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“The first principle is that you must not fool yourself and you are the easiest
person to fool. So you have to be very careful about that. After you’ve not fooled

yourself, it’s easy not to fool other scientists. You just have to be honest in a
conventional way after that.”

— Richard P. Feynman (Feynman, 2014, p. 343)

“Physics is really nothing more than a search for ultimate simplicity, but so far
all we have is a kind of elegant messiness.”

— Bill Bryson (Bryson, 2003, p. 110)





A B S T R A C T

Observations have shown that a significant number of dwarf galaxies surround-
ing the Andromeda galaxy are confined to a co-rotating, thin planar structure.
In this thesis, a modification of the galaxy group theory is tested, in which the
planar structure emerges during a tight fly-by orbit of the satellite galaxy M32
around its host galaxy Andromeda. Dwarf galaxies in the plane are assumed to
correspond to the subhaloes of M32, which in turn makes them sub-subhaloes
of Andromeda. M32 on the other hand is modelled as one of the largest sub-
haloes of Andromeda. To test this theory, HPC (High Performance Computing)
N-body simulations with over 106 particles are used to simulate the evolution
of the system. The thinness of the observed distribution of dwarf galaxies is
then trialled against the distribution of sub-subhaloes that results from sim-
ulations, by use of a Kolmogorov-Smirnov test. This test was unable to reject
the hypothesised origin of the observed dwarf galaxies at any meaningful con-
fidence level.
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Part I

N - B O D Y C O D E S

The aim of this section is to explain the various numerical schemes
used to approach the N-body problem. A general introduction is
given that discusses both the direct and more approximate schemes
for numerically solving the orbit of a particle. Furthermore, addi-
tional features of N-body codes, such as variable time steps, and
methods that allow verification of the result are discussed. Specif-
ically schemes used to model galactic interactions are examined,
given that simulating the plane of dwarf galaxies around M31 is
the objective of the next section.





1D I R E C T G R AV I T A T I O N A L N - B O D Y S I M U L A T I O N S

1.1 I N T R O D U C T I O N

In this thesis, the validity of a new spin on an old theory is tested, which aims
at providing an origin for the thin plane of dwarfs surrounding the Andromeda
galaxy. Verifying the theory requires one to be able to predict the end state
of a collision between non-spherical galaxies, that comprise multiple compo-
nents. Unfortunately, the dynamical evolution of astrophysical systems cannot
be traced analytically, except for highly symmetric distributions. A more flex-
ible tool that can simulate the evolution of interacting galaxies is therefore
required.

During the last 50 years, N-body simulations have been the backbone of
much of the theoretical progress in astrophysics. N-body codes statistically
reflect the mass distribution of the components under consideration, by rep-
resenting them as a system of N particles. The evolution of the system can
then be traced by updating the phase space coordinates of the particles using
a discrete time step ∆t, meaning that an approximation is used to leap the co-
ordinates of the particles from t to t+∆t. What follows in chapter one to three
is a gentle introduction explaining the workings and features of N-body codes,
that will be used to simulate galactic interactions.

1.2 D I R E C T N - B O D Y A L G O R I T H M S

Of all the problems faced in physics these days, calculating the path of a mas-
sive particle due to the gravitational interaction with other particles might
seem like an easy one. After all, when working in a non-relativistic context, all
one has to do is to integrate the set of equations obtained from Newton’s second
law (1a) combined with Newton’s gravitational law (1b)

~F = m ·~a = m ·~̈r (Sevrin, 2012, p. 132), (1a)

~Fg =G
mM
r3

12
~r12 (Sevrin, 2012, p. 103), (1b)

where G is Newton’s gravitational constant, M and m are the masses of the
two respective bodies and~r12 is the vector from particle 1 to particle 2. Unfor-
tunately, obtaining an analytic solution to this problem for general initial con-
ditions is only possible when N ≤ 2. Though analytic solutions exist for higher
values of N, these will only occur for certain symmetrical distributions. One
example is that of N particles of equal mass rotating in a plane. If these parti-
cles are distributed symmetrically on a circle and have velocities such that the
centripetal force equals the net gravitational force due to the other particles,
the system is in equilibrium and will remain so until disturbed (Carles, 2001,
p. 2).

These analytically solvable systems, called choreographies, are however of
little use when simulating astrophysical entities such as the Milky Way. There-
fore, a more general method is needed to solve the set of N(N −1) equations
that are obtained by writing an explicit expression for the acceleration of each

3



4 D I R E C T G R AV I T A T I O N A L N - B O D Y S I M U L A T I O N S

of the N particles, due to their gravitational interaction (1b) with the other
N −1 particles

~ai =−
N∑

j=1, j 6=i

GM j

r3
i j
~r i j . (2)

Since N(N − 1) ≈ N2 for large values of N, the computational cost of direct
N-body algorithms increases as O (N2). Throughout this document, the system
of particles will be analysed in a classical way, neglecting relativistic effects.
Using this approximation can be justified, since the relativistic deviation will
generally be smaller than the error caused by the algorithms used to update
the phase space coordinates (Adamek et al., 2013, p. 1).

1.2.1 Euler algorithm

When using a variable time step ∆t, there are various ways to numerically in-
tegrate the equations of motion. The Forward-Euler algorithm calculates the
force on a particle at a certain time t, and assumes this force is constant
during the time-interval [t, t+∆t] (Dehnen and Read, 2011, p. 4). A similar
though more complicated algorithm called Backward-Euler can be used as well,
which uses the assumption that the force at time t is constant during the time-
interval [t−∆t, t]. The Forward-Euler method is in fact the first order Taylor
expansion in t. Therefore, if~r(t) and ~̇r(t) are known, the new phase space coor-
dinates become

~r(t+∆t)=~r(t)+∆t ·~̇r(t) , (3a)

~̇r(t+∆t)=~̇r(t)+∆t ·~̈r(t) . (3b)

This algorithm is accordingly called a first order algorithm, implying that
the error per time step is proportional to (∆t)2. Though it’s not a general rule,
higher order algorithms will typically provide better accuracy at a higher com-
putational cost. Since the Euler algorithm has proved to be too inaccurate for
most applications, higher order algorithms are often required.

1.2.2 Leapfrog algorithm

One way to improve upon the Euler algorithm, is to combine Forward- and
Backward-Euler into a Leapfrog algorithm. The force on a particle is still as-
sumed to be constant during a time interval [t− ∆t

2 , t+ ∆t
2 ], but its value is

evaluated at time t, midway of the interval. Denoting a quantity a(t = t0+ i ·∆t)
as ai, the new phase space coordinates thus become

~r i+1 =~r i +∆t ·~̇r i+1/2 (Y oung, 2014, p. 2), (4a)

~̇r i+1/2 =~̇r i−1/2 +∆t ·~̈r i (Y oung, 2014, p. 2). (4b)

Figure 1: Visualisation of the structure of the Leapfrog algorithm (Quinn et al., 1997).

When starting with initial values~r0 and ~̇r1/2 (which can be obtained by use
of equation (45), see Section A.1), the coordinates can be advanced by updating



1.2 D I R E C T N - B O D Y A L G O R I T H M S 5

the position and calculating the updated force at integer times. Advancing t
by ∆t

2 and updating the velocity then closes the scheme. Another second order
algorithm can be obtained be rewriting (4a) and (4b) as

~r i+1 =~r i +∆t ·~̇r i + (∆t)2

2
~̈r i , (5a)

~̇r i+1/2 =~̇r i + ∆t
2
~̈r i . (5b)

Velocities are now updates twice over ∆t
2 each time the position is updated over

∆t. This derivation and the time-reversibility of the Leapfrog algorithm is de-
rived in Section A.1. Equations (5a) and (5b) can be seen as a second order
Taylor expansion of ~r. Accordingly, it is a second order algorithm and errors
are proportional to (∆t)3.

Though it is possible to keep on constructing higher order algorithms (that
make extra corrections to the equations of motion), the supplementary compu-
tational cost generally outweighs the improved accuracy. One way to increase
accuracy at a low computational cost, is by constructing a fourth order Hermite
algorithm (see Section A.2). A nice feature of this solution is that higher order
derivatives of~r can be written as a function of lower order derivatives of~r. This
means that the computational cost of the algorithm will remain O (N2), as was
shown by Nitadori and Makino (2008), who were able to devise an eighth order
scheme where the number of force calculations increased by about a factor two
compared to a fourth order scheme.





2A P P R O X I M A T I O N S C H E M E S

An obvious way to calculate the orbit of a particle, would be to use the Particle-
Particle (PP) method. This can be done by using one of the algorithms from
Chapter 1 and applying it to each particle individually. During a time step, the
movement of each particle is then calculated by computing its pairwise inter-
action with the other N −1 particles. This brute force method is however not
a viable option for simulations with N > 1000 particles, because the computa-
tional cost increases as O (N2) (Sellwood, 1987, p. 162).

Computing the gravitational force at each particles position is generally the
most time consuming component of N-body codes and therefore central to all
schemes updating the phase space coordinates. It is thus worthwhile to produce
an efficient algorithm that is accurate for large N. A fundamental limitation
to the accuracy of these algorithms is set by the number of particles that can
be efficiently used. This means the number of particles for which a simulation
will finish within a reasonable amount of time.

2.1 T R E E A L G O R I T H M S

Consider a particle p that is prone to forces from a group of particles that are
inside a sphere of radius r. If the distance between p and the centre of the
sphere is much larger than r, the force on p can be approximated by that of
the centre of mass of the particles inside the sphere. This approximation would
moreover be exact if the particles were distributed spherically symmetrical, as
shown by Newton’s first theorem (Binney and Tremaine, 2011, p. 60). Though
perfect spherical symmetry does not occur in simulations, using this technique
allows one to maintain a roughly constant force error, while computing forces
that are both close and long range (Springel, 2005, p. 7).

2.1.1 Cell-opening criterion

To determine whether a group of particles located in a cubic cell of size l is
at ample distance to be approximated by their centre of mass, tree algorithms
make use of cell-opening criteria. A simple but powerful criterion was devised
by Barnes

d > l
θ
+δ (Dubinski, 1996, p. 4), (6)

where d is the distance from the particle to the centre of a distant cell and
δ is the distance between the centre of the cell and the centre of mass of the
elements in it. Choosing a value for θ then determines the accuracy of the ap-
proximation. The smaller θ, the less likely that the cell is at a large enough
distance and thus the better the approximation. The factor δ prevents aberra-
tions when the centre of mass lies near the edge of the cell (Dubinski, 1996,
p. 4).

