Winstgevendheid van een investeringsstrategie op basis van technische indicators op Amerikaanse aandelen

Thibaut Roelandt
In dit onderzoek wordt bepaald of een investeringsstrategie met technische trading regels significant meer abnormaal rendement kan behalen dan een buy-and-hold investeringsstrategie. Er wordt een nadruk gelegd op de combinatie van trading regels als contributie tot bestaande literatuur en of het combineren van trading regels beter presteert dan individuele trading regels. Aan de hand van channel breakout rules, filter rules, exponential moving averages en on-balance volume averages wordt via een two-sample t-test bepaald of drie Amerikaanse indices en 104 individuele aandelen beter presteren dan de benchmark. White’s reality check bootstrap methode, signaalkwaliteit volgens Shen (2003), sub-periodes en een regressiemodel volgens Treynor & Mazuy (1966) worden uitgevoerd als robuustheidsanalyses. De resultaten verklaren dat investeren via technische trading regels een inferieure strategie is aan een buy-and-hold strategie en stelt als bewijs voor de efficiënte markthypothese.

De hype die niet aan de verwachtingen voldoet: technische analyse

Uit onderzoek aan de KU Leuven Campus Antwerpen is gebleken dat technische analyse geen snelle manier tot rijkdom is, en zelfs onderpresteert aan een passieve investeringsstrategie.

Steeds meer media en academische aandacht is gericht op het investeren in aandelen en andere financiële producten op basis van technische analyse. Dit is een investeringsstrategie waarbij de belegger niet gaat kijken naar de performantie van het bedrijf, zoals bij een passieve investeringsstrategie, maar zich focust op patronen op de beurskoersen van de aandelen. Doorheen de jaren heeft deze strategie aan populariteit gewonnen maar toch is er veel twijfel over het te behalen rendement.

Uit onderzoek blijkt dat deze strategie niet aan de verwachtingen kan tippen. Een grondige analyse op Amerikaanse aandelen en indices toont aan dat er geen beter rendement kan worden behaald via deze strategie ten opzichte van een passieve investeringsstrategie waarbij een aandeel gekocht en langdurig bijgehouden wordt. De investeringsstrategie wordt opgesteld door vier trading regels die koop- en verkoopsignalen aangeven op basis van de historische koers van een aandeel. Er is natuurlijk wel een verschil in performantie van de verschillende trading regels die gehanteerd worden en er is bijkomende focus gelegd op de combinatie van deze trading regels. In praktijk kijken investeerders echter naar signalen van meerdere trading regels alvorens ze een koop- of verkooporder invoeren. Toch kan deze strategie in geen geval betere rendementen voorleggen en het heeft bovendien zelfs moeilijkheden om consistent positieve rendementen te behalen. Daarnaast genereert deze strategie veel meer orders dan een passieve strategie waardoor er ook meer transactiekosten moeten worden betaald en dit resulteert meestal in negatieve rendementen voor een investeerder op het einde van de rit. Het blijkt zelfs dat juiste signalen, orders die positieve rendementen genereren, puur uit geluk ontstaan. Investeerders zijn dus beter af om een passieve investeringsstrategie te hanteren waarbij er naar de onderliggende waarde van de aandelen wordt gekeken.

Bibliografie

Alexander, S.S., 1961. Price movements in speculative markets: trends or random walks. Industrial Management Review, 2: 7–26.

Ahmet, T., & McManus, G., 2001. Evaluating a stock market timing strategy: the case of RTE Asset management. Financial services review, 10: 173-186.

Antoniou, A., Ergul, N., Holmes, P., & Priestley, R., 1997. Technical analysis, trading volume and market efficiency: evidence from an emerging market, Applied Financial Economics, 7(4): 361-365. Audrius, D., & Svetlanda, S., 2010. EMA versus SMA usage to forecast stock markets: the case of S&P 500 and OMX baltic benchmark. Business: theory and practice, 11(3): 248-255.

Bessembinder, H. and Chan, K. 1995. The profitability of technical trading rules in the Asian stock markets. Pacific-Basin Finance Journal, 3: 257–284.

Bettman, J. L., Stephen, J. S. & Schultz, E. L. 2009. Fundamental and technical analysis: substitutes or complements? Accounting & finance, 49(1): 21-36.

Blume, L., David, E., & Maureen, O. 1994. Market statistics and technical analysis: the role of volume. The Journal of Finance, 49(1): 153-181.

Bodie, Z., Kane, A., & Marcus, A. J. 2014. Investments. Berkshire: McGraw-Hill Education.

Chang, Y., Chan, C., & Chiang, Y. 2014. Volume information and the profitability of technical trading. Asia-Pacific Journal of financial studies, 43: 249-272.

Christopher, J. N., Paul, A. W., & Joshua, M. U. 2009. The adaptive markets hypothesis: evidence from the foreign exchange market. Journal of financial and quantitative analysis, 44(2): 467-488. Coutts, J.A., & Cheung, K. 2000. Trading rules and stock returns: some preliminary short run evidence from the Hang Seng 1985–1997. Applied Financial Economics, 10: 579–586.

Dimitris N. Politis & Joseph P. Romano (1994) The Stationary Bootstrap. Journal of the American

Statistical Association, 89:428, 1303-1313.

Eddie, C.M.H., & Kevin Chan K.K. 2014. Can we still beat “buy-and-hold” for individual stocks? Physica A, 410: 513-534.

Faber, M.T. 2007. A quantitative approach to tactical asset allocation. Journal of Wealth Management, 9(4): 69-79.

Fama, E., & Blume, M. 1966. Filter rules and stock-market trading. The journal of business, 39(1): 226-241 Fama, E.F. 1965. Random walks in stock market prices. Financial Analysts Journal, 21(5): 55-59. Fama, E.F. 1970. Efficient Capital Markets: A revies of Theory and Empirical work. The Journal of Finance, 25(2): 383-417.

33 Gebka, B., Hudson, R. S., & Atanasova, C. V. (2015). The benefits of combining seasonal anomalies and technical trading rules. Finance Research Letters, 14: 36-44.

George Bishop W. 1960. Charles H. Dow and the dow theory. Appleton-Century-Crofts.

Ghazani, M. M., & Araghi, M. K. 2014. Evaluation of the adaptive market hypothesis as an evolutionary perspective on market efficiency: Evidence from the Tehran stock exchange. Research in International Business and Finance, 32: 50–59.

Goodacre, A., Bosher, A., & Dove, A. 1999. Testing the CRISMA trading system: evidence from the UK market. Applied Financial Economics, 9(5): 455-468.

Granville, J. 1963. Granville’s New Key to Stock Market Profits. Prentice Hall, Englewood Cliffs, N.J. Grossman, S.J., & Stiglitz, J.E. 1980. On the impossibility of informationally efficient markets. The American Economic Review, 70(3): 393-408.

Hao, Y., Gilbert, V.N., Gan, C., & Lee, J. Y. 2013. Predictive ability and profitability of simple technical trading rules: recent evidence from southeast asian stock markets. International review of economics and finance. 25: 356-371.

Ito, M., Noda, A., & Wada, T. (2016). The evolution of stock market efficiency in the US: A non-Bayesian time-varying model approach. Applied Economics, 48(7): 621.

Jensen, M.C., & Benington, G.A. 1970. Random walks and technical theories: Some additional evidence. Journal of Finance, 25(2): 469-482.

Karpoff, J.M. 1987. The relationship between price changes and trading volume: a survey. The journal of financial and quantitative analysis, 22(1): 109-126.

LeBaron, B. 1999. Technical trading rule profitability and foreign exchange intervention. Journal of International Economics, 49: 125–143.

Lento, C., & Gradojevic, N. 2007. The profitability of technical trading rules: A combined signal approach. Journal of Applied business Research, 23: 13-28.

Lento, C. 2008. A combined signal approach to technical analysis on the S&P 500. Journal of Business & Economics Research, 6(8).

Lento, C. 2009. The combined signal approach to technical analysis: a review and commentary. SSRN Electronic journal.

Lim, K.P., Luo, W.L., & Kim, J.H. 2013. Are US stock index returns predictable? Evidence from automatic autocorrelation-based tests. Applied Economics, 45(8): 953–962.

Lo, A.W. 2004. The adaptive markets hypothesis. Journal of Portfolio Management, 30: 15–29.

Lo, A.W. 2005. Reconciling efficient markets with behavioural finance: The adaptive markets hypothesis. Journal of Investment Consulting, 7: 21–44.

Manahov, V., & Hudson, R. 2014. A note on the relationship between market efficiency and adaptability – New evidence from artificial stock markets. Expert Systems with Applications, 41(16): 7436–7454. Martin, J.P. 2014. Technical analysis explained, (5 e editie). McGrawHill education.

34 Mills, T.C. 1997. Technical analysis and the London Stock Exchange: testing trading rules using the FT30. International Journal of Finance and Economics, 2: 319–331.

Olson, D. 2004. Have trading rule profits in the currency markets declined over time? Journal of Banking and Finance, 28: 85–105.

Park, C.-H., & Irwin, S. H. 2007. What do we know about the profitability of technical analysis. Journal of Economic Surveys, 21(4): 786-826.

Pruitt, S.W. & White, R.E. 1988. The CRISMA trading system: who says technical analysis can’t beat the market? Journal of Portfolio Management, 15: 55–58.

Pruitt, S.W., Tse, M.K.S., & White, R.E. 1992. The CRISMA trading system: the next five years. Journal of Portfolio Management, 19: 22–25.

Raj, M., & Thurston, D. 1996. Effectiveness of simple technical trading rules in the Hong Kong futures markets. Applied Economics Letters, 3: 33–36.

Sharpe, W., Alexander, G.J., & Bailey, J. 1990. Investments (4 e editie). Prentice Hall, Engle- wood Cliffs, N.J.

Shleifer, A., & Vishny, R.W. 1997. The limits of arbitrage. The journal of finance. 52(1): 35-55. Sullivan, R., Timmermann, A., & White, H. 1999. Data-snooping, Technical trading rule performance and the bootstrap. The journal of Finance, 54(5): 1647-1691.

Shen, P. (2003). Market timing strategies that worked. Journal of Portfolio management, 29(2), 57-68.

Shynkevich, A. 2016. Predictability in bond returns using technical trading rules. Journal of banking and finance, 70: 55-69.

Shynkevich, A. 2017. Return predictability in emerging equity market sectors. Applied Economics, 49(5): 433-445.

Taylor, S.J. 1994. Trading fuutres using a channel rule: a study of the predictive power of technical analysis with currency examples. Journal of futures markets, 14(2): 215-235.

Taylor, S.J. 2000. Stock index and price dynamics in the UK and the US: new evidence from a trading rule and statistical analysis. European Journal of Finance, 6: 39–69.

Treynor J. and K. Mazuy. (1966). Can Mutual Funds Outguess the Market? Haward Business Review, 44: 131-136.

William, M.M. 2008. Technical analysis: the interface of rational and irrational decision making. The business review, Cambridge, 11(2).

Yamamoto, R. 2012. Intraday technical analysis of individual stocks on the Tokyo Stock Exchange. Journal of banking & Finance, 36(11): 3033-3047.

Zakamulin, V. 2014. The real-life performance of market timing with moving average and time-series momentum rules. Journal of asset management, 15(4): 261-278.

Universiteit of Hogeschool
Handelswetenschappen-financieel management
Publicatiejaar
2019
Promotor(en)
Kurt Verstegen
Kernwoorden
Share this on: