore done sparingly, generally 
only at the beginning and end of a production period and most often only for a 
representative subset of animals, and not for every animal (Schofield, 1990). Machine 
vision-based weighing of pigs is a non-intrusive, fast and accurate approach, which could 
reduce stress for both the animal and the farmer during the weighing process (Wang et al., 
2008). Since slow weight gain can happen for some of the pigs in a pen, it is important to 
monitor weight for each pig individually. This helps the farmer to make appropriate 
management changes. 

Although many image processing techniques have been developed for measuring 
livestock variables, no solid integration of these measurements has been reported in 
literature. Moreover, interpretation of behaviours measured is missing from results of the 
previous works. For instance, one technique might be able to measure abnormal 
locomotion in pigs, but it fails to understand why some pigs are less locomotive in a group. 
In another example, it is known that distribution is a meaningful group behaviour in 
livestock, but no research work has reported interpretation of abnormalities in this 
variable. These are the two challenging problems we try to solve in this PhD in order to fill 
the gap in state of the art in PLF. Firstly, we are going to investigate if many functions could 
be integrated in one single sensor, namely a camera. Secondly, we would like to understand 
what new horizons interpretation of animal behaviour using real-time image processing 
technology could open up for farm managers. What is new in this PhD is the link 
established between the variables measured by real-time image processing and helpful 
information that could actually be used by farm managers to improve health and welfare of 
their animals. 

1.4 Hypotheses and objectives 

Observing animal-based variables is essential to ensure livestock are in good health and 
welfare. For more than four decades, human observations of such variables have been 
taken as basis for welfare and health assessment of animals on farm and at slaughter 
(Dawkins, 1980). As a systematic approach a European research project. i.e. Welfare Quality, 
was realised to develop a method for scoring animal welfare in field situations. In this 
project a definition of principles and criteria of good welfare was suggested. Standard 
animal-based measures were developed for each welfare criterion. The Welfare Quality® 
project focussed on integration of animal welfare in the food quality chain: from public 
concern to improved welfare and transparent quality. The project aimed to accommodate 
societal concerns and market demands, to develop reliable on-farm manual scores, product 
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information systems, and practical species-specific strategies to improve animal welfare. 
Animal welfare measures1 were integrated in an overall assessment model for three main 
species: cattle, pigs, and poultry. It was proposed to send experts to livestock farms 
throughout Europe to assess the measures on the farms. This should be either done at the 
end of a fattening period or once a year (Blokhuis et al., 2010). 

A main problem with the current scoring technique (based on Welfare Quality protocols) 
lies in the time and cost needed for a complete assessment on the farm. Hygiene, workload 
and corresponding costs limit frequent visits to farms. There are a lot of animal-based 
measures (e.g. body condition score) involved but they are not frequently measured 
throughout the life of the animal. This is why these measures are usually only measured at 
the end of the growth period. 

There are several livestock variables per welfare measure that need to be quantified2. 
Although these livestock variables could be quite complex, economical limitations do not 
allow using a wide range of sensors for so many barns existing in a commercial farm. The 
first hypothesis of this thesis is that many different functions of the system are 
implementable using one single sensor, namely a single camera above a pen of pigs or an 
area of broilers. Since all the functions have to be fulfilled using one camera, it is required 
that all used algorithms can run fast without using too much calculation power. 

Automated measurements of welfare measures can help to have a better understanding 
of animal’s health and welfare status thanks to the possibility of making high frequency 
measurements of livestock variables. There are many livestock variables that can be 
measured automatically. This ranges from physical variables3 to behaviours. The second 
hypothesis of this thesis is that livestock physical variables (e.g. water volume usage) are 
linked to behaviour (e.g. drinking). Thus, having knowledge of one could help understand 
the others better. Image processing allows automated measuring of physical variables 
through monitoring relevant behaviours and modelling the mentioned link. 

Although livestock physical variables and some behaviours are mainly measured on an 
individual level, there are behaviours such as distribution that are only meaningful at 
group (pen) level. The third hypothesis is that measuring and monitoring both 
individuals and group of animals is of importance but emphasising on either of these 
depends on the objective of the analysis. As an example, while tracking individuals is 
important for assessing behavioural responses of animals, group behaviour such as 
distribution of animals can be meaningful too. 

All above techniques are meant to fill the gap in continuous welfare monitoring of 
livestock through measuring livestock variables. The first objective of this thesis is to 
analyse how physical and behavioural variables could be measured in real time using Image 

                                                        
1 Welfare measures are measures taken on an animal unit that are used to assess a welfare criterion. A welfare 

criterion represents a specific area of welfare concern that has to be addressed to satisfy good animal 
welfare. An example of a welfare criterion is “absence of prolonged thirst” which can be linked to 
“water supply” measure (Blokhuis, 2009). 

2 For instance, in pigs, back fat is measured for quantifying “body condition score” (Maes et al., 2004) 
3 A variable is physical variable if and only if its value uniquely expresses and characterises some physical 

situation, hence some physical phenomenon, of matter (including any material object and any being) 
and/or of energy (Michel et al., 2003). 
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Processing as a technique of PLF. Changes in behaviours, development of abnormal 
behaviours or other physiological indicators of welfare can only be captured by using the 
appropriate frequency of measurements. By continuous monitoring with the appropriate 
frequent sampling of specific livestock variables (or bio−responses) and calculating 
welfare/health indicators, one can qualify and improve the animal welfare during the 
lifetime of the animal. Manual assessment of welfare indicators can report an accurate 
status of the animals, but it is a momentaneous observation and very expensive. Therefore 
automatic high frequent monitoring techniques are needed. The second objective of the 
thesis is using image analysis to demonstrate a technique that can assist the farmer and 
stocks personnel to manage their animals in a more efficient way via frequent 
measurement of livestock variables. 

1.5 Framework of the thesis 

This thesis is composed of six articles, all published in peer reviewed scientific journals. 
Each study is presented as one chapter. Two different animal species were studied, namely 
pigs and chickens (broilers and laying hens). Consequent chapters deal with applying a 
generic geometrical model for measuring different behaviours and physical variables in the 
species mentioned above. The idea is to prove that one general model could define 
behaviour and/or physical variable of livestock. Image processing technology will be 
employed together with mathematical modelling to quantify variables in livestock 
environments. This is carried out in real-time at frequency of one sample per second. 
Evolution of the chapters is as follows. 

1.5.1 Localising where the animals are 

Localising animals in an image is the first step towards measuring any variable on the 
animal and interpreting the measurements. It allows tracking them and identifying their 
location at any moment. Having state of the art knowledge of animal behaviour allows 
linking information resulting from localisation to behavioural activities. This context is 
explained in chapter 2 by using fattening pigs as an example specie. Localisation could 
help understand how animals move in their living area. 

 

1.5.2 Understanding how animals move within zones of their living area 

The activity level of individual animals is a key factor to their performance and well-being 
(Beker Yousuf, 2006). Abnormality in animal activity is observed as deviation from its 
normal locomotion (either an increase or decrease) (Anil et al., 2002). This deviation can be 
detected and reported to the farmer using automated tools. In chapter 3, the focus lies on 
tracking pigs and their locomotion. Monitoring animal locomotion in groups is an essential 
aspect of analysing different behaviours. For instance, locomotion is known to be linked to 
agonistic behaviour, freezing behaviour, ease of movement and thermal comfort. Now that 
it is known how animals move, the reason why they move or avoid to move to certain areas 
should be explored. 
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1.5.3 Understanding why animals move 

Although animal locomotion and occupancy of a certain zone is already interesting for 
assessing its welfare, the reason why the animal attends the zone is more relevant for 
interpreting the animal behaviour. Investigating how animal behaviour can be interpreted, 
choice and preference tests, in combination with automated monitoring techniques, can be 
applied. For instance, it is important to understand how ammonia concentration could 
affect laying hens since this could have a negative effect on egg production (laying hen’s 
performance). In chapter 4, we aim to make an algorithm for monitoring laying hens in an 
environmental preference chamber. Being able to automatically monitor and interpret how 
and why animals move, is the basis for understanding how this affects the performance. 
Important indicators of animal performance are weight gain, drinking behaviour and 
feeding behaviour. 

1.5.4 Discovering how movement of animals and appearance in certain zones affects 
the performance 

Example 1: weight gain 

Weight gain is one of the most important indicators of animal performance in the 
fattening process. Thus, individual weight measurement is an important variable in farm 
management. However, utilizing manual scales for this purpose is labour intensive and 
requires movement of animals, which can be stressful for both the animals and workers. In 
chapter 5, we try to develop fully automated weight estimation of pigs. This helps the 
farmer to check slow-growing animals and to make appropriate management changes to 
ensure animals deliver a satisfactory performance. 

Example 2: Water volume usage 

Another indicator of fine performance is drinking behaviour and water intake. 
Inadequate access to water may result in reduced feed intake, reduced production and 
increased health problems (Gonyou, 1996). Chapter 6 discusses development of an 
automated monitor tool for water volume usage by pigs in a pen. The findings of the study 
reported in (Musial et al., 1999) indicate that water intake for the pig follows a drinking 
pattern. This pattern is affected by different factors such as drinker design (Brumm et al., 
2000), diet (Shaw et al., 2006), weight and size of pigs (Frederick et al., 2006), etc. Thus, 
analysing this pattern can yield useful information on suitability of pig’s welfare. 

Most animals are kept in groups and in particular production systems (poultry) it is still 
difficult to monitor performance, health and welfare on individual level. Therefore, it is 
worthwhile to investigate if we can make a link between group behaviour and animal 
health, welfare and performance. 

1.5.5 Understanding how movement of animals affects the group 

In chapter 7, we test the fully automated identification of problems, such as feeder and 
drinker malfunctioning in a broiler house by measuring distribution index for a group of 
broilers. These problems could affect performance of the group and better be detected and 
reported to the farmer so that he can take appropriate early action. 
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1.5.6 Discussion and conclusion 

In the discussion section, the results of all chapters are evaluated and the potential of 
applying Precision Livestock Techniques in more frequent monitoring of health and 
welfare related responses of livestock is discussed. 

Finally conclusions are drawn from the entire work and a summary of the contributions 
of the thesis is made.
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2.1 Introduction 

At present, over 60 billion animals are slaughtered yearly for food production (Prakash and 
Stigler, 2012). The increasing demand for animal products fosters intensive animal 
husbandry. Market demands force producers to increase the number of animals in their flock 
or herd with fewer available resources (per animal). To meet the demands of the market 
while providing enough care to the individual animals, farmers might use automatic tools to 
monitor welfare and health of their animals (Harris et al., 2001; Botreau et al., 2007; Morris 
et al., 2012). While existing systems facilitate an efficient use of land and labour, the 
increased number of animals per farm has resulted in new welfare problems because time is 
too limited to provide individual animal care (HSUS, 2010). 

One of the essential components of welfare in animal husbandry is providing adequate 
food and water (Bierer et al., 1965) which requires a substantial number of man-hours. In 
normal situations pigs show a stable diurnal drinking pattern (Madsen et al., 2005). Abnormal 
decrease or increase of food or water volume usage can be due to health problems or other 
factors such as environmental changes or interruptions in feed delivery (Madsen and 
Kristensen, 2005). A sudden, 20%-30% drop in water volume usage or drinking visits often 
indicates that swine influenza has taken hold (Bernick, 2007). It is possible to give early alarm 
in case of such happenings, using image processing techniques. Since all living organisms are 
individually different, the feed and water volume usage should be monitored per individual 
pig. Moreover, since individual pigs are anticipating to face these health or welfare problems, 
it is important that feeding and drinking are detected for each pig individually. This could, 
in turn, help to prevent the disease from spreading to other pens. Since video analysis of pigs 
has numerous other applications (Van der Stuyft et al., 1991; Xin, 1999; Kollis et al., 2007) 
continuous analysing pigs’ behaviours using videos can generate added value. 

Other researchers previously investigated different approaches to monitor livestock 
using image analysis. Chedad et al. (2000) employed image analysis to quantify the 
behaviour of pregnant ewes in field conditions. They developed an algorithm to distinguish 
laying and standing behaviour in ewes. Using only these two behaviours, they could 
quantify change of behaviour in 66% of pregnant ewes 6 to 7 h before birth. Based on these 
results they concluded that online behaviour monitoring of pregnant animals in order to 
detect the beginning of parturition might be possible. There were other studies 
investigating the same topic on other livestock. Cangar et al. (2008) used geometric image 
variables to classify specific behaviours such as standing, lying, eating or drinking of cows. 
They could categorise 85% of the standing and lying and 87% of the eating or drinking 
behaviour of the eight cows 24 h before calving using those variables. Image analysis 
techniques could also be used for smaller and laboratory animals such as rodents. Farah et 
al. (2011) proposed a method to track rats and determine their motion pattern in cages 
under normal laboratory conditions. They employed a sliding window approach based on 
gradient and intensity features consisting of a fitness cost function based on the histograms 
of oriented gradients, the histograms of intensity, the quantity of motion and edge density 
to track the animal. They succeeded in achieving adequate tracking with an average error 
less than 5%. Ahrendt et al. (2011) developed a pig tracking system algorithm based on 
support maps. These support map segments were subsequently used to build up a 5D-
Gaussian model of the individual pigs, their position and shape. Using this method, they 
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could track a minimum of three pigs for at least 8 minutes (min). Aydin et al. (2010) applied 
an automatic image monitoring system to assess the activity of broiler chickens with 
different gait scores (ability to walk). Poursaberi et al. (2009) developed an algorithm based 
on image analysis to classify the behaviour of turkeys in real time and automatically. They 
chose four behaviours, namely turning, lying, standing and wing flapping to represent 
different behaviours for welfare assessment. Finally, they fitted ellipses to turkey’s body 
parts and made a model to categorise above behaviours. 

In this chapter, an approach is tested to identify pigs in experimental conditions and for 
behaviour-related research in a fully automated way based on continuous image analysis. To 
the authors’ knowledge there currently is no tool available that uses vision technology to 
automatically identify marked pigs in a pen. Other researchers previously investigated 
techniques such as pig identification using ear-tags (Burose et al., 2010; Prola et al., 2010) but 
there are biosecurity risks raised by this method (Hernandez-Jover et al., 2008) and pigs 
endure extreme pain in the installation process (Leslie et al., 2010). Vision-based pig 
identification technology, however, is a non-intrusive technique which has never been 
analysed so far. 

2.2 Materials and Methods 

2.2.1 Animals and housing 

Experiment of this work was carried out in Agrivet research farm, Merelbeke, Belgium. 
Forty pigs, RattlerowSeghers x Piétrain Plus, were selected after the battery period and 
assigned to four fully slatted pens (2.25 m x 3.60 m) made of concrete, so there were 10 pigs 
per pen. Each pen was equipped with a double feeder space and one drink nipple. Animals 
had ad libitum access to food (commercial grower diet) and water for the whole 
experimental period. Pigs had a timer controlled 12 h light period from 07.00 h – 19.00 h. 
Barn temperature was kept on average at 22 C̊, with a minimum of 18.6 C̊ and a maximum 
25.4 C̊ over the total experimental period by Hotraco IRIS climate control equipment. On 
average, piglets had a weight of 27 ± 4.4 kg at the start of experiments and  
40 ± 6.5 kg at the end. 

The feeding regime (daily amount of food per pen) was based on ad libitum access to 
feed (commercial grower diet). Each pen was equipped with a Honsberg Magnetic-
Inductive MID008 water meter. These water meters had an accuracy of 2.5% of measured 
value at the range of 2 to 10 litre/min and an accuracy of 0.5% of full scale at the range of 
0.05 to 0.2 litre/min. There was a nipple in the end of each pipe that had to reduce the flow 
to prevent the pigs spoiling water. Water meters were recording the measured water flow 
measurement each 5 min. 

This study was approved by the Ethical Committee of the Faculty of Veterinary Medicine 
at Ghent University, Belgium. The experiments carried out in this work were also in 
accordance with EU Directive 2010/63/EU for animal experiments. 
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2.2.2 Equipment and data collection 

During the experiment, video recordings of the pigs in four pens were made. Cameras were 
installed in the rafters of the barn at height of 180 cm in the location shown in figure 2-1 to 
capture topview images. Since 1991 topview camera has been known as a non-disturbing 
method for monitoring animals and provides a way to implement algorithms in research and 
field applications (Van der Stuyft et al., 1991). Exact position of the camera in relation to barn 
dimensions is shown in figure 2-2. 

Using MPEG Recorder software from Noldus and black and white Panasonic WV-BP330 
camera with CS-mount DC1-Servo ALC 5.5-12 mm lens, images were recorded in light 
intensity of a minimum of 11.7 lux and a maximum of 176.1 lux during 13 days for 12 h per 
day, between 07.00 and 19.00, resulting in 156 h of video. Videos were recorded in MPEG-1 
format, with a frame rate of 25 frames per second (fps), frame width of 720 pixels, frame 
height of 576 pixels and data rate of 64 kbps. Black and white cameras were used since they 
were already installed in the barn. To provide light in the barn, six 58 watt, 120 cm Gamma 
white fluorescent tube lamps were installed at a height of 200 cm in locations shown in 
figure 2-1. 

 

Figure 2-1. Ground plan of the 4 pens in research barn in Agrivet, Merelbeke. 

 

                                                        
1 Direct Current 
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Figure 2-2. Position of the camera on top of a pen 

To be able to identify pigs individually, a specific pattern was stamped on the back of each 
pig using blue dye mark of blue MS Long spray, Belgian MS Schippers. These patterns were 
cut on rubber in size of 8*12 cm and stamped on pigs’ back. On average, the patterns had to 
be renewed every third day. The reasons this method was used were: 1) it was cheap; 2) it 
was easy to be implemented; 3) it was computationally feasible; 4) black and white cameras 
were already available in the barn. Figure 2-3 shows the identification patterns used to 
identify 10 individual pigs and figure 2-4 shows a frame of a video recorded in the 
experiment. The patterns selected were required to be discernible using the identification 
method explained in section 2.2.3. 

 

Figure 2-3. Patterns applied to identify 10 pigs in a pen 
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Figure 2-4. A frame of a video in the database 

To develop algorithms for continuous automated identification of pigs the identity (ID) 
and location of each pig are needed to be known during a certain period. As a reference or 
gold standard of IDs, manual or visual “labelling” of recorded videos was done by an 
experienced ethologist. Subsequently, a comparison was made between data obtained by 
manual labelling and data from automatic identification. Manual labelling is a very time 
consuming work and since labelling of one hour of video takes at least three hours, 468 h 
were needed to label videos of our experiments (156 h of videos). Since it was not possible to 
label all the data collected, video samples of 10 min every 2 h were labelled, so that time-of-
day effects would have been eliminated. Location of each pig was pinpointed in scan 
samplings of 2 min (one single frame each 2 min). Therefore 30 samples per pig per day were 
analysed. The rest of data that were not labelled manually were analysed by localising and 
tracking pigs. Results of these analyses are presented in section 2.3. 

2.2.3 Automated identification of pigs 

There are several ways to analyse these patterns (Zhang and Lu, 2004). In this work a method 
to identify patterns, namely Fourier description (FD) of patterns (Zhang, 2002)(Zhang and 
Lu, 2004; Zhang and Wu, 2011) was employed. This method is capable of describing objects in 
an image under very noisy image conditions with numerous variations in the pattern sought 
(Reddy and Chatterji, 1996; Zhang and Lu, 2004). 

The processing flowchart to identify marked pigs in a pen is shown in figure 2-5. The 
first step to process these patterns was to segment the image in order to find the location 
of the pigs and the location of the applied identification pattern. To segment the image, 
first the feeder and the pen floor area were determined. The former was needed to be 
excluded since it could affect the segmentation accuracy. The latter was necessary to 
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exclude the camera cover appearing in the image from segmentation. These regions are 
shown in figure 2-6. Thereafter to eliminate light effects, histogram of the image was 
equalised using adaptive histogram equalisation (Sherrier and Johnson, 1987). Original and 
histogram equalised images are shown in figure 2-7a and b together with related 
histograms. Afterwards, the image was binarised to eliminate the background. The 
binarisation procedure was as follows. First, the image was filtered using a 2D Gaussian low-
pass filter. Then, a global threshold was calculated using Otsu’s method (Otsu, 1979). The 
image was hard-thresholded subsequently resulting in figure 2-8a. To remove small objects 
from the image, a morphological closing operator using a disk-shaped structuring element 
with size of 10 pixels (Gonzalez and Woods, 2001) was performed on it, resulting in 
figure 2-8b. 

 

Figure 2-5. Flowchart of identification of marked pigs in a pen 

 

Figure 2-6. Pen floor area and feeder selected by the user 
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Figure 2-7. a. Original pen image; b. Histogram equalised pen image 

 

Figure 2-8. Segmented image before (a) and after (b) applying morphological operators 

Thereafter the pig’s body was extracted as ellipses (Tillett, 1991; Zhang et al., 2005) as 
bright regions related to pigs had a rather high contrast with the background (pen floor). 
The procedure for fitting ellipses to the binary image of figure 2-8b was as follows: First, 
using direct least-squares ellipse-fitting method (Zhang et al., 2005) ellipses were fitted to 
objects in the image. Subsequently, ellipses parameters such as “Orientation”, “Major Axis 
Length”, “Minor Axis Length” and “Centroid” for all objects in the image were calculated. 
Not to take other shapes in the image mistakenly as pigs, a minimum of 230 and a maximum 
of 430 pixels for major axis and a minimum of 90 and a maximum of 140 pixels for minor axis 
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of an ellipse were considered. Figure 2-9a illustrates these parameters and figure 2-9b shows 
the ellipses fitted to the pigs’ body (figure 2-8b). It should be noted that in this method it is 
only important that the area of each floor slit is smaller than a piglet’s body area which is 
practically always the case. 

Figure 2-10a and figure 2-10b show a target pattern. For the limited number of pigs in our 
experiment, the number of identification patterns was limited to five, so each pattern was 
used for two pigs in a pen, applied either to the front or to the back of pigs’ body respectively 
(figure 2-3). To allow individual identification of pigs who had the same paint pattern 
(figure 2-3) it was necessary to find where on pigs’ body the pattern was painted. This was 
achieved by painting a triangle on the neck of pigs. The base of the triangle had a distance of 
mp (figure 2-10a and b) from the centre of the paint pattern. If mp was greater than 40 per 
cent of the pig body length (np in figure 2-14a and figure 2-14b) IDs 0, 2, 4 and 6 (figure 2-3a, 
c, e and g) could be detected. On the other hand, IDs 1, 3, 5 and 7 (figure 2-3b, d, f and h) could 
be verified if mp> 0.6 * np while IDs 8 and 9 were used only once and did not need to be 
checked with the triangle on the neck. This gave each pig a unique ID. Moreover, the reason 
why ten unique patterns were not used was that this triangle had applications in other 
research works carried out based on our experiments. For instance, it was used to analyse 
animals’ movement behaviours such as chasing in which back and front side of pig’s body 
movement is needed to be tracked. 

 

Figure 2-9. a. Ellipse parameters; b. Ellipses fitted to pigs’ body 
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Figure 2-10. a. Location of paint patterns in relation to the triangle painted on neck; For IDs 
0, 2, 4: mp>0.4*np; For IDs 1, 3, 5 and 7: mp< 0.4*np 

The next step was the extraction of the applied identification pattern on each marked pig. 
Similar to the extraction of pigs from the binary image, identification pattern on each pig 
was extracted since the pattern was the biggest dark region on the animal’s body with the 
highest contrast and the pen image’s histogram was already equalised. The process of 
extracting the pattern was as follows: First, similar to localisation of pigs as explained above, 
a 2-D Gaussian low-pass filter was used and a global threshold was calculated using Otsu’s 
method. Image (figure 2-11a) was binsarised using that threshold resulting in figure 2-11b. 
Thereafter using the following process, the paint pattern (figure 2-11c) and the triangle 
(figure 2-11d) were extracted: 

1) Connected regions in binary image were identified. 

2) Coordinates of connected regions were obtained. 

3) The biggest connected region was discovered. 

4) A black background image was generated. 

5) The region discovered in step 3 was reconstructed on the image generated in step 4. 
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Figure 2-11. a. Pig’s body extracted in an ellipse; b. Binarised image of part a; c. extracted 
paint pattern; d. Triangle for distinguishing repeated patterns 

As soon as paint patterns on pigs were located, Fourier transform was applied on the 
contours of these regions to produce FDs (Kunttu et al., 2005). To attain the contour of these 
patterns, 2D boundary tracing using the Moore neighbourhood method was applied 
(Pradhan et al., 2010). In this way, successive coordinates of boundary of paint patterns were 
obtained. 

Since IDs 2, 3, 4 and 5 (figure 2-3) consisted of two split patterns, the boundary tracing 
algorithm was run twice. In the second run another pattern was sought, ignoring the 
boundary traced in the first run. The fact that there were two split patterns existing for these 
IDs, distinguished them from the rest of patterns. Furthermore, based on figure 2-12, 
depending on the angle between the body direction and patterns (Ө) and ratio of mp to np 
(figure 2-10) a unique ID could be detected. 
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Figure 2-12. Distinction of IDs 2 to 5 (a to d) based on direction and distance of the paint 
patterns from neck triangle 

When the identification pattern coordinates in the image were obtained, FD was used to 
describe features in the pattern (Zhang, 2002). To achieve a translation and rotation 
invariance transform, phase information of Fourier coefficients were ignored and only the 
magnitudes were used. In addition, scale invariance was achieved by dividing the magnitudes 
by the DC component (Zhang and Lu, 2004). 

The similarity between a query pattern P and a target pattern Q was measured by the 
Euclidean distance (Schwager et al., 2007) between their normalised FD representations 
derived from equation 2.1. 

𝑑(𝑝, 𝑞) = √∑ (𝑞𝑖 − 𝑝𝑖)2𝑛
𝑖=1         (2.1) 

In above equation, p and q are FD coefficients of patterns P and Q respectively and n is 
the number of coefficients considered (here n = 6). In fact, to maximise d (p,q) for different 
patterns in equation 2.1, many patterns were tested and those with highest Euclidean 
distance of their FD, namely patterns shown in figure 2-3, were selected. Table 2-1 shows 
average and standard deviation of Euclidean distance of reference and query patterns. 
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Table 2-1. Average Euclidean distance of FD of paint patterns for 15600 samples (390 sample 
per pig per pen); values are shown in this format: Average (standard deviation); For IDs 1, 3, 

5 and 7 (repeated patterns) Euclidean distances are the same with IDs 2, 4, 6 and 8 
respectively. 

Reference 

pattern 

 

Query 

pattern 

 

      

 Pattern 

ID 
0 2 4 6 8 9 

 

0 
0.0018 

(0.0002) 

0.1218 

(0.0081) 

0.1003 

(0.0062) 

0.0825 

(0.0034) 

0.0951 

(0.0041) 

0.1676 

(0.0090) 

 

2 
0.1218 

(0.0081) 

0.0049 

(0.0008) 

0.0307 

(0.0011) 

0.1681 

(0.0035) 

0.2129 

(0.0077) 

0.0483 

(0.0014) 

 

4 
0.1003 

(0.0062) 

0.0307 

(0.0011) 

0.0052 

(0.0006) 

0.1385 

(0.0024) 

0.1942 

(0.0062) 

0.1942 

(0.0062) 

 

6 
0.0825 

(0.0034) 

0.1681 

(0.0035) 

0.1385 

(0.0024) 

0.0021 

(0.0003) 

0.1262 

(0.0084) 

0.2153 

(0.0091) 

 

8 
0.0951 

(0.0041) 

0.2129 

(0.0077) 

0.1942 

(0.0062) 

0.1262 

(0.0084) 

0.0014 

(0.0001) 

0.2565 

(0.0064) 

 

9 
0.1676 

(0.0090) 

0.0483 

(0.0014) 

0.0768 

(0.0089) 

0.2153 

(0.0091) 

0.2565 

(0.0064) 

0.0024 

(0.0004) 

 

2.3 Results 

Following tables show the results of automatic identification of pigs in the experiment 
carried out for this work. Not all the data were used for validation since manual labelling of 
the whole experiment data would take a long time. 
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Table 2-2. Identification of pigs in pen A 

Pig 

ID 

Number 

of 

samples 

Successful 

identification 

(Samples) 

Successful 

identification 

(per cent) 

False positive 

identification 

(samples) 

False positive 

identification 

(per cent) 

0 390 318 81.54 3 0.8 

1 390 342 87.69 6 1.5 

2 390 329 84.36 8 2.1 

3 390 341 87.44 10 2.6 

4 390 316 81.03 3 0.8 

5 390 325 83.33 2 0.5 

6 390 351 90.00 5 1.3 

7 390 326 83.59 0 0.0 

8 390 374 95.90 1 0.3 

9 390 309 79.23 14 3.6 

Total 3900 3331 85.4 52 1.3 

 

Table 2-3. Identification of pigs in pen B 

Pig 

ID 

Number 
of 

samples 

Successful 
identification 

(Samples) 

Successful 
identification 

(per cent) 

False positive 
identification 

(samples) 

False positive 
identification 

(per cent) 

0 390 361 87.78 1 0.3 

1 390 331 95.56 7 1.8 

2 390 326 92.22 4 1.0 

3 390 375 85.56 2 0.5 

4 390 368 91.11 3 0.8 

5 390 381 95.56 1 0.3 

6 390 340 91.11 2 0.5 

7 390 344 90.00 1 0.3 

8 390 329 81.11 6 1.5 

9 390 359 93.33 8 2.1 

Total 3900 3514 90.1 35 0.9 
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Table 2-4. Identification of pigs in pen C 

Pig 

ID 

Number 

of 

samples 

Successful 

identification 

(Samples) 

Successful 

identification 

(per cent) 

False positive 

identification 

(samples) 

False positive 

identification 

(per cent) 

0 390 351 92.2 1 0.3 

1 390 342 96.7 2 0.5 

2 390 349 91.1 8 2.1 

3 390 365 82.2 4 1.0 

4 390 364 84.4 6 1.5 

5 390 352 97.8 2 0.5 

6 390 333 86.7 0 0.0 

7 390 372 93.3 5 1.3 

8 390 321 85.6 3 0.8 

9 390 351 95.6 12 3.1 

Total 3900 3500 89.7 43 1.1 

 

Table 2-5. Identification of pigs in pen D 

Pig 

ID 

Number 
of 

samples 

Successful 
identification 

(Samples) 

Successful 
identification 

(per cent) 

False positive 
identification 

(samples) 

False positive 
identification 

(per cent) 

0 390 381 97.7 6 1.5 

1 390 308 79.0 4 1.0 

2 390 361 92.6 2 0.5 

3 390 354 90.8 0 0.0 

4 390 344 88.2 2 0.5 

5 390 372 95.4 3 0.8 

6 390 349 89.5 1 0.3 

7 390 361 92.6 2 0.5 

8 390 340 87.2 0 0.0 

9 390 318 81.5 9 2.3 

Total 3900 3488 89.4 29 0.7 

 

In total, in 42 h data of four pens, 13833 out of 15600 identifications were correctly 
identified and 159 false positive identifications (1.0%) were recorded. So, with current 
number of 10 pigs in each pen, automatic identification of pigs could be carried out with an 
average accuracy of 88.7% while 11.3% were not identified and 1.0% were misidentified. 
There were a few reasons behind false identifications: 1) Paint patterns were partially faded 
out over time; 2) Pigs were not always standing in a standard position resulting in unclear 
paint patterns; Based on data presented in table 2-1, patterns 8 and 0 had the highest (the 
best) and lowest (the worst) total distance from the other patterns respectively. Therefore, 
pattern 0 was the least identifiable. In addition, cross identification between patterns 2 and 
4 occurred more than between other patterns. 
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After validating the introduced method, the whole data of the experiment, namely 13 days 
of recording, 12 h a day and for four pens, individual identification was carried out. In this 
way they could be tracked and their location in the pen could be determined. To make the 
tracking results representable, pens were divided to zones as shown in figure 2-13. 
Attendance of pigs in these zones were monitored and reported in per cent of the total time 
(156 h) for each pen. Each of these zones relates to a specific behaviour in pigs (Casanovas, 
2009). For instance, pigs like to huddle in a corner to sleep. In winter they choose the warmest 
and in the summer the coolest (Casanovas, 2009). In our experiment the resting zone was at 
opposite of the feeder zone (figure 2-13). Figure 2-14 shows the individual zone appearance 
for pen A during the experiment. From this figure one can conclude that in this pen pig no. 
2 rested more than others. It should be noted that as soon as pigs lay down their paint pattern 
will not be visible by the camera anymore and the identification algorithm assumes that the 
pig is lying in the same spot in which the last time a successful identification was carried out. 

 

Figure 2-13. Defined zones in a pig pen; pen area was divided to four equal square zones 
depending on the feeder and drinker location 
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Figure 2-14. Zone appearance of pigs in a pen over 13 days; percentage of appearance in 
resting zone is indicated. 

2.4 Discussion and conclusion 

Automatic monitoring of animals is a novel approach and has been applied on many animals 
(Aydin et al., 2010; Poursaberi et al., 2010; Venter and Hanekom, 2010). Camera technology 
can be used to monitor every second of animal behaviour. This technology has been mainly 
practised to study groups of pigs’ behaviours (Lind et al., 2005). Observing individual pigs’ 
behaviours is of particular importance since it distinguishes pigs regarding health, 
aggression and agonistic behaviour (Düpjan, 2009). However, this so far is a visual-manual 
job. 

Identification of pigs is a necessary step towards analysing the different behaviours of 
pigs individually. Some of the possible applications are calculating the number of times each 
pig drinks or feeds, how long each pig stays at the drinker or the feeder, how frequent each 
pig visits the feeder or the drinker, monitoring the trajectory of pigs movement in a pen or 
analysing individual agonistic behaviours of pigs. Moreover, this can be helpful in 
monitoring many welfare measures of animals (Botreau et al., 2007) including “body 
condition” through weight estimation, “functioning of drinkers” through analysing drinking 
behaviour, “huddling” through analysing resting behaviour, “space allowance” through 
occupancy analysis and “social behaviour” through monitoring global exploring and group 
playing. Furthermore, monitoring variables such as individual activity and growth can be 
automated. For instance, this method can detect unbalanced growth of pigs in a pen that can 
be due to high competition for food (EFSA, 2007). Therefore, there are many possible 
applications that can make the use of this technique attractive. 

Although methods such as ear tags have been used for identification of pigs (Kitagaki and 
Shibuya, 2004; Caja et al., 2005), automatic identification of marked pigs in a group by image 
processing in a pig barn has never been reported in the literature. In this work, an innovative 
approach using calculating FD of patterns painted on pigs and Euclidean distance of these 
patterns was chosen to investigate the opportunities of automated identification of marked 



Chapter 2 

34 
 

fattening pigs by vision technology. It was shown that identification of marked pigs in a pen 
is possible by painting basic patterns on their back and using automated image processing to 
discern these patterns. This was quite suitable for the purpose of this work since there were 
dramatic variations in pattern and level of illumination caused by animals’ movements and 
light or angle of view changes. While this method is dependent on contrast between, first, 
floor and pig skin and second, between pig skin and paint pattern it could still identify pigs 
in a light intensity range of 11.7 and 176.1 lux with an accuracy of 88.7%. 

The paint patterns used in this work were chosen based on Euclidean distance of their FD. 
Although patterns chosen yielded satisfactory results, these are not the only possible 
patterns to be used. Authors would suggest 1) to use unified patterns since these can be 
translated to FD in one single step which makes the pattern recognition process faster; 2) to 
use paint patterns that are easy to be stamped. 

Although it is known that farmers will not paint their pigs for monitoring purposes, this 
method has been employed to do behavioural analysis and to produce proof of concept. The 
method allows to do behavioural research on group as well as individual animal level without 
the need of additional sensors and software. It saves costs and the researchers were able to 
add functionality to the sensor available (camera). It is certainly a valuable tool for research 
purposes but we are aware that nowadays this method will be replaced or complemented 
with a more practical technology. Since identification is one of many functions of the camera 
used in our design, this algorithm has to be fast enough to be integrated into the monitoring 
system. Otherwise our monitoring application will not be able to run in real-time. Processing 
time of all the algorithms developed in this PhD is discussed in section 8.2.1. 

This algorithm can help to save many man-hours needed to track pigs manually (Frost et 
al., 2004) and facilitates detection of behaviours and diseases. For example, it is known that 
if piglets contract influenza they make 30% less visits to the drink nipple (Bernick, 2007). 
Using this method it is possible to calculate the number of times each pig visits the drink 
nipple (Kashiha et al., 2013a) and thus automatically detect a drop in visits. As such, this 
method offers many potential applications to improve animal husbandry management. 

Monitoring behaviours of pigs in a pen is possible both in group and at individual level. 
Individual level data analysis, however, has more advantages. Individual data analysis allows 
to assess welfare and health of each animal and this could help to avoid outbreak of diseases 
or abnormal behaviour of a few pigs affecting the rest of the pen-mates. Therefore, 
monitoring of individual pigs can give earlier alarms raised by a certain problem. 

It is worth mentioning that false positive identification of pigs is unavoidable since they 
do not always stand in a position in which their patterns are clearly visible. Imperfect and/or 
poorly visible paint patterns could cause false identification or failure in identifying the pigs. 
Nevertheless, in the analysis carried out, false positive identification was as low as 1.0% in 
total while true positive identification was carried out with an accuracy of  88.7%and only 
11.3% of IDs could not be identified (false negative). 

Finally, behaviours of pigs based on the zone they choose to attend in a pen could also be 
analysed by the used method. One analysis provided in this chapter was the resting 
behaviour. Although pigs can rest in any zone within a pen, from manual observations it is 
known that they rest in more than 96% of cases in the resting zone. Therefore, in this work 
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it was assumed that resting behaviour can be analysed by calculating appearance in resting 
zone. By combining individual activity and occupancy it would be possible to analyse resting 
behaviour in other zones as well. This will be investigated in future works. Currently, this 
method could detect the pigs that rested more than the others. Moreover, there are 
numerous applications for identification, tracking and locomotion monitoring such as 
detection of tail biting and aggressive behaviour and analysing posture, activity, drinking, 
feeding, playing and manipulation behaviour that are possible to be implemented (at least 
for research purposes) using the presented technique. These possibilities will be investigated 
in our future work. 

In conclusion, the introduced method might contribute in future as a relevant tool in 
doing research on livestock since feed intake, health, welfare and performance are all 
variables that are important to be monitored on animal individual level. 
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In chapter 2 the automatic identification of marked pigs in a pen was investigated. This is 
important because it can distinguish animals from each other based on their individual 
health status and behaviour. Monitoring of individual animals can result in earlier alarms. 
This could help to avoid outbreak of diseases or abnormal behaviour of animals affecting 
the rest of the compartment-mates. Although the current identification technique of non-
marked pigs in a pen is a challenge, technology might provide suitable sensors for this 
purpose in future. 

By identifying and localising animals it can be understood how they move in different 
areas of the animal’s space and how their activity patterns develops. 

Activity level of individual animals is a key indicator for their performance and good 
welfare (Beker Yousuf, 2006). Deviation in activity patterns could be an indicator of pain or 
lameness in livestock. This deviation is often detectable in locomotion patterns (Anil et al., 
2002) and might be detected and reported to the farmer using automated tools, avoiding 
harm and damage to the animals that may result in a compromised growth. In this chapter 
monitoring locomotion of individual animals using image analysis is discussed. Therefore, 
as shown in figure 3-1 we would like to investigate how individual animals in a group move 
within their living area through measuring locomotion. 

 

Figure 3-1. Schematic of animals moving within their living area 
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3.1 Introduction 

The increased number of animals per farm has resulted in new welfare problems due to lack 
of time for individual animal care (HSUS, 2010). Welfare issues can lead to pain and suffering 
in livestock. This causes stress on livestock and stressed animals can show compromised 
growth, production and reproduction (Lauber, 2007). Animals experiencing pain normally 
deviate from their normal behaviour by showing abnormal decreased or increased 
locomotion (Anil et al., 2002). This deviation can be detected and reported to farmers using 
automated tools, thus avoiding a compromised growth. 

Monitoring locomotion in animals can serve different purposes. Researchers have 
previously investigated different approaches to monitor locomotion in pigs. For instance, 
Escalante et al. (2013) fitted sows with a neck collar containing an accelerometer. They used 
time series of acceleration measurements in order to automatically classify locomotion 
types which are common among group housed sows. They described five locomotion types: 
feeding (FE), rooting (RO), walking (WA), lying sternally (LS) and lying laterally (LL). By 
grouping the locomotion types into active (FE, RO, WA) vs. passive (LS, LL) categories, this 
method allows them to classify 96% of the active category and 94% of the passive category 
correctly. It was discussed that this method could be directly employed to automatically 
detect the onset of oestrus. Another application mentioned involves monitoring the 
approach of farrowing since the locomotion level of sows is expected to increase during the 
last 24 h before farrowing (Cornou et al., 2011). 

Although earlier studies involved innovative technologies that could be utilised to 
monitor pig locomotion, many of them require animals to be fitted with sensors or tags. 
Using these tags raises biosecurity risks (Hernandez-Jover et al., 2008) and pigs endure 
extreme pain in the installation process (Leslie et al., 2010). Vision-based pig identification 
technology, however, is a non-intrusive technique that can measure locomotion accurately. 

Image processing has also been employed to assess locomotion in livestock. In one study, 
Lind et al. (2005) introduced a system to automatically track pig locomotor behaviour. They 
medicated seven pigs varying doses of drugs and quantified locomotion in sessions of 60 
min. This method allowed them to track pigs with a repeatability coefficient of 0.6%. The 
coefficient of repeatability will be low if the variability between the repeated 
measurements is low. In another study, Cangar et al. (2008) developed an automatic real-
time monitoring technique to identify locomotion and posture of eight pregnant cows in 
the 24 h prior to calving. On average, 85% of standing and lying conditions and 87% of 
eating and drinking bouts were classified correctly. In addition, existing professional video 
tracking software can automatically record marked animal locomotion, movement and 
interaction (Spink et al., 2001). 

However, current vision systems need pigs to walk in front of the camera one by one (Lind 
et al., 2005) or to be marked (Noldus et al., 2001; Kashiha et al., 2013b). Because of this, they 
can only provide locomotion for the animals as a group (Costa, 2007). The disadvantage of 
the latter is that variation in locomotion between pigs cannot be measured. 
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The objective of this study is to monitor individual pig’s locomotion in a group of 10 
individual animals through automated quantification of locomotion levels under 
experimental conditions using continuous image analysis. 

3.2 Materials and Methods 

3.2.1 Animals and housing 

This section is identical to section 2.2.1. 

3.2.2 Equipment and data collection 

This section is identical to section 2.2.2. 

3.2.3 Development of the automated locomotion quantification protocol 

The processing flowchart to monitor locomotion in a pen is shown in figure 3-2. First, for 
each pen, the feeder and the pen floor area were initially determined manually. The feeder 
needed to be excluded from the image since it could affect the segmentation accuracy. In 
addition, the pen floor had to be excluded to eliminate the camera cover appearing in the 
segmented image (see figure 2-6). To eliminate light effects, the histogram of the image was 
then equalised using adaptive histogram equalisation (Sherrier and Johnson, 1987). 

In a second step, each image was binarised to eliminate the background. Thirdly, each 
image was segmented in order to find the location of the pigs. Details of these processing 
steps were explained in section 2.2.3. 

Steps shown in figure 3-2 are explained in the sections below. 

 

Figure 3-2. Image processing flowchart to monitor locomotion in a pen 

3.2.3.1 Image Locomotion  

Image Locomotion (ImL) is defined as the amount of movement an object produces in 
pixels. Using the ellipse models presented in the previous section, ImL is mathematically 
explained as shown in equation 3.1. ImL is composed of two steps: 1) Angular motion 
(moving from ellipse E1 to E2 in Figure 3-3), in meter * pixel; 2) Linear motion (moving from 
ellipse E2 to E3 in figure 3-3), in meter * pixel; To make ImL independent from pig body size, 
it has to be divided to body length (L). 
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Where: 

ImL is the Image Locomotion; in pixels 

is the movement vector (from ellipse E1 to ellipse E2); in pixels 

T = | | is the size of the movement vector; in pixels 

ϴT is the difference of orientation between ellipses E1 and E2; unit-less 

L is average of size of the major axis of ellipses E1 and E2. This is equal to body length of a 
pig; in pixels 

∡ is the angle operator 

 

Figure 3-3. Ellipse fitted to pig’s image: (a) at time “t-1”; (b) at time “t”; T is the distance 
travelled; 

3.2.3.2 Image Locomotion Detection 

ImL was monitored over time and Image Locomotion Status (ImLS) was determined based 
on the following parameter: 

𝐼𝑚𝐿𝑆 =
𝐼𝑚𝐿

𝐿
          (3.2) 

Where: 

ImLS is the Image Locomotion Status; unit-less 

ImL is the Image Locomotion; in pixels 

L is the average size of the major axis of ellipses E1 and E2 (figure 3-3); in pixels 
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The next step was to decide, based on ImLS, whether a pig was In Locomotion (IL) or Not 
In Locomotion (NIL). Based on the ImLS parameter and an experimental ImLS threshold of 
0.4, pigs were categorised as NIL if ImLS ≤ 0.4 or as IL if ImLS> 0.4. This means if a pig moves 
more than 40% of his body length (L in equation 3.1), it is considered to be IL. Otherwise he 
is NIL. 

3.2.3.3 Manual labelling 

As a reference, the manual “labelling” of recorded videos was done by an ethologist 
experienced in labelling. Human visual observations of the pig’s behavioural locomotion 
were performed offline on videos using 2-min instantaneous scan-sampling in four 30-min 
sessions on 6 selected days. Preliminary observations allowed for the selection of two 
morning sessions (session 1: 09.30-10.00 h and session 2: 11.00-11.30 h) and two afternoon 
sessions (session 3: 16.00-16.30 h and session 4: 17.30-18.00 h), to compare automated with 
manually labelled behavioural locomotion. The behaviour of each individual pig was labelled 
using the Observer XT 10.2 software (Noldus, Wageningen, The Netherlands). 4*15 or 60 scan 
samples per pig per day were obtained. For each scan sample, all 10 individual pigs of one 
pen were scored as either IL or NIL. Locomotion behaviour was defined as walking, running, 
and/or performing other behavioural activities such as exploring or manipulating pen 
fixtures, manipulating pen mates, agonistic behaviour, feeding, drinking, or other 
behavioural activities that include physical movements of any body part. Accuracy of this 
method is 5 cm. If a pig was not performing behaviours of the “In Locomotion” behavioural 
category it was considered Not In Locomotion. Finally, the number of IL pigs was tallied, to 
calculate the number of IL pigs per pen. 

6 (days) * 4 (30-min) * 15 (scan samples) or 3600 scan samples out of 13 (days) * 12 (h) * 
3600 (seconds) * 10 (pigs) or 5.616 million frames were used for validation and the rest of 
data were analysed by Image Locomotion Detection technique introduced above. 

3.3 Results 

3.3.1 Validation 

In order to validate the automated image processing technique, image detected locomotion 
was compared with labelling results, as shown in table 3-1. There were 24x 30 min intervals, 
each of which consisted of 15 scan samples. In each of these scan samples, 10 pigs were scored 
for their locomotion, which means that in total there were 6 (days) * 4 (sessions) * 15 (scan 
samples) * 10 (pigs) or 3600 scan samples per pen. In total, 14400 frames were analysed, which 
were recorded from four pens. 
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Table 3-1. Locomotion in 4 pens, comparing labelling and automated image analysis 

  Labelling-IL Image analysis-IL 

Pen Scan 
samples scan sample True positives 

(Sensitivity) False positives False negatives 

1 3600 1515 1432 (94.5%) 48 (3.2%) 83 (5.5%) 
2 3600 1343 1209 (90.0%) 21 (1.6%) 134 (10.0%) 
3 3600 1316 1131 (85.9%) 61 (4.6%) 185 (14.1%) 
4 3600 1722 1525 (88.6%) 32 (1.9%) 197 (11.4%) 

Total 14400 5896 5297 (89.8%) 162 (2.7%) 599 (10.2%) 

 

 

Figure 3-4. Average percentage of IL pigs during 13 days of the experiment detected by 
ImLS algorithm 

Out of 5896 IL pigs, 5297 were identified correctly, while 162 False Positive (FP) 
identifications (2.7%) and 599 False Negative (FN) identifications (10.2%) were recorded. This 
leads to an overall accuracy (=sensitivity) of 89.8% for a stocking density of 1.23 pig/m2. 

3.3.2 Continuous data analysis 

After validating the method, all 13 days of the experiment data were analysed. There were 
in total 5.616 million (432000 per day) scan samples per pen to analyse. Figure 3-4 shows the 
average of IL pigs per pen during the days of the experiment. 

3.4 Discussion and conclusion 

Automatic monitoring of animals has been tested with many different species (Venter and 
Hanekom, 2010; Brendle and Hoy, 2011). Moreover, for farm managers this technology seems 
promising for monitoring purposes, mainly thanks to the broad applications automated 
animal monitoring has to offer. Camera technology, in particular, has made it possible to 
monitor animal behaviour at each second and has also proved especially suitable to study 
group behaviour (Pastorelli et al., 2006). Authors previously showed that this technology can 
be helpful for tracking and identifying pigs (Kashiha et al., 2013b) for monitoring behaviours. 
In the current study one of these important behaviours, namely locomotion, was quantified. 
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Reliable results achieved in this work open the way to further behaviour analysis using 
automated image analysis. 

Monitoring animal locomotion in groups is an essential aspect of analysing different 
behaviours. Some of the more specific behavioural aspects that can be focused on are 
locomotor behaviour (Lepron et al., 2007), lameness detection(Kramer et al., 2009), agonistic 
behaviour (Szendrő and Dalle Zotte, 2011) and freezing behaviour (Vanheukelom et al., 2012). 
Moreover, this technology can help to monitor a large number of welfare measures taken to 
improve the animals’ wellbeing (Botreau et al., 2007), such as “ease of movement” and 
“thermal comfort”. Hence, there are many possible applications for which the use of this 
technique can be attractive. 

Although markings have been used to monitor pig locomotion in previous studies (Noldus 
et al., 2002; Spinka et al., 2004), automatic detection of the locomotion of unmarked pigs in a 
group by image processing has never been reported in the literature. The existing techniques 
require marking colour (Spinka et al., 2004) on pigs. In this study, however, an innovative 
approach using movement calculation of ellipses fitted to pigs’ bodies was chosen to 
investigate the possibilities of automated locomotion detection for fattening pigs using 
vision technology. It was found that pig locomotion detection is possible by localising 
individual pigs in the group by fitting ellipses onto their topview body image and tracking 
those ellipses over time. 

Among the previous methods used for pig locomotion monitoring, the moving pixels 
calculation method used in eYeNamic tool was the most successful (Leroy et al., 2006). This 
tool calculates the difference in image intensity between consecutive frames. From this 
difference image, the binary ‘locomotion image’ Ia(x, y, t) is derived, containing the pixels for 
which the intensity change exceeded a certain threshold. A summation of the number of 
these pixels yields the total amount of locomotion at time t (figure 3-5). As this technique 
has been the most successful to date, it might be interesting to examine how it compares to 
the method proposed in this study. Since eYeNamic cannot determine the number of IL pigs, 
one development phase was launched to determine a threshold for number of pixels to 
decide how many pigs in a pen were IL. In the validation phase, data presented in table 3-1 
were also analysed with eYeNamic. Table 3-2 shows the results of this comparison. Upon 
these results ImLS method reports 10.2% of FNs in detecting number of IL pigs while 
eYeNamic categorises locomotion of pigs with a FN rate of 39.2%. In addition, FPs were 2.7% 
and 11.8% respectively. Thus, ImLS method yields a higher accuracy in detecting locomotion 
of pigs. 
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Figure 3-5. Locomotion calculation using eYeNamic tool 

 

Table 3-2. Comparison of labelling, ImLS technique and eYeNamic tool in detecting number 
of IL pigs in a pen (NIL includes standing and lying; IL includes running and walking) 

  Labelling Image analysis Image analysis 

Pen Scan 
samples IL 

Average of active 
pigs in pen 
(out of 10) 

ImLS 
False 

Negatives 
= |IL-ImLS| 

By eYeNamic 
(eYe) 

False 
Negatives 
= |IL-eYe| 

1 3600 1515 4.2 1432 83 (5.5%) 1042 473 (31.2%) 
2 3600 1343 3.7 1209 134 (10.0%) 1851 508 (37.8%) 
3 3600 1316 3.6 1131 185 (14.1%) 891 425 (32.3%) 
4 3600 1722 4.9 1525 197 (11.4%) 2640 918 (53.3%) 

Total 14400 5896 4.1 5297 599 (10.2%) 6424 2324 (39.4%) 

 

The introduced technique was robust against body shape variations in standing and lying 
position. This made it quite suitable for the purpose of this study since there was a 
considerable variation in brightness between pigs’ different postures and locations. It is 
worth mentioning that the occurrence of FPs and FNs in detection of locomotion is 
unavoidable. Incorrect classification (FP) or failure in classification (FN) were due to several 
factors: 1) Segmentation was often an issue in resting zone since pigs tended to lie down 
socially (in contact with each other and sometimes with some overlapping) thereby 
complicating the segmentation task; 2) there were sometimes mistakes in labelling IL pigs by 
observers due to overlapping of pigs, eye errors or a false judgement for pigs with average 
locomotor behaviour; Nevertheless, while this method is dependent on contrast between 
floor and pig surface it could still detect IL pigs in a light intensity range of 11.7 and 176.1 lux 
with an accuracy of 89.8%. 

Although this method would theoretically work with a wide range of light intensity and 
contrast between pigs and floor, background subtraction and segmentation of pigs’ bodies 
can be a challenge. Therefore, authors would suggest setting the ImLS threshold using the 
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data of the day before. This means at the end of a day, ImLS threshold (ImLST) is calculated 
to be used on the day after. Threshold of today is calculated using the equation below: 

ImLST = median (ImLY)        (3.3) 

Where: 

ImLST is the Image Locomotion Status Threshold for today 

ImLY is the Image Locomotion of pigs for yesterday 

The method allows doing behavioural research at group level without the need of 
additional sensors and software and without the need to mark the animals (for tracking 
purposes), or to interfere with them in any other way. It saves costs and makes researchers 
able to add functionality to video cameras. It is certainly a valuable tool for research purposes 
and has an advantage of being non-intrusive. In addition, since measuring locomotion is one 
of many functions of the camera used in our design, this algorithm has to be fast enough to 
be integrated into the monitoring system. Otherwise our monitoring application will not be 
able to run in real-time. Processing time of all the algorithms developed in this PhD is 
discussed in section 8.2.1. 

Combining this method with identification techniques such as using ear tags (Allen et al., 
2008), animal husbandry management can be improved. However, there are still challenges 
to use the proposed technique in practical settings. Due to experimental requirements, 
stocking density in images used in this study was as low as 1.23 pig/m2 while in a real farm 
setting, stocking density will be as high as 1.67 pig/m2 (Schinkel et al., 2009). The higher the 
stocking density, the more difficult segmenting the pigs in the image will be. This could in 
turn have a negative effect on accuracy of locomotion detection. One way to address this 
problem is to calculate locomotion by comparing consecutive frames (Leroy et al., 2006). 

Locomotion monitoring can have many applications such as stressor response analysis. 
By combining locomotion with other parameters such as occupancy which is calculated by 
dividing the total number of object pixels, relative to the total number of pixels in a given 
area, one could analyse pigs’ behaviours including playing, resting, drinking, feeding and 
manipulation behaviour. These possibilities will be investigated in future work. 

In conclusion, this method, which can measure locomotion with an accuracy of 89.8% 
might contribute in the future as a practical tool in livestock husbandry since health, 
welfare and performance are all variables that are related to improving locomotion. 
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Monitoring locomotion of individual animals in groups is an essential aspect of analysing 
different behaviours. The reason why the animal attends a certain zone is very relevant to 
the animal’s behaviour; hence, interpreting information such as animal locomotion and 
occupancy of a certain zone can lead to an improved assessment of welfare and health. 

A better way to understand and interpret animal behaviour is the use of choice and 
preference tests (Kirkden and Pajor, 2006; Scholz et al., 2010). Figure 4-1 shows a schematic 
of a sample preference test where an animal prefers a certain zone within its living area. 
This evolves from the idea of investigating how animals move within their living area 
(figure 3-1). 

This chapter discusses how animals will behave when given choices to move between 
pen zones with different environmental conditions. In a case study, laying hens were 
monitored while moving between compartments with different ammonia concentrations. 
Elevated ammonia concentrations over a few days can cause a significant loss in egg 
production (Cotterill and Nordskog, 1954; Garner et al., 2012; Leinonen et al., 2014) and it is 
assumed that if the performance of the animals can be compromised by high ammonia 
concentrations, the effect will also show in animal behaviour. Therefore, it is important to 
understand how and why different ammonia levels could affect animal’s activity and zone 
occupancy. 

 

Figure 4-1. Schematic of animals preferring a certain zone in their living area 
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4.1 Introduction 

Conventionally, an extensive list of welfare indicators is used to assess welfare of livestock 
(Duncan, 1981). Recently, however, many scientists argue that instead of such a list and 
giving each indicator the same weight, one should directly focus on health and needs of 
animals (Dawkins, 2004). In addition, it is known that behaviour could perform a major role 
in dealing with the two above issues. Behaviour is used to assess health through the clinical 
and pre-clinical assessment of pain, injury and disease. It also is truly important in gauging 
what animals’ needs are. This is not only carried out through on-farm assessment, but also 
through the use of choice and preference tests (Kirkden and Pajor, 2006; Scholz et al., 2010). 
Role of behaviour analysis could be more prominent if used in conjunction with new 
technology. 

In recent years, Image Processing Technology has been practised for animal tracking 
purposes throughout the world (Sergeant et al., 1998). With the growing need for quality 
control and animal welfare management, the demand for automatic animal identification 
and behaviour monitoring as well as traceability has increased. According to (Schofield et 
al., 1999), image processing systems have been used for the production market, but more 
specialised research systems are needed to track animal behaviour in research studies with 
custom animal housing and specific data collection requirements (Lay et al., 2011). 

Image processing technology is widely used in PLF and in supply chain management to 
identify (Kashiha et al., 2013b), track (Kashiha et al., 2014), and monitor behaviour and 
health status of agricultural animals (Yang et al., 2010; Kashiha et al., 2013c). Image 
processing systems are comprised of a camera connected to a PC via a capture card. 
Captured videos are then encoded and recorded on an external hard drive. These videos are 
subsequently decoded and analysed. 

The use of image processing technology has been extended to animal behaviour and 
welfare research because it offers tools to monitor and to obtain feedback on animal 
location and resource utilisation. For instance, image processing tracking systems have 
been proved as effective to monitor animal feeding and/or drinking behaviour (Kashiha et 
al., 2013a), growth (De Wet et al., 2003) and activity (Leroy et al., 2006; Calvet et al., 2009). 

One of the common approaches in monitoring animal behaviour is a choice test. In 
choice-tests, animals are provided with multiple choices among situations or resources. 
The choices must be registered to determine animal preferences. Identifying animal 
location (choice made) and time spent at that particular location is essential for assessment 
of environmental preferences. Choice-tests as applied in animal behaviour and welfare 
research may benefit from the use of leading-edge technology. Researchers previously used 
Radio Frequency IDentification (RFID) to monitor animals when they had to choose 
between available compartments. Sales (2012) implemented and evaluated such system for 
its use in an Environmental animal Preference Chamber (EPC) to detect hens transiting 
between compartments of the EPC. The system faced difficulties since their RFID system 
detection range did not cover the entire test bird area, conflicts were caused by multiple 
RFID tags within the same detection zone and visits shorter than the RFID antenna scan 
interval could not be detected. In another study, Green et al. (2008) developed an EPC to 
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assess responses of laboratory mice to atmospheric ammonia. They used infrared sensors 
for automatic tracking of mouse movements. Infrared tracking was sufficient for 
summarizing group behaviour, but ineffective in recognizing individual mice and required 
a backup video system to verify their data. More recently, image processing-based tracking 
methods have been used in tracking animals subjected with choice-tests (Straw et al., 2011). 
Accordingly, objectives of this study were based on employing image processing 
technology in tracking layers during choice tests. 

The objective in this study was to evaluate the performance of an image processing 
system applied within a stainless-steel EPC for poultry, by performing the following tasks: 

 Tracking hen navigation through detection of a hen navigating the compartments. 

 Comparing this to Human Video Observations to identify potential image processing 
misdetections and their causes. 

 Validating choice-test study positioning data, which consisted of collecting occupancy 
data and videos from a choice-test study with a bird and comparing the detected 
events. 

The above system can have many applications for monitoring laying hens’ behaviours. 
An immediate example for this is ammonia aversion (Sales, 2012). In periods of extremely 
cold weather, energy conservation in a laying house usually results in a restricted 
ventilation rate (Deaton et al., 1982) and an increase in air pollutants particularly ammonia 
(Deaton et al., 1984). Hens can lose a significant amount of weight with a reduced feed 
intake caused by elevated ammonia concentrations (Kristensen and Wathes, 2000). 
Moreover, previous studies through manual observations showed that laying hens 
significantly preferred fresh air (approximately 0 Part Per Million by volume (ppmv) to an 
ammoniated atmosphere (Deaton et al., 1982). 

An image analysis system was tested to investigate ammonia aversion by laying hens 
through monitoring compartment occupancy. This is based on the hypothesis that hens 
tend to prefer compartments with lower ammonia concentration and avoid those with 
higher concentrations. 

4.2 Materials and methods 

4.2.1 Environmental Preference Chamber 

An EPC comprised of four stainless steel compartments (1.2 m x 1.2 m x 1.2 m occupancy space, 
with conical subfloor and attic space) was located at the Environmental Research Laboratory of the 
University of Illinois at Urbana-Champaign, USA. Further details on the design, development, and 
operation of the EPC have been documented by Sales (2012) and Sales et al. (2013)1. 

The four EPC compartments were interconnected by passageways which allowed a test bird to 
walk from one compartment to either of the adjacent ones. A video camera was mounted from 
each cage’s ceiling above the bird area in the centre at a height of 46 cm. These cameras captured 

                                                        
1 Experiments were conducted in accordance with the principles and guidelines presented in Guide for the 
Care and Use of Agricultural Animals in Research and Teaching, 3rd edition, 2010 (Association Headquarters, 
Champaign, IL 61822) 
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video of the compartments for 16 days. They were equipped with a motion detection system. This 
system replaced a compartment image with no pixel movement with a blank screen as illustrated 
at right side of figure 4-2a. Setup is shown in figure 4-2b, and hardware information of the cameras 
is provided in the next section. There were four cameras and four images which were stitched as 
shown in figure 4-3a. 

4.2.2 Image acquisition system 

An animal tracking system based on image processing technology was added to the EPC to 
automatically and continuously determine where a bird was located. The purposes of this system 
were to record a single hen at a certain compartment, to be capable of operating in harsh 
environments, and to be built at a relatively low cost. Thus, the system was comprised of the 
following elements: 

 A commercial surveillance vision system (Geovision GV-1240A D-Type Combo Card, 
Geovision, Inc., Taipei, Taiwan) including four colour mini dome analogue cameras 
(Aventura, CAM5D24DNVP) with a 2.4 mm fixed lens; these are weather-proof (IP66) 
and Vandal-Proof. Camera resolution was 550 TeleVision Line (TVL) at day and 600 TVL 
at night 

 A four-channel VNS-04 Analogue to IP1 Camera Encoder produced by Aventura, 
recording rate of 30 fps, maximum resolution of 704x480 pixels, Moving Pictures 
Experts Group four (MPEG4) / H264 compression 

 Geovision RemoteViewlog2 software for merging, tiling and decoding recorded video 
files 

 Matrix Laboratory (MATLAB) software (2013a version, Mathworks, Natick, 
Massachusetts, United States) for video analysis 

 

4.2.3 Video set description 

In total 16 (days) x eight (h; average of events per day) x 3,600 (seconds in one hour) = 
460800 frames were considered for continuous data analysis. Out of this video set, 20 
(sessions) x 30 (min per session) x 60 (seconds in a min) or 36000 scan samples were 
obtained and used for algorithm development. This represented a rate of 7.8% of labelling. 
Section 4.2.7 explains how these labelling sessions were chosen. 

 

                                                        
1 Internet Protocol 
2 http://www.geovision.com.tw/english/5_8.asp# 
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Figure 4-2. a. Screenshot of the EPC video monitoring system; b. Cross-section of a cage 

showing side view of the test bird area with access to two passageways. 
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4.2.4 Tracking hen navigation 

In order to detect the hen in a compartment, captured frames were analysed offline using 
MATLAB, using the Image Processing System (IPS). The main task for this IPS was to 
eliminate the background and to extract topview hen body through image binarisation. 
The binarisation procedure was implemented as follows: 1) The image was filtered using a 
two-dimensional (2D) Gaussian low-pass filter; 2) A global threshold was calculated using 
Otsu’s method (Otsu, 1979); 3) The image (figure 4-3a) was subsequently equipped with a 
hard threshold resulting in figure 4-3b; 4) To remove small objects such as compartment 
grid and edges from the image, a morphological closing operator using a disk-shaped 
structuring element with a size of 10 pixels (Gonzalez and Woods, 2001) was subsequently 
applied. The morphological closing operation consists of dilation followed by erosion, using 
the same structuring element for both operations. Conducting this operation resulted in 
figure 4-3c. 

Next, each image was segmented in order to determine the location of the hen. To 
segment the image, the hen body was extracted as an ellipse (Zhang et al., 2005) within 
each pen. The procedure for fitting ellipses to the binary image as displayed in Figure 4-3c 
was as follows: 1) Using the direct least squares ellipse-fitting method (Zhang et al., 2005), 
ellipses were fitted to objects in the image; 2) Ellipse parameters such as “Orientation”, 
“Major Axis Length”, “Minor Axis Length” and “Centroid” were calculated for all objects 
located in the image. To avoid incorrectly identifying other shapes in the pen as birds, a 
minimum of 360 or 150 pixels and a maximum of 80 or 30 pixels were considered for the 
major and minor axes of an ellipse, respectively. A hen entering or exiting a compartment 
was detected using the above thresholds. Figure 4-4a illustrates these parameters and 
figure 4-4b shows the ellipse fitted to the hen body. 
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Figure 4-3. Topview image of the EPC, NW stands for North West, NE stands for North East, 
SW stands for South West and SE stands for South East; Birds to left of each compartment 

are companion birds (not included in analysis), and the single test bird is partially visible in 
the NE compartment. B. binarised version of part “a”; c. binarised image (part b) after 

applying morphological operators 
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Figure 4-4. a. Ellipse parameters; b. Ellipse fitted to the partial hen body from figure 4-3c 

4.2.4.1 Ellipse fitting 

Since hens in the image are similar to an elliptical shape, an ellipse fitting algorithm was 
implemented to approximate every hen in order to separate or locate them. 

Fitting an ellipse to a general conic can be accomplished by minimizing the algebraic 
distance over the set of N data points in a least-squares sense. Subsequently, the solution of 
the minimisation problem represents the best-fit ellipse for the given set of points. Each 
time, six edge sample points were randomly selected from the ordered edge points list for 
one ellipse fitting. The result of finding fitted ellipses is shown in figure 4-4b. Mathematical 
details of the ellipse fitting algorithm have been documented by Fitzgibbon et al. (1999). 

Thereafter, ellipse parameters such as “Orientation”, “Major Axis Length”, “Minor Axis 
Length” and “Centroid” for all objects in the image were calculated. Figure 4-4a illustrates 
these parameters and figure 4-4b shows the ellipse fitted to the hen body that could be 
detected in a compartment using this method. The other smaller blobs in the figure were 
ignored since their size was below thresholds. 

4.2.5 Hen choice test data collection 

A choice-test study with individuals was conducted in which four hens (90 weeks of age) 
were each subjected to a 4-day choice test. Video was collected 24-h per day during this 16-
day period and was used: (1) for comparing the performance of the automated analysis 
system to manual assessment of occupancy, and (2) for an initial assessment of aversion to 
ammoniated atmospheric conditions. 

The ammonia concentration was controlled independently in each compartment with a 
feedback control system, and distinct concentrations were attained within a few ppmv of 
the set point. Vertical hanging acrylic doors separated each compartment, which improved 
the control of ammonia at distinct levels, and hens were trained to open them in a separate 
training apparatus prior to introduction to the preference chamber. Details of the chamber 
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construction, control system, and ammonia control performance are documented in (Sales 
et al., 2013).  

4.2.6 Comparing the IPS to Human Video Observations 

Video segments were manually labelled for comparison with IPS analysis. The hen’s 
position within the EPC was tracked by the IPS for half an hour per day (15 min in the 
morning and 15 min in the afternoon) over 16 days while the hen navigated through 
compartments. EPC test videos were analysed every second for hen location by researchers 
and graduate students at the Animal Welfare and Environmental Sciences Laboratory at the 
University of Illinois. Preliminary observations allowed for the selection of distributed 
sessions throughout the experiment to compare automated to manually labelled 
occupancy. These sessions were not selected according to a fixed time of the day since 
videos had been captured on an event-basis. The behaviour of each individual hen was 
labelled using Jet-audio Player software (Cowon International) and by instantaneous 
logging of the occupied compartment in Microsoft Excel. As explained in section 4.2.3, 
36000 scan samples were obtained and used for algorithm development. For each scan 
sample, occupancy of a compartment was monitored and logged. Occupancy behaviour was 
defined as the appearance of 20% of the topview body area of an average hen, which was 
equal to 14000 pixels for the physical arrangement in which the experiments carried out. 
Average area error of this method is 2.5 cm2. If no hen was present in a compartment or less 
than the object area mentioned above was detected, that compartment was considered to 
be empty. 

Every second of occupancy detection resulted from the IPS was compared with the same 
second result achieved from Human Video Observations. Here summary of statistics were 
compared instead of a statistical comparison. True Positive (TP) rate and False Positive (FP) 
rate was calculated for each day and False Negative (FN) could be calculated as 100-TP 
(Storey, 2003). 

4.2.7 Validating choice-test positioning data: Ammonia aversion study 

After developing the IPS technology explained above, the whole data set, namely 460800 
frames, was analysed to investigate ammonia aversion behaviour. Each four-day choice test 
consisted of three different phases of data collection: acclimation (one day), baseline (one 
day) and treatment (two days). 

During the acclimation phase, the hen had time to adapt to the environment in the EPC 
and learn to navigate between compartments. During the subsequent baseline phase, no 
ammonia concentration was applied. This functioned as the reference for the treatment 
phase. In the treatment phase, ammonia concentration of 0, 10, 20 or 40 ppmv was 
randomly assigned to each compartment (table 4-1). During these periods, the video of 
each compartment was captured and occupancy by the hen was assessed using the IPS. As 
shown in the table, the experiment was carried out in four replications. In each replication, 
setup and timing was kept identical while different ammonia concentrations were 
randomly applied to different compartments during treatment phases. This helped to 
cancel the effect of compartment choice for a certain level of ammonia. 
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Data were summarised per replication. In each replication, acclimation (one day), 
baseline (one day) and treatment (two days) phases motion events, captured by the 
Geovision system were merged to make a single video file. The time budget of occupancy 
for each compartment was tallied and a total occupancy percentage was calculated for each 
compartment per day. If a hen was not documented in any compartment, it was assigned to 
be in a passageway between two compartments. No assessment of which tunnel was 
included in this analysis, though it could be added in the future with a logic sequence. 
Subsequently, statistical summary of occupancy percentages was compared among the 
compartments for each day and phase. Finally, a correlation between occupancy in 
compartments per phase and applied ammonia concentration on the same phase was 
sought. All compartments were designed and kept in identical situations, thus no 
compartment effect was included in the assessment and correlations between occupancy 
and compartment were not calculated. 

Table 4-1. Ammonia (NH3) concentration in different compartments during 16 days of the 
experiment. Each hen represents a replicate of the experiment 
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Stage Days 

NH3 
concentration 

in NW 
Compartment 

(ppmv
1) 

NH3 
concentration 

in NE 
Compartment 

(ppmv) 

NH3 
concentration 

in SW 
Compartment 

(ppmv) 

NH3 
concentration 

in SE 
Compartment 

(ppmv) 

1 
Acclimation 1 1 0 0 0 0 
Baseline 1 2 0 0 0 0 
Treatment 1 3, 4 40 20 10 0 

2 
Acclimation 2 5 0 0 0 0 
Baseline 2 6 0 0 0 0 
Treatment 2 7, 8 0 10 20 40 

3 
Acclimation 3 9 0 0 0 0 
Baseline 3 10 0 0 0 0 
Treatment 3 11, 12 10 40 0 20 

4 
Acclimation 4 13 0 0 0 0 
Baseline 4 14 0 0 0 0 
Treatment 4 15, 16 0 40 10 20 

 

4.3 Results and discussion 

4.3.1 Hen Location Tracking 

Figure 4-5 depicts a hen’s movement within the EPC including jumps (misdetections) for one day. 
At time labels Ev1, Ev2, Ev3 and Ev4, the chart shows a jump from the NE to the SW compartment 
and vice versa, which is an impossible occurrence since these are opposite compartments and 
therefore not interconnected (figure 4-3a). It was verified with video that the hen moved quickly 
from NE to SW, being undetected in the NW compartment. Although misdetections were scattered 
during bird tracking, their causes could be further assessed and minimised for future studies. Some 
ideas to improve IPS detection within the EPC include installing the camera at an increased height 

                                                        
1 Part Per Million by Volume 
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and using colour camera. The former will provide a broader camera field of view, and the latter 
will help to improve image segmentation. 

4.3.2 Algorithm Development 

The IPS registered 95.9 ± 2.6% of the actual occupancy during trials and 4.2% ± 3.0% false 
occupancy was reported by the IPS. The distribution of detection rates over the 16-days 
analysed was summarised in Figure 5, which was generally uniform from day to day. 
Figure 4-6 compares the IPS success rate with Human Video Observations as reference. 

 

Figure 4-5. IPS detection of a hen navigating the EPC. Misdetection demonstrates that the 
IPS failed to detect a hen passing through a compartment in less than one second. For 

example for events Ev1 to Ev4 the hen could only go from NE to SW compartment through 
either SE or NW compartment, but no hen was detected in the latter compartments. This 

was because the hen transited through SE compartment quickly (<1 s). 

 

 

Figure 4-6. IPS vs. Human Video Observations match 
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These detection success rates showed that automated video monitoring is suitable for precisely 
monitoring occupancy of compartments in the EPC. Misdetections were observed, as shown in 
figure 4-6, and were related to 1) the inaccurate segmentations, which were due to variable 
illumination and similarity of the background to the hen’s topview image; 2) the hen moving faster 
than the IPS could detect. Higher data quality, e.g. colour or three-Dimensional (3D) image, might 
provide a more robust detection system. 

4.3.3 Continuous video analysis for ammonia aversion analysis 

Table 4-2 shows average occupancy of each compartment in percentage for each period and 
figure 4-7 illustrates this parameter for the whole experiment. 

For most of acclimation and baseline stages, hens picked a specific “home” compartment, 
meaning that they spent most of their time in one compartment (table 4-2). The “home” 
compartment was not the same compartment among the four hens tested. Based on results 
presented in table 4-2 and figure 4-7, occupancy was lower for compartments with 40 ppmv of 
ammonia concentration while it was higher for 20 ppmv compared with lower levels. Moreover, 
correlation of occupancy with ammonia for data points shown in table 4-2 was -16.47 per cent (not 
significant at alpha = 0.05). Although this correlation is insignificant, it demonstrates that hens 
tended to avoid compartments with a higher (more than 20 ppmv) level of ammonia. Additional 
replications are needed to form a stronger conclusion regarding hen behavioural responses to 
ammonia in a choice test. 

 

Figure 4-7. Average occupancy of the compartments vs. NH3 concentration in the EPC; 
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Table 4-2. NH3 concentration (in ppmv) vs. occupancy (in percentage) of four EPC 
compartments during 16 days of the experiment. Occupancy in passageways summarises 

the time when the hens were not detected in the quad compartments. Each hen represents a 

replicate of the experiment. 
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Stage Day 

NW Comp.1 NE Comp. SW Comp. SE Comp. Passageway
s 

NH3 

(ppmv
2) 

Occ.3 
(%) 

NH3 

(ppmv) 
Occ. 
(%) 

NH3 

(ppmv) 
Occ. 
(%) 

NH3 

(ppmv) 
Occ. 
(%) Occ. (%) 

1 

Acclimation 1 1 0 4 0 15 0 6 0 3 72 
Baseline 1 2 0 0 0 0 0 43 0 32 25 

Treatment 1.1 3 40 0 20 0 10 11 0 71 18 
Treatment 1.2 4 40 0 20 0 10 0 0 86 14 

2 

Acclimation 2 5 0 0 0 0 0 74 0 21 5 
Baseline 2 6 0 0 0 11 0 88 0 0 12 

Treatment 2.1 7 0 85 10 0 20 1 40 6 8 
Treatment 2.2 8 0 0 10 0 20 99 40 0 1 

3 

Acclimation 3 9 0 98 0 0 0 0 0 0 2 
Baseline 3 10 0 80 0 5 0 0 0 15 0 

Treatment 3.1 11 10 73 40 0 0 25 20 2 0 
Treatment 3.2 12 10 0 40 0 0 97 20 0 3 

4 

Acclimation 4 13 0 99 0 0 0 0 0 0 1 
Baseline 4 14 0 1 0 5 0 1 0 93 0 

Treatment 4.1 15 0 1 40 3 10 0 20 96 0 
Treatment 4.2 16 0 2 40 26 10 0 20 72 0 

 

This initial application of the IPS for assessing occupancy during a choice test demonstrates the 
successful implementation of an automated system for image analysis for occupancy.  

Overall, the IPS performed well in a stainless-steel enclosure containing a hen with cameras 
installed above the compartments. Each camera covered the entire test bird area of a 
compartment. This system functioned to track hen navigation through detection of a hen 
navigating the compartments. To identify potential image processing misdetections and their 
causes, results of automated tracking were compared to Human Video Observations. During a 
choice-test study, mean ± Standard Deviation (SD) success detection rates were 95.9 ± 2.6% for an 
individual bird when measuring compartment occupancy. Sources of misdetection included i) 
Hens in adjacent compartments were visible in camera view and misled the segmentation and 
ellipse fitting algorithms; ii) Similarity of hen’s feather colour to background and variable 
illumination; and iii) Fast transition of the hen between compartments. 

To validate choice-test positioning data in an application, the IPS introduced in this work was 
subsequently employed to monitor laying hen ammonia aversion. The initial hypothesis was that 
hens tended to prefer a compartment with lower ammonia level and avoid those with higher 
levels. Results obtained in this work revealed a trend for aversion of ammonia levels of 40 ppmv, 

                                                        
1 Compartment 
2 Part Per Million by Volume 
3 Occupancy 
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but no aversion for 20 ppmv or below. Differences observed were not significant, and additional 
examination including additional replications should be completed to strengthen the analysis.  

Considering above results, one might think what advantages of the IPS are. Firstly, the IPS 
significantly reduces costs and data processing time compared to the expensive and time-intensive 
alternative of manual video analysis. Visual observation for a multiple choice behaviour would 
cost about 50 to 90 dollars for each hour of data and it could take about three times the length of 
the experiment to be carried out. In comparison, assuming usage of the IPS for three experiments 
and a development period of six months, this would cost 10 dollars for each hour of data and 
would take one fifth the length of the experiment. This is five to nine times cheaper and 15 times 
faster than visual observations. Secondly, scoring is affected by expectations of the observer and 
his bias could influence subjective scores of animal behaviour and welfare (Tuyttens et al., 2014). 
Thus, lack of the intra-observer repeatability is also an issue in labelling (Van Hertem et al., 2014) 
which does not exist in automatic monitoring. 

In conclusion, the IPS system is suitable for determining the total time hens spend in 
each EPC compartment and related behaviours such as ammonia aversion. In general, this 
technology is suitable for choice tests where a topview camera is of use. For future studies, 
using colour or 3D cameras and painting hens for identification may contribute to 
improving IPS performance in the EPC. In addition, since monitoring the animals’ 
preferences is one of many functions of the camera used in our design, this algorithm has 
to be fast enough to be integrated into the monitoring system. Otherwise our monitoring 
application will not be able to run in real-time. Processing time of all the algorithms 
developed in this PhD is discussed in section 8.2.1. 
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of Individual Pigs Using Image Analysis 
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In chapter 4 image processing was employed to monitor laying hen ammonia aversion. The 
initial hypothesis was that hens tend to prefer a compartment with lower ammonia levels 
and avoid those with higher levels. This is important since it is known from literature that 
ammonia could have a negative effect on animal performance (Deaton et al., 1982).  

Being able to automatically monitor and interpret how and why animals move, is the basis 
for understanding how this affects the performance. Important indicators of animal 
performance are weight gain, drinking behaviour and feeding behaviour. 

Individual weight measurement is the most important variable in meat focused 
production systems. However, utilizing manual scales for this purpose is labour intensive 
and requires movement of animals, which can be stressful for both the animals and 
workers. Machine vision-based weighing of animals is a non-intrusive, fast and accurate 
approach, avoiding stress for both the animal and the farmer and producing weight data 
every day of a fattening cycle (Wang et al., 2008). This technology uses aerial-view images 
of animals provided by cameras to determine body surface dimensions and may be used for 
real-time monitoring of pig weight. Since weight gain, as a biological response to feed 
intake, varies among animals in a pen, it is important to monitor weight for each animal 
individually. This helps the farmer to check on slow-growing animals and to make 
appropriate management changes and to ensure animals deliver a satisfactory 
performance. Animal’s performance (topview body area or weight) could be affected by its 
zone preference (e.g. the feeding zone) in its living area as illustrated in figure 5-1. This 
evolves from the idea of zone preference investigated in the previous chapter (please see 
figure 4-1). In this case, when an animal visits its feeder more frequently and gives longer 
visits to the feeder, it is expected to grow more rapidly than when its visits are less 
frequent and shorter. 

 

Figure 5-1. Schematic: performance (topview body area or weight) of animals could be 
affected by their zone preferences 
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5.1 Introduction 

Technologies are presently available that can monitor individual animals automatically 
24 h a day. Research reported by (DeShazer et al., 1988) identified over 90 potential 
applications for image analysis in pig production. Of these, estimation of pig weight was 
identified as a primary application for the development of image analysis techniques for 
use in livestock production. Accurate monitoring of weight gain performance and the use 
of weight data to make effective management decisions is also crucial for efficient pork 
production. As farms continue to grow in size, even small alterations to production 
practices can have a large impact on overall profit in grow-finish pig operations (De Lange 
and Dewey, 2006). Knowledge of daily weight gain would allow producers to optimise 
nutritional management practices, predict and control shipping weights, and potentially 
assist in monitoring herd health (Schofield et al., 1999). 

The main aim of PLF is to continuously collect relevant information about key aspects of 
livestock production in order to ensure that an optimal production process can be 
achieved. This is done to maximise production efficiency and profitability while 
minimizing the potentially negative environmental, animal welfare and human health 
impacts of the livestock production processes (Banhazi et al., 2007; Banhazi and Black, 
2009). It is obvious that one of the key aspects of animal production is the weight of the 
animals. Therefore, it should be monitored frequently. 

Individual weight measurement is an important variable in farm management that 
nonetheless suffers from a number of drawbacks when performed manually. Firstly, 
utilizing manual scales is labour intensive and requires movement of animals, which can be 
stressful for both animals and workers. Secondly, mechanical equipment is prone to 
malfunction as a result of exposure to dirt, dust, moisture and direct contact with animals. 
Gathering performance data using a manual scale is therefore done sparingly, generally 
only at the beginning and end of a production period and most often only for a 
representative subset of animals, and not for every animal (Schofield, 1990). Machine 
vision-based weighing of pigs is a non-intrusive, fast and accurate approach, which could 
reduce stress for both the animal and the farmer during the weighing process (Wang et al., 
2008). Since slow weight gain can happen for some of the pigs in a pen, it is important to 
monitor weight for each pig individually. This helps the farmer to check slow-growing pigs 
and to make appropriate management changes. 

Recently, VIA has been proposed as a method for real-time and continuous monitoring 
of pig weight gain performance, thereby allowing quicker detection of problems and more 
effective management decisions (Marchant et al., 1999). The VIA technique uses aerial-view 
images of animals provided by cameras to determine body surface dimensions and may be 
used for real-time monitoring of pig weight. Since video analysis of pigs has numerous 
other applications (Van der Stuyft et al., 1991; Xin, 1999; Kollis et al., 2007) weight 
estimation using videos can be an added value for farmers provided they utilise vision 
technology. 

The concepts of relating size and shape to weight are not new to the field of animal 
science. According to Whittemore and Schofield (2000), Hammond and Brody were already 
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exploring these concepts in the 1930s and 1940s, with Brody making connections between 
surface area and live body weight (BW). Historically, consideration of size and shape for 
evaluation of weight was rejected in favour of direct measurement of live BW due to the 
difficulty in obtaining the required measurements (Whittemore and Schofield, 2000). Paddy 
Schofield did, as a main researcher in this field, start a company to bring this solution to 
farmers by offering them a camera based system for daily weight measurement. Moving 
from the comfort zone of science to the competitive commercial market showed that 
developing a good solution in practice is a hard step to make. The solution so far requires 
animals to be in a standardised position. To capture this position and calculate measures 
the animal must be isolated in the image. Due to changing light conditions many images are 
not useful or calculations are not accurate enough. This requires manual control of images 
and calculated values to become reliable results with a useful degree of accuracy. More 
recently however, these concepts have been revisited, as advances in technology make it 
possible to obtain the required size and shape measurements under current pork 
production practices. 

One of the most important contribution in past research was the finding that the area of 
the topview of the pig, minus the head and neck is most strongly correlated to BW 
(Schofield, 1990). Variation in other components has little effect on estimated live BW, and 
can therefore be inferred based on the size of the animal’s body. Camera technology can be 
used to determine the area of the aerial view of a pig’s body. Using information on the 
relationship between area and BW, VIA systems have been developed and have been found 
to be accurate enough to estimate live BW within 5% (Schofield, 1990), but to date, this 
technology has required that pigs were separated from a group for analysis as an 
individual. 