7



8 A P P R O X I M A T I O N S C H E M E S

Another example of cell-opening criteria are those used in the N-body code
GADGET-2. For a cubic cell of size l containing mass M at distance r, the
criteria consists of the two inequalities

GM
r2

(
l
r

)2
≤α · |~a| (Springel, 2005, p. 6), (7a)

|~rk −~ck| ≤ 0.6 · l (Springel, 2005, p. 7). (7b)

Here, α determines the accuracy and ~a is the total acceleration of the particle
during the last time step. The first criterion therefore requires cells that exert
a large fraction of the total force on the particle, to be at an ample distance.
In equation (7b), ~c is the centre of the cell, ~r the position of the particle and
k ∈ {x, y, z}. The second criterion thus requires the particle to lie outside the
cell, preventing large errors if a particle were to fall inside the cell (Springel,
2005, p. 7).

2.1.2 Barnes-Hut method

To group particles together, the Barnes-Hut algorithm uses an octree. An oc-
tree can be built by creating a cube that surrounds all the particles. If more
than one particle lies inside the cube, it splits into eight new equal sized cubes
that lie inside the first cube. Each new cube thus has a side half of the side of
the first cube. This procedure can be applied recursively until each particle lies
inside a separate box. The largest cube is then called the root, while the cubes
containing one particle are called leaves (Barnes and Hut, 1986, p.447).

The second step in the Barnes-Hut method is to calculate the centre of mass
and total mass of all the non-empty cubes at each level of the tree. This is done
from leaves to root to reduce computations. Finally, the force on each particle
can then be determined by traversing the tree starting from the root. Each
cube is broken down into subgroups unless the cube is a leaf or satisfies the
cell-opening criterion. In that case, the centre of mass of the cube is used to
determine the force (Barnes and Hut, 1986, p. 447).

During the next time step, these three steps have to be repeated and the
tree has to be rebuilt from scratch. Nevertheless, the algorithm increases only
as O (Nlog(N)) and is therefore a huge improvement over the PP method (Sell-
wood, 1987, p. 163). One of the drawbacks from this method is that the cubes
are positioned symmetrically and are therefore often not centred around large
concentrations of particles. In addition, the forces two particles exert on one
another do not have to be equal and opposite, implying that momentum is not
strictly conserved (Sellwood, 1987, p. 179). An example of more complicated
tree algorithm that tackles these issues is discussed in Section B.1.

2.2 PA R T I C L E M E S H A L G O R I T H M S

2.2.1 Poisson’s equation for gravity

Although tree algorithms are a very effective way of reducing computations,
they are often not economical enough since their run time increases as O (Nlog(N)).
Computations can be sped up by introducing a grid. A Cartesian grid for exam-
ple, is a collection of adjacent points that are separated by a constant distance
d, constructing cubes/cells of side d. Though other distributions such as spheri-
cal polar grids can be used, the density of grid points is then no longer constant.
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While symmetric distributions such as single galaxies might benefit from this
(by choosing a grid that reflects the same symmetry as the galaxy), the non
constant density of grid points will introduce a bias in simulations where such
symmetry is not present. From now on, the grid will be assumed to be Carte-
sian, since the aim of this dissertation is to study galactic interactions (Sell-
wood, 1987, p. 176).

To deal with regions that have a relatively high density of particles, an adap-
tive mesh can be employed. Grid cells that lie in dense regions will then split
into eight new cubic cells, that lie inside the original cell. This method can be
applied recursively until each grid cell contains no more than a given number
of particles (Springel, 2005, p. 1106).

When using grid algorithms, forces are no longer calculated at each point
where a particle resides, but only at grid points. This Particle-Mesh (PM) method
is therefore only meaningful when using considerably fewer grid points than
there are particles. Downsides of using a grid are that the spatial resolution
of a simulation is limited to approximately the distance between grid points
and that the force on particles that go outside the grid can no longer be com-
puted (Sellwood, 1987, p. 165). This last issue can be resolved in cosmological
simulations, which often employ periodic boundary conditions. If a particle’s
coordinate ~r i exceeds the edge of the grid, it is set equal to −~r i. The particle
will thus leave the grid on one side and re-enter it on the other. Using this ap-
proximation can be justified if the length of the grid corresponds to a distance
of the order of 100 M pc, because the Universe is homogeneous and isotropic at
this scale (Craps and Waelkens, 2013, p. 8).

The potential Φ at each grid point~r can be determined by rewriting equation
(1b) for a continuous mass distribution. The force ~g acting on a particle of unit
mass is then

~g(~r)=−G
∫
ρ(~s)

~r−~s
|~r−~s|3 d3~s , (8)

where the integral is carried out over all space and ρ denotes the mass density.
Using the identity (9a), equation (8) can be rewritten as Gauss’s law for gravity
(9b)

~∇·
(
~r
r3

)
= 4πδ(~r) (Gri f f iths, 1998, p. 50), (9a)

~∇·~g(~r)=−4πGρ(~r) (Rodriguezet al., 2014, p. 3). (9b)

Since gravity is a central, and therefore conservative, force it is possible to
find a potential Φ related to ~g by equation (10a). Equation (9b) can thus be
rewritten as Poisson’s equation for gravity (10b)

~g =−~∇Φ (Sevrin, 2012, p. 125), (10a)

∇2Φ= 4πGρ (Rodriguezet al., 2014, p. 3). (10b)

2.2.2 Allocating mass to grid cells

When using a grid, an approximation of the mass density can be obtained by
allocating the mass of each particle to one or more grid cells. The mass density
in grid cell p then becomes

ρp = 1
d3

n∑
i=1

mi ·Wp(~r i) , (11)
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where the summation is over all particles~r i with corresponding masses mi, d
is the side of the grid cells and Wp(~r i) is the percentage of mass of particle i
allocated to grid cell p.

The easiest way of distributing the mass of particles over all grid cells is by
using the Nearest Grid Point (NGP) technique. The mass of grid cell p then be-
comes the total mass of all particles that lie inside that grid cell. This method
can be seen as an interpolation of zeroth order.

An interpolation of first order is the Cloud-In-Cell (CIC) method. This tech-
nique distributes the mass of a particle over the eight nearest grid cells. The
amount of mass allocated to a grid cell is determined by calculating the over-
lapping volume V between a cube of side d centred around the particle and
the grid cell. If the particle has mass m, the grid cell is allocated a fraction V

d3

of that mass (Springel, 2014, p. 22). These methods of allocating mass to grid
points can be extended to higher orders (see Section B.2).

2.2.3 Determining the potential in grid points

To obtain the potential on grid points, equation (10b) has to be solved using the
discrete density function ρ obtained in Section 2.2.2. An evident way to solve
(10b) in the one dimensional case, would be to approximate the derivative by(

∂2Φ

∂x2

)
i
≈ Φi+1 −2Φi +Φi−1

d2 , (12)

where d equals the grid spacing and i runs over all N grid points. Equation
(12) can however not be applied to points that lie on the edge of the grid, since
either Φi+1 or Φi−1 will not exist. For galactic simulations in which all the
mass lies near the centre of the grid, the potential at those points can then
be approximated as GM

r . Substituting equation (12) into (10b) results in a sys-
tem of N linear equations with N unknowns (Φi). This system can be solved
in O (N3) and is therefore too computationally expensive for simulations with
large amounts of particles (Springel, 2014, p. 36).

Fortunately, it is possible to compute Φ in O (Nlog(N)) time by using the
Fourier transform. Consider the case of a continuous density function ρ in a
box of size d that has periodic boundary conditions. Writing both ρ an Φ as a
Fourier series and substituting this into equations (10b) yields

∇2

(∑
~k

Φ~k ei~k·~x
)
= 4πG

(∑
~k

ρ~k ei~k·~x
)

, (13)

where ~k ∈ 2π
d (n1,n2,n3) and ni ∈ Z. Carrying out the Laplacian and using the

orthogonality of the different modes then gives the coefficients Φk and thus the
total density Φ by

Φ~k =−4πG
~k2

ρ~k (Springel, 2014, p. 30). (14)

These techniques can be extended to the case of a three dimensional grid with
N3 grid points. The coefficients of the Fourier transform of ρ are then obtained
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be replacing equation (15a) by (15b), where the integral over a box V of size L3

is converted into a discrete sum over all grid points ~p

ρ~k = 1
L3

∫
V
ρ(~x)e−i~k·~xd3~x (Springel, 2014, p. 29), (15a)

ρ~k = 1
N3

∑
~p
ρ~p e−i~k·~x~p (Springel, 2014, p. 30). (15b)

Due to this discretisation, the possible values of ni that determine ~k are now
restricted to

(−N
2 , ...,−1,0,1, ..., N

2 −1
)
. Furthermore, the requirement that Φ

has to be real implies that ρ~k = ρ∗−~k. This correlation between between the
coefficients of the Fourier series reduces the number of computations necessary
by a factor two. For a one dimensional grid with N = 2m grid points, this same
’trick’ can be applied m times and thus accounts for the speed of grid algorithms
(Bodenheimer et al., 2006, p. 101).

2.2.4 Interpolating accelerations

Once the gravitational potential has been determined on the grid points. The
next step is to determine the acceleration ~ai, j,k a particle of unit mass lying
on grid point (i, j,k) would experience. This information can then be used to
interpolate the acceleration on a particle that lies in between grid points.

For each grid point, ~ai, j,k can be determined by explicitly calculating the
right side of equation (10a). Since Φ is now a discrete function, the acceleration
at (i, j,k) in the x direction can be approximated by finite differencing

~ax
i, j,k =−Φi+1, j,k −Φi−1, j,k

2d
, (16)

where d is the grid spacing and the error is of order O (d2) (Fornberg, 1988,
p. 702). Depending on the order of approximation used to allocate mass to grid
points and the overall accuracy of the algorithm, it might be feasible to use
approximations of higher order. These higher order algorithms are discussed
in Section B.3. Naturally, the acceleration in the y and z direction can be cal-
culated analogously by varying respectively the second and third index ofΦi, j,k.

The force on each individual particle can now be interpolated by the acceler-
ations of the surrounding grid points. A particle with mass m located at~x then
experiences a total force

~F(~x)= m
∑
p
~a~pWp(~r i), (17)

where the summation runs over all grid points p and Wp is the same function
as in equation (11). Though it is possible to replace Wp by a different function,
this is not advisable. Using the same function to allocate mass to grid points
as to interpolate the forces on individual masses from those grid points results
in vanishing self-forces. This means that a particle cannot accelerate by inter-
acting with itself. Furthermore, the forces two particles exert on each other are
equal in magnitude and opposite in direction (Springel, 2014, p. 26). A proof of
these two claims is provided in Section B.4.

2.3 A D D I T I O N A L S C H E M E S

N-Body codes used to simulate galaxies are often neither purely based on the
PP, tree nor grid technique, but a combination of those schemes. Two specific
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examples are the Particle-Particle/Particle-Mesh (P3M) and Tree-code Particle-
Mesh (TPM) method.

The P3M uses the PM method to calculate the long-range force, which is de-
fined as the force due to particles at a distance larger than re. This value re is
typically chosen to be two or three times the size of a grid cell (Yoshikawa and
Fukushige, 2005, p. 4). The short range force due to particles closer than re
is then respectively calculated by use of the PP method. For systems in which
situations occur where particles are highly clustered together, the P3M method
is not a viable option. The calculation of the short range force then becomes too
computationally expensive, leaving the TPM method as the preferred alterna-
tive (Bagla, 2002, p. 2).

When using the P3M method, the first step is to apply the PM method. For
an arbitrary particle p, this results in a force ~FPM . The total force ~Ftot on that
particle then becomes

~Ftot = ~FPM +
k∑

i=1

~Fi,sr −~Fi,PM,sr , (18)

where the summation runs over all particles closer than re and ~Fi,sr is the force
obtained by the PP method for those particles. The contribution of those parti-
cles to ~FPM is then subtracted by ~Fi,PM,sr. Since the PM method treats particles
as a mass cloud, the functional form of ~Fi,PM,sr will depend on the choice of Wp
(defined in Section 2.2.2) used when applying the PM method (Yoshikawa and
Fukushige, 2005, p. 5). A computationally less expensive technique is to calcu-
late ~Fi,sr by use of a tree algorithm instead of the PP method.

The TPM method is similar to the P3M method, but only separates forces
in regions where the particle density is higher than a given threshold. Inside
those regions, long-range forces are computed by the PM method and short-
range forces by a tree algorithm. Outside those regions, all forces are computed
using the PM method (Yoshikawa and Fukushige, 2005, p. 7).
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3.1 T I M E S T E P P I N G L E A P F R O G

When using the PP or tree method, a logical choice would be to use a constant
time step to advance the coordinates of all particles. Though this is by far the
least complicated option, advanced N-body codes typically use time steps that
can vary from particle to particle. Consider for example the simulation of a
galactic disk. While a sufficiently small time step is needed to simulate inter-
actions between close by particles at the centre, the force between a particle at
the centre and the edge will vary significantly slower. Computations can thus
be sped up by using different time steps, depending on the rate at which the
force between two particles changes (Sellwood, 1987, p. 180).

One way of realizing such a system is by dividing the simulation into mul-
tiple zones depending on the density of particles. Consider for example the
Leapfrog algorithm in the PP-method. Particles in the zone corresponding to
the lowest density are then advanced by a time step ∆t, while particles in
other zones are advanced multiple times with time step ∆t

n , where n ∈ N in-
creases with density. In dense regions where the time step is smaller than ∆t,
the computation of the force on a particle requires the position of the particles
in less dense regions at times between t and ∆t. These positions can be approxi-
mated by interpolating the particles position between t and ∆t (Sellwood, 1987,
p. 180).

Apart from the ease with which a variable time step can be introduced, the
Leapfrog algorithm also requires considerably fewer force computations than
higher order algorithms. Its most important feature is however that it’s a sym-
plectic integrator, meaning it offers the exact solution to a discrete Hamilto-
nian. This implies that for a time-independent Hamiltonian, the Leapfrog inte-
grator will conserve the total energy. In axisymmetric systems it also preserves
angular momentum. Consider for example figure 2, in which the position of
a particle was advanced over 16 Kepler orbits (e = 0.5) using a Leapfrog al-
gorithm (squares) and fourth order Runge-Kutta algorithm (crosses) with the
same constant time step. Figure 2 shows the radial velocity of the particle vr
versus radius r. Even though the Runge-Kutta algorithm required four times
more force calculations, the Leapfrog algorithm clearly better approximates the
exact solution (solid line) (Quinn et al., 1997, p. 2).

Fortunately, it is possible to construct multiple time step symplectic inte-
grators that preserve important quantities such as total energy and are time
reversible (Duncan et al., 1998, p. 2077). An example of such an integrator is
used in GADGET-2, where time steps are chosen to be ∆tmax

2n with n ∈ N and
∆tmax a constant determining the maximum time step. The time step used for
particle p is less than or equal to

∆tgrav = min

(
∆tmax,

√
2ηε
|~ap|

)
, (19)

13
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Figure 2: Evolution of the radial distance r and radial velocity vr of a particle over 16
Kepler orbits (e = 0.5). Due to its symplectic nature, the second order Leapfrog
algorithm (squares) better approximates the exact solution (solid line) than a
fourth order Runge-Kutta algorithm (crosses) (Quinn et al., 1997, p. 3).

where η is a constant determining the accuracy, ε the gravitational softening
and ~ap the particle’s acceleration. To prevent infinitely small steps, a value
∆tmin can be set below which ∆tgrav cannot decrease. Furthermore, a particle
is allowed to increase its time step only if it synchronizes with the time step
hierarchy. When combining a tree and grid scheme, the code uses the above
procedure for time stepping the tree and the constant time step ∆tmax for the
grid (Springel, 2005, p. 1116).

3.2 G R AV I T A T I O N A L S O F T E N I N G

A drawback of simulating large systems, such as the Milky Way, is that the
number of particles used in the simulation is much smaller than the actual
number of particles in the system. As a results, the simulations effected in
Chapter 5 used particles that have a mass that is six orders of magnitude larger
than a solar mass. Representing stars, gas or dark matter as such heavy point
like particles allows for unrealistic close encounters causing strong deflections
(Sellwood, 1987, p. 156). One way to solve this problem is by replacing the
Newtonian potential around a particle of mass M by

Φ(r)=−G
M(

r2 +ε2
)1/2 (Sellwood, 1987, p. 156). (20)

This softened potential correspond to a softened force with corresponding accel-
eration

~a =−G
M(

r2 +ε2
)3/2~r . (21)

Depending on the distribution, the optimal value of ε is typically 1.5 to 2
times smaller than the average distance between particles in the most dens
region (see Appendix C for the determination of ε). Similar to the CIC method,
replacing the real by the softened potential can be regarded as replacing a point
mass by a finite mass ’cloud’. The shape of this mass distribution can be calcu-
lated by applying Poisson’s equation for gravity (10b) to the softened potential
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and yields a Plummer sphere mass distribution (Rodionov and Sotnikova, 2005,
p. 3), which contains 85% of the mass inside 3ε

ρ(r)= 3M
4π

ε2(
r2 +ε2

)5/2 . (22)

Softened forces are thus used in simulations that make use of the PP or tree
method and replace the unrealistic heavy point masses by a continuous mass
distribution. When using a grid, the interaction of two particles less than a few
grid spacings apart (depending on the form of Wp in Section 2.2.2) is suppressed
due to the nature of the grid. Introducing softened potentials is therefore not
necessary for grid algorithms (Sellwood, 1987, p. 156).

3.3 V E R I F Y I N G R E S U LT S

One tricky question that remains unanswered is how the end result of a simu-
lation holds up against what would have happened in real life. A steady check
is to compute quantities that should be conserved, such as total energy and
(angular) momentum, and analyze their time dependance. Even when using a
symplectic integrator, these tests might fail due to an unfounded choice of vari-
ables such as the time step or softening length (Hayes, 1995, p. 2).

A stronger check is to set up a simulation in which starting from the initial
conditions, the orbits of the particles can be solved analytically. For such a sim-
ulation, the dependency of the result on numerical parameters can be checked
by varying the total number of particles, grid size and time step parameters.
Time reversibility can be another steady check, especially when it’s not a for-
mal property of the integrator. A more demanding but reliable verification is to
use different codes to propagate particles starting from the same initial condi-
tions (Sellwood, 1987, p. 183).

Errors induced by the use of discrete time steps, values of N that are typ-
ically several orders of magnitude smaller than the number of bodies in the
system and computers producing round off errors, ensure the results of simu-
lations will never be exact. These errors will be magnified exponentially and
thus ensure the chaotic nature of N-body simulations. Obtaining the exact po-
sition or velocity of particles is however not the goal in simulations where N is
large. It seems that despite these ’statistical’ fluctuations, N-body codes have
become reliable enough to model the time evolution of the overall distribution
of a system of particles (Hayes, 1995, p. 1).





Part II

C O - R O T A T I N G D WA R F S A R O U N D M 3 1

This section aims to provide a plausible explanation for the thin
plane of co-rotating dwarfs around the Andromeda galaxy. A gen-
eral code that produces the initial conditions of disk galaxies, con-
sisting of a halo, bulge and stellar and gaseous disk in equilibrium,
is devised. These model galaxies are then used to simulate a fly-
by encounter between Andromeda, M32 and M32’s subhaloes. The
resulting distribution is used to quantify the likelihood that the
dispersal of M32’s subhaloes is the origin of the co-rotating plane
of dwarfs.





4D WA R F G A L A X Y P L A N E S

4.1 O B S E R V E D S T R U C T U R E O F D WA R F G A L A X I E S

The Local Group contains two major galaxies with total masses (dark matter
and baryons) M > 1012M¯: the Milky Way (MW) and Andromeda (M31). Both
galaxies are orbited by a number of dwarf galaxies (McConnachie, 2012), such
as: Fornax, Ursa Minor and Draco for the MW ; And I, And III and NGC 147
for M31. They are also host to a few larger satellite galaxies, such as the Magel-
lanic Clouds (MCs) for the MW and M32 and M33 (also known as Triangulum)
for M31. The exact number of dwarfs that are part of the Local Group is still un-
certain, but keeps increasing with the detection of faint and ultra faint galaxies
(Koposov et al., 2015). Many of these low luminosity galaxies orbiting the MW
or M31 are dwarf spheroidal (dSph) galaxies. Recent observations have shown
that the distribution of dSph galaxies is highly non-isotropic and exhibits a
planar structure for both the MW and M31 (Pawlowski et al., 2013, p. 1929).
Though farther away, the spatial distribution of satellites around M31 is easier
to observe, since only a small region of the sky must be surveyed. It is for this
reason that the rest of this chapter and the simulations carried out in Chap-
ter 6 will focus on M31 and the system of dwarfs around it.

The Pan-Andromeda Archaeological Survey (PAndAS; McConnachie et al.
(2009)), which covered an area of roughly 400 square degrees (1% of the sky’s
surface), was carried out to detect stellar objects at a projected distance of up to
150 kpc from M31. Their observations showed that based on an extrapolated
flat number-density profile, there are 88±20 dSph satellites orbiting M31 in-
side a 300 kpc radius, from which only about one fourth has currently been
discovered. For dSph galaxies that were observed by PAndAS and lie farther
than 2.5 degrees from M31, the distance to those galaxies was measured with
the tip of the red giant branch method (Lee et al., 1993). These distances typ-
ically have an accuracy of 5% (±39kpc) and resulted in the 3D position of 27
dSph galaxies around M31.

Based on these observations, it was discovered that 15 out of the 27 dwarfs
are confined to an extremely thin, but radially extended disk that is moreover
rotationally supported. This feature is displayed in figure 3, where the red
circles indicate the galaxies belonging the the planar structure. Furthermore,
most of those 15 dwarfs lie on the same side of M31. A Monte Carlo analysis by
Ibata et al. (2013) showed that the probability of such an alignment occurring
at random is less than 0.13%. Additionally, 13 out of the 15 dwarfs share the
same sense of rotation. The root-mean-squared thickness of the planar struc-
ture belonging to those 13 dwarfs was found to be less than 14.1 kpc with 99%
confidence (Ibata et al., 2013).

19



20 D WA R F G A L A X Y P L A N E S

Figure 3: Distribution of dwarfs around M31. Red circles indicate dwarfs belonging to
the planar structure (Ibata et al., 2013). M31 and M32 are indicated respec-
tively by a black and yellow arrow.

Figure 4: Close-up of M31 as observed in the visual bandpass (Bers, 2014). M31 and
M32 are indicated respectively by a black and yellow arrow.
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4.2 C O S M O L O G I C A L S I M U L A T I O N S

A theory that has been well able to describe the current state and evolution
of our universe, is the ΛCDM model (Spergel et al., 2007). While Λ refers to
Einstein’s cosmological constant used to explain the accelerated expansion of
the universe, CDM is an acronym for cold dark matter. Based on this theory,
the structure observed in the universe today formed bottom-up, i.e. first small
scale structures formed which later merged into larger structures (Libeskind
et al., 2013).

To explain the observed distribution of satellite galaxies, it is necessary to
first discuss the structure that emerges from cosmological simulations. Un-
like galactic simulations, cosmological simulations are set in an expanding uni-
verse. Their initial conditions, which typically are chosen at z = 50 (long after
the "recombination" of electrons and protons and the last scattering surface
of the CMB), can be generated after understanding the initial distribution of
plasma, radiation and dark matter after the big bang. While the dark matter
could collapse, forming potential wells, the densities of the plasma and radia-
tion were initially oscillating, failing to collapse due to the radiation pressure
(Craps and Waelkens, 2013, p. 79). About 400.000 years (z ∼ 1000) after the
big bang, the radiation in the Universe had cooled down enough to allow the
"recombination" of nuclei and electrons. The distribution of over- and under-
densities of the plasma and radiation at that time have been well-modelled in
the analysis of the anisotropies of the cosmic background radiation, which was
measured with great accuracy (Planck Collaboration et al., 2014). As long as
|ρ−ρ̂
ρ̂

|¿ 1, where ρ is the density of the over/under dense region and ρ̂ the aver-
age density, ρ will evolve linearly as a function of time and the evolution of the
Universe can be modelled analytically. Once ρ(t) starts evolving non-linearly,
cosmological simulations are needed to describe the further evolution of our
Universe.

Cosmological simulations (Klypin et al., 1999; Moore et al., 1999) showed
the formation of dark matter haloes and revealed their internal substructure,
which are thus predictions of the ΛCDM model. This internal structure con-
sists of gravitationally bound substructures, called subhaloes. Subhaloes can
in turn have their own substructure. These subhaloes of subhaloes are accord-
ingly called sub-subhaloes of the main halo. The Aquarius Project (Springel
et al., 2008), being particle wise the largest of those simulations (using more
than 4 ·109 particles), was able to detect up to four generations of subhaloes
nested inside the main halo. The distribution of sub-subhaloes around a sub-
halo in the Aquarius project was found to be well described by the Einasto
profile

ρ(r)= c1 exp
{−2
α

[(
r
c2

)α
−1

]}
, (23)

where α= 0.678 and c1 and c2 are constants fitted to the host subhalo. A plot,
based on the Aquarius project, displaying the number of subhaloes per halo
as a function of mass is displayed by the black line in figure 5. The red, blue
and green lines meanwhile display this same relation for the number of sub-
subhaloes per subhalo for three different simulations.
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Figure 5: Number of sub-subhaloes N where the ratio of their mass (Msub) to their
host’s (M250) is larger than Msub

M250
. This is shown for sub-subhaloes around a

chosen subhalo (blue, red & green lines representing simulations of different
resolution, but with the same initial conditions). Only sub-subhaloes inside
the virial radius r250 of the subhalo are counted. The distance d between the
subhalo and host halo is given in each panel. The same relation is shown for
subhaloes with respect to the main halo (black line) (Springel et al., 2008).

4.3 T H E T O O B I G T O F A I L P R O B L E M

Subhaloes, having a larger mass density than their surroundings, should in
some cases be able to accrete enough gas to allow star formation. They are
therefore considered to be main origin of dSph galaxies. Based on ΛCDM sim-
ulations, the number of expected satellites is however more than one order of
magnitude higher than the number of dwarfs that has currently been observed
(Metz et al., 2009, p. 269). An important problem that remains to be solved is
therefore to relate the few currently observed dwarf galaxies to the substruc-
ture of the halo and explain why so many subhaloes remain dark.

The first out of two options is that the subhaloes exist, but have have not yet
been observed. Kinematic studies of ultra-faint galaxies (L < 105L¯) indicate
they are strongly dark matter dominated and could have mass-to-light ratios
of up to 105 −108, if they are hosted by the most massive subhaloes (Boylan-
Kolchin et al., 2011, p. 43). Even subhaloes in the MW that are completely dark
might be detectable due to their tidal influence on the HI disk. The question
then remains how observations could have missed the hundreds of satellites or
why the subhaloes did not produce any stars (Klypin et al., 1999, p. 90).

The second option is that theΛCDM simulations are incorrect in their predic-
tion of the number of subhaloes. While it is also possible that the subhaloes of
the MW are simply a statistical aberration, this seems unlikely since M31’s sys-
tem exhibits the same behaviour (Boylan-Kolchin et al., 2011, p. 43). Possible
solutions that could explain the inhibited formation of subhaloes are assum-
ing that dark matter particles are warm instead of cold or assuming that dark
matter particles can self annihilate (D’Onghia and Lake, 2008, p. 61).

4.3.1 Current theories

An evident way to associate the observed dSph galaxies to dark matter sub-
haloes, would be to postulate that only the most massive subhaloes are able
to form bright dwarf galaxies. This theory was tested by Walker et al. (2007),
by calculating the mass of dwarf galaxies from stellar kinematics using the
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methods outlined in Section 5.3.2. These masses turned out to be generally
much lower than those of the most massive subhaloes in the Aquarius Project
(Boylan-Kolchin et al., 2012, p. 1203). The planar distribution would further-
more be highly unlikely, since a more isotropic distribution would be expected.

A second theory is that dSph galaxies form around dark matter subhaloes,
which are then accreted along dark matter filaments (Libeskind et al., 2005,
p. 146). N-body simulations however showed that neither the planar structure
nor the coherent rotation were reproduced in accordance with observations
(Pawlowski et al., 2013, p. 1929).

D’Onghia and Lake (2008) provided a third theory, that assumes that the
distribution of dSph galaxies around the MW originates from a compact group
of dwarf galaxies falling onto the MW’s halo. One positive feature of this theory
is that it has the potential to explain both the planar structure and rotation
of the dSph galaxies around the MW. Their theory however requires that the
subhaloes of the MW’s halo stay dark, while groups of dwarfs falling into a host
halo light up. Although disputed by Metz et al. (2009), their claim is that almost
all subhaloes stay dark, because gas gets blown out of the subhaloes before they
can light up. A counterargument against this theory is that no compact groups
of dwarf galaxies have been observed in or around the Local Group, making
them quite rare. Assuming that the dwarfs around M31 originate from the
same phenomenon then requires two compact groups simultaneously falling
onto the MW and M31 (Metz et al., 2009, p. 273).

4.3.2 (Sub)-subhaloes as origin

A subtle modification of the galaxy group theory was proposed by Dr. Garry
Angus. Consider one of the most massive subhaloes of M31 (Msub ≈ 0.01Mhalo,
see figure 5) located at the edge of the halo (d ≈ 450 kpc). The Aquarius Project
showed that this subhalo should have multiple sub-subhaloes. While the masses
of the largest subhaloes are in accordance with the mass of M32 and the SMC,
the masses of the sub-subhaloes (M < 10−5Mhalo) are likewise comparable to
that of the other dSph galaxies. The theory therefore states that the planar
structure around M31 and the MW originated from sub-subhaloes nested in-
side one subhalo (corresponding to M32 or the SMC), which are the counter-
parts of the observed dwarf galaxies.

From redshift 20 to 10, the first stars in the MW formed. Due to the UV-
radiation emitted by the massive OB-stars, the gas inside a sphere centred
around the MW, called the Strömgren sphere, became ionized and prevented
the formation of stars. Outside the Strömgren sphere molecular gas can exist,
allowing the formation of stars only at an ample distance from the MW’s cen-
tre. This period in the evolution of the Universe is called re-ionization. The
potential to study re-ionization has been greatly accelerated due to the devel-
opment of LOFAR (Low-Frequency Array), which the VUB is heavily involved
with (Buitink et al., 2014).

