

UNIVERSITEIT GENT

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE

ACADEMIEJAAR 2014 – 2015

The Importance and Presence of Agile
Principles

In Agile Software Development

Masterproef voorgedragen tot het bekomen van de graad van

Master of Science in de Handelswetenschappen

Aygun Shafagatova

onder leiding van

Promotor: Prof. Dr. Manu De Backer

Commissaris: Tom Pauwaert

UNIVERSITEIT GENT

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE

ACADEMIEJAAR 2014 – 2015

The Importance and Presence of Agile
Principles

In Agile Software Development

Masterproef voorgedragen tot het bekomen van de graad van

Master of Science in de Handelswetenschappen

Aygun Shafagatova

onder leiding van

Promotor: Prof. Dr. Manu De Backer

Commissaris: Tom Pauwaert

i

PERMISSION

The undersigned declares that the contents of this master thesis can be consulted and/or

reproduced, provided the source is acknowledged.

© Aygun Shafagatova

ii

SAMENTWATTING

De afgelopen jaren is de populariteit van agile softwareontwikkelingsmethoden enorm toegenomen.

De ideeën, waarden en praktijken die agile softwareontwikkeling omvat hebben een grote invloed

op de manier waarop softwareontwikkeling in de praktijk gebeurt. Hoewel er reeds behoorlijk wat

onderzoek gedaan is naar agile ontwikkelingsmethoden en praktijken in het algemeen, is er nog

relatief weinig aandacht besteed aan het belang van waarden en principes en hun

aanwezigheidsgraad in agile ontwikkelingsprocessen. In deze context komen enkele vragen naar

boven. Zijn de waarden en principes die in het Agile Manifesto vermeld staan bijvoorbeeld nog

steeds in dezelfde mate aanwezig in agile softwareontwikkeling en zijn deze nog steeds belangrijk?

In dit opzicht ontbreken empirische bewijsmiddelen en academische analyses in mainstream

onderzoek.

Dit onderzoek heeft daarom als doel een volledig begrip te krijgen van de percepties en de

werkelijkheid over de aanwezigheid van agile principes in agile ontwikkelingsprocessen. Het

uiteindelijke doel van dit onderzoek is om een empirisch bewijs te leveren dat de originele ideeën

en bouwstenen van de agile methode nog steeds gevolgd worden en om aan te tonen in welke

mate beoefenaars voldoen aan deze waarden en principes. Om dit doel te bereiken, werd in dit

onderzoek een enquête en een mapping gebruikt als onderzoeksmethodes voor het verzamelen

van gegevens. De online- enquête werd uitgevoerd om te bepalen in welke mate agile praktijken

gebruikt worden onder beoefenaars, en in welke mate zij belang hechten aan de agile principes.

Verder is er een mapping gemaakt door agile deskundigen van academische en industriële

achtergrond om te achterhalen in welke mate een agile praktijk welke agile principes ondersteund.

Uit de resultaten van het onderzoek blijkt dat er een aantal belangrijke verschillen bestaan in de

mate van implementatie in de praktijk en in de belangrijkheidsgraad van de verschillende principes.

Uit de analyse van de empirische gegevens blijkt dat er mogelijke inconsistenties zouden kunnen

bestaan in het belang van de principes en de aanwezigheidsgraden, aangezien de naleving van de

principes die als belangrijk beschouwd wordt zich op een verschillend niveau blijkt te bevinden. De

studie wordt afgesloten met een aantal speculatieve opmerkingen over mogelijke verklaringen voor

deze resultaten.

Trefwoorden: Agile softwareontwikkeling, agile principes, agile praktijken, implementatie, het

belang, de aanwezigheid.

iii

ABSTRACT

Agile software development methods have gained considerable popularity in recent years. It is

widely recognized that, the ideas, values and practices which compose agile software development

have had a major impact on how software development is done in practice in the past years. While

there is a fair amount of research related to agile development methods and practices in general,

relatively little attention has been paid to the importance of values and principles behind it, and their

presence degree in agile development process. In this context questions arise, whether, after about

15 years, the values and principles stated in Agile Manifesto are still important and present in agile

software development, and more specifically if at the same degree. In this regard, empirical

evidence and academic analysis to date is lacking in mainstream research.

This study therefore aims to gain understanding on perceptions and realities about importance and

presence of agile principles, particularly by examining the implementation degree of agile practices,

importance degree of agile principles and by trying to lay down a possible relationship map

between principles and practices. Hence, this study seeks to fill a small and yet not insignificant

gap in existing research. Eventually, its objective is to provide empirical evidence if the original

ideas and building-stones of agile approach are still being followed and to which degree

practitioners are grounded on those values and principles. For this end, the study employed survey

and mapping as a research method for collecting data. The online survey was conducted to

determine the implementation level of agile practices and importance degree of agile principles

among practitioners. Besides, the mapping was done by agile experts and academicians to find out

the possible correspondence of agile practices and agile principles in terms of their support to

latter.

The main findings reveal a number of remarkable differences in practice implementation degree

and in principle importance range. The analysis of empirical data indicates that possible

inconsistencies might exist in principle importance and presence degrees, since the adherence to

principles which is perceived to be important seems to be not in equal level. The paper concludes

with some speculative remarks on possible dynamics behind such results.

Keywords: Agile software development, agile principles, agile practices, implementation,

importance, presence.

iv

ACKNOWLEDGEMENTS

First of all, I would like to thank to my supervisor prof. Manu De Backer; in particular to express my

sincere gratitude to my co-supervisor Tom Pauwaert for his vision, valuable feedbacks, inspiration

and encouragement. In the wave of appreciation, I would also like to mention prof. Kieran Conboy,

Sammy Becaus, Dale Strickler, prof. Mark Goh and Bart Vermijlen, who, with their vast expertise

and deep knowledge on agile software development, contributed valuable input to this study. I

would like to express my deepest gratitude to them for their involvement, criticism, eye-opening

comments and professionalism. Special thanks go to all the respondents who took their time and

participated in the survey by providing valuable input. My heartfelt thanks go to my classmate

Christopher Deseck for his quick proofreading and continuous support.

Last but not least, my special indebtedness goes to my family, to my soul partner Ramin for his

limitless support, care and compassion and to my wonderful daughters for their love, laugh and joy

throughout my study.

v

TABLE OF CONTENTS

SAMENTWATTING .. ii

ABSTRACT .. iii

ACKNOWLEDGEMENTS .. iv

TABLE OF CONTENTS .. v

LIST OF ABBREVIATIONS ... vii

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

1. INTRODUCTION ... 1

1.1. Structure of thesis .. 1

1.2. Background – social relevancy .. 2

2. LITERATURE REVIEW ... 7

2.1. Academic literature review .. 7

2.2. Practitioners’ literature review ... 13

2.3. Research questions .. 15

2.4. Conceptualisation of agile software development process ... 16

2.4.1. Defining agility ... 16

2.4.2. Defining the process: Agile software development... 17

2.4.3. Agile values and principles ... 21

2.4.4. Agile Principles .. 26

2.4.5. Agile Practices.. 34

2.4.6. Agile methods .. 38

2.4.7. Criticism of agile software development .. 43

3. EMPIRICAL RESEARCH ... 45

3.1. Secondary Research ... 45

3.1.1. Related surveys .. 45

3.2. Primary research: selecting the relevant research method ... 50

3.2.1. Survey as a main research method ... 51

3.2.2. Mapping Study ... 52

3.3. Evaluating the chosen methods: Limitations and Concerns ... 53

vi

3.3.1. External validity ... 53

3.4. Research design process – data collection .. 55

3.4.1. Survey set up/design .. 55

3.4.2. Mapping design ... 56

4. EMPIRICAL FINDINGS .. 57

4.1. Survey results and analysis ... 57

4.1.1. Respondents’ Demographics .. 58

4.1.2. Agile Practice implementation ... 60

4.1.3. Agile Principles importance .. 63

4.2. Mapping results and analysis .. 64

5. DISCUSSION .. 72

5.1. Discussion of practice implementation degree ... 72

5.2. Discussion of principle importance degree ... 80

5.3. Discussion of the presence of principles in agile development .. 82

5.4. Discussion of perceptions vs. realities on agile principles’ importance and presence 84

6. CONCLUSION .. 87

6.1. Research questions revisited .. 87

6.2. Limitations of this study ... 89

6.3. Implications for the industry and for further research .. 89

7. Bibliography .. x

8. Appendix A: Online survey Questionnaire Design .. xv

9. Appendix B: Mapping design .. xxv

10. Appendix C: Invitation letters for participation in online survey ... xxxix

11. Appendix D: Invitation Letters for participation in mapping study .. xl

vii

LIST OF ABBREVIATIONS

ASD Agile Software Development

BDD Behavior Driven Development

CA Comparative Agility

CSF Critical Success Factors

DSDM Dynamic System Development Method

FDD Feature Driven Development

IEEE Institute of Electrical and Electronics Engineers

ISD Information Systems Development

ISO International Organization for Standardization

LSD Lean Software Development

MIT Massachusetts Institute of Technology

ROI Return on Investment

RQ Research Question

TDD Test Driven Development

XP Extreme Programming

viii

LIST OF TABLES

Table 1: Traditional and agile perspectives on software development (Dybå T. D., 2009) 20

Table 2: Agile principles reconstructed by Meyer (Meyer, 2014)... 32

Table 3: Classification of agile practices by Meyer (Meyer, 2014) .. 36

Table 4: Summary comparison of main ASD approaches (Kongyai, 2011) 42

Table 5: Practicing rates of agile practices (Ambler S. V., 2008) .. 47

Table 6: Linking research methods to research questions ... 53

Table 7: Company size of participated respondents ... 59

Table 8: Frequency distribution of implementation degree of agile practices 62

Table 9: Frequency distribution of importance degree of agile principles ... 64

Table 10: Mean score and mode for each agile principle ... 64

Table 11: Practice support for each agile principle ... 68

Table 12: Top 10 agile practices with the highest mean scores .. 74

Table 13: List of practices with lowest mean scores ... 74

Table 14: Comparison of the results of all surveys on agile practices .. 79

Table 15: Implementation degree of practice classification of Meyer.. 80

Table 16: Mean scores of importance per principle category .. 82

Table 17: Mean scores of principle presence per category ... 83

Table 18: Comparison of agile principles' importance degree with its presence degree 84

ix

LIST OF FIGURES

Figure 1: Primary development method used in organization across projects (HP, L.P, 2015) 4

Figure 2: Percentage of respondents agreeing with statement about agile development (HP, L.P,
2015) ... 5

Figure 3: Success rates of Waterfall and agile projects (The Standish Group, 2013) 5

Figure 4: The relationship between agile values, principles, and practices (Smith, 2009) 21

Figure 5: Relationship diagram of Agile values, principles, practices and methods (developed by the
author) ... 21

Figure 6: Agile Alliance mapping of practices according to the methods/phases they belong
(AgileAlliance) .. 37

Figure 7: Comparing life-cycle, project management and concrete guidance support of agile
methods (Abrahamsson P. W., 2003) .. 41

Figure 8: Industry average responses (Williams L. R., 2010) .. 49

Figure 9: Respondents' experience with agile ... 58

Figure 10: Team size of participated respondents .. 59

Figure 11: Mean scores of implementation for each agile practice ... 73

Figure 12: Variance of practice implementation degree ... 76

Figure 13: Implementation mean scores for each practice category ... 79

Figure 14: Mean scores of importance degree for each agile principle .. 81

Figure 15: Average mean scores of agile practices supporting each agile principle – principle
presence ... 83

1

1. INTRODUCTION

It is not the strongest of the species that survives, nor the most intelligent that survives. It is the one that is

most adaptable to change.

Charles Darwin.

Agile Software Development (ASD) emerged as a response to the traditional way of developing

software which had long delivery duration, was not able to react to changes rapidly and effectively

and was loaded with piles of documentation. Since the launch of Agile Manifesto1, ASD became

hype and was promoted as something revolutionizing. There are currently a bunch of studies

directed at ASD in general and its different aspects.

As generally accepted, the whole agile concept is based on values and principles laid down in the

Agile Manifesto by a group of keen agile practitioners. This implies that agile principles should be at

the core of and starting point for all methods and practices. Studies on different issues related to

ASD have greatly multiplied in recent years. However, there has been relatively little analysis of

importance and presence of agile principles in ASD process. After 15 years of existence, very

limited knowledge is available on if those principles are still important and actually present in agile

processes. More particularly, which practice is based on/supports which principle and the

perceptions on importance of agile principles are the questions that have drawn very little attention

in academic research. It is vitally important to examine these issues in order to be able to make

sound conclusions about the link between theory (principles) and practice. Therefore, this study

seeks to fill a small and yet not insignificant gap in existing research. Eventually, the aim of the

study is to try to shed light on perceptions and realities about importance of agile principles. Of

particular importance is to know if all principles are evenly important for agile practitioners; how

they percept it and how they implement them. For example, they can consider certain principles

very important but however if looked at what they use in practice it might be the case that they

actually implement other principles more deeply than the rest.

1.1. Structure of thesis

This thesis is structured as following: In first chapter, the background information and social

relevancy of the issue is highlighted. Afterwards, in second chapter, review of relevant literature is

conducted under the subsections of theoretical literature and practitioners’ literature. Third chapter

1 The detailed explanation of Agile Manifesto and principles follows shortly.

2

mainly deals with research methods and design by elaborating both each chosen method and the

process of collecting data. Fourth chapter outlines the analysis and description of empirical

findings, while discussion of the findings is presented in fifth chapter. Finally, the last conclusion

chapter summarizes the thesis findings and discussion by revisiting the research questions and by

laying down the limitations and possible future research opportunities.

1.2. Background – social relevancy

Software development processes are becoming increasingly complex, on-demand, and difficult to

define due to intangible character of software and fast-changing technology. It is not surprising that

the highest project failure rates occur in software development domain. According to the Standish

Group survey of 2013, only 39% of software projects were successful, while the rest were either

failed or challenged. However, if comparing to 2004 where success rate was only 29%, there is a

remarkable improvement (The Standish Group, 2013). And as we will find out shortly from the

below-mentioned surveys, Agile is one of the main reasons of this improvement.

In the good old days of software development dawn, everything was much simpler and

straightforward: most projects were about the automation of existing systems and therefore it could

be easily planned and defined up-front. However, as the technology evolved to become more

complex, as internet become the main medium of communication and operation, and as software

became more a sort of consumer product, it became ever more challenging to define everything up-

front and manage the frequent changes during the project. On the other hand, fast evolving

technology and business environment required shorter time-to-market delivery which put also

pressure on software development process. As more organizations seek to gain competitive

advantage through timely deployment of Internet-based services, developers were under increasing

pressure to produce new or enhanced implementations quickly. (Turk, 2002)

Furthermore, if we add to this the new technology trends, such as mobile applications, internet of

things and big data, it becomes clear that traditional plan-based software development

methodologies (for ex. waterfall) are simply not able to face those modern-day challenges

effectively due to its very inflexible and heavily structured processes. (HP, L.P, 2015; Highsmith,

2010; Smith, 2009)

Therefore, agile development methods emerged as a response to the inability of previous plan-

driven approaches to handle rapidly changing environments (Highsmith, 2002). They were

developed primarily to address the problem of developing software in "Internet time" (Turk, 2002).

Agile methods are a reaction to traditional ways of developing software and acknowledge the “need

3

for an alternative to documentation driven, heavyweight software development processes” (Cohen,

2004). As a result, agile was originally promoted as a “movement” and viewed as a challenger to

entrenched practices like Waterfall. It was introduced to the software development world in late 90s

and early 2000s and since then has become very popular in the industry because of its ability to

handle a high degree of uncertainty and change in software development projects. Originating from

the so-called ‘light-weight’ methods and promoted through the publication of the Agile Manifesto

(2001), the agile methods family have become highly prevalent in recent years. The term ’Agile’

was coined during the summit of Agile Alliance of 17 agile practitioners in 2001 which also

produced Agile Manifesto and agile principles, the basic values and principles that stand for Agile

methodologies as a connecting bottom line (2001). Since then, within the industry there is a

remarkable shift towards agile development and away from traditional waterfall methods. As a

turning point, it brought remarkable transformation and unprecedented change in software

development field and become a mainstream within it. Agile methods are attractive to software

companies since they promise shorter time-to-market, as well as higher flexibility to accommodate

changes in the requirements and thereby increased ability to react to changing customer (market)

needs. (Williams L. C., 2003)

If we compare its relatively young age of about 15 years to its traditional counterparts, the ever

rising use and popularity of agile methodologies is indeed impressive. Driven by a belief among

adopters that Agile development is more customer-centric and enhances team collaboration, Agile

was slow to start and quick to dominate, with most growth occurring in just the past five years (HP,

L.P, 2015). According to the survey of Forrester conducted in 2009, 35% of respondents stated that

Agile most closely reflects their development process, with the number increasing to 45% if

definition of Agile is expanded2. (West, 2010)

The most recent survey of VersionOne (agile software tool provider) reveals that Agile is an

increasing tendency within industry: as stated in it, 95% of development organisations practiced

agile and a total of 45% of respondents worked in development organizations where the majority of

their teams are agile3 (VersionOne, 2015). Alternatively, only 5% of respondents work in a

completely traditional/non-agile development organization, while in 2009 this was 31%

(VersionOne, 2015). That indicates rapid rise of agile in recent years. What is more, the 2014

survey of HP on usage of Agile supports this by going further and declaring Agile as a new norm in

today’s software development industry. According to this survey, agile development methods are

2 Source: Forrester/Dr. Dobb’s Global Developer Technographics® Survey, Q3 2009, Base: 1,298 IT professionals
3 The 9th annual State of Agile survey was conducted between July and October, 2014; a total of 3,925 completed responses from a
broad range of industries in the global software development community were collected and analysed.

4

embraced by a majority of development teams and projects, and pure Waterfall approaches are

now in the minority. As Figure 1 displays, two-thirds of participants described their company as

either “Pure Agile” or “Leaning toward Agile”, another 24 percent indicate that they use a “hybrid”

approach, meaning that they incorporate at least some Agile solutions and principles into the

management of their software development projects4. (HP, L.P, 2015)

Figure 1: Primary development method used in organization across projects (HP, L.P, 2015)

These are considerably large numbers and demonstrate that agile do possess special approach

and practices which addresses the challenges of software development. If further explored, the

presented surveys provide insight on why agile is getting momentum so fast. According to

VersionOne surveys, for already 4 years, top 3 benefits of adopting and actual improvements from

implementing agile are:

1. Ability to manage changing priorities

2. Team productivity

3. Project visibility (2015)

Others include: Increased team morale/motivation; Better delivery predictability; Enhanced software

quality; Faster time to market; Reduced project risk; Improved business/IT alignment (VersionOne,

2015). Alternatively, slightly different prioritisation of benefits is reported in HP survey; as Figure 2

illustrates, primary motivators for agile adoption are associated with improving team collaboration

and increasing software quality and customer satisfaction. These factors, more so than efficiency

gains, are the strongest benefits associated with Agile. (HP, L.P, 2015)

4 601 development and IT professionals participated in this survey of HP

5

Figure 2: Percentage of respondents agreeing with statement about agile development (HP, L.P, 2015)

Moreover, according to the 2011 CHAOS report of the Standish Group, “software applications

developed through the agile process have three times the success5 rate of the traditional waterfall

method and a much lower percentage of time and cost overruns.” It is shown in Figure 3. The

report goes on further to argue that, “The agile process is the universal remedy for software

development project failure”. (The Standish Group, 2013)

Figure 3: Success rates of Waterfall and agile projects (The Standish Group, 2013)

The aforementioned surveys and numbers provide support for the view that agile software

development has had a huge impact on how software is developed worldwide. However, critics

doubt whether the benefits of agile development outweigh the costs: The weaknesses of agile are

5 The Standish Group defines project success as on time, on budget, and with all planned features.

6

listed as its code-focused approach, less documentation, chaotic appearance, limited applicability

in certain situations such as in distributed teams or in very large and complex projects in large,

hierarchical structured firms, lack of formal communication and not well-defined requirements

(Dybå T. D., 2008; Turk, 2002; Meyer, 2014). Moreover, time and resources can be hard to

estimate without a detailed plan in large organisations (Barlow, 2011). Another criticism of agile is

that it limits the possibility to control and plan the content of a release (Boehm B. , 2002). Some

proponents argue that agile can be sustained only with the teams that have high maturity and with

customers that are willing to collaborate closely, thereby limiting its success chances6.

Interestingly, as ASD methods become more popular, some view iterative, evolutionary, and

incremental software development – a cornerstone of these methods – as the “modern”

replacement of the waterfall model, however as Larman puts it, its practiced and published roots go

back decades (2003). Although many view iterative and incremental development as a modern

practice, its application dates as far back as the mid-1950s (Larman, 2003). Cohen also argues that

most of the agile practices are nothing new. It is instead the focus and values behind Agile Methods

that differentiate them from more traditional methods (Cohen, 2004). Boehm and Turner (2003)

similarly noted that agile methods are incorrectly perceived as revolutionary and that most of the

agile practices have origins in much older methods. Similarly, Cockburn and Highsmith, who are

among founders of Agile Manifesto, explain that “what is new about Agile Methods is not the

practices they use, but their recognition of people as the primary drivers of project success, coupled

with an intense focus on effectiveness and manoeuvrability” (Cockburn A. H., 2001). Practitioners

agree that being Agile involves more than simply following guidelines that are supposed to make a

project Agile. True agility is more than a collection of practices; it’s a frame of mind. As Andrea

Branca states, “other processes may look Agile, but they won’t feel Agile” (Cohen, 2004). The focus

of this study also lies on this exceptional aspect of ASD, put differently, the values and

philosophical statements that makes agile distinct from other methods. It is of particular importance

to investigate if agile practices used in the industry reflex those values and principles. Many argue

that if they use some practices of agile mechanically, they become an agile team, but in reality they

don’t have basic understandings of agility and agile principles7. On this point, the possible

correspondence of used agile practices and principles and the adherence degree to agile principles

will be researched.

6 Personal communication with agile experts
7 Ibid.

7

2. LITERATURE REVIEW

Since ASD methods represent comparatively new approach to software development, relatively

increasing attention has been paid to this topic. While reviewing the literature, distinction can be

made between two categories: First, books and articles written by academicians, and the

researchers of ASD; particularly this category of literature has been not so enormous and quite little

academic research has been done on agile principles. Second, books, articles written by agile

practitioners and experts from the industry that created, invented agile methodologies and use

Agile in their work process for years. Due to practical oriented nature of ASD, works written by agile

practitioners and pioneers are more popular and prevalent. Despite the increasing number of

journal issues, conferences dedicated to ASD research, practitioners and consultants have largely

driven the creation and dissemination of these methods and agile research has always lagged

behind practice (Abrahamsson P. C., 2009). Fortunately, there has been a growing interest among

researchers in studying ASD in recent years. In this study, those two categories of literature will be

reviewed separately to get clear and both theoretical and practical insight on what have been done,

written and researched.

2.1. Academic literature review

Since publication of Agile Manifesto, ASD has gained the attention of research community. Several

distinct academic researchers have devoted considerable attention to studying agile systematically

and thoroughly which have resulted in valuable works on ASD and on its different aspects. Hence,

agile research has evolved from basic understanding of the methodologies to its success factors, to

its scaling and adaptability capacities, and to post-adoption issues. The thorough review of

research on ASD reveals 5 most important reports on introduction and overview of ASD - by

Abrahamsson et al. (2002), Cohen et al. (2004), Erickson et al. (2005), Dybå and Dingsøyr (2008),

and Dingsøyr et al (2012) - which contain the state-of-the-art and state-of-the-practice in terms of

characteristics of the various agile methods and lessons learned from applying such methods in

industry (Dingsøyr T. N., 2012). The following paragraphs briefly discuss some of these reports.

The first ever literature review of existing studies on ASD was done in a technical report by

Abrahamsson et al in 2002. The report discusses the concept of agile development in general and

presents processes, practices and roles of 10 agile methods by comparing them according to the

development phases they support and developer competence they require. The report found

scarce empirical support for the anecdotal claims on effectiveness of agile methods (Abrahamsson

P. S., 2002). Although it presented a comparative perspective of agile methods, there is no clear

definition of practices used by those methods and their relevancy to agile principles. Next, Cohen et

8

al.’s review of 2004 focused on more origin aspects of agile - the history and roots of agile

development, discussed the state-of-the-art with respect to the main agile methods, issues of

project management in agile development. (Cohen, 2004). Cohen defined agile practices per

method and analysed them according to their usage and support for certain phases of software

development, management and communication by mapping them out with each other, which

reflects the thesis study methodology. Still, he didn’t analyse the correlation between practices and

principles. On the other hand, Erickson et al. reported that a more well-established stream of

research was found supporting XP practice of pair-programming (Erickson, 2005). Although the

work of Erickson et al investigated the principles of XP that are being adopted by software industry

professionals, they failed to address a broader set of agile principles.

Dybå and Dingsøyr, on the other hand, with their broader systematic review of 2008 aimed to

determine what’s known about agile development’s benefits and limitations, the strength of the

evidence supporting these findings, and the implications for the software industry and research

community (Dybå T. D., 2008). They also revealed a lack of theoretical and methodological rigor

(Dybå T. D., 2008). In general, this review presents a good overview and snap-shot of all agile

researches done up to that date, whereas it did not cover the underlining relation between agile

practices and principles; on the other hand, the usage, success factor and adoption of certain

method practices are discussed in depth in this report.

Additionally, in 2012 Dingsøyr et al. provided excellent summary of literature to illustrate how

research on agile has progressed in last 10 years by conducting a remarkable analysis of

publications on ASD. They identified the most popular conferences (‘International Conference on

Agile Software Development’ (”XP”) based in Europe and ‘Agile’ in the US) and journals (IEEE

Software, the Journal of Systems and Software, Information and Software Technology, and

Empirical Software Engineering) in which publications on agile research appear. (Dingsøyr T. N.,

2012) The information produced by the study is appreciated for getting an overview of agile

publications and their categorization per different criteria. However, that doesn’t provide any

evidence on their relevance to the thesis study. Finally, the study indicated that the total number of

publications shows that agile development has received much interest from the academic

community; however, most of the research is inspired by practices emerging in industry rather than

by academic theory (Dingsøyr T. N., 2012). Furthermore, Dingsøyr et al (2012) identified that in

total from 2003 until 2011 five special issues and one special section on ASD have been published

in scientific journals (Williams L. C., 2003; Siau, 2005; Abrahamsson P. C., 2009). Of particular

importance is the issue edited by Abrahamsson which not only addressed the fundamental

9

question of what constitutes ‘agility’ and agile methods, but also demonstrated approaches to

broadening the scope of the applicability of agile concepts by addressing issues such as a better

understanding of agile methods beyond adoption stage (Abrahamsson P. C., 2009). These

concepts are highly relevant for the thesis study in order to define agility and to investigate the core

values behind agile methods and the sustainability of agile adoption via the values. However, little

evidence on implementation degree of broad range of practices and their adherence to agile

principles is detected through those special issues.

Dingsøyr et al (2012) went then to argue that not enough attention is being paid to establishing

theoretical underpinnings, when investigating agile development and its various practices, most

research is practice-driven rather than theory-based. They urged agile researchers to embrace a

more theory-based approach in the future when inquiring into these promising research areas of

agile development (Dingsøyr T. N., 2012). The paper draws attention to theory-based approach by

linking agile development to theory of coordination, to a theory of descriptive decision-making;

attempt to develop a grounded theory of social factors in software development, and analyse the

application of lean approaches in ASD (Dingsøyr T. N., 2012). Hence, this was one of the rare

attempts to build a theoretical base for agile methods. On the other hand, this theory-driven

approach is scattered and needs to be made coherent and systematic. What is more, it doesn’t

make any linkage with agile principles and values. Furthermore, with respect to the kinds of agile

methods that have been studied, 76% of the studies in the review by Dybå and Dingsøyr were done

on XP. Studies on agility in general comes next, with 15% of the studies and very few on the Scrum

development process, which was gaining significant traction in industry. (Dybå T. D., 2008)

No doubt, one of the most substantial academic works on ASD belongs to Dingsøyr et al, who have

devoted considerable attention to investigating foundations and background of agile development,

agile methods in practice, and principal challenges and new frontiers by accumulating several

valuable research studies in one book (Dingsøyr T. D., 2010). Let us briefly review some of this

research. Nerur et al. argues that the conceptual underpinnings of agile development are by no

means novel and to this end outlined the principles of sociotechnical systems and explored

intellectual foundation of agile methods (Dingsøyr T. D., 2010). Again, it presents a worthy attempt

to theorize agile development process, however without referring to core agile principles.

Abrahamsson et al., on the other hand, compared agile methods in an analytical framework taking

it through the following lenses: project management support, life-cycle coverage, type of practical

guidance, adaptability in actual use, type of research objectives and existence of empirical

evidence for the method. They found out that different agile software development methods cover

10

different phases of development life cycle, and most fail to provide project management support

and offer little concrete guidance on how to use their solutions or adapt them. Moreover,

Sharp&Robinson, based on their decade long studies of agile development teams, determined that

story cards and Wall is crucial in supporting team collaboration, coordination, and communication

(Dingsøyr T. D., 2010). This provides an excellent study which makes linkage between certain agile

practices and principles, while limiting itself to collaboration and coordination. More technical and

organisational issues are covered in the later sections: Livari describes organisational culture as a

factor that affects the deployment of agile methods by suggesting that agile is incompatible with a

hierarchical culture although agile development is more disciplined than ad hoc development. Next,

Konboy et al. challenge the idea of the single customer involvement in ASD because of its narrow

focus by arguing that current thinking regarding innovation in agile development needs to be

extended to include multiple stakeholders outside the business unit. They go on to investigate

applicability and implications of open innovation principles in agile development and advocate their

integration to agile. (Dingsøyr T. D., 2010) It is worth noting that, while this presents some new

perspectives and new principles into agile, it does not cover the existing principles. Moreover, the

issues like challenges of scaling up agile while sticking in agile principles, situating agility in

hierarchical environment indeed draw attention to the agile values and ideas; nevertheless they

cover only very specific aspects which is out of scope of this study and therefore are not able to

give the whole picture of perceptions and realities on agile principles.

The result of the review of the rest of academic literature can be clustered under the following

categories based on their scope of research. They are congregated together since they address

similar issues, definitions and problems faced in agile world and therefore fit to be in the same

group of research.

First group of authors focused on management challenges of implementing agile in larger, non-

agile environment (Boehm B. T., 2005), investigated how agile can be combined with plan-driven

methods to create a hybrid methodology in large organisations (Barlow, 2011), possibilities of

coexistence of agile and traditional development approaches next to each other (Vinekar, 2006),

critically examined tailoring capabilities of agile methods (Conboy K. F., 2007) and discussed hybrid

methodologies, focus on people, process, and technology dimensions of migrating to agile projects

(Nerur, 2005). Similarly, Boehm&Turner identified some agile process and practices and

discoursed challenges of implementing agile processes in traditional organisation by drawing

attention to barriers like top-down structure of organizations on the way of scaling agile and give

some valuable recommendations on how to overcome these barriers (Boehm B. T., 2005). Barlow

11

et al. also constructed a possible theoretical framework and guideline on how it can be effective to

implement agile development practices in large organizations by reviewing and analysing existing

literature and theory (Barlow, 2011). While Boehm focused on practical issues, Barlow et al.

presented a theoretical analysis and they both did not mention about the tailoring issues. On the

other hand, Conboy examined tailoring aspect deeply and as he puts it, although agile from its

name can be considered easily adaptable to unique organization environment; it is not evident that

all agile methods have such tailoring capabilities (Conboy K. F., 2007). He goes on to explore

tailoring challenges of agile in practice by focusing on specific critical success factors (CSFs) of

tailoring, namely built-in contingency, clear rationale behind method practices, independence of

method practices, and disciplined and educated tailoring of practices. Study concluded that most

agile methods ignore those factors (Conboy K. F., 2007). Obviously, all this research is related

more or less to agile adoption and adaptation issues and therefore can be classified in the same

group. While these are definitely important problems, they have less of significance for the current

research, only adherence to principles during adoption seems to be interesting research aspect,

sadly it is not covered by these studies. The only authors that have investigated agile principles and

practices adaptation issues are Vilain&Martins, who conducted case study which suggested that

due to certain constraints, it is logical to neglect some of the agile principles and practices and yet

keep success and the agility of software development (Vilain, 2011). Although this case study

indicates some interesting insights on above mentioned problems, it is limited only to one company

and to Scrum method making its validity questionable.

Second bunch of research articles studied the success factors of agile in practice. (Misra, 2009;

Chow, 2008; Salo, 2004) Misra et al. identified success factors of agile software development by

grouping them under organisational, people, and technical factors (Misra, 2009). Similarly, focus of

Chow and Cao’s research survey was critical success factors of agile across globe. The result

identified three critical success factors for ASD projects: (a) Delivery Strategy, (b) Agile Software

Engineering Techniques, and (c) Team Capability (Chow, 2008). Salo and Abrahamsson tried to

evaluate and empirically validate the XP practices by conducting controlled case study in close-to-

industry settings (Salo, 2004). There are some other research and case studies trying to correlate

agile principles and success of ASD (Bermejo, 2014) but they remain in minority and only focus on

achievement of success.

Finally, third group of studies presented mainly the critical analysis of ASD, identified its limitations

and weaknesses (Conboy K. , 2009; Turk, 2002; Meyer, 2014). Research carried out by Turk et al.

highlighted critical approach to agile by identifying its limitations in their article based on a study of

12

principles and assumptions underlying a subset of the processes that claim to be “agile” by arguing

that the same assumptions create limitations for agile development (Turk, 2002). Conboy went

further and made a critical analysis of agile development by reconsidering the concept of agility as

an Information System Development (ISD) concept independent from the development method or

application area. He challenged agile methods and the associated literature by elaborating

significant conceptual shortcomings of them in its current state, including a lack of clarity,

theoretical glue, parsimony, limited applicability, and naivety regarding the evolution of the concept

of agility in fields outside systems development (Conboy K. , 2009). Equally interesting is the in-

depth introductory and critical analysis of ASD presented by Meyer (2014) who criticised the agile

principles and practices and categorised practices as being the good, the hype and the ugly.

Consequently, some valuable concepts related to agility, assumptions hidden in agile principles,

and critical approach to agile principles and practices could be detected and it will be used during

the definition and analysis phase.

Of particular importance and relevance to the thesis study was the research of Williams (2010;

2014). She has conducted several surveys and studies on agile principles and practices, their

importance degree and implementation range. She even attempted to reconstruct agile principles

arguing that the circumstances of 2001 when the principles were agreed, is not the same as current

ones, therefore needs an improvement. (Williams L. D., 2014) All those indicate high relevancy of

her studies for this research, therefore it will be discussed more in detail in the next chapters.

The aforementioned review suggests that agile software development research has gained

momentum with some dedicated substantial reports, special issues of journals and books.

Nevertheless, as Ågerfalk and Fitzgerald put it, “practice is ahead of research” in this area

(Ågerfalk, 2006). Rajlich further argued that ASD brings a host of new topics into software

engineering research, and that there exists a “backlog of research tasks” (Rajlich, 2006).

Furthermore, most research is based on empirical studies and practices emerged from industry

rather than on substantial theories. There is a lack of conceptual studies on agility and other issues

as a universal concept and theoretical model. Nevertheless, some studies could be elaborated on

certain agile practices and principles, on certain agile method practices and their adoption and

success rates, on some assumptions and limitations coming from principles, and on criticism of

agile principles and practices. Much research to date has focused on agile practices, while

relatively little has been written about importance and presence of agile principles in development

process and no correlation of principles and practices have been made for this end. Hence, there

exist definitely a significant gap that deals with the studying the adherence degree to agile

13

principles by examining the implementation rate of agile practices and perceptions of importance of

agile principles and by mapping those practices and principles in order to make decent conclusions

on describing the reality. Agile principles and practices are studied well separately, although it

concerns only certain method practices. But their correlation study, particularly presence of agile

principles in ASD is missing in this list. To date, this issue has not been explored in academia.

Therefore, this study aims to fill this gap and to gain understanding of above mentioned issues of

principle-practice correspondence and adherence to agile principles. It is expected to deliver

discovering contribution to existing literature by focusing on the core ideas and principles of agile

and by examining if those principles still are important for ASD process and are equally present in

this process. It will once again lay emphasis on the importance of agile principles and values,

whereby most agile research is concerned with agile practices.

2.2. Practitioners’ literature review

Agile software development has grounded itself on real practices, thus it is not wonder that

practitioners and consultants have largely driven the creation and dissemination of these methods.

There exist a large number of different descriptive, guideline-like books, and articles on different

agile methodologies and practices which are mostly written by the founders of certain

methodologies. As a consequence, all those sources are practice-oriented and concerned more

with how to become agile and what is agile. In this respect, Cockburn and Highsmith’s

breakthrough article on agile remains one of the earliest sources on agile which documented basic

principles and practices of agile in short and became a starting point for agile development process

(Cockburn A. H., 2001), so which is also important for the purpose of this study. Cockburn’s

another article written with Williams discussed some core understandings and evolution of agile

discourse over time. Perhaps more interesting in this work is the explanation of defined vs.

empirical processes for getting a real insight on specific character of software development process

and the role of agile in it. (Williams L. C., 2003)

Next, Martin and Beck elaborated agile and its principles, particularly focusing on XP practices with

specific coding examples (Beck, 2005; Martin, 2014), while Highsmith’s book “Agile Project

Management” is primarily concerned with project management aspects of agile and presents an

alternative project management approach to traditional one (Highsmith, 2010). Moreover, Ambler

defined and described all details on agile modelling8 in his book and is considered foundation

sources for agile modelling and XP practices (Ambler S. , 2002). “Scrum Guide” by its founders

8 an agile method

14

Schwaber and Sutherland is an ultimate guide which lays down all Scrum processes, actors, roles

and artefacts in plain language (Schwaber, 2013). On the other hand, Medinilla analysed agile from

a management and leadership perspective, by taking it from the development team environment to

the whole system (Medinilla, 2012). Consequently, all these and countless other practical literature

(AgileAlliance; Coad, 1999; Cockburn A. , 2001; Stapleton, 1997; Poppendieck, 2001; Smith, 2009)

has covered different aspects of agile development: some of them are general descriptions of

certain method practices and others are more specific focusing on certain practices or

environments. Likewise, it also proves the fact that like most previous methods, the development

and promotion of these methods have been almost entirely driven by practitioners and consultants,

with little participation from the research community during the early stages of evolution (Conboy K.

, 2009). Therefore, much work has still to be undertaken to bring coherence to the current

discourse on agility. Despite the copious research on agile software development and its

ramifications, one cannot help but sense a lack of a unified framework that brings coherence to the

seemingly disparate streams of research being pursued. (Dingsøyr T. N., 2012)

To sum up, most of the practitioners’ literature is a valuable source as a starting point and as first-

hand information on certain practices and methods which is mainly practical-oriented and deals

largely with how to apply all those practices. However, some of them also state the importance of

agile ideas and values by branding agile as a mind-set and attitude. From here comes the basic

starting point of this research study – re-focusing on agile basic values and principles and going

‘back to basics’ in order to catch the purity of agile development. While there can be found much

similar definitional literature on principles and practices separately, there has been little analysis of

their correlation and of importance of principles and degree of usage of practices. Although

equipped with more agile knowledge after reviewing all academic and practitioners’ literature, it is

still unknown how to relate the agile principles and practices correctly, and in which degree are

those principles present in agile process after the 15 years of lifespan. Even if it is generally agreed

that agile principles are important for ASD, its degree of importance and actual presence needs to

be studied further.

15

2.3. Research questions

The aim of this master thesis is to contribute to understanding the importance and presence of agile

practice in ASD process, and more specifically, by trying to lay down a possible relationship map

between principles (concepts) and practices, it aims to answer the following research questions

(RQ):

RQ1. What is the implementation degree of agile practices among practitioners?

RQ2. How important are agile principles for practitioners?

RQ3. What kind of correlation exists between agile practices and principles? In which

degree do agile practices support/based on agile principles?

RQ4. Are agile principles, which are perceived to be important, also with the same degree

actually present in agile software development process of practitioners through

supporting practices?

With the help of the chosen research methodology, the aim of this study is therefore to explore

these key research questions. With these questions, study seeks to elaborate the mind-set

importance and presence in ASD. In this regard, it could be as double-checking control analysis to

provide empirical evidence if the original ideas and building-stones of agile approach are still being

followed and to which degree practitioners are grounded on those values and principles. Hence,

this study can be considered as a ‘back-to-basics’ attempt in order to reflect all those agile hustle

that is going around nowadays.

16

2.4. Conceptualisation of agile software development process

After reviewing the work of both academicians and practitioners and getting acquainted with

mainstream research, we are in a better place to identify agility, agile principles, methods and main

understandings.

2.4.1. Defining agility

While discussing ASD, first the concept ‘agility’, which stands at the core of those methodologies,

should be identified and understood. What does it mean to be agile? What is agility?

Reviewing the existing literature shows that the current body of agile method knowledge suffers

from a lack of clarity as to what constitutes agility. Hardly any two agile method texts or papers

adopt the same definition of agility or agile method. It seems almost every piece of research adopts

a unique interpretation of agility and it has been used by many different people to refer to very

different phenomena (Conboy K. , 2009). However, according to Abrahamsson, this is to be

expected to some degree (Abrahamsson P. C., 2009); Lyytinen & Rose (2006) argue that, in the

context of ISD, agility as a concept needs to be multifaceted and contextual, and that agility is

achieved through various different means depending on the project environment.

In this regard, if it is viewed from pure dictionary perspective, agility is often associated with such

related concepts as nimbleness, suppleness, quickness, dexterity, liveliness, or alertness. Erickson

et al. underline the importance of lightweight processes in agile development, defining agility as to

‘strip away as much of the heaviness, commonly associated with traditional software-development

methodologies, as possible to promote quick response to changing environments, changes in user

requirements, and accelerated project deadlines’. (Erickson, 2005)

Equally interesting is the Cockburn’s claim that at its core, agility entails ability to rapidly and flexibly

create and respond to change in the business and technical domains (Cockburn A. H., 2001). In

essence, these ideas suggest a “light’ methodology that promotes manoeuvrability and speed of

response” and ‘lightness and leanness’ (i.e., having minimal formal processes) ((Cockburn A. ,

2007) in (Dingsøyr T. N., 2012)). More team based definition of agility is elaborated by Turk et al.;

as they put it, the agility of a process is determined by the degree to which a project team can

dynamically adapt the process based on changes in the environment and the collective

experiences of the developers (Turk, 2002). While Turk stated that Agile Manifesto principles are

the attempt to define what agility means, Dingsøyr had opposite opinion by arguing that the

principles are not a formal definition of agility, but are rather guidelines for delivering high-quality

software in an agile manner.

17

Interestingly, Highsmith has defined agility in 3 different contexts: First, he argues that agility is all

about trusting in one's ability to respond to unpredictable events more than trusting in one's ability

to plan ahead for them. Highsmith states that being agile means being able to “Deliver quickly.

Change quickly. Change often” (Fowler, 2001). Second definition is made in project management

context: ‘agility is the ability to both create and respond to change in order to profit in a turbulent

business environment’ (Highsmith, 2010) and the last one is more universal in character assuming

that ‘agility is the ability to balance flexibility and stability’ (Highsmith, 2002). Moreover, Highsmith

argued that some mistakenly assume that agility connotes a lack of structure, but the absence of

structure/stability generates chaos. Conversely, too much structure generates rigidity, so process

centric methods fail to balance to create innovation (Highsmith, 2010).

Obviously, Conboy provided by far the most comprehensive definition of software development

agility by systematically examining its various facets and definitions from related disciplines. By this

he wanted to produce the definition of agility as a universal concept that is methodology

independent and applicable for all of them. For this purpose, he made distinction between agility,

flexibility, and leanness—in fact, agility is conceptualized to include and go beyond both flexibility

and leanness. Hence, according to Conboy, agility is the continual readiness of software

development method “to rapidly or inherently create change, proactively or reactively embrace

change, and learn from change while contributing to perceived customer value (economy, quality,

and simplicity), through its collective components and relationships with its environment.” (Conboy

K. , 2009)

Put differently, it could be concluded that agility is all about: creating and responding to

unpredictable change rapidly and effectively; flexibility; lightness; short delivery of working software;

collaboration; feedback, and focusing on customer needs and value. Hitherto, this covers most

aspects of agility and could provide a basis for further analysis.

2.4.2. Defining the process: Agile software development

The phrase ‘agile software development’, plays actually a role of umbrella for different agile

methods with distinct and sometimes conflicting practices. However, they also share many common

characters that are defined by different practitioners and academic researchers. However, different

authors mention different characters and sometimes define the same character in different terms.

Central to this discourse is the argument that ASD is an incremental and iterative type of software

development. Furthermore, agile development approaches can be defined as a development

process which focuses on the client’s ever changing needs and responding to those changes in an

effective and efficient manner. Agile ranks the client or the customer as the most important asset

18

and delivers the product from this perspective by focusing on needs of customer. (Cockburn A. H.,

2001; Dingsøyr T. N., 2012; Turk, 2002)

Equally interesting is the claim of Williams&Cockburn (2003) who state that ASD ‘is about feedback

and change’ while they provide a valuable insight on fundamentals of software development

process which makes it easier to see the whole picture. As they put it, in engineering, processes

are classified as defined or empirical; a defined process is one that can be started and allowed to

run to completion, producing the same results every time. However, software development cannot

be considered a defined process because too much change occurs during the time that the team is

developing the product. It is highly unlikely that any set of predefined steps will lead to a desirable,

predictable outcome, because requirements change, technology changes, people are added and

taken off the team, and so on. Therefore, Williams&Cockburn strongly advocate that software

development should be considered as an empirical process which necessitates short “inspect-and-

adapt” cycles and frequent, short feedback loops (2003). What is more, agile methods recognize

this empirical (non-linear) character of software development process and adapt itself to the

process whereby short inspect-and-adapt cycles help agile methodologies better handle the

software industry’s conflicting and unpredictable demands (Williams L. C., 2003). Likewise, Smith

also defends this view by arguing that software development is definitely an empirical process, not

a defined process. As he states, the problem is that ‘we have been approaching software

development for years as a defined process – and that approach doesn’t work.’ (Smith, 2009)

Boehm further elaborated the ASD process by defining it as lightweight processes that employ

short iterative cycles, actively involve users to establish, prioritize, and verify requirements, and rely

on a team’s tacit knowledge as opposed to documentation. According to him, a truly agile method

must be iterative (take several cycles to complete), incremental (not deliver the entire product at

once), self-organizing (teams determine/decide the best way to handle work through informal

communication and frequent, short meetings rather than relying on one owner to guide the project),

and emergent (requirements emerge during the course of the project; processes, principles, and

work structures are recognized during the project rather than predetermined). (Boehm B. T., 2005)

Similarly, Abrahamsson et al answered the question ‘what makes the development method an agile

one?’ with following definitions: when software development is incremental (small software

releases, with rapid cycles), cooperative (customer and developers working constantly together

with close communication), straightforward (the method itself is easy to learn, to modify, well-

documented), and adaptive (able to make last moment changes). (Abrahamsson P. S., 2002)

19

As a matter of fact, if summed up in a nutshell, ASD is an intensely iterative process, in which the

entire project is broken up into several small projects, meaning that teams analyse, design, and

code rigorously in short intervals, each lasting between one and six weeks (Larman, 2003). Each

iteration deals with only a few prioritized features and ends up with a working system as a

deliverable. The end of each iteration provides an opportunity to meet with the customer to evaluate

the progress and get feedback; and start the cycle again. Developers and users dynamically

prioritize features at the beginning of each iteration, and the project grows through evolutionary

development. (Vinekar, 2006)

Next, Cohen defines common characteristics of agile methodologies adding more dimensions,

which includes iterative development (allows the development team to adapt quickly to changing

requirements) and a focus on interaction, communication (teams can make decisions and act on

them immediately, rather than wait on correspondence), and the reduction of resource-intensive

intermediate artefacts that do not add value (more resources can be devoted to the development

of the product itself and it can be completed sooner) (Cohen, 2004). As Cohen states, “A great deal

of the agile movement is about what I would call ‘programmer power”’ (Cohen, 2004). Interestingly,

it is not coincidence that Forrester survey also found out that, many developers who have shied

away from formal development methods in the past – believing them to be the province of

“management” – have embraced Agile as a “formal” development process, because agile methods

encourage more-collaborative development than do traditional approaches (West, 2010). All these

characteristics add manoeuvrability to the process, whereby an agile project can identify and

respond to changes more quickly than a project using a traditional approach. (Cohen, 2004)

It is worth noting that while most of the characteristics of ASD defined by different authors match

and look similar, the definition of each characteristic seems to be not the same at all. Therefore, it is

difficult to detect a coherent and clear definition.

Apparently, ASD has been characterised differently than plan-based or traditional development

methods, mainly with the focus adapting to and embracing the change and delivering products of

high quality through simple work-processes. Agile and traditional methods diverge on number of

aspects, including their fundamental assumptions, approach to change and control, management

style, knowledge management, role assignment, role of the customer, project cycle, development

model and desired organisational structure (Dingsøyr T. N., 2012). In this regard, agile methods is

viewed as a reaction to plan-based or traditional methods, which emphasize a “rationalized,

engineering-based approach,” incorporating extensive planning, codified processes, and rigorous

reuse. In contrast, agile methods address the challenge of an unpredictable world, emphasizing the

20

value competent people and their relationships bring to software development. (Dybå T. D., 2009)

Table 1 perfectly summarizes these differences.

Dimensions/aspects Traditional view Agile perspective

Design process Deliberate and formal, linear
sequence of steps, separate
formulation and implementation,
rule-driven

Emergent, iterative and
exploratory, knowing and action
inseparable, beyond formal rules

Goal Optimization Adaptation, flexibility,
responsiveness, ability to better
respond to changing customer
requirements quickly

Problem-solving

process

Selection of the best means to
accomplish a given end through
well-planned, formalized activities

Learning through experimentation
and introspection, constantly
reframing the problem and its
solution

View of the environment Stable, predictable Turbulent, difficult to predict
Type of learning Single-loop/adaptive Double-loop/generative
Key characteristics Control and direction

Avoids conflict
Formalizes innovation
Manager is controller
Design precedes implementation

Collaboration and
communication; integrates
different worldviews
Embraces conflict and dialectics
Encourages exploration and
creativity; opportunistic
Manager is facilitator
Design and implementation are
inseparable and evolve iteratively

Rationality Technical/functional Substantial
Theoretical and/or

philosophical roots

Logical positivism, scientific
method

Action learning, John Dewey’s
pragmatism, phenomenology

processes defined empirical
Rules Inclusive Generative
Life-cycle Follows development phases for

all features at the same time
Follows all development phases
per few features in short
iterations

Table 1: Traditional and agile perspectives on software development
9
 (Dybå T. D., 2009)

9 last two aspects are added by the author believing that they cover important difference dimensions

21

2.4.3. Agile values and principles

Agile values and principles constitute the core concept of ASD and are also the focus of this thesis

research. It is vitally important to understand the main driving ideas behind agile methods and

practices in order to be able to make sound conclusions and some accurate correlations between

those practices and principles. While agile can be seen just as an another software development

process, but as Smith puts it, there is a lot more to Agile than just a process or just a set of

practices; agility is more of a mind-set – a way of thinking about software development. He then

goes on to argue that agile mind-set can be applied to any process using any set of practices.

(Smith, 2009) Smith has illustrated the understanding of agile in figure 4 as follows:

Figure 4: The relationship between agile values, principles, and practices (Smith, 2009)

Figure 5: Relationship diagram of Agile values, principles, practices and methods (developed by the author)

Composed of

Agile values

Agile practices

Agile principles

Agile methods

B
ased

 o
n

22

Similarly, designing a relationship diagram of agile components also presents a valuable

illustration. As figure 5 implies, the principles follow from the values; the practices, roles and

artefacts follow from the principles. Hence, reading the Agile Manifesto is enough to see that “Agile”

is not just a collection of software techniques but a movement, an ideology, a cause (Meyer, 2014).

Particularly this ideology, mind-set aspect of ASD is what serves as a starting point and basis for

this study, by trying to find out if practices are correlated with this mind-set and if practitioners find

this mind-set important for their work process or they simply implement the practices without paying

attention to core agile ideology and mind-set and without adhering to agile principles.

Agile Manifesto (short for: Manifesto for Agile Software Development), which was agreed during the

meeting of 17 industry experts in 200110, presents strong value statement that yield the most

benefit to a software development process and became a bottom-line conceptual basis for all agile

development methods, consisting of 4 values and 12 principles. While each of those practitioners

had different background, founded completely different agile methodologies with distinct practices,

they were able to agree on issues for encouraging better ways of developing software (Ambler S. ,

2002). Meyer defines values as ‘general assumptions framing the agile view of the world” (Meyer,

2014). The Manifesto for Agile Software Development reads as follows:

“We are uncovering better ways of developing software by doing it and helping others do it.

Through this work we have come to value:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.” (History:

The Agile Manifesto, 2001)

The Manifesto is defined by four simple value statements – the important thing to understand is that

while you should value the concepts on the right side, you should value the things on the left side

even more. A good way to think about the manifesto is that it defines preferences, not alternatives,

encouraging a focus on certain areas but not eliminating others (Ambler S. , 2002). In each bullet

point, the first segment indicates a preference, while the latter segment describes an item that,

10 Agile Alliance was also established at the same meeting.

23

though important, is of lesser priority. This distinction lies at the heart of agility, but simply asking

people to list what's valuable doesn't flesh out essential differences. (Fowler, 2001)

Of particular importance is that, with the Manifesto, agile proponents aimed to refocus the attention

within software development. Interestingly, the Alliance recognizes the importance of process and

tools, with the additional recognition that the interaction of skilled individuals is of even greater

importance. Similarly, comprehensive documentation is not necessarily bad, but the primary focus

must remain on the final product - delivering working software. Contract negotiation, whether

through an internal project charter or external legal contract, isn't a bad practice, just an insufficient

one. Contracts and project charters may provide some boundary conditions within which the parties

can work, but only through ongoing collaboration can a development team hope to understand and

deliver what the client wants. (Fowler, 2001) In this regard, Highsmith&Fowler emphasise that “the

agile movement is not anti-methodology; in fact many of us want to restore credibility to the word

methodology. We want to restore a balance. We embrace modelling, but not in order to file some

diagram in a dusty corporate repository. We embrace documentation, but not hundreds of pages of

never-maintained and rarely used tomes. We plan, but recognize the limits of planning in a

turbulent environment.” (Fowler, 2001) Next, let us briefly review each value statement to get better

understanding:

 Individuals and interactions over processes and tools.

This suggests that the ingenuity and competence of people as well as their interactions and

collaborations are of greater value than tools and processes. There is a distinct move towards

collaborative development, with people being accorded privileges over processes that formerly

constrained them (Dingsøyr T. N., 2012). In other words, according to agilists, people are the most

important ingredient of success11; a good process will not save a project from failure if the team

doesn't have strong players, but a bad process can make even the strongest of players ineffective.

For Martin, working well with others, communicating and interacting, team-player skills are more

important than raw programming talent. What is more, building the team is more important that

building the environment. He therefore advises to work to create the team, and then let the team

configure the environment on the basis of need. (Martin, 2014)

 Working software over comprehensive documentation.

11 Personal communication with agile practitioners

24

In ASD world, delivering a high-quality working system to the customer is more important than

producing copious documentation (Vinekar, 2006). As a result, a dominant “lean” mentality was

advocated with a view to minimizing unnecessary work, particularly with regard to the creation of

wasteful documentation. While this was misconstrued by many to mean “no documentation”, the

discerning realized that this meant documenting only what was absolutely necessary and nothing

more. (Dingsøyr T. N., 2012) Martin argues that huge software documents take a great deal of time

to produce and even more time to keep in sync with the code. Therefore, it is always a good idea

for the team to write and maintain a short rationale and structure document (Martin, 2014).

Consequently, as he further states: “that document needs to be short and salient. By short, I mean

one or two dozen pages at most. By salient, I mean that it should discuss the overall design

rationale and only the highest-level structures in the system” (Martin, 2014). Interestingly, he

presents Martin's First Law of Documentation in his book: ‘Produce no document unless its need is

immediate and significant’. (Martin, 2014)

 Customer collaboration over contract negotiation.

The customer collaboration, which became a buzzword of modern business, is the focus of this

value. Apparently, the active participation and constant involvement of the customer in systems

development yields greater benefits than the fulfilment of predetermined requirements specified in a

contract (Vinekar, 2006). As a result, customers/stakeholders are no longer just at the fringes of

software development, but actively shape and guide the evolution of the end software product or

service (Dingsøyr T. N., 2012). Furthermore, Martin believes that successful projects involve

customer feedback on a regular and frequent basis; rather than depending on a contract, or a

statement of work, the customer of the software works closely with the development team,

providing frequent feedback on its efforts. He then goes on to argue that a contract that specifies

the requirements, schedule, and cost of a project is fundamentally flawed. According to Martin, the

best contracts are those that govern the way the development team and the customer will work

together and gives an understanding of everyone’s rights and responsibilities. (Martin, 2014)

Put differently, customer collaboration means that all players—the sponsor, customer, user, and

developer—are on the same team. Merging their different experiences and expertise with goodwill

allows the combined group to change directions quickly so they can produce more appropriate

results and less expensive designs. Contracts or project charters with the customers are

necessary, but without collaboration, they are insufficient. (Cockburn A. H., 2001)

25

 Responding to change over following a plan.

From here follows that recognizing the inevitability of change and embracing it, rather than

attempting to cope with it through extensive planning, provides the nimbleness needed to survive in

a turbulent business world (Highsmith, Agile Project Managent: Creatinng Innovative Products,

2010). The focus, therefore, is on adaptation and innovation rather than prediction and control

(Vinekar, 2006). In this regard, there was an acceptance of the fact that uncertainty was a part and

parcel of software development, and that the inherent tendency to control variations through

statistical and other means was futile (Dingsøyr T. N., 2012). Of particular importance is the

provision that agile approach accepted change as a norm in software development rather than

exception. In fact, the change was a driver factor for agile movement against traditional approach.

According to Martin, the ability to respond to change often determines the success or failure of a

software project. Since the course of a software project cannot be planned very far into the future,

he recommends that plans should be flexible enough to adapt to changes in the business and

technology and what’s more, a better planning strategy is to make detailed plans for the next week,

rough plans for the next 3 months, and extremely crude plans beyond that. (Martin, 2014)

To sum up values evaluation, as Highsmith states, it doesn’t mean that processes, tools,

documentations, plans, contracts are unimportant. In fact, there is tremendous difference between

one thing being more or less important than another and being unimportant. Tools are critical to

speeding development and reducing costs. Contracts are vital to initiating developer-customer

relationships. Documentation aids communication. However, the items on the left are the most

critical. Without skilled individuals, working products, close interactions with customers, and

responsiveness to change, product delivery will be nearly impossible. (Highsmith, 2010)

The Manifesto is trying to point out that organizations traditionally put a huge emphasis on the

items on the right, such as processes and tools, and neglect the items on the left, such as the

interaction between individuals. In this respect, an Agile mind-set promotes the re-emphasize that

an agile process can and sometime should contain some of the items on the right; but you need to

make sure that each of those items adds indispensable value to the project. (Smith, 2009)

Interestingly, Meyer, on the other hand, has made his own list of agile values which he considers

more substantial than that of Manifesto and read as follows:

1. Redefined roles for developers, managers and customers - Agile methods redefine and limit

the manager’s job by transferring many of the duties to the team as a whole, including the

26

selecting tasks to be performed and assigning them to developers. Most methods advocate

including a customer representative in the development team itself.

2. No “Big Upfront” steps – that means no extensive planning at the beginning of the project.

3. Iterative development – short time-boxed development.

4. Limited, negotiated functionality – agile approach advocates limiting features to the most

important ones, as measured by their business value: their ROI.

5. Focus on quality - understood as achieved through continuous testing. (Meyer, 2014)

Although Meyer’s values point out the substantial agile aspects, they are not much explicable and

clear-formulated as its predecessors.

2.4.4. Agile Principles

Based on the Manifesto, Agile Alliance formulated a collection of principles that defines the criteria

for ASD processes. Basically, agile principles form a foundation of common sense upon which one

can base successful software development efforts (Ambler S. , 2002). Meyer defines principles as

“core agile rules, organizational and technical” (Meyer, 2014). Similarly, principles are “domain-

specific guidelines for life” (Beck, 2005) showing how the values can be applied in different areas.

Furthermore, principles also act as a bridge over the gap between values and practices, bringing

the values into concrete, specific application. Below are the 12 principles of agile software

development with relevant discussion on each of them:

1. Our highest priority is to satisfy the customer through early and continuous delivery of

valuable software.

According to MIT Sloan Management review which analysed software development practices that

have significant impact on the quality, “The more frequent and earlier the deliveries, the higher the

final quality”12. An agile set of practices delivers early and often. As Martin puts it, ‘we strive to

deliver a rudimentary system within the first few weeks of the start of the project. Thereafter, we

strive to continue to deliver systems of increasing functionality every few weeks.’ (Martin, 2014)

Likewise, Smith also believes that the earlier you can start delivering working software, the earlier

you can begin satisfying your customer (Smith, 2009). This suggests delivering early gives

possibility for quick wins and early feedback about the requirements, the team and the process.

Furthermore, delivering frequently enables continuous wins for the team, fast feedback and up-to-

date priorities. (Cockburn A. , 2007)

12 Product Development Practices that work: How internet companies build software, MIT Sloan Management Review,
2001

27

2. Welcome changing requirements, even late in development. Agile processes harness

change for the customer's competitive advantage.

Martin considers this as a statement of attitude and it is not surprising that most authors value this

principle very highly as the main distinction from traditional development processes. According to

Martin, the participants in an agile process are not afraid of change; on the contrary, they view

changes to the requirements as good things, because those changes mean that the team has

learned more about what it will take to satisfy the customer. Therefore, an agile team works very

hard to keep the structure of its software flexible, so that when requirements change, the impact to

the system is minimal. (Martin, 2014)

Smith further explains it from broader point of view: Since the growing unpredictability of the future

is one of the most challenging aspects of the new economy, turbulence in both business and

technology causes change, which can be viewed either as a threat to be guarded against or as an

opportunity to be embraced. Rather than resist change, the agile approach strives to accommodate

it as easily and efficiently as possible, while maintaining an awareness of its consequences.

Although most people agree that feedback is important, they often ignore the fact that the result of

accepted feedback is change. Agile methodologies harness this result, because their proponents

understand that facilitating change is more effective than attempting to prevent it. (Smith, 2009)

3. Deliver working software frequently, from a couple of weeks to a couple of months, with a

preference to the shorter timescale.

Iterative incremental development is essential in ASD. However, one should keep in mind that

deliver is not the same as release. According to Martin, agile teams deliver working software, and

they deliver it early and often. Agile approach is not content with delivering bundles of documents

or plans, for agile practitioners they are not counted as true deliveries. In fact, the ultimate goal is

delivering software that satisfies the customer's needs. (Martin, 2014) Cockburn also considers that

software delivery frequency should be as short as possible. It is up to customer, how often one can

take in the new delivery for their review. If the frequency is months, it is suggested to use

intermittent, light mid- reviews. (Cockburn A. , 2007)

4. Business people and developers work together daily throughout the project.

Fowler&Highsmith defend the point of putting the phrase of "daily" in the principle by arguing that

they want to emphasize the software customer's continuing commitment to actively take part in,

and indeed take joint responsibility for, the software project (Fowler, 2001). Obviously, in order for a

28

project to be agile, customers, developers, and stakeholders must have significant and frequent

interaction. As Martin puts it, a software project is not like a fire-and-forget weapon, it must be

continuously guided (Martin, 2014). Hence, daily cooperation with developers and business people

or end user representatives is one success factor for the project. Whereas daily availability is not

practical in most of the projects, stakeholders need to be available on short notice when a

discussion is needed. (Cockburn A. , 2007)

5. Build projects around motivated individuals. Give them the environment and support they

need, and trust them to get the job done.

Principles, patterns, and practices are important, but it's the people who make them work. As

Cockburn advocates, all the tools, processes have second-order effect on the outcome of a project;

people are who matters most in the end and has first-order effect (Cockburn A. , 2007). Thus,

people are the most important success factor; all other factors, process, environment,

management, and so on are second-order factors and are subject to change if they are having an

adverse effect on the people (Martin, 2014). Moreover, Highsmith goes even further and argues

that decisions must be made by the people who know the most about the situation (Highsmith,

2002). This means that managers must trust their staff to make the decisions about the things

they're paid to know about (Fowler, 2001). Thus, ASD puts much importance on team

empowerment and encourages involving the team in decision–making process. Since motivated

individuals are keys to success in projects, management should provide the tool and training and

support to get their work done and then keep out from their way to leave them space to express

themselves. (Cockburn A. , 2007)

6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

As Martin states, in an agile project, people talk to one another (Martin, 2014). The primary mode of

communication is human interaction. Therefore, written documents are created and updated

incrementally on the same schedule as the software and only as needed, so that documentation

becomes a by-product of the process. Martin further argues that a lot of context is lost in

communication over email and instant messaging by pointing out that ambiguity increases with

non-verbal communication. (Martin, 2014) However, as most gets it wrongly, the distinction

between agile and document-centric methodologies is not one of extensive documentation versus

no documentation; rather, as Fowler claims, a differing concept of the blend of documentation and

29

conversation required to elicit understanding. "The issue is not documentation, the issue is

understanding!" (Fowler, 2001)

7. Working software is the primary measure of progress.

This principle of agile makes it possible to know much earlier if projects fail; it takes risks to earlier

phase and gives opportunities to deal with them. Cockburn acknowledges that working software is

the measure of progress because there's no other way of capturing the subtleties of the

requirements, since it tells more about the situation than plans and documents. Obviously, working

software has to have main functionalities, the user interface and the algorithms, so that both can be

evaluated by customer and valuable feedback can be gathered. (Cockburn A. , 2007) Martin

strengthens this argument by stating that agile projects measure their progress by measuring the

amount of software that is currently meeting the customer's need. They don't measure their

progress in terms of the phase they are in or by the volume of documentation that has been

produced or by the amount of infrastructure code they have created. Put differently, they are 30

percent done when 30 percent of the necessary functionality is working. (Martin 2014)

8. Agile processes promote sustainable development. The sponsors, developers and users

should be able to maintain a constant pace indefinitely.

This principle has 2 dimensions: one relates to social responsibility, the other to project

effectiveness. Sustainable development means finding a working pace (40 or so hours a week) that

the team can sustain over time and remain healthy (Fowler, 2001). The team does not take off at

full speed and try to maintain that speed for the duration. Rather, it runs at a fast but sustainable

pace (Martin, 2014). Thus, projects should be organised in a way that everyone involved would

have reasonable working hours enabling them to stay alert, effective and engaged. (Cockburn A.

H., 2001)

9. Continuous attention to technical excellence and good design enhances agility.

According to Glass, this principle is about continuous improvement of the software which mainly

refers to maintenance that consists of fixing bugs and also refactoring (improving the code) (Glass,

2001). He states that this principle derives from programmer point of view. Agile approaches

emphasize quality of design, because design quality is essential to maintaining agility. Project’s

design is enhanced continually throughout the project (Fowler, 2001). Martin believes that the way

to go fast is to keep the software as clean and robust as possible. Thus, all agile team members

are committed to producing only the highest quality code they can. They do not make messes and

30

then tell themselves that they'll clean them up when they have more time, instead, they clean any

messes as they are made (Martin, 2014). Hence, technical excellence is an essential enabler for a

truly agile software development process.

10. Simplicity the art of maximizing the amount of work not done is essential.

In an agile project, it's particularly important to use simple approaches, because they're easier to

change. Fowler believes that it's easier to add something to a process that's too simple than it is to

take something away from a process that's too complicated. Hence, there's a strong taste of

minimalism in all the agile methods. Giving people a simple set of rules and encouraging their

creativity will produce far better outcomes than imposing complex, rigid regulations. (Fowler, 2001)

Agile teams don't put a lot of importance on anticipating tomorrow's problems; nor do they try to

defend against all of them today. Rather, they do the simplest and highest quality work today,

confident that it will be easy to change if and when tomorrow's problems arise. (Martin, 2014)

However, Glass warns that simplicity should not mean neglecting design by starting programming

as soon as possible. (Glass, 2001)

11. The best architectures, requirements and designs emerge from self-organizing teams.

Emergent properties (understood as innovation and creativity in human organizations) are best

generated from self-organizing teams in which the interactions are high and the process rules are

few (Fowler, 2001). There are 2 different approaches while explaining this principle. One is

organisational, and the other is more technical. Martin states that an agile team is a self-organizing

team implying that responsibilities are not handed or assigned to individual team members from the

outside but rather are communicated to the team as a whole. Consequently, the team determines

the best way to fulfil those responsibilities, which is why, agile team members work together on all

aspects of the project and each member is allowed input into the whole. Interestingly, no single

team member is solely responsible for the architecture or the requirements or the tests; instead the

whole team shares those responsibilities, and each team member has influence over them. (Martin,

2014) Cockburn has different view of this principle, he stresses more the ability of the team to allow

architecture, requirements and design to adjust over time, become better and more accurate

gradually, and not fix them too accurately in the beginning (Cockburn A. , 2001). Hence, this

principle supports mainly the design and analysis phase of development, and also organisational

aspect.

31

12. At regular intervals, the team reflects on how to become more effective, then tunes and

adjusts its behaviour accordingly.

This advocates that an agile team continually adjusts its organization, rules, conventions,

relationships, and so on accordingly. In this respect, an agile team knows that its environment is

continuously changing and knows that it must change with that environment to remain agile (Martin,

2014). Improving the team work habits regularly can be said to be agility in work methodology

(Cockburn A. , 2007). According to Smith, the idea of always reflecting on what you’re doing and

trying to figure out better ways to do things is the essence of continuous improvement (Smith,

2009). So, any agile team must refine and reflect as it goes along, constantly improving its

practices in its local circumstances. Hence, trust in people, believing that individual capability and

group interaction are keys to success extends to trusting teams to monitor and improve their own

development processes (Fowler, 2001). This principle concerns the maturity of agile team and its

focus on improvement.

If summed up, according to the agile principles pronounced in the agile Manifesto, motivated and

empowered software developers – relying on technical excellence and simple designs – create

business value by delivering working software to users at regular short intervals. While individual

principles and practices of agile development were not entirely new to the software community, the

way in which they were put together into a cogent “theoretical and practical framework” was

certainly novel (Williams L. C., 2003). Interestingly, some other interpretations and classifications of

agile principles by different researchers are identified in the literature. For example, Fogelström

compared 3 groups of agile principles:

AP1. Feature orientation: The main focus is on the production of features as soon as possible.

The goal is to deliver working functionality that is perceived to have the most value for the

customer, and this is done in small and frequent iterations. (Fogelström, 2010) Hence, this one

includes in itself principles related to working software, satisfying the customer, and short delivery

periods.

AP2. Reactive development: Reactive development is about responding to a change instead of

planning ahead, and delaying decisions as long as possible. Agile methods promise flexibility and

follow the ideology that one cannot control the world, thus the strategy is to respond to a change

rather than plan for it. Examples of reactive practices are refactoring, adjusting requirements’

priorities, and release scope after each iteration and delaying decisions for as long as possible.

(Fogelström, 2010) Principles 2, 9 and 12 are mainly applicable here.

32

AP3. Evolving project (release) scope: Perhaps one of the main distinguishing features of agile

development is the change from a fix-scope approach to a more open-ended approach. In the

traditional fix-scope approach much effort is spent on defining and planning the content of a product

release of a project upfront. In agile the release scope is emerging in the process of development

rather than planned ahead. (Fogelström, 2010)

Alternatively, Meyer presented a critical approach to agile principles which is why he actually

reformulated them. He developed own list of principles and congregated them into following

categories:

Agile Principles

Organizational Technical

1. Put the customer at the centre.

2. Let the team self-organize.

3. Work at a sustainable pace.

4. Develop minimal software.

4.1. Produce minimal functionality.

4.2. Produce only the product

requested.

4.3. Develop only code and tests.

5. Accept change.

6. Develop iteratively.

6.1. Produce frequent working

iterations.

6.2. Freeze requirements during

iterations.

7. Treat tests as a key resource:

7.1. Do not start any new development

until all tests pass.

7.2. Test first.

8. Express requirements through

scenarios.

Table 2: Agile principles reconstructed by Meyer (Meyer, 2014)

As Table 2 indicates, those are not the principles listed in the Agile Manifesto. Meyer has criticised

the original principles, by accusing them for being more like practices, platitudes and assertions

rather than real principles. He further discusses the characteristics and definition of good principles.

According to him, a good methodological principle is both abstract and falsifiable. Abstractness

differentiates principles from practices; falsifiability distinguishes them from platitudes (Meyer,

2014). Furthermore, he goes further to argue that in emphasizing and popularizing these principles,

the agile movement places itself in the best tradition of software engineering — of the very

compendium of wisdom, accumulated over several decades, which it so haughtily deprecates

(Meyer, 2014). It is worth noting that some of the Meyer’s arguments are indeed logical and present

a fresh look into the agile discourse. Obviously, some agile principles have ambiguous elements

33

and are open for the discussion. However, for the purpose of this study, the principles of Agile

Manifesto will serve as a framework, since they represent the ideas of mainstream agile concept

founders who formulated them, and consequently are most popular and accepted in the industry.

What’s more, Meyer’s principles are also based to original ones, while they are very new to the

literature and little known in the industry.

Turk, on the other hand, analysed another aspect of principles by elaborating assumptions that are

hidden as implicit statements within principles. Below is the list of assumptions with related

principles (Turk, 2005):

• Principles 1, 4, 5 - Visibility Assumption, Iteration Assumption

• Principle 2 - Customer Interaction Assumption, Team Communication Assumption

• Principle 8 - Face-to-Face Assumption, Documentation Assumption

• Principle 3 - Changing Requirement Assumption, Cost of Change Assumption

• Principles 6,7,12 - Team Experience Assumption, Self-Evaluation Assumption, Self-

Organization Assumption

• Principles 9, 10 - Quality Assurance Assumption, Continuous-Redesign Assumption

• Principle 11 - Application-Specific Development Assumption, Continuous-Redesign

Assumption (re-iterated) (Turk, 2005)

He further explains all those assumptions and believes that those assumptions should be fulfilled in

order agile to be successful in any environment (Turk, 2005). It is important to note that those are

very interesting dimensions of principles, because it gives better understanding of principles via

uncovering the ‘for-granted taken’ conditions that is required in agile process.

Interestingly, if carefully examined, it is easy to distinguish the principles’ groups which concern

similar issues. As a consequence, the following categorization of principles could be developed:

 Team/organizational related – Principles 5, 6, 8, 11, 12

 Working Software related – Principles 1, 3, 7,

 Collaboration/communication related – Principles 2, 4, 6, 12

 Quality and technical related – Principles 9, 10, 11, 12

 Customer satisfaction related – Principles 1, 2

It is not surprising that some principles fall under more than one group, since they cover multiple

dimensions of ASD. Likewise, all above mentioned classifications of principles according to

different criteria present useful insights on different dimensions of agile principles. However, only

34

the last categorisation developed by the author will be used in the analysis phase of the study to

further elaborate the principle/practice correlation and find out which category of principles are

considered to be more important than the others and subsequently which category is more present

than others.

2.4.5. Agile Practices

The above-mentioned principles have spawned a number of practices that are believed to deliver

greater value to customers. In other words, to achieve the principles presented above, agile

methods promote a set of practices. Meyer identifies agile practices as “specific activities practiced

by agile teams” (Meyer, 2014). As a whole, agile practices are the collection of different practices

that belongs to different agile methods. As the practices promoted to support agile values and

principles vary with the method, each agile method has its own bunch of practices that covers

certain agile issues. Put differently, agile practices define how agile methods are implemented in

practice. At the core of these practices is the idea of self-organizing teams whose members are not

only collocated but also work at a pace that sustains their creativity and productivity. The principles

encourage practices that accommodate change in requirements at any stage of the development

process. Furthermore, customers are actively involved in the development process, facilitating

feedback and reflection that can lead to more satisfying outcomes. (Dingsøyr T. N., 2012)

According to Cockburn&Highsmith, a team isn’t agile if the feedback loop with customers and

management is six months. Agile approaches therefore recommend short iterations in the two- to

six-week range during which the team makes constant trade-off decisions and adjusts to new

information (Cockburn A. H., 2001). In their pioneering article, Highsmith&Cockburn (2001)

presented a first initial overview of core agile practices and how they were used by different

methods. They have chosen the following practices:

• Feature planning and dynamic prioritization - Agile approaches combine these short

iterative cycles with feature planning and dynamic prioritization. XP uses story cards; Scrum

uses the term “backlog”; ASD and Feature-Driven Development refer to features. The key

point is that agile approaches plan features, not tasks, as the first priority, because features

are what customers understand. Dynamic prioritization means that at the end of iteration,

the customer can reprioritize the features desired in the next cycle, discarding originally

planned features and adding new ones.

35

• Feedback and change - Because they are most applicable to turbulent, high-change

environments, agile approaches recommend a variety of practices for constant feedback on

technical decisions, customer requirements, and management constraints.

• Focus on teamwork - Team proximity and intense interaction between team members are

hallmarks of all agile methods. Using agile development methods requires close customer

partnerships. (Cockburn A. H., 2001)

Later on, Boehm (2005) described another key set of agile practices:

• Embracing change: Seeing change as an ally rather than an enemy. Change allows for

more creativity and quicker value to the customer.

• Fast cycles, frequent delivery: Scheduling many releases with short time spans between

them forces implementation of only the highest priority functions, delivers value to the

customer quickly, and speeds requirements emergence. Time boxing, for example,

establishes specific time frames that are then filled with as much prioritized functionality as

can be developed.

• Simple design: Designing for the battle, not the war. The motto is YAGNI (You Aren’t

Going to Need It). The anti-motto is BDUF (Big Design Up Front). Strip designs down to

cover just what you’re developing. Since change is inevitable, planning for future functions

is a waste of effort.

• Refactoring: Restructuring software to remove duplication, improve communication,

simplify, or add flexibility without changing its behaviour; just-in-time redesign.

• Pair programming: A style of programming in which two programmers work side by side at

one computer, continually collaborating on the same design, algorithm, code, or test.

• Retrospective or reflection: A post-iteration review of the effectiveness of the work

performed, methods used, and estimates. The review supports team learning and

estimation for future iterations.

• Tacit knowledge: Establishing and updating project knowledge in the participants’ heads

rather than in documents (explicit knowledge).

• Test-driven development: Developers and customers incrementally write module or

method tests before and during coding. Supports and encourages very short iteration

cycles. (Boehm B. T., 2005)

Obviously, Boehm’s list contains many XP practices and therefore focused on more technical

issues, while Highsmith’s focus was more on organisational, team, customer and change oriented.

36

Therefore, they can be considered as complementary to each other as they cover different practice

groups. As those were the starting-point practices for agile software development methods, the list

has grown bigger and bigger by the time. With regard to the categorisation of agile practices,

Boehm presented a systematic outline of agile practices by grouping them into 3 general areas:

• Communication (for example, metaphor and pair programming)

• Management (for example, planning game and fast cycle/frequent delivery)

• Technical (for example, simple design, refactoring, and test-driven design)

Similarly, Meyer has another classification of agile practices whereby he divided them under the

categories of managerial, technical, and agile artefacts. As table 3 indicates, he has included so far

the largest list of practices existing in academic literature.

Managerial Technical Agile artifacts

1.Sprint
2. Daily meeting.
3. Planning game, planning
poker.
4. Retrospective.
5. Collective code ownership.
6. Onsite customer
7. Open space
8. Process Miniature
9. Iteration planning
10. Review meeting
11. Scrum of Scrums

12. Daily build and
13. Continuous integration
14. Test-driven development.
15. Refactoring.
16 Pair programming.
17. Simplest design
18 Coding standards

19.Code
20.Tests
21. Use case, user story.
22 Burndown/burnup chart.
23 Story card/task card
24 Story board/task board
25. Story points
26. Velocity
27. Definition of done
28. Working space
29. Product backlog, iteration
backlog
30. Impediment
31. Waste, technical debt

Table 3: Classification of agile practices by Meyer (Meyer, 2014)

While Meyer presented the categorized list of agile practices, he failed to relate them to the

principles he developed for the agile approach; it would give an added-value for his analysis and

make it more insightful. Nevertheless, Meyer’s analysis is one of the closest studies to the thesis

research in terms of scope and addressed issues.

It is worth emphasising that, the list of agile practices is not limited to above mentioned

classifications and practices. In fact, there is no evident list of agile practices that has been adopted

as the industry standard: It is growing as agile methods are improving themselves and inventing

new practices. For example, Jalali and Wohlin identified 25 agile practices, their diagram on

frequency of agile practices in literature is interesting (Jalali, 2010). Moreover, VersionOne in its

latest survey has used 25 agile techniques to find out which techniques are most used

37

(VersionOne, 2015). Finally, Agile Alliance has published exhaustive list of agile practices on its

website. It is claimed to cover all agile methodologies and practices and consists of 60 agile

practices. As displayed in figure 6, it is also presented as a mapping showing to which methodology

or life cycle phase a certain practice belongs which consists of Extreme Programming, Scrum,

Lean, Devops, Fundamentals, Team, Product Management, Design and Testing (AgileAlliance).

For the thesis study, it has been chosen to use definitions and the list of practices of Agile Alliance,

since it has been prepared by the authoritative organisation which unites most voices of the

industry; therefore could also be considered as an industry standard. Furthermore, Agile Alliance

continually conducts studies and updates its practice list, which is why it presents the most

exhaustive and comprehensive list of practices. Therefore, the list of Agile Alliance could be

considered as an industry standard.

Figure 6: Agile Alliance mapping of practices according to the methods/phases they belong (AgileAlliance)

38

Of particular importance is Meyer’s (2014) critical analysis of agile practices whereby he states that

not all agile practices are good and benefits the development process. He categorises them as the

brilliant, the good, the hype and the ugly/bad by pointing out their weaknesses and strengths. First

list is ‘bad’ ones which, according to Meyer, can damage the development process which include

substitution of requirements with user stories, feature based development and ignorance of

dependencies in difficult projects, rejection of traditional manager tasks and dependency tracking

tools, embedded customer, coach as a separate role, test-driven development, deprecation of

documentation. His ‘hyped’ agile practice list contains very popular practices that have little value

and benefit for the development process which include pair programming, open-space working

arrangements, self-organizing teams, working at a sustainable pace, producing minimal

functionality, planning game, planning poker, collective code ownership, and cross-functional

teams. The ‘good’ practice list of Meyer, on the other hand, includes refactoring, short daily

meetings, team communication, removing impediments, and identification of sources of waste. The

‘brilliant’ practices which he considers truly inspiring and effective contain short iterations,

continuous integration, regression test suite, closed-window rule (freezing the iteration scope),

time-boxing, product owner, delivering working software, velocity, task boards, and associating a

test with every piece of functionality. (Meyer, 2014) No doubt, this criticism of Meyer provides an

alternative and valuable insight on the usefulness and effectiveness of agile practices.

Nevertheless, it is important to note that, Meyer has made this evaluation based on his own

experience and thorough analysis of existing literature, therefore real empirical data supporting his

arguments is missing which makes it vulnerable for validation threats. However, it presents an

interesting level of evaluation which could be used as an analytical lens during the analysis phase

of the study to see which category of practices the collected data supports.

2.4.6. Agile methods

According to Cockburn, a methodology is just the set of conventions a group of people agree to

follow (Cockburn A. , 2007). By contrast, Livari&Maansaari suggest that a method may be

interpreted not as a set of “rules,” but as “an ideal in the sense that it is not expected to be followed

literally.” (Livari, 1998). From this point of view, agile methods are, in their essence, based on

values and principles defined on the Agile Manifesto and composed of agile practices that have a

certain synergy and have been created by experienced agile practitioners (Jalali, 2010). As it is

mentioned earlier, agile is an umbrella term for different development methods which all share

common values and principles of Agile Manifesto. A number of methods are included in this family,

the most popular being Scrum (Schwaber, 2013), eXtreme Programming (XP) (Beck, 2005), the

Dynamic Systems Development Method (DSDM) (Stapleton, 1997), Crystal (Cockburn A. , 2001),

39

Agile Modeling (Ambler S. , 2002), Feature Driven Design (Coad, 1999), Adaptive Software

Development (Highsmith, 2002), and Lean software development (LSD) (Poppendieck, 2001)

(Conboy K. F., 2007). Kanban is also gaining popularity in recent years as an ASD method.

Interestingly, these ASD methodologies were developed on three different continents: the Dynamic

Systems Development Method in Europe; Feature-Driven Development in Australia; and Extreme

Programming, Crystal, Adaptive Software Development, and Scrum in the US. (Dybå T. D., 2008)

Larman&Basili identified Dynamic Systems Development Method (DSDM) as the first agile method,

followed by extreme programming (XP). (Larman, 2003)

Perhaps more interesting is the fact that while some methodologies, like Scrum, focus more on

project management aspect of development, using short, frequent team meetings to assess

progress; others, like XP, focus more on development process itself, on technical Agile practices

and is highly prescriptive and operational, by prescribing specific techniques such as pair

programming (Barlow, 2011). On the other hand, Lean software development can be best

described as a set of philosophical principles (Conboy K. , 2009). According to Smith, no

methodology is better than the other, since each method focuses on specific values and there is no

standard on how a method should implement its agility. Therefore, it all depends which works best

in certain environment and within specific constraints. (Smith, 2009)

Alternatively, Conboy argues that agile methods are very disparate in character and differ greatly in

terms of abstraction, goals, practices, and tools. Therefore it becomes difficult to compare methods

and choose the ‘right one’ as a baseline method against others (Conboy K. , 2009). The reason

might be the idea that each agile method carries only limited elements of agility which is also why

they are often being combined in practice for an effective result. That is also the reason why the

focus in this study lies on practices rather than methods, since the practice granularity provides a

freedom of focusing on pure implementation rather than locking on certain method’s boundaries.

Moreover, Meyer similarly mentioned that many people also use some of the ideas/practices

without embracing a complete method. Because according to him, every agile method is also an

amazing mix of the best and the worst. That is why, instead of accepting single method entirely,

agile teams make up its own cocktail of agile practices, rejecting the ones that do not fit. (Meyer,

2014)

It is not surprising that most popular combination of ASD methods is Scrum/XP mixture: while

Scrum provides project management practices, XP practices are integrated for more development

and technical purpose. On the other hand, some authors argue that, since each project is unique in

character, they also require different approach. As Highsmith&Fowler put it, while variety and

40

diversity of practices are necessary, when it comes to methodologies, there’s no one-size-fits-all

solution (Fowler, 2001). Furthermore, Highsmith&Cockburn (2001) advocate that agile methods

offer generative rules – a minimum set of things you must do under all situations to generate

appropriate practices for special situations. A team that follows generative rules depends on

individuals and their creativity to find ways to solve problems as they arise. According to them,

creativity, not voluminous written rules, is the only way to manage complex software development

problems and diverse situations.13 (Cockburn A. H., 2001)

For the purpose of this study, only the comparative views of agile methods will be presented

without going deep into each of them. As a matter of fact, high level analysis of the methods will

help to situate them better in agile discourse and have overall idea. From this point of view, the

study of Abrahamsson et al is particularly interesting; they carried out a comparative study of 10

agile software development methods by trying to analyze them through the set of analytical lenses

such as method’s life-cycle coverage, project management support, type of practical guidance,

fitness-for-use and empirical evidence (Abrahamsson P. W., 2003). They found out that, agile

software development methods, without rationalization, cover only certain/different phases of the

software development life-cycle and most of them do not offer adequate support for project

management. As Figure 7 indicates, only DSDM and the Rational Unified Process were found to

give full coverage to all phases of development, while Scrum mainly covers aspects related to

project management (Abrahamsson P. W., 2003). Yet, many methods still attempt to strive for

universal solutions (as opposed to situation appropriate) and the empirical evidence to support their

claims is still limited.

13 Most methodologies provide inclusive rules—all the things you could possibly do under all situations. Teams that
follow inclusive rules depend on someone else to name in advance the practices and conditions for every situation.
This obviously breaks down quickly (Cockburn A. H., 2001).

41

Figure 7: Comparing life-cycle, project management and concrete guidance support of agile methods

(Abrahamsson P. W., 2003)

Of particular importance is the fact that, according to the survey of VersionOne, Scrum is currently

the most adopted agile method with 56% use rate followed by Scrum/XP hybrid, Scrumban and

Lean (VersionOne, 2015)]. Therefore, a comparative and descriptive summary of these 3 most

popular agile methods could be helpful to get better understanding of them. Table 4 presents such

a comparison which is developed by Kongyai and Edi (2011) containing of brief description,

practices, process, roles and tools.

 XP SCRUM LEAN

Proposed/founded
by

Kent Beck (1999) Jeff Sutherland (1993)
and Ken Schwaber
(1996)

Mary and Tom
Poppendieck
(2003)

Reference
Literature

“Extreme Programming

Explained”
“Agile Software

Development in Scrum”
“Lean Software

Development: An

Agile

Toolkit”
Purpose To address the specific

needs of software
To manage software
development project by

To put all
development

42

Table 4: Summary comparison of main ASD approaches (Kongyai, 2011)

As Table 4 illustrates, these agile methods address different goals, use different practices, have

distinct roles and phases and use various tools. More interestingly, Lean seems to have more

philosophical principles instead of practices and it has no concrete roles. It is worth noting that, the

inclusion of Lean into agile methodology umbrella has happened recently and it is getting more

popular by time because of its universal applicable principles and simple tools like Kanban board.

Put differently, its level of addressing issues are more high level and philosophical, while Scrum

development performed by
small teams facing vague
and changing
requirements.

organizing team and
getting work done
productively with higher
quality.

efforts on value-
adding activities
from customers’
viewpoint and to
analyse and
identify the waste in
software process
systematically and
then remove it.

Key practices/
principles

1. The Planning Game
2. Small Releases
3. Metaphor
4. Simple Design
5. Testing
6. Refactoring
7. Pair Programming
8. Collective Ownership
9. Continuous Integration
10. 40-Hour Week
11. On-Site Customer
12. Coding Standards

1. Sprint Planning
Meeting
2. Daily Scrum Meeting
3. Sprint
4. Sprint Review Meeting
5. Sprint Retrospective

1. Eliminate Waste
2. Build Quality In
3. Amplify learning
4. Defer
Commitment
5. Deliver Fast
6. Respect People
7. Optimize the
Whole

Approach Iterative and Incremental Iterative and Incremental Continuous
Improvement

Phases 1. Exploration
2. Planning
3. Iteration to Release
4. Productionizing
5. Maintenance

1.Sprint Planning
2.Sprint
3.Daily Scrum Meeting
4.Sprint Review Meeting
5.Sprint Retrospective

No phase involved

Main Roles Programmer and
Customer

Product Owner, Scrum
Master and Team

No main role

Tools/Artifacts User story card,
Automated unit test, etc.

Product Backlog, Sprint
Backlog, and Burn Down
Chart

Kanban, Kaizen,
VSM, etc.

43

operates in project management level as a framework and XP, on the other hand, works on a

technical level with its development-specific practices.

2.4.7. Criticism of agile software development

Despite its wide-spread prevalence, ASD has also been criticized by some practitioners and

academics, mainly focusing on following five aspects:

1. Agile development is nothing new; such practices have been in place in software

development since the 1960s

2. The lack of focus on architecture is bound to engender suboptimal design-decisions

3. There is little scientific support for many of the claims made by the agile community

4. The practices in XP are rarely applicable, and are rarely applied by the book

5. Agile development methods are suitable for small teams, but for larger projects, other

processes are more appropriate. (Dybå T. D., 2008)

Most of these critics point specifically to: a lack of focus on planning and implementation, with too

much focus on coding (Ambler S. , 2002); a lack of needed documentation that often results from

decreased formal communication, and implementation failures in larger, more complex projects

(Barlow, 2011). Likewise, Turk argues that, the emphasis on code can lead to corporate memory

loss because there is little emphasis on producing good documentation and models to support

software creation and evolution of large, complex systems. (Turk, 2002)

Equally interesting critical analysis of agile methods is pronounced by Turk; he has revealed the

limitations of agile methods by linking those limitations to the self-stated assumptions that

presumably exists within agile approach. As he goes further to argue, an appreciation of the (often

unstated) assumptions underlying agile processes can lead to a better understanding of the

applicability of agile processes to particular situations. Agile processes are less likely to be

applicable in situations in which core assumptions do not hold (Turk, 2002). That means in order

agile method to be successful, most of those assumptions must be fulfilled first, which in its turn

generates limitations for agile methods. He elaborated the following limitations of agile methods,

although he self agrees that not all of them are applicable for all agile methods:

1. Limited support for distributed development environments

2. Limited support for subcontracting

3. Limited support for development involving large teams

4. Limited support for building reusable artifacts

44

5. Limited support for developing safety-critical software

6. Limited support for developing large, complex software (Turk, 2002)

To sum up, while ASD methods are another attempt to find ‘a silver bullet’ solution for software

project challenges, it does not necessarily claim to provide the same ‘silver bullet’ for all situations.

Instead, it gives a choice of various methods and allows the adaptation as long as adherence to the

basic values and principles of agile is maintained. In this regard, Medinilla (2012) describes the

importance of the latter very blatantly. As he rightly states, “just trying to copy the practices and

tools will not take the company into Agile. Only the constant effort to embrace the values and the

principles will” (Medinilla, 2012). He further argues that, if the company is guided through the values

and the principles in the Manifesto, it does not matter if it is doing Scrum, XP, Kanban, or Lean

Software Development. As he perfectly puts it, ‘that it is a matter of stop doing agile and instead

begin being agile’. (Medinilla, 2012) According to him, agile companies must understand values

and principles first and then try to find the set of processes, roles, practices, artefacts, and tools

that help them live by those values and principles and not the other way round. (Medinilla, 2012)

45

3. EMPIRICAL RESEARCH

The objective of this research study is to find out the implementation degree of agile practices, the

perceived importance and real presence of agile principles in agile software development process.

While choosing the research methodology, its capacity to enable the researcher to reach the

research objectives should be evaluated. To be able to answer the research questions, 2 kinds of

data will be used for analysis and discussion: secondary and primary.

3.1. Secondary Research

Secondary research covers the study of all related literature and also data from related surveys. It

supplies 2 kinds of data: first, theoretical base and background for analyzing the primary data;

second, secondary empirical data from related surveys on RQ1 and RQ2, for backing up its own

primary data in analysis phase. Theoretical part is thoroughly discussed in previous chapter, and

therefore will not be covered here.

3.1.1. Related surveys

The secondary empirical data is obtained from different surveys that is conducted by various

organizations and experts and covers quite high number of respondents worldwide. Those are

VersionOne survey, AmbySoft survey, and several substantial studies of Laurier Williams, which

includes worldwide surveys.

3.1.1.1. VersionOne Survey

VersionOne conducts each year survey since 2006 which has provided an aggregate report on the

status of organizations currently implementing or practicing agile methods. The 9th annual State of

Agile survey was conducted between July and October, 2014. Sponsored by VersionOne, the

survey invited individuals from a broad range of industries in the global software development

community. A total of 3,925 completed responses were collected, analyzed and prepared into a

summary report by Analysis.Net Research, an independent survey consultancy. (VersionOne,

2015)

It includes data on Company Experience and Adoption, Benefits of Agile, Agile Methods and

Practices, Agile Success and Metrics, Scaling Agile, Project Management Tools. For the purpose of

this study only the data related to agile practices will be used to back up own survey results.

VersionOne describes practices as techniques and according to its survey results the most widely

practiced agile technique is the daily stand-up (80%), followed closely by the use of short iterations

(79%) and prioritized backlogs (79%). About two-thirds of respondents said they conduct Iteration

46

planning and retrospectives, while less popular techniques included agile games (13%) and

Behaviour-Driven Development (BDD) (9%). The full list of practices and corresponding

percentages are given below: (VersionOne, 2015)

80% Daily stand-up

79% Short iterations

79% Prioritized backlogs

71% Iteration planning

69% Retrospectives

65% Release planning

65% Unit testing

56% Team-based estimation

53% Iteration reviews

53% Task board

50% Continuous integration

48% Dedicated product owner

46% Single team (integrated

 dev & testing)

43% Coding standards

38% Open work area

36% Refactoring

34% Test-Driven Development (TDD)

31% Kanban

29% Story mapping

27% Collective code ownership

24% Automated acceptance testing

24% Continuous deployment

21% Pair programming

13% Agile games

9% Behaviour-Driven

Development (BDD)

It is worth noting that, VersionOne survey has the most recent data on practice usage, however

VersionOne limits it only to 25 practices and it has not surveyed anything on importance of agile

principles.

3.1.1.2. AmbySoft Survey

This survey is conducted by Scott Ambler, the founder of Agile Modeling method, in July 2008. It is

about the usage of agile practices and principles. 337 respondents have answered the survey. He

has grouped agile practices in 4 categories and asked accordingly how common those practices

are practiced in the respondent’s projects. Results of practice usage are formulated in -5 to 5

scales rating. The results are reported in Table 5.

47

Project Management

practices

Development Practices Quality practices

• Iteration planning
(3.54)

• Daily Scrum Meeting
(3.29)

• Prioritized worklist
(3.08)

• High-level release
planning (2.19)

• Retrospectives (1.84)
• One Product Owner

(1.55)
• Burndown chart (1.51)
• Potentially Shippable

Software (1.51)
• Status Reports (1.15)
• Story Board with Task

Breakdowns (0.83)

• Coding Standards
(2.30)

• Collective Code
Ownership (1.97)

• Continuous
integration (1.94)

• Database standards
(1.86)

• UI standards (1.65)
• Pair programming (-

1.34)

• Code Refactoring (1.79)
• UI Testing (1.54)
• Automated Developer

Testing (1.08)
• TDD (-0.08)
• UI Refactoring (-0.22)
• Database refactoring (-

0.31)
• Automated Acceptance

Testing (-0.87)
• Database regression

testing (-1.03)
• Executable Specs (-1.43)

Table 5: Practicing rates of agile practices (Ambler S. V., 2008)

He also constructed statements related each agile principles and asked if the respondent agrees

with that statement. Most of the statements received highly positive answers, most people saying

they agree or strongly agree with the principle statements which show that practitioners still support

principles of agile manifesto. Overall, it proves to be very valuable survey, which covers both agile

principles and practices. However, it doesn’t cover all agile practices, doesn’t measure the

importance of agile principles and also don’t give any correlation between agile principles and

practices.

3.1.1.3. Laurie Williams’ studies

Laurie Williams, associate professor of computer science at North Carolina State University,

conducted a survey to obtain input from the international practitioner community on the original

principles and their associated software development practices. 335 people from around the work

responded to the survey. Respondents were asked to say how important each principle was to agile

teams in 2010 on a scale from 1-5 with a rating of 1 indicating not important and a 5 being very

important. According to the survey results, as Williams states, the community still stands strongly

behind all the twelve principles. In round numbers, 11 of the principle had at least 80% of the

respondents giving the principle a rating of 4 or 5. The Agile Principle that had the least support

was "The best architectures, requirements, and designs emerge from self-organizing teams” with

48

only 59% of respondents giving this principles a 4 or 5. (Hastie, 2010) Among the findings were that

the following are the most important principles based on the number of respondents rating their

importance as “Very High”:

1. Our highest priority is to satisfy the customer through early and continuous delivery of

valuable software.

2. Working software is the primary measure of progress.

3. Deliver working software frequently, from a couple of weeks to a couple of months, with a

preference to the shorter timescale.

4. Build projects around motivated individuals. Give them the environment and support they

need, and trust them to get the job done.

5. At regular intervals, the team reflects on how to become more effective, then tunes and

adjusts its behavior accordingly. (Cohn, 2010)

The survey also asked which agile project management practices were essential for a team to be

considered agile. The top five were:

1. Short iterations

2. Continuous integration

3. “Done” criteria

4. Automated tests are run with each build

5. Automated unit testing. (Cohn, 2010)

Another survey, which is discussed in Williams’ article on “Agile software development in Practice”,

is the industry-wide conducted survey based upon 2,229 completed CA surveys taken between

March 26, 2011 and October 12, 2012. The Comparative Agility™ (CA) assessment tool developed

by Williams self, was created to aid organizations in understanding how their agile adoption

compares with others’ agile adoption. At the highest level, the CA approach assesses agility across

eight dimensions: Teamwork; Requirements; Planning; Technical Practices; Quality; Culture;

Knowledge Creating; and Outcomes. The survey respondent is presented with 65 statements. Each

statement is an agile practice for which the respondent indicates the truth of the statement relative

to their team or organization. (Williams L. D., 2014) She has already done the same survey during

2007-2010 and got very interesting results.

49

Figure 8: Industry average responses
14

 (Williams L. R., 2010)

Figure 8 displays that industry trends indicate the highest adoption of agile practices occur in the

areas of embracing emergent requirements and creating knowledge throughout the iteration and

release. The lowest industry adoption occurs relative to utilizing technical practices and focusing on

quality throughout all iterations. (Williams L. R., 2010)

Additionally, she mapped the CA statements to one of the twelve agile principles defined in the

Agile Manifesto. Although statements may address more than one principle, each was assigned to

the one principle that the statement most influenced. And afterwards, she made the analysis of how

agile principles’ are practiced, based on statements and mapping. She found out that all but three

principles (emergence, excellence, and simplicity) report at least 50% of teams are practicing the

agile principle. The agile principles with the largest positive results are Individuals, Business, and

Face-to-face. (Williams L. D., 2014) Moreover, she made the list of most popular and least popular

5 statements/practices.

Surveys and studies/analysis of Williams are highly related to this study, since her first survey

measures the importance of agile principles and practices for agility. Second/third survey is more

about to assess agility through the survey tool and is more practice oriented. However, it names

practices differently and don’t measure the importance degree of principles. On the other hand, she

has made correlation of agile principles and practices in her studies. On her last research paper,

she mapped agile principles with practices and based on the assessment survey, she made

14 The number presented for each dimension is the mean score of the responses on the set of statements related to
that dimension whereby for each question a response of True=5; More true than false=4; Neither true nor false=3;
More false than true=2; and False=1.

50

conclusions on principle practicing degree of respondents. (Williams L. D., 2014) This means she

analyzed presence of agile principles in agile process. However, she didn’t couple her importance

survey results with presence results. Her survey respondents were mainly teams that newly

adopted agile and had few experience with agile practices. This brings also limitations to its

generalization.

The results of these surveys and analyses will be used to back up and check the results of this

study to make it more reliable and valid. However, it should be kept in mind that they are not

designed specifically to answer the research questions of this study and therefore contains some

variations and therefore will be used with reservations.

3.2. Primary research: selecting the relevant research method

In order to investigate perceptions and realities on importance of agile principles and practices,

following methodology approach seems to be suitable: agile experts are consulted for mapping

agile principles and practices in a manner that they consider relevant to each other. Moreover, a

survey on implementation degree of practices in real ASD process and perception of importance of

agile principles is conducted separately. That enables a two dimensional vision to analyze data and

be able to make correlations more accurately. While mapping provides an idea about which

practice is based on which principle, survey, on the other hand, delivers data to analyze the results

of mapping, which means if it matches with reality/perceptions of practitioners.

Taking into account all of this, quantitative strategy has been chosen for conducting the primary

empirical research. According to Bryman, quantitative research can be construed as a research

strategy that emphasizes quantification in the collection and analysis of data and that: - entails a

deductive approach to the relationship between theory and research, in which the accent is placed

on the testing of theories; - embodies a view of social reality as an external, objective reality

(Bryman, 2004). While quantitative research is based on numerical data analyzed statistically,

qualitative research uses non-numerical data, emphasizes words, and stresses the subjectivity of

research process (Creswell, 2003). It is important to distinguish the rationale behind the choice of

research strategy, because they support different causes. Whereas quantitative methods are best

for looking at cause and effect, qualitative methods are more suited to looking at the meaning of

particular events or circumstances (Creswell, 2003). Bryman also believes that choices of research

strategy, design, or method have to be dovetailed with the specific research questions being

investigated. According to him, if we are interested in teasing out the relative importance of a

number of different causes of social phenomenon, it is quite likely that a quantitative strategy will fit

51

our needs, because the assessment of cause is one of its keynotes (Bryman, 2004). In the case of

this study, it is aimed to find out the implementation degree of practices and importance degree of

principles for practitioners, and actual presence of agile principles in agile development which

means quantification will be needed to measure these variables. Therefore, quantitative strategy

suits best for this research study.

When using quantitative strategy, it should be remembered that, the fact that the data have to be

quantitative does not mean that they have to be naturally available in quantitative form. This kind of

data can be still collected in a quantitative way. It can be done by designing measurement

instruments aimed specifically at converting phenomena that don’t naturally exist in quantitative

form into quantitative data, which can be analyzed statistically. If data are not naturally available as

numbers, one can try to turn non-quantitative data (like attitudes or opinions) into quantitative data

by measuring them numerically (for example, by using a questionnaire rating scale). (Muijs, 2004)

Bryman distinguishes research design from research method. According to him, research design

provides a framework, structure for the collection and analysis of data, while research method is

simply a technique for collecting data. Research methods are associated with different kinds of

research designs. He further elaborates five different kinds of research designs: experimental

design, cross-sectional or survey design, longitudinal design, case study design and comparative

design (Bryman, 2004). For this study, cross sectional or survey design will be used to collect

empirical data. By Bryman’s definition, a cross sectional design entails the collection of data on

more than one case and at a single point in time in order to collect a body of

quantitative/quantifiable data in connection with two or more variables, which are then examined to

detect patterns of association. Survey research is a cross-sectional design whereby data are

collected predominantly by questionnaire or by structured interviews. (Bryman, 2004)

3.2.1. Survey as a main research method

Surveys are appropriate when we want to learn about self-reported beliefs or behaviours. Most

surveys ask many questions at once, thereby measuring many variables, with the intent of

generalizing from a sample to a population. Surveys can be used for exploratory, descriptive, or

explanatory research and employ different methods such as web surveys, surveys by post, self-

completed questionnaires, and structured interviews. (Neuman, 2011)

Survey is chosen as a main research method for RQ1 and RQ2. Obviously, survey is considered to

suit best for this study’s descriptive objectives which aims to explore a certain situation and

describe the important factors associated with that situation (Neuman, 2011). A survey was

52

conducted to figure out what agile practitioners think about the importance of agile principles. It also

investigates the usage/implementation degree of each practice by practitioners. According to

Robson, survey is the “collection of standardized information from a specific population, or some

sample from one, usually, but not necessarily by means of a questionnaire or interview” (Robson,

2002). A web/online survey was preferred as the data collection method because it is considered

to be the most efficient way of gathering large data sets in short span of time. Moreover, online

questionnaires are able to reach more potential respondents, given that the questionnaires can be

distributed through many channels (e.g. e-mail, forums, and communities); and are very fast and

inexpensive; they allow flexible design and can use visual images and even audio or video. It has

static and interactive types. (Neuman, 2011) In addition, the relative low cost of conducting a web

survey essentially puts the tool in the hands of almost every person with access to the Internet,

potentially fully democratizing the survey-taking process (Couper, 2000). On the other hand,

disadvantages of web surveys are coverage, privacy and verification, and design issues. Being

cheap and easy to implement can be also disadvantage, since it affects quality of the survey.

(Neuman, 2011)

3.2.2. Mapping Study

Another research method that will be used to help answer the research questions is mapping study.

In fact, mapping is chosen for RQ3. It is hoped to enable the author to find sound correspondence

match conclusions based on this mapping exercise. It aims to generate a theoretical basis for our

analysis and answer for our research question 3. It is relatively new method of research and

contains in itself very high level correlation capabilities. It is chosen since it is simple to follow and

enables to gain the knowledge from experts in a more straightforward way. Although mapping itself

is a qualitative form of gathering data, the analysis of collected data will be done quantitatively, and

will be quantified in order to be able to make comparisons and further analysis in combination with

other data. Based on an analysis of secondary data, mapping results and the survey results,

conclusions regarding agile principles’ presence and importance will be derived. Thus for

answering RQ4, results of all above mentioned methods will be combined and analysed to get

better understanding.

If summed up, the table of mapping research methods and corresponding research questions, that

it aims to answer, could be presented as in Table 6. The online survey is used as the

methodological triangulation to answer RQ 1 and RQ 2, which is also backed up and possibly

validated by secondary data from other relevant surveys. Triangulation is necessary to increase the

53

accuracy of empirical research. By using the triangulation, researcher can take different angles

towards the studied object and thus get a broader picture (Neuman, 2011).

Research questions Used Research method

RQ1 Online Survey, secondary data

RQ2 Online Survey, secondary data

RQ3 Mapping

RQ4 Analysis of online survey results and mapping

data together

Table 6: Linking research methods to research questions

3.3. Evaluating the chosen methods: Limitations and Concerns

According to Bryman, three of the most prominent criteria for the evaluation of social research are:

reliability, replication, and validity. Reliability is concerned with the question of whether the results

of study are repeatable. In order replication to take place, a study must be capable of replication – it

must be replicable (Bryman, 2004). Surveys, especially web-based ones, offer little control over the

interview situation, why there might be low reliability in the survey results (Couper, 2000). The

reliability of the survey was strengthened by the fact that the questions were not of a particular

sensitive nature and no reason is seen for respondents to give incorrect answers, especially when

considering that the survey was taken anonymously. Most important criterion of research is

validity. Validity is concerned with the integrity of the conclusions that are generated from piece of

research. When it is said that indicator is valid, it is valid for a particular purpose and definition. The

same indicator may be less valid or invalid for other purposes. Reliability refers to a measure’s

dependability; validity refers to its truthfulness or the fit between construct and data. (Neuman,

2011) The validity is a concern of every researcher as it makes the research valuable in different

terms. Any research based on empirical findings does possess concerns and so is our research.

The following concerns will be discussed for the chosen research methods:

3.3.1. External validity

External validity mainly deals with the ability to generalize the research away from the scope of the

study. In quantitative research the researcher is usually concerned to be able to say that her

findings can be generalised beyond the confines of the particular context in which the research was

conducted (Bryman, 2004). Selecting wrong set of sample population to represent the whole target

population is a serious threat. In order to address this threat, certain groups have been considered

and personal invitations to respondents and researchers who are related to our research study

54

have been sent. Moreover, the responses obtained from the survey were from different systems

types and also with different team sizes. So, in terms of diversity it can be generalised, however, in

terms of numbers of responses, some doubts can be emerged as it can be the case that it doesn’t

reach the wanted numbers. In such case, to neutralise this low number effect, the other survey

results will be used to reflect the results of this survey.

3.3.1.1. Low response rate of survey

In surveys there is always a relatively high risk of non-respondents and this can threaten the validity

of the survey results (Bryman, 2004). The low response rate is a possible source of bias as they

are only from representative of those who replied. To ensure a sufficient number of responses,

some techniques were used to increase the response rates. For example, easy-to-understand and

as clear as possible survey questions were created and also reminders to the invited participants

were sent out. Furthermore, an incentive of providing the study results to respondents was offered

to get better response rate. As mentioned above, in case of low response, in order to strengthen

external validity of the study results, the secondary data from other relevant surveys will be used as

a back-up during analysis and discussions to examine if those data sets match with each other or if

they have major differences.

3.3.1.2. Selection bias

Selection bias means that particular individuals or groups have more chance to participate in the

survey than others, resulting in biased samples. As this survey target population is from Agile

practitioners, numerous Agile group communities were invited, which were randomly searched from

the Internet. By using this technique, every Agile group would have equal chance to participate in

the survey. In other words, the individual within the groups would have equal chance to be selected

(Couper, 2000).

3.3.1.3. Unclear survey questions/instructions

Another threat to the validity of surveys is that the questions may not capture the real perceptions

of the survey respondents. Since there is no direct involvement of the researchers when the

respondents taking the survey, unclear survey questions could not be easily clarified and the

respondents might not follow the instructions (Rea, 2005). To minimize this threat, survey questions

were based on research questions. Furthermore, clear and brief description of each agile practice

is also given so that everybody understands the same definition under certain terminology and

answers accordingly.

55

3.4. Research design process – data collection

3.4.1. Survey set up/design

For any survey, it is important to identify the objectives of the survey on which the questionnaire

has to be developed and to select the target population on which the sample has to be collected.

Failing to do these may lead to very less as well as irrelevant data. In this survey, main objectives

are to target the population who possess sufficient knowledge and experience in the field of “Agile

software development” implementation, and to ask them questions that reflect the research

objectives. People from all over the world can participate in the survey, as this is web based survey.

The survey questions were designed carefully to ensure they can help to answer the research

questions. The web-based survey contains 20 questions which is divided into 3 main parts:

demographics, agile practice implementation, and agile principles’ importance. The full design of

the survey is shown in Appendix A.

The demographics of the respondents are addressed by question one to seven. It covers the

following information: Position/role, company profile, size, project size, team size and so on.

Second section contains question on the implementation degree of 60 agile practices. For every

agile practice, brief description is given in order to make sure that everybody understands the same

definition when answering the questions. For this end, definitions of AgileAlliance are used to

maintain consistency and follow the standards. Responses were made using five-point Likert scale

ranging from “not applicable” to “fully implemented”. Likert scale is one of the most common

techniques for conducting investigation of attitude which is a prominent area in survey research.

Named after Rensis Likert, who developed the method, the Likert scale is a set of attitudes relating

to a particular area. The goal of Likert scale is to measure the intensity of feelings about the area in

question (Bryman, 2004). Third section is about how important are agile principles for practitioners;

it is an attitude measurement question and therefore also contains Likert scale. Although this

survey is anonymous, there has been provided an option to enter an email address if the

respondent is interested to receive the survey results. After the survey design was reviewed,

finalized and updated on the online survey tool, the survey was posted online. The invitation emails

were sent to agile practitioners from many different countries. Several online discussion groups e.g.

LinkedIn, Yahoogroups, Googlegroups, and Google+ Communities were identified that focus on

agile software development and survey link with accompanying message was posted inviting the

group members who had experience using Agile approaches. The survey invitation can be found in

Appendix C.

56

3.4.2. Mapping design

The mapping is used to identify the possible correspondence/match between agile principles and

practices. It is designed in Excel which contains 12 agile principles and 60 agile practices as a

matrix. For the ease of use, this matrix is divided into 6 smaller ones in separate sheets but still in

the same document. For each practice, the same brief description like in the survey is given to

make it consistent and understandable. Afterwards, it was sent as an email attachment with

accompanying explanation letter to the different agile experts and academicians who have

extensive knowledge and expertise on agile software development. The mapping design and

invitation letter can be found in Appendix B and D. They were asked to map each agile practice

with relevant principles by determining which agile practice possibly supports/based on which

principles.

57

4. EMPIRICAL FINDINGS

4.1. Survey results and analysis

Generally, descriptive statistics is used to analyse the collected data from survey and mapping.

Descriptive statistics is used to describe the basic features of the data in a study; it helps to simplify

large amounts of data in a sensible way and provide a powerful summary that may enable

comparisons across people or other units (Descriptive Statistics). Furthermore, the most used

descriptive statistics measures are frequency distribution, mean score, mode and variance. It is

vitally important to note that data is not tested for significances; therefore interpretations are also

made with reservations.

In this section, findings from survey demographics, implementation of agile practices, and

importance of agile principles will be presented and analysed. In total, about 200 survey invitations

were sent out to agile practitioners by email. In addition, survey link was posted in approximately 30

agile discussion platforms such as LinkedIn groups, Yahoo Groups, Google Groups, and Google+

Communities. Despite so many postings and invitations, only 72 responses were received, from

which 68 have been considered to be valid after filtering. Most certainly, the reason for this low

ratio between response rate and number of invitations would be the time factor for completing the

survey. This low rate of response doesn’t give the opportunity to make accurate generalizations.

Nevertheless, the overall responses obtained from the survey are sufficient to answer our research

questions and make it possible to draw valuable conclusions. Moreover, this data will be backed up

by the secondary data from other similar surveys conducted by professionals mentioned above. It is

important for any survey to make a trade-off between superficial data and a short survey with many

responses, and very rich data with fewer answers. In this case, it has been chosen to cover as

many as possible agile practices and therefore ended up with a long list of practices. It should be

noted that not all questions were answered by all 68 respondents. Some respondents have left

most questions blank and unanswered and therefore have been filtered from the analysis. Other

group of respondents answered only demographic questions and then left the survey; other ones

have not answered the last question on principles. Therefore, the number of respondents varies per

section and sometimes per question, because some respondents chose to skip some of the

questions.

58

4.1.1. Respondents’ Demographics

4.1.1.1. Respondents’ role and experience

Survey respondents identified themselves in various roles and positions: 35% of them were

different level managers, 28% classified their role as Agile Coach/Scrum Master, 14% as

developer/IT specialist, and 12% as different kind of consultants within IT domain. According to

survey results, the number of respondents working in multinationals was slightly higher than those

working in local companies (56% - multinational companies, 44% - local companies). Furthermore,

for 55% of these companies, software development is a main business activity, while for 45% it is

an internal activity. The experience of respondents with agile development fluctuates as well:

Figure 9 indicates that survey respondents have an average of 7.2 (mode = 5) years of agile

experience. 22% of them have 1-2 years of experience with agile, while 25% has 3-4 years of

experience. 15% of them have 8 years of agile experience. Another remarkable group of

respondents is those having more than 10 years of experience consisting 17% of respondents.

Figure 9: Respondents' experience with agile

4.1.1.2. Company and team size

Company size of participated respondents is dominated by large companies. Overall, the

respondents’ answers fell into six major categories based on company size: it is interesting to note

that 40% of concerned companies are large organisations which have more than 1000 workers.

Only 19% of them are small sized-companies having 1-10 workers. And 21% has 11-100 being the

middle size category; 16% has 201-1000 workers which also can be considered as the large

organisations. Table 7 displays the categorization according to company size.

11% 11%

8%

17%

4%

9%

15%

2%

6%

17%

0%

5%

10%

15%

20%

1 2 4 5 6 7 8 9 10 10+

years

Years of experience with agile

59

company

size

number of

respondents

percentage

1--10 11 19%
11--55 9 16%
56-100 3 5%
101-200 2 4%
201-1000 9 16%
1000+ 23 40%
 Total 57 100%
Table 7: Company size of participated respondents

It is also important to know the size of the respondents’ team to draw valid conclusions. As for team

size, more than half of respondents (55%) works with small teams (1-10), 23% with medium teams

having 11-100 team members, and surprisingly 22% with large teams (more than 100 members).

Even 8% of them work with teams which have more than 1000 team members. Figure 10 presents

these results in a more visible way.

Figure 10: Team size of participated respondents

The last data on demographics cover the average length of iterations. According to the survey

results, more than half of the respondents have 2 weeks long iteration in their software project

(59%). Next most popular iteration length is 4 weeks with 13% of respondent pool. There are even

some projects that have less than 1 week iteration period (4%). 1 and 3 weeks long iterations have

each 7% respondent vote. And last, respondents that work with iterations longer than 10 weeks

consist 6% of all answers.

22% 23%

55%

0%

10%

20%

30%

40%

50%

60%

large (100+) medium (10-100) small (1-10)

Team Size

60

4.1.2. Agile Practice implementation

Survey respondents evaluated their implementation degree of 60 agile practices presented in

survey according to 5-point Likert scale with following options: not implemented (<20%), partially

implemented (20-50%), mostly implemented (51-80%), fully implemented (>80%), and not

applicable. Not applicable option has been included for the cases where the practice is not relevant

in certain situations (can be due to used method or circumstances). In order to make statistical

analysis of this scale, it has been coded into numbers, as following: “not implemented” = 1,

“partially implemented” = 2, “mostly implemented” = 3, “fully implemented” = 4, and “not applicable”

= 5.

Accordingly, frequency distribution is calculated in percentages to show the degree of

implementation for each practice. As Table 8 indicates, percentages of implementation for some

practices are substantially higher (Backlogs, Daily meeting), while for others it becomes remarkably

lower CRC cards, ATTD).

List of practices not

implemen

ted

partially

implemen

ted

mostly

implemen

ted

fully

impleme

nted

not

applic

able

total

respo

nses

mean mode varia

nce

Acceptance

tests/functional

test

14% 18% 23% 41% 5% 44 2.95 4 1.35

ATDD (acceptance

test driven

development)

50% 14% 14% 9% 14% 44 1.79 1 2.23

Automated build 11% 23% 20% 41% 5% 44 2.95 4 1.30
Backlogs (Product

and Sprint)

2% 5% 14% 77% 2% 44 3.70 4 0.48

Backlog grooming 5% 16% 20% 57% 2% 44 3.33 4 0.89
Behaviour-driven

development

(BDD)

57% 14% 7% 7% 16% 44 1.57 1 2.38

Burndown Chart 20% 14% 14% 45% 7% 44 2.90 4 1.72
Collective code

ownership

18% 16% 30% 30% 7% 44 2.76 4 1.48

Continuous

integration

16% 16% 23% 43% 2% 44 2.95 4 1.35

CRC Cards (for

Class,

Responsibilities,

Collaborators)

64% 9% 2% 5% 20% 44 1.34 1 2.74

61

Continuous

deployment

34% 20% 25% 14% 7% 44 2.20 1 1.64

Daily meeting

(daily scrum or

stand up)

7% 14% 2% 75% 2% 44 3.49 4 1.00

Definition of done 9% 30% 14% 45% 2% 44 2.98 4 1.23
Definition of ready 32% 20% 11% 30% 7% 44 2.41 1 1.92
Estimation 11% 11% 23% 50% 5% 44 3.17 4 1.22
Exploratory

testing

27% 20% 15% 27% 12% 41 2.47 1 2.03

Facilitation 17% 20% 20% 41% 2% 41 2.88 4 1.42
Frequent releases 7% 15% 22% 54% 2% 41 3.25 4 1.01
Given-when-then 34% 15% 22% 12% 17% 41 2.15 1 2.24
Heartbeat

retrospective

(sprint/iteration

retrospective)

5% 15% 22% 56% 2% 41 3.33 4 0.89

Information

radiators

7% 41% 15% 27% 10% 41 2.68 2 1.39

Integration 7% 29% 20% 37% 7% 41 2.92 4 1.27
Invest acronym

INVEST

22% 24% 27% 10% 17% 41 2.29 3 1.89

Iteration/sprint 0% 2% 15% 76% 7% 41 3.79 4 0.31
Iterative

development

0% 10% 29% 59% 2% 41 3.50 4 0.50

Incremental

development

2% 15% 17% 63% 2% 41 3.45 4 0.76

Kanban board 10% 24% 17% 32% 17% 41 2.85 4 1.63
Milestone

retrospective

32% 20% 15% 20% 15% 41 2.26 1 2.18

Mock objects 27% 17% 24% 22% 10% 41 2.46 1 1.81
Niko Niko

calendar (mood

board)

66% 10% 5% 2% 17% 41 1.32 1 2.40

Lead/cycle time 10% 22% 32% 20% 17% 41 2.74 3 1.51
Pair programming 27% 46% 12% 7% 7% 41 2.00 2 1.33
Personas 40% 28% 8% 15% 10% 40 1.97 1 1.95
Points (estimate

in)

20% 7% 17% 46% 10% 41 3.00 4 1.71

Planning poker 27% 17% 22% 22% 12% 41 2.44 1 1.94
Project chartering 32% 22% 15% 15% 17% 41 2.15 1 2.24
Quick design 20% 27% 22% 22% 10% 41 2.51 2 1.64

62

session

Refactoring 7% 32% 20% 39% 2% 41 2.93 4 1.12
Relative

estimation

27% 22% 15% 27% 10% 41 2.46 1 1.91

Role-feature

reason

41% 7% 10% 29% 12% 41 2.31 1 2.44

Rules of simplicity 46% 10% 5% 17% 22% 41 1.91 1 2.90
Scrum of scrums 29% 12% 12% 12% 34% 41 2.11 5 2.84
Simple design 35% 25% 15% 13% 13% 40 2.06 1 1.99
Sign up for tasks 15% 29% 17% 34% 5% 41 2.74 4 1.43
Story splitting 12% 27% 20% 39% 2% 41 2.88 4 1.27
Story mapping 41% 22% 10% 15% 12% 41 1.97 1 2.13
Sustainable pace 15% 24% 15% 39% 7% 41 2.84 4 1.55
Task board 2% 12% 15% 66% 5% 41 3.51 4 0.75
Test-driven

development

(TDD)

41% 22% 12% 17% 7% 41 2.05 1 1.85

Team (whole) 12% 12% 20% 51% 5% 41 3.15 4 1.29
Team room 22% 15% 15% 46% 2% 41 2.88 4 1.62
Three C’s 34% 20% 7% 22% 17% 41 2.21 1 2.42
Time-box 12% 5% 27% 51% 5% 41 3.23 4 1.17
User stories 7% 15% 10% 66% 2% 41 3.38 4 1.05
Three questions 15% 15% 10% 56% 5% 41 3.13 4 1.48
Usability testing 24% 22% 15% 29% 10% 41 2.54 4 1.88
Ubiquitous

language

25% 20% 15% 23% 18% 40 2.42 1 2.16

Unit testing 8% 20% 20% 53% 0% 40 3.18 4 1.02
Velocity 20% 15% 10% 48% 8% 40 2.92 4 1.76
Version control 5% 10% 13% 70% 3% 40 3.51 4 0.82
Table 8: Frequency distribution of implementation degree of agile practices

In order to analyse the practice implementation further, the statistical mean score is calculated to

find the average for each practice. The mean or average is probably the most commonly used

method of describing central tendency and it is highly suitable to get overall high level picture of

implementation degree of all practices. Firstly, count the total of weighted values by multiplying the

respondent number with the column weight (column weight for “not implemented” = 1, “partially

implemented” = 2, and so on). Secondly, count the total number of respondents. Finally, calculate

the rating average by dividing the total weighted value by the total number of respondents. It is

important to note that the option “not applicable -5” is not included while calculating the mean,

because it doesn’t contribute to the implementation degree of practices. For example, the

63

calculation for acceptance test mean score is ((1*6)+(2*8)+(3*10)+(4*18)) / (6+8+10+18) = 124 / 42

= 2.95. An average rate of 2.95 means that acceptance test overall implementation falls to almost

“mostly implemented” rating. Table 7 provides additional information on mean, mode scores and

variances. Various analyses can be made based on mean, because it provides us with a powerful

average implementation degree of each practice. The mode, on the other hand, describes the most

frequently occurring value among the given options. From the mode data, it can easily be observed

which implementation degree is chosen the most for each practice. However, it should be kept in

mind that, as the data has not been tested for statistical significance, the interpretations should be

made also with care and limit. Variance is used to compensate it in certain level to detect the

controversial data.

4.1.3. Agile Principles importance

Third part of the survey was about the learning the attitude of respondents on importance of agile

principles. 12 agile principles were presented to respondents and they were asked to indicate how

important they consider each principle according to 6-point Likert scale. It is also coded in order to

be able to make statistical calculations/measurements and analysis as following: “unimportant” = 1,

“partly unimportant” (low importance) = 2, “neither unimportant nor important” (neutral) = 3, “partly

important” = 4, “important” = 5 and “very important” = 6.

The frequency distribution per principle is reported in Table 9 in the form of percentages. For the

ease of use, every principle is mentioned with keywords that characterise it most.

Principles unimportant partly
unimportant

neither
important
 nor
unimportant

partly
important

important very
important

total
responses

1. Customer
satisfaction/outcome

0% 3% 3% 21% 23% 51% 39

2. Welcome change 3% 5% 8% 18% 31% 36% 39
3. Deliver frequently
with shorter
timescale

0% 3% 3% 21% 33% 41% 39

4. Business and
developers' daily
collaboration

3% 5% 15% 18% 28% 31% 39

5. Support and trust
motivated
individuals

5% 0% 8% 21% 23% 44% 39

6. Face-to-face 3% 8% 8% 5% 33% 44% 39

64

communication
7. Working software
is progress

3% 10% 5% 15% 26% 41% 39

8. Sustainable,
constant pace

8% 10% 8% 15% 31% 28% 39

9. Technical
excellence/good
design

0% 10% 8% 13% 41% 28% 39

10. Simplicity 5% 13% 5% 18% 33% 26% 39
11. Self-organising
teams

3% 13% 8% 23% 26% 28% 39

12. Continuous
improvement

0% 4% 7% 15% 41% 33% 27

Table 9: Frequency distribution of importance degree of agile principles

The mean score, mode and variance of importance degree per principle is also calculated to get

overall and comparable insight. As Table 10 indicates, the mode for most principles are 6 which

means most selected option was ‘very important’ by the respondents.

Agile principles Mean Mode Variance

1. Customer satisfaction/outcome 5.18 6 1.05
2. Welcome change 4.77 6 1.71
3. Deliver frequently with shorter timescale 5.08 6 0.97
4. Business and developers' daily

collaboration

4.56 6 1.83

5. Support and trust motivated individuals 4.87 6 1.80
6. Face-to-face communication 4.90 6 1.94
7. Working software as a measurement of

progress

4.74 6 2.09

8. Sustainable, constant pace 4.36 5 2.55
9. Technical excellence/good design 4.69 5 1.59
10. Simplicity 4.38 5 2.30
11. Self-organising teams 4.41 6 2.09
12. Continuous improvement/retrospectives 4.93 5 1.15
Table 10: Mean score and mode for each agile principle

4.2. Mapping results and analysis

The mapping of agile principles and practices was sent to 25 agile experts and academicians from

whom 6 of them have entirely completed the mapping. This response rate is sufficient to make

decent conclusions on correlation between practices and principles. As this mapping is intended to

be done by academic and field experts, there were no need of large number respondents; a few

65

expert opinions were enough to make sound conclusions as a theoretical base. For the mapping

itself, it was required to put a mark in the matrix of practice and principles where respondent

considered that certain practice possibly supports/based on certain principle. The experts had

differing views on mapping itself: Some saw the practices as means and principles as main goals of

agile process; for them, practices are the tools/means to achieve, to realise the agile principles.

Others think that if well-implemented, every practice should contribute to achieve all agile

principles; they think that agile principles are implemented through the practices.

The analysis of this mapping is done as following: All mapping choices from 6 responses are

brought together in one document in order to see the final result of matching. According to the

numbers of vote, the percentage has been calculated as following: 1 vote – 17%, 2 votes – 33%, 3

votes – 50%, 4 votes – 67%, 5 votes-88%, 6 votes -100%. Accordingly, next categorisation is made

for grouping the practices per principle:

• 17% – barely support

• 33-50% – moderate support

• 67-88% – strongly support

• 100% – exceptional support

For example, if one practice got 88% votes for certain principle, it means 5 experts considered that

it matches that certain principle, and this practice strongly supports/based on given principle. Table

11 presents the mapping of principles and practices; the principles are given by numbers to save

the complications and space. The results were calculated in percentages and colour-coded in an

attempt to create easily readable results.

Practices/Princi

ples mapping
1 2 3 4 5 6 7 8 9 10 11 12

Average

rate per

practice

Acceptance

tests/functional

test

67% 17% 33% 50% 0% 33% 33% 0% 17% 0% 0% 0%

21%

ATDD

(acceptance

test driven

development)

67% 67% 33% 33% 0% 0% 17% 17% 33% 17% 17% 0%

25%

Automated

build
67% 50% 67% 0% 0% 0% 67% 33% 33% 0% 0% 0%

26%

66

Backlogs

(Product and

Sprint)

0% 67% 17% 50% 33% 33% 0% 0% 0% 17% 17% 17%

21%

Backlog

grooming
33% 83% 33% 33% 17% 33% 0% 17% 17% 0% 17% 17%

25%

Behavior-driven

development

(BDD)

33% 33% 0% 33% 17% 17% 17% 17% 17% 0% 0% 0%

15%

Burndown 50% 50% 33% 33% 17% 0% 67% 17% 17% 0% 17% 17% 27%

Collective code

ownership
17% 0% 33% 0% 50% 33% 0% 0% 67% 0% 67% 0%

22%

Continuous

integration
67% 33% 83% 33% 17% 0% 17% 67% 33% 0% 17% 0%

31%

CRC Cards 17% 17% 17% 0% 17% 67% 0% 0% 33% 0% 33% 17%
18%

Continuous

deployment
67% 100% 83% 0% 17% 0% 33% 50% 50% 33% 0% 0%

36%

Daily meeting

(daily scrum or

stand up)

0% 50% 0% 50% 50% 67% 0% 17% 0% 0% 33% 33%

25%

Definition of

done
83% 17% 50% 17% 0% 17% 67% 33% 33% 33% 33% 0%

32%

Definition of

ready
50% 33% 83% 33% 0% 17% 17% 17% 33% 17% 17% 0%

26%

Estimation 0% 0% 17% 67% 33% 50% 0% 33% 0% 0% 17% 33% 21%

Exploratory

testing
17% 50% 17% 33% 33% 17% 33% 17% 17% 17% 0% 0%

21%

Facilitation 17% 0% 17% 50% 50% 50% 0% 17% 17% 0% 33% 17% 22%

Frequent

releases
67% 50% 50% 0% 33% 0% 33% 0% 17% 17% 0% 0%

22%

Given-when-

then
0% 0% 0% 50% 17% 33% 33% 0% 0% 0% 0% 0%

11%

Heartbeat

retrospective

(sprint/iteration

retrospective)

17% 0% 0% 0% 33% 50% 17% 0% 17% 0% 33% 50%

18%

Information

radiators
17%

17%

17%
17% 17% 33% 33% 0% 0% 17% 0% 17% 0%

14%

Integration 0% 17% 0% 0% 33% 17% 33% 0% 33% 0% 0% 0% 11%

Invest acronym

INVEST
0% 0% 17% 17% 0% 17% 0% 0% 33% 0% 0% 0%

7%

Iteration/sprint 50% 33% 50% 33% 17% 0% 33% 17% 0% 0% 0% 17%
21%

67

Iterative

development
17% 50% 33% 33% 0% 17% 33% 17% 0% 17% 0% 0%

18%

Incremental

development
0% 17% 67% 17% 17% 17% 50% 17% 0% 0% 0% 0%

17%

Kanban board 0% 33% 33% 17% 33% 33% 17% 17% 0% 17% 33% 0%
19%

Lead time/cycle

time
50% 0% 67% 17% 0% 0% 17% 33% 0% 17% 17% 0%

18%

Milestone

retrospective
17% 0% 0% 50% 0% 17% 0% 0% 0% 0% 0% 50%

11%

Mock objects 0% 0% 17% 0% 0% 0% 17% 0% 33% 0% 17% 0% 7%

Niko Niko

calendar (mood

board)

17% 0% 0% 0% 33% 33% 0% 17% 0% 0% 17% 17%

11%

Pair

programming
0% 0% 17% 0% 17% 33% 0% 17% 33% 17% 17% 0%

13%

Personas 50% 0% 0% 33% 0% 0% 0% 0% 0% 0% 0% 0% 7%

Points (estimate

in)
0% 33% 0% 0% 17% 33% 0% 17% 0% 17% 17% 0%

11%

Planning poker 0% 33% 0% 0% 0% 33% 0% 17% 0% 17% 17% 0%
10%

Project

chartering
17% 17% 33% 33% 0% 33% 17% 0% 17% 0% 17% 0%

15%

Quick design

session
17% 0% 0% 17% 17% 17% 17% 0% 33% 17% 33% 17%

15%

Refactoring 0% 0% 17% 0% 0% 0% 0% 17% 67% 33% 17% 0% 13%

Relative

estimation
0% 0% 17% 17% 17% 33% 0% 0% 0% 0% 17% 0%

8%

Role-feature

reason
0% 0% 0% 17% 17% 33% 0% 17% 0% 0% 0% 0%

7%

Rules of

simplicity
0% 0% 0% 17% 0% 0% 0% 0% 17% 50% 33% 17%

11%

Scrum of

scrums
17% 17% 17% 17% 0% 17% 0% 0% 0% 0% 17% 0%

9%

Simple design 17% 0% 0% 0% 0% 0% 17% 0% 0% 50% 17% 0%
8%

Sign up for

tasks
17% 17% 0% 17% 50% 17% 0% 17% 0% 17% 33% 0%

15%

Story splitting 33% 17% 17% 17% 0% 0% 17% 17% 0% 33% 0% 0% 13%

Story mapping 17% 17% 0% 0% 0% 0% 17% 0% 0% 17% 0% 0%
6%

Sustainable

pace
17% 17% 0% 17% 17% 0% 0% 33% 0% 0% 0% 0%

8%

Task board 17% 17% 33% 0% 17% 50% 17% 0% 0% 0% 17% 0% 14%

68

Test-driven

development

(TDD)

33% 0% 33% 0% 0% 0% 33% 0% 50% 0% 0% 0%

12%

Team (whole) 17% 0% 0% 17% 50% 17% 17% 17% 0% 0% 33% 0% 14%

Team room 33% 17% 0% 17% 17% 67% 0% 0% 0% 0% 33% 0% 15%

Three C’s 17% 17% 0% 17% 0% 50% 0% 0% 0% 17% 17% 0% 11%

Three questions 0% 50% 0% 17% 17% 33% 0% 0% 0% 33% 17% 17%
15%

Time-box 17% 33% 17% 0% 17% 0% 17% 17% 0% 17% 0% 0% 11%

User stories 17% 33% 17% 17% 0% 0% 17% 17% 0% 17% 0% 0% 11%

Usability testing 33% 33% 33% 17% 0% 17% 0% 17% 17% 0% 0% 0%
14%

Ubiquitous

language
17% 0% 17% 33% 0% 33% 0% 0% 33% 0% 17% 0%

13%

Unit testing 33% 0% 17% 17% 0% 0% 50% 0% 50% 0% 0% 0% 14%

Velocity 17% 17% 17% 17% 0% 0% 0% 17% 0% 0% 17% 17% 10%

Version control 17% 0% 33% 17% 0% 0% 17% 0% 50% 0% 17% 0
13%

Average rate per

principle 23% 21% 22% 19% 15% 20% 15% 12% 16% 9% 14% 6%

Table 11: Practice support for each agile principle

Table 11 indicates that some practices support certain principles very strongly, while some are

barely based on any principle. There is no single practice that doesn’t support any of 12 principles,

indicating that all the listed practices are more or less based on at least one agile principle, which is

itself a positive finding. On the other hand, the choices of experts strongly differ and therefore make

it difficult to make final conclusions. However, some practices received more vote than the others.

Initial impression is that first list of practices are more supportive than the practices placed in other

sheets; one possible explanation could be that respondents were more enthusiast in the beginning

and then got bored of this long list of practices and have done it more quickly at the end.

According to the table 11, Principle 1, which reads as “Our highest priority is to satisfy the customer

through early and continuous delivery of valuable software”, is strongly supported by the following

practices: acceptance tests, ATDD, automated build, continuous integration, continuous

deployment, definition of done, and frequent releases. The practices that moderately support

Principle 1 are backlog grooming, BDD, burndown chart, Definition of ready, Iteration/sprint, Lead

time/cycle time, Personas, Story splitting, Test-driven development (TDD), Usability testing, and

Unit testing.

69

Moreover, Principle 2, which reads as “Welcome changing requirements, even late in development;

Agile processes harness change for the customer's competitive advantage”, is strongly supported

by the practices of ATDD, Backlogs, Backlog grooming. Alternatively, moderate support is given by

Automated build, BDD, Burndown Chart, Continuous integration, Daily meeting, Definition of ready,

Exploratory testing, Frequent releases, Information radiators, Iteration/sprint, Iterative development,

Kanban board, Points (estimate in), Planning poker, Three questions, Time-box, User stories, and

Usability testing to Principle 2. The only practice/principle match in entire mapping that got

exceptional support level is Continuous deployment / Principle 2. All experts agreed on the claim

that practice of continuous deployment supports Principle 2.

On the other hand, Principle 3, which reads as “Deliver working software frequently, from a couple

of weeks to a couple of months, with a preference to the shorter timescale”, is strongly supported

by Automated build, Continuous integration, Continuous deployment, Definition of ready,

incremental development, and Lead time/cycle time. Meanwhile, moderate support level is

achieved by Acceptance tests/functional test, ATDD, Backlog grooming, Burndown Chart,

Collective code ownership, Definition of done, Frequent releases, Iteration/sprint, Iterative

development, Kanban board, Project chartering, Task board, TDD, and Usability testing. All these

practices enable to deliver working software frequently with shorter timescale.

According to the mapping, Principle 4, which reads as “Business people and developers work

together daily throughout the project”, is achieved through the implementation of following

practices: surprisingly, there is no practice that strongly supports this principle. Moderate support

level for this principle is found in Acceptance tests/functional test, ATDD, Backlogs, Backlog

grooming, BDD, Burndown Chart, Continuous integration, Daily meeting, Definition of ready,

Estimation, Exploratory testing, Facilitation, Given-when-then, Iteration/sprint, Iterative

development, Milestone retrospective, Personas, Project chartering, and Ubiquitous language.

Also for Principle 5, which reads as “Build projects around motivated individuals; give them the

environment and support they need, and trust them to get the job done”, there are also no practices

which support this principle strongly. Backlogs, Collective code ownership, Daily meeting,

Estimation, Exploratory testing, Facilitation, Frequent releases, Heartbeat retrospective, Information

radiators, Integration, Kanban board, Niko Niko calendar, Sign up for tasks, and Team (whole)

support this principle at a moderate level. It is remarkable that most of these practices got 3 votes

and are indeed very useful for building motivated teams, while supporting and trusting them.

70

Next, there are only two practices that strongly support Principle 6, which reads as “The most

efficient and effective method of conveying information to and within a development team is face-to-

face conversation”, and they are Daily meeting and Team room. Otherwise, moderate support for

face-to-face conversation principle comes from Acceptance tests, Backlogs, Backlog grooming,

Collective code ownership, CRC Cards, Estimation, Facilitation, Given-when-then, Heartbeat

retrospective, Information radiators, Kanban board, Niko Niko calendar, Pair programming, Points

(estimate in), Planning poker, Project chartering, Relative estimation, Role-feature reason, Task

board, Three C’s, Three questions, and Ubiquitous language. Furthermore, Principle 7, which reads

as “Working software is the primary measure of progress”, is strongly supported only by practice of

Definition of done. However, many practices support it at a moderate level, such as Acceptance

tests, Automated build, Burndown Chart, Continuous deployment, Exploratory testing, Frequent

releases, Given-when-then, Integration, Iteration/sprint, Iterative development, incremental

development, TDD, and Unit testing.

For Principle 8, which reads as “Agile processes promote sustainable development; the sponsors,

developers and users should be able to maintain a constant pace indefinitely”, no strongly

supporting practices is found. Alternatively, moderate support is achieved by Automated build,

Continuous integration, Continuous deployment, Definition of done, Estimation, Lead time/cycle

time, Sustainable pace. On the other hand, Principle 9, which reads as “Continuous attention to

technical excellence and good design enhances agility”, is strongly supported quite logically by

Refactoring. Moderate support for this principle is given by ATDD, Automated build, Collective code

ownership, Continuous integration, CRC Cards, Continuous deployment, Definition of done,

Definition of ready, Integration, Invest acronym INVEST, Mock objects, Pair programming, Quick

design session, TDD, Ubiquitous language, Unit testing, Version control.

According to the mapping, Principle 10, which reads as “Simplicity the art of maximizing the amount

of work not done is essential”, has no strong support from any of the practices. however, it is

moderately supported by Continuous deployment, Definition of done, Refactoring, Rules of

simplicity, Simple design, Story splitting, Three questions. Principle 11, which reads as “The best

architectures, requirements and designs emerge from self-organizing teams”, also doesn’t have

any strongly supporting practices. Daily meeting, Definition of done, Facilitation, Heartbeat

retrospective, Kanban board, Quick design session, Rules of simplicity, Sign up for tasks, Team

(whole), Team room provide moderate support. Finally, Principle 12, which reads as “At regular

intervals, the team reflects on how to become more effective, then tunes and adjusts its behaviour

71

accordingly”, is moderately supported by Daily meeting, Estimation, Heartbeat retrospective,

Milestone retrospective.

The further analysis is done to find out the average rate of each principle in order to determine how

supportive they are in general and it is displayed also in Table 11. However, it should be kept in

mind that this measurement can be misleading as sometimes one principle strongly supports one

or two principle which is quite logical and normal, while the average rate includes other

unsupported principles also into account. Therefore, such a high level of deviation doesn’t give

accurate picture. Nevertheless, as Table 11 indicates, most supportive practices are ATTD,

automated build, backlog grooming, burndown, collective code ownership, continuous integration,

continuous deployment, daily meeting, definition of done, definition of ready, and facilitation.

Moreover, according to average rate per principle, most supported principles are 1,2,3 and 6. And

least supported are 8,10, and 12.

72

5. DISCUSSION

In this chapter, the results of survey and mapping will be further discussed, analysed and compared

with the secondary data from other surveys to validate and back up own primary data. As the

descriptive statistics has been used to analyse the survey and mapping data, the discussion of the

results is also limited and cannot be generalised or can be named as confidently reliable due to the

fact that no significance tests and inferential statistics analysis has been made. It should be noted

that the mean scores, which is the main estimate used for central tendency analysis, is not tested

for significance and therefore carries limited reliability. Therefore, the analysis results should be

interpreted with caution. Moreover, the possible conclusions and answers gained from the analysis

are extremely tentative given the limited analysis depth.

Next, the classification of practices according to AgileAlliance mapping (AgileAlliance) is used to

discuss the practice implementation results. In addition, principle classification made by the author

is employed to reveal which group of principles are most supported by the practices. Furthermore,

the attempt is made to find out the actual presence degree of agile principles in agile software

development process by analysing both survey and mapping results together.

5.1. Discussion of practice implementation degree

The present study examined the implementation degree of agile practices. The bar chart of mean

scores of implementation degree per agile practices presented in Figure 11 makes it more visible to

observe the differences and compare them. It would seem that substantial differences exist among

practices on implementation degree.

Before examining the mean score comparison, it is interesting to know which practices received the

most “not applicable” votes. According to Table 8, possibly BDD, CRC Cards, Given-when-then,

Invest, Kanban board, Milestone retrospective, Niko Niko calendar, Lead/cycle time, Project

chartering, Rules of simplicity, Scrum of scrums, Three C’s, Ubiquitous language are the practices

that got more than 15% vote (the most being 34% for Scrum of Scrums) for ‘not applicable’ option

meaning that they are just not applicable to respondents agile processes.

73

 Figure 11: Mean scores of implementation for each agile practice

74

Based on Figure 11, the possible list of top 10 agile practices with the highest mean score (mostly

<=3.5) could be suggested displayed in Table 12.

Practice Implementation mean score

1. Iteration/sprint 3.79
2. Backlogs 3.70
3. Task board 3.51
4. Version control 3.51
5. Iterative development 3.50
6. Daily meeting 3.49
7.Incremental

development

3.45

8. User stories 3.38
9.Heartbeat retrospectives 3.33
10. Backlog grooming 3.23
Table 12: Top 10 agile practices with the highest mean scores

These data seem to show that the short iterations, backlogs, task boards, version control,

iterative development and daily meetings are probably the most widely practiced and almost

fully implemented by most respondents. It is worth noting that, the presence of version control

in this list is somewhat surprising as it is not an old classic of agile practices, yet is has gained

much popularity in recent times. Otherwise, the results are likely to be in line with popular agile

practices suggested in literature review. Alternatively, the list of the least implemented practices

could also be articulated based on the Figure 11. Accordingly, the following practices received the

lowest mean score of less than or about 2, which suggest that they are likely partly implemented or

almost not implemented.

 Practice Implementation mean score

1. Niko Niko calendar 1.32
2. CRC cards 1.34
3. BDD 1.57
4. ATTD 1.79
5. Rules of simplicity 1.91
6. Personas 1.97
7. Story mapping 1.97
8. Pair-programming 2.0
9. TTD 2.05
10. Simple design 2.06
Table 13: List of practices with lowest mean scores

75

Table 13 indicates that Niko Niko calendar, CRC cards, BDD, ATTD, pair programming, TTD, and

Simplicity are probably among the least implemented practices by the respondents. Some of them

such as Niko Niko calendar, ATTD, CRC cards and Personas are less known agile practices and

therefore also not widely used. On the other hand, practices such as pair programming, TTD,

simple design which are the core XP practices also appears among the list of probably least

implemented ones. As known from literature review, one of the most studied agile practices is pair

programming and it may be speculated from the survey results that it is not much popular in the

industry at all.

Equally interesting is to analyse variances in practice implementation degrees to measure how far

implementation degree choices are spread out in order to detect the ‘controversial’ practices.

Figure 14 illustrates variance measurement for each practice. It could be interpreted that, possibly

the most consistent practices are Iteration/Sprint, Backlog, Iterative development, Task Board,

Incremental development, Heartbeat Retrospectives, Backlog Grooming, Daily Meeting, frequent

releases, User stories and Unit testing with variance score lower than 1 or equal to 1, which

indicates that respondent choices for these practices tend to be close to each other and also to

mean. Alternatively, the list of the most ‘controversial’ practices might include Rules of Simplicity,

Scrum of scrums, CRC cards, three C’s, Niko Niko calendar, BDD, Role-feature-reasons, Project

chartering, ATTD, and Given-when-then with variance score of more than 2.20, which indicates that

the choices were very spread out from each other and from the mean.

Interestingly, if the mean score and variance score figures are compared for each practice, possible

correlation could be found between them. Consequently, the practices with highest mean score

also turn out to be the most consistent ones. On the contrary, the practices which have lowest

mean score have also highest variance degree which makes them more ‘controversial’ practices.

76

Figure 12: Variance of practice implementation degree

Subsequently, next step is to compare the thesis survey data with secondary data mentioned in

chapter 3 in order to back it up and possibly validate. As stated before, VersionOne’s ‘State of

Agile’ survey has its own list of most practiced agile techniques, and they are: Daily stand-up, Short

iterations, Prioritized backlogs, Iteration planning, Retrospectives, Release planning, Unit testing

(VersionOne, 2015). Although this list presents some variations, they are comparable with the

present survey results, as most of them are implemented by respondents with high mean scores.

Alternatively, the least practiced techniques according to VersionOne’s survey are Behaviour-

77

Driven Development, Agile games, Pair programming, Continuous deployment, Automated

acceptance testing, Collective code ownership, Story mapping, Kanban, and Test-Driven

Development (TDD) (VersionOne, 2015). Because less number of agile practices (25) is used for

the survey of VersionOne, it doesn’t cover all agile practices. However, some least popular agile

practices of VersionOne are indeed have lower mean score in thesis survey results, such as

Planning pocker, Continuous deployment, and some of them are even present in top 10 lowest

implemented practice list, such as BDD, TDD, Story-mapping and Pair programming, which makes

these two surveys quite comparable. Furthermore, it might be the case that VersionOne survey

could validate the results of thesis survey to a certain extent by reinforcing its results once more.

Interestingly, one practice that requires special attention is Kanban; while in VersionOne survey it

has been ranked as one of the least practiced ones, in thesis survey it is among relatively high

implemented practices with mean score of 2.85 meaning that it is mostly implemented by the

respondents. It may be speculated that a possible explanation for this is the rising popularity of

Kanban and Lean methods in recent times.

Another survey, which is conducted by Williams, defines the top 5 most essential agile practices as

following: Short iterations, Continuous integration, “Done” criteria, Automated tests are run with

each build, Automated unit testing (Cohn, 2010). In her first survey, Williams didn’t ask for

implementation degree, but only how essential is the practice for agility. That is why it is not much

comparable with the results of present survey, although it gives another overview of practices. For

example, it might be articulated that above listed practices are indeed implemented with high mean

scores according to the figure 11. Additionally, in her CA assessment survey she asked the degree

of adoption of different agile practices although with different naming and definitions than in the

thesis survey. As mentioned before, all agile statements/practices were grouped under 7

dimensions such as requirements, technical practices, quality, planning and so on (Williams L. R.,

2010). If we compare the mean scores of each group of practices to the thesis survey results, they

could presumably be called compatible. For example, in William’s survey most highly adopted

practice groups were requirements and knowledge creating (Williams L. R., 2010); in thesis survey

most implemented practices with highest mean scores also possible could belong to these

categories such as short iterations, backlogs, task boards, daily meetings, iterative/incremental

development, version control and so on. On the other hand, lowest adopted practice groups were

technical and quality practices according to William’s survey (Williams L. R., 2010); and thesis

survey suggests also similar results, for example BDD, CRC cards, ATDD, TTD, pair programming,

simplicity, etc. Hence, it might be the case that the results of two surveys are considerably

compatible with each other if it is compared at high level.

78

The last survey that could be used to back up the survey results on implementation degree of

practices is AmbySoft survey. When the results of Ambysoft survey is reflected to RQ1, it first

should be noted that as average rating calculation and practice naming is slightly different in two

surveys, the results are also less comparable. Nevertheless, the highest rated practices in

Ambysoft survey are: Iteration planning (3.54), Daily Scrum Meeting (3.29), Prioritized worklist

(3.08), High-level release planning (2.19), Coding Standards (2.30), Collective Code Ownership

(1.97), Active Stakeholder Participation (1.95), Continuous integration (1.94), Retrospectives (1.84)

and Code Refactoring (1.79) (Ambler S. V., 2008). Several practices could be found similar to the

thesis survey’s highly implemented practices, such as backlogs-prioritised worklist and daily

meetings. If looked for the least commonly used practices in Ambysoft survey: Pair programming (-

1.34), Automated Acceptance Testing (-0.87), Database regression testing (-1.03), Executable

Specs (-1.43), TDD (-0.08) (Ambler S. V., 2008). It is worth noting that only TTD and pair

programming appears in thesis survey results of least implemented practices. The summary of

comparison of 4 surveys can be brought together in Table 14. It is worth noting that the calculation

of each rate and percentage is different in every survey and therefore only the sequence and the

practice names can be compared, neither the scores nor rates:

Thesis survey (2015) VersionOne survey

(2014)

Ambysoft Survey

(2008)

Survey

Williams(2010)

Most practiced/implemented practices

1. Iteration/sprint-3.79
2. Backlogs -3.70
3. Task board - 3.51
4. Version control- 3.51
5. Iterative development -
3.50
6. Daily meeting - 3.49
7. Incremental
development-3.45
8. User stories- 3.38
9. Heartbeat
retrospectives-3.33
10. Backlog grooming -
3.23

80% Daily stand-up
79% Short iterations
79% Prioritized
backlogs
71% Iteration planning
69% Retrospectives
65% Release planning
65% Unit testing
56% Team-based
estimation
53% Iteration reviews
53% Task board

Iteration planning (3.54)
Daily Scrum Meeting
(3.29)
Prioritized worklist (3.08)
 High-level release
planning (2.19)
 Coding Standards (2.30)
 Collective Code
Ownership (1.97) Active
Stakeholder Participation
(1.95) Continuous
integration (1.94)
Retrospectives (1.84)
Code Refactoring (1.79)

1. Short iterations
(30 days or less)
2. Continuous
integration
3. “Done” criteria
4. Automated tests
are run with each
build
5. Automated unit
testing

Least practiced/implemented practices

1.Niko Niko calendar-1.32
2. CRC cards-1.34
3. BDD-1.57
4. ATTD - 1.79
5. Rules of simplicity-1.91
6. Personas-1.97

9% Behaviour-Driven
Development (BDD)
13% Agile games
21% Pair
programming
24% Continuous

Pair programming (-1.34),
Automated Acceptance
Testing (-0.87),
Database regression
testing (-1.03),
Executable Specs (-1.43),

79

7. Story mapping- 1.97
8. Pair-programming-2.0
9. TTD-2.05
10. Simple design-2.06

deployment
24% Automated
acceptance
testing
27% Collective code
ownership
29% Story mapping
31% Kanban
34% Test-Driven
Development
(TDD)
36% Refactoring

TDD (-0.08).

Table 14: Comparison of the results of all surveys on agile practices

The more high level analysis of practices by grouping them into different clusters delivers another

set of valuable results. As it is mentioned in previous chapters, the AgileAlliance has mapped all 60

practices in 6 different categories. Some of them are agile methods, while others are development

phases: Extreme Programming, Scrum, Lean, Teams, Product management, Devops, Design,

Testing, and Fundamentals (AgileAlliance). The full mapping is shown in literature review chapter.

Accordingly, the mean score for each category could be calculated to see the possible comparative

implementation degree of each separate category. This comparison is presented in Figure 13.

Figure 13: Implementation mean scores for each practice category

The data seem to show that the highest implementation degree might be observed in practice

group of Fundamentals which includes 3 core agile practices: incremental development, iterative

development and version control. The next highest score belongs to Scrum cluster. This finding

reinforces the view that Scrum is the most used agile method (VersionOne, 2015) and therefore its

practices are also widely implemented in the industry. Third most implemented group of practices

2.86 3.08
2.79

2.52 2.68 2.90

2.19 2.35

3.40

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00

Mean Scores for each Category

80

seems to be Devops, which is very new but fast growing agile method. Interestingly, it is even not

mentioned in any academic literature and obviously under researched. However, being possibly the

third highest implemented group of practices and presumably scoring even slightly higher than the

old classic agile method XP suggest that Devops are getting popular in the industry. The lowest

implementation score seems to belong to the Design and Testing cluster. Those technical practices

are probably the least implemented ones among the respondents; likewise this fact is also

supported by the survey results of Williams.

Equally interesting is the analysis of implementation mean score data with regard to Meyer’s critical

classification of practices which has been elaborated in the chapter 2. Table 15 suggests that the

implementation degree of each category correlates with its usefulness criteria of Meyer.

Accordingly, the least implemented practice group is ‘bad’ practices, while the most implemented

one is ‘brilliant’ practices which Meyer considers the most useful and novel contribution of ASD to

the software development world. Meyer might be content to hear these results as it suggests that

the industry indeed has chosen and implement the most useful practices.

Meyer’s practice classification Mean score

‘bad’ practices 2.47
‘hype’ practices 2.59
‘good’ practices 3.21
‘brilliant’ practices 3.29
Table 15: Implementation degree of practice classification of Meyer

5.2. Discussion of principle importance degree

Generally, the survey data seem to suggest that all principles are considered important by the

respondents, as the most of the mode for the principles are either 5 or 6 which means important or

very important. Possibly 8 of 12 principles seem to be considered important/very important by only

more than 60% of respondents which itself is not so high percentage compared to William’s survey

where she claimed that 11 of 12 principles had at least 80% of the respondents giving the principle

a rating of 4 or 5 (out of 1-5 scale) (Hastie, 2010). According to the survey results, the following

mean scores of importance per principle is calculated. It is worth reminding that the mean score is

not tested for significance and therefore carries limited reliability.

81

Figure 14: Mean scores of importance degree for each agile principle

As figure 14 suggests, mean scores fluctuate between 5.18 and 4.36 which means between ‘partly

important’ and ‘important’. It might be the case that the respondents consider principle 1 and 3

possibly as the most important agile principles. What this seems to indicate is that respondents

value customer satisfaction and frequent delivery the most in what we call agile. The third most

important principle might be 12 on continuous improvement/retrospectives, and the next one could

be principle 6 on face-to-face communication. It should be noted that the last principle is evaluated

by fewer respondents than the others and therefore the higher mean score here can be misleading.

Therefore, it may be speculated that the principle 6 might be actually the third most important one,

and principle 5 on motivated individuals could possibly be the fourth. Alternatively, data seems to

show that principles on sustainable pace (8), simplicity (10), and self-organizing teams/emergence

(11) are considered least important ones by the respondents. Interestingly, principle 2 on

welcoming change seems to have middle importance for respondents since it hold 6th place on

importance ranking. This is somewhat surprising because from the literature review it has been

observed that the one of the most essential feature of agility was its ability to react change quickly,

while it might be the case that practitioners don’t value this feature as it should be. Instead,

satisfying customer, delivering frequently and continuous improvement and/or face-to-face

communication are possibly the most valued agile features and principles.

If the thesis survey results are compared with the William’s first survey, it is observed that her list of

top five important principles corresponds to the results of present survey. According to her survey,

the most important principles were on customer satisfaction (principle 1), working software (7),

5.18

4.77

5.08

4.56

4.87 4.90
4.74

4.36

4.69

4.38 4.41

4.93

3.80
4.00
4.20
4.40
4.60
4.80
5.00
5.20
5.40

Mean

82

deliver frequently (3), motivated individuals (5), and continuous improvement/retrospectives (12)

(Cohn, 2010). The only principle that deviates from the thesis survey results is principle 7 on

working software. Overall, the thesis survey results on principle importance reflect William’s survey.

Additionally, it is interesting to analyse the principle importance data according the classification of

principles mentioned in the literature review chapter. If the mean scores per category are

calculated, it would seem that the highest importance rate presumably belongs to working software

and customer satisfaction related principle groups. The lowest importance could be given to

quality/technical related principles. Table 16 presents the whole list of categories and

corresponding mean scores.

Principle groups Mean

scores

Team/organizational 4.69
Working software 5.00
Collaboration 4.79
Quality/technical 4.60
Customer satisfaction 4.97
Table 16: Mean scores of importance per principle category

5.3. Discussion of the presence of principles in agile development

Considering that the practice implementation degree, principle importance degree and

principle/practice mapping has been analysed, the next step is to find out the presence of agile

principles in ASD process. It could be done through: first, by determining the list of practices that

most supports each agile principle from the mapping; and then, by calculating the mean score for

each principle to define how principles are practiced. Finally, the principle importance degree mean

scores will be compared the principle practicing mean scores to determine if they correspond to

each other. One should keep in mind that, all those calculations are done without significance

testing and are therefore highly tentative and with limited interpretation possibilities.

In this regard, the list of most supportive practices per principle has been determined based on

mapping table in analysis chapter and the same list is used to calculate the principle practicing

mean score per principle. It is vitally important to note that when there is strongly supporting

practices, only they were taken into account to calculate the mean score, otherwise only moderate

supporting practices per principle have been collected for mean score calculation. Therefore,

sometimes if there is only a few strongly supporting practices, the mean score can be high and it is

also misleading. Accordingly, the mean scores are calculated and presented in Figure 14.

83

Figure 15: Average mean scores of agile practices supporting each agile principle – principle presence

These principle presence mean scores might be the actual proof of how far the principles are

practiced through agile practices. The data displayed in Figure 15 seem to suggest that, possibly

the most present principles in ASD process are the ones on face-to-face communication (6), on

continuous improvement (12) and on working software (7) according to the calculated mean scores.

On the other hand, it is likely that the respondents adhere to the principles of 1, 4, and 10 the least

of all. These results could be analysed per category groups of principles mentioned above to gain

more high level insight. As Table 17 displays, although mean scores are very close to each other,

the analysis seems to show that the most practiced group of principles might be

collaboration/communication and team/organizational related ones. The least adhered principle

cluster is likely to be customer satisfaction related principles which suggests that possibly these

principles are used less than others.

Principle groups Mean scores

Team/organizational 2.970
Working software 2.85
Collaboration/communication 2.973
Quality/technical 2.863
Customer satisfaction 2.82
Table 17: Mean scores of principle presence per category

2.72

2.92
2.85

2.73

2.91

3.18

2.98

2.83
2.93

2.68

2.87

3.06

2.4
2.5
2.6
2.7
2.8
2.9

3
3.1
3.2
3.3

Principle Practicing mean score

84

5.4. Discussion of perceptions vs. realities on agile principles’ importance and

presence

Afterwards, the principle importance mean scores are included into the analysis in order to make an

attempt to compare the perceptions and the reality. However, it is worth noting that the mean score

for principle importance is calculated based on the 6-point Likert scale, while implementations

mean score is based on 4-point Likert scale. This makes it difficult to do accurate comparisons

based on numbers. Therefore, only the ranking order of principles in both of the mean scale charts

might be compared and analysed. Table 18 illustrates this comparison.

Rank Principle presence mean score

ranking/sequence

Mean

score

Principle importance mean

score ranking

Mean

score

1. 6. Face-to-face communication

3.18

1.Customer
satisfaction/frequent delivery

5.18

2. 12. Continuous
improvement/retrospective

3.06

3. Deliver frequently with
shorter timescale

5.08

3. 7. Working software as a measurement
of progress

2.98

12. Continuous
improvement/retrospective

4.93

4. 2. Welcome change

2.92

6. Face-to-face
communication

4.90

5. 5. Support and trust motivated
individuals

2.91

5. Support and trust
motivated individuals

4.87

6. 11. Self-organising teams 2.87

2. Welcome change 4.77

7. 3. Deliver frequently with shorter
timescale

2.85

7. Working software as a
measurement of progress

4.74

8. 9. Technical excellence/good design

2.84 9. Technical excellence/good
design

4.69

9. 8. Sustainable, constant pace 2.83

4. Business and developers'
daily collaboration

4.56

10 4. Business and developers' daily
collaboration

2.73

11. Self-organising teams

4.41

11. 1. Customer satisfaction/frequent
delivery

2.72

10. Simplicity 4.38

12. 10. Simplicity 2.68

8. Sustainable, constant pace 4.36

Table 18: Comparison of agile principles' importance degree with its presence degree

Table 18 might be helpful to grasp the differences in perceptions and reality on agile principles on a

very high level and with tentative reservations. What the ranking comparison seems to indicate is

85

that respondents’ adherence to what they consider important might not be consistent at all.

Analysis reveals that while they possibly give the most importance to the principle 1, the

implementation of the same principle suggests the opposite results: the same respondents are

likely to implement it in one of the lowest degree - it appears as 11th among 12 principles. The data

indicates that the most widely practiced agile principle might be the one which is about face-to-face

communication (6). The importance and presence of principle 12 could be comparable which

suggests that respondents presumably adhere to this agile principle at the same degree as they

claim it to be important. Another notable result belongs to principle 7. While it is considered not so

highly important principle, it might be actually implemented with the third highest mean score of

practices; that indicates higher implementation but middle importance. The data seem to show that

the principle 2 on welcoming change is also more present in agile development process than it is

considered to be important. On the other hand, Principles 5 and 9 hold the same place in both of

the rankings which suggests that respondents adhere to these principles possibly at the same

degree as they claim them to be important; in other words, their perceptions corresponds to their

actual work process. Similar results might be stated for principles 4 and 10; respondents adhere to

them more or less as strongly as they claim them to be important.

It is worth noting that, while principle 3 on frequent delivery is claimed to be the second most

important principle, it is present in agile development process in less degree; that indicates lower

presence but higher importance. Moreover, this result seems to be also inconsistent with the

demographics results of survey where majority of respondents (about 90%) stated that they use

short iteration/sprint (2-4 weeks) in their ASD, which indicates that they indeed follow the practices

regarding principle 3. Therefore, it is somewhat surprising to conclude such low rate results. On the

other hand, one possible explanation to this result can be the rising popularity of Lean/Kanban

method whereby no iteration or sprint is used; instead continuous improvement is the central

concept. The reactions of some respondents support this idea: they claimed that, in fact, there is no

iteration in their process; they work with continuous-pull process where stories can take from

couple of hours to weeks to complete.15

On the other hand, the practices that support principle 8 on sustainable pace is presumably

implemented more frequently than they are considered to be important, the result is lower

importance but higher implementation. Generally, this unique table of both implementation and

importance degree of principles seems to provide quite remarkable insights on the issue of

perceptions vs. reality. It reveals that, possibly only 5 principles have the same or similar

15 Personal e-mail communication with respondents

86

corresponding implementation and importance mean scores. At least 3 principles (1, 3, and 7) are

likely to have totally opposite places in presence and importance ranking which provide support for

the view that respondents do not follow the practices that support the principles which they consider

most important. The rest of the principles also seem to show variances but with less difference

degree.

The more high level analysis could be discussed by comparing the presence/importance mean

scores for principle categories specified before. As comparison of Tables 14 and 15 indicates, it

might be the case that, while the most important principle groups were presumably working

software and customer satisfaction related, the most practiced/present principle groups are appears

to be totally different ones: collaboration/communication and team/organizational related principles.

That reveals a refreshing and concerning view of reality, since it suggests that there is likely to be

some missing link between perceptions and realities. It could be interpreted in different ways: First,

as one respondent stated in personal communication, agile practitioners are not aware of agile

principles; they apply just practices mechanically and don’t know the behind values and principles,

but consider themselves as agile teams. In fact, this argument is a concern of several respondents

who argued that most agile teams have no agile mindset and go for only mechanical practices

which they find interesting. They further claim that agile development should be first and foremost

about the mindset and values of agile rather than a bunch of practices. 16 In fact, this view is also

supported by Medinilla (2012) from literature review. Second, alternatively, it could be something

experimental that deserves special attention for further research.

16 Ibid.

87

6. CONCLUSION

In this chapter all works performed in this thesis is summarized by revisiting each of research

question. It presents the observation drawn from the results by providing answers to the research

questions. Hence, the analysis parts derived from the results are mainly used to define answers for

the research objectives. Finally, the implications and limitations of this research are presented with

focus on industrial practice and research, which includes future work in this area.

6.1. Research questions revisited

After analysing and discussing the primary and secondary data, the research questions could be

now answered with better insights. The brief discussion of each research question follows as:

RQ1. What is the implementation degree of agile practices among practitioners?

The study indicates that implementation degree of agile practices vary with each practice, with the

most widely implemented practices probably being Iterations, backlogs, iterative/incremental

development, task boards, and version control. Possibly, the least implemented practices belong to

technical and design practices and include Niko Niko calendar, CRC cards, Simplicity, BDD, TTD,

Pair programming and others. Additionally, if it is analyzed from the AgileAlliance categories’ point

of view, the most implemented practice group is likely to be Fundamentals and Scrum, while the

least implemented ones might be Design and Testing. Furthermore, Meyer’s ‘bad’ practices scored

lowest degree of implementation, while ‘brilliant’ ones seem to be the most implemented practice

group among all 4 usefulness categories of Meyer. Finally, the results of thesis survey were

compared with and backed up by the secondary data from other surveys and it has been observed

that, overall, thesis study seems to reflect the previous findings with slight variances.

RQ2. How important are agile principles for practitioners?

The thesis survey results seem to show that merely 8 of 12 agile principles are considered to be

important/very important by only slightly more than half of the respondents which might indicate the

not so high level of support for agile principles among practitioners. Another possible explanation

for the lower importance of principles may be that practitioners are not aware of them at all. This

could reinforce the view that agile mindset turns out to be not the most important thing in the

current industry practice. Moreover, the degree of importance differs per principle. Most important

principles for practitioners are likely to be the principles on customer satisfaction, frequent delivery,

face-to-face communication and continuous improvement (1, 3, 6, 12), whereas possibly the least

important ones are principles 8, 10, 11. If analyzed through the lenses of categories, respondents

88

seem to value the principles related to working software and customer satisfaction the most, while

they presumably give less importance to principles related to quality/technical.

RQ3. What kind of correlation exists between agile practices and principles? In which

degree do agile practices based on /support agile principles?

The correlational data would suggest that all agile practices listed in this thesis may support/be

based on at least one agile principle. However, the degree of support is likely to vary greatly

depending on the principle and practice. The table x presents it more visible with color-coded

percentage of support. It is worth noting that possibly continuous deployment exceptionally

supports the principle 2 on welcoming the change, which is the only principle/practice match that

had 100% support vote. However, the implementation degree of this particular practice seems to be

not so high (2.20 mean score) being near to ‘partly implemented’ range, while one would expect it

to be one of the most implemented practices since it presumably supports so strongly one of the

important principles. The list of practices presumably matching each principle is also discussed in

detail in previous sections.

RQ4. Are agile principles, which are perceived to be important, also with the same

degree actually present in agile software development process of practitioners through

supporting practices?

This research question concludes all other research questions by using their results as an input for

analysis. Hitherto the degree of implementation of agile practices is likely to be known, the

perceived importance degree of agile principles is examined and the support degree of practices for

each principle is discussed. What remains is to analyze them together to examine if the perceived

importance level of principles is the same as the presence level of principles. Accordingly, the

answer to this research question seems to be complicated. If it is evaluated per principle, answers

‘yes’ could be found for some principles which might suggest that for certain agile principles there is

obviously overlap between the degree of principle importance and degree of principle practice; in

other words, adherence to principles correspond to their importance level. Alternatively, if analyzed

per category, unfortunately, more contradictory view seems to be found, hence predominately

answers ‘no’ occur. That indicates possible inconsistencies, since the adherence to principles

which is perceived to be important seems to be not in equal level: practitioners seem to follow in

less degree what they find important. It is somewhat surprising that they possibly give importance

to one group of principles, while the implementation degree of practices seems to indicate that

totally another group of principles are more present in their ASD process. This potential mismatch

89

is particularly important to reveal the possible dynamics in agile development process in terms of

agile mindset/values vs. agile practices debate. As mentioned earlier in discussion part, it may be

speculated that this is probably so because practitioners are likely to be less aware of principles

and values of agile development and hence more busy with only applying the practices

mechanically.

6.2. Limitations of this study

There were three main limitations in this study. First, the scope of the research is limited only to

presence and importance of agile principles and therefore do not include other agile topics such as

success factors, or the scaling of agile development. Furthermore, selected research methods

come with their own limitations and concerns which have been discussed in chapter 3. The second

limitation is that while quantitative research strategy makes it more possible to generalize the

results to larger agile practitioners’ groups, the low response rate of survey limits this possibility and

becomes a threat to the study’s validity. On the other hand, the survey data is supported by

relevant secondary data from other related surveys and therefore acquires more validity in this

sense. Finally, third limitation concerns the analysis of the collected data. As mentioned before,

only descriptive statistics has been used to analyse the data, thereby without conducting any

statistical significance tests and inferential analysis which on its turn may have influenced the

broader and deeper analysis of the data. However, as it is discussed shortly, it opens up new

opportunities for further research.

6.3. Implications for the industry and for further research

Two possible practical implications for the industry may emerge from this study. Most of the time it

seems that practitioners don’t implement the same principles that they find important and it creates

concerns on the priorities and the missing link between the principles and practices. Clearly, steps

should be taken to ensure that they consider better while choosing the practices, because

sometimes what they choose doesn’t support what they find important and they should better find

out the exact practices they need as they consider important and then apply them in order to

become agile. Additionally, the agile principle/value awareness should be more endorsed, as study

results on inconsistencies between agile principle importance degree and presence degree may

provide further evidence of the fact that value/mindset awareness might be the missing link in agile

development process.

Alternatively, the study creates many thought-provoking opportunities for future academic research.

There is few research conducted on ASD, and hardly any study on presence and importance of

90

agile principles, therefore the further investigation on the topic could reveal various undiscovered

issues. The thesis has paved the way for correlating agile principles and practices and for

determining the perceived importance and the real presence of agile principles in agile software

development process. Hence, this could be starting a point to further examining the subject.

Indeed, a promising line of study would be to investigate the reasons behind such results gained in

the thesis. Furthermore, the agile methods dimension of the issue can widen up the study and give

more interesting insights with particular emphasis on method mixing, dynamics behind such mixture

choices and so on. Since this is a first explorative study on this specific issue, it could be deepened

and broadened further with more large pool of respondents and with more complicated

analysis tools. Henceforth, the research could form the basis for subsequent longitudinal

studies. Last but not least, the debate of principles vs. practices, agile mindset vs. agile

practices is also a very intriguing issue to further research on. What are the implications: better

first learn principles and then apply practices that truly support the core value of agile or just

implementing some principles makes it enough to be agile? Further research could be conducted

on this essential question.

x

7. Bibliography

Abrahamsson, P. C. (2009). Lots done, more to do’: the current state of agile systems development

research. European Journal of Information Systems, 18, 281-284.

Abrahamsson, P. S. (2002). Agile software Development: Review and Analysis. VTT.

Abrahamsson, P. W. (2003). New directions on agile methods: a comparative analysis. Software Engineering,

244 - 254.

Ågerfalk, P. a. (2006). Flexible and Distributed Software Processes: Old Petunias in New Bowls?

Communications of the ACM, 27-34.

AgileAlliance. (n.d.). Guide to Agile Practices. Retrieved July 15, 2015, from AgileAlliance:

http://guide.agilealliance.org/

Ambler, S. (2002). Agile Modeling: Effective Practices for eXtreme Programming and the Unified Process.

New York: John Wiley & Sons, Inc.

Ambler, S. V. (2008). Agile Practices and Principles Survey. Retrieved June 16, 2015, from

www.agilemodeling.com/surveys/

Barlow, J. e. (2011). Overview and Guidance on Agile Development in Large Organizations. Communications

of the Association for Information Systems, 29.

Beck, K. ,. (2005). Extreme Programming Explained: Embrace Change. Boston: Addison-Wesley.

Bermejo, P. Z. (2014). Agile principles and achievement of success in software development: A quantitative

study in Brazilian organizations. Procedia Technology, 718 – 727.

Boehm, B. (2002). Get ready for agile methods, with care. Computer, 35(1), 64–69.

Boehm, B. T. (2003). Balancing Agility and Discipline: A Guide for the Perplexed. Boston: Addison-Wesley

Longman Publishing Co.

Boehm, B. T. (2005). Management Challenges to Implementing Agile Processes in Traditional Development

Organizations. IEEE Software, 30-39.

Bryman, A. (2004). Social Research Methods. New York: Oxford University Press.

Chow, T. C. (2008). A survey study of critical success factors in agile software projects. The Journal of

Systems and Software, 81, 961–971.

Coad, P. D. (1999). Java Modeling in Color. Englewood Cliffs, NJ: Prentice.

xi

Cockburn, A. (2001). Agile software development. Boston: Addison-Wesley.

Cockburn, A. (2001). Crystal Clear: A Human-Powered Software Development Methodology for Small Teams.

Reading, MA: Addison-Wesley.

Cockburn, A. (2007). Agile Software Development: The Cooperative Game. Addison-Wesley.

Cockburn, A. H. (2001). Agile software development: The business of innovation. IEEE Computer, 120-122.

Cohen, D. L. (2004). An Introduction to Agile Methods. ADVANCES IN COMPUTERS.

Cohen, D. L. (2004). An Introduction to Agile Methods. Advances in Computers, 62.

Cohn, M. (2010, June 17). What Does It Mean to Be Agile? Retrieved June 17, 2015, from

https://www.mountaingoatsoftware.com/blog/what-does-it-mean-to-be-agile

Conboy, K. (2009). Agility from First Principles: Reconstructing the Concept of Agility in Information Systems

Development. Information Systems Research, 329 - 354.

Conboy, K. F. (2007). The Views of Experts on the Current State of Agile Method Tailoring. In Organizational

Dynamics of Technology-Based Innovation: Diversifying the Research Agenda (pp. pp 217-234). US:

Springer.

Couper, M. P. (2000). Web Surveys: A Review of Issues and Approaches. The Public Opinion Quarterly, 64,

464-494.

Creswell, J. W. (2003). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches.

Thousand Oaks: Sage Publications.

Descriptive Statistics. (n.d.). Retrieved June 20, 2015, from Research methods knowledge base:

http://www.socialresearchmethods.net/kb/statdesc.php

Dingsøyr, T. D. (2010). Agile Software Development: Current Research and Future Directions.

Berlin/Heidelberg: Springer.

Dingsøyr, T. N. (2012). A decade of agile methodologies: Towards explaining agile software development.

The Journal of Systems and Software, 85, 1213– 1221.

Dybå, T. D. (2008). Empirical studies of agile software development: a systematic review. Information and

Software Technology, 50, 833–859.

Dybå, T. D. (2009). What Do We Know about Agile Software Development? IEEE Software, 6-9.

Erickson, J. L. (2005). Agile Modeling, Agile software development, and extreme programming: the state of

research. Journal of Database Management, 16(4), 88–100.

Fogelström, N. T. (2010). The impact of agile principles on market-driven software product development.

Journal of Software Maintenance and Evolution: Research and Practice, 53–80.

xii

Fowler, M. H. (2001). The Agile Manifesto.

Glass, R. J. (2001). Agile versus Traditional: make love not war. Cutter IT Journal, 12-18.

Hastie, S. (2010, June 25). What does it mean to be Agile - survey results. Retrieved June 17, 2015, from

http://www.infoq.com/news/2010/06/what-means-agile-survey

Highsmith, J. (2002). Agile Software Development Ecosystems. Boston: Addison-Wesley.

Highsmith, J. (2010). Agile Project Managent: Creatinng Innovative Products. Boston: Pearson Education.

History: The Agile Manifesto. (2001). Retrieved March 24, 2015, from Agile Manifesto:

http://agilemanifesto.org/history.html

HP, L.P. (2015, May). Agile is the new normal.

Jalali, S. a. (2010). Agile practices in global software engineering-a systematic. Global Software Engineering

(ICGSE), 2010 5th IEEE International Conference, (pp. 45–54).

Kalermo, J. R. (2002). Agile Software development in theory and practice.

Kongyai, B. E. (2011). Adaptation of Agile Practices:A Systematic Review and Survey.

Larman, C. B. (2003). Iterative and Incremental Development: A Brief History. IEEE Computer Society, 47-56.

Livari, J. M. (1998). The usage of systems development methods: Are we stuck to old practices? Information

Software Technology, 501–510.

Lyytinen, K. R. (2006). Information system development agility as organizational learning. European Journal

of Information Systems, 183–199.

Martin, R. (2014). Agile Software Development, Principles, Patterns, and Practices: Pearson New

International Edition. Essex: Pearson Education Limited.

Medinilla, A. (2012). Agile Management Leadership in an Agile Environment. Berlin Heidelberg: Springer.

Meyer, B. (2014). Agile! The Good, the Hype and the Ugly . Berlin: Springer.

Misra, S. K. (2009). Identifying some important success factors in adopting agile software development

practices. Journal of Systems and Software, 1869-1890.

Muijs, D. (2004). Doing Quantitative Research in Education with SPSS. Sage Publications.

Nerur, S. M. (2005). Challenges of migrating to agile methodologies. Communications of the ACM, 72-28.

Neuman, L. (2011). Social Research Methods.

Poppendieck, M. (2001). Lean Programming. Software Development Magazine, 71-75.

xiii

Rajlich, V. (2006). Changing the Paradigm of Software. Communications of the ACM, 67 - 70.

Rea, M. L. (2005). Designing and Conducting Survey Research: A Comprehensive Guide. San Fracisco: Jossey

Bass.

Robson, C. (2002). Real World Research. Blackwell.

Salo, O. A. (2004). Empirical Evaluation of Agile Software Development: The Controlled Case Study

Approach. In Product Focused Software Process Improvement (pp. 408-423). Berlin Heidelberg:

Springer.

Schwaber, K. S. (2013, July). The Scrum Guide: Definitive guide to scrum – rules of the game. Retrieved April

15, 2015, from http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf

Siau, K. (2005). A retrospective review of JDM from 2003 to 2005 and a discussion on publication emphasis

of JDM for the next two to three years. Journal of Database, 16, 1.

Smith, G. S. (2009). Becoming Agile in an imperfect world.

Stapleton, J. (1997). DSDM: Dynamic Systems Development Method. Harlow, England: Addison-Wesley.

The Standish Group. (2013). Chaos Manifesto 2013: Think big, act small. Retrieved May 14, 2015, from

http://www.versionone.com/assets/img/files/ChaosManifesto2013.pdf

Turk, D. F. (2002). Limitations of Agile Software Processes. Third International Conference on Extreme

Programming and Flexible Processes in Software Engineering, (pp. 43-46). Alghero.

Turk, D. F. (2005). Assumptions Underlying Agile Software Development Processes. Journal of Database

Management, 62-87.

VersionOne. (2015). State of Agile.

Vilain, P. M. (2011). Neglecting Agile Principles and Practices: A Case Study. the 23rd International

Conference on Software Engineering & Knowledge Engineering (SEKE'2011). Miami.

Vinekar, V. S. (2006). Can agile and traditional systems development approaches co-exist? An ambidextrous

view. Information Systems Management, 31-42.

West, D. G. (2010). Agile Development: Mainstream Adoption Has Changed Agility. Retrieved March 25,

2015, from

http://programmedevelopment.com/public/uploads/files/forrester_agile_development_mainstrea

m_adoption_has_changed_agility.pdf

Williams, L. C. (2003). Agile Software Development: Its about feedback and change. IEEE Computer Society,

39-42.

xiv

Williams, L. D. (2014). Agile Software Development in Practice. In G. M. Cantone (Ed.), Agile Processes in

Software Engineering and Extreme Programming (pp. 32-45). Rome: Springer International

Publishing.

Williams, L. R. (2010). Driving Process Improvement via Comparative Agility Assessment. AGILE '10

Proceedings of the 2010 Agile Conference, (pp. 3-10). Washington.

xv

8. Appendix A: Online survey Questionnaire Design

Survey Questionnaire was designed and conducted using Qualtrics Survey Software tool.

xvi

xvii

xviii

xix

xx

xxi

xxii

xxiii

xxiv

xxv

9. Appendix B: Mapping design

Practices/Principles

mapping

1. Our
highest
priority is
to satisfy
the
customer
through
early and

continuo

us

delivery
of
valuable
software.

2. Welcome

changing

requirement

s, even late
in
developmen
t. Agile
processes
harness
change for
the
customer's
competitive
advantage.

3. Deliver
working

software

frequentl

y, from a
couple of
weeks to
a couple
of
months,
with a
preferenc
e to the
shorter
timescale.

4.
Business
people
and
developer
s must
work

together

daily
througho
ut the
project.

5. Build
projects
around
motivated

individuals.
Give them
the
environme
nt and
support

they need,
and trust
them to get
the job
done.

6. The most
efficient and
effective
method of
conveying
information
to and
within a
developmen
t team is

face-to-face

conversatio

n.

7.
Workin

g

softwar

e is the
primary
measur
e of
progres
s.

8. Agile
processes
promote
sustainable

developmen

t. The
sponsors,
developers,
and users
should be
able to
maintain a
constant

pace
indefinitely.

9.
Continuo

us

attention
to
technical
excellenc

e and
good
design
enhances
agility.

10.

Simplicity

--the art

of

maximizin

g the

amount

of work

not done-

-is

essential.

11. The best
architecture
s,
requirement
s, and
designs
emerge
from self-

organizing

teams.

12. At
regular
intervals,
the team
reflects on
how to
become
more
effective,
then tunes
and
adjusts
its
behaviour
accordingl
y.

Acceptance

tests/functional test a
formal description of
the behaviour of a
software product,
generally expressed as
an example or a usage
scenario
ATDD (acceptance

test driven

development) this
practice consists in the
use of automated
acceptance tests with
the additional
constraint that these

xxvi

tests be written in
advance of
implementing the
corresponding
functionality

Automated build The
build is "automated"
to the extent that
these steps are
repeatable and require
no direct human
intervention, and can
be performed at any
time with no
information other
than what is stored in
the source code
control repository.
Backlogs (Product and

Sprint) a list of
features or technical
tasks which the team
maintains and which,
at a given moment,
are known to be
necessary and
sufficient to complete
a project or a release
Backlog grooming The
team (or part of the
team including the
product owner) meet
regularly to "groom
the product backlog"
(remove, add,
reprioritise user
stories, correct
estimations), in a
formal or informal
meeting
Behaviour-driven

development (BDD)
specifies that tests of
any unit of software
should be specified in
terms of the desired
behaviour of the unit,

xxvii

it assumes the use of
specialized software
tools to support the
development process

Burndown Chart a
large graph relating
the quantity of work
remaining (on the
vertical axis) and the
time elapsed since the
start of the project (on
the horizontal,
showing future as well
as past)
Collective code

ownership - as the
name suggests, is the
explicit convention
that "every" team
member is not only
allowed, but in fact
has a positive duty, to
make changes to "any"
code file as necessary
Continuous

integration minimize
the duration and
effort required by
"each" integration
episode, be able to
deliver "at any
moment" a product
version suitable for
release
CRC Cards (for Class,

Responsibilities,

Collaborators) a
brainstorming tool
used in the design of
object-oriented
software, the goal is
to use role playing as a
means to come up
with a better design.

xxviii

Continuous

deployment an
extension of
continuous
integration, aiming at
minimizing lead time,
the time elapsed
between development
writing one new line of
code and this new
code being used by
live users, in
production.
Daily meeting (daily

scrum or stand up)
Each day at the same
time, the team meets
so as to bring
everyone up to date
on the information
that is vital for
coordination

Definition of done The
team agrees on, and
displays prominently
somewhere in the
team room, a list of
criteria which must be
met before a product
increment "often a
user story" is
considered "done" and
can be reviewed by
product owner -
increment driven
Definition of ready is a
set of rules or criteria
that the team adopts
as a guide for when a
story can legitimately
be moved from the
backlog into a Sprint,
Having a Definition of
Ready means that
stories must be
immediately
actionable, clear,

xxix

concise . -story driven

Estimation consists of
a quantified
evaluation of the
effort necessary to
carry out a given
development task; this
is most often
expressed in terms of
duration

Exploratory testing
emphasizes the
tester's autonomy,
skill and creativity,
recommends
performing various
test-related activities
in an interleaved
manner, throughout
the project

Facilitation A
facilitator is a person
who chooses or is
given the explicit role
of conducting a
meeting. This role
usually entails that the
facilitator will take
little part in the
discussions, but will
focus primarily on
creating the conditions
for effective group
processes (ex.
ScrumMaster)

Frequent releases
Agile team frequently
releases its product
into the hands of end
users, listening to
feedback, whether
critical or appreciative
(can be each iteration
or in every 2-4

xxx

iteration)

Given-when-then a
template intended to
guide the writing of
acceptance tests for a
User Story
Heartbeat

retrospective
(sprint/iteration
retrospective)
meetings to explicitly
reflect on the most
significant events to
have occurred since
the previous such
meeting, and take
decisions aiming at
remediation or
improvement.
Information radiators
generic term for any of
a number of
handwritten, drawn,
printed or electronic
displays which a team
places in a highly
visible location, so that
all team members as
well as passers-by can
see the latest
information at a
glance

Integration ex: if two
developers, working in
parallel, implement
new features on two
components A and B,
and each thinks to
their own satisfaction
that the work is
complete, then
verifying that changes
to A and B are
consistent, and

xxxi

resolving any
inconsistencies,
belong in the category
of integration.

Invest acronym

INVEST helps to
remember a widely
accepted set of
criteria, or checklist, to
assess the quality of a
user story

Iteration/sprint a
timebox during which
development takes
place
Iterative development
Agile projects
intentionally allow for
"repeating" software
development
activities, and for
potentially "revisiting"
the same work
products
Incremental

development this
means that each
successive version of
the product is usable,
and each builds upon
the previous version
by adding user-visible
functionality

Kanban board is not
"reset" at the
beginning of each
iteration, its columns
represent the different
processing states of a
"unit of value", which
is generally equated
with a user story
Lead time/cycle time
is measurement
practice and means
time-space between
the formulation of a

xxxii

user story and that
story being used "in
production" as a ready
software functionality

Milestone

retrospective Once a
project has been
underway for some
time, or at the end of
the project (especially
when the team is likely
to work together
again), all of the
team's permanent
members (not just the
developers) invests
from one to three days
in a detailed analysis
of the project's
significant events
Mock objects used in
the context of crafting
automated unit tests
and consists of
instantiating a test-
specific version of a
software component
(typically a class)
Niko Niko calendar

(mood board) The
format of the calendar
allows each
 team member to
record, at the end of
every workday, a
graphic evaluation
 (with emoticon or
coloured sticker) of
their mood during that
day.
Pair programming
two programmers
sharing a single
workstation (driver
and navigator)

xxxiii

Personas are used to
describe
stakeholders/users of
system, it is concise
and visual; a common
layout is a single page
including a
photograph, a
name and social or
professional details:
"Amanda Jones, 34,
press officer
 at a major food
retailing organization,
etc."

Points (estimate in)
most widespread unit
for estimate is "story
points"
(also gummy bears)

Planning poker A
playful approach to
estimation. The team
meets in presence of
the customer/Product
Owner. Around the
table, each team
member holds a set of
playing cards, bearing
numerical values
appropriate for points
estimation of a user
story.

Project chartering The
team develops and
maintains a high-level
summary of the
project's key success
factors, synthetic
enough that it can be
displayed on one wall
of the team room as a
flipchart-sized sheet of
paper

xxxiv

Quick design session
when there is a need
for further design, two
or more developers
meet for a quick
design session at the
whiteboard, possibly
using design aids such
as CRC cards.
Refactoring consists of
improving the internal
structure of an existing
program's source
code, while preserving
its external behaviour.

Relative estimation

consists of estimating
tasks or user stories,
not separately and in
absolute units of time,
but by comparison or
by grouping of items
of equivalent
difficulty.
Role-feature reason -
most commonly
recommended aids for
teams and product
owners starting to
write user stories: As
a...I want...So that…
Rules of simplicity A
set of criteria, in
priority order, to judge
whether some source
code is "simple
enough"

Scrum of scrums A
technique to scale
Scrum up to large
groups (over a dozen
people), consisting of
dividing the groups
into Agile teams of 5-
10.

xxxv

Simple design YAGNI,
for "You Aren't Gonna
Need It", emergent
ongoing design, as
simple as possible

Sign up for tasks
Members of an Agile
development team
normally choose which
tasks to work on,
rather than being
assigned work by a
manager
Story splitting consists
of breaking up one
user story into smaller
ones, while preserving
the property that each
user story separately
has measurable
business value
Story mapping
consists of ordering
user stories along two
independent
dimensions. The
"map" arranges user
activities along the
horizontal axis in
rough order of
priority. Down the
vertical axis, it
represents increasing
sophistication of the
implementation.

Sustainable pace
entails a firm refusal of
what is often
considered a
"necessary evil" in the
software industry -
long work hours,
overtime, or even
working nights or
weekends.

xxxvi

Task board can be
drawn on a
whiteboard or even a
section of wall. The
board is divided into
three columns labelled
"To Do", "In Progress"
and "Done", reflecting
the current status of
the tasks. updated
frequently, most
commonly during the
daily meeting, reset"
at the beginning of
each iteration

Test-driven

development (TDD)
refers to a style of
programming in which
three activities are
tightly interwoven:
coding, testing (in the
form of writing unit
tests) and design (in
the form of
refactoring), first write
test and then code
Team (whole) a small
group of people
(including product
owner), assigned to
the same project or
effort, nearly all of
them on a full-time
basis. Shared
accountability, cross
functional
Team room dedicated
space for team for the
duration of the
project, set
apart from other
groups' activities.
Workstations,
whiteboards, enough
wall space for task
boards and so on.

xxxvii

Three C’s “Card,
Conversation,
Confirmation"
components of user
story

Three questions The
daily meeting is
structured around
some variant of the
following three
questions: What have
you completed since
the last meeting?
What do you plan to
complete by the next
meeting? What is
getting in your way?
The intent of these
questions is to
emphasize
completions of tasks,
rather than effort
spent.
Time-box a previously
agreed period of time
during which a person
or a team works
steadily towards
completion of some
goal. The critical rule
of timeboxed work is
that work should stop
at the end of the
timebox, and review
progress
User stories In
consultation with the
customer or product
owner, the team
divides up the work to
be done into
functional increments
called "user stories"

Usability testing a
long-established,
empirical and
exploratory technique

xxxviii

to answer questions
such as "how would an
end user respond to
our software under
realistic conditions?"

Ubiquitous language
consists notably of
striving to use the
vocabulary of a given
business domain, not
only in discussions
about the
requirements for a
software product, but
in discussions of
design as well and all
the way into "the
product's source code
itself".
Unit testing a short
program fragment
written and
maintained by the
developers on the
product team, which
exercises some narrow
part of the
 product's source code
and checks the results.
Velocity At the end of
each iteration, the
team adds up effort
estimates associated
with user stories that
were completed
during that iteration.
This total is called
velocity.

Version control
enabler of a number of
Agile practices, such as
continuous integration

xxxix

10. Appendix C: Invitation letters for participation in online survey

Dear Agile practitioners,

I am working on my Master's Thesis which is about the importance and the presence of Agile

principles in Agile software development. The goal of the survey is to identify the degree of

implementation of agile practices and perceived importance of agile principles.

Could you please take a few minutes to share with me your valuable experience on your degree of

implementation of Agile practices and on the importance of agile principles for your development

process by completing this anonymous survey?

Your input as an agile practitioner is critically important for my research and I highly appreciate your

contribution to my master thesis. You will be provided with the survey results afterwards if you wish

so.

Below is the link to the survey. Thank you in advance for your time and input. Please feel free to

share this survey link with other agile practitioners.

https://ugenthabe.az1.qualtrics.com/SE/?SID=SV_4T5B084UVbB2rs1

Kind regards,

Aygun Shafagatova

xl

11. Appendix D: Invitation Letters for participation in mapping study

Dear,

I am doing my Master in Management and IT at the University of Ghent, Belgium. I am currently

researching on agile principles for my Master Thesis. 'The presence and importance of agile

principles in Agile software development' is my research topic. As you have deep

expertise/knowledge on agile methodologies, it would be very valuable for my research to know

your vision and analysis regarding those issues.

I need your feedback to be able to make possible correlation between Agile principles and

practices. For this end, I have prepared an Excel mapping document which contains a matrix of 12

agile principles and 60 practices. I would like you to take it through and match/map those practices

with principles. According to your experience and vision: which practice is based on or supports

which principle? Just put 'x' where you consider it is relevant. There may be cases that no matches

can be made, or multiple practices can match same principle (or multiple principles for the same

practice), that is also perfectly OK. For the ease of use, I have divided the mapping matrix into 6

sheets so that you don't have to scroll up and down (such as Agile Mapping 1 of 6, etc).

Please find attached Excel mapping document. May I kindly ask you to make the mapping and

send it back to me after completing it? It will not take much time of you; however, it will deliver

highly valuable input for my thesis.

Thank you in advance for your time and cooperation,

Looking forward to hearing from you soon,

Kind regards,

Aygun Shafagatova

