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Preface

Evolved low to intermediate mass stars experience tremendous mass loss as
they ascend the asymptotic giant branch. The rate at which they expel their
outer layers can extend up to 10−4M� yr−1. Until recently, this mass loss was
believed to occur spherically symmetric. Due to continuous improvements
in instrumental capabilities, numerous asymmetric structures have revealed
themselves in the outflows of these stars. Inferring from two dimensional im-
ages which three dimensional complexities are established within these stellar
winds, is all but trivial. The aim of this thesis is to provide an overview of
observables intrinsic to a disk-like structure combined with a bipolar outflow.
Our intention is to lay an intuitive foundation with which upcoming interfer-
ometric ALMA, SMA and PdBI data can be compared and interpreted.
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Summary

As low to intermediate mass stars reach the end of their lives, they ascend the
asymptotic giant branch (AGB) where they evolve into large, luminous and
cool giants. In this AGB-phase, the stars lose a significant fraction of their
mass through stellar winds. The rate at which these stars expel their outer
envelopes ranges from 10−8 M� yr−1 to an astounding 10−4 M� yr−1. Thus
far, it has been assumed that these stellar outflows are spherically symmetric.
However, recent observations with high spatial resolution telescopes have dis-
covered a number of highly complex structures in these outflows. One such
morphology is a circumstellar disk with bipolar outflow, generally believed
to be formed by binary interactions. The main goal is to be able to infer
the three dimensional structure and kinematics from these observations. We
aspire to achieve this goal by solving the inverse problem of deriving a three
dimensional structure from two dimensional images. The fact that we are
only able to observe velocity components projected into our line-of-sight and
we have no idea how our object is oriented, makes this even more challenging.
Therefore our aim is to provide an overview of observable features intrinsic to
that particular morphological structure within the outflows of evolved stars,
with the intention of laying an intuitive foundation with which upcoming in-
terferometric ALMA, SMA and PdBI data can be compared and interpreted.
We will achieve this goal by means of an extensive parameter study for which
we model rotational CO emission of a simplified analytically parametrised 3D
circumstellar disk with a bipolar wind. This description will be fed into a
3D non-LTE radiative transfer code LIME which produces 3D intensity maps
throughout velocity space. Subsequently, we will manipulate this output into
wide-slit position-velocity maps which enables us to compare and analyse the
3D intensity maps. Our modelling will be limited to the v = 0 J = 3− 2 CO
rotational transition. Additionally, we will investigate the spectral signature
of this rotation line.
The PV-diagrams and line profiles are complementary tools to disentangle
disk from wind intensity contribution. They allow for the determination of
the ratio of mass loss rate and disk mass. Via the introduction of a transition
zone between disk and wind, we can make an estimate of the velocity in this
region for real astronomical objects. The most apparent effects on the yielded
data is, not unexpected, the inclination of the object.
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iv SUMMARY

Yet, not all disk and wind properties are deducible from PV-plots or line
profiles. We empirically determined that simple analytic temperature and
density profiles are indistinguishable. A simple accelerating wind does not
yield significantly different output from a constant wind velocity. It is also
not possible to derive the amount of flaring at the edges of the circumstellar
disk.
Nevertheless, we conclude that spectral signatures and PV-diagrams provide
the means to compare and interpret high spectral resolution interferometric
data. This thesis provides the building blocks for an extensive archive of sim-
ulated observables for disk-like structures in evolved stars which will enable
us to gain insight in these intricate objects.



Vulgariserende samenvatting

Sterren met een lage tot gemiddelde massa, tussen de één en acht keer de
massa van de zon, evolueren tot grote, koude, heldere sterren wanneer de
brandstof voor nucleaire energie productie opraakt. De ster bevindt zich
in een fase waar ze heel wat van haar massa verliest door middel van stel-
laire winden. Tot op heden dacht men dat dit massaverlies mooi sferische
symmetrisch was. Maar recentelijk, omwille van de steeds verbeterende in-
strumenten op onze telescopen, heeft men erg complexe structuren in deze
winden waargenomen. Deze gaan van spiralen en schillen tot schijven en
donut vormen tot geklonterde structuren. Maar om te kunnen afleiden wat
voor vormen er in zo’n sterrenwind schuilt moeten we het probleem omge-
keerd aanpakken. Net als medische tomografie en seismolgie, proberen we
van een twee dimensionale foto, een drie dimensionaal beeld te creëren. Onze
interferometrie telescopen, zoals ALMA, meten met welke snelheden delen
van de structuren naar ons, of van ons weg, bewegen. Jammer genoeg kun-
nen we enkel de snelheidscomponent in onze richting, en niet de eigenlijke
snelheid, waarnemen. Bovendien kunnen we op geen enkele manier weten
hoe de ster, ten opzichte van ons, geörienteerd is. Omwille van deze moeil-
ijkheden stellen wij voor om een overzicht van waarneembare kenmerken te
maken. We maken als het ware een fotoalbum dat waarnemers kunnen ge-
bruiken om toekomstige gegevens, van de interferometrie telescopen, mee te
vergelijken. In deze thesis beperken wij ons tot een schijfvormige structuur
met extra materiaal dat aan de polen wordt uitgestoten.
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Introduction

Low to intermediate mass stars experience a short episode before they un-
dergo a dramatic and fatal transition. Soon the star will stop releasing nuclear
energy, become a planetary nebula for a brief moment whereupon it will fade
away as a white dwarf. Just before this dramatic change, it will have reached
the highest luminosity and largest diameter in its existence. While the star
is visible in galaxies far beyond the Local Group, its structure eludes us to
this present day. Such a star is called an “asymptotic giant branch star” or
“AGB star”.

In the early evolution, the so called “E-AGB”-phase, the star is only a bit
bluer than its progenitor the red giant branch star (RGB) but besides the
core, its structure is similar. It is its second phase that differs fundamen-
tally from RGB stars. In this “thermally pulsation phase”, or “TP-AGB”,
its luminosity exceeds that of any RGB star. This pulsation period is of the
order of a one year and will create density enhancements which will allow
dust formation. Pulsational engery together with gas-dust interactions will
then cause the star to eject material at a high rate, resulting in the end of
its nuclear burning phase.
There are several reasons why TP-AGB stars have become quite well stud-
ied objects. Firstly the extensive infrared observations with continuously
increasing quality. Secondly the availability of highly powerful computers
allowing to simulate these very complex objects. Because AGB stars are best
detected in the infrared, as they are engulfed within a dust envelope, sci-
entific progress has highly benefited from space observatories such as IRAS,
HSO, ISO, MSX and the infrared camera on HST. The IJHK -photometry of
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4 CHAPTER 1. INTRODUCTION

large sky survey databases, from the ground, like DENIS and 2MASS, have
provided information which turned out to be essential. Radio observations in
the (sub)-millimetre regime have given vital information and recent optical
surveys such as EROS, MACHO an OGLE unveil new insights in the prop-
erties of AGB stars.

The study of AGB stars is of great importance as most stars in the Uni-
verse go through this phase of high mass loss. They play a crucial role in
the production and ejection of new elements, like s-process nuclei, and dust
particles. AGB stars are the main contributors to the enrichment of heavy
elements in interstellar medium (ISM), and more generally to the chemical
evolution of the Universe. These stars are useful to other fields in astronomy
as well because as evolved stars, they provide us with information about the
stellar evolution in galaxies.

1.1 Structure of AGB-stars

An AGB star can be decomposed into four different part: (i) the small,
dense and extremely hot stellar core, (ii) the large, still hot but less dense
stellar envelope, (iii) the sparse and warm atmosphere, (iv) and the very
large, highly dilute and cool circumstellar envelope. Hence an AGB star
covers more than ten orders of magnitude in scale, 30 orders of magnitude in
density and seven orders of magnitude in temperature. To fully understand
its evolution, we must study the intricate interplay between various physical
and chemical interactions. An schematic overview of an AGB star is depicted
in Figure 1.1.
The outer atmosphere is cool enough that formation of molecules can take
place. Pulsations deposit mechanical energy in the weakly bound outer layers.
Thus, the atmosphere becomes largely extended compared to a hydrostatical
one. This will give rise to shock formation and at high, therefore cool, enough
regions dust can start to condense. These grains are highly sensitive to
the stellar UV and optical radiation and get propelled outwards by transfer
of radiative momentum. Due to dust-gas collisions, this momentum gets
transferred to the gas as well and the dust drags it along into space (Bowen,
1988).
An AGB star will lose mass by means of a slow dusty wind, of the order
of 10 km/s, obscuring the central star. At some point, this dusty envelope
merges with the surrounding ISM. Here it will take a temperature value of
about 10 K while the particle density has dropped to a meagre 10 cm−3. This
defines the outer edge of the AGB star and will occur at 1016 m or more.
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Figure 1.1: An overview of an AGB star (not drawn to scale). Division
into four major parts and some important physical/chemical processes are
indicated (by J. Hron).

1.2 Pre-AGB evolution

As AGB stars have a mass within the range of 1M� and 8M� let us first
consider how a low mass AGB star comes into existence. The evolution of
such a star in the Hertzsprung-Russell (HR) diagram is illustrated in Figure
1.2. Starting on the zero-age mains sequence, core H-burning occurs radia-
tively. Due to conversion of H into He the molecular weight changes whereby
the central temperature and density rise. This continues until the core is
exhausted of H. Gradually the He-core becomes electron degenerate and H-
burning is established in a shell surrounding the core. Simultaneously, the
star expands and the outer layers become convective. At a certain moment,
the convective layer is extended so deeply that it penetrates the layer where
partial H-burning occurred in an earlier evolutionary stage. The convective
layer can then transport material, from this 4He and CNO products enriched
layer, upto the surface. This phenomenon is known as the “first dredge-up”.
Hereby, surface abundances get altered e.g. the 12C/13C ratio changes from
about 90 to around 20 and a decrease in 12C/14N ratio by a factor of 2.5
(Charbonnel, 1994).
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As the star ascends the giant branch in the HR diagram the He core continues
to contract and heat up. At the point of maximum temperature the triple-
alpha reactions are ignited, resulting in a violent release of energy which is
referred to as the “helium-core flash”. Immediately after this ignition, the
star quickly descends to the horizontal branch where it will quiescently burn
He in a convective core and H in a shell around it. In the course of time, the
core will be depleted of He and the star begins to ascend the giant branch
again. This denotes the star of the E-AGB phase. The core becomes electron
degenerate and will start He- and H-shell burning.

More massive stars mainly follow the same track on the HD diagram. How-
ever, the He-core burning at the end of the first giant branch now occurs
in non-degenerate conditions, resulting in a peaceful He-burning phase when
moving to the horizontal branch. Hence no fierce He-core flash. When reach-
ing He-exhaustion of the core, the He-shell burning will result in a strong
expansion. As the star ascends the AGB, H-shell burning will halt and the
inner edge of the convection outer layer will penetrate this inactive layer.
This causes transport of complete H-burning products like 4He, 12C and 14N
to the surface, altering its abundances. This is what’s called the “second
dredge-up”. Note that there is critical mass of about 4M� below which the
convective layer cannot penetrate the H-shell, and the second dredge-up does
not occur. After this second dredge-up the H-shell is reignited and the star
continues to move up the AGB.

1.3 AGB evolution

As helium gets depleted in the core (He-exhaustion in Figure 1.2) the carbon-
oxygen core starts to contract up till it has reached the density of a white
dwarf. It has now a size of about 106 m and a temperature of 108 K. This
contraction brings with it an increase in luminosity and expansion of the
stellar envelope. This latter reaches a size of 1011 m with a surface temper-
ature of about 3000 K. The C-O core is supported by degenerate electrons,
the requirement sets an upper mass limit of the AGB star at about 8 M�.
When the star has reached a luminosity of approximately the tip of the RGB,
3000 L� (Bedding & Zijlstra, 1998), the star is able to both burn H and He
in shells. Schwarzschild & Härm (1965) and Weigert (1966) independently
found that the He-shell burning on the AGB does not proceed smoothly but
is subjected to thermal instabilities. This He-shell burns, on a regular ba-
sis, rapidly into carbon. This ensures a moderate luminosity raise, which
is referred to as a “He-shell flash” or “thermal pulse”. Between consecutive
pulses, the H-shell starts to burn again and provides the luminosity of the
star. This alternating process is what’s called the “TP-AGB phase”.
During the thermal pulse the convective layer can reach the parts which are
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enriched with nuclear products and bring them to the surface. Mainly fresh
carbon from the inner regions gets transported and in some stars this enrich-
ment of the surface can continue long enough for the abundance of carbon
to exceed that of oxygen, creating carbon-rich AGB stars1. This process is
called the “third dredge-up”. Note that even though low mass AGB stars
have not experienced a second dredge-up, this is always referred to as the
third dredge-up.
The pulsational behaviour of the star, together with dust-gas interactions
will expel the weakly bound outer regions of the star. Ultimately, the rate of
this ejection will exceed the growth rate of the core. From this point onward,
the mass loss determines the evolution of the star. Eventually, all material
around the core has been blown away, this sets the endpoint of the AGB era
and the beginning the post-AGB epoch. This latter only last for a short pe-
riod of time, of the order of a thousand years, before it turns into a planetary
nebula. The core fades out as a white dwarf, yet still ionising and therefore
illuminating the expanding nebula, giving rise to one of the most spectacular
and colourful astronomical phenomena.

Due to their short life time, maximally upto 2% of the time it spends on
the main sequence (Vassiliadis & Wood, 1993), AGB stars will not widely
populate the Universe. Olivier et al. (2001) estimate the local column den-
sity of dust-enveloped AGB stars to be (15±4)·10−6 stars per pc2. Comparing
with a local column density of 30 main sequence stars and 3 white dwarfs
(Cox, 2000), we can conclude that AGB stars are rare!

1As the C/O ratio in the interstellar medium is below unity, all AGB star are born
oxygen-rich.
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Figure 1.2: Schematic evolution of a star of M ≈ 1M�.

1.4 Overview

In this AGB-phase, the stars lose a significant fraction of their mass through
stellar winds. The rate at which these stars expel their outer envelopes ranges
from 10−8 M� yr−1 to an astounding 10−4 M� yr−1 (De Beck et al., 2010).
These winds are driven due to a combination of radiative pressure on dust
grains and a pulsation behavior of the star (Bowen, 1988). Thus far, it has
been assumed that these stellar outflows are spherical symmetric. Recent ob-
servations with high spatial resolution telescopes, however, have discovered a
number of highly complex structures in these outflows. This includes bipolar
structures (e.g. Balick et al., 2013), disks (e.g. Jeffers et al., 2014; Lykou et al.,
2015; Chiu et al., 2006; Hirano et al., 2004), arcs (e.g. Decin et al., 2012; Cox
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et al., 2012), shells (e.g. Mauron & Huggins, 2000), spirals (e.g. Maercker
et al., 2012; Kim et al., 2013; Maercker et al., 2014), clumps (e.g. Bowers
& Johnston, 1990), tori (e.g. Skinner et al., 1998) and bubbles (e.g. Ramst-
edt et al., 2014). Several mechanisms may be responsible for the formation
of these structures. Shells and arcs may be caused by temporal variations
in the mass loss rate and/or expansion velocity (Maercker et al., 2014, and
references therein). Aspherical structures may be the result of non-isotropic
mass loss (e.g. Ueta, 2006), systemic motion with respect to the ISM (e.g.
Decin et al., 2012), magnetic fields (e.g. Pérez-Sánchez et al., 2013; van Marle
et al., 2014) or binarity (Soker, 1997; Huggins, 2007; van Winckel et al., 2009).