Although the exact details depend on the particulars of the re-ionization pro-
cess, it is no stretch to assume that only a few subhaloes are massive enough
and at a large enough distance to allow star formation. This explains why most
subhaloes remain dark, while less massive sub-subhaloes are able to form stars.
Since this scenario is somewhat comparable to that of the compact group of
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dwarf galaxies, it reaps the same benefits. When the sub-subhaloes approach
the MW’s halo, tidal forces stretch the distribution in their plane of motion,
while compressing it in the direction perpendicular to the plane. The coherent
rotation, planar structure and presence in a semi-circle thus emerge naturally
from N-body simulations, as is shown in Chapter 6.
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In order to recreate Andromeda’s plane of dwarfs by use of N-body simula-
tions, two main components are needed. The first is an N-body code powerful
enough to deal with simulations containing on the order of one million par-
ticles. All N-body simulations in this project were performed by use of the
cosmological code GADGET-2. The code was set up to use a tree algorithm
to update the phase space coordinates of the dark matter and stellar compo-
nent, and smoothed particle hydrodynamics (SPH) for the gas particles. Since
its name is an acronym for GAlaxies with Dark matter and Gas intEracT,
GADGET-2 is an ideal tool for simulating galactic interactions. It can run
on all supercomputers as well as on desktop PCs and is freely available at
http://www.mpa-garching.mpg.de/gadget/.

The second component is an input file for GADGET-2, containing the ini-
tial conditions of the simulation. N-body simulations adhere to the old addage,
“garbage in, garbage out”, thus the requirement for high quality initial condi-
tions is absolute. To generate the position, velocity, mass and temperature (only
for gas) for each particle, a combination of extra codes is needed. These codes
were written in FORTRAN 90, due to its numerical speed and easily created
binary files compatible with GADGET-2. This chapter discusses the model used
to create a four component disk galaxy, comprising a dark matter halo, stellar
bulge and both a stellar and gaseous disk.

5.1 U S E F U L Q UA N T I T I E S

In the course of sampling the velocities of particles, it is often necessary to know
the total enclosed mass M(r), the density ρ(r) or potential Φ(r) at a certain
radius. To speed up calculations, a grid with logarithmic spacing is constructed
ranging from r = 10−3pc to r = 107pc. Starting from an analytic expression of
the density, the total mass of a spherically symmetrical distribution can then
be obtained by integrating equation (24a), which yields (24b)

dM
dr

= 4πr2ρ(r) , (24a)

M(r)= 4π
∫
ρ(r)r2dr . (24b)

An array containing the value of the total enclosed mass at each grid point,
can then easily be constructed by numerically evaluating equation (24b) at
grid points. Using M(r), the potential of a spherically symmetrical distribution
then becomes

Φ(r)=
∫ ∞

r

−GM(r)
r2 dr . (25)

This quantity can thus be obtained by numerically integrating over all grid
points. The escape velocity vesc of a particle is then defined as the velocity for
which the kinetic energy equals the potential energy

vesc(r)=
√

|2 ·Φ(r)| . (26)

25
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5.2 G E N E R A T I N G A D A R K M A T T E R H A L O

Though its existence has not been conclusively proven, observations of kine-
matics in spiral galaxies suggest that most of the mass resides in a dark matter
halo. A spherically symmetric density profile that can be used to describe the
dark matter haloes formed in cosmological simulations is the Navarro, Frenk
and White (NFW) profile. Since the enclosed mass M(r) inside radius r of an
NFW-profile becomes infinite as r →∞, the density function ρ(r) is replaced by
an exponential cut-off at large radii and thus becomes

ρ(r)=


ρs
(r/rs)[1+r/rs]2 if r ≤ rvir

ρs
(r/rs)[1+r/rs]2

(
r

rvir

)ε
exp

(
rvir−r
rdecay

)
if r ≥ rvir

(27)

where rvir, rs and rdecay are respectively the virial radius, scale radius and
decay radius (Kazantzidis et al., 2004, p. 38). Here, rdecay is set equal to rvir,
which is a standard choice. To ensure continuity of the first derivative, ε (not to
be confused with the softening length) is set equal to

ε=−1+3(rvir/rs)
1+ rvir/rs

+1 . (28)

5.2.1 Sampling positions

The position of halo particles can then easily be sampled in spherical coordi-
nates (r,θ,φ). To obtain a spherically symmetrical halo, cos(θ) and φ are sam-
pled from a uniform distribution function (UDF) in the respective intervals
[−1,1] and [0,2π]. Calculating the enclosed mass corresponding to the density
of equation (27) over a logarithmically spaced grid of [10−3 pc,107 pc] is then
done by numerical integration for r ≥ rvir and by use of

M(r)= 4πρ0r3
s

[
ln

(
rs + r

rs

)
− r

rs + r

]
(29)

for r < rvir (Binney and Tremaine, 2011, p. 71). Creating an array that contains
M(r)

Mtotal
for all corresponding grid point then yields a numerical cumulative dis-

tribution function for the radius of a particle. A value of r can now be obtained
by sampling a number from a UDF between [0,1], finding the indices of the cu-
mulative distribution enclosing this value and finally, interpolating the value
of r from the grid. The random number thus corresponds to a shell of mass.
While all shell percentiles are equally likely, the shells are not evenly spaced
in radius. This method results in the correct number of particles in each shell,
as defined by the given mass distribution.

5.2.2 Sampling velocities

The velocities of the particles can be sampled by use of an energy distribution
function f (E), which is obtained as a solution to the collisionless Boltzmann
equation. While a more straightforward way would be to sample velocities us-
ing the velocity dispersion found from the Jeans equation, the assumption is
then made that the distribution of velocities is Gaussian. Since this is often
a poor approximation (Kazantzidis et al., 2004), velocities for the halo will be
sampled by determining f (E) and then applying the acceptance-rejection tech-
nique (Press, 1996). For a halo in equilibrium with isotropic velocities, the en-
ergy distribution function is

f (E)= 1p
8π2

[∫ 0

E

d2ρ

dΦ2
dΦp
Φ−E

]
, (30)
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whereΦ is the total potential and E is the total energy of the particle (Kazantzidis
et al., 2004, p. 38). Equation (30) can be calculated explicitly for the mass den-
sity profile of the halo (see Section D.1). Once a particle’s position has been
sampled, the distribution function gives us the probability of velocities. There-
fore, the particle’s velocity can be sampled.

As shown above, it is straightforward to sample a particle’s radius, which in
turn defines its local potential Φ(r) (equation (25)) and thus the local escape
velocity (equation (26)). The velocity of a particle is then sampled by setting vi
(i ∈ {x, y, z}) equal to the local escape velocity vesc, multiplied by a random num-
ber sampled from a UDF between [−1,1]. This set of velocities is temporarily
accepted if the total velocity v is smaller than the escape velocity. The energy
E = Φ(r)+ v2

2 corresponding to that velocity v defines the local value f (E) of
the energy distribution function, as shown in figure 6. In this plot, the minimal
value of E is set by Φ(r). This is the energy the particle would have if it was
stationary. Two other possible sampled velocities are shown, one with a high
velocity (blue circle) and one with a lower velocity (purple circle). The probabil-
ity of whether or not we accept these sampled velocities is given by the ratio of

f (E)
f (Φ(r)) . In practice, this means we accept the velocities if f (E)

f (Φ(r)) is larger than
a random number from a UDF in [0,1]. Lower velocities will thus be accepted
more often than high velocities, as can be seen from the figure.
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5.3 G E N E R A T I N G A S T E L L A R B U L G E

A second major component of disk galaxies is the bulge. This central concentra-
tion of stars will, like the halo, be modelled by a spherically symmetric distri-
bution function. When generating positions of particles in the bulge, the only
difference with respect to the halo resides in obtaining r from ρ(r). The density
profile used is

ρ(r)= M
2π

a
r

1
(r+a)3

, (31)
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where a is a scale length and M the total mass (Hernquist, 1990, p. 359). This
profile has been used for decades to fit the luminosity of bulges.

5.3.1 Sampling positions

Making use of equation (24b), the total mass inside radius r is

M(r)= M
r2

(r+a)2
(32a)

r = apy
1−py

; y= M(r)
M

(32b)

Equation (32b) is equivalent to (32a), but gives an explicit formula for r. The
radius of particles in the bulge can now be obtained by sampling y as a random
number from a UDF between [0,1].

5.3.2 Sampling velocities

Once the radius is determined, the particle velocities can be obtained by solving
the Jeans equation for a non-rotating spherically symmetric system

1
ρ

d
dr

(
ρv2

r

)
+2β

v2
r

r
=−dΦ

dr
, (33)

where β(r) = 1− v2
θ
/v2

r is the velocity anisotropy function and Φ is the total po-
tential (Hernquist, 1990, p. 359). Considering a system with isotropic velocities
(β = 0), the Jeans equation becomes (34a), which can then be solved for v2

r (r)
yielding (34b)

d
dr

(
ρv2

r

)
=−ρ(r)

dΦ
dr

(34a)

v2
r (r)= 1

ρ(r)

∫ ∞

r
ρ(r′)

dΦ
dr′

dr′ . (34b)

Since dΦ
dr is equal to the total gravitational force exerted on a particle of unit

mass, it can be written as the sum of contributions from the halo, bulge and
disks. Due to the spherical symmetry of both the halo and bulge, the gravita-
tional force they exert equals

dΦi

dr
=−GMi(r)

r2 . (35)

As a first order approximation, equation (35) can also be used to describe the
potential due to the disks. Calculating the exact form of dΦi

dr for the disks would
result in an expression that is no longer solely dependent on r, which in return
yields an anisotropic velocity dispersion.

Assuming we know the gravitational fields of the four mass components, the
integral in equation (34b) can be numerically evaluated and solved on a grid.
Values of v2

r (r) are then obtained by interpolation, from which the velocity com-
ponent of a particle vi (i ∈ {r,θ,φ}) can be sampled as a random number from a

standard Gaussian distribution times
√

v2
r .
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5.4 G E N E R A T I N G A S T E L L A R A N D G A S E O U S D I S K

5.4.1 Stellar disk

Observations have shown that the density profile of galactic disks can be well
approximated by the product of two exponential distributions. If the disk is
parallel to the xy-plane, the density profile equals

ρ(R, z)= M
4πh2z0

exp
(−R

h

)
exp

(−|z|
z0

)
, (36)

where M is the total disk mass, h and z0 are the radial scale length and vertical
scale height and R is the radius in the xy-plane (Hernquist, 1993, p. 389).

5.4.1.1 Sampling positions

The position of a particle can then be sampled in cylindrical coordinates (R,φ, z).
Due to the azimuthal symmetry of the plane, φ can be chosen from a UDF be-
tween [0,2π]. Integrating equation (36) over all φ, all R and from |z′| = 0 to
|z′| = z yields the cumulative mass distribution in the z direction (37a), which
can be solved for |z|

M(z)= 2π
∫ ∞

0
dR

∫ z

−z
Rρ(R, z′)dz′ = M

[
1−exp

(−|z|
z0

)]
(37a)

|z| = z0 ln
(

M
M−M(z)

)
. (37b)

Sampling M(z)
M from a UDF between [0,1] then generates a value of |z|, which

is set equal to either z or −z with equal probability. Obtaining the enclosed
mass distribution as a function of radius can be done similarly, by integrating
equation (36) over all φ, all z and from R = 0 to R = R′

M(R)= 2π
∫ ∞

−∞
dz

∫ R′=R

R′=0
R′ρ(R′, z)dR′

= M exp
[
1−exp

(
−R

h

)(
1+ R

h

)]
.

(38)

Integrating numerically over a grid of R then creates an array M(R)
M that cor-

responds to the cumulative distribution function of R. Values can then be sam-
pled in the usual way, by interpolating the R that corresponds to a random
number from a UDF in [0,1].

5.4.1.2 Sampling velocities

To sample the velocity of disk particles, a number of variables have to be cal-
culated, including both the angular frequency Ω (Binney and Tremaine, 2011,
p. 165) and the epicyclic frequency κ (Hernquist, 1993, p. 392). These quantities
can be derived from the total potential Φ as

Ω2(R)= 1
R

(
∂Φ

∂R

)
, (39a)

κ2(R)= 3
R
∂Φ

∂R
+ ∂2Φ

∂R2 . (39b)

Since Φ represents the total potential, ∂Φ
∂R and its derivative with respect to R

can be written as the sum of contributions from the halo, bulge and disks. Ex-
plicit expressions for these quantities are derived and presented in Section D.2.
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The vertical velocity dispersion v2
z of a disk with an exponential vertical dis-

tribution can be approximated (van der Kruit, 1988; Bottema, 1993) as

v2
z = 1.5πGz0Σ(R) , (40)

where Σ(R) is the total surface density at radius R. An expression for Σ(R) can
be obtained by integrating equation (36) over all z. The result of this integra-
tion can be written as

Σ(R)= exp
(−R

h

)
Σ0 . (41)

Observations suggest that v2
R is proportional to the disk’s surface density as

well and can thus be written as v2
R = αv2

z (Hernquist, 1993, p. 392). For disk
galaxies that have a flat rotation curve, the dimensionless constant α is equal
to 0.71 (Block et al., 2010, p. 155). What is left to calculate is the remaining
component of the velocity dispersion σ2

φ. Unlike in the R and z direction, the
average velocity in the azimuthal direction vφ is not equal to zero, because the
disk is rotating. Random velocities in the φ direction that are added on top of
the average rotation velocity therefore have to be sampled from a Gaussian
with dispersion σ2

φ, which can be determined from the epicyclic approximation

σ2
φ = v2

R
κ2

4Ω2 (Hernquist, 1993, p. 392). (42)

The only quantity that remains to be calculated is vφ, which can be obtained
from the second moment of the collisionless Boltzmann equation for an expo-
nential disk

vφ2 −R
∂Φtot

∂r
= v2

r

(
1− κ2

4Ω2 −2
R
h

)
(Hernquist, 1993, p. 392). (43)

Solving (43) for vφ trivially yields

vφ =
√

v2
r

(
1− κ2

4Ω2 −2
R
h

)
+R

∂Φtot

∂r
(44)

The particle velocities now becomes vR = av2
R , vφ = vφ+ bσ2

φ & vz = cv2
z , where

a, b & c are random numbers sampled from a standard normal distribution.

5.4.2 Gaseous disk

Observing ρ(z) of a gas disk is a difficult task, both due to the thinness of the
disk and the low angular resolution of standard radio telescopes compared to
optical telescopes. Modelling ρ(z) using an exponential profile as in equation
(36), appears to be a satisfactory approximation that is consistent with obser-
vations (Agertz et al., 2009, p. 296). For the radial direction, an exponential
distribution is assumed as per the stellar disk. This is chosen for simplicity,
since the true gas distributions of disk galaxies are highly irregular. Sampling
positions for particles in the gas disk can thus be done as per the stellar disk,
though parameters such as scale height might differ.

Unlike the stellar disk, particle forces other than gravity are this time mod-
elled using smoothed particle hydrodynamics. Since the interaction between
the gas particles damps any random velocity component, the velocity given to
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each particle no longer requires a random component and is set equal to the

circular velocity vc =
√

R ∂Φtot
∂R at z = 0. A graphical representation of the contri-

bution of each component to vc is given in figure 7. Though the circular velocity
is not independent of z, this approximation is justifiable due to the thinness of
the gas disk (Wang et al., 2010, p. 705). Each particle is now given an internal
energy equal to 3

2 v2
z (units km2

s2 , cf. with GADGET2 (Springel, 2014)), as defined
in equation (40).
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Figure 7: Dependency of the circular velocity vc on the radius R in the xy-plane. The
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points represent measurements of the total circular velocity from radio obser-
vations (Widrow and Dubinski, 2005).

5.5 V E R I F Y I N G T H E S Y S T E M ’ S S T A B I L I T Y

By generating initial conditions for a four component galaxy as described in the
previous sections, the stability of the model can be tested by advancing a sim-
ulation of M31 over 5 Gyr. Ideally, the density and energy of each component
should stay constant, since they are sampled to be in a state of equilibrium.
The various approximations used to create the initial conditions however in-
sure the existence of small instabilities, that are to be expected initially. When
advancing the simulation, these instabilities are expected to settle down and
turn into small fluctuations. The goal therefore is to generate a model for which
the density profiles remain as close as possible to the theoretical profiles from
which the components were sampled. To test if our model exhibits this kind of
behaviour, the evolution of the cumulative distribution function of each compo-
nent and total kinetic and potential energy were plotted as a function of time
in figure 8 and 9.

The simulation was carried out in isolation using 4.22 ·105 particles, where
each particle has equal mass. Variables such as the mass of each component
were chosen to be representative for the Andromeda galaxy. Figure 8 shows
that the total kinetic and potential energy undergo a change of around 6.6%
and −2.8% respectively, after which they start fluctuating around a central
value. Their ratio equals Ekin

Epot
= 0.484 initially and Ekin

Epot
= 0.500 at the end of
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the simulation. The system therefore converges to a state of virial equilibrium.
Furthermore, the evolution of the density of the halo, bulge and stellar disk
exhibits a small change after a period of 5 Gyr. The component exhibiting the
largest changes is the gaseous disk, which develops a higher central concentra-
tion and shows flaring for high R, as visible in figures 10 and 11.
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Figure 10: Initial distribution of the stellar disk (green dots), gaseous disk (red dots)
and bulge (white dots).

Figure 11: Distribution after 5 Gyr of the stellar disk (green dots), gaseous disk (red
dots) and bulge (white dots).
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Using the tools provided in Chapter 5, the interaction between M31 and M32
can now be simulated. The initial set-up of the simulation is based on the as-
sumption that the dark matter halo of M32 corresponds to one of the most
massive subhaloes of M31. dSph galaxies on the other hand, will be assumed
to have an initial set-up that corresponds to the distribution of the dark matter
sub-subhaloes around M32. Using current estimates for the variables describ-
ing M31 and M32 then allows the system to be simulated for different orbital
parameters.

Each simulation was carried out on the VUB’s HYDRA cluster using a to-
tal of 1.004.381 particles. The HYDRA cluster is a supercomputer comprising
∼ 1200 cores and is available to all VUB employees. Since this project required
the running of several similar simulations with modified parameters, the sim-
ulations used shared memory, thus multiple processors on a single node per
simulation.

6.1 I N I T I A L S E T- U P

Both M31 and M32 are set up as a four component galaxies that are initially
separated by a distance of 450 kpc. The parameters used to generate the galax-
ies are based on Banerjee and Jog (2008); Widrow and Dubinski (2005); Dier-
ickx et al. (2014) and are given in table 1.

Component Parameters M31 M32

ρs (M¯/pc3) 0.02 0.001328

Halo rs (kpc) 12.0 8.375

rvir = rdecay (kpc) 185 60.0

Bulge M (1010 M¯) 3.0 0.032

a (kpc) 1.2 0.25

M (1010 M¯) 8.0 0.032

Stellar disk h (kpc) 5.5 0.5

z0 (kpc) 0.6875 0.0625

M (1010 M¯) 0.8 0.0032

Gaseous disk h (kpc) 5.5 0.5

z0 (kpc) 0.15 0.15

Table 1: Variables describing M31 and M32

M31 was positioned at rest at the origin, with its disk parallel to the xy-
plane. It was then rotated around the y-axis over an angle of 50.5◦, so that
the orientation of the disk with respect to the plane of dwarf galaxies is con-
form with observations (Pawlowski et al., 2013, p. 10). M32 was placed at
(x = 450 kpc, y= 0 kpc, z = 0 kpc) with its disk parallel to the xy-plane and an
initial velocity v in the y direction. Ten simulations were carried out, in which

35
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the size of v correspondingly was {20,25,30,35,40,45,50,55,65,80} (km/s).

Centred on M32, a system of 20.000 particles was added to represent the
distribution of sub-subhaloes around M32. These particles were sampled using
equation (23) with c2 = 0.81 · rvir,M32, α= 0.678 and c1 determined by normal-
ization (Springel et al., 2008, p. 1696). Since their density function ρ(r) only
depends on the distance to the centre of M32, positions and velocities could be
sampled analogously to those of the bulge particles (described in Section 5.3).
To ensure the stability of this system, a simulation was carried out with only
M32 and the sub-subhalo particles. The evolution of the distribution of sub-
subhaloes after a period of 5 Gyr is plotted in figure 12 and indicates the system
is sampled close to equilibrium.
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Figure 12: Evolution of the distribution of sub-subhaloes around M32 over 5 Gyr.

6.2 A N A LY S I S

A total of 10 simulations were carried out, each with a different value for the
initial velocity v of M32. Since each value of v is lower than the velocity needed
to perform a circular orbit, M32 falls towards M31.

One of the toughest constraints on any model that aims to reproduce the pla-
nar distribution of the dSph galaxies, is that it must be as thin as the observed
distribution. To determine whether the simulations are able to reproduce this
feature, a Kolmogorov–Smirnov (KS) test was used to compare the cumulative
distribution of dwarfs in the z direction, with the simulated distribution of sub-
subhaloes. For the dwarf galaxies,~1z corresponds to the direction perpendicu-
lar to the plane that minimizes the root-mean-square of the z-coordinate of the
dwarfs. The sub-subhaloes on the other hand, are simulated in such a way that
their plane of motion corresponds to the xy-plane. Their projected positions, as
they would be observed from Earth, are then obtained by rotating the system
around the z-axis, so that M32 lies directly in front of M31.

Based on Ibata et al. (2013), the dwarf galaxies used in the KS test are: And I,
And III, And IX, And XI, And XII, And XIV, And XVI, And XVII, And XXV, And
XXVI, NGC 147 and NGC 185. While And XIII and And XXVII lie in the planar
subgroup as well, they do not belong to this sample since their velocity is incon-
sistent with the coherent rotation. They are therefore most likely galaxies of
the non-planar subgroup, that by chance happen to lie close to the plane of the
planar subgroup. Since observations covered an area out to a project distance
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of 150 kpc around M31, the cumulative distribution function of sub-subhaloes
only counts the sub-subhaloes that lie inside the corresponding region.

The statistic of merit of a KS test is found from the maximal difference be-
tween the two cumulative distribution functions. Minimizing this difference
optimizes the KS statistic. The simulations were therefore evaluated at the
point in the orbit when the KS statistic is minimal, typically at or right after
the closest approach of M32 around M31. The resulting values for each of the
10 simulations are shown in figure 13. For an initial velocity v = 35 km/s of
M32, the KS statistic reaches a minimal value of 0.082. The corresponding cu-
mulative distribution functions from which this value was derived are shown
in figure 14. A graphical representation of this simulation is given in figure 15,
16 and 17.
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Figure 13: Minimal value of the KS statistic as a function of the initial velocity of M32
or the impact parameter between M32 and M31.
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Figure 15: Initial distribution of the particles in the simulations. The galaxy on the
left (green and white dots) is M31. To its right lies the distribution of sub-
subhaloes (red dots), with at its centre M32 (moving upwards).

Figure 16: Distribution of sub-subhaloes (red dots) when the KS statistic is minimal.
M32 now lies to the left of M31 (green and white dots) and is moving down-
wards.
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Figure 17: Simulated position of sub-subhaloes when the KS statistic is minimal, pro-
jected onto the plane of the sky (red dots). M32 lies directly in front of M31
at (x = 0 kpc, y = 0 kpc). For comparison, the observed positions of dSph
galaxies belonging to the planar subgroup of M31 are plotted as well (green
circles).

6.3 C O N C L U S I O N

Simulations of the interaction between M32 and M31 have revealed that the
simulated distribution of sub-subhaloes around M32 strongly resembles the
observed positions of dSph galaxies belonging to the planar subgroup of M31.
Applying a KS test between the two distributions yielded a value for the KS
statistic of 0.082, which is much lower than the minimum value of 0.31 needed
to prove the distributions are different at a significance of 80%. The simula-
tions moreover recreated the coherent rotation and presence in a semi-circle as
well and are thus in accordance with observations.

While the masses of most dSph galaxies in the planar subgroup are in agree-
ment with the masses of the sub-subhaloes of M32, this is not the case for NGC
147 and NGC 185. A possible solution to this pickle is that they are subhaloes
of M31, that became gravitationally bound to M32 during its fall towards M31.
This is not an unprecedented scenario, since the LMC and SMC have become
bound as they orbited towards the MW. Furthermore, NGC 147 and NCG 185
are already a binary pair. More advanced simulations will however be needed
to model this kind of behaviour. This could be tackled by looking at the orbits
of subhaloes in high resolution cosmological simulations, such as ELVIS (Ex-
ploring the Local Volume in Simulations ; Garrison-Kimmel et al. (2014)). The
development of N-body codes that include extended gas physics (taking into ac-
count the effects of ionizing radiation, supernovae, ...) might moreover create
simulations that explain the lighting up of dark matter (sub-)subhaloes.

In conclusion, a first step has been made in testing the validity of a theory
that couples dark matter subhaloes of M32 to the planar subgroup of dwarf
galaxies around M31. Simulations of the spatial distribution of sub-subhaloes
have yielded a distribution that closely resembles the observed one. Further
research is however needed to test this theory on the distribution of dwarfs
around the MW and verify other aspects of the theory.
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AD I R E C T G R AV I T A T I O N A L N - B O D Y S I M U L A T I O N S

A.1 L E A P F R O G A L G O R I T H M

A.1.1 Equivalent notations

Subtracting equation (4a) from (5a), equation (45) is obtained

~̇r i+1/2 =~̇r i + ∆t
2
~̈r i. (45)

This relation holds true for it is a first order Taylor expansion of ~̇r and the
Leapfrog algorithm is second order in t for ~r. This shows that in the second
order expansion of~r, equation (4a) is equivalent to (5a). Subtracting equation
(4b) from (5b) analogously yields a first order Taylor expansion of ~̇r, implying
they are equivalent in second order of~r.

A.1.2 Time-reversibility of the equations

The proof for the time-reversibility of the Leapfrog algorithm is given by use of
equation (4a) and (4b). Time-reversibility implies that advancing~r i or ~̇r i by ∆t
and −∆t again yields~r i. The proof of this relation is given by

~r j =~r i+1 −~̇r i+1/2 ·∆t = (
~r i +~̇r i+1/2 ·∆t

)−~̇r i+1/2 ·∆t =~r i (46a)

~̇r j =~̇r i+1 −~̈r i+1/2 ·∆t = (
~̇r i +~̈r i+1/2 ·∆t

)−~̈r i+1/2 ·∆t =~̇r i (46b)

A.2 H E R M I T E A L G O R I T H M

A.2.1 Updating the phase space coordinates

The Hermite algorithm is a fourth order algorithm and thus uses higher order
derivatives of ~r (Dehnen and Read, 2011, p. 6). To maintain readability, the
variables velocity ~v = d~r

dt , acceleration ~a = d2~r
dt2 , jerk ~j = d3~r

dt3 , snap ~s = d4~r
dt4 and

crackle ~c = d5~r
dt5 are defined. Updating the phase space coordinates can be done

using

~r i+1 =~r i + ∆t
2

(~vi +~vi+1)+ (∆t)2

12
(~ai −~ai+1) , (47a)

~vi+1 =~vi + ∆t
2

(~ai +~ai+1)+ (∆t)2

12
(~j i −~j i+1) . (47b)

Both equation (47a) and (47b) are derived in Section A.2.2. The jerk present
in the updated velocity can be calculated by deriving equation (1b). Denoting
quantities ~xab as the value of ~x from particle b on a and ~xa as the total value
of~x on particle a, the jerk becomes

~jb =G
N∑

a=1,a 6=b
Ma

(
~vab

r3
ab

−3
(~rab ·~vab)~rab

r5
ab

)
(48)
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Due to the dependence of ~r i+1 and ~vi+1 on ~ai+1 and ~j i+1, it is impossible to
update the phase space coordinates using just equation (47a) and (47b). This
quandary can be averted by using a Predict-Evaluate-Correct (PEC) scheme.
The predicted value~rp and~vp are obtained by use of a Taylor expansion

~rp =~r i +∆t ·~vi + (∆t)2

2
~ai + (∆t)3

6
~j i , (49a)

~vp =~vi +∆t ·~ai + (∆t)2

2
~j i . (49b)

These values can then be used to obtain estimates of ~ai+1 and ~j i+1, which
in return can be inserted into equation (47b). Finally, the updated velocity and
and estimates ~ai+1 can be inserted into equation (47a) to obtain the corrected
value of~r i+1. This method can be justified by noting that the predicted value~rp
with error O (∆t4) inserted in (47a) produces an error O (∆t6) in~r i+1. Since the
Hermite algorithm is fourth order and thus has errors O (∆t5), the PEC scheme
is a valid approach. The error in ~vi+1 due the predicted values is likewise of
smaller order than that of the algorithm.

In an analogous way to the Leapfrog algorithm, it is easily seen that the
equations used to update the phase space coordinates are time-reversible. This
combined with their short form and the elimination of ~s, constitutes the main
reasons for writing the algorithm by use of equation (47a) and (47b).

A.2.2 Derivation

The derivation of equation (47a) and (47b) is based on Hut and Makino (2006)
and can be realized by use of a fifth order Taylor-expansion of~r in t

~r i+1 =~r i +~vi∆t+ ~ai

2
(∆t)2 +

~j i

6
(∆t)3 + ~si

24
(∆t)4 + ~ci

120
(∆t)5 (50a)

~vi+1 =~vi +~ai∆t+
~j i

2
(∆t)2 +~si

6
(∆t)3 + ~ci

24
(∆t)4 (50b)

~ai+1 =~ai +~j i∆t+~si

2
(∆t)2 +~ci

6
(50c)

~j i+1 =~j i +~si∆t+~ci

2
(∆t)2 . (50d)

By multiplying (49b) by ∆t and subtracting respectively 2 and 3 times equation
(50c), equation (50c) and (50d) can be solved for the snap and crackle

~si = 6(~ai+1 −~ai)(∆t)−2 −2(~j i+1 +2~j i)(∆t)−1 (51a)

~ci =−12(~ai+1 −~ai)(∆t)−3 +6(~j i+1 +2~j i)(∆t)−2 . (51b)

Inserting both equation (51a) and (51b) into (50a) and (50b) returns

~r i+1 =~r i +~vi∆t+
(

7
20
~ai + 3

20
~ai+1

)
(∆t)2 +

(
1
20
~j i − 1

30
~j i+1

)
(∆t)3 (52a)

~vi+1 =~vi + ∆t
2

(~ai +~ai+1)+ (∆t)2

12
(~j i −~j i+1) . (52b)

The validity of equation (47b) is thereby proven. The factor~vi in equation (52a)
can be written as 2(~vi/2+~vi/2). Replacing one of these factors with the expres-
sion obtained by solving equation (52b) for~vi gives

~r i+1 =~r i + 1
2

(~vi +~vi+1)∆t+ 1
10

(~ai −~ai+1)(∆t)2 + 1
120

(~j i +~j i+1)(∆t)3 . (53)
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By inserting respectively a second and first order Taylor-expansion of ~ai+1 and
~j i+1 into (53) (both these Taylor-expansion are conform with a fourth order
Taylor expansion of~r in t), the resulting formula (54) is recovered

~r i+1 =~r i + 1
2

(~vi +~vi+1)∆t− 1
12
~j i(∆t)3 − 1

24
~si(∆t)4 . (54)

This result proves the validity of equation (47b) for its equivalency can by
shown by writing ~ai+1 as a second order Taylor-expansion and noting that

1
12

(~ai −~ai+1)(∆t)2 = (∆t)2

12

(
~ai −

(
~ai +~j i∆t+ 1

2
~si(∆t)2

))
=− 1

12
~j i(∆t)3 − 1

24
~si(∆t)4 .

(55)





BA P P R O X I M A T I O N S C H E M E S

B.1 A P P E L’ S S C H E M E

Appel’s tree algorithm is analogous to that of Barnes-Hut, but uses a different
tree structure known as a k-d tree. One of the main differences between the two
algorithms, is that Appel’s scheme by design combines particles that are close
together into a cell. The k-d tree is built by creating a clump that surrounds
all particles. This clump is split into two subclumps, containing respectively
all particles with x coordinates smaller or larger than the median x coordinate.
These subclumps are then divided analogously using the y, and after that, the
z coordinate. This process is then repeated by iteration until subclumps con-
tain one particle (Appel, 1985, p. 99).

The construction of the tree only happens once per simulation. After each
time step, the tree is updated by adjustments known as grabs. During this
procedure, the algorithm finds the closest clump C′ to a certain clump C. If C
was previously clumped together with D, but C′ is closer to C than D, then
both C and C′ will be grouped together and clumped with D. A visualization of
this technique is given in figure 18 (Appel, 1985, p. 97).

Figure 18: Demonstration of the appel grabs procedure that is used to update the struc-
ture of a k-d tree (Appel, 1985, p. 97).

Even though a standard k-d tree might initially separate particles that are
close-by, after tree iterations the grab procedure has already resolved this issue
(Appel, 1985, p. 99). Though the tree doesn’t have to be rebuild at each time
step, Appel’s algorithm does require more force computations than the Barnes-
Hut algorithm. Forces two particles exert on each other are however equal and
opposite (Sellwood, 1987, p. 179).

B.2 A L L O C A T I N G M A S S T O G R I D C E L L S

And example of a second order interpolation algorithm is the triangular shaped
clouds (TSC) method. A graphical representation of TSC in one dimension is
given in figure 19, where the amount of mass allocated to grid cell xp is pro-
portional to the surface of S in that interval. The advantage of using a higher
order algorithm is obvious in that whereas the NGP method yields a discon-
tinuous density field (when a particle shifts from one grid cell to another), the
CIC method produces a force that is linear and continuous. Its first derivative
is however discontinuous in contrast with the higher order TSC method. The
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use of higher order algorithms does nonetheless increase the computational
cost, making the CIC and TSC method popular choices (Springel, 2014, p. 24).

Figure 19: Distribution of mass over grid cells obtained when using the TSC method in
one dimension (Springel, 2014, p. 24).

B.3 A P P R O X I M A T I N G D I S C R E T E D I F F E R E N T I A L S

The discrete differential of Φ in a grid with spacing d can be calculated by use
of

∂Φ

∂x
=

4∑
α=−4

βαΦi+α, j,k

d
. (56)

A list giving the coefficients βα of Φi+α, j,k is given in figure 20, where α cor-
responds to the different x coordinates of the surrounding nodes. The order of
accuracy γ denotes the order O (dγ) to which the error is proportional.

Figure 20: Coefficients for discrete differentials (Fornberg, 1988, p. 702)

B.4 C O N S E R VA T I O N O F M O M E N T U M

The total momentum is persevered when using grids only when there are no
self-forces and particles exert equal and opposite forces on each other. The fact
that a particle cannot exert a force on itself can be shown as follows.

Consider the acceleration at grid point p. Because the Fourier technique of-
fers an exact solution for a given distribution of masses mp′ at grid points p′,
it follows that the potential at grid points depends linearly on the masses of
surrounding grid points, as would be expected from the superposition princi-
ple. From equation (16) and (56), it follows that the acceleration also linearly
depends on the masses of surrounding grid points and thus can be written as

~ap =∑
p′
~d(p, p′)mp′ , (57)
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where ~d is some function for which ~d(p, p′) =−~d(p′, p). The force a particle (of
mass m located at~x) would exert on itself ~Fs(~x) can then be written as

~Fs(~x)= m~a(~x)

= m
∑
p

Wp(~x)~ap

= m
∑
p

Wp(~x)
∑
p′
~d(p, p′)mp′

= m
∑
p

Wp(~x)
∑
p′
~d(p, p′)mWp′ (~x)

= m2 ∑
p,p′

Wp(~x)Wp′ (~x)~d(p, p′)

= 0.

(58)

This calculated was done by first substituting ~a(~x) by use of equation (17), then
replacing ~ap by use of equation (57), then only considering the contribution
from the particle itself and finally using ~d(p, p′) = −~d(p′, p) (Springel, 2014,
p. 27).

By making the exact same substitutions as in equation (58), the force ~F12
exerted by particle 1 on particle 2 can be written as

~F12 = m1m2
∑
p,p′

Wp(~x1)Wp′ (~x2)~d(p, p′). (59)

In the same way, the force ~F21 exerted by particle 2 on particle 1 equals

~F21 = m2m1
∑
q,q′

Wq(~x2)Wq′ (~x1)~d(q, q′). (60)

Since both equation (59) and (60) sum p, p′, q and q′ over all grid points, it is
possible to choose q = p′ and q′ = p. Again, using ~d(p, p′) =−~d(p′, p) allows to
rewrite equation (60) as

~F21 =−m1m2
∑
p,p′

Wp(~x2)Wp′ (~x1)~d(p, p′)

=−~F12 (Springel, 2014, p. 27).
(61)
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One way of determining the optimal value of the softening length ε, is by choos-
ing it so that it minimizes the Mean Integrated Square Error (MISE) of the
force. This function is defined as

MISE(ε)= E
[∫

ρ(r)|~F(~r,ε)−~Ftrue(~r)|2d~r
]

, (62)

where E denotes that the average is taken over different configurations of the
system, ~F(~r,ε) is the softened force on a particle at position ~r due to N par-
ticles and ~Ftrue is the force due to the continuous distribution function based
on which the N particles were sampled (Zhan, 2006, p. 1). Numerical simu-
lations of the MISE for the Hernquist and Plummer distribution have shown
that the softening length should optimally be 1.5 to 2 times smaller than the
mean distance between particles in the most dens region. In addition, a time
step should be chosen such that the average distance traversed per time step
is smaller than ε/2 (Rodionov and Sotnikova, 2005, p. 11).
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D.1 E N E R G Y D I S T R I B U T I O N F U N C T I O N O F T H E H A L O

Since the integration in equation (30) is carried out numerically, the only re-
maining difficulty when calculating the energy distribution of the halo lies in
obtaining an expression for d2ρ

dψ2 , where Φ = −ψ. For variables that are only a
function of r, it is possible to write

d
dψ

= d
dr

dr
dψ

. (63)

Applying this trick twice for ρ yields

d2ρ

dψ2 = d2ρ

dr2

(
dr
dψ

)2
+ dρ

dr
d2r
dψ2 . (64)

It now remains to calculate both dr
dψ and d2r

dψ2 . This first quantity is minus the
inverse of the gravitational force per unit mass, from which it follows that

dr
dψ

= r2

GM(r)
. (65)

The second quantity can now be obtained by applying (63) to equation (65). The
resulting formula is

d2r
dψ2 = 2rGM(r)− r2G dM

dr

G2M(r)2
· dr

dψ
, (66)

For spherically symmetric mass distributions, dM
dr can be obtained from equa-

tion (24a). The contribution from disk particles can be derived from equation
(38), where the approximation is made that the mass inside a sphere of radius
r corresponds to the mass inside a cylinder of radius r. At larger radii, this
thus becomes a better approximation. It would moreover be exact if the disk is
infinitely thin. Combining everything finally yields

d2ρ

dψ2 =
(

r
GM(r)

)2
[

r2
(

d2ρ

dr2

)
+

(
dρ
dr

) 2rM(r)− r2 dM
dr

M(r)

]
. (67)

Setting f (r = 107 pc) = 0 and inserting equation (67) into (30) then allows the
integral to be calculated numerically for each grid point (Kazantzidis, 2003,
p. 18).

D.2 V E L O C I T I E S O F D I S K PA R T I C L E S

Due to the spherical symmetry of the bulge and halo, their contributions to ∂Φ
∂R

have the same functional form. Writing the total radius as r =
p

R2 + z2 and
M for the total mass of the component under consideration, these expressions
become

∂Φh&b

∂R
= ∂Φ

∂r
∂r
∂R

= GM
r2

R
r

=GM
R
r3 ,

(68)
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∂2Φh&b

∂R2 = GM
r3 +GR

∂

∂r

(
M
r3

)
∂r
∂R

= GM
r3 −3GM

R2

r5 +G
R2

r4
∂M
∂r

.

(69)

Obtaining ∂Φ
∂R , and its derivative to R for a disk is a bit more tricky. Denoting

y≡ R
2h , the first expression becomes

∂Φdisk

∂R
= 4πGΣ0

h
R

y2 [I0(y)K0(y)− I1(y)K1(y)]

= GM y
h2 [I0(y)K0(y)− I1(y)K1(y)] ,

(70)

where I i and K i are modified Bessel functions and Σ0 = Mgas

2πh2
gas

+ Mstellar
2πh2

stellar
is

the total surface density at the centre of the disk (Binney and Tremaine, 2011,
p. 101). Deriving equation (70) with respect to R gives

∂2Φdisk

∂R2 = GM
2h3

(
I0(y)K0(y)+ I1(y)K1(y)+ R

h
[I1(y)K0(y)− I0(y)K1(y)]

)
. (71)
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