Effect of biochar and chitin on plant defense and rhizosphere microbiome of strawberry

Jill De Visscher
De natuurlijke afweerrespons van planten kan gestimuleerd worden door het toedienen van bepaalde stoffen aan de plant. In deze scriptie worden biochar en chitine toegediend om hun effect op de afweerrespons van aardbeiplanten te onderzoeken.

Natuurlijke afweer van aardbeiplanten stimuleren

Aardbeien zijn het favoriete zomerfruit van velen. Maar aardbeiplanten zijn ook heel gevoelig voor verschillende ziekten en plagen. Daarom behandelen landbouwers de planten vaak met verschillende pesticiden om deze ziektes te bestrijden. Wat nu als we de natuurlijke afweer van de aardbeiplanten zouden kunnen verhogen?

Pesticideresten op vruchten

Verschillende soorten pathogene schimmels en bacteriën kunnen aardbeiplanten infecteren en zo ziektes veroorzaken bij deze planten. Om deze ziektes te bestrijden, worden de planten meestal behandeld met pesticiden. Maar bij veelvoudig gebruik van eenzelfde pesticide kunnen sommige pathogenen resistent worden tegen dit pesticide. Daarom gebruiken landbouwers verschillende soorten pesticiden in de bestrijding van ziektes. Dit leidt er dan weer toe dat meerdere resten van pesticiden kunnen achterblijven op de aardbeivruchten. Daarnaast wil de Europese Unie het gebruik van pesticiden meer beperken. Alternatieve methodes om ziektes en plagen te bestrijden zijn dus zeker welkom. 

Natuurlijke afweer van planten

Net zoals mensen een immuunsysteem hebben om zich te beschermen tegen ziektes, zo hebben planten ook een natuurlijk immuunsysteem. Dit beschermt de planten tegen een groot aantal pathogenen. Wanneer het immuunsysteem van de plant geactiveerd wordt, start een complex proces om de pathogeen te doden en de plant te beschermen. Enkele pathogenen kunnen dit proces toch omzeilen of stoppen en maken de plant dus ziek.  

Het is echter ook mogelijk om het natuurlijke immuunsysteem van de plant al te activeren nog voor infectie door een pathogeen. Dit noemen we priming. We kunnen een plant primen bijvoorbeeld door het toedienen van specifieke organische stoffen aan de grond waarin de plant groeit. Als de plant daarna dan geïnfecteerd wordt, kan de pathogeen makkelijker bestreden worden door het immuunsysteem. De immuunrespons is namelijk al geactiveerd. Je zou dit eigenlijk kunnen vergelijken met een soort vaccin dat we toedienen aan de plant. 

In mijn scriptie worden 2 organische stoffen getest als mogelijke stoffen om de natuurlijke afweer van aardbeiplanten te stimuleren. De eerste stof die getest wordt is biochar. Dit is een bijproduct van de verkoling van biomassa. Verkoling is de verbranding van biomassa, zoals bijvoorbeeld hout, in de afwezigheid van zuurstof. De tweede stof die getest wordt is chitine. Dit is een natuurlijke stof die onder andere aanwezig is in het exoskelet of uitwendig skelet van kreeftachtigen.  

image 452            

Figuur: links: biochar. Rechts: chitine

Verder wordt er ook enkel gefocust op 1 pathogeen, namelijk Botrytis cinerea. Dit is een schimmel die de ziekte grauwe schimmel veroorzaakt bij aardbeiplanten. Hierdoor kunnen de bladeren, bloemen en vruchten beschimmelen. Deze schimmel kan grote verliezen in de aardbeiteelt veroorzaken indien niet behandeld. 

Immuunrespons onderzoeken via genexpressie

Als een pathogeen een plant infecteert, wordt in de plant een immuunrespons geactiveerd. Tijdens deze respons worden bepaalde genen geactiveerd. Dit leidt tot de productie van eiwitten of andere moleculen die proberen de pathogeen te stoppen of te doden. Deze moleculen willen dus de plant beschermen. Een aantal van de genen betrokken in de immuunrespons zijn al gekend. We kunnen deze genen gebruiken om de immuunrespons van de plant te onderzoeken. De mate waarin deze genen tot expressie komen, hangt namelijk samen met de sterkte van de immuunrespons. Als er meer genexpressie is, zien we dus ook een sterkere immuunrespons. Om het effect van biochar en chitine te onderzoeken worden de planten onderverdeeld in 3 groepen. In de controlegroep worden aardbeiplanten gegroeid in enkel potgrond. In de tweede groep wordt biochar toegevoegd aan de potgrond en in de laatste groep wordt chitine toegevoegd. In alle groepen bepalen we de genexpressie van de planten. Door de biochar en chitine groepen te vergelijken met de controlegroep, kunnen we het effect van respectievelijk biochar en chitine onderzoeken. 