Due to recent improvements of observational techniques and instruments, we
are capable to probe the inner regions of dust envelopes surrounding stellar
objects. The high spatial resolution that interferometry can provide, enables
us to distinguish complex structures on a scale like never before. Especially,
the most recent asset in interferometric capabilities, the Atacama Large Mil-
limeter/submillimeter Array (ALMA) is an extremely powerful tool to ac-
quire knowledge about the complex structures within these dusty envelopes.
It is ideal for observing regions close to a star, proto-planetary disks, black
hole accretion disks and, thus far obscured, complexes within stellar winds
of evolved stars. This latter is of most interest for this thesis as our aim is to
provide an overview of observable features intrinsic to certain morphologies
of the structure within this outflow. Similar research has been done for a
spiral structure (Homan et al., 2015)
The interferometric output that ALMA yields is not self-evident to inter-
pret. Its output is a 3D data cube with two spacial axes and one velocity
axis. ALMA measures the amount of emission of a certain transition line of
a certain molecule in the line-of-sight. Due to the Doppler shift, with respect
to the central wavelength of the line, the velocity of that emitting region is
known. Hereby, you know which regions of the structure move away or to-
wards you and with what velocity. A first issue is that the objects we observe
are three dimensional and we are only able to obtain a 2D spatial image. A
next problem arises as the measured velocity of different regions is not their
actual velocity but the projected one in the line-of-sight. Furthermore, the
orientation of the object is not known. These issues make it very challenging
to deduce the true morphology of the objects just from the 3D data cube.
The way to tackle this problem is by inverting the process. Start with an-
alytic created structures based on our theoretical understanding, generate
simulated ALMA data for these objects and compare observed data with an
archive of simulated data. Based on the results, the model is improved to
give a better fit.

In this thesis, we focus on a Keplerian disk structure with a bipolar out-
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flow. The disk acts as a collimator of mass loss subsequently creating a
bipolar outflow. Our object is a compilation of different observationally de-
termined structures in AGBs, post-AGBs and PNs. Kervella et al. (2014)
determined that a dusty disk surrounds the AGB star L2 Pup. Jeffers et al.
(2014) discovered that there is a axisymmetrically expanding disk present
around the carbon-rich AGB star CW Leo. A rotating disk with a slow ex-
pansion velocity was found by Lykou et al. (2015). This would make it the
firstly discovered Keplerian rotating AGB-disk. But also more complex ve-
locity fields have been found in AGB disks. Chiu et al. (2006) and Hirano
et al. (2004) determined that their objects, π1 Gru and V Hya respectively,
have an expanding disk with a fast bipolar outflow. The former star seems to
have a slow equatorial wind as well, while the latter possesses an intermediate
outflow between disk and bipolar outflow.
Contrary to our suggested object, disks around post-AGB stars and young
planetary nebula are not observed to rotate but to expand symmetrically
(like the rest of the nebula) (Alcolea et al., 2007; Castro-Carrizo et al., 2012).
These expanding structures are often thought to be the remnants of former
AGB winds. Yet recently, three remarkable exception have been found: the
Red Rectangle, AC Herculis and HR 4049. Bujarrabal et al. (2005) found
the inner disk of the Red Rectangle to be rotating Keplerian. In addition,
a very slow (< 1 km/s) expansion is present. Bujarrabal et al. (2015) have
clearly detected Keplerian dynamics in a disk orbiting AC Her. This object,
however, does not show evidence of expansion. The post-AGB star HR 4049
comprises a Keplerian disk in addition with an expansion component (Malek
& Cami, 2014). Additionally, Bujarrabal et al. (2013) observed four post-
AGB objects which possess indications of surrounding rotating disks. One of
them, the Red Rectangle we already discussed. Observations of post-AGB
stars and planetary nebula, for which AGB stars are the progenitors, provide
evidence for the bipolar structure (Bujarrabal et al., 2013, 2015; Kraemer
et al., 2010; Balick & Frank, 2002, and references therein).
As stated by van Winckel et al. (2009), the presence of a dusty Keplerian disk
is an indication of a binary nature of the object in post-AGB stars. Bina-
rity of the central object has been confirmed for the post-AGB star AC Her
(Bujarrabal et al., 2015). Garćıa-Segura et al. (2014) have tested whether
a single star can sustain rotational velocities in the circumstellar envelope
from magnetohydrodynamical (MHD) simulations aiming at creating bipolar
planetary nebula in the case of high mass loss rates. They conclude it is
unlikely for single rotating stars to be the progenitors of bipolar planetary
nebula (under the current MHD model paradigm).

We will make no assumptions on the disk formation mechanisms. Alter-
natively, its presence will be assumed and it will be shown how these mor-
phological structures manifest themselves in observable quantities by means
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of 3D radiative transfer calculations. As stated before, profiles of physical
quantities, like temperature, density and velocity are described analytically
and its emission is modelled with LIME, a fully three-dimensional non-local
thermodynamical equilibrium (non-LTE) radiative transfer code (Brinch &
Hogerheijde, 2010). Arguably, a complete analytic description of the physical
quantities might not be very coherent with reality. However, it enables us to
calculate a vast grid of models, something which at present time is virtually
impossible to achieve via radiative-hydrodynamical calulations.
In general, predicting the radiation signature of an object can be done by
solving the radiation transport equation. In the special case of non-LTE, a
statistical equilibrium of the atomic and molecular quantum states must be
uphold. This latter together with the radiative transfer, is a strongly coupled
set of equations that need to be solved simultaneously. This can only be done
numerically except for the special cases where either the material is in LTE or
in the optically thin regime where there is little interaction between matter
and radiation. The strain on computational power increases rapidly with in-
creasing complexity of the structure if such approximations are not valid. Due
to the low density regimes, often found in inter- and circumstellar environ-
ments, LTE is not a valid approximation and therefore the atomic/molecular
excitations need to be solved numerically. LIME is a cutting-edge radiative
transfer code, especially designed for complex 3D frameworks, which solves
the coupled system of quantum state populations without approximations
and, just like ALMA, yields a 3D data cube output.

Comparison of the raw 3D data cubes is not very efficient nor practical.
Therefore, a manipulation to position-velocity (PV) maps and line profiles of
the entire object are means to more easily interpret and compare results. A
PV-diagram is a slice through the 3D data cube in any direction but preserv-
ing the velocity axis. A graphical interpretation is given in Figure 1.3. As the
width of this slice is only one pixel, it gives us little information about the
whole structure. When increasing the width of the slice, all data points in a
column along the width are summed up. This width can be extended such
that it engulfs the entire cube. This latter is most useful as one gains insight
into the global structure, e.g. how much material is moving with a certain
velocity. For the purpose of this thesis, a slice preserving velocity- and x-axis
and one preserving velocity- and y-axis are most suitable as our object is
analytically created and therefore we know how it is oriented. Hence, a slice
of full-cube width will consist of all information projected on the x- and y-
axis respectively. Due to this analytic approach, it is more easy to ascertain
which regions contribute to the total flux and why features are established
in a particular manner. The advantage of a PV diagram is that is better
shows correlated structure and by to the collapse of material, increases the
signal-to-noise.
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When integrating the intensity over the whole spatial part of the cube, for
each velocity, one creates a line profile. Such a line profile is helpful for large
structure determination and comparison. It will be an easy tool to distin-
guish between different orientations of the object as the orientation is crucial
for the projected velocity. The amount of material that is moving, or flux
that is emitted at a certain projected velocity is exactly what information
the line profile holds. The whole process of manipulating the 3D data cube,
is illustrated in Figure 1.4.

Figure 1.3: A number of possible slices through the 3D data cube by pre-
serving the velocity axis.

Figure 1.4: The complete description to manipulate the 3D data cube into
PV diagrams and spectral line profiles.
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Radiative transfer

In a non-LTE environment, thermodynamic and microscopic processes need
not to be in balance, but the level populations must not change in time. This
means that a statistical equilibrium is reached and the population ni of an
energy level i satisfies:

dni
dt

=
N∑
j 6=i

njPji − ni
N∑
j 6=i

Pij = 0 (2.1)

where N is the total number of states that can influence the population of the
level of interest. Pij is the probability of a transition from level i to level j,
also known as the transition rate. These transition rates can be decomposed
in several components: spontaneous radiative emission; stimulated radiative
emission; radiative absorption and collision excitation/de-excitation,

Pij = Aij +BijJν + Cij . (2.2)

where Jν is the mean radiation field and the meaning of the coefficients will
be explained below. The major difficulty for these non-LTE calculations is
the vast number of coupled equations, the transition rates Pij depend on the
mean radiation field, for which we need to know the specific intensity Iν in
all directions. This latter depends on the source function Sν = jν/αν where
jν and αν are the emission and absorption coefficients respectively. These,
on their turn depend on the energy level populations, for which we need the
transition rates Pij . Therefore, these population equations need to be solved
simultaneously with the radiative transfer equation

dIν
ds

= jν
4π − ανIν . (2.3)

13
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The specific intensity Iν is the amount of energy per unit time and frequency
which passes through a surface area dA at an angle θ into a cone of solid
angle dΩ at a frequency ν. Here s is distance and jν and αν are the emission
and absorption coefficients respectively. The units of specific intensity are J
s−1 m−2 sr−1 Hz−1 or Jy sr−1.

2.1 Spontaneous radiative emission

The probability that an electron of level u will decay spontaneously to a
lower level l is called the Einstein coefficient of spontaneous emission Aul.
This transition probability is inherent to the atomic/molecular structure and
therefore independent of the local thermodynamic and/or chemical condi-
tions. The total number of transition Rul, is this Einstein coefficient multi-
plied by the number density of the level u,

Rul = nuAul. (2.4)

If there are multiple decay possibilities, the different Einstein coefficients just
add.

2.2 Radiative absorption

The population of a level can increase by absorption of a photon with the
energy equal to that of a difference in level energies. Obviously, this depends
on the radiation field which the atom/molecule is subjected to. Since not the
direction of the photons but only the amount of them is important, it is the
mean intensity

Jν ≡
1

4π

∫
IνdΩ (2.5)

which is relevant. Jν has units J s−1 m−2 Hz−1 or Jy. As the energy levels
are not infinitely sharp, their broadening is characterized by a line profile
function φ(ν − ν0) which contains different broadening mechanisms. This
profile function is normalized to unity when integrated over frequency. The
number of photons that can contribute to the transition is weighted by this
function such that:

Jφν0 ≡
∫∞
0 Jνφ(ν − ν0)dν∫∞

0 φ(ν − ν0)dν =
∫ ∞

0
Jνφ(ν − ν0)dν (2.6)

where ν0 is the frequency between the levels u and l. The probability of this
type of transition is denoted by the Einstein coefficient Blu. Hence, the total
number of transitions from level l to u via radiative absorption is given by

Rlu = nlBluJ
φ
ν0 . (2.7)
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2.3 Stimulated radiative emission

It is also possible to emit a photon by absorbing a photon of the same energy.
This processes is called stimulated emission and, obviously, also depends on
the radiation field. The transition rate is similar to the radiative absorption
but the weighted line function need not to be the same.

Jχν0 =
∫ ∞

0
Jνχ(ν − ν0)dν (2.8)

Also, a third Einstein coefficient Bul is introduced. The total number of
transitions from level u to l is given by

Sul = nuBulJ
χ
ν0 . (2.9)

The Einstein relations, relate the different Einstein coefficients,

Blu
Bul

= gu
gl

and Aul
Bul

= 2hν3

c2 . (2.10)

These are two equations with three unknowns, so only one coefficient has to
be constrained in order to know them all.

2.4 Collisional excitation/de-excitation

The collision rate to go from a level u to a level l is equal to

Cul = ncolγul (2.11)

where ncol is the number density of the collision partner and γul is the
downward collision rate coefficient (in cm3 s−1). The rate coefficient is the
Maxwellian average of the collision cross-section σ,

γul =
(8kT
πµ

)−1/2 ( 1
kT

)2 ∫ ∞
E0

σEe−E/kTdE (2.12)

where k is the Boltzmann constant, µ is the reduced mass of the system, E
is the center-of-mass collision energy and E0 is the threshold energy which is
needed for the process to take place (Schöier et al., 2005). As the velocities
of the particles are Maxwellian, detailed balance is satisfied and can be used
to calculate the collision rate coefficient for the upward transition,

γlu = γul
gu
gl
e−hν/kT , (2.13)

where g is the statistical weight and T the temperature of the gas. The total
number of transitions for an upward or downward collisional transition are
given by

Rul = nuCul and Rlu = nlClu (2.14)
respectively.
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2.5 Transfer equation and level populations

The spontaneous de-excitation of electrons is isotropic, therefore, the total
energy output per second and per Hz radiated per unit volume is:

jspontν = hν0nuAulψ(ν − ν0). (2.15)

The total energy lost by radiative excitation per unit volume per unit time
is:

dEtot = hν0nlBluJν0dV dt (2.16)

= hν0nlBludV dt

∫
Jνφ(ν − ν0)dν (2.17)

= hν0nlBludV dt

∫ ∫
Iν
4πφ(ν − ν0)dΩdν. (2.18)

When considering only the energy absorbed through a solid angle dΩ, in a
frequency range dν during dt in a volume dV ,

dE = hν0
4π nlBluIνφ(ν − ν0)dΩdνdV dt. (2.19)

Knowing that dV = dAds and with the definition of the absorption coefficient
dIν = −ανIνds, the absorption coefficient of radiative excitation is given by:

αrad.exc.ν = hν0
4π nlBluφ(ν − ν0). (2.20)

Emission by stimulated radiation is more convenient as a negative component
of the absorption coefficient as it also depends on the radiation field. Hence,
the radiative absorption coefficient is:

αν = hν0
4π [nlBluφ(ν − ν0)− nuBulχ(ν − ν0)] (2.21)

Hence, the radiative transfer equation (2.3) has an emission coefficient jν
given by equation (2.15) and an absorption coefficient αν as in equation
equation (2.21). Assuming statistical equilibrium (2.1), the population of
the i’the level is given by:

ni =
∑
j 6=i njPji∑
j 6=i Pij

(2.22)

=
∑
j>i nj

[
Aji +BjiJji + Cji

]
+
∑
j<i nj

[
BjiJji + Cji

]
∑
j<i

[
Aij +BijJij + Cij

]
+
∑
j>i

[
BijJij + Cij

] (2.23)

=
∑
j>i njAji +

∑
j 6=i nj

[
BjiJji + Cji

]
∑
j<iAij +

∑
j 6=i

[
BijJij + Cij

] (2.24)
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where Jij denotes the weighted mean intensity over the frequency between
the i’th and j’the level, cfr. Eq (2.6) and Eq. (2.8). Because Jij is implicitly
dependents on ni and nj via jν and αν , equations (2.5) and (2.24) need to
be solved iteratively.
This whole problem is further complicated if a velocity field is present.
Hereby, photons get Doppler shifted and contribute to other transitions if the
energy levels are spaced closely enough. This is not a problem for molecules
like CO which has sufficiently widely spaced energy levels, but for more com-
plex molecules this is a serious concern.
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3D non-LTE radiative transfer code

In order to predict the emergent spectra of our object of interest, the molec-
ular/atomic excitation and the radiation transfer problem need to be solved.
For this, a 3D non-LTE radiative transfer code, named LIME (Line Modelling
Engine, Brinch & Hogerheijde, 2010), is used. It has specifically been cre-
ated for the (sub-)millimeter and far-infrared regime and works in arbitrary
geometries (3D). This code has been designed to be fast, reliable and easy to
use with emphasis on solving models with high spectral resolution, relevant
for ALMA, and complex level configurations, relevant for Herschel. LIME has
been written for the purpose of solving disks and envelopes around young
stellar objects (YSOs) but due to its 3D nature, it can be used to model
more complex structures like outflows, molecular clouds and even clusters of
YSOs and their environment. For a technical overview and inner workings of
the code, see Brinch & Hogerheijde (2010). The original code was developed
to solve radiative transfer in molecular clouds and not to model stellar winds.
For this latter, the central mass-losing star is a non-negligible source of en-
ergizing photons. For this reason LIME has been adapted to have an option
to position an arbitrary number of stars at locations of choice.

