
A WEB BASED PSYCHOACOUSTIC TEST SYSTEM 1

WEB BASED PSYCHOACOUSTIC RESEARCH ON
COCHLEAR IMPLANT PATIENTS

Vaerenberg Bart1, Verschooten Eric2, Bracke Peter3
1vaerenberg.bart@student.ha.be

2e.verschooten@ha.be
3peterb@abionics.fr

June 6, 2007

Abstract—PACTSweb is a web based research platform for offering
psychoacoustic tests to cochlear implant patients. Its purpose is the
facilitation of the repeated testing of human subjects required to produce
meaningful results in the field of psychoacoustic research. The platform
provides a variety of common psychoacoustic tests and the ability to
manage and extend the collection of tests contained in the framework.
PACTSweb offers a level of adaptability to researchers without the need
of any programming experience and pursues maximum usability through
user-friendly interfaces. The system is easily deployed and globally
accessible by means of a web service. The platform’s responsibilities
range from the generation of stimuli and the setup and execution of test
scenarios to the management of test results.

I. INTRODUCTION

Psychoacoustics studies subjective human perception of sounds.
Because of this subjective sensation, assessing sound perception is
only possible through experiments with humans. This raises the need
for an experimental setup that allows testing subjects in a controlled
way so that the results can be reproduced. This experimental setup
should preferably be versatile and user-friendly at the same time [1].
Psychoacoustic testing is an important tool in the development of
next-generation cochlear implants. The knowledge of human sound
perception is used to improve speech and sound processing algorithms
within cochlear implant devices. Until now various platforms have
been developed to establish this kind of test infrastructure. But
because of the tedious and repeating nature of the test scenarios
and the limited portability of these systems, it has always been
an intensive task for both patient and researcher to conduct the
experiments in a controlled manner. By levering the test platform
to a web based implementation, availability of the system is greatly
increased while test results are centralized and easily accessible to
researchers.

II. TECHNOLOGY SURVEY

A. PSYCHOACOUSTIC TESTS SOFTWARE

The most common psychoacoustic tests are identification and
discrimination tasks. An identification test consists of the presentation
of a series of stimuli. The subject tries to identify each stimulus. The
subject’s responses to the stimuli result in a confusion matrix. Each
entry of such a matrix indicates the number of times a particular
stimulus evoked a particular response. This matrix illustrates the
subject’s identification capabilities. A discrimination task searches the
threshold of the subject’s ability to discriminate two stimuli. Each trial
a series of stimuli is presented out of which the subject tries to pick
the differing one. The discrimination test results in a psychometric
curve converging to the subject’s threshold (see Figure 1). Other
psychoacoustic tests include balancing and ranking tasks.

Fig. 1: Output of an adaptive discrimination task

A number of applications providing psychoacoustic tests exist.
APEX is a research tool for conducting psychophysical experiments.
It was developed at the Catholic University of Leuven. The APEX
personal computer software reads a text file which specifies the
experiment and the stimuli, controls the experiment, delivers the
stimuli to the subject through a digital signal processor board, collects
the responses via a computer mouse or a graphics tablet, and writes
the results to the same file [2]. PACTS (Psychoacoustic Test System)
is another framework for conducting psychophysical experiments and
was developed at the University of Antwerp. It contains adaptive
threshold procedures, ranking, balancing and closed-set identification
experiments, with support for both acoustic and direct electrical
output. PACTS is an XML based Windows application suffering
from laborious deployment and versioning issues. PACTSweb is the
successor of PACTS1 and differs from the latter in its web based
implementation and the fact that it makes use of an RDBMS for
storing all data. Moreover PACTSweb is a completely newly designed
system to maximize functionality, usability, reliability, performance,
supportability and security.

B. WEB APPLICATION DESIGN
Modern web applications that have the features and functionality

of traditional desktop applications typically transfer the processing
necessary for the user interface to the web client but keep the bulk
of the data (i.e. maintaining the state of the program, the data, etc.)
back on the application server [3]. They run in the secure environment

1PACTSweb uses the psychoacoustics engine written by Filiep Vanpoucke,
author and creator of PACTS.



2 A WEB BASED PSYCHOACOUSTIC TEST SYSTEM

of a web browser and do not require software installation. PACTSweb
is designed according to this paradigm. All business logic and data
storage is located at the server. Business logic is implemented in
Microsoft .Net assemblies and Microsoft SQL Server technology is
used for data storage. Presentation logic is realized through ASP.NET
2.0 web pages, HTML, JavaScript and Adobe Flash. User interfaces
are loosely coupled to the business logic and all components are
designed keeping maintainability and adaptability in mind.

III. SYSTEM SPECIFICATIONS
A. FUNCTIONALITY

Fig. 2: Use Case model

Patients make use of a web interface through their internet browser
to view their personal data and test results. An overview page lists
all available tests and research projects the patient can participate in.
Patients can execute tests for personal revalidation or by participation
in a research project. Every user has to register and log in to make use
of PACTSweb. Researchers can set up new projects which contain
a series of psychoacoustic tests offered to a set of patients during a
period of time. They have the ability to view and process gathered test
results. An administrator is able to define new types of psychoacoustic
tests and alter existing test procedures. He also has the authority to
configure general and technical features of the framework. Musical
instrument identification tests and a frequency discrimination tests
are already built in the framework. Researchers can set up specific
instances of these test types and offer them to patients. Other test
types can easily be defined and instantiated in the framework. A
use case diagram of the global functional requirements is shown in
Figure 2.

B. ACCURACY AND PERFORMANCE
For psychoacoustic tests to produce meaningful results, a number

of aspects need to be taken into consideration. Stimulus creation and
presentation should be reproducible in order for the test to maintain its
value. To meet this requirement PACTSweb uses lossless coding algo-
rithms to generate and process audio signals. In addition the context in
which the subject is presented with the stimuli should be predictable
and independent of external coincidences. By its web based consti-
tution PACTSweb inevitably runs into some serious issues here. The
internet, by its packet switched implementation, cannot guarantee any
foreseeable throughput or delay. In psychoacoustics various temporal
conditions lead to different perceptions [4]. It is for that reason an
accurate timing is essential when a sequence of interrelated stimuli is

presented (e.g. during a discrimination task the pause between stimuli
cannot depend on accidental network congestions). Furthermore, due
to the disconnected nature of web browsers and the HTTP protocol,
once the server has sent his response to the client, it is in essence
impossible to determine exactly what is happening at the client side.
A variety of web browsers and system configurations exist to make
a uniform and anticipated execution of test procedures even harder.
To overcome these obstacles PACTSweb uses Adobe Flash2. The
Flash player is a widely distributed multimedia engine for web based
applications and is supported by all major browsers and operating
systems. It offers a solution to the timing issue by its exact frame
based playback system and has the ability to preload contents in a
controlled way so lag by network instability can be avoided.

IV. APPLICATION ARCHITECTURE
Data access logic, business logic and presentation logic compo-

nents are implemented in loosely coupled layers.

Fig. 3: Global application architecture

Description of the components depicted in Figure 3:
• User interface components: ASP.NET pages enabling the user

to interact with the application. They are responsible for data
formatting, producing output to the user and receiving and
validating input from the user.

• User process components: User interaction often follows a
predictable process. To manage and synchronize user actions this
process logic is contained in specific user process components.
They define the order of possible actions and keep track of the
current state of the user process. This way this logic is not
contained in the user interface components themselves and the
same user interface engine can be used to serve multiple user
interfaces.

• Business components: PACTSweb requires a number of com-
ponents that implement business rules, tasks en logic. Their
responsibility is to transform and transport data from and to
adjacent layers in a manner conforming the test scenario’s
business logic. These data could be originated from the database
or from other services like a stimulus generator.

• Service gateways: When business components need function-
ality not inherent to the business logic they contain, they
will address external services. To make sure this happens in
a controlled manner they will act on service agents. These
components act as translating entities to manage communication
between both ends.

• Service interfaces: In order to make the application core as
reusable as possible, it is important to expose its functionality

2Adobe Flash, formerly Macromedia Flash, a vector based multimedia and
application player suitable for creating rich internet applications and streaming
video and audio.



A WEB BASED PSYCHOACOUSTIC TEST SYSTEM 3

through a uniform interface towards different objects willing to
make use of this core functionality. Service interfaces define
contracts concerning communication, formatting, protocols, se-
curity and exception handling.

• Data access logic components: The data access layer trans-
forms data manipulation and retrieval requests from business
components to database specific commands. This way data stor-
age and access is implemented independently from the business
logic, thus improving adaptability and portability.

• DTO entity components: Data Transfer Objects encapsulate
data in the application. They represent the object oriented
equivalent of the data store and are used to transport data trough
different layers. The DAL is responsible for filling these entities
with data retrieved from the database and persisting any changes
made to the data they contain back to the database.

• Business entity components: These components represent real
world concepts of the application domain. They contain specific
business oriented data and logic and are used to communicate
among business components. These complex entities are as
opposed to the DTO objects not exposed outside the business
logic layer.

• Security Policy: Security policies should be consistently en-
forced on each layer. Security policies realize concepts of
authentication, authorization, secure communication, auditing
and profile management.

• Operational management Policy: Realizes tasks of configura-
tion, management of meta data, error handling, monitoring, etc.
These policies should also be enforced throughout the system,
adaptively implemented into each layer.

• Communication Policy: Defines rules for the different com-
ponents of the application to communicate with each other. It
realizes things like synchronicity, formats and protocols.

V. DATA STORAGE AND ACCESS
While the existing PACTS application stores both experiment

design and test results in XML files, PACTSweb aims at centralizing
all data in a single relational database store built on Microsoft
technology. SQL Server 2005 Express Edition is a fairly small
footprint free database engine service that can be installed on any
current desktop or server Windows operating system and addresses all
functionality PACTSweb requires: it ensures overall data consistency
while dealing with concurrency, replication, security and performance
issues.

A. DATABASE DESIGN
All core data for PACTSweb to function properly is accommodated

in a relational model of 35 tables. Each table has been normalized
[5] to a degree where data consistency is being enforced by foreign
keys and check constraints. All necessary CRUD3 functionality is
exposed through parameterized stored procedures. Table data contain
definitions of test procedures and stimuli, patient data, test results
and management metadata. A number of views supports retrieving
meaningful results and reports from the database. As throughout the
application the main design goals are scalability and adaptability.
Hence all test procedures are defined as scenarios with a variable set
of parameter definitions. To allow such flexible scheme to be reflected
in the static structure of a relational model, parameter definitions
are stored in a separate table and linked to the scenario they apply
to and to the data type they represent. Scenarios are managed by
administrators and instantiated by researchers into test setups by
assigning values to their parameters. Again these parameters are
stored in a separate table and constrained by their corresponding
definition. The scenario for closed set identification can be instan-
tiated into a setup for musical instrument identification for example,

3Create, Read, Update and Delete: the four basic functions of persistent
storage.

as well as it can be set up for a speech recognition test. Similarly
stimuli are defined by their characteristic features (amplitude, phase
frequency, duration, ramp up and ramp down) which can be extended
to any set of parameters (e.g. an ADSR4 envelope or SNR value).
Moreover stimuli can either be loaded statically (from binary data in
the database or from a path to a file on disk) or generated dynamically
at runtime. Either way both acoustic and electrical signals can be
defined. Dynamic stimuli use different signal type identifiers (e.g.
pure tone or narrow band noise) to be generated correctly while static
stimuli are assigned to groups like speech or music to get selected
into a particular test setup’s stimulus pool. The model for persisting
stimuli is illustrated in Figure 4.

Fig. 4: Extract from the database schema

B. DATA ACCESS LAYER

A common problem in designing data based applications is the
object-relational (O/R) gap between the scalar values contained in
tables of the relational database model and the object oriented
programming environment in which data is encapsulated in complex
logical entities having their own methods and properties to validate,
manipulate and expose these data. PACTSweb fills this gap through
the use of .netTiers, a set of templates for use with the CodeSmith
generator. Many O/R mappers and DAL code generators exist, but
.netTiers with its feature-rich enterprise architecture, web application
oriented utilities and Microsoft driven implementation makes a fit
data access layer for PACTSweb. Consequently the DAL base ar-
chitecture is built upon the Microsoft Enterprise Library Application
Blocks, a set of libraries that provide proven solutions to common
development challenges such as data access, logging, caching and
user interface processes. By implementing these patterns the DAL
inhibits following features:

• Database implementation independent data access through plug-
gable providers following the ADO.NET 2.0 provider model.

• An entity provider (Table Module) for each table and view in
the database, responsible for exposing CRUD operations on its
particular underlying structure and hydrating entity objects.

• Generic data access by executing custom SQL statements against
Microsoft’s Data Access Application Block.

• A central mechanism, called the DataRepository, for instantiat-
ing and loading different providers at runtime and retrieving and
saving data. The DataRepository is essentially a singleton facade
object into the DAL exposing the individual entity providers.

• An optimistic concurrency mechanism based on timestamp
columns in tables.

• SQL injection detection on generic data access methods.
• A transaction manager supporting all common isolation levels

to ensure data consistency.

4Attack, Decay, Sustain, Release: describing changes in a sound over time,
including alterations in a sound’s amplitude, frequency and timbre.



4 A WEB BASED PSYCHOACOUSTIC TEST SYSTEM

C. DTO ENTITY LAYER

While the DAL’s responsibility consists of retrieving and manip-
ulating data from and to the underlying data store, another level of
abstraction is needed to bridge the O/R gap. For that reason, the data
originating from the DAL are encapsulated into entity objects that are
used throughout the application. Each entity is a significant type (e.g.
a stimulus, a patient or a test setup) that is essential for the processing
of data in the business layer and the presentation of these data through
the user interface. The entity framework maps the relational data
coming from the database to a logical object graph for use in an object
oriented environment. For example a test scenario entity will hold,
in addition to its own properties, an administrator entity identifying
its designer and (if deep loaded by the DAL) a collection of test
setups that have been instantiated from it. PACTSweb combines the
Table Module and Data Transfer Object (DTO) patterns [6] to realize
lightweight entities that are able to travel through the many tiers while
still maintaining a loosely coupled entity layer, independent on any
data provider. While PACTSweb entities do not contain real business
logic they do keep functionality other than just holding data to be
transported across layers:

• All entities inherit from the EnityBase class in which the
entity’s lifecycle is defined. This lifecycle differs from the .Net
CLR object lifecycle and is tracked through the EntityState
property which holds the entity’s current status. Whenever an
entity is created, retrieved from the database, deleted or one
of its properties has been modified, its state will automatically
change to reflect the new status (Added, Unchanged, Deleted or
Changed respectively). This way software components handling
these entities do not have to concern themselves about tracking
changes. Calling the corresponding provider’s Save method in
the DAL suffices to persist all changes made since the entity
was retrieved from the database.

• By implementing the IEditableObject, IComponent, INoti-
fyPropertyChanged and IDataErrorInfo interfaces from the Sys-
tem.ComponentModel namespace, each entity can be treated as
a .Net Component which gives them design-time support. As a
consequence they have the ability to be added to the toolbox
of Visual Studio, be dragged and dropped onto a form and be
manipulated on a design surface or used as databindable object
datasources.

• A validation rule engine providing a mechanism to validate
entities against a set of rules able to contain virtually any
validation logic by means of using custom delegates.

• The entity layer holds a number of optimization constructs. The
EntityCache wraps the Enterprise Library Caching Block which
can be configured to cache entities instead of going down to the
database with each query. The EntityManager implements an
entity factory and a weak referenced object store, thus enabling
a tracking system. In case the application is handling a high
volume of entities, which many are of the same record, this
tracking system returns the same entity object for all references
until that entity is persisted to the DataRepository.

• The handling of a collection of entities, be it for processing
by business logic or formatting towards user interfaces, occurs
by means of a specialized list called the TList. The TList is a
full featured collection of entity objects. It makes full use of
the new generics feature of the .Net 2.0 framework and has
the advantage over arrays by its dynamic capacity and over
ArrayLists and other Collections by its strongly typed nature. A
TList inherits from System.ComponentModel.BindingList and
implements the IBindingListView, IBindingList, IList, IClone-
able, IListSource, ITypedList, IDisposable, IComponent, IRai-
seItemChangedEvents and IDeserializationCallback interfaces,
giving it many of the functionality that applies to entities,
transferred to the level of the enclosing list. Tlists exhibit

advanced filter, sort, shuffle and find algorithms, can also be
used as typed datasources for databinding and have the ability to
expose their content as an array or a DataSet. As all entities are
serializable to native binary code and to XML, TLists can also
be serialized by using the EntityHelper class. On serialization of
a TList, its entire contents, including all referenced child entities
in its entity nodes will be serialized into one corresponding file
or stream.

VI. BUSINESS LOGIC
A. PLATFORM MANAGEMENT

The intention of PACTSweb is to offer a remotely accessible
platform for setting up and executing psychoacoustic experiments.
One variety of target users includes cochlear implant wearers wishing
to occasionally examine their current progress of revalidation by
carrying out individual tests and comparing their accumulated results
through time. Another type of users consists of research teams
wishing to inspect the effect of different speech and sound coding
algorithms on the auditory performance of human subjects. For this
kind of usage a more structured way of offering experiments is at
hand. Research teams have the ability to create projects containing a
set of related experiments. These projects are aimed at a selected
group of patients and can be offered during a predefined period
of time. To increase privacy, a patient’s personal data are only
accessible to himself after successfully logging in to the system.
When performing a test only relevant data, like the configuration
of devices (i.e. cochlear implants) the subject is using during par-
ticipation in the test, will be collected. Each research team can
manage their patients by assigning them to groups. A patient can
belong to several groups and multiple groups can be assigned to
a project. Projects are by default inaccessible to users outside its
target audience. However, the researcher owning the project has the
ability to request making his project publicly available by setting
a flag. A PACTSweb administrator then has the choice to comply
with this request or to refuse it. The same logic applies to individual
test setups. Researchers are able to configure their own experiments
and subsequently have the option of making them public. This
way test setups and results can be shared among different research
groups. The actual management functions are handled in software
by the ProjectManager and UserManager classes, two controllers
responsible for servicing the ASP.NET researcher and administrator
pages. They expose an API into both business logic and data layer and
implement the necessary authorization rules. Please refer to Figure 6
to get an overview of the internal workings of the PACTSweb
software system.

B. EXPERIMENT DESIGN
Since PACTSweb is designed to maximize scalability and adapt-

ability, experiments are defined as test scenarios that can be con-
figured to pursue satisfaction of a researcher’s divergent needs.
Currently PACTSweb hold 2 scenarios: a closed set identification
task definition and an adaptive discrimination procedure definition.
It is the responsibility of PACTSweb administrators to manage
and maintain these scenarios. They are able to add new scenarios
provided that they carry through the logic needed to process these
scenarios correctly. This task requires a certain knowledge of the
internal workings of the framework and the programming skills to
implement the logic. Along with scenario creation a set of parameter
definitions is assigned to it. This set can contain virtually any aspect
of the scenario the administrator prefers to make variable. When test
setups are instantiated from a scenario, values are assigned to its
parameters. In order to effectuate these values during a test, it is
important that each parameter is processed correctly. This means that
every parameter definition should come with a processing component
containing the necessary algorithm logics. When running a test, its
setup’s parameters are parsed and processed by the scenario’s logic.



A WEB BASED PSYCHOACOUSTIC TEST SYSTEM 5

This approach allows researchers to setup a speech pitch detection
test [7] using the same scenario as when configuring an adaptive
frequency discrimination task (see Figure 5 for an example of possible
output with visual feedback enabled).

Fig. 5: Part of the discrimination test user interface

For orchestrating the execution of a test procedure controller
classes expose simple methods to the UI components. These classes
inherit from the TestManager base and combine the logic needed
from the Audio, Psychoacoustics and Data namespaces to instruct
the FlashBuilder to generate the desired UI component. TestManagers
maintain state between requests and ensure a scenario is run through
correctly.

C. STIMULUS CREATION
An essential part of the system involves the creation and handling

of stimuli. Because of the limited knowledge of the exact workings
of the human brain and in particular its perception of sound, the
only way to measure the auditory capabilities of human beings is
to subject them to psychophysical tests [8]. These tests all follow
a basic common pattern: a stimulus is presented and the subject’s
response to this stimulus is recorded and evaluated. The stimulus-
response pair, and in some cases the context in which the stimulus
was presented, is the only information researchers have to carry out
their analysis. For that reason it is of utmost importance that stimuli
are created accurately and can be reproduced while analyzing output
of psychophysical experiments [9]. When it comes to acoustic stimuli,
the signal presented is a sound wave. For this sound wave to be
presented to the subject exactly as it is intended, PACTSweb uses
standard PCM encoded WAV data. Despite all modern audio coding
techniques, there is no way to achieve a significant compression
without loss of information. This loss of information, even though
its consequences are often inaudible to the average human auditory
system (e.g. a 320 kbps MP3 encoding of an everyday piece of
music), is unacceptable in the field of psychoacoustics. After all
many of these popular codecs themselves rely on psychoacoustic
phenomena to achieve the compression ratios that they proclaim
[10]. The use of these algorithms would lead to an unpredictable
construction of the stimulus for presentation and no way to re-
construct the originally intended signal. Although its web based
nature craves some sort of audio compression, it is for that reason
PACTSweb generates and processes audio signals in 44100 Hz 16bit
uncompressed PCM encoding by default. The software components
responsible for signal generation and processing are located in the
Audio namespace which is, as all packages, built into a separate
assembly. Internally the audio namespace uses RIFF parsers to read
WAV data from disk and load them into its own AudioSignal class,
basically a wrapper around Microsoft DirectSound’s WaveFormat.
Signals generated at runtime are created by classes implementing the
IGenerator interface (e.g. a sine wave generator or a noise generator).
All signals, generated or loaded from disk, can be post processed by
IProcessor implementations for altering specific characteristics.

D. PSYCHOACOUSTICS
The Psychoacoustics namespace contains the core logic of psy-

chophysical experiment procedures. A number of classes provide
algorithmic constructs that represent well-known psychophysical
strategies. The Rover randomly scales amplitude in a certain dynamic
range. The StairCaseSeeker implements an adaptive threshold seeking
algorithm using either a continuous or discrete iteration variable and
the TrialSequencer is used for determining the sequence of trials to
be presented to the subject.

Fig. 6: Simplified class diagram of the system core

VII. PRESENTATION
To be globally accessible, it is crucial for the user interface to be

supported by all major browsers and operating systems. However, the
only thing all web browsers understand is basic HTML (and most
often also JavaScript). This fact imposes major restrictions on the
design of the presentation layer. Also a careful consideration should
be made which logic to run on the server and which is to be executed
on the client. Moving too much processing to the server leads to a
stiffer user experience caused by the overhead of posting back every
interaction to the server, reducing the application responsiveness.
On the other hand charging the client with increased responsibility
demands more application logic to comply with the limited execution
environment of a web browser which inherently results in a design
of lesser adaptability and limited scalability.

A. IIS AND ASP.NET 2.0
To expose its functionality to remote clients PACTSweb uses the

ASP.NET 2.0 framework. It offers the infrastructure to build dynamic
web content and lies within the scope of the technology used.
PACTSweb makes use of a number of built-in features and server
controls. The ASP.NET membership provider is adopted to handle



6 A WEB BASED PSYCHOACOUSTIC TEST SYSTEM

authentication and authorization. All metadata for this role based
security model is stored in a separate schema on the database server.
A site map, skins, themes, and master pages administer a uniform
layout and user experience across the web site. For displaying test
results graphically, PACTSweb uses ZedGraph, a library written in
C# for creating flexible 2D line and bar graphs (see Figure 7).

Fig. 7: Output of a closed set identification

ASP.NET applications run within IIS, Microsoft’s web server,
which processes requests and basically generates HTML pages ac-
cording to the application’s logic to be sent back to the client.
This means that while all the benefits of server side scripting and
processing result in greatly enhanced dynamics, the client, receiving
plain old HTML, is totally unaware of this. Consequently it is the
server’s task to maintain state of the application on a per-user basis.
PACTSweb accomplishes this by using a combination of viewstate
and querystrings and saving the TestManager object responsible for
orchestrating a test scenario to the session object after each request.

B. AUDIO ON THE WEB
Despite all technological progress in the field of web based applica-

tions, services and multimedia in particular, web browsers still remain
pretty archaic programs when it comes to audio playback. The web
browser’s ability (or better: the lack of it), to play audio in a controlled
manner, revealed itself to be one of the major challenges during
the development of PACTSweb. Web browsers basically remain
ordinary HTML parsers, they have no audio processing capabilities.
Every attempt to play audio in a web page results in some kind
of plug-in or external helper application being loaded to handle
the actual playback. This means an immense variety of browser-
plug-in configurations is present with today’s internet users. To start
with, Internet Explorer’s Active X plug-in system is incompatible
with the system Firefox is based on. As being two of the most
popular browsers this incompatibility cannot be ignored. Common
audio playback engines like Windows Media Player, Quicktime, and
RealPlayer all have their specific implementation for either of the
major browsers. Now as long as implementation is independent of
their behavior this should not pose a real problem. However it does
mean that users must first install the correct plug-in. Often this
leads to an undesired and uncomfortable user experience5. Different
techniques using JavaScript and dynamic HTML to control these
audio players have been tested. None of them offered the functionality
PACTSweb needs.

C. ADOBE FLASH PLAYER
The Flash player features a number of advantages if compared to

previously discussed audio engines. Its omnipresence being one of
the most noteworthy. Flash Player is installed on 98% of Internet-
enabled desktops worldwide. Also it offers rich multimedia and

5Try running Windows Media Player embedded in Firefox

vector based animation possibilities and is equipped with its own
ActionScript programming model, while at the same time it is
extremely lightweight and loads swiftly. The drawback however is
that Flash player uses its own precompiled proprietary format. It is
impossible to feed the player a plain audio file. Generally, to develop
Flash applications a specialized and often commercial IDE (Integrated
Development Environment, e.g. Adobe Flash Professional) is used,
where the application design and source code are compiled into an
SWF file. Using the object oriented ActionScript in combination
with the SWLiveConnect interface highly customizable multimedia
applications can be created. By passing variables into the Flash
player from the surrounding web page environment at runtime, a
precompiled SWF file’s behavior can be controlled to a high extent.
Regardless of all these features Macromedia (nowadays Adobe)
neglected to incorporate the ability to load uncompressed audio at
runtime. Flash player only allows this for MP3, other formats can
only be used if precompiled into the SWF file. This shortcoming
makes the use of Flash in its traditional way unsatisfactory for the
purpose of presenting uncompressed, dynamically generated audio.

D. JAVA APPLETS

After all this adversity in search for a suited audio engine, one tends
to fall back to programming Java Applets. Indeed this alternative
exhibits the freedom of implementing any custom logic and behavior
as long as it fits into the sandbox or is approved by the user. However,
the availability of Java’s Virtual Machine in today’s web browsers is
considerably lower compared to the Flash player’s. Its startup time
is significantly higher and the JVM has the reputation of being not
the most stable runtime environment when hosted in a web browser.
On top of that, the standard JRE features only a minimal audio
API, forcing the user to download additional packages when the
application needs to handle audio in a controlled way. These aspects
in combination with the fact that the Java platform is not really
the most friendly environment to develop customizable, animated
user interfaces against, justify Java Applets only as a last resort for
realizing PACTSweb’s presentation logic.

E. RUNTIME SWF GENERATION

Were it not for its inability to load uncompressed audio at runtime,
the Flash player would be the perfect tool to implement PACTSweb’s
user interfaces. That’s why a number of strategies have been looked
into to work around this shortcoming. A technique to generate raw
WAV data from within a flash application exists and is based on the
new ActionScript 3.0 model. Its Loader and ByteArray classes allow
for SWF bytecode to be created in memory. The Flash application
itself would then be able to create and dump raw audio samples
in an empty SWF skeleton. Thereupon this in-memory construct
could be accessed and controlled by the initial flash application
that created it. This approach however, raises some questions. The
responsibility for audio creation would be moved to the client side
and pre-recorded audio signals would not be handled by this system.
Additionally ActionScript 3 along with the new IDE from Adobe
were still in beta release during development of PACTSweb. To
avoid using another commercial IDE and the ActionScript language
all together, an alternative strategy has been conceived. PACTSweb
now generates its own SWF bytecode at runtime, straight from a C#
.Net assembly, omitting any compiler or external program. It is the
FlashBuilder class in the FlashIO namespace that is responsible for
this task. Internally it uses the SwfDotNet library which has been
extended for use with PACTSweb. The FlashBuilder puts together
the Flash application frame per frame, line per line and sample
per sample, all conforming with the SWF file format specification.
The SWF format is a binary tag based description of vector based
graphics, transformations, multimedia and actions. All actions are
stack based, meaning for every instruction the programmer needs to
first push its arguments on the stack, and after execution pop the result



A WEB BASED PSYCHOACOUSTIC TEST SYSTEM 7

back off, and so on. This may sound like a laborious task in today’s
software development. Nonetheless this going down to the bytecode
level opens up a vast amount of possibilities. PACTSweb now is able
to generate any kind of signal and embed it in virtually any type of
interface. Also this means the presentation logic is contained at the
server, in the same environment as the rest of the application, which
again results in an increased level of maintainability.

VIII. CONCLUSIONS
With the web based implementation of a psychoacoustic test

system, PACTSweb brings the infrastructure for conducting psy-
chophysical experiments out of the closed environment of research
centres. Patients are given the opportunity to test themselves and
their progress during revalidation from within their own homes.
For researchers to study the behaviour of certain sound processing
algorithms and the perception of sound they induce with their patients
the system is built to be highly configurable and extendable. This way
a variety of procedures and interactive experiments can be set up
to reflect the researcher’s own methodology. PACTSweb maximizes
control over the actual execution of an experiment through a frame
based mechanism that allows for accurate timing and ensures repro-
ducible presentation of stimuli. Results are gathered and persisted in a
central database, giving researchers the ability to analyze and process
them in an orderly manner. The output of experiments can easily
be shared among researchers without compromising the patient’s
privacy. By offering both patient and researcher an infrastructure
to investigate the experience of sound, PACTSweb’s aspiration is to
support and stimulate the development of next-generation cochlear
implants.

REFERENCES

[1] Laneau and Boets, “A flexible auditory research platform using acoustic
or electric stimuli for adults and young children,” 2004.

[2] Geurts and Wouters, “A concept for a research tool for experiments with
cochlear implant users.” 2000.

[3] R. T. Fielding and R. N. Taylor, “Principled design of the modern web
architecture.”

[4] D. Nelson and Swain, “Temporal resolution within the upper accessory
excitation of a masker,” 1996.

[5] E. Codd, “A relational model of data for large shared data banks,”
Communications of the ACM, 1970.

[6] C. Larman, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design. Prentice Hall PTR, 2001.

[7] Laneau, “When the deaf listen to music: pitch perception with cochlear
implants.” 2005.

[8] B. Edwards, “Signal processing, hearing aid design and the psychoa-
coustical turing test,” International Conference on Acoustics, Speech,
and Signal Processing, 2002.

[9] Cabrera, “Psysound:a computer program for psychoacoustical analysis,”
1999.

[10] E. Larsen and R. Aarts, “Audio bandwidth extension. application of
psychoacoustics, signal processing and loudspeaker design.” 2004.

If you wish to cite this paper, please use following code:
Bart Vaerenberg, Eric Verschooten and Peter Bracke, Web Based
Psychoacoustic Research On Cochlear Implant Patients, Masters
Thesis, Department of Industrial Sciences and Technology, University
College of Antwerpen, Belgium, July 2007




