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Scienti�c summary

Topological insulators (TIs) are a new class of insulators with intriguing properties and
exist in both 2D and 3D. Their bulk is insulating, but their boundaries host metallic
states. These conducting states are protected by time reversal symmetry, which makes
them robust against nonmagnetic backscattering. Furthermore, the topological bound-
ary states may host exotic quantum phenomena like the quantum anomalous Hall e�ect
when time reversal symmetry is broken. In order to realize these phenomena experimen-
tally, it is necessary for the used TI materials to be intrinsic. However, several TIs are
degenerately doped due to structural defects. Because of this, clear identi�cation and
understanding of native defects is an important part of TI research. To break time rever-
sal symmetry, great e�orts have been made in the magnetic bulk doping of TI materials.
Research looking into magnetic doping at the surface has not been as elaborate. Most
research performed on magnetic surface doping of TIs has been carried out by spatially
averaging techniques, which are not able to probe local phenomena. For this reason, it
is interesting to perform an investigation using local techniques like scanning tunneling
microscopy and spectroscopy (STM and STS).

In the �rst part of this thesis, the characterization of the surface of the 3D TI bismuth tel-
luride (Bi2Te3) by means of several surface analysis techniques is described and results are
presented. Using STM, STS and Auger electron spectroscopy (AES), the native defects of
the crystal are studied. Where possible, they are identi�ed with the help of density func-
tional theory (DFT) based simulated images or literature. Low-energy electron di�raction
(LEED) reveals that there is surface reconstruction. Scattering events happening at the
bare surface are studied through STS. The results show that backscattering is indeed
forbidden at certain energies. The surface states have a linear dispersion, as expected for
massless Dirac fermions. The dispersion shows that the Dirac point is buried under the
bulk valence band maximum.

The second part of this thesis focuses on magnetic doping at the sample surface. This
surface doping is achieved by two separate atomic depositions of cobalt and chromium.
After each deposition, new features arise at the surface, which are studied by means of
STM and STS. They can be divided into two categories. The �rst category of features
is believed to consist of atoms and small clusters of cobalt or chromium at the surface.
The second category might be explained by single-atom substitution of bismuth atoms in
the second atomic layer by cobalt or chromium atoms, but this hypothesis can only be
veri�ed or disproven by ab initio calculations. Scattering events at the surface after the
depositions are studied by means of STS. It is plausible that time reversal symmetry is
broken and backscattering is no longer prohibited. The dispersion of the surface states
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after the depositions remains linear. A shift in the Dirac energy point indicates that the
deposited atoms introduce some doping e�ect, but do not act to bring the Dirac point
out of the valence band.

The experimental results presented in this thesis are a starting point for the understanding
of the interaction between 3D TI surfaces and magnetic surface dopants. The interaction
can be modi�ed by changing either the surface properties or the magnetic impurity prop-
erties. For this reason, it is interesting to repeat the experiments performed in this work
with another Bi2Te3 sample grown under di�erent conditions or to vary the deposited
amount of atoms. One might also gain better understanding by depositing atoms of mag-
netic elements other than cobalt or chromium. Depositing clusters instead of atoms is
a promising approach as well. A next step could consist of investigating the magnetic
properties of the deposited magnetic impurities.



Summary in layman’s terms

Topological insulators are materials which are insulating everywhere except at their
boundaries. They exist in two dimensions, where only the edges are conducting, and
in three dimensions, where their whole surface is. The di�erence with regular insulators
is expressed using a mathematical entity known as a topological invariant, hence the name
topological insulator. The conducting boundaries of these materials are special: in normal
metals electrons can scatter back from impurities or imperfections, leading to dissipation
in the current. In the conducting boundary of topological insulators however, the move-
ment of the electrons are coupled to a property known as spin. This means that when
an electron collides with an impurity, it cannot go back to the direction it came from
unless the spin of the electron is ipped by the impurity: backscattering is not allowed
and so the current is dissipationless. The �rst part of this thesis investigates the surface of
bismuth telluride (Bi2Te3), a three dimensional topological insulator. First, native defects
of the crystal are studied and identi�ed. This is interesting because defects in the crystal
can result in doping, which plays an important role when applications are considered.
After that, the scattering occurring at the surface is studied. The �ndings con�rm that
backscattering is prohibited, at least for some energies.

If the electrons at the boundary encounter something that can ip their spin, it is ex-
pected that the electron movement can also be altered and backscattering is no longer
suppressed. To see this backscattering, atoms of magnetic materials are deposited on the
Bi2Te3 surface. This is done two times in this work: once with cobalt atoms, and once
with chromium atoms. In both cases, several new features arise on the surface, which
can be divided into two categories. The �rst category of features consists of atoms and
small groups of atoms on the surface. The second group of features might be explained as
deposited atoms sinking into lower layers of the crystal, but this cannot be stated with cer-
tainty from the experimental work alone. After both depositions, the scattering occurring
at the surface is examined and it is plausible that backscattering is indeed present. This
is of interest because the combination of topological insulators with magnetic impurities
is expected to yield interesting quantum phenomena.
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List of abbreviations and symbols

Abbreviations

2D two dimensional

3D three dimensional

AES Auger electron spectroscopy

ARPES angle resolved photoemission spectroscopy

BCB bulk conduction band

BVB bulk valence band

BZ Brillouin zone

CEC constant energy contour

CITS current imaging tunneling spectroscopy

DC direct current

DFT density functional theory

DOS density of states

IMBL ion and molecular beam laboratory

LDOS local density of states

LEED low-energy electron di�raction

QAHE quantum anomalous Hall e�ect

QHE quantum Hall e�ect

QL quintiple layer

QPI quasiparticle interference

QSHE quantum spin Hall e�ect

STM scanning tunneling microscopy

STS scanning tunneling spectroscopy
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TI topological insulator

UHV ultra high vacuum

Symbols

�� high-symmetry point in the surface Brillouin zone

�K high-symmetry point in the surface Brillouin zone

�M high-symmetry point in the surface Brillouin zone

n[C] Berry phase acquired over a path C

An(R) Berry connection

Bn(R) Berry curvature

� Chern number

!c cyclotron frequency

� work function

 electron wavefunction

 �(~k) Bloch eigenstate

�s local density of state of the sample surface

�t local density of state of the STM tip

�xy Hall conductivity

dI=dV tunneling conductance

~B magnetic �eld

~E electric �eld

~k crystal momentum

~p linear momentum

~q scattering wavevector

~v velocity

c speed of light 299792458 m/s

e elementary charge 1:60218� 10�19 C

E�(~k) Bloch eigenvalue

ED Dirac point energy
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EF Fermi level energy

f(E) Fermi-Dirac distribution evaluated at an energy E

g genus

H Hamiltonian

h Plank’s constant, equal to 2�~ 6:62607� 10�34 Js

I tunneling current

l0 decay length for wave functions into a vacuum barrier

N TKKN invariant (Thouless, Kohmoto, Nightingale, de Nijs)

T (E; V; d) transmission coe�cient

V bias voltage

vF massless fermion group velocity

Ag silver

Ar argon

Au gold

Bi2Se3 bismuth selenide

Bi2Te3 bismuth telluride

Co cobalt

Cr chromium

Fe iron

H hydrogen

He helium
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M manganese
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V vanadium
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Introduction

Topological insulators (TIs) are a new class of insulators with exotic properties, which
exist in both 2D and 3D. Their bulk is insulating, but their boundaries host metallic
states. These boundary states are due to a band inversion because of large spin orbit
coupling. Moreover, the conducting states are protected by time reversal symmetry, lead-
ing to them being robust against nonmagnetic backscattering. Due to their intriguing
properties, TIs have attracted much attention in the scienti�c community. They are in-
teresting from both a fundamental and a practical point of view: it is a novel state of
matter to be explored, but TIs are also promising materials for applications in spintronics
and computational devices [1{4]. Spectroscopy measurements have shown that for 3D
TIs the 2D energy-momentum relation forms a Dirac cone structure. One of these 3D
TIs is bismuth telluride (Bi 2Te3). It is among the most promising candidates for room
temperature spintronics and quantum computational devices.

Furthermore, the topological boundary states may host exotic quantum phenomena like
the quantum anomalous Hall e�ect (QAHE) when time reversal symmetry is broken [1]. In
order to realize these phenomena experimentally, one needs intrinsic TIs. This means that
the Fermi level should be inside the band gap so that the Dirac surface states dominate
the transport phenomena. However, several TIs (including Bi2Te3) are always degener-
ately doped due to naturally occurring crystalline defects, which causes their transport
properties to be heavily a�ected by bulk carriers [5]. A lot of e�ort has been put into
suppressing this bulk conduction through various methods like nanostructuring, compen-
sation by chemical doping or electric gating and band structure engineering by alloying or
realizing p-n junctions [6{10]. The problem with these methods is that they either intro-
duce additional disorder or potential uctuations which negatively a�ect the TI surface
state mobility [11]. Clear identi�cation and understanding of native defects is thus an
essential step in TI research.

To break time reversal symmetry, great e�orts have been made in the magnetic doping
of bulk TI materials. An opening of the energy gap at the Dirac point due to the broken
time reversal symmetry has been directly observed in magnetically doped 3D TIs [12,13].
Moreover, ferromagnetism has been achieved in 3D TIs through bulk doping: it has been
found in V-, Cr- and Mn-doped single crystals of Sb2Te3 [14{18] and Fe- and Mn-doped
single crystals of Bi2Te3 [18{20]. The QAHE was realized in a thin �lm of Bi2Se3 through
chromium bulk doping [21]. Magnetic doping at the surface, which can be realized by the
deposition of magnetic atoms, has however not been explored as thoroughly. It is par-
ticularly interesting to do so since it is expected to stronger inuence the surface Dirac
fermions than bulk doping [22]. Experimental studies of the interaction of surface mag-
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2 INTRODUCTION

netic moments with topological states have predominantly been performed using spatially
averaging techniques [23{26]. While these techniques provide important contributions to-
wards the understanding of the interaction of magnetic moments with topological states,
they cannot probe local phenomena [27]. An investigation using local techniques like
scanning tunneling microscopy is thus needed.

The �rst part of this work aims to characterize the Bi2Te3 surface and identify its native
defects. This is done by using several techniques: low temperature ultra high vacuum
scanning tunneling microscopy and spectroscopy (STM and STS) are the most important
ones. Additional surface analysis is done through Auger electron spectroscopy (AES) and
low-energy electron di�raction (LEED). Scattering events occurring at the surface are also
examined by means of STS, to understand whether backscattering occurs. In the second
part of this thesis, magnetic doping at the Bi2Te3 surface is studied. This is done by
an examination of the surface by means of STM and STS after atomic deposition of the
magnetic materials cobalt and chromium. To establish whether time reversal symmetry
indeed gets broken, the scattering events at the surface are investigated.

Chapter overview

Chapter 1 gives an introduction to TIs. By introducing the concept of topological band
theory, the di�erence between an ordinary insulator and a topological insulator is dis-
cussed. Using this concept, 2D TIs are described. A generalization to 3D TIs is made
and the 3D TI bismuth telluride (Bi 2Te3) is elaborated upon. The last part of the chapter
focuses on the research aims of this thesis.

In chapter 2, the experimental techniques used in this work are discussed. The most im-
portant ones are scanning tunneling microscopy and spectroscopy (STM and STS). Auger
electron spectroscopy (AES) and low-energy electron di�raction (LEED) are considered
as well.

Chapter 3 presents work on the characterization of a Bi2Te3 crystal. STM and STS mea-
surements are used to identify native defects of the crystal, as well as scattering events
occurring at the sample surface. Further surface analysis is done using AES and LEED.

The aim of chapter 4 is to study the Bi2Te3 surface after cobalt is deposited on it. After
depositing cobalt atoms at room temperature, the sample surface is studied using STM
and STS. Both native defects and new features are studied. Scattering events at the
surface are also looked at.

The focus of chapter 5 is examining the Bi2Te3 surface after atomic chromium deposition.
As in the previous chapters, this is done by means of STM and STS. Native defects of the
crystal and newly arising features are studied. The chapter ends with an investigation of
the scattering events occurring at the surface.

The thesis ends with chapter 6, in which a summary of the �ndings is presented. Sugges-
tions for further research are also discussed there.



Chapter 1

Topological insulators

Topological insulators (TIs) are materials or compounds which host a new electronic phase
stemming from the topological character of their bulk wave functions. Unlike most other
electronic states of matter, topological insulating phases were �rst proposed theoretically
and then observed experimentally, although they can be found in common semiconduc-
tors and thermoelectric materials [4]. These electronic phases can be understood within
the band theory of solids. In this framework, a band inversion due to a large spin-orbit
interaction leads to insulating states in the bulk but conducting ones at the boundaries.
These boundary states are quite exotic: they are protected by time reversal symmetry
and the carriers at these states arrange in such a way that there is spin-momentum cou-
pling. This means that the direction of the spin determines in which direction the carriers
travel, making the states robust against nonmagnetic backscattering. These materials
and their properties have interested the scienti�c community. This is because this novel
state of matter is interesting from a fundamental point of view, while it also has potential
in applications such as spintronic and quantum computing devices [1{3].

The �rst section 1.1 of this chapter introduces the concept of topological band theory
and describes an important electronic state known as the quantum Hall state. Section
1.2 describes 2D TIs and section 1.3 extends the concepts from two to three dimensions.
The last section 1.4 formulates the research aims of this thesis.

1.1 Topological band theory

In this part, a brief introduction into topological band theory can be found. This is done
by looking at the insulating state (see subsection 1.1.1). As an example, the topological
order in the quantum Hall state is studied (in subsection 1.1.2), along with the edge states
associated with it (subsection 1.1.3).

1.1.1 The insulating state

In the 20th century, one of the great successes of quantum mechanics was the successful
description of electronic states using the newly developed band theory of solids [28]. Us-
ing this description, there is little di�erence between an insulator and a semiconductor:
both show a gap between the valence and conduction band (even though the gap is much
larger for an atomic insulator than for a semiconductor). One could deform the energy
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4 CHAPTER 1. TOPOLOGICAL INSULATORS

bands from an insulator to a semiconductor (or the other way around) without closing the
energy gap. The fact that this is possible, de�nes a topological equivalence between these
di�erent insulating states. Taking this classi�cation scheme, all conventional insulators
are equivalent. Moreover, they are equivalent to the vacuum: according to Dirac's rela-
tivistic quantum theory, the vacuum also has a conduction band (for electrons), a valence
band (for positrons) and an energy gap (for pair production) in between [29].

One could wonder whether all electronic states with an energy gap are topologically
equivalent to the vacuum. The answer is no. In fact, the counterexamples are very
interesting states of matter [30]. The most famous counterexample is the integer quantum
Hall state.

1.1.2 Integer quantum Hall state

To understand the states associated with the quantum Hall e�ect, an understanding of
the classical Hall e�ect (illustrated in �gure 1.1) is needed.

Consider a two dimensional electron gas in a perpendicular magnetic �eld. When a
magnetic �eld ~B = (0 ; 0; Bz) is applied perpendicularly to a currentI x in the x-direction,
the charge carriers are subjected to the Lorentz force~F = q~v� ~B and their trajectories
are deected [31]. The Lorentz force is dependent on the velocity~v of the charge carriers,
which means that electrons moving in opposite directions will be deected to opposing
edges. This way, charges are accumulated at the edges and an electric �eld in they-
direction is built up. This �eld Ey exactly cancels they-component of the Lorentz force
on the carriers.

Figure 1.1: Geometry for the Hall e�ect experiment. Figure adapted from [1].

In 1980, Klaus von Klitzing observed that when electrons con�ned to two dimensions are
placed in a strong magnetic �eld, the Hall conductivity � xy (the ratio of the electrical
current to the voltage perpendicular to the current ow) becomes quantized [32]. It can
only take values that are integers ofe2=h, which severely restricts the motion of the
charge carriers. This quantization of� xy is known as the quantum Hall e�ect and has
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been measured to 1 part in 109 [33]. An intuitive way to understand this is the following:
because of the strong external magnetic �eld, the electrons are driven to move in circular
orbits with a cyclotron frequency ! c. Due to the quantum mechanical e�ects at low
temperatures, the orbits are described by orbitals with quantized energy levels. These
levels are also known as Landau levels and have energiesE � = ~! c (� + 1=2). When N
of these Landau levels are �lled and the rest are empty, there is an energy gap separating
the �lled and empty states, just as for a classical insulator. A comparison between the
ordinary insulating state and the quantum Hall state and their band structure is shown in
�gure 1.2. What makes the quantum Hall state di�erent from an atomic insulator is that
an electric �eld can cause the cyclotron orbits to drift at the edges. These drifting orbits
lead to a Hall current which is characterized by the quantized Hall conductivity [34].

Figure 1.2: States of matter. (a)-(c) The insulating state. (a) An atomic insulator. (b)
A simple model insulating band structure. (d)-(f) The quantum Hall state. (d) The
cyclotron motion of electrons. (e) The Landau levels, which may be viewed as a band
structure. (c) and (f) Two surfaces which di�er in their genus,g. (c) g = 0 for the sphere
and (f) g = 1 for the donut. The Chern number � that distinguishes the two states is a
topological invariant similar to the genus. Image taken from [30].



6 CHAPTER 1. TOPOLOGICAL INSULATORS

How is this di�erence between the quantum Hall state and the trivial insulating state
classi�ed? To answer this question, one must look at the �eld of topology. A band
structure plot is in essence a mapping from the crystal momentum~k to the Bloch Hamil-
tonian H (~k). It turns out that some mappings to di�erent gapped band structures are
equivalent: if one band structure can be deformed into another one without closing the
energy gap, they belong to the same equivalence class. These di�erent equivalence classes
are distinguished from each other by means of an integer number� . This number is a
so-called topological invariant and is known as the Chern number [35]. It is a topological
invariant in the sense that it cannot change when the Hamiltonian varies smoothly. This
helps to explain the robust quantization of� xy [36].

To understand this notion of a topological invariant, one can compare the band structure
mapping to simpler mappings. Take a map from two to three dimensions: this map
describes surfaces. Two-dimensional surfaces can be classi�ed by their genusg. This
genus counts the number of holes: a sphere (�gure 1.2(c)) hasg = 0 while a donut (�gure
1.2(d)) has g = 1. According to a mathematical theorem due to Gauss and Bonnet [37],
the integral of the curvature over a closed surface is a quantized topological invariant,
whose value is related tog. The Chern number � is proportional to an integral of a
related curvature, called the Berry curvature of the energy band over the boundary of the
Brillouin zone [36]. This is zero for a usual energy band but unity for a Landau level.
The Hall conductance� xy = Ne2=h is the sum of the Chern numbers of all the occupied
bands in the unit of e2=h [38]. A more thorough review can be found in the appendix, see
also [36,39].

1.1.3 Edge states

Gapped band structures are thus topologically classi�ed. A fundamental consequence of
this classi�cation is the existence of gapless conducting interface states at interfaces where
the topological invariant changes [30]. As an example, one can take the edge between the
integer quantum Hall state (with Chern number� = 1) and a trivial insulator ( � = 0).
In the integer quantum Hall state, the electrons move in cyclotron orbits as discussed
before. At the edge however, it is no longer possible for the electron to complete a full
orbit: the electron orbits just bounce o� the edge. These skipping orbits at the edge lead
to perfect conduction along the edge (see �gure 1.3). The electronic states responsible for
this motion are chiral: they propagate in one direction only. Normally, when electrons
encounter impurities they scatter back, but given that there are no backward-moving
modes available, the electrons can only continue their trajectory forwards. So these surface
states are robust, even in the presence of impurities [40].

The fact that these chiral edge states exist is related to the topology of the bulk quantum
Hall state. One can imagine a crystal that has an interface that passes from the quantum
Hall state to the trivial insulating state. Somewhere along the way, the energy gap should
disappear - it is impossible for the topological invariant to change otherwise. Since the
energy gap must close at some point, there will be low energy electronic states bound to
the region where the energy gap passes through zero [30].
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Figure 1.3: (top) An atomic insulator, in which the occupied and empty electronic states
are separated by an energy gap due to the quantization of the energy of atomic orbitals.
(bottom) In the quantum Hall e�ect, the circular motion of electrons in a magnetic �eld
is interrupted by the sample boundary. At the edge, electrons execute skipping orbits
as shown, ultimately leading to perfect conduction in one direction along the edge. This
leads to conducting states at the edges, as seen in the energy diagram. Image taken
from [40].

1.2 2D topological insulators

The quantum Hall edge states discussed in the previous section are interesting because
of their protection against disorder and backscattering. They are however not the edge
states of a TI. This is because in TIs, the boundary states are protected by time reversal
symmetry, which is broken by the magnetic �eld applied to achieve the quantum Hall
e�ect. This time reversal symmetry is the subject of subsection 1.2.1. An analogous
phenomenon that does not break time reversal symmetry is the quantumspin Hall state.
The states associated with this e�ect are 2D TI states and are discussed in subsection
1.2.2.

1.2.1 Time reversal symmetry

Time reversal symmetry is the symmetry of physical laws under the time reversal trans-
formation:

T : t 7! � t: (1.1)
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This transformation plays an important role in the behaviour of TIs. When a system
exhibits time reversal symmetry, its Hamiltonian H commutes with the time reversal
operator T:

[H; T ] = 0 or H (t) = H (� t): (1.2)

The behaviour of physical systems depends on whether these systems are odd or even
under time reversal symmetry, meaningH (� t) 6= H (t) or H (� t) = H (t) respectively. In
systems where a magnetic �eld~B �eld is applied to electrons, the electron trajectories are
bent. By reversing the time direction, the system Hamiltonian is changed and the elec-
trons will not retrace their motion: the applied magnetic �eld is odd under time reversal
symmetry [41].

In TIs, the boundary states are protected by time reversal symmetry. Since a magnetic
�eld is needed to induce the quantum Hall edge states, time reversal symmetry is broken
and the quantum Hall state cannot be a TI state. There is however a very similar electronic
state that is: the quantum spin Hall state. The 2D TI is indeed also known as a quantum
spin Hall insulator.

1.2.2 Quantum spin Hall state

In order to see the quantum Hall e�ect and the states associated with it, a large magnetic
�eld is needed, which will result in the breaking of time reversal symmetry. An analogous
phenomenon that does not break this symmetry is the quantum spin Hall e�ect [42]. It
is equivalent to the quantum Hall e�ect, but the cyclotron orbits are driven by spin-
orbit coupling rather than an external magnetic �eld. This spin-orbit coupling is the
interaction of an electron's intrinsic angular momentum, or spin, with the orbital motion
of the electrons through space as shown in �gure 1.4. When an electron orbits around a
nucleus, one could say a magnetic �eld is generated by its movement. One could also look
at what is happening from the electron viewpoint: the electron feels an e�ective magnetic
�eld due to the movement of the nucleus. This e�ective �eld is ~Be� = � ~p� ~E

mc2 , where~p is
the electron momentum, ~E is the electrostatic �eld the electron experiences due to the
nucleus,m is the electron mass andc is the speed of light. This e�ective magnetic �eld is
larger for heavier nuclei since the size of the electric �eldE is proportional to the atomic
number Z .

Figure 1.4: Schematic representation of an electron (blue) orbiting a nucleus (yellow).
The electric �eld of the nucleus is indicated by the green arrow.

It is clear that the spin-orbit interaction is proportional to the orbital motion of the



1.2. 2D TOPOLOGICAL INSULATORS 9

electron, which is represented by the vector product of the electron momentum~p and
this electrostatic �eld ~E. Of course, the spin-orbit interaction is also dependent on the
electron spin ~S, leading to the Hamiltonian

HSO = � SO
~Be� � ~S; (1.3)

where� SO is a parameter expressing the strength of the spin-orbit interaction [43,44].

This e�ective magnetic �eld Be� of the spin-orbit interaction is similar to the external
magnetic �eld, but there is an important di�erence: the Hamiltonian of the system with
spin-orbit coupling is even under time reversal symmetry. The alignment of the spin to the
magnetic �eld Be� generated in this way makes the scattering spin-dependent: because
the orbital motion and the spin are coupled, the direction in which electrons leave a
scattering center is spin-dependent. It is also possible to reverse this: the spin of the
electrons determines the direction in which they move throughout the material. In the
bulk, this does not lead to conducting states because atoms in the bulk also have magnetic
moments and can thus change the spin of the electron. This way the electron can move in
all possible directions, resulting in no net movement and so no conduction. At the edge
however, the electrons are only inuenced by the atoms on one side. This leads to electron
movement and so to conduction. It should be noted that only a very speci�c spin-�ltered
kind of movement is allowed: spin up states propagate in one direction while spin down
states propagate in the other. As illustrated in �gure 1.5, the quantum spin Hall edge
channels can be seen as two quantum Hall edge channels; one with spin up states and the
other with spin down states. A system that exhibits a spin current like this is also called
helical [45].

Figure 1.5: Edge channels for (left) the quantum Hall e�ect and (right) the quantum
spin Hall e�ect. In the regime of the quantum Hall e�ect, chiral edge states move in one
direction (B 6= 0). In the quantum spin Hall regime, a pair of counterpropagating edge
states exists at one edge. The two edge states move in di�erent directions with opposite
spin polarization (B = 0). Image taken from [1].

These quantum spin Hall edge states form a 1D conductor which can be seen as half of
a quantum wire which would have spin up and spin down electrons propagating in both
directions. Ordinary conductors that have both spins propagating in both directions are
fragile: the electronic states can be localized in the presence of weak disorder [46,47]. The
quantum spin Hall edge states on the contrary cannot be localized even for strong disorder,
and hence are protected from backscattering - if the scattering defects are nonmagnetic
and the electron's spin is preserved in the scattering event. The fact that the edge states
propagate in two directions instead of one (as shown in �gure 1.6) makes the origin of
this protection a bit more complicated.
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Figure 1.6: The edge of the quantum spin Hall e�ect state or 2D TI contains left-moving
and right-moving modes that have opposite spin and are related by time-reversal symme-
try. Image taken from [40].

Imagine an edge that is disordered within some �nite region while it is perfectly ordered
outside of that region. By relating the incoming waves to those reected from and trans-
mitted through the disordered region, the edge states can be determined. In 2005, Kane
and Mele showed that the reection amplitude is odd under time reversal symmetry since
it requires changing the propagation direction and hence ipping the spin. This can be
seen as just interchanging two counter-propagating nodes. Because of this, an incident
electron is transmitted perfectly across the disordered region unless time reversal sym-
metry is broken [42]. Of course, this explanation only makes sense if the edge states
occur in pairs. In fact, there is a theorem known as Kramers theorem that states that
the edge pairs should occur in pairs in order not to break time reversal symmetry [48].
In the presence of spin-orbit interaction, the energy bands split and become degenerate.
However, if there are edge states, they must remain degenerate at certain time reversal
invariant points � a and � b in the Brillouin zone known as Kramers degenerate points, as
shown in �gure 1.7. There are two di�erent ways in which the states in �a and those in
� b can be connected.

Figure 1.7: Electronic band diagram between two time reversal invariant points �a and
� b. In (a) the number of edge states crossing through the Fermi energyEF is even, while
in (b) it is odd. Image taken from [30].
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As shown in �gure 1.7(a), they can connect pairwise. In this case the edge states can
be eliminated by pushing all of the bound states out of the gap. An even number of
band crossings at the Fermi energyEF thus leads to a system behaving as a classical
insulator. It is also possible to have an odd number of such crossings, as shown in �gure
1.7(b). In this case, the conducting edge states cannot be pushed out of the gap. They
are topologically protected. The possible outcome of these two alternatives depends on a
bulk topological invariant known as aZ2 invariant [30].

So in order to be a TI, the number of pairs of edge states should be odd. This results in
edge states that are topologically robust and protected against nonmagnetic backscatter-
ing of the electrons on the edge. The quantum spin Hall system satis�es this condition
and thus is a 2D TI.

1.3 3D topological insulators

In this section, 3D TIs are discussed. In subsection 1.3.1, the generalization of the quan-
tum spin Hall state to three dimensions is explained. The experimental veri�cation of
this 3D TI state is discussed in subsection 1.3.2 and subsection 1.3.3 introduces bismuth
telluride, the 3D TI studied in this work.

1.3.1 Generalization of the quantum spin Hall state to three
dimensions

The quantum spin Hall state, characterizing a 2D TI, has a natural generalization in three
dimensions. This was independently discovered by three theoretical groups: Fu, Kane
and Mele [49], Moore and Balents [50] and Roy [51]. In quantum spin Hall insulators,
the topological order of the bulk is connected to the presence of unique conductingedge
states. For 3D TIs, this bulk topological order is related to conductingsurface states.
These surface states support electronic motion in any direction along the surface, but
present spin-orbit coupling again: the direction of the electron's motion is determined by
its spin direction and vice versa. There is thus no spin-degeneracy for the 2D surface as
in normal metals: states at momenta~k and � ~k must have opposite spin and so the spin
must rotate with ~k around the Fermi surface. However, analogously to the 2D TI, there
are time reversal invariant points �a;b;c;d in the surface Brillouin zone where surface states
- if present - must remain Kramers degenerate. Because of this, these Kramers degenerate
points form 2D Dirac points in the surface band structure, as shown in �gure 1.8. This
structure helps explain why nonmagnetic backscattering is prohibited: in a backscattering
process, the electron's momentum is ipped from~k to � ~k. If the scattering process is
caused by a nonmagnetic defect, the spin of the electron should remain the same. In
an ordinary metal, an electron can scatter into a state with momentum� ~k and the
required spin. In the 2D surface of a 3D TI however, the only spin state available at� ~k is
exactly opposite to the required one. Because of this, backscattering due to nonmagnetic
impurities is not possible.
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Figure 1.8: The surface of a 3D TI supports electronic motion in any direction along the
surface, but the direction of the electrons motion uniquely determines its spin direction
and vice versa. The 2D energy-momentum relation has a Dirac cone structure which is
similar to that in graphene but is spin-split except for certain symmetry points. Image
taken from [40].

Whether the material is an ordinary or a topological insulator then depends on how
the Dirac points at the di�erent time reversal invariant points connect to each other.
As in the 2D case, the surface state structure between any pair �i and � j determines
whether the Fermi surface intersects a line joining �i to � j an even or an odd number of
times. If it is odd, then the surface states are topologically protected against nonmagnetic
backscattering. Which of these alternatives occurs is determined by fourZ2 topological
invariants of the bulk [40].

1.3.2 Experimental veri�cation

The 3D TI was predicted to exist in several real materials, such as Bi1� xSbx , as well as
strained HgTe and � -Sn [52]. In 2009, Bi1� xSbx became the �rst experimentally ver-
i�ed 3D TI. A Princeton University group led by Hasan realized this by mapping the
semiconducting alloy's surface bands using angle resolved photoemission spectroscopy
(ARPES) [53]. The ARPES technique is based on the photoelectric e�ect: a monochro-
matic beam of light (typically from a synchrotron radiation source) is incident on a sample
and through photoexcitation, electrons are excited into the vacuum. Afterwards, these
photoelectrons are collected in an analyzer, where their kinetic energy is measured as a
function of their emission angle relative to the sample surface. Provided the energy of the
incident beam is known, one can relate the measured kinetic energy of the photoelectrons
to their in-plane crystal momentum by using energy-momentum conservation. One can
thus visualize the energy band structure. If the photoemission process is spin-conserving,
the spin of the initial state of an electrion in a solid can be determined as well by mea-
suring its spin after photoemission [54].

Soon after this �rst discovery, so called second-generation 3D TIs, including Bi2Se3 and
Bi2Te3 were identi�ed experimentally. This second-generation 3D TIs has interesting
properties such as relatively large bulk gaps (up to 0.3 eV in Bi2Se3) and simple surface
Dirac cone structures [8, 55{57]. In �gure 1.9, ARPES mappings of surface states of the
doped TI Bi2� � Ca� Se3 are shown. The 2D Dirac cone structure is clearly observed.
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Figure 1.9: (a) A high resolution ARPES mapping of the topological surface Fermi sur-
face near the�-symmetry point of the (111)-surface of Bi2� � Ca� Se3. (b) High resolution
ARPES surface band dispersions through the�-symmetry point. The arrows denote the
topological spin polarization of the bands. The intensity scale is shown on the right.
Image adapted from [8].

The band structure and the absence of backscattering have also been reported with scan-
ning tunneling microscopy (STM) and spectroscopy (STS): more about this in section
2.1.3. STM and ARPES are complementary to each other since they o�er high spatial
and momentum resolution information on the electronic structure, respectively. In con-
ventional ARPES, only �lled-state electrons can be photoemitted, while both �lled and
empty states can be probed in STM. There are few experimental studies on 3D TIs that
have been done with other techniques than ARPES or STM. This is because challenges
posed due to native defects in the bulk of the TIs. These defects act as charge dopants
and move the Fermi level out of the band gap. A such, chemical dopants are used to shift
the Fermi level into the band gap, where the surface states of interest reside [58,59]. It is
also necessary to suppress bulk related e�ects (such as the remaining bulk conductivity
induced by impurities) by increasing the surface-to-volume ratio [60].

1.3.3 Bismuth telluride

Before being discovered as a 3D TI, bismuth telluride (Bi2Te3) had already been thor-
oughly investigated due to its excellent thermoelectric properties [4]. It became even more
interesting to the scienti�c community after its discovery as a 3D TI and is among the
most promising candidates for room temperature spintronics and quantum computational
devices [8,57].

Bi2Te3 crystals have a rhombohedral structure: the crystal structure belongs to the space
group D 5

3d(R3m), while the point group contains a binary axis (with twofold rotation
symmetry), a bisectrix axis (appearing in the reection plane), and a trigonal axis (with
threefold rotation symmetry). In �gure 1.10, the Brillouin zone of Bi2Te3 is shown. It has
four inequivalent time-reversal-invariant points, called �(0; 0; 0), L(�; 0; 0), F(�; �; 0) and
Z(�; �; � ). The blue hexagon shows the 2D Brillouin zone of the projected (111) surface,
in which the high-symmetry~k points ��, �K and �M are labelled.
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Figure 1.10: Brillouin zone for Bi2Te3 with space group (R3m. . The four inequivalent
time-reversal-invariant points are �(0; 0; 0), L(�; 0; 0), F (�; �; 0) and Z(�; �; � ). The blue
hexagon shows the 2D Brillouin zone of the projected (111) surface in which the high-
symmetry ~k points ��, �K and �M are labelled. Image taken from [2].

There are �ve atoms per unit cell, which is presented in �gure 1.11. This unit cell is
hexagonal with lattice parametersa = b= 4:3835�A, c = 30:487�A, and angle = 120° [61].
Units of Te1-Bi-Te2-Bi-Te1 form quintuple layers (QLs) along thez-direction. Bonding
between atomic planes within a QL is of covalent and ionic origin while bonding between
adjacent QLs is predominantly of the van der Waals type. Due to this weak bonding
between QLs, the crystal is easily cleaved along an inter-QL plane. The bulk structure
consists of alternating hexagonal monoatomic crystal planes stacking in ABC order [61,62].

Figure 1.11: Crystal structure of Bi2Te3. Hexagonal unit cell of the crystal comprised of
three QLs and belonging to the space groupR3m. The Te2 layer within each QL is a
center of inversion symmetry. Image taken from [62].
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The electronic structure of Bi2Te3 is shown in �gure 1.12.

Figure 1.12: Electronic structures of Bi2Te3. (a) Calculated bulk conduction band (BCB)
and bulk valance band (BVB) dispersions along high-symmetry directions of the surface
Brillouin zone (see inset), with the chemical potential rigidly shifted to 45 meV above
the BCB bottom at � to match the experimental result. (b) Density of states measured
by STS. ED is the Dirac point, EF is the Fermi level, EA is the bottom of the bulk
conduction band,EB is where the surface state band opens up andEC is the top of the
bulk valence band. (c) ARPES measurements of band dispersion along K� � � K (top)
and M � � � M (bottom) directions. The broad bulk band (BCB and BVB) dispersions
are similar to those in (a), whereas the sharp V-shape dispersion is from the surface state
band (SSB). The apex of the V-shape dispersion is the Dirac point. Energy scales of the
band structure are labeled as follows:E0: binding energy of Dirac point (0.34 eV);E1:
BCB bottom binding energy (0.045 eV);E2: bulk energy gap (0.165 eV) andE3: energy
separation between BVB top and Dirac point (0.13 eV). Images taken from [57,63].

In �gure 1.12(a), ab initio calculations for the band diagram are shown that predict that
Bi2Te3 is an insulator. Figure 1.12(b) shows the density of states (DOS) measured by
STS. The Dirac point in Bi2Te3 is buried under the valence band maximum, which is
away from the � point in the reciprocal space. This results in a rise in the DOS at the
Dirac point, because contributions from the surface states and the bulk valence band are
mixed. Consequently, in a dI=dV or conductance spectrum of Bi2Te3 (which is propor-
tional to the DOS) the minimum point does not agree with the Dirac point. Instead, a
linear part on the dI=dV curve above its minimum point is extended to a point where the
conductance is zero to estimate the Dirac point. Figure 1.12(c) shows band dispersions
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measured by ARPES experiments along two high-symmetry directions. One can see the
broad spectra of the bulk electron on top and the Mexican hat shape valence band at the
bottom, as predicted in the ab initio calculation. There is also an extra sharp V-shape
dispersion resulting from the surface states. The linear dispersion in the ARPES mea-
surements indicates a massless Dirac fermion [57].

The surface states deviate from a simple Dirac cone due to a smaller band gap of about
0.15 eV and a strong trigonal potential [30]. The Dirac point is buried under the valence
band maximum, which is away from the � point in the reciprocal space. Density-functional
theory (DFT) calculations of the Bi2Te3 band structure made in the past reveal signi�cant
di�erences between the theoretically predicted and experimentally measured values for the
bulk band gap (50-130 meV and 150-220 meV, respectively) [1].

1.4 Research aims

The surface states of 3D TIs are protected against nonmagnetic backscattering. This has
been experimentally con�rmed for the Bi2Te3 surface by Zhanget al. [64]. In their work,
silver (Ag) impurities do not lead to backscattering: backscattering of the topological
states by nonmagnetic impurities is completely suppressed.

Since this protection from backscattering is assured by time reversal symmetry, magnetic
scattering is considered to have a pronounced impact on the allowed scattering processes
of the helical surface states. Once an impurity acquires a magnetic moment it can spin-
exchange with the incident Dirac particle and allow for spin-ip induced backscattering.
Breaking time reversal symmetry in TIs is expected to create a host of exotic topological
magnetoelectric e�ects. The most important prediction is that ferromagnetically ordered
TIs are ideal systems for realizing the quantum anomalous Hall e�ect (QAHE) [21,65{68].
Because of this, magnetically doped TIs have attracted the interest of the scienti�c com-
munity.

An opening of the energy gap at the Dirac point due to the broken time reversal symmetry
has been directly observed in magnetically bulk doped 3D TIs [12,13]. Magnetic doping
at the surface has been less intensively examined, while it is expected to also strongly
inuence the Dirac fermions of the surface states [22]. A study by Mart��nez-Velarteet
al. [69] found that by depositing cobalt atoms at the Bi2Te3 surface, the protection against
backscattering breaks down. Here, the atomic deposition was performed at a temperature
below 5 K. A similar experiment was conducted at the KU Leuven [70]: cobalt atoms were
deposited on a Bi2Te3 sample and investigated by means of scanning tunneling microscopy
and spectroscopy. The deposition in this work occurred at room temperature. In this
work, features appearing at the sample surface could be futher clari�ed with the help of
density functional theory (DFT) calculations performed by Dr. Dmitry Muzychenko of
Lomonosov Moscow State University. The features were identi�ed as single-atom, two-
atom and three-atom substitution of cobalt atoms at bismuth sites in the second atomic
layer, as shown in �gure 1.13. Since the deposition was performed at room temperature,
the atoms were able to di�use across the surface. It is not obvious why the atoms di�use
to the second atomic layer.
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