LIME tries to determine the level populations by solving Eqs. (2.5) and (2.24)
iteratively. The radiative transfer equation contains the emission and absorp-
tion coefficients, jν and αν respectively which, for the gas, are governed by
equations (2.15) and (2.21) as these are line transitions. The continuum

19
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thermal dust emission has

jdust
ν = −αdust

ν Bν(Tdust) (3.1)
αdust
ν = κνρdust (3.2)

with Bν(Tdust) a Planck curve for a certain dust temperature and κν and
ρ, the opacity and mass density of the dust. The scattering term σν in the
transfer equation is neglected because the cross-sectional efficiency strongly
decreases with wavelength, QS ∝ λ−4 whereas the absorption efficiency goes
as QA ∝ λ−p with p = 1 for 1 < λ < 30 µm and p = 2 for larger wavelengths.
Therefore the scattering is of little relevance in the (sub)-millimeter regime.
LIME considers thermal and Doppler broadenig effects for the line profile func-
tions in Eqs. (2.15) and (2.21) since the latter is the dominating broadening
mechanism due to local turbulence. The collision rate coefficients, defined
by Eq. (2.12), are read in from an external file provided by the LAMDA
database1. These are also used to calculated the rate coefficients for upward
transitions via Eq. (2.13).
As the CO molecule only has a tiny dipole moment, it will barely interact
radiatively. The level populations of CO are therefore mainly determined by
collisional interaction which is very temperature dependent, cfr. Eq. (2.12).

3.1 Computational grid

As opposed to the wide use of a Cartesian or cylindrical grid, LIME uses a more
randomly generated grid. A random point distribution weighted with the
density profile(s) of the object is used. This has advantages from a radiative
perspective as by this means, the radiation producing (and absorbing) regions
are well sampled. Furthermore, as the mean distance between two points will
become inversely proportional to the density, it will become proportional to
the mean free path lν , since lν = (ανρ)−1. For continuum radiation transfer,
for which αν is independent of the radiation field, the mean free path can
be set equal to the average distance between two grid points 〈d〉 by changing
the number of grid points such that 〈d〉 ∝ κν . Because if lν = 〈d〉:

lν = (ανρd)−1

lν = (κνρ2
d)−1

lν ∝ κ−1
ν 〈d〉2

〈d〉 ∝ κν

Where in the first step we used Eq. (3.2), for the second step the property
of the gridding which makes the distance between two points inversely pro-
portional to the density, 〈d〉 ∝ ρ−1, is used. The last equality arises from our

1http://home.strw.leidenuniv.nl/ moldata/
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begin statement, lν = 〈d〉.

For line radiation transfer, αν is not that straightforward since it depends on
the radiation field and the current level populations. Therefore, the mean free
path is frequency dependent. Nevertheless, gridding with a density weighted
function is the best option as this describes the spatial distribution of the
molecules very well. Each of these grid points contains the physical infor-
mation (temperature, density, velocity, populations, etc.) of the surrounding
area.

Once the grid points have been distributed, they are connected by Delau-
nay triangulation. In 2D, this triangulation is such that for a set of points P ,
there is no point s ∈ P that lies within the circumcircle of any triangle cre-
ated by this triangulation. In 3D, the connected points form tetrahedra with
no grid points within their circumsphere. Corresponding to this, Voronoi
cells, which are the dual graph of the Delaunay triangulation, are created.
Concretely, the centers of the circumspheres are connected and each Voronoi
cell contains one grid point. Every point (not grid point) within this cell lies
closer to that grid point than to any other grid point. All physical infor-
mation a grid point contains, applies to the region spanned by its Voronoi
cell. A 2D representation of such Delaunay triangulation and Voronoi cells
is illustrated in Figure 3.1. Due to the stochastic nature of this sampling
method, it is inevitable that some grid points end up much closer or further
than the expected local separation value. This causes long, narrow trian-
gles which are unwanted for photon propagation. Therefore, each grid point
is moved slightly away from its nearest neighbour over an iterative process.
Moving the points too slowly or iterate too much will cause the grid to be-
come Cartesian. Brinch & Hogerheijde (2010) empirically found that using
25 iterations and moving the grid points about 10% away from its neigh-
bours results in a smooth grid which still provides the underlying physical
structure. The boundary of the grid contains a user specified number of grid
points. These grid points just represent the end of the computational grid
and when a photon reaches this sink point, it is considered to have escaped
the model.
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Figure 3.1: Left: Delaunay triangulation of grid points (black) with all the
circumcircles (grey) and their corresponding origins (red). Right: Voronoi
cell creation around grid points (black) by connecting the centers of the
circumcircles (red).

3.2 Photon propagation

In order to determine to level populations at a certain grid point, one needs
to know the mean radiation field Jν this point receives. To obtain this, a
path of incoming photons must be recreated. LIME sends out a package of
photons2 from this specific grid point to create the path. The photons get
propagated along the Delaunay lines which makes solving Eq.(2.3) easy and
fast as the directions from where the radiation field is coming, are limited.
Ritzerveld & Icke (2006) have shown that via a Delaunay triangulation, each
grid point is connected to approximately sixteen neighbours. The sampling
of the radiation field Jν is thus on average limited to this number. To recreate
the incoming path of radiation, a package of photons is send from the specific
point to its neighbours. But, to properly sample the frequency spectrum and
conserve photon momentum, a lot of photons need to propagate along each
Delaunay line. In reality, when a photon gets absorbed, the molecule can
re-emitted one isotropically and will move in the corresponding direction to
conserve momentum. As our model has fixed grid points, momentum cannot
be conserved in this way. But on average, after enough interactions, the
photon will move along the direction it got absorbed and the molecule will
stay at rest. This solves the problem of fixed grid points but due to the
random orientation of the Delaunay lines, the photon cannot continue to

2LIME actually does not send out photons but a distribution function of the specific in-
tensity Iν is transmitted between grid points. This specific intensity is calculated according
to Eq. (3.5)
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move in a straight line. Instead the photon will get propagated via one of the
two Delaunay lines which makes the smallest angle with the initial direction
(first Delaunay line). The probability to choose either lines is weighted with
the ratio of both angles

P (l2) = α1
α2
P (l1), (3.3)

where α1 < α2. This propagation continues for all subsequent grid points
until the photon escapes the model. This procedure is carried out for a num-
ber of initial photons creating not a line-of-sight but rather a light cone, as
illustrated in Figure 3.2, which averages out the photon directions which are
not along the line of the initial one, hence conserving momentum. Such a
cone is constructed along each initial Delaunay line of the grid point. LIME
then verifies if by this means, the whole grid is sampled. If not, more photons
are send through the initial Delaunay lines creating larger cones as the prob-
ability for other lines is small but not zero. Note that all photons are sampled
properly over a frequency range to account for all possible transitions.
Each grid point will see more photons coming from high density regions as
these have more Delaunay connections due to the grid sampling method.
Because of this, one should be careful when averaging the radiation field.
Equation (2.5) becomes a direct sum

Jν = 1
4π

N∑
i

Ii,νΩi (3.4)

where N is the number of Delaunay neighbours and Ωi is the corresponding
solid angle. Strictly speaking, a solid angle is the surface area on a sphere
but here, we will use the surface area of the Voronoi cell of that Delaunay
line, which within 10%, is a good approximation.
The radiation field is obtained by integrating Eq. (2.3) over all contribution
grid points. The area between a grid point and the edge of its Voronoi cell
is assumed to be a homogeneous slab, hence the solution is of the form:

Iν(τν) = Iν(0)e−τν + Sν(1− e−τν ), (3.5)

where Sν is the source function and τν = ανds is the optical thickness between
the grid point and the edge of its cell, a distance ds from each other. The
total specific intensity Iν is then used in equation (3.4) to acquire the total
radiation field Jν . The radiation field is integrated upto the edge of the grid
at which point also any external contribution is added, which in most cases
is the cosmological background radiation.
When trying to determine the level populations, one of the key aspects is of
course determining if an equilibrium has been reached. Brinch & Hogerheijde
(2010) determined that it is impossible to have a simple criterion in the code
which checks if the model has converged. They empirically established that
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15-20 iterations is enough to ensure equilibrium. Keep in mind that this is
highly dependent on the polarity and complexity of the molecule as well as
the density scale.

Figure 3.2: A package of photons is send through the first Delaunay line of
which the direction is depicted by the red arrow. The full black lines make up
the path which has the highest probability to be followed. The dotted lines
represent line choices with lower probabilities. Combined, a cone is formed
in the direction of the initial Delaunay line.

3.3 Ray tracing

After convergence has been reached, the line-of-sight photons are determined
and a 3D image cube is created from photons which have escaped the surface
of the object. The user provides all necessary information such as the distance
to, orientation of and systemic velocity of the object. As well as the image
resolution, units of flux and the width of the velocity bins. For the ray tracing,
pixel-sized lines-of-sight penetrate the object rather than moving along the
Delaunay lines. These lines-of-sight move through the Voronoi cells, for which
all physical information is stored in the corresponding grid point. Thus, it is
just a matter of determining through which Voronoi cell the line is passing.
The step size along the line-of-sight is taken as a fraction of the Voronoi cell
in order to avoid stepping over a cell. The velocity between grid points is
interpolated to attain a velocity at each step along the line-of-sight. A 3D
intensity cube with two spatial axes and one spectral axis, the velocity, is the
output of LIME.
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4
Geometry

Our structure consists of a central star, a rotating disk around it and a bipolar
outflow which is collimated by the dusty disk. This structure is defined in an
analytic way. The next two sections will discuss the overall geometry of the
disk and wind, what analytic functions are used, how they are derived, what
assumptions are made and how realistic the models are.

4.1 Disk geometric model

The mathematical description of our disk model is formulated in a cylindrical
coordinate system with use of following notation,

r =
√
x2 + y2 (4.1)

z = z (4.2)

The disk is assumed to rotate according to the Keplerian velocity law, not
only the midplane of the disk but the entire structure,

v(r) =

√
GM?

r
. (4.3)

Here G is the gravitational constant and M? is the mass of the central star.
We assume the object to be a thin, passive disk. Thin, such that it is isother-
mal in the vertical direction. Passive, meaning that the disk derives most of
its luminosity from reprocessed star light. Active disks on the other hand,
are mostly powered by the gravitational release of energy due to inward flows

25
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of gas. With other words, they represent accretion disk. Hence, the temper-
ature profile only has a radial dependence and will be represented by a power
law

T (r) = T?

(
r

R?

)−q
. (4.4)

Here R? and T? are the radius and effective temperature of the star. The
density distribution of the disk can be decomposed in a radial and a vertical
component,

ρ(r, z) = ρcR(r)Z(H(r), z) (4.5)

with ρc ≡ ρ(rc, 0) an initial density value at some characteristic distance rc
and

R(r) =
(
r

rc

)−p
(4.6)

Z(H(r), z) = exp
[
−z2

2H(r)2

]
(4.7)

H(r) = Hc

(
r

rc

)h
(4.8)

where Hc ≡ H(rc) an initial scale height at some characteristic distance rc.

4.1.1 Vertical density profile

The vertical density profile of a thin disk is determined from the assumption
of hydrostatic equilibrium,

dP

dz
= −ρgz (4.9)

with P the pressure of the gas, ρ the density of the gas along the vertical
axis and gz the vertical component of stellar gravity. Any contribution of
self gravitation of the disk is ignored, which is justified if the disk is not too
massive. The vertical component of the gravity on a segment of gas at a
distance d from the star and a height z above the disk plane, as illustrated
in Figure 4.1, is given by:

gz = GM?

d2 sinα = GM?

d3 z. (4.10)

For a thin disk (z � r → d ≈ r)

gz = GM?

d3 z ≈ GM?

r3 z = Ω2z (4.11)

with Ω =
√

GM?
r3 the Keplerian angular velocity.
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Figure 4.1: Geometry for the calculation of hydrostatic equilibrium of a point
at radial distance r and height z subjected to a gravity g from a star with
mass M?.

The assumption of the disk being vertically isothermal gives an equation
of state P = ρa2 with a the isothermal sound speed. Hence, equation (4.9)
becomes

a2 1
ρ

dρ

dz
= −Ω2z (4.12)

which has a solution
ρ(r, z) = ρ(r, 0)e−z2/2S(r)2 (4.13)

with ρ(r, 0) the density at the midplane and where S(r), the vertical scale
height (the distance at which the density has dropped by a value 1/e) is given
by,

S(r) = a(r)
Ω(r) . (4.14)

Remark that also the isothermal sound speed,

a(r) =
√
kBT (r)
µmH

(4.15)

has a radial dependence as the temperature changes radially. Here kB rep-
resents the Boltzmann constant and µ the mean molecular weight of the gas
in units the mass of a hydrogen atom mH . We can parameterize the sound
speed as

a ∝ r−β, (4.16)

giving a radius dependency of the scale height:

S(r) ∝ r−β+3/2, (4.17)

where the 3/2 comes from the angular velocity. This will make the disk
flare, the aspect ratio S(r)/r increases with increasing radius, if β < 1/2.
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Combining equations (4.4), (4.15) and (4.16), a relation between β and q can
be found:

a ∝ T 1/2 ∝ r−q/2 ∝ r−β. (4.18)

Thus β = q/2, meaning the disk will flare for a temperature profile T ∝ r−1

or shallower. We can therefore write the scale height S(r) as a radial power
law,

H(r) ≡ Hc

(
r

rc

)h
(4.19)

with h = −q/2 + 3/2.

4.1.2 Radial density profile

The surface density is defined as the integral of the mass volume density
ρ(r, z) over the vertical disk height z,

Σ(r) ≡
∫ ∞
−∞

ρ(r, z)dz =
∫ ∞
−∞

ρ(r, 0)e−z2/2H(r)2
dz =

√
2πH(r)ρ(r, 0). (4.20)

This can be used to obtain the value for the density at the midplane,

ρ(r, 0) = Σ(r)√
2πH(r)

. (4.21)

The radial dependent volume density in the midplane ρ(r, 0) can be obtained
by assuming a power law dependence of Σ(r),

Σ(r) = Σc

(
r

rc

)−f
. (4.22)

Here Σc is the initial value of the surface density at a characteristic radius rc.
Using Eq. (4.19) the density profile in de midplane of the disk can therefore
be represented by:

ρ(r, 0) = Σc√
2πHc

(
r

rc

)−(f+h)
. (4.23)

To have an idea of how realistic surface density profiles look like, we have
to fit observationally acquired data. Unfortunately, not much work has been
done in disks of AGB stars as they are recently discovered. However, as
disk theory is universal and lots of research has been done in proroplanetary
disks, we will take a leap of faith and continue with observationally deter-
mined results of the latter. Later, we will demonstrate that these results do
not contradict the few ones found in post-AGB disks.
One specific profile of Σ(r) ∝ r−3/2 can be determined by an estimate of
the amount of gas that was present in the protoplanetary disk of our Solar
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System. The observed masses and composition of our planets can be used
to derive a lower limit of the total amount of gas present at the formation
of these planets. This is known as the Minimum Mass Solar Nebula (Wei-
denschilling, 1977). The normalisation constant depends on the convention
used. The most common value used, is the one determined by Hayashi (1981)
which gives a surface density

Σ(r) = 1.7 · 103
(

r

AU

)−3/2
g cm−2. (4.24)

Integrating upto Neptune’s distance, 30 AU, gives a lower mass of 0.01M�
for our protoplanetary disk. This is comparable to typical estimates of pro-
toplanetary disks around other stars (Andrews et al., 2010) which justifies
this particular power law. Remember that this is still a lower limit and not
an estimate of the disk when the Solar System formed, nor is the r−3/2 de-
pendence necessarily the actual density profile of the disk. Generally, when
the surface density is characterized as a pure power law Σ ∝ rf , the value of
f lies between between 0 and 1 (Mundy et al., 1996; Lay et al., 1997; Wilner
et al., 2000; Kitamura et al., 2002; Andrews & Williams, 2007). A more com-
plex model that describes viscous accretion disks (e.g. Lynden-Bell & Pringle,
1974; Hartmann et al., 1998), so-called α-disks, represent the surface density
by a exponentially truncated power law,

Σ(r) = (2− γ) Md

2πr2
c

(
r

rc

)−γ
exp

[
−
(
r

rc

)2−γ
]

(4.25)

where Md is the mass of the disk, rc a characteristic radius that indicates
where the profile begins to steepen significantly from a power law, γ specifies
the radial dependence of the viscous disk where the viscosity ν ∝ rγ . Andrews
et al. (2009, 2010) found a mean value of 〈γ〉 = 0.9 for a large sample of disks.
Davis (2005) found a value of γ = 0.5 for surface density of our Solar System.
The most important remark is that all determined surface density profiles,
either pure power law or truncated power law, are less steep than the one
determined by the Minimum Mass Solar Nebula method.
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Figure 4.2: Geometry for the calculation of the flux through a surface ele-
ment, at a radial distance r from a star with radius R?, of a flat, passive
disk.

4.1.3 Temperature profile

Consider the most simple model, i.e. a flat disk that absorbs all the incident
radiation and re-emits it as a single temperature black body. Here, back-
warming of the star due to the disk is not taken into account. Consider a
surface element of the flat disk, as illustrated in Figure 4.2. The total flux
through this element is given by

F =
∫
I?ndΩ (4.26)

where n is the normal to the surface element. Assuming the specific intensity
(integrated over all frequencies) of the star I? is isotropic and noting that by
symmetry the x and z component equal zero (due to cancellation as can be
seen on Figure 4.2), the total flux can be stated as:

F = I?

∫
sin θ sinφdΩ (4.27)

Using the integrating boundaries that cover the whole star and dΩ = sin θdθdφ,
this becomes

F = I?

∫ π

0
sinφdφ

∫ sin−1(R?/r)

sin−1(−R?/r)
sin2 θdθ. (4.28)

Which evaluates to

F = 2I?

sin−1
(
R?
r

)
−
(
R?
r

)√
1−

(
R?
r

)2
 . (4.29)

For a black body with an effective temperature T?, the specific intensity
I? = σ

πT
4
? , with σ the Stefan-Boltzmann constant. As the disk emits all the
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incident radiation as a black body with a flux F = 2σTdisk, where the factor
2 arises as the disk emits from its upper and lower side. This gives a radial
temperature profile of the disk,

(
Tdisk(r)
T?

)4
= 1
π

sin−1
(
R?
r

)
−
(
R?
r

)√
1−

(
R?
r

)2
 . (4.30)

As this is no simple radial dependence, a Taylor series on the right hand side
is performed far from the central star (r � R?).(

Tdisk(r)
T?

)4
= 1
π

[
2R3

?

3r3 +O

( 1
r5

)]
(4.31)

which gives a radial dependence of the disk temperature,

Tdisk(r) ∝ r−3/4 (4.32)

for the extreme case of a flat, passive disk. According to equation (4.18)
where β = q/2, this give a radial dependence for the sound speed

a(r) ∝ r−3/8. (4.33)

When also assuming that the disk is isothermal in the vertical direction, the
ratio of the scale height with respect to the radius is given by a

H(r)
r
∝ r1/8 (4.34)

radial dependence. This means that for the case of a flat disk, the outer edges
will start to show flaring. A flared disk will intercept more stellar radiation,
leading to a higher temperature. Hence, a radial temperature profile of

Tdisk(r) ∝ r−3/4 (4.35)

is the steepest we would suggest for a thin, passive disk.

The temperature profile for a flared passive disk can be computed by the
same way as for the flat passive disk. Namely by evaluating the flux via in-
tegration of Eq. (4.26) over the stellar surface and accounting for the correct
projecting of the disk element due to the flared shaped. This is conceptu-
ally not that difficult but requires some complex geometric transformations.
An exact calculation can be found in the appendix of Kenyon & Hartmann
(1987). At large radii, they find that the disk approaches a temperature
profile

Tdisk ∝ r−1/2 (4.36)
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which is less steep than previously determined for a flat passive disk. A
different approach was performed by Chiang & Goldreich (1997), which is
valid at large distance r � R? and considers the star as a point source. The
incident radiation is absorbed at a radial distance r in the midplane and a
height Hp. Note that this height is not the same as the scale height as Hp is
determined by the opacity, ergo optical depth, of the beam of light and not
directly by the vertical density structure of the disk. The beam of light hits
the disk surface at τ = 1 but this is not necessarily at the scale height H.
For this reason, it is impossible to state at what scale height the surface of
the disk is reached. From the geometry of Figure 4.3 we define an angle α as
the difference between the radial slope of the actual disk the slope that the
incident radiation makes when it hits the disk,

α ≡ dHp

dr
− Hp

r
. (4.37)

The total amount of flux that reaches a surface element at a radial distance
r is

Ftot = L?
4πr2 (4.38)

When considering that the surface element is slanted by an angle α, this
translates to

Felem = L?
4πr2 sinα ≈ 2α L?

4πr2 (4.39)

where the last equality assumes the angle α to be small. Assuming again
that the disk reradiates as a black body, with a flux F = σTdisk, the disk
surface temperature profile goes as,

Tdisk =
(
L?

4πr2

)1/4
α1/4r−1/2. (4.40)

Since L? = 4πσR2
?T

4
? , an equivalent expression is

Tdisk = T?α
1/4
(
r

R?

)−1/2
(4.41)

which is that same radial dependence as Kenyon & Hartmann (1987) ac-
quired. Because the radiation only hit the surface of the disk, this temper-
ature profile only holds for the surface. But as done before, we can assume
the disk to be vertically isothermal such that Eq. (4.41) is valid inside the
whole disk. It is reasonable to assuming that Hp is only a few times H, as
the Gaussian vertical density only starts to drop steeply at z larger than H.
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Figure 4.3: Geometry for the calculation of the radial temperature profile of
a flared disk. At a distance r � R? the stellar radiation gets absorped at
a height Hp above the midplane. The angle α is the difference between the
tangent to the disk and the slope of the incident radiation.

During these derivations a lot of assumptions were made, not all equally
realistic. The assumption of vertical isothermality is anything but realistic.
A more correct representation of a disk is depicted in Figure 4.4. The inner
regions are cooler than the outer areas as they are shielded from incident
radiation. Secondly, the assumption that the disk emits as a black body
is too simple. The surface layers radiate at a higher temperature than the
lower layers. This is because these upper layers are more efficient at absorbing
stellar radiation than emitting. Dust particles with a radius a are good at
absorbing radiation with wavelengths λ < 2πa but inefficient at absorbing
and emitting radiation with wavelengths λ > 2πa. When a dust particle is
in radiative equilibrium, the radiative transfer equation integrated over all
frequencies equals zero,∫ ∞

0

dIν
ds

dν =
∫ ∞

0

jν
4π − ανIνdν = 0 (4.42)

with jν and χν the emission and extinction coefficients respectively. When
we assume the radiation is isotropic, Iν = Jν , and the particle is in local
thermodynamic equilibrium, Sν ≡ jν/4παν = Bν(T ), where Sν is the source
function and Bν(T ) a Planck curve at a certain temperature, this becomes:∫ ∞

0
αν [Sν − Jν ]dν = 0 (4.43)∫ ∞

0
ανJνdν =

∫ ∞
0

ανSνdν (4.44)

This equation describes that the total amount of energy absorbed by an
individual dust grain per second (LHS) must be equal to the total energy
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emitted by that particle per second (RHS). The extinction coefficient can be
expressed as

αν = ndσd(ν) = ndπa
2Qext(ν) (4.45)

with nd the density of the dust grain, σd(ν) the cross-section, a the radius
by the grain and Qext(ν) the extinction efficiency. The extinction efficiency
consists of two contributors, on the one hand absorption by the grain, on
the other hand scattering of photons. As the scattering component does not
play a role in the thermal balance, we will omit this. If one assumes that the
grain absorbs and emits as a black body, the extinction efficiency is unity for
all frequencies. But a more realistic view is described by Mie theory (Mie,
1908; Debye, 1909) where the most important factors are the dimensionless
size parameter

x = 2πa
λ

(4.46)

and the complex refractive index of the grain

m = n− ik (4.47)

where n is a measure for scattering and k determines the absorption cross-
section. Mie theory however still assumes the grains to be spherical. In
general for λphot � a the absorption coefficient goes as Qabs ∝ λ−p with
p = 1 for 1 < λ < 30µm and p = 2 for larger wavelengths. For λphot �
a the coefficient is of the order of unity, Qabs ∝ 1. Hence, grains with
typical sizes of 0.01−0.1µm absorb ultraviolet and optical wavelengths quite
easily. When the wavelength is much larger than the grain size, the radiation
hardly ’notices’ the grain and therefore no radiation is absorbed. According
to Kirchoff’s law: jν/4π = ανIν (Eq. (4.42) at thermal equilibrium) also
hardly any radiation will be emitted at this wavelength. Plugging Eq. (4.45)
into equation (4.44) results in:∫ ∞

0
Qext(ν)Jνdν =

∫ ∞
0

Qext(ν)Bν(Td)dν. (4.48)

The total amount of energy at both hand sides need to be the same but
inefficient cooling at long wavelengths, Qabs ∝ λ−2, decreases the planck
curve at this wavelengths. Hence, the area under the emitting planck curve,
which represents the total energy, reduces leading to an inequality of both
hand sides. To increase this area again, the peak of this curve needs to shift
towards shorter wavelengths by increasing the temperature, as determined
by Wien’s displacement law. Hence, in order to compensate for the more
efficient heating due to optical and ultraviolet light and inefficient cooling at
long wavelengths the temperature of the dust grain must be higher than as
it would absorb and emit as a black body. Therefore, in the more complete
description, the surface layers of the disk, which absorb the stellar radiation,
cannot be considered as a simple black body.
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Figure 4.4: A more realistic illustration of a disk which starts at condensation
temperature T = 1500 K. The inner regions of the disk get less heated and a
zone around the midplane arises where molecules freeze into ices. The most
upper layes of the disk are bombarded with photons such that molecules start
to photodissociate.

4.1.4 Summary

Our disk rotates entirely Keplerian,

v(r) =

√
GM?

r
(4.49)

with an overall volume density profile:

ρ(r, z) = ρc

(
r

rc

)−p
exp

[
−z2

2H(r)2

]
(4.50)

where
H(r) = Hc

(
r

rc

)h
. (4.51)

For a surface density and temperature profile,

Σ(r) = Σc

(
r

rc

)−f
(4.52)

T (r) = T?

(
r

R?

)−q
(4.53)
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the relations

p = f + h (4.54)

h = −q2 + 3
2 (4.55)

hold. Here, ρc and Hc are the density in the midplane and the scale height
respectively, at some critical radius rc. Note that only f determines amount
of flaring of the disk. Together with q, these parameters are the only ones
that determine the morphology of the disk. Therefore, the temperature and
the surface density are disentangled physical quantities that determine the
disk morphology. Equations (4.50), (4.52) and relation (4.54) indicate the
importance of the radial dependence of surface density profile Σ(r).

4.2 Wind geometry

For describing the wind geometry, it is easiest to work in spherical coordi-
nates,

r =
√
x2 + y2 + z2 (4.56)

θ = cos−1
(
z

r

)
(4.57)

φ = tan−1
(
y

x

)
. (4.58)

For a spherical mass loss of the star, assuming that the amount of matter
lost through each shell is the same, the mass continuity equation is given by:

dM

dr
= 4πr2ρ(r). (4.59)

For a more general volume the solid angle Ω, which equals 4π for a sphere,
comes into play

dM

dr
= Ωr2ρ(r). (4.60)

The mass loss rate Ṁ then becomes:

dM

dt
= dM

dr

dr

dt
= Ωr2ρ(r)v(r). (4.61)

When the mass loss rate and the velocity profile of the star are known, the
density in each point of the wind can be calculated via

ρ(r) = Ṁ

Ωr2v(r) . (4.62)
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The velocity profile of a mass losing star is often parametrized by a β-law.
For a star having some initial wind velocity v0 and a terminal velocity v∞,
this β-law is given by,

v(r) = v0 + (v∞ − v0)
(

1− rc
r

)β
(4.63)

with β a variable value and rc the radius at which the wind starts to acceler-
ate. As the acceleration is driven by dust-gas interaction, rc is the distance
where the dust starts to form, also known as the dust condensation radius.
The temperature profile of a stellar wind is often described by a power law,

T (r) = T?

(
r

R?

)−s
, (4.64)

with s some exponent.

4.3 Boundary conditions

4.3.1 Edge of the disk

The most correct method to distinguish between what is disk and what is
wind, is to examine the density in each point. Each side of the interface
between disk and wind should have the same density, as an abrupt change is
unrealistic. So both wind and density profiles are evaluated in each grid point
and the profile which gives rise to the largest density, determines the region
this point represents. This density criterion separates the disk from the wind
region, each with its own physical quantity profiles. However, this introduces
issues for extreme mass loss rate/disk mass combinations. A strong wind,
small disk combination will enable the wind to completely obliterate the
disk. Even for higher disk masses, the far end of the disk will have much
lower densities than the wind density profile yields. This is because the
wind density only drops as 1/r2, while the disk density on the other hand,
drops in the midplane alone already as 1/r2.25, it then drops in the height
again as a Gaussian distribution. This will render a disk whose outer regions
turns into wind regions. This might be possible as the wind will shear along
the edges and at the outer end engulf the disk by turbulent motion. Such
engulfment of the disk by the wind might be possible, depending on the
formation mechanism of the disk. As the disk slowly gets consumed by the
wind, turbulent instabilities will arise at the interfaces. However, it is beyond
the scope of this research to simulate turbulent behaviour due to disk-wind
interaction.
We therefore propose to use a geometrical criterion to separate disk and wind.
Again, a definition for the ’edge of the disk’ is needed. A possible approach
is the height at which the incident radiation of the star reaches optical depth
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τ = 1, as discussed for the temperature profile of a flaring disk (Eq. 4.41). In
that case however, no mass loss through a wind was considered as opposed
to here, where the radiation needs to penetrate additional dense regions. As
discussed earlier, this height Hp will probably be a few times the scale height
H. We empirically determined that He(r) = 1.4H(r) is a good estimate
for the edge such that it resembles the density criterion for the parameter
combinations for which no complications arise. For this value the density
difference between disk and wind is not immensely abrupt. We define an
angle α which separates the disk from the wind region:

α = tan−1
(

rf
1.4Hf

)
(4.65)

where rf is the radius of the entire disk and Hf ≡ H(rf ) is the scale height
at this radius which is calculated via Eq. (4.51) with Hc the scale height,
calculated via its definition, at rc with temperature Tc. Using this criterion,
the flared shape of the disk is preserved upto a scale height Hp(r) = 1.4H(r).
Figure 4.5 illustrates the choice of the geometric disk edge. This limited disk
contains 83.85% of the total mass of the disk. The geometrical wedge-shaped
disk region, within α, contains 94.31% of the disk mass.
As only about 5% of the total disk mass is cut off using α and differences
between wind and disk densities at this boundary are small, our geometrical
separation is justified.

Figure 4.5: A graphical representation of the geometrical separation of disk
and wind by an angle α. The velocity transition zone is determined by the
angle ζ.

4.3.2 Velocity field

Up till this point, we have always assumed the disk to be rotating completely
Keplerian. This brings about a problem at the interface between disk and
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wind. The radial velocity component of the wind abruptly disappears as we
enter the disk at θ = α. It is inconceivable that such a radical change in ve-
locity occurs in real life objects. The wind will shear against the low density
outer edges of the disk and blow it partially or completely away. Due to the
difference in shear velocity, it is quite probable that vortices will arise, better
known as Kelvin-Helmholtz instabilities. When looking at the object face-
on, the disk’s emission will only contribute to the velocity bin v = 0 km/s.
As the disk fills up a substantial part of the volume, the smaller projected
components of the radial wind are not reached thus creating a gap in velocity
space.
Therefore we propose to impose a smooth transition between the wind and
disk velocity profiles. As the density of the disk increases, the wind will
have less success at blowing outer parts of the disk away. We will assume
that the radial wind velocity decreases as it ’enters’ the disk. Still, several
scenarios are possible, the steepness of the decline and where the wind con-
tribution completely disappears are two crucial aspects. For this approach,
it is important to where the ’edge’ of the disk is defined. We will use the
wind-disk separation according to α as stated above. We composed a nor-
malized smoothing function F (θ) that is multiplied with the radial velocity
profile of the wind,

F (θ) =
∣∣∣∣ 2
ek(θ−ζ) + 1

− 1
∣∣∣∣ θ < ζ (4.66)

F (θ) =
∣∣∣∣ 2
ek(θ−ζ−∆) + 1

− 1
∣∣∣∣ θ > ζ + ∆ (4.67)

where ζ is the angle at which the radial wind velocity component disappears
completely, ∆ = π−2ζ is the part which is still completely Keplerian and k is
determines the steepness of the function. A schematic representation of this
transition zone is illustrated in Figure 4.5. We choose k such that F (α) = 0.99
where α is the angle which represents the edge of the disk. This smoothing
function is depicted in Figure 4.6. There now only rests us the choice what
fraction of the disk remains 100% Keplerian. It is reasonable to assume that
only 10% to 20% of the disk will be penetrated by the wind. But as we have
the opportunity to also probe the more extreme cases, we will analyse disks
with fractions of 100%, 90%, 80%, 50% and 0% which have Keplerian velocity
profiles. The residual fraction of the disk is a superposition of a Keplerian
and radial velocity component. The latter, extreme cases might be possible
for high mass loss rates and low disk masses. But then arise the questions:
“Can we still speak of a disk?” and “How can low mass disks be establish
with such high mass loss rates?”. It is possible that the disk may have been
formed during a stage of less violent mass loss and due to a sudden event
which increases the mass loss rate of the star, this disk might experience
heavy wind bombardment penetrating its most inner layers.
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Figure 4.6: The smooting function F (θ) for a transition zone which comprises
50% of the disk with α = 55◦ and ζ = 73◦.
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5
Model assumptions

In order to have realistic simulations, typical values for physical en stellar
parameters are used. Our object will have a mass, M? = 2M�, a radius
R? = 2 AU and an effective temperature T? = 2500K, which are typical
values for an AGB-star. The mass loss will span between 10−7 M� yr−1 and
10−5 M� yr−1. More extreme cases are not useful for our analysis as too
high mass loss rates will dwarf the flux contribution of the disk, nullifying
our main goal. Moreover, these more extreme cases will not contribute to
differentiating disk/wind morphologies hence providing no additional useful
material.
We have empirically determine that the a β-law velocity does not enrich our
output with new insights. In the PV-diagrams, a β-law is indistinguishable
from a constant velocity profile. The β-law only contributes in a minor way
to low velocities, which are not probed for the constant velocity, in the line
profile. The evolution of a β-law, for a much used value of β = 0.5, is
illustrated in Figure 5.1. As this rapidly reaches roughly a constant value,
it is clear that its contribution to low velocities is minor. Even though the
density is much higher in the inner parts, the outer part contribution is more
prominent as the density goes as 1/r2 but the emitting volume roughly goes
as r3, making to volume more decisive. Small β exponent however, will
contribute more substantially to lower velocity and as we do not know the
exact value of this component, this should be kept in mind. To keep our
model as simple as possible, we opt for a constant wind velocity. As dust
driven AGB-winds have a terminal velocity of the order of 10 km/s, we adopt
an arbitrary value of v = 15 km/s. To account for turbulent motion in the
stellar outflow, a global turbulent velocity of 1.0 km/s is presumed.

41
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The temperature throughout the wind will decrease as a power law, according
to equation (4.64) with a much used value of s = 0.5. The wind loss of our
object will not be spherically symmetric but, due to the dusty disk around
our stellar object, it will be collimated in a double cone. The corresponding
solid angle for this geometry is Ω = 4π(1 − cos(δ)) with δ the angle which
denotes the inner angle of the cone.

Figure 5.1: A β-law starting at r = 10 AU with β = 0.5.

As stated before, the temperature profile is a determining factor for the
shape of the disk. The parameter q, in equation (4.53), adopts a value of
0.75 for the flat disk limit and a value of 0.5 for the more complex, flaring
shape. As Hartmann et al. (1998) and Chiang & Goldreich (1997) showed,
the latter is more consistent with reality, a fixed value of q = 0.5 will be
used as a power law exponent for the disk temperature profile. As a conse-
quence the scale height of the disk will increase with a power law exponent
h = −q/2 + 3/2 = 1.25 in Eq. (4.51).
Besides the temperature, it is the surface density that determines the overall
volume density profile of the disk. In the previous section, we argued that
a number of different radial dependent surface density profiles are fitted to
observations. A simple power law, Eq. (4.22), or a exponentially truncated
power law, Eq. (4.25), and for each a wide variety of power law exponents.
To not make the model needlessly complex, from this point forward, an or-
dinary power law will be used. The exponent can be varied from f = 0.5
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upto f = 1.5 to check its impact on the observables. The lower limit is semi-
arbitrary and justified as follows: imagine a negative exponent is used, this
implies that the density is increasing outwards whereby the disk has much
more material in its outer regions than in its inner ones. This is counter-
intuitive and not what we aspire. A negative exponent may be suitable for
disks which have formed gaps, most likely due to planet formation. This may
be relevant for proto-planetary disks, but not the AGB-disks we are focussing
on. To that end, no negative power law exponents will be useful. Another
possible lower limit is assuming the surface density is constant within the
disk, f = 0. But again, this implies the disk has more material in its outer
layers as compared to its inner ones. Therefore, the semi-arbitrary value of
f = 0.5 is used as a lower limit. The upper limit value of f = 1.5 is justified
by the Minimum Mass in Solar Nebula and the fact that no fit to observa-
tions yields a higher value, up till now. Nevertheless, we have empirically
determined that the three mentioned values for f are indistinguishable in the
PV-diagrams and only give a slight difference in the line profiles. To limit
our parameter grid we therefore decide to only probe the value f = 1.0 as
this is a good average of the observed ones.
Combining the temperature and surface density profiles, the volume density,
according to Eq. (4.50) and equality (4.54), will decrease as a power law in
the radial direction with the steepness factor q = 2.25. This coincides with
an average of fitted density profiles of post-AGB stars and planetary nebula
(Bujarrabal & Alcolea, 2013; Bujarrabal et al., 2015).

Another parameter to examine is the total mass of the disk. Bujarrabal
et al. (2013) determined values between Mdisk = 6 · 10−3M� and Mdisk =
1.2 · 10−2M� for disk masses of nebula of about 1000 AU around post-AGB
stars. These masses were determined from estimates of the CO rotational
temperature and 13CO fraction, and have an uncertainty of a factor of two.
As the mass of only four disks was determined, we increase our range of
the disk mass with one order on the lower and upper end. Disk masses
above 0.1M� are gravitational unstable, which is not included in our simple
model. Gravitational instability would also nullify the assumption of hydro-
static equilibrium which on its turn would completely change the density
profile of the disk. This upper limit can be attain from two different perspec-
tives. Firstly, the vertical gravitational acceleration of an infinite flat disk
gz,d = 2πGΣ. The disk is gravitationally stable is this is small compared to
the stellar gravity at some height H,

2πGΣ <
GM?

r3 H (5.1)

Md

M?
.

1
2
h

r
(5.2)

where we used that the mass of the disk is given by Md = πr2Σ. To get
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an estimate, we use the scale height as vertical distance for a temperature
around 10 K, a solar mass star and comprising a disk of radius 500 AU. This
gives an order estimate of

Md

M?
.

1
2
h

r
≈ 0.1 (5.3)

as stability criterion. The same result can be achieved by comparing the
free-fall time scale

τff ∝
√

1
Gρ
∝

√
R3

GMd
∝

√
R

πGΣ (5.4)

with the time scale to destroy forming clumps by means of azimuthal shearing

τshear ∝
1
R

(
dΩ
dR

)−1
∝ Ω−1 (5.5)

where in both above equations R is the radius of the collapsing blob of ma-
terial. We assumed a Keplerian angular rotation and again the mass of the
disk is given by Md = πr2Σ. The disk will gravitationally collapse when

τff < τshear (5.6)√
a

πGΣΩ <
1
Ω (5.7)

aΩ
πGΣ < 1 (5.8)

where the left hand side of the latter equality is the Toomre parameter
(Toomre, 1964). Next, this can be transformed to Eq. (5.3) justifying our
upper limit of 0.1M�.
Jeffers et al. (2014) found an inner dust density of 5.6 ·10−19 g/cm3 at 15 AU
for their best SED fit to the carbon-rich AGB star CW Leo. Converting this
to gas density with the commonly used gas-to-dus-ratio of Φ = 100, inserting
this value as ρc in eq. (4.50) and integrating over the whole volume, we find
a disk mass of the order of 10−5M�. Due to the above mentioned reasons, we
will use values of Mdisk = 1.0 · 10−5 − 1.0 · 10−1M� for the mass of the disk.
Again, to limit our parameter grid we will only probe Mdisk = 1.0 · 10−5M�,
1.0 · 10−3M�, 1.0 · 10−1M�, by which we do not lose any information.
For the analysis of parameter influences, the initial density ρc in eq. (4.50)
is chosen such that the mass of the disk is the same in each situation. As
the masses derived by Bujarrabal et al. (2013) are for disk sizes of a 1000
AU in diameter, we also take this same size for the disk in our model. We
set it at a distance of 150 pc, based on the CW Leo which is the nearest
carbon-rich ABG star (Men’shchikov et al., 2001; Groenewegen et al., 2012,
and references therein), hence having a spatial coverage of 7.5 arcsec in the
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plane of the sky.

In AGB stars, the fractional abundance X(12CO) is found to vary between
about 2 − 4 · 10−4 in O-rich stars and 6 − 8 · 10−4 in carbon-rich stars (e.g.
Teyssier et al., 2006; Ramstedt et al., 2008, and references therein), but the
12CO/13CO abundance ratio is higher in carbon-rich stars, resulting in a
similar value of the 13CO abundance, which is usually found to be X(13CO)
≈ 2 · 10−5 (e.g. Kahane et al., 1992, 2000; Bujarrabal et al., 1994; Schöier
& Olofsson, 2000; Schöier et al., 2011, etc.). We therefore adopt an average
value X(12CO)= 5.0 · 10−4 in our simulations.

Carbonaceous dusty winds mainly consist of amorphous carbon and silicon
carbide, 85% and 15% respectively (Srinivasan et al., 2010, and references
therein). As amorphous carbon is most abundant, its condensation temper-
ature Tc = 1500 K (Hanner, 1988) will be used as a critical temperature.
If silicon carbide is considered as well, according to Speck et al. (2009), the
average condensation temperature will decrease a bit, depending on the gas
pressure. The condensation temperature Tc determines the beginning of the
disk. Via Eq. (4.4) with q = 0.5, we find that the disk would theoretically
start at rc = 5.6 AU. As a lot of assumptions were made for this particular
temperature profile, even for the one of Eq. (4.36) which only holds at large
distances, deriving this distance theoretically is most likely not very realis-
tic. We therefore take an arbitrary start radius rc = 10 AU, which is of the
order of the ones found for the few AGB disks (Jeffers et al., 2014; Kervella
et al., 2014; Lykou et al., 2015). For later purposes we assume that the scale
height at that distance is determined by Eq. (4.19), just as at any other
place in the disk. This is not necessarily correct as the strong radiation of
the star hitting this ’wall’ of high density can inflate this region substantially.

As observers do not know how their object is oriented in the sky, it is im-
portant to model our object for a range of different orientations. Rotation
around the z-axis is unnecessary as our object is axisymmetric. Rotation
around the y-axis denotes different inclination angles and is a necessary pa-
rameter to probe. Rotation around the x-axis however, is unnecessary as
observers can choose their slice through the 3D data cube, with a certain
position-angle (PA) with respect to the declination axis, such that it coin-
cides with our fixed object. To limit the number of inclination angle but still
probe the angle-space properly, six evenly spread values between i = 0◦ and
i = 90◦ are chosen.
An overview of all parameters can be found in Tabel 5.1.
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Table 5.1: Fixed model parameters

Stellar parameters
T?(K) 2500
R? (AU) 2.0
M? (M�) 2.0
Distance (pc) 150

Disk parameters
q 0.5
f 1
CO/H2 5.0 · 10−4

rc (AU) 10
Tc (K) 1500
vturb (km/s) 1.0

Wind parameters
s 0.5
v∞ (km/s) 10
vturb (km/s) 1.0

Grid parameters
α(◦) 55
Hedge 1.4 H

Table 5.2: Variable model parameters with their labels

Parameter Values Labels

Ṁ(M�/yr)
1.0 · 10−5 ML5
1.0 · 10−6 ML6 (REF, DISK, WIND)
1.0 · 10−7 ML7

Mdisk (M�)
1.0 · 10−1 MD1
1.0 · 10−3 MD3 (REF, DISK, WIND)
1.0 · 10−1 MD1

Keplerian fraction

100% KVZ10 (REF, DISK, WIND)
90% KVZ90
80% KVZ80
50% KVZ50
0% KVZ0

Inclination (◦) n · 18 ∀ n ∈ {0, 1, 2, 3, 4, 5}
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Results

6.1 Reference model

To accurately determine the impact of each parameter, a reference model is
used to compare with. This way, degeneracy of parameter effects is limited.
It is obvious to choose a combination of average parameter values as a refer-
ence. Hence, the reference object has a mass loss rate Ṁ = 1.0 · 10−6M�/yr,
a disk mass Mdisk = 1.0 · 10−3M� and is assumed to fully rotate Keplerian.
For simplicity, parameter values are denoted with abbreviations as stated in
Tabel 5.1. For an optimum comparison, the reference model also contains
all different inclination angles. This makes it possible to perceive parameter
impacts as a function of the inclination angle. As it is not always possible
to disentangle wind and disk contributions, a wind-only and disk-only model
are simulated as well. This makes it easier to comprehend how the wind and
the disk establish themselves in the PV diagrams and line profiles. This is
particularly helpful for orientations not seen face- or edge-on as these are
much harder to envision. The contribution of the wind and disk can then
roughly be scaled to the appropriate parameter combination of mass loss rate
and disk mass. The combination of average parameter values with a wind-
only and disk-only simulation for all different inclination angles, makes this
the optimal approach for parameter comparison.

As it is not self-explanatory to visualize the complex projected velocity pro-
file of the disk, Figure 6.1 depicts regions with the same projected velocity
as a contour plot. The figure is a view from above onto the Keplerian disk
which rotates in the (x,s)-plane. The projected velocity is observed along the
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s-axis, which is the line-of-sight, with the left side rotating towards us and the
right side away from us. It is clear that the higher projected velocities arise
from regions located in the vicinity of the central star and are elongated in
the x-direction whereas lower projected velocity regions stretch to the outer
regions of the disk. Note that when looking at v = 0 km/s, one can only see
a narrow strip of the disk. The width of each contour plot depends on the
size of the velocity bins used to observe.

Figure 6.1: A top view of contour lines of projected velocity in the line-of-
sight. The S-axis denotes the line-of-sight whereas the X-axis is the horizontal
spatial axis. Negative velocities and positive velocities are towards and away
from the observer respectively.
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6.1.1 DISK model

The grid of PV-diagrams of this entire reference model is shown in Figure 6.8.
Let us first focus on the disk, this is easiest to comprehend via the X-axis col-
lapse because here the disk covers the whole spatial range. Each X-coordinate
represents a slit, at this coordinate, through the disk in the direction of the
line-of-sight. Along this slit you will encounter regions with different veloci-
ties, which can be read off from the velocity axis. All information, intensities
and velocities, in this slit is then collapsed onto the line-of-sight axis.

Collapse onto X-axis

Face-on: Consider the PV-diagram i = 0◦ where we see the disk face-on.
As our disk is rotating fully Keplerian, it only rotates in the plane perpen-
dicular to the line-of-sight. Hence, we do not see the disk rotate. This
corresponds to the disk being in the v = 0 km/s velocity bin. As expected,
on the PV-diagram, the disk is a narrow slit around zero velocity. It has
some thickness as the velocity bin is 0.5 km/s wide and there is a turbulent
velocity of 1.0 km/s.

The intensity decreases from X = 0 outwards. This can be understood with
the help of the illustration in Figure 6.2, which represents a cross-section of
the disk at v = 0 km/s. We will explain the intensity distribution in the
PV-plots by means of density, volume and opacity effects. Note however,
that due to mainly collisional excitations of CO, the temperature, and there-
fore the source function, are important factors. As we discussed before, the
emitting volume is more important than the density, therefore the outer re-
gions will contribute more to the total emission. But when collapsing onto
the X-axis, around X=0 the total emission will be largest as more material,
a larger volume, is collapsed onto the axis. Collapse onto larger values1 of
X, will only comprise a section of the outer edges, hence contributing less to
the total emission. This is exactly what can be seen on the PV-diagram.
Zooming in onto the X=0 region, we ascertain that the maximum flux does
not arise from X=0 exactly but a value a little larger. This is an optical depth
effect. At some distance along the line of sight, the disk starts to become
optically thick, which makes it much harder for the photons of the regions
behind to escape the disk. The τ = 1 level is reached the earliest for an
X=0 line-of-sight as this is where the density is always highest. Figure 6.3
illustrates a possible location of the τ = 1 level for this disk orientation.

1To keep the analysis as simple as possible, we will always talk about absolute values
unless stated otherwise.
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Figure 6.2: A slice in the line-of-sight for a face-on view of the disk at v=0
km/s. Coloured regions roughly denote the same density.

Edge-on view: Next, consider the i = 90◦ case where the disk is viewed
edge-on. Use Figure 6.4 to help visualise and analyse this complex structure.
Remember that an X-coordinate represents a slit through the disk along the
line-of-sight. All information contained within this slit is then again collapsed
onto the line-of-sight axis. A slit at X=0 is depicted in the (y,s)-plane. Such
a cross-sectional slit at higher values of X will no longer contain the inner
central regions of the disk and therefore will not contain the highest density
regions any more. A collapse of such a slit will result in a line at constant
X in the (x,s)-plane. Hence, the entire (x,s)-plane represents the collapsing
of all X-coordinate slices. It is the velocity field in this plane which needs to
be collapsed onto the X-axis to obtain a position-velocity map. The veloc-
ity field is at each Y-coordinate alike due to the fully Keplerian assumption.
This permits us to depict the velocity field in the (x,s)-plane. The illustra-
tion represents contour lines of projected velocity equal to the ones in Figure
6.1. Knowing the volume and density of the moving regions will enable us to
comprehend the different amounts of emission.

When probing the disk around X = 0 in the (x,s)-plane, both the most
rapidly and most slowly rotating regions are encountered. In the PV-diagram,
the lowest velocities2 translate to the center of the PV-diagram and the high-

2Remember we talk about absolute values



6.1. REFERENCE MODEL 51

est ones the outer edges. Collapse-lines at higher values of X no longer probe
the highest velocity regions. Therefore, the covered velocity space in the
PV-diagrams decreases for increasing X. The lowest velocity regions span a
larger X-range wherefore their contribution decreases more slowly than the
high velocities, with increasing X-value. This translates itself to the high
velocity spikes and the S-shape for lower velocities. Ideally, only the upper
right and lower left quadrant of the PV-plot should be filled. As the velocity
field is symmetric in absolute value with respect to X=0 but changes sign,
the PV-diagram is symmetric with respect to its center. Due to the finite size
of the velocity bins and the overall turbulent velocity, both quadrant ’spill’
to their adjacent velocity quadrant. This finite velocity width ensures the
distinct S-shape.

Because for each X-coordinate, the emitting volume for the lowest veloci-
ties is larger than the emitting volume for the higher velocities, the intensity,
at each X-coordinate, increases with decreasing velocity. On Figure 6.1, it
is clear that the v = 2 km/s contour region is largest. This implies that
the volume emitting a projected velocity around v = 2 km/s is largest and
will therefore contribute most to the total flux. It is without doubt not the
v = 0 km/s region which is largest. The PV-diagram, as well, exhibits a
slightly larger flux region in the outer edges of the S-shape. The outer edges
of the S-shape decrease again in flux due to low densities in the outer edges
and the boundary of our spherical grid whereby the most outer volumes de-
creases. Note that the former is the dominant term as our grid size is justified
by the low densities at its boundary. When looking closely at X=0, one can
see that there is a narrow line of less emission in the center of the S-shape.
This is due to an optical depth effect. When probing the lowest velocities
at X = 0, the line-of-sight coincides with (a large fraction of) the emitting
column which penetrates part of/the entire disk is a straight line. Therefore,
an optical depth τ = 1 is reached more rapidly then for slightly higher values
of X, which cut though, as seen on Figure 6.1, the emitting regions.3

Inclination: When analysing the effect of the inclination, one can see that,
going from i = 0◦ to i = 90◦, the narrow slit stretches out to an S-shape with
two spikes. As an indication for the battle of largest emitting volumes, the
maximum intensity get little by little smeared out from the center to the
entire S-shape. Inclining the disk also ensures that no emitting regions are
largely parallel to the line of sight, therefore eliminating the narrow strip in
the center of the S-shape. The inclination also removes the optical depth

3We note that this narrow slit is one pixel wide and the decrease in intensity might
have a numerical origin. It is exactly at X=0 which includes the central star in our model.
As LIME was originally not developed to have a central object of immense intensity, it can
be that it has trouble coping with this.
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Figure 6.3: X-slice of a face-on view of the disk at v = 0 km/s with a possible
τ = 1 level.

effect of the i = 0◦ model as the highest possible density column, the mid-
plane, does not get probed entirely anymore.

Collapse onto Y-axis

Face-on view: Let us know consider the collapse onto the Y-axis. Again
starting with the face-on view, i = 0◦. This looks exactly the same as in the
previous case, which is trivial as the disk is spatially symmetric when seen
face-on.

Edge-on view: The edge-on PV-diagram looks quite different from the
previous case, here the disk does not span the entire spatial axis because we
cut off the disk at an angle α (see Eq. (4.65)). The maximum value of the Y-
coordinate equals Hf . Again Figure 6.4 is extremely helpful to visualize the
3D structure with complex 3D projected velocity field. This time however, a
slit is taken in the Y-direction along the line-of-sight. All information in this
slit is again collapsed onto the line-of-sight axis. A slit at Y=0 is depicted
in the (x,s)-plane. The cross-sectional slices at higher values of Y will be a
circular shell as the inner regions of the disk are confined to a limited height.
A collapse of all cross-sections onto the line-of-sight-axis is depicted in the
(y,s)-plane. As the velocity field is invariant under height, it is easiest to
focus on the (x,s)-plane, collapsing this information onto the line-of-sight-
axis while keeping in mind, via the (y,x)-plane, which regions are probed at
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particular Y-coordinates.

In the (y,s)-plane, one can see that the Y=0 slit probes all regions of the
disk. As all regions are probed, all of velocity space is probed as well. Again
with the lowest velocities represented by the center of the PV-plot and the
highest ones at the edge. When increasing the Y-value, as seen on the (y,s)-
plane, the inner disk regions are no longer probed. Therefore, a hole emerges
in the center of the (x,s)-plane. Because of this, the highest velocities are no
longer probed resulting in a more narrow shape in the PV-plot. As all highest
velocities are confined within a small inner region, the loss of high velocity
space in the PV-diagram will be quite rapidly. Lower velocities are spread
out over a larger radial area whereby their loss in the PV-diagram is more
gradually. This gives the PV-diagram its distinct shape, slowly narrowing
for increasing Y with two spikes at small Y.

It is obvious that the slit at Y=0 contains the largest volume and has the
highest density as it is a slice through the midplane. Increasing in height
the emitting volume will decrease, as will the density. Hence, the total flux
decreases with increasing values of Y. The PV-plot neatly displays this be-
haviour. A dip in the v = 0 km/s bin with respect to the others is due to
the emitting volume being parallel to the line-of-sight, just as for the previ-
ous edge-on PV-plot. Here however, it applies to all Y-coordinates as each
of Y-slit contains this emitting region. The less emitting narrow line in the
center of the PV-diagram is due to the same reason as discussed above. For
slightly large values of Y, this effect also comes in to play but as the density
is lower, this is less apparent. The combination of these sudden drops in
intensity cause the specific colour pattern in the center of the PV-plot.
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Figure 6.4: Representation of 3D disk viewed edge-on. X- and Y-axis denote
horizontal and vertical spatial coordinates respectively. The S-axis follows the
line-of-sight. The (x,y)-plane denote a slice at s=0, the (y,s)-plane represents
a slice at X=0 and the (x,s)-plane represents a slice at y=0. Coloured areas
represent roughly the same density. The projected velocity contours (cfr.
Figure 6.1) in the line-of-sight are illustrated in the (x,s)-plane.

Inclination: Inclining the disk from face-on to edge-on will result in a
decrease in spatial coverage of the disk and an increase in projected veloc-
ity. This is visible in the evolution of the PV-diagrams as the narrow slit is
contracted in the Y-range and stretched in the velocity space. During this
inclination, two new optical depth effects arise. One is most clearly visible
at i = 36◦, where a hole of less emission is created. To simplify the analysis,
consider viewing the disk at v = 0 km/s. The contour line v = 0 km/s in
Figure 6.1 denotes the emitting region. This region does not change when
inclining the disk. Figure 6.5 shows the line-of-sight of the Y-value which de-
notes the most upper point of the inner edge, for different inclination angles.
All Y-values below this limit probe much smaller volume as they cut off part
of the disk, resulting in a lack of emission. The higher the inclination, the
higher this Y-limit, the larger the gap in the PV-diagram. This gap disap-
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pears at an inclination α, which denotes the disk/wind interface. From this
inclination onwards, the line-of-sight always needs to probe the entire length
of the disk. This reasoning was done for v = 0 km/s but holds as well for the
slightly larger values with the difference being the size of the gap, as can be
seen in the PV-plots.

The second opacity effect can be seen most clearly for inclinations i = 36◦ and
i = 54◦. Here, the upper part of the PV plot shows more emission than the
lower part. Following both lines-of-sight at an inclination i = 36◦ on Figure
6.5, one notices that the upper line first encounters a higher density than the
lower line does. The upper line therefore will reach an optical thick regime
more rapidly than the lower one, resulting in less emission in the upper part.
This effect is enhanced because the upper line goes from a small emitting
region to a larger one. The lower line already probes larger emitting volumes
first. This reasoning holds for all inclination angles between the face- and
edge-on, and applies to the entire velocity field.

Figure 6.5: The coloured lines represent the lines-of-sight at different incli-
nation angles through the region of the disk that is emitting with projected
velocity v = 0 km/s. Starting from i = 0◦ (black) to i = α (pink). The
coloured areas viusally denote the area under the line. Note that this is a
zoom in on the inner region of the disk.
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6.1.2 Bipolar WIND model

Now let us turn to the less complex bipolar wind. Following the same proce-
dure as for the disk, we first take a look at the collapsed data cube onto the
X-axis.

Collapse onto the X-axis

When viewing a spherical wind, the whole velocity space has to be covered as
the total velocity vector goes from completely away from us to perpendicular
to the line-of-sight upto coming completely towards us. By this means, the
projected velocity takes all values between both extremes. Here however, a
disk obstructs part of the wind, which will erase part of the spherical wind
PV-diagram. Note that we will not model a spherical wind but a bipolar one,
still satisfying the geometrical separation, as we are interested in the impact
of the latter on the PV-plots and line profiles.

Face-on view: When viewing our bipolar wind face-on (i = 0◦), the disk
ensures that the spherical part with lower projected velocities is not reached
by our bipolar model. This gap in velocity space is clearly visible in the
PV-diagram. Figure 6.6 will help visualize these complex projections. The
(x,y)-plane represents a projection of the whole wind in the line-of-sight. The
(y,s)-plane depicts a slit at constant value X=0, whereas the (x,s)-plane dis-
play a slit at Y=0. As the velocity field in not invariant to any coordinate,
it is illustrated on both cross-sections. To produce the velocity plot for the
X-axis collapse, all information of an X-coordinate slit needs to be projected
onto the line-of-sight-axis.

Looking at the X=0 slit, via the (y,s)-plane, one can see that all possible
velocities are probed. This is also clear when viewing the PV-diagram. Go-
ing to higher values of X, note that the cross-sectional slit no longer looks
like a double cone, but rather to a double cone without the inner part. Fol-
lowing a line of constant X in the (x,s)-plane can help visualize this. At this
value, the inner column of the cone is no longer probed whereby the largest
velocities are no longer visible. This increasing lack of higher velocities for in-
creasing X-values, translates itself into the distinct slopes in the PV-diagram.

As a slice through X=0 encloses the largest possible volume, the maximal
emission is located here and decreases with increasing X. Each velocity is
emitted from a conical shell and as we have a spherical grid, the volume
of each of these shells is equal which should result in an evenly distributed
flux over velocity space. However the highest velocities contribute less as
they arise from higher density regions for which optical thickness is reached
more rapidly. This increase in flux towards lower velocities declines again
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at a certain velocity, this turning point is represented by the red dot in the
PV-diagram. This is due to the constant battle between optical thickness
and the density. Note that for high optical depths still some percentage of
the photons escape which for strongly emitting high density regions can still
contribute significantly.

Figure 6.6: Representation of the 3D wind viewed face-on. X- and Y-
axis denote horizontal and vertical spatial coordinates respectively. The
S-axis follows the line-of-sight. The (x,y)-plane denotes a slice at constant
s-coordinate, the (y,s)-plane represents a slice at X=0 and the (x,s)-plane rep-
resents a slice at y=0. Projected velocity, in the line-of-sight, is illustrated
with coloured arrows, where each colour represents the same magnitude.

Edge-on view: Next, consider the PV-diagram when the wind is seen edge-
on. Figure 6.7 will be quite useful interpreting this plot. The (y,s)-plane
depicts a slice at X=0 through the cone. The (x,s)-plane on the other hand,
represents a cross-section at constant Y where the concentric circles denote
the conical shells. Note that these circles reduce in size for decreasing values
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of Y, but still preserve the conical shell shape.
Looking at the X=0 slices, one can see in the (y,s)-plane that all possible ve-
locities are probed. Cross-sections of increasing X, again, no longer contain
the inner parts of the cone, as can also be seen in the (x,y)-plane. Examin-
ing the (x,s)-plane learns us that at these higher X-coordinates the highest
velocities are no longer probed. This decrease in velocity space for increasing
X, expresses itself in the slopes in the PV-diagram resulting in the almost
circular shape.

As for each X-slice, all velocity emitting volumes are equal in size, the flux dis-
tribution should again be evenly distributed over velocity space. However, as
the density increases inwards the lower velocity regions will contribute more
as this is where they are situated. Yet, increasing density will permit the
optical thick regime to be encounter more rapidly. This balance gets tipped
over in favour of the optical depth as some turning velocity, which for the
X=0 slices is denotes by the most red dot. From this point onward, the emis-
sion will decrease again. This effect is less apparent at higher X-coordinates
as there, the densities are lower and this optical depth effect might not even
be in play. One can also see that there is a trace of blue wing absorption
which arises as the cold, low density regions are probed first for the negative
velocity whereas for positive velocity, a hotter and more dense region is en-
countered before reaching an optical thick regime. It is the temperature and
source function which are responsible for this effect.

Inclination: Inclining the conical wind will allow for the presence of lower
projected velocities. When it has been tipped over by more than the inner
angle of the cone α, the highest projected velocity will no longer be seen.
This is clearly visible in the PV-diagram, the outer edges start from v =
15 km/s for i = 0◦ and decline to about v = 10 km/s for i = 90◦. The
battle between optical depth and density is most clearly visible around X=0
and depends on what density regions a line-of-sight penetrates, which of
course depends on the orientation of the wind. The blue wing absorption
also decreases with higher inclination which depends on the first encountered
density regions of the line-of-sight for opposite velocities, which obviously
changes with inclination.
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Figure 6.7: Representation of the 3D wind viewed edge-on. X- and Y-axis
denote horizontal and vertical spatial coordinates respectively. The S-axis
follows the line-of-sight. The (x,y)-plane denote a slice at constant s=0, the
(y,s)-plane represents a slice at x=0 and the (x,s)-plane represents a slice at
constant y. Projected velocity, in the line-of-sight, is illustrated with coloured
arrows, where each colour represents the same magnitude.

Collapse onto Y-axis

Face-on view: Let us now turn to the collapse of the data cube onto the
Y-axis. Due to the symmetry of the cone, the face-on view is exactly the
same as for the X-collapse.

Edge-on view: The edge-on view, on the other hand, looks quite differ-
ent. Figure 6.7 will again be of great use for the comprehension of the yielded
data. As stated before the (x,s)-plane is a slit at constant Y. This circular
size decreases for decreasing Y, as seen on the (y,s)-plane, but the velocity
fields stay identical. To render the PV-plots, all information on such a slice
needs to be collapsed onto the line-of-sight-axis.
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Consider a slit at Y=0, according to the (y,s)-plane only a tiny part of the
cone in probed but it is too small to be discernible on the PV-diagram. This
also holds for slightly larger Y-values, hereby a narrow blue line is present in
the PV-diagram. Increasing the Y-coordinate, the probed volume becomes
significant and as shown in the (x,s)-plane, all possible velocities are encoun-
tered. When reaching the Y-value where the upper spherical part of the cone
starts, the highest velocities will no longer be probed when increasing the
Y-coordinate. The former results in a rectangular shape whereas the latter
produces the rounded shape in the PV-diagram.

The intensity increases with increasing Y because the radius of the circu-
lar slit increases resulting in a larger emitting volume hence a more extensive
flux contribution. Reaching the spherical part of the cone, the cross-section
decreases again resulting in less emission. The emission for large velocity
values is less because, as seen on the (x,s)-plane, the highest velocities only
arise from the outer regions whereas the lower ones emerge from the regions
throughout the whole cone, giving the latter a larger emitting volume which
leads to a higher flux in the PV-diagram.

Inclination Inclining the bipolar wind, is like inclining a double cone,
which is exactly what you see on the PV-diagrams. From a cone lying down,
for i = 0◦ to one standing up when i = 90◦ is reached. The red parts denote
the interplay between high optical depth and high density emission.

6.1.3 REF model

PV-diagrams

After a thorough interpretation of both wind and disk PV-diagrams, we now
can combine them to understand the PV-diagram of the reference case (REF).
Here, one can see that the disk is the dominant contributor of flux. The dom-
inance of disk and wind will vary depending on the parameter combination.
One just has to give a different weight to the contribution of WIND or DISK
model in order to lift the degeneracy in the combined models. This is the
strength and whole purpose of the DISK and WIND model. You only have
to keep in mind, that when disk en wind overlap in the line-of-sight, optical
depth effects might come into play which were not present in either one of
the separate models. Therefore it is not just adding up two PV-plots.

Line profiles

PV-diagrams are not the only way to analyse a complex outflow structure.
Line profiles provide an excellent overview of the global velocity structure.
These give an insight on how much material is being propelled and at which
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velocities. The line profiles of the reference model are shown in Figure 6.9.
Once again, it is easiest to first consider both DISK and WIND models to
get a notion of what their impact is on the global line profile.

Let us start with the disk model which has a peak around v = 0 km/s when
seen face-on. This is exactly what we expect from previous discussion in sec-
tion 6.1.1 . When inclining the disk, the area under the peak gets distributed
over larger velocities. This central peak reaches its lowest amplitude when
the disk is seen edge-on. A small dip in the top of the bulge at i = 90◦
can be seen mainly due to the optical depth effect of the edge-on disk when
projected onto the Y-axis.
When looking face-on, the WIND model shows two distinct peaks with a gap
in velocity space. This gap, as discussed above, arises as the disk prohibits
these low projected velocities to be reached. When inclining the wind, the
area under both peaks is spread out to lower velocities. Between i = 36◦ and
i = 54◦ a turning point has been reached where the inner velocities become
the more dominant contributors. The exact turning point is at an inclination
itp = α, which denotes the inner angle of the bi-conical wind. As discussed
above, from this point onwards, the maximum projected velocity will decrease
as can be seen when looking at the velocity range in the edge-on profiles.
Combining both models results in the REF model. For this average parame-
ter combination, the wind contributes less to the total emission. The contrast
between wind and disk emission, however, will decrease for increasing incli-
nation angle.
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Figure 6.8: The PV-diagrams of the
models REF, DISK and WIND, each
spanned over two rows. The top row
of each model represents a collapse of
the 3D data cube onto the X-axis. The
bottom row of each model represents
the collapse of this data cube onto Y-
axis. Each column presents an image
of the PV-diagram at a different incli-
nation angle. The colours represent the
amount of flux with red the maximum
amount and blue the least. It is im-
portant to note that none of the PV-
diagrams are on the same scale. The
bottom axis represents projected veloc-
ity space. Each model takes parameter
values according to Tabel 5.2.
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Figure 6.9: Line profiles for the models REF, DISK and WIND with their parameter combination given in Tabel 5.2. Each column represents an
inclination angle by which the structure is oriented. The line profiles denote the amount of flux in Jansky as a function of velocity in the line-of-sight.
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6.2 Mass loss rate

The range in mass loss rate for AGB-stars is quite broad, as mentioned above
the star can lose 10−8M�/yr up to 10−4M�/yr. This range of several orders
of magnitude will definitely impact the radiative transfer through the bipolar
wind. We therefore need to examine the impact of a change in mass loss rate
in the radiative output and how we can observe this. It might be that the
changes in PV-diagram are non-significant but the line profiles show some
clear distinction. It can be as well that some dramatic optical depth features
become apparent. As stated above, we will only change the mass loss rate
parameter in the REF model to inspect its impact. The PV-diagrams of the
models high mass loss (ML5), the reference case (ML6) and low mass lose
(ML7) are displayed in Figure 6.10 with parameters given in Tabel 5.2. To
simplify the comparison with the reference model, ML6=REF is depicted in
the central part of the figure.

PV-diagrams: Let us start with the lower mass loss rate ML7. This low
mass loss rate supplies less material to the conical shape, resulting in less
emission. The contrast between high and low emission contributions of this
wind on the PV-plot, as is clear in the WIND model, are slightly to non-
visible. This limited visibility will definitely not be distinguishable from
observations. Optical depth effects are not visible either, this due to the
slim emission contrast but also, as the density is lower, these effects are less
profound.
The high mass loss model ML5 on the other hand, shows a large impact on
the PV-plots. When the wind and disk emission regions in the PV-diagram
overlap, which is most clearly at i = 90◦, the strong wind emission alters
the disk emission part. For the X-collapse, the small emission region of the
inner part of the cone (around X=0) will now have a high enough density to
contribute to the disk emission in this region. Therefore the two horizontal
spikes broader, as compared to the ML6 model. The rectangular shape of the
wind-PV is significant enough to alter the global view of the PV-diagram. For
the edge-on Y-collapse PV-plot, the central region gets blown up, eliminating
the nicely delimited spikes visible in the ML6 model. The highest flux regions
are no longer in the outer parts of the S-shape but are in the inner part as the
wind contributes a lot to the center but only a little to the edges, as can also
be seen in the WIND model. These extra wind contributions have shifted the
high emission regions in the for PV-plots where both wind and disk overlap.
Optical depth effects are stronger and therefore also more clearly visible. The
blue wing absorption when seen face-on is quite noticeable.

Line profiles: The line profiles are displayed in Figure 6.11. When com-
paring the three models for the face-on case, it is clearly visible that the
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bulges, due to the wind, are more apparent for the high mass loss than for
the loss mass loss rate, which is of course what we would have expected. You
may also notice that the bulges are sharper for high mass loss and flatter for
the ML6 model. This sharpening is due to the optical depth effect, which is
more profound for higher mass loss. If the lowest mass loss rate bulges would
have been more clearly visible, we would expect these ones to be the most
flat, as the optical depth effects are minimal or even non-existent.
Looking at the edge-on case, we can clearly see that the higher mass loss
rate will give rise to a larger overall intensity as the wind emission gets more
important. As expected, the weak wind will be almost indistinguishable from
a pure disk model. Notice that for the strong wind, a clear dip in the top of
the bulge arises. This is an enhancement of the optical depth effect already
present, as discussed above, in the disk around v = 0 km/s. As the lines-of-
sight not only penetrate the disk but also the wind, the optical depth effect
increases the contrast between optical thin and thick velocity-region. This
contrast increases with increasing density, hence increasing mass loss rate.

As always, increasing inclination lowers the highest amplitude peak by spread-
ing its area over higher velocities. The velocity gap, for i = 0◦ gets filled as
well, reaches a plateau for i = α and keeps increasing onwards.
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Figure 6.10: The PV-diagrams of the
models ML5, ML6 and ML7, each
spanned over two rows. The top row
of each model represents a collapse of
the 3D data cube onto the X-axis. The
bottom row of each model represents
the collapse of this data cube onto Y-
axis. Each column presents an image
of the PV-diagram at a different incli-
nation angle. The colours represent the
amount of flux with red the maximum
amount and blue the least. It is im-
portant to note that none of the PV-
diagrams are on the same scale. The
bottom axis represents projected veloc-
ity space. Each model takes parameter
values according to Tabel 5.2. This grid
of models shows the impact of the mass
loss rate on the PV-diagram.
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Figure 6.11: Line profiles for the models ML5, ML6 and ML7 with their parameter combination given in Tabel 5.2. Each column represents an
inclination angle by which the structure is oriented. The line profiles denote the amount of flux in Jansky as a function of velocity in the line-of-sight.
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6.3 Disk mass

The range in disk mass can be several orders but as discussed above we will
limit ourselves to a range between Mdisk = 0.1M� and Mdisk = 1.0 ·10−5M�.
A difference of orders of magnitude will definitely impact the radiative trans-
fer through the disk. We would expect that the intensity of the more heavy
disk will be higher than for the small disk as it has much more material that
emits. Optical depth effects will probably be more important as well. The
PV-diagrams and line profiles are depicted in Figures 6.12 and 6.13 respec-
tively.

PV-diagrams For the low mass disk we expect the same result as for the
ML5 model discussed earlier because it is the contrast/ratio between disk and
wind which is most important for the global view of the PV-diagram. The
only difference here is the wind being more dominant than the disk. Optical
effects will obviously be different as well. When comparing the ML5 model
with the MD5 model, we do notice that the global view of the PV-plots look
similar. Just the disk contribution parts are less intense what puts the most
intense emission parts, red in the plot, in the wind sections. The optical
depth effect which gives rise to an increase in emission in the upper disk
part for inclined disks models is no longer visible. The creation of the gap
for inclination between i = 0◦ and i = α, on the other hand, is still visible.
Both effects are discussed in the paragraph ’Inclination’ for Y-collapse PVs
of the DISK model section. The optical depth effect which reduces the inten-
sity around v = 0 km/s for the edge-on Y-collapse PV is even more apparent.

Due to computational issues, we are not able to infer information from the
heavy disk output. For some reason, LIME has difficulty distinguishing wind
from disk when appointing the grid cells.
However, we only expect the disk emission areas in the PV-plots to be more
intense with an increase in optical depth effects.

Line profiles: As expected the line profiles for the low mass disk resemble
the strong wind ML5 model. The only difference being the scale of the
intensity. Due to this intensity with respect to most models, small differences
are more apparent in the line profiles. As the spectral signatures of the heavy
disk are not usable, we cannot compare both extremes. As always, the impact
of the inclination is severe.
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Figure 6.12: The PV-diagrams of the
models MD5, MD3 and MD1, each
spanned over two rows. The top row
of each model represents a collapse of
the 3D data cube onto the X-axis. The
bottom row of each model represents
the collapse of this data cube onto Y-
axis. Each column presents an image
of the PV-diagram at a different incli-
nation angle. The colours represent the
amount of flux with red the maximum
amount and blue the least. It is im-
portant to note that none of the PV-
diagrams are on the same scale. The
bottom axis represents projected veloc-
ity space. Each model takes parameter
values according to Tabel 5.2. This grid
of models shows the impact of the disk
mass on the PV-diagram.



70
C

H
A

PT
ER

6.
R

ESU
LT

S

-10 0 10

12

36

60

i = 0 ◦

-10 0 10

i = 18 ◦

-10 0 10

i = 36 ◦

-10 0 10

i = 54 ◦

-10 0 10

i = 72 ◦

-10 0 10

i = 90 ◦

-10 0 10

100

300

500

F(
v)

 (
Jy

)

-10 0 10 -10 0 10 -10 0 10 -10 0 10 -10 0 10

-10 0 10

100

300

500

-10 0 10 -10 0 10 -10 0 10 -10 0 10 -10 0 10
v (km/s)

M
D

 5
M

D
 3

M
D

 1

Figure 6.13: Line profiles for the models MD5, MD3 and MD1 with their parameter combination given in Tabel 5.2. Each column represents an
inclination angle by which the structure is oriented. The line profiles denote the amount of flux in Jansky as a function of velocity in the line-of-sight.



6.4. KEPLERIAN VELOCITY ZONE 71

6.4 Keplerian velocity zone

Our assumption of a fully Keplerian disk is, as discussed before, probably not
the most realistic one. We therefore introduced a transition zone between
disk and wind which lets the wind penetrate the disk radially and gradually
decrease in magnitude. How fast this decline in magnitude really is and when
it vanished, depends on the parameter k and the angle ζ, where this latter
is determined by stating what fraction of the disk only rotates Keplerian. In
reality this fraction and steepness of decline will probably depend on both
wind and disk properties. A strong wind will penetrate the disk more deeply.
A heavy, dense disk will let the wind only penetrate its surface. We, however,
do not take in account these effects. We will only probe the effect of the
extent of this transition zone on the PV-diagrams and line profiles for our
reference case. Intuitively, we believe that an intermediate zone of no more
than twenty percent is the most realistic one. As a toy model, we will also
probe a disk which is only 50% Keplerian and one for which the wind has
penetrated it completely. The PV-plots for all five different models, with
their respective parameter combination given in Tabel 5.2, are presented
in Figure 6.16. Because the velocity profile is to complicated we can no
longer use illustrative representations, hence we need to rely on computed
contour plots. Due to its 3D complexity, no easy projections are helpful.
Therefore, we provide four X and Y slices through the disk which will enable
us to compose a rough view of the velocity field. They will also provide
the necessary information to reproduce the PV-diagrams. As the smallest
transition zone models do not show large dissimilarities, we will first analyse
the more extreme models.

KVZ50 model: Let us start to discuss the KVZ50 model. Consider the X-
collapsed data cube for an edge-on view of the disk. X-and Y-slice projected
velocity contour plots are shown in Figure 6.14 respectively, at coordinate
values depicted in the figures. For this PV-diagram, the X-slices are useful
to take a look at. Similar to the 3D representations, all information on these
plots needs to be collapsed onto the line-of-sight. The inner Keplerian parts
ensures the double spiked S-shape. At X=0, one can see that the full velocity
space is run through. For increasing values of X, the highest projected veloc-
ities are no longer present, hence the two slopes in the PV-diagram. One side
of velocity space declines less rapidly than the other, depending on which side
of the disk is probed. This is because the radial wind is counteracting the
disk rotation on one side and aiding it for the opposite rotation part. From
the X=10 AU slice, one can see that the most extreme velocities make up a
significantly large section of the disk. This translates itself in the two high
intensity dots in the PV-diagram. Increasing the X-coordinate evens out all
emitting volumes to roughly equal size, resulting in a uniform increase of
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flux throughout the PV-plot. Do not forget that the bipolar wind intensity
contribution is also contained in this plot but as the wind is not altered by
this transition zone this does not change.

Next, consider the Y-collapse for a disk seen edge-on. The distinct shape
of a bipolar wind is still conserved. The disk contribution, however, loses its
top and bottom as these mainly arise from large emitting volumes at high
Y-values. This region is now replaced with a transition zone, redistributing
the emission from the lost top and bottom part. Figure 6.14 tells us that for
all Y, the entire velocity space is covered. The spherical part of the wind,
which is at the edges of the Y-axis, does not contain a transition zone and
hence is not affected. At high Y, it is clear from Figure 6.14 that the high-
est velocity regions are largest, therefore they contribute most to the total
emission. When decreasing in Y, the maximum intensity contribution gets
evened out towards lower velocities, as volumes become roughly equal in size.
While decreasing in Y, the Keplerian velocities become more dominant than
the transition zone contributions as this latter zone reduces in size.
Note that no additional optical effects come into play as the transition zone
consists of a lot of narrow velocity regions, thence it is not able to reach a
high optical thick regime.

KVZ0 model: Let us now consider the KVZ0 model where we will first
take a look at the X-collapse PV-plots. For i = 90◦ the PV-plot does, at
first sight, not look anything like the ones before, the S-shape is completely
obliterated. Note however that by tuning the colour range of the intensity
maps, this might not be the case. At X=0 we see that all of velocity space
is probed. Just like in the previous situation, this range diminishes asym-
metrically for increasing X. Let us take a look at the X-slices of this velocity
field, displayed in Figure 6.15. On all slices, around Y=0 there is still some
little part which rotates Keplerian. This is because the radial contribution
has almost no contribution at the midplane of the disk as here the smoothing
function drops to zero. Therefore, we can still see a faint S-shape in the
PV-diagram. As can be seen on the slice at X=0, the highest velocities have
the largest areas, hence highest flux on the PV-plot. The PV-diagram also
shows signs of blue wing absorption for these high emission regions. This
is because these emitting regions cover the whole length of the disk and are
large enough to notice this optical depth effect. This holds for X-coordinates
close to X=0.
The Y-slices in Figure 6.15 provide a tool to comprehend the Y-collapse PV-
diagram. Again at the outer edges in Y-space, the higher velocity zones are
a bit large. When decreasing in Y, the lower ones become larger and there-
fore more dominant. As the radial contribution has dropped almost to zero
around the midplane, no large high velocity regions are present here. This



6.4. KEPLERIAN VELOCITY ZONE 73

shift in maximum emission is represented by the curves in the PV-plot. As
all volumes are quite small, the density is an important factor for the total
emission. As this is highest in the midplane, this region will contribute more,
as can be seen in the PV-plot.

General: The impact of the transition zone for a face-on view is straight-
forward. Look at it as an extension of the wind. When seen face on, the edges
of the wind-cone provide the lower projected velocities. As the cone extends,
lower projected velocities are reached. A decreasing Keplerian fraction model
will have an increasing transition zone whereby the gap of low velocities gets
little by little filled. This is exactly what we see going from top to bottom for
i = 0◦ in Figure 6.16. For large transition zones, the intensity of this velocity
gap exceeds that of the wind contribution as the transition zone keeps the
density profile of the disk, which is higher than that of the wind.

The effect of the inclination is somewhat difficult to analyse profoundly. In
general, the transition zone takes over part of the disk and smears this inten-
sity out over all of velocity space. Optical effects on the disk will decrease as
well due to less disk-velocity material

Line profiles: The decrease in disk-flux with increasing transition zone
can also be seen in the line profiles, presented in Figure 6.17. By following
a column at each inclination, we can see that the central peak decreases in
amplitude. For i = 0◦ the ’lost’ disk emission redistributes itself by the
visually filling of the velocity gap. For the extreme cases this region is even
more dominant than the highest velocities. The peak at v = 0 km/s did
not vanish as due to the decrease in magnitude, with deeper penetration, the
region around the midplane still rotates nearly Keplerian. As this is the most
dense region, it radiates most strongly.
As discussed above, for the edge-on view the original disk emission gets spread
out over all of velocity space. This translates itself in the line profile as
a decrease of the central peak with its area spread out over all velocities,
flattening the whole line with increasing transition zone.
Inclining the object has the same effect as always, contributing to the low
velocities and decreasing the central peak.
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Figure 6.14: X- and Y- slices through the disk at Y- and X-coordinates of 240, 160, 80, 0 AU, respectively for the model KVZ50. Colour regions
denote the equal projected velocity in the line-of-sight (S-axis).
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Figure 6.15: X- and Y- slices through the disk at Y- and X-coordinates of 240, 160, 80, 0 AU, respectively for the model KVZ0. Colour regions
denote the equal projected velocity in the line-of-sight (S-axis).
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Figure 6.16: The
PV-diagrams of the
models KVZ100,
KVZ90, KVZ80,
KVZ50 and KVZ0,
each spanned over
two rows. The top
row of each model
represents a collapse
of the 3D data cube
onto the X-axis. The
bottom row of each
model represents
the collapse of this
data cube onto Y-
axis. Each column
presents an image of
the PV-diagram at a
different inclination
angle. The colours
represent the amount
of flux with red the
maximum amount
and blue the least.
It is important to
note that none of
the PV-diagrams are
on the same scale.
The bottom axis
represents projected
velocity space. Each
model takes parame-
ter values according
to Tabel 5.2. This
grid of models shows
the impact of the Ke-
plerian disk fraction
on the PV-diagram.
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Figure 6.17: Line profiles for the models KVZ100, KVZ90, KVZ80, KVZ50 and KVZ0 with their parameter combination given in Tabel 5.2. Each
column represents an inclination angle by which the structure is oriented. The line profiles denote the amount of flux in Jansky as a function of
velocity in the line-of-sight.
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6.5 Non-observable properties

Up to this point, we discussed the significant impact of three model param-
eters. Yet, there are still numerous parameters which we kept fixed but in
principal can be varied. When you think of temperature, density or velocity,
you would assume that these physical quantities will have some influence on
the global object and will therefore present itself in the output data. Nev-
ertheless, we have ascertained that this is not always true when inspecting
the PV-plots or line profiles. Different density profiles, within the theoretical
framework established above, do not significantly alter the PV-maps or line
profiles. This is the case for the slightly different steepening temperature
profiles. As this latter is theoretically coupled to the amount of flaring of
the disk, via relation (4.55), the physical shape of the disk will not be ex-
tractable from PV-plot nor line profiles. Note that our simulated data is scale
free but in real-life we observe absolute intensity which might act a a probe
for the density and temperature profile. Modelling different CO rotational
lines, which are temperature dependent, might also give more insight this
these profiles due to their relative changes.
A fast accelerating wind is indistinguishable from a wind with constant veloc-
ity as this acceleration mainly occurs in the inner region and rapidly reaches
its terminal velocity. Therefore it will be even less likely that we are able
to differentiate between different accelerating wind profiles. It might be pos-
sible when we are dealing with a slowly accelerating wind. However, this
completely misses the goal of the PV-diagrams and line profiles. They serve
as a tool to be able to infer and compare morphological features for a wide
range of object possibilities.
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Conclusion

Coming back to the main goal of this thesis: “Providing an overview of ob-
servable features intrinsic to certain morphologies of the structure within the
outflows of evolved stars.”, where we limited ourselves to a disk-like struc-
ture with a bipolar outflow. We aspired to achieve this goal by solving the
inverse problem of deriving a three dimensional velocity distribution from
two dimensional images. The fact that we are only able to observe velocity
components projected into our line-of-sight and we have no idea how our ob-
ject is oriented, makes this even more challenging. This thesis research has
succeeded in performing the first steps towards the ultimate goal of being able
to model complex morphologies in these outflows. We started from a simple
analytic model for which we simulated observable data. Furthermore, this
output has been manipulated into position-velocity diagrams and line pro-
files in order to be usable not only to infer different parameter impacts but as
well for comparison with realistic observations. The former is performed for
three different parameters, namely the rate of mass loss of the central star,
the mass of the circumstellar disk and the fraction of the disk which rotates
with a Keplerian velocity law. Since the orientation of the object plays a
crucial role for observations, the impact of inclination is considered as well.
An extended overview of these parameter impacts on the position-velocity
diagrams and line profiles is presented in Chapter 6.

The disk and wind morphologies give rise to quite distinct shapes in the
position-velocity diagrams. This enables us to purposely search for this pe-
culiarities in observed data. As both disk and bipolar wind show largely
different shapes, we are able to disentangle them and infer some of their

79
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properties. Taking a quick glance at the line profile can already infers a lot
of information because we know how wind and disk contribute to this line. As
expected, the inclination has a tremendous effect on both position-velocity
maps and line profiles. This allows the observer to constrain the inclination
which will facilitate the determination of other properties. Line profiles and
position-velocity diagrams are complementary tools to more efficiently dis-
entangle wind from disk therefore creating a more correct view of the three
dimensional kinematics and morphology of the object.

Within this thesis framework, we did not only provide the building blocks of a
much larger goal, we have also demonstrated that it is possible to determine
kinematic and morphological properties of such an object. Both position-
velocity maps and line profiles enable the observer to determine the ratio of
mass loss rate and disk mass. Our introduction of a transition zone which
smooths out wind-disk interactions at their boundary, allows us to make an
estimate of the velocity field in this region of real astronomical objects.
But not all properties are derivable from these manipulated tools. Tempera-
ture nor density profiles within such a disk can be inferred from them. Both
contribute similar to the output as an increase in temperature or density
results in an increase in yielded intensity, hence these parameters are degen-
erate. However, absolute intensity maps of real observations might allow us
to probe these distributions. The relative differences between different CO
rotational lines, which are a measure for temperature, may act as a probe
as well. We limited ourselves to simple analytic profiles as at present time
we do not have a good theoretically substantiated temperature nor density
profiles. We did not probe more complex distributions because without a
theoretical basis it is not useful to randomly start guessing. Theory suggests
that disks will exhibit flared edge. We however determined that the amount
of flaring will not be visible in the position-velocity diagrams and even less so
in the line profiles. As an accelerating wind rapidly reaches its terminal ve-
locity, it becomes indistinguishable from our constant velocity wind. Hence,
it will not be possible to differentiate between different accelerating winds
from PV-plots or line profiles for real astronomical observations.
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Future prospects

This thesis research represents the foundation for disk morphology studies
in outflows of evolved stars. Therefore, several improvements can be made.
Continuing on this particular model, a better criterion for the distinction
between disk and wind can be sought after. Our geometric separation is still
justified by a loss of only 5% of disk mass but a non-geometric separation
based on physical quantities will surely be more realistic. Subsequently, the
velocity profile in our transition zone is very crude. A velocity profile which
considers the physical impacts of two mediums of different density shearing
with different velocities, will better describe reality. It is most likely that
Kelvin-Helmholtz instabilities will arise. Taking into account the correlation
between properties of disk and wind, and the shearing impacts will provide
a transition zone which leans more closely to reality. As stated before, sim-
ulating other CO rotational lines might allow us to probe the temperature
distribution within our object.

The next step in the process is to simulate instrumental artefacts onto our
output. For this the Common Astronomy Software Applications (CASA, Mc-
Mullin et al., 2007) package can be used. This will allow us to state which
observables are visible from actual observations. It is also a tool to figure
out which dish, antenna and baseline settings of ALMA are most suitable for
our disk-like object. These correctly simulated observational data can then
be compared with actual observations. Performing this latter for a multitude
of disk objects will provide insight in the physical properties and enable us
to revise our theoretical understanding of disks in evolved stars. Our simple
analytic model can then extended according to this more complete theory.

81
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This iterative process will keep increasing our knowledge of disks in AGB
stars.

As the still limited amount of observations already reveal a wide range in
velocity distributions, it will be useful to simulate these as well and not re-
strict ourselves to a simple Keplerian disk. According to observations, a
symmetrically expanding disk and fast bipolar jets are two interesting veloc-
ity distributions. Combinations of suggested profiles will of course also be
interesting to analyse. Consideration of magnetic fields by MHD simulation
will also have an impact on the observational data.

A more correct temperature profile can be attained by iteratively solving
radiative transfer of a disk which is also subjected to conservation of en-
ergy and thermal equilibrium, e.g. MCMax (Min et al., 2009). This output
temperature profile can then be used as an input for LIME which makes our
model more correct and will maybe allow for an analyse of its impact on
the position-velocity diagrams and line profiles. As emission is very tem-
perature dependent, a non-trivial distribution might give some unexpected
results. Adopting output from hydrodynamical simulations as input in LIME
will surely increase matching reality. In the far future, coupling with extended
complex chemical networks will be necessary to fully comprehend these in-
tricate objects.

The outflows of evolved stars still hold numerous secrets which we have not
yet unveiled. Improvements in instrumentation and modelling capabilities
will gradually reveal these mysteries. The complexities concealed within the
dusty envelopes of AGB stars are far from understood. This thesis has laid
the foundation to shed light on this so far unresolved conundrum.
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