How to reduce CO2 emissions from cars? Scenario simulations applied to Belgium

Kasper Albers
In de strijd tegen de opwarming van de aarde en de luchtvervuiling is het van essentieel belang om de uitstoot van broeikasgassen drastisch te verminderen. Aangezien de transportsector verantwoordelijk is voor een aanzienlijk percentage van deze uitstoot, en de auto hierbij de olifant in de kamer is, kan men hier een groot verschil maken. Deze thesis simuleert daarom enkele scenario’s die de CO2-uitstoot van personenwagens kunnen verminderen: meer autodelen, meer recyclage van staal bij de productie van auto’s en meer elektrische salariswagens in plaats van diesel.

Heeft de auto nog wel een toekomst?

Moet ik mijn auto verkopen om de mensheid te redden? Als je leest wat sommige doemdenkers schrijven over het klimaat en de toekomst van de aarde, zou je het nog doen ook. In bijna alle verhalen over de oorzaken van de klimaatcrisis is de auto immers een van dé boosdoeners. De meeste auto’s verbranden nu eenmaal nog steeds fossiele brandstoffen - benzine en diesel - waardoor er hoge concentraties CO2 in de lucht vrijkomen die de aarde verder doen opwarmen - het zogenaamde broeikaseffect. 

TRANSPORTSECTOR  

In de EU is de transportsector  alleen al verantwoordelijk voor 25% van de uitstoot van broeikasgassen. Daarvan is het leeuwendeel afkomstig van wegtransport, meer bepaald van koning auto. Het is dus niet te verwonderen dat in de discussie over het klimaat auto’s het steeds vaker en harder moeten ontgelden. Toch lijkt het onwaarschijnlijk dat mensen in de nabije toekomst bereid zullen zijn om de auto helemaal op te geven. Hoe kunnen we dan de negatieve impact van de auto op het klimaat beperken zonder de auto helemaal te verbannen?

SCENARIO’S

Die vraag vormt het uitgangspunt voor mijn scriptie “How to reduce CO2 emissions from cars?” Om die vraag te beantwoorden, heb ik onderzocht welke scenario’s kunnen bijdragen tot een vermindering van de uitstoot van CO2 door het Belgische wagenpark. 

Het eerste scenario onderzoekt wat het effect zou zijn als we bij de productie van auto’s meer hoogwaardig gerecycleerd en minder ruw staal zouden gebruiken. Hoe meer gerecycleerd staal we gebruiken, hoe minder ruw staal we moeten produceren, waardoor de ecologische impact van de staalproductie voor auto’s uiteraard kleiner wordt. In het beste geval, zo blijkt uit mijn onderzoek, zou dit scenario de CO2 die bij het produceren van benzine- en dieselwagens vrijkomt, met 8% kunnen verminderen.

Het tweede scenario onderzoekt in welke mate carsharing systemen zouden kunnen bijdragen tot het reduceren van CO2. Hoe meer we gebruik maken van gedeelde wagens, hoe minder auto’s we nodig hebben om ons te verplaatsen. Bovendien staan de meeste auto’s vandaag gemiddeld 95% van de tijd geparkeerd. Dat is allesbehalve efficiënt. Carsharing leidt dus tot een efficiënter gebruik van auto’s en tot een daling in de productie, aangezien er simpelweg minder auto’s nodig zullen zijn. In dit scenario zouden er in het Belgische wagenpark tegen 2035 zomaar eventjes ruim een half miljoen auto’s minder nodig zijn, wat de CO2 uitstoot met 26% zou doen afnemen.

Het derde scenario onderzoekt wat de zogenaamde elektrificatie van de salariswagens in België zou kunnen betekenen voor het klimaat. Bijna tien procent van alle personenwagens in België is een zwaar gesubsidieerde salariswagen. Hoeveel CO2 uitstoot kunnen de salariswagens ‘besparen’ als we alle diesels zouden vervangen door volledig elektrische wagens? Het antwoord is verbluffend simpel: 95%.

Uit mijn onderzoek blijkt duidelijk dat elk van deze drie scenario’s een positieve invloed heeft op de reductie van CO2, maar dat geen enkel scenario dé oplossing biedt voor deze problematiek. Om de negatieve impact van de auto op het klimaat te beperken is het zaak de drie scenario’s te combineren. We moeten zo snel mogelijk overstappen naar elektrische wagens, meer auto’s delen en bij de productie van auto’s meer gerecycleerde materialen, zoals staal, gebruiken.  

CIRCULAIRE ECONOMIE

Tot slot laat ik in deze scriptie zien hoe deze scenario’s bijdragen aan de overgang naar een circulaire economie. De kerngedachte van de circulaire economie is een optimaal gebruik van schaarse grondstoffen. Concepten als recycleren, hergebruiken en delen worden daarom steeds belangrijker. Het recycleren van staal en delen van auto’s verminderen de nood aan nieuwe grondstoffen voor de productie van auto’s. Het lichtzinnige take-make-waste model van de oude, lineaire economie is namelijk niet langer houdbaar voor onze planeet. 

Bovendien pleit een circulaire economie voor een gestandaardiseerd design van batterijen voor elektrische wagens. Dit vergemakkelijkt immers het recyclageproces achteraf, wanneer een batterij het einde van haar levensduur bereikt heeft. Bijgevolg kunnen schaarse materialen zoals nikkel en kobalt opnieuw ingezet worden. Daarnaast streeft een circulaire economie ook naar het gebruik van hernieuwbare energie. Indien we erin slagen elektrische wagens te koppelen aan groene stroom, vergroot dit het ecologische voordeel ten opzichte van benzine- en dieselwagens aanzienlijk. Het is dus duidelijk dat de overgang naar een circulaire economie enorm belangrijk is om de transportsector groener te maken.

Dus, nee, we moeten onze auto’s niet massaal verkopen om de planeet te redden, maar wel dringend beter nadenken over hoe we deze gebruiken en wat hiervan de impact is.

Bibliografie

Aasness, M. A., & Odeck, J. (2015). The increase of electric vehicle usage in Norway—incentives and adverse effects. European Transport Research Review, 7(4), 34. https://doi.org/10.1007/s12544-015-0182-4
ACEA. (2016). Reducing CO2 emissions from passenger cars and light commercial vehicles post-2020 [ACEA Position paper]. ACEA - European Automobile Manufacturers’ Association.
ACEA. (2019, February 7). Fuel types of new cars: diesel -23.6%, electric +33.1% in fourth quarter of 2018. Retrieved May 15, 2019, from https://www.acea.be/press-releases/article/fuel-types-of-new-cars-diese…
ACEA. (n.d.). Share of Diesel in New Passenger Cars. Retrieved May 15, 2019, from https://www.acea.be/statistics/tag/category/share-of-diesel-in-new-pass…
Agora Energiewende and Sandbag. (2019). The European Power Sector in 2018. Up-to-date analysis on the electricity transition. Agora Energiewende and Sandbag.
Anenberg, S. C., Miller, J., Minjares, R., Du, L., Henze, D. K., Lacey, F., … Heyes, C. (2017). Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets. Nature, 545, 467.
Athanasopoulou, L., Bikas, H., & Stavropoulos, P. (2018). Comparative Well-to-Wheel Emissions Assessment of Internal Combustion Engine and Battery Electric Vehicles. Procedia CIRP, 78, 25–30. https://doi.org/10.1016/j.procir.2018.08.169
Ballús-Armet, I., Shaheen, S. A., Clonts, K., & Weinzimmer, D. (2014). Peer-to-Peer Carsharing: Exploring Public Perception and Market Characteristics in the San Francisco Bay Area, California. Transportation Research Record: Journal of the Transportation Research Board, 2416(1), 27–36. https://doi.org/10.3141/2416-04
Baptista, P., Melo, S., & Rolim, C. (2014). Energy, Environmental and Mobility Impacts of Car-sharing Systems. Empirical Results from Lisbon, Portugal. Procedia - Social and Behavioral Sciences, 111, 28–37. https://doi.org/10.1016/j.sbspro.2014.01.035
Bert, J., Collie, B., Gerrits, M., & Xu, G. (2016). What’s Ahead for Car Sharing? The New Mobility and Its Impact on Vehicle Sales. Retrieved from The Boston Consulting Group website: https://www.bcg.com/featured-insights/thought-leadership-ideas.aspx
Bjerkan, K. Y., Nørbech, T. E., & Nordtømme, M. E. (2016). Incentives for promoting Battery Electric Vehicle (BEV) adoption in Norway. Transportation Research Part D: Transport and Environment, 43, 169–180. https://doi.org/10.1016/j.trd.2015.12.002
Boureima, F.-S., Messagie, M., Matheys, J., Wynen, V., Sergeant, N., Van Mierlo, J., … De Caevel, B. (2009). Comparative LCA of electric, hybrid, LPG and gasoline cars in Belgian context. World Electric Vehicle Journal, 3(3), 469–476. https://doi.org/10.3390/wevj3030469
Bourguignon, D. (2018). Air quality: Pollution sources and impacts, EU legislation and international agreements. Retrieved from European Parliament website: https://doi.org/10.2861/864239
Degraeuwe, B., & Weiss, M. (2017). Does the New European Driving Cycle (NEDC) really fail to capture the NO X emissions of diesel cars in Europe? Environmental Pollution, 222, 234–241. https://doi.org/10.1016/j.envpol.2016.12.050
Delhaye, E., Vanherle, K., & Zeebroeck, B. V. (2019). Impact-analyse: verschuiving van publieke middelen naar openbaar vervoer en actieve modi. 52.
27
Dun, C., Horton, G., & Kollamthodi, S. (2015). Improvements to the definition of lifetime mileage of light duty vehicles. Ricardo-AEA.
Edwards, R., Mahieu, V., Griesemann, J.-C., Larivé, J.-F., & Rickeard, D. J. (2004, June 8). Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context. 2004-01–1924. https://doi.org/10.4271/2004-01-1924
EEA. (2016). Electric vehicles in Europe. Retrieved from https://publications.europa.eu/en/publication-detail/-/publication/1a4a…
EEA. (2018a). Progress of EU transport sector towards its environment and climate objectives. Retrieved from European Environment Agency website: https://www.eea.europa.eu/themes/transport/term/term-briefing-2018
EEA. (2018b). Air quality in Europe - 2018 report. Retrieved from https://data.europa.eu/doi/10.2800/777411
EEA. (2018c). Monitoring CO2 emissions from new passenger cars and vans in 2015 [Data set]. https://doi.org/10.1163/9789004322714_cclc_2016-0201-001
EEA. (2018d). Electric vehicles from life cycle and circular economy perspectives (Transport and Environment Reporting Mechanism (TERM) Report No. 13). Retrieved from European Environment Agency website: https://data.europa.eu/doi/10.2800/77428
EEA. (2018e, April 12). Appropriate taxes and incentives do affect purchases of new cars [Briefing]. Retrieved May 15, 2019, from European Environment Agency website: https://www.eea.europa.eu/themes/transport/vehicles-taxation/appropriat…
Ellen MacArthur Foundation. (2013). Towards the Circular Economy: Economic and Business Rationale for an Accelerated Transition.
European Alternative Fuels Observatory. (2019). Total number alternative fuels passenger cars. Retrieved May 15, 2019, from https://www.eafo.eu/vehicles-and-fleet/m1
European Commission. (2010). Company Car Taxation (Working Paper No. 22).
European Commission. (2011, August 3). A Roadmap for moving to a competitive low carbon economy in 2050. Retrieved from https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0112:FI…
European Commission. (2016, July 20). A European Strategy for Low-Emission Mobility. Retrieved from https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A52016DC0501
European Commission. (2018, January 16). On a monitoring framework for the circular economy. Retrieved from http://ec.europa.eu/environment/circular-economy/pdf/monitoring-framewo…
FEBIAC. (2018). Jaarverslag 2017. Retrieved from https://www.febiac.be/documents_febiac/publications/2018/06/rapportannu…
Federal Planning Bureau. (2019). Future evolution of the car stock in Belgium: CASMO, the new satellite of PLANET (p. 68). Federal Planning Bureau.
Ferrero, F., Perboli, G., Rosano, M., & Vesco, A. (2018). Car-sharing services: An annotated review. Sustainable Cities and Society, 37, 501–518. https://doi.org/10.1016/j.scs.2017.09.020
Figenbaum, E., Assum, T., & Kolbenstvedt, M. (2015). Electromobility in Norway: Experiences and Opportunities. Research in Transportation Economics, 50, 29–38. https://doi.org/10.1016/j.retrec.2015.06.004
28
Firnkorn, J., & Müller, M. (2011). What will be the environmental effects of new free-floating car-sharing systems? The case of car2go in Ulm. Ecological Economics, 70(8), 1519–1528. https://doi.org/10.1016/j.ecolecon.2011.03.014
Firnkorn, J., & Müller, M. (2012). Selling Mobility instead of Cars: New Business Strategies of Automakers and the Impact on Private Vehicle Holding: Selling Mobility instead of Cars. Business Strategy and the Environment, 21(4), 264–280. https://doi.org/10.1002/bse.738
FOD Mobiliteit en Vervoer. (2018a). Kerncijfers mobiliteit. Brussel: Federale Overheidsdienst Mobiliteit en Vervoer.
FOD Mobiliteit en Vervoer. (2018b). Kilometers afgelegd door Belgische voertuigen in 2017. Federale Overheidsdienst Mobiliteit en Vervoer.
Fontaras, G., Ciuffo, B., Zacharof, N., Tsiakmakis, S., Marotta, A., Pavlovic, J., & Anagnostopoulos, K. (2017). The difference between reported and real-world CO2 emissions: How much improvement can be expected by WLTP introduction? Transportation Research Procedia, 25, 3933–3943. https://doi.org/10.1016/j.trpro.2017.05.333
Fontaras, G., & Dilara, P. (2012). The evolution of European passenger car characteristics 2000–2010 and its effects on real-world CO2 emissions and CO2 reduction policy. Energy Policy, 49, 719–730. https://doi.org/10.1016/j.enpol.2012.07.021
Fontaras, G., Zacharof, N.-G., & Ciuffo, B. (2017). Fuel consumption and CO2 emissions from passenger cars in Europe – Laboratory versus real-world emissions. Progress in Energy and Combustion Science, 60, 97–131. https://doi.org/10.1016/j.pecs.2016.12.004
Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm? Journal of Cleaner Production, 143, 757–768. https://doi.org/10.1016/j.jclepro.2016.12.048
Giesel, F., & Nobis, C. (2016). The Impact of Carsharing on Car Ownership in German Cities. Transportation Research Procedia, 19, 215–224. https://doi.org/10.1016/j.trpro.2016.12.082
Grosse-Ophoff, A., Hausler, S., Heineke, K., & Möller, T. (2017). How shared mobility will change the automotive industry. Retrieved from McKinsey & Company website: https://www.mckinsey.com/industries/automotive-and-assembly/our-insight…
Hasanbeigi, A., Arens, M., Cardenas, J. C. R., Price, L., & Triolo, R. (2016). Comparison of carbon dioxide emissions intensity of steel production in China, Germany, Mexico, and the United States. Resources, Conservation and Recycling, 113, 127–139. https://doi.org/10.1016/j.resconrec.2016.06.008
Hawkins, T. R., Singh, B., Majeau-Bettez, G., & Strømman, A. H. (2013). Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles: LCA of Conventional and Electric Vehicles. Journal of Industrial Ecology, 17(1), 53–64. https://doi.org/10.1111/j.1530-9290.2012.00532.x
Hooftman, N., Messagie, M., Van Mierlo, J., & Coosemans, T. (2018). A review of the European passenger car regulations – Real driving emissions vs local air quality. Renewable and Sustainable Energy Reviews, 86, 1–21. https://doi.org/10.1016/j.rser.2018.01.012
Hooftman, N., Oliveira, L., Messagie, M., Coosemans, T., & Van Mierlo, J. (2016). Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting. Energies, 9(2), 84. https://doi.org/10.3390/en9020084
ICCT. (2018). Effects of battery manufacturing on electric vehicle life-cycle greenhouse gas emissions. Retrieved from The International Council on Clean Transportation website: www.theicct.org
29
IEA Electricity Information. (2018). Share of electricity generation by fuel. Retrieved May 5, 2019, from https://www.iea.org/statistics/?country=WORLD&year=2016&category=Electr…
ING Economics Department. (2017). Breakthrough of electric vehicle threatens European car industry report ING.pdf. Retrieved from ING website: https://www.ingwb.com/insights/research/electric-car-threatens-european…
ING Economics Department. (2018). Car sharing unlocked. Retrieved from https://www.ingwb.com/insights/research/car-sharing-unlocked
Intergovernmental Panel on Climate Change. (2018). Global warming of 1.5°C. Retrieved from http://www.ipcc.ch/report/sr15/
IOR Energy. (n.d.). List of common conversion factors (Engineering conversion factors). Retrieved April 15, 2019, from https://web.archive.org/web/20100825042309/http://www.ior.com.au/ecflis…
Jung, J., & Koo, Y. (2018). Analyzing the Effects of Car Sharing Services on the Reduction of Greenhouse Gas (GHG) Emissions. Sustainability, 10(2), 539. https://doi.org/10.3390/su10020539
Kim, H. C., Wallington, T. J., Arsenault, R., Bae, C., Ahn, S., & Lee, J. (2016). Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis. Environmental Science & Technology, 50(14), 7715–7722. https://doi.org/10.1021/acs.est.6b00830
Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling, 127, 221–232. https://doi.org/10.1016/j.resconrec.2017.09.005
Kunert, U. (2018). Diesel fuel and passenger cars receive preferential tax treatment in Europe; reform of taxation needed in Germany (p. 12).
Leduc, G., Mongelli, I., Uihlein, A., & Nemry, F. (2010). How can our cars become less polluting? An assessment of the environmental improvement potential of cars. Transport Policy, 17(6), 409–419. https://doi.org/10.1016/j.tranpol.2010.04.008
Litman, T. A. (1999). Evaluating carsharing benefits. Transportation Research Record: Journal of the Transportation Research Board, 1702, 31–38.
Marotta, A., Pavlovic, J., Ciuffo, B., Serra, S., & Fontaras, G. (2015). Gaseous Emissions from Light-Duty Vehicles: Moving from NEDC to the New WLTP Test Procedure. Environmental Science & Technology, 49(14), 8315–8322. https://doi.org/10.1021/acs.est.5b01364
Martin, E., & Shaheen, S. (2011a). The impact of carsharing on household vehicle ownership. ACCESS Magazine, 38(1), 22–27.
Martin, E., & Shaheen, S. (2011b). The Impact of Carsharing on Public Transit and Non-Motorized Travel: An Exploration of North American Carsharing Survey Data. Energies, 4(11), 2094–2114. https://doi.org/10.3390/en4112094
Material Economics. (2018). The circular economy - a powerful force for climate change mitigation. Retrieved from https://www.sitra.fi/en/publications/circular-economy-powerful-force-cl…
Messagie, M., Macharis, C., & Van Mierlo, Joeri. (2013). Key outcomes from life cycle assessment of vehicles, a state of the art literature review. 2013 World Electric Vehicle Symposium and Exhibition (EVS27), 1–9. https://doi.org/10.1109/EVS.2013.6915045
Mont, O. K. (2002). Clarifying the concept of product–service system. Journal of Cleaner Production, 10(3), 237–245. https://doi.org/10.1016/S0959-6526(01)00039-7
30
Moro, A., & Helmers, E. (2017). A new hybrid method for reducing the gap between WTW and LCA in the carbon footprint assessment of electric vehicles. The International Journal of Life Cycle Assessment, 22(1), 4–14. https://doi.org/10.1007/s11367-015-0954-z
Nemry, F., Leduc, G., Mongelli, I., & Uihlein, A. (2008). Environmental improvement of passenger cars (IMPRO-car). Luxembourg: Joint Research Centre - Institute for Prospective Technological Studies.
Nobis, C. (2006). Carsharing as Key Contribution to Multimodal and Sustainable Mobility Behavior: Carsharing in Germany. Transportation Research Record, 1986(1), 89–97. https://doi.org/10.3141/1986-14
Notter, D. A., Gauch, M., Widmer, R., Wäger, P., Stamp, A., Zah, R., & Althaus, H.-J. (2010). Contribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles. Environmental Science & Technology, 44(17), 6550–6556. https://doi.org/10.1021/es903729a
Patterson, J. (2018). Understanding the life cycle GHG emissions for different vehicle types and powertrain technologies. Retrieved from Ricardo website: https://www.lowcvp.org.uk/resource-library/reports-and-studies.htm?s-se…
Pavlovic, J., Marotta, A., & Ciuffo, B. (2016). CO 2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures. Applied Energy, 177, 661–670. https://doi.org/10.1016/j.apenergy.2016.05.110
Qiao, Q., Zhao, F., Liu, Z., Jiang, S., & Hao, H. (2017). Comparative Study on Life Cycle CO 2 Emissions from the Production of Electric and Conventional Vehicles in China. Energy Procedia, 105, 3584–3595. https://doi.org/10.1016/j.egypro.2017.03.827
Romare, M., & Dahllöf, L. (2017). The Life Cycle Energy Consumption and Greenhouse Gas Emissions from Lithium-Ion Batteries. IVL Swedish Environmental Research Institute.
Saele, H., & Petersen, I. (2018). Electric vehicles in Norway and the potential for demand response. 2018 53rd International Universities Power Engineering Conference (UPEC), 1–6. https://doi.org/10.1109/UPEC.2018.8541926
Shaheen, S. A. (1999). Dynamics in Behavioral Adaptation to a Transportation Innovation: A Case Study of Carlink–A Smart Carsharing System. UC Berkeley: California Partners for Advanced Transportation Technology.
Shaheen, S. A., & Cohen, A. P. (2007). Growth in Worldwide Carsharing: An International Comparison. Transportation Research Record: Journal of the Transportation Research, 3483, 81–89.
Shaheen, S. A., & Cohen, A. P. (2013). Carsharing and Personal Vehicle Services: Worldwide Market Developments and Emerging Trends. International Journal of Sustainable Transportation, 7(1), 5–34. https://doi.org/10.1080/15568318.2012.660103
Shaheen, S., Sperling, D., & Wagner, C. (1998). Carsharing in Europe and North America: Past, Present, and Future. Transportation Quarterly, 52, 35–52.
Singh, B., & Strømman, A. H. (2013). Environmental assessment of electrification of road transport in Norway: Scenarios and impacts. Transportation Research Part D: Transport and Environment, 25, 106–111. https://doi.org/10.1016/j.trd.2013.09.002
Siskos, P., Zazias, G., Petropoulos, A., Evangelopoulou, S., & Capros, P. (2018). Implications of delaying transport decarbonisation in the EU: A systems analysis using the PRIMES model. Energy Policy, 121, 48–60. https://doi.org/10.1016/j.enpol.2018.06.016
Sprei, F., & Ginnebaugh, D. (2018). Unbundling cars to daily use and infrequent use vehicles — the potential role of car sharing. Energy Efficiency, 1433–1447.
31
Test-aankoop. (2015, October). Hoeveel verbruikt uw auto echt? Doe de test. Retrieved May 15, 2019, from test-aankoop.be website: https://www.test-aankoop.be/werkelijkverbruik
Tovar, M. A. (2011). An integral evaluation of dieselisation policies for households’ cars. Energy Policy, 39(9), 5228–5242. https://doi.org/10.1016/j.enpol.2011.05.041
Transport & Environment. (2015). Europe’s tax deals for diesel (p. 28). Retrieved from Transport & Environment website: https://www.transportenvironment.org/publications/europes-tax-deals-die…
Transport & Environment. (2017). Diesel: the true (dirty) story. Retrieved from Transport & Environment website: https://www.transportenvironment.org/publications/diesel-true-dirty-sto…
Transport & Environment. (2018). CO2 emissions from cars: the facts. Retrieved from Transport & Environment website: https://www.transportenvironment.org/publications/co2-emissions-cars-fa…
Uitstoot per broeikasgas. (2019). Retrieved May 15, 2019, from https://www.klimaat.be/nl-be/klimaatverandering/belgie/belgische-uitsto…
Urbinati, A., Chiaroni, D., & Chiesa, V. (2017). Towards a new taxonomy of circular economy business models. Journal of Cleaner Production, 168, 487–498. https://doi.org/10.1016/j.jclepro.2017.09.047
VAB Magazine. (2019, January 7). Dieselrijder geeft meer uit aan brandstof door SUV. VAB-Magazine. Retrieved from https://magazine.vab.be/mobiliteit/dieselrijder-geeft-meer-uit-aan-bran…
Volkswagen AG. (2010). The Golf: Environmental Commendation Background Report. Retrieved from https://www.asktheeu.org/en/request/3146/response/11309/attach/6/GOLF%2…
Weiss, M., Bonnel, P., Hummel, R., Manfredi, U., Colombo, R., Lanappe, G., … Sculati, M. (2011). Analyzing on-road emissions of light-duty vehicles with Portable Emission Measurement Systems (PEMS) (p. 66). EU Joint Research Centre.
Weiss, M., Bonnel, P., Kühlwein, J., Provenza, A., Lambrecht, U., Alessandrini, S., … Sculati, M. (2012). Will Euro 6 reduce the NOx emissions of new diesel cars? – Insights from on-road tests with Portable Emissions Measurement Systems (PEMS). Atmospheric Environment, 62, 657–665. https://doi.org/10.1016/j.atmosenv.2012.08.056
WHO. (2016). Ambient air pollution: A global assessment of exposure and burden of disease. Retrieved from World Health Organization website: https://www.who.int/phe/publications/air-pollution-global-assessment/en/
Yang, L., Franco, V., Mock, P., Kolke, R., Zhang, S., Wu, Y., & German, J. (2015). Experimental Assessment of NO x Emissions from 73 Euro 6 Diesel Passenger Cars. Environmental Science & Technology, 49(24), 14409–14415. https://doi.org/10.1021/acs.est.5b04242
Yellishetty, M., Ranjith, P. G., & Tharumarajah, A. (2010). Iron ore and steel production trends and material flows in the world: Is this really sustainable? Resources, Conservation and Recycling, 54(12), 1084–1094. https://doi.org/10.1016/j.resconrec.2010.03.003

Universiteit of Hogeschool
Master of Science in Business Administration
Publicatiejaar
2019
Promotor(en)
Professor Johan Eyckmans
Kernwoorden
Share this on: