Het effect van vrolijke en droevige muziek (in)congruent aan gemoedstoestand op de fysiologie en cognitieve performantie van kinderen: de fysiologische basis van het “Mozart-effect”

Leen Tordeurs
De studie gaat het effect na van affect-(in)congruente muziek op het geheugen van kinderen. Affect-(in)congruente muziek is muziek die iemand beluistert die een emotie opwekt die al dan niet aansluit aan de emotie van die persoon op dat moment. Kinderen die affect-congruente muziek beluisterden presteerden beter op geheugentaken dan wanneer ze affect-incongruente muziek beluisterden.

Muziek maakt je slimmer!

Wil je goede punten halen voor je examens? Luister dan naar muziek voordat je naar jouw examen vertrekt! 

Voorbije onderzoeken

Vergeet het Mozart-effect dat beweert dat het luisteren naar Mozart muziek je slimmer maakt. In een aantal onderzoeken werd dit effect immers niet gevonden. Daarentegen vonden onderzoeken naar het effect van affect-congruente muziek op de prestaties van mensen wonderbaarlijke resultaten! Affect-congruente muziek is muziek die een emotie opwekt die aansluit aan jouw emotie op dat moment. Als iemand bijvoorbeeld vrolijk is en vrolijke muziek luistert, beschouwen we dit als affect-congruente muziek. Affect-incongruente muziek wekt dan een emotie op die niet aansluit aan jouw huidige emotie. Zo beluistert iemand die droevig is bijvoorbeeld vrolijke muziek.

Ons onderzoek

In ons onderzoek zijn wij het effect van affect-(in)congruente muziek nagegaan op de geheugenprestaties van zes- tot negenjarige kinderen. Met korte filmfragmenten van de films "The Lion King" en "The Jungle Book" werden kinderen in een bepaalde emotie gebracht. In "The Lion King" bekeken de kinderen het fragment waarin de leeuw Mufasa stierf. Hierdoor werden de kinderen verdrietig. In "The Jungle Book" bekeken zij een fragment waarin Balou en Mowgli plezier maakten. Daardoor werden zij vrolijk. Nadien beluisterden de kinderen een muziekfragment (vrolijk of droevig). Ofwel werd eerst een affect-congruent, ofwel eerst een affect-incongruent muziekfragment afgespeeld. Na elk muziekfragment voltooiden de kinderen enkele geheugentaken. Tijdens die geheugentaken kregen kinderen zes afbeeldingen na elkaar te zien op een computerscherm. Zij moesten die zes afbeeldingen onthouden en dàt in de juiste volgorde. Nadien kregen ze een scherm met twaalf afbeeldingen te zien waarin die zes vooraf aangeboden afbeeldingen verborgen zaten. De kinderen moesten die zes afbeeldingen zo snel mogelijk aanklikken én ook in de juiste volgorde. De resultaten wezen erop dat kinderen die affect-congruente muziek beluisterden een beter geheugen hadden dan wanneer ze affect-incongruente muziek beluisterden. Bovendien ging deze studie het effect van affect-(in)congruente muziek na op onze ademhalingsfrequentie en hartslag. Affect-congruente muziek zou onze ademhalingsfrequentie en hartslag verlagen. Hierdoor zijn we kalm en presteren we beter op geheugentaken. Dit resultaat werd wel enkel gevonden indien de muziek de emotie "verdriet" opwekte.

Je hoeft dus niet altijd vrolijk te zijn om een examen succesvol af te leggen! Voel je je droevig? Luister dan naar droevige muziek net voordat je naar je jouw examen vertrekt! Voel je je vrolijk? Beluister vrolijke muziek! 

Bibliografie

Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: a meta-analytic   review. Neuropsychology Review, 16(1), 17-42.

American Academy of Pediatrics, Subcommittee on Attention-Deficit/Hyperactivity Disorder   (2011). ADHD: clinical practice guideline for the diagnosis, evaluation, and treatment of    attention-deficit/hyperactivity disorder in children and adolescents. Pediatrics, 128, 1007-       1022.

Arnsten, A. F., & Goldman-Rakic, P. S. (1998). Noise stress impairs prefrontal cortical cognitive      function in monkeys: evidence for a hyperdopaminergic mechanism. Archives of General    Psychiatry, 55(4), 362-368.

Barrett, L. F., Mesquita, B., Ochsner, K. N., & Gross, J. J. (2007). The experience of emotion.             Annual Review of Psychology, 58, 373-403.

Benarroch, E. E. (1993). The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clinic Proceedings, 68(10), 988-1001.

Bernardi, L., Porta, C., Casucci, G., Balsamo, R., Bernardi, N. F., Fogari, R., & Sleight, P. (2009).       Dynamic interactions between musical, cardiovascular, and cerebral rhythms in humans.         Circulation, 119(25), 3171-3180.

Bernardi, L., Porta, C., & Sleight, P. (2006). Cardiovascular, cerebrovascular, and respiratory            changes induced by different types of music in musicians and non-musicians: the       importance of silence. Heart, 92(4), 445-452.

Berntson, G. G., Thomas Bigger, J., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., ...       Der Molen, M. W. (1997). Heart rate variability: origins, methods, and interpretive        caveats. Psychophysiology, 34(6), 623-648.

Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with     activity in brain regions implicated in reward and emotion. Proceedings of the National   Academy of Sciences, 98(20), 11818-11823.

Blood, A. J., Zatorre, R. J., Bermudez, P., & Evans, A. C. (1999). Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nature          Neuroscience, 2(4), 382-387.

Bogdanov, V., Woodstra, C., & Erlewine, S. T. (Eds.). (2001). All music guide to electronica: the        definitive guide to electronic music. San Francisco, CA: Backbeat Books.

Bradley, M. M., & Lang, P. J. (2000). Affective reactions to acoustic stimuli. Psychophysiology,        37(2), 204-215.

Brown, S., Martinez, M. J., & Parsons, L. M. (2004). Passive music listening spontaneously engages            limbic and paralimbic systems. Neuroreport, 15(13), 2033-2037.

Bush, L. K., Hess, U., & Wolford, G. (1993). Transformations for within-subject designs: a Monte         Carlo    investigation. Psychological bulletin, 113(3), 566.

Caldwell, J. (1995). Assessing the impact of stressors on performance: observations on levels of          analyses. Biological Psychology, 40(1), 197-208.

Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. New York, NY:            Cambridge University Press.

Carstens, C. B., Huskins, E., & Hounshell, G. W. (1995). Listening to Mozart may not enhance         performance on the revised Minnesota paper form board test. Psychological Reports,        77(1), 111-114.

Chanda, M. L., & Levitin, D. J. (2013). The neurochemistry of music. Trends in Cognitive Sciences, 17(4), 179-193.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences . Hillsdale, NJ: Law-rence           Erlbaum Associates. Inc, Publishers.

Conway, A. R. (1996). Individual differences in working memory capacity: More evidence for a      general capacity theory. Memory, 4(6), 577-590.

Conway, A. R., & Engle, R. W. (1994). Working memory and retrieval: A resource-dependent     inhibition model. Journal of Experimental Psychology: General, 123(4), 354-373.

Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the   body. Nature Reviews Neuroscience, 3(8), 655-666.

Črnčec, R., Wilson, S. J., & Prior, M. (2006). No evidence for the Mozart effect in children. Music            Perception: An Interdisciplinary Journal, 23(4), 305-318.

Dan-Glauser, E. S., & Scherer, K. R. (2011). The Geneva affective picture database (GAPED): a   new 730-picture database focusing on valence and normative significance. Behavior          Research Methods, 43(2), 468-477.

de Jongh, R., Bolt, I., Schermer, M., & Olivier, B. (2008). Botox for the brain: enhancement of           cognition, mood and pro-social behavior and blunting of unwanted memories. Neuroscience & Biobehavioral Reviews, 32(4), 760-776.

Demanet, J., Liefooghe, B., & Verbruggen, F. (2011). Valence, arousal, and cognitive control: a      voluntary task-switching study. Frontiers in Psychology, 2, 50-59.

Dessy, E., Van Puyvelde, M., Mairesse, O., Neyt, X., & Pattyn, N. (2017). Cognitive Performance Enhancement: Do Biofeedback and Neurofeedback Work?. Journal of Cognitive      Enhancement, 1-31.

Dresler, M., Sandberg, A., Ohla, K., Bublitz, C., Trenado, C., Mroczko-Wąsowicz, A., ... Repantis,       D. (2013). Non-pharmacological cognitive enhancement. Neuropharmacology, 64, 529-   543.

Einthoven, W., Fahr, G., & De Waart, A. (1913). Über die Richtung und die manifeste Grösse der   Potentialschwankungen im menschlichen Herzen und über den Einfluss der Herzlage auf       die Form des Elektrokardiogramms. Pflüger's Archiv für die gesamte Physiologie des           Menschen und der Tiere, 150(6-8), 275-315.

Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory,        short-term memory, and general fluid intelligence: A latent variable approach. Journal of     Experimental Psychology: General, 125, 309–331.

Epstein, J. N., Kelleher, K. J., Baum, R., Brinkman, W. B., Peugh, J., Gardner, W., ... Langberg,          J. (2014). Variability in ADHD care in community-based pediatrics. Pediatrics, 134(6),    1136-1143.

Erlewine, M., Bogdanow, V., Woodstra, C., & Koda, C. (Eds.). (1996). The blues. San Francisco:   Miller-Freeman.

Etzel, J. A., Johnsen, E. L., Dickerson, J., Tranel, D., & Adolphs, R. (2006). Cardiovascular and       respiratory responses during musical mood induction. International Journal of            Psychophysiology, 61(1), 57-69.

Fernald, A. (1989). Intonation and communicative interest in mother’s speech to infants: Is the          melody the message? Child Development, 6, 1497–1510.

Franco, F., Swaine, J. S., Israni, S., Zaborowska, K. A., Kaloko, F., Kesavarajan, I., & Majek, J. A.             (2014). Affect-matching music improves cognitive performance in adults and young   children for both positive and negative emotions. Psychology of Music, 42(6), 869-887.

Franke, A. G., & Lieb, K. (2010). Pharmakologisches Neuroenhancement und Hirndoping: Chancen    und Risiken [Pharmacological neuroenhancement and brain doping: Chances and risks].        Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, 53(8), 853-860.

Friedman, B. H. (2007). An autonomic flexibility-neurovisceral integration model of anxiety and    cardiac vagal tone. Biological Psychology, 74(2), 185-199.

Gabrielsson, A., & Juslin, P. N. (2003). Emotional expression in music. In R. J. Davidson, K. R.        Scherer, & H. H. Goldsmith (Eds.), Series in affective science. Handbook of affective sciences (pp. 503-534). New York, NY, US: Oxford University Press.

Garland, H. (1985). A cognitive mediation theory of task goals and human performance.    Motivation and Emotion, 9(4), 345-367.

Gellad, W. F., Stein, B. D., Ruder, T., Henderson, R., Frazee, S. G., Mehrotra, A., & Donohue, J. M.    (2014). Geographic variation in receipt of psychotherapy in children receiving attention-  deficit/hyperactivity disorder medications. JAMA Pediatrics, 168(11), 1074-1076.

Gendolla, G. H., & Brinkmann, K. (2005). The role of mood states in self-regulation: Effects on   action preferences and resource mobilization. European Psychologist, 10(3), 187-198.

Gomez, P., & Danuser, B. (2004). Affective and physiological responses to environmental noises   and music. International Journal of Psychophysiology, 53(2), 91-103.

Gomez, P., & Danuser, B. (2007). Relationships between musical structure and      psychophysiological measures of emotion. Emotion, 7(2), 377-387.

Gratier, M. (2003). Expressive timing and interactional synchrony between mothers and infants:    Cultural similarities, cultural differences, and the immigration experience. Cognitive       Development, 18(4), 533-554.

Griffiths, T. D., Uppenkamp, S., Johnsrude, I., Josephs, O., & Patterson, R. D. (2001). Encoding of             the temporal regularity of sound in the human brainstem. Nature Neuroscience, 4(6), 633-     637.

Gross, J. J., Fredrickson, B. L., & Levenson, R. W. (1994). The psychophysiology of crying.     Psychophysiology, 31(5), 460-468.

Grossman, P., Karemaker, J., & Wieling, W. (1991). Prediction of tonic parasympathetic cardiac          control using respiratory sinus arrhythmia: the need for respiratory control.     Psychophysiology, 28(2), 201-216.

Grossman, P., & Taylor, E. W. (2007). Toward understanding respiratory sinus arrhythmia:         relations to cardiac vagal tone, evolution and biobehavioral functions. Biological        Psychology, 74(2), 263-285.

Grossman, P., Van Beek, J., & Wientjes, C. (1990). A comparison of three quantification methods             for estimation of respiratory sinus arrhythmia. Psychophysiology, 27(6), 702-714.

Gruber, J., Johnson, S. L., Oveis, C., & Keltner, D. (2008). Risk for mania and positive emotional responding: too much of a good thing?. Emotion, 8(1), 23.

Gruzelier, J. H. (2014). EEG-neurofeedback for optimising performance. I: a review of cognitive       and affective outcome in healthy participants. Neuroscience & Biobehavioral Reviews, 44,          124-141.

Hancock, P. A., & Szalma, J. L. (2008). Performance under stress. Ashgate Publishing, Ltd.

Hansen, A. L., Johnsen, B. H., & Thayer, J. F. (2003). Vagal influence on working memory and   attention. International Journal of Psychophysiology, 48(3), 263-274.

Holden, C. (1994). Smart music. Science, 266, 968–969.

Hunter, P. G., Schellenberg, E. G., & Schimmack, U. (2010). Feelings and perceptions of happiness          and sadness induced by music: Similarities, differences, and mixed emotions. Psychology   of Aesthetics, Creativity, and the Arts, 4(1), 47.

Husain, G., Thompson, W. F., & Schellenberg, E. G. (2002). Effects of musical tempo and mode on    arousal, mood, and spatial abilities. Music Perception: An Interdisciplinary Journal, 20(2),            151-171.

Iwanaga, M., Kobayashi, A., & Kawasaki, C. (2005). Heart rate variability with repetitive exposure           to music. Biological Psychology, 70(1), 61-66.

Jönsson, P., & Sonnby-Borgström, M. (2003). The effects of pictures of emotional faces on tonic          and phasic autonomic cardiac control in women and men. Biological Psychology, 62(2),            157-173.

Jose, A. D., & Collison, D. (1970). The normal range and determinants of the intrinsic heart rate in    man. Cardiovascular Research, 4(2), 160-167.

Juslin, P. N. (1997). Perceived emotional expression in synthesized performances of a short           melody: Capturing the listener’s judgment policy. Musicae Scientiae, 1, 225–256.

Juslin, P. N., & Laukka, P. (2003). Communication of emotions in vocal expression and music   performance: Different channels, same code? Psychological Bulletin, 129(5), 770-814.

Juslin, P. N., & Laukka, P. (2004). Expression, perception, and induction of musical emotions: A     review and a questionnaire study of everyday listening. Journal of New Music Research,        33(3), 217-238.

Juslin, P.N., Liljeström, S., Västfjäll, D., & Lundqvist, L. (2010). How does music evoke emotions?            Exploring the underlying mechanisms. In P. N. Juslin, S. Liljeström, D. Västfjäll, & L.   Lundqvist (Eds.), Handbook of music and emotion: Theory, research, applications                (pp. 605-642). New York, NY: Oxford University Press.

Kenealy, P., & Monsef, A. (1994). Music and IQ tests. The Psychologist, 7(8), 346.

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Reviews, 29(2), 169-195.

Knight, A. J., & Wiese, N. (2011). Therapeutic Music and Nursing in Poststroke Rehabilitation (CE).             Rehabilitation Nursing, 36(5), 204-215.

Koelsch, S. (2010). Towards a neural basis of music-evoked emotions. Trends in Cognitive      Sciences, 14(3), 131-137.

Koelsch, S. (2014). Brain correlates of music-evoked emotions. Nature Reviews           Neuroscience, 15(3), 170-180.

Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: A review. Biological         Psychology, 84(3), 394-421.

Krumhansl, C. L. (1997). An exploratory study of musical emotions and psychophysiology.        Canadian Journal of Experimental Psychology, 51(4), 336.

Lacey, J. I., & Lacey, B. C. (1970). Some autonomic-central nervous system interrelationships. In    P. Black (Ed.), Physiological correlates of emotion (pp. 205-227). New York: Academic            Press.

Large, E. W., & Palmer, C. (2002). Perceiving temporal regularity in music. Cognitive Science,        26(1), 1-37.

Levy, M. N. (1990). Autonomic interactions in cardiac control. Annals of the New York Academy of Sciences, 601(1), 209-221.

Lundqvist, L. O., Carlsson, F., Hilmersson, P., & Juslin, P. N. (2009). Emotional responses to            music: experience, expression, and physiology. Psychology of Music, 37(1), 61-90.

Malloch, S. (1999). Mother and infants and communicative musicality. In I. Deliege (Ed.),   Rhythms, musical narrative, and the origins of human communication: Musicae Scientiae,      1999-2000 (pp. 29-57). Liege: European Society for the Cognitive Sciences of Music.

Malloch, S., & Trevarthen, C. (2009). Musicality: Communicating the vitality and interests of life.     In S. Malloch & C. Trevarthen (Eds.), Communicative musicality: Exploring the basis of         human companionship (pp. 1–15). Oxford: Oxford University Press.

Marcovitch, S., Leigh, J., Calkins, S. D., Leerks, E. M., O'brien, M., & Blankson, A. N. (2010).           Moderate vagal withdrawal in 3.5‐year‐old children is associated with optimal performance           on executive function tasks. Developmental Psychobiology, 52(6), 603-608.

Marsh, P., Beauchaine, T. P., & Williams, B. (2008). Dissociation of sad facial expressions and           autonomic nervous system responding in boys with disruptive behavior disorders. Psychophysiology, 45(1), 100-110.

McDermott, J. H., Lehr, A. J., & Oxenham, A. J. (2010). Individual differences reveal the basis of        consonance. Current Biology, 20(11), 1035-1041.

McGrann, J. V., Shaw, G. L., Shenoy, K. V., Leng, X., & Mathews, R. B. (1994). Computation by           symmetry operations in a structured model of the brain: Recognition of rotational      invariance and time reversal. Physical Review, 49(6), 5830-5839.

Mikutta, C. A., Schwab, S., Niederhauser, S., Wuermle, O., Strik, W., & Altorfer, A. (2013). Music,        perceived arousal, and intensity: Psychophysiological reactions to Chopin's “Tristesse”. Psychophysiology, 50(9), 909-919.

Moriguchi, Y., Chevalier, N., & Zelazo, P. D. (2016). Editorial: Development of executive function    in childhood. Frontiers in Psychology, 7, 6-7.

Nantais, K. M., & Schellenberg, E. G. (1999). The Mozart effect: An artifact of preference.       Psychological Science, 10(4), 370-373.

Newman, J., Rosenbach, J. H., Burns, K. L., Latimer, B. C., Matocha, H. R., & Vogt, E. R. (1995).       An experimental test of “the Mozart effect”: Does listening to his music improve spatial   ability? Perceptual and Motor Skills, 81, 1379-1387.

Overbeek, T. J., van Boxtel, A., & Westerink, J. H. (2014). Respiratory sinus arrhythmia responses   to cognitive tasks: effects of task factors and RSA indices. Biological Psychology, 99, 1-14.

Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent     developments. Educational Psychologist, 38(1), 1-4.

Panksepp, J. (1995). The emotional sources of" chills" induced by music. Music Perception: An    Interdisciplinary Journal, 13(2), 171-207.

Panksepp, J., & Bernatzky, G. (2002). Emotional sounds and the brain: the neuro-affective             foundations of musical appreciation. Behavioural Processes, 60(2), 133-155.

Papousek, M. (1996). Intuitive parenting: A hidden source of musical stimulation in infancy. In I.      Deliege & J. Sloboda (Eds.), Musical beginnings: Origins and development of musical          competence (pp. 88–112). Oxford: Oxford University Press.

Pattyn, N. (2007). Psychophysiological measures of cognitive performance in operational       conditions: applications to aviation and space environments (Unpublished doctoral    dissertation). Vrije Universiteit Brussel, Brussels.

Peretz, I., Gagnon, L., & Bouchard, B. (1998). Music and emotion: perceptual determinants,   immediacy, and isolation after brain damage. Cognition, 68(2), 111-141.

Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years            after. Annual Review of Neuroscience, 35, 73-89.

Polanczyk, G., de Lima, M. S., Horta, B. L., Biederman, J., & Rohde, L. A. (2007). The worldwide prevalence of ADHD: a systematic review and metaregression analysis. American Journal      of Psychiatry, 164(6), 942-948.

Polanczyk, G. V., Salum, G. A., Sugaya, L. S., Caye, A., & Rohde, L. A. (2015). Annual Research          Review: A meta‐analysis of the worldwide prevalence of mental disorders in children and             adolescents. Journal of Child Psychology and Psychiatry, 56(3), 345-365.

Porges, S.W. (1991). Vagal tone: A mediator of affect. In J.A. Garber & K.A. Dodge (Eds.), The        development of affect regulation and dysregulation (pp. 111–128). New York: Cambridge University Press.

Porges, S. W. (1992). Vagal tone: a physiologic marker of stress vulnerability. Pediatrics, 90(3),            498-504.

Rauscher, F. H., Shaw, G. L., & Ky, K. N. (1993). Music and spatial task performance. Nature,   365(6447), 611.

Rauscher, F. H., Shaw, G. L., & Ky, K. N. (1995). Listening to Mozart enhances spatial-temporal       reasoning: towards a neurophysiological basis. Neuroscience Letters, 185(1), 44-47.

Rauscher, F., Shaw, G., Levine, L., Wright, E., Dennis, W., & Newcomb, R. (1997). Music training causes long-term enhancement of preschool children’s spatial–temporal reasoning.     Neurological research, 19(1), 2-8.

Richards, J. E., & Casey, B. J. (1992). Attention and information processing in infants and adults:       Perspectives from human and animal research (pp. 30-60). New Jersey: Hillsdale College Press.

Ritz, T., George, C., & Dahme, B. (2000). Respiratory resistance during emotional stimulation: evidence for a nonspecific effect of experienced arousal?. Biological Psychology, 52(2),            143-160.

Ritz, T., Thöns, M., Fahrenkrug, S., & Dahme, B. (2005). Airways, respiration, and respiratory      sinus arrhythmia during picture viewing. Psychophysiology, 42(5), 568-578.

Rother, M., Witte, H., Zwiener, U., Eiselt, M., & Fischer, P. (1989). Cardiac aliasing—a possible      cause for the misinterpretation of cardiorespirographic data in neonates. Early human             development20(1), 1-12.

Rottenberg, J., Wilhelm, F. H., Gross, J. J., & Gotlib, I. H. (2003). Vagal rebound during resolution        of tearful crying among depressed and nondepressed individuals. Psychophysiology,   40(1), 1-6.

Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology,        39(6), 1161-1178.

Saarikallio, S. (2011). Music as emotional self-regulation throughout adulthood. Psychology of         Music, 39(3), 307-327.

Sadie, S. (Ed.). (1980). The new Grove’s dictionary of music and musicians (pp. 779-823). London: Macmillan.

Salas, E., Rosen, M. A., Held, J. D., & Weissmuller, J. J. (2009). Performance measurement in           simulation-based training a review and best practices. Simulation & Gaming: An         Interdisciplinary Journal, 40(3), 328-376.

Saul, J. P. (1990). Beat-to-beat variations of heart rate reflect modulation of cardiac autonomic        outflow. Physiology, 5(1), 32-37.

Schäfer, T., & Sedlmeier, P. (2010). What Makes Us Like Music? Determinants of Music Preference.       Psychology of Aesthetics, Creativity, and the Arts, 4(4), 223-234.

Schäfer, T., Sedlmeier, P., Städtler, C., & Huron, D. (2013). The psychological functions of music           listening. Frontiers in Psychology, 4, 511.

Schellenberg, E. G. (2012). Cognitive performance after listening to music: a review of the Mozart    effect. In R. MacDonald, G. Kreutz, & L. Mitchell (Eds.), Music, health, and wellbeing                 (pp. 324-338). Oxford, UK: Oxford University Press.

Schellenberg, E. G., Nakata, T., Hunter, P. G., & Tamoto, S. (2007). Exposure to music and             cognitive performance: Tests of children and adults. Psychology of Music, 35(1), 5-19.

Schellenberg, E. G., & Weiss, M. W. (2013). Music and cognitive abilities. In D. Deutsch (Ed.), The psychology of music (3rd ed., pp. 499–550). Waltham, MA: Elsevier.

Scherer, K. R. (1986). Vocal affect expression: a review and a model for future research.           Psychological Bulletin, 99(2), 143-165.

Shaw, G. L., Silverman, D. J., & Pearson, J. C. (1985). Model of cortical organization embodying a        basis for a theory of information processing and memory recall. Proceedings of the             National Academy of Sciences, 82(8), 2364-2368.

Silvestrini, N., & Gendolla, G. H. (2007). Mood effects on autonomic activity in mood regulation.      Psychophysiology, 44(4), 650-659.

Sloboda, J. A., & Juslin, P. N. (2001). Psychological perspectives on music and emotion. In P. N.   Juslin & J. A. Sloboda (Eds.), Music and emotion: Theory and research (pp. 71-104). New           York: Oxford University Press.

Sloboda, J. A. & O’Neill, S. A. (2001) Emotions in everyday listening to music. In P. N. Juslin &           J. A. Sloboda (Eds), Music and emotion: Theory and research (pp. 415–429). New York:     Oxford University Press.

Smith, J. C., Bradley, M. M., & Lang, P. J. (2005). State anxiety and affective physiology: effects       of sustained exposure to affective pictures. Biological Psychology, 69(3), 247-260.

Spencer, H. (1857). The origin and function of music. Fraser’s Magazine, 56, 396–408.

Steele, K. M., Bass, K. E., & Crook, M. D. (1999). The mystery of the Mozart effect: Failure to          replicate. Psychological Science, 10(4), 366-369.

Sternbach, R. A. (1962). Assessing differential autonomic patterns in emotions. Journal of     Psychosomatic Research, 6(2), 87-91.

Strauser, J. M. (1997). The effects of music versus silence on measures of state anxiety, perceived           relaxation, and physiological responses of patients receiving chiropractic interventions.    Journal of Music Therapy, 34(2), 88-105.

Taylor, S. E. (1991). Asymmetrical effects of positive and negative events: the mobilization-          minimization hypothesis. Psychological Bulletin, 110(1), 67.

Thayer, J. F. (1986). Multiple indicators of affective response to music (Unpublished doctoral dissertation). New York University, New York.

Thayer, J. F., & Brosschot, J. F. (2005). Psychosomatics and psychopathology: looking up and         down from the brain. Psychoneuroendocrinology, 30(10), 1050-1058.

Thayer, J. F., & Faith, M. L. (2001). A dynamic systems model of musically induced emotions.        Annals of the New York Academy of Sciences, 930(1), 452-456.

Thayer, J. F., Hansen, A. L., Saus-Rose, E., & Johnsen, B. H. (2009). Heart rate variability,            prefrontal neural function, and cognitive performance: the neurovisceral integration    perspective on self-regulation, adaptation, and health. Annals of Behavioral Medicine, 37(2), 141-153.

Thayer, J. F., & Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Journal of Affective Disorders, 61(3), 201-216.

Thayer, J. F., & Lane, R. D. (2009). Claude Bernard and the heart–brain connection: Further      elaboration of a model of neurovisceral integration. Neuroscience & Biobehavioral Reviews,            33(2), 81-88.

Theall‐Honey, L. A., & Schmidt, L. A. (2006). Do temperamentally shy children process emotion         differently than nonshy children? Behavioral, psychophysiological, and gender differences    in reticent preschoolers. Developmental Psychobiology: The Journal of the International           Society for Developmental Psychobiology, 48(3), 187-196.

Thompson, W. F., Schellenberg, E. G., & Husain, G. (2001). Arousal, mood, and the Mozart effect. Psychological Science, 12(3), 248-251.

Vanderark, S. D., & Ely, D. (1994). University biology and music majors' emotional ratings of     musical stimuli and their physiological correlates of heart, rate, finger temperature, and     blood pressure. Perceptual and Motor Skills, 79(3), 1391-1397.

Van der Oord, S., Prins, P. J., Oosterlaan, J., & Emmelkamp, P. M. (2008). Efficacy of        methylphenidate, psychosocial treatments and their combination in school-aged children     with ADHD: a meta-analysis. Clinical Psychology Review, 28(5), 783-800.

Van der Stigchel, S., Imants, P., & Ridderinkhof, K. R. (2011). Positive affect increases cognitive       control in the antisaccade task. Brain and Cognition, 75(2), 177-181.

Van Puyvelde, M. & Franco, F. (2015). 'The interaction of music and language in the ontogenesis of    human communication: A multimodal parent-infant co-regulation system'. Geraadpleegd   op 5 Augustus, 2018 via http://www.hrionline.ac.uk/openbook/chapter/ICMEM2015-    VanPuyvelde

Van Puyvelde, M., Loots, G., Meys, J., Neyt, X., Mairesse, O., Simcock, D., & Pattyn, N. (2015).        Whose clock makes yours tick? How maternal cardiorespiratory physiology influences            newborns’ heart rate variability. Biological Psychology, 108, 132-141.

Van Puyvelde, M., Loots, G., Vanfleteren, P., Meys, J., Simcock, D., & Pattyn, N. (2014). Do You        Hear the Same? Cardiorespiratory responses between mothers and infants during tonal         and atonal music. Plos One, 9(9), e106920.

Van Puyvelde, M., Loots, G., Vinck, B., De Coster, L., Matthijs, L., Mouvet, K., & Pattyn, N. (2013).           The interplay between tonal synchrony and social engagement in mother–infant     interaction. Infancy, 18(5), 849-872.

Van Puyvelde, M., Vanfleteren, P., Loots, G., Deschuyffeleer, S., Vinck, B., Jacquet, W., & Verhelst,           W. (2010). Tonal synchrony in mother–infant interaction based on harmonic and       pentatonic series. Infant Behavior and Development, 33(4), 387-400.

Vuoskoski, J. K., Thompson, W. F., McIlwain, D., & Eerola, T. (2012). Who enjoys listening to sad music and why? Music Perception: An Interdisciplinary Journal, 29(3), 311-317.

Waldstein, S. R., Kop, W. J., Schmidt, L. A., Haufler, A. J., Krantz, D. S., & Fox, N. A. (2000).        Frontal electrocortical and cardiovascular reactivity during happiness and anger. Biological            Psychology, 55(1), 3-23.

Xue, C., Li, T., Yin, S., Zhu, X., & Tan, Y. (2018). The influence of induced mood on music            preference. Cognitive Processing, 1-9.

 

 

 

Universiteit of Hogeschool
Biologische Psychologie
Publicatiejaar
2018
Promotor(en)
Martine Van Puyvelde
Kernwoorden
Share this on: