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Summary

In this study, we investigate the use of wavelet statistics in the prediction of plasma dis-
ruptions. A probabilistic model is fitted to the wavelet statistics. A geometric framework is
presented, which allows to measure differences between probability distributions. This combi-
nation improves the classification rates as compared to previous approaches based on Fourier
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Herkenning van disrupties in de JET-tokamak
gebruikmakend van de geometrie van wavelet

distributies
Giorgos Karagounis

Begeleiders: prof. dr. ir. Guido Van Oost, dr. Geert Verdoolaege

Abstract— Plasmadisrupties zijn instabiliteiten die voorkomen in expe-
rimentele fusieplasmas opgesloten in tokamaks. Disrupties induceren grote
krachten op het raamwerk van een tokamak en moeten vermeden worden.
In deze studie werd automatische detectie van disrupties verwezenlijkt door
het gebruik van waveletdecompositie van plasmasignalen. De statistiek van
de waveletcoëfficiënten werd gemodelleerd door een veralgemeende Gaus-
siaanse distributie. Verschillende classifiers werden ontwikkeld. Om de
gelijkenis tussen distributies te bepalen werd gebruik gemaakt van de Rao
geodetische afstand afkomstig uit de informatiemeetkunde. De resultaten
werden vergeleken met classifiers gebaseerd op de statistiek van fourierco-
ëfficiënten. Onze methode levert een verbetering op in het voorspellen van
disrupties. Het wordt mogelijk om disrupties tot 360 ms voor de disruptie
betrouwbaar te voorspellen. Tenslotte werd het vermogen van de classifiers
getest om de oorzaak van een disruptie te herkennen. Opnieuw werden
betere resultaten behaald door het gebruik van wavelet statistieken.

Trefwoorden— Plasmadisrupties, fusie, wavelet decompositie, veralge-
meende Gaussiaanse distributie, geodetische afstand

I. INLEIDING

GE controleerde nucleaire fusie vormt een milieuvriende-
lijke en een nagenoeg onuitputtelijke bron van energie

voor de toekomst. Het meest geavanceerde concept om dit te be-
reiken is de gecontroleerde fusie van een plasma bestaande uit
isotopen van waterstof in een magnetische configuratie die de
tokamak wordt genoemd. In deze configuratie kan het plasma
echter op verschillende manieren destabiliseren, met verlies van
controle tot gevolg. Deze instabiliteiten worden plasmadisrup-
ties genoemd. Plasmadisrupties induceren grote krachten op het
metalen raamwerk van de tokamak en moeten tegen elke prijs
vermeden worden.
Wegens de complexiteit van de verschijnselen die tot plasmadis-
rupties leiden, wordt voor het vermijden van disrupties veelvul-
dig gebruik gemaakt van patroonherkenningstechnieken. Voor-
beelden zijn de support vector machines (SVM)[1] of artificiële
neurale netwerken[2]. De huidige benaderingen slagen er reeds
in om een groot percentage van de aankomende disrupties te
voorspellen, maar er blijft ruimte voor verbetering. Bovendien
is er nood aan een automatisch herkenningsmechanisme dat ook
de oorzaak van de disruptie kan herkennen, zodanig dat de no-
dige preventieve maatregelen kunnen genomen worden[3].
In deze studie werden verschillende alternatieven bestudeerd
voor de herkenning van disrupties. De zogenaamde classifiers
werden getest met data uit experimenten die uitgevoerd zijn in
de Joint European Torus (JET), de grootste operationele toka-
mak op dit moment. Tijdsvensters van 30 ms voor dertien indi-
catieve signalen werden naar frequentieinhoud onderzocht. Dit

G. Karagounis is student bij de vakgroep Toegepaste Fysica, Universiteit Gent
(UGent), Gent, België. E-mail: Giorgos.Karagounis@UGent.be.

gebeurde enerzijds a.d.h.v. fourieranalyse, naar analogie met
vorige experimenten[1]. Om de data compact te maken en over-
tollige informatie te verwijderen, werd de standaardafwijking
van het fourierspectrum (met exclusie van de statische com-
ponent) gebruikt als relevant kenmerk. De verdeling van de
fouriercoëfficiënten werd aldus vereenvoudigd tot een Gaussi-
aanse verdeling gecentreerd rond nul. Wij stellen anderzijds
een waveletdecompositie voor, gezien het sterk transiënte ka-
rakter van disrupties. Wavelet decompositie is een recent ont-
wikkelde techniek voor frequentieanalyse, die onder andere fre-
quent wordt gebruikt in de analyse van beelden[4], [5]. De
waveletdecompositie werd doorgevoerd op drie schalen met de
Daubechies 4-tap wavelets. De verdeling van de wavelet detail-
coëfficiënten wordt beter beschreven door een veralgemeende
Gaussiaan gecentreerd rond nul[5]. De waarschijnlijkheidsdis-
tributie (PDF) van een veralgemeende Gaussiaan wordt gegeven
door[6]

f(x | α, β) =
β

2αΓ(1/β)
exp

[
−
( | x |

α

)β]
(1)

Merk op dat voor de vormparameter β = 2, deze verdeling zich
herleidt tot een normale verdeling. Het verband tussen de stan-
daardafwijking σ en de variabele α is α2 = 2σ2. Voor β = 1
herleidt deze verdeling zich tot een Laplaciaanse verdeling.
De vernieuwing in onze aanpak bestaat erin om de intrinsiek
probabilistische natuur van de data in rekening te brengen. De
statistiek van fouriercoëfficiënten werd reeds gebruikt in het her-
kennen van disrupties[1], maar de probabilistische natuur van
de data werd verwaarloosd, t.t.z. de standaardafwijking werd
behandeld als een Euclidische variabele. Dit is impliciet aan-
wezig in de exponent van de radiële basisfunctie (RBF) voor
de SVM (zie ook uitdrukking (5)). De probabilistische aard
van de data kan in rekening gebracht worden door concepten
die ontstaan zijn in de tak van informatiemeetkunde. Een fami-
lie van PDFs wordt gezien als een variëteit, een oppervlak met
een niet-Euclidische metriek[6]. De geodetische afstand tussen
twee distributies van dezelfde familie moet dan gemeten worden
langsheen dit oppervlak. De afstand tussen twee veralgemeende
Gaussianen met dezelfde β wordt gegeven door[6]

dG(α1;α2) =
√
β

∣∣∣∣ln
α2

α1

∣∣∣∣ (2)

Er bestaat geen analytische expressie voor de geodetische af-
stand tussen twee veralgemeende Gaussianen met verschillende
β. In het geval dat β niet constant gehouden werd in de testen,
werd daarom gebruik gemaakt van de Kullback-Leibler diver-
gentie (KLD). De KLD is een bekende maat uit de waarschijn-



lijkheidstheorie en wordt voor twee veralgemeende Gaussianen
met verschillende β gegeven door[7]

KLD(α1, β1;α2, β2) = ln

(
β1α2Γ(1/β2)

β2α1Γ(1/β1)

)

+

(
α1

α2

)β2 Γ((β2 + 1)/β1)

Γ(1/β1)
− 1

β1
(3)

De KLD afstandsmaat is niet symmetrisch. Een eenvoudige op-
lossing bestaat erin om de J-divergentie te gebruiken, gedefini-
eerd door

J − div(α1, β1;α2, β2) = 1/2 · [KLD(α1, β1;α2, β2)

+KLD(α2, β2;α1, β1)] (4)

II. DATAVERWERKING

Informatie in verband met de frequentieinhoud van de signa-
len werd op de volgende manier geëxtraheerd. De time traces
van de dertien signalen werden na verwerking (herschaling naar
[0,1] en herbemonstering met 1 kHz) gesplitst in tijdsvensters
van 30 ms. Dit tijdsinterval zorgt voor een compromis tussen
enerzijds voldoende hoge tijdsresolutie en anderzijds de inhoud
van voldoende informatie over de tendenzen van het plasma[8].
Dertien verschillende signalen werden gebruikt om de toestand
van het plasma te beschrijven. De combinatie van signalen is
gebaseerd op vorige studies[8]. De signalen worden gegeven
in tabel I. Voor elk tijdsvenster werd een waveletdecomposi-

TABLE I
LIJST VAN PREDICTOR SIGNALEN.

Signaal Eenheid
(1) Plasmastroom A
(2) Poloïdale beta
(3) Tijdsafgeleide van (2) s−1

(4) Mode lock amplitude T
(5) Veiligheidsfactor bij 95% van kleine straal
(6) Tijdsafgeleide van (5) s−1

(7) Totaal ingevoerd vermogen W
(8) Interne inductantie van het plasma
(9) Tijdsafgeleide van (8) s−1

(10) Vertikale positie plasma m
(11) Plasmadichtheid m−3

(12) Tijdsafgeleide van diamagnetische energie W
(13) Netto vermogen

tie uitgevoerd en de statistiek van de waveletcoëfficiënten werd
beschreven aan de hand van een veralgemeende Gaussiaan met
β = 1. Bij het uitvoeren van de testen werd het duidelijk dat
het gebruik van een variabele β niet mogelijk was. Voor tijds-
vensters voldoende verwijderd van de tijd voor disruptie (TvD),
was de energieinhoud van het signaal te laag. Als gevolg was de
statistiek van de waveletcoëfficiënten sterk gecentreerd rond nul
en zorgde dit voor onaanvaardbaar hoge waarden van β. Om de
meerwaarde van het gebruik van een variabele β alsnog te tes-
ten, werd aan dezelfde statistiek van waveletcoëfficiënten een
veralgemeende Gaussiaan met variabele β gefit. Indien de β-
waarde echter groter was dan vijf, werd de fit herdaan met vaste
β = 5. Parameters α en β zijn gelijkgesteld aan hun meest aan-
nemelijke schatters[7].

De classificatieresultaten aan de hand van de waveletdecomposi-
tie werden vergeleken met deze voor een dataset gerelateerd aan
fourieranalyse. De statistiek van de fouriercoëfficiënten werd
gemodelleerd door een rond nul gecentreerde Gaussiaan (mits
exlusie van de statische component). Dit komt overeen met een
veralgemeende Gaussiaan zoals in (1), met β = 2 en α =

√
2σ.

III. CLASSIFIERS

De dataset bestaande uit standaardafwijkingen van fourier-
spectra werd geclassificeerd aan de hand van drie verschillende
technieken. De meest eenvoudige was een dichtste naburen (k-
NN) classifier[9] met als similariteitscriterium de Euclidische
afstand. Elke feature werd als een onafhankelijke variabele be-
schouwd. De tweede classifier was een k-NN classifier met als
similariteitscriterium de geodetische afstand gedefinieerd in (2).
De laatste classifier was een SVM classifier met een RBF kern
gegeven door

K(σi;σj) = exp

(
−‖σi − σj‖

2

2σ2

)
(5)

σi en σj zijn vectoren bestaande uit de aaneenschakeling van
de standaardafwijkingen van de fourierspectra voor de dertien
signalen, zogenaamde feature vectors. Een goede introductie in
verband met SVM classifiers kan gevonden worden in [10]. De
hier voorgestelde SVM classifier lijkt sterk op deze die reeds ge-
bruikt werd in vroegere classificatietesten in JET[1].
Voor de dataset bestaande uit GGD parameters van waveletsta-
tistieken werden drie classifiers ontwikkeld. Een eerste classifier
was een k-NN classifier met als similariteitscriterium de geode-
tische afstand gedefinieerd in (2). De input voor deze classifier is
de set features waar een GGD met vaste β = 1 aan is gefit. Een
tweede k-NN classifier werd ontwikkeld met similariteitscrite-
rium de J-divergentie gedefinieerd in (4). Deze classifier neemt
als input de set features waar een GGD met 0 < β ≤ 5 aan gefit
is. Tenslotte werd een meer geavanceerde classifier ontwikkeld
die gebaseerd is op de dataset van features waar een GGD met
vaste β = 1 aan werd gefit. De classifier is gebaseerd op de
Mahalanobis afstand tussen een testpunt x en een cluster pun-
ten die (multivariaat) Gaussiaans verdeeld is met gemiddelde µ
en covariantiematrix Σ. Uitleg in verband met de Mahalanobis
afstand kan gevonden worden in [11]. De Mahalanobis afstand
wordt gegeven door

dM (x;µ,Σ) = (x− µ)TΣ−1(x− µ) (6)

De bovenindex T verwijst naar de transpositie operator. Het
idee is dat in de trainingset, reguliere punten enerzijds en dis-
ruptieve punten anderzijds in twee aparte clusters gescheiden
zijn. Het testpunt wordt in de dichtstbijzijnde cluster geclassi-
ficeerd. Met punten wordt verwezen naar punten in de ruimte
van GGD distributies en meer specifiek naar de productruimte
van verschillende, onafhankelijke families van GGD distributies
voor de verschillende signalen. De parameters µ en Σ worden



voor elk van de twee clusters apart berekend met formules[11]

µ = E [X]

=
1

n

n∑

i=1

xi

Σ = E
[
(X − E[X])(X − E[X])T

]

=
1

n

n∑

i=1

(xi − µ)(xi − µ)T (7)

De sommaties lopen over alle punten in de corresponderende
cluster.
Een bijkomend probleem was dat de schattingen in (7) enkel gel-
den in affiene ruimtes, zoals de Euclidische ruimte. De product-
ruimte van onafhankelijke families van univariate Laplacianen is
niet affien. Om dit te verhelpen, werden parameters van de clus-
ters in de (Euclidische) raakruimte bepaald. Het raakpunt was
het geodetisch zwaartepunt van de cluster. Een gedetailleerde
beschrijving van de procedure wordt gegeven in het artikel van
Pennec[12].
Er dient opgemerkt te worden dat de k-NN classifiers parametri-
sche classifiers zijn en de resultaten dus afhangen van het aantal
dichtste naburen k dat in rekening werd gebracht. De resulta-
ten bleken niet sterk afhankelijk te zijn van dit aantal. k werd
daarom gelijk aan een gekozen. Ook de SVM classifier is een
parametrische classifier. De resultaten hingen af van de schaal-
parameter σ van de RBF kern. Uit een uitvoerige test bleek
σ = 6 een goede keuze voor de schaalparameter.

IV. RESULTATEN

Een classifier moet aan verschillende voorwaarden voldoen.
Ten eerste mag de classifier geen enkel regulier tijdsvenster als
disruptief herkennen, aangezien de machine dan onnodig stilge-
legd wordt. Het aandeel shots waar een classifier toch die fout
beging wordt vals alarm aandeel (VA) genoemd. Bovendien
moet de classifier minstens een disruptief tijdsvenster als dis-
ruptief herkennen. Het aandeel van de shots waar de classifier
geen enkel disruptief venster als disruptief herkende, wordt ge-
mist alarm aandeel (MA) genoemd. Het totaal aandeel van fou-
ten (TF) is de som van VA en MA. Het succes aandeel (SA) is
het complement van TF (100%-TF). Tenslotte moet de classifier
voldoende op voorhand een disruptie detecteren. De gemiddelde
tijd voor disruptie waarop de classifier een correcte voorspelling
deed wordt afgekort door AVG.
Wegens de beperkte geheugenmogelijkheden werden uit de pe-
riode [1180 ms-TvD;1000 ms-TvD[ van elk shot zes reguliere
tijdsvensters van 30 ms gebruikt om de reguliere features te
extraheren. De disruptieve features werden geëxtraheerd uit
zes tijdsvensters van de periode [210 ms-TvD;30 ms-TvD[. Het
laatste tijdsvenster voor de disruptie werd weggelaten, aange-
zien het op dat moment niet meer mogelijk is om de disruptie
af te wenden. Door de beperkte set van tijdsvensters die in re-
kening worden gebracht, is het niet mogelijk om de resultaten
te vergelijken met real-time resultaten van andere studies. Deze
testen dienen als onafhankelijk beschouwd te worden. De voor-
lopige resultaten zijn interessant omdat ze een vergelijking van
het vermogen van verschillende classifiers toelaten in dezelfde
omstandigheden.

Fig. 1. Tijdsevolutie van β voor veschillende signalen.

A. Evolutie van de vormparameter β

Voor vier verschillende signalen werd de tijdsevolutie van de
gemiddelde vormparameter β voor veralgemeende Gaussianen
die gefit waren aan de waveletstatistiek op de grootste tijds-
schaal weergegeven in figuur 1. De β-waarden voor de plas-
madichtheid en het netto vermogen vertonen geen grote veran-
dering bij het naderen van een disruptie. Merk op dat de β-
waarden gemiddelde waarden zijn over alle shots. De vrij con-
stante waarde van β wijst erop dat het transiënt gedrag van de
signalen slechts in een klein aandeel van de shots te zien is in de
statistiek van de waveletcoëfficiënten. Deels is dit te wijten aan
de lage resolutie van de signalen.
De vormparameter voor de mode lock grootte en de plas-
mastroom vertonen daarentegen een sterke overgang ongeveer
360 ms voor de TvD. Het zijn tevens deze twee signalen die in
de meeste gevallen het alarm hebben getriggerd in volgende tes-
ten. De signalen hebben gemiddeld de hoogste tijdsresolutie in
tabel I. De overgang bij 360 ms voor disruptie kan de maximale
tijd voor disruptie zijn waar een classifier gebaseerd op wavelet
features betrouwbaar een disruptie herkent. In studies gebaseerd
op fourier features ligt deze grens ongeveer bij 180 ms voor dis-
ruptie.

B. Classificatietest JET campagnes C15-C20

Het vermogen van de classifiers om geen vals alarm te mel-
den en een aankomende disruptie correct te voorspellen werd
getest met een dataset gecreëerd uit 442 disruptieve shots van
JET campagnes C15-C20. 65% van de shots werden willekeu-
rig gekozen en gebruikt om de trainingset te vormen. De data
verkregen uit de rest van de shots is geclassificeerd en het re-
sultaat werd getoetst aan de evolutie van elk shot bepaald door
deskundigen. De precieze keuze van shots in training- en testset
zorgen voor een variatie op de classificatieresultaten. Om deze
variatie te evalueren, werd de test twintig keer herhaald. Voor
elke grootheid in tabel II wordt steeds de gemiddelde waarde
gegeven met de standaardafwijking op die waarde na meerdere
iteraties.

C. Veralgemeningsvermogen naar JET campagnes C21-C27

Een classifier voor disrupties moet tevens goed presteren in si-
tuaties waarvoor hij niet getraind is. Om dit te testen, werden de
training- en testsets geconstrueerd met shots uit twee verschil-
lende periodes, waarbij de experimentele condities van de peri-
odes verschillend waren. Bij overgang van campagne C20 naar



TABLE II
CLASSIFICATIEVERMOGEN.

Fourier k-NN
Euclidisch

Fourier k-NN
geodetisch

Wavelet k-NN
geodetisch

MA 0.8 ± 1.0 0.7 ± 0.8 0.3 ± 0.5
VA 65.2 ± 6.3 63.4 ± 5.8 11.3 ± 4.1
TF 66.1 ± 6.1 64.0 ± 5.6 11.6 ± 4.0
SA 33.9 ± 6.1 36.0 ± 5.6 88.4 ± 4.0
AVG 165.4 ± 9.5 173.5 ± 6.5 184.7 ± 3.1

Wavelet
Mahalanobis

Fourier
SVM

Wavelet k-NN
J-divergentie

MA 0.3 ± 0.5 9.3 ± 2.8 0.2 ± 0.5
VA 8.9 ± 2.4 19.2 ± 3.7 15.2 ± 3.8
TF 9.2 ± 2.3 28.5 ± 4.1 15.5 ± 3.8
SA 90.8 ± 2.3 71.5 ± 4.1 84.5 ± 3.8
AVG 186.9 ± 2.7 137.7 ± 6.4 186.0 ± 2.8

Fig. 2. Succes aandeel voor de veralgemeningstest.

C21, werd de ITER gelijkende Ion Cyclotron Resonance Hea-
ting (ICRH) antenne geïnstalleerd in de JET machine. Daarom
werd het veralgemeningsvermogen van de verschillende classi-
fiers getest met een trainingset bestaande uit shots van de pe-
riode C15-C20. Er werden zeven testsets geklasseerd, elk be-
staande uit data van alle shots van een campagne tussen C21 en
C27. Het succes aandeel voor elke campagne wordt weergege-
ven in figuur 2.

D. Bepalen van de disruptieoorzaak

In toekomstige real-time classifiers zal het voorspellen van
een aankomende disruptie niet volstaan. Bij elke voorspelling
moet ook de oorzaak van de disruptie bepaald worden, zodat
de juiste preventieve maatregelen kunnen genomen worden[3].
Gezien de hoge classificatieresultaten van de vorige testen, was
het interessant om te kijken of de ontwikkelde classifiers ook de
disruptieoorzaak konden bepalen. Een test werd uitgevoerd met
data van shots uit de periode C15-C27 (921 shots). Er werden
acht disruptieoorzaken opgenomen in de test. De oorzaken, sa-
men met het aantal disrupties te wijten aan elke oorzaak, worden
gegeven in tabel III. Deze tabel is gebaseerd op de resultaten van
een vorige studie[3]. Merk op dat veel van de disruptieoorzaken
(uitschakelen vermogenbron, snelle stroomstijging, problemen
in verschillende controlesystemen) te maken hebben met de be-
sturing van de machine en niet met fysische oorzaken van dis-
rupties. Merk bovendien op dat de signalen die voor deze studie
gebruikt zijn, niet noodzakelijk aansluiten bij de signalen om

TABLE III
DISRUPTIE-OORZAKEN PERIODE C15-C27.

Disruptieoorzaak Aantal
Uitschakelen externe vermogenbron (H-L transitie) 67
Te sterke interne transportbarrière 14
Te snelle stroomstijging 13
Probleem in de onzuiverheidscontrole 111
Te lage dichtheid en lage veiligheidsfactor 39
Neo-klassieke "tearing"mode 38
Probleem in de dichtheidscontrole 144
Greenwald dichtheidslimiet 8

elk van deze oorzaken te herkennen. Het was bijvoorbeeld niet
mogelijk om een probleem in de onzuiverheidscontrole te her-
kennen aan de hand van de signalen in tabel I.
De resultaten zijn samengevat in tabel IV. Een classifier kon
in deze test een extra fout maken, namelijk het correct voor-
spellen van een disruptie, maar de foute disruptieoorzaak door-
geven. Het aandeel van shots waarin deze fout gemaakt werd,
wordt het fout alarm aandeel (FA) genoemd. In deze test werd
de SVM classifier terzijde gelaten, aangezien de veralgemening
naar classificatie met meerdere groepen niet triviaal is. Boven-
dien werd het optimaal aantal dichtste naburen van k-NN classi-
fiers voor deze test geherevalueerd. Het bleek voordelig te zijn
om met k = 6 te werken.

TABLE IV
HERKENNING VAN DISRUPTIEOORZAAK.

Fourier k-NN
Euclidisch

Fourier k-NN
geodetisch

Wavelet k-NN
geodetisch

MA 6.7 ± 1.4 1.1 ± 0.8 0.4 ± 0.3
VA 32.6 ± 2.9 32.5 ± 2.6 7.2 ± 1.1
FA 35.9 ± 3.1 35.9 ± 2.1 49.8 ± 2.9
TF 75.3 ± 2.1 69.6 ± 3.3 57.4 ± 3.3
SA 24.7 ± 2.1 30.4 ± 3.3 42.6 ± 3.3
AVG 153.5 ± 6.2 162.7 ± 4.7 184.0 ± 3.7

Wavelet
Mahalanobis

Wavelet k-NN
J-divergentie

MA 0.8 ± 0.7 0.5 ± 0.5
VA 8.5 ± 2.1 10.1 ± 1.9
FA 48.0 ± 3.0 50.5 ± 2.1
TF 57.3 ± 2.9 61.1 ± 3.0
SA 42.7 ± 2.9 38.9 ± 3.0
AVG 185.1 ± 3.1 181.4 ± 3.7

V. CONCLUSIES

Er werd een nieuwe methode voorgesteld om disrupties te
herkennen. De frequentie-inhoud van een signaal werd in het
waveletdomein beschreven. De statistiek van de waveletcoëffi-
ciënten werd voor de compactheid gemodelleerd door een ver-
algemeende Gaussiaan. Vanwege de hoge β waarden die voor-
kwamen bij het fitten van een veralgemeende Gaussiaan werden
twee alternatieven voorgesteld. Enerzijds werd de β constant
gehouden (β = 1) en anderzijds mocht de β variëren in het in-
terval 0 < β ≤ 5. Naargelang de gekozen representatie van
de data, werd een gepast similariteitscriterium gekozen. Bij een
vaste β was dit similariteitscriterium gebaseerd op de afstand



tussen distributies op een Riemanniaans oppervlak.
De evolutie van β in figuur 1 wijst erop dat classifiers die ge-
bruik maken van wavelet features, aankomende disrupties be-
trouwbaar kunnen herkennen vanaf 360 ms voor de TvD. Dit
wordt bevestigd door de AVG tijden uit tabellen II en IV. Clas-
sifiers gebaseerd op de statistiek van waveletcoëfficiënten heb-
ben een AVG tijd die de 180 ms overstijgt. Door het interval
dat echter gebruikt is om de disruptieve features te extraheren,
is de maximaal mogelijke AVG in die testen 195 ms (het mid-
den van het tijdsvenster waarin de disruptie herkend werd, werd
gebruikt om de AVG te bepalen). De AVG voor een SVM clas-
sifier is ongeveer 138 ms. Een vergelijkbare AVG tijd voor een
SVM classifier wordt ook gemeld in [1].
Het in rekening brengen van de probabilistische structuur via
een gepast similariteitscriterium levert een voordeel op in de
classificatieresultaten. Dit is reeds zichtbaar voor de classifiers
gebaseerd op fourier features. De k-NN classifier die gebaseerd
is op de statistiek van fouriercoëfficiënten en die gebruik maakt
van de Rao geodetische afstand geeft hogere classificatieresulta-
ten dan dezelfde classifier die gebruik maakt van de Euclidische
afstand. Het verschil wordt nog duidelijker voor de classifier
gebaseerd op wavelet features. Het gebruik van meer gesofisti-
ceerde classifiers in combinatie met wavelet features, zoals de
Mahalanobis classifier, blijkt nog effectiever te zijn in de voor-
spelling van disrupties.
Tenslotte zijn de classifiers getest op hun vermogen om de oor-
zaak van disrupties te bepalen. Slechts in een op twee shots
wordt de oorzaak van de disruptie correct herkend. Merk op dat
het vermogen van de classifiers om disrupties te herkennen niet
gedaald is, alleen wordt voor correct voorspelde disrupties, de
oorzaak van de disruptie niet altijd herkend.
Uit deze testen blijkt dat de combinatie van de statistiek van wa-
veletcoëfficiënten en het correct in rekening brengen van diens
probabilistisch karakter een meerwaarde kan bieden voor detec-
tie van plasmadisrupties. In een volgende stap moet deze combi-
natie ook in real-time getest worden op haar potentieel. De test
voor de bepaling van de disruptieoorzaak is in deze studie eer-
der rudimentair gebeurd. Het is interessant om in de toekomst
een nieuwe combinatie van signalen te gebruiken die meer aan-
leunt bij de oorzaken van disrupties die de classifier moet kun-
nen onderscheiden. Eventueel kan dit gebeuren door verschil-
lende classifiers in parallel te laten werken, waarbij iedere clas-
sifier getraind is om een welbepaalde klasse van disrupties te
detecteren. Het voordeel van deze aanpak zou het beperkte aan-
tal signalen zijn dat iedere classifier zou moeten verwerken, wat
een duidelijker onderscheid tussen reguliere en disruptieve tijds-
vensters als gevolg zou hebben.
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Abstract—Plasma disruptions are instabilities that occur in experimen-
tal fusion plasmas confined in so-called tokamaks. Disruptions induce large
forces on the framework of a tokamak and need to be avoided at all costs.
In this study, automatic detection of disruptions is presented by decompo-
sition of plasma signals in the wavelet domain. The statistics of wavelet
coefficients are modelled by a generalised Gaussian distribution. Different
classifiers have been developed on this basis. As similarity measure between
distributions, the Rao geodesic distance was used. The results are compared
to classifiers based on the statistics of Fourier coefficients. Our approach
shows an improvement as compared to already used methods in this do-
main. In addition it is possible to reliably predict disruptions up to 360 ms
before disruption. Finally, the ability to recognise the disruption cause was
tested. Again, better results are obtained using wavelet statistics as predic-
tive features.

Keywords—Plasma disruption, fusion, wavelet decomposition, generali-
sed Gaussian distribution, geodesic distance

I. INTRODUCTION

CO ntrolled nuclear fusion can provide an environmental
friendly and a virtually inexaustible source of energy in

the future. The currently most advanced method to reach this
goal is the controlled fusion of nuclei of hydrogen isotopes in
a hot plasma confined by a magnetic configuration called the
tokamak. In such a configuration however, the plasma can de-
stabilise in different ways, leading to a loss of the confinement.
The instabilities are called plasma disruptions. Plasma disrup-
tions induce large force loads on the metalic vessel and need to
be avoided in future machines.
Because of the complexity of phenomena leading to disruptions,
plasma disruptions are avoided by means of pattern recognition
techniques. Examples used in practice are support vector machi-
nes (SVM)[1] or artificial neural networks[2]. Current disrup-
tion predictors are already capable of detecting a large number
of upcoming disruptions, but there still exist room for improve-
ment. In addition, an automatic disruption predictor is required
that is able to recognise the cause of a disruption, in order to be
able to undertake mitigating actions[3].
In this study, different classifiers were developed. The so-called
classifiers were tested with data acquired in disruptive shots at
the Joint European Torus (JET), the biggest operational toka-
mak at this moment. The frequency content of time windows of
30 ms of thirteen indicative signals was determined. First this
was done using Fourier decomposition, a method which was al-
ready used in previous tests[1]. To construct a compact data
set in order to avoid redundant information, only the standard
deviation of the spectrum (excluding the static component) was
held as a relevant feature. The true distribution of Fourier coef-
ficients was thus modelled by a zero-mean Gaussian distribu-
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tion. Second, we propose to use the wavelet decomposition,
because of the highly transient behaviour of disruptions. The
wavelet decomposition is a recently developed frequency analy-
sis technique, that is already being used often in image analy-
sis[4], [5]. The wavelet decomposition was performed at three
different time scales using the Daubechies 4-tap wavelet basis.
The distribution of wavelet coefficients is better described by
a zero-mean generalised Gaussian distribution (GGD)[5]. The
probability density function (PDF) of a GGD is given by[6]

f(x | α, β) =
β

2αΓ(1/β)
exp

[
−
( | x |

α

)β]
(1)

Note that for the shape parameter β = 2, this distribution sim-
plifies to a Gaussian distribution. The relation between the
standard deviation σ en the scale parameter α is α2 = 2σ2.
For β = 1, this distribution simplifies to a Laplace distribution.
The innovation in our approach is to take the intrinsic probabi-
listic nature of the data into account. The statistics of Fourier
coefficients has already been used for disruption prediction[1],
but the probabilistic nature of the data was neglected, i.e. the
standard deviation was treated as a Euclidean variable. This is
implicitly present in the exponent of the radial basis function
kernel (RBF) of the SVM (see also (5)). The correct way to
measure similarities between distributions has been the subject
of information geometry. A family of PDFs has to be considered
as a Riemannian manifold, a surface with a non-Euclidean me-
tric[6]. De geodesic distance between distributions of the same
family then needs to be measured along the surface. We used
the so-called Rao geodesic distance between distibutions of the
family of zero-mean GGD distribution with fixed β. The Rao
geodesic distance is given by[6]

dG(α1;α2) =
√
β

∣∣∣∣ln
α2

α1

∣∣∣∣ (2)

There exists no analytical expression for the geodesic distance
between two GGDs with different β. In tests where β was al-
lowed to vary, the Kullback-Leibler divergence (KLD) was used
as similarity measure. The KLD is a well-known measure in
probability theory and for two GGDs it is given by[7]

KLD(α1, β1;α2, β2) = ln

(
β1α2Γ(1/β2)

β2α1Γ(1/β1)

)

+

(
α1

α2

)β2 Γ((β2 + 1)/β1)

Γ(1/β1)
− 1

β1
(3)

De KLD measure is not symmetric. A simple solution is the use
of the J-divergence, defined by

J − div(α1, β1;α2, β2) = 1/2 · [KLD(α1, β1;α2, β2)

+KLD(α2, β2;α1, β1)] (4)



II. DATA PROCESSING

The time traces of thirteen signals (after normalisation to [0,1]
and resampling with resampling rate 1 kHz) were split into time
windows of 30 ms. This time interval provides a good time re-
solution and includes enough information about the plasma ten-
dencies[8]. The signals which were used to monitor the plasma
status are based on a previous study and are given in table I[8].
Each time window and signal was decomposed by wavelet ana-

TABLE I
LIST OF PREDICTOR SIGNALS.

Signal Unit
(1) Plasma current A
(2) Poloidal beta
(3) Time derivative of (2) s−1

(4) Mode lock amplitude T
(5) Safety factor at 95% of minor radius
(6) Time derivative of (5) s−1

(7) Total input power W
(8) Internal plasma inductance
(9) Time derivative of (8) s−1

(10) Vertical position of plasma centroid m
(11) Plasma density m−3

(12) Time derivative of stored diamagnetic energy W
(13) Net power W

lysis on three different time scales and the statistics of the coef-
ficients of each time scale was described by a GGD with β = 1.
During the tests it became clear that it was not possible to use a
variable β. For time windows sufficiently prior to time of dis-
ruption (ToD), the energy content of the signal was too low.
As a consequence, the wavelet coefficients were highly cente-
red around zero and this resulted in unacceptable high values
of β. Another approach to this issue, was to fit a GGD with a
variable β within certain limits. First the β was fitted with no
limits. If the β value exceeded five, the fit was repeated with a
fixed β = 5. α and β were determined by maximum likelihood
estimation[7].
The classification results were compared to those of classifiers
based on the statistics of Fourier coefficients. The statistics were
modeled by a zero-mean Gaussian (excluding the static compo-
nent). This distribution corresponds to a GGD with β = 2 and
α =
√

2σ.

III. CLASSIFIERS

The data set consisting of standard deviations of Fourier sta-
tistics was classified in three different ways. The simplest classi-
fier is a k-nearest neighbour (k-NN) classifier[9] with as simila-
rity measure the Euclidean distance. Each feature was conside-
red to be an independent Euclidean variable. The second classi-
fier is a k-NN classifier with as similarity measure the geodesic
distance defined in (2). The last classifier is a SVM classifier
with an RBF kernel given by

K(σi;σj) = exp

(
−‖σi − σj‖

2

2σ2

)
(5)

σi and σj are vectors constructed by the concatenation of the
standard deviations of Fourier statistics of different signals and

are called feature vectors. An introduction about SVM classi-
fiers can be found in [10]. The proposed SVM classifier resem-
bles well the classifier used in previous studies at JET[1].
The data set consisting of GGD parameters of wavelet statis-
tics was also classified by three different classifiers. The first
classifier was a k-NN classifier with as similarity measure the
geodesic distance defined in (2) (fixed β = 1). The second
classifier was a k-NN classifier with as similarity measure the
J-divergence defined in (4) (variable 0 < β ≤ 5). The third
classifier is a more advanced classifier for the data set with fixed
β = 1. The classifier is based on the Mahalanobis distance bet-
ween a test object x and a cluster of points which is described
by a multivariate Gaussian with mean µ and covariance matrix
Σ. Information about the Mahalanobis distance can be found
in[11]. The Mahalanobis distance is given by

dM (x;µ,Σ) = (x− µ)TΣ−1(x− µ) (6)

The upper index T is the transposition operator. The idea is that
in a training set, regular points and disruptive points are sepa-
rated in two clusters. The test point is classified to the closest
cluster. With points we refer to points in the space of a family
of GGD distributions, or better, to the product space of different
independent families of GGD distributions. The wavelet statis-
tics of each signal and timescale correspond to one such space
of GGD distributions. Estimates of µ and Σ for each regime are
found using[11]

µ = E [X]

=
1

n

n∑

i=1

xi

Σ = E
[
(X − E[X])(X − E[X])T

]

=
1

n

n∑

i=1

(xi − µ)(xi − µ)T (7)

The summations run over all points of the cluster.
An additional issue is that the estimates in (7) are only valid
in affine spaces, e.g. the Euclidean space. The product space
of independent families of univariate Laplacians is not affine.
To circumvent this problem, the parameters of the clusters are
computed in the (Euclidean) tangent space. The point at which
the tangent space was constructed was chosen to be the geodesic
centre-of-mass of the cluster. A more detailed description is
given in [12].
k-NN classifiers are parametric classifiers and the results will
only depend on the number of nearest neighbours k. The results
were found to be insensitive to this number. k was therefore
chosen equal to one for simplicity. Also the SVM classifier is
a parametric classifier. The results depend on the value of the
scale parameter σ of the RBF kernel. From an extensive test,
σ = 6 proved to be a good choice.

IV. RESULTS

A classifier needs to fullfil several conditions. First, the clas-
sifier should not classify any regular time window as disruptive,
as the tokamak operation would then be unnecessarily interrup-
ted. The share of shots in which the classifier made this error



Fig. 1. Time evolution of β for several signals.

is called the false alarm rate (FA). Second, the classifier needs
to recognise the disruptive behaviour in at least one disruptive
time window in order to avoid the disruption. The share of shots
for which the classifier did not predict the upcoming disruption
is called the missed alarm rate (MA). The total error (TE) is
the sum of FA and MA. The success rate (SR) is the comple-
ment of the total error (100%-TE). Finally, the classifier should
detect the upcoming disruption as early as possible. The mean
time before the ToD for which the classifier was able to correctly
predict the disruption is called the average time (AVG).
Because of the limited available memory, the regular regime
was represented in the tests by the features of six time windows
of 30 ms long, drawn from the period [1180 ms-ToD;1000 ms-
ToD[. The disruptive features were extracted from six time win-
dows of the period [210 ms-ToD;30 ms-ToD[. The last time win-
dow before ToD has been left out, as it is not possible to mitigate
the disruption in such a limited amount of time. Because of the
limited share of regular time windows, it is not possible to com-
pare our results with real-time equivalent results of other studies.
The presented tests are to be seen as independent. However, the
tests are still interesting because they allow to compare the per-
formance of different classifiers under the same conditions.

A. Evolution of the shape parameter β

The time evolution of the mean shape parameter β for GGDs
fitted to the wavelet statistics of four different signals at the hig-
hest time scale is shown in figure 1. The value of β does not
display a significant change for the plasma density and for the
net power when approaching the disruption. The β values in
the figure are mean values. The almost constant value of β thus
implies that only in a limited amount of shots the transient beha-
viour of the signals is present in the fit of a GGD to the wavelet
statistics. This is partly explained by the low temporal resolu-
tion of the signals.
On the other hand, the shape parameters for the mode lock am-
plitude and the plasma current decrease sharply at about 360 ms
before ToD. In the other tests, the alarm was almost always trig-
gered because of the transient behaviour of one of those two
signals. Both signals have on average the highest time resolu-
tion in table I. The abrupt decrease of the shape parameter at
360 ms before ToD could be indicative for the maximal time be-
fore disruption at which a classifier based on wavelet features
could reliably detect a disruption. In studies based on Fourier
features, this time is reported to be of the order of 180 ms before
ToD[1].

B. Classification test JET campaigns C15-C20

The ability of each classifier to avoid a false alarm and to
predict an upcoming disruption well in advance was tested with
a data set constisting of 442 disruptive shots of JET campaigns
C15-C20. 65% of the shots have been selected randomly and the
features vectors of these shots were used to construct a training
set. The data of the rest of the shots was classified and the labels
of the classifier were compared to the ground truth, which was
determined by experts. The choice of shots in the training and
test sets affect the classification rates. The test was therefore
repeated twenty times with different training and test sets. Each
quantity in II is given by its mean value± the standard deviation
after different iterations.

TABLE II
CLASSIFICATION PERFORMANCE.

Fourier k-NN
Euclidean

Fourier k-NN
geodesic

Wavelet k-NN
geodesic

MA 0.8 ± 1.0 0.7 ± 0.8 0.3 ± 0.5
FA 65.2 ± 6.3 63.4 ± 5.8 11.3 ± 4.1
TE 66.1 ± 6.1 64.0 ± 5.6 11.6 ± 4.0
SR 33.9 ± 6.1 36.0 ± 5.6 88.4 ± 4.0
AVG 165.4 ± 9.5 173.5 ± 6.5 184.7 ± 3.1

Wavelet
Mahalanobis

Fourier
SVM

Wavelet k-NN
J-divergence

MA 0.3 ± 0.5 9.3 ± 2.8 0.2 ± 0.5
FA 8.9 ± 2.4 19.2 ± 3.7 15.2 ± 3.8
TE 9.2 ± 2.3 28.5 ± 4.1 15.5 ± 3.8
SR 90.8 ± 2.3 71.5 ± 4.1 84.5 ± 3.8
AVG 186.9 ± 2.7 137.7 ± 6.4 186.0 ± 2.8

C. Generalisation capability to JET campaigns C21-C27

A disruption classifier should in addition be able to perform
well in instances for which is was not trained. To evaluate the
performance of the classifiers in such a situation, the classifiers
were made to classify data from shots were something was chan-
ged in the experiment as compared to the shots with which the
classifier was trained. In the period between campaign C20 and
C21, the ITER-like Ion Cyclotron Resonance Heating (ICRH)
antenna was installed at JET.
The classifiers were first trained with disruptive shots from cam-
paigns C15-C20. Then seven data sets, each containing all dis-
ruptive shots of one campaign from C21 to C27, were classified.
The success rate for each campaign is shown in figure 2.

D. Recognition of disruption cause

In future real-time classifiers, the detection of an upcoming
disruption will not be sufficient. The detection should be ac-
companied by the detection of the disruption cause, in order to
undertake the appropriate mitigating actions[3]. Because of the
high classification rates of previous tests, it becomes interesting
to investigate whether the proposed classifiers are able to deter-
mine also the disruption cause. The test was performed by data
of shots from campaigns C15-C27 (921 shots). Eight disrup-
tion causes were considered. The causes are given in table III,
together with the number of disruptions within the period C15-
C27 due to each cause. The shots which did not disrupt for one



Fig. 2. Success rate for the generalisation test.

of these causes were collected in an additional class. The dis-
ruption cause is based on the results presented in [3]. Note that

TABLE III
DISRUPTION CAUSES FOR THE PERIOD C15-C27.

Disruption cause Number
Auxialiary power shut-down (H-L transition) 67
Too strong internal transport barrier 14
Too fast current ramp-up 13
Impurity control problem 111
Too low density and low safety factor 39
Neo-classical tearing mode 38
Density control problem 144
Greenwald density limit 8

different disruption causes (power shut-down, fast current ramp-
up, problems in different control systems) are a consequence of
the control systems and do not originate in physical disruption
mechanisms. Furthermore, some disruption causes can simply
not be detected with the thirteen predictor signals of table I, e.g.
there is no signal in the table which can clearly distinguish im-
purity control problems from other causes.
The results are summarised in table IV. A classifier can now
make an additional mistake, i.e. to correctly predict a disrup-
tion, but give an incorrect disruption cause. The share of shots
for which the classifier made this mistake is called the wrong
alarm rate (WA). The SVM was not used in this test, as the ge-
neralisation to a multiple-class problem is not trivial. In addition
the optimal number of nearest neighbours was re-investigated.
k = 6 was found to be the ideal choice.

V. CONCLUSIONS

A new method was presented for disruption prediction. The
frequency content of plasma signals was extracted in the wa-
velet domain. The statistics of wavelet coefficients was model-
led by a GGD for compactness. Because of the occurence of
high β values, two alternatives were considered. The β was
held fixed (β = 1) or it was allowed to vary within the range
0 < β ≤ 5. Depending on this choice, an appropriate similarity
measure was used which takes into account the probabilistic na-
ture of the data. When the β was held fixed, this measure was
based on the distance between points on a Riemannian surface.
The evolution of β in figure 1 suggests that classifiers that are
based on wavelet features are able to reliably detect disruptions
from about 360 ms before ToD. The AVG times from tabels II

TABLE IV
DISRUPTION CAUSE RECOGNITION.

Fourier k-NN
Euclidean

Fourier k-NN
geodesic

Wavelet k-NN
geodesic

MA 6.7 ± 1.4 1.1 ± 0.8 0.4 ± 0.3
FA 32.6 ± 2.9 32.5 ± 2.6 7.2 ± 1.1
WA 35.9 ± 3.1 35.9 ± 2.1 49.8 ± 2.9
TE 75.3 ± 2.1 69.6 ± 3.3 57.4 ± 3.3
SR 24.7 ± 2.1 30.4 ± 3.3 42.6 ± 3.3
AVG 153.5 ± 6.2 162.7 ± 4.7 184.0 ± 3.7

Wavelet
Mahalanobis

Wavelet k-NN
J-divergence

MA 0.8 ± 0.7 0.5 ± 0.5
FA 8.5 ± 2.1 10.1 ± 1.9
WA 48.0 ± 3.0 50.5 ± 2.1
TE 57.3 ± 2.9 61.1 ± 3.0
SR 42.7 ± 2.9 38.9 ± 3.0
AVG 185.1 ± 3.1 181.4 ± 3.7

and IV confirm this conclusion. Classifiers based on wavelet
features have AVG times that surpass the 180 ms. However, be-
cause of the choice of the period from which the disruptive fea-
tures are extracted, the maximum possible AVG time in the tests
is 195 ms, i.e. the middle of the first disruptive time window.
Thus most of the disruptions were predicted by wavelet classi-
fiers already in the first disruptive time window. The AVG for
the SVM classifier based on Fourier features is about 135 ms. A
similar AVG time has already been reported for a SVM classi-
fier[1].
In addition, taking into account the probabilistic nature of the
data by using an appropriate similarity measure results in hig-
her classification rates. This is already clear in the different
results between the k-NN classifier based on Fourier features
using the Euclidean distance as similarity measure and the clas-
sifier that uses Fourier features and the Rao geodesic distance
as similarity measure. The classifier which uses the Rao geode-
sic distance and thus takes the probabilistic nature into account,
delivers slightly better results. The k-NN classifier based on
wavelet features which uses the Rao geodesic distance delivers
still better results. Finally, the use of more sophisticated classi-
fier models in combination with the wavelet decomposition, as
in the Mahalanobis classifier, delivers the best results.
At last, the classifiers were tested on their ability to determine
the cause of a disruption. For only one on two shots the cor-
rect cause is identified (WA rates in table IV). This test should
be considered as preliminary, as the predictor signals should be
chosen according to the disruption causes one wants to investi-
gate. Note, however, that the ability of the predictor to detect
disruptions has not lowered (MA and FA in table IV), but that
the SR only lowered because of the incorrect detected disruption
cause.
The combination of the use of wavelet decomposition and the
probabilistic nature of the wavelet statistics proves to be useful
in the detection of disruptions. In a next step, this combination
should be tested for its potential in a real-time application. The
detection of the disruption cause is to treated more in detail. It
could be interesting to work with different, parallel classifiers,
each trained to detect only one class of disruptions. The advan-



tage would be the limited amount of signals that each classifier
should process, resulting in less redundant information and a
clearer distinction between regular and disruptive events.
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Chapter 1

Introduction

Nuclear fusion can provide a clean and nearly inexhaustible source of energy for future gene-

rations. One of the ways to reach this objective is the magnetic confinement of plasma in the

tokamak configuration. However, sudden losses of plasma confinement occur in tokamaks, which

are called plasma disruptions. Disruptions should be avoided at all costs in next-generation de-

vices such as the International Thermonuclear Experimental Reactor (ITER), as they can harm

the structural integrity of the machine. ITER is schematically represented in figure 1.1.

The physical characterisation of disruptions is an extremely complex task. It is thus impossible

to distinguish disruptives events from the available data in an unambiguous way. Therefore,

considerable effort has been put into the prediction of upcoming disruptions using machine

learning techniques. Machine learning refers to a class of techniques which allow a computer to

detect significant patterns in the data. Such techniques can be used to make predictions about

new data originating from the same source. Disruption prediction has mainly been addressed

by means of support vector machines (SVM) and artificial neural network techniques [1, 2].

There still exists, however, wide interest to improve the performance of automatic disruption

predictors.

In this study an alternative approach to automatic disruption prediction is presented. The study

is mainly based on the methodology of previous research of Rattá et al. [1, 3]. In this study, an

automated SVM disruption predictor is presented, specifically designed for the Joint European

Torus (JET) device situated at Culham, UK. The signals were split in small time windows after

pre-processing and the frequency content was analysed. This is done by Fourier decomposition.

To allow a compact description of the data, only the statistics of the Fourier spectrum was

retained. The Fourier spectrum was described by a zero-mean Gaussian distribution, i.e. it was

described by its standard deviation. This already allowed to obtain good classification rates.

Our goal is to improve the performance of automated disruption predictors in two aspects.

First, the frequency content of plasma signals close to disruption can be better described using

a wavelet decomposition. Wavelet decomposition is a relatively new frequency analysis method.

Wavelets decompose the signal at multiple resolutions and the decomposition at each resolution

scale is clearly split in an average part and a detail part. It is the detail part that is retained

to describe transient behaviour or, equivalently, the frequency content of a signal. Wavelets

are heavily used in image compression [5] and image classification [6], where abrupt changes in

color are common. Wavelet decomposition is also expected to describe well the highly transient
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Chapter 1. Introduction

Figure 1.1: Schematic representation of the ITER device [4].

behaviour of plasma signals. The wavelet spectrum will be described by a statistical model,

in analogy with the work of Rattá et al. It has been observed earlier that wavelet spectra are

heavy-tailed when describing highly transient data. An appropriate distribution which models

well this heavy tailed behaviour is the generalised Gaussian distribution (GGD) [6].

The developed classifiers are essentially based on two different models. The first model is a

simple k-nearest neighbours (k-NN) classifier. k-NN searches for the closest neighbours of a new

event in an available training set and classifies the event based on the class of its neighbours.

A more advanced classifier clusters the training data per regime and describes the spread of

the cluster by a multivariate Gaussian distribution. New events are then classified according to

the closest cluster. The distance to the cluster is the Mahalanobis distance. The Mahalanobis

distance is a measure for the probability that the new event is a sample of the multivariate

Gaussian distribution of the corresponding cluster.

Both classifiers are based on geometrical concepts. It is therefore interesting to geometrise

the probabilistic space of the data. Our second innovation is to introduce some elements from

information geometry, in which a family of probability distributions is seen as a differentiable

Riemannian manifold, which is a space equipped with a (non-Euclidean) metric [7]. Concepts as

the distance between probability distributions arise naturally in this framework as the distance

between points along the manifold. This distance measure is called the Rao geodesic distance

and will be used to compute the distance between the statistics of wavelet spectra when using a

k-NN classifier. Also, the estimation of the parameters of the multivariate Gaussian distribution

of a cluster relies implicitly on the properties of affine spaces, which the probabilistic manifold is

not. In the case of the Mahalanobis classifier, the exponential and logarithmic maps were used

to project the data from the manifold to a tangent, Euclidean space, which is an affine space.

In this chapter, basics about nuclear fusion and plasma disruptions will be given. The data

used in the tests is also presented. In the second chapter, the pattern recognition techniques
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necessary for this study will be described in detail. How the different techniques are combined

to create the disruption predictor will be explained. The experiments are presented in chapter

3, together with the obtained results and some conclusions. The work is completed in chapter

4 with an overview of the results, conclusions and considerations for future work.

1.1 Nuclear fusion

Figure 1.2: Growth in primary energy demand from 2010 to 2035 [8].

Mankind is confronted with a continuously rising world energy demand. Figure 1.2 represents

the expected growth of energy demand up until 2035, showing that it will grow with one third

of current energy demand. Other estimates expect a doubling of this demand between 2050 and

2100 [9, 10, 11]. The rise in energy demand is accompanied by limited reserves of fossil fuels.

Crude oil and natural gas are expected to be available for the next 70 years at current rates

of consumption [11]. At the same time, environmental issues are becoming increasingly impor-

tant. Without further action, by 2017 all CO2 emissions permitted by the 450 scenario of the

International Energy Agency will be locked-in by existing power plants, factories and buildings

[8]. The 450 scenario consists of a series of measures which could stabilise greenhouse gases

at 450 ppm CO2 equivalent [12]. This concentration will increase the world mean temperature

with 2◦C as compared to pre-industrial ages. It becomes clear that the scientific community is

confronted with the challenge to develop new, environmentally friendly technologies to solve the

energy problem.

The only long-term alternatives to burning fossil fuels are renewables, fission and fusion. Renew-

ables, although environmentally friendly, have only a limited potential and will only be able to

complement other clean energy sources [11]. The available uranium will be exhausted within a

few decades at the current rate of consumption, although breeder reactors could extend present

reserves to several thousands of years [10, 11]. Fission reactors have also suffered from public

criticism by the Chernobyl and Fukushima events. Although safer reactor designs are available

[10], adverse effects are expected in the development of nuclear fission energy in the EU and
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USA [13, 14]. Another critical issue is the production of long-lived nuclear waste. A breeder

reactor could provide a solution to this problem as nuclear waste is recycled to produce nuclear

energy [10]. For the moment no commercial breeder reactors exist because of the high cost and

safety issues [15]. Fission thus remains a valid energy source for the future, but some problems

will remain.

At this point fusion should be introduced as an environmentally friendly, inherently safe and

virtually inexhaustible source of energy. The primary fuels of the most likely fusion scenario

at present, deuterium and lithium, are not radioactive and do not contribute to environmental

pollution. In addition, natural reserves will last for several thousands of years [11]. The direct

end product, helium, is no pollutant, is chemically inert and is a useful byproduct for industry.

The Deuterium-Tritium (D-T) reaction is considered the most feasible fusion reaction for the

first power plants. This choice is justified by the highest cross-section in the reaction rates at

the lowest temperature [10]. The D-T reaction is thus the easiest way towards fusion energy.

Working with tritium has however some disadvantages. First, there are no natural tritium

reserves on earth. A simple solution is the breeding of tritium by the reaction of neutrons,

originating from the fusion reactions, with lithium, which is installed in a blanket surrounding

the reactor. Tritium is radioactive with a half-time of about 12 years [16]. The fact, however,

that the tritium cycle will internally be closed makes a fusion reactor extremely attractive for

safety purposes. A commercial fusion power plant will only need reserves of a few kilograms of

tritium. Moreover, only about 1 kg of tritium could be released in case of an accident, assuming

hypothetical, ex-plant events such as an earthquake of hitherto never experienced magnitude

[17]. For events of this magnitude, the consequences of the external hazard are expected to be

higher than the health effects of irradiation.

Working with tritium delivers neutrons as byproduct. The neutrons will be used to create the

necessary tritium and transport a part of the heat, generated by the fusion reactions, to the ves-

sel walls. The heat will be used to heat a coolant flowing through the vessel walls. This coolant

will transport the heat outside the reactor where electricity will be generated in the same way

as in a conventional power plant [10]. However, the neutrons will unavoidably irradiate and

activate materials in the vessel structures. This will give rise, by component replacement and

decommissioning, to activated material similar in volume to that of fission reactors [17]. It has to

be noted that the radiotoxicity of activated materials falls off significantly within a few decades.

It is estimated that 60% of the decommissioned materials will be below international clearance

levels within 30 years and 80% of the material will be available after 100 years [18].

A last issue involves the use of beryllium as a material for the first wall of a fusion device. The

use of beryllium is justified by its low-Z number, leading to low Bremsstrahlung radiation and

better tritium retention properties [19]. Beryllium however is a toxic material and should be

treated with care. Experience with beryllium at JET has shown that current safety measures

are effective, with no identifiable health effect up until now [20].

Despite the apparent advantages, commercial fusion is likely to be commercially available only

within 30 to 50 years [10]. Other sources of energy will be needed until then. It is nonetheless

important to pursue the goal of a functional power plant for its enormous potential in energy

production, environmentally friendly properties and safety features. Fusion will in addition be

an energy source available for each nation as both deuterium and lithium are omni-present. Fu-
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sion seems to be at present the only option towards a sustainable energy source in a technological

society.

1.2 Plasma disruptions

Figure 1.3: Main unintentional disruptions causes at JET for shots between 2000 and 2010. The thick-

ness of the arrow represents the frequency with which the sequence took place [21].

Controlled nuclear fusion aims at the development of a clean and nearly inexhaustible source of

energy. At present the most promising and technological advanced design of a fusion device is

the tokamak. However, under certain circumstances, instabilities in a tokamak plasma can lead

to a collapse of the plasma pressure and current [22]. This is called a plasma disruption. In

present devices, disruptions induce forces up to 2 MN and heat loads up to 2 MJ/m2 which lead

to serious damage of plasma facing components [21, 23]. In ITER the force loads are expected

to increase with two orders of magnitude. Forces of this magnitude can harm the integrity of

the machine [23]. Disruption prediction will thus become vital in next-generation devices [24].

A typical disruption develops in four stages: (i) an initiating event leads to (ii) the development

of some precursors of the disruption. Typically the thermal energy of the plasma is lost: (iii)

the thermal quench. The disruption ends by the loss of plasma confinement and plasma current:

(iv) the current quench [23]. A disruption predictor should be able to detect precursors in order

to initiate mitigating actions [21].

Figure 1.3 represents a schematic overview of the sequence of events that eventually led to unin-

tended disruptions at JET between 2000 and 2010. It is clear that a quite complicated structure

arises, with multiple possible paths leading to disruptions. The most important physical ini-
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tiating events of disruptions of this scheme will be qualitatively discussed. It should be noted

however that a large part of the disruptions at JET were caused by control errors and human

mistakes, bringing a random factor into the occurence of disruptions [21].

Table 1.1: Definition of some abbreviations used in figure 1.3.

Abbreviation Disruption cause

ELM Edge localised mode

GWL Greenwald limit

HD Operation near Greenwald limit

ITB Too strong internal transport barrier

KNK Internal kink mode

LOQ Low q or Q95 ≈ 2

MHD General rotating n = 1, 2 MHD

ML Mode lock

NTM Neo-classical tearing mode

RC Radiative collapse

SAW Sawtooth crash

SC Shape control problem

VDE Vertical displacement event

VS Vertical stability control problem

Disruptions very often occur in the form of magnetohydrodynamic (MHD) instabilities. Impor-

tant experimental and theoretical advances have been made recently in the understanding and

control of this class of instabilities [25]. From a theoretical point of view, the instabilities are

understood in terms of small perturbations on MHD equilibrium. Some perturbations are unsta-

ble and eventually lead to a disruption. Those perturbations are called ideal MHD instabilities.

Hereafter, a summary of the theoretical understanding is given, mainly based on the book of

Freidberg [10].

It may be interesting for the reader to repeat briefly how the MHD equations are derived. The

MHD equations arise by considering the plasma as a two-fluid model (ions and electrons are

treated separately). Using this model, equations describing the different macroscopic properties

of the plasma (such as density, temperature and pressure) are derived from conservation of mass,

momentum and energy. Those equations are coupled with Maxwell’s equations because of the

electromagnetic forces acting on the plasma which appear in the conservation of momentum.

The two-fluid model is simplified by inspection of the different terms in the model. Only terms

relevant on the length and time scale of the macroscopic behaviour of the plasma are conserved.

This results in a single-fluid model which is known as MHD. MHD is a system of coupled partial

differential equations describing the macroscopic quantities of the plasma as a whole.

The MHD model allows a determination of the magnetic configurations that are able to confine

a plasma at fusion conditions. The tokamak is such a configuration. The plasma exhibits a

natural tendency to expand in a tokamak, which results in a radial expansion force. This force

is counteracted by the generation of toroidal (along the plasma column) and poloidal forces (in

a plane perpendicular to the plasma column). By the curvature of the plasma in a toroidal
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configuration there also exist toroidal forces, causing the plasma expand to larger major radius.

These forces are counteracted by a poloidal (vertical) field. For a tokamak configuration, the

equilibrium MHD equations also set an upper limit for β/I2, where I is the plasma current. β is

an important dimensionless parameter in reactor design which gives the ratio of plasma pressure

to magnetic pressure. β is a measure of the effectiveness by which the magnetic field confines

the plasma [10].

Once MHD equilibrium is reached, perturbations can occur. However, small perturbations of

this equilibrium are sometimes unstable. Unstable perturbations are MHD instabilities and can

lead to disruptions. Perturbations are accounted for in the MHD model by the introduction of

the perturbed displacement vector ξ(r). The vector represents a small displacement of each fluid

element in the plasma as compared to its equilibrium position. Perturbations of the position

of fluid elements generate perturbations in the macroscopic quantities of the plasma. For small

displacements, the perturbations of these quantities are assumed to be linearly dependent on the

displacement vector. Introducing the small perturbations of all quantities in the MHD equations

delivers once more a set of coupled differential equations but now for the perturbed quantities:





ρ1 = −∇ · (ρξ)

p1 = −ξ ·∇p− γp∇ · ξ

B1 = ∇× (ξ ×B)

J1 = (1/µ0)∇× [∇× (ξ ×B)]

(1.1)

In the above expression ρ stands for plasma density, p for pressure, B for the magnetic field

and J for plasma current. Quantities without a subscript are the quantities at equilibrium.

The quantities with a subscript 1 are the perturbations on the equilibrium quantities. γ is

the adiabatic coefficient and equals 5/3. In those equations, the time dependency has already

been eliminated by means of a normal mode expansion, meaning that all quantities X vary

harmonically in time: X(r, t) = X(r) exp(−iωt). The equations illustrate the most important

results of this approach. The equations are partial differential equations in space and need

to be accompanied by boundary conditions. Depending on the structure, a different set of

eigenmodes and eigenfrequenties will be supported by the geometry. Instabilities correspond

to exponentially growing eigenmodes. The mathematics in a toroidal configuration are rather

complex. In a simple model, the 2-D surface model, the perturbed displacement vector reduces

to only a radial component. In an axisymmetric system this component can be Fourier analysed

in the toroidal direction. The solutions hence depend on a toroidal wave number n.

In a circular tokamak, the perturbed displacement vector can be further Fourier decomposed in

the poloidal direction. A poloidal wave number m is introduced. MHD instabilities are therefore

often labeled by their toroidal and poloidal wave numbers in the following form: m/n. This

convention will be of further use.

Numerical studies have been carried out that require stability against all MHD modes [26]. The

result is a simple empirical limit on the safety factor, the so-called Troyon limit. The safety

factor describes the number of times a magnetic field line goes around the long way, for each

time it circles the torus once along the short way [27]. See also figure 1.4 for an illustration. A

relation for the safety factor is derived in an equivalent straight cylinder representation, giving
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[10]

Figure 1.4: A magnetic field line circling around the plasma in a tokamak [28].

q(r) =
rBφ(r)

R0Bθ(r)
(1.2)

r can vary from the minor radius a to the major radius, R0. Bφ is the magnetic field in

the toroidal direction. Similarly, Bθ is the magnetic field in the poloidal direction. A small

correction due to toroidicity is neglected in previous expression. Larger values of q are associated

with higher ratios of external magnetic field to plasma induced poloidal field and consequently

correspond to more stable and safe plasmas [27]. The poloidal magnetic field is proportional to

the plasma current.

The Troyon limit is given by

q =
2πa2BT
µ0R0I

> 2 (1.3)

The Troyon limit is directly taken for r = a, as the safety factor is smallest at smallest radius.

In the relationship, a is the plasma minor radius in metres, R0 is the plasma major radius in

metres, BT is the toroidal magnetic field in Tesla, and I is the plasma current in mega-amperes.

µ0 is the permeability of the vacuum. In most of the numerical tests the so-called external

ballooning-kink mode is the most restrictive mode. The word external refers to the fact that the

mode changes the outer shape in the cross-section of the plasma. The ballooning kink-mode is

dominated by a 2/1 mode [10]. The shape of the ballooning-kink mode is shown in figure 1.5.

MHD modes exist in small islands rotating with the plasma. The rotation of the island induces

eddy currents in the vessel structure which stabilises the island. However, when external stray

fields with a same Fourier component as the island are present, the mode can lock to the wall

[23]. This happens when the amplitude of the external stray field is large enough and when

the toroidal momentum exerted by the plasma rotation is too weak to prevent it. External

stray fields are generated by asymmetric busbars and coil misalignments. The stabilising eddy

current ceases to exist for a locked mode. The mode grows even larger and causes edge cooling

by convention. This mechanism leads to the thermal quench. The 2/1 mode also dominates

locked modes. Most important, stray fields impose a low density limit. Below this density limit,

stray fields penetrate easily through the plasma and large convective cells build up around locked

2/1 islands.

Criterion (1.3) for the safety factor can be used to find an upper limit for β. The maximum

β allowed in a circular tokamak is about 2.8% for R0/a = 2.5. However, values in a reactor

8
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Figure 1.5: A contour plot of the shape of the ballooning-kink mode in the high-β limit for four poloidal

cross-sections. The kink shape is clearly situated at the outward radial part of the plasma

[10].

are desired to reach 8% [10]. This has inspired fusion research to concentrate on elongated,

non-circular plasmas. Both experimental and numerical studies have proved that working with

elongated plasmas, β stability limits are increased. Although elongated toroidal configurations

stabilise the MHD n = 1 mode, the n = 0 mode is unstable and gives rise to vertical displacement

events (VDEs) which eventually lead to disruptions.

One can understand how VDEs develop by considering how the plasma is elongated in an exper-

iment. The plasma at JET has a natural elongation of 1.2 [23]. By external currents with the

same polarity as the plasma current, an attractive force is induced at the top and bottom of the

plasma, elongating it even further. However, when the plasma centre is perturbed in the vertical

direction, the attractive force from the closest coil increases and the force from the furthest coil

decreases, as the force between two parallel current-carrying wires is inversely proportional to

the distance between them. The direction of this force moves the plasma even further away

from its equilibrium position. Vertical displacement events are thus unstable. At the same time,

eddy currents that are generated in the external coils and the conducting walls by the movement

of the plasma counteract the plasma motion [10, 23]. The plasma can be vertically stable at

the resistive timescale of the eddy current. Long time stability still requires a feedback circuit.

VDEs should certainly be avoided, as they are responsible for generating halo currents in the

conducting internal structures of the machine, leading to large forces [21, 23]. Although VDEs

represent a small fraction of the causes of disruptions in JET, they are responsible for a large

part of the disruptions leading to highest forces. Often the VDE develops because of vertical

stability control problems [21].

Other disruption causes include high density limits (Greenwald limit), edge localised modes,

neo-classical tearing modes and strong internal transport barriers. Those causes are understood

in terms of transport theory. It should nevertheless be noted that still much work has to be

9
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done before a rigorous approach of transport theory is formulated in fusion plasmas [10]. The

reason is that transport is almost always dominated by turbulence driven micro-instabilities.

This branch of transport is called anomalous transport and requires kinetic models which are,

in general, difficult to solve.

Radiation cooling at the edge is another cause of disruptions. Radiation of low-Z impurities at

the edge cools the plasma. As the low-Z impurity radiation increases with decreasing tempera-

ture [10, 21], this effect is clearly unstable. While radiation increases and the temperature drops

at the plasma edge, the core plasma is contracted. The total current is carried by a smaller

plasma area (and thus a smaller minor radius) which causes the safety factor at the plasma edge

to decrease (see also (1.3)). This can lead to MHD instabilities. This sequence of events is called

a radiative collapse.

A radiative collapse can be caused by too high plasma density at the edge. As the plasma

density is increased at a fixed heating power, the temperature at the edge decreases to keep the

plasma pressure constant. Radiation cooling will drastically increase at temperatures of about

10 eV. The above reasoning holds for an ohmically heated plasma. In plasma with auxiliary

heating the theory becomes much more complicated. In this case, an empirically upper density

limit was determined by Greenwald [10]

n ≤ I

πa2
(1.4)

Here, n is the density in 1020 m−3, I is the plasma current in mega-amperes and a is the minor

plasma radius in metre. In JET, exceeding the Greenwald density limit has not been found to

be a primal cause of disruptions in the past ten years [21].

Another disruption mechanism active at the edge of the plasma is called edge localised modes

(ELMs). The physical mechanism driving ELMs is still not understood and subject of current

investigation. There is speculation that ELMs are MHD instabilities [10]. During ELM-free

operation, the plasma edge density increases and the plasma is contaminated by impurities.

This is an unstable situation as was explained in the case of radiation cooling. However, ELMs

often appear before the Greenwald density limit. ELMs are radially outward bursts of energy

which relieve the high pressure at the plasma edge. Those bursts of energy carry also impurities

out of the plasma. The removal of impurities can be regarded as an advantage and a moderate

presence of ELMs is considered beneficial [10]. ELMs are divided into three classes according to

the amplitude of the energy burst. Type III ELMs correspond to low-level bursts at low edge

pressure. Type II is an intermediate mode of operation and type I ELMs produce large ampli-

tude, narrow time energy bursts. From a reactor’s design point of view, type II ELMs could be

beneficial, as the pressure remains at acceptable levels, increasing the energy confinement time.

In addition, a type II ELM will carry impurities out of the plasma as was mentioned before.

From a disruption point of view, type I ELMs should be avoided as they are often precursors

for neo-classical tearing modes (NTMs) [21].

NTMs are an important cause of disruptions and are at this moment subject of ongoing in-

vestigation [29]. NTMs start by the growth of a magnetic island. Such magnetic islands are

created by MHD instability events, a sawtooth crash in the core, or ELMs. Magnetic islands

short-circuit the magnetic flux surfaces [30]. For very small magnetic islands, diffusion across

magnetic surfaces is dominant over diffusion along the magnetic field lines. In this case magnetic
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islands are stable and disappear after a certain period of time. For islands with a width of about

one centimetre however, the diffusion along the magnetic field lines becomes dominant, leading

to a loss of the pressure gradient across the magnetic island. This results in the loss of the boot-

strap current in the magnetic island. The bootstrap current is a plasma current in the toroidal

direction. The origin of bootstrap current is explained in neoclassical transport. The bootstrap

current depends on the pressure gradient. A high bootstrap current is of great importance in

a fusion reactor, as this considerably reduces the cost of steady-state operation [10]. The loss

of bootstrap current from within the magnetic island seems to result in an unstable situation

in which the loss of bootstrap current results in the growth of the island, loss of the pressure

gradient within the bigger magnetic island, loss of the bootstrap current in the bigger island

and so forth. The resulting magnetic islands can be as big as several tens of centimetres. NTMs

are found to be the major cause of disruptions in JET [21].

Too strong internal transport barriers (ITBs) can also lead to disruptions [21]. An internal

transport barrier is a region within the plasma core where the ion thermal conductivity is sub-

stantially decreased as a result of anomalous transport [31]. This results in high temperature

gradients, a high temperature at the plasma core and subsequently a corresponding high energy

confinement time [10]. Internal transport barriers could be an important feature in advanced

tokamak scenarios to produce large fractions of bootstrap current. Therefore, different mecha-

nisms have been devised to create ITBs, such as off-axis current drive or fueling the plasma with

high-density solid D pellets. Nonetheless, a number of problems have still to be solved when

generating ITBs [31]. Too strong ITBs represent a large fraction (42%) of the causes of highly

energetic disruptions (plasma energies > 4 MJ). Disruptions at these energy levels are certainly

harmful for the ITER-like wall installed at JET [21].

1.3 JET disruption data

The previous section points out that for most initiating events, the physical understanding is not

complete. Furthermore, the necessary data is not always available to diagnose the disruption

cause. It is thus not possible to unambiguously detect a disruption simply based on the values

of the plasma parameters. Pattern recognition techniques are used at present in order to predict

disruptive behaviour using data of previous disruptions. In this study, JET data was used for

training and assessment of the performance of the developed disruption predictor.

A data set consisting of 2309 disruptions which occurred during the last decade at JET was

used to assess the performance of the classifiers. Based on previous work, each discharge is

represented by the time trace of thirteen predictor signals [3]. A list of all predictor signals is

given in table 1.2. For almost all of the signals, the average sampling time is also given. An

example of the time trace of five predictor signals is shown in figure 1.6. The shot in the figure

disrupted because of a problem in the density control.

Some issues need to be addressed concerning the used data set. Several predictor signals are

missing in the database for earlier shotnumbers. Therefore only a subset of the original data was

used in this work. The subset contains shots starting from campaign C15, which started at JET

in 2006 after the installation of the ITER-like magnetic configurations [28]. The subset consists

of 921 shots in which a disruption occurred. This subset was further split in two smaller subsets.
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Table 1.2: JET predictor signals.

Signal name Unit
Sampling time

(ms)

(1) Plasma current A 0.2

(2) Poloidal beta 10

(3) Poloidal beta time derivative s−1 10

(4) Mode lock amplitude T 0.2

(5) Safety factor at 95% of minor radius 15

(6) Safety factor at 95% of minor radius time derivative s−1 15

(7) Total input power W 10

(8) Plasma internal inductance 10

(9) Plasma internal inductance time derivative s−1 10

(10) Plasma vertical centroid position m 10

(11) Plasma density m−3 1

(12) Stored diamagnetic energy time derivative W 10

(13) Net power (total input power minus total radiated power) W

The subsets are presented in table 1.3. In the discussion of tests and results, the abbreviations

given in the table will be used to address the different subsets.

Table 1.3: Different subsets of shots used in this work.

Abbreviation Campaigns First shotnumber Last shotnumber Number of shots

SA C15-C27 65863 79831 921

SB C15-C20 65863 73128 442

SC C21-C27 73177 79831 479

Although the experiments deliver good results at a resampling rate of 1 kHz, it should be noted

that the original sampling rate of some signals is lower than 1 kHz. The benefit of resampling

is discussed in 2.1. The high resampling rate possibly results in unreliable wavelet features. It

will become clear from the tests that a high sampling rate is essential. The low-sampled signals

were, however, still used in the tests in accordance with previous studies. This issue will have

to be addressed in future work.

Finally, it should be noted that in a limited number of shots, the actual time of disruption

(ToD) determined by experts appears to be incorrect. Those shots could not be used in the

classification tests. An example of the appearance of a false ToD is shown in figure 1.7.
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Figure 1.6: Temporal evolution of five predictor signals. The disruption time is indicated by a full red

vertical line.

Figure 1.7: In shot 66509, the actual ToD appears to be incorrect. All signals fall off to minimal value

more than 200 ms before the actual ToD.
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Data analysis techniques

Different data analysis techniques are necessary in order to create an automatic disruption pre-

dictor. These techniques will be presented in this chapter. Multidimensional scaling is discussed

briefly as a method to identify the clustering structure in the processed data by visual inspec-

tion. The remainder of this chapter is devoted to the different steps in the construction of a

disruption predictor. The consecutive steps will appear in the same order as they are used in

the classification process.

The first step in classification is to process the original data and extract only information re-

levant for the classifier. Here, the data to be processed is the JET data which was presented

in 1.3. This step is called feature extraction [32]. The end result consists of a concatenation of

features, basic properties describing an event in a compact way. The result of the concatenation

is called a feature vector. All feature vectors are collected into a single data set which is used

by the classifier.

Processing the data has two intentions. First, the presence of higher frequency components

in the time signals has been noted in previous work as the discharge approaches a disruption

[3]. Therefore, the time trace will be split into small time windows. The frequency content of

each window is considered to be a more appropriate starting point than the time evolution for

classification purposes. Second, it is known that working with high dimensional feature vectors

limits the performance of classifiers because of redundant information in the data. Therefore,

the statistics of the frequency content are modeled by an appropriate probabilistic model. In

general, the corresponding probability distribution will depend only on a limited set of param-

eters, allowing a compact description of the relevant information.

The data set is given as input to the classifier, from which it derives information that can be

used to classify new events. The data set will be split in two parts, the training set and the test

set. The training set is given to the classifier in the training phase. Once the classifier has been

trained, the test set is classified to assess the performance of the classifier. This study focuses

on a two-class problem, the classification into either a regular or a disruptive time window.

Only one test will concern the classification of disruptions according to disruption cause, which

is a multiple-class problem. Different classifier models were developed to solve the two-class

problem. Each classifier will be introduced separately.

Particular attention will be given to the geometry and clustering structure of the statistics of

wavelet coefficients. It will become clear from the experimental results that the use of an appro-
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priate distance measure between probability distributions increases considerably the classifica-

tion rates. The probability distributions are interpreted as points on a differentiable, Riemannian

manifold. This allows to measure distances between distributions on the curved surface. The

discussion will begin with the Euclidean distance. A similarity measure from probability theory

will, in addition, be revised, the Kullback-Leibler divergence. Lastly, the Rao geodesic distance

will be introduced as a measure between distributions on the probabilistic manifold.

The chapter ends with a short introduction of the exponential and logarithmic maps. Once

the curved nature of the space of probability distributions is accepted, it becomes clear that

traditional estimates of the mean and covariance do not hold for a data set of probability distri-

butions. One of the classifiers, the Mahalanobis classifier, relies heavily on both concepts. The

exponential and logarithmic maps will prove useful to project the data from the Riemannian

manifold to a tangent, Euclidean space, in which the classifier is able to operate.

2.1 Feature extraction

The frequency content of the data is considered to be more useful in the classification of dis-

ruptions. The data contains high frequency components in a certain time interval before the

development of a disruption. This time interval is typically a few tens to hundreds of millisec-

onds long [1]. The signals were split into time windows of 30 ms in order to extract information

about the frequency content. This time interval was chosen based on previous work, as a com-

promise between time resolution and the assurance that each time window contains sufficient

information about the plasma tendencies [3].

It has to be noted that, as a feature vector is constructed by the combination of different sig-

nals, some measures need to be taken to assure that the classifier treats each signal with equal

weight. First, the signals were not equally sampled and therefore each signal was first resampled

with a sampling rate of 1 kHz to a common time base. Second, the signal values differ over

several orders of magnitude. See also figure 1.6, in which e.g. the mode lock amplitude is of the

order of 10−4 T, while the density n is of the order of 1020 m−3. Therefore, the time traces were

normalised to values between 0 and 1. The resampled and normalised signals were then split in

windows of 30 ms. The resampled and normalised time windows were subjected in the next step

to a Fourier or wavelet transform.

2.1.1 Fourier decomposition

To analyse the frequency content of a signal, the signal can be decomposed in its Fourier com-

ponents. A short summary of the discrete Fourier transform (DFT) is given here. Consider a

resampled, normalised time window for one plasma signal. This signal consists of values of the

normalised plasma signal fk = f(tk) at discrete time instants tk, where tk = t0 + k∆. k is a

discrete number between 0 and N = 29 (for time windows of 30 ms), t0 is the instant at which

the time window begins and ∆ is the sampling rate (here 1 ms). This allows us to rewrite the

signal as [33]

fk =
1

N

N−1∑

n=0

Fn exp

(
2πikn

N

)
(2.1)
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The coefficients Fn in (2.1) are the Fourier coefficients and can be calculated from

Fn =

N−1∑

k=0

fk exp

(
−2πikn

N

)
(2.2)

The idea behind the DFT is that the periodic extension of a finite signal in time is projected

onto a basis of periodic functions over this time interval. The periodic functions have a well

defined frequency. The coefficients given in (2.2) provide then information about the frequency

content of the signal.

The Fourier coefficients were computed in the tests by the built-in Matlab function for the

Fast Fourier Transform (FFT), fft(.). In order to remove redundant information, a zero-

mean Gaussian was fitted to the spectrum of the signal, excluding the static component. The

only relevant parameter for the zero-mean Gaussian is the standard deviation. The standard

deviation was computed by the Matlab command std(.).

An example is the time trace of the total input power of shot 74530, shown in figure 2.1. The

part of the signal which is indicated by the black line has been decomposed by DFT, and the

resulting spectrum, together with the fit of a Gaussian distribution, are shown. Note the large

amount of Fourier coefficients with a relatively small value.

Figure 2.1: Processed total input power, accompanied by the statistics of the Fourier coefficients for a

time window of 30 ms.

The resulting feature vector for one time interval of 30 ms consists of thirteen features, resulting
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from the concatenation of the standard deviations for the spectra of the thirteen signals discussed

in 1.3.

2.1.2 Wavelet decomposition

Disruptions are highly transient phenomena. It is known that highly transient behaviour, as

is the case for disruptions, is better described by wavelet analysis. For example, wavelets are

heavily used in image compression [7, 6, 5, 34], where edges with an abrupt change in colour or

grayscale often occur.

The wavelet transform consists, as is the case with the Fourier transform, of projecting the

original time signal onto a new set of basis functions, the wavelets [5]. However, the wavelet

transform allows to decompose the original signal on different time scales or resolutions. In

a multiresolution wavelet analysis there are actually two families of basis functions which are

called the mother wavelet (or detail function) and the father wavelet (or scaling function). In

the case of a continuous time signal f(t), the decomposition can be written as follows [35]

f(t) =
∑

k

aJ,kΦJ,k(t) +
∑

j≤J

∑

k

dj,kΨj,k(t) (2.3)

In this form, Φ represents the father wavelet and Ψ represents the mother wavelet. aJ,k are the

approximation coefficients and dj,k are the detail coefficients. The functions ΦJ,k(t) and Ψj,k(t)

are dilated and translated versions of respectively the father and mother wavelets

Φj,k(t) =
1√
2j

Φ

(
t− 2jk

2j

)

Ψj,k(t) =
1√
2j

Ψ

(
t− 2jk

2j

)
(2.4)

Note that in this expression a positive j corresponds to a time dilated replicate of the original

wavelet. Examples of wavelet families, consisting of a father and a mother wavelet, are shown

in figure 2.2. The wavelet family on the left is called the Haar family. The Haar family is the

simplest example of wavelets. The wavelets on the right are the Daubechies 4-tap wavelets. This

wavelet family was used in the tests.

Figure 2.2: Two wavelet families.

How information is extracted about the frequency content is explained in terms of an example.

Figure 2.3 shows a signal f(t) with its wavelet decomposition on different decomposition levels.
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The first decomposition level is a coarse approximation at the highest time scale using only

the father wavelets (upper left). It is clear that father wavelets take into account the average

behaviour of f . At a higher wavelet decomposition level (upper right), a detail wavelet subband

is added. Some detail about the transient behaviour of the signal is already taken into account.

At still higher decomposition levels, more detail subbands are added, making the wavelet de-

composition more and more accurate. Mother wavelets on different time scales restore more and

more details which were lost in the averaging process by the father wavelets.

Figure 2.3: Wavelet decomposition of a time signal at four different decomposition levels. The original

signal is shown by the broken line. The wavelet reconstruction is given by the solid line

[36].

Clearly, the transient behaviour of f is described by the detail functions. Their weighting

coefficients, the detail coefficients in (2.3), carry thus information about the transient behaviour

of f . This is the desired information to classify JET data in regular and disruptive time windows.

As the JET signals are discrete signals, a discrete version of the wavelet transform was used. The

wavelet decomposition was performed by the built-in Matlab function for the non-decimated

wavelet transform, ndwt(.). The non-decimated wavelet transform does not subsample the

signals. In this way, the histogram at each decomposition level will contain sufficient samples

(approximately 30).

The wavelet decomposition of one time window of 30 ms delivers detail coefficients of different

subbands (assuming higher decomposition levels) which are independent. For each subband, the

statistics are now modeled by a generalised Gaussian distribution.
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2.1.3 Generalised Gaussian distributions

When plotting a histogram of the values of detail coefficients (i.e. looking at its statistics), two

important things should become clear. First, the histogram is highly peaked at zero. The peak

at zero can be understood by the function of the detail functions in a wavelet decomposition.

Detail functions give higher order corrections to the coarse approximation of the scaling func-

tions. As detail coefficients only describe corrections to this first approximation, many of them

have a very low value and lie symmetrically around zero. This immediately indicates that the

relevant information is to be found in the high valued detail coefficients, as high detail coeffi-

cients describe a large overlap between the original signal and the corresponding detail function.

Those detail coefficients will appear with a low frequency. A good approximation of the his-

togram tails is thus required. A flexible model able to simulate the heavy tailed behaviour of

wavelet histograms is the generalised Gaussian distribution (GGD) [6, 34]. Wavelet histograms

can often be approximated to be centered at zero. The univariate, zero-mean GGD probability

density function (PDF) is given by

f(x | α, β) =
β

2αΓ(1/β)
exp

[
−
( | x |

α

)β]
(2.5)

Γ stands for the Gamma function. This distribution still depends on two parameters. α > 0 is

called the scale parameter. β > 0 controls the fall-off rate at the vicinity of the mode and is

called the shape parameter. A GGD with heavy tails has a low β value. Note that for β = 2 the

GGD reduces to the Gaussian distribution (with standard deviation σ related to α: α2 = 2σ2)

and β = 1 to the Laplace distribution.

An example is shown in figure 2.4. A part of the time trace of the processed plasma current of

shotnumber 74530 is shown. The plasma has reached the disruptive stage. The time window

indicated by the black line was decomposed by a wavelet transform on three different time scales.

The wavelet statistics of the highest time scale are shown in the figure, together with a fit of a

Gaussian distribution (green) and a Laplace distribution (red). The Laplace distribution, having

a lower β value, describes better the wavelet statistics in the disruptive, transient state of the

plasma.

Estimation of the parameters of the GGD were computed by the maximum-likelihood method

described in [34]. Consider a set of wavelet detail coefficients x = (x1, . . . , xN ). The method

involves the maximisation of the likelihood function L(x| α, β) given by

L(x | α, β) = log

N∏

i=1

p(xi | α, β) (2.6)

p is the probability distribution. In the case of a GGD, p has the same form as f in (2.5). The

likelihood function L(x| α, β) becomes extremal when its partial derivatives to α and β vanish,

which results in two equations





∂L
∂α = −L

α +
∑N

i=1
β|xi|βα−β

α = 0

∂L
∂β = L

β + LΨ(1/β)
β2 −∑N

i=1

(
|xi|
α

)β
log
(
|xi|
α

)
= 0

(2.7)
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Figure 2.4: Processed plasma current, accompanied by the statistics of the wavelet coefficients for a

time window of 30 ms.

Ψ represents the digamma function, defined as Ψ(x) = Γ′(x)/Γ(x), where Γ(x) is the Gamma

function. The first equation can be solved to deliver an estimation for α

α̂ =

(
β

L

N∑

i=1

| xi |β
)1/β

(2.8)

Back-substitution of (2.8) in the second equation of (2.7) delivers a transcendental equation in

β

1 +
Ψ(1/β̂)

β̂
−
∑N

i=1 | xi |β̂ log | xi |∑N
i=1 | xi |β̂

+
1

β̂
log

(
β̂

L

N∑

i=1

| xi |β̂
)

= 0 (2.9)

This highly non-linear equation is solved using the Newton-Raphson iterative procedure with

an appropriate initial guess [34].

During tests this method delivered unrealistic high β values for time windows of the regular

regime. This can be understood by noting that regular time windows contain mainly low-

frequency components. This results in a sparse wavelet representation and thus an unreliable

estimation of the distribution parameters. An example is shown in figure 2.5. The time evolution

of the time derivative of the poloidal beta of shot 74391 is shown. The time window shown by the

black line was decomposed on three different time scales by a wavelet transform. The wavelet

statistics of the highest time scale are also shown in the figure. The bars of the histogram
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were shortened by a factor of hundred to fit the figure. The value of the wavelet coefficients is

thus highly centered at zero, implying a low frequency content in the signal. The fit delivered

β = 65.1 and clearly does not represent well the statistics of the wavelet coefficients. It is also

possible to note the low sampling sampling rate of the original signal in the time evolution.

The dots show the values of the resampled signal with a rate of 1 kHz. It is, however, clear,

that several points lie on a straight line in between two consecutive points of the original signal.

The occurence of high β values in the GGD fit was closely related to the time resolution of the

signals.

Figure 2.5: Processed time derivative of the poloidal beta, accompanied by the statistics of the wavelet

coefficients for a time window of 30 ms.

For this reason, either a fixed β = 1 was used or the β was allowed to vary within the interval

0 < β ≤ 5. To fit β within certain limits, a first fit was performed with no constraints on its

value. If, however, β > 5, the fit was repeated with a fixed β = 5.

For one time interval, a feature vector will consist of 2× 13×NS features, with NS the number

of wavelet subbands. There are thirteen signals for each time window, described in 1.3. The

time window for each signal is decomposed into NS sets of detail coefficients by the wavelet

transformation. For each of those 13×NS sets of detail coefficients, two parameters of the GGD

are computed. This explains the number of features in a feature vector.

The resampling, normalisation and splitting of the time traces into time windows was imple-

mented in Matlab, together with the fit of the probabilistic model for the Fourier and wavelet

features. The code can be found in appendix D.
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2.2 Dimensionality reduction

Dimensionality reduction usually refers to techniques which are used to extract the most essen-

tial information from a high-dimensional data set [37]. Multidimensional scaling (MDS) is an

example of a dimensionality reduction technique. The goal is to avoid the curse of dimensionality

in statistical data analysis and also allow a better interpretation of the results [38]. The curse

of dimensionality refers to the fact that in high-dimensional spaces, data becomes unavoidably

sparse. This effect is problematic for the statistical significance of data analysis.

In this section MDS is introduced solely as a visualisation tool. As mentioned before, the fea-

ture vectors acquired by wavelet decomposition lie in a 2 × 13 × NS dimensional space, with

NS the decomposition level. In most tests a decomposition level of three was chosen (see also

3.2.2), leading to a 78-dimensional space. In addition, it will be shown in 2.4.3 that this space

is non-Euclidean because of the inherent probabilistic nature of the data. To understand the

classification results in chapter 3, some intuitive insights will be given by looking at a three-

dimensional embedding of the data.

2.2.1 Multidimensional scaling

MDS relies on the notion of dissimilarities between observations. In the case of a data set con-

sisting of parameters of GGDs, the dissimilarity will be a distance measure on the probabilistic

manifold. The main goal of MDS is to find a configuration of points in a low-dimensional, Eu-

clidean space, so that the pairwise distances match as closely as possible the dissimilarities. In

this way, the data is said to be embedded into a lower-dimensional Euclidean space and can be

visualised.

The dissimilarities between pairs of observations (or feature vectors) (i, j) can be collected into

a dissimilarity matrix. Note that the dissimilarity matrix should (i) have diagonal elements

equal to zero, (ii) be symmetric, (iii) have strictly positive non-diagonal elements (assuming no

identical observations). The three restrictions arise from some basic rules that distance measures

need to fulfill.

In MDS, the differences between the dissimilarities and the distances of the points in the lower-

dimensional space are minimised [39]. Consider a data set consisting of n observations in the

m-dimensional feature space. The data is embedded in a p-dimensional space, with p < m. The

dissimilarity between observations i and j is written as δij . The distance between the corre-

sponding points in the lower-dimensional embedding is written as dij(X). X represents a n× p
matrix. Each row in X corresponds to a point, while each column corresponds to a coordinate

value for all points. dij(X) is given by

dij(X) =

(
p∑

k=1

(Xik −Xjk)
2

)1/2

(2.10)

which is exactly the Euclidean distance between points Xi and Xj . The first criterion ever used

in MDS to minimise the difference between δij and dij(X) was the Kruskal raw stress σ2(X)

given by [39]
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σ2(X) =
n∑

i=1

∑

j<i

(δij − dij(X))2 (2.11)

Often a weight factor wij is added to the sum which is user-defined. Here, however, wij = 1 for

all i and j. In this study a slightly different stress criterion was preferred which is called the

normalised raw stress σ2
n(X)

σ2
n(X) =

∑n
i=1

∑
j<i (δij − dij(X))2

∑n
i=1

∑
j<i δ

2
ij

(2.12)

The advantage of this stress is that it is insensitive to the scale and the number of dissimilarities

[39].

The minimisation of (2.12) is a complex problem and there exists no closed-form solution [39].

Iterative schemes are used to minimise (2.12). For the tests use was made of the Matlab built-in

function mdscale(.).

The quality of an MDS embedding can be evaluated by a Shepard’s plot [39]. The Shepard’s plot

is a two-dimensional scatter plot. The x -axis represents the original dissimilarities while the y-

axis represents the Euclidean distances for the corresponding embedding. When a dissimilarity

matrix is available for the original data (which is not always the case), the vertical distance

between principal bisector and a point of the scatter plot represents the error on the lower-

dimensional embedding for this pair of objects. A Shepard’s plot, made during a test with a

data set of wavelet coefficients, is shown in figure 2.6. The exact details of the used set will

be discussed in 3.3. It is apparent from the figure that only a limited number of pairwise

distances are not well-represented in the MDS embedding. The scatter plot is also reasonably

symmetrical along the principal bisector. No systematic deviations are evident. The lower-

dimensional embedding can be considered a reasonable representation of the original data set.

Figure 2.6: A Shepard’s plot for MDS performed on a data set of wavelet coefficients. The black solid

line represents the principal bisector.

Up until now, the dimension of the Euclidean space has not been mentioned. An approach
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to choose the appropriate dimension for the embedding space, is to perform MDS for several

dimensions and plot the stress against the dimension. Typically, the stress decreases at higher

dimensions. The embedding dimension is chosen at the point where an elbow appears in the

plot [40]. It would not be interesting to embed the data at a still higher-dimensional space,

as this would not significantly decrease the stress anymore. An example is shown in figure 2.7

for the same wavelet data set as for figure 2.6. From the figure, the conclusion could be drawn

easily that the elbow appears for a two-dimensional embedding. However, the one-dimensional

embedding should be treated with care [39]. It is best to only consider embeddings in Euclidean

spaces with dimension higher than one. If the one-dimensional embedding is neglected in the

figure, the three-dimensional embedding appears to be a better choice. Figure 2.6 was made

using the three-dimensional embedding of the data set.

The elbow criterion is a rather weak criterion. When MDS is used for exploration of the data,

the main criterion is the interpretability of the embedding. This has been the driving criterion

in this example. Nevertheless, the elbow criterion is mentioned to further justify the choice of a

three-dimensional embedding, which allows to acquire insights by visual inspection.

Figure 2.7: Plot of the normalised raw stress for embeddings in two-dimensional to six-dimensional

Euclidean spaces.

2.2.2 Hubert’s statistic

The results of MDS show a clear cluster structure where observations of regular and disruptive

time windows are separated (see also 3.3). To support the visual evidence of cluster structure,

statistical tests exist to assess the cluster validity. More specifically, the normalised Hubert’s

Gamma statistic was used to validate the cluster structure in the MDS embedding.

In the following, a definition is required of the mean and the standard deviation of a matrix.

The mean µA and standard deviation σA of a matrix A are defined as [41]

24



Chapter 2. Data analysis techniques

µA =
1

N(N − 1)/2

N−1∑

i=1

N∑

j=i+1

A(i, j) (2.13)

σ2
A =

1

N(N − 1)/2

N−1∑

i=1

N∑

j=i+1

(
A(i, j)2 − µA

)2
(2.14)

The Hubert’s Gamma statistic is a measure for the correlation between two matrices. Consider

matrices P and Q, both of dimension N × N . The normalised Hubert’s Gamma statistic for

matrices P and Q is then given by [41]

Γ̂ =
(1/M)

∑N−1
i=1

∑N
j=i+1(P (i, j)− µP )(Q(i, j)− µQ)

σPσQ
(2.15)

M in the last expression is a shorthand notation for the number of non-redundant elements in

a similarity matrix: M = N(N − 1)/2.

The goal is to measure the degree in which the proximity matrix of X matches the partition

℘ which is imposed on X by visual inspection [41]. The term proximity matrix describes the

dissimilarity matrix for the observations in the low-dimensional embedding, i.e. the dissimilarity

matrix of X. The partition ℘ can also be regarded as a mapping g of X to the set {1, . . . ,m},
with m representing the number of partitions1. In the next step, a matrix Y is constructed in

the following way

Y (i, j) =





1, if g(Xi) 6= g(Xj)

0, otherwise
(2.16)

It is clear that, when the Gamma statistic of (2.15) is computed for the proximity matrix of

X and Y and the partition matches the cluster structure in X, pairs of points from different

clusters will have a larger impact on the value of Γ̂ than pairs which belong to the same cluster.

Pairs of points from different clusters will lie further away from each other and the corresponding

element in the proximity matrix will have a high value in this case. In the case that ℘ represents

the underlying structure of X, the Gamma statistic will thus have a high value.

A statistical test based on the random label hypothesis is proposed [41]. The null hypothesis

is that there exists no underlying structure in X and the labels are thus assigned randomly.

The statistical test is right-tailed. Under the random label hypothesis there is no correlation

betweenX and Y and Γ̂ is low. On the other hand, when the partition described by the mapping

g corresponds to the underlying structure in X, Γ̂ is high and the null hypothesis should be

rejected. The decision rule for the statistical test with a significance level α is





Γ̂ ≤ Γ̂(1− α)⇒ accept H0

Γ̂ > Γ̂(1− α)⇒ reject H0

(2.17)

In the decision rule, Γ̂(1 − α) represents the Γ̂ at which the cumulative distribution function

under the null hypothesis reaches 1− α.

1Practically, the partition ℘ was determined by visual inspection. The minimum and maximum values of

each coordinate in each cluster were determined manually. In a next step, a label was assigned to each point by

comparison of its coordinate values and the limits of each cluster.
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There exists, however, no closed form expression for the PDF of Γ̂ under the H0 hypothesis.

The PDF is estimated by Monte Carlo simulations [41]. Monte Carlo simulations require the

construction of r mappings gi, i = 1, . . . , r under the random label hypothesis. Each point in

X is assigned a random label from the set {1, . . . ,m}. With this mapping, a matrix Y i is

constructed in a similar way as in (2.16). Γ̂i can be computed between the proximity matrix

of X and Y i from (2.15). The decision rule can now be adjusted for the estimated cumulative

distribution function under the random label hypothesis to





#{i; Γ̂ > Γ̂i} ≤ ((1− α)r)⇒ accept H0

#{i; Γ̂ > Γ̂i} > ((1− α)r)⇒ reject H0

(2.18)

The decision rule states: accept the null hypothesis if Γ̂ exceeds at most ((1 − α)r) of the Γ̂i

under the random label hypothesis; reject the hypothesis otherwise.

2.3 Classification

Classifiers are examples of supervised learning machines [32]: classification of a new feature

vector depends on knowledge of previous, similar events. The development of an automatic

classifier is divided into two phases, the training phase and the test phase. During the training

phase, the predictor is given a set of feature vectors together with the label of the class they

belong to. The labels are almost always whole numbers. The set of training feature vectors

is called the training set. The learning machine is able to build a model from this training

set. The model then enables the machine to make predictions about new data without the help

of an external supervisor. The machine, with inclusion of the derived model, will be called a

predictor. During the test phase, feature vectors for which the correct labels are known but

which are completely new to the machine, are classified. This set of feature vectors is called the

test set. The predictor uses its prior knowledge to classify the new objects. The percentage of

correctly classified objects is called success rate and is used to determine the accuracy of the

model [42].

2.3.1 Support vector machines

The first supervised learning machine which will be introduced, is the support vector machine

(SVM). The SVM approach follows best the sequence presented in 2.3 and will therefore be

treated first. It will afterwards be easier to point out where k-NN differs from an ordinary

supervised learning machine.

Consider a training set, for which each feature vector is a member of one of the two possible

classes. The classes are e.g. regular and disruptive time windows. The training data will be

labelled as (xi, yi) with i = 1, . . . , l the index of the feature vector. xi ∈ Rd is the d-dimensional

feature vector. The feature vectors should be thought of as points in a Euclidean space. yi is a

label given to the feature vector representing its class and can either be +1 or −1.

The simplest implementation of SVM is the linear machine trained on separable data. The non-

linear machines trained on non-separable data are treated in a similar way and the linear case

therefore will be treated first. In this case, a hyperplane can be constructed, which separates
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the two classes in the training set [43]. A hyperplane is the equivalent of a plane in a higher-

dimensional Euclidean space. The hyperplane can be described by H : w ·x + b = 0. w is

the vector perpendicular to the plane. | b | /‖w‖ is the perpendicular distance between the

origin and the hyperplane. ‖w‖ represents the Euclidean norm of w. Consider d+ and d−,

which are the perpendicular distances between the closest points of the respective classes and

the hyperplane. See figure 2.8 for an illustration. The SVM will maximise the margin of the

hyperplane defined as d+ + d−.

Figure 2.8: A two-dimensional example of a hyperplane separating the two classes in the linear separable

case [43].

The next step is to introduce constraints on the training data



w ·xi + b ≥ +1, yi = +1

w ·xi + b ≤ −1, yi = −1
(2.19)

The constraints can be combined to yield

yi(w ·xi + b)− 1 ≥ 0 ∀i (2.20)

By choosing an appropriate scale forw and b, points of each class can be found which fullfil (2.19)

with an equality sign. Some points of class yi = +1 lie on a hyperplane H+ : w ·x + b = +1.

H+ is parallel to H and has a perpendicular distance to the origin | b − 1 | /‖w‖. Similarly,

some points of class yi = −1 lie on a hyperplane H− : w ·x+ b = −1. H− is parallel to H and

H+ and has a perpendicular distance to the origin | b+ 1 | /‖w‖. No points will lie between H+

and H−. See also figure 2.8. The margin thus reduces to the distance between H+ and H− and

is given by 2/‖w‖. The maximisation of the margin is then equivalent to




w = argminw̃‖w̃‖2

yi(w ·xi + b)− 1 ≥ 0 ∀i
(2.21)

An equivalent Lagrangian formulation exists for this problem. The derivation of the Lagrangian

formulation lies outside the scope of this introduction. Nonetheless, the equations of the Wolfe
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dual formulation are given in order to understand how the SVM develops a model for classifi-

cation [43]. In the Wolfe dual formulation, Lagrangian multipliers αi > 0 are introduced. The

problem is rewritten as follows





Maximise L =
∑l

i=1 αi − 1
2

∑l
i=1

∑l
j=1 αiαjyiyjxi ·xj∑l

i=1 αiyi = 0

αi ≥ 0

(2.22)

There is also an extra constraint, which can be used to determine w after solving previous

convex quadratic problem. The expression for w is

w =
l∑

i=1

αiyixi (2.23)

It should be noted that αi 6= 0 in the solution of (2.22) holds only for points which lie on one

of the hyperplanes H+ or H−. Those points are called support vectors and are the only points

which are of interest in a SVM classifier. Removing or rearranging the other feature vectors in

such a way that they do not cross H+ or H− will not affect the solution of (2.22).

In the non-separable case, no hyperplane exists that is able to separate all feature vectors in

two different classes. In this situation an adjustment is made which allows support vectors to

lie off the hyperplanes H+ and H−. A penalisation is introduced which depends on the distance

between the vector and its corresponding hyperplane [43]. The only difference in the Wolfe dual

formulation is that the Lagrange multipliers will further be subject to constraints αi ≤ C/l, C

being a regularisation parameter [42].

In the non-linear case, the data is mapped to a higher-dimensional space which can even be

infinite dimensional. Consider a mapping Φ from the original feature space Rd to the new,

higher-dimensional space H, Φ : Rd → H. Because the Lagrangian problem in the linear case

(2.22) depends only on scalar products between the support vectors, the same will hold after

mapping to H. The Lagrangian formulation for the non-linear case will then only depend on

Φ(xi) · Φ(xj). In practice, the precise mapping or even the space to which one projects is often

unknown. As the Lagrangian problem only depends on dot products in H, it suffices to prescribe

a function which computes the dot products in this space directly from the original feature

vectors. Mathematically, this translates to the knowledge of the kernel function K(xi,xj) =

Φ(xi) · Φ(xj). The radial basis function (RBF) kernel is an example which is used for i.a.

classification purposes [1, 42] and is given by

K(xi,xj) = exp

(
−‖xi − xj‖

2

2σ2

)
(2.24)

σ is called the scale parameter of the RBF kernel and is in practice a user-defined parameter,

thus chosen that maximum classification rates are achieved. In this particular example, H is an

infinite dimensional space. The ideas about linear separation now hold in H. The Lagrangian

formulation for the non-linear case is acquired by replacing xi ·xj by K(xi,xj) in (2.22).

Figure 2.9 illustrates the separating plane for linearly non-separable data. The linear SVM finds

a hyperplane, which however is not able to separate the two groups. The RBF kernel performs

better. The separating curve in the figure represents a hyperplane in the infinite dimensional
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Figure 2.9: Example of the separating hyperplane in two cases. Top: non-separable linear SVM. Bot-

tom: separable non-linear SVM (RBF kernel, σ = 2). Support vectors are shown by black

circles.

space.

Once the training has been accomplished, which in terms of SVM translates to solving (2.22),

the learning machine generates a model, or equivalently called a decision function, which allows

the machine to make predictions about the class of new objects. In the case of SVM a new

object will be classified according to its position compared to the separating hyperplane. When

the object lies on the side of H+, it will be given the label y = +1. Otherwise it will be labelled

with y = −1. The decision function, which determines the class of a new object, is given by

D(x) =

ns∑

i=1

αiyiK(si,x) (2.25)

The sum runs over all ns support vectors si. When the decision function is positive, the object

will be labeled y = +1, if not it is labeled y = −1.

The SVM classifier has been implemented using built-in Matlab routines. The training is done

using svmtrain(.). This Matlab function supports various kernel functions. In the tests only

the RBF kernel was used. The classification is performed using svmclassify(.), which requires
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the output of svmtrain(.) as input.

2.3.2 k-NN classifiers

k nearest neighbours (k-NN) is a learning machine with an easy-to-grasp learning procedure.

A test object will be classified in the same class as its nearest neighbours in the training set.

k-NN does not follow the learning machine scheme of 2.3. First the technique is presented. The

procedure is illustrated with an example. At the end, the k-NN and the SVM classifiers are

compared based on general properties.

k-NN is an instance-based algorithm and does not develop a decision function [32]. Instead, the

learning process is delayed until the classification takes place. The training set is thus not used

in the training phase. It is only stored for future access. In the test phase, a new object is given

to the k-NN machine. The k-NN machine then computes the distance between the new object

and all the objects of the training set. The labels of the k nearest neighbours form a subset.

The new object is given the same label as the most frequent class in this subset.

Figure 2.10: An estimation of the separating surface for a 1-NN classifier.

The classification still depends on k and the distance measure. k will be determined in order to

acquire the best classification results. Usually k = 1 is sufficient. The distance measure is the

subject of section 2.4.

As an example, the training set used in the illustration of the SVM training is again considered.

In this example, two classes of objects were to be separated by an SVM hyperplane, possibly

in a high-dimensional space. The separation surface is inherently present in the k-NN classifi-

cation. The space can be split into two parts by a surface. A point will be classified according

to its position from this surface. The separating surface is not determined explicitly by the

k-NN classifier. However, in figure 2.10, an estimation is shown which was found by the k-NN

classification of an extensive number of points. In this example, the k-NN separation surface

matches well the surface found by the SVM machine using an RBF kernel. The most profound

difference is to be found in the middle of the figure. Because of the one red outlier shown by
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the arrow, the separating surface approaches considerably the points of the green class. This

indicates the sensitivity of k-NN to noise. The SVM separating surface does not exhibit this

behaviour.

The k-NN algorithm has been implemented in Matlab. The Matlab code can be found in ap-

pendix D, together with some guiding notes.

As the basic concepts of k-NN and SVM have been introduced, a short comparison is given of

advantages and disadvantages for both techniques. The summary given here is mainly based on

a review article about supervised learning [32].

The machine discussed first was the SVM. The SVM training phase needs a considerable amount

of computational time. SVMs also have disadvantages in interpretability and transparency. It

is difficult to interpret why a certain vector is classified in one of the classes by the SVM.

This is mainly a consequence of the non-transparency of kernels. It is not clear in which high-

dimensional space the data is projected to. However, SVMs are heavily used in practice. This

is because of their excellent classification performance for multi-dimensional data sets. Further-

more, SVMs have a high tolerance level to irrelevant attributes. Also, once the SVM model is

constructed, classification is relatively fast as it only depends on the computation of dot prod-

ucts (possibly by the use of a kernel function) between the new feature vector and a limited

number of support vectors.

The k-NN classifier overcomes some disadvantages of the SVM classifier but often does not

possess the positive features of the SVM. It is clear that the k-NN classifier does not need any

computational time in the training phase. The training set is only stored for future reference.

This means that k-NN poses some memory requirements. Although k-NN classifies data in a

very transparent way, it has the same interpretability issues as the SVM. A further disadvantage

of the k-NN is its sensitivity to irrelevant features and noise. This was already pointed out in

the example of figure 2.10. In contrast to the SVM, the k-NN needs more computational time

in the test phase, as the distances between the new object and all feature vectors of the training

set are computed.

The k-NN is a simple classifier and is computationally inefficient. Despite the disadvantages

reported in literature, the k-NN will prove to work remarkably well in the case of disruption

prediction. The good performance of the classifier is mainly the result of the use of the geometry

of wavelet statistics. The interpretability issue will be solved partly by the visualisation of the

data using MDS.

2.3.3 Mahalanobis classifier

A third classifier is based on the Mahalanobis distance. The classifier will in short be addressed

by Mahalanobis classifier. Consider a multivariate random variable X. Experiments give access

to the distribution of X. In practice, X is the random variable which describes the distribution

of the (multivariate) feature vectors of a data set. The complicated distribution of feature

vectors in the data space is reduced by using only the two first moments of the distribution, the

mean µ and the covariance or dispersion matrix Σ[44]. Consider n experimental, multivariate

observations (feature vectors) xi (i = 1, . . . , n). The moments are
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µ = E [X] =
1

n

n∑

i=1

xi (2.26)

Σ = E
[
(X − E[X])(X − E[X])T

]
=

1

n

n∑

i=1

(xi − µ)(xi − µ)T (2.27)

The upper index T indicates the transposition operation. The last equality gives the maximum-

likelihood sample estimations for respectively µ and Σ [45]. The corresponding statistical model

for the distribution of the variable X is the multivariate normal distribution, with PDF given

by [7]

f (X | µ,Σ) =
1

(2π)m/2 | Σ |1/2 exp

(
−1

2
(X − µ)TΣ−1(X − µ)

)
(2.28)

m is the number of non-redundant elements in Σ. For d-dimensional data, m = d · (d+1)/2, since

Σ is symmetric [7]. The idea of the Mahalanobis distance is that it represents the probability

that a test point belongs to the cluster. The Mahalanobis distance between a test point x and

the cluster represented by the random variable X is given by [46]

dM (x,X) =
(
(x− µ)TΣ−1(x− µ)

)1/2
(2.29)

It is apparent from (2.29) that points x, at the same Mahalanobis distance from the cluster, lie

on a surface with a constant value of the density in (2.28). The density is proportional to the

probability of X lying in a very small neighbourhood around x[46]. This is also illustrated in

figure 2.11. The Mahalanobis distance is thus indeed representative for the probability that x

belongs to the cluster.

Figure 2.11: Points drawn from a bivariate normal distribution. The points are distributed according

to the density function of the random variable X. Points which lie on the same ellipse,

are also at the same Mahalanobis distance from the cluster.

The Mahalanobis distance can be used to develop a classifier. Consider a two-class problem.

The training data of each class forms a cluster. The clusters are well-separated. Consider for

example the same set of two-dimensional points as in 2.3.1 and 2.3.2. During the training phase,

the machine will calculate the moments for both clusters according to (2.26) and (2.27). Simple

Matlab built-in routines exist to this end. mean(.) and cov(.) are used to respectively estimate

µ and Σ. The classifier will classify a new point in the cluster for which the Mahalanobis distance
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is minimal.

The result for the two-dimensional data set is shown in figure 2.12. Once more the separation

surface was estimated by the classification of an extensive number of points. The ellipses in the

figure represent contour plots of constant density according to (2.28) for each cluster. Note that

the red point of the training set in the middle of the figure is classified in the wrong class. This

is the result of loss of information about individual points of the training set in the model. The

effect of this point was also discussed for the other two classifiers in 2.3.1 and 2.3.2. The k-NN

classifier was sensitive to the outlier.

Figure 2.12: Estimated separating surface for the Mahalanobis classifier.

2.4 Similarity measures

Pattern recognition techniques such as k-NN are essentially based on geometric concepts, such

as distance, or alternatively called the similarity measure. The Euclidean distance is the most

simple example of a similarity measure. It will be treated in section 2.4.1. However, statistics

of the frequency spectra are inherently probabilistic. The Euclidean distance is not able to

account properly for the probabilistic nature of the data. Other similarity measures, originating

from the field of information geometry, treat similarities between probabilistic data in a optimal

way [47]. The proposed similarity measure will be the Rao geodesic distance. The idea is

that probability distributions lie on a curved manifold. Information geometry thus provides a

geometrical framework for spaces of probability density functions. How this is done will be the

subject of section 2.4.3.

2.4.1 Euclidean distance

Euclidean geometry is vastly used in different domains because it is the geometry we encounter

in our everyday life. Concepts based on properties of Euclidean spaces are also often present in

pattern recognition. An example is the Euclidean distance in the exponent of the RBF kernel
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of an SVM machine. Also expressions (2.26) and (2.27) for the mean and the covariance matrix

is only valid in affine spaces, such as a Euclidean space.

The Euclidean geometry cannot take into account the inherent probabilistic nature of the data

in a proper way. An introduction is nevertheless given. The goal is to use the Euclidean distance

in the tests and prove its limited potential in the prediction of disruptions. Furthermore, the

Euclidean geometry will be introduced in a general way to illustrate how in a next step, distances

between distributions will be defined.

Consider a two-dimensional Euclidean space. The length of an infinitesimal line element between

two points, the metric ds, obeys following relationship

ds2 = dx2 + dy2 ≡ gxx(x, y)dx2 + (gxy(x, y) + gyx(x, y))dxdy + gyy(x, y)dy2

≡ gµν(x)dxµdxν (2.30)

The second equality is the definition of the metric tensor. The metric tensor is of fundamental

importance in differential geometry. It describes how distances are to be measured in a certain

coordinate system. The last equality introduces the Einstein convention. For each index which

appears both as lower and upper index in a single term, a summation is assumed over all its

possible values. In (2.30) for example, a summation is present over µ ∈ {x, y} and ν ∈ {x, y}.
In the case of a Euclidean space, the metric tensor reduces to the Kronecker delta tensor:

gµν(x) = δµν . The relation between ds2 and gµν is a very general expression. The distance

between distributions will be described by the metric tensor for a curved probabilistic space.

The metric defines the topology of a metric space [44], meaning distances and paths between

two arbitrary points are exactly defined once the metric is chosen. In the context of a Euclidean

space, the Euclidean distance can be derived from the Euclidean metric. The Euclidean distance

is given by

dE(xi,xj) =




d∑

µ=1

(
xµi − x

µ
j

)2




1/2

(2.31)

2.4.2 Kullback-Leibler divergence

The Euclidean similarity measure does not take into account the probabilistic nature of the data.

A popular distance measure between distributions in probability theory is the Kullback-Leibler

divergence (KLD) [48]. The KLD between distribution P and Q with respective PDFs p(x) and

q(x) is given by

KLD(P‖Q) =

∫
p(x) log

(
q(x)

p(x)

)
dx (2.32)

When the log base in this expression is 2, the KLD can be seen as the number of additional

bits that are required to get samples from P , using a code erroniously based on Q [49]. Because

of its resemblance to entropy, the KLD is sometimes called relative entropy. The KLD for two

GGD distributions P and Q with respectively parameters (α1, β1) and (α2, β2) is given by [34]

KLD(P‖Q) = ln

(
β1α2Γ(1/β2)

β2α1Γ(1/β1)

)
+

(
α1

α2

)β2 Γ((β2 + 1)/β1)

Γ(1/β1)
− 1

β1
(2.33)
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This expression is not symmetric for interchange of indices 1 and 2. In the tests, a sym-

metrised alternative of the KLD was used, the J-divergence which is given by J(P‖Q) =

1/2 · [KLD(P‖Q) + KLD(Q‖P )] [48]. When β is held fixed (β1 = β2 = β), the J-divergence

can be rewritten after some manipulations as

J − div(α1‖α2) =
1

β

[
cosh

(
β ln

(
α2

α1

))
− 1

]
(2.34)

This expression will be used in section 2.4.3.

The GGDs for different signals or different wavelet scales are assumed to be independent. For

independent distributions, the joint distribution is the product of the individual distributions.

For the joint PDF, the total KLD can be computed by additionality. In the case of joint PDFs∏
i Pi and

∏
iQi, where Pi and Qi (i = 1, . . . , n) describe the same variable, and where the

variables for different values of i are independent, the total KLD is given by [48]

KLD

(
n∏

i=1

Pi‖
n∏

i=1

Qi

)
=

n∑

i=1

KLD(Pi‖Qi) (2.35)

The assumption of independent wavelet statistics for the same wavelet scale and for different

signals could be questioned. It is logical to expect some correlation between different signals

on physical grounds. However, the correlation is almost not present in a single time window of

30 ms.

The KLD measure exhibits some disadvantages. In particular, it does not satisfy the symmetry

criterion d(P‖Q) = d(Q‖P ) and it does not follow the triangle inequality. It is therefore some-

times called a pseudo-distance. The KLD will be used in the tests because of the existence of a

closed form expression for the distance between GGDs with different β. A closed form expression

for the Rao geodesic distance does not exist in this case. A closed form expression is convenient

for classification, as the algorithms need to work sufficiently fast in real-time applications.

2.4.3 The Rao geodesic distance

For the purpose of classification, a proper notion of similarity between distributions is necessary.

In the field of information geometry, the similarity between distributions arises in a natural way.

Probability density families are interpreted as Riemannian, differentiable manifolds. A point

on the manifold corresponds to a PDF within the family. The family parameters provide a

coordinate system on the manifold. The distance between two distributions is the length of the

shortest path between the distributions on this manifold. The shortest path is also called the

geodesic.

An illustration is given in figure 2.13. The surface represents the manifold of univariate Gaussian

distributions. The manifold is two-dimensional, as Gaussian PDFs are described by a mean µ

and a standard deviation σ. The manifold has been visualised by an MDS embedding into a

three-dimensional Euclidean space [50]. The end points of the geodesic are p1 : µ = −4, σ = 0.7

and p2 : µ = 3, σ = 0.2.

Another example is the family of univariate, zero-mean GGDs with fixed β. For this one-

dimensional Riemannian space, it is possible to construct a faithful representation in a two-

dimensional Euclidean space. The representation is a curved line. The curvature along the line is
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Figure 2.13: Embedding of the univariate Gaussian manifold and a geodesic between distributions p1

and p2.

identical to the curvature of the original manifold. Pairwise distances have to be measured along

the curve. The representation of the manifold of univariate, zero-mean Laplacian distributions

(β = 1) is shown in figure 2.14. How this equivalent representation is constructed, is shown in

appendix C.

Figure 2.14: Equivalent representation of the manifold of univariate, zero-mean Laplacian distributions

in a two-dimensional Euclidean space.

The manifold of a family of probability distributions is a metric space and is defined by a metric,

as was the Euclidean space in 2.4.1. The metric coefficients were first derived by Fisher [47]. The

interpretation of the work of Fisher as a metric on a curved manifold was given later by Crámer

and Rao. The metric of the probabilistic space is also called the Rao-Fisher metric. Consider a

family of PDFs of the form f(x | θ). The parameters of the distribution are collected in a single

vector θ. In the case of GGDs for example, θ = (α, β). For a random vector X, the coefficients

of the Fisher-Rao metric are found through the relationships [47]
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gµν(θ) = −E
[

∂2

∂θµ∂θν
ln f(X | θ)

]
(2.36)

The idea of the Fisher-Rao metric is that the distance between distributions of the same family

can be measured by the amount of information that X yields on the parameters of the distri-

bution through the likelihood [7]. The distance between distributions with parameters θ1 and

θ2 can be found by the integration of the distance metric

dG(θ1,θ2) =

∫ θ2

θ1

ds =

∫ 1

0

√
gµν(θ(t))

dθµ(t)

dt

dθν(t)

dt
dt (2.37)

For the second equality use was made of expression (2.30). Again the Einstein convention is

used. In addition, the components of θ were parametrised along the geodesic which starts at θ1

(t = 0) and ends at θ2 (t = 1). There exists a well-known solution scheme to find the geodesic

between two points on a Riemannian manifold. The geodesic can be found as the solution of

the Euler-Lagrange equations [51].

For the GGDs, a closed-form expression for the geodesic distance only exists in case of a fixed

shape parameter β [7]. In the case of univariate GGDs, the geodesic distance reduces to

dG((α1, β); (α2, β)) =
√
β

∣∣∣∣ln
(
α2

α1

)∣∣∣∣ (2.38)

The derivation of this expression is given in appendix A. For a Gaussian distribution, the geodesic

distance is given by
√

2 | ln(α2/α1) | and for a Laplacian distribution by | ln(α2/α1) |.
As mentioned for the KLD, the statistics for wavelet coefficients of different wavelet scales

or signals are assumed to be independent. The joint distribution function over all different

signals and wavelet scales is again the product of several univariate PDFs. Consider the joint

PDF of two different time windows with respective parameters θ1 = (α11, β1, . . . , α1n, βn) and

θ2 = (α21, β1, . . . , α2n, βn). n represents the number of independent GGDs. The geodesic

distance for the joint PDF is then given by the square root of the sum of the squared individual

distances, i.e. [22]

dG(θ1;θ2) =

√√√√
n∑

k=1

d2
G((α1k, βk); (α2k, βk)) (2.39)

Equations (2.33) and (2.38) express two different distance measures between univariate GGDs.

In case of a fixed β, both measures become a function of only the fraction α2/α1 and β. Instead

of the KLD, the J-divergence is a more appropriate measure for our purposes. In figure 2.15, the

geodesic distance given by (2.38) and the J-divergence given by (2.34) are compared for different

values of the shape parameters. The solid lines represent the geodesic distance, while the broken

lines represent the J-divergence. The same color is used to indicate the same value of β. The

plot was made for a range of α2/α1 close to one, as the distinctive capability of the measures

for nearly identical distributions is the most critical issue in classification. In addition, as both

measures are symmetrical under the substitution α2/α1 → α1/α2, it is sufficient to limit the

range of α2/α1 to values higher than one.

Some conclusions can be drawn from the figure. First of all, all curves start at zero for α2/α1 = 1.

This is necessary, as the distance between identical distributions needs to be zero. Second,
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Figure 2.15: Geodesic distance and J-divergence measures for different fixed values of β.

both measures appear to distinguish better distributions with a fixed ratio of α2/α1, when the

distributions have a higher value of the shape parameter β. The most important conclusion

is, however, that at small values of the ratio α2/α1, the geodesic distance increases faster than

the J-divergence. This implies that, for very similar distributions, a classifier based on wavelet

statistics will make a better distinction if the geodesic distance is used.

2.5 Exponential and logarithmic maps

The Mahalanobis classifier cannot be used in case data lies on curved manifolds. The use of

the Mahalanobis distance is only justified when the multivariate observations xi are points in a

d-dimensional Euclidean space. Euclidean spaces are affine spaces, in which the substraction of

two vectors results in a vector pointing from one vector to the other. This has been implicitly

used for the maximum likelihood estimations in (2.26) and (2.27). Riemannian manifolds, e.g.

the one on which the wavelet statistics lie, is not affine. The Mahalanobis distance has thus

to be generalised. The Mahalanobis distance will be computed in the tangent space at a point

of the manifold. The notion of a tangent space is equivalent to the well known tangent line

in a two-dimensional Euclidean space, or the tangent plane in a three-dimensional Euclidean

space. Figure 2.16 illustrates this. The sphere is in fact the three-dimensional embedding of a

two-dimensional Riemannian manifold in a Euclidean space. In the figure, the tangent space

(a plane, or equivalently a two-dimensional Euclidean space) at the red point of the sphere is

shown. The tangent space is Euclidean and thus affine. Equations (2.26), (2.27) and (2.29) will

hold in the tangent space.

Generally speaking, a d-dimensional Euclidean space Rd can be constructed at each point of

a d-dimensional differentiable manifold M, tangent to M [52]. The tangent space at a point

x ∈M is denoted by TxM. There exists locally a diffeomorphism betweenM and TxM [44] in

each point x ∈ M. A diffeomorphism is an isomorphism between two differentiable manifolds

[53]. The transformation from the tangent space to the manifold is called the exponential map

[44]
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Figure 2.16: Tangent plane at a point of a sphere.

expx :




TxM→M
~xy ∈ TxM→ expx( ~xy) = y, y ∈M

(2.40)

The second line in the above expression represents the transformation of a vector in the tangent

space to a point on the manifold. In a close neighbourhood of x, a unique geodesic in M
connecting x and y ∈ M corresponds to the vector ~xy ∈ TxM. Furthermore, the length of

the geodesic equals the length of the tangent vector: dG(x,y) = ‖ ~xy‖, where ‖ · ‖ represents

the Euclidean norm of the vector. In the region where the diffeomorphism exists, the inverse

transformation is called the logarithmic map

logx :




M→ TxM
y ∈M→ logx(y) = ~xy, ~xy ∈ TxM

(2.41)

A famous example of the application of the logarithmic map is the azimuthal equidistant pro-

jection of the earth’s surface. The earth is approximated by a sphere, the manifold, and the

logarithmic map allows to project the earth’s surface on a two-dimensional plane. This repre-

sentation is useful, as distances from the point x ∈ M, at which the projection is taken, are

conserved [54]. An example is shown in figure 2.17.

The exponential and logarithmic maps are used in the Mahalanobis classifier to project the data

of wavelet coefficients to an affine space, in which the Mahalanobis distance can be computed.

The wavelet statistics are modelled by univariate Laplacian distributions. The derivation of the

exponential and logarithmic maps in this case is presented in appendix B. The logarithmic map

of a Laplacian distribution with scale parameter α2, taken at a Laplacian distribution with scale

parameter α1 is

~α1α2 = sgn

(
α1 ln

(
α2

α1

))
dG(α1‖α2) (2.42)

dG(α1‖α2) is the geodesic distance between the distributions. The inverse transformation, the

exponential map from a tangent vector to a point on the manifold is
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Figure 2.17: Azimuthal equidistant projection [54].

α2 = α1 exp( ~α1α2) (2.43)

The logarithmic map allows to project a cluster of wavelet distributions to an affine space in

which the cluster is described by a multivariate Gaussian distribution. An issue to be addressed

is the choice of the point at which the logarithmic map should be taken. A good choice is the

geodesic centre-of-mass [44]. Note that the centre-of-mass of a set of points in a Euclidean space

minimises the sum of squared distances [55]

µ = arg min
y∈Rd

n∑

i=1

d2
E(xi,y) (2.44)

The generalisation for a manifold is straightforward: the minimisation is now done over y ∈M
and the Euclidean distance is replaced by the geodesic distance: dE → dG. The minimisation

is performed by a gradient descend algorithm [44]. In each step, all the points are projected

to the tangent space at the temporary centre-of-mass. A centre-of-mass is computed in the

tangent space using the formula for the mean in a Euclidean space (similar to (2.26)). The

centre-of-mass in the tangent space is projected back to the manifold by the exponential map.

It then serves as a starting point for the next iteration step. The procedure is repeated until

convergence is reached. The mean is initialised at the beginning of the procedure by taking the

Euclidean mean of the non-Euclidean coordinates.

All the steps for the Mahalanobis classifier in Riemannian spaces have been discussed. A short

summary is given here:

1. Training phase: For each class

� Compute the geodesic centre-of-mass using the gradient descend algorithm.

� Project all points to the tangent space at the geodesic centre-of-mass using the loga-

rithmic map.
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� Compute the mean and covariance matrix according to (2.26) and (2.27).

2. Test phase: For each test object

� Project to the tangent space at the geodesic centre-of-mass of each class using the

logarithmic map.

� Compute the Mahalanobis distance between the point and each cluster.

� Classify the point in the same class as the closest cluster.
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Experiments

In chapter 2, several techniques were presented to develop a disruption predictor. Different

classifier models were introduced: SVM, k-NN and Mahalanobis classifiers. Moreover, different

similarity measures were proposed in the case of a k-NN classifier. The choice of the similarity

measure depends on the description of the data. In this chapter, the performance of different

classifier models will be presented. A good disruption predictor should perform well in different

aspects:

� The feature extraction and classification for a time window of 30 ms should last shorter

than 30 ms in order to make real-time classification possible.

� Regular time windows should be classified correctly in order to avoid false alarms.

� At least one disruptive time window should be classified as disruptive to detect a disruption.

� The disruption should be predicted well in advance in order to be able to undertake

mitigating actions.

� Predict the initiating event of the disruption in order to undertake the correct mitigating

actions.

Section 3.1 describes by which criterion each of those aspects will be quantified in the tests.

Different parameters need to be tuned in the SVM and k-NN classifiers. The parameters are

determined so that optimal results are acquired. This is the subject of section 3.2. Section

3.3 presents a visualisation of the data by an MDS embedding. The MDS embedding is useful

to acquire intuitive insights about the wavelet statistics and the value of using the geometry

of wavelet distributions. More precisely, it becomes clear that the use of wavelet features in

combination with the Rao geodesic distance distincts clearly regular and disruptive features in

different clusters. In sections 3.4 to 3.8, different tests are presented to compare the performance

of the classifiers. The classifiers have been tested on basis of disruption prediction, generalisation

performance to data sets of more recent campaigns, the ability to detect the disruption cause,

relevance of the signals in the data set and computational cost. Each aspect is discussed in a

different section.
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3.1 Classification rates

A widely used measure for the performance of a classifier is the success rate. First all feature

vectors of the test set are classified. The correct class for each object of the test set is known1.

Once the classification is performed, the success rate is defined as the ratio, in percent, of

correctly classified objects [42].

In following tests, the success rate was calculated for each class individually. Each window can

either be disruptive or regular. The share of correctly classified disruptive windows is called the

true positive rate (TPR). Similarly, the share of correctly classified regular windows is the true

negative rate (TNR). False positive rate (FPR) and false negative rate (FNR) are respectively

the share of incorrectly classified regular and disruptive events. Note that when the number

of regular and disruptive events in the test set are the same, FPR is the complement of TNR.

Similarly, FNR is the complement of TPR. In the tests, the number of regular events was indeed

the same as the number of disruptive events. It thus suffices to mention only the TPR and

the FPR. TPR is a measure for the ability of the classifier to detect disruptive events. FPR

represents the share of regular events in which the classifier erroniously predicts a disruption.

The TPR and FPR are not the most appropriate measures for a real-time disruption predictor.

One is rather interested in the ability of the classifier to avoid false alarms and to predict

upcoming disruptions, sufficiently in advance to undertake mitigating actions. Therefore all

regular windows should be classified as regular and at least one disruptive time window should

be classified as disruptive. In further tests, success rate (SR) is used to indicate the share of

shots, rather than time windows, for which the predictor successfully detected an upcoming

disruption and did not produce a false alarm earlier in the shot. There are two ways by which

a predictor could be mistaken. The possibility of a false alarm has been mentioned, i.e. a shot

in which a disruption is detected too early. To test whether the classifier was able to detect

correctly the regular regime, time windows of more than one second before ToD were considered

regular. Such time windows do not contain information about the upcoming disruption. One

second is intented as a safe margin. It has been noted in previous work that 180 ms is the

maximum time in advance to predict reliably an upcoming disruption, when using an SVM

classifier trained on Fourier statistics [3]. The predictor could also miss an upcoming disruption.

In this case, none of the time windows close to the disruption is classified as disruptive. Such

an error is called a missed alarm. In the following sections, the terms false alarm rate (FA) and

missed alarm rate (MA) will be used to indicate the fraction of shots in which respectively a false

alarm or a missed alarm was found. The total error (TE) is the sum of the false alarm rate and

the missed alarm rate. Finally, one is also interested in the mean time before the disruption at

which the predictor is able to detect upcoming disruptions, as this determines the time interval

in which preventive measures are to be taken. This time is called the average time (AVG). The

average time should be as high as possible.

The classification results are subject to variations due to the exact choice of the training and test

set. All classification rates and the average time were therefore computed for different training

and test sets in consecutive iterations. The quantities are presented in the form of µ± σ, where

µ represents the mean value and σ the standard deviation after multiple iterations.

1The time of disruption determined by experts was used as ground truth.
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Mainly due to computational considerations, the real-time classification rates were computed

using the same number of regular and disruptive time windows in the test set. The mean

duration of a disruptive pulse at JET between campaigns C15 and C27 was about 15.5 s. Only

the last 210 ms were considered disruptive in the classification tests. This resulted in about 500

regular and six disruptive time windows per shot. The classification of all time windows in the

test set was not possible, because of the memory demands in the computation of the proximity

matrix between all objects in the training set and the objects in the test set. The experiments

were conducted on a Intel Core i3-2310M, 2.1 GHz processor with 4 GB of RAM.

Use of a limited number of regular windows limits the interpretation of the results as real-time

equivalent simulations. However, the approach still permits to compare the classification rates of

the different classifiers. The simulations in a real-time environment should be treated in future

work. Note that for a real-time predictor, the memory constraint will not be present. Such a

classifier will only need to classify the features of one time window. The memory constraint will

only depend on the number of objects in the training set.

3.2 Choice of appropriate parameters

3.2.1 Shape parameter for the GGD

The statistics of wavelet detail coefficients are modeled by a GGD. For regular time windows

however, unrealistic values of the shape parameter β appear. The time evolution of the shape

parameter on the highest wavelet decomposition level has been investigated to some extent. To

this end, the thirteen time traces from all shots of data set SA were processed to extract the

parameters of the wavelet statistics. β was allowed to vary within a certain interval. First, a fit

of the GGD was performed unconstrained according to the procedure discussed in section 2.1.3.

If β exceeded 5, the fit was repeated by using a fixed β = 5. The shape parameter was thus

allowed to vary in the interval 0 < β ≤ 5.

Figure 3.1: Evolution of the shape parameter before disruption.

The evolution of the shape parameter during the last 3 s before disruption in shown in figure 3.1.

The plotted values are mean values over all shots of the data set. The shape parameter is plotted

for wavelet statistics of the plasma current, the mode lock amplitude, the plasma density and net

power. The mean shape parameter for all other signals did not differ substantially from β = 5
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during the last 3 s before ToD. This is mainly a consequence of the low original sampling rate

of those signals. Too low sampling rates have a low energy content, which leads to very short

tails in the GGD distribution and thus in high values for the shape parameter. The evolution

of the shape parameter is most interesting for the plasma current and the mode lock amplitude.

During the majority of the time interval, the shape parameter remains at high values, which

indicates that the current and the mode lock amplitude vary only slightly during the normal

operation of the machine (within the time window of 30 ms). The shape parameters for both

signals fall off significantly at about 360 ms before ToD. Lower values of β indicate the transient

behaviour in the data, which is exactly what is expected in the last instants before a disruption

occurs. The sudden change in the shape parameter at 360 ms before disruption indicates that

the disruption becomes, on average, visible in the wavelet spectra at this instant. 360 ms is thus

representative for the time scale at which classifiers based on wavelet statistics could reliably

detect a disruption.

The shape parameters of the wavelet statistics for the plasma density and net power do not

vary significantly in figure 3.1, although some decreasing trend is visible at about 200 ms before

ToD. As figure 3.1 only shows mean values for β, this implies that only in a limited amount of

shots, the transient behaviour is apparent in the shape parameter fitted to the wavelet statistics.

Again this is a consequence of the low sampling rate for these signals.

Classifiers based on wavelet statistics to which a GGD with variable β was fitted were compared

with classifiers for which a GGD with a fixed β was fitted to the wavelet statistics. The variable

β was allowed to vary in the range 0 < β ≤ 5. The fixed β was chosen in such a way, as to

obtain the highest classification rates. Two data sets were constructed to determine the optimal

β. Time traces of shots of SB in table 1.3 were processed. The signals were decomposed with

at a wavelet decomposition level NS = 3. For the first data set, the β was held fixed to one,

i.e. the wavelet statistics were modelled by a univariate, zero-mean Laplace distribution. For

the second data set, the β was held to fixed to two. The wavelet statistics in this set were

thus modelled by a univariate, zero-mean Gaussian distribution. Both sets were classified by

a k-NN classifier. The Rao geodesic distance was used as similarity measure. The tests were

repeated twenty times. At each iteration, 65% of the shots were randomly selected to construct

the training set. The data of the remaining shots was classified and compared to the ground

truth, i.e. the evolution of the shot determined by experts.

The success rate of the data set where a Laplace distribution was used, was 86.9%± 4.2%. The

classification rate using a Gaussian distribution model was 83.2%± 3.6%. In all following tests

where the β was held fixed, the wavelet statistics were modelled by a Laplace distribution.

The fixed value of β = 1 will prove to be sufficient for disruption detection. In the future,

however, it will also become interesting to detect the disruption cause. The use of a variable

β does not seem to have a significant added value in the detection of the disruption cause (see

also section 3.6). In this case, it could however prove interesting to study the evolution of β for

different disruption causes, in order to choose different fixed β values for each signal.

3.2.2 Wavelet decomposition level

The wavelet decomposition level is an important parameter in the feature extraction. The use of

a low decomposition level results in an inadequate description of the original signal. This became

45



Chapter 3. Experiments

clear in figure 2.3. The decomposition with only one subband of detail functions (upper right

figure) results in a poor approximation of the original signal. A too high decomposition level

will, on the other hand, contain redundant information. This is a result of the use of the non-

decimated wavelet transform. Furthermore, as more subbands are added in the decomposition,

the wavelet transform becomes more computationally expensive. A compromise between the

two demands will be important in a real-time application.

A simulation was performed to find the optimal number of wavelet subbands. Time windows

of five different data sets were classified, each having a different number of wavelet subbands,

ranging from NS = 1 to NS = 5. The wavelet statistics were modelled by a GGD with β = 1. A

k-NN classifier was used with the Rao geodesic distance being the similarity measure (k = 1).

Shotnumbers of subset SB in table 1.3 were used. 65% of the shots were chosen randomly to

construct the training set. Data from the other shots were used in the test set. The test was

repeated twenty times. The same shotnumbers were used for the five different data sets in each

iteration. The results are summarised in table 3.1.

Table 3.1: Success rates of a k-NN classifier for different number of subbands.

NS SR

1 80.1 ± 3.8

2 79.7 ± 3.8

3 81.7 ± 4.9

4 83.3 ± 4.7

5 86.6 ± 3.4

Even higher decomposition levels have not been tested, as the computational load would increase

to unacceptable levels. See section 3.8. In addition, as the non-decimated wavelet transform

has been used, signal values are added automatically at the edges, to retain the same number of

samples at higher decomposition levels (the signal is extended). Because of the limited amount

of samples, it is possible that the higher classification rates for the higher decomposition levels

in the table are a consenquence of the extension of the signal. The default extension mode of

the ndwt() Matlab command is the symmetric extension mode.

In all further tests, three wavelet subbands were used to extract information about the frequency

content of the signals.

3.2.3 Number of nearest neigbours

The number of nearest neighbours in the k-NN classifier was chosen such as to obtain high

classification rates. The test was performed using subset SB in table 1.3. The subset consists

of 442 disruptive shots between campaigns C15 and C20. Three wavelet subbands were taken

into account. The wavelet statistics were described by a GGD with a fixed β = 1. The classifier

was trained with features of 65% of the shots in SB. The shotnumbers were chosen randomly.

Features of all other shots were used to create the test set. The test was repeated twenty times

and in each iteration different training and test sets were constructed.

Ten k-NN classifiers were developed. Each classifier worked with a different number of nearest
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neighbours, k = 1, . . . , 10. The similarity measure was the Rao geodesic distance of (2.38). The

results are summarised in table 3.2.

Table 3.2: Success rates for k-NN classifiers with a different number of nearest neighbours.

k SR

1 86.7 ± 2.6

2 90.8 ± 2.5

3 87.9 ± 2.7

4 89.2 ± 3.5

5 87.8 ± 2.7

6 88.4 ± 3.4

7 87.8 ± 4.0

8 88.1 ± 3.4

9 89.7 ± 3.1

10 86.9 ± 2.9

The variation of the SR for the different classifiers is limited. It was chosen to use k = 1 for

simplicity.

3.2.4 Scale parameter of the RBF kernel

Rattá et al. have presented a disruption predictor for JET using a SVM classifier with a RBF

kernel [1]. Statistics of Fourier coefficients were used. In our tests, a similar classifier was used

to compare its performance with the classifiers based on wavelet statistics. The SVM classifier

with an RBF kernel is a parametric classifier. The scale parameter σ in (2.24) has to be chosen a

priori. To this end, 24 SVM classifiers were developed. The range of the scale parameter varied

between 0.25 ≤ σ ≤ 6 in steps of ∆σ = 0.25. Events of 65% of the shots in data set SB were

used to train each classifier. Each classifier was trained with the same training set. Events of

the other 35% of the shots were then used to test the classification performance. The test was

performed only once, due to the long required training time.

Figure 3.2 shows the SR in function of the scale parameter. The SR increases with higher σ

values and reaches more or less a saturation for σ ≥ 5.25. The scale parameter in the tests was

chosen to be σ = 6.

3.3 Dimensionality reduction

Dimensionality reduction allows to visualise data if the lower-dimensional, Euclidean embed-

ding is either two- or three-dimensional. The use of MDS as visualisation tool has the additional

advantage that the embedding is approximately isometric. As distances are conserved, the visu-

alisation of the data represents well the dissimilarity matrix which is used by the k-NN classifier.

The embedding allows to deduce some qualitative insights about the classification process.

1251 disruptive and 1251 regular features of 330 different shots were extracted from data set SB

in table 1.3. Both wavelet and Fourier features, for the same time windows, were collected in
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Figure 3.2: SR for SVM classifiers with different σ for the RBF kernel.

two different data sets. A dissimilarity matrix was computed for the wavelet set using the Rao

geodesic distance between Laplace distributions. Two dissimilarity matrices were computed for

the Fourier features. For the first dissimilarity matrix, the Euclidean distance was computed

between standard deviations of the Fourier spectra of each signal. The geometry of the Gaussian

distributions was thus neglected. Each feature was assumed to be independent from the other

features. The total Euclidean distance is thus the square root of the sum of the squares of the

individual distances. For the second dissimilarity matrix, the geometric structure of the space

of zero-mean Gaussian distributions was taken into account by using the Rao geodesic distance.

Metric MDS was performed on the three dissimilarity matrices for embedding spaces of dimen-

sions 1 to 5. The normalised raw stress was used in the MDS algorithm. The residual stress

as function of dimension is shown in figure 3.3. Using the elbow criterion, the embedding di-

mension was chosen to be three. Note that an embedding in a one-dimensional space should

be treated with care and thus the elbow appearing for the two-dimensional embeddings is to be

neglected (the elbow at dimension two appears because of the high value of residual stress for

the one-dimensional embeddings).

The three embeddings are shown in figure 3.4. The embedding for the Fourier features in the

case of the Euclidean distance measure indicates that the Euclidean distance does not make

a clear distinction between regular and disruptive events. The majority of the points lie in

a close neighbourhood around the origin. As both classes heavily overlap in this region, it

is expected that a k-NN classifier is not able to classify points correctly. The embedding of

the Fourier dissimilarity matrix constructed with the Rao geodesic distance already indicates

that the similarity measure distinguishes regular and disruptive events in a much better way.

There are essentially three clusters of data, indicated in the figure by black boxes. Each cluster is

clearly split in a subcluster of disruptive events and a subcluster of regular events. This partially

explains the higher classification rates in section 3.4, obtained by a k-NN classifier using Fourier

statistics with the Rao geodesic distance as similarity measure.

At first sight the embedding of the dissimilarity matrix of wavelet features appears to be very

similar to the embedding of Fourier features using the Rao geodesic distance. However, the split-

ting of each of the three clusters into a regular and a disruptive subcluster is more pronounced

in the case of wavelet statistics. This is especially clear for the biggest cluster, for which it is
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Figure 3.3: Residual variance in function of dimension.

almost possible to draw a separation plane between disruptive and regular points as is shown

in figure 3.5. This is not the case for the Fourier statistics. This already indicates that the use

of wavelet detail statistics and the exploitation of the geometry of GGDs is able to distinguish

regular and disruptive features in a better way than Fourier statistics.

In both cases where the Rao geodesic distance was used, the data is ordered in three clusters

(neglecting a minor number of outliers). The clusters do not correspond to different JET cam-

paigns, neither do they correspond to shots with a different disruption cause. The underlying

reason for the clustering remains unclear. The close resemblance of the structure of the em-

bedding of the Fourier features and the embedding of the wavelet features could indicate that

the clustering is related to the geometry of the manifolds of GGD distributions with a fixed β

value. Indeed, the distance between two Gaussian or two Laplace distributions differs only by a

constant ((2.38) in section 2.4.3).

It is possible to test statistically the validity of the clustering structure in the original, high-

dimensional space, using the Hubert’s Gamma statistic. The null hypothesis is the random

label hypothesis as explained in section 2.2.2. The distribution of the Hubert’s Gamma statistic

under the random label hypothesis depends on the configuration of points. The distribution has

been estimated from 1000 Monte-Carlo simulations for both the Fourier and wavelet data. A

histogram of the resulting distributions is shown in figure 3.6. The histograms are normalised

so that the areas beneath the bars sum up to one.

The resulting distributions are quite similar. Note the very low values of Γ̂ under the random

label hypothesis. This is consistent, as the correlation between the dissimilarity matrix for the

clustered data and a random partition is low. The distribution is moreover almost centered

at zero, as random partitions have on average the same probability to slightly anticorrelate

with the data as to correlate with it. The highest correlation values under the random label

hypothesis for the Fourier and wavelet data set are respectively 2.77 · 10−3 and 3.44 · 10−3. These

values should be compared to the Γ̂ between the proximity matrices of the data sets and the
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Figure 3.4: MDS embedding of processed JET data. Top: Fourier statistics, Euclidean distance. Bot-

tom left: Fourier statistics, Rao geodesic distance. Bottom right: Wavelet statistics, Rao

geodesic distance. The blue dots stand for regular events and red crosses represent disrup-

tive events.

corresponding partitions indicated in figure 3.4 by black boxes. Therefore, a fourth partition was

introduced which included all outliers. The Γ̂ for the Fourier and wavelet data are respectively

0.896 and 0.928; i.e. there is almost a perfect correlation between the proximity matrix and

the proposed partition in both cases. The null hypothesis is thus rejected in both cases and

for both Fourier and wavelet data the partition represents the true underlying structure on the

probabilistic manifold.

3.4 Classification results

Six different classifiers were developed for disruption prediction. The classifiers are:

� Fou-Eucl : k-NN classifier based on Fourier statistics. Each feature was seen as a indepen-

dent variable in Euclidean space. The Euclidean distance was used as similarity measure.

k = 1.

� Fou-GD : k-NN classifier based on Fourier statistics. The geometry of the Gaussian distri-

butions fitted to the Fourier spectra was taken into account by the use of the Rao geodesic

distance. k = 1.

� Wav : k-NN classifier based on wavelet detail statistics. The statistics were modeled by a

Laplace distribution (β = 1). The geometry of the distributions was taken into account

by the use of the Rao geodesic distance. k = 1.
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Figure 3.5: Clear separation between regular and disruptive subclusters in the right cluster.

� Maha: Mahalanobis classifier based on wavelet detail statistics. The statistics were mod-

eled by a Laplace distribution (β = 1). The geometry of the distributions was taken into

account by projection of the test data to the tangent plane at the geodesic center-of-mass

of each cluster.

� SVM : SVM classifier with an RBF kernel. σ = 6.

� J-div : k-NN classifier based on wavelet detail statistics. The statistics were modeled by

a GGD with variable 0 < β ≤ 5. The probabilistic nature of the distributions was taken

into account by the use of the J-divergence. k = 1.

65% of the shots in data set SB of table 1.3 were chosen randomly and were used as training

data. To overcome a preferential classification for the regular regime by k-NN classifiers, due

to the high ratio of number of regular to disruptive features, the regular features were limited

for each shot to the same number as the disruptive features of this shot. These regular features

were chosen as close as possible to 1 s before ToD. The other 35% of the shots were used to

create the test set in a similar way.

The six classifiers were tested using the same time windows for both training and test set. The

classification was iterated twenty times with different training and test sets. The results are

summarised in table 3.3.

Several conclusions can be drawn from this table:

� The SR of Fou-Eucl and the SR of Fou-GD are similar. The reason is that, although

Fou-GD has a higher TPR than Fou-Eucl, it has almost the same FPR. This illustrates

that the correct detection of a regular shot is a stricter demand for a real-time classifier

than the correct detection of a disruptive event. To work succesfully, the classifier should

classify all regular events correctly (to avoid a false alarm), and at least recognise one

disruptive event (to avoid a missed alarm). For the Fou-Eucl and Fou-GD, the incorrect
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Figure 3.6: Estimated distibution of Γ̂ for the Fourier and wavelet data under the random label hy-

pothesis.

Table 3.3: Classification performance.

Fou-Eucl Fou-GD Wav Maha SVM J-div

TPR 74.5 ± 3.2 82.8 ± 2.5 94.9 ± 1.9 97.7 ± 1.8 59.6 ± 3.7 93.5 ± 1.6

FPR 25.0 ± 3.5 23.9 ± 3.8 5.8 ± 2.5 5.2 ± 1.9 8.8 ± 2.2 7.5 ± 2.3

MA 0.8 ± 1.0 0.7 ± 0.8 0.3 ± 0.5 0.3 ± 0.5 9.3 ± 2.8 0.2 ± 0.5

FA 65.2 ± 6.3 63.4 ± 5.8 11.3 ± 4.1 8.9 ± 2.4 19.2 ± 3.7 15.2 ± 3.8

TE 66.1 ± 6.1 64.0 ± 5.6 11.6 ± 4.0 9.2 ± 2.3 28.5 ± 4.1 15.5 ± 3.8

SR 33.9 ± 6.1 36.0 ± 5.6 88.4 ± 4.0 90.8 ± 2.3 71.5 ± 4.1 84.5 ± 3.8

AVG 165.4 ± 9.5 173.5 ± 6.5 184.7 ± 3.1 186.9 ± 2.7 137.7 ± 6.4 186.0 ± 2.8

classification of less than one on four regular events leads to false alarms in almost two

thirds of the shots.

� The use of wavelet statistics leads to a great improvement of the classification rates. Wav

exhibits an increase of 12% of TPR and a decline of almost 18% of FPR compared to Fou-

GD, which leads to an improvement of the SR up 50%. Especially the decline of the FPR

leads to a decline of FA from 63% for Fou-GD to 11% for Wav. The improved separation

of regular and disruptive events was already shown by the MDS embedding in section 3.3.

� The SVM outperforms classifiers Fou-Eucl and Fou-GD in success rate. This is mainly

because of the lower FPR in the case of SVM. However, the SVM predictor classifies

wrongly 40% of the disruptive events. The SVM is therefore the only classifier with a

considerable share of missed alarms: in 9% of the shots, the upcoming disruption was not
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recognised. For all other classifiers this share does not exceed the 1%.

� The SVM detects the upcoming disruption much later than the other classifiers. The

average time of detection is 138 ms before the ToD. This is in accordance with results

found in literature, which report an average prediction time of 145 ms before disruption

[3]. For the Wav classifier, this time is about 185 ms before ToD. The average prediction

time before disruption needs to be high in order to be able to undertake mitigating actions.

� All classifiers based on wavelet statistics have an AVG close to the maximum possible

AVG. The maximum possible AVG in the test is 195 ms, in which case all disruptions

are predicted in the first disruptive event. 195 ms is the mean time in the first disruptive

time window, [ToD − 210 ms; ToD − 180 ms[. This indicates that the classifiers based on

wavelet features could, in principle, detect a disruption still earlier in the shot. This is in

accordance with the evolution of the shape parameter in section 3.2.1. Classifiers based on

wavelet statistics could possibly reliably detect upcoming disruptions up to 360 ms before

ToD.

� The Mahalanobis classifier is the best disruption predictor in this test. As the data is

projected to the appropriate tangent spaces, the geometry of the configuration is only

partly taken into account. One could expect that this would lower the results. The higher

classification rates in comparison to the Wav classifier could be explained by the fact that

the Mahalanobis classifier is less sensitive to noise than a k-NN classifier. As was shown in

figure 3.4, clusters appeared in the MDS embedding. This clustering structure was further

validated in the original feature space by the statistical test of section 3.3. This means

that the data of wavelet statistics is grouped into clusters, which are further split in two

subclusters of regular events and of disruptive events. Especially at the boundary of the

subclusters, the k-NN classifier will tend to misclassify events. The Mahalanobis classifier

does not exhibit this deficiency, as only collective information about the training set is

considered. Individual training points do not affect the classification.

� It does not prove beneficial to work with GGD distributions of variable shape parameter.

This becomes clear in the classification rates of the J-div classifier, in comparison to the

rates of the other two classifiers based on wavelet features.

3.5 Generalisation capability

It is interesting to test the performance of the classifiers for more recent campaigns. The training

set consisted of events of 99% of the shots from campaigns C15 to C20 (data set SB in table

1.3). Seven test sets were extracted from data set SC. Events from 99% of the shots of each

campaign between C21 and C27 were used. For each shot, an equal number of regular and

disruptive events were chosen in the same way as in section 3.4.

The TPR and FPR are shown in figure 3.7. All classifiers show similar values for TPR and FPR

as in the previous classification test. The Maha classifier has a TPR of 100% for campaigns

C21, C23 and C25. Thus, the Maha classifier did not miss any disruption for the shots of those

campaigns (but can still generate a false alarm earlier in the shot).

53



Chapter 3. Experiments

Figure 3.7: TPR and FPR results of the generalisation test (in percent).

Figure 3.8 shows the SR obtained for campaigns C21-C27. The SR has decreased for all classifiers

as compared to the test of section 3.4. The decrease of the SR is expected, as test and training

sets are not constructed with events of the same series of experiments. The classifier is not

able to deal with the changes in the data, as the experimental conditions have changed. For

example, the ITER-like ICRH antenna was commisioned on JET plasmas in May 2008 [56], which

almost coincides with the beginning of campaign C21 (at the start of June 2008). However, the

performance of the classifiers relative to each other remains almost the same. The Wav classifier

outperforms slightly the Maha classifier, which was not the case in the test of section 3.4.
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Figure 3.8: SR results of the generalisation test (in percent).

3.6 Prediction of disruption cause

All classifiers are able to distinguish regular from disruptive behaviour up to a certain extent,

as was proven in sections 3.4 and 3.5. A restriction to these two classes will be insufficient in

real-time applications [21]. The prediction system should be able to detect the disruption cause

or class in order to couple the system to the response and mitigate the adverse effects of the

disruption. For example, most of the disruptions could be avoided by a fast-emergency shut-

down using high-pressure gas injection of low-Z noble gasses [57]. For some disruption causes

with more damaging consequences, such as ITBs and VDEs, faster measures could, however, be

necessary [21].

Following test concerned the classification of disruptions according to disruption class. As dis-

ruptions are caused by a multitude of reasons, this is a multiple-class recognition problem. Only

the k-NN and Mahalanobis classifiers are considered, as a straightforward generalisation to a

multiple-class problem is possible. The k-NN method of section 2.3.2 and the Mahalanobis clas-

sifier of 2.5 were presented directly in terms of a multiple-class problem. Although SVMs are

used in practice in multiple-class recognition [32], the generalisation is not trivial.

The results of an extensive study which determined the cause of all disruptions in a decade of

JET operations (2000-2010) was made available to this end. The results include sets of shots

for eight different disruption causes. The causes are summarised in table 3.4. The third column

in this table gives the number of shots for each disruption cause in campaigns C15-C27.

The training set consisted of features of 65% of the shots between campaign C15 and C27. The

shot numbers were chosen randomly. Features of the other 35% were used to construct the test

set. All classifiers, apart from the SVM classifier, were used. For each shot, the same number of

regular time windows and disruptive windows were added to the corresponding data set. Again

the regular time windows closest to 1 s before ToD were used. The test was iterated twenty

times with different training and test sets.

As this test is a multiple-class problem, the number of nearest neighbours for the k-NN classifiers

was re-investigated. Ten k-NN classifiers were developed with the Rao geodesic distance as

similarity measure and k = 1, . . . , 10. Wavelet features were used to determine the ideal number
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Table 3.4: Disruption causes.

Disruption cause Abbreviation Disruptive events

Auxiliary power shut-down (H-L transition) ASD 67

Too strong internal transport barrier ITB 14

Too fast current ramp-up IP 13

Impurity control problem IMC 111

Too low density and low q LON 39

Neo-classical tearing mode NTM 38

Density control problem NC 144

Greenwald density limit GWL 8

of neighbours. The results are shown in table 3.5. The maximum SR is found for k = 6. This

number of neighbours was used in following tests.

Table 3.5: Success rates for k-NN classifiers with k = 1 . . . 10 in the multiple-class problem.

k SR

1 34.6 ± 5.1

2 37.0 ± 4.9

3 35.8 ± 5.4

4 37.7 ± 4.5

5 38.0 ± 4.2

6 39.5 ± 4.8

7 38.8 ± 4.6

8 39.5 ± 3.9

9 39.4 ± 3.9

10 39.4 ± 4.0

The results are summarised in figures 3.9 and 3.10, together with table 3.6. TPR in figure 3.9

now represents the share of time windows of a certain class that were classified correctly. FPR in

figure 3.10 represents the share of time windows of all other classes that were classified incorrectly

to this class. A successful classification is now obtained if the classifier does not produce any

false alarms, does not miss an upcoming disruption and predicts correctly the disruption cause

close to disruption time. Only the first warning of the system was used for this purpose, i.e. it is

assumed that the prediction system would directly undertake mitigating actions. The fraction

of shots for which the system predicted correctly an upcoming disruption, but failed to indicate

the correct cause, is called the wrong alarm rate (WA).

From figure 3.9 the conclusion can be drawn that four disruption causes are recognised better

than the others. The four causes are ASD, ITB, LON and GWL. Figure 3.10 shows that wrong

classifications are spread between the same four classes. The main reason why those four classes

get a preferential treatment is because the appropriate signals for their detection are available.

The main diagnostic to identify an ASD disruption is the input power. ITBs are characterised

by an increased output power and thus by a sharp increase in the net output power. Finally,
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Figure 3.9: TPR per disruption cause.

LON and GWL can be detected in the tendencies of the plasma density. IMC disruptions are

detected only indirectly through of the increase of the radiated power and thus a decrease of the

net power. They can therefore not be distinguished from other sources of radiation. Despite the

large amount of shots disrupted by an IMC, almost no data is wrongly classified as an IMC. The

disruptive events of IMCs are thus highly distributed in the probabilistic space. IMC disruptions

which are classified incorrectly lead to a high numbers of WA in table 3.6. IP problems are highly

transient and are not well detected by the predictors. Another reason is the limited number of

shots, which limits the learning capability of the classifiers. The classification rates of NTMs

and NCs are more difficult to interpret. Most probably NC problems are classified either as

LON or GWL, as the only diagnostic for identification of NC problems is the plasma density.

Figure 3.10: FPR per disruption cause.

Comparing the different classifiers in table 3.6, Fourier features seem to lead to less WA. It should

be noted, however, that classifiers based on Fourier statistics have a FA rate of over 30%, while all

classifiers based on wavelet statistics have a FA rate of under 10%. Shots for which a false alarm

has been triggered cannot account anymore for a wrong prediction of the disruption cause. It is

possible that a large share of the shots for which classifiers based on Fourier statistics already

produced a false alarm, would also trigger a wrong alarm in the disruptive phase. Note also

that although the success rate of the three classifiers based on wavelet statistics has decreased

sharply, the ability of the classifiers to detect disruptive behaviour has not. However, for only

one out of two recognised disruptions, the classifier is also able to predict its cause.
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The overall success rates are rather limited. Classifiers based on Fourier statistics produce only

in one out of four shots a correct alarm, while classifiers based on wavelet features raise this rate

above one out of three shots. A classifier used in practice will need to substantially improve

these figures. The tests shown here are only meant as preliminary tests. Sufficient information

about each disruption cause is necessary. The precursor signals should be chosen carefully based

on the disruption causes one wants to predict. A close collaboration with experts in the field

could already improve substantially the prediction ability of the classifiers. Finally, it should be

noted that when classifiers are built to detect several disruption causes, the test set should also

contain data of shots with other disruption causes than that for which the classifier was trained.

Far too often one finds in literature high classification rates, but the test sets always contain

shots with only the same disruption cause as the classifier was trained for. Although current

classification rates are rather low, they are more realistic, in the sense that a real disruption

predictor will often encounter discharges which disrupt by another cause than the classifier was

trained for.

Table 3.6: Equivalent real-time classification results for disruption cause prediction.

Fou-Eucl Fou-GD Wav Maha J-div

MA 6.7 ± 1.4 1.1 ± 0.8 0.4 ± 0.3 0.8 ± 0.7 0.5 ± 0.5

FA 32.6 ± 2.9 32.5 ± 2.6 7.2 ± 1.1 8.5 ± 2.1 10.1 ± 1.9

WA 35.9 ± 3.1 35.9 ± 2.1 49.8 ± 2.9 48.0 ± 3.0 50.5 ± 2.1

TE 75.3 ± 2.1 69.6 ± 3.3 57.4 ± 3.3 57.3 ± 2.9 61.1 ± 3.0

SR 24.7 ± 2.1 30.4 ± 3.3 42.6 ± 3.3 42.7 ± 2.9 38.9 ± 3.0

AVG 153.5 ± 6.2 162.7 ± 4.7 184.0 ± 3.7 185.1 ± 3.1 181.4 ± 3.7

3.7 Signal relevance

The experiment of section 3.6 raises the question whether the chosen set of signals is the appro-

priate set for the detection of disruptions. For the prediction of disruption causes, this set will

most probably have to be adjusted.

The relevance of each signal for the prediction of disruptions was investigated as follows. The

test and training sets were constructed in a similar way as in section 3.4, with data from 65% of

randomly chosen shots used to construct the training set. The test consisted of thirteen different

stages. In the first stage, thirteen different training and test sets were used for classification.

Each set consisted only of features of one precursor signal. Each signal was used once. Once the

SR for all thirteen sets was acquired, the signal which produces the highest SR was memorised

by the system. In the second stage, twelve different training and test sets were used. Here, each

set consisted of the features derived from the memorised signal of the first stage, together with

features of each of the remaining signals. In each consecutive stage, the most relevant signal

for the SR was memorised. In the following stage the already memorised signals were combined

with one additional signal of the remaining set. In this way, an estimation was made of the

relevance of the signals in the classification.

The ideal way to proceed in order to find the optimal set of signals, would be to check all possible
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combinations of all possible signals. There are 213 − 1 such combinations and it is thus obvious

that iteration over all possibilities is computationally impossible. The presented method allows

to assess the relevance of the signals by classification of 13× 14/2 = 91 different data sets.

For each different combination of signals, the test was iterated five times. Only the mean value

of the SR is given.

The ranking of the relevance of the signals derived from this test is given in table 3.7. The

second column gives the name of corresponding signal. The third column gives the SR in the

classification of the data set in the corresponding stage, when the signal of the second column

is added.

Table 3.7: Relevance of predictor signals.

Ranking Signal name SR

(1) Mode lock amplitude 92.9

(2) Plasma current 91.8

(3) Poloidal beta time derivative 92.3

(4) Total input power 92.4

(5) Plasma density 93.5

(6) Safety factor at 95% of minor radius 92.9

(7) Net power 92.6

(8) Poloidal beta 91.8

(9) Plasma vertical centroid position 91.9

(10) Stored diamagnetic energy time derivative 91.0

(11) Plasma internal inductance 90.4

(12) Plasma internal inductance time derivative 93.4

(13) Safety factor at 95% of minor radius time derivative 89.5

The variation of the SR due to the different training and test sets makes the interpretation of

the results difficult. The relatively small differences between consecutive stages could, in some

cases, be the result of the variation in the SR. Nevertheless, the ranking is up to a certain degree

as expected. The two most relevant signals, the mode lock amplitude and the plasma current,

are also the two signals for which the evolution of the shape parameter was the most pronounced

(see section 3.2.1). As explained before, the evolution of the shape parameter is probably the

result of the higher time resolution for these two signals. It is thus possible that the performance

of the classifiers is limited by the time resolution of the signals. The first five signals appear to be

the most relevant for disruption prediction. Adding more signals only decreases the classification

rate. The high SR in the twelfth stage is probably the result of variations on the SR. Possibly

the set of signals should be revised in future work.

3.8 Computational cost

Two important issues for a realistic disruption predictor are the memory requirement and the

computational time. No issues concerning the memory requirements were encountered during

the tests presented in sections 3.2 to 3.5. The computational time is treated in closer detail.
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Computational time is needed for the feature extraction, for the training of the machine and

lastly, for classification. The computational time in the training phase is of secondary impor-

tance, as this can be done off-line. On the contrary, the time needed for feature extraction

and classification should not exceed the time interval of one time window (here 30 ms). If this

were the case, the disruption machine would not be able to start processing data of a new time

window once the data is acquired, leading to unacceptable delays.

In present tests, the feature extraction proceeded as follows

1. Load data.

2. Control for errors and process corrupt data.

3. Resampling.

4. Normalisation.

5. Fourier and wavelet decomposition.

6. Fit of appropriate distribution to both spectra.

7. Control for errors.

8. Add to dataset if no errors have occurred.

The control for errors in the last but one step is required, as the maximum likelihood method

discussed in 2.1.3 does not perform well for high-β distributions [58] and diverges for some time

windows.

The extraction of the data set used in the test of section 3.2.2 lasted 23 hours and 58 minutes.

392892 regular and 3098 disruptive time windows were analysed during this time. This results

in a mean time for feature extraction of 218 ms per time window. In this data set, the wavelet

decomposition included five wavelet subbands. As a comparison, the construction of a similar

data set with three wavelet subbands lasted 148 ms per time window. Comparing the times at

different decomposition levels, it is clear that the wavelet decomposition step and the GGD fit

require a large fraction of the total time of feature extraction.

This amount of computational time is unacceptable in a realistic application. However, it should

be noted first that a regular personal computer was used (processor Intel Core i3-2310M 2.1 GHz,

1 × 4 GB DDR3 RAM at 1.333 MHz). The use of better hardware would certainly accelerate

the process. Second, once the resampling is done, which is to be done for all signals on the same

time base, all other steps can be performed in parallel for each signal. The computational times

above include the wavelet and fourier decomposition of all thirteen signals described in section

1.3. Parallel feature extraction could thus reduce the computational time by a factor of thirteen.

Computational time in the training phase is only relevant for the SVM classifier and the Ma-

halanobis classifier. As an example, the training for the SVM classifier of the test in section

3.5 lasted 41 minutes. On the other hand, the training time of the Mahalanobis classifier was

117 ms. The training phase of the SVM is computationally expensive because of the iterative so-

lution scheme to construct the decision function. The long training time was already mentioned

in section 2.3.2 as a general property of SVM machines. The training time of the Mahalanobis

classifier is considerably shorter. Although the geodesic centre-of-mass of a cluster is found

iteratively, the iteration process converges relatively fast.
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The computational time in the classification step is also important. In table 3.8, the average

computational times are summarised for the tests of sections 3.4 and 3.5. These are the times

needed for the classification of one time window of the test set.

There is a large difference in classification time for k-NN classifiers, depending on the similarity

measure. The Wav classifier demands approximately four times more time than Fou-GD to

classify the data. This is mainly a consequence of the fact that there are three times more in-

dependent features for which the Rao geodesic distance is computed, originating in the wavelet

decomposition level NS = 3. Furthermore, the Euclidean distance is less computationally ex-

pensive than the Rao geodesic distance. This is apparent in the difference of computational time

between the Fou-Eucl and Fou-GD classifiers. The J-div classifier needs exceptionally more time

than the other k-NN classifiers. The classification time of the J-div classifier is even too high

to use it as a real-time disruption predictor. Note finally the difference in computational time

for the four k-NN classifiers between tests of section 3.4 and section 3.5. This is due to the fact

that the computational time for k-NN classifiers also depends on the size of the training set, as

the distance between all training and test points is computed.

The Mahalanobis and SVM classifiers are less computationally expensive in the test phase.

For the SVM classifier, this was mentioned in section 2.3.2. This is a general property of non

instance-based algorithms. The decision function has been constructed beforehand and needs

less computational time in the test phase. The Mahalanobis is also a non instance-based algo-

rithm, with a low classification time as a result.

Table 3.8: Classification time.

Time class (ms), test section 3.4 Time class (ms), test section 3.5

Fou-Eucl 0.40 0.85

Fou-GD 2.45 4.20

Wav 9.77 15.88

Maha 1.23 1.28

SVM 0.09 0.18

J-div 93.69 172.83
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Conlusions and future work

The main goal of this study was to prove the potential of the use of wavelet statistics for dis-

ruption prediction. The statistics were modelled by a generalised Gaussian distribution. The

classifiers thus essentially compared probability distributions. In order to take the probabilistic

nature into account, concepts of information geometry were considered, where a family of prob-

ability distributions is regarded as a Riemannian manifold. This leads in a natural way to the

use of the Rao geodesic distance as a similarity measure between distributions.

The classifiers were tested with data of disruptions which occurred at JET in the period 2000-

2010. Classifiers using the geometry of wavelet statistics prove to work well as compared with

classifiers based on the statistics of Fourier coefficients, which have already been used in the

past. In a classification test with data of JET campaigns C15-C20, the classifiers using the

geometry of wavelet statistics predicted successfully a disruption in more than 85% of the shots.

In comparison, the most advanced classifier based on Fourier statistics, a SVM classifier with a

RBF kernel, predicted the upcoming disruption in only 71.5% of the shots. The generalisation

capability of the classifiers was also higher: in a classification test with a training set of JET

campaigns C15-C20 and test sets of campaigns C21 to C27, the successful prediction rates varied

between the 65% and 90%. The SVM classifier based on Fourier features performed worse, with

success rates between the 55% and 70%. Finally, the classifiers using the geometry of wavelet

statistics performed best in the recognition of the disruption cause for JET campaigns C15-C27.

An important result of the tests was the early warning time produced by classifiers based on

wavelet statistics. An early warning time is essential in order to undertake mitigating actions

well enough in advance. Current tests were, however, not simulated in real-time environment

due to considerations about the computational time. Real-time simulations should be performed

in future work.

Some additional tests were run. First, the time evolution of the essential parameter of the gen-

eralised Gaussian distribution, the shape parameter β, was investigated. The value of the shape

parameter shows whether the transient behaviour in the time traces of the plasma diagnostics

is also present in the modelling of the wavelet statistics. It became clear from this test that the

time resolution of the precursor signals plays an essential role in the ability of the machine to

detect the disruption. β showed an abrupt change only for the plasma current and the mode lock

amplitude at about 360 ms before disruption. These two signals were the ones with the highest

time resolution in the set of the thirteen plasma signals. The time of 360 ms is much higher
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than the already reported maximum time before disruption at which classifiers based on Fourier

statistics can reliably detect a disruption, i.e. 180 ms. A disruption predictor based on wavelet

statistics could thus detect disruptions earlier in the shot as compared to other automatic pre-

dictors. Second, a test was performed to investigate the relevance of each of the thirteen plasma

signals. It turns out that, again, the plasma current and the mode lock amplitude, the signals

with the highest time resolution, were the most relevant signals. This is a second indication

that the resolution of the diagnostics is essential for the detection of disruptions. Also, the

use of too large numbers of plasma signals seems to lower the classification performance. It is

thus interesting to consider the possibility of working with limited data sets in the future. In a

last test, the required classification time was examined. The data processing and classification

should not exceed the length of a time window (in this study 30 ms). Feature extraction times

of 150 ms to 220 ms are thus obviously too high for real-time applications. However, solutions

could be found to this issue. As in this test the processing of the thirteen plasma signals was

performed sequentially, parallel processing would already lower the required time by an order

of magnitude. Such a reduction would prove sufficient. In addition, almost all classifiers which

used the geometry of wavelet statistics were able to classify the data sufficiently fast. One ex-

ception is the classifier based on the generalised Gaussian modelling of the wavelet statistics

with a variable β. As this classifier did not perform exceptionally well in other tests, this should

not be considered an issue.

The general conclusion is that the use of the geometry of wavelet statistics can add value to the

prediction of plasma disruptions. In future work, the classifiers which were presented should, in

the first place, be tested in a real-time environment. This should be accompanied by a thoughtful

choice of the precursor signals, in collaboration with experts in the field. For this choice, special

attention should be given to the time resolution of the signals and the number of signals. In

addition, the detection of the disruption cause will be indispensable in the future. It is therefore

essential to focus on automatic prediction of the disruption cause, and not on the detection of

the disruption as such. A proposal is to construct several automatic predictors based on the

geometry of wavelet statistics, each able to detect a single disruption cause. This allows to use

a limited amount of signals. Each cause of disruptions can namely be detected by the careful

combination of a couple of plasma diagnostics. The warning system would then consist of a

parallel implementation of the classifiers.
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Appendix A

Metric for univariate GGD with

fixed β

The univariate GGD is given by

f(x | α, β) =
β

2αΓ(1/β)
exp

(
−
( | x |

α

)β)
(A.1)

For a constant β, the metric (2.30) reduces to ds2 = gααdα
2, where

gαα = −E
[
∂2

∂α2
ln f(x | α, β)

]
(A.2)

according to (2.36).

ln f can be rewriten as

ln f(x | α, β) = ln
β

2Γ(1/β)
+ ln

1

α
exp

(
−
( | x |

α

)β)
(A.3)

So that ∂/∂α ln f becomes

∂

∂α
ln f(x | α, β) =

1

1
α exp

(
−
(
|x|
α

)β)
[
− 1

α2
exp

(
−
( | x |

α

)β)

+
1

α
·

{
β | x |β α−β−1 exp

(
−
( | x |

α

)β)}]

= − 1

α
+
β

α

( | x |
α

)β

=
1

α

[
β

( | x |
α

)β
− 1

]
(A.4)

From (A.4) one can calculate ∂2/∂α2 ln f

∂2

∂α2
ln f(x | α, β) = − 1

α2

[
β

( | x |
α

)β
− 1

]
+

1

α

[
−β2

( | x |
α

)β 1

α

]

=
1

α2

[
1− β(β + 1)

( | x |
α

)β]
(A.5)
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The calculation of gαα proceeds as follows

gαα = −
∫ +∞

−∞
dxf(x | α, β)

∂2

∂α2
ln f(x | α, β)

= − 1

α2

[∫ +∞

−∞
dxf(x | α, β)− β(β + 1)

∫ +∞

−∞
dxf(x | α, β)

( | x |
α

)β]

= − 1

α2

[
1− β(β + 1)

∫ +∞

−∞
dx

β

2αΓ(1/β)
exp

(
−
( | x |

α

)β)( | x |
α

)β]

= − 1

α2

[
1− β2(β + 1)

αΓ(1/β)

∫ +∞

0
dx exp

(
−
( | x |

α

)β)( | x |
α

)β]
(A.6)

In the third step, use is made of the fact that f is normalised to 1. In the last step, the even

symmetry of the integrand is exploited.

The integral in the last line of (A.6) can be further simplified by the following change of variable

y =

( | x |
α

)β
⇔ x = αy1/β

x = 0⇒ y = 0

x→∞⇒ y →∞

dy =
∂y

∂x
dx = β

(x
α

)β 1

x
dx =

β

α
y1−1/βdx

⇒ dx =
α

β
y1/β−1dy (A.7)

Combination of (A.6) and (A.7) delivers

gαα = − 1

α2

[
1− β2(β + 1)

αΓ(1/β)

∫ +∞

0
dy
α

β
y1/β−1 exp(−y)y

]

= − 1

α2

[
1− β(β + 1)

Γ(1/β)

∫ +∞

0
dy y(1/β+1)−1 exp(−y)

]

= − 1

α2

[
1− β(β + 1)

Γ(1/β)
Γ(1/β + 1)

]
(A.8)

In addition Γ(1/β + 1) = 1/β · Γ(1/β), so that

gαα = − 1

α2

[
1− β(β + 1)

Γ(1/β)
· 1/β · Γ(1/β)

]

= − 1

α2
[1− β − 1]

=
β

α2
(A.9)

The metric thus becomes

ds2 =
β

α2
dα2

= β

(
dα

α

)2

= β(d lnα)2 (A.10)

Taking the square root of both sides of expression (A.10) gives

ds =
√
β | d lnα | (A.11)

which can easily be integrated. The resulting distance measure is given in (2.38).
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Exponential and logarithmic map for

GGD distributions with fixed β

The goal is to derive an expression for the logarithmic and exponential map for univariate,

zero-mean GGD distributions with a fixed shape parameter β. Therefore, a more detailed

explanation of the logarithmic and exponential maps is first needed. Consider, as an example,

the one-dimensional manifold in figure B.1 which is represented by the red line. On the manifold,

the two black points are connected by a geodesic. The logarithmic map at the lower black point

will project the upper black point on the tangent space. The tangent space at the lower point

is in this example simply the tangent line at that point. The tangent space is shown by a blue

line. The logarithmic map of the upper point is the point on the tangent line, in the direction of

the tangent vector to the geodesic connecting both points, with a length equal to the geodesic

distance between the points. In the multivariate case, the logarithmic map is found in a similar

way. The tangent space at a point of the manifold is spanned by the tangent vectors to all

geodesics passing through that point. The logarithmic map is found for a certain point on the

tangent plane in the direction of the tangent vector to the geodesic, at a distance equal to the

geodesic distance. Note that in the figure, there is only one tangent vector and the direction

will only depend on the sign of this vector. This will also be the case for univariate, zero-mean

GGD distributions with a fixed β and will be used in the derivation.

The logarithmic map is deduced as follows

1. Find the tangent vector to the geodesic at the origin of the geodesic.

2. The logarithmic map is the point on the tangent space in the direction of the tangent

vector at a distance from the origin equal to the geodesic distance. The point at which the

logarithmic map is taken is always chosen as the origin of the tangent Euclidean space.

To find the tangent vector, an expression of the geodesic between two points on the manifold is

required. A geodesic is found from the Euler-Lagrange equations [7]. Consider again the metric

in (2.30) which is given by

ds2 = gµν(θ)dθµdθν

The Einstein notation is used, which means that for each index appearing as well as upper and

lower index, a summation is implicitly assumed over all the index values. The Einstein notation
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Figure B.1: Manifold in red with the tangent space in the lower black point represented by a blue line.

The geodesic path between two points on the manifold is shown in green.

will be used from now on. In the above expression, µ and ν represent all N independent

parameters of the metric space. In the case of a probabilistic space, the metric tensor reduces

to the Rao-Fisher metric in (2.36) and is given by

gµν(θ) = −E
[

∂2

∂θµ∂θν
log f(X | θ)

]

The metric tensor delivers information about the geometry of the space. The Euler-Lagrange

equations are

θ̈κ(t) + Γκµν θ̇
µ(t)θ̇ν(t) = 0 (B.1)

The Euler-Lagrange equations are a set of N coupled differential equations (κ = 1, . . . , N). The

geodesic path has been parametrised by the parameter t, with θκ(0) = θκ1 and θκ(1) = θκ2 .

θ1 = (θ1
1, . . . , θ

N
1 )T and θ2 = (θ1

2, . . . , θ
N
2 )T are respectively the begin and end point of the

geodesic. Γκµν are called the Christoffel symbols and are given by

Γκµν =
1

2
gκρ
(
∂gνρ
∂θµ

+
∂gµρ
∂θν

− ∂gµν
∂θρ

)
(B.2)

In the last expression, gκρ represents the inverse metric tensor. The definition of the inverse

metric tensor is

gκρgρλ = δκλ (B.3)

where δκλ is the Kronecker delta tensor. The above expression holds for all κ and λ.

For the univariate, zero mean GGDs with fixed β, the equations simplify considerably. The

metric is given by (A.10), which is repeated here for convenience.
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ds2 = β
dα2

α2

When the beginning and end point have scale parameters α1 and α2, it is possible to change the

coordinate system to

ds2 = β

dα2

α2
1

α2

α2
1

= βdr2 (B.4)

with r = ln(α/α1). In this coordinate system, grr = β is a constant, so that the derivative of

grr vanishes and the Christoffel symbol becomes Γrrr = 0. The Euler-Langrange equation in this

coordinate system is

r̈(t) = 0 (B.5)

The solution of this equation with boundary conditions r(0) = 0 and r(1) = ln(α2/α1) is

r(t) = ln(α2/α1)t = ln(λ2)t (B.6)

To find the tangent vector in the original coordinate system, we use the Ansatz r(t) = ln(λ(t))

where λ(t) = α(t)/α1. From this

λ(t) = exp (ln(λ2)t)

⇒ α(t) = α1 exp

[
ln

(
α2

α1

)
t

]
(B.7)

The tangent vector at the start point of the geodesic is then given by

dα(t = 0) = α1 ln

(
α2

α1

)
dt (B.8)

In the beginning of the section it was clear from figure B.1 that for one-dimensional spaces, only

the sign of above expression is crucial. dt > 0 by definifition, so that the logarithmic map is

given by

~α1α2 = sgn

(
α1 ln

(
α2

α1

))
dG(α1‖α2) (B.9)

Note that although ~α1α2 ∈ Tα1M is a vector, it is a one-dimensional vector and thus also a scalar

value. dG(α1‖α2) represents the geodesic distance of (2.38) and is repeated here for simplicity:

dG(α1‖α2) =
√
β

∣∣∣∣ln
(
α2

α1

)∣∣∣∣ (B.10)

The exponential map is the inverse transformation, projecting points from the tangent plane

back to the manifold. Points in the tangent plane are determined by ~α1α2 in (B.9) and moreover

| ~α1α2 |= dG(α1‖α2). Solving expression (B.10) for α2 and using former equivalence relation,

one finds
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α2 = α1 exp

[
~α1α2√
β

]
(B.11)
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Appendix C

Euclidean representation of

probabilistic spaces

Visualisation methods, such as MDS, prove to be useful in some cases, but lack information

about the geometry of the original space. Even if the original pairwise distances are well con-

served, the distances become Euclidean distances. This also means that the distance between

two faraway points in the embedding is to be measured along the line connecting the points,

which in general will not coincide with a path along consecutive neighbours. Geodesic paths are

thus not conserved in an MDS embedding. Also the curvature of the original space is in general

not conserved1.

In the case of the Riemannian manifold of univariate, zero-mean GGD distributions with fixed

β, it is possible to construct an equivalent representation in a Euclidean space. Equivalent rep-

resentations have identical geometric properties. The goal is thus to find a diffeomorfism (an iso-

morphism between differentiable manifolds) between the probalistic manifold of univariate and

zero-mean GGD distributions and a Euclidean space. The representation in a one-dimensional

Euclidean space is not interesting for visualisation purposes2. We propose an equivalent repre-

sentation in a two-dimensional Euclidean space. If such a representation is found, it will conserve

all geometric properties and a search for still higher-dimensional representations becomes un-

necessary. Two equivalent representations have the same metric. The two representations are

thus linked by the constraint

ds2 = β
dα2

α2
= dx2 + dy2 (C.1)

The representation in the two-dimensional space needs to remain intrinsically one-dimensional.

The representation will thus be a one-dimensional curve. The Euclidean coordinates can be

parametrised along this curve. We arbitrarily choose that parameter equal to the scale parameter

α of the GGD. (C.1) can then be rewritten as

ds2 = β
dα2

α2
=

[(
dx

dα

)2

+

(
dy

dα

)2
]
dα2 (C.2)

1We refer to the intrinsic curvature from differential geometry. For one-dimensional Riemannian spaces, this

curvature is identically zero.
2An equivalent one-dimensional Euclidean representation is x(α) =

√
β lnα.
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The representation will not be unique. x(α) and y(α) are coupled by previous expression, but

different choices of x(α) will deliver equivalent representations, at least for a certain range of

the parameter α. The most meaningful representation is one, in which one of the Euclidean

coordinates is identified with the scale parameter. We choose x(α) = α. This will allow to easily

identify points on the curve with GGD distributions. It should be highlighted that this choice

of x(α) does not necessarily lead to a representation. It will in fact become clear that for this

choice, it is not possible to represent the entire probabilistic manifold in the Euclidean space3.

For this choice, (C.2) becomes

β

α2
dα2 =

[
1 +

(
dy

dα

)2
]
dα2 (C.3)

This is a differential equation relating the dependent variable y to the independent variable α,

in such a way that the infinitesimal distance between points along the curve in the Euclidean

plane is the same as in the original space of distributions. This equation can be solved to find

the α dependency of y by separation of variables

dy =

√
β

α2
− 1dα (C.4)

The positive square root is chosen arbitrarily. The argument of the square root is positive when

α ≤ √β. This is always satisfied for the wavelet statistics. Typically Laplacian distributions are

used, with β = 1. The highest fitted α values are of the order of 10−3.

The geometrical aspects do not depend on the constants of integration of above expression.

Only a primitive is needed. To integrate the right hand side of (C.4), the change of variables is

proposed

√
β

α
= cosh θ ⇔ θ = arccosh

(√
β

α

)

dα =
√
βd

(
1

cosh θ

)
= −

√
β

sinh θ

cosh2 θ
dθ (C.5)

With this change of variables, integration of (C.4) gives

y(θ) = −
√
β

∫
tanh2 θ dθ (C.6)

Following identity is used

tanh θ =
sinh θ

cosh θ
=

√
cosh2 θ − 1

cosh θ
(C.7)

Combining (C.6) and (C.7) delivers

y(θ) =
√
β

[∫
dθ −

∫
1

cosh2 θ
dθ

]

=
√
β [θ − tanh θ] (C.8)

3A Euclidean representation for the entire manifold can easily be found by choosing x(α) ∝ lnα.
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y(θ) can be rewritten in function of α by combining (C.5), (C.7) and (C.8). After some simpli-

fications, the expression for y(α) becomes

y(α) =
√
β

[
arccosh

√
β

α
− 1√

β

√
β − α2

]
(C.9)

The scale parameter is typically several orders of magnitude lower than the shape parameter.

In the limit α � √β, the second term simplifies to 1. Moreover, the following identity holds:

arccosh(x) = ln(x+
√
x2 − 1) for x > 1. For x� 1, arccosh(x) ≈ ln(2x). Thus (C.9) reduces to

y(α) =
√
β

[
ln

2
√
β

α
− 1

]
(C.10)

The representation of the manifold of univariate, zero-mean Laplace distributions is shown in

figure 2.14 for 10−5 ≤ α ≤ 10−3.
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Code

D.1 Feature extraction

Feature extraction is performed with the command FeatDisrupt.m. FeatDisrupt.m requires

as input cell arrays X and Err. The cell array X is a concatenation of JET signals. The signals

were extracted from JET by use of MDSplus. Each row in X corresponds to a shot and each

column to a signal. Each cell in X is a two-column vector. The first column contains the time

base and the second column contains the signal values on this time base. It was for some signals

and certain shots not possible to get access by MDSplus. In this case, the corresponding cell

array in X was left empty. If this was the case, the corresponding cell in Err was 1. Else it was

0.

The command for FeatDisrupt.m looks as follows

[alpha, beta, sigma, FGGD, FFou, T] = FeatDisrupt(Dir, FileN, NSig, ShotRange, ...

ShotNoD, TDis, NWin30, TBD, TBR, NS, b fix, b max, SOmit)

Dir is a string indicating the directory in which X and Err are stored. X and Err were saved in

the same Matlab file. Usually X and Err were split in blocks per hundred shots because of the

large volume of the data. The generic name for a block is FileN. FeatDisrupt.m relies heavily

on the specific ordening of shots in blocks. The translation of a shot number to a block and row

number in X happens in the subfunction FileInfo. When used by a different user, this part of

the code should be adjusted!

NSig is the number of signals in the data set. NSig=13 and corresponds to the signals in table

1.2. ShotRange is a 1× 2 vector. It contains the first and last shotnumber of the new data set.

ShotNoD contains the shot numbers for which signals are available in X, in the same order as

in X (usually ShotNoD has been used to extract the data by MDSplus). TDis is a vector with

the same length as ShotNoD and contains the time of disruption for each shot. NWin30 is the

number of windows of 30 ms used to extract frequency information. It was held one in all tests.

The role of TBD and TBR is discussed later on. NS is the wavelet decomposition level. b max

is the maximum allowed β in the fit of a GGD distribution to the wavelet spectrum. If b max

is zero, the β is held fixed according to b fix. If b fix is also zero, then β is allowed to take

all possible values. SOmit is a vector and contains all signals which are to be excluded in the

feature extraction. It contains values from one to NSig. SOmit can also be empty.
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FeatDisrupt.m delivers cell arrays alpha, beta and sigma. Each row corresponds to a shot.

Each column corresponds to a signal for which the feature extraction was performed. Each cell

contains a vector with the values of respectively the α and β values of the GGD fit and the

standard deviations σ in the Fourier spectrum for all time windows of the corresponding shot.

The data is re-ordered in FGGD and FFou. FGGD and FFou are structures with fields reg and

dis. reg contains feature vectors for regular time windows and dis for disruptive time windows.

Each field contains subfields data and meta. data is a matrix containing the feature vectors

for all time windows of the corresponding class. Each row corresponds to a feature vector. Each

column corresponds to a feature. FGGD and FFou are used by the classification algorithms. The

meta field contains for values for each feature vector. The values are, in the same order as they

appear in consecutive columns, the shot number, the time of disruption, the beginning and end

of the time window. At last, T is also a structure with fields reg and dis. Each field contains

a cell array with the same number of cells as there are shots in the new data set. Each cell

contains the boundaries of all time windows of a shot.

The features in FFou are ordered per signal. For wavelet features there exist several decom-

position levels for each signal. For each decomposition level, two features are extracted (the α

and β parameters of the GGD). A row in FGGD is ordened as follows: [α11, β11, α12, . . . , β1 NSig,

α21, . . . , βNS NSig]. After initialisation, vectors ISE2 and IP are created and indicate which fea-

tures should be held in respectively FFou and FGGD after deleting features for signals in SOmit.

ISE2 = setdiff(1:NSig, SOmit);

NSE2 = length(ISE2);

IP = zeros(1, NSE2 * NS * 2);

for j = 1:NSE2

for ns = 1:NS

IP((ns − 1)*NSE2*2+(j−1)*2+1:(ns−1)*NSE2*2+(j−1)*2+2) = ...

[(ns−1)*NSig*2+(ISE2(j)−1)*2+1,(ns−1)*NSig*2+(ISE2(j)−1)*2+2];
end

end

The original JET data is loaded per block and some pre-processing is already performed in the

function TransfData, a subfunction in FeatExtract.m. The processing concerns the compu-

tation of discrete time derivatives of signals (2), (5) and (8) in table 1.2 (the time derivatives

are on their own separate predictor signals) and the removal of doubles in X. FileInfo is in the

following the output of subfunction FileInfo. The first column contains the index of the first

and last block for the shots in ShotRange. The second column contains the row index of X at

which the first or last shot of ShotRange is to be found.

CBlockShot = 0; % At any moment CurShot = CBlockShot + NShotCurrent.

for ib = FileInfo(1, 1):FileInfo(2, 1)

D = load([Dir, '\', FileN, ' ', num2str(ib)]);

[X, Err] = TransfData(D, NSig);

clear('D');

if ib == FileInfo(1, 1)

istart = RedShotRange(1) − FileInfo(1, 2) + 1;
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X = X(istart:end, :);

Err = Err(istart:end, :);

elseif ib == FileInfo(2, 1)

iend = RedShotRange(2) − FileInfo(2, 2) + 1;

X = X(1:iend, :);

Err = Err(1:iend, :);

end

[NShot, ˜] = size(X);

Still in the for-loop with index ib, the data for each shot is processed. Each signal is examined

for not-a-number (NaN) values and such values are replaced. NaNs are replaced in such a way

as to insert as less discontinuities as possible in order to not affect the transient behaviour of

the signal.

for i = 1:NShot

% Current shot number among the total number of shots NShotTot

CurShot = CBlockShot + i;

RealCurShot = RedShotRange(1) + CurShot − 1;

if (TDis(RealCurShot) > 0) && (TDis(RealCurShot) < 80)

try

disp(['Shot# ', num2str(ShotNoD(RealCurShot)), ...

' (', num2str(CurShot), '/', num2str(NShotTot), ')']);

S raw = [];

NSE = 0; % Effective number of signals for shot i

for j = 1:NSig

if ˜Err(i, j)

if ˜isempty(X{i, j})
NSE = NSE + 1;

Temp = X{i, j};
INaN = isnan(Temp(:, 2));

if ˜isempty(find(INaN, 1))

disp(['Found NaN in shot ', num2str(CurShot), ...

' at signal ', num2str(j)]);

tel = 1;

while ˜isempty(find(INaN, 1)) && tel<=5

% assuming right neighbour of NaN is not NaN itsself

Temp(INaN, 2) = Temp(circshift(INaN,1),2);

INaN = isnan(Temp(:, 2));

tel = tel+1;

end

if tel >5 %too many adjacent NaN's: avoid endless loop

magn = ceil(mean(log10(abs(Temp(not(INaN), 2)))));

Temp(INaN, 2) = 10ˆmagn;

end

if ˜isempty(find(INaN, 1))

disp(['Found only NaN in shot ', num2str(CurShot), ...

' at signal ', num2str(j)]);

Temp(INaN, 2) = 0;

end

end

S raw{NSE, 1} = Temp;

else
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Err(i, j) = true;

end

end

end

The next step consists of resampling at a rate of 1 kHz (TS=1e-3). The for-loop with index j

is still running, each signal is resampled at the same time base.

if NSE > 0 % There should effectively be signals

S = Resample(S raw, TS, 40, TDis(RealCurShot));

% Resample all signals for the current shot to 1 kHz,

% starting at 40 s (magnetic time) and ending at the time of disruption.

The resampling is followed by a similar procedure as described above to remove new NaNs. The

normalisation to interval [0,1] is performed as follows:

if any(S{jse}(:,2))
Mi = min(S{jse}(:, 2));

Ma = max(S{jse}(:, 2));

S{jse}(:, 2) = (S{jse}(:, 2) − Mi)/(Ma − Mi); % Normalize

else

disp(['Found zero−valued vector in shot ', num2str(CurShot),...

' at interpolated signal ', num2str(j)]);

end

jse is an effective signal index, which increases by one in the for-loop with index j only if no

error has occurred. At this point also if ˜Err(i, j) and for j = 1:NSig end.

The extraction of Fourier and wavelet features is split into regular and disruptive windows. The

boundaries of each time window need to be defined.

RT = S{1}(:, 1); % Real time vector

NOS = length(RT);

% Total number of samples (= sample number of the approximate disruption time).

NOSWin = NWin30 * (30e−3)/TS; % Number of samples per window

NFFT = 2ˆnextpow2(NOSWin); % Next power of 2 from NOSWin for Fourier transform

TWin.reg = 1:NOSWin:(NOS − 1/TS);

%TWin.reg = (NOS−TBR/TS):NOSWin:(NOS − 1/TS);

% Boundaries of nondisruptive time windows, in number of samples, from TBR before

% ToD to one second before the disruption time at the latest.

% The first entry of TWin corresponds to T0 = 0 ms.

% The nth entry corresponds to (n − 1) * NOSWin * TS s.

NOW.reg = length(TWin.reg) − 1; % Number of nondisruptive time windows

TWin.dis = (NOS − (30e−3)/TS):−NOSWin:(NOS − TBD/TS);

% Boundaries of disruptive time windows. The last boundary occurs at approximately

% TBD seconds before the disruption.

TWin.dis = TWin.dis(end:−1:1); % Reverse vector

NOW.dis = length(TWin.dis) − 1; % Number of disruptive time windows

TBD, one of the inputs of FeatExtract.m, indicates the instant before disruption which is still

considered indicative for disruptive behaviour. TBR is the time most prior to disruption which
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is used to extract information about the regular regime. The instant closest to disruption which

is still used to extract regular information (1 s) has been held fixed. The use of TBR is optional.

In the previous code fragment, this option was commented to neglect it. In real-time equivalent

tests, the code should be used as indicated above.

Per regime and shot, alpha, beta and sigma cells are initialised.

FN = {'reg', 'dis'};
for fn = 1:2

if NOW.(FN{fn}) > 0

T.(FN{fn}){CurShot} = RT(TWin.(FN{fn}));
% Boundaries of time windows for shot i, in seconds.

for j = 1:NSig

if ˜Err(i, j)

alpha.(FN{fn}){CurShot, j} = zeros(NOW.(FN{fn}), NS);

beta.(FN{fn}){CurShot, j} = zeros(NOW.(FN{fn}), NS);

sigma.(FN{fn}){CurShot, j} = zeros(NOW.(FN{fn}), 1);

end

end

The wavelet and Fourier features are extracted in subfunction CalcFeat. This function is

summoned as follows:

% The following are temporary feature vectors that contain features for all

% NSig signals (some of which may be empty). Only the features for the

% signals with indices in ISE2 will eventually picked out of these.

Fs.(FN{fn}) = zeros(1, NSig);

Fab.(FN{fn}) = zeros(1, NSig * NS * 2);

for iw = 1:NOW.(FN{fn}) % Feature extraction

jse = 0; % Index for effective signal (with a maximum NSE)

for j = 1:NSig

if ˜Err(i, j)

jse = jse + 1;

SS = S{jse}(TWin.(FN{fn})(iw):TWin.(FN{fn})(iw + 1), 2);

if b max ˜= 0

b fix = 0;

[alpha.(FN{fn}){CurShot, j}(iw, :), ...

beta.(FN{fn}){CurShot, j}(iw, :), sigma.(FN{fn}){CurShot, j}(iw, 1)] = ...

CalcFeat(SS, NOSWin, NFFT, NS, F M, b fix);

if any(beta.(FN{fn}){CurShot, j}(iw, :)>b max) | | ...

any(isnan(beta.(FN{fn}){CurShot, j}(iw, :))) | | ...

any(beta.(FN{fn}){CurShot, j}(iw, :)==b max)

b fix = b max;

[alpha.(FN{fn}){CurShot, j}(iw, :),...

beta.(FN{fn}){CurShot, j}(iw, :), sigma.(FN{fn}){CurShot, j}(iw, 1)] = ...

CalcFeat(SS, NOSWin, NFFT, NS, F M, b fix);

end

else

[alpha.(FN{fn}){CurShot, j}(iw, :), ...

beta.(FN{fn}){CurShot, j}(iw, :), sigma.(FN{fn}){CurShot, j}(iw, 1)] = ...

CalcFeat(SS, NOSWin, NFFT, NS, F M, b fix);
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end

Fs.(FN{fn})(1, j) = sigma.(FN{fn}){CurShot, j}(iw, 1);

for ns = 1:NS

Fab.(FN{fn})(1,(ns−1)*NSig*2+(j−1)*2+1:(ns−1)*NSig*2+(j−1)*2+2) = ...

[alpha.(FN{fn}){CurShot, j}(iw, ns),beta.(FN{fn}){CurShot, j}(iw, ns)];

end

end

end

Subfunction CalcFeat is given below. Once the feature extraction has been performed for all

signals in a time window, the features of signals which do not appear in SOmit are added to FGGD

and FFou. To avoid any problems in the classification problem, some additional constraints are

tested.

if (˜any(isnan(Fab.(FN{fn})(IP)))) && ...

(˜any(Fab.(FN{fn})(IP) == 0)) && (˜any(isempty(Fab.(FN{fn})(IP))))
% Only add the data vectors to FGGD.(FN{fn}) and FFou.(FN{fn}) if all GGD

% features for all required signals (i.e. those with indices in ISE2) are OK.

n.(FN{fn}) = n.(FN{fn}) + 1;

FGGD.(FN{fn}).data(n.(FN{fn}), :) = Fab.(FN{fn})(IP);
FGGD.(FN{fn}).meta(n.(FN{fn}), :) = [ShotNoD(RealCurShot), ...

TDis(RealCurShot), T.(FN{fn}){CurShot}(iw), T.(FN{fn}){CurShot}(iw + 1)];

FFou.(FN{fn}).data(n.(FN{fn}), 1:NSE2) = Fs.(FN{fn})(ISE2);
FFou.(FN{fn}).meta(n.(FN{fn}), :) = [ShotNoD(RealCurShot), ...

TDis(RealCurShot), T.(FN{fn}){CurShot}(iw), T.(FN{fn}){CurShot}(iw + 1)];

end

end

else

disp(['No ', FN{fn}, ' time windows in shot ', num2str(CurShot), '. Skipping.']);

end

The second end in previous fragment closes the for-loop with index fn. The else-clause

corresponds to nif NOW.(FNf) > 0.

All open for-loops are closed at this point. The try-clause of the second code fragment was

added to ensure that the feature extraction does not stop by an error for one shot. If an error

does occur, an error message is produced.

catch err

disp(['Error processing shot ', num2str(CurShot), '. Skipping.']);

disp(strcat(err.stack.name,': line ',num2str(err.stack(1).line)))

end

Once all shots of a block have been processed, CBlockShot is updated. The temporary loaded

X and Err are deleted to replace them with X and Err of the following block.

The features of the time sequence for one signal and one time window is computed by the

subfunction CalcFeat. This function is called as follows:

function [alpha, beta, sigma] = CalcFeat(SS, NOSWin, NFFT, NS, F M, b fix)
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SS is a vector with the signal values for one time window. NOSWin is the length of SS. NFFT is

a multiple of two which best approaches NOSWin in order to optimise the FFT transform. NS is

the wavelet decomposition level. F M is a look-up table to solve the highly non-linear equation

in (2.9). This table needs to be stored in the same map with FeatExtract.m. It is loaded in

the beginning of the initialisation part by load('.F M short.mat');. The function returns NS

α and β GGD parameters stored in respectively vectors alpha and beta. Also a single value

sigma is returned, the standard deviation of the Fourier power spectrum.

Y = fft(SS, NFFT)/NOSWin; % Fourier transform

P = 2 * abs(Y(2:NFFT/2 + 1));

% Single−sided amplitude spectrum. Discard first component (DC).

sigma = std(P);

WT = ndwt(SS, NS, 'db2');

alpha = zeros(1, NS);

beta = zeros(1, NS);

for ns = 1:NS

SWC = cell2mat(WT.dec(ns + 1));

[alpha(1, ns), beta(1, ns)] = CalcAlfaBeta(SWC, F M, b fix);

end

The fit of a GGD is performed in CalcAlfaBeta.m which needs to be in the same map as

FeatExtract.m. Function CalcAlfaBeta includes the following:

function [alfa, beta] = CalcAlfaBeta(CMatrix, F M, b fix)

C = CMatrix(1:end);

if ˜b fix

m1 = mean(abs(C));

m2 = mean(C.ˆ2);

zeta = m1 / sqrt(m2);

if zeta > F M(end, 2)

zeta = F M(end, 2);

elseif zeta < F M(1, 2)

zeta = F M(1, 2);

end

beta i = interp1(F M(:, 2), F M(:, 1), zeta);

beta = beta i;

tol = 1;

NIter = 0;

while (tol > 1E−6) && (NIter < 100)

NIter = NIter + 1;

[g, g p] = gs(beta, C);

new beta = beta − g/g p;

if new beta < 0.1

break;

end

tol = abs(new beta − beta);
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beta = new beta;

end

else

beta = b fix;

end

alfa = (beta * mean((abs(C)).ˆbeta))ˆ(1/beta);

end

function [g, g p] = gs(beta, C)

% Calculates g in relation (16) and g' in (25) in Do & Vetterli.

F1 = sum((abs(C)).ˆbeta .* (log(abs(C))).ˆ2);

F2 = sum((abs(C)).ˆbeta .* log(abs(C)));

F3 = sum((abs(C)).ˆbeta);

F4 = mean((abs(C)).ˆbeta);

g = 1 + psi(1/beta)/beta − F2/F3 + log(beta * F4) / beta;

g p = −psi(1/beta)/betaˆ2 − psi(1, 1/beta)/betaˆ3 + 1/betaˆ2 ...

− F1/F3 + (F2/F3)ˆ2 + F2/(beta * F3) ...

− log(beta * F4) / betaˆ2;

end

The solution scheme is a Newton-Ralphson iterative proceduce to solve (2.9). It is described in

[34].

D.2 Classification

D.2.1 Test and training sets

The FGGD and FFou outputs of FeatExtract.m were split in a test and training set. This was

done on basis of shotnumbers. A ratio of all shotnumbers in FGGD and FFou was randomly

selected to create the training set. The rest of the shots were used to generate the test set. A

function to split the data set is named GetShotTrainData.m. It is called in the following way:

[FGGDTrain, FFouTrain, FGGDTest, FFouTest, ITrain, ITest] = ...

GetShotTrainData(FGGD, FFou, Ratio, ITrain, ITest)

If input variables ITrain and ITest are not empty, the shotnumbers in those vectors are used

instead. This option was included in order to be able to reconstruct the test and training sets

of previous tests. This option was also used in order to test the J-div classifier with data of

the same shots as the other classifiers. This was necessary, as the J-div classifier is based on a

different set of wavelet features than the other classifiers.

The first part of the code is:

FN1 = fieldnames(FGGD); % Contains field names 'reg' and 'dis'.
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NF1 = length(FN1);

if isempty(ITrain)

% use same shotnumbers for all classes

shotno = unique(FGGD.(FN1{1}).meta(:,1))';
NOS = length(shotno);

P = randperm(NOS);

NTrain = ceil(NOS * Ratio);

NTest = NOS−NTrain;
ITrain = (shotno(P(1:NTrain)))';

ITest = (shotno(P(NTrain + 1:NOS)))';

if isempty(ITrain) % make sure both ITrain and ITest not empty

ITrain = shotno(P(1))';

ITest = (shotno(P(2:NOS)))';

NTrain = 1;

NTest = NOS−1;
elseif isempty(ITest)

ITrain = shotno(P(1:NOS−1))';
ITest = (shotno(P(NOS)))';

NTrain = NOS−1;
NTest = 1;

end

else

NTrain = length(ITrain);

NTest = length(ITest);

end

FN2 = fieldnames(FGGD.(FN1{1})); % Containes field names 'data' and 'meta'.

NF2 = length(FN2);

for i = 1:NF1

for j = 1:NF2

FGGDTrain.(FN1{i}).(FN2{j}) = [];

FFouTrain.(FN1{i}).(FN2{j}) = [];

FGGDTest.(FN1{i}).(FN2{j}) = [];

FFouTest.(FN1{i}).(FN2{j}) = [];

end

end

for k = 1:NTrain

FGGDtemp = GetCampaignData(FGGD,[ITrain(k), ITrain(k)]);

FFoutemp = GetCampaignData(FFou,[ITrain(k), ITrain(k)]);

for i = 1:NF1

for j = 1:NF2

FGGDTrain.(FN1{i}).(FN2{j}) = ...

[FGGDTrain.(FN1{i}).(FN2{j}); FGGDtemp.(FN1{i}).(FN2{j})];
FFouTrain.(FN1{i}).(FN2{j}) = ...

[FFouTrain.(FN1{i}).(FN2{j}); FFoutemp.(FN1{i}).(FN2{j})];
end

end

end

for k = 1:NTest

FGGDtemp = GetCampaignData(FGGD,[ITest(k), ITest(k)]);

FFoutemp = GetCampaignData(FFou,[ITest(k), ITest(k)]);

for i = 1:NF1

81



Appendix D. Code

for j = 1:NF2

FGGDTest.(FN1{i}).(FN2{j}) = ...

[FGGDTest.(FN1{i}).(FN2{j}); FGGDtemp.(FN1{i}).(FN2{j})];
FFouTest.(FN1{i}).(FN2{j}) = ...

[FFouTest.(FN1{i}).(FN2{j}); FFoutemp.(FN1{i}).(FN2{j})];
end

end

end

GetCampaignData.m is a function which extracts from a dataset FGGD or FFou all feature vectors

with shotnumbers between the two values given in its second argument. Here the function is

called by giving the same begin and end shot number, in order to extract the data for each shot

separately. The source code in GetCampaignData.m is given below.

In our tests it was not possible to work with the huge amount of regular time windows which

are present in FGGD and FFou if the optional line in FeatExtract.m which makes use of TBR is

switched off. The second part of GetShotTrainData.m makes it possible to create training and

test sets with an equal number of disruptive and regular feature vectors.

FGGDTrain2.dis.data = FGGDTrain.dis.data;

FFouTrain2.dis.data = FFouTrain.dis.data;

FGGDTrain2.dis.meta = FGGDTrain.dis.meta;

FFouTrain2.dis.meta = FFouTrain.dis.meta;

FGGDTest2.dis.data = FGGDTest.dis.data;

FFouTest2.dis.data = FFouTest.dis.data;

FGGDTest2.dis.meta = FGGDTest.dis.meta;

FFouTest2.dis.meta = FFouTest.dis.meta;

FGGDTrain2.reg.data = [];

FFouTrain2.reg.data = [];

FGGDTrain2.reg.meta = [];

FFouTrain2.reg.meta = [];

FGGDTest2.reg.data = [];

FFouTest2.reg.data = [];

FGGDTest2.reg.meta = [];

FFouTest2.reg.meta = [];

% For shots for which disruptive features are available, choose

% regular time windows closest to disruption.

ShotsTrain = unique(FGGDTrain.dis.meta(:,1))';

NTraind = length(ShotsTrain);

ShotsTest = unique(FGGDTest.dis.meta(:,1))';

NTestd = length(ShotsTest);

for k = 1:NTraind

nf = sum(FGGDTrain.dis.meta(:,1) == ShotsTrain(k));

indtemp = find(FGGDTrain.reg.meta(:,1) == ShotsTrain(k));

nfr = length(indtemp);

if nfr > 0

if nfr > nf

indtemp = indtemp(nfr−nf+1:nfr);
end

FGGDTrain2.reg.data = [FGGDTrain2.reg.data;FGGDTrain.reg.data(indtemp,:)];

FGGDTrain2.reg.meta = [FGGDTrain2.reg.meta;FGGDTrain.reg.meta(indtemp,:)];
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FFouTrain2.reg.data = [FFouTrain2.reg.data;FFouTrain.reg.data(indtemp,:)];

FFouTrain2.reg.meta = [FFouTrain2.reg.meta;FFouTrain.reg.meta(indtemp,:)];

end

end

for k = 1:NTestd

nf = sum(FGGDTest.dis.meta(:,1) == ShotsTest(k));

indtemp = find(FGGDTest.reg.meta(:,1) == ShotsTest(k));

nfr = length(indtemp);

if nfr > 0

if nfr > nf

indtemp = indtemp(nfr−nf+1:nfr);
end

FGGDTest2.reg.data = [FGGDTest2.reg.data;FGGDTest.reg.data(indtemp,:)];

FGGDTest2.reg.meta = [FGGDTest2.reg.meta;FGGDTest.reg.meta(indtemp,:)];

FFouTest2.reg.data = [FFouTest2.reg.data;FFouTest.reg.data(indtemp,:)];

FFouTest2.reg.meta = [FFouTest2.reg.meta;FFouTest.reg.meta(indtemp,:)];

end

end

FGGDTrain = FGGDTrain2;

FGGDTest = FGGDTest2;

FFouTrain = FFouTrain2;

FFouTest = FFouTest2;

In the future it will be interesting to perform real-time equivalent experiments. If this is the case,

the part of above code fragment which concerns the test set should be removed. It is, however,

interesting to use the same number of regular and disruptive feature vectors in the training set

in order to avoid preferential treatment for one regime in the classification process because of

the excess of training vectors of the regular regime. The source code of GetCampaignData.m is

the following:

function FGGDcamp = GetCampaignData( FGGD,ShotRange )

FN = fieldnames(FGGD);% contains 'reg' and 'dis'

N = length(FN);

for n = 1:N

ind = (FGGD.(FN{n}).meta(:,1) >= ShotRange(1)) & ...

(FGGD.(FN{n}).meta(:,1) <= ShotRange(2));

FGGDcamp.(FN{n}).data = FGGD.(FN{n}).data(ind,:);
FGGDcamp.(FN{n}).meta = FGGD.(FN{n}).meta(ind,:);

end

end

D.2.2 Grouplabels

On basis of FGGD or FFou, vectors GTest and GTrain are defined which contain labels describing

the class of each feature vector. The class can be regular or disruptive, but can be generalised

to more group labels, for example in disruption cause detection. GetShotGroupIndex.m auto-

matically makes vectors GTest and GTrain. The assumption is made in the code that in the

classification step, consecutive fields in FGGD and FFou for as well training set as test set are

concatenated below each other in the same order as they appear in FGGD and FFou. For example,
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if in FGGD the field reg appears first and the field dis second, the training set will be given to

the classifier as: [FGGDTrain.reg.data; FGGDTrain.dis.data]. The test set is treated in

the same way.

function [ GTrain,GTest ] = GetShotGroupIndex( FTrain,FTest )

FN = fieldnames(FTrain);

NG = length(FN);

GTrain = [];

GTest = [];

telTrain = 1;

telTest = 1;

for i = 1:NG

niTrain = size(FTrain.(FN{i}).data,1);
niTest = size(FTest.(FN{i}).data,1);
GTrain(telTrain:telTrain+niTrain−1,1) = i;

GTest(telTest:telTest+niTest−1,1) = i;

telTrain = telTrain+niTrain;

telTest = telTest+niTest;

end

end

D.2.3 Classification

Support vector machine

Use was made of the built-in Matlab functions svmtrain and svmclassify.

k-nearest neighbours

The source code for k-NN classification is given below. The associated Matlab file is kNNClass.m

function [L, RClass, D] = kNNClass(XTrain, XTest, GTrain, GTest, NG, k, DistFun, D)

[n1, p] = size(XTrain);

[n2, ˜] = size(XTest);

if isempty(D) % Distances still to be computed.

D = zeros(n1, n2);

for i = 1:n1

XTemp = repmat(XTrain(i, :), n2, 1);

D(i, :) = (DistFun(XTemp, XTest))';

end

end

[˜, I] = sort(D, 1);
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I = I(1:k, :); % Select indices of k nearest neighbors within the training set

GTemp = repmat(GTrain, 1, n2);

NN = zeros(k, n2);

for i = 1:n2

NN(:, i) = GTemp(I(:, i), i); % Group labels of the nearest neighbors

end

Num = zeros(NG, n2);

for i = 1:NG % Count the number of nearest neighbors from every group.

Num(i, :) = sum(NN == i, 1);

end

[˜, L] = max(Num, [], 1);

L = L';

if ˜isempty(GTest)

RClass.T = zeros(NG, 1);

RClass.F = zeros(NG, 1);

for i = 1:NG

RClass.T(i) = 100 * length(find((GTest == i) & (L == i)))/...

length(find(GTest == i)); % True positives

RClass.F(i) = 100 * length(find((GTest ˜= i) & (L == i)))/...

length(find(GTest ˜= i)); % False positives

end

else

RClass = [];

end

end

This code can be used as a generic file for all possible k-NN classification problems. The

algorithm can be used for multiple-class problems. NG is the number of groups. The distance

function can be chosen arbitrarily. DistFun is a function handle to the function which computes

the similarity measure. An example is DistFun = @Eucl, if the function for the similarity

measure is written in file Eucl.m. The different distance functions are given in section D.3 of

this appendix.

Mahalanobis

The Mahalanobis classifier for independent, zero-mean, univariate Laplacian distributions is

given below. The function file is MahaClass.m.

function [L, RClass, D] = MahaClass(XTest, mu, S, b, GTest, D, NG)

[n2, ˜] = size(XTest);

if isempty(D) % Distances still to be computed.

D = zeros(NG, n2);

for ng = 1:NG

for i = 1:n2

D(ng, i) = MahaDist(XTest(i,:), mu.(sprintf('ng %d',ng)),...

S.(sprintf('ng %d',ng)), b);
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end

end

end

[˜,L] = sort(D);

L = L(1,:)';

if ˜isempty(GTest)

RClass.T = zeros(NG, 1);

RClass.F = zeros(NG, 1);

for i = 1:NG

RClass.T(i) = 100 * length(find((GTest == i) & (L == i)))/...

length(find(GTest == i)); % True positives

RClass.F(i) = 100 * length(find((GTest ˜= i) & (L == i)))/...

length(find(GTest ˜= i)); % False positives

end

else

RClass = [];

end

end

Again the code is very general. The mean and covariance matrix for each class are found in

structures mu and S. The fields of mu and S are constructed in a consisted way: mu.ng 1 contains

the (multivariate) mean of the cluster for the first class, mu.ng 2 for the second class and so

forth. The fields of S follow a similar construction.

Some clarification on the meaning of mu and S are necessary. mu contains the multivariate means

for the cluster of each class on the product space of zero-mean, univariate Laplacian manifolds. In

the tangent space, the mean is namely zero (the point at which the tangent space is constructed

is by definition the origin of the space). The multivariate Gaussian model for the cluster is thus

described solely by a covariance matrix. The covariance matrix describing the cluster of each

class in the tangent space is contained in S.

The source code for the distance function MahaDist.m is the following:

function [D, mu, S] = MahaDist(a, mu, S, b)

F = length(a);

x = zeros(F,1);

for i =1:F

x(i) = LogMapGGD1D(mu(i), a(i), b);

end

D = sqrt(x.'*Sˆ(−1)*x);
end

The test point is thus first projected to the tangent space at mu and then the Mahalanobis

distance is computed in the tangent space. The exponential and logarithmic maps are treated

separately in section D.4.

D.2.4 Conversion to real-time results

The classification algorithms above only give classification results in terms of TPR and FPR.

In order to convert the results to real-time equivalents, the function file RTequivs.m should be
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used. The function is called as follows:

[MA,FA,TE,SR,AVG, NShotT] = RTequivs(L,IFTest,GTest)

The inputs are the labels given by the classifier to each feature vector, L, the meta file of the

test set, IFTest and the correct labels for the test set, GTest.

The first step is the initialisation:

function [MA,FA,TE,SR,AVG, NShotT] = RTequivs(L,IFTest,GTest)

MA = 0;

FA = 0;

SR = 0;

DT = [];

Shots = unique(IFTest(:,1))';

NShotT = length(Shots);

For each shot, the labels found by the classifier and the correct labels are stored in new variables

for comparison.

for k = 1:NShotT

ind = find(Shots(k) == IFTest(:,1));

Lsub = L(ind)';

Tsub = repmat(IFTest(ind,2),1,2) − IFTest(ind,3:4);

TWin = mean(Tsub,2); % middle of window used for DT and AVG

Gsub = GTest(ind);

if size(Lsub,2) == size(Gsub,1)

Lsub = Lsub';

end

Still in the for-loop with index k, a case study is performed to see whether a false alarm was

generated, a succesfull prediction was made, or the disruption was not recognised. The order of

the three logical tests is important.

if any(Lsub == 2 & Gsub == 1) % premature alarm

FA = FA+1;

elseif any(Lsub == 2 & Gsub == 2) | | ...

(˜any(Gsub == 2) && ˜any(Lsub == 2)) % successful prediction

SR = SR+1;

time pred = TWin(Lsub == 2 & Gsub == 2);

if ˜isempty(time pred)

DT = [DT;time pred(1)];

end

else % missed alarm

MA = MA + 1;

end

end

In the last step, the classification results are converted to percentages.
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MA = 100*MA/NShotT;

FA = 100*FA/NShotT;

TE = MA+FA;

SR = 100*SR/NShotT;

AVG = mean(DT);

end

D.3 Similarity measures

The k-NN classifier calls a function by the function handle DistFun to calculate the similarity

matrix. All distance functions require two data sets of the same size. Each row of the data sets

corresponds to a feature vector. The distance is computed between each pair of feature vectors

with the same row index. The output D is a column vector containing the pairwise distances.

D.3.1 Euclidean distance

The Euclidean distance is computed by the function Eucl.m

function D = Eucl(X,Y)

D = (sum((X−Y).ˆ2,2)).ˆ(1/2);
end

D.3.2 J-divengence

The J-divergence is computed by Jdiv.m.

function D = Jdiv(X,Y)

l = size(X,2);

if mod(l,2)

disp('Test/train data no right format')

return

end

NFeat = l/2;

N = size(X,1);

D = zeros(N,1);

for j = 1:NFeat

a1 = X(:,(j − 1) * 2 + 1)';

b1 = X(:,(j − 1) * 2 + 2)';

a2 = Y(:,(j − 1) * 2 + 1)';

b2 = Y(:,(j − 1) * 2 + 2)';

KLD12 = GGKL(a1,b1,a2,b2,1);

KLD21 = GGKL(a2,b2,a1,b1,1);

Dtemp = mean([KLD12; KLD21], 1);

D = D+Dtemp';

end

end
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Jdiv.m is based on function GGKL.m, which computes the KLD between feature vectors with the

same row index. The input of GGKL.m is essentially the concatenation of parameters of univariate

GGDs. The total distance between the joint PDFs consisting of a product of independent GGD

distributions is computed above using the additionality property of the KLD.

function D = GGKL(a1, b1, a2, b2, Dim)

D = sum(log((b1.*a2.*gamma(1./b2))./(b2.*a1.*gamma(1./b1))) ...

+ (a1./a2).ˆb2.*(gamma((b2+1)./ b1)./gamma(1./b1))−1./b1, Dim);

end

D.3.3 Rao geodesic distance

The Rao geodesic distance is computed by GGRao.m.

function D = GGRao(X,Y)

l = size(X,2);

NFV = size(X,1);

if mod(l,2)

disp('Test/train data no right format')

return

end

Nfeat = l/2;

D = zeros(NFV,1);

for i = 1:Nfeat

a1 = X(:, (i − 1) * 2 + 1);

a2 = Y(:, (i − 1) * 2 + 1);

bh = (X(:, (i − 1) * 2 + 2)+1)/12;

Dtemp = (3*bh−1/4).*(log(a2.ˆ2./a1.ˆ2)).ˆ2;
D = D + Dtemp;

end

D = D.ˆ(1/2);

end

This code is to be treated with care. The function only works appropriately for data sets for

which β is held fixed for each GGD.

GGRao.m is based on the Rao geodesic distance for multivariate GGDs. Above expression however

reduces to (2.38) in the univariate case. bh in GGRao is given by

bh =
β + 1

12
(D.1)
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The Rao geodesic distance in the code is given by

dG((α1, β); (α2, β)) =

√(
3bh− 1

4

)
· ln2

(
α2

2

α2
1

)

=

√
(
β + 1

4
− 1

4
) · 4 ln2

(
α2

α1

)

=
√
β

∣∣∣∣ln
(
α2

α1

)∣∣∣∣ (D.2)

and thus equivalent to (2.38).

D.4 Exponential and logarithmic maps

The logarithmic map for a univariate, zero-mean Laplacian distribution is computed using

LogMapGGD1D.m.

function da = LogMapGGD1D(a1, a2, b)

% Logarithmic map for the univariate zero−mean GGD distribution with scale

% parameter matrix a2 to the tangent vector in the plane tangent at the GGD

% manifold in the point given by a1. a1 and a2 are scale parameters,

% or vectors of scale parameters of the same size (or one of them scalar).

% The scale parameter of the GGD is held fixed and equals b.

da = sqrt(b)*log(a2./a1);

end

The exponential map is computed by use of ExpMapGGD1D.m.

function a2 = ExpMapGGD1D(da, a1, b)

% Exponential map for the zero−mean univariate GGD manifold, from the

% tangent vector da at the point a1 (scale parameter) to the point

% a2 on the manifold.

% The shape parameter of the GGD is held fixed and equals b.

a2 = a1*exp(da/sqrt(b));

end

The geodesic centre-of-mass of a cluster is found using the iterative procedure of section 2.5.

The procedure has been implemented in CentrGGD1D.m.

function [mu, v, da, da mean] = CentrGGD1D(a,b)

% Searches for the centroid mu (scalar) of a cluster of n scale

% parameters in a for the GGD case with fixed shape parameter b. a is a 1 x n

% vector. An efficient gradient descent algorithm is used. Next,

% the variance v (scalar) of the cluster is calculated. da (1 x n) contains

% the tangent vectors at the mean, corresponding to the points in a

% (logarithmic maps). For good convergence of the algorithm, the mean
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% da mean of the tangent vectors in da should be 'close to' the zeros.

mu = mean(a); % Take the Euclidean mean of the a to initialize mu.

tol = 100;

NIter = 0;

NMaxIter = 50;

while (tol > 1) && (NIter < NMaxIter)

% Repeat until tolerance is under 1 percent (or NIter >= NMaxIter).

NIter = NIter + 1;

da = LogMapGGD1D(mu, a, b);

da mean = mean(da);

mu new = ExpMapGGD1D(da mean, mu, b);

tol = 100 * abs((mu new − mu)/mu); % Relative change in percent

mu = mu new;

end

if NIter == NMaxIter

disp('Maximum number of iterations reached.');

end

da = LogMapGGD1D(mu, a, b); % Update the tangent vectors with the latest mu.

v = var(da);

end

Usually the algorithm converges in a limited number of iterations.

D.5 Working example

To make the use of all code fragments more accessible, an example is given here which uses

all functions above. The classification test is performed with shots of campaigns C15-C20 (396

disruptive shots with shotnumbers ranging from 65863 to 73128). First features with a constant

β = 1 for the wavelet statistics (decomposition level = 3) are extracted. The Fourier features

are extracted at the same time. The JET data is available in the map ’./Data’.

65% of the shots are randomly chosen to create the training set using GetShotTrainData. The

group labels are determined using GetGroupIndex. The data is classified by a k-NN (k = 1)

with Fourier features using the Euclidean distance. Afterwards, the same data set is classified

using the geodesic distance between Gaussians. Therefore, the Fourier data set is modified.

Finally, the Fourier features are classified by an SVM classifier with scale parameter of the RBF

kernel σ = 6. The wavelet features are classified by a k-NN classifier and making use of the Rao

geodesic distance. The wavelet features are also classified using a Mahalanobis classifier. First,

the scale parameters in FGGD are converted to quadratic dispersions. The geodesic centre-of-mass

for the cluster of regular events and the cluster of disruptive events is found using the proposed

iterative prodecure. The covariance matrices are computed for both clusters. The covariance at

different wavelet scales is neglected.

Afterwards, a data set with variable β for the GGD modeling of the wavelet statistics is con-

structed. The data set contains feature vectors for the same time windows as in the first feature

extraction. The classification of this data set is performed using a k-NN classifier and the J-

divergence. The same feature vectors are used as in the first test to train the classifier.

In the last line, the classification results of the k-NN classifier with wavelet features are converted
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to real-time equivalent results.

Dir = 'Data';

FileN = 'X Err Disrupt';

NSig = 13;

ShotRange = [65863,73128];

NWin30 = 1;

TBD = 210e−3;
TBR = 0; % not used

NS = 3;

b fix = 1;

b max = 5;

SOmit = [];

load('ShotNoD');

load('TDis');

Ratio = 0.65;

sigmaSVM = 6;

NG = 2;

kneigh = 1;

[alpha, beta, sigma, FGGD, FFou, T] = ...

FeatDisrupt(Dir,FileN,NSig,ShotRange,ShotNoD,TDis,NWin30,TBD,TBR,NS,b fix,b max,SOmit);

[FGGDTrain,FFouTrain,FGGDTest,FFouTest,ITrain,ITest]=...

GetShotTrainData(FGGD,FFou,Ratio,[],[]);

[GTrain,GTest]=GetShotGroupIndex(FGGDTrain,FGGDTest);

[L.FouEucl,RClass.FouEucl,˜]=kNNClass([FFouTrain.reg.data;FFouTrain.dis.data],...

[FFouTest.reg.data;FFouTest.dis.data],GTrain,GTest,NG,kneigh,@Eucl,[]);

FFouTrain2.reg.data(:,1:2:25) = sqrt(2)*FFouTrain.reg.data; % alpha = sqrt(2)*sigma

FFouTrain2.reg.data(:,2:2:26) = 2*ones(size(FFouTrain.reg.data));

FFouTrain2.dis.data(:,1:2:25) = sqrt(2)*FFouTrain.dis.data;

FFouTrain2.dis.data(:,2:2:26) = 2*ones(size(FFouTrain.dis.data));

FFouTrain2.reg.meta = FFouTrain.reg.meta;

FFouTrain2.dis.meta = FFouTrain.dis.meta;

FFouTest2.reg.data(:,1:2:25) = sqrt(2)*FFouTest.reg.data;

FFouTest2.reg.data(:,2:2:26) = 2*ones(size(FFouTest.reg.data));

FFouTest2.dis.data(:,1:2:25) = sqrt(2)*FFouTest.dis.data;

FFouTest2.dis.data(:,2:2:26) = 2*ones(size(FFouTest.dis.data));

FFouTest2.reg.meta = FFouTest.reg.meta;

FFouTest2.dis.meta = FFouTest.dis.meta;

[L.FouGD,RClass.FouGD,˜]=kNNClass([FFouTrain2.reg.data;FFouTrain2.dis.data],...

[FFouTest2.reg.data;FFouTest2.dis.data],GTrain,GTest,NG,kneigh,@GGRao,[]);

options = optimset('maxiter',50000);

SVMStruct = svmtrain([FFouTrain.reg.data;FFouTrain.dis.data],GTrain,...

'Kernel Function','rbf','RBF Sigma',sigmaSVM,'quadprog opts',options);

L.SVM = svmclassify(SVMStruct, [FFouTest.reg.data;FFouTest.dis.data]);

for k = 1:2
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RClass.SVM.T(k) = 100 * length(find((GTest == k) & (L.SVM == k)))/...

length(find(GTest == k));

RClass.SVM.F(k) = 100 * length(find((GTest ˜= k) & (L.SVM == k)))/...

length(find(GTest ˜= k));

end

[L.Wav,RClass.Wav,˜]=kNNClass([FGGDTrain.reg.data;FGGDTrain.dis.data],...

[FGGDTest.reg.data;FGGDTest.dis.data],GTrain,GTest,NG,kneigh,@GGRao,[]);

mu.reg = zeros(NS*NSig,1); % NS*NSig independent Laplacians

mu.dis = zeros(NS*NSig,1);

da.reg = zeros(size(FGGDTrain.reg.data,1),NS*NSig);

da.dis = zeros(size(FGGDTrain.dis.data,1),NS*NSig);

for ind = 1:NS*NSig

% Find the centroid and variance of regular cluster.

[mu.reg(ind),˜,da.reg(:,ind),˜] = ...

CentrGGD1D(FGGDTrain.reg.data(:,2*(ind−1)+1),b fix);

% Find the centroid and variance of disruptive cluster.

[mu.dis(ind),˜,da.dis(:,ind),˜] = ...

CentrGGD1D(FGGDTrain.dis.data(:,2*(ind−1)+1),b fix);

end

for ns = 1:NS % features at different wavelet scales independent

S.reg((ns−1)*NSig+1:ns*NSig,(ns−1)*NSig+1:ns*NSig) = ...

cov(da.reg(:,(ns−1)*NSig+1:ns*NSig));
S.dis((ns−1)*NSig+1:ns*NSig,(ns−1)*NSig+1:ns*NSig) = ...

cov(da.dis(:,(ns−1)*NSig+1:ns*NSig));
end

[L.Maha,RClass.Maha,˜] = ...

MahaClass([FGGDTest.reg.data(:,1:2:end−1);FGGDTest.dis.data(:,1:2:end−1)],...
mu,S,b fix,GTest,[],NG);

%feature extraction variable 0<beta<=5

[FGGDTrain,FFouTrain,FGGDTest,FFouTest,ITrain,ITest] = ...

GetShotTrainData(FGGD,FFou,Ratio,ITrain,ITest);

[GTrain,GTest]=GetShotGroupIndex(FGGDTrain,FGGDTest);

[L.Jdiv,RClass.Jdiv,˜]=kNNClass([FGGDTrain.reg.data;FGGDTrain.dis.data],...

[FGGDTest.reg.data;FGGDTest.dis.data],GTrain,GTest,2,1,@Jdiv,[]);

[RT.kNN(1),RT.kNN(2),RT.kNN(3),RT.kNN(4),RT.kNN(5),RT.kNN(6)]=...

RTequivs(L.kNN,[FGGDTest.reg.meta;FGGDTest.dis.meta],GTest);
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