Conclusie

Na een analyse van de expressie van afweer gerelateerde genen in elke groep bleek dat biochar geen effect heeft op de immuunrespons in de aardbeiplanten. Chitine had echter wel een duidelijk positief effect. Wanneer chitine toegevoegd was aan de potgrond zagen we een hogere genexpressie. Er was dus een sterkere immuunrespons in deze planten. De infectiegraad binnen deze groep was ook lager. Chitine toevoegen aan de potgrond kan dus mogelijk ook bijdragen aan een betere controle van grauwe schimmel in de aardbeiteelt. 

 

 

 

 

Bibliografie

Ali, S., Ganai, B. A., Kamili, A. N., Bhat, A. A., Mir, Z. A., Bhat, J. A., … Grover, A. (2018). Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research, 212213, 29–37. https://doi.org/10.1016/J.MICRES.2018.04.008

Alignment with STAR | Introduction to RNA-Seq using high-performance computing. (n.d.). Retrieved April 13, 2019, from https://hbctraining.github.io/Intro-to-rnaseq-hpc-O2/lessons/03_alignme…

Amil-Ruiz, F., Garrido-Gala, J., Blanco-Portales, R., Folta, K. M., Muñoz-Blanco, J., & Caballero, J. L. (2013). Identification and Validation of Reference Genes for Transcript Normalization in Strawberry (Fragaria × ananassa) Defense Responses. PLoS ONE, 8(8). https://doi.org/10.1371/journal.pone.0070603

Amplicon Sequencing Solutions. (n.d.). Retrieved December 9, 2018, from https://emea.illumina.com/techniques/sequencing/dna-sequencing/targeted…

Anderson, M. J. (2017). Permutational Multivariate Analysis of Variance (PERMANOVA). In Wiley StatsRef: Statistics Reference Online (pp. 1–15). Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118445112.stat07841

Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. Retrieved from http://www.bioinformatics.babraham.ac.uk/projects/fastqc

Beier, S., & Bertilsson, S. (2013). Bacterial chitin degradation-mechanisms and ecophysiological strategies. Frontiers in Microbiology, 4, 149. https://doi.org/10.3389/fmicb.2013.00149

Berg, G. (2009). Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84(1), 11–18. https://doi.org/10.1007/s00253-009-2092-7

Bhaskara Reddy, M. ., Belkacemi, K., Corcuff, R., Castaigne, F., & Arul, J. (2000). Effect of pre-harvest chitosan sprays on post-harvest infection by Botrytis cinerea and quality of strawberry fruit. Postharvest Biology and Technology, 20(1), 39–51. https://doi.org/10.1016/S0925-5214(00)00108-3

Biochar as the new black gold | Grist. (n.d.). Retrieved November 14, 2018, from https://grist.org/article/2009-08-13-ag-boosters-tout-biochar-as-offset…

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England), 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Buckley, D. H., Huangyutitham, V., Nelson, T. A., Rumberger, A., & Thies, J. E. (2006). Diversity of Planctomycetes in soil in relation to soil history and environmental heterogeneity. Applied and Environmental Microbiology, 72(7), 4522–4531. https://doi.org/10.1128/AEM.00149-06

Carter, S., Shackley, S., Sohi, S., Suy, T., & Haefele, S. (2013). The Impact of Biochar Application on Soil Properties and Plant Growth of Pot Grown Lettuce (Lactuca sativa) and Cabbage (Brassica chinensis). Agronomy, 3(2), 404–418. https://doi.org/10.3390/agronomy3020404

Chan, K. Y. A., B, L. V. Z., Meszaros, I. A., Downie, A. C., & Joseph, S. D. (2008). Using poultry litter biochars as soil amendments, 46, 437–444.

Cheng, Y., Zhou, W., El sheery, N. I., Peters, C., Li, M., Wang, X., & Huang, J. (2011). Characterization of the Arabidopsis glycerophosphodiester phosphodiesterase (GDPD) family reveals a role of the plastid-localized AtGDPD1 in maintaining cellular phosphate homeostasis under phosphate starvation. The Plant Journal, 66(5), 781–795. https://doi.org/10.1111/j.1365-313X.2011.04538.x

Chisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host-microbe interactions: Shaping the evolution of the plant immune response. Cell, 124(4), 803–814. https://doi.org/10.1016/j.cell.2006.02.008

Choudhary, D. K., Prakash, A., & Johri, B. N. (2007). induced systemic resistance (ISR) in plants: mechanism of action. Indian Journal of Microbiology, 47(4), 289–297. https://doi.org/10.1007/s12088-007-0054-2

Churko, J. M., Mantalas, G. L., Snyder, M. P., & Wu, J. C. (2013). Overview of high throughput sequencing technologies to elucidate molecular pathways in cardiovascular diseases. Circulation Research, 112(12), 1613–1623. https://doi.org/10.1161/CIRCRESAHA.113.300939

Conrath, U., Beckers, G. J. M., Flors, V., García-Agustín, P., Jakab, G., Mauch, F., … Mauch-Mani, B. (2006). Priming: Getting Ready for Battle. Molecular Plant-Microbe Interactions, 19(10), 1062–1071. https://doi.org/10.1094/mpmi-19-1062

Cretoiu, M. S., Kielak, A. M., Schluter, A., & van Elsas, J. D. (2014). Bacterial communities in chitin-amended soil as revealed by 16S rRNA gene based pyrosequencing. Soil Biology and Biochemistry, 76, 5–11. https://doi.org/10.1016/J.SOILBIO.2014.04.027

Cretoiu, M. S., Korthals, G. W., Visser, J. H. M., & van Elsas, J. D. (2013). Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the actinobacterial and oxalobacteraceal communities in an experimental agricultural field. Applied and Environmental Microbiology, 79(17), 5291–5301. https://doi.org/10.1128/AEM.01361-13

Dark, M. J. (2013). Whole-genome sequencing in bacteriology: State of the art. Infection and Drug Resistance, 6, 115–122. https://doi.org/10.2147/IDR.S35710

De Samber, J. (2019). Aardbeienteelt in vlaanderen. Resultaten uit het Landbouwmonitoringsnetwerk. Brussel.

De Tender, C. A., Debode, J., Vandecasteele, B., D’Hose, T., Cremelie, P., Haegeman, A., … Maes, M. (2016a). Biological, physicochemical and plant health responses in lettuce and strawberry in soil or peat amended with biochar. Applied Soil Ecology, 107, 1–12. https://doi.org/10.1016/j.apsoil.2016.05.001

De Tender, C., Haegeman, A., Vandecasteele, B., Clement, L., Cremelie, P., Dawyndt, P., … Debode, J. (2016b). Dynamics in the strawberry rhizosphere microbiome in response to biochar and Botrytis cinerea leaf infection. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.02062

Debode, J., De Tender, C., Soltaninejad, S., Van Malderghem, C., Haegeman, A., Van der Linden, I., … Maes, M. (2016). Chitin mixed in potting soil alters lettuce growth, the survival of zoonotic bacteria on the leaves and associated rhizosphere microbiology. Frontiers in Microbiology, 7(APR). https://doi.org/10.3389/fmicb.2016.00565

del Pozo, J. C., Allona, I., Rubio, V., Leyva, A., de la Pena, A., Aragoncillo, C., & Paz-Ares, J. (1999). A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions. The Plant Journal, 19(5), 579–589. https://doi.org/10.1046/j.1365-313X.1999.00562.x

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., … Gingeras, T. R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15–21. https://doi.org/10.1093/BIOINFORMATICS/BTS635

Ebrahimi, N., Viaene, N., Vandecasteele, B., D’Hose, T., Debode, J., Cremelie, P., … Moens, M. (2016). Traditional and new soil amendments reduce survival and reproduction of potato cyst nematodes, except for biochar. Applied Soil Ecology, 107, 191–204. https://doi.org/10.1016/j.apsoil.2016.06.006

Eickbush, T. H., & Eickbush, D. G. (2007). Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics, 175(2), 477–485. https://doi.org/10.1534/genetics.107.071399

Elad, Y., Cytryn, E., Meller Harel, Y., Lew, B., & Graber, E. R. (2011). The Biochar Effect : plant resistance to biotic stresses. Phytopathologia Mediterranea, 50, 335–349.

Elad, Y., David, D. R., Meller Harel, Y., Borenshtein, M., Kalifa, H. Ben, Silber, A., & Graber, E. R. (2010). Induction of Systemic Resistance in Plants by Biochar, a Soil-Applied Carbon Sequestering Agent. The American Phytopathological Society, 100(9), 913–921.

Elmer, W. H., & Pignatello, J. J. (2011). Effect of Biochar Amendments on Mycorrhizal Associations and Fusarium Crown and Root Rot of Asparagus in Replant Soils. Plant Disease, 95(8), 960–966. https://doi.org/10.1094/PDIS-10-10-0741

European Commission. (n.d.). Sustainable use of pesticides. Retrieved May 16, 2019, from https://ec.europa.eu/food/plant/pesticides/sustainable_use_pesticides_en

European Food Safety Authority. (2011). The 2009 European Union Report on Pesticide Residues in Food. The EFSA Journal (Vol. 9). https://doi.org/10.2903/j.efsa.2011.2430.

Faoro, F., Maffi, D., Cantu, D., & Iriti, M. (2008). Chemical-induced resistance against powdery mildew in barley: the effects of chitosan and benzothiadiazole. BioControl, 53(2), 387–401. https://doi.org/10.1007/s10526-007-9091-3

FAOSTAT. (n.d.). Retrieved October 8, 2018, from http://www.fao.org/faostat/en/#data/QC

Frandberg, E. (1997). Antifungal compounds produced by chitinolytic bacteria from grain ecosystems. Swedish University of Agricultural Sciences.

García-Salamanca, A., Molina-Henares, M. A., van Dillewijn, P., Solano, J., Pizarro-Tobías, P., Roca, A., … Ramos, J. L. (2013). Bacterial diversity in the rhizosphere of maize and the surrounding carbonate-rich bulk soil. Microbial Biotechnology, 6(1), 36–44. https://doi.org/10.1111/j.1751-7915.2012.00358.x

Gerstein, M., Snyder, M., & Wang, Z. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews. Genetics, 10(20), 20–24. https://doi.org/10.1038/nrg2484.RNA-Seq

Goslee, S. C. (2010). Correlation analysis of dissimilarity matrices. Plant Ecology, 206(2), 279–286. https://doi.org/10.1007/s11258-009-9641-0

Graber, E. R., Tsechansky, L., Lew, B., & Cohen, E. (2014). Reducing capacity of water extracts of biochars and their solubilization of soil Mn and Fe. European Journal of Soil Science, 65(1), 162–172. https://doi.org/10.1111/ejss.12071

Graber, Ellen R., Meller Harel, Y., Kolton, M., Cytryn, E., Silber, A., David, D. R., … Elad, Y. (2010). Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil, 337(1), 481–496. https://doi.org/10.1007/s11104-010-0544-6

Gravel, V., Dorais, M., & Ménard, C. (2013). Organic potted plants amended with biochar: its effect on growth and Pythium colonization. Canadian Journal of Plant Science, 93(6), 1217–1227. https://doi.org/10.4141/cjps2013-315

Harbison, A. B., Price, L. E., Flythe, M. D., & Bräuer, S. L. (2017). Micropepsis pineolensis gen. nov., sp. nov., a mildly acidophilic alphaproteobacterium isolated from a poor fen, and proposal of micropepsaceae fam. nov. within micropepsales ord. nov. International Journal of Systematic and Evolutionary Microbiology, 67(4), 839–844. https://doi.org/10.1099/ijsem.0.001681

Hartmann, A., Schmid, M., Van Tuinen, D., & Berg, G. (2009). Plant-driven selection of microbes. Plant and Soil, 321(1–2), 235–257. https://doi.org/10.1007/s11104-008-9814-y

Hellemans, J., Mortier, G., De Paepe, A., Speleman, F., & Vandesompele, J. (2007). qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biology, 8(2), R19. https://doi.org/10.1186/gb-2007-8-2-r19

Hirakawa, H., Shirasawa, K., Kosugi, S., Tashiro, K., Nakayama, S., Yamada, M., … Isobe, S. N. (2014). Dissection of the Octoploid Strawberry Genome by Deep Sequencing of the Genomes of Fragaria Species. DNA Research, 21(2), 169–181. https://doi.org/10.1093/dnares/dst049

How is Peat Extracted? - Manitoba Peatlands. (n.d.). Retrieved December 15, 2018, from http://manitobapeatlands.weebly.com/how-is-peat-extracted.html

Hu, P., Meng, Y., & Wise, R. P. (2009). Functional Contribution of Chorismate Synthase, Anthranilate Synthase, and Chorismate Mutase to Penetration Resistance in Barley–Powdery Mildew Interactions. Molecular Plant-Microbe Interactions, 22(3), 311–320. https://doi.org/10.1094/MPMI-22-3-0311

Hua, C., Li, Y., Wang, X., Kai, K., Su, M., shi, W., … Liu, Y. (2019). The effect of low and high molecular weight chitosan on the control of gray mold (Botrytis cinerea) on kiwifruit and host response. Scientia Horticulturae, 246(August 2018), 700–709. https://doi.org/10.1016/j.scienta.2018.11.038

Hummer, K. E., & Hancock, J. (2009). 20. Strawberry Genomics: Botanical History, Cultivation, Traditional Breeding, and New Technologies. In K. M. Folta & S. E. Gardiner (Eds.), Genetics and Genomics of Rosaceae. Plant Genetics and Genomics: Crops and Models (vol 6). New York: Springer. https://doi.org/10.1007/978-0-387-77491-6_20

Illumina. (2010). Technology Spotlight: Illumina ® Sequencing. Retrieved from https://www.illumina.com/documents/products/techspotlights/techspotligh…

Illumina. (2013). 16S Metagenomic Sequencing Library Preparation: Preparing 16S Ribosomal RNA Gene Amplicons for the Illumina MiSeq System. Retrieved from https://support.illumina.com/content/dam/illumina-support/documents/doc…

Iriti, M., Castorina, G., Vitalini, S., Mignani, I., Soave, C., Fico, G., & Faoro, F. (2010). Chitosan-induced ethylene-independent resistance does not reduce crop yield in bean. Biological Control, 54(3), 241–247. https://doi.org/10.1016/J.BIOCONTROL.2010.05.012

Jagodzik, P., Tajdel-Zielinska, M., Ciesla, A., Marczak, M., & Ludwikow, A. (2018). Mitogen-Activated Protein Kinase Cascades in Plant Hormone Signaling. Frontiers in Plant Science, 9(October), 1–26. https://doi.org/10.3389/fpls.2018.01387

Jaiswal, A. K., Elad, Y., Graber, E. R., & Frenkel, O. (2014). Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration. Soil Biology and Biochemistry, 69, 110–118. https://doi.org/10.1016/J.SOILBIO.2013.10.051

Kan, J. A. L. Van. (2005). Infection Strategies of Botrytis cinerea. Proceedings of the VIIIth International Symposium on Postharvest Physiology of Ornamental Plants, 77–90. https://doi.org/10.1007/978-94-015-9546-9

Kawasaki, T., Yamada, K., Yoshimura, S., & Yamaguchi, K. (2017). Chitin receptor-mediated activation of MAP kinases and ROS production in rice and Arabidopsis. Plant Signaling and Behavior, 12(9), 4–8. https://doi.org/10.1080/15592324.2017.1361076

Khan, A. A., & Shih, D. S. (2004). Molecular cloning, characterization, and expression analysis of two class II chitinase genes from the strawberry plant. Plant Science, 166(3), 753–762. https://doi.org/10.1016/J.PLANTSCI.2003.11.015

Klaus, B., & Huber, W. (2016). Analysis of RNA-Seq data: gene-level exploratory analysis and differential expression. Retrieved April 17, 2019, from https://www.huber.embl.de/users/klaus/Teaching/DESeq2Predoc2014.html

Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., & Glöckner, F. O. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41(1). https://doi.org/10.1093/nar/gks808

Kolton, M., Meller Harel, Y., Pasternak, Z., Graber, E. R., Elad, Y., & Cytryn, E. (2011). Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Applied and Environmental Microbiology, 77(14), 4924–4930. https://doi.org/10.1128/AEM.00148-11

Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Applied and Environmental Microbiology, 79(17), 5112–5120. https://doi.org/10.1128/AEM.01043-13

Kukurba, K. R., & Montgomery, S. B. (2015). RNA sequencing and analysis. Cold Spring Harbor Protocols, 2015(11), 951–969. https://doi.org/10.1101/pdb.top084970

Landi, L., Feliziani, E., & Romanazzi, G. (2014). Expression of Defense Genes in Strawberry Fruits Treated with Different Resistance Inducers. Journal of Agricultural and Food Chemistry, 62(14), 3047–3056. https://doi.org/10.1021/jf404423x

Lawrence, M., Huber, W., Pagès, H., Aboyoun, P., Carlson, M., Gentleman, R., … Carey, V. J. (2013). Software for Computing and Annotating Genomic Ranges. PLoS Computational Biology, 9(8), e1003118. https://doi.org/10.1371/journal.pcbi.1003118

Li, L., & Steffens, J. C. (2002). Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta, 215, 239–247. https://doi.org/10.1007/s00425-002-0750-4

Lieten, P. (2013). Advances in Strawberry Substrate Culture during the Last Twenty Years in the Netherlands and Belgium. International Journal of Fruit Science, 13(1–2), 84–90. https://doi.org/10.1080/15538362.2012.697024

Lindahl, B. D., Nilsson, H. R., Leho, T., Abarenkov, K., Carlsen, T., Kjøller, R., … Kauserud, H. (2013). Fungal community analysis by high-throughput sequencing of amplified markers – a user ’ s guide. New Phytologist, 199(1), 288–299.

Lindsay, R., Birnie, R., & Clough, J. (2016). Peatland restoration. Retrieved from http://www.iucn-uk-peatlandprogramme.org/sites/www.iucn-uk-peatlandprog… Peatland Restoration_FINAL.pdf

Liu, J., Tian, S., Meng, X., & Xu, Y. (2007). Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biology and Technology, 44(3), 300–306. https://doi.org/10.1093/icb/27.2.675

Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8

Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S., … Dangl, J. L. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature, 488(7409), 86–90. https://doi.org/10.1038/nature11237

Luypaert, G., Witters, J., Van Huylenbroeck, J., De Clercq, P., De Riek, J., & De Keyser, E. (2017). Induced expression of selected plant defence related genes in pot azalea, Rhododendron simsii hybrid. Euphytica, 213(10), 227. https://doi.org/10.1007/s10681-017-2010-5

Malerba, M., & Cerana, R. (2016). Chitosan effects on plant systems. International Journal of Molecular Sciences, 17(7), 1–15. https://doi.org/10.3390/ijms17070996

Masiello, C. A., Chen, Y., Gao, X., Liu, S., Cheng, H.-Y., Bennett, M. R., … Silberg, J. J. (2013). Biochar and Microbial Signaling: Production Conditions Determine Effects on Microbial Communication. Environmental Science & Technology, 47(20), 11496–11503. https://doi.org/10.1021/es401458s

Meller Harel, Y., Elad, Y., Rav-David, D., Borenstein, M., Shulchani, R., Lew, B., & Graber, E. R. (2012). Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant and Soil, 357(1), 245–257. https://doi.org/10.1007/s11104-012-1129-3

Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634–663. https://doi.org/10.1111/1574-6976.12028

MiSeq Specifications | Key performance parameters. (n.d.). Retrieved January 10, 2019, from https://emea.illumina.com/systems/sequencing-platforms/miseq/specificat…

Muymas, P., Pichyangkura, R., Wiriyakitnateekul, W., Wangsomboondee, T., Chadchawan, S., & Seraypheap, K. (2015). Effects of chitin-rich residues on growth and postharvest quality of lettuce. Biological Agriculture and Horticulture, 31(2), 108–117. https://doi.org/10.1080/01448765.2014.974669

Nelissen, V., Ruysschaert, G., Manka’Abusi, D., D’Hose, T., De Beuf, K., Al-Barri, B., … Boeckx, P. (2015). Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment. European Journal of Agronomy, 62, 65–78. https://doi.org/10.1016/j.eja.2014.09.006

Nielsen, P. K., Bønsager, B. C., Fukuda, K., & Svensson, B. (2004). Barley α-amylase/subtilisin inhibitor: structure, biophysics and protein engineering. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1696(2), 157–164. https://doi.org/10.1016/J.BBAPAP.2003.09.019

Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W., & Niandou, M. A. S. (2009). Impact of Biochar Amendment on Fertility of a Southeastern Coastal Plain Soil. Soil Science, 174(2), 105–112. https://doi.org/10.1097/SS.0b013e3181981d9a

Oksanen, J., Blanchet Guillaume, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., … Wagner, H. (2019). Vegan: Community Ecology Package. R Package Version 2.5-4.

Oksanen, Jari. (2017). Basic Ordination Methods. Retrieved April 17, 2019, from http://cc.oulu.fi/~jarioksa/opetus/metodi/ordination101.html#1

Overvoorde, P., Fukaki, H., & Beeckman, T. (2010). Auxin control of root development. Cold Spring Harbor Perspectives in Biology, 2(6). https://doi.org/10.1101/cshperspect.a001537

Panstruga, R. (2005). Serpentine plant MLO proteins as entry portals for powdery mildew fungi. Biochemical Society Transactions, 33(Pt 2), 389–392. https://doi.org/10.1042/BST0330389

Paré, P. W., Farag, M. A., Krishnamachari, V., Zhang, H., Ryu, C.-M., & Kloepper, J. W. (2005). Elicitors and priming agents initiate plant defense responses. Photosynthesis Research, 85(2), 149–159. https://doi.org/10.1007/s11120-005-1001-x

Pessina, S., Lenzi, L., Perazzolli, M., Campa, M., Dalla Costa, L., Urso, S., … Malnoy, M. (2016). Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine. Horticulture Research, 3(1), 16016. https://doi.org/10.1038/hortres.2016.16

Petrasch, S., Knapp, S. J., van Kan, J. A. L., & Blanco-Ulate, B. (2019). Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Molecular Plant Pathology, (January). https://doi.org/10.1111/mpp.12794

Pfaffl, M., & QIAGEN. (2009). REST 2009 Software User Guide. Retrieved from www.qiagen.com.

Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9). Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11972351

Pieterse, C. M. J., Van der Does, D., Zamioudis, C., Leon-Reyes, A., & Van Wees, S. C. M. (2012). Hormonal Modulation of Plant Immunity. Annual Review of Cell and Developmental Biology, 28(1), 489–521. https://doi.org/10.1146/annurev-cellbio-092910-154055

Pombo, M. A., Rosli, H. G., Martínez, G. A., & Civello, P. M. (2011). UV-C treatment affects the expression and activity of defense genes in strawberry fruit (Fragaria × ananassa, Duch.). Postharvest Biology and Technology, 59(1), 94–102. https://doi.org/10.1016/J.POSTHARVBIO.2010.08.003

PRUPE_ppa1027140mg - Uncharacterized protein - Prunus persica (Peach) - PRUPE_ppa1027140mg gene & protein. (n.d.). Retrieved June 2, 2019, from https://www.uniprot.org/uniprot/M5XNG3

Raj, S. N., Sarosh, B. R., & Shetty, H. S. (2006). Induction and accumulation of polyphenol oxidase activities as implicated in development of resistance against pearl millet downy mildew disease. Functional Plant Biology, 33(6), 563. https://doi.org/10.1071/FP06003

Ramírez, M. Á., Rodríguez, A. T., Alfonso, L., & Peniche, C. (2010). Chitin is a biodegradable polymer widely spread in nature. Biotecnología Aplicada, 27(April), 270–276.

Ravichandran, S., Stone, S. L., Benkel, B., & Prithiviraj, B. (2013). Purple Acid Phosphatase5 is required for maintaining basal resistance against Pseudomonas syringae in Arabidopsis. BMC Plant Biology, 13(1), 107. https://doi.org/10.1186/1471-2229-13-107

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7). https://doi.org/10.1093/nar/gkv007

Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (Oxford, England), 26(1), 139–140. https://doi.org/10.1093/bioinformatics/btp616

Robinson, M. D., & Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology, 11(3), R25. https://doi.org/10.1186/gb-2010-11-3-r25

Rondon, M. A., Lehmann, J., Ramírez, J., & Hurtado, M. (2007). Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology and Fertility of Soils, 43(6), 699–708. https://doi.org/10.1007/s00374-006-0152-z

Ruturaj, P. (n.d.). 16S ribosomal RNA gene | BASIS Tucson North. Retrieved December 20, 2018, from http://www.basised.com/tucson-north/senior-projects/1-16s-ribosomal-rna…

Saavedra, G. M., Sanfuentes, E., Figueroa, P. M., & Figueroa, C. R. (2017). Independent preharvest applications of methyl jasmonate and chitosan elicit differential upregulation of defense-related genes with reduced incidence of gray mold decay during postharvest storage of Fragaria chiloensis fruit. International Journal of Molecular Sciences, 18(7), 1–17. https://doi.org/10.3390/ijms18071420

Sequencing Technology | Sequencing by synthesis. (n.d.). Retrieved December 8, 2018, from https://emea.illumina.com/science/technology/next-generation-sequencing…

Sharp, R. (2013). A Review of the Applications of Chitin and Its Derivatives in Agriculture to Modify Plant-Microbial Interactions and Improve Crop Yields. Agronomy, 3(4), 757–793. https://doi.org/10.3390/agronomy3040757

Sharpton, T. J. (2014). An introduction to the analysis of shotgun metagenomic data. Frontiers in Plant Science, 5(June), 1–14. https://doi.org/10.3389/fpls.2014.00209

Smith, M. E., Henkel, T. W., & Rollins, J. A. (2015). How many fungi make sclerotia? Fungal Ecology, 13(Fig 1), 211–220. https://doi.org/10.1016/j.funeco.2014.08.010

Sowani, H., Kulkarni, M., Zinjarde, S., & Javdekar, V. (2017). Gordonia and Related Genera as Opportunistic Human Pathogens Causing Infections of Skin, Soft Tissues, and Bones. The Microbiology of Skin, Soft Tissue, Bone and Joint Infections (1st ed., Vol. 2). Elsevier Inc. https://doi.org/10.1016/B978-0-12-811079-9.00007-0

Spaepen, S., & Vanderleyden, J. (2011). Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology, 3(4). https://doi.org/10.1101/cshperspect.a001438

Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., De MacÊdo, J. L. V., Blum, W. E. H., & Zech, W. (2007). Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 291(1–2), 275–290. https://doi.org/10.1007/s11104-007-9193-9

Thies, J. E., & Rillig, M. (2009). Characteristics of biochar: microchemical properties. In J. Lehmann & S. Joseph (Eds.), Biochar for Envionmental Management: Science and Technology.

Thipyapong, P., Hunt, M. D., & Steffens, J. C. (2004). Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility. Planta, 220(1), 105–117. https://doi.org/10.1007/s00425-004-1330-6

Thomma, B. P. H. J., Nürnberger, T., & Joosten, M. H. A. J. (2011). Of PAMPs and Effectors: The Blurred PTI-ETI Dichotomy. The Plant Cell, 23(1), 4–15. https://doi.org/10.1105/tpc.110.082602

University of Oregon. (n.d.). RNA-seqlopedia. Retrieved January 10, 2019, from https://rnaseq.uoregon.edu/#analysis

V. Rajan, V. B., & D’Silva, P. (2009). Arabidopsis thaliana J-class heat shock proteins: cellular stress sensors. Functional & Integrative Genomics, 9(4), 433–446. https://doi.org/10.1007/s10142-009-0132-0

Van Delm, T., Melis, P., Stoffels, K., Vervoort, M., Vermeiren, D., & Baets, W. (2016). Historical Milestones, Current Methods, and Strategies Resulting in Year-Round Strawberry Production in Belgium. International Journal of Fruit Science, 16(1), 118–128. https://doi.org/10.1080/15538362.2016.1239561

Van Der Rest, B., Rolland, N., Boisson, A.-M., Ferro, M., Bligny, R., & Douce, R. (2004). Identification and characterization of plant glycerophosphodiester phosphodiesterase. Biochem. J (Vol. 379). Retrieved from http://psort.nibb.ac.jp

Van Dijk, E. L., Auger, H., Jaszczyszyn, Y., & Thermes, C. (2014). Ten years of next-generation sequencing technology. Trends in Genetics : TIG, 30(9), 418–426. https://doi.org/10.1016/j.tig.2014.07.001

Van Liefferinge, J. (2015). Ziekten en plagen in aardbeien. Vlaamse Overheid Departement Landbouw En Visserij, 71.

Vanneste, S., & Friml, J. (2009). Auxin: A Trigger for Change in Plant Development. Cell, 136(6), 1005–1016. https://doi.org/10.1016/J.CELL.2009.03.001

Veiling Haspengouw. (2011).

Vervoort, M., Melis, P., Stoffels, K., & Van Delm, T. (2017). Comparing an integrated pest management with a chemical control strategy in multiple strawberry cultivations. In Book of abstracts. 3rd international strawberry congress. Strawberries on demand, the consumer rules the future. Antwerp.

Větrovský, T., & Baldrian, P. (2013). The Variability of the 16S rRNA Gene in Bacterial Genomes and Its Consequences for Bacterial Community Analyses. PLoS ONE, 8(2), 1–10. https://doi.org/10.1371/journal.pone.0057923

Viger, M., Hancock, R. D., Miglietta, F., & Taylor, G. (2015). More plant growth but less plant defence? First global gene expression data for plants grown in soil amended with biochar. GCB Bioenergy, 7(4), 658–672. https://doi.org/10.1111/gcbb.12182

Walsh, U. F., Morrissey, J. P., & O’Gara, F. (2001). Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Current Opinion in Biotechnology, 12(3), 289–295. https://doi.org/10.1016/S0958-1669(00)00212-3

Weisskopf, L., Fromin, N., Tomasi, N., Aragno, M., & Martinoia, E. (2005). Secretion activity of white lupin’s cluster roots influences bacterial abundance, function and community structure. Plant and Soil, 268(1), 181–194. https://doi.org/10.1007/s11104-004-0264-x

Wetterstrand, K. A. (n.d.). DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP). Retrieved January 10, 2019, from www.genome.gov/sequencingcostsdata

Williamson, B., Tudzynski, B., Tudzynski, P., & Van Kan, J. A. L. (2007). Botrytis cinerea: The cause of grey mould disease. Molecular Plant Pathology, 8(5), 561–580. https://doi.org/10.1111/j.1364-3703.2007.00417.x

Yu, T., Wang, L., Yin, Y., Wang, Y., & Zheng, X. (2008). Effect of chitin on the antagonistic activity of Cryptococcus laurentii against Penicillium expansum in pear fruit. International Journal of Food Microbiology, 122(1–2), 44–48. https://doi.org/10.1016/j.ijfoodmicro.2007.11.059

Zhang, L., Wang, Y., Wei, L., Wang, Y., Shen, X., & Li, S. (2009). Taibaiella smilacinae gen. nov., sp. nov., an endophytic member of the family Chitinophagaceae isolated from the stem of Smilacina japonica, and emended description of Flavihumibacter petaseus. International Journal of Systematic and Evolutionary Microbiology, 63, 3769–3776. https://doi.org/10.1099/ijs.0.051607-0

 

Universiteit of Hogeschool
Master in de bio-ingenieurswetenschappen: cel- en genbiotechnologie
Publicatiejaar
2019
Promotor(en)
Prof. dr. ir. Tina Kyndt, dr. ir. Caroline De Tender
Kernwoorden
Share this on: