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Preface 
In  the  last  couple  of  years,  social  robots  have  appeared more  and more  often  in  Belgian  news 
broadcasts. NAO, as one of  the most popular models,  is  increasingly used  in medical  settings as a 
therapeutic companion for autistic children and the elderly. His cute appearance and behaviour can 
easily capture the heart of anyone who meets him. As they did mine. Meeting the  little guy at the 
university suddenly solved the problem of trying to come up with a suitable topic for this bachelor’s 
thesis. Not only would it be the perfect combination of my two fields of interest (I earned a bachelor’s 
degree in Applied Informatics – Software Management before I started to study Linguistics), it would 
also be a challenge. Natural language processing with NAO robots is a relatively new topic on which 
few studies have focussed, and thus sources could turn out to be rather scarce. Always loving a good 
academic challenge, and attracted by the prospect of writing a master’s thesis on the same topic, the 
decision was easily made. All expectations were met: it has been a fascinating and enriching challenge, 
which I could not have completed without the help of several people. Therefore, I would first of all like 
to express my gratitude towards Professor Dr Walter Daelemans, supervisor of this bachelor’s thesis, 
for spending so much of his time on helping me write and correcting my mistakes and for not imposing 
a  limit on  the amount of pages. Secondly,  I would  like  to  thank Dr Guy De Pauw  for  reading and 
evaluating my work. Last but not  least,  I would  like to thank Philip Carels, my significant other,  for 
proofreading my text and helping me in any way he could
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1. Introduction 
When humans think about robots, they do no longer only think about mechanical arms that facilitate the 
production process of cars. They think about artificial creatures with a human-like appearance whose 
intelligent capabilities may one day very well grow beyond those of human beings. They think about 
science fiction films in which robots, initially created to assist humans, turn against their makers in an 
ultimate battle for world dominance. However, more and more, they also think about cute, pet- or child-
like companions who help in hospitals or residential care homes or who teach autistic children social 
behaviours. The popularity of robots is increasing and they will mostly likely become an integrated part 
of human lives in a matter of years.  

Therefore, many interdisciplinary studies are being set up, combining the expertise of multiple fields 
(such as robotics and linguistic) to develop these robotic companions of the future. The scientific 
discipline of natural language processing (NLP) will play an important role in this process, as robots 
will need to be able to deal with natural language. The function of the computational linguist, however, 
is not limited to making sure that the robot can use and understand language: NLP also becomes an issue 
in wider domains, such as the communication of emotions and personality traits. These two combine the 
knowledge of fields such as linguistics and psychology to create communicational patterns consisting 
of both body language and natural language.  

Eventually, science hopes to develop an artificial kind of intelligence (AI) which will meet – or even 
surpass – the capabilities of the human brain. One of the steps to accomplish this difficult endeavour is 
to reach a profound understanding of natural language. However, although the field continues to advance 
rapidly, true AI remains out of reach. The importance of NLP can thus not be overestimated to move 
the field forwards in the direction of this complicated form of AI. 

In the scope of this bachelor’s thesis, I will try to summarize the state-of-the-art in the field of NLP with 
NAO robots, a humanoid created by the French company Aldebaran. NAO is one of the best-known 
robots on the market because of the many health care and teaching applications in which this humanoid 
has been used worldwide. Furthermore, NAO is also well known as the standard model for the yearly 
RoboCup, a soccer competition for robots. 

After this brief introductory chapter, NLP and its challenges will be explained in more detail in chapter 
2. The differences between natural and artificial languages will be presented, which will bring us to the 
most difficult problem for NLP: the notion of ambiguity. Computer systems need a way to deal with the 
ambiguous nature of natural language, which has proven to be a difficult obstacle. Furthermore, 
traditional views on the uncanny valley problem as described by Mori are compared to more recent 
findings.  

In chapter 3, the robotic company Aldebaran and NAO are presented. In this chapter, NAO is presented 
as a member of a robotic family (together with two other humanoids developed by this company). This 
approach was chosen because it clearly shows the vision of the company and the goal of robotic 
companions. Next, NAO’s specifications – and especially those relevant for NLP – are discussed.  

The next three chapters are dedicated to different applications in which NLP plays an important part. 
Chapter 4 deals with human-robot interaction (HRI) through natural language; chapter 5 covers both the 
expression and the detection of emotions, and chapter 6 presents studies on the influence of personality 
traits on a human’s perception of a robot. As mentioned before, these last two applications also profit 
from developments in NLP, although to a lesser extent than pure natural language based HRI. In chapter 
4, the problem of language grounding is first explained, after which several natural language frameworks 
are discussed. In the following section, NAO’s turn-taking behaviour – an aspect of natural language 
which is needed to make HRI feel natural – is compared to that of another robot, Kismet. Developed by 
MIT, she is one of the best-known early sociable robots. Her goal is to learn social behaviour through 
HRI. Next, several problems regarding dialogues in natural language are discussed. Systems working 
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with open-domain dialogues will be compared to others using closed-domain dialogues, and flexible 
hierarchic dialogue control will be contrasted with strict hierarchic dialogue control. In the next section, 
we will take a closer look at cooperative tasks. These are essential to NLP as controlling such tasks is 
one of the main functions – and advantages – of natural languages. In the future, robots will need to 
work together both with other robots as with humans. Then, the topic of semantic gestures will briefly 
be introduced. Unlike pure body language gestures, these are movements more closely related to sign 
language. This means that they do not express emotions or personality but transfer semantic meaning. 
For example, think about the typical thumbs-up gesture to say ‘Well done’. These kinds of gestures are 
important as well in communication between humans, and therefore, it should be studied to which extent 
they are transferable to robots. In the penultimate section, end-user programming will be described. As 
robot designers cannot expect every user to be a programmer, it is important to find ways in which 
humans will be able to communicate with robots without following a course in coding. This fourth 
chapter will be concluded by a discussion of RIOLA, a robot interactional language.  

Chapter 5 consists of two main parts: the expression of emotions and the detection thereof. In the first 
part, we will examine NAO’s body language through a series of studies such as the development of an 
affect space (Beck et al., 2012). We will also briefly discuss two libraries of emotions that have been 
created for NAO. This part ends with the comparison of NAO’s emotional body language to four other 
robots: iCat (a research robot by Philips), Kismet, Brian (a Canadian humanoid companion for the 
elderly) and KOBIAN (a Japanese humanoid research robot for the study of robotic emotions). In the 
second part, different studies on NAO’s capabilities to detect human emotions are presented and 
compared to Brian’s capabilities.  

In chapter 6, different common personality types for robots will be presented, after which the main 
problem of this field of study will be examined: what kind of personality should a robot have to optimise 
HRI? Should a robot’s personality match a user’s personality or complement it? Should robots possess 
a distinguishable human-like personality or should they be clearly robotic? Should robotic personalities 
be programmed or learned? Literature has not yet found a conclusive answer to these questions and 
therefore, chapter 6 contains various visions which do not always agree. Among these visions are three 
young voices, who took part in an IT conference for their university in the Netherlands. The results of 
their studies were not revolutionary, but their input is valuable, however, as they take a completely 
different position as compared to the established researchers. While literature is mainly divided into two 
opposing camps (those who believe the personality of a robot should match the user’s and those who 
believe it should complement it), they present a hypothesis in which neither vision is relevant. They 
favour a theory in which other, often external, factors are significant for personality matching, such as 
the particular task performed by the robot, the effect of group interactions and the effect of cultural 
background.  

Next, in chapter 7, several case studies are discussed. These focus mainly on three different real-life 
situations in which NAO is used and in which NLP plays an important part. First of all, NAO as a 
companion for children with autism is discussed. In this section, the ASK NAO programme by 
Aldebaran is first introduced. This acronym stands for Autism Solution for Kids and is an initiative 
launched in order to support research into robot-aided therapies for Autism Spectrum Disorder (ASD). 
Next, we will take a closer look at studies conducted in context of the National Autism Society of 
Malaysia. As mentioned before, users should not be required to acquire programming skills to 
successfully communicate with robots, but neither should therapists. Therefore, platforms for robot-
aided ASD therapies need to be developed that are user-friendly. These platforms should, moreover, be 
customizable, as autism is different for each child. These kinds of platforms are the topic of the 
penultimate section on ASD therapies. The final section is dedicated to robot Assisted Pivotal Response 
Training, an established method in ASD therapies. 

Secondly, NAO as a companion for children with diabetes is presented, within the context of the ALIZ-
E project. This project was an international collaboration, supported by Europe, between 2010 and 2014. 
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They wanted to create robotic companions and monitors to support hospitalized children (mainly 
suffering from diabetes). One of the topics studied in the scope of this project is the way in which 
children adapt to HRI in multiple interactions with NAO. This is important because, as a companion, 
NAO will need to become an integral part of the children’s daily life. The robot should therefore feel 
familiar to the children, and the long-term HRI should be perceived as natural and comfortable. To this 
extent, it is also important to determine which features are necessary to include in the design of a robotic 
companion and which in the design of a robotic monitor. These two are entirely different functions for 
a robot and should thus be implemented in another manner. 

Thirdly, NAO’s usefulness in the context of sign language teaching will be examined. As sign language 
is often teacher-dependent, it could be useful to introduce a robot assistant to the classroom. This would 
limit the problems that arise when the human teacher needs to be replaced, as robots are able to endlessly 
repeat gestures in exactly the same way.  

Chapter 8 contains the conclusion about the state-of-the-art of NLP with NAO robots, based on the 
selected studies as described above, and chapter 9 presents some possibilities for further research.  

After the bibliography and the lists of figures and tables, several appendices can be found. These were 
included because they contain relevant information on the topics discussed, but they were considered 
too extensive to be integrated into the main body of this bachelor’s thesis.  

As this is a study of the available literature, many authors are cited. Whenever an extended block of text 
was dedicated to the work of a particular researcher or research team, a footnote was added to indicate 
the source and to limit the number of in-text references.   

Finally, I would like to explain the use of pronouns in this bachelor’s thesis. As robots can be seen as 
non-living objects, they are generally referred to as it. Here, it will be used when discussing robots as 
either commercial items or machines. However, as the robots discussed are specifically designed to be 
human companions, it seems fitting to refer to particular robots as he/she as this emphasises the 
emotional relationship between human and companion.   



12 
 

2. Natural Language Processing (NLP) 
2.0 Introduction 
In this second chapter, we will, first of all, explain the difference between natural languages and artificial 
languages. Then, we will take a closer look at one of the fields interested in natural languages, namely 
computational linguistics or natural language processing (NLP). Furthermore, we will touch briefly 
upon the different challenges of NLP, among which, dealing with ambiguity is the most problematic 
one. We will also shortly introduce two of the main approaches in NLP (inductive and deductive 
methods), after which we will conclude with a discussion of the uncanny valley issue. This phenomenon 
is widely known in the field of robotics as it seems to limit the freedom of the designers. However, new 
research indicates that these limitations might not be accurately depicted on the uncanny valley graph.  

2.1 Natural Languages and Artificial Languages  
Languages can be divided into two main categories: natural languages and artificial languages (Beardon 
et al., 1991).1 Natural languages are those that have not been artificially created by humans but have 
evolved naturally into mother tongues. Their prime function is to allow humans to communicate with 
others, without there being any restriction on the possible topics of that communication, or on the 
situation in which the communication takes place. 

By contrast, artificial languages have been consciously created by humans to fulfil specific functions. 
As Beardon et al. point out, this kind of languages (e.g. programming languages) usually impose 
restrictions on their use, for example, restrictions on ambiguity. Individual words, sentences and phrases 
can be (and often are) ambiguous in natural language, which poses one of the greatest challenges for 
natural language processing. Therefore, artificial languages impose rules to avoid ambiguity, for 
example by using words with a unique fixed meaning (reserved words) in programming languages.  

2.2 Computational linguistics 
Natural languages are studied in different fields: in linguistics in general, but also in computational 
linguistics (Daelemans, 2013)2. This interdisciplinary field of study examines similar questions as 
linguistics (e.g. how can text be transformed into meaning?), but it shares its research method with 
artificial intelligence (AI), which belongs to the field of computer science. Computational linguistics 
create computer models, similar to those used in AI to develop intelligent systems. A key concept within 
the field of AI is the “Intelligent Agent”, a computer program that can observe and interact with its 
environment, solve problems and learn. These agents need to be capable of using natural language, 
which is the task of computational linguistics, or natural language processing (NLP) as it is called in AI. 

It is important to keep in mind that AI does not limit itself to models of human intelligence. One of its 
main hypotheses, called the Physical Symbol Systems Hypothesis (PSSH), argues that intelligent 
behaviour can be described by abstract manipulation of symbols, independent of the implementation 
thereof in the human brain. This means that if NLP succeeded in defining knowledge and cognitive 
processes as representations and algorithms, a computer (or more specifically for this bachelor’s thesis, 
a robot) could be said to be intelligent as well. The PSSH, formulated by Allen Newell and Herbert 
Simon, allows algorithms to be represented as structures, so that they can be manipulated by other 
algorithms (Gillis et al., 1995). This recursion explains the concept of learning, as ‘the mind can change 
itself in useful ways by manipulating its own mental structures and program by means of a learning 
program (Gillis et al., 1995). In this hypothesis, the manipulation of symbols is the only necessary 
condition for intelligent behaviour (Gillis et al., 1995). Figure 1 shows a diagram of the PSSH. 

                                                      
1 The section Natural Languages and Artificial Languages is based on (Beardon et al., 1991).  
2 The section Computational Linguistics is based on (Daelemans, 2013), unless otherwise indicated.  
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Figure 1 Physical structures and processes represent mental functions (Gillis, Daelemans & De Smedt, 1995) 

2.3 Challenges of Natural Language Processing 
As described above, the most difficult hurdle to cross in the field of natural language processing is the 
problem of ambiguity. Computational linguistics describes language processing as a series of 
transformations between symbolic linguistic representations (Daelemans, 2013)3. Two types of 
transformations are important when attributing meaning to text: segmentation and identification. 
Segmentation subdivides input text into smaller units, which are transformed by the process of 
identification into output elements. Both transformations are confronted with the problem of ambiguity, 
which interferes on all levels of language description, even though most users are unaware of its 
presence. 

A first problem is lexical ambiguity, as most words can have multiple meanings. In a sentence like 
‘Philip likes reading about stars’, the word star is ambiguous, as it is unclear whether the subject of the 
sentence enjoys stargazing or reading gossip magazines.  

Another kind of ambiguity that can be encountered is morphological, as demonstrated by the following 
sentence: ‘I shut the door’. In this sentence, the verb shut is morphologically ambiguous because of the 
fact that the verb form is the same in the present tense and in the past tense. 

At a higher level of language description, syntactic ambiguity poses large problems to computer systems, 
because some parts of speech can be attached to several other parts. This kind of ambiguity can be found 
in sentences like ‘Philip saw the man with the telescope’ (Inspired by: Kraf & Trapman, 2006). It is 
unclear whether Philip used a telescope to spot the man or whether he saw a man carrying a telescope.  

Finally, there is also ambiguity at the level of the discourse, as shown in the following sentence: ‘The 
judge convicted the man because he feared he would kill again’. This sentence is ambiguous, because it 
could either be the judge who feared the man would kill again or the murder himself.  

Humans also have to solve ambiguity problems, but as stated earlier, they do this most of the time 
without even realising the sentence poses a difficulty in the first place. They are capable of reducing the 
number of possible meanings because they possess knowledge of the world they navigate. When they 
are confronted with sentences like ‘A Catholic priest married my son on Tuesday’, they discard the 
possibility of the priest being wed to the son, as their knowledge of the world informs them that Catholic 
priests do not wed. A computer system, however, does not always have access to the same information, 
which is one of the most difficult problems in NLP.  

Next to ambiguity, there are also other difficulties, such as the complexity of natural language (Beardon 
et al., 1991)4. These authors point out that ‘the structure of statements in artificial languages is usually 
kept very simple’ (Beardon et al., 1991).  This stands in stark contrast to the structure of natural 
languages, which can be very complex. The complexity of these structures renders the development of 

                                                      
3 The information on ambiguity in this section is based on (Daelemans, 2013), unless otherwise indicated. 
4 The information on other difficulties for NLP in this section is based on (Beardon et al., 1991).  
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a natural language parser much more demanding than it would have been if they had been as 
straightforward as artificial language constructions. 

Furthermore, the fact that artificial languages are developed for a specific purpose entrails that it is less 
difficult to find a single way to represent the meaning of everything a particular language can express. 
According to Beardon et al., the meaning of a fragment of programming code can be seen as ‘the 
machine code that it produces to run on a computer’ (Beardon et al., 1991). For natural language units, 
however, such definitions cannot that easily be found, as natural language can be used in a wide variety 
of situations (commanding, describing, asking, etc.). 

A fourth difficulty for natural language processing arises when we separate the part of a system that 
processes the structure of an utterance from the part that processes its meaning. Artificial languages 
differ from natural languages because of the relationship between these two parts. To compile computer 
code, the system first determines whether or not the structure of the code is correct. Only when this step 
is completed satisfactorily, the meaning of the processed structure will be interpreted. To understand 
natural languages, however, structure and meaning cannot be separated this easily, as the meaning of an 
utterance is often needed to process its structure.   

Table 1 summarizes the four most important differences between artificial and natural languages that 
lead to difficulties for natural language processing. All these problems need to be solved to create 
“conversational agents” or “dialogue systems”: programs that communicate with humans by using 
natural language (Jurafsky & Martin, 2008)5.  

Crucial Differences 
 Natural Language Artificial Language 
Ambiguity  Plenty Controlled 
Complexity High Low 
Representation of meaning No simple universal way Simpler 
Relationship  
structure – meaning  

Interconnected Often separable 

Table 1 Differences that lead to difficulties for NLP (Based on: Beardon et al., 1991) 

Conversational agents not only need to attribute meaning to text, they also need to be able to decide how 
they should react. Different variants of sentences can be constructed which contain the same 
information, yet demand another reaction: a request (‘Close the window.’), a statement (‘The window is 
closed.’) or a question (‘Is the window closed?’). Furthermore, these agents should also know how to be 
polite. To accomplish these tasks, conversational agents should thus possess a certain kind of pragmatic 
or dialogue knowledge. Table 2 summarizes the different sorts of knowledge of language needed to 
create conversational agents.  

Knowledge of language 
 Knowledge about: 
Phonetics & Phonology How words are pronounced in terms of sequences of sounds and 

how each of these sounds is realized acoustically. 
Morphology The meaningful components of words 
Syntax How words in a sentence are related to each other 
Semantics The meaning of words 
Pragmatics The relationship between the meaning of the words and the 

intention of the speaker 
Discourse Linguistic units that are larger than single utterances 

Table 2 Different kinds of knowledge needed for conversational agents (Based on: Jurafsky & Martin, 2008) 

                                                      
5 The information on conversational agents in this section is based on (Jurafsky & Martin, 2008). 
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2.4 Deductive versus Inductive NLP systems 
There are two important approaches in computational linguistics: a deductive and an inductive one 
(Daelemans, 2013).6 The deductive method focussed on rules and formal descriptions of language to 
transform input into output. This method was predominant up until the second part of the 90s, when it 
was replaced by the inductive method and its focus on general learning capacities. Inductive systems 
learn models by means of statistical pattern recognition techniques based on training data, which they 
use to calculate their output. Whichever system is opted for, it should have access to the kinds of 
knowledge described in Table 2. 

2.5 The Uncanny Valley 
By learning language, robots become more and more similar to human beings, which is one of the goals 
of robotics (Mori, 2012)7. However, it is important to keep in mind that the relation between “human 
likeness” and “affinity” is not a simple one. If you increase the human likeness of an object, the affinity 
felt by humans for it will increase as well – at first. Somewhere around 60% of human likeness, there is 
a sudden drop in the affinity for the object, which is called the “uncanny valley”. Objects located in this 
area are perceived as creepy or unsettling rather than pleasant. When the object reaches a human likeness 
of about 90%, it is no longer situated in this valley. Figure 2 shows the uncanny valley.  

 

Figure 2 The Uncanny Valley (Mori, 2012) 

As shown in Figure 2, movement has an important influence on the uncanny valley graph. Humanoids 
(like NAO) are situated right before the first peak. They are reasonably similar to humans who are thus 
inclined to feel affectionate towards them. However, experiments have shown that if a humanoid, one 
which has artificial muscles to simulate facial expressions, is programmed to smile at half the speed of 
a human, it is perceived as unsettling. According to Mori, a variation in movement can easily cause 
something, close to a human being in terms of appearance, to fall into the valley. While death causes the 
affinity felt towards a living, healthy person to tumble to the bottom of the valley of the graph 
representing non-moving subjects, we still feel more warmly towards a corps than towards a zombie, 
which is the lowest point on the graph representing moving subjects. When designing robots, it is thus 
important to avoid the valley at all costs. Mori recommends designers to work towards the first peak of 
the graphic, as this would render a robot which moderately resembles a human and evokes a great feeling 
of affection. However, new research suggests that the model as designed by Mori might have been too 
simplistic to describe the effect of the uncanny valley accurately. 

                                                      
6 The section Deductive versus Inductive NLP Systems is based on (Daelemans, 2013). 
7 The section The Uncanny Valley is based on (Mori, 2012). 
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2.6 Recent Research on the Uncanny Valley  
First of all, it is important to realise that, according to Mori, robots are faced with the uncanny valley 
problem at different levels: the use of language, the display of intelligence and the way of using their 
bodies.  

Being able to communicate with humans in natural language often causes a robot to be perceived as 
“intelligent” by its users. This immediately raises the question of the uncanny valley: can humans still 
feel affective towards a robot if this robot could interact with them in a human-like manner? Or would 
this make them seem too realistic and too human to be trusted? Judging from the uncanny valley graph, 
it could be concluded that language would make a robot tumble down into the valley; after all, even 
though speech is not mentioned on the axes, it is a typical human characteristic. However, many studies 
have indicated that this is not necessarily the case. For example, Hanson et al. have developed a social 
robot PKD (named after Philip K. Dick, the late science-fiction writer), which used several mechanisms 
to deal with natural language (Hanson et al., 2005). They found that they were not hindered by the 
uncanny valley effect: in fact, they believe that robots should become as human-like as possible, if we 
are to learn more about social intelligence (Hanson et al., 2005). According to them, the only way to get 
past the valley is to explore it entirely first (Hanson et al., 2005).  

Yet, other researchers, like Becker-Asano et al., are more tentative in their findings. This team has 
conducted an experiment in which visitors of a festival were asked to interact with their android robot 
Geminoid HI-1 (Becker-Asano et al., 2010). The results were mixed: while some participants reported 
to enjoy talking with the robot, others thought its speech revealed the fact that it was not a real human 
(Becker-Asano et al., 2010). Furthermore, one of the participants mentioned that he liked the 
conversation at first, until he realised that he had been talking with a computer, after which he 
experienced ‘a weird feeling’ (Becker-Asano et al., 2010). This might indicate that the experience of the 
uncanny valley can indeed be increased by language, but it might also reveal an important element which 
cannot be seen on the graph: personal factors. Only some visitors reported an uncanny feeling, which 
might lead to the conclusion that the uncanny valley graph is too general, not taking into account the 
interpersonal differences in perception. We will now compare these findings with experiments in which 
the uncanny effect of the robot’s physical appearance was tested.  

Recent developments in animation have increased visual realism of characters, which is a combination 
of both physical and behavioural realism (Beck et al., 2012)8. Creators of animated characters believed 
that this increase would also lead to an increase of believability, but in reality, these characters were, 
likewise, confronted with the uncanny valley. These observations were thought to impose limits on the 
extent to which humanoids, like NAO, would be able to mimic humans. After all, many of these 
humanoids were especially designed to be personal companions and therefore, they should never make 
humans uncomfortable. However, the concept of the uncanny valley was not based on systematic 
experiments. This might indicate that there are much more elements which influence the acceptability 
of a robot, outside of its resemblance to humans. Beck et al. suggest that the effect might also be due to 
the robot’s body language. This is supported by animation theories that imply that emotion should 
always be expressed through a combination of body and face, as the character would otherwise look 
unnatural to a viewer.  

To explore their hypothesis, Beck et al. designed an experiment in which participants were confronted 
with three types of characters: a real actor, a realistic animation and a simplified one. Based on Mori’s 
uncanny valley, they made two predictions: (a): ‘A highly realistic character will be harder to interpret 
and will also be perceived as less emotional’ and (b): ‘As characters get more realistic, they will be 
subject to a drop in believability and naturalness’ (Beck et al., 2012). It was thus predicted that the 
participants would consider the actor better than the simplified character, which would in turn be 

                                                      
8 The section Recent Research on the Uncanny Valley is based on (Beck et al., 2012), unless otherwise indicated. 
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considered better than the realistic character. Furthermore, two personal factors were taken into account: 
the emotional intelligence (EQ) of the participants and their experience with games and animations. 

The actor had to perform ten different emotions, of all of which two variants were made: normal 
emotions and exaggerated ones. These were closely mirrored by the two types of animations, except for 
small characteristics such as breathing. Participants were then asked to evaluate the videos they were 
shown: (a) Which emotion is being displayed; (b) How strong is the displayed emotion; (c) How natural 
and (d) how believable does it come across.  

The results indicated that the type of character had no effect on the identification of the emotion. This 
means that when physical realism is simplified, this does not negatively affect the transmission of 
emotional information.  However, the type of character did have an effect on the strength of the emotion: 
those performed by the actor were perceived as stronger than those performed by both kinds of 
animation. Surprisingly, there was no difference in perception of strength between the emotions 
expressed by the realistic and the simplistic animation. This might indicate that emotional strength is 
not solely created by physical realism, as that would have meant that the emotions performed by the 
realistic character would have been perceived as stronger than those by the simplified character as well. 
The gap between the perception of the actor and the perception of the animations might be explained by 
the fact that the animations did not display microgestures such as breathing and sighing.  

Character type had also an effect on the believability of an emotion: participants were more inclined to 
believe the actor than the characters, and they perceived the emotions of the realistic character as more 
believable than those of the simplified character. Similarly, the emotions of the actor were considered 
to be more natural than those of the realistic characters, which were in turn perceived as more natural 
than those of the simplified character. As there was no difference in secondary cues and microgestures 
between the two animations, the different perception of the two seems to suggest that it was their 
physical realism that affected their believability and naturalness. 

These results thus seem to contradict the uncanny valley theory, as characters are not considered less 
believable when they are more realistic. Furthermore, Mori’s graph does not take into account any 
personal differences. The experiment showed that there was indeed no correlation between the EQ of 
the participant and the correct identification of emotions. However, there was a clear influence of the 
EQ on the perception of believability and naturalness of emotions expressed by the realistic character. 
Participants with a high EQ often considered the realistic character more believable. The realistic 
character was the one that was most likely to be affected by the uncanny effect. The results of this 
experiment, however, might indicate that individuals with a high EQ are less likely to experience the 
effect.  

Moreover, the results indicated a correlation between experience with video games and the correct 
identification of the emotions displayed by the actor and by the simplified character, although experience 
with animated characters had no influence on the identification at all. According to Beck et al., that 
correlation might be due to the fact that when humans become used to realistic characters in video 
games, they start to consider them as increasingly believable. This might prevent the feeling of 
uncanniness from occurring, as this may well be linked to the novelty of being confronted with such 
levels of realism. 

This experiment might thus indicate – like the experiment by Becker-Asano et al. did – that the uncanny 
valley graph is too simplistic, as it does not take into account personal factors. In reality, each user 
positions particular characters in other places on the graph, based on their own personal perception and 
experiences.    
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3. NAO Robots 
3.0  Introduction 
In the previous chapter, we introduced some of the general features of NLP. In this chapter, we will take 
a closer look at some of the robots which are used in this field. Our focus will be on NAO, the best-
known robot of the French robotic company Aldebaran. First, we will shortly introduce NAO’s family, 
Pepper and Romeo, in order to get a better view on the context in which NAO came to be. Then, we will 
zoom in on a more detailed overview of NAO’s specifications (primarily the ones that are important to 
NLP). 

3.1 A Family of Robots 

 

Figure 3 The Aldebaran Robotic Family (Aldebaran Robotics, 2015) 

In 2005, Aldebaran Robotics was founded in Paris by Bruno Maisonnier, the current CEO of the 
company. Their vision is to ‘build humanoid robots, a new humane species, for the benefit of 
humankind’ (Aldebaran Robotics, 2015)9. To accomplish this goal, the company is creating a family of 
companion robots, which currently consists of three members: NAO, Pepper and Romeo (See Figure 3).  

One year after the foundation of Aldebaran, the company created its first NAO prototype. This model 
was not yet ready to be sold to the general public, but in 2008, NAO managed to position himself in the 
international spotlight by replacing Sony AIBO in the RoboCup Standard Platform League. This annual 
soccer competition for robots was originally only open for teams of AIBO robots, but when Sony 
decided to cancel the production in 2006, the organisation decided that NAO would become the new 
model (RoboCup, 2015). From thereon, NAO was developed further to become ‘a standard in the 
academic world for research and education’ (Aldebaran Robotics, 2015). In 2010, NAO was one of the 
main attractions at the World Expo and in 2011, a new version was launched. NAO Next Gen had 

                                                      
9 The chapter NAO Robots is based on (Aldebaran Robotics, 2015), unless otherwise indicated. Available 
information on the company or on NAO is usually created by Aldebaran itself or by (former) employees. Therefore, 
this information cannot be regarded as completely neutral. However, some other authors included one or two 
sentences on the performance or affordability of NAO in their papers. This new – and slightly less biased – 
information usually corresponded to the information provided in this chapter. When it did not (in case NAO failed 
the researcher’s expectations on some points), the critique was added in the chapter in which these studies were 
described.    
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improved at the level of interaction, which allowed its market to be expanded to secondary schools. In 
2014, the current version of NAO was released: NAO Evolution.  

In 2009, Aldebaran joined the ROMEO project supported by Cap Digital10, which was continued in 
2012 by the ROMEO 2 project. The goal of these projects is to unite different companies to develop a 
robot staff assistant, Romeo. He can be seen in the middle of Aldebaran’s family picture (see Figure 3). 

The latest member of the Aldebaran robotic family was introduced in 2014: Pepper. He is their first 
humanoid that was especially designed to share the lives of human beings. The company’s goal is to 
develop Pepper one step at a time to transform him into a human’s full-time companion. 

3.2 Specifications 

 

Figure 4 NAO Evolution (Aldebaran Robotics, 2015) 

NAO is a humanoid, which means that he is a robot with the proportions of a human. He is 58 cm tall 
and comes in different colours.11 He is especially designed to be a daily companion: he can recognise 
humans, communicate with them and help them in their activities. Although he is not entirely ready for 
use at home, he has become one of the most popular models of robots in educational environments. 
Nowadays, NAO is used in over 70 countries, from primary education up to university. Eventually, 
Aldebaran wants to transform NAO into an interactive daily companion who would be perceived as an 
endearing, living member of the family.  

The robot is designed to function as a real companion and it thus needs the capacity to interact with its 
environment. First of all, NAO needs to be able to see what is happening around him, and therefore, he 
is equipped with two cameras. Furthermore, he needs to communicate with his users, which becomes 
possible through touch sensors and four directional microphones. These microphones receive the sound 
wave at different times, which can be processed to find out where the sound was produced, thereby 
enabling NAO to locate the source. This method is called “Time Difference of Arrival”. NAO can also 
move freely, because he has 25 degrees of freedom and an inertial measurement unit to decide whether 
he is sitting down or standing up. The input of these technologies should then be interpreted, which is 

                                                      
10 Cap Digital is a business cluster which aims to develop innovative technologies in the Paris Region since 2006 
(Cap Digital, 2015). 
11 This bachelor’s thesis will concentrate on the latest version, NAO Evolution. For an overview of the versions, 
please see Appendix I. There are also several body types available. Please see Appendix II for the diagrams of 
different versions and types. The body type discussed above is the most complete one, H25.  
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done by the embedded software in his head. NAO is driven by NAOqi, an operating system especially 
designed for this robot. Thanks to his lithium-ion battery, NAO has about 1.5 hours of autonomy. 

While collecting all this data from the environment is important, the most vital step is of course the 
interpretation of this data. Therefore, NAO has a set of algorithms that can process faces and shapes. 
This way, the robot can recognise with whom he is interacting or he can find the objects he needs. To 
complete this last task, NAO should of course be able to estimate distances. He does this by using a 
sonar range finder which allows him to detect objects located up to three metres further. NAO, however, 
does not receive distance information about objects that are closer than 15 cm. 

NAO can also be connected to the internet, and on Aldebaran’s website, multiple examples of 
applications designed by NAO users that use the internet can be found. For example, NAO can use his 
IP address to locate himself and provide a weather report, or he can read Wikipedia to answer questions 
about specific topics. For more specifications, please see Table 312. 

NAO Evolution (H25) 
Company Aldebaran (France) 
Date 2014 
Focus Companionship + Education + Autism 
Type Humanoid 
Specifications  

- Height 58 cm 
- Sensor Network 

o Cameras 
o Directional Microphones 
o Sonar Rangefinder 
o IR emitters & receivers 
o Inertial Board 
o Tactile Sensors 
o Pressure Sensors 

 
2 (Forehead, mouth) 
4 (front, right, rear, left) 
 (2 transmitters, 2 receivers) 
2 
1 
9 (Top of head, hands) 
8 

- Connectivity 
o Wi-Fi 
o Ethernet 
o Network compatibility 
o Infrared 

 
   
   
WPA / WEP 
  

- Degrees of freedom 25 
- Communication Devices 

o Voice Synthesizer 
o LED lights 
o High-Fidelity Speakers 

 
  
  
2 

- CPU 
o Type 
o Location 1st CPU 
o Location 2nd CPU 

 
Intel ATOM 1.6ghz (in head) 
Head 
Torso 

- Operating System 
o Kernel 

NAOqi 2.0 
Linux 

- Battery 48.6-watt-hour battery 
- Language 

o Text-to-Speech 
o Voice Recognition  

Up to 19 languages 
   
  

Table 3 NAO Evolution specifications (Based on: Aldebaran Robotics, 2015) 

                                                      
12 More details on NAO Evolution’s specifications can be found in his datasheet, included as Appendix III.  
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4. Human‐Robot Interaction through Natural Language 

4.0 Introduction 
In the previous chapter, NAO and his family have been presented; from this chapter onwards, we will 
take a closer look to NAO’s competence with natural language. This competence is essential to human-
robot interaction (HRI), which is one of the key domains of robotics. More and more robots are being 
developed in order to find suitable artificial companions for humans. These companions are meant to be 
used in a variety of functions. For example, robots could be used to assist the elderly or to care for the 
sick. Moreover, robots have proven to be excellent companions for children with illnesses or for autistic 
children.  

In order to become such a companion, robots should be able to communicate with their users, and the 
most obvious way to do this is through natural language. As we have seen in chapter 2, NLP still poses 
many problems to robotic designers. However, progress is being made. Robots now learn to interact 
with all kinds of people, whether they are traumatised children or invalid senior citizens. They learn 
how to recognise human emotions and how to express their own. But most importantly, they learn how 
to communicate using natural language.  

However, natural language is only one possible type of dialogue that can occur between a human and a 
robot. There are two other main types of dialogue, namely low-level13 and non-verbal (Fong et al., 2003). 
After all, when humans communicate, they use multiple para-linguistic social cues, such as facial 
expressions and body language to control their dialogues (Cassell, 1999), and these cues have proven to 
be effective for robots as well (Breazeal, 2003). This results in sociable14 robots that can be used in 
diverse situations, ranging from at home to at the hospital.  

In this chapter, we will examine how HRI can be developed by using natural language, and in the next 
chapter, we will take a look at other modes of communication, more precisely, at the communication of 
emotions through body language and facial expressions (natural language will play a role therein as 
well, but to a lesser extent).  

First, we will discuss the concept of language grounding. Next, we will take a closer look at some 
possible frameworks that can be implemented to allow a robot to deal with natural language. We will 
then continue with a discussion on turn-taking, one of the essential parts of human communication. In 
this section, we will compare NAO’s turn-taking behaviour to Kismet’s, a sociable robot developed by 
MIT.  

In the fourth part of this chapter, we will discuss some of the problems that occur when trying to establish 
HRI with natural language dialogues. As we have seen previously, the uncanny valley might be an issue, 
but there are also other problems that need to be considered, such as the creation of faulty perceptions 
of robots and the repetitiveness of dialogues based on manually implemented templates. This last 
problem could be solved by using crowdsourcing to elaborate the set of dialogue templates.  

Next, we will compare open-domain and closed-domain dialogue systems. We will zoom in on an open-
domain system that uses WikiTalk to interact with humans. Thanks to this system, a robot can talk about 
any imaginable topic by using Wikipedia as its source of knowledge.  

The dialogue systems mentioned above are based on a single main dialogue. Hierarchical Dialogue 
Control (HDC) systems, however, are being developed in which dialogues are divided into sub-

                                                      
13 Low-level dialogues are pre-linguistic dialogues.  
14 Based on (Breazeal, 2003), there are four classes of social robots (socially evocative, social interface, socially 
receptive and sociable), of which sociable robots are the most advanced. These robots are different from those of 
the three other classes because they have their own internal goals and motivations.   



22 
 

dialogues. In the sixth part of this chapter, we will take a closer look at the two possible types of such 
systems, namely flexible HDC and strict HDC.  

In the seventh part of this chapter, we will discuss cooperation. One of the functions of natural language 
is to allow people to govern cooperative tasks. Therefore, if robots want to be full companions, they 
need to be able to use language to cooperate with humans. 

Then, we will examine the use of semantic gestures in HRI. Human communication is always a 
combination of verbal and non-verbal behaviour. In chapter 5, we will take an extended look at the non-
verbal communication of emotions; in this chapter, we will limit ourselves to gestures that convey a 
semantic meaning. 

In the final part of this chapter, we will discuss end-user programming. As robots are ultimately meant 
to be used by people with non-technical backgrounds, technologies need to be developed which allow 
these people to control the robot without coding. Systems which require minimal programming are an 
important first step to this end. Yet, robot programming in natural language would even be better. 
Therefore, we will take a look at both possibilities in this final section. Some researchers, however, do 
not believe that natural language will ever be a suitable medium for HRI. They think that NLP will not 
succeed in creating efficient natural language based systems in time for the arrival of millions of robots 
into our lives – if it will ever succeed at all (ROILA, 2015). Therefore, the Eindhoven University of 
Technology has created an artificial language, ROILA, to replace natural language in daily HRI. We 
will conclude this chapter with a brief introduction to this Robot Interaction Language.  

4.1 Language Grounding 
HRI can only take place when the robot and the human share a language that is “grounded”, which 
means that they each use the same symbols to describe common objects (Fong et al., 2003). If they do 
not share these, one of them (most likely the robot) will need to receive information about the symbols 
used by the other and learn based on this information (Fong et al., 2003).  

When a robot acquires his “native” language, he is confronted with several problems (Dindo & Zambuto, 
2010)15. First of all, he needs to identify the meaning of words. The words used in this experiment are 
grounded in non-linguistic perceptual data, which means that they refer to concepts in reality. Examples 
of such words include colours (e.g. red, blue) and geometrical shapes (e.g. rectangle, circle). Secondly, 
the robot needs to match these discovered meanings to lexical units. Lastly, he needs to be able to infer 
a basic grammar from the relations that exist between the different words in the utterance.  

Dindo & Zambuto have conducted an experiment in which a NAO robot was taught new words. The 
teacher first attracted the robot’s attention by fixing his gaze on a to-be-learned-object or by pointing 
towards it. This creates an atmosphere of joint attention, which is an important condition for learning. 
The robot uses these visual cues to determine which area is most salient. All the objects which are 
located in this area are then stored into the robot’s memory. Once the teacher has attracted the robot’s 
attention, he will describe the object. This description is stored with the salient objects into the training 
set. This is an example of multi-instance learning: a label is not assigned to a specific instance, but to a 
group of instances. For example, if the word red is discovered in a description, it applies to all objects 
found in the associated salient area at this point in the learning process. To learn the meaning of the 
word, all groups of instances are being divided into two categories (positive or negative) based on the 
presence or absence of the word in the description. The robot then tries to pin the meaning on a specific 
instance through statistical methods. Figure 5 shows a schematic representation of the system. 

                                                      
15 The section Language Grounding is based on (Dindo & Zambuto, 2010), unless otherwise indicated. 
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Figure 5 Diagram of System (Dindo & Zambuto, 2010) 

In the experiment, NAO was presented with a set of objects on a table. These objects only differed in 
shape, colour, size and position. Participants were asked to use simple utterances when describing these 
objects, never referring to anything but the target object. After having learned the descriptions, NAO 
was given instructions, such as: ‘Grasp the object to the left of the blue one’. In these instructions, 
recently learned words (indicating size, colour or shape) were combined with hard-coded words (e.g. to 
grasp, to point) and special relationships. Figure 6 shows NAO trying to figure out which object was 
intended by the user. In [a], NAO points to the yellow rectangle, asking the user if that was the desired 
object. He received a negative answer and therefore, he chose another object that met the description 
(being located to the left of the blue object). He thus pointed to the blue circle in [b] and asked if that 
was the target object. As this was the case, he grabbed the blue circle in [c]. The results of this experiment 
indicate that joint attention and multi-instance learning can indeed be used to let a robot acquire a native 
language, but the method seems still limited to simple concepts with a restricted number of variable 
features. Dindo & Zambuto believe the method can be improved by building more complex concepts 
through a combination of simple ones.  

 

Figure 6 NAO Following Instructions (Dindo & Zambuto, 2010)  

4.2 Natural Language Frameworks 
In the previous section, we have discussed the grounding of language that can be used to help a robot to 
learn a language. However, a robot needs first and foremost to be able to manage interaction. Therefore, 
architectures need to be developed in which the different components needed for HRI are integrated. 
There are many different possible frameworks for natural language HRI. In this section, we will take a 
look at three possibilities: a frame-based dialogue framework, an event-based dialogue framework and 
a reward-based meta-cognitive framework. 
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4.2.1 A Frame‐based Dialogue Framework 
When humans interact with computers, they usually do so by typing instructions. The user-interface 
used in this kind of communication tends to be user-friendly, but it never feels as natural as talking 
(Barabás et al., 2012)16. HRI would thus be improved if robots could be controlled in natural language. 
Such systems are called “spoken dialogue systems” (SDS) and come in three different variants. The 
simplest type is a state-based SDS, which can be used for simple tasks. The system enters in a predefined 
dialogue with the user, during which several states are reached. In each state, the system will ask input 
from the user, which will be used to calculate the final output of the dialogue system. Frame-based SDSs 
are a slightly more complex variant of these systems, in which frames are seen as tasks with slots. The 
system will ask questions to fill the slots with the required information, after which it will complete the 
task and provide the desired output. Thirdly, there are also agent-based systems. These systems are far 
more complicated as they require a collaboration between users and system and an exchange of 
knowledge to come to the final result.  

Barabás et al. have designed a frame-based dialogue system17 based on two principles: domain-
adaptivity and language-adaptivity. Domain-adaptivity means that the system should be usable in 
multiple domains without changing source code. Language-adaptivity means that the system should be 
capable of processing different languages. However, frameworks that can work with any language do 
not exist yet. Usually, language-adaptivity means that a system supports a limited list of languages, 
which can be extended later. In this architecture, two modules remain language-dependent: the text-
cleaner and the morphology module. The text cleaner cannot be made language-independent because 
there are different alphabets and text directions. The morphology module is language-dependent because 
of the fact that each language has its own vocabulary and grammar. Next to these two modules, there is 
one other module that is semi-language-dependent: the domain ontology module. This module could 
become language-independent if a list of word-code pairs would be implemented in the morphology 
module. This list would link translations of a word to an abstract string, which could then be used in the 
domain ontology module in a language-independent manner (for example, the words dog, hond, chien 
and hund could all be mapped to a code string like “#dog”).  

In this experiment, a Nuance speech recogniser was used to convert spoken Hungarian to text, which 
became the input of the frame-based dialogue system. 18 functions were implemented into NAO, 
ranging from basic commands like ‘sit down’ to more complex commands such as ‘turn 15 degrees to 
the right’. Response times show that speech recognition is the slowest step in the process. Once the 
spoken language had been converted to text, the architecture allowed for quick responses, resulting in 
almost real-time action by the NAO robot. This might indicate that the designed architecture is suitable 
for robot controlling in natural language, although it must be kept in mind that the functionality of this 
system was very limited during the experiment (18 functions only), which might have influenced its 
performance.  

4.2.2 An Event‐based Dialogue Framework 
In order for robots to interact with humans, many processes need to be managed. As mentioned before, 
this can be realised in many different architectures. One of the possibilities is an event-based 
conversational system in which the various components needed for HRI are integrated through the open 
source Urbi SDK (Kruijff-Korbayová et al., 2011)18. The architecture of the system discussed in this 
section can be found in Appendix V. In the experiment proposed by Kruijff-Korbayová et al., three 
games were implemented on this system: a dance, a quiz and an imitation game of arm movements.  

                                                      
16 The section A Frame-based Dialogue Framework is based on (Barabás et al., 2012), unless otherwise indicated. 
17 The layered architecture of the resulting NLP engine is included as Appendix IV. 
18 The section An Event-based Dialogue Framework is based on (Kruijff-Korbayová et al., 2011), unless otherwise 
indicated. This framework was developed in the larger context of the ALIZ-E Project. Please see chapter 7.3 for 
more information. 
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At the heart of the system, the Urbi framework combines and manages all other components into an 
integrated system. The dialogue manager is the component responsible for the robot’s behaviour during 
the interaction. At first, this component was designed as a finite state machine that can enter three 
different states: dialogue, action or call. These states were used to control the flow of the interaction. 
However, based on the results of experiments with this architecture in 2011, the finite state machine was 
exchanged for a more flexible model in 2012 (Kruijff-Korbayová et al., 2012). This was needed because 
children’s behaviour turned out to be too unpredictable for a finite state machine (Ros Espinoza et al., 
2011) and too dependent on the individual child. Therefore, a spoken dialogue management method was 
chosen which used probabilistic methods and optimisation of dialogue policies based on reinforcement 
learning (Kruijff-Korbayová et al., 2012). Furthermore, as dialogues should be adapted to their users, 
online learning of policies was integrated, which allowed the system to create flexible interactions, much 
in the same way as humans adapt their own behaviour to their conversational partners (Kruijff-
Korbayová et al., 2012).  

The dialogue manager receives information about the user (such as name and game scores) from the 
user model component. Quiz questions are made available to the dialogue manager by the quiz question 
database. Next to this information, the dialogue manager also needs to follow the interaction. Therefore, 
the NLU (Natural Language Understanding) component parses the human speech detected by the robot’s 
audio system and sends it to the dialogue manager. 

The NLU component uses two different methods to interpret human speech. Quiz questions and answers 
are processed by using fuzzy matching of content words against the quiz database entries. This technique 
(also called approximate string matching) is used to find key words in databases when there might be 
spelling mistakes or other errors (Hall & Dowling, 1980). The second technique used is partial parsing. 
This technique is used to interpret any other speech input.  

The system can generate output in two different ways. The dialogue manager can ask the NLG (Natural 
Language Generation) component to send canned text to the TTS (Text-to-Speech) component which 
transforms its text-input into audio-output. The dialogue manager can also specify a communicative 
goal, which can then be used in utterance content planning to create deeper, less repetitive outcome. 

The interaction needs to be kept interesting for children, repetitiveness should thus be avoided (Kruijff-
Korbayová et al., 2012). Furthermore, child-robot interaction greatly improves when the robotic voice 
sounds child-like, therefore, the research team chose to implement the open-source Mary TTS platform, 
rather than the Acapela TTS system that is standard available on NAO (Kruijff-Korbayová et al., 2012). 
Moreover, the speech output of the robot was created in such a way that familiarity with the child was 
explicitly expressed to create a stronger bond between child and robot (Kruijff-Korbayová et al., 2012).  

In order to manage the imitation game, the architecture also needs a GRU (Gesture Recognition and 
Understanding) component, to detect the user’s face, four types of body movements used in this game 
(left hand up or down, right hand up or down) and the combination thereof.  

As mentioned before, children who participated in the experiment could choose one out of three possible 
games to play with NAO which are made possible through the above described framework. The first 
option was to learn a dance routine (Ros Espinoza et al., 2011)19. This experiment is part of a healthcare 
project (ALIZ-E), which explains the importance of physical activity in the chosen games. Furthermore, 
dance is considered to be a social activity that allows children to express themselves emotionally and 
creatively. To increase familiarity, NAO uses the name of the children when giving verbal feedback 
throughout the dance sessions. The game starts by NAO greeting the child and performing a sample 
dance, after which NAO starts to show the child the different moves, one at a time. A wizard is used to 

                                                      
19 The information on the three games in this section is based on (Ros Espinoza et al., 2011), unless otherwise 
indicated.  
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evaluate the child’s execution of the dance moves, which can lead to repetition or to adaptation of certain 
difficult moves. Once the child has mastered all the moves, the robot creates a dance by combining them.  

The second option was a Simon Says game, adapted to be played by two players. The robot and the 
child take turns inventing arm movements which the other should repeat in the right sequence. When a 
mistake is made, the other player begins a new series of movements. During this game, the child and the 
robot become more familiar with each other. This is supported by NAO’s speech: the robot tells the 
child they are secret agents who have to learn a sign language to complete a secret mission. NAO 
continuously motivates the child to keep trying, which supports the goal of the project that states that 
children should be taught to persist in their endeavours. 

The third and final option was a quiz in which the children had to answer questions asked by quizmaster 
NAO. The children received a point for each correctly answered multiple-choice question. This game 
was mainly used to examine NAO’s capacity to help children learn about their medical condition (all 
questions were related to health).  

4.2.3 A Reward‐based Meta‐cognitive Framework 
Another framework has been developed with the particular aim to support linguistic creativity (Pipitone 
et al., 2014)20. In order for robots to be creative, they need to be able to perform very complex meta-
cognitive behaviours such as having intuitions, experiencing and reading emotions and self-reflexion. 
Linguistic creativity is needed to interact with humans in an interesting way. Robots should thus be able 
to manage open-ended dialogues on all kinds of subjects21. 

Pipitone et al. have proposed an architecture based on the unified management of uncertainty in Markov 
Decision Processes (MDP). MDPs are mathematical frameworks that model sequential decision making 
with an uncertain outcome (Puterman, 2005). It consists of decision moments (called epochs), states, 
actions, transactions and rewards (Puterman, 2005). When an action is chosen in a particular state, a 
reward is generated which determines the state in which the next decision will have to be made 
(Puterman, 2005). As shown in Figure 7, the agent consists of two MDP layers, each of which contains 
three nodes: perception, action and state. Perceptions of the environment are sent to the cognitive MDP 
layer. The state of this layer describes the agent’s model of the environment. The actions available to 
this layer pass perceptual data to the meta-cognitive MDP layer. This layer can also receive perceptions 
through self-reflexivity.  

 

 

 

 

 

 

 

 

 

Figure 7 Cognitive and Meta-cognitive MDPs (Pipitone et al.., 2014) 

                                                      
20 The section A Reward-based Meta-Cognitive Framework is based (Pipitone et al., 2014), unless otherwise 
indicated.  
21 Please see chapter 4.5 for a more elaborate discussion of open-domain dialogues.  
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Based on this schematic representation of the MDP layers, a meta-cognitive architecture was designed 
as shown in Figure 8. 

 

Figure 8 A Meta-cognitive Architecture based on Two MDPs (Pipitone et al.., 2014) 

In Figure 8, three different types of arrows are used. Continuous arrows represent sensory input and/or 
output and the functional connections between the system’s components. Dashed arrows indicate 
transactions of internal and external information. Thick arrows indicate the perception-action cycles. 
Furthermore, there are also white rectangles, which represent software components.  

As mentioned above, MDP is reward based: in this case, dialogue rewards are associated to the human’s 
interest degrees as perceived by a robot. Robots, in this case NAO, will aim at receiving these dialogue 
rewards and will thus try to keep their conversational partner interested. They have different methods to 
do this: they can change the topic, search for detailed information based on the human’s interest or limit 
the duration of their speech turns. Dialogue reward levels will increase when the human shows interest 
in the interaction and will decrease when no interest is perceived. When these levels are very low, the 
robot will decide to propose a change of topic to save the conversation.  

To manage this complicated dialogue behaviour, three main dialogue tasks are implemented: 
understanding and producing natural language; searching new information; and switching context. 
Furthermore, the system has access to two different knowledge bases. The Domain Knowledge Base 
contains the internal representation of the dialogue domain. The Linguistic Knowledge Base is the 
source of the robot’s lexicon. In this case, the Linguistic Knowledge Base consists of two lexical 
databases: MultiWordnet (MWn) and Italian Verbs Source (IVS). Verbs are retrieved from the IVS 
while the other parts of speech come from the MWn.  

Visual and auditory sensory data arrives at the perception node of the cognitive MDP layer and triggers 
the Meaning Activator component (MA). This component compares the query-graph to the conceptual-
graph by using the Graph Edit Distance method (Zeng et al.., 2009). This is a method to determine the 
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similarity of two graphs that is often used for pattern recognition (Zeng et al.., 2009). The output of this 
component is then enriched by the knowledge of the Linguistic Knowledge Base and sent to the Speech 
Act Execution component (SAE). This is the start of the process responsible for the understanding and 
production of natural language that happens in the action node of the cognitive MDP layer. The SAE 
component annotates the sub-graphs it receives from the MA component. These annotations are strings 
(e.g. negative, interrogative negative) that correspond to the planned response. These annotated sub-
graphs are then passed on to the Answer Composer component (AC), which is responsible for the 
production of lexical and grammatical descriptions of the domain terms. The next component, the Fluid 
Construction Grammar (FCG), then transforms these descriptions into constructions consisting of two 
poles. The Form Pole contains the syntax properties and the Semantic Pole the term’s meaning. There 
are two types of constructions created by the FCG component: lexical constructions (related to 
individual words) and grammatical constructions (conjunctions of lexical constructions). The output of 
this component is then produced as speech. 

When the human conversational partner explicitly indicates that he is bored with the conversation, the 
perception node of the meta-cognitive MDP layer is addressed. Based on the understanding of the MA 
component, this can either lead to a topic switch or to a search for new information. In the first case, the 
Context Switching component (CS) is triggered to use the Domain Knowledge Base to determine a new 
dialogue topic. In the second case, the Semantic Annotator component (SA) will retrieve external 
contents from the Internet to improve the robot’s answers.  

While the research team that has developed this architecture does not provide the results of the 
experiments conducted with NAO, the article concludes with the statement that the framework 
performed well in an Italian context and was very versatile when it came to tutoring and managing open-
ended dialogues.  

4.3 Turn‐taking 
Once a framework has been chosen, the different components needed for HRI can be installed. One of 
the features which should be provided is a way to manage turn-taking. When interacting, humans 
automatically apply turn-taking patterns to their conversation. From an early age onwards, humans learn 
the ability of waiting for their turn in conversation, and expect others to do this as well. Therefore, it is 
important that robots should also be able to do this when interacting with humans. After all, humans 
automatically expect and apply it when talking to a robot, even though they do so unconsciously (Baxter 
et al.., 2013). Baxter et al., showed this in their experiment in the Science Museum of Milan, in which 
15 children were asked to sort food images into two categories by using a touch screen together with a 
NAO robot (Baxter et al.., 2013). Even though the children were not given the instruction to obey turn-
taking rules, the experiment shows that they did, simply because they considered NAO to be a social 
agent (Baxter et al.., 2013). This clearly shows that humans expect turn-taking to be a part of HRI, just 
as much as they expect it to be a part of their daily human-to-human communications.  

4.3.1 NAO’s Turn‐taking Behaviour 
If robots are to become human companions, HRI should also concern itself with long-term relationships 
between humans and robots (Kruijff-Korbayová et al.., 2013)22. Therefore, Kruijff-Korbayová et al., 
conducted a series of experiments in which children were exposed several times to a NAO robot. The 
results showed that children adapted various aspects of their communicative behaviour (both verbal and 
non-verbal) to the robot over time. One of these adapted aspects is turn-taking. When the children and 
the robot become more accustomed to each other, they are less likely to talk at the same time or to ignore 

                                                      
22 The section NAO’s Turn-taking Behaviour is based on (Kruijff-Korbayová et al., 2013), unless otherwise 
indicated.  
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each other. This once again shows that humans like to project human characteristics on robots23, and in 
this case, it actually improves HRI because it makes the interaction feel more natural as humans 
automatically adapt themselves to their robotic conversational partner, just like they would to a human 
one. Furthermore, the results also indicated that children were more willing to adapt their turn-taking 
patterns when the robot gave explicit signals of familiarity (like using their names or referring to earlier 
interactions).  

In the experiment24, 19 children each had three sessions with NAO on three different days. During the 
first session, the children could choose a main activity: a quiz, dancing or an imitation game. This 
activity would be the first interaction of each next session. If enough time remained, a second activity 
could be chosen for each session separately. At the beginning of the very first interaction, NAO 
introduced himself to the children, asking for their names. This is an important step to build a bond of 
familiarity between robot and child. Figure 9 shows the three main activities.  

 

Figure 9 Children Playing with NAO. Left to right: Quiz, Dancing, Imitation Game (Kruijff-Korbayová et al.., 2013).  

During the experiment, NAO could be in either of two states: familiarity-display or neutral display. 
When in the familiarity-display condition, NAO addressed the children by their names and referred to 
their shared history by sentences such as ‘I am happy to see you again’ and ‘The next question should 
sound familiar’. These verbal signs of familiarity were accompanied by non-verbal signs such as 
nodding. When NAO was in the neutral display condition, he simply greeted the children in a general 
way and used far more neutral sentences such as ‘I am happy to see you’ and ‘The next question’.  

The NLG component (Natural Language Generation) and TTS component (Text-to-Speech) are 
responsible for these verbal outputs of the system. To avoid repetitiveness, many variations were 
implemented. These can be selected either randomly or controlled by certain selection criteria. Among 
these criteria are the details of the content being transferred (e.g. number of options of a quiz question), 
details of the context (e.g. the child’s gender, the number of questions that are already asked) and the 
familiarity-display condition.  

The results of the experiment show that children increasingly respected turn-taking over the three 
sessions. Furthermore, they forced themselves twice as much to wait for the robot to finish his sentence 
in the familiarity-display condition than in the neutral display condition (see Figure 10). Overlap 
between children and robots decreased from 14.15% to 7.63% in the familiarity-display condition, and 
from 19.93% to 12.82% in the neutral display condition.  

                                                      
23 This is shown by many researchers and theories, among which the Media Equation Theory, which is a 
communication theory that states that humans usually treat computers or robots as if they were human beings 
(Reeves & Nass, 1996). 
24 This experiment was conducted in the context of the ALIZ-E project. For more information on this project, 
please turn to chapter 7.3. 
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Figure 10 Forced Waiting during Turn-taking over 3 Sessions (Kruijff-Korbayová et al.., 2013) 

The results also showed that the number of utterances ignored by the robot decreased across the three 
sessions from 23.05% to 9.05% in the familiarity-display condition and from 28.2% to 12.89% in the 
neutral display condition (see Figure 11).  

 

Figure 11 Ignored Speech Acts over 3 Sessions (Kruijff-Korbayová et al.., 2013) 

Figure 10 and Figure 11 show that the main adaptation happens between the first and the second 
sessions. This means that children adapt their communicational behaviour rather quickly after starting 
to interact with a robot and that this new behaviour persists in later interactions.  

Turn-taking behaviour is regulated by non-verbal cues such as eye-gaze shifts (Meena et al.., 2012)25. It 
is the speaker rather than the listener who influences this behaviour. Possible gestures to implement in 
NAO to regulate turn-taking can be found in Table 4 and seen on Figure 12. 

Turn-taking Gestures 
Head nod up Turn-yielding: End of a sentence where NAO expects the user to provide an 

explicit response. The speaker’s gaze at the listener indicates a possibility for 
the listener to grab the conversational floor. 

Speaking-to-
listening 

Turn-yielding: Listening mode. NAO goes to standing posture from the 
speaking pose and listens to the user. 

Listening-to-
speaking 

Turn-accepting: NAO goes to speaking posture from the standing posture to 
prepare for presenting information to the user. 

Table 4 Gestures for Turn-taking (Meena et al.., 2012) 

 

Figure 12 NAO's Turn-taking Gestures. A. Head Nod Up; B. Listening Key Pose; C. Speaking Key Pose (Meena et al.., 2012) 

                                                      
25 The information on non-verbal cues for turn-taking in this section is based on (Meena et al., 2012), unless 
otherwise indicated. 
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The results of an experiment in which twelve users were asked to interact with NAO indicate that these 
gestures considerably improve NAO’s expressivity and turn-taking abilities. However, most work is still 
done by the human, as NAO’s speech recogniser does not allow interruptions from the user (Csapo et 
al.., 2012). Users are therefore forced to wait for a beep before they can respond to the robot, which 
makes them responsible for waiting an appropriate amount of time (Csapo et al.., 2012).  

4.3.2 Kismet’s Turn‐taking Behaviour 

 

Figure 13 Kismet (Plasticpals, 2015) 

In the 1990s, creators of robots realised that it would no longer be enough for robots to accomplish 
human tasks independently (Breazeal, 2015). Humanoid robots were needed to fulfil tasks in new 
environments such as hospitals and schools, because they would be able to communicate naturally with 
humans due to their similar morphology (Breazeal, 2015). Cynthia Breazeal developed the sociable 
robot Kismet for her doctoral research at MIT. Kismet can communicate with humans in a natural way, 
not only by perceiving social cues (both visual and auditory) but also by expressing social cues (through 
facial expressions, including gaze direction, emotional body postures and language) (Breazeal, 2015). 
The ultimate goal of Kismet is for her to learn through her interactions with human beings (Breazeal, 
2003)26. Kismet’s face is highly expressive to match her infant-like personality (Breazeal, 1999). 
Because of this, humans automatically interact with her as if she were a 6-months-old baby (Breazeal, 
1999).  

As said before, humans use several paralinguistic cues to regulate turn-taking behaviour, such as 
blinking or facial expressions (Cassell, 1999). These “envelope displays” are likewise important to HRI 
because of speech processing limitations. Kismet has the ability to engage in turn-taking, but this 
happens slower than in human-to-human interactions. Humans can change turns 0.25 seconds after the 
other person has stopped speaking, while Kismet needs at least 0.5 seconds. Kismet’s conversational 
partners, however, read the paralinguistic cues displayed by the robot and automatically establish a 
conversational pace in which both partners can function adequately. To avoid making the conversation 
look too rehearsed, Kismet does not use these cues in a rigidly. Please see Table 5 for Kismet’s envelope 
displays.  

 

                                                      
26 The section Kismet’s Turn-taking Behaviour is based on (Breazeal, 2003), unless otherwise indicated.  
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Kismet’s Envelope Displays 
To acquire the floor Break eye contact and/or lean back a bit. 
To start a speaking 
turn 

Vocalize a Kismet-esque babble.27 

To stop a speaking 
turn 

Stop vocalizing and re-establish eye contact. 

To hold the floor Look to the side. 
To relinquish the 
floor 

Raise brows and/or lean forward a bit. 

End of vocalisation Blinking 
Table 5 Kismet's Envelope Displays (Breazeal, 2003)  

In the experiment, four participants were asked to converse with Kismet (even though Kismet spoke no 
English). Each speaking turn was considered to consist of four different phases: acquire the floor, start 
speaking, stop speaking and relinquish the floor. When a speaker maintained the speaker role after a 
pause, this was called “holding the floor”. At the beginning of each conversation, the participants used 
long sentences and expected the robot to display turn-taking behaviour in the same way and at the same 
pace as a human being. This resulted in quite a lot of problems, such as Kismet interrupting the 
participant. However, when time went by, participants shortened their sentences and waited longer for 
Kismet to respond to them. They also started to observe Kismet’s paralinguistic cues to regulate the 
conversation. This led to a decrease in interruptions by the robot and a smoother conversation in general.   

Kismet’s pro-active role in turn-taking management allows the robot to receive the right amount of 
stimuli to create a learning-environment, which suits Kismet’s ultimate goal. The results of the 
experiment indicate that in order to create natural HRI, turn-taking should be implemented.  

This experiment, like the one discussed in chapter 4.3.1, indicates that humans automatically expect 
turn-taking behaviour when interacting with robots. Moreover, they impose it on the conversation, 
eventually creating a situation of balance between their expectations and the robot’s capabilities. This 
leads to a natural conversational rhythm which allows for smooth interactions between human and robot. 

4.4 Problems with Dialogues 
As shown in chapter 2.6, dialogues between humans and robots might cause the humans to experience 
an uncanny feeling, even though this is largely dependent on the background of the individual instead 
of on the interaction itself. There are, however, several other problems regarding HRI which need to be 
addressed to optimise these kinds of dialogues.  

First of all, dialogues can create false perceptions (Fong et al.., 2003)28. If a robot talks in a stereotypical 
way, for example, its user might be misled and might imagine characteristics for the robot that it does 
not actually possess. This might also lead them to wrong impressions about what the robot can or cannot 
do or about how it works.  

Second, dialogue systems often work with manually created templates to which dynamic information is 
added at runtime (Mitchell et al.., 2014)29. If the system only has access to a limited number of templates, 
interaction will quickly become repetitive. This also has a negative effect on the naturalness of the 
communication. Mitchell et al., have therefore conducted an experiment with a NAO robot to explore if 
crowdsourcing could be used to enrich this type of dialogue systems. After all, crowdsourcing has 
become a popular tool in several fields of computational linguistics because it offers an economic way 

                                                      
27 Kismet communicates through proto-dialogue in this experiment, because the content of the conversation is 
inferior to the way in which paralinguistic cues are used to regulate the turn-taking patterns.  
28 The information on false perception in this section is based on (Fong et al., 2003). 
29 The information on crowdsourcing in this section is based on (Mitchell et al., 2014). 
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to have access to human intelligence. Their methodology for the development of crowd-based natural 
language generation templates can be seen in Figure 14. 

 

Figure 14 Pipeline for crowd-based development of natural language generation templates (Mitchell et al.., 2014)    

To get the initial data, NAO was placed in front of an elevator for several months. His task was to give 
directions to humans who asked him to. NAO fulfilled his task by using rule-based natural language 
generation based on two modules: one module designed for giving directions based on computed paths, 
and one containing 38 standard templates for the other parts of the dialogues. These dialogues were then 
collected in a dialogue seed corpus. Based on this corpus, generations HITs were automatically 
constructed. Each of these contained a highlighted phrase in a context of variable length. An example 
of highlighted sentences with and without context can be found below: 

  Without context 

System: Sorry, that was Ernestine Patrick’s office you wanted, correct? 
  With context 

System: You said Ernestine Patrick’s office, right? 
User: Nop… 
System: Pardon me? 
User: …No 
System: I’m sorry! I still didn’t get that. Sorry, that was Ernestine Patrick’s office you wanted, 
correct? 
User: …No 

The phrase printed in bold is the highlighted phrase, generated based on a template and completed at 
runtime by the part that is not printed in italics, based on the previous utterances in the current dialogue. 
Crowd-workers were then hired via the Universal Human Relevance System, which is a general-purpose 
crowdsourcing marketplace. These people had to paraphrase the highlighted phrases, staying as close as 
possible to the original meaning and making the new paraphrase fit as well as possible in the context. 
These paraphrases were then edited to form a corpus of crowd templates (correcting spelling, 
punctuation, capitalization etc.). Based on this corpus, evaluation HITs were constructed, which were 
afterwards evaluated by the crowd. These contained variants of the highlighted sentences such as: ‘I 
apologize, are you looking for [Place]?’, and were evaluated against several criteria. People in the crowd 
first of all needed to decide whether or not a new paraphrase had the same meaning as the original 
sentence. Then they needed to rate the naturalness of both the original and the new variant in the context 
of the dialogue. The results show that 90% of the new paraphrases were considered to have the same 
meaning as the original phrases. This kind of evaluation, however, is not enough to accept new templates 
as standard templates. Therefore, additional evaluation by developers was conducted, to check, for 
example, if the register and style were appropriate. Of the original amount of paraphrases that remained 
after the evaluation by the crowd, only 33% were accepted after the second evaluation. This means that 
even though crowdsourcing could become an important tool to make HRI less repetitive, manual 
intervention is still needed afterwards to ensure the quality of the output. Mitchell et al., suggest that the 
evaluation criteria for the crowd evaluation should be updated to incorporate more of the issues found 
by the developer. This would lower the number of manual interventions needed afterwards, which would 
speed up the entire process of developing larger sets of templates.  



34 
 

4.5 Open‐Domain versus Closed‐Domain Dialogues 
In the previous section, some of the problems that need to be resolved when dealing with dialogues have 
been discussed. Now we will take a closer look at the two main kinds of dialogue that are possible in 
HRI: closed-domain and open-domain (Wilcock, 2012)30. Closed-domain dialogues are easier to 
implement, but they are also very restricted. As the name already indicates, this kind of dialogues can 
only be used within the limits of a single domain. For example, a robot can be taught to ask a series of 
questions to fill in a form to book a flight. It is not hard to alter the questions in this kind of system, but 
it is very difficult to change a particular system to another domain. Please see Figure 15 for an example 
of a finite-state machine using a closed-domain dialogue.  

 

Figure 15 Closed-Domain Dialogue Flight Reservation System (Wilcock, 2012) 

Much more interesting, however, are open-domain dialogue systems, which are not restricted to 
particular topics. In this kind of systems, Wikipedia can be used as a source of knowledge, which enables 
robots to talk about any topic imaginable. WikiTalk is an example of such an open-domain knowledge 
access system; it has been developed to be integrated into other systems, like into NAO for example. 
NAO is an embodied agent, which means that WikiTalk will need to be integrated with other modules 
such as face-tracking, nodding and gesturing and proximity recognition as well. Through these, NAO 
can observe whether or not a user is interested in the current topic. Furthermore, beat gestures (small 
hand movements) can be used to highlight certain parts of the conversation. WikiTalk also enables NAO 
to make smooth topic-shifts, by using the hyperlinks on the pages of the wiki. Please see Figure 16 for 
an example of an open-dialogue finite-state machine. 

                                                      
30 The section Open-Domain versus Closed-Domain Dialogues is based on (Wilcock, 2012), unless otherwise 
indicated. 
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Figure 16 Open-Dialogue WikiTalk System (Wilcock, 2012) 

While the finite states were closely linked to a particular topic in closed-dialogue systems, they are 
essentially interaction managers responsible for topic-tracking and topic-changing in open-dialogue 
systems. We will now take a closer look at the different states of the open-dialogue finite-state machine 
as shown in Figure 16. 

As it can be seen on Figure 15 and Figure 16, both systems need ways to start and to finish the 
interaction. These are managed by the “hello” state and the “goodbye” state, which can be implemented 
according to the needs of the particular system. In the next state, a new topic should be chosen, which 
can be done in different ways. For example, WikiTalk can provide a list of favourite topics from which 
the robot can choose one, or it might present the list of recently talked-about topics. Once the new topic 
has been established, the “new topic” state is entered and WikiTalk retracts the desired topic from 
Wikipedia. Wikipedia is designed to be visually appealing in a browser and therefore, the text needs a 
certain amount of refactoring before it can be passed to the speech synthesizer module. Furthermore, the 
text needs to be divided, because NAO has to enter in a dialogue with a human, he does not have to give 
a speech. The desired size depends on several factors, among which the quality of the interrupt 
mechanism. If the user can easily interrupt the robot, it can use larger blocks of text. When NAO starts 
talking, the “continue topic” state is entered. As long as the user shows interest in the current topic, NAO 
will keep adding new pieces of information to the interaction, if not, a new topic can be chosen. When 
he reaches the end of the Wikipedia page, NAO will inform the user that there is no more information 
on the current topic and will ask for a new one. The user can also intervene after each block of 
information: he can ask to repeat a block, to return to the previous one or to skip to the next one. 
Furthermore, the user can interrupt the robot, after which NAO will enter the “interrupt” state and 
remember where he left off.  

What is missing in the diagram above, is a way to make a smooth topic change. This is a topic change 
to a related theme, rather than to a completely new topic. In the past, manually created topic trees were 
often used in dialogue systems to organise topics into branches of related topics. The hyperlinks on the 
Wikipedia pages can be used as an alternative way to create such topic clusters, as they provide a ready-
made organisation of the knowledge within the domain of the current topic. The blocks of text used by 
NAO contain “new infos”, annotated with hyperlinks to related articles. The robot accompanies these 
new infos with beat gestures, as a part of the multimodal conversation management. After all, the human 
is unaware of the structure of the article, and does thus not know which hyperlinks are present in the 
article (Meena et al.., 2012). Examples of such gestures are a rhythmic up and down movement of a 
vertical open palm or the head nodding down (Meena et al.., 2012). When a user hears something on 
which he would like more information, he can simply repeat the word. NAO will then smoothly shift 
back into the “new topic” state and start talking about this related topic, as can be seen in Figure 17.   
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Figure 17 Open-Dialogue WikiTalk System with Smooth Topic-shifts (Wilcock, 2012) 

There are two important problems when using hyperlinks to change the topic however. First, sometimes 
a key word is only once marked as a hyperlink on a page, even though it appears more often. One 
possible solution would be to draw up a list with all the hyperlinks on the page when a new topic has 
been selected. Second, Wikipedia grows every day and some people believe that one day, each word 
will be a hyperlink. This would mean that the WikiTalk speech recogniser would need open vocabulary 
speech recognition. Yet, this is not currently possible, as the enormous amount of words would 
drastically reduce the effectiveness of a speech recogniser. Therefore, this system now only recognises 
a limited set of commands and a varying list of hyperlinks. The speech recognition is assisted by 
confidence scores. If the module is certain about having recognised the right word, it will proceed 
immediately. If it is not 100% confident, but thinks that it might have recognised “X”, it will ask ‘Did 
you mean X?’ to make sure. If the module cannot recognise anything, it will ask the user to repeat 
himself.  

Next to these smooth topic-changes, dialogues also contain awkward topic changes to a completely 
unrelated topic. Using WikiTalk, this can be done by spelling the first few letters of the new topic (by 
using the standard phonetic letter names). Wikipedia speeds up this process by suggesting topics that 
start with the selected letters. Another advantage is that Wikipedia can help by providing new possible 
topics if the user cannot decide on a particular one. This can be done, for example, by using the daily 
Did you know? Section of the English Wikipedia main page. NAO will randomly pick one of the topics 
from that list and ask the user ‘Did you know…?’ This continues until NAO has found a topic that seems 
interesting to the human. For an example of a WikiTalk-based open-dialogue with a NAO robot, please 
see Appendix VI.  

4.6 Strict versus Flexible Hierarchical Dialogue Control (HDC) 
The two types of dialogue systems described in 4.5 are only concerned with the management of one 
main dialogue. However, it might be interesting to create systems in which a dialogue agent can invoke 
sub-dialogue agents (Cuayáhuitl & Kruijff-Korbayová, 2012)31. These kinds of systems are called 
hierarchical dialogue control systems (HDC). HDC has several advantages compared to systems based 
on only one dialogue. First of all, sub-dialogues are easier to specify than main dialogues, as they are 
by definition shorter and less general. Second, only relevant dialogue knowledge is needed to govern 
sub-dialogues, which means that the management thereof is less complex. Third, sub-dialogues can 
easily be reused when the system learns a new behaviour.  

                                                      
31 The section Strict versus Flexible Hierarchical Dialogue Control is based on (Cuayáhuitl & Kruijff-Korbayová, 
2012), unless otherwise indicated.  
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There are two main types of HDC, namely strict and flexible, which are shown in Figure 18.  

   

Figure 18 Strict (a) versus Flexible (b) HDC (Cuayáhuitl & Kruijff-Korbayová, 2012) 

Strict HDC is more limited than flexible HDC because it creates rigid interactions in which the user has 
no influence over the dialogue structure. Flexible HDC results therefore in interactions which are 
perceived as more natural by the users. Furthermore, the dialogue structures used in flexible HDC cannot 
only be driven by the user: the machine can likewise learn to use different structures and to initiate their 
use.  

In the HDC system as proposed by Cuayáhuitl & Kruijff-Korbayová, an algorithm uses a stack of 
subtasks which are executed as shown in Figure 19. The fourth operation depicted can only be 
implemented in flexible HDC.  

  

Figure 19 Operations on Stack-based HDC (Cuayáhuitl & Kruijff-Korbayová, 2012) 

In flexible HDC, a sub-dialogue can be interrupted in two different ways. If the new sub-dialogue is 
already on the stack (which would mean that it was a parent of the previous sub-dialogue), all intervening 
sub-dialogues would be terminated until the parent sub-dialogue is reached. However, if the new sub-
dialogue is not on the stack yet, it is pushed onto the stack after which it is executed first. To manage 
these interruptions, the system needs to maintain knowledge about the dialogue history.  

To illustrate their flexible HDC model, an experiment with a NAO robot was conducted in which a 
hierarchy consisting of a parent agent and two children agents was used. These children were “robot 
asks” and “user asks”. The architecture of NAO’s integrated system has been included as Appendix VII.  

In the experiments, children were asked to interact with NAO in the context of a quiz game. The sample 
dialogue below shows four groups of utterances, which each represent a sub-dialogue in a flexible HDC 
system. The users can override the structure, for example, by saying that they want to be the quizmaster 
next. These interruptions lead to switches in the dominant agent.  
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System: Hi, my name is NAO, and you? 
User: I am Peter 
System: Nice to meet you Peter. Do you want to play a Quiz game? 
User: Ask me questions. [Jump to “robot asks”] 

System: The first question is: ‘What is a typical magic instrument?’ Your choices are: One, guitar. 
Two, drums. Three, violin. Four, flute. What is your choice? 
User: Number two. 
System: That is not quite right. Do you have another choice? 
User: Maybe number three. 
System: The correct answer is number four, flute. The next question is: ‘Which one of these is an 
important  artificial  channel  of  Central  America?’  Your  choices  are:  One,  channel  five.  Two, 
Panama Canal. Three, Suez Canal. Four, English Channel. What is your choice? 
User: Now I want to ask you questions. [Jump to “user asks”] 

System: Ask me the first question. 
User: What does water become at the temperature of zero degrees? 
System: What are my choices? 
User: Your choices are: One, condensation. Two, ice. Three, steam. 
System: I choose number one. 
User: That is incorrect. 
System: So what is the right answer? 
User: The correct answer is number two. 
System: Okay, ask me another question. 
User: The next question is: ‘Through which breach did the Italian army enter into Rome in 1870?’ 
Your choices are: One, Porta Venezia. Two, Porta Pia. Three, Porta Pazienza. Four, Porta Nuova. 
What is your choice? 
System: Paris 
User: Let’s stop playing. [Jump to “root”] 

System: Did you like playing the Quiz Game? 
User: Yes. 
System: I am glad to hear that. It was nice playing with you, see you soon. Bye! 
 

The above-described system can be used in situations in which topic-shifts are user-driven (as shown in 
the dialogue above) and in situations in which these are machine-driven. For example, NAO can decide 
based on the situation or on the perceived emotional state of the user to stop the game or to start another 
game. This results in a very flexible system which can be used in many different HRI contexts.  

4.7 Cooperative Tasks 
Humans always use dialogues to serve a particular goal. One of the functions for which human beings 
use natural language is to guide cooperation (Petit et al.., 2013)32. The ability to cooperate is considered 
to be one of the characteristics that differentiate human cognition from nonhuman cognition. Simple 
forms of cooperation can occur without the aid of language (e.g. small children can accomplish some 
tasks together without using words, as long as the tasks remain easy), but the moment the cooperation 
turns complex, language is needed to guide it. In order to cooperate, humans need to be able to establish 
a shared plan and to modify it during the execution thereof. Petit et al., designed an experiment in which 
NAO was taught to cooperate with users. In this experiment, the robot learned the steps of the task in 
three different ways: through imitation, through kinaesthetic teaching33 and through spoken language 
programming. Language was used to coordinate these three learning modalities. The system architecture 

                                                      
32 The section Cooperative Tasks is based on (Petit et al., 2013), unless otherwise indicated.  
33 Kinaesthetic teaching is a form of demonstration in which the user guides a passive robot through the desired 
actions.  
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used is a BASSIS architecture (Biomimetic Architecture for Situated Social Intelligence Systems), as 
shown in Figure 2034. 

 

Figure 20 BASSIS Architecture (Petit et al.., 2013) 

The architecture consists of three levels of control that are implemented in a physical platform (the soma 
layer). The reactive and adaptive layers are platform dependent while the contextual layer is not. The 
reactive layer deals with sensorimotor issues, such as perception and movement. These are implemented 
in NAO respectively by Kinect and Choregraphe35. The adaptive layer controls the adaptive motor 
capabilities, while the contextual layer fulfils a supervisor role over the system. This last layer is 
separated into two main parts: an interaction manager and a shared plan manager. The interaction 
manager controls the HRI in general by using state-based dialogue management techniques. The process 
is subdivided into the following four states: specifying the plan, modifying it, teaching steps of the plan 
and executing the plan. Furthermore, this component enables the robot to tell the user when an error has 
occurred. The shared plan manager, on the other hand, governs the learning and executing of shared 
plans. As discussed earlier, three different learning modalities were used in this experiment, which were 
grouped into two complementary categories: pure spoken language programming and a combination of 
language and perceptual action recognition. In the first category, the user will only use language to 
describe the actions the robot should undertake to accomplish the shared plan. This method is only used 
for actions which were already taught to the robot in the past. When errors occur, there are several 
“spoken language programming” functions which can be used. For example, if a user has used a wrong 
command, he or she can use an editing function by repeating the faulty command, directly followed by 
the right one. The user can also choose to delete or insert commands. In the second category, the user 
will use a combination of language and motion to teach the robot new actions. This can be done either 
through kinaesthetic demonstration or through imitation.  

                                                      
34 Petit and al also conducted an experiment with iCub, a humanoid developed by the EU consortium RobotCub 
that resembles a 3-year-old. In this bachelor’s thesis, however, only the NAO experiment will be described. 
35 Kinect is a motion sensing input device by Microsoft which is often used in robotic research even though it was 
originally meant for gaming purposes. Choregraphe is a desktop application created by Aldebaran which allows 
users to control robots without coding. According to the Aldebaran website, it is called Choregraphe, not 
Choreograph.  
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In the experiment, NAO’s task is to cooperate with a human user to clean a table that has some objects 
on it. There is a chest next to the table which needs to be opened first to put the objects in, after which 
it should be closed again. In order to do this, NAO will have to perform two sets of actions: first learn 
the plan, then execute it. The first step of learning the shared plan is the establishment thereof: 

PART 1: Establishing the plan 

1. NAO: Tell me what I have to do. 
2. Human: Pedro, help me to clean the table. 
3. NAO: The shared plan is clean. Please explain me. 
4. Human: I reach the toy, then I reach the trash box, then you open the trash box, then I put the 

toy in the trash box, then you close the trash box. 
5. NAO: I reach the toy, you reach the trash box, then I open the trash box, you put the toy in the 

trash box, I close the trash box. Do you agree with this plan? 

The user first tells the robot (called Pedro in this experiment) his intentions [1-2]. NAO uses his shared 
plan manager to check if he already knows this plan. As he does not, the manager creates an empty 
shared plan Clean the table, after which NAO asks for an explanation of the plan [3]. The human then 
uses language to explain the steps of the plan [4], which are segmented by the spoken language interface 
of the robot. NAO then repeats the instructions to give the user the chance to verify his interpretation 
[5]. NAO, however, made a mistake (indicated in red). Therefore, the user does not agree and a second 
step in the learning phase is launched, namely the correcting phase: 

PART 2: Correcting the plan 

6. Human: No, I do not. 
7. NAO: So, what did I misunderstand? 

8. Human: I reach the toy. 

9. NAO: What do you want me to do instead? 

10. Human: I reach the toy. 

11. NAO: So where I reached the toy, instead, you will reach the toy. Do you agree with this plan? 
12. Human: Yes I do 

As the human does not agree with the plan [6], he can alter it in several ways (as specified above). In 
this example, the user chooses to specify the faulty command and replace it with the right one [8-10]. 
NAO now possesses the same plan as the human user. In the next step, they should check if the robot 
has learned all the steps in the process: 

PART 3: Learning component actions 

13. NAO: Behaviour ‘open’ is unknown. I am going to learn ‘open’. Tell me what to do. 
14. Human: Move to Kinect init.  
15. NAO: I am going to move to Kinect init. Are you sure? 
16. Human: Yes, I am. 
17. NAO: Tell me what to do. 
18. Human: Imitate me. 
19. NAO: Imitation activated. Tell me when it is finished. 
20. Human: It is finished 
21. NAO: The behaviour ‘close’ is unknown. I am going to learn ‘close’. Tell me what to do. 
22. Human: Let me move your arms. 
23. NAO: Stiffness changed. Tell me when it is finished. 
24. Human: It is finished. 

NAO will iterate through all the steps of the shared plan until he encounters one for which he does not 
find the appropriate action stored in the adaptive layer. When he does, he will inform the user and ask 
for help [13]. The contextual layer will then enter the learning state. The human can then choose one or 
more of the three possible learning mechanisms to explain NAO how to perform the unknown action. 
In this example, NAO first needs help opening the chest and the user decides to teach him through 
imitation [18]. The movement and positions of the user’s body are perceived through the Kinect device, 
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allowing NAO to learn the action ‘open’. The iteration then continues until the robot encounters another 
action with which he is not familiar, in this case, the action ‘close’. This time, the user chooses to 
demonstrate the action by moving NAO’s limbs. The command issued in [22] changes the contextual 
layer to a state in which NAO’s arms have zero stiffness, so that it would be easier for the human to 
bring them into the right position. This finishes the learning stage in this example. 

In the execution stage, NAO and the human can now start the shared task: 

PART 4: Execution stage 

25. NAO: The current step is you reach toy. You are supposed to reach. Tell me when it is done. 
26. Human: It is done. 

27. NAO: The current step is I open trash box.  
28. NAO: The current step is you put the toy trash box. You are supposed to put. Tell me when it is 

done. 

29. Human: It is done. 

30. NAO: The current step is I close trash box. 
31. NAO: That was the last command.  

The results of this experiment show that language can be used in two ways in the context of cooperative 
tasks. First of all, it can fulfil a controlling function: constructing and modifying the shared plan. Second, 
it can also be one of the learning modalities through which new actions can be inserted into the 
cooperation. There is, however, an important limitation: the user can only use simple grammatical 
constructions. Unconstrained natural language cannot yet be processed in this type of scenario. This 
means that humans should not use relative clauses, for example, or should be careful with the use of 
pronouns. Yet, this still allows this method to work for rather complex shared plans.  

4.8 Semantic Gestures 
When humans interact with each other, they do not only use verbal communication. In fact, any kind of 
human-to-human interaction is always a combination of verbal communication and non-verbal 
communication (Zheng & Meng, 2012)36. It is therefore logical to include both components into HRI as 
well. Humans usually are not consciously aware of the body language they are displaying during normal 
interaction. Yet, to the careful observer, non-verbal behaviour can reveal a lot about a person, for 
example, about his emotional state. This is why body language is such a popular topic in recent HRI 
research, as will be explored in chapter 5. That kind of non-verbal communication has almost no 
connection to semantics. This is not true for any kind of body language, however. There are also 
“semantic gestures”, which are used to support or emphasize verbal communication.  

When semantic gestures are designed for robots, these are usually created by imitating human gestures. 
Zheng & Meng, however, were concerned about the perception of these gestures. They thought it could 
not be simply assumed that users would react to a gesture in the same way when it was being performed 
by a robot as when it was being performed by a human, as a robot has fewer degrees of freedom than a 
human being. Therefore, they created a framework for NAO to generate and evaluate these kinds of 
gestures. After all, if robotic companions need to make users feel comfortable around them, they must 
use gestures that are accurately perceived. Non-verbal behaviour can be categorised into five different 
classes, as shown in Table 6. 

Non-verbal gestures with semantic meanings are either emblems or illustrators, and to Zheng & Meng’s 
research, emblems are the most important ones. Emblems are typically used in social situations in which 
speech is not an option. For example, distance or noise can drown out words and therefore, humans tend 
to use easy-to-recognise emblems. Yet, it is important to keep in mind that the interpretation of these 
emblems is culturally defined. For example, when an American makes a forefinger-thumb circle gesture, 

                                                      
36 The section Semantic Gestures is based on (Zheng & Meng, 2012), unless otherwise indicated.  
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he means ‘Okay’; A Frenchman doing the same would mean ‘worthless’. This is important to remember 
when designing robotic gestures. In the experiment by Zheng & Meng that is being discussed here, 
Chinese participants were chosen. The research team thus had to be careful when using typically 
American gestures.    

Non-verbal Categories 
Category Explanation Example 
Emblems = non-verbal act with direct verbal translation - Thumb up = approval 

- Headshake = negation 
Illustrators = non-verbal acts directly tied to speech to 

serve as illustration 
- Pointing to topic 

Affect Displays = facial expressions and body movements 
associated with emotions 

- Smiling 

Regulators = non-verbal acts that regulate two-way 
conversation 

- Nodding = continue 
talking 

Adapters = unintentional habits - Adjusting glasses = tense 
- Self-touching = anxiety 

Table 6 Non-Verbal Categories (Ekman & Friesen, 1969) 

Zheng & Meng suggest to evaluate the perception of particular gestures when performed by a human 
first. Afterwards, these gestures should be evaluated when performed by NAO. The comparison of these 
results should then lead to an improved version of the robotic semantic gestures.   

Participants were first shown nine gestures performed by a human. They had to decide whether or not 
each gesture had a semantic meaning and if it did, what that meaning might be. Then, two months later, 
they were asked the same questions about these gestures performed by NAO. Furthermore, they were 
also asked to indicate which gestures seemed the most useful in a daily HRI-context and which one 
seemed the most useless. Figure 21 shows three of the nine key poses for NAO. 

 

Figure 21 Key Poses for NAO; A. Wave with Forearm; B. Beckon with Palm up; C. Clap (Zheng & Meng, 2012) 

Table 7 shows the interpretation participants gave to the nine gestures performed by the human. 
Beckoning gestures were always correctly interpreted. Waving with the forearm shows the influence of 
culture on the perception of semantic gestures. While Americans would only interpret this movement as 
a way of saying ‘bye’ or ‘hello’, Chinese participants recognised it as a common Chinese gesture for 
‘no’. Cultural background also explains the fact that one participant interpreted waving with a whole 
arm as a way of saying ‘I am here’.  
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Perception of Semantic Gestures by Human 
Nr Gesture Meaning  Rate 
1 Beckon (palm up) Come here 16/16
2 Beckon (palm down) Come here 16/16
3 Wave (forearm) Bye 

Hello 
No 

10/16 
4/16 
2/16 

4 Wave (whole arm) Bye 
Hello 
I’m here 

7/16 
8/16 
1/16 

5 Direct (head and one 
arm direct to the 
same orientation) 

This way please 
Introduce somebody / something 

13/16 
3/16 

6 Hand scratch head Let me think 
Wonder / Doubt / Puzzle 
I don’t know 

8/16 
5/16 
3/16 

7 Bow Hello / Show respect / Thanks 16/16
8 Clap Encourage / Praise / Welcome / Joy 

Not recognised as semantically meaningful 
14/16 
2/16 

9 Shake head and both 
palms facing up 

I don’t know 
Helplessness 
Not recognised as semantically meaningful 

11/16 
4/16 
1/16 

Table 7 Perception of Gestures Performed by Human (Zheng & Meng, 2012) 

When comparing these results with the perception rates of the gestures performed by NAO, important 
differences can be noticed. In general, all recognition rates were lower when NAO was observed. 
Moreover, five out of nine gestures were considered semantically empty by some of the participants. 
The gestures that were recognised were usually interpreted in a similar way, except for the beckoning 
gestures. When NAO beckoned with his palm up, some participants perceived it as a way of saying ‘look 
at me’. The second beckoning gesture (with the palm down) had low recognition rates and was not even 
considered semantically meaningful by nearly half of the participants. This was caused by the limited 
degree of freedom of NAO’s hands and arms. Table 8 shows the perception of the gestures made by 
NAO. 

When asked to vote for the most useful gesture, seven participants chose the directing gesture. The 
beckoning gesture with the palm down was nominated the most useless gesture by five participants (they 
did not even attribute it any semantic meaning whatsoever).  

The results of this experiment indicate that the interpretation of semantic gestures is indeed culturally 
dependent and that even within one culture, interpretations can differ based on the situation. For 
example, the waving gestures can have various meanings, determined by the context. Furthermore, 
sometimes multiple gestures can be used to express the same idea. For example, both scratching the 
head as headshaking with palms up indicate uncertainty. Moreover, there is indeed an important 
difference between the perception of human gestures and the perception of robotic gestures. It is 
therefore crucial to first test gestures on the intended population before implementing them into the 
robot to avoid misinterpretation.  
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Perception of Semantic Gestures by NAO 
Nr Gesture Meaning  Rate 
1 Beckon (palm up) Come here 

Look at me 
13/16 
3/16 

2 Beckon (palm down) Come here 
Not recognised as semantically meaningful 

10/16 
6/16 

3 Wave (forearm) Bye 
Hello 
No 

10/16 
4/16 
2/16 

4 Wave (whole arm) Bye 
Hello 
I’m here 
Not recognised as semantically meaningful 

9/16 
5/16 
1/16 
1/16 

5 Direct (head and one 
arm direct to the 
same orientation) 

This way please 
Introduce somebody / something 
Not recognised as semantically meaningful 

11/16 
4/16 
1/16 

6 Hand scratch head Let me think 
Wonder / Doubt / Puzzle 
I don’t know 

6/16 
8/16 
2/16 

7 Bow Hello / Show respect / Thanks / Welcome 16/16
8 Clap Encourage / Praise / Welcome / Joy 

Not recognised as semantically meaningful 
14/16 
2/16 

9 Shake head and both 
palms facing up 

I don’t know 
Helplessness 
Not recognised as semantically meaningful 

10/16 
5/16 
1/16 

Table 8 Perception of Gestures Performed by NAO (Zheng & Meng, 2012) 

4.9 End‐user Programming 

4.9.1 User‐friendly Programming 
Although robotic research has made enormous progress in the last decade, use of social robots in real-
life situations remains rare (Lourens & Barakova, 2011)37. This can be explained partly by the fact that 
controlling robots still requires too much technical knowledge. If robots are to be used in health care, 
for example, people with a medical background need to be able to program a robot according to the 
needs of the situation. This requires user-friendly programming environments which allow non-
technical users to build complex social interactions. Lourens & Barakova have proposed such a 
framework for NAO: it allows end-users to use minimal programming to create social behaviours for 
the robotic platform. The system is based on the concept of re-using modules, which can be combined 
in different ways to simulate a range of behaviours. For example, a command could be built as follows: 
‘[a|b] & c|d & e’. This command consists of five modules: modules a and b will be executed in parallel 
(indicated by the “|”), while d and e will be executed subsequently (indicated by the “&”). This leads to 
the execution of all five modules following the pattern shown in Figure 22. 

                                                      
37 The section User-friendly Programming is based on (Lourens & Barakova, 2011), unless otherwise indicated.  
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Figure 22 Graphical Representation of the Execution Order (Lourens & Barakova, 2011) 

Such minimalist coding makes it much easier for people without a technical background to control 
robotic behaviour. An experiment was conducted in which five participants with a non-technical medical 
background were asked to program NAO to conduct four tasks (Barakova et al.., 2013). The results 
show that it was possible to complete this programming within 25 minutes, which indicates that coding-
skills are no longer required to control robots (Barakova et al.., 2013).  

4.9.2 Cybele : a Motion Description Language 
In the above framework, however, some minimal programming is still required. It would be useful if the 
end-user could program robotic behaviour in natural language as well. For this reason, Shukla & Choi 
have developed a descriptive language and framework that allows users to specify motions for NAO 
through dialogues (Shukla & Choi, 2013).38 Their motion description language consists of four different 
layers that are used to provide syntactic and semantic structures. The Joint Angle Layer is the most 
detailed layer and is used to control the robot’s movements directly. The Path Layer describes a motion 
in a slightly more abstract way, as a series of dots connected by a line. The Motion Primitive Layer is 
more abstracted still, describing basic motions which can be used to build more complex ones. Finally, 
the Motion Sequence Layer provides a high-level description of a motion as a whole motion block. 
Examples of motions described at each layer can be found in Table 9.  

Motion Description Layers 
Motion Sequence Walk, Run, Jump, turn 
Motion Primitive Raise, Lower, Forward, Backward 
Path Hand(v1), Foot(v1, v2) 
Joint Angle Knee Joint 30, Elbow Joint 45 

Table 9 Motion Description Layers (Shukla & Choi, 2013) 

Based on this framework, Shukla & Choi developed Cybele, a motion description language. This object-
oriented language provides a simple syntax to combine semantic elements (motions) into parallel or 
sequential patterns of execution. 

The framework and language were then integrated in a dialogue system, which allows users to 
communicate with NAO in natural language. This system consists of two parts: a dialogue module to 
manage the HRI and an action module to perform the desired motions. In order for users to teach NAO 
a particular behaviour, they first need to direct the robot to enter the learning mode. Using his text-to-
speech module, NAO will then ask his user to give him instructions. Next, he will transform these 
instructions into text by using his speech recognition module. This text is then converted by the 
framework into motion descriptions. If the instructions given by the user were unclear or insufficient, 
NAO will ask for more information, all the while updating the motion descriptions. When NAO has 

                                                      
38 The section Cybele: a Motion Description Language is based on (Shukla & Choi, 2013), unless otherwise 
indicated.  
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fully understood the instructions, the action module will execute the motion description. Figure 23 shows 
some of the instructions that were given to two NAO robots during the testing of the dialogue system. 

In [A], two NAO robots were instructed to greet each other. In [B], one robot was told to sit down while 
the other had to remain standing during the greeting process. The robots were also trained perform a 
series of motions when recognising an apple, as can be seen in [C]. Furthermore, the robots were taught 
to interact with other robots, such as Sony’s AIBO robotic dog in [D]. In [E], the robots were instructed 
to grab the tail of the robotic toy dinosaur PLEO and in [F], they tried to reach for each other while 
avoiding the I-SOBOT robot next to them.  

 

Figure 23 NAO Interactions. A. Greeting; B. Sitting Down; C. Apple Recognising; D. Petting AIBO; E. Playing with PLEO 
Dinosaur; F. Reaching (Shukla & Choi, 2013) 

4.9.3 RIOLA: A Robot Interaction Language 
As mentioned before, the ultimate goal of NLP with robots is to allow HRI in natural language. 
However, although progress is being made, the current technology is not yet able to provide easy-to-use 
and faultless speech recognition (ROILA, 2015)39. Therefore, the Eindhoven University of Technology 
has developed ROILA (Robot Interaction Language), an artificial language that robots can understand 
without problems and that is not very hard for humans to learn. It consists of a grammar without 
exceptions and the vocabulary is easy to pronounce as it consists only of phonemes that appear in most 
natural languages. When pronounced, these words differ more significantly than natural language words, 
which means that robots have less difficulty selecting the right word from their integrated vocabulary. 
Moreover, the research team of the university argues that as robots will become a new community in 
our society, they deserve their own language. We will now shortly introduce the characteristics of this 
alternative to natural language HRI. 

Eleven consonants and five vowels make up the set of available letters in ROILA. These can be 
combined into three different word types (CVCV, CVCVC and CVCVCV). These types were selected 
because they were easier recognised during speech recognition tests.   

                                                      
39 The section RIOLA: A Robot Interaction Language is based on (RIOLA, 2015), unless otherwise indicated.  
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The meanings of these words are based on simple English words. For example, consider the subsequent 
English sentence: 

 I really liked to know you. 

This sentence would be translated to ROILA in the following way: 

 Pito loki jifi bati bama 

As this sentence shows, there is little or no resemblance between ROILA and English. A word-by-word 
translation might shed some light on the way in which ROILA functions: 

English I  really   liked     to   know   you  

ROILA Pito    loki  jifi    bati  bama 

Literal 
Meaning 

I    love  <Past 
marker> 

  know  you 

 

As this translation shows, word markers are used to fulfil the function of affixes. Instead of using a past 
form of the verb to know, the present (and only) tense is used followed by a past marker. This, together 
with other characteristics such as the absence of gender, makes the grammar quite easy to understand. 

This language thus provides a – relatively – simple alternative for HRI based on NLP. The 
communication indeed proves smoother because of the lower number of miscommunications, but it 
should be kept in mind that not every user will be willing to learn an artificial language to interact with 
a robot. After all, many robots are designed to assist the elderly, and they might be less eager to adopt 
ROILA.   

4.10 Conclusion 
In this chapter, we have discussed different possibilities to integrate natural language in HRI. We have 
started out by discussing an experiment in which joint attention and multi-instance learning were used 
to teach a “native” language to a NAO robot (Dindo & Zambuto, 2010). When presented with a set of 
objects on a table, NAO was able to identify correctly the desired object after having learned descriptions 
of subsets of these objects (Dindo & Zambuto). This proves that joint attention is indeed an important 
factor to allow robots to learn language. However, it must be kept in mind that NAO was only able to 
learn grounded words this way. The to-be-learned words were all words that referred to objects in the 
surroundings. Not every word of natural languages is grounded, however. Abstract words such as love, 
beauty or compassion, can therefore not be taught in this way. Furthermore, not all words used during 
the experiment were learned either and thus needed to be hardcoded, such as the verbs to point and to 
grasp.  This limits the effectiveness of such learning techniques, as they can only be applied to a limited 
set of words. 

In the second part of this chapter, we have presented three possible frameworks which allow robots to 
use natural language. Of course, these are only three out of many more possibilities, but these seemed 
the more interesting variants as they presented a lot of differences. Barabás et al. have created a frame-
based architecture in which 18 basic commands were implemented (Barabás et al., 2012). The 
experiment showed that frame-based dialogue systems can indeed be used for NLP, but further research 
into optimizing the speech recognition process should be carried out.  

Kruijff-Korbayová et al. created an event-based dialogue architecture in the context of the ALIZ-E 
project, an international initiative that aims to create suitable robotic companions for diabetic children 
(ALIZ-E will be discussed in more detail in section 7.3). They first tried to build their system based on 
a finite-state machine dialogue manager, but they soon found that this would not allow for the required 
flexibility (Kruijff-Korbayová et al., 2012). Therefore, they switched to dialogue manager that used 
probabilistic methods and optimisation of dialogue policies based on reinforcement learning (Kruijff-
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Korbayová et al., 2012). This allowed them to successfully implement three different games that would 
increase the physical activities of the hospitalized children. 

The reward-based meta-cognitive framework as proposed by Pipitone et al., was especially created to 
stimulate linguistic creativity. This system will incite robots to aim for dialogue rewards, which they 
will get when they manage to capture the interest of the human (Pipitone et al., 2014). Robots can either 
achieve this by changing the topic when the human loses interest, by searching more information about 
the interests of the human or by limiting the duration of speech turns (Pipitone et al., 2014). To do this, 
they need to extract sources from two different knowledge bases, which either contain lexical units or 
the internal representation of the dialogue domain (Pipitone et al., 2014). 

Turn-taking, the topic of the third part of this chapter, has proven to be an important aspect of human 
communication which humans automatically insert into and expect of HRI (Baxter et al., 2013). As it is 
thus important for robotic designers to integrate this into HRI, we have compared the turn-taking 
behaviour of two different robots, namely NAO and Kismet. The NAO experiment, conducted by 
Kruijff-Korbayová et al. in the context of the ALIZ-E project, consisted of several sessions in which 
children were allowed to play three different games with the robot (Kruijff-Korbayová et al., 2013). 
During these activities, NAO could optionally display signs of familiarity. The results indicate that 
children increasingly partake in turn-taking behaviour after several sessions, and that familiarity has an 
important influence on their communicative behaviour (Kruijff-Korbayová et al., 2013). They also 
showed that children adapt rather quickly, as the largest adaptation happens between the first and second 
session (Kruijff-Korbayová et al., 2013). Furthermore, other research has shown that NAO’s turn-taking 
abilities can be improved by implementing non-verbal behaviour to regulate turn-taking (Meena et al.., 
2012). 

NAO’s turn-taking abilities were then compared to those of Kismet, a sociable robot developed at MIT. 
Kismet can engage in turn-taking, but at a much slower pace than humans, making the HRI feel less 
active and dynamic (Breazeal, 2003). However, as Kismet uses paralinguistic cues to regulate turn-
taking, humans automatically adapt to her rhythm (Breazeal, 2003). Eventually, this led to a balanced 
conversation in which the human’s expectations were met and the robot was capable of keeping track 
of the conversation at her own speed.  

In the fourth part of this chapter, we have discussed several problems of HRI. In sections 2.5 and 2.6, 
we had already seen that an uncanny feeling can be experienced when conversing with a robot, but there 
are other problems that need to be solved to advance HRI. First of all, humans can sometimes feel misled 
by the robot because of the fact that its behaviour gave them the wrong impression about its capabilities 
or functions (Fong et al.., 2003). Secondly, HRI is often based on manually created templates into which 
dynamic information can be inserted at runtime (Mitchell et al.., 2014). This often makes the 
conversation seem repetitive and unnatural to the human, which is something which should be avoid at 
all costs. Mitchell et al. have therefore conducted experiments in which crowdsourcing was used to 
generate a more diverse set of templates. The results indicate that this is indeed a possible method to be 
used in this context, but, it should be kept in mind that manual intervention is still needed afterwards to 
check the new templates (Mitchell et al., 2014). 

Next, the difference between open-domain and closed-domain dialogues was discussed. Open-domain 
dialogues are much more interesting for NLP, as they are not restricted to a particular domain and are 
thus much wider applicable. Therefore, an experiment with WikiTalk by Wilcock was discussed in 
which NAO could use Wikipedia to communicate with users on an almost infinite number of topics. In 
this system, both smooth and awkward topic changes (to a related or unrelated topic respectively) are 
implemented, as is the possibility for interrupting NAO (Wilcock, 2012). To enable this, NAO uses beat 
gestures to accompany the words that are hyperlinks in the Wikipedia articles, to indicate that the users 
can repeat that particular word to get more information about it (Wilcock, 2012). This has proven to be 
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an effective way to manage smooth topic changes at the moment, even though this might become less 
efficient in the future when all words on Wikipedia will be changed into hyperlinks (Wilcock, 2012).  

The above-mentioned dialogue control systems only deal with one main dialogue. However, it would 
be useful to create systems in which the main dialogue can be subdivided over multiple sub-dialogues, 
as this would allow for re-use and for the creation of more specific dialogues (Cuayáhuitl & Kruijff-
Korbayová, 2012). We have discussed two types of hierarchical dialogue control (HDC) systems in 
section 4.6, namely strict and flexible HDC. Flexible HDC can be seen as more useful in the context of 
HRI as it provides flexible dialogues of which the form can be controlled by the user (Cuayáhuitl & 
Kruijff-Korbayová, 2012). The most important advantage of this kind of system is that it can easily be 
used in different HRI scenarios which would greatly broaden the range of situations in which a robot 
can be used. 

In section 4.7, one of the main functions of natural language was discussed: the management of 
cooperation. In an experiment, conducted by Petit et al., NAO’s capabilities to cooperate with a human 
being were tested (Petit et al.., 2013). The task was to clear a table, based on a shared plan which was 
instructed to the robot by the human participant (Petit et al.., 2013). The cooperation consists of different 
stages. First, NAO and the user need to establish a shared plan which they will execute together (Petit 
et al.., 2013). Then, NAO needs to learn all the desired actions which can be taught by the user in three 
different ways: through imitation, through kinaesthetic teaching or through spoken language (Petit et 
al.., 2013). Finally, the plan needs to be executed (Petit et al.., 2013). This experiment shows that natural 
language can perform two very different functions in the context of cooperation: controlling the 
cooperation (to create or edit the shared plan) and helping NAO to learn an action (as one of the three 
described learning modalities) (Petit et al.., 2013). One thing needs to be kept in mind, however. The 
user is limited to the use of fairly simple sentences, as complex ones cannot yet be processed efficiently 
by this kind of systems (Petit et al.., 2013). Although this is indeed a limiting factor, this does not seem 
to impose great difficulties as complex tasks can also be coordinated by simple language (Petit et al.., 
2013).  

Section 4.8 briefly introduced the topic of semantic gestures. This is important because human 
communication seldom only consists of verbal aspects. Usually verbal and non-verbal behaviour are 
mixed to enrich the interaction. In chapter 5, body language will be dealt with extensively, while this 
chapter dealt with another kind of non-verbal language: gestures that transfer semantic meanings. These 
are considered to be an essential part of natural interaction between humans, and therefore, many 
designers decide to implement this functionality into robots as well. However, as Zheng & Meng point 
out, it should be examined first whether or not these gestures are perceived in the same way when 
performed by a robot as to avoid undesired results (Zheng & Meng, 2012). Furthermore, these gestures 
are greatly dependent on culture and should thus be designed specifically for the envisioned audience 
of the robot (Zheng & Meng, 2012). Their experiment showed that some gestures might indeed be 
performed by the robot, but that the perception rates were much lower than when they were performed 
by a human (Zheng & Meng, 2012). Moreover, many gestures were interpreted differently when the 
robot performed them, which proves that this kind of gestures should indeed be tested on a human 
audience before they are implemented on a robot (Zheng & Meng, 2012).  

Section 4.9 dealt with one of the most important reasons why robots are not yet commonly part of human 
lives: programming and controlling them. Nowadays, most robotic programming and controlling tasks 
still need an understanding of coding. However, most robots are to be used by non-technical people who 
might not want to learn how to write programming code. Eventually, natural language would be the best 
means of completing these tasks, but as this is not yet entirely possible, intermediate solutions are 
proposed by various research teams. One of these solutions is a user-friendly programming environment 
which would only require basic coding skills (Lourens & Barakova, 2011). Such an environment might 
be based on re-usable modules that can easily be re-arranged and re-combined to build complex 
behaviours without knowing having extensive programming skills (Lourens é Barakova, 2011).  
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As mentioned before, it would be even more convenient for users to program robots through natural 
language. Therefore, research in motion description languages that allow end-users to define motions 
for the NAO robot through dialogue (Shukla & Choi, 2013). Shukla & Choi developed such a language, 
Cybele, which they used in combination with a four-layered framework and a dialogue system (Shukla 
& Choi, 2013). This allowed users to give NAO instructions in natural language for the execution of 
certain motions (Shukla & Choi, 2013). This is an important first step in the direction of natural language 
end-user programming, but it has not yet come close to fulfilling the eventual dream of complete natural 
language control. Some researchers, however, remain sceptic of this possibility: they believe that science 
will not succeed in solving this problem in time (as robots are expected to become an integral part of 
our daily lives soon). Worst yet, some of these scientists do not even believe that the problem will ever 
be entirely solved at all. Therefore, they concentrate on alternative solutions, such as RIOLA. This robot 
interaction language was created to provide end-users with an easy-to-learn artificial language that 
would increase the performance of HRI (as its artificial words are less likely to be interpreted wrongly 
by the robot’s speech recognition system) (RIOLA, 2015). The Eindhoven University of Technology, 
who is responsible for the development of this artificial language, believes that this would be a perfect 
alternative to the out-of-reach natural language based HRI (RIOLA, 2015). Moreover, they believe that 
robots deserve their own language, as they will most likely become a new class in society (RIOLA, 
2015). As good as their argumentation might sound, it is important to keep in mind that not all future 
users will be as eager to learn a new artificial language as they seem to expect. After all, many robots 
are designed to be companions for the elderly, often even for the demented. Whether or not RIOLA will 
prove to be effective in these contexts remains to be seen.  
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5. Communication of Emotions 

5.0 Introduction 
In the previous chapter, we discussed natural language in the context of HRI. One of the functions of 
natural language is to communicate emotions. Speech is a very effective and efficient medium through 
which emotions can be conveyed and consists of several parameters that can be adjusted to express the 
desired emotion, such as volume, pitch and prosody (Fong et al.., 2003). Furthermore, different speakers 
use very similar vocal effects to express particular emotions (Murray & Arnott, 1993), which means that 
this could be easily interpreted by robots. Yet, it is more difficult for robots to use natural language 
themselves to express emotions, as the quality of synthesized speech is still inferior to the quality of 
synthesized facial and bodily expressions (Bartneck, 2002). Therefore, robots are more likely to be 
designed to express themselves through their body (or through a combination of body and voice) instead 
of through their voice alone.  

Humans, likewise, do not only express their emotions through speech; they also use body language. To 
the careful observer, our body betrays a great deal about our emotional state. Therefore, it is important 
to examine not only the perception and display of emotions through natural language, but also through 
other media, such as the body.  

The importance of emotion detection and expression to a conversation should not be underestimated. 
First of all, sentiment is an important factor to interpret speech acts correctly. The emotional state of a 
person gives an extra dimension to their words. For example, if someone’s employer comes into the 
office smiling and looking pleased, a sentence like ‘Come see me in my office later!’ might lead to 
positive things such as compliments or a raise. However, if he storms into the office with a face like 
thunder, that same sentence would suddenly sound as a dark omen. Emotional body language and other 
factors such as speech volume and tone thus help the interlocutor to determine the full meaning of 
sentences correctly. This leads to a second important function of emotional communication. Because of 
the fact that the conversational partner can accurately assess the emotions behind a particular speech act, 
it becomes easier to adjust their own behaviour appropriately. The employee in the previous example 
should know to react differently to a promise than to a threat if he wants the communication to be 
successful and efficient.  

As robots are designed to interact with humans through natural language, emotion becomes important 
to them as well. They have to be capable to both display emotions and correctly detect them. In the first 
part of this chapter, we will take a closer look at some experiments that were conducted in order to 
develop accurate systems for robots to display emotions. We will first present the research by Beck et 
al.., a research team that developed an affect space for the generation of NAO’s emotional body 
language. Then we will explore two other sets of emotions for NAO, the first one created by Monceaux 
et al.., the second one by Häring et al., We will also consider a study by Cohen et al. in which NAO’s 
body language is compared to the facial emotions of the robot iCat. Then, we will compare the results 
of the NAO studies with those with other robots such as Kismet, Brian and KOBIAN.  

In the second part of this chapter, we will explore the possibilities of detecting human emotions. We 
will present a study by Zhang et al. in which a NAO robot uses a combination of semantic and facial 
cues to determine the emotion of the human with whom he is interacting. This research thus makes the 
link between the two major media of emotional expression we have mentioned before: natural language 
and body language.  

Furthermore, we will also discuss an experiment with Brian by McColl et al. in which the Davis 
Nonverbal States Scale (DNSS) is applied for the first time to HRI. This scale allows for the 
classification of body language into levels of accessibility, which is an important emotion to evaluate 
the success of a particular interaction between humans and robots.  
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5.1 Emotion Expression  

5.1.1 NAO’s Emotional Body Language 
In order for humans to accept robots into their lives and empathize towards them, robots need to be able 
to display emotions (Beck et al., 2012)40. Research into the believability of artificial agents has shown 
that ‘emotion is one of the primary means to achieve this believability, this illusion of life, because it 
helps us know that [they] really care about what happens in the world, that they truly have desires’ 
(Bates, 1994). NAO does not have facial expression and therefore, body language is the best alternative. 
NAO’s eyes can change colour, which can be used to support his emotional expressiveness, but research 
by Häring et al. has indicated that these led lights cannot be the only elements responsible for the 
expression of emotions (Häring et al., 2011).  Beck et al. have conducted several experiments which 
showed that humans were better than chance at identifying NAO’s emotions, which proves that body 
language, on the other hand, is a suitable alterative to facial emotions. Please see Table 10 for the 
recognition rates. 

Recognition rates 
Anger Sadness Fear Pride Happiness Excitement 
88% 85% 92% 88% 73% 73% 

Table 10 Recognition rates (Based on: Beck et al., 2010a) 

These experiments also indicate that the position of the head is important to express and identify 
emotions. When NAO’s head was up, positive emotions such as happiness, pride and excitement were 
more easily recognised; the same held for a downward head-position and negative emotions, such as 
anger and sadness. The perception of fear, however, seems not to be influenced by the position of the 
head. Figure 24 shows these emotions as expressed by NAO through body language. These poses are 
based on the performances of a human actor, as they found that there is no difference between the 
interpretation of emotional body language of artificial agents or of human beings.  

 

Figure 24 Static poses expressing emotions. A: Anger. B: Sadness. C: Fear. D: Pride. E: Happiness. F: Excitement. (Beck et 
al., 2010a) 

                                                      
40 The section NAO’s Emotional Body Language is based on (Beck et al., 2012), unless otherwise indicated.  
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5.1.2 An Affect Space for NAO 
Beck et al., have studied the creation of an “affect space” for the generation of emotional body language 
of robots (Beck et al., 2012)41. This affect space is ‘generated by blending different emotional 
expressions to create new ones’ and can be used ‘to improve the expressiveness of humanoid[s]’ (Beck 
et al., 2010b). The emotions of the humanoid are blended on three dimensions: arousal, valance and 
stance. Arousal indicates the level of energy used; valance indicates the positivity or negativity of the 
stimulus; and stance indicates its approachability. This method had only been used in the past for robots 
with facial expressions, such as Kismet (See chapter 5.1.6). For robots that use body language to express 
emotions, it is of course vital that this should not interfere with their other functions, such as walking or 
carrying things (Beck et al., 2010a). This can be realised by only using a minimal set of body parts rather 
than full body postures to create the affect space (Beck et al., 2010a).  

Beck et al. created an experiment in which an algorithm blended between a defined set of key poses to 
generate new ones (Beck et al., 2010b). These key poses are ‘static posture[s] modelled so that [they] 
clearly describe the emotion displayed’ (Beck et al., 2010a). They started out with these static positions 
rather than with movement because it is a well-known method in the field of animation to create 
believable characters. 

Based on earlier research (Beck et al., 2010a) they chose four emotions to represent the extremities of 
the arousal and valance scale: happiness, pride, fear and sadness. The axes, as shown in Figure 25, were 
built based on these four emotions in combination with a neutral position. Each emotion is blended with 
its neighbours at three different levels, as symbolised by the dots: 100%, 70%/30% & 50%/50%. 

 

Figure 25 Resulting system based on 2 dimensions: Arousal & valence (Beck et al., 2010b) 

The goal of the experiment was to test if the interpretation of the key poses displayed was consistent 
with their position in the affect space (Beck et al., 2010b). Participants were asked to assess of 20 poses: 
which emotion (happiness, pride, excitement, fear, anger, sadness, or neutral) is being expressed, which 
valence and which arousal (Beck et al., 2010b). Please see Figure 26 for five examples of such poses. 

                                                      
41 The section An Affect Space for NAO is based on (Beck et al., 2012), unless otherwise indicated. 
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Figure 26 Five generated key poses: A: 100% sadness; B: 70% Sadness & 30% Fear; C: 50% Sadness & 50% Fear; D: 30% 
Sadness & 70% Fear; E: 100% Fear (Beck et al., 2010b) 

The results of this experiment showed that a humanoid could display emotions without using its face 
and that these emotions were interpretable by humans. The participants were able to recognise the four 
basic emotions and they were likewise capable of interpreting the generated expressions. This means 
that an affect space can be used to generate automatically different expressions for an emotion. Key 
poses created by using a 50/50 blend were more difficult to interpret, even though their valence and 
arousal values were usually correctly assessed. According to Beck et al., these results indicated that the 
affect space they have created could greatly improve NAO’s expressiveness. The robot would no longer 
be forced to keep repeating the same body language for a particular emotion, and at the same time, this 
variation would not lower the effectiveness of its emotional communication.  

There were some unexpected results regarding valence, however. A blend of fear and sadness was 
interpreted as negative, but less negative than 100% fear or 100% sadness. This might be explained by 
the fact that the 100% versions of the emotions are considered prototypical and are thus regarded as 
more negative.  

The results of the experiments show that the perceived arousal can be increased or decreased by blending 
in an aroused or un-aroused posture. A blend of 50% fear and 50% sadness was interpreted as neutral, 
but its arousal was rated higher than that of sadness and lower than that of fear. Emotions expressed 
with the head held up were always interpreted as more highly aroused than those expressed with the 
head straight or down (Beck et al., 2010a). Furthermore, according to research by Andry et al., arousal 
is related to the speed of movements (Andry et al., 2001). Beck et al. therefore expect that variations in 
speed, determined by NAO’s arousal, would be beneficial to their model (Beck et al., 2010b).  

The experiments also showed that the position of the head also considerably affected stance (Beck et 
al., 2010a). Poses with the head held up were evaluated as “more approaching” (higher stance) than 
those with the head held straight (Beck et al., 2010a). Poses with the head held straight were in turn 
regarded as more approaching than those with the head down (Beck et al., 2010a). 

The head position can thus be said to influence the expressiveness of a pose: moving the head up 
increases the perceived arousal, stance and valance; moving the head down decreases these dimensions. 
These findings indicate that intuitive signals could be send by changes in the head position during HRI, 
which could evaluate the success or failure of a particular communicative act (Beck et al., 2010a). 

These experiments did not take into account the effect of culture, and because of the fact that most 
participants were British, the results of the study might not be applicable to participants of all cultures 
(Beck et al., 2010a). Furthermore, the participants in these studies were all adults. Therefore, Beck et al. 
decided to conduct further research to include the interpretation of a robot’s body language by children 
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(Beck et al., 2011) 42. This is especially important for projects that focus on children, such as the ALIZ-
E project (See chapter 7.3). Earlier studies indicate that while children, aged 8 and older, are able to 
recognise happiness, sadness, anger and fear in naturally generated dance expression (Boone & 
Cunningham, 1998), their emotional recognition is not yet fully developed until they are mature (Tonks, 
2007). Furthermore, it is found that adults and children do not perceive robots in the same way (Woods 
et al., 2005). Therefore, it cannot be simply assumed that they would interpret the body language of a 
robot in the same way.  

Beck et al. set up an experiment to test how children (aged 11 to 13) perceived the emotions expressed 
by NAO. For comparative reasons, the experiment was designed to be very similar to the earlier 
experiment with the adults. Children had to identify six emotions (anger, sadness, fear, pride, happiness 
and excitement), but due to their age, they did not have to evaluate valance, stance or arousal. The results 
showed that the children, like the adults, were able to identify the expressed emotions. However, unlike 
in the first experiment, there were strong variations between the recognition rates of the different 
emotions: ranging from 58% for anger to 100% for pride. The results also showed that children were 
likewise better at interpreting positive emotions when the head was up and negative ones when the head 
was down, similar to the way adults used this visual clue. Furthermore, the children’s perception of fear 
was not influenced by the position of the head, as had already been concluded from the experiment with 
adults. Overall, it can be concluded that the results of these experiments were more or less consistent 
with one another.  

5.1.3 The 2009 Library of Emotional Expressions for NAO 
In 2009, Monceaux et al. developed a library of emotional expressions, to allow researchers to create 
more complicated forms of behaviour for NAO (Monceaux et al., 2009)43. These expressions are based 
on a combination of three elements: joint movements, eye colours and sounds. Monceaux et al. created 
40 different behaviours, related to 15 emotional states and ordered from pleasure to neutrality to 
displeasure. They also developed variations of duration and intensity. These motions were combined 
with different sounds. The researchers, concerned about consistency, chose ‘sounds similar to those a 
being the size of [NAO] would produce, such as high-pitched samples, as the text-to-speech cannot 
produce onomatopoeia’ (Monceaux et al., 2009). These sounds also vary with the duration and intensity 
of NAO’s emotional behaviour. To this combination of motion and sound, they added different eye 
colours.  

Monceaux et al. point out that researchers who want to use their library should consider two important 
limitations. Firstly, as emotion is culturally defined, it is possible that certain behaviours could be 
wrongly interpreted by users of some cultures. Secondly, NAO does not possess certain physical 
characteristics, such as eyebrows, to express subtle behaviours, which might make them difficult to 
guess out of context.  

5.1.4 The 2011 Library of Emotional Expressions for NAO 
A few years later, in 2011, Häring et al. created a comparable set of emotions, using a NAO V3+ 
Academic Edition (Häring et al., 2011)44. This set consisted of four emotions (fear, joy, sadness and 
anger) of which two versions were developed each time. These emotions were once again combinations 
of body movements, sounds and eye colours. The motion used by NAO to express his emotions was 
created as to approximate human behaviour. Then, sounds were added to these movements and the 

                                                      
42 The information on the experiment with children in this section is based on (Beck et al., 2011), unless otherwise 
indicated. This study was conducted in the context of the ALIZ-E Project. For more information, please see chapter 
7.3. 
43 The section The 2009 Library of Emotional Expressions for NAO is based on (Monceaux et al., 2009), unless 
otherwise indicated. 
44 The section The 2011 Library of Emotional Expressions for NAO is based on (Häring et al., 2011), unless 
otherwise indicated.  
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research team chose to use emotion related human and/or animalistic sounds in most cases, fear being 
the only exception. The sounds that accompany joy are both based on human expressions, but they are 
created in completely different ways. Version 1 is generated by the text-to-speech module of NAO, 
while version 2 is the recording of a male voice. Furthermore, eye colours were added, resulting in the 
combinations as shown in Figure 27 and Table 11.  

 

Figure 27 Combined emotional expressions: Anger 1, Anger 2, Fear 1, Fear 2, Joy 1, Joy 2, Sadness 1, Sadness 2 (Häring et 
al., 2011) 

Combined emotional expressions 
  Motion Sound Eye colour 

Anger Version 1 Furiously 
gesticulating with 
arms 
 
Leaning forwards 
 
Raising arms & 
shaking 

[Frantic noises ] 
Ranting in 
gibberish voice 
 
Bleeb sounds 
(censoring curse 
words) 
 
Rolling thunder 

Glowing red 

Version 2 Turning head to 
left (fixating 
someone) 
 
Turing body left 
& clenching & 
shaking fist 
(restraining itself) 

[Frantic noises] 
Growling like 
dog 

Glowing red 

Joy Version 1 Dance of joy  
(like a 
cheerleader) 

[cheering] 
‘Jippie Yay!’ 

Bright yellow 
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Version 2 Slowly raising 
arms over head 
then pulling them 
down fast. 
 
Bending knees a 
bit 
(Winning pose) 

[cheering] 
‘Yehaa!’ 
(like a cowboy) 

Bright yellow 

Sadness Version 1 Hands before 
face 
 
Moving head 
from side to side  
(wiping away 
tears) 

[crying] 
Crying like a 
small child 

Dark violet 

Version 2 Going limp 
 
Crying in armpit 
Sighing 
 
Lifting arms and 
knees 
(taking a deep 
breath) 

[crying] 
Crying like a 
woman but 
alienated to 
sound like a robot 

Dark violet 

Fear Version 1 Raising arm 
before head 
(protecting itself) 
 
Shying away with 
upper body 

[non-
human/animal 
sounds] 
Loud metallic 
bang 
 
Echo 

Dark green 

Version 2 Cowering & 
trembling 

[non-
human/animal 
sounds] 
Modulated sound 
that grows louder 

Dark green 

Table 11 Combined emotional expressions (Based on: Häring et al., 2011) 

Eye colour is not an element of natural communication, as humans cannot change their eye colour. 
However, colours can have an effect on our emotions and therefore, they might be used to support our 
perception of some emotions. Choosing colours to match emotions is a difficult tasks, as most theories 
on this subject are either artistic or esoteric. The research team therefore used commonly known 
examples: the red eyes of aggressive robots in science fiction films, the dark violet tones of sad Disney 
scenes, the bright and warm colours associated with positivity and dark colours associated with 
negativity. 

During an open lab day, a pre-test was conducted. 67 Participants were asked to fill in a questionnaire 
in which they had to identify each of the eight presented emotions as either fear, sadness, joy, anger, 
neutral or other. The recognition rates (as shown in Table 12 ) were satisfying in general.  

Recognition rates  
 Anger Fear Sadness Joy 

Version 1 82.1% 82.1% 95.5% 73.1% 
Version 2 94.0% 85.1% 91.0% 74.6% 

Table 12 Recognition rates (Based on: Häring et al., 2011) 
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Some recognition rates are lower than they should actually be, because of the strict way in which the 
label “other” was used: many people gave synonyms, which should have been considered correct. To 
the surprise of the researchers, however, the second version of joy was sometimes labelled as anger, 
probably because of the final position of the movement. It was expected that the second version of fear 
would be confused with the first version of sadness, as these were very similar. However, while Fear 2 
was indeed often mistakenly identified as sadness, Sadness 1 was only occasionally labelled as fear. 
Because of the fact that some participants indicated that they were able to identify emotions based on a 
single modality, an experiment was conducted to measure the expressivity of each cue separately.  

In this experiment, the eight body movements, eight sounds and four eye colours were separated, 
resulting in 20 expression cues. Participants were asked to assign a specific value for each element on 
the Pleasure-Arousal-Dominance (PAD) scale (Mehrabian & Russell, 1974), as this would allow the 
researchers to investigate to which degree each modality contributed to these three dimensions.  

To get a global view of the ranking of each emotion on the pleasure-arousal-dominance scale, the three 
cues were once again combined into expressions of one single emotion. Please see Figure 28 for the 
results.  

  

Figure 28 Results for the Pleasure – Arousal – Dominance (PAD) measurements (Häring et al., 2011) 

Figure 28 shows that there are significant differences between the emotions on the pleasure scale, expect 
for fear and anger. This was expected because it is generally accepted that anger and fear cannot be 
distinguished based on pleasure. Within the arousal dimension, anger stood out by being significantly 
different from the three others. All emotions differed meaningfully within the dominance dimension, 
except for fear and sadness.  

The research team then examined the results for each emotional cue separately. They found that the 
separated expression cues for anger fell, as expected, within the octant of hostility (-P+A+D), except for 
the sounds used in Anger 1. The gibberish sounds were interpreted as excitement (+P+A+D) instead of 
hostility, so they indicated that future research would be needed to solve this ambiguity.  

The cues for fear were all categorised as anxious (-P+A-D), as would be expected by the PAD octant, 
except for the eye colour, which was interpreted as docile (+P-A-D) and the second sound, which was 
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identified as hostile. Häring et al. assume that the wrong interpretation of the eye colour might be due 
to the lighting of the laboratory, which leads to an important problem. If colour is perceived differently 
depending on the lighting, this would prove to be a relatively unreliable factor. After all, no designer 
could have any influence over the conditions in which the robot would be used as a daily companion. 
This might thus result in completely undesired and unexpected perceptions on the part of the human 
user.   

Sadness proved to be a difficult emotion to create expression cues for. It was expected that the results 
should be situated within the bored (-P-A-D) octant of the temperament space, but only the motion and 
sound of the second version were classified as such. The eye colour was identified as disdainful (-P-
A+D), while the motion and sound of the first version were interpreted as anxious. 

Results indicated that all cues for joy were correctly perceived as exuberance (+P+A+D), except for the 
sounds of Joy 1 and the colour of the eyes. Those two cues were considered to represent docility instead. 
The Joy 1 sound was created by NAO’s text-to-speech module and was perceived as rather monotone, 
which explains why the participants did not consider it aroused nor dominant.  

Based on these results, Häring et al. concluded that most of the chosen eye colours did not match with 
the other cues, except for the red eyes expressing anger. Furthermore, half of the sounds did not prove 
efficient to represent the chosen emotions, as they usually differed in one dimension, leading to a wrong 
perception. In addition, NAO’s text-to-speech module had clearly failed to express joy accurately. The 
body movements, however, can be considered to be accurate, except for the first variant of sadness. 

5.1.5 ICat 
All of the above studies focused on body language as the sole medium of emotional expression. 
However, it would be interesting the compare NAO’s expressiveness to a robot which does have the 
ability to express his feelings through moveable facial features. Such an experiment was conducted by 
Cohen et al., because they wanted to investigate which type of robot was best suited to support children 
with chronic diseases (Cohen et al., 2011).45 Participants (Dutch children between eight and nine years 
old) were asked to evaluate NAO’s expressions and those of iCat46, which is a research robot that can 
move its eyes, eyelids, eyebrows and lips. Both robots expressed the following five emotions: fear, 
anger, surprise, happiness and sadness. The results, which can be seen in Table 13, indicate that there 
were no important global differences between the recognition rates of the two modes of expression. The 
only emotion which was perceived a great deal better when expressed by iCat was sadness. Furthermore, 
participants were asked to interact twice with each robot: once within the context of a story and once 
without. This showed that context, as was expected, did increase the recognition rates. Moreover, 
children seemed to become better at interacting with the robot: their second results were always superior 
to those of the first time they interacted with the robot.   

Recognition rates  
 Anger Fear Sadness Happiness Surprise 

NAO 96.43% 87.5% 67.86% 89.28% 68.75% 
iCat 99.11% 88.39% 94.64% 73.21% 69.64% 

Table 13 Recognition rates of NAO and iCat (Based on: Cohen et al., 2011) 

 

 

                                                      
45 The comparison made in this section between iCat and NAO is based on (Cohen et al., 2011), unless otherwise 
indicated. 
46 For more information about iCat, please see (Philips, 2014). 
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5.1.6 Kismet 
In chapter 4.3.2, the robot Kismet has been introduced. As discussed in that chapter, people 
automatically adapt their turn-taking behaviour to Kismet’s abilities. This is exactly what Breazeal et al. 
hoped, as Kismet’s task is to engage people in one-on-one conversations and to learn more about social 
behaviour through these interactions (Breazeal, 1999)47. 

As Kismet is developed as a sociable robot, it is important that she is able to express and perceive 
emotions. In chapter 5.1.2, an experiment by Beck et al. was discussed in which they created an affect 
space for NAO (Beck et al., 2010a). This affect space is based on Kismet’s expressive behaviour: her 
expressions are based on nine prototypical facial expressions, which are blended along the same three 
axes as those later used by Beck et al., namely arousal, valance and stance (Beck et al., 2010a). 

Figure 29 shows the architecture on which Kismet is based and which allows her to combine perception, 
attention, internal drives, emotions and motor skills to perform complex social interactions. As Kismet 
is supposed to be a robotic infant, she mimics the behaviour of human children (e.g. highly interested in 
faces and in moving objects). Therefore, Kismet has access to three basic feature detectors: face finding, 
motion detection and colour saliency analysis. Her attention system provides high-level influences such 
as motivation which are combined with these low-level perceptions.  

 

Figure 29 Kismet's Architecture (Breazeal, 1999) 

The attention system classifies perceptual stimuli as either social (i.e. moving people with faces) or non-
social (i.e. moving, colourful toys). These perceptions are then transformed into releasing mechanisms 
which contain the nature of the stimulus (social or non-social) and the quality (e.g. presence or absence). 

                                                      
47 The section Kismet is based on (Breazeal, 1999), unless otherwise indicated. 
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Based on these releasing mechanisms, particular behaviours are selected. Somantic markers are then 
used to tag these mechanisms with values for arousal, stance and valence. This way, the affective state 
of the robot is influenced. 

These somatic markers then address Kismet’s motivational system, consisting of drives (basic needs) 
and emotions. Drives can be either under-stimulated (when they are ignored) or over-stimulated (by too 
many stimuli) and both conditions motivate the robot into taking action to restore the desired drive-
levels (the so-called homeostatic levels).  

When a drive is in the homeostatic region, Kismet’s arousal and valence levels will be moderate, keeping 
her calm. When they are in the under-stimulated region, however, arousal and valence will drop, making 
her sad. In the over-stimulated region, these levels will rise causing her to become agitated. Kismet’s 
emotions are thus influenced by her arousal, valance and stance levels. The stronger the emotion, the 
more her behavioural and attentional focus systems will be influenced. Once a particular behaviour is 
selected, it influences the actions of the robot and her facial expression.  

Breazeal developed learning mechanisms which allow users to train Kismet through emotive channels 
of communication. When Kismet does something undesired, the caretaker will put her in a negative 
affective state (which thus mirrors the emotional state of the caretaker). She will learn how to avoid this 
type of behaviour because she wants to avoid experiencing negative feelings. 

This research shows how robotic emotions can influence the social environments they navigate. By 
showing her emotions, Kismet can encourage the user to take care of her by responding to her needs. 
The user can likewise influence Kismet, by teaching her behaviours through manipulating her emotions. 
As humans are intentional creatures, they also expect their conversational partners to be driven by 
intentions. Therefore, Kismet’s architecture is important to guarantee natural HRI.    

5.1.7 Brian 

 

Figure 30 Brian 2.0 (ASB Lab, consulted: 4/03/2015) 

Brian 2.0 is a human-like robot developed by the University of Toronto to assist elderly persons in their 
daily tasks (ASB Lab, 2015). Brian’s upper body and head have been modelled after an adult male, but 
he does not have a lower body (McColl & Nejat, 2014)48. The research team, led by Goldie Nejat, has 
conducted experiments in order to determine a body language for Brian 2.0 which would be appropriate 
for one-one-one HRI. 

Like Beck et al. (See 5.1), they believe that ‘non-verbal communication […] convey[s] a human’s intent 
better than verbal expressions, especially in representing changes in affect’ (McColl & Nejat, 2014). 

                                                      
48 The section Brian is based on (McColl & Nejat, 2014), unless otherwise indicated.  
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Therefore, they created an experiment in order to investigate whether or not a human would be capable 
of recognising the emotions expressed like the robot with similar recognition rates as for emotions 
expressed by human beings. The participants were asked to identify the following eight emotions (all of 
which were judged to be realistic emotions in context of social HRI): sadness, elated joy, anger, interest, 
fear, surprise, boredom and happiness. Brian 2.0 can use different combinations of movements and 
postures to express these emotions, as shown in Table 14 and Table 15. 

Participants were instructed to watch videos of Brian 2.0, after which they had to choose the emotion 
that was being displayed according to them. They then had to repeat this procedure with videos of an 
actor who performed the same emotions while keeping a neutral facial expression (as Brian’s facial 
expressions had not been activated either) and using the same descriptors for the emotions.   

Positive & neutral emotions 
 Elated Joy Interest Surprise Happiness 
Trunk Stretching Stretching Stretching Stretching 
Head Tilted back / / Forward 
Arms Opening Opening / Hanging 
Motions Overall upward Overall upward  

& forward 
Overall backward / 

Movement 
Dynamics49 

High Low High Low 

Movement 
Activity50 

High / / / 

Movement 
Expansion 

Expansive / / / 

Table 14 Body language descriptors for positive and neutral emotions (Based on: McColl & Nejat, 2014) 
 

Negative emotions 
 Sadness Anger Fear Boredom 
Trunk Bowing Bowing Bowing Bowing 
Head Forward Downward Downward  Tilted back 
Arms Hanging / Closing Hanging  
Motions / / Overall backwards / 
Movement 
Dynamics 

Low High High / 

Movement 
Activity 

/ High / Low 

Movement 
Expansion 

Unexpansive / / unexpansive 

Table 15 Body language descriptors for negative emotions (Based on: McColl & Nejat, 2014) 

As with the research conducted by Beck et al., the emotions used in the experiment were chosen based 
on their level of arousal and valance. Table 16 shows the recognition rates for the emotions displayed 
by Brian 2.0. These indicate that participants were better than chance level at identifying emotions. 

Recognition rates (Brian 2.0) 
Elated 

Joy 
Interest Surprise Happiness Sadness Anger Fear Boredom 

72% 38% 82% 20% 84% 76% 26% 56% 
Table 16 Recognition rates for emotions displayed by Brian 2.0 (Based on: McColl & Nejat, 2014) 

                                                      
49 Movement dynamics refers to the energy used (McColl & Nejat, 2014).  
50 Movement activity refers to the amount of movement (McColl & Nejat, 2014).  
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These results show interesting similarities to those of Beck et al. (See Table 10). In both studies, 
happiness scored the lowest recognition rate, although the two numbers differ a great deal (NAO: 73%, 
Brian 2.0: 20%). Both research teams argue that this low percentage is due to confusion with another 
particular emotion (NAO: excitement 73%, Brian 2.0: interest 38%). McColl & Nejat suggest that other 
descriptors should be found to distinguish these emotions better. 

There is also a remarkable difference between the two sets of results: the perception of fear. While 
participants of the NAO experiment by Beck et al. scored highest on the perception of fear (92%), those 
of the Brian 2.0 experiment by McColl and Nejat often failed at identifying fear (26%). In fact, fear has 
even the second-lowest recognition rate in the latter experiment.  

Recognition rates (Actor) 
Elated 

Joy 
Interest Surprise Happiness Sadness Anger Fear Boredom 

60% 56% 66% 2% 34% 100% 70% 86% 
Table 17 Recognition rates for emotions displayed by the actor (Based on: McColl & Nejat, 2014) 

As can be seen in Table 17, the recognition rates for emotions displayed by the actor are not at all similar 
to those displayed by the robot. Statistically, participants were better at recognising anger, fear and 
boredom, when these were being expressed by the actor. Elated joy, surprise, and interest were identified 
with similar recognition rates. Sadness, however, was identified considerably better when expressed by 
the robot than when expressed by the actor. Happiness scored the lowest recognition rates, both with 
Brian 2.0 as with the actor. This might again be due to the fact that the descriptors were too similar to 
those of other emotions. 

Furthermore, the researchers point out that when Brian 2.0 displayed fear, participants identified the 
emotion both as fear and boredom with the same frequency. According to them, the difficulty of this 
emotion is due to the rigidity of its body. Brian 2.0 cannot easily curl his shoulders, which makes the 
perception of fear far more difficult. This explains why the recognition rate of fear displayed by the 
actor is much higher. 

McColl & Nejat also suggest that the lack of facial emotions may have contributed to the low recognition 
rates of happiness and to the confusion between fear and boredom.  

This experiment shows that some of the descriptors (those for sadness, elated joy, anger, surprise and 
boredom) were successful as indicators of emotions and could therefore be considered for HRI settings. 
It would be necessary, however, to develop better descriptors for happiness, fear and interest.  

The robot Brian 2.0 could be further improved by adding other natural communication modes, such as 
facial expressions and vocal intonation, to his body language to create a multi-modal communication 
system. 

Another variant of the robot, Brian 2.1, was tested in a long-term care facility (McColl et al., 2013). The 
experiment consisted of observing Brian 2.1 interact with elderly individuals during meal-times and 
during a card game (McColl et al., 2013). Brian’s intended functionality – to assist people with 
weakening cognitive capabilities – require strong social abilities (McColl et al., 2013). Afterwards, the 
participants were also given a questionnaire (McColl et al., 2013). Results showed that most participants 
were engaged in the interaction and listened to the robot’s suggestions. Furthermore, Brian 2.1 scored 
high on the level of sociability as the participants were very enthusiastic about his emotional 
expressiveness. 
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5.1.8 KOBIAN 

 

Figure 31 KOBIAN (Takanishi Laboratory, 2011) 

Researchers at the Waseda University in Tokyo have created a humanoid, KOBIAN, to study the 
expression of human-like emotions by robots. KOBIAN is a combination of two earlier robots: 
WABIAN and WE-4RII. According to Zecca et al., the elderly-dominated Japanese society leads to an 
increasing need for services to help elderly people at home, both on a physical as on a psychological 
level (Zecca et al., 2009)51. They state that a robot should closely resemble a human being in order to 
achieve a human-like communicative level. This leads to their proposition that ‘humanoids should be 
designed to balance human-ness, to facilitate social interaction, and robot-ness, to avoid false 
expectations about the robots’ abilities’ (Zecca et al., 2009). According to these researchers, robots 
should especially be able to display happiness and perplexity, as these two elements are considered to 
be essential to natural HRI.  

Zecca et al. conducted several experiments with KOBIAN, the first of which was meant to assess the 
importance of the body and the face in emotional expression. Participants were asked to recognise 
emotions (anger, fear, disgust, sadness, happiness, surprise and perplexity) in seven pictures of KOBIAN 
showing only body pictures and seven more showing a combination of body postures and facial 
expressions. The results indicate that the combination of both elements is far more effective than the use 
of either element on its own. Please see Table 18 for the recognition rates.  

Recognition rates  
Facial expression Combination Bodily expression 

44.6% 70% 33.8% 
Table 18 Recognition rates first experiment (Based on: Zecca et al., 2009) 

These results show that the combination of both facial and bodily expression is the most effective way 
of displaying emotions. Anger and surprise were much better recognised when a combination was used 
compared to when only the face was involved in the emotional expression (an increase of 61.7% and 
68.5% respectively). Sadness was found to be the only emotion which could be accurately expressed by 
the body alone.  

In a second experiment, Zecca et al. asked a professional photographer and a professional cartoonist to 
create original emotional poses for the chosen emotions. They designed these, based on the experience 
they had gained after being allowed to play with the robot for a full day. This led to two sets of postures, 
some of which were quite similar and some of which were completely different. All of these turned out 
to be very different from the poses used in the first experiment (created in the university lab). Motion 

                                                      
51 The section KOBIAN is based on (Zecca et al., 2009), unless otherwise indicated.  
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patterns for KOBIAN were then created based on the movements of a professional actor performing 
these 14 expressions. Participants were then asked to watch videos based on the postures created by the 
lab, by the photographer and by the cartoonist.  

In general, the recognition ratio of the professionals was almost identical to the one of the lab (70.5% 
and 70% respectively). However, there were some important differences on the level of individual 
emotions. These rates can be found in Table 1952.  

Recognition rates  
 Anger Happiness Surprise Disgust Sadness Fear Perplexity 

Lab 52.3% 43.3% 93.3% NA 100% NA 86.7% 
Photographer 83.9% 71.0% 90.3% NA 38.7% NA 93.5% 

Cartoonist 80.6% 29.0% 0% NA 93.5% NA 93.5% 
Table 19 Recognition rates 2nd experiment (Based on: Zecca et al., 2009) 

These results show great – yet inconclusive – differences between the perceptions of the emotions 
display in the three video sets. The recognition rates of disgust and fear remain low, while the other 
emotions seem to vary strongly between the three sets. The perception of perplexity, however, remained 
more or less stable across all three variants.  

Zecca et al. then organised a third experiment, in which they asked the photographer and the cartoonist 
to alter the postures which scored very low recognition rates. These were added to the former set of 
videos and presented to the participants.  

The results of this experiment were extremely negative, as the average recognition ratio was very low. 
However, the recognition ratio of the set created by the lab itself had also dropped from 70% to 57.5%. 
Furthermore, while perplexity had been recognised easily in the previous experiment, its recognition 
rates now fell to 76.4% (cartoonist) and to 70.5% (photographer). Zecca et al. thus concluded that the 
negative results were mainly caused by low recognition rates of the participants themselves, instead of 
by inefficient videos.   

Zecca et al. conclude from this series of experiments that KOBIAN was limited (due to its hardware) by 
only being able to express symmetrical facial expressions, while humans strongly rely on unsymmetrical 
facial cues (such as the raising of eyebrows or the movement of the lips) to express their emotions. 
Furthermore, problems were also caused by the timing of the movements of the robot, which is also an 
important factor in the expression of human emotions. These limitations in the hardware of the robot 
caused KOBIAN to tumble in the uncanny valley (which could not have been predicted based on pictures 
of the static robot).  

When comparing these results to the results of the experiment conducted by Beck et al. (see Table 10), 
there are some remarkable differences. For example, the recognition rates of the four shared emotions 
(anger, happiness, fear and sadness) seem to be a lot higher in general when expressed by NAO than 
when expressed by KOBIAN, even though NAO can only express his emotions through body language.  

In 2012, a new version of KOBIAN was developed by the Waseda University: KOBIAN-R. This robot 
was used to examine the effect of asymmetrical facial expressions on the perception of emotions 
(Trovato et al., 2012)53. The experiment consisted of a web survey in which participants had to indicate 
the most appropriate expression for one of four different emotions (disgust, disbelief, annoyance and 
incomprehension). They could choose each time between a symmetrical and an asymmetrical version. 
Furthermore, they were asked to do the same thing for different versions of happiness. The participants 
also had to indicate whether the asymmetrical version concealed an additional meaning.  

                                                      
52 The article does not mention the recognition rates of disgust and fear.  
53 The information on KOBIAN-R in this section is based on (Trovato et al., 2012), unless otherwise indicated. 
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The results (as shown in Table 20) indicate that asymmetrical expressions scored higher recognition 
rates in general. Asymmetry had a completely different effect on the perception of happiness, however, 
as 80.2% of the participants preferred the symmetrical version, as the asymmetrical versions were 
considered to hide some negative meaning.  

Symmetrical – Asymmetrical Preference  
 Symmetrical No preference Asymmetrical 

Disbelief 4.00% 17.30% 78.70% 
Annoyance 10.70% 37.30% 52.00% 

Disgust 24.00% 20.00% 56.60% 
Incomprehension 33.30% 13.30% 53.30% 

Table 20 Symmetrical - Asymmetrical Preference (Based on: Trovato et al., 2012) 

5.2 Emotion Detection 
According to McColl and Nejat, robots designed for social HRI ‘need to be socially intelligent in order 
to engage in natural bi-directional communication with humans’ (McColl & Nejat, 2014). This means 
that robots should not only be capable of expressing emotions; they should also be able to react 
adequately to complex human emotions (McColl & Nejat, 2014). Zhang et al. state that HRI would be 
greatly enhanced if robots could automatically recognise facial expressions, intentions or 
communicative goals (Zhang et al., 2013). Human emotions, however, are the results of complex 
psychological processes which cannot be easily recognised, as they differ based on experience, context 
and individual differences (Zhang et al., 2013). Therefore, it is difficult to use a single modal recognition 
system to perceive emotions (Zhang et al., 2013). 

5.2.1 NAO as a Detector of Human Emotions 
Based on the above-described observation, Zhang et al. conducted an experiment in which a NAO 
NextGen H25 used both facial and semantic clues to interpret the emotions of a human being (Zhang et 
al., 2013)54. The architecture of the system used in the experiment is shown in Figure 32. 

NAO’s vision APIs collect facial data, which is analysed by upper and lower facial action analysers, 
based on neural networks (NN). These analysers can recognise 17 action units, which are contractions 
or relaxations of facial muscles. These action units are then interpreted as one of six basic emotions 
(happiness, anger, disgust, fear, sadness or surprise) or a neutral state. Facial data is not enough 
information for a robot to assess human emotion accurately and therefore, NAO also uses its speech 
recognition API. Latent Semantic Analysis (LSA) was used to search for semantic similarities between 
a particular utterance and the training corpus, to discover conversational themes. NAO will then generate 
an appropriate response, based on the combination of the detected topic and the perceived emotion.  

NAO has a great vision of its environment because of the two cameras integrated into his head. However, 
in the experiment by Zhang et al., the robot only had to recognise facial emotions from frontal views of 
the participants using its face detection API (AlFaceDetection API). Using this API, NAO is able to 
process information about the features of the face and to link the face to a previously stored name. In 
this particular experiment, NAO was only confronted with posed facial expression instead of with 
spontaneous ones.   

 

                                                      
54 The section NAO as a Detector of Human Emotions is based on (Zhang et al., 2013), unless otherwise indicated. 
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Figure 32 System Architecture (Zhang et al., 2013) 

NAO was trained for the experiment in two different ways. For the first training, participants were asked 
to show him five different versions of a selected emotion or of a neutral state. NAO asked them after 
each pose to indicate the intensity of the emotion displayed, ranging from 0 to 1. During the second 
training, NAO was sat in front of a computer screen on which images from a database were shown. This 
was necessary to enhance the training set with a larger amount of data. 

During the experiment, NAO first greeted participants after having recognised their faces. He then 
explained the experiment and asked them to display a particular emotion. After having determined which 
emotion was being expressed, NAO used his speech synthesis engine to formulate his findings. The 
participant was then asked to inform the robot whether or not his statement was accurate. 

After NAO had detected the emotion displayed, he started a conversation with the participants, asking 
why they were experiencing that particular emotion. This open-ended dialogue based interaction used 
LSA to detect the topic of the conversation. This NLP technique is a method for ‘extracting and 
representing the contextual-usage meaning of words by statistical computations applied to a large corpus 
of text’ (Landauer et al., 1998). LSA is based on the idea that the difference or similarity of one word to 
another is based on restraints on the contexts in which these words can or cannot be used (Landauer et 
al., 1998). Zhang et al. chose LSA because it goes beyond the limits of formal linguistics and because it 
proved to be a reliable method for interpreting and managing dialogues.  LSA compares meanings by 
situating words and documents into a ‘concept space’, where they are then compared. To accomplish 
this, Zhang et al. integrated a semantic vector package into NAO’s platform.  

NAO was trained for LSA by providing him with training documents which dealt with topics such as 
bullying, diseases and school life. These were specifically chosen to fit the ultimate goal of Zhang and 
al., which was to develop a conversational theme detection system for sensitive topics that might 
drastically influence the lives of children and teenagers. Furthermore, the researchers included four types 
of metaphorical examples, because linguistic systems usually experience severe problems when trying 
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to recognise metaphorical expressions automatically. When a participant said something to NAO, he 
used his speech recognition engine to transform speech into text. The text was then analysed to 
determine the topic and to identify metaphorical phenomena.  

Based on the detected facial emotion and conversational topic, NAO then generated a response. This 
was guided by ‘eighty pattern matching appraisal rules and knowledge base’ (Zhang et al., 2013). NAO’s 
response is then randomly generated from several suitable stored responses. The robot can also decide 
to use a part of the input in his output, as shown in the following example: 

 User: I’m your best mate. 

  NAO: Why are you my best mate? 

The results of the experiment show that the neural network-based facial recogniser performed 
reasonably well (71.3% accuracy rate). For the recognition rates, please see Table 21.55 

Recognition rates  
Anger Disgust Fear Surprise Sadness Happiness  Neutral 
90% 83% 65% NA NA 80% NA 

Table 21 Recognition rates (Based on: Zhang et al., 2013) 

These results indicate that negative emotions (anger and disgust) were more easily recognised than the 
other four emotions. The most difficult emotion to perceive was sadness, as it was often classified as 
anger. Fear and negative surprise were also often confused, as were happiness and positive surprise. The 
LSA-based topic detection scored likewise reasonably well: 76% accuracy rate for topic classification 
and 83% accuracy for the recognition of metaphorical expressions. It can thus be concluded from these 
results that an LSA-based method can successfully and efficiently be used to detect topics in open-ended 
dialogues. 

5.2.2 Emotion Detection in the ROMEO Project 
As mentioned in chapter 3.1, Aldebaran joined the ROMEO project in 2009. The goal of this project is 
to design a robotic companion for elderly people that can likewise interact naturally with children (for 
example, play with the grandchildren of the user) (Tahon et al., 2011)56. To do this, ROMEO will need 
to be able to express emotions and to detect the emotions of his human companion. Non-verbal and 
verbal cues will be used to this end. The experiment conducted by Tahon et al. involves a NAO robot 
(as a test platform for the to-be-developed ROMEO) and the processing of audio cues. 

As described above, ROMEO will have to interact with both adults and children. This means that he 
will need to process two very different speech sounds. It then remains to be examined whether or not a 
single emotion detection model would be sufficient to deal with these two types. To test this, the research 
team has chosen to conduct several cross-corpora experiments. They chose the existing AIBO corpus 
for children’s speech to be used as a well-known reference to test their own corpora against. This corpus 
contains audio materials of 51 children interacting with the Sony AIBO robot. The AIBO corpus is split 
into two smaller corpora for this experiment, based on the two schools which are represented: AIBO-
Ohm and AIBO-Mont. This corpus is then compared to two corpora created by the research team. The 
first corpus is the NAO-HR corpus, containing the speech sounds of ten children playing games with 
NAO (Delaborde & Devillers, 2010).  The second corpus is the IDV-HR corpus which consists of audio 
materials of interactions between 22 visually-impaired elderly people and NAO.  

The research team believes that a multi-level processing of audio non-verbal cues is necessary to detect 
emotions in human speech accurately. As seen in Figure 33, low level cues are used to derive multi-

                                                      
55 The article, while mentioning most recognition rates, does not provide those of surprise, sadness and the neutral 
state. 
56 The section Emotion Detection in the ROMEO Project is based on (Tahon et al., 2011), unless otherwise 
indicated. 
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level markers such as emotion type (positive or negative), activation (active or non-active), emotional 
labels (e.g. “joy” or “sadness”), rhythm, etc. These data can then be processed on a higher level to reveal 
emotional and social tendencies of the conversational partner (e.g. a shy person or an aggressive person).  

 

Figure 33 Multi-level Detection of Emotional and Interactional Cues (Delaborde & Devillers, 2010) 

This means that the detection of emotion needs to happen on two different levels. On the lowest level, 
the emotion of a particular speech act is examined. On the highest level, the history of perceived emotion 
is used to draw conclusions about the user. Based on these two levels, the robot will decide how to 
behave around this particular human being.  

In order to test whether or not two separate models are needed to detect emotions in children speech and 
adult speech, cross-corpus tests between NAO-HR, IDV-HR, AIBO-Ohm and AIBO-Mont have been 
conducted. Table 22 shows the Unweighted Average Recall (UAR) performances of the four corpora.  

Cross-Corpus Classification 
Training Corpora Test Corpora 
 AIBO-Mont AIBO-Ohm NAO-HR IDV-HR 
AIBO-Mont / 50.20% 40.25% 33.24% 
AIBO-Ohm 53.18% / 47.06% 31.29% 
NAO-HR 38.75% 34.68% / 29.02% 
IDV-HR 30.30% 30.29% 25.05% / 

Table 22 Performance in Cross-corpus Classification (Based on: Tahon et al., 2011) 

These results indicate that cross-corpus tests between AIBO-Mont and AIBO-Ohm score high 
performance levels. This was expected by the research team, as both corpora actually belong to one 
larger corpus and share a lot of characteristics (e.g. language, annotation protocol and same age group). 
They also indicate that when the system is trained on AIBO, it performs better when tested with NAO-
HR than with IDV-HR. This can be explained by the fact that speakers in the NAO-HR corpus are far 
younger than those in the IDV-HR corpus (even though they share the same language and the same 
annotation protocol). This also holds for training with NAO-HR. The system trained with NAO-HR 
performs better when tested with AIBO than with IDV-HR. In fact, any combination featuring IDV-HR 
scores below (or on) the random guess level of 33%.  

We can thus conclude that it seems far more complex to perform cross-corpora studies with corpora of 
speakers of different age groups than with corpora of peers. Therefore, two different models will be 
needed to detect emotions in children speech and adult speech.  
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5.2.3 Brian as a Detector of Human Emotions 
In chapter 5.1.7, Brian’s expressiveness was discussed. However, research has also been conducted in 
which Brian had to identify correctly emotions expressed by his conversational partner (McColl et al., 
2011)57. In order for robots to keep a conversation interesting, they need to be able to interpret the 
human’s body language, as this gives a lot of information about the human’s affective state. McColl et 
al. therefore propose an automated upper body language identification and classification technique based 
on a person’s accessibility. Based on the perceived accessibility, the robot can then adapt his own 
behaviours to suit the context of that particular conversation.  

For this experiment, Brian was aided by three separate cameras that record the body language of the 
human. These recordings were then classified using the Davis Nonverbal States Scale (DNSS), a method 
for analysing body postures during one-on-one human interactions (Davis, 1991). According to McColl 
et al., their work was the first in which this model was applied to HRI.  

Based on the body poses of the human, the system determined how accessible a human was during his 
or her interaction with the robot. There are four different levels of accessibility, ranging from I (least 
accessible) to IV (most accessible).  Please see Table 23 for more details of these levels. 

Accessibility levels 
 Trunk orientation: Upper/Lower trunk Arm orientation 
Level I A/A A, N (if not A or T), T 
Level II N/N, A/N, N/A, T/A, A/T A, N (if not A or T), T 
Level III T/N, NT 

Except: positions that involve upright or 
forward leans 

A, N (if not A or T), T 

Level IV T/N, N/T: Combined with upright or 
forward leans, T/T 

A, N (if not A or T), T 

Table 23 Accessibility Levels. T: toward; A: Away; N: Neutral (McColl et al., 2011) 

Two steps are needed to determine the accessibility of a human automatically. First, the orientation of 
the upper and lower trunk is determined and expressed using the A, T and N parameters. Furthermore, 
the forward or upright orientation of the upper trunk is also recorded. This allows for the classification 
of the trunk in the DNSS model. Second, the accessibility level is made more detailed by recording the 
orientation of the arms. The arms are then likewise classified in the DNSS model. 

This system was tested by an experiment consisting of one-on-one interactions between humans and 
Brian. During this experiment, Brian expressed himself both verbally and through body language. It was 
important that participants displayed varying body language and accessibility levels and therefore, each 
interaction consisted of different parts: an introduction stage, a storytelling stage, a repetitive stage and 
a silent stage. 

During the introduction stage, Brian introduced himself and his capabilities to the participant, after 
which he asked a set of questions to get acquainted with the human. In the storytelling stage, Brian could 
either be happy or angry, which was expressed through Brain’s speech features. When he was angry, he 
talked in a stern and loud fashion. When he was happy, he spoke softer and far more energetically. Next, 
during the repetitive stage, Brian kept repeating certain phrases or gestures. Finally, in the silent stage, 
Brain refused to interact with the human.  

After the interactions, participants were asked to evaluate the videos of their conversation with the robot. 
They had to indicate how they would describe the body postures they displayed based on their own 
experience with Brian. To do this, they used a scale ranging from 1 (least accessible) to 3 (most 

                                                      
57 The section Brian as a Detector of Human Emotions is based on (McColl et al., 2011), unless otherwise 
indicated. 



71 
 

accessible). The results of this self-study were then associated to the results of the DNSS system 
developed by the researchers. This association can be found in Table 24. 

Association of self-study results and DNSS results 
 Level 1 Level 2 Level 3 
Level I 19 10 3 
Level II & III 0 24 9 
Level IV 0 0 34 

Table 24 Association of the Results of the Self-study and the Results of the DNSS System (McColl et al., 2011) 

This association indicates that the DNSS system reached 78% recognition rates for the accessibility 
levels of the participants. Two arm patterns (“arms crossed” and “arms on the hips”) caused some of the 
recognitions to fail. “Arms crossed” was usually classified by the participants as level 1, regardless of 
the orientation of the trunk. “Arms on the hips” was usually considered level 2 if the trunk was either 
oriented towards the participant or in a neutral state. 45 of the body poses were then randomly selected 
to be evaluated by a DNSS specialist. These results were compared to the results of the automated 
system, which turned out to be a relative good match. This comparison can be seen in Figure 34.  

 

Figure 34 Comparison between Results of DNSS Specialist and the Automated System (McColl et al., 2011) 

5.3 Conclusion 
This chapter has focused on the two complementary sides of robotic communication of emotions. In the 
first part, we discussed the way robots themselves can express their emotions and, in the second part, 
we took a look at how robots manage to detect human emotions.   

Robots need to be able to display emotions, as they would otherwise never be accepted as a part of our 
daily lives (Beck et al., 2012). After all, without emotions, robots would be nothing more than another 
cold and dead kitchen tool. NAO, however, cannot express emotions through facial expressions (which 
is one of the main channels humans use) and therefore, body language is the best alternative. Several 
studies have been conducted to determine how NAO should use body language to display his feelings. 
These studies showed, for example, that the position of the robot’s head is an important factor in the 
expression of emotions (Beck et al., 2012). Furthermore, an affect space has been created for NAO, 
which allows for the generation of body language by blending his emotions on three different 
dimensions: arousal, stance and valance (Beck et al., 2012). This affect space was used to create 
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emotions for NAO which contain elements from several emotions (e.g. 30% Fear and 70% Anger), 
which were then presented to participants for evaluation (Beck et al., 2012). A similar experiment was 
also conducted with children, because their perception of emotional body language has been found to 
be slightly different to the one of adults (Beck et al., 2011). The results of these experiments indicate 
that blended emotions can indeed be used to express body language by robots, but that the age of the 
user is an important factor to keep in mind (children were less good at recognising some emotions) 
(Beck et al., 2011).  

Other libraries of emotions were created for NAO by various researchers (sections 5.1.3 and 5.1.4) to 
enhance his expressiveness. Monceaux et al. pointed out the importance of consistency: if NAO 
expresses emotions through sounds for example, he should use sounds that are expected of a creature of 
NAO’s size (Monceaux et al., 2009). Häring et al. made a similar library and the experiments based 
thereof showed that eye colour could not be considered a reliable emotional medium (Häring et al., 
2011). After all, the lights in the environment alter the perception of NAO’s eye colours, which might 
lead to undesired and unexpected emotional perceptions, which should of course be avoided (Häring et 
al., 2011). 

The final four sections of part 5.1 dealt with other robots whose emotional expressions were compared 
to NAO’s: iCat, Kismet, Brian and Kobian. Cohen et al. compared the expressiveness of iCat (a feline 
research robot by Philips with facial expressions) to NAO’s and found that there were no significant 
differences between the perception rates of both robots (except for the perception of sadness) (Cohen et 
al., 2011). Breazeal created an experiment in which Kismet’s emotions were used to teach her certain 
behaviour (she would try to feel good and thus avoid unwanted behaviour because that would make her 
feel bad) (Breazeal, 1999). This research uses the affect space which was the basis on which Beck et al. 
have built their affect space for NAO (Beck et al., 2012), which is why this was included here even 
though there was no explicit comparison with NAO’s expressiveness. Furthermore, similar experiments 
with NAO could prove to be very interesting to study robotic drives and motivations. Next, we discussed 
Brian, a robot designed to support the elderly (McColl & Nejat, 2014). His recognition rates were 
surprisingly similar to the ones found in the experiment described above with NAO (Beck et al., 2012), 
except for the perception of fear (McColl & Nejat, 2014). While the participants in the NAO experiment 
scored the best rates for fear, those in the Brian experiment often failed to recognise this emotion, which 
might either be due to the different embodiment of the robot or to the motions chosen to express that 
particular emotion. Finally, research with KOBIAN has shown that – in his case – emotions are 
perceived more accurately when expressed through body language and facial expressions at the same 
time (Zecca et al., 2009). However, when compared to the results of the NAO experiment, KOBIAN 
scored lower on all four shared emotions, even though NAO does not have facial expressions.  

As mentioned earlier, robots should not only be able to express their own emotions; they should be 
capable of recognising human emotions as well. In section 5.2, we have discussed several experiments 
which examined NAO’s perceptual capabilities. Zhang et al. have conducted a study in which NAO 
could use both facial and semantic cues to determine the emotional state of the user (Zhang et al., 2013). 
NAO’s face detection API allowed him to detect the first kind of cues; semantic cues, on the other hand, 
were discovered through the use of Latent Semantic Analysis (Zhang et al., 2013). The combination of 
the perceived emotion and the detected topic then allowed NAO to formulate adequate responses to the 
user (Zhang et al., 2013). The results showed that both techniques worked well in the context of human 
emotion detection (Zhang et al., 2013). 

Furthermore, it is important to keep in mind that robots will need to deal with all sorts of people, ranging 
from young children to the elderly. Therefore, experiments should be conducted to see to which extent 
emotion detection models could be applied to different age-groups. After all, a part of emotion detection 
is achieved through detection in audio signals, which differ greatly according to the age of the speaker. 
Tahon et al. have conducted cross-corpora experiments to examine this, and their results indicate that 
multiple models should be provided to avoid recognition issues (Tahon et al., 2011). 
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Next to the experiments with NAO, we have also include one with Brian, as this provided us with a 
second robot of which we could examine both the expression as the detection of emotions. In this 
experiment, Brian detected the accessibility of a human user to determine how to proceed with the 
interaction (McColl et al., 2011). This study shows that the DNNS system used by Brian functioned 
almost as well as a human DNNS expert to determine a human’s accessibility, which means that DNNS 
is indeed one possible way to detect human emotions (McColl et al., 2011).  
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6. Influence of Personality Traits 
6.0 Introduction 
In the previous chapter, we discussed the expression and perception of emotions. Emotions are one of 
the factors that influence the topic of this chapter, namely personality. Studies have shown that humans 
would be more willing to interact with robots if these had their own compelling personalities, just as 
humans themselves have (Breazeal, 2002). However, creating personalities for robots is not 
straightforward. It is still unclear whether implemented or learned personalities would be most beneficial 
for HRI, neither is it known if robots should mimic specific human personalities or not (Fong et al., 
2003).  

Either way, robotic personality has proven to be an important component of HRI. After all, personality 
can influence the affection felt by the user towards the robot in a positive or negative way (Fong et al., 
2003). This is of course vital when creating social robots, as users should first and foremost be 
comfortable around their companions. Yet, research has also indicated that personality might have a 
complex influence on the efficiency of a robot, as charming robot personalities do not always inspire 
users to cooperate better with their robots (Goetz & Kiesler, 2002).  

Robotic personalities can be created in different ways. Many studies indicate which verbal and non-
verbal behaviours match particular personality types. One of the most visible traits is extraversion, and 
therefore, it is the trait that is most often discussed in research on robotic personalities. Certain speech 
characteristics, associated with introverted or extraverted humans, are transferred to robots to imitate 
introversion or extraversion.  

In this chapter, we will first discuss five different robotic personality types. In the second part, we will 
take a closer look at the influence of personality matching on HRI. This, however, is not an easy topic. 
Psychology has taught us that humans can apply two different social attraction rules: one based on 
similarity and one based on complementarity. In other words, interhuman relationships are not at all 
based on uniform principles. This thus leads to the hypothesis that this would also hold true for human-
robot relationships. It needs to be examined, therefore, if HRI would improve if robots resembled their 
users or complemented them.  

Many studies suggest that HRI would benefit if the personality of the robot matched the personality of 
the user. Therefore, in the second section, we will discuss an experiment in which introverted and 
extraverted robots interacted with introverted and extraverted humans.  

However, there are likewise plenty of studies that indicate that humans would prefer robots with 
complementary personalities. As literature does not seem to find any consensus on this topic, we have 
also included three other visions. Sections three, four and five of this chapter are dedicated to the views 
of three students of the University of Twente who participated in the 2012 Student Conference on IT 
organised by their university. They proposed the hypothesis that similarity or complementarity do not 
determine the perception of a robot. In the fourth section, we will present Windhouwer’s argument that 
it is in fact the task context which is important for the preference of certain robotic personalities 
(Windhouwer, 2012). Next, we will examine Leuwerink’s view (Leuwerink, 2012). He proposes that 
people prefer different robots when they have to interact with them in the context of a group. In the fifth 
part, we will discuss Waalewijn’s idea that perception and preference is influenced by cultural 
background (Waalewijn, 2012). More specifically, he examines the differences between neighbouring 
cultures (Germany and the Netherlands). While the results of these three works were not exactly as 
positive as the researchers hoped, they did lead to some insights into the perception of robotic 
personalities.  
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6.1 Personality Types for Social robots 
In general, there are five different personality types that are typically used when designing social robots 
(Fong et al., 2003).58 Please see Table 25 for an overview of these types. All of these personalities can 
be conveyed in various ways: through emotion, embodiment, motion and communication style. 
Furthermore, the perception of a robot’s personality is likewise influenced by the tasks the robot 
performs.  

Personality Types  
 Type of Robot Characteristics 

Tool-like Smart appliances Dependability & Reliability 
Pet or creature Toy & Entertainment Domestic animal traits 

Cartoon Robots for interaction with non-
specialists 

Exaggerated traits 

Artificial being NA Science fiction traits 
Human-like NA Depending on function 

Table 25 Personality Types for Social Robots (Based on: Fong et al., 2003) 59 

6.2 Personality Matching 
In order for robots to be truly integrated into society as human-like companions, they need a certain 
insight into the personalities of the users with which they are interacting (Aly & Tapus, 2013)60. 
Furthermore, according to some psychological theories, humans would be more attracted to those who 
share the same personality traits than to those who are completely different. This theory has been 
empirically proven in the context of human-machine interaction by various studies (i.a. Tapus & 
Matarić, 2008).61 This means that HRI could be improved if robots could match the personality of their 
users. Aly & Tapus designed an experiment with a NAO robot in which this hypothesis was tested. 
Furthermore, they also investigated whether or not robotic behaviour would benefit if gestures were 
added to speech-only behaviour. For an overview of the architecture used in this experiment, please see 
Figure 35. 

 

Figure 35 System Architecture (Aly & Tapus, 2013) 

                                                      
58 The section Personality Types for Social Robots is based on (Fong et al., 2003), unless otherwise indicated. 
59 Fong et al. do not mention which kinds of robots are usually associated with the artificial and human-like 
personality types.  
60 The section Personality Matching is based on (Aly & Tapus, 2013), unless otherwise indicated. 
61 Yet, as discussed in chapter 6.3, other studies have empirically proven exactly the opposite.  



76 
 

As shown in Figure 35, the user’s speech is transformed into text by the Dragon Naturally Speaking 
Toolkit. Based on this generated text, a personality analysis of the human is performed by the Personality 
Recogniser module. The discovered personality traits are then passed on to the PERSONAGE generator, 
which is a module that generates natural language adapted to the personality traits of the user. The 
generated text is then passed on to the BEAT toolkit, which transforms it into robotic behaviour using 
the linguistic and contextual information in the text. Figure 36 shows the architecture of the BEAT 
pipeline.  

  

Figure 36 BEAT Architecture (Aly & Tapus, 2013) 

BEAT consists of five XML-based modules which are ordered as a pipeline. PERSONAGE creates an 
XML tagged text and sends it to BEAT’s language tagging module, where it is transformed into a parse 
tree with discourse annotations. The behaviour generation module then suggests all possible gestures 
based on the output of the previous module. Next, the behaviour filtering module selects the most 
appropriate set of gestures, based on user-definable data structures (Generator set and filter set). This 
way, a new XML tree is generated and delivered to the behaviour scheduling module which converts it 
into a script of synchronised speech and gestures. Finally, the script compilation module compiles the 
output of the previous module into executive instructions which can be performed by the NAO robot.  

In this experiment, Aly & Tapus wanted to explore whether or not users would prefer interacting with a 
robot with similar personality traits. Therefore, participants were confronted with two different robotic 
personalities: one extraverted, one introverted. Furthermore, as the research team also wanted to know 
whether a personality expressed through combined behaviour (speech and gestures) would be perceived 
as more expressive, participants were confronted with the robot in two different conditions: once when 
NAO only used speech and once when he combined speech and gestures. Before meeting the robot, 
participants were asked to fill in a Big 5 Inventory Test to determine their personality traits. The study 
focuses solely on the extraversion-introversion dimension of the human’s personality.  

 

Figure 37 Introverted and Extraverted Conditions (Aly & Tapus, 2013) 
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Figure 37 shows the difference between the introverted condition of the robot (left) and the extraverted 
condition (right). When the robot has an introverted personality, his head is down and he uses less 
gestures. When he has an extroverted personality, however, his head is held up and he gestures much 
more. Furthermore, in the extraverted mode, the robot will talk more than in the introverted mode.  

At the beginning of the experiment, NAO introduced himself and asked the participant to tell him 
something about New York City. This is an important part of the interaction because this is when NAO’s 
Personality Recogniser uses linguistic cues to analyse the personality of the participant. The robot then 
presented the participant with a list of restaurants in New York City. When the participant had chosen a 
particular restaurant, NAO provided information about the food quality, service and price of the 
restaurant. The PERSONAGE generator and the BEAT toolkit manage the way this information is 
delivered to the participant by selecting appropriate speech and gestures for the personality type of the 
participant. The experiment ended when the participant did not want any other information about other 
restaurants anymore.  

Results indicate that both the extraverted as the introverted participants felt closer to the robot when it 
matched their personality traits. Furthermore, both types of participants agreed that the robot was more 
engaging, natural and appropriate when using both speech and gestures.  

6.3 The Effects of the Task on the Perceived Personality of a Robot 
To fulfil social tasks accurately, robots will need clearly defined personalities (Windhouwer, 2012)62. 
Literature on HRI provides inconclusive – and even contradictory – evidence of how robotic 
personalities should be matched to human personalities. After all, some people feel attracted to others 
with a similar personality, while others want complementary personalities. It is thus important to know 
which social attraction rule applies for HRI. But this seems not an easy question to answer. Some 
experiments indicated that HRI should be based on similar social attraction rules (Reeves & Nass, 1996), 
while others claim the contrary (Lee et al., 2006). Windhouwer, however, thought both visions might 
be incorrect. He believed that it was the task context which determined whether people preferred a 
certain robotic personality over another, and not their own personality.  

He conducted an experiment in which the role of introversion and extraversion in personality matching 
was examined. If we want humans to believe that robots have their own personality, they too should 
score either extravertly or introvertly on the Big Five personality test (Digman, 1990), just like humans 
would. By manipulating verbal and non-verbal cues, a human’s perception of the robot’s extraversion 
can be altered. For example, extraversion is linked to fast and loud speech in a higher tone of voice, 
while introversion is associated with the opposite features (Nass & Lee, 2001). The perception of 
extraversion is also altered by non-verbal cues: extroverts move wider and faster compared to introverts 
and they are more likely to come closer to other people (Isbister & Nass, 2000). In his experiment, 
Windhouwer used Aldebaran’sprogram Choregraphe to create these behaviours for NAO. 

Windhouwer’s experiment consisted of showing 32 Dutch and German students a video in which NAO 
interacted with a human. The human conversational partner was the same in each video, to avoid 
unwanted side-effects on the results. The goal of this experiment was to determine if a human’s 
preference for a certain type of robot might really depend on the task the robot needs to perform. Three 
research questions were chosen to examine this hypothesis: 1) Does a task strengthen the perceived 
robotic personality; 2) Does a robotic personality strengthen the perception of a task; 3) Does 
consistency between the personality of a robot and the characteristics of a task improve the human’s 
perception of the robot? 

                                                      
62 The section The Effects of the Task on the Perceived Personality of a Robot is based on (Windhouwer, 2012), 
unless otherwise indicated.  
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The characteristics mentioned in the third research question are based on a study by Barrick & Mount 
in which they stated that people associate certain personality types to professions (Barrick & Mount, 
1991). Based on this study, Windhouwer made videos of two NAO robots with opposite personality 
traits (one introverted, one extraverted) that performed three different professions: teacher 
(introversion), manager (extraversion) and apothecary (ambivalent). This resulted in six different 
videos. As a teacher, NAO gave a private lesson to a student. When playing the role of a CEO, NAO 
held a meeting with one of his managers. When behaving like a nurse in an apothecary, NAO gave 
advice and sold medicines to a customer. To avoid influence on the results, NAO was made to look 
human-size in these videos.  

Participants were asked to fulfil a personality test which would indicate where they were situated on the 
introversion-extraversion scale. They were then asked to assess the introversion or extraversion of the 
NAO robot in one single video. Participants likewise had to do this for the task performed by the robot. 
Furthermore, NAO’s intelligence was also examined. They also had to rate how fun and enjoying the 
robot seemed to them. The results can be found in Table 26.  

Perception of both robots 
 Introverted NAO Extraverted NAO 
 CEO Pharmacist Teacher CEO Pharmacist Teacher 
Introversion 6.2071 4.2940 5.4375 5.7000 6.1429 5.6250
Extraversion 5.4750 6.2679 5.9087 5.4750 5.0000 5.5250
Intelligence 3,0000 4,3000 4.8333 3.8000 3.9167 2.0000
Fun 5.9667 6.2500 6.4167 4.6000 4.5833 6.2500
Enjoyable 6.2667 6.4667 6.8333 4.5333 5.2778 5.4667

 Table 26 Perception of Introverted and Extraverted NAO (Based on: Windhouwer, 2012) 

The results shown in Table 26 might seem counterintuitive at first. These are numbers of a nine-point 
scale in which 1 equals ‘Describes very well’ and 9 equals ‘Describes very poorly’. This means that if a 
characteristic scores very low, it is actually very present. Thus, the robot that was perceived as the most 
introverted one is the introverted NAO during the ambivalent pharmacy task. The robot that was 
perceived as the most extraverted one, on the other hand, was the extraverted Nao during the ambivalent 
task.  

The answer to the first research question is that a task does not strengthen the personality perception of 
the robot if both are of the same type. The difference between the results of the extraverted NAO is 
negligible, however, the introverted NAO does show significant differences in perception when 
introversion was measured. For example, when the introverted NAO played a pharmacist, it was 
perceived as a lot more introverted than during the other tasks. This means that the task does have an 
effect on the perception of the introverted robot, as opposed to the extraverted robot. However, 
introverted NAO was not considered more introverted when performing the role of a teacher. We can 
thus conclude that a task does not strengthen the personality perception of a robot, nor weaken it.  

The second question is likewise negative: consistency does not strengthen the perception of a task either. 
As the results show, the perception of a robot’s introversion is not influenced by the tasks he performs 
(although the CEO tasks is slightly different from the two others). The perception of extraversion is only 
influenced during the CEO task (the task is perceived as more extraverted when performed by the 
introverted NAO). We can thus conclude that consistency does not strengthen the perception of a task. 

The third question, again, should be answered negatively: consistency does not improve the perception 
of the robot’s intelligence, fun or enjoyability. As shown in Table 26, the extraverted NAO was always 
considered to be more fun and more enjoyable than the introverted NAO, except as a teacher. The task 
does not seem to influence the perception of a robot’s enjoyability at all. The task does not seem to 
influences the perception of the fun-side of the introverted NAO, however, it does influence the 
extraverted NAO. This robot was perceived as considerably less fun in the role of a teacher. However, 
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we can conclude that consistency does not have any influence on how fun or enjoyable a robot is 
perceived to be. 

NAO’s perceived intelligence, however, does seem to be influenced by the task. When the introverted 
NAO performed the role of the CEO, he was considered to be more intelligent than during his other 
roles. The extraverted NAO, on the other hand, was considered smartest as a teacher. This is completely 
the opposite than the expected result, as the CEO is the extraverted task and the teacher the introverted 
task. This could be explained by the fact that a calm and collected CEO would be seen as more intelligent 
than a loud and active one. A teacher, on the other hand, would be seen as more intelligent when acting 
energetically. Consistency does thus not seem to influence a human’s perception of a robot’s 
intelligence. We can therefore conclude that the task had indeed an influence on the perception of a 
robot’s intelligence, but not on its “fun” or “enjoyable” features.  

If we return once again to Windhouwer’s hypothesis, we must thus conclude that the preference of 
humans for a certain type of robot is only determined by the context of the task on the level of 
intelligence. The task does not influence the perception of the robot as either “fun” or “enjoyable”, 
however, introversion or extraversion on the other hand did influence these perceptions. So even though 
most research questions were answered negatively, the experiment does teach designers that if a robot 
needs to look intelligent, the tasks to be performed should be chosen carefully.  

6.4 The Effects of Group Interactions on the Perceived Personality of a Robot 
The experiment discussed in 6.3 examined the effect of the task on the perceived personality of a robot. 
This experiment was conducted in the context of the Student Conference on IT of the University of 
Twente. One of Windhouwer’s fellow students, Leuwerink, conducted a parallel experiment for this 
conference in which he examined the effect of group interactions on the perceived personality of the 
robot (Leuwerink, 2012)63. After all, studies on HRI in real-life environments have indicated that robots 
are more or just as likely to be confronted by a group than by an individual (Sabanovic et al., 2006). The 
chance of a robot being approached by a group depends of course on the particular setting in which the 
robot has to operate, but in general, it can be considered common for robots and groups of humans to 
interact with each other.  

If we return to the hypothesis that the way robots are perceived depends on the personality of the human, 
we encounter a problem when dealing with group interactions. Social attraction rules (whether based on 
similarity or complementarity) cannot be simply applied to a group, because not everyone in the group 
has the same type of personality.  

Like Windhouwer, Leuwerink focussed on the extraversion-introversion personality trait of the Big Five 
personality test (Digman, 1990). In his experiment, he examined the influence of this trait of the robot’s 
personality on the way the group perceives him. He used studies on intra-group interactions between 
humans as a starting point: these are usually considered more positive if there are higher levels of 
extraversion in the group (Barrick et al., 1998). This led Leuwerink to the hypothesis that extraverted 
robots would be more suitable for group interactions. To determine whether a particular robotic 
personality is suited for a particular task, three factors need to be examined: likeability, usefulness and 
fun (Isbister & Nass, 2000).   

The experiment proposed by Leuwerink consisted of 21 German and Dutch students watching one out 
of four possible videos. Each of these videos showed a NAO robot (either introverted or extraverted) 
performing the role of a teacher (either teaching an individual or a group of students). According to 
previous research, the profession of a teacher is usually associated with introversion (Barrick & Mount, 
1991). Like in the experiment discussed in chapter 6.3, NAO’s verbal and non-verbal characteristics 

                                                      
63 The section The Effects of Group Interactions on the Perceived Personality of a Robot is based on (Leuwerink, 
2012), unless otherwise indicated.  
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were adapted using Choregraphe to match an introverted or extroverted personality (Lee et al., 2006). 
Furthermore, NAO was once again transformed in these videos to be as tall as a human being.  

Participants were asked to fill in an online questionnaire to determine their personality, after which they 
were shown a single video. They then had to answer questions about their perception of the 
extraversion/introversion of the task and of the robot.  

Before continuing to the results of the experiment, it needs to be noted that the programming of NAO 
to match an introverted or extraverted personality was not entirely successful: both robots were 
perceived as extraverted. This need to be kept in mind when examining the results, as they can be 
affected by this error. 

 

Figure 38 Perceived Intelligence of both Robots (Leuwerink, 2012) 

Figure 38 shows the perceived intelligence of the introverted and extraverted robots. As can be seen, the 
extraverted robot is considered to be more intelligent when interacting with individuals than with groups. 
The introverted NAO, on the other hand, is considered more intelligent when dealing with groups than 
with individual humans. This result is contrary to the one expected by Leuwerink based on the studies 
with humans (Barrick et al., 1998). To explain these results, we must keep in mind the fact that the 
participants perceived both robots as extraverted. This means that these results are not accurate to form 
any conclusions on the perceived intelligence of introverted or extraverted robots. However, they can 
be used to draw conclusions about particular sets of verbal and non-verbal cues. Even though they failed 
to represent certain personality types, these cues can still be evaluated simply as cues. Designers should 
thus consider carefully which cues should be implemented in the context of group interactions or in the 
context of one-on-one interactions, as they influence the perceived intelligence of the robot. 

 

Figure 39 Perceived Enjoyability of both Robots (Leuwerink, 2012) 
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As shown in Figure 39, both robots are perceived as almost equally enjoyable in one-on-one interactions. 
However, in group interactions, the extraverted NAO is considered much more enjoyable than the 
introverted one. Similar results are found for the feature “fun”. Figure 40 shows that the introverted 
robot was perceived as slightly more fun than the extraverted robot when interacting with individuals, 
although there is not a lot of difference between the two. In the context of group interactions, however, 
the extraverted robot is considered to be more fun than the introverted robot. These results all confirm 
the older study on human-human interactions (Barrick et al., 1998).  

 

Figure 40 Perceived Fun of both Robots (Leuwerink, 2012) 

In conclusion, this experiment has indicated that a set of introverted verbal and non-verbal cues are most 
suitable for interaction with a group of humans in a teaching environment when it comes to intelligence. 
This might create a difficult situation for robot designers when creating a robotic teacher. After all, 
teachers should be intelligent to be taken seriously, but they should also be fun and enjoyable to motivate 
their students. Therefore, Leuwerink suggests to make robotic teachers neither explicitly extraverted nor 
introverted in general. To suit particular purposes, designers could then slightly tip the scales into the 
required direction to create an expert teacher or a motivational teacher.  

6.5 The Effects of Neighbouring Cultures on the Perceived Personality of a Robot 
Yet another student participated in the joint experiment of Windhouwer and Leuwerink (see chapters 
6.3 and 6.4) for the 2012 Twente Student Conference on IT. Waalewijn examined the effect of 
neighbouring cultures on the perception of a robot (Waalewijn, 2012)64. In previous studies it had been 
shown that there were significant differences between Western and Eastern perceptions of robots (Li et 
al., 2010). Waalewijn wanted to determine whether or not the cultural background of a human could 
influence which type of robot he or she preferred. More specifically, he examined the effect of 
neighbouring cultures on the perception of a robot’s personality. Based on earlier psychological 
research, five characteristics were used to classify countries (Hofstede, 2001)65. The results for the two 
countries examined in this experiment can be found in Table 27. 

Cultural dimensions of Germany and the Netherlands 
 Germany The Netherlands 
Power-distance 35 38 
Individualism 67 80 
Masculinity 66 14 
Uncertainty avoidance 65 53 
Long-term orientation 31 44 

Table 27 Cultural Dimension Ratings of Germany and the Netherlands (Based on: Hofstede, 2001) 

                                                      
64 The section The Effects of Neighbouring Cultures on the Perceived Personality of a Robot is based on 
(Waalewijn, 2012), unless otherwise indicated.  
65 In the meanwhile, a sixth dimension was added by Hofstede in 2010: Indulgence (Hofstede Centre, 2015). 
Germany scores 40 on Indulgence, while the Netherlands score 68 (Hofstede Centre, 2015).   
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These dimension ratings (ranging from 0 to 100) indicate that Germany and the Netherlands are less 
alike than one would assume at first sight. They score significantly different on Individualism and 
Masculinity. Furthermore, studies on the association between personality traits and cultural dimensions 
show that extraversion is linked to individualism and that introversion is liked to masculinity (Hofstede 
& McCrae, 2004). This would mean that, in general, people from Germany are more introverted than 
people from the Netherlands.   

The experiment by Waalewijn consisted of 13 German students and 28 Dutch students who were shown 
a video in which a NAO robot (either introverted or extraverted) performed one out of three possible 
tasks: teaching, managing or nursing. These professions are associated with respectively introversion, 
extraversion or neither (Barrick & Mount, 1991). Participants were first asked to complete a 
questionnaire to determine their personality. Then, they watched a video for which they had to evaluate 
the task and the robot. Furthermore, they had to indicate how much time they would be willing to spend 
with that particular robot on a weekly basis. As in the previous two experiments (chapters 6.3 and 6.4), 
Choregraphe was used to manipulate the verbal and non-verbal behaviours of the robot to suit the desired 
introverted or extraverted personality (Isbister & Nass, 2000). 

Like in the experiment conducted by Leuwerink, the matching of verbal and non-verbal behaviours to 
certain personality types failed. Both robots were perceived as either introverted in almost 50% of the 
cases.  

First of all, Waalewijn examined if Germans were indeed more introverted than people from the 
Netherlands. His results indicated that Germans, in general, score higher on the extraverted scale, which 
is exactly the opposite of the studied hypothesis. However, he did not consider these results significant 
because there were not enough German participants to generalise his findings. Furthermore, these 
German participants all lived abroad and therefore, they might not be the best representatives of their 
nation. 

When considering the amount of time people want to spend with a robot, it was found that, in general, 
the Dutch are less willing to spend time with robots than Germans. This is shown in Table 2866. Yet, 
there does not seem to be any link between cultural background and robot preference.  

Average time wanted to spend with the robot 
 Germans Dutch 
 Introversion Extraversion Introversion Extraversion 
Robot 
programmed 
personality 

    

Introversion X 0.75 2.20 1.60 
Extraversion 6.67 6.30 3.00 4.50 
Robot perceived 
personality 

    

Introversion 7.50 1.16 4.00 2.17 
Extraversion 5.00 8.50 2.14 3.70 

 Table 28 Average Time Wanted to Spend with the Robot (Waalewijn, 2012) 

The results did thus not prove anything about cultural differences, and therefore, Waalewijn decided to 
consider the results without taking culture into account. This way, he discovered that, in general, people 
like to spend more time with robots if they match their own personality. This is shown in Figure 41 and 
Figure 42. This would mean that the social attraction rule based on similarity is more important to HRI 

                                                      
66 The X in this table is not explained by Waalewijn. It might be linked to the fact that most Germans were 
considered extraverted, but this is not sure, as most does not equal all.  
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than the one based on complementarity. Designers should thus consider that the longer a person needs 
to spend time with a robot, the more their personalities should be matched. 

 

Figure 41 Average Time Wanted to Spend with Programmed Personality (Waalewijn, 2012) 

 

Figure 42 Average Time Wanted to Spend with Perceived Personality (Waalewijn, 2012) 

On the level of perception, however, the results did indicate cultural differences. People from the 
Netherlands rated the perceived introverted NAO as more intelligent than the perceived extraverted 
NAO. Germans, on the other hand, thought the perceived extraverted NAO was the most intelligent. 
This could be linked to the cultural dimensions found in Table 27: Germans score higher on the 
dimension of masculinity which could explain why they prefer an extroverted robot. The Dutch, on the 
other hand, are considered more feminine and thus prefer an introverted robot.67 

 

                                                      
67 This conclusion seems to be in conflict with the earlier statement that masculinity was connected to introversion.  
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6.6 Conclusion 
Robotic personalities remains a field which requires much future research, as there are many opposing 
views and none of them seem to get the upper hand in the debate. However, one fact is questioned by 
no one: robotic personalities are vital to create natural and comfortable HRI. Therefore, more research 
needs to be done into this still cloudy field of NLP.  

In section 6.1, we have taken a brief look at the five personality types which are generally assumed to 
be the most important types of robotic personalities. Next, in section 6.2, we presented one of the two 
main views on robotic personalities, namely the necessity of matching a robot’s personality to the user’s. 
As mentioned earlier, opinions in this field vary widely. Some believe that robots should match the 
personality of the human (such as Aly & Tapus, whose research can be found in section 6.2), while 
others believe that HRI would benefit from robotic personalities that complement the personality of the 
human. These views are based the two social attraction rules that psychology has determined for inter-
human relationships: matching and complementing. However, there are other views as well, which seem 
to contradict both opinions described above. Therefore, we have included three papers by Dutch students 
that presented different perspectives. The first, Windhouwer, examined whether the context of the task 
that was to be performed by the robot influenced a human’s preference for certain personality types 
(Windhouwer, 2012). This did not turn out to be the case, although the task context did have an influence 
on the perceived intelligence of the robot (Windhouwer, 2012). Participants’ perception of NAO as more 
enjoyable or less enjoyable did not depend on the task context, however, even though this was expected 
by Windhouwer. They attributed a certain enjoyability to NAO based on his extraversion or introversion 
instead (Windhouwer, 2012). 

The second student, Leuwerink, examined whether humans would prefer another type of robotic 
personality when engaging in one-on-one interactions or when participating in group interactions 
(Leuwerink, 2012). In order to do this, Leuwerink conducted an experiment in which NAO performed 
the role of a teacher (Leuwerink, 2012). It was found that the group of students perceived NAO as more 
intelligent when he acted introvertly and as more enjoyable when he acted extravertly (Leuwerink, 
2012). This might lead to important design issues, as teacher should be both if they want to transfer 
knowledge efficiently and capture the attention of the group (Leuwerink, 2012). Leuwerink therefore 
suggests that teaching robots should neither be expressively extraverted or introverted generally, 
although these traits could be added to suit particular situations (Leuwerink, 2012). 

Waalewijn, the third and final student, studied the influence of neighbouring cultures on the perception 
and preference of a robot’s personality (Waalewijn, 2012). His experiment failed in finding an explicit 
link between a person’s cultural background and his or her preference of a certain robotic personality 
type (Waalewijn, 2012). Neighbouring cultures only seemed to influence the perception people had of 
each robot (Waalewijn, 2012). He did find, however, that in general, people like to spend more time 
with robots that match their own personality type (Waalewijn, 2012), which seems to confirm the 
experiment discussed in section 6.5. However, many things went wrong during this research and 
therefore its results should not be considered conclusive evidence.  
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7. Case Studies 
7.0 Introduction 
In the previous chapters, we discussed different aspects of NLP with NAO robots. We examined HRI 
through natural language, the communication of emotions and the influence of personality traits. Now, 
we will take a closer look at some case studies in which NLP and the various aspects discussed earlier 
play an important role. In all of these cases, NAO is used in the context of healthcare. This kind of 
interaction is complex and it needs to be proven reliable and safe before it can be considered as part of 
an approved therapy (Shamsuddin et al., 2012a). Therefore, experiments are needed to confirm the 
usability of robots in such contexts.  

First, we will examine the influence of a robot’s embodiment on its successfulness in a medical context. 
Different embodiments are suited to fulfil different tasks. Cute, pet-like robots perform well as 
companions as they encourage their users to behave affectionately towards them. Humanoids, however, 
are more suited as coaches because of their authorial and motivational capacities. In order to investigate 
this, an experiment in which children had to choose between different robots such as the humanoid NAO 
and the toy-like dinosaur PLEO was conducted. These children were asked to explain why they preferred 
a particular robot. Furthermore, they needed to describe what they expected of the robot and if their 
expectations were met after having played with the robot of their choice. They were also asked to think 
about possible improvements, which should be considered important if designers truly want to develop 
suitable companions for young children. 

Second, we will focus on NAO’s possibilities in autism therapy. Many studies have shown positive 
results when NAO is introduced in this context and therefore, multiple initiatives have been created. We 
will first discuss ASK NAO, Aldebaran’s own initiative. Then, we will take a closer look at some of the 
studies conducted in Malaysia. Despite all the benefits and positive results of multiple studies, it should 
be noted that not all autistic children react to robots in the same way (Tapus et al., 2012). Some children 
show significant progress when participating in robot assisted therapies, but others advance a lot slower 
and some even show negative reactions to the humanoid (Tapus et al., 2012). It remains thus important 
to investigate further the possible benefits and drawbacks of using humanoids in therapies for autistic 
children. This connects to the issue of personalisation. As each child is unique, each therapy should be 
unique as well. To meet this requirement, we will discuss a customizable, easy-to-use platform in the 
third part of the section on autism. In the fourth part, we will examine the use of a platform as described 
in part three in Pivotal Response Trainings, an important methodology used in autism therapies. 

Thirdly, we will discuss NAO’s performances in the context of diabetes therapies, more specifically in 
the context of the European ALIZ-E Project that ran from 2010 till 2014. First, we will list all the 
requirements needed for a robotic companion for diabetic children. Then, we will take a look at the two 
NAO companions that were developed by the ALIZ-E project team, ROBIN and NAO. These two 
robotic brothers fulfil complementary roles, as ROBIN represents an infant-companion and NAO a 
skilful monitor. These two robots are intended to interact with hospitalized children and thus need to be 
able to establish meaningful long-term relationships with these children. Therefore, we will examine the 
way in which these children adapt their interactions style to the robots in the course of time. 

In the final section of this chapter, we will discuss NAO as a teaching assistant for sign language. As 
sign language is very dependent on the individual style of the teacher, this often causes problems when 
the teacher needs to be replaced. Therefore, sign language therapies would benefit from the introduction 
of a robotic assistant, as this would make the lessons more tutor-independent. NAO’s physical 
limitations, however, likewise cause problems for the teaching of sign language. Therefore, his 
performances are compared to a robot with greater degrees of freedom, namely Robovie R3 robot.  
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7.1 Influence of Embodiment 
When children are hospitalised for an extended period of time, they are inevitably confronted with 
serious stress, fear, and usually physical pain (Diaz et al., 2011)68. Robots can be used to make this 
period in their lives easier, by supporting them and taking on the role of a faithful and friendly 
companion. This means robots can be used to fulfil at least two different roles in a healthcare context: 
rehabilitation monitor and companion. As a rehabilitation monitor, robots can be used in a mainly goal-
oriented way. They can assist the children in their exercises to get well again. As a companion, however, 
they are used in a need-oriented way. They provide stress-relief, friendship and entertainment to brighten 
the children’s time in the hospital. Both roles require the maintenance of long-term relationships. It is 
known that children are often attracted to robots, but if this effect is mainly created by the novelty of 
being allowed to play with a mechanical friend, it might be problematic to create long-lasting 
relationships between children and robots. Therefore, it is important to choose the right robot for the 
right tasks. Each robot has its own features (e.g. some look like pets, others like humans) and interaction 
capabilities (e.g. some can talk, others only use body language). It is thus vital that well-meditated 
decisions are made to ensure that each task is accomplished by a well-suited robot.   

In order to examine this, Diaz et al. have conducted two experiments with non-hospitalized children. 
The first experiment took place at a school as part of a science class for 49 11 to 12-year-olds. The 
second one took place at the laboratory: four children of the previous group were selected to participate 
in this. The research team assumed that a robot should have specific skills to match particular situations 
to be effective as a companion. Furthermore, they predicted that the embodiment of the robot would 
significantly influence the children’s perception of it.  

During the first experiment, it was examined which factors influence the emergence of a bond between 
the children and the robot. Children were presented with four switched-off robots among which they 
could choose the one they preferred to play with during the experiment. These robots can be seen in 
Figure 43.  

  

Figure 43 Robots used in the Experiment. A. NAO; B. AIBO; C. PLEO; D. Spykee (Diaz et al., 2011) 

Diaz et al. chose to publish only the results of the experiment with NAO and PLEO69 as these two are 
the models which are most often employed as companions and rehabilitation monitors. NAO, as a 
humanoid, is often chosen to fulfil the role of rehabilitation monitor. His anthropomorphic embodiment 
allows him a certain authority over the child and accords him a certain degree of expertise in the matter. 
This research team also chose NAO because of the fact that he has been used successfully in the past in 
medical experiments due to his interaction and motor skills. Examples of this include the ALIZ-E 
project, which is discussed in chapter 7.3.  

                                                      
68 The section Influence of Embodiment is based on (Diaz et al., 2011), unless otherwise indicated.  
69 PLEO is a commercially available dinosaur robot developed by UGOBE. It has multiple tactile sensors, speakers 
and microphones. PLEO presents different creature-like behaviours and moods. More information can be found in 
(Innvo Labs, 2015).  
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PLEO, on the other hand, has been chosen to fulfil the role of the companion. It is known that children 
greatly benefit from therapies with pets, as they provide entertainment, support, happiness and relief. 
However, it is not always possible to allow animals in medical environments. Therefore, experiments 
with robotic pets have been conducted to evaluate whether or not they could perform the same functions 
as real animal companions. While a humanoid has a certain authority over the children, robotic pets 
enter master-pet relationships with their companions. Because the children feel responsible for their 
pets, they will train important social skills such as showing affection and taking care of other creatures. 
PLEO was chosen to be the companion in this experiment because it meets all the embodiment 
requirements: it is expressive, baby-like and can perform different behaviours. Multiple studies have 
shown that PLEO can form long-term relationships with humans.  

Once the children had chosen their preferred robot, the robots were switched on and carried out non-
interactive behaviour. NAO started out by introducing himself in a loud voice, accompanied by arm and 
head motions and changing eye colours. He then danced to a song he played, after which he 
demonstrated a Tai Chi routine. PLEO woke up after being petted by the children. They could then make 
him go back to sleep by rubbing its back. He would get angry when the children lifted him by the tail. 
He demonstrated his head movements when being hugged and his leg movements while being walked 
across a desk.  

Out of the 49 children, 33 chose to play with NAO or PLEO. PLEO turned out to be the most popular 
robot (18 children chose to play with him, all of which – surprisingly – were girls). NAO was the second 
most popular robot as 15 children (4 girls and 11 boys) chose him. Their perception and expectations 
can be found in Table 29. These indicate which features of a robot’s appearance are important to make 
children willing to engage with them. This might lead to conclusions about the possible roles each of 
these robots could play in the healthcare sector. 

Perception and expectations 
 NAO PLEO 
Reasons for preference Seems/is a person 

Seems an ape 
Seems more articulated 
Is the biggest robot 

Nice aspect 
So cute! 
Animal likeness 
Baby likeness 

Expectations (before the 
performance) 

To walk 
To grasp things 
To speak 
To move hands 
To dance 
To do Matrix 
To follow instructions 
To sing 

Love and affect responsiveness 
Baby-like behaviour 
Emotional expressiveness 
To make sounds 

Liked most after self-
presentation 

Tai Chi routines 
Dancing 

Seems a baby 
How it moves 

Interactive behaviour Spontaneous imitation 
Admiration 
Spontaneous applause 
Amazement / Wow! 
Curiosity about technical issues 

- What’s X for? 
- Is that an USB plug? 

Exploring physical, cognitive 
and social capabilities and 
constraints 

- Is he hearing me now? 
- Does he see me?

Baby talk 
Affection giving 
Taking care activities 
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Wish it could do / have / be Hold a conversation 
Capability to communication in 
natural language 
Non-verbal communication 
skills: 

- Gaze  
- Intonation 
- When looking at people, it 

should look in the face 
Talk about itself 

- Say what he is thinking 
Improve motor competences 

- Play football or hockey 
- Perform moonwalk 

Assist 
- Help with my homework 

More life-likeness 
- Talk 
- Eat 
- Grow up 

Responsiveness 
- Not so sleepy 

Table 29 Perceptions and Expectations of the Children Concerning NAO and PLEO (Diaz et al., 2011) 

After this first meeting with the robots, four children who chose PLEO were selected to have a second 
meeting with him at the laboratory. Two PLEO robots with different behaviours were presented to each 
child in this experiment: one purring while moving about slowly and one growling and agitated.  

Children were asked to select a robot, after which they were allowed to play with it, both with and 
without the supervision of an adult. Afterwards, they were encouraged to discuss the robot with one of 
the other children. All of them chose the calm robot over the agitated one and they wanted to know 
which of the four robots was the one they had met in school. The interactive behaviour displayed by the 
four girls can be seen in Table 30. 

Interactive behaviour 
Selecting a PLEO All the participants chose the “nice” one, picked it up and 

took it in their arms 
In the lab with the facilitator Petting 

Hugging 
Feeding 

Alone with PLEO in the lab New activities appeared 
- Putting it into the doghouse 
- Grabbing it by the tail 
- Insisting on feeding 

With a classmate and PLEO in the lab The presence of a peer helped the girls to express their 
feelings and reinforce their role of owner. 

 Similar to real pets 
Owner feelings 
Differences & similarities with the one in the school 

- More active 
- More fun 

Table 30 Interactive Behaviour of the Children during Experiment II (Diaz et al., 2011) 

When a classmate was called into the laboratory, each child naturally adopted the role of owner. They 
explained PLEO’s behaviour to the other girl as if PLEO was truly their own pet. For example, they told 
the other child that ‘it was difficult for him to fall asleep’ or that ‘he was not hungry at the moment’.  

The results of these experiments show that children indeed behave differently towards these two 
different robots. Their salient features are completely different, which leads to other relationships being 
established. NAO caused the children to imitate him spontaneously and feel admiration and amazement 
towards him. It is therefore a logical chose to assign him the role of rehabilitation monitor, as children 
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are encouraged to be curious and to explore. PLEO, on the other hand, makes children behave in an 
affective and caring way. Its animal-like characteristics encourage children to take care of him as if they 
had a real pet. Furthermore, during the second experiment, children asked for “their baby dinosaur”, 
which indicates that it is indeed possible to form long-term relationships with robotic companions. 
PLEO can thus be considered to be a good option as a companion for hospitalized children. Judging 
from the comments made by the children, PLEO could be improved by showing more life-like 
behaviours, while NAO should act more like a human being.  

7.2 NAO in Autism Therapy 
Autism Spectrum Disorder (ASD) is a lifelong neurodevelopmental disability without a cure 
characterised by impaired social skills and repetitive behaviour (Shamsuddin et al., 2012a)70. 
Appropriate therapy is thus vital for young children diagnosed with autism. Recent research indicates 
that humanoid robots could be an important asset to ASD therapies, as HRI is usually perceived as less 
demanding for autistic children. Furthermore, autistic children tend to be fascinated by robots, which 
greatly improves the success of such therapies as their interest is automatically triggered.  

Although all these advantages are known, these kinds of programmes are not yet widely used as ASD 
therapies. This is due to the rising costs and to the fact that there are not enough skilled specialists to 
work with humanoids. Yet, it cannot be denied that humanoids show great potential to teach autistic 
children how to deal with emotions and social behaviours. Moreover, robots could be used at home as 
well, to help parents communicate with their children. 

NAO seems an ideal platform to provide all of these advantages and reduce the problems concerning 
the use of robots in ASD therapies. After all, multiple experiments have indicated that NAO is both 
effective in this domain and cost-efficient (as it is a relatively affordable humanoid). Because of this, 
NAO is now a standard in robotic ASD research and Aldebaran has even created its own programme 
for ASD therapy, called ASK NAO.  

7.2.1 ASK NAO 
In 2013, Autism Solution for Kids (ASK NAO) was launched by Aldebaran. The purpose of this 
initiative was to ‘offer a new teaching approach to teachers and [to] children with autism thanks to 
robots’ (Aldebaran Robotics, 2015)71. This programme was created after research proved that autistic 
children were indeed highly attracted to technology (ASK NAO Information Kit, 2015)72. NAO was 
thus customized with several behavioural applications to support autistic children in developing social 
and learning skills.  

Aldebaran believes that NAO is a perfect humanoid for HRI with autistic children because of the fact 
that NAO’s behaviour is very predictable. This reduces the natural anxiety which is typical of autistic 
children. Furthermore, NAO has tireless features and a judgment-free demeanour, which is also 
beneficial to this kind of robot supported ASD therapies. Moreover, the clean design of the robot allows 
these children to interact with NAO in a comfortable way. After all, such a design reduces the amount 
of sensory data that needs to be processed by the children.  

Because each child is unique, their education assisted by NAO needs to be unique as well. Therefore, 
sessions with NAO are personalised to meet the needs of individual children accurately. Many 
applications have been developed to improve the social and learning skills through customizable 
programmes. These applications are based on encouragement and rewards, which will motivate the 
children and improve their confidence and independence. To make learning with NAO fun, all of these 
are interactive games. While enjoying a game with a non-threatening artificial friend, these children 

                                                      
70 The information on ASD in this section is based on (Shamsuddin et al., 2012a), unless otherwise indicated.  
71 ASK NAO now has its own website, please see (ASK NAO, 2015) for more information.  
72 The section ASK NAO is based on (ASK NAO Information Kit, 2015), unless otherwise indicated.  
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learn valuable communicative skills such as turn taking, emotion detection and instruction following. 
All of these games are personalised to the individual child, taking his or her own motivators, internal 
states, personality and learning goals in consideration.  

When schools or hospitals enter the ASK NAO programme, they also get access to a web portal through 
which caretakers can easily interact with parents. A personalised programme can be created with this 
portal through means of custom profiles that manage individual needs and progress.  

7.2.2 NAO and the National Autism Society of Malaysia 
Next to Aldebaran’s ASK NAO initiative, other ASD therapies supported by NAO have been developed 
all over the world. An example of this is the research conducted by the University of Technology 
Malaysia in collaboration with NASOM, the National Autism Society of Malaysia. Some of the reasons 
why this initiative has chosen to work with the NAO platform are affordability, availability and ease of 
programming (Shamsuddin et al., 2012b). They believe that the most important role for NAO is to create 
a stable environment (to avoid frightening autistic children) and to attract the attention of the 
participating children (Miskam et al., 2014)73.  Robots can help these children to develop social skills 
and to improve the communication with other children. As children with ASD are known to lack 
imitation skills, NAO can also be used to improve their imitation abilities. Furthermore, autistic children 
lack the ability to develop joint attention skills in the same way as other children (Shamsuddin et al., 
2012b). This skill, likewise, can be improved through interaction with robots such as NAO.  

Miskam et al. have designed an experiment in which NAO assisted autistic children in learning numbers 
and emotional gestures. The presence of a robotic tutor instead of a human one significantly reduces the 
stress experienced by these children. Furthermore, robots are ideal as they can repeat gestures endlessly, 
without becoming tired or losing their patience. This is important because children with ASD usually 
like repetition.  

In this experiment, NAO will play three different games with mildly autistic children between 7 and 12 
years old.74  During each of these games, eye contact between the child and the robot will be monitored. 
At the beginning of each game, NAO will greet the child and ask some basic questions to establish a 
bond of familiarity with the child. This is important to create the safe and comfortable environment that 
is absolutely vital for ASD therapies. Please see Table 31 for an overview of the objectives of each 
component of the experiment and the associated target skills. 

Game objectives and target skills 

 Methods Objectives Social Skills Communicative 
Skills 

Introduction Two-way 
communication with 
voice recognition 

To create a 
friendly 
environment for 
the child 

- Eye contact 
- Emotions 

- Word 
repetition  

- Speech tone 
- Answering 

Game I Object & vision 
recognition 

To observe the 
child in a writing 
numbers activity. 

- Behaviour 
- Emotions 

- Answering 

                                                      
73 The section NAO and the National Autism Society of Malaysia is based on (Miskam et al., 2014), unless 
otherwise indicated.  
74 Although the set-up of this experiment has already been presented to the public, it has not yet been conducted 
as the research team is still waiting for ethics approval from the government. It is still included in this bachelor’s 
thesis though, as its goals and research methods are considered important and interesting for the discussion of 
robotic assistants in ASD therapies.  
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Game II Two-way 
communication with 
voice recognition 

To observe how 
the child answers 
questions 

- Eye contact 
- Emotions 
- Behaviours 

- Word 
repetition 

- Speech tone 
- Answering 

Game III Imitation To observe the 
imitation abilities 

- Eye contact 
- Behaviours 
- Imitation 

 

/ 

Table 31 Game Objectives and Target Skills (Miskam et al., 2014) 

During the first game, children will have to draw numbers (1 to 10) that are dictated by NAO. They will 
then present the paper to the robot for evaluation.  

In the second game, NAO will present the child with five simple mathematical problems. The robot will 
perform different movements associated with correct and wrong answers.  

During the final game, NAO will display six different emotions or emotional behaviours (hunger, 
happiness, anger, fear, hug and kiss) which the children will need to imitate. These displays of emotional 
body language can be seen in Figure 44.  

 

Figure 44 NAO during Game III: a. Hunger; b. Happiness; c. Anger; d. Fear; e. Hug; f. Kiss (Miskam et al., 2014) 

These games will be used to examine the benefits humanoid robots such as NAO in ASD therapy 
sessions.  

Earlier research within the context of the NASOM has tried to establish a connection between the 
reaction of an autistic child towards NAO and his or her IQ (Shamsuddin et al., 2012b)75. In order to do 
this, an experiment consisting of seven modules has been conducted, testing the reactions of five young 
children with IQs ranging between 40 and 54. The description of each of these modules can be found in 
Table 32.  

70% of children with ASD have an IQ of less than 70 (Charman et al., 2011), yet other autistic children 
have extremely high IQs. Therefore, it might be interesting to examine whether or not children’s IQs 
influence their perception of NAO and the progress they make through robot assisted ASD therapy. In 
their experiment, Shamsuddin et al. studied the influence of a moderately impaired or delayed IQ. 
Furthermore, the capacity of NAO to reduce a child’s autistic behaviour was likewise examined.  

The experiment consisted of two parts. Each child was observed during the interaction with the robot 
and during the normal daily classroom routine. This allowed a comparison of the children’s autistic 
behaviours in both situations. The research team expected that the children’s behaviour would be less 
autistic during their interaction with NAO. The results can be seen in Figure 45 and Figure 46.  
 

                                                      
75 The information on the connection between IQ and perception of NAO in this section is based on (Shamsuddin 
et al., 2012b), unless otherwise indicated.  
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Modules 
  Description 
1 Static 

Interaction 
No music, speech or movement. 
NAO sits on the table, facing the child. 

2 Head turning NAO turns head to left, right and back to the child. 
3 Eye blinking NAO’s eyes blink continuously and randomly red, green and blue. 
4 Talking NAO greets the child (until the child answers). 

NAO asks some simple questions (one repetition for each question if the 
child does not answer) 

- ‘How are you?’ 
- ‘What is your name?’ 
- ‘Where do you live?’ 
- ‘How old are you?’

5 Song playing NAO plays the nursery rhyme Twinkle, Twinkle, Little Star. 
If the child does not respond, the song is repeated. 
Then, the song Humpty Dumpty is played. 
If the child does not respond, the song is once again repeated. 

6 Hand moving NAO waves to the child with his right hand, twice. 
NAO waves to the child with his left hand, twice. 

7 Song playing & 
hand moving 

NAO repeats module 6 while playing the song ABC. 
NAO repeats module 6 while playing the song Itsy Bitsy Spider. 

Table 32 Modules of the Experiment (Based on: Shamsuddin et al., 2012a) 

 

Figure 45 Comparison of Autistic Behaviour in the Classroom and during HRI (Shamsuddin et al., 2012b) 

 

Figure 46 Connection between Autistic Behaviour and IQ (Shamsuddin et al., 2012b) 
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Figure 45 shows that four out of five children indeed displayed less autistic behaviour when interacting 
with NAO. One child, however, displayed more autistic traits. This might be due to personal differences 
and the research team suspects that repetitive interaction with NAO might change the child’s perception 
of the robot and thus lessen the autistic behaviour. These results indicate that, in general, humanoids can 
indeed be used to successfully capture the attention and interest of an autistic child.  

Figure 46 shows that children with a moderately impaired IQ are indeed receptive to humanoid robots. 
This is once again proven by the fact that four out of five children behaved less autistic during their 
interaction with NAO, which proves that robot assisted ASD therapy would be beneficent to these 
children.  

It is important to keep in mind, however, that this study was only conducted with five participants. As 
this number is not large enough to prove their hypothesis, the research team plans to conduct larger 
experiments on the same topic in the future.  

7.2.3 A Customizable Platform for Robot Assisted ASD Therapy 
As most studies mentioned above point out, unique children need unique therapies. Therefore, platforms 
have been developed to support personalised ASD therapies with robotic assistants. One of these 
platforms is developed in the Netherlands by Gillesen et al. and is specifically designed to provide an 
intuitive interface (Gillesen et al., 2011)76.  

Gillesen et al. realised the need for personalisation when observing the heterogeneity of the autism 
spectrum. This heterogeneity is so great that therapy needs for different individuals might even be 
contradictory. Therefore, they designed an environment for training that is easily adaptable and reusable. 
Furthermore, they recognised the issue of non-technical people needing to work with robots. Their 
platform thus had to be user-friendly. To make this possible, they chose to work with a visual 
programming environment in which scenarios could be created using building blocks. Furthermore, 
medical experts usually do not have the time to learn new training methods. Therefore, robots such as 
NAO should be included into established training methods if they ever want to become the standard in 
ASD therapies. 

In their experiments, Gillesen et al. chose to work with a NAO robot, because of its affordability and 
availability. Yet, as they did not want to be bound to a particular robotic platform forever, they made 
sure their platform would be compatible with other robots as well.  

The visual programming environment chosen for these experiments is TiViPE, which is a box-wire 
based model. Behavioural components are represented by boxes in this model and can be connected to 
create a network. Such networks can then be transformed into components themselves, allowing for very 
complex and intelligent robotic behaviour. The process flow in Figure 47 shows the different steps that 
are needed to transform a scenario into a TiViPE network. 

There are two disciplines involved in the creation of TiViPE networks: both trainers (therapists) and 
clients (autistic children) need to work together with robotic experts. Scenario builders are both technical 
experts as therapists in the first stages of this experiment. In the future, this role should be taken up 
solely by trainers.  

Furthermore, two paths are indicated on the process flow: one top-down which splits a scenario in 
different components and one bottom-up which combines these components into networks that represent 
scenarios.  

 

                                                      
76 The section A Customizable Platform for Robot Assisted ASD Therapy is based on (Gillesen et al., 2011), unless 
otherwise indicated. 
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Figure 47 Process Flow to Transform Scenarios into TiViPE Networks (Gillesen et al., 2011) 

The process flow starts with personalised learning objectives found in the medical files of a particular 
child. These are created by therapists, based on the individual needs of the child. These objectives 
determine which story purposes should be developed, which are embedded on their turn in one or more 
storylines. These storylines are then made visible through story boards: visual representations of the 
story. As the second arrow indicates, this step is optional. Sometimes, in case the story is clear, 
flowcharts can be created immediately based on the selected storylines.  

A flowchart shows the boxes of the storyline and the network in which the boxes are structured. Each 
of these boxes correspond to certain actions and feelings of the robot. All the actions that are associated 
to a single box are called “programs”. These programs are then implemented as re-usable components. 
As mentioned before, personalisation is an important factor. Therefore, each of these components need 
parameters that can be adjusted to fit the needs of each child individually.  

As an example, an introduction scenario can be discussed. This is a very important scenario, as the 
child’s first impression of NAO will often be a lasting one and can significantly influence the success 
or failure of the therapy. In this scenario, NAO will greet the child and ask for his or her name. This 
leads to the child asking the name of the robot, after which NAO will suddenly become sad. The robot 
will then explain to the child that he does not yet have a name and ask if the child can perhaps think of 
one. 

During this scenario, a component called “TalkNod” is used. This is a complex network of three other 
components. The first one makes NAO talk using the text-to-speech engine. The second one makes 
NAO’s eye light up to accompany his speech activity.  The third component enables NAO to show non-
verbal behaviours such as, for example during the greeting, nodding his head. The parameters of the 
component can be used to make NAO say ‘What is your name?’ during the first step of the introduction 
scenario or to adjust the duration of the light effects. When NAO says to the child: ‘I am sad because I 
don’t have a name’, the non-verbal behaviour can be changed to looking away. 
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This platform meets the requirement of an easy-to-use and flexible environment that allows therapists 
to develop scenarios based on the needs of individual children. Before it can be used in clinics, however, 
it needs to become more stable as to ensure that the children feel safe when interacting with NAO and 
that the trainers can used it in exactly the right way.  

7.2.4 Robot Assisted Pivotal Response Training 
In the previous section, a flexible platform was discussed that would meet the needs of individual 
children and that would be easy-to-use for non-technical people. Such a system can also be used to 
design Pivotal Response Training (PRT) scenarios in which robots play an assisting role (Kim et al., 
2014)77. PRT is a behaviour intervention methodology used in ASD therapies which aims to teach 
children “pivotal” behaviour skills. These skills include motivation, empathy and interaction with peers, 
for example. PRT is called a “naturalistic approach”, which means that it is important that children are 
allowed to learn these skills in a natural way. This can be done by making them interact with robots 
during game activity scenarios. In this experiment, the robot NAO played three different games with an 
autistic boy (aged 7) during three different sessions. Two of these were collaborative games 
(Boomgaardje78 and an adapted version of Memory) and the third one was competitive (a traditional 
version of Memory).  

Kim et al. have designed a process to create PRT scenarios which uses the TiViPE programming 
environment. This allows a robot engineer and a PRT therapist to work closely together to create and 
evaluate robot based PRT. This process consisted of three stages: 1) The creation of game activity 
scenarios; 2) The insertion of learning opportunities in the scenarios by the therapist; 3) The 
development of a hierarchical model of the robot assisted PRT scenario79.    

Prompting children into behaving in a certain way is an important part of PRT. In order for children 
with ASD to learn the pivotal skills, NAO can provide prompts to help them (or refrain from doing so). 
Based on the amount of help required from the robot, there are four different levels of prompts in the 
proposed system. These determine which of the following four actions NAO will undertake: 1) wait for 
a reaction; 2) give an indirect hint; 3) ask an open-ended question or 4) provide a model of the expected 
behaviour. 

In this hierarchical structure of prompts, it is important that NAO makes sure that the child is paying 
attention to him. Furthermore, the child must get an appropriate amount of time to react to each prompt 
(for example, seven seconds).  

If the child answers correctly, it is rewarded by the robot. If the child is still unable to answer correctly 
after the final prompt level, NAO will end the activity by saying that they will repeat the activity next 
time.   

The results of the experiment indicate that children are inclined to pay attention to the robot during the 
interaction. However, during the first session, it was clear that there should have been a way to stop the 
introduction phase of a game if the child understood the rules. This was adapted before the start of the 
second session to avoid the child losing interest.  

Furthermore, the robot’s non-verbal behaviour were successful in creating an atmosphere of joint-
attention (something which is quite difficult for children with ASD). However, NAO’s verbal 
expressions were not enough to motivate the child to participate in the games. For example, his 
prompting could not tempt the child into choosing a game to play during the first session. This means 
that the scenario scripts should be more flexible, to allow the robot to respond to hesitant or stubborn 

                                                      
77 The section Robot Assisted Pivotal Response Training is based on (Kim et al., 2014), unless otherwise indicated. 
78 Boomgaardje is a game in which players have to work together to harvest cherries before the ravens eat them.  
79 Please see Appendix VIII for an example of the scenarios developed in steps 1 and 2 of the process for the game 
Boomgaardje and for a diagram representing the four levels of prompts.  
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behaviour of particular children. To this end, more variations of the same prompt should be included to 
avoid boring the child.  

During the third session, the child seemed to have learned one of the desired skills, namely self-
initiation. They were playing a memory game and NAO said that the cards he had turned over did not 
match. The child, realising the robot was wrong, protested. 

Moreover, the child seemed to be more willing to pay attention to the robot during the sessions when he 
was alone with him (the second and third session). During the first session, he was still too dependent 
on the therapist to truly enjoying playing with NAO. 

7.2.5 Conclusion 
In this section, we have discussed several robot assisted ASD therapies. It has been shown that autistic 
children tend to react positively towards robots (Shamsuddin et al., 2012a), and therefore, therapies 
might be greatly enhanced if robots were included. However, this is not yet commonly done, as clinics 
often lack the budget and the expertise necessary to make such programmes work. The promising results 
of the studies discussed in this chapter, however, indicate that this should be changed as soon as possible. 
Autistic children would benefit from these kinds of therapy as they can help them learn a broad range 
of social skills.  

One of the programmes developed in this context is ASK NAO, an initiative by Aldebaran itself. The 
reasons Aldebaran gives as to why NAO would be the perfect companion for autistic children are rather 
general and could in fact apply to many robots (e.g. predictable behaviour, clean design, not judging). 
However, the applications developed within the scope of the ASK NAO programme are valuable 
however, as they offer great possibilities, such as the creation of a network between children, teachers, 
therapists and parents, allowing for information to be communicated rapidly and effectively (ASK NAO 
Information Kit, 2015).   

The advantages of the NAO platform are further confirmed by Miskam et al., who conducted studies for 
the National Autism Society of Malaysia. NAO has proven to be a good teacher for social and learning 
abilities and therefore, they have designed an experiment in which NAO will help children to learn 
numbers and emotional gestures (Miskam et al., 2014). Shamsuddin et al. have also conducted 
experiments for NASOM. Their research has indicated that 80% of the observed children showed less 
autistic behaviour when accompanied by NAO than in a normal classroom setting (Shamsuddin et al., 
2012b). Moreover, as these children all had low IQs (the IQ’s of autistic children range from very high 
to very low), this experiment also indicates that robot assisted ASD therapies would be a good option 
for autistic children with an impaired or delayed IQ (Shamsuddin et al., 2012b). 

As mentioned before, all children are unique and therefore, they require unique therapies. This indicates 
the need of customizable platforms that can be adapted to suit the needs of each individual child. One 
of these platforms is being developed in the Netherlands, by Gillesen et al. Such platforms are absolutely 
necessary as the needs of different autistic children might be contradictory to each other (Gillesen et al., 
2011). This platform allows technical and non-technical people to build scenarios together, based on the 
needs of individual children (Gillesen et al., 2011). Before it will be able to be used in clinics however, 
the platform should become more stable first (Gillesen et al., 2011).  

In the final part of this section, an experiment by Kim et al. showed that NAO could also be integrated 
in PRT training, an established method to teach children motivation, empathy and interaction with peers 
in a natural way (Kim et al., 2014).  
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7.3 NAO in Diabetes Therapy: The ALIZ‐E Project 

 

Figure 48 NAO in the ALIZ-E Project (ALIZ-E, 2014c) 

The ALIZ-E Project was an international project between 2010 and 2014 that was supported by the 
European 7th framework programme80. Its aim was to ‘contribute to the development of integrated 
cognitive systems capable of naturally interacting with young users in real-world situations, with a 
specific goal of supporting children engaged in a residential diabetes management course’ (ALIZ-E, 
2014a)81.  

In order for robots to become true companions for children with diabetes, they need to be able to 
establish long-term relationships with them. This is thus the main research topic for the ALIZ-E project. 
Their target group are hospitalized children aged 8 to 11 who have metabolic disorders (mainly diabetes 
but also obesity). The experiments are conducted in two hospitals: one in Italy and one in the 
Netherlands. This project emphasises the need of conducting experiments in real-life settings, as they 
want to observe child-robot interaction “in the wild”. They believe that it is first and foremost important 
to keep in mind that children are not to be considered “mini-adults”. They have far more imagination 
than most adults, which should be remembered when designing robotic companions. Furthermore, many 
children nowadays are used to highly sophisticated toys. Therefore, they often lose interest in the robots 
if their responsiveness is too limited. Experiments have indicated that less complex but flexible robotic 
behaviour achieves better results than complex but repetitive behaviour.  

The research team expects that using robots as companions for diabetic children will lead to reduced 
stress and anxiety levels. Furthermore, they believe that children are more likely to respond in a positive 
way towards the proposed treatment if they are supported and motivated by a robotic friend.  

Several of the studies mentioned earlier in this bachelor’s thesis were conducted in the larger context of 
the ALIZ-E project. Among these were studies on frameworks needed for child-robot interaction “in the 
wild” (Kruijff-Korbayová et al., 2011 & 2012; Ros Espinoza et al., 2011; see chapter 4.2.2), studies on 
children’s turn-taking behaviour (Kruijff-Korbayová et al., 2013; see chapter 4.3.1), studies on the use 
of flexible sub-dialogues (Cuayáhuitl & Kruijff-Korbayová, 2012; see chapter 4.6), and studies on 
children’s interpretation of emotional body language (Beck et al., 2011 & 2013; see chapter 5.1.2).  

In order for a robot to be eligible as a companion in diabetes therapies, it should meet several 
requirements listed by the ALIZ-E project team. 

                                                      
80 The European 7th framework programme was an initiative of the European Commission that funded European 
research and technological development between 2007 and 2013 (European Commission, 2015). Its ICT section 
was responsible for funding the ALIZ-E project, as part of the Cognitive Systems and Robotics Objective 
(European Commission, 2015). It received 8.29 million Euros to complete its goals (  
81 The introductory information on the ALIZ-E project in this section is based on (ALIZ-E, 2014a), unless 
otherwise indicated.  
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7.3.1 Requirements for Robots in Diabetes Therapy 
Children diagnosed with diabetes are confronted with serious challenges on different levels: physically, 
mentally, socially and emotionally (Nalin et al., 2012a)82. Furthermore, hospitalization in itself is quite 
challenging as well to these children: they have to leave their familiar environment behind, together with 
their friends and families. To make this period in their lives more bearable, the ALIZ-E project team 
wants to introduce robotic companions. These robots could provide the young patients with an 
interesting combination of entertainment and education.  

In the past, Animal Assisted Therapy (AAT) has proven to be very successful. However, as mentioned 
earlier, not all hospitals are willing to welcome animals onto their grounds. Furthermore, animals can 
be quite unpredictable, which is not ideal in the context of medical therapies. The ALIZ-E project team 
believes that robotic companions could fulfil the same roles as these therapeutic animals, but without 
the hygiene issues. To accomplish this, they have established four goals for their robotic development: 
1) Reducing the stress and anxiety levels of the children; 2) Improving their response to the treatments; 
3) Improving their self-efficacy; and 4) Motivating them to do physical activity. Sets of requirements 
have been created to meet each of these goals. Please see Table 33 for these requirements.  
 

Requirements for robotic companions 
Reducing stress and anxiety levels 
1 Allow physical contact 
2 Provide a tactile feeling which is realistic and pleasant 
3 Provide a feedback of enjoyment of the physical contact 
4 Provide non-verbal cuddles and affection expressions 
5 Behave like an animal: not contradicting or judging the child 
6 Accept the child immediately 
7 Adapt to the child 
8 Have a long term memory 
9 Express recognition and familiarity 
10 Propose games with inversion of roles 

- For example: the child plays the role of the doctor and the robot plays the patient 
- Goal: teach the child what will happen to him or her 

11 Distract the child from his or her own problems and condition 
12 Amuse and entertain the child 
Improving response to treatments 
13 Become an educational companion 
14 Motivate the child (overcome fear & follow healthier lifestyles)  
Improving self-efficacy 
15 Be non-independent and care needy 
16 A set of action should be defined to take care of the robot 
17 Have specific needs which force the child to use an appropriate behaviour with it 
Motivating physical activity 
18 Teach the child to do physical exercises while having fun  

Table 33 Requirements for Robotic Companions (Nalin et al., 2012a) 

Although NAO does not meet all of these requirements (NAO is not furry and pet-able for example), he 
was still chosen by the ALIZ-E research team to be their robotic platform. His selection is due to his 
friendly, cartoon-like appearance, his ability to express emotions through body language and speech and 
his advanced movements.  

                                                      
82 The section Requirements for Robots in Diabetes Therapy is based on (Nalin et al., 2012a), unless otherwise 
indicated.  



99 
 

In order to create a credible robotic companion, it is important that a robot manages to balance on the 
line between being a toy and being a living creature. This is influenced by the imagination typical of 
children: they tend to humanize NAO, even while being aware that he is a robot and not a real human 
being. Furthermore, it is important that the robotic companion should not be flawless. Experiments 
showed that children lose interest in the robot if they perceive them as perfect. For example, Kruijff-
Korbayová et al. conducted an experiment in which children had to compete with NAO in a quiz game 
(see chapter 4.3.1). Results indicated that children lose interest in the interaction if the robot never makes 
a mistake (Kruijff-Korbayová et al., 2013). However, if the robot makes a few mistakes in a row, the 
child will be encouraged to be kind to the robot and try and help him get the next question right (Kruijff-
Korbayová et al., 2013). This could be an important method to reach the third goal of the ALIZ-E project. 
Moreover, robots should introduce contextual comments into their interaction with the children. 
Children do so as well when they interact with other children, and therefore, it is needed to make the 
HRI feel more natural to them. For example, when playing a quiz, NAO could say sentences such as ‘I 
really didn’t know this answer, did you?’ or ‘That was a hard question’. The creation of an affect space, 
as suggested by Beck et al. (see chapter 5.1.2), could significantly contribute to the creation of a 
believable companion. This, in turn, would be an important step towards the accomplishment of goal 1 
of the ALIZ-E project. Finally, NAO should never appear static to the child when switched on, because 
it would give the children the impression that their companion was more a statue than a real friend. 
Therefore, “breathing” and other continuous behaviour should be implemented.   

7.3.2 Two Robotic Companions 
As mentioned in chapter 7.1, different roles require different types of companions. The ALIZ-E project 
team, however, has chosen to use one single robot model, NAO, to perform the function of a companion 
and of a monitor. They developed two complementary robot prototypes which were introduced to the 
children as brothers: NAO and ROBIN (ALIZ-E, 2014b)83.   

NAO, the elder brother, fulfilled the function of a teaching companion, helping the children to 
understand their medical conditions and encouraging them to live healthy life styles. Whenever possible, 
it was NAO who introduced his brother to the children after they had gotten used to interacting with a 
robotic coach.  

ROBIN (which stands for Robotic Infant), the younger brother, played the role of a teachable and 
affective toddler companion (comparable to the pet companion described in chapter 7.1). ROBIN, like 
the children with whom he interacts, suffers from diabetes and needs to be taken care of. The children 
play with ROBIN in a toddler’s playroom, filled with objects that can help them cater to ROBIN’s needs. 
Figure 49 shows the playroom and a child interacting with ROBIN. The toddler companion needs 
feeding, drinking, playing, sleeping, socializing and correcting his glucose levels. To satisfy these needs, 
ROBIN depends on the children, especially for the last one.  

ROBIN is an autonomous robot, which means that he can make his own decisions based on the situation 
he finds himself in. This decision making behaviour is called “action selection”. Due to his affective 
action selection architecture (as seen in Figure 50), ROBIN is motivationally autonomous as well. This 
means that he will act based on his own motivations. When he interacts with his environment, his 
motivation changes, which leads to action. The intensity of his motivations determine which particular 
action he will undertake.  

                                                      
83 The section Two Robotic Companions is based on (ALIZ-E, 2014b), unless otherwise indicated.  
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Figure 49 ROBIN's Playroom (ALIZ-E, 2014b) 

Homeostatic variables influence the affection felt and expressed by the robot. For example, when the 
pleasure hormone is increased, ROBIN will produce non-linguistic affective vocalisations. In addition 
to these variables, ROBIN is also influenced by his blood-glucose levels. When these levels are too high 
or too low, ROBIN’s tiredness essential variable will increase, leading to him being motivated to rest. 
The children are responsible for checking his levels with a similar device to the one they use to test their 
own blood-glucose levels. This is an important experience for the children, as the interaction with their 
companion makes them more comfortable with their own medical condition. When they test the robot’s 
levels, they can use their own knowledge of diabetes (which can be enforced by their teaching sessions 
with NAO) to choose the necessary treatment.  

 

Figure 50 ROBIN's Architecture (ALIZ-E, 2014b) 
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7.3.3 Children’s Adaptation in Multiple Interactions with NAO 
The ALIZ-E Project also tried to solve one of the most important bottlenecks in robotic research: 
achieving sustainable, long-term HRI (Nalin et al., 2012b)84. Because of the fact that HRI is still often 
perceived as unnatural and repetitive, robots are not yet completely suitable to be employed as daily 
human companions. Human users often lose interest in their robot after the novelty period expires. There 
are two possible ways to solve this bottleneck: robots could either be designed taking into account the 
perception of users, or they could (in the case of autonomous robots) learn from interactions. The ALIZ-
E project used a combination of both methods to improve their robotic companion NAO.  

Autonomous robots should learn both verbal and non-verbal skills from their human conversational 
partners. This is even more important when they interact with children, as children are more sensitive 
to non-verbal behaviour than adults (Davies, 2003).  

It is, however, very important to remember that social adaptation is bi-directional. Robots must adapt to 
the humans during interactions, but humans likewise adapt to the robot, even though this happens mostly 
unconsciously. Experiments indicate that NAO can learn arm-gestures through imitation because 
humans automatically adopt helping behaviour, even though they believed that NAO’s success 
depended on the verbal feedback they provided (Hiolle et al., 2010). In this experiment, the motivational 
and caring behaviour of the human participant was thus vital for the achievement of the interaction goal, 
however, this is not always the case. Cañamero et al. designed an experiment in which humans had to 
recognise the emotions expressed by the LEGO robot Feelix (Cañamero & Fredslund, 2001). Humans 
did also match their non-verbal behaviour to the robot’s in this experiment, but this was not due to 
motivation or caring (Cañamero & Fredslund, 2011). They simply did it because they were focussed on 
the task they were asked to perform (Cañamero & Fredslund, 2011). This proves that humans 
automatically adapt their non-verbal behaviour to robots in the case of successful HRI.  

Furthermore, as stated above, humans do not only adapt their non-verbal behaviour to the context of 
HRI but also their verbal behaviour. They do this as well in normal human-to-human interactions. For 
example, humans match their expressions to their conversational partner, which is called “convergence”. 
This accommodation strategy is used to reduce social differences between the conversational partners 
(Burgoon et al., 1995). Furthermore, they also match specific features of their speech signals, such as 
pitch, phonological features and amplitude. In general, it is believed that humans respond in similar 
ways to robots during interaction. In chapter 4.3.1, a study was discussed which showed that children 
adapted their turn-taking behaviour to the robot (Kruijff-Korbayová et al., 2013). 

However, during normal conversations both partners adapt themselves to each other. In this experiment, 
NAO did not match his own behaviour to the children’s. For example, he did not re-use vocabulary of 
syntax used by his conversational partners.  

To examine the adaptation of the children’s verbal and non-verbal behaviour, an experiment with 13 
children was conducted in a hospital in Milan. Each of these children participated in three separate 
interactions with NAO. During each interaction, the child could chose to play one out of three possible 
games: a quiz, a dance session or an imitation game. NAO introduced himself to the child at the 
beginning of the first session, asking for the child’s name. This created an atmosphere of familiarity 
which was considered important to evaluate correctly the establishment of a long-term relationship 
between the child and the robot. This familiarity was enhanced by the fact that NAO remembered 
whether or not he had already played a particular game with a child: he only explained the rules at the 
beginning of the first time they played that particular game. The architecture of the system is very similar 
to the one described in chapter 4.6.  

                                                      
84 The section Children’s Adaptation in Multiple Interactions with NAO is based on (Nalin et al., 2012b), unless 
otherwise indicated.  
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The results indicate that children do indeed adapt their verbal and non-verbal behaviour to NAO. Two 
communication problems were analysed: overlaps and sentences ignored by the robot. Speech timing 
(and its influence on turn-taking patterns) was clearly adjusted by the children over the course of the 
three sessions to match the timing of the robot. This leads to a decrease in the number of both types of 
communication problems. This resembles the results of the experiment described in chapter 4.3.1 
(Kruijff-Korbayová et al., 2013). Figure 51 shows the average number of communication problems per 
minute per session85. 

The children likewise adapted their verbal behaviour to NAO: they started to re-use specific structures 
and words. For example, during session one, children were more inclined to provide feedback to the 
robot in the way they normally do: ‘Yes! Right’. In the third session, however, they had often adapted 
their expressions to match the more formal language of the robot: ‘The provided answer is correct’.  

Furthermore, the children also match the features of their speech to the robot. They use a more uniform 
tone which resembles NAO’s speech and speech slower in general. 

 

 

Figure 51 Average Problems/Minute per Session (Nalin et al., 2012b) 

It is also interesting to notice that most children – even though they had very different non-verbal 
behaviours – matched their body language to NAO’s. For example, some of them adopted a stance close 
to NAO’s normal “rest” position. Others imitated the arm movements the robot made while asking 
questions or providing feedback.  

It is important to keep in mind that these children adapted their verbal and non-verbal behaviour even 
though there was no practical need nor any visible results. The interpretation of the children’s speech, 
after all, was always correct as a human Wizard controlled the robot. This means that their adaptation 
did not help NAO to understand more of the interaction. Furthermore, the children’s adaptation was also 
not caused by repetitive verbal patterns as the robot used several variations of each sentence.  

Even though earlier research indicated that humanoids such as NAO are usually perceived as creatures 
with authority (see chapter 7.1), the participants of this experiment thought NAO resembled a younger 
child than they were. This might partly be caused by the fact that they were explained that they would 
participate in an experiment which would improve the robot. They seemed to have naturally taken on 
the role of the teacher, wanting to help their robotic friend (which is closer to the role of the pet-like 
robot described in chapter 7.1). This also resembles the result of the experiment by Hiolle et al. that 

                                                      
85 The graphs used in the report by Nalin et al. are based on the data collected from only 3 out of the 13 children. 
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indicated that people automatically adopt their behaviour when they care about the robot they are 
interacting with (Hiolle et al., 2010).  

However, while many of the adaptations lasted throughout the three sessions, some also disappeared 
before the end of the experiment. This is due to the fact that even though the children are enthusiastic 
about teaching and helping the robot, they lose interest after a while because NAO does not adapt his 
own behaviour to theirs. It is thus vital that both communicative partners adapt their behaviour to 
develop a credible and natural robotic companion. Many children thus lose interest in the robot, but all 
of them reported having enjoyed playing with the robot (even though they are usually used to playing 
far more entertaining video games than the games played with NAO).  

7.3.4 Conclusion 
In this second set of case studies, experiments with NAO as a companion for children with diabetes were 
discussed. These were conducted in the larger context of the ALIZ-E Project, an international initiative 
supported by Europe. The goal of this project was to develop robots that would be suitable companions 
for long-term relationships with children that suffer from metabolic issues (ALIZ-E, 2014a). In order to 
accomplish this goal, the ALIZ-E project team has established a set of requirements for robots to be 
used in diabetes therapies, which were discussed in section 7.3.1 (Nalin et al., 2012a). 

As seen in section 7.1, different functions require different robots. Yet, the ALIZ-E project has chosen 
to use one model (NAO) to fulfil both the function of a robotic teacher as the function of a robotic 
companion (ALIZ-E, 2014b). These two robots were presented to the children as brothers: the elder 
brother NAO who performed the role of a teacher and ROBIN, the younger brother who presented 
himself as a companion to the children (ALIZ-E, 2014b). These two robots fulfilled both the children’s 
needs for education as for entertainment, which leads to the conclusion that the NAO robot can indeed 
be used for both functions (ALIZ-E, 2014b), even though other research suggested more pet-like robots 
for the companion role (section 7.1). 

Moreover, the ALIZ-E Project also focussed on solving one of the main problems of robotic research: 
humans get bored when HRI is no longer considered new and exciting. This can be solved in two 
different ways (both of which were used in the ALIZ-E Project): either by keeping this in mind when 
designing robots or by teaching robots to learn from previous interactions (Nalin et al., 2012b). In normal 
inter-human conversations, both partners will unconsciously adapt their communicative behaviour to 
each other. Research has shown that children do this as well when interacting with a robot (see section 
4.3.1). To examine the influence of this adaptation, Nalin et al. have conducted an experiment in which 
NAO would not match his behaviour to that of the child (Nalin et al., 2012b). As expected, the children 
did start to mirror NAO’s verbal and non-verbal communicative behaviour after a while; however, as 
NAO did not react the way they unconsciously expected (by adapting himself to them as well) the 
children started to lose interest near the end of the experiment (Nalin et al., 2012b). This indicates that 
robots should be programmed to adapt their communicative behaviour as well to match their 
conversational partner to establish long-term HRI (Nalin et al., 2012b). 

7.4 NAO as a Teaching Assistant for Sign Language 
Another domain in which NAO can be used as an assistive agent is the teaching of sign language. 
Computers and videos are used increasingly to help hearing-impaired people learn sign language (Kose 
& Yorganci, 2011)86. Recent studies have been conducted to determine the benefits of robots assisting 
sign language teachers. No matter the experience of the human teacher, each individual teacher has his 
or her own style, which leads to difficulties when the teacher needs to be replaced for some reason. 

                                                      
86 The section NAO as a Teaching Assistant for Sign Language is based on (Kose & Yorganci, 2011), unless 
otherwise indicated. 
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Therefore, a robotic teaching assistant could be useful, as a robot could provide tutor-independent 
teaching.  

In 2011, Kose & Yorganci have conducted an experiment in which a NAO H25 taught some elementary 
Turkish Sign Language (TSL) vocabulary to preschool children. The physical limitations of NAO, 
however, led to quite some problems, which resulted in the research team opting for another robotic 
platform in subsequent experiments. For example, most TSL gestures are based on five fingers signs, 
while NAO only has three fingers on each hand. Furthermore, NAO’s degrees of freedom were not 
considered sufficient to teach sign language accurately.  

In the experiment, 106 6-year-olds listened to NAO telling a simple yet interesting story87. During his 
interactive story, NAO supported five basic vocabulary words with TSL (car, friend, dad, three and 
table). Afterwards, the children were given a test to examine whether or not they learned sign language 
through the interaction with the robot. This test consisted of the robot showing the signs one by one and 
the children putting stickers of the relevant words on story cards.  The research team expected that there 
would be a positive effect on the performance and interaction compared to video-based studies because 
of the toy-like embodiment of the NAO robot.  

During the experiment, children were expected to provide feedback to the robot. They were given flash 
cards with the TSL signs on them and each time NAO used a sign, the children showed the robot which 
sign they thought he performed. If they were right, NAO said the name of the sign. If they were wrong, 
NAO’s eyes flashed from green to red and to green again.  

Even though NAO comes with a text-to-speech function, this was not used in this experiment. The 
research team was unable to find a natural sounding Turkish TTS programme, and therefore, they chose 
to implement the voice of a 6-year-old into NAO. 

The results indicate that 90% of the children were able to complete the final test without making any 
mistakes. This recognition rate is a lot higher than those of previous experiments conducted with adults 
and teenagers, even though the same set of words was used (Kose et al., 2012). These words were chosen 
because NAO would not be able to perform them perfectly due to his physical limitations. Yet, in this 
experiment, the children were presented these words in the context of a story, which resulted in the high 
recognition rates.  

In later experiments, NAO’s sign language teaching abilities were compared to those of the five-fingered 
Robovie R3 robot (see Figure 52) (Kose et al., 2014). In this study, ten TSL words were taught by both 
robots to children and adults (Kose et al., 2014). The results of this experiment are shown in Table 34.  

 

Figure 52 Robovie R3 Robot (Kose et al., 2014) 

                                                      
87 The story is included as Appendix IX.  
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Recognition rates 
 NAO (10 participants) Robovie R3 (21 participants) 
Spring 60% 100% 
To throw 40% 98% 
I / Me 40% 98% 
Big 100% 98% 
Mountain 60% 98% 
Table /88 98% 
Black 60% 98% 
To come 60% 92% 
Baby 80% 90% 
Mother 40% 88% 

Table 34 Recognition Rates of NAO and Robovie R3 (Kose et al., 2014) 

As shown in Table 34, participants were significantly better at recognising signs when performed by the 
Robovie R3 Robot, most likely because of his greater degrees of freedom and because of the fact that 
this robot has five fingers (Kose et al., 2014). Based on these results, the research team decided that 
further research into sign language teaching would be conducted with the Robovie R3 Robot instead of 
with NAO (Kose et al., 2014). 

  

                                                      
88 The word table was replaced by car in the NAO experiment, but this word does not count for the final results.  
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8. Conclusion 
In this bachelor’s thesis, I have tried to present the state-of-the-art of NLP with NAO robots. In chapter 
2, the difference between artificial and natural languages was presented. Because of these differences, 
NLP is not a simple task. The most problematic characteristic of natural language utterances is the fact 
that they are almost always ambiguous (Beardon et al., 1991). This makes it very hard for computers to 
identify their meaning correctly, which complicates natural language based HRI. 

Another problem with which HRI is faces is the uncanny valley theory by Mori (Mori, 2012). Although 
it has typically been considered as a limiting factor in the design of robots, new research suggests that 
this might not be the case – or at least not in the way Mori described. Personal factors influence the 
position humans assign to a particular robot on the graph, and these factors are not included in the 
traditional vision on the uncanny valley. Therefore, designers of robots should not necessarily feel 
constricted by the limitations imposed through the uncanny valley theory. 

In chapter 3, NAO and the other two robots by Aldebaran were introduced. These three humanoids are 
all being developed to interact with humans in social situations. Pepper is even created especially to 
become a daily companion at home (Aldebaran Robotics, 2015). For robots such as these, NLP is crucial. 
Without a sufficient command of natural language, they will not be able to fulfil their roles, nor would 
humans be inclined to allow them into their lives.  

From chapter 4 onwards, NLP with NAO robots was discussed in many different applications and 
domains. Chapter 4 itself dealt with the most straightforward application, namely HRI through natural 
language. We have first examined a study in which NAO was taught a “native language” through joint 
attention and multi-instance learning (Dindo & Zambuto, 2010). This proved to be a successful method, 
but only words that are grounded in perceptual data can be learned in this way. It is therefore most likely 
not a method that can be used on its own to allow a robot to acquire a complete native language.  

Next, to illustrate different approaches to allowing robots to use natural language, three frameworks for 
NLP were presented. First, the research into frame-based dialogue frameworks stressed the importance 
of domain-adaptivity and language-adaptivity (Barabás et al., 2012). Domain-adaptivity does no longer 
truly pose problems anymore, but systems that are completely language-independent do not yet exist. 
Therefore, a system is currently considered language-adaptable if it can deal with a limited – but 
extendable – list of languages. The second framework discussed was an event-based dialogue system 
which improved greatly when the developers decided to replace their finite-state dialogue manager by 
one that used probabilistic methods and optimisation of dialogue policies based on reinforcement 
learning (Kruijff-Korbayová et al., 2012). This was necessary because the finite-state machine was 
deemed unsuitable as it was not flexible enough to deal efficiently with the uniqueness and 
unpredictability of children, which were the target audience in this experiment (Kruijff-Korbayová et 
al., 2012). The third framework discussed was a reward-based meta-cognitive framework, based on 
dialogue rewards that were given to a robot to encourage him to keep the human user interested (Pipitone 
et al., 2014). The moment the human loses interest, the reward levels will go down, which incites the 
robot to either change the topic or to provide more detailed information to recapture the interest of the 
human (Pipitone et al., 2014).  

Section 4.3 deals with turn-taking, an important aspect of human communication. Humans automatically 
expect HRI to be regulated by turn-taking patterns as well (Baxter et al., 2013), which means that robot 
designers should meet this expectation. We have therefore compared the turn-taking abilities of NAO 
to those of Kismet, a sociable robot developed at MIT. Experiments with NAO showed that children 
adapt their turn-taking behaviour to the robot between their first and second interaction with him 
(Kruijff-Korbayová et al., 2013). Further research has also shown NAO’s turn-taking abilities can be 
improved by implementing non-verbal behaviour to regulate turn-taking (Meena et al.., 2012). Kismet, 
likewise, used these paralinguistic cues to convince humans to lower their conversational pace to allow 
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her to interact at her own rhythm (Breazeal, 2003). Experiments showed that after a while, humans and 
Kismet manage to find a balance in which the human’s expectations of a conversation are met and 
Kismet’s abilities are not perceived as insufficient (Breazeal, 2003). This is an ideal situation in which 
Kismet can learn from her interaction with the human, which is her ultimate goal (Breazeal, 2003). 

In sections 4.4, 4.5 and 4.6, issues concerning dialogues were discussed (and some possible solutions), 
as these problems do not limit themselves to the uncanny valley problem as described in sections 2.5 
and 2.6. First of all, it should be avoided that robots confuse humans by giving them the wrong 
impression about their functionalities and capabilities (Fong et al., 2003). Secondly, to avoid 
repetitiveness, manually created templates could be enhanced by templates developed by the crowd 
(Mitchell et al., 2014). However, Mitchell et al. also stress that crowdsourcing could not yet entirely 
replace manual labour, as the new templates should still be checked afterwards to make sure that they 
fit the desired purpose (Mitchell et al., 2014). Thirdly, in section 4.5, open-domain and closed-domain 
dialogues were compared, which stresses once again the importance of domain-adaptivity. WikiTalk, 
an open-domain dialogue application that allowed NAO to use Wikipedia to manage conversations and 
topic changes, has been discussed as an example of such domain-adaptable systems (Wilcock, 2012). 
Fourthly (section 4.6), the above described system might score high on the level of domain-adaptivity, 
it still manages an entire conversation as one single dialogue – a method that has proven to be less 
efficient than the use of multiple sub-dialogues (Cuayáhuitl & Kruijff-Korbayová, 2012). Such systems 
are called hierarchical dialogue control and they allow for more flexibility and a better performance in 
general (Cuayáhuitl & Kruijff-Korbayová, 2012).  

Next, a crucial function of natural language is discussed in section 4.7, namely coordination. NAO has 
proven to be able to perform cooperative tasks with a human being, which is an important 
accomplishment as this is one of the main functions for which humans use natural language (Petit et al., 
2013). Natural language has a double function in this context: it can control the cooperation and it can 
be used to teach the robot specific actions (Petit et  al., 2013). However, as NLP is not yet able to process 
complex sentences in this kind of systems, the user is limited to the use of relatively simple grammatical 
structures (Petit et al., 2013). This does only impose problems for the input, however, and not for the 
output as complex tasks can be coordinated efficiently by simple language (Petit et al., 2013). 

In section 4.8, we took a short look at semantic gestures, which are an important aspect of human 
interaction (as human communication is almost never exclusively verbal). As Zheng & Meng pointed 
out, semantic gestures cannot simply be transferred to robots without testing them on the target audience 
first (Zheng & Meng, 2012). These gestures are culturally defined and, more importantly, are perceived 
differently when performed by a robot than by a human (Zheng & Meng, 2012). This could lead to 
miscommunication, which is an important reason to test each gesture before it is being implemented 
(Zheng & Meng, 2012).  

And finally, in section 4.9, we examined one of the problems that prevent a faster rise of robots in our 
society: the fact that controlling and programming them still requires technical expertise. Robots are 
meant to be used by non-technical people, and therefore, the dream of NLP would be to develop robots 
that can be controlled in natural language. This, however, is not yet entirely possible (some researchers 
even believe that it will never be possible) and therefore, alternatives and intermediary solutions are 
being examined. One of these alternatives is a user-friendly programming environment which requires 
only a basic knowledge of programming (Lourens & Barakova, 2012). Another alternative – or as more 
pessimistic researchers believe, the only option – would be to use artificial languages rather than natural 
languages, such as RIOLA. This language is easy-to-learn for humans and easy-to-understand for robots, 
which would allow it to increase the performance of HRI (RIOLA, 2015). Less sceptic researchers, 
however, continue their experiments with intermediary solutions. For example, motion description 
languages, such as Cybele, allow end-users to define robotic motions through natural language (Shukla 
& Choi, 2013). This domain is thus clearly divided over two opposing opinions, and whoever succeeds 
best will strongly influence the way we will interact with robots in the future.  
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In chapter 5, another application of natural language in HRI was discussed: the communication of 
emotions. This chapter consisted of two parts: section 5.1 dealt with the expression of emotions by 
robots and section 5.2 with the detection of human emotions. As robots need to be accepted into the 
daily lives of humans as warm companions, they need to be able to display emotions much in the same 
way as humans do (Beck et al., 2012). To allow NAO to express his emotions through body language, 
an affect space has been created to blend emotions along three axes (arousal, stance and valance) as to 
generate hybrid emotions (such as an emotion of 30% happiness and 70% excitement) (Beck et al., 
2012). The results of experiments conducted with this affect space indicate that body language is a 
suitable emotional medium, but that age and cultural background might have significant influence on 
the perception of emotions expressed in this way (Beck et al., 2012). Other libraries of emotions were 
discussed as well, which indicate the importance of consistency between different emotional media 
(Monceaux et al., 2009) and showed the unreliability of eye colour as a medium (Häring et al., 2011).  

In the final part of section 5.1, the expressiveness of four other robots was compared to NAO’s. First, a 
comparison with iCat indicated that there was no significant difference between their expressiveness, 
even though NAO did not possess facial expressions (Cohen et al., 2011). Secondly, an experiment with 
Kismet showed how a robot’s drives, emotions and motivations could lead to learning social behaviour 
(Breazeal, 1999). Thirdly, Brian’s recognition rates (McColl & Nejat, 2014) were compared to those of 
NAO, which showed that they were largely similar except for some unexpected differences connected 
to the perception of fear. This might either be due to the different embodiment or to the motions chosen 
to accompany fear. Fourthly, an experiment with KOBIAN showed that facial expression enhanced the 
perception of emotions (Zecca et al., 2009). However, when compared to NAO’s recognition rates, 
KOBIAN scored less good even though NAO does not have facial expressions.  

Section 5.2 dealt with two main problems: 1) how to detect human emotions in general and 2) how to 
detect emotions of different age groups. In the context of problem 1, we have discussed an experiment 
in which NAO successfully determined a user’s emotions based on a combination of facial and semantic 
cues (Zhang et al., 2013). The results indicate that a combination of LSA and NAO’s face detection API 
are sufficient to allow the robot to formulate adequate responses given the user’s emotion and the topic 
discussed (Zhang et al., 2013). Problem 2 proved to be a more difficult hurdle to cross. Human emotions 
can be detected in speech, but adult speech is highly different from child speech. Therefore, robots such 
as ROMEO that need to interact with different age groups are faced with a problem when trying to detect 
emotions. Cross-corpora experiments have indicated that separate models should be provided for each 
age group to assure high performances (Tahon et al., 2011). 

We have concluded this section with an experiment with Brian, as it seemed enriching to have a second 
robot of which both the expression (section 5.1.7) and the detection of emotions (section 5.2.3) was 
examined. One of the main emotions with should be detected is accessibility, as it has an enormous 
influence on how a user will react to a robot at a particular time (McColl et al., 2011). Experiments have 
shown that DNNS systems are as efficient as trained human DNNS to detect this particular emotion 
(McColl et al., 2012).  

In chapter 6, we have discussed yet another application of NLP in HRI: robotic personalities. This is a 
domain which will require much more research as a consensus on the best type of robotic personality 
has not been reached. Many people believe that the personalities of robots should either match or 
complement their user’s personality (as these are the two social attraction rules that govern inter-human 
relationships), yet a few voices express radically different opinions. Whoever turns out to be right, one 
fact remains: robotic personalities are crucial for the development of natural HRI, as humans 
automatically expect robots to have compelling personalities, as they do themselves. 

After discussing the five basic robotic personality types (Fong et al., 2003), we have presented an 
experiment by Aly & Tapus which belongs in the personality-matching camp. Ideally, experiments 
illustrating the views of the other camp (personality-complementation) with NAO robots should have 
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been included as well, but these could not be found. However, some of the independent voices were 
included. In this case, these voices belong to three Dutch students who participated in the University of 
Twente 2012 Student Conference on IT. Although the results of these experiments were not always 
conclusive or even reliable (many things went wrong), they were included because they were considered 
to be enriching perspectives in the robotic personality debate. Windhouwer examined the effect of the 
task context on a human’s preference for certain robotic personalities in section 6.3. Next, in section 
6.4, the effect of group interactions on the preference of a user was presented by Leuwerink. Lastly, in 
section 6.5, Waalewijn discussed the effect of neighbouring cultures on this preference. 

In the final chapter of this bachelor’s thesis, chapter 7, we have discussed several case studies in which 
NAO was used in medical contexts (namely autism therapy, diabetes therapy and sign language 
teaching). First, we have taken a look at the influence of the embodiment of a robot on the tasks that is 
can perform in such a context. Research has shown that robots can fulfil two main functions in a medical 
setting, which require other types of robots: a rehabilitation monitor or a companion (Diaz et al., 2011). 
Humanoids, such as NAO are ideal to play the part of a monitor, as they inspire children to be curious 
and to explore their own abilities (Diaz et al., 2011). Cute, pet-like robots, such as PLEO, are more 
suitable to be companions, as they inspire children to be caring and affective (Diaz et al., 2011). The 
embodiment of a robot is thus an important factor to keep in mind when selecting a particular model for 
a particular task. 

Second, we have studied several experiments on NAO’s performance in the context of autism therapy. 
ASD therapies can be greatly improved by incorporating robots, as many autistic children react in a 
positive way to these artificial companions (Shamsuddin et al., 2012a). This is not yet commonplace, 
however, as these kinds of therapies demand a considerable amount of money and expertise. To facilitate 
this, many initiatives are established internationally, among which the ASK NAO programme by 
Aldebaran. This programme presents many applications that are valuable in the context of ASD 
therapies, such as the creation of a network that would enhance communication between parents, 
children and therapists (ASK NAO Information Kit, 2015). Another series of experiments were 
conducted in the context of the National Autism Society of Malaysia. In these, it has been shown that 
robots positively influence the behaviour of autistic children in 80% of the cases (Miskam et al., 2014) 
and that children with impaired or delayed IQs would benefit from robot assisted ADS therapies 
(Shamsuddin et al., 2012b). Furthermore, as all children are unique, they require unique therapies. 
Therefore, customizable platforms are needed that can meet the needs of each particular child. The 
platform discussed in section 7.2.3 enables technical and non-technical people to work together to create 
scenarios adapted to individual needs (Gillesen et al., 2011). This is important, because autism is a very 
broad spectrum and the needs of one child might be contradictory to the ones of another child. Finally, 
we have also seen how robots can be integrated in the established PRT therapy (Kim et al., 2014). 

Third, we have studied some experiments conducted in the context of the ALIZ-E project, an 
internationally funded initiative to develop robotic companions for children with diabetes. In order to 
create such a companion, a set of requirements were established, after which NAO was chosen as the 
model to be used in this project (Nalin et al., 2012a). Two versions were used, which were presented as 
brothers: the elder NAO who acted like a teacher, and the younger ROBIN who acted like a companion 
(ALIZ-E, 2014b). This shows that even though normally, pet-like robots are preferred for the role of a 
companion (see section 7.1), NAO could perform this function efficiently as well (ALIZ-E, 2014b). The 
ALIZ-E project team also tried to find a solution for one of the main problems of robotic research: how 
to avoid that humans get bored when the novelty effect wears off. When humans interact with other 
humans, they tend to adapt their communicative behaviour to their conversational partner. As this is 
done automatically, humans unconsciously apply this to HRI as well (see, for example, turn-taking 
behaviour in section 4.3.1). When a robot does not adapt its own behaviour as well, children will lose 
interest in the interaction (Nalin et al., 2012b). Enabling NAO to adapt his communicational behaviour 
to his interaction partners would thus prevent the novelty effect from wearing of and would thus keep 
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HRI interesting longer (Nalin et al., 2012b), which is exactly what is needed to develop long-term 
robotic companions for medical contexts.  

Finally, the benefits of a robotic teaching assistant to teach sign language to the hearing-impaired were 
discussed. Sign language is taught slightly different by each human teacher, which means that problems 
can arise when the teacher needs to be replaced (Kose & Yorganci, 2011). Therefore, robotic teaching 
assistants could prove useful, as they can repeat a specific gesture a hundred times in exactly the same 
way (Kose & Yorganci, 2011). Research in this area with NAO has not been a complete success, 
however. Kose & Yorganci used NAO in their earlier experiments, but soon decided to replace him with 
another model because of NAO’s physical limitations (e.g. insufficient degrees of freedom and too few 
fingers) (Kose et al., 2014).  

We can thus conclude from chapter 7 that even though NAO seems to be a highly efficient and suitable 
choice in some medical contexts (such as ASD therapies and diabetes therapies), he would not be the 
best candidate to become a sign language teaching assistant. It is important to keep in mind that no robot 
would ever be able to fulfil all possible roles, much in the same way that each human also has his or her 
own individual talents and weaknesses. Several factors need to be considered when choosing a robot for 
a particular task, both internal (i.a. embodiment, physical limitations, HRI possibilities and software 
applications) and external (i.a. target audience, function and context).  
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9. Further Research 
In this chapter, we will take a brief look at some suggestions for future research, based on gaps in the 
literature as presented by the authors of the above-described studies and based on unsatisfying results 
of some of the experiments. 

In chapter 2, new research on the uncanny valley has led to new insights into this traditionally accepted 
limitation on robotic design. However, although it is becoming clear that personal factors should be 
included in the graph, many uncertainties remain. For example, further research should point out which 
personal factors are necessary and sufficient to be considered in a new uncanny valley theory. Studies 
focussing on the influence of a robot’s appearance on the uncanny effect have suggested that EQ and 
experience with video games might be important factors (Beck et al., 2012). It might thus be interesting 
to conduct further experiments to see to which measure these two also influence the perception of an 
eerie feeling inspired by the use of natural language. 

Chapter 4 presented several studies on HRI through natural language which greatly enhanced the 
knowledge of NLP with NAO robots. Yet, some of these works might benefit from new experiments 
based on their results. Section 4.1 discussed a learning-technique in which joint attention and multi-
instance learning were used (Dindo & Zambuto, 2010). The results indicate that NAO was indeed able 
to learn several words by using this technique. However, this was only possible because the to-be-
learned nouns were grounded. Furthermore, verbs were not learned but hardcoded. It might be enriching 
to widen this research to include a larger number of lexical items (such as verbs) and to see to which 
extent joint attention and/or multi-instance learning could be usable in the teaching thereof.  

In section 4.2, several frameworks for HRI with NLP were discussed. The frame-based system proposed 
by Barabás et al. showed promising results (Barabás et al., 2012). However, as the authors mention 
themselves at the end of their paper, NAO was only capable of performing 18 actions in this study. The 
results of the experiment were good, but it might be useful to see how many functions could be 
performed by this kind of system without significantly lowering its response time and effectiveness. 
Furthermore, Barabás et al. focus on the importance of language-adaptivity. Current NLP systems are 
not truly language-independent yet, although they can often work with an extendable set of languages. 
This is an area of NLP in which there remains a lot of research to be done. Furthermore, the developers 
of the framework discussed in section 4.2.3 do not provide any of the results of their experiments, yet 
they claim that their system was efficient and versatile. It might thus be interesting to conduct further 
research into this type of frameworks and to make the result public as to prove its efficiency and 
suitability.  

The crowdsourcing technique discussed in section 4.4 seems a promising method to reduce the amount 
of manually created dialogue templates and to avoid repetitive HRI. However, as Mitchell et al. indicate, 
it is not yet a possibility to replace entirely manually created templates by those developed by the Crowd 
(Mitchell et al., 2014). This could be an interesting method to be developed in the future, as HRI should 
absolutely not feel repetitive and unnatural to humans. This would interfere with the desired function of 
robotic companions, as humans would become less willing to engage in interaction with a boring robot. 

In section 4.5, WikiTalk, an open-domain dialogue system was presented, which allowed NAO to use 
Wikipedia as a source for conversational topics. Each time he mentioned a word that was marked as a 
hyperlink in the original article, he would make a beat gesture to indicate that the human could repeat 
the word to get more detailed information (Wilcock, 2012). This has proven to be an efficient system, 
but as Wilcock mentions, some people believe that Wikipedia will one day only contain hyperlinked 
words (Wilcock, 2012). This would mean that the speech recogniser would have to deal with an 
unlimited set of words, which is not yet possible today (Wilcock, 2012). Therefore, new ways to manage 
topic changes should be examined. Furthermore, some words are only once marked as a hyperlink, 
which results in problems when humans react to the second occurrence of such a word (Wilcock, 2012). 
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The author mentions that drawing up lists of hyperlinks beforehand might be a possible solution which 
should be carefully examined in the future (Wilcock, 2012).  

We have concluded the fourth chapter by a section on one of the most crucial problems in HRI: end-
user programming. Three alternatives have been suggested to solve this issue: (partial) natural language 
based HRI, end-user friendly programming and artificial languages. As robots are first and foremost 
meant to interact naturally with humans, each of these alternatives should be extensively tested on 
different end-users (especially on the elderly and on the very young) to see which methods would work 
for them.  

In chapter 5, Beck et al. suggest that adding motion would improve NAO’s expressiveness (which was 
only based on static postures in their experiments) (Beck et al., 2012). It might be interesting to see 
which effect motion would have on the perception rates of NAO’s emotions.  

Various authors also mention the need to examine further the effect of age and cultural background on 
the perception of a robot’s emotions (e.g. Beck et al., 2012; Zhang et al., 2013; Monceaux et al., 2009). 
This is important to avoid miscommunication and to make HRI smoother and less likely to offend 
anyone. 

In chapter 6, multiple opinions on robotic personalities were discussed. The field is mainly divided in 
two camps: those who believe that the personality of a robot should match the personality of the user 
and those who believe in complementary personalities. While research on personality-matching with 
NAO robots is sparse, studies on personality-complementation with NAO could not even be found. It 
might thus be interesting to conduct more experiments with NAO to see which side of the argument 
could be proven empirically. Furthermore, sections 6.3 to 6.5 contained interesting suggestions by 
students of the University of Twente. These brought enriching new perspectives to the debate, although 
their methods and results proved to be rather unsatisfactory. Re-conducting these experiments in a more 
reliable manner might lead to important new information on the perception of robotic personalities.  

Chapter 7 discussed several case studies with NAO in a medical context. Among these case studies, 
several experiments with robot-assisted ASD therapies have been presented. An experiment in Malaysia 
showed that children with low IQs reacted positively towards NAO (Shamsuddin et al., 2012b). A 
similar experiment with autistic children with high IQs would provide interesting complementary 
information to get a full overview of the possibilities of robot-assisted ASD with NAO.  

Finally, the ALIZ-E project, as discussed in section 7.3, might have come to an end, but this does not 
mean that research into robotic companions for hospitalized children with diabetes should end as well. 
Humanoids, of which NAO has proven to be an exemplary representative, are highly useful either to 
encourage children as an experienced monitor or to make their lives brighter by being their playful 
companion. Therefore, the event-based dialogue framework (Kruijff-Korbayová et al., 2012), as 
discussed in section 4.2.2, might be further developed in the future to support a wider range of dialogues.   
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Appendix I: NAO versions 
 

Prototypes 
January 2005 – March 2006 AL-01, AL-02, AL-03 
September 2005 – July 2006 AL-04 
June 2006 – June 2007 AL-05a 
May 2007 – December 2007 AL-06b 
Releases 
2008 NAO RoboCup Edition (V2) 
2009 NAO V3 
2009 NAO V3+ 
2010 NAO V3.2 
2010 NAO V3.3 
2011 NAO Next Gen (V4) 
2014 NAO Evolution (V5) 

 

Based on: www.aldebaran.com (consulted 05/02/2015) 
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Appendix II: NAO version and body types diagrams 

1. Versions 
The design of the back of the head is used to differentiate between the NAO releases (Aldebaran 
Robotics, 2015). 

NAO 3+ & NAO 3.2 

NAO 3.3 
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NAO Next Gen (V4) 

NAO Evolution (V5) 

 
 

Based on: http://doc.aldebaran.com/2-1/family/body_type.html (Consulted 05/02/2015) 
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2. Body Types 
NAO T2 

 
NAO T14 

 
  



127 
 

NAO H21 

 
NAO H25 

 
 
Based on: http://doc.aldebaran.com/2-1/family/body_type.html (Consulted 05/02/2015) 
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Appendix III: NAO Evolution Datasheet 
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Source: http://cdn2.hubspot.net/hub/314265/file-1072832042-pdf/PDFs/NAO/NAO-Evolution-
Datasheet.pdf?t=1422465793478 (Consulted 05/02/2015) 
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Appendix IV: A frame‐based Dialogue System  
In chapter 4.2.1, a frame-based dialogue system was discussed, which used the following architecture 
for its NLP engine: 

  

Source: Barabás et al., 2012. 
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Appendix V: An Event‐based Dialogue System 
In chapter 4.2.2, an event-based dialogue system was presented, based on the following architecture: 

 

Source: Kruijff-Korbayová, 2012. 
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Appendix VI: WikiTalk‐based Open‐dialogue with NAO 
State: Hello 

- NAO: [Stands up] 
 

State: Select New Topic 
- NAO: [Tells the user that his favourite topics include Shakespeare, Metz and Paul Verlaine] 
- Human: [Asks the robot to talk about Metz] 

 
State: Start New Topic 

- NAO: Metz is a city in the northeast of France located at the confluence of the Moselle and the 
Seille rivers. Metz is the capital and the prefecture of both the Lorraine region and the Moselle 
department. Located near the tripoint along the junction of France, Germany, and Luxembourg, 
Metz forms a central place of the European Greater Region and the SaarLorLux euroregion. 
 

New Info Links:  
[France, Germany, Luxembourg, Moselle (river), Seille, prefecture, Lorraine (region), Moselle, 
department, tripoint, Greater Region, SaarLorLux, Euroregion] 

State: Continue Topic 
- Human: Continue. 
- NAO: A Celtic oppidum, an important Gallo-Roman city, the Merovingian capital of the Austrasia 

kingdom, the birthplace of the Carolingian dynasty, a cradle of the Gregorian chant, and one of 
the oldest republics of the common era in Europe, Metz has a rich 3.000-year-history. The city has 
been steeped in Romance culture, but has been strongly influenced by Germanic culture due to its 
location and history. 
 

New Info Links:  
[France, Germany, Luxembourg, Moselle (river), Seille, Prefecture, Lorraine (region), Moselle, 
Department, Tripoint, Greater Region, SaarLorLux, Euroregion, Celts, Oppidum, Gallo-Roman, 
Merovingian, Austrasia, Carolingian dynasty, Gregorian chant, Common era, Romance languages, 
Culture of Germany] 

State: Start New Topic (Smooth Topic-shift) 
- Human: Celtic? 
- NAO: The Celts or Kelts were an ethno-linguistic group of tribal societies in Iron Age and 

Medieval Europe who spoke Celtic language and had a similar culture. 
 

New Info Links:  
[Ethno-linguistics, Tribe, Iron Age, Middle Ages, Europe, Celtic languages] 

State: Start New Topic (Smooth Topic-shift) 
- Human: Celtic languages? 
- NAO: The Celtic or Keltic languages are descended from proto-Celtic, or “Common Celtic”, a 

branch of the greater Indo-European language family. The term “Celtic” was first used to 
describe this language group by Edward Lhuyd in 1707. 
 

New Info Links:  
[Proto-Celtic, Indo-European languages, Language family, Edward Lhuyd] 

State: Start New Topic (Smooth Topic-shift) 
- Human: Indo-European? 
- NAO: The Indo-European languages are a family of several hundred related languages and 

dialects. It has about 449 languages and dialects, according to the 2005 Ethnologue estimate, 
about half belonging to the Indo-Aryan sub-branch. It includes most major current languages of 
Europe, the Iranian plateau, and South Asia, and was also predominant in ancient Anatolia. With 
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written attestations appearing since the Bronze Age, in the form of the Anatolian languages and 
Mycenaean Greek, the Indo-European family is significant to the field of historical linguistics as 
possessing the longest recording history after the Afroasiatic family. 

- Human: Thank you. 

State: Goodbye 
- NAO: Thank you. Goodbye. [Sits down] 

 

 

Based on: Jokinen & Wilcock, 2012 (Quoted in: Mitchell et al., 2012). 
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Appendix VII: High‐level Architecture of a HDC System 
In chapter 4.6, Hierarchical Dialogue Control was discussed. The following is the high-level architecture 
of a flexible HDC system for NAO: 

 

 

Source: Cuayáhuitl & Kruijff-Korbayová, 2012 
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Appendix VIII: PRT Scenario for Boomgaardje and prompting diagram 
PRT Scenarios 

Setting, agent and agent’s goal 
Setting: The toys are placed at the initial positions.  
Agents: The robot and child are involved in the game. 
Goal: The robot and the child can win by pinching all cherries from the tree before the raven. 

Step 1: Designing a scenario 
General: 
A turn taking between a robot and a child occurs until the Boomgaardje game ends. 
 
Robot: 
When the robot’s turn comes, it asks the child to give it the dice.  
After the robot throws the dice, it asks the child to turn over the flower card that corresponds to the 
flower symbol on the top of the dice.  
Next, the robot performs the appropriate action according to the figure on the back. 
If the card with the raven is picked, the robot asks the child to move the raven to the next footprint. 
If the cherry is on the card, the robot asks the child to pinch one of the cherries from the tree and put 
it into the basket. 
If sleeping animals appear on the card, the robot passes its turn to the child without doing anything. 
 
Child: 
In the child’s turn, the child first throws the dice and turns over the corresponding card. 
The robot often says which flower appeared on the top of the dice or which card the child turned over: 

- ‘You got a white flower on the dice.’ 
- ‘Wow, it’s a cherry!’ 

If the figure on the back is a raven, the child moves it to the next footprint. 
If the card has a cherry on it, the child picks up a cherry from the tree and puts it into the basket. 
If sleeping animals appear on the card, the child passes his turn to the robot. 
The robot sometimes verbalizes which toy the child moved: 

- ‘You picked a cherry!’ 
Step 2: Adding learning opportunities to the scenario 

General: see above 
Robot: see above 
Child:  
In the child’s turn, the child first throws the dice and at this time the robot says it is his turn. 

- Learning opportunity: protesting 
If the child does not know what to do, the robot teaches the child to ask for help. 

- Learning opportunity: asking for help 
After throwing the dice, the child turns over the corresponding card. 
If the child does not know what to do, the robot teaches the child to ask for help. 

- Learning opportunity: asking for help 
The robot often says which flower appeared on the top of the dice or which card the child turned 
over.  
If the figure on the back is a raven, the child moves it to the next footprint. 
If the card with the cherry is picked, the child picks up a cherry from the tree and puts it into the 
basket. 
If sleeping animals appear on the card, then the child passes his turn to the robot. 
If the child is hesitating to do something for a long time, the robot teaches the child to ask for help. 

- Learning opportunity: asking for help 
The robot sometimes verbalizes which toy the child moved. 

 

Based on: Kim et al., 2014 



137 
 

 

Source: Kim et al., 2014  
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Appendix IX: Story with TSL for NAO 
The words supported by TSL are indicated in blue and bold. The story is an English translation of the 
Turkish original, created by the research team. The story is constructed in such a way that each relevant 
word appeared twice, mostly at the beginning of the sentence. Furthermore, no more than two signs 
were used per sentence.  

Three close friends decided to go to picnic to the forest.  
Dad drove them to picnic with his red car. 
When they arrived they put their food on the table. 
They had very delicious food and cakes. 
Three little rabbits suddenly jumped to the table. 
Everything falls on the ground. 
Dad said “Don’t worry; we can continue our picnic at home.” 
Friends arranged their belongings and got on the car, and drove to their home to continue the picnic. 
Little rabbits continue to play in the forest, too. 

Based on: Kose & Yorganci, 2011. 