Other researchers previously investigated different approaches to estimate weight of 
pigs using image analysis. Brandl and Jørgensen (1996) used spline functions to express the 
relationship between the body area of the pig measured by image analysis and the live 
weight of the pig. Marchant et al. (1999) developed automated algorithms that could find 
the plan view outline of pigs in a normal housing situation, measure major body 
components and predict the weight of the group of pigs at 34 kg with standard errors of 
7.3% while using manual weighing to calibrate the system. Schofield et al. (1999) developed 
prototype imaging systems to record the weight-related areas of pigs by fitting linear 
regression coefficients. Furthermore, they could log the growth rates of three groups of 
pigs of three genetic strains to within 5%. Whittemore and Schofield (2000) examined the 
value of the estimation of size and shape for animal description in relation to nutrient use 
in breeding sows and growing pigs. Craig and Schinkel (2001) proposed a mixed effects 
model1 to estimate pig weight. White et al. (2004) used a VIA system to continuously collect 
size and shape data of a total of 116 pigs from 25 to 115 kg of weight for three types of pigs 
and could classify these groups in 64 to 83% of observations. Wang et al. (2008) developed 
an image-based walk-through system for pig live weight approximation. They employed an 
artificial neural network technique to correlate physical features extracted from the walk-

                                                        
1 Mixed-effects models, like many other types of statistical models, describe a relationship between a 
response variable and the covariates that have been measured or observed along with the response. For 
further information please see (Pinheiro and Bates, 2000) 
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through images to pig live weight in order to improve the accuracy of live weight 
approximation and could estimate pig weight with an average relative error of 3%. 

Some suggest that BW and topview body area have a linear relationship (Marchant et al., 
1999; Schofield et al., 1999; White et al., 2004) and use a single linear regression equation to 
estimate the live BW of animals from the body area based on the interpretation of 
individual images. Schofield et al. (1999) suggested that different breeds may require 
different algorithms for BW prediction. Also Fisher et al. (2003) and Green et al. (2003) 
suggested a need for unique algorithms for specific breeds or lines of pigs. More recently, 
researchers have been highlighting the benefits of mixed effects models (Schinkel et al., 
2009) and justify their argument that mixed effects model is easily adaptable to stochastic 
modelling. However, despite the advantages of mixed effects models compared to fixed 
effects models, it is important to note that there is a large amount of variation in the 
accuracy of different mixed effects models. 

In this work, dynamic data based (or Transfer Function: TF) models were used. Such 
modelling techniques are compact and allow accurate prediction of the time-variant 
process response, which makes them suitable for model-based predictive monitoring 
purposes (Aerts et al., 2003b). 

In this chapter, an approach is analysed to monitor pig weights in a fully automated way 
based on continuous image analysis. The hypothesis in this work is that combining TF 
modelling and topview pig body area calculation using image processing could lead to a 
more accurate weight estimation. 

5.2 Materials and Methods 

5.2.1 Animals and housing 

Two experiments, identical in setup, were carried out in February and June 2011, whereby 
data from the former were used to develop the model while the latter was a validation 
experiment. Experiments were previously explained in section 2.2.1. 

5.2.2 Equipment and data collection 

Pig body weight was also measured twice a week using MS Schippers MS-100 weighing 
scale. These measurements served as the gold standard reference to which the estimated 
weights obtained from image analysis and modelling were compared. 

The rest of equipment and data collection process were identical to section 2.2.2. 

5.2.3 Localising and segmenting pigs image by ellipse fitting 

First, pig image was segmented using the process explained in section 2.2.3. Second, the 
corpus image was separated from the head by using the same ellipse fitting algorithm. 
Here, the algorithm gave two ellipses as shown in figure 5-2a. The larger ellipse represents 
the corpus and the smaller one the head. The corpus area of the pig surrounded by the 
corpus ellipse, namely “A” in figure 5-2b was calculated once a min and used for BW 
estimation. In order to limit processing to standard standing positions of pigs in weight 
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estimation, 2700 area pixels (for camera height of 2.2 m) were regarded as a minimum of 
“A”. 

 

Figure 5-2. a. Extracted pig body using ellipse fitting; corpus and head separation by 
repeating ellipse fitting algorithm; b. The resulting body area “A” used for BW estimation. 

5.2.4 Identification of pigs 

Since the aim was to estimate individual pig weight as well as at group level, pigs needed to 
be marked for identification. The identification process was explained in section 2.2.3. 

5.2.5 Weight estimation using the TF model 

The objective of the next step was to quantify the dynamics of body area (A) and to relate it 
to the gold standard BW. A single-input, single-output (SISO) TF model was used. The model 
structure used could be described by equation 5.1 (Young, 2011). 

𝐵𝑊(𝑡𝑑) =
𝑎(𝑍−1)

𝑏(𝑍−1)
𝐴(𝑡 − 𝑛𝑇𝑡𝑑)       (5.1) 

In the above equation BW(td) is the body weight, td represents the discrete-time 
increments for weight estimation and measurement; A(td) represents the input of the 
model, namely Body Area; nitd is the number of time delays between each input i and their 
first effects on the output; a(z-1) is the numerator polynomial and equals 1 + 𝑎1𝑧−1 +

𝑎2𝑧−2 + ⋯ + 𝑎𝑛𝑎
𝑧−𝑛𝑎; bi(z

-1) is the denumerator polynomial linked with the inputs i and is 
equal to 𝑏0𝑖 + 𝑏1𝑖 𝑧−1 + 𝑏2𝑖 𝑧−2 + ⋯ + 𝑏𝑛𝑏𝑖

𝑧−𝑛𝑏𝑖; aj , bi are the model parameters to be 
estimated; z-1 is the backward shift operator, defined as z-1.y(k) = y(k-1); na, nb are the orders 
of the respective polynomials. 

The model parameters were estimated using a refined instrumental variable approach 
with the Captain toolbox in Matlab (Young, 2011). In order to build the model, different 
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combinations for na, nb and nT were calculated. More specifically, in the SISO model which 
has only one input, na ranged from 1 to 3, nb from 1 up to 3 and nT from 0 to 2. Therefore, to 
identify the best fitting TF model parameters of a total of 48 (4x4x3) possible models were 
calculated. The resulting models were evaluated by the coefficient of determination R2 

(Young and Lees, 1993) and an identification procedure was used to select the most 
appropriate model order based on the minimisation of the Young Identification Criterion 
(YIC) explained by Young and Lees (1993). The smaller the variance of the model residuals 
in relation to the variance of the measured output, the more negative this term becomes. 

Weight measurements in the first and development experiment were used to design the 
model. The developed model was then used to estimate the BW in the second and 
validation experiment, which was methodologically identical. 

Finally, results of TF modelling were compared against a linear regression model 
(Schofield et al., 1999) and a non-linear mixed effects model (Schinkel et al., 2009). 

5.3 Results 

Using the methods adopted in this chapter, pigs were identified and their topview body 
area was measured automatically. As a reference, every pig was manually weighed two 
times a week. 

When applying the modelling approach to the data of the whole experiment (240 
measurements) the YIC criterion selected models which were predominantly second order 
(equation 5.2) and without delay, stable (namely all of the poles within the unit circle) and 
with the highest R2. The optimal model structure was described by na=2, nb = 1 and nT= 0 
(equation 5.2) based on parameters demonstrated in equation 5.1. 

𝐵𝑊(𝑡) =
𝑏1.𝑧−1

1+𝑎1.𝑧−1+𝑎2.𝑧−2 𝐴(𝑡)       (5.2) 

The specific values for the model parameters (a1, a2 and b1) are presented in table 5-1. 
The model described the weight measurement for 240 measurements with Rt

2 of 97.5%. As 
seen in the table, YIC is optimally low and the standard deviation of the a-parameters and 
b-parameter is low as well. 
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Table 5-1. Specification of the TF model developed using BW measurement as the output 
and body area as input 

YIC R2 Parameter estimate 

-7.294 0.975 
a1 = -0.0768 (0.0061)* 
a2 = 0.9609 (0.0093)* 

𝑏1= 0.289 (0.0014)* 

* The parameter estimates are accompanied by associated standard 
deviations in parenthesis. 

 

Figure 5-3 illustrates the adapted model with the optimal parameters shown in above 
table. 

 

Figure 5-3. The TF model adapted to estimate BW (in kg) using body area (in pixels) as 
input. 

Figure 5-4 compares weight estimation results calculated by the model (using average 
daily body area) shown in figure 5-3 with actual weight measurements on those days for 
pen 1 in the validation experiment. Figure 5-5 shows the measured actual weights versus 
the estimated weights over six days of measurements for all four pens and ten pigs per pen 
(240 data points). The ideal case was that all of the data points align with the identity line 
(R2 of 100% which means for every data point, estimated weight would equal the measured 
weight). This means the more erratic the points are, the lower R2 and accuracy of weight 
estimation will be. 

In total, using TF modelling of topview pig body area, pigs weight could be estimated 
with an accuracy of 97.5% and 96.2% at group1 and individual level, respectively. 

 

                                                        
1 Group level weight estimation is derived from calculating an average of individuals’ weight 
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Figure 5-4. Weight estimation versus measurements for each pig in pen 1 on six 
measurement days during the experiment. The average R2 for weight estimation for this 

pen was 0.9663. 
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Figure 5-5. Measured weights versus estimated weights over six measurement days of all 
four pens with ten pigs per pen (240 data points) in the validation experiment. Overall R2 is 

0.975 with standard error of 0.0182. 

5.4 Discussion 

The proposed image processing and modelling method proved the ability to work 
unattended in an environment with the pigs increasing in weight from a mean of 23 to 
45 kg. The system calculated an average of one area measurement every one min. 
Subsequently, the body area calculated by the image processing was used to design a TF 
model with weight measurements as output. The resulting model was evaluated in a 
validation experiment in which the body area was the input of the model. The model 
output, namely the estimated weight, was subsequently compared against conventional 
weight measurements. This displayed a R2 of 0.9663 for pen 1 at individual animal level. 
Average weight of individuals in a group (group level) was also estimated using the 
developed model. Taking all four pens into account R2 was as high as 0.975 for group weight 
estimation and 0.962 for individual pig weight estimation. These results prove that the 
mean weight of the individual pigs can be estimated with a deviation of 2.5% in a weight 
range of 23 to 45 kg. 

The results obtained using TF model were compared with previous work on this topic, 
namely linear regression models (Schofield et al., 1999) and mixed effects (non-linear) 
models (Schinkel et al., 2009). Table 5-2 compares the results of these three methods 
applied to the group level data of the validation experiment while data of the first 
experiment were used to develop the models. 

The data presented in table 5-2 indicate that the TF model yields a higher R2 and a lower 
SD, which means this method can estimate BW with a higher accuracy and reliability. In 
addition, the proposed method is capable of estimating BW for individual pigs with an 
accuracy of 96.2% (SD= 1.23 kg) while the competing methods do not support automatic 
individual pig weight estimation. 
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Table 5-2. Comparison of results of applying “Linear regression”, “Mixed effects (non-
linear)” and TF models to body area data in group level 

Model Data points R2 SD1 (%) SD (kg) 

Linear regression 240 0.871 10.04 4.52 
Mixed effects 

(non-linear) 240 0.943 5.95 2.68 

TF 240 0.975 1.82 0.82 

 

In terms of practical application of this method, problems should be solved as a number 
of pitfalls have been identified for this study. The first problem is related to individual 
identification of pigs using a dye marker. The problem arising from faded colour patterns 
and pigs being dirty will need to be addressed if they are to be reliably monitored using 
image analysis techniques under actual farm conditions. That is, poor results may be 
caused by dirt on a pig resulting in poor definition of the body edge and area by the 
measurement algorithm. Another problem lays in the application of paint pattern as such. 
On the one hand, dirt on the pig or fading paint patterns can cause a low identification rate. 
On the other hand, application of paint patterns are questionable in terms of convenience 
for the farmer. These problems need to be considered in the further development of the 
image illumination and capturing techniques, as well as in the software development for 
image processing. 

A second pitfall is when certain pigs stood on their back feet and therefore presented a 
reduced area for image capturing and analysis. These cases were automatically excluded by 
thresholding the minimum body area. 

A third pitfall was in illumination conditions, which are also important for identification 
and segmentation of the images. On the one hand, overly bright illumination could prevent 
accurate identification since contrast of the dark paint patterns on a bright pig skin could 
decrease. On the other hand, however, a dim illumination could make pig segmentation 
against dark backgrounds more difficult. In the experiments of this work, it was found that 
a range of light intensity of 40 to 150 lux would be optimal. 

The final pitfall was the frequent calibration this method needed for updating model 
parameters. If these parameters are not updated every few days, prediction weights might 
deviate from measured ones. This is because transfer function model cannot be adaptive 
enough to cope with image boundary variations for weight prediction over a long period of 
time. 

At the time of conducting this research work, the solution proposed was the cheapest 
and the best for algorithm development since cameras were used for many other 
applications as well (Kashiha et al., 2013a). For future work, however, a more practical 
identification method such as electronic tags might be considered. Alternatively, 
algorithms may be developed for identification of animals deviating from the mean of 
desired growth without the need for individual tagging. In addition, since weight gain over 
time is supposed to be closely related to health and behaviours such as feeding in pigs 

                                                        
1 Standard Deviation 
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(Hessel et al., 2006), growth patterns and correlation of weight gain with behaviours will be 
investigated. Finally, since monitoring weight estimation is one of many functions of the 
camera used in our design, this algorithm has to be fast enough to be integrated into the 
monitoring system. Otherwise our monitoring application will not be able to run in real-
time. Processing time of all the algorithms developed in this PhD is discussed in section 
8.2.1. 

5.5 Conclusion 

A technique has been found that offers fully automated weight estimation of pigs. By 
marking pigs, it became possible to estimate their weight individually using topview video 
processing. The results show that by measuring the topview body area and adapting a TF 
model, it is possible to estimate BW with an accuracy of 97.5% (SD = 0.82 kg) on group level 
and 96.2% (SD = 1.23 kg) on individual level overcoming competing linear and non-linear 
modelling methods. In conclusion, application of the introduced method can bring 
significant profits for livestock enterprises since continuous information on daily weight 
would allow producers to optimise nutritional management practices, predict and control 
shipping weights, and potentially assist in monitoring and improving herd health. 
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Drinking behaviour and water volume usage are important indicators of satisfactory 
performance, health and other parameters in animal husbandry. For example, feed and 
water volume usage are closely related and solid feed intake must be accompanied by water 
intake. Monitoring of the drinking behaviour of pigs could be useful in detection of diseases 
and other production related problems too (Madsen and Kristensen, 2005b). Chapter 6 
discusses development of an automated monitor tool for water volume usage by pigs in a 
pen. Animal’s performance (here water volume usage) could be affected by its zone 
preference in its living area as illustrated in figure 6-1. This evolves from the idea of zone 
preference investigated in chapter 4 (please see figure 4-1). 

 

Figure 6-1. Schematic: performance (water volume usage) of animals could be affected by 
their zone preferences 
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6.1 Introduction 

Technology makes it possible for producers to increase the number of animals in their flock 
or herd. While these systems allow a more efficient labour, the reduced ratio of farmers to 
animals results in welfare problems (HSUS, 2010). One of the essential components of 
welfare in animal husbandry is providing adequate food and water (Botreau et al., 2007). On 
the other hand, a substantial amount of man-hour is required to guarantee animals having 
efficient access to water and food. To meet the demands of the market while providing 
enough care to all animals, farmers might use automatic tools to monitor welfare and 
health of their animals. 

Water is an essential need for pigs and inadequate access to it may result in reduced feed 
intake, reduced production and increased health problems (Gonyou, 1996). In addition, feed 
and water volume usage are closely related. The low level of eating may relate to 
insufficient drinking activity, as solid feed intake must be accompanied by water intake 
(Dybkjaer et al., 2006). Monitoring of the drinking behaviour of young pigs, has proved to 
be a useful tool in detection of diseases and other production related problems too. For 
instance, it is known that by on-line monitoring of water consumption of young pigs, an 
outbreak of diarrhoea can be detected approximately one day before physical signs are 
seen on the pigs (Madsen and Kristensen, 2005b) and the stops in the automatic feeders can 
be detected since these cause huge deviations in the level of water consumption (Madsen 
and Kristensen, 2005b). Therefore, it is beneficial to develop an automated monitor of 
water volume usage by pigs in a pen. 

The idea of employing automatic image processing in livestock welfare monitoring is 
not new (Tillett, 1991; Van der Stuyft et al., 1991). Several studies have been carried out on 
comparing manual labelling of visits and water meter measurements (Madsen and 
Kristensen, 2005b; Meiszberg et al., 2009). However, automatic monitoring of visits to 
estimate water volume usage in a pig barn has never been reported in literature. The 
objective of this chapter is to analyse whether it is possible to estimate the continuous 
water volume usage of animals from a simple video camera above a pen with 10 fattening 
pigs. 

This technique helps to improve pigs’ welfare since problems in having access to water 
or abnormal drinking behaviours in pigs can be reported before it harms their health. 
Moreover, since automatic image processing facilitates combining drinking behaviour 
analysis with analysing other behaviours like feed intake, it is more advantageous in 
comparison with conventional water meters. 

 

6.2 Materials and methods 

6.2.1 Animals and housing 

This section is identical to section 2.2.1. 
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6.2.2 Data collection 

Using Noldus MPEG Recorder software, images were recorded during 13 days (upon the 
schedule demonstrated in table 6-1) in 3 weeks for 12 h per day, between 7.00 h and 19.00 h, 
resulting in 156 h of video. Equipment used were the same explained in section 2.2.2. 

Table 6-1. Recording days of the experiment; on some of the days, recording had been 
stopped due to physiological measurements. Discussing these measurements is out of the 

scope of this study. 

Week 1 Week 2 Week 3 

Day 
1 

Day 
3 

Day 
4 

Day 
6 

Day 
8 

Day 
10 

Day 
11 

Day 
13 

Day 
14 

Day 
15 

Day 
17 

Day 
18 

Day 
20 

 

6.2.3 Image segmentation 

The first step to process was to segment the image in order to find the location of the pigs. 
The segmentation process was explained in section 2.2.3. 

In order to find if a pig put his head at the drink nipple or not, it was necessary to 
identify the head (or ears) of the pigs. This was achieved by analysing the pig’s body 
contour (Chaki and Parekh, 2012) in the segmented image. Figure 6-2a shows the pig’s body 
with important points marked on it. Centroid of the pig’s body image was taken as the 
reference in analysing his body contour profile. It was calculated using the equations 6.1 
and 6.2. In equation 6.1, mpq is the (pth ,qth) order torque of image function f(i,j) of the image 
I. In equation 6.2, X and Y of the centroid are calculated using the torque calculated in 
equation 6.1. 

𝑚𝑝𝑞 = ∑ 𝑖𝑝 × 𝑗𝑞 × 𝑓(𝑖, 𝑗)(𝑖,𝑗)∈𝐼        (6.1) 

𝑋𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =
𝑚10

𝑚00
, 𝑌𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =

𝑚01

𝑚00
       (6.2) 

By calculating the distance of the pig’s body contour pixels from the centroid of his 
body, a distance profile shown in figure 6-2b was achieved. Points 3 and 5 relate to the ears 
of the animals. So, by finding minima and maxima of this plot, it was possible to detect ears 
and consequently the head of the animal. 
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Figure 6-2. a. Important points of a pig’s body contour; C is the centroid and di is the 
distance of the centroid to the point i, i=1, 2, …, 6; b. Distance of pixels on body’s contour 

from the centroid of body 

6.2.3.1 Detection of drink nipple visits 

Visually, the posture and position of pigs while being at the drink nipple is characteristic 
and easy to recognise. The criteria established for the drink nipple visit algorithm was that 
the pig had to stand still in the area adjacent the drink nipple and keep its snout in the 
water outlet for at least two seconds. Consequently, duration of the visit was registered. By 
definition, a visit is reported if either of the points 3, 4 or 5 (shown in figure 6-2) inside an 
ellipse is detected closer than 10 pixels to the drink nipple. Since the water outlet used in 
our experiments was directional, pigs could only drink if they stood in a certain position in 
the region shown in figure 6-3 and, as a result, only one pig at a time could drink (Magowan 
et al., 2007). 

6.2.4 Water volume usage estimation using dynamic data-based modelling 

Final goal of this work was to estimate half-hourly water volume usage in a pig barn by 
analysing half-hourly duration of drink nipple visits. To achieve that purpose, a data-based 
dynamic (or Transfer Function: TF) model was developed to quantify the dynamics of water 
meter measurements and to relate it with half-hourly duration of visits. Therefore, the 
main objective of the model was to estimate water volume usage in a pen by only analysing 
pen image automatically. 
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Figure 6-3. Possible drinking region for pigs at the drink nipple 

First, a single-input, single-output (SISO) system was used to model the water volume 
usage as function of half-hourly duration of visits. The model structure used could be 
described as follows. 

𝑤(𝑡𝑑) =
𝑎(𝑧−1)

𝑏(𝑧−1)
𝑑(𝑡 − 𝑛𝑇td)        (6.3) 

where w(td) is the half-hourly water measurement; td represents discrete-time instants 
with a measurement interval of thirty min; d(td) represents the “half-hourly duration of 
visit” as the input of the model. nT is the number of the time delays between each input i 
and their first effects on the output; a(z-1) is the numerator polynomial and equals 1 +

𝑎1𝑧−1 + 𝑎2𝑧−2 + ⋯ + 𝑎𝑛𝑎
𝑧−𝑛𝑎 ; b(z-1) is the denominator polynomials linked with the 

inputs i and are equal to 𝑏0𝑖 + 𝑏1𝑖𝑧−1 + 𝑏2𝑖𝑧−2 + ⋯ + 𝑏𝑛𝑏𝑖
𝑧−𝑛𝑏𝑖 ; aj , bi are the model 

parameters to be estimated; z-1 is the backward shift operator, defined as z-1.y(k) = y(k-1); na, 
nb are the orders of the respective polynomials.  

This model was identical to the one explained in section 5.2.5. The model parameters 
were estimated using a refined instrumental variable approach with the Captain toolbox in 
MATLAB (Young, 2011). In order to build the model, different combinations for na, nb and nT 
were calculated. More specifically for the SISO model which has only one input, na ranged 
from 1 to 2, nb from 1 up to 2 and nT from 0 to 2. Therefore, to identify the first SISO model 
in total 12 (2x2x3) possible TF models were calculated. 
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6.3 Results 

The aim of this study was to quantify the dynamics of the water volume usage in a pig barn 
and to relate it to the time pigs spent on drinking. Figure 6-4 a, b and c compare hourly 
duration of drink nipple visits of pigs with water meter measurements of pen 3 for 3 days of 
the experiment and table 6-2 presents the results of evaluating the model for the whole 
experiment (13 days). As observed in these graphs, water volume usage followed the trend 
of the half-hourly duration of visits. 

When applying the modelling approach to the data of the whole experiment (13 days 
and 24 h a day) the YIC criterion selected models that were predominantly first order 
(equation 6.4), stable (namely all of the poles within the unit circle) and with highest R2. 
The optimal model structure was described by na=1, nb = 1 and nT= 0 as demonstrated in 
equation 6.3. 

𝑤(𝑡) =
𝑏1.𝑧−1

1+𝑎1.𝑧−1 𝑑(𝑡)         (6.4) 

 

Table 6-2. R2 between the hourly duration of visits to the drink nipple vs. water meter 
measurements in 13 days of the experiment; total average R2 is 0.92; on some of the days, 

recording had been stopped due to physiological measurements. Discussing these 
measurements is out of the scope of this study. 

Day Pen 1 Pen 2 Pen 3 Pen 4 
1 0.93 0.92 0.94 0.87 
3 0.92 0.90 0.94 0.90 
4 0.97 0.92 0.95 0.94 
6 0.89 0.92 0.95 0.92 
8 0.90 0.97 0.90 0.94 

10 0.93 0.91 0.90 0.94 
11 0.92 0.94 0.94 0.96 
13 0.92 0.93 0.90 0.88 
14 0.91 0.90 0.96 0.90 
15 0.88 0.90 0.89 0.90 
17 0.95 0.91 0.89 0.88 
18 0.96 0.96 0.97 0.95 
20 0.90 0.87 0.90 0.91 

Total 0.92 0.92 0.93 0.91 
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Figure 6-4. Hourly duration of visits in pen 3 to the drink nipple vs. water meter 
measurements a. Experiment day 1 (R2= 0.94); b. Experiment day 8 (R2= 0.90) ; c. Experiment 

day 15 (R2= 0.89) 

Result of using the applied transfer function model to estimate water volume usage is 
shown in figure 6-5 for the first day of the experiment. Quantitative results over 3 weeks of 
the experiment were similar to the values shown in figure 6-5. 

The specific values for the model parameters (a1 and b1) are presented in table 6-3. The 
model described the half-hourly measured water volume usage over the 13 days with R2 of 
92% (average error of 220 millilitre). As seen in the table, YIC is optimally low and the 
standard deviation of the a-parameter and b-parameter is trivial. 

Table 6-3. Specification of the dynamic linear model developed using water volume usage 
measurement as the output and half-hourly duration of visits to the drink nipple as input 

YIC R2 Parameter estimate 

-5.811 0.92 
a1 = -0.0768 (0.0153)* 
𝑏1= 0.0374 (0.0005.9) 

* The parameter estimates are accompanied by associated standard 
deviations in parenthesis. The basis for computation of the standard deviation 

is each half-hourly computation. 
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Figure 6-5. The resulting model (– –) of the data-based SISO model versus measured (—●—) 
water volume usage in 24 h (first day of the experiment) 

6.4 Discussion 

Automatic detection of animal behaviour has proved useful to farm managers. One 
application is monitoring of drinking which is a key behaviour in pigs and relates to many 
other welfare indexes. In normal situations pigs show a stable diurnal drinking pattern 
(Madsen et al., 2005a), whereas outbreak of diseases, changes in the quality of feed or 
ventilation problems often make the pigs’ drinking behaviour deviate from the normal 
pattern. The existence of a drinking pattern and the specificity of drinking behaviour are 
criteria that allow using drinking behaviour as a predictor for health or production 
problems (Meiszberg et al., 2009). The findings of the study reported in (Musial et al., 1999) 
indicate that water intake for the pig follows a drinking pattern. This pattern is affected by 
different factors such as drinker design (Brumm et al., 2000), diet (Shaw et al., 2006), weight 
and size of pigs (Frederick et al., 2006), etc. Thus, analysing this pattern can yield useful 
information on suitability of pigs welfare. 

Adopting automatic video processing is a popular technology in pigs welfare monitoring 
(DeShazer et al., 1988; Tillett et al., 1997; Lind et al., 2005). In this work, an innovative 
approach was chosen to estimate fattening pigs’ water volume usage by automatic vision 
technology. Using image processing techniques, duration a pig stays at the drink nipple 
was calculated. To improve the accuracy of the applied algorithms, using image contour 
analysis methods, important parts of pigs’ body, namely ears, head and head, were 
detected. This helped to find if a pigs stood in a standard drinking position. Comparing 
applying of this method with labelling of the drink nipple visits proved the method to be 
accurate. 

Real time monitoring of growing pigs’ water consumption seems to be a possible way of 
improving management (Bird and Crabtree, 2000). In order to be able to detect changes in 
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drinking behaviour, it is crucial to have a well-founded model to predict the expected 
behaviour. In this work, a model was developed to relate duration of visits to the water 
volume usage. Developing a transfer function model in MATLAB Captain Toolbox resulted 
in several stable models with various delay, a-parameter and b-parameters. The simplest 
model was a first-order model without a delay. Adapting this model to those two 
parameters, one as input (duration of visits) and the other as output (water volume usage) 
resulted in R2 of 92% (average error of 220 millilitre). Therefore, it can be concluded that by 
monitoring drink nipple visits in a pen, one can accurately estimate amount of water pigs 
use. The significance of this work lies in its ability to automatise drinking behaviour of pigs 
which is but one of many behaviours that can be monitored automatically using video 
processing techniques. 

6.5 Conclusion 

In this work, a surprising result was obtained when investigating the opportunities of 
estimating water volume usage of fattening pigs automatically by vision technology. 
Estimating water volume usage of pigs can help us to understand how drinking behaviour 
of pigs is related to their water volume usage. As such, this method offers many potential 
applications to improve animal husbandry management. 

The analysis described above indicates that it is possible to perform real-time camera 
vision-based water volume usage estimation in a pig pen. This analysis may contribute to 
improve automatic analysis of drinking behaviour based on topview video processing. The 
results showed that by automatic image processing and transfer function modelling, half-
hourly water volume usage could be estimated with high accuracy. The presented approach 
is able to estimate the half-hourly water volume usage of pigs in a barn with an accuracy of 
92% (average error of 220 millilitre) in reference to the gold standard, namely water meter. 
Finally, since monitoring the water volume usage is one of many functions of the camera 
used in our design, this algorithm has to be fast enough to be integrated into the real-time 
monitoring system. Processing time of all the algorithms developed in this PhD is discussed 
in section 8.2.1. 
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In chapter 5, animal weight estimation of pigs using VIA was presented. This method relies 
on a single camera as a sensor installed above a pig pen to estimate animal’s weight 
through topview body area measurement and dynamic modelling. The biggest advantage of 
the method is that no labour input is needed and animals will not be bothered nor stressed 
during the measurement. 

In chapter 6, monitoring drinking behaviour was discussed. Drinking is a key behaviour 
in pigs and relates to many other welfare indexes. The existence of a drinking pattern and 
the specificity of drinking behaviour are criteria that allow using drinking behaviour as a 
predictor for health or production problems (Meiszberg et al., 2009). The findings of the 
study reported in (Musial et al., 1999) indicate that water intake for the pig follows a 
drinking pattern. This pattern is affected by different factors such as drinker design 
(Brumm et al., 2000), diet (Shaw et al., 2006), weight and size of pigs (Frederick et al., 2006), 
etc. Thus, analysing this pattern can yield useful information on suitability of pigs’ welfare. 

Movement of animals within their living area and preferring certain zones not only 
affects their individual performance (such as water volume usage and weight gain), but also 
their group performance and behaviour. In production systems most animals are kept in 
groups. Because of the size of these groups it is still difficult to monitor performance, 
health and welfare on individual level. Therefore, it is worthwhile to investigate if we can, 
with a few simple measures, make a link between group behaviour and animal health, 
welfare and performance.  

It is clear that many variables can cause less than optimal results in these complex 
processes, such as animals growing in large groups. There are environmental controls with 
variables such as temperature, humidity, gas concentration and air velocity. Access to feed 
and water in a group with the social interactions is another factor. All these can fail and 
cause problems. The basic idea of this chapter was to analyse whether simple variables of 
animal group behaviour that are calculated continuously might help to detect problems. 

Welfare monitoring using image analysis could be performed both at individual and 
group level. Weight gain and drinking behaviour mentioned above are two of the welfare 
indicators that could be monitored both individually and in a group. However, there are 
behaviours that are only meaningful at group level. For instance, distribution of animals 
within a pen is calculated at group level. This chapter discusses how measuring and 
prediction of animal distribution could help to improve animal welfare. 

Figure 7-1 shows a schematic of a group of animals whose performance and behaviour 
could be affected by their group preference in their living area. This evolves from the idea 
of individual animal preferences investigated in previous chapters. 
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Figure 7-1. Schematic: performance and behaviour of animals could be affected by their 
group preferences 
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7.1 Introduction 

According to FAO1 (Cluff and Jones, 2010), this decade the annual world poultry production 
is expected to increase by 2.8%. During the same period, the total broiler meat production 
will jump from 96.9 to 124.1 million tons, exceeding growth in all other meat production 
sectors (Penz Junior and Goncalves Bruno, 2011). Farmers, on the other hand, achieve very 
low margins per individual animal. Therefore, intensive broiler-keeping is unavoidable and 
management in broiler houses is crucial. Modern farmers are confronted with increasing 
pressure to care for a large number of animals per farm, which will become even more 
acute in future years. Good care is the key for high levels of productivity, health and 
welfare, and thus for an economically viable business. State-of-the-art technical support 
can bring the farmer closer to the animals by assisting him in gathering information about 
his animals and presenting it in a workable format. The use of technology in livestock 
production is the core idea of PLF (Lokhorst and Koerkamp, 2009; Wrest Park History, 2009). 
More specifically, such technology offers a high potential for monitoring of livestock in real 
time (Lokhorst and Koerkamp, 2009). Continuous automated monitoring of the varying 
needs of individual living organisms has become a technologically feasible option which 
can be implemented anywhere needed. This technique facilitates the development of “early 
warning systems”, which improve the response time to individual animals’ needs. 
Accordingly, employing such a tool to monitor the broilers can help farmers substantially 
to manage their house more efficiently (EFSA, 2012). 

Using cameras and automatic image processing, it is possible to collect information on 
the behaviour of broilers, analyse the data and detect possible deviations from expected 
values, This is also a highly cost-effective approach which significantly reduces the man-
hours needed to regularly check a broiler house (Borgonovo, 2009). 

Technology of monitoring broilers by image processing has already been practised by 
many scientific researchers. De Wet et al. (2003) employed computer-assisted image 
analysis to estimate daily body weight changes of broiler chickens. They could estimate the 
body weight of the broilers on average with a relative error of about 11% from image 
surface area. Aydin et al. (2010) applied an automatic tool to assess the activity of broiler 
chickens with different gait scores (ability to walk). Kristensen and Cornou (2011) 
investigated possibility of detecting leg disorders in broiler chickens through analysing 
deviations in activity level measured by image analysis. Dawkins et al. (2009) showed that 
automated measures of optical flow have the potential to provide continuous ‘outcome’ 
measures of the welfare state of the flock and are highly correlated with gait scores and so 
have the possibility to become a useful adjunct to the much more labour intensive process 
of gait scoring in broilers and Roberts et al. (2012) used optical flow technique to predict 
welfare outcome of broiler chickens 1-2 days in advance. 

What is missing in previous works is an algorithm that can report all kind of problems of 
the poultry house in real-time and can help the farmer to manage keeping his broilers 

                                                        
1Food and Agriculture Organisation 
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more efficiently since they are currently facing many welfare problems in broiler houses 
due to intensive breeding of broilers (Duncan, 2001). This will also promote broiler welfare. 

The hypothesis of this work is that several problems that will affect the animal 
performance can be noticed from the animal behaviour. It is assumed that the earliest sign 
of a problem can be found in the animal behaviour long before they change daily growth 
rate or feed conversion. 

One of the indexes to monitor broiler welfare is distribution (EFSA, 2012). Sudden 
variations in distribution index could be linked to thermal discomfort, insufficient feeding 
or drinking and many other welfare issues (Febrer et al., 2006). Objective of this chapter 
was to find a method for early warning of general problems in a commercial house using 
measuring the distribution index of broilers and a real-time monitoring technique. 

7.2 Materials and Methods 

7.2.1 The eYeNamic system 

The eYeNamic system is a useful image pre-processing tool used for livestock monitoring 
(Costa et al., 2009). This system is equipped with three identical Mobotix M24SEC22-D22 IP-
cameras with real focal length of 4 mm, horizontal image angel of 90 degrees and vertical 
image angel of 67 degrees. Hardware in experiment of this work was consisted of a setup 
with 3 topview cameras installed in the ridge at the height of 5 meters and distributed over 
the length of the house which was 63.5 meters long to capture topview images over 
concrete floor with wood shavings. Each camera was in a protective cover to shield it from 
dust and moisture. Images were captured with a resolution of 1280 by 960 pixels and a 
0.5 Hz frame rate in MPEG format. These cameras were connected to a PC over the farm 
network. Figure 7-2 shows how the input images looked like when three cameras were 
used. Top view images were used because this solution is simple and robust to implement 
in field conditions and produces the most useful data for the purpose of this study (Van der 
Stuyft et al., 1991).  

Using Mx Control Centre (V2.4 MOBOTIX AG, Germany) software, images were recorded 
during broilers growth period (42 days) continuously and eYeNamic data were collected 
every 5 min. This resulted in 2880 h of videos (5184000 images). 

Although one image was captured every two seconds, eYeNamic gave out its pre-
processed data every 5 min. This data were an average of all the images during the 
mentioned period. The lens was pointed downwards to get a topview of the ground surface, 
but due to using wide angle lenses, image corners were distorted as observed in figure 7-2. 
This phenomenon is known as fish-eye effect (Hughes et al., 2008). To avoid such distortion, 
we used a correction algorithm as described in Altera (2008). 

eYeNamic measures amount of object pixels in ratio to background with average 
absolute error of 8%. These pixel ratios are used for calculating distribution index. This 
calculation will be explained in section 7.2.3. 
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Figure 7-2. Picture of the ground surface in a broiler house equipped with eYeNamic 
devided to 60 1 by1 meter zones in one camera’s image. 

7.2.2. Birds and housing 

For the experiments, a commercial broiler house in the Netherlands was equipped with an 
eYeNamic system. In the application of this work eYeNamic allowed following the 
behaviour of the broilers flock from min to min. Clear topview images showed the 
distribution index of the animals and abnormal behaviour was visible immediately, 
enabling one to respond in time before it could affect the welfare or health of the animals. 
Abnormality was defined as a sudden drop in distribution (or escaping of a flock of broilers 
from a certain region in the house) that mainly could happen due to malfunctioning of 
feeders, drinkers, heating, ventilation or a visiting human. Mathematically this was 
interpreted as a sudden drop of more than 25% from expected distribution which was 
depending on growth rate. 

During the experiment, video recordings of the broilers in the house were made 
continuously for 42 days (for the whole growth period). Images collected from the 
eYeNamic system together with time and date labels were exported to CSV (Comma 
Separated Values) files. These files were analysed in MATLAB subsequently. 

This study comprised two experiments, each for 42 days. Experiments were carried out 
in a commercial broiler farm. The first experiment data were used for development and the 
second for validation. In each experiment, day old broilers with a weight of 40 ± 5 grams 
were brought to the house and grew up during 42 days. The key specifications of the 
experiment were as follows: The house had dimensions of 19.8 meters by 63.5 meters and a 
height of 5.10 m and housed 28000 Ross 308 broilers. It was equipped with a climate control 
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system (type Fancom FUP1EA2) and Fancom1 Minimum Transitional Tunnel (MTT) 
ventilation concept with Fancom ImagO-system (Mixed air ventilation). Water was freely 
available to all birds by means of 5 drinking lines during the light periods. Food was a 
combination of wheat and pellets (start, growth and finish) and an automatic feeding 
system (type Fancom FWBU2B1) was used. The feeding regime was based on the amounts 
shown in table 7-1. 

Mean air temperature was set at 34°C during day 1 while temperature was decreased 
gradually until 20°C at the end of the growth period. Light was switched on and off four 
times a day, so there were 4 light periods with a minimum light intensity of 5 lux and a 
maximum of 10 lux (when the light was on) for 5 h and 4 dark periods (when the light was 
off). The start of the first light period was at 3.00 h. Figure 7-3 shows a topview image of the 
birds in the house in a surface of 19.8 by 63.5 m at the age of 27 days. 

During the first monitoring period of 42 days (experiment 1) no logbook was produced 
by the farmer. The data of this experiment were used for developing the model used for 
prediction of the next light periods data. In the validation experiment, however, a logbook 
was filled in by the farmer indicating the events happening in the house. In other words, he 
wrote down any problem that he felt it could affect welfare and health of his broilers. This 
was taken as a reference to validate the algorithm. Figure 7-4 shows the process of data 
processing using eYeNamic monitor tool versus manual scoring of the events by farmer. 
The logbook and the validation process are explained in section 7.2.4.2. 

Table 7-1. Feeding regime during a growth period 

Bird age (d) 1 4 8 10 14 17 28 42 
Feed regime (gram.animal-1) 0.012 0.022 0.034 0.043 0.064 0.080 0.136 0.195 

 

 

Figure 7-3. Topview camera image of the commercial broiler house in the Netherlands 
(house area 19.8 m x 63.5 m) 

                                                        
1 Fancom BV, Panningen, The Netherlands 
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Figure 7-4. Data processing using the eYeNamic monitor tool versus the manual scoring of 
the events by farmer. 

7.2.3 Distribution index calculation 

To calculate the animal distribution index, the image captured by each camera was divided 
to 10 x 6 zones and the occupancy density of broilers in each zone was considered after 
binarising the image using histogram shape-based thresholding explained by Cherry and 
Barwick (1962) and Buyse et al. (1996). 

Zone Occupancy Density (ZOD) in zone (i, j) was calculated using equation 7.1. 

𝑍𝑂𝐷𝑖,𝑗(𝑡) =
∑ 𝑂(𝑥,𝑦,𝑡)(𝑥,𝑦)∈𝑍𝑖,𝑗

𝑍𝑠(𝑖,𝑗)
∗ 100       (7.1) 

In the above equation, O(x,y,t) is the occupancy (foreground pixels in the binary image) 
of zone x,y (grids in figure 7-2) at time t and Zs is the size of the zone in pixels. 

There were 60 zones per camera and 3 cameras in the house, so in total there were180 
zones. For covering a total of 28000 birds, the average occupancy rate of all zones from the 
different cameras was calculated using equation 7.2. 

𝑍𝑂𝐷(𝑡) =
∑ ∑ ∑ 𝑍𝑂𝐷𝑖,𝑗(𝑡)𝑁

𝑗
𝑀
𝑖

𝐶
𝑐

𝐶×𝑀×𝑁
        (7.2) 

In the above equation, M and N are the number of rows and columns of zones 
respectively and C is the number of cameras. In the example shown in figure 7-5, this is the 
arithmetic mean of the 180 values from the three matrices along. The mean value here is 36 
(per 1 m2). 
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Figure 7-5. Occurrences in the broiler house that affect the distribution index. Some of 
these events are demonstrated in this figure such as “change in light level”, “change in feed 

type”, “ventilation failure” and “visitors entering the house” 

Using ZOD(i,j)(t) of each of the cameras the distribution index is calculated from the 
three matrices. All values (180 in this example) are checked to see how many of them are 

out of the range of 20% from ZOD(t)  . Equation 7.3 shows how this calculation is 

performed (α is a threshold coefficient and equals 0.2 or 20%). 

𝑈𝑖,𝑗(𝑡) = {1 𝑖𝑓 |𝑍𝑂𝐷𝑖,𝑗(𝑡) − 𝑍𝑂𝐷(𝑡)| < 𝛼 × 𝑍𝑂𝐷(𝑡)

0 𝑒𝑙𝑠𝑒
    (7.3) 

Where Ui,j(t) is a zone occupancy binary value and the rest of variables are as defined 
previously. 

Finally, the distribution index is yielded by equation 7.4 (α = 0.2). 

𝑈𝐼(𝑡) =
#𝑍𝑜𝑛𝑒𝑠 𝑤𝑖𝑡ℎ |𝑍𝑂𝐷𝑖,𝑗(𝑡)−𝑍𝑂𝐷(𝑡)|<𝛼×𝑍𝑂𝐷(𝑡)

𝐶×𝑀×𝑁
     (7.4) 

In the above example 67.2% of the numbers are recorded in the range of ±20% of the 
average (= 36). The distribution index is thus 67.2%. 

7.2.4 The real-time monitoring algorithm 

Although growth rate and distribution index of broilers follows a non-linear trend, these 
can be considered linear in short interval of several light periods (figure 7-10) (Rogers et al., 
1987). This trend can be affected by several factors including problems in feeding or 
drinking system, light intensity, etc. as shown in figure 7-6, thus analysing the data can 
help to detect the events happening in the house. To detect these events, a model-based 
algorithm was developed. 
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Figure 7-6. Linear real-time model used to predict distribution index; b is the final 
distribution index value in the previous light period; a (the predicted slope of the current 

light period) is the average slope of distribution index change in the last three light periods 

7.2.4.1 Development of the adaptive real-time model 

As mentioned in the section 7.2.2, two identical experiments were carried out in this work. 
Based on the data of experiment 1, a linear real-time model (Pulido-Calvo et al., 2007) was 
developed and tested to model the distribution index of the birds as a response to the light 
input. Since distribution index varies linearly over time, this model is designed to predict 
the data of next light periods using the average slope of the previous periods. Benefits of 
such a model is that it is simple, fast and implementable for real-time applications and has 
the capability to adapt itself to variations in data. 

Linear real-time refers to a model in which the conditional mean of Y given the value of 
X is an affine function of X (Tanaka and Watada, 1988). A real-time model can be used to fit 
a predictive model to an observed data set of Y and X values. If a new value of X is given 
without its accompanying value of Y, then the fitted model can be used to make a 
prediction of the value of Y. The least square approach has been used to fit the Y = a * X + b 
linear real-time model shown in figure 7-6. Mathematical details of this model can be found 
in (Draper and Smith, 1981). In figure 7-7, b is the final distribution index value of the 
previous light periods and K (the predicted slope of the current light period) is the average 
slope of distribution index change in the last three light periods. K and b were adapted for 
each light period and this process was repeated for each light period recursively. Using this 
model, an online prediction could be made on the distribution index each time the light 
was switched on. 
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(a) 

 

(b) 

Figure 7-7. Prediction window (consisting of three light periods) shifts from (a) to (b) to 
predict the next light period data. 

In case the measured values are deviating from the predicted standard values, an event 
might have happened in the house. As shown in figure 7-7a and b, the predicted values are 
categorised based on deviation from the measured values (thin grey line) as follows: 
(1) thick bright grey line: less than 25% of negative or positive deviation from the measured 
values; this means the prediction is fulfilled. (2) thick dark grey line: more than 25% of 
negative or positive deviation from the measured values; this means the prediction has lost 
following the measured values. If the faulty (dark thick grey line) region continues for 
more than 15 min, an alarm will be generated. 
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The prediction model explained above works based on a moving window. The moving 
window is shifted for one light period each time and next light period data are predicted as 
shown in figure 7-7. 

7.2.4.2 Validation of the model 

In the second experiment a logbook was filled by the farmer. A piece of the logbook of the 
validation experiment is shown in figure 7-8. He filled in the logbook whenever he knew 
there was a problem, for instance with feeder lines, or when he was observing an abnormal 
behaviour of broilers. The events recorded by him were compared with the alarm regions 
(thick dark grey line in figure 7-7) generated by the algorithm. The results of the 
comparison will follow in the next section. 

 

Figure 7-8. A piece of farmer’s logbook for the validation experiment 

 

7.3 Results 

Figure 7-9 shows the distribution index of the observed farm during a full growth period of 
42 days. In this figure a sequence of light and dark periods is magnified to illustrate the 
concept. 
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Figure 7-9. Distribution index for the commercial farm from 26/04/2012 to 05/06/2012 
(dd/mm/yyyy date format) which is a full growth period of broilers; 

 

Figure 7-10. Distribution index of the commercial farm used for development of the 
algorithm; the period spanned from 26/10/2011 to 05/12/2012 (dd/mm/yyyy date format); 

measured values vs. predicted values; 

One of the main challenges in the development phase was that no logbook by the farmer 
was available, which made it difficult to establish any reference points. Figure 7-10, 
however, demonstrates that the predicted and the measured values correspond to a very 
large extent. The model used in this phase was a linear real-time model. Subsequently, in 
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the validation phase (growth period shown in figure 7-11) alerts generated by the 
algorithm were compared with an events logbook filled in by the farmer. 

Figure 7-12 shows an example of applying the prediction model on several light periods 
of distribution index data. In normal situation (left picture) chickens are well distributed, 
but as shown in the picture on the right a problem with the feeder line can cause a drop in 
distribution index since broilers cannot have access to food on that feeder line and spread 
over the regions close to other feeder lines. 

The results of applying the algorithm on the data for a complete fattening period in a 
commercial broiler farm in the Netherlands are presented in figure 7-13. The algorithm 
managed to successfully detect 20 (95.24%) out of 21 events in the house. Figure 7-14 
provides an evaluation of the algorithm by comparing the alerts it produced with the 
farmer’s logbook. This figure clearly shows that the algorithm has a very high success rate 
in detecting most of the events, including food and water supply problems and climate 
control system failures. 

 

Figure 7-11. Distribution index of the commercial farm used for validation of the algorithm; 
the period spanned from 26/04/2012 to 05/06/2012 (dd/mm/yyyy date format); measured 

values vs. predicted values; 
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Figure 7-12. Detection of an event by predicting distribution index in a broiler house; 
dashed line: prediction; dark thick line: alarm region (more than ±25% of deviation from the 
predicted value); thick bright grey line: less than 25% of negative or positive deviation from 
the measured values; thin grey line: measured distribution index using the eYeNamic tool 

 

Figure 7-13. Results of automatic detection of events in a commercial broiler house using 
the eYeNamic data prediction algorithm; the number of events (100%) is the sum of false 

negative (4.76%) and true positive (95.24%) cases 
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Figure 7-14. Results of automatic detection of events in a commercial broiler house using 
the eYeNamic data prediction algorithm categorised based on type of the events 

7.4 Discussion 

Image analysis and real-time calculations are an important step towards the automatic 
monitoring of broiler chickens. Although the automatic monitoring of animals is a fairly 
novel approach (Venter and Hanekom, 2010; Kristensen and Cornou, 2011; Maertens et al., 
2011), employing these technologies has already proved quite useful to farm managers 
(DeShazer et al., 1988; Barnett and Hemsworth, 2009). This can mainly be attributed to the 
broad applications that automated animal monitoring has to offer (Velasco-Garcia and 
Mottram, 2003). When used in broiler houses, some of the possible applications are the 
detection of problems associated with feeder and drinker lines, malfunctioning in heating 
or ventilation and vaccination effects. 

Currently, parameters such as temperature are measured constantly in conventional 
broiler houses. Alarm systems which monitor water intake have also been investigated and 
made available to farmers (Pluk et al., 2010). However, the commercial use of a monitoring 
system based on animal behaviour using automated image analysis has not been reported. 

The method presented in this study analysed the image distribution index of broilers, 
which is determined by their complete behaviour and is known to be tied to welfare quality 
(EFSA, 2012). Such an approach makes automatic detection of abnormal behaviour in 
broilers more likely. To evaluate the performance of the algorithm presented in this study, 
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its results in detecting the events explained in sections7.2.1 and 7.2.2 were compared with 
the method proposed by Pluk et al. (2010) that utilised water volume usage modelling. 
Figure 7-15 compares the results obtained by each method and shows that the method used 
in this study could detect 95.24% of the events correctly while generating no false alarms. 
The reference method, however, yielded 6 false alarms and failed to detect 2 of the events. 

Our results indicate that this method offers many potential applications to improve 
animal husbandry management. Although events such as vaccination, which have long-
term effects on broilers (Hoerr, 2010), are more difficult to detect, the algorithm still 
managed to detect 1 out of 2 of these events (the far right columns in figure 7-14).  

These results clearly show that the presented algorithm together with the eYeNamic 
system can be used as a reliable early warning system allowing the farmer to manage his 
farm more effectively and economically. 

 

Figure 7-15. Comparison of performance of the presented algorithm in this work (a) with 
the algorithm presented by (Pluk et al., 2010) (b); true positive cases in (a) are 33.34% more 
than (b) while unwanted alarms (false positives) are only observed (28.6%) by applying the 

second method. 

 

7.5 Conclusion 

A technology has been found that offers fully automated identification of problems in a 
broiler house. This was made possible by using real-time camera vision-based monitoring 
based on topview video processing and linear real-time prediction models. Since the early 
warning system is one of many functions of the camera used in our design, this algorithm 
has to be fast enough to be integrated into our real-time monitoring system. Processing 
time of all the algorithms developed in this PhD is discussed in section 8.2.1. 

The results show that, thanks to real-time prediction of the distribution index of 
broilers, it is possible to detect problems in a broiler house such as malfunctions in feeding, 
drinking, heating and ventilation systems. In tests, the system has been able to detect these 
problems with an accuracy of 95.24%, while no unwanted alerts were generated. In 
conclusion, the method introduced here has considerable economic value for the livestock 
sector, since feed and water intake, health, welfare, performance and farm profitability are 
all variables that are important to be monitored. Finally, developing this method will help 
farmers monitor their animals’ behaviour and health more efficiently. 
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8.1 Manual assessment of livestock health and welfare indicators 

Observing or monitoring animal-based measures can substantially contribute to health and 
welfare objectives. For scientific purposes, human observations of measures are often taken 
as reference of recording techniques to assess the level of welfare and health of the animals 
on farm and at slaughter. These measures are all relevant to behaviour and health or 
physical status of animals. Therefore, the welfare of animals is often assessed by ethologists 
or assessors through manual observations based on chosen measures and protocols. 

As mentioned in the introduction section, Welfare Quality (Blokhuis et al., 2010) was 
realised to develop a method for animal assessments. Although this protocol considers 
assessing several important measures in animal welfare, it relies on manual observations. 
Results obtained using this method are exposed to subjectivity and may vary from one 
assessor to another or from one observation to another. Otten et al. (2013) reported that 
the behaviour-based measurements had a higher degree of within-farm variability than 
clinical- and resource-based measurements as the assessment involves a greater degree of 
subjectivity. Moreover, this technique is time consuming and labour-costly. The average 
time required for implementing the entire Welfare Quality protocol on growing pigs 
present on farms was 6 h and 20 min per visit (Temple et al., 2011). Although it gives an 
accurate image to the 12 criteria that constitute animal welfare in a farm, it is impractical 
to visit a majority of livestock farms due to lack of time. Another problem is that one visit 
at the end of a fattening period for the limited group of visited livestock houses only gives a 
momentaneous observation that might vary in time in another visit during the year. This is 
while a monitoring system should involve a short duration, be relatively easy to perform on 
commercial conditions and it should require little input from the farmers (Temple et al., 
2011). 

Another limitation of this yearly assessment is that such approach comes far too late to 
improve the welfare of the monitored animals but hopefully for the next groups of animals 
on that farm. This method is not a continuous system with early warnings neither it is sort 
of a real-time management system that helps the farmer to maintain health and welfare in 
his herd. In addition, manual assessments could raise hygiene issues. Each assessor visits 
different farms and may transfer diseases from one farm to another. 

Modern sensing technology could facilitate continuous real-time automated assessment 
of animal welfare additional to health and performance. Cameras, microphones and other 
sensing systems/sensors can be used to measure and quantify the status of individual 
animals as well as the group. These techniques can complement the manual measures from 
the Welfare Quality protocols and the observations of the farmer. This could save time and 
effort and at the same time provides relevant real-time management information. 

8.2 Automatic measurement of livestock health and welfare indicators 

Labour costs and long duration associated with manual assessment can be reduced by 
automating some measures with modern technology. Every second assessment of the 
animal status and their environment can be achieved in terms of health, welfare and 
performance. For instance, weight of pigs in the farm can be measured by the farmer using 
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a weighing scale. However, this is very stressful for the animals and it requires taking pigs 
out of their pen one by one, forcing them to go on a scale and pulling them back to their 
pen. This is a very difficult process and quite impractical especially for bigger farms. That is 
why this is only done at slaughter. As an alternative solution, a technician could install a 
camera for the farmer to not only measure weights of the animals daily, but also find out 
how the composition of their meat changes over time (Doeschl-Wilson et al., 2005)! Not 
only can technology be used for measuring animal variables, but it can also help the famer 
in managing his farm. For instance, early warning systems can assist the farmer and the 
veterinarians to take early action in case of a disease outbreak. 

Various technologies such as sensors, which were originally used for other production 
processes, are now applicable for monitoring of livestock. A sensor is an electronic device 
that is attached to the animals whereas a sensing technique is a measuring technique 
comprising recording signals from a distance without physically touching the animal. For 
example, an active collar is a sensor, while a lameness detection system with a Charge 
Coupled Device (CCD) camera is a sensing technique. It makes use of cameras and real-time 
algorithms in order to quantify specific welfare and health indicators in the captured 
images. Sensing systems such as cameras are very important in development of integrated 
monitoring systems for livestock production. They have the advantage of not requiring any 
physical contact with the animal and without having any influence on the living organism 
or on any hygiene issue. 

Improvement of digital technology, computational power and remote sensing 
techniques provide many opportunities for livestock production. Technology can assist the 
farmers tackling the problem of human subjectivity in animal assessment and offers every 
second acquisition and interpretation of data. More detailed information is attained from 
continuous sampling and real-time analysis than human senses can achieve from a yearly 
visit or limited periods of observation. In order to make automated measurements, the 
results of the method should be easy to use, inexpensive, quantitative and robust. An 
integrated monitoring system collects continuous and non-intrusive information from the 
animal, processes the data and gives early warnings and recommendations to the farmer in 
a fully automated way. 

In many cases, frequency of collected data is crucial for effective monitoring. Although 
physical variables such as weight are better to be monitored in span of days, most 
behaviours have to be measured every second. Changes in the normal behaviours, 
development of abnormal behaviours or other physiological indicators of welfare can only 
be captured by appropriate frequency of sensing the animals. This helps acquire detailed 
information on what is happening in reality. By frequent monitoring of specific risk 
parameters, low animal welfare can be predicted and appropriate measures can be taken. 
In comparison, increased frequency of the visits to the farm for more frequent data would 
be costly, laborious and might bear a risk for disease transfer between farms. 

In recent years, Image Processing Technology has been tested for collecting frequent 
data in a farm and for assessing welfare status in livestock. For instance, Sergeant et al. 
(1998) measured every second locomotion of broiler chickens as an indicator of their 
overall health and welfare status. Moreover, according to Van der Stuyft et al. (1991), image 
processing systems can be used for the production market, but more specialised research 
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systems are needed to track animal behaviour in research studies with custom animal 
housing and specific data collection requirements (Lay et al., 2011). Image processing 
technology is under development in PLF and in supply chain management to identify 
(Kashiha et al., 2013b), track (Kashiha et al., 2014), and monitor behaviour and health status 
of livestock and poultry (Yang et al., 2010; Kashiha et al., 2013c). Image processing systems 
comprise a camera connected to a PC via a capture card. Captured videos are then encoded 
and recorded on an external hard drive. These videos are either analysed on the spot or 
subsequently decoded and analysed. 

The use of image processing technology has been extended to animal behaviour and 
welfare research because it offers tools to monitor and to obtain feedback on animal 
location and resource utilisation. For instance, image processing tracking systems have 
been proved as effective to monitor animal feeding and/or drinking behaviour (Kashiha et 
al., 2013a), growth (De Wet et al., 2003) and activity (Leroy et al., 2006; Calvet et al., 2009). 

Video recording and image analysis techniques offer high potential for management and 
production control on the farm and for feedback of management advice to the producer. A 
camera acquiring many images each second can detect information at a higher speed than 
the human eye. Camera image acquiring works differently from human observation. The 
human visual system is easily misled and can only recognise about 30 levels of grey while 
standard image formats have 256 levels or more. With the growth of computing power, it is 
possible to perform more and more complex processing on more and more images. 

For livestock monitoring, video recordings and image processing techniques can 
complement the farmer or the veterinary in detecting small but important changes in 
behaviour, predict abnormalities and detect events early, give warning signals so that the 
responsible person may take charge. Especially with growing size of farms and animal 
groups, image processing can assist in on-line detection of each and every animal during 
their growth. Automated monitor tools based on video could give information as valuable 
as physiological tests or ethological observations. 

In Chapter 2, it was explored how pigs could be identified in experimental conditions in 
a fully automated way based on continuous image analysis. This was important since it was 
for the first time that pigs could be tracked using marks stamped on them and without 
need for attaching sensors to them. This was one of the least intrusive ways of tracking 
animals in order to do behavioural analyses. 

Methodology of tracking the pigs was based on a geometrical model. The image 
geometrical model helps find steady-state location of livestock. For applications where 
only location of the animals is needed, an ellipse (geometrical model) could be a good fit. It 
is a simple model, ignoring details of body parts and tracking the localised animal within a 
pen accurately. It is also independent of type of the animal and could be applied to many 
animal species. An ellipse includes several parameters: a centroid (central point of animal 
topview image), a major axis (an approximation of animal’s body length), a minor axis (an 
approximation of animal’s body width) and orientation (angle between major axis and 
horizontal line) (Leroy et al., 2006). These parameters help to distinguish animals from 
background and other objects in the pen and also provide useful information on animal 
behaviour e.g. feeding, drinking and resting via zone appearance. 
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Some of the possible applications of the introduced tracking method are calculating the 
number of times each pig drinks or feeds, how long each pig stays at the drinker or the 
feeder, how frequent each pig visits the feeder or the drinker, monitoring the trajectory of 
pigs movement in a pen or analysing individual agonistic behaviours of pigs. 

Resting behaviour, as an application of the tracking method introduced in Chapter 2, 
was monitored. This gave us an impression how individual pigs spend their time in their 
resting zone. In addition, this analysis helped to understand how unique resting behaviour 
among individual animals is. This is closely correlated with activity level in animals. 

Activity level of individual animals is a key to their performance and good welfare 
(Beker Yousuf, 2006). Welfare issues can lead to pain and suffering in livestock. Pain and 
suffering are forms of stress on livestock and stressed animals can show compromised 
growth, production and reproduction (Lauber, 2007). Animals experiencing pain normally 
deviate from their normal behaviour by altering locomotion (either an increase or 
decrease) (Anil et al., 2002). This deviation can be detected and reported to farmer using 
automated tools, thus avoiding a compromised growth. 

Although earlier studies involved innovative technologies that could be utilised to 
monitor pig locomotion, many of them require animals to be fitted with sensors or tags. In 
Chapter 3, monitoring unmarked pigs’ locomotion in a group-housed environment 
through automated quantification of locomotion levels using continuous image analysis 
was investigated. Monitoring animal locomotion in a group is an essential aspect of 
analysing different behaviours. Moreover, this technology can help to monitor a large 
number of welfare measures taken to improve the animal welfare. Hence, there are many 
possible applications for which the use of this technique can be of benefit to livestock. 

Thus not only location of the ellipse model, but also dynamics of its movement 
provide valuable information on animal behaviour (Leroy et al., 2006). In Chapter 3, 
Locomotion of pigs was quantified by measuring linear and rotational movement of the 
ellipses. Image geometrical model could be used to monitor locomotion. Two parameters 
were added to the ellipse model used in Chapter 2: angular movement and linear 
movement. Visual observations were taken as a reference with accuracy of 20 cm for linear 
and 15 degrees for angular movement. These movements help to measure certain animal 
behaviour such as chasing (rotational movement) where a pig tries to avoid another 
intruding pig and running or walking on a straight line (linear movement). Comparison of 
automatic measurement with visual observation showed that locomotion could be 
measured in real-time by the ellipse with an accuracy of 89.8%. These results prove that 
the ellipse model is accurate enough in monitoring animal body movements. This research 
is a step ahead in measuring locomotion since, unlike previous research works (Leroy et al., 
2006), locomotion calculated in this way is independent of weight and size of the animals, 
so one or two overactive animals (with high locomotion) cannot compensate for their 
underactive pen-mates (with low locomotion). 

Although locomotion and occupancy of a certain zone is important in assessing the 
status of animals, understanding the motivation why the animal attends the zone is 
more relevant to interpret animal behaviour. Behaviour is used to assess health through 
the clinical and pre-clinical assessment of pain, injury and disease. It also is truly important 
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in gauging what animals’ needs are. This is not only carried out through on-farm 
assessment, but also through the use of choice and preference tests as a response to 
environmental variables (Kirkden and Pajor, 2006; Scholz et al., 2010). 

In the next step, we were considering if tracking and localising animals would allow 
monitoring behavioural response to an environmental variable. Chapter 4 discussed how 
animals behave when given choices to move between pen zones with different 
environmental conditions. Image geometrical model facilitates understanding how 
animals will behave in such conditions. In a case study, laying hens were monitored while 
moving between compartments with different ammonia concentrations. Hens, as 
elliptical geometrical models, were tracked while being free to choose to stay in one of 4 
compartments in a preference chamber. The time spent in each compartment and their 
trajectory was registered. During a choice-test study, mean ± SD success detection rates 
were 95.9 ± 2.6% for an individual bird when measuring compartment occupancy. 
Although no strong link between compartment occupancy and high ammonia levels was 
identified, ellipse fitting algorithm showed its potential as a reliable method for assessing 
preference tests. It should be noted that this model was essentially the same one used for 
monitoring zone occupancy for pigs. Therefore, it can function independent of animal type. 

The animal’s choice can be linked to preferences for certain conditions under which 
they may perform better. In the aforementioned case, elevated ammonia concentrations 
over a few days can cause drop in performance in laying hens: namely egg production.  

The geometrical (elliptical) model can not only be used for behavioural analyses such 
as preference tests, but also helps extract physical variables such as body weight from 
the image. Although body weight, as an important indicator of performance, should be 
monitored at all times, it is more crucial to be measured in compromised living conditions. 
It is especially important to detect any compromised growth due to abnormalities in 
environmental conditions. In this case, weight could be estimated using an image 
geometrical model, namely topview body surface dimensions of animal’s body. 

A daunting challenge for famers and animals is expensive and stressful hand weight 
measurements. Thus, it is recognised that an accurate method of weighing pigs on a regular 
basis non-intrusively and without the need for labour input would be a great tool for 
livestock producers. In Chapter 5, animal weight estimation of pigs using VIA was 
analysed. This method relies on a single camera as a sensor installed above a pen to 
estimate animal’s weight through topview body area measurement and dynamic modelling. 
The biggest advantage of the method is that no labour input is needed and the animals are 
not required to be bothered or stressed during the measurement. The introduced method 
can make substantial profits for livestock enterprises because continuous information on 
daily weight would allow farm managers to optimise nutritional management practices, 
predict and control slaughter weights, and potentially assist in monitoring and improving 
herd health. However, similar to other technologies, there are disadvantages with this 
method too. First is the cost. Although the sensor as such is cheap, complete image 
acquisition systems (including cameras, capturing devices, storage and processing units) 
are rather expensive in particular if implemented on the whole farm. Second is the need for 
careful maintenance. Dust, dirt, insects, moisture can lead to failures in the image 
acquisition system. 
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VIA uses aerial-view images of animals provided by cameras to determine body surface 
(geometrical model) dimensions and may be used for real-time monitoring of pig weight. 
An ellipse model was again used to extract pigs in an image. In a next step, topview body 
area enclosed inside the ellipse was extracted and a second ellipse fitted to the head part 
was excluded. This helped to extract corpus area of the pigs accurately. TF modelling 
facilitated linking body weight with the extracted corpus area. Combination of ellipse 
fitting and TF modelling made it possible to estimate pig’s body weight with a standard 
error of 0.82 kg which outperforms conventional methods such as linear regression 
(SD = 4.52 kg) and mixed effect (SD = 2.68 kg) models in the weight range of 17-45 kg. 
Therefore, weight as the most important indicator of performance in fattening pigs, 
could be estimated and monitored every second only with 2D images and without need for 
depth information or composition of pig’s body shape. However, this method has 
drawbacks too. The most important one is the frequent calibration it needs for updating 
model parameters. If these parameters are not updated every few days, prediction weights 
might deviate from measured ones. This is because transfer function model cannot be 
adaptive enough to cope with image boundary variations for weight prediction over a long 
period of time. Another drawback of this method is that angle of view could affect accuracy 
of weight estimation. For angles greater than 30 degrees compensation is necessary and 
this will increase processing time. 

Another indicator of solid performance is drinking behaviour and water volume 
usage which are closely related to feed intake and health status (Gonyou, 1996). In 
Chapter 6 we explored the possibility of an automated monitor tool for water volume 
usage by pigs in a pen. Image geometrical model could help to estimate water volume 
usage through identifying the pigs while drinking. This becomes possible by fitting two 
geometrical (elliptical) models, one to the corpus and one to the head in order to 
determine the direction of the animals. A water monitor tool could not only estimate the 
actual water volume usage of pigs, but could also monitor drinking behaviour, i.e. 
frequency of drinking visits and duration of drinking, which is known to be related to 
other behaviours such as feeding (Fraser, 1984; Bigelow and Houpt, 1988; Morgan et al., 
2000). Moreover, abnormalities in its dynamics could be linked to health and welfare 
problems. Therefore, it can be said that data obtained at a high frequency camera capture 
(1 frame per second in this case) reveals dynamic information for detecting fast changes of 
active behaviour due to health or welfare problems. 

Certain physical variables such as water volume usage are only possible to be 
monitored in specific zones. Drinking behaviour of pigs was studied in Chapter 6 by using 
the geometrical (ellipse) model for localising the pigs and for detecting them at the drink 
nipple. Hypothesis was that through measuring drinking behaviour (duration and 
frequency of drinking bouts), water volume usage could be estimated. Opposite to the 
weight estimation algorithm, in which the head ellipse was excluded, the head ellipse 
played a pivotal role. Pigs tended to play around the drink nipple or lay down in front of 
it. In many cases, pigs were present in front of the drink nipple, but were not headed to it. 
So, these cases had to be excluded from analysis. Therefore, the ellipse model was extended 
to two ellipses: head and corpus ellipse. Furthermore, contour analysis was done to 
detect the ears since ears are the most obvious body parts in detecting the head in pigs. For 
the purpose, distances of the body border pixels from centroid of the body (ellipse) were 
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analysed and by analysing profile of these distances, ears were distinguished from tail 
side. In addition to the ellipse model, geometrical features of the body contour were 
employed to discover direction of the animals at the drink nipple. Using this technique, not 
only could drinking behaviour be measured, but also the actual water volume usage 
could be estimated. Similar to Chapter 5, TF modelling was used to make a link between 
the image features (drink nipple visits) and a physical variable (water volume usage). 
Since half-hourly water volume usage could be estimated with an accuracy of 92% 
(average error of 220 millilitre), this algorithm could be an alternative for conventional 
water meters to reduce the number of sensors. 

Welfare monitoring using image analysis could be performed not only at individual level 
but also at group level. This applies to weight gain and drinking behaviour previously 
discussed. However, flock behaviours such as “distribution of animals” are only 
meaningful at group level. Image geometrical model could measure group level animal 
behaviour (such as distribution), interpret it and warn the farm manager of behaviour 
abnormalities to avoid negative implications on animal performance. 

Chapter 7 dwelled on how measuring and predicting animal distribution could serve as 
an early warning to avoid animal harm and production losses. Distribution index of 
broiler chickens is calculated by measuring how topview body areas occupy a grid of 
zones dividing the image equally. In this case, area occupied by geometrical (elliptical) 
model fitted to each individual is used to calculate object area of the whole group and 
therefore the distribution index. A linear real-time input-output model was developed to 
test the animal distribution index in response to light input. Broilers were monitored 
during a complete growth period (42 days). As broilers grow, they occupy more floor space 
and object (broiler) size increases. Greater object size means smaller moving space and less 
probability of the ground being visible. Thus distribution increases over time almost 
linearly. Based on this, a model was developed to predict future distribution index. Any 
drop in the measured variable could be interpreted as certain zones (e.g. feeders or 
drinkers) abandoned in the house which could be linked to a problem in that zone. 
Measured distribution index which deviated from prediction for more than 25% notified 
the user of a problem incident in the broiler house. Using this methodology, 95% of events 
occurring in a commercial broiler house, e.g. problems associated with feeding and 
drinking lines, were reported while no false alarm was given. Therefore, combination of 
the ellipse model with prediction models could also work at group level. 

Distribution index could be used to monitor broiler welfare too (EFSA, 2012). Abnormal 
variations in distribution index could be linked to welfare issues. In this work, a method 
was described for early warning of events in a commercial house measuring the 
distribution index of broilers and a real-time monitoring technique. The objective was to 
develop a system that could report malfunctioning in a broiler house to the farmer in real-
time. The results obtained from this work proved that many welfare disturbing events such 
as problems associated with water and feed supply, lighting problems and climate control 
malfunctions could be detected using merely images captured using a topview camera, 
measuring distribution through image processing and applying prediction models. 
Modelling was an essential part of this research work which helped to interpret the 
features extracted from image and to make predictions based on existing measured data. 
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Having all the techniques and materials in mind, it was learned that a general 
methodology, namely image geometrical model, could be employed to measure many 
variables in livestock daily life. This was a vital and novel contribution of this PhD which 
led to devising several monitoring algorithms. In addition, we had the opportunity to apply 
this in practice. For instance, the early warning system researched in Chapter 7 has been 
tested in a commercial farm in the Netherlands and may lead to a commercial product. 

A second discovery of this PhD was that a single sensor, namely camera, could be used to 
monitor many different variables. Using such a solution, the farmer will only need to install 
one sensor to collect extensive data and assess the status of his animals. However, there are 
variables such as vocalisations that a camera cannot capture. For such variables, additional 
sensors such as microphones would be needed. 

Having a multi-function sensor and a general methodology in data analysis can be seen 
as a basis to measure useful variables in livestock houses. However, for interpreting the 
measured variables, applying mathematical modelling was essential. Next section will 
discuss how mathematical modelling could help convert mathematical variables to physical 
and meaningful variables relevant for farmers and caretakers. 

8.2.1 Computation time of the algorithms 

All the algorithms discussed in the previous chapters have to run on a processing platform 
connected to a camera. Therefore, it is important that these algorithms are fast enough to 
be integrated into a real-time monitoring system. In this section performance of the 
algorithms is assessed in order to find out if they can run simultaneously to produce results 
in real-time. 

The processing platform for all the algorithms developed in this PhD was a desktop PC 
with Intel Core2 Duo E7200 2.53 GHz1 CPU2, 6 GB of RAM3 and 64-bit Windows 7 operating 
system. Codes were developed in MATLAB environment. Table 8-1 shows the computation 
time for each algorithm. 

Table 8-1. Computation time and memory occupied by the algorithms developed in this 
thesis 

Algorithm Computation time 
(seconds) 

Memory 
(Megabytes) 

Identification 0.23 85 
Locomotion 0.58 112 

Tracking 0.84 142 
Weight estimation 0.62 140 

Water volume usage 
estimation 0.72 108 

All above algorithms at 
the same time 2.54 762 

 

                                                        
1 Giga Hertz 
2 Central Processing Unit 
3 Random Access Memory 
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Since all the algorithms are supposed to work at the same time, above figures promise 
providing results with a maximum delay of 2.54 seconds which would be quite feasible for 
livestock applications. 

Without proper modelling interpretation of processed images will not be possible. 
Feature variables extracted from images have to be linked to target variables using model 
parameters so that a biological variable could be defined mathematically. Next section 
addresses application of these models in this thesis. 

 

8.3 Using mathematical modelling techniques for monitoring and 

predicting health and welfare related responses of livestock 

Livestock responses can be analysed using mathematical modelling methods. These models 
(Ljung, 1987; Young, 2011) provide information on the dynamics of the past data and can be 
used for predicting future data. These predictions can be used to develop model-based 
monitoring. This has been done in Chapters 5 and 7. Chapter 5 discussed how modelling 
could be used to link topview body area of pigs with their actual body weight. In 
Chapter 7, a short-horizon linear model was used to predict distribution of broiler 
chickens. Subsequently, this was utilised to detect future irregularities in distribution 
which helped to detect abnormal behaviour in broilers. 

Physiological processes in animals can also be described by data-based models. These 
models have a simple structure and are characterised by only as many parameters as can be 
justified by the information content of the available data. However, the data-based models 
have no direct physical or biological meaning, but there is an intermediate type of model: 
the data-based mechanistic model. In these data-based mechanistic (or grey box) models, 
the structure is obtained by some form of objective statistical interference but the resulting 
model provides a description that has relevance to the physical or biological reality of the 
system (Young, 1993). 

Livestock responses, such as weight gain may easily be identified with data-based 
models where no prior knowledge is necessary. Data-based models are inferred and the 
model parameters are estimated by reference to the experimental data using more 
objective, statistically based methods. The model parameters can be estimated on-line 
during the process, resulting in an adaptive model that can cope with the characteristics of 
most biological processes (Goodwin and Sin, 1984; Aerts et al., 2003a). 

In Chapter 5, it was intended to find the best model to describe the relation of the 
weight of pigs with their topview body area, in order to estimate the end-weight of the 
animals and to monitor their growth. The input of the system was topview area measured 
by a camera together with an image processing algorithm and the output was weight of the 
pigs. Sampling frequency was one sample per second. Twice a week weight measurements 
using a scale were taken as a reference and were used to set the model parameters. Due to 
variations in posture of the pigs and in illumination during the day, a median of each 
second measurements was calculated. Then different data-based modelling techniques 
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were analysed and compared for estimation of the body weight of pigs. Estimations were 
carried out using three methods, namely linear regression and mixed effects (non-linear) 
models as reference and single input-output TF model as the proposed method. The TF 
model yielded a higher R2 (0.975) compared to 0.871 for linear regression and 0.943 for 
mixed effects and a lower SD of 0.82 kg compared to 4.52 kg for linear regression and 
2.68 kg mixed effects. This clearly demonstrated that this method can estimate body weight 
with a higher accuracy and reliability. 

In Chapter 7, a linear input-output and real-time model was developed and tested to 
model the animal distribution index in response to light input. As the animals grow, the 
number of object pixels increase and visible floor space decreases. In normal conditions, 
less visible floor space is linked to a higher distribution index. Theoretically, when chickens 
grow so much that they cover all the floor space, distribution index will be 100%. 
Therefore, any abnormal drop in distribution index could be linked to an event. Using this 
model, the animal distribution index could be predicted online. Comparing these predicted 
values with the real-time measurements makes it possible to detect any malfunctioning 
(technical failures during a fattening period). Results showed that this method could report 
95.24% of events in real-time, demonstrating a high potential of using automatic monitor 
tools and data-based modelling for broiler production over a complete growing period. 

Thus, it was found that data-based input-output models can be used in different 
production systems for different purposes such us accurate fitting for estimation of weight 
in pigs and prediction of the distribution in broiler chickens. This takes place due to the 
fact that data-based modelling techniques update themselves with and according to the 
data, and that these techniques are used with a short prediction horizon. 
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Continuous real-time monitoring of farm animals is the basis of new management systems 
for farmers. This means that the fully automated monitoring of animal health, welfare 
and productivity is the key element for the farmer to guarantee animal health and 
welfare, and to increase his income. 

An important technique for automated monitoring of animal health is real-time image 
processing. The first hypothesis of this thesis was that real-time image processing allows 
quantifying several variables and behaviours on animals using one single sensor, namely a 
camera. Quantifying animal variables demands developing proper models. The first 
objective of this thesis was to analyse how physical and behavioural variables could be 
measured in real time using image processing. This was researched using a generic 
geometrical model. Physical variables in livestock environments could be indirectly 
measured accurately using image processing which is a main technique of PLF. Animal 
responses were automatically monitored in real time with capturing and analysing image 
data with a sampling frequency of one sample per second. The second hypothesis of the 
work was that physical variables are linked to behaviours and this link could be 
established through image processing technology and dynamic modelling as shown in 
figure 9-1. 

The above objective was achieved as automatised monitoring using a camera sensor in 
the farm enabled development of early warning systems as well as modelling behaviours 
and physical properties of animals as done in this thesis. Furthermore, welfare and health 
related responses of animals could be monitored, measured and interpreted through 
monitoring behaviours and physical variables. 

With data collected from image acquisition systems, input-output modelling could 
expose in an on-line way changes induced in the system due to either environmental 
factors or animal induced factors. The key element was that detections and predictions 
could be achieved in an on-line manner in the field. 

 

Figure 9-1. From behaviour (e.g. drinking) to physical variable (e.g. water volume usage) in 
PLF sensor technology; general scheme courtesy of (Berckmans, 2013) 
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Technology of high data rate acquisition and processing was crucial. Changes were 
detected or predicted immediately so that the farm manager or a person experienced in 
animal physiology can have an indication as to what is happening. Early warning, 
prediction of future data, processing of dynamic data and making a direct link with 
animal welfare measures were proved to be clear advantages provided by vision technology 
to livestock production. 

Monitoring of animal welfare, health and performance needs an appropriate frequency 
of automated measurements. The manual measurements, however, were necessary for 
validating data analysis. The next phase after validation was always analysing the whole 
data of the experiments for behavioural analyses. 

In Chapter 2, the method of Shape Identification was applied to track pigs in different 
zones in order to monitor behaviours of pigs in a pen in group and at individual level. 
Individual data analysis enables assessing welfare and health of each animal and this could 
help to avoid outbreak of diseases or abnormal behaviour of a few pigs affecting the rest of 
the pen-mates. Therefore, monitoring of individual pigs can give earlier alarms raised by a 
certain problem. A total of 40 pigs were divided into four pens and were monitored every 
second from 07.00 h – 19.00 h during 13 days. Geometrical (ellipse) model was fitted to the 
pig images in order to track and localise them within a pen and certain zones in the pen. In 
the analysis carried out, identification was carried out with an accuracy of 88.7%. 

Behaviours of pigs based on the zone they choose to attend in a pen could also be 
analysed using the introduced method. One analysis provided in this chapter was the 
resting behaviour. From manual observations it is known that pigs rest in more than 96% 
of cases in the resting zone. Currently, this method could detect the pigs that rested more 
than the others. Moreover, there are many applications for identification, tracking and 
locomotion monitoring using the presented technique. The introduced method might 
contribute in future as an important and economically relevant tool in livestock husbandry 
since feed intake, health, welfare and performance are all variables that are important 
enough to be monitored on animal individual level. 

Another behaviour that is important to be monitored for individuals and group is 
locomotion. Monitoring animal locomotion in groups is an essential aspect of analysing 
different behaviours. Moreover, this technology can help to monitor a large number of 
welfare measures such as “ease of movement” and “thermal comfort”. Hence, this 
technique can be useful for many possible applications. 

As presented in Chapter 3, pigs could be tracked and their speed and location could be 
registered. This was the first time that automatic detection of the locomotion of unmarked 
pigs in a group could be carried out by image processing. It was shown that pig locomotion 
detection is possible by localising individual pigs in the group by fitting geometrical 
models (ellipses) onto their topview body image and tracking those ellipses over time. 

While this method is dependent on contrast between floor and pig surface it could still 
detect IL pigs with an accuracy of 89.8% thanks to its robustness against body shape 
variations. 
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In conclusion, this method might contribute in the future as a practical tool in livestock 
husbandry since health, welfare and performance are all variables that are related to 
improving locomotion. 

Algorithms such as locomotion measurement could be applied to different livestock 
species. To serve this purpose, as presented in Chapter 4, a similar algorithm used for 
measuring locomotion in pigs was applied to laying hens. An EPC was designed comprised 
of four stainless steel compartments. The four EPC compartments were interconnected by 
passageways which allow a test bird to walk from one compartment to either of the 
adjacent ones. A video camera was mounted from each cage’s ceiling above the bird area. 
Images captured were analysed by an IPS which segmented images and tracked hens 
transiting through compartments. Each camera covered the entire test bird area of a 
compartment during a choice-test study, mean ± SD success detection rate was 
91.0 ± 2.6% when measuring compartment occupancy. In this application occupancy 
analysis was used to track the hens while they were exposed to different ammonia levels at 
compartment level. 

In conclusion, the IPS system is suitable for determining the total time hens spend in 
each EPC compartment, frequency of visits and related behaviours such as feeding or 
resting. Moreover, the geometrical model (ellipse) fitting algorithm proved to work 
independent of the studied animal. This happens mainly due to the fact that an ellipse 
model simplifies animal’s image and facilitates localising animals by calculating only a few 
parameters. 

The final objective of real-time monitoring of livestock using image analysis is to assist 
the farmer and stocks personnel to manage their animals in a more efficient way. 
Weight measurement is one of the most challenging and labour-intensive tasks of daily 
farm management. One of the most important measurements an IPS could perform is 
weight estimation. In Chapter 5, a technique has been introduced that offers fully 
automated weight estimation of pigs. The results show that by measuring topview body 
area and adapting a TF model, it is possible to estimate BW with an accuracy of 97.5% on 
group level and 96.2% on individual level. In conclusion, application of the introduced 
method can bring significant profits for livestock enterprises since continuous information 
on daily weight would potentially assist in monitoring herd health. 

Although monitoring physical specifications of animals would be helpful for farmers, 
analysing behaviours is no less important for animal scientists and therefore an important 
objective of this thesis was monitoring behaviour of animals at each second. To fulfil 
this objective, in Chapter 6, drinking behaviour of pigs was studied. Additionally, as the 
most remarkable finding of this PhD, it was discovered that a behaviour such as 
drinking could help to estimate a physical variable such as water volume usage of pigs 
with an accuracy of 92%, thanks to an accurate image processing algorithm and a TF model 
developed for this purpose. As such, this method offers many potential applications to 
enhance animal husbandry management. 

The third hypothesis of the thesis was that measuring and monitoring individuals and 
group of animals would be of importance and emphasizing on either of these depends on 
the data quality and objective of the behaviour analysis. While tracking individuals is 
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important for assessing behavioural responses of animals, group behaviour can be 
meaningful too. In Chapter 7, a technology was introduced that offered fully automated 
identification of problems in a broiler house by studying group of broilers. This was 
made possible by using real-time camera vision-based monitoring based on topview video 
processing and linear real-time prediction models. The results showed that, thanks to real-
time prediction of the distribution index of broilers, it is possible to detect problems in a 
broiler house such as malfunctions in feeding, drinking, heating and ventilation 
systems. In tests, the system has been able to detect these problems with an accuracy of 
95.24%, while no unwanted alerts were generated. In conclusion, the method introduced 
had considerable economic value for the livestock sector, since feed and water intake, 
health, welfare, performance and farm profitability are all variables that are vital to be 
monitored. Finally, developing this method will help farmers monitor their animals’ 
behaviour and health more efficiently. 

Precision Livestock Techniques that benefit from Image Processing Technology lead to 
more frequent monitoring and modelling of many health and welfare related responses of 
livestock. In addition, analysing the data at different abstraction levels helps measure 
different behaviours (e.g. locomotion and resting) and also several physical variables (e.g. 
weight and water volume usage). The most remarkable finding of this PhD was that 
monitoring behaviours (e.g. drinking behaviour) frequently using Image Processing 
Technology could help to estimate relevant physical variables (e.g. water volume usage) of 
livestock with a high accuracy. This was achieved by devising accurate behaviour 
monitoring algorithms and dynamic data modelling as shown in Chapter 6. 

It was demonstrated that the variables in livestock life are closely related. This close 
relationship was mathematically defined in this thesis. Specifically, physical variables 
that each conventionally need a sensor to be measured could be indirectly estimated 
accurately. For this purpose correlation between behaviours and physical variables was 
investigated. This link was then established through an intermediate (feature) variable 
obtained from the image processing system and fed to a dynamic model (see figure 9-1). 
Several applications were explored to reduce workload associated with manual on-farm 
assessment by the automation of some measures using modern vision technology. The 
modelling together with on-line measurements were integrated in an analysing algorithm 
to achieve on-line monitoring of animal health and welfare. 

These automatic monitoring techniques developed can be used to complement the 
manual welfare measures and provide the farmer with relevant management information. 
Specifically, early warning systems can assist the farmer and the veterinarians to take early 
action for securing health and welfare of farm animals. 
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