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Abstract

In this study, we will decode EEG responses during perception and imagination
of music. During perception, subjects listen to an auditory stimulus, after which
a neural processing pathway transforms the auditory cues into a brain response.
During imagination of music, no physical auditory source is present. Stimuli are
simply ‘heard’ by the brain.

In order to study these conditions, we will implement a linear regression model with
regularization, which will reconstruct stimulus envelopes out of their EEG responses.
This model will show varying results over all studied perception and imagination
conditions. As an overall conclusion, we find that perception experiments significantly
outperform music imagination. After adding an extension to this model, explicitly
incorporating the possibility of a latency in the EEG recording, the model will show
vastly improved results. However, we see that these results seem to have a periodical
behavior in function of this new parameter. Possible effects of beat tracking will
therefore be investigated.

Moreover, an analysis of effects within the results will be done, investigating the
influence of subject musicality, song categories and imagination techniques. We
will look whether songs can be distinguished from each other via various classifiers
and discuss the influence of the preprocessing filter range. It was observed that
the musical stimuli used in this study achieve equal or better results when using a
bandpass filter between 1-10 Hz compared to a 1-30 Hz bandpass filter.
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Chapter 1

Introduction

Listening to music is an activity that is performed daily by many people all over
the world. Many of our regular tasks have a connection to music, whether that is
noticeable or not. From the soothing background song in a restaurant, to singing
along to the radio, to watching a YouTube video... When you think about it, the list
of activities involving music is endless.

Every day, this exposure to sound sends millions of different cues to the brain, leading
to a range of neural responses. Our brains register different rhythmic and melodic
properties of musical pieces as we listen [33, 36]. This broad palette of properties
(e.g., pitch, tempo...) is what makes a certain song unique. These features are very
helpful in practice: they allow us to recognize music in future repetitions. One could
then anticipate what part of the song comes next, which is a necessary skill in for
example playing an instrument or singing [2, 34].

Furthermore, a significant amount of emotional response is present while listening
to music. A song may have a calming effect or evoke a feeling of tension to the
listener. One can enjoy a song or dislike it. Songs can remind us of a specific person
or situation [36]. One thing to note is that these responses are not always completely
voluntary or noticeable. Music in for example adds can be a handy way to influence
emotions and make you spend more money, although it may not be very apparent.

Apart from listening to music, which is named ‘music perception’, the human brain is
capable of an even more remarkable task. It cannot only remember existing musical
pieces, but also imagine them without the presence of a physical source. An example
of this phenomenon is a so-called ‘ear worm’, where people keep singing or humming
the same song for hours because the piece is stuck inside their head. This so-called
‘music imagination’ can take on many different forms and responses [36, 34]. One
person can for example solely ‘hear’ songs inside his/her head, while others can
envision themselves singing along or playing the song on an instrument.
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1. Introduction

When brain responses are recorded for the above settings, they can form great tools
to use in research. Most commonly, the registration of brain activity is done by
means of an electroencephalogram (EEG) or functional magnetic resonance imaging
(fMRI). Studies of these brain responses may lead to many useful insights. They
could be used to shed more light on the complex neural processing of music, which
is still mostly unknown to this day [36, 34, 37].

Recent research domains try to find a relation between the original songs and their
evoked brain responses. Two main subfields of this problem are seen in practice.
The term ‘Music Information Retrieval’ (MIR) is used for studying the responses of
music perception, whereas ‘Music Imagination Information Retrieval’ (MIIR) is the
term used in a music imagination setting [36, 34]. Different techniques could be used
to quantify the desired relation. Generally, these techniques are borrowed from the
neighboring domain of speech decoding, which tries to find this relation in the case
of speech signals.

Furthermore, one could think of more futuristic uses of these brain responses. Algo-
rithms to estimate an original song out of its imagined brain response might find
their use in brain computer interfaces (BCI’s). BCI’s form, as the name suggests,
an interface between electronics and neural tissue. This way, they could restore lost
functions of the human body or provide new ones. People’s abilities to communi-
cate with the external world could (partially) be taken over or extended by a machine.

For speech, this could mean that a person’s imagined words are decoded into natural
speech. Although the direct use of music decoding algorithms in this way is far
more limited than for speech decoding, BCI’s could as well have some futuristic
implementations with regards to music. Imagine for example that songs could be
streamed on a device by simply thinking of them (i.e., ‘Shazam for the brain’).

In the next subsections, a deeper overview of the topic is given. First, the studied
music processing pathway is looked upon more closely. This pathway can be sub-
divided into two parts: the processing in the ear and in the brain. Next, the focus
is laid on the different ways to record brain responses. A comparison of the most
frequently used modalities is given, with for each their respective advantages and
disadvantages. Lastly, this is followed by a summary of previous results of research
in literature, as well as a short link to the neighboring domain of speech decoding.

1.1 The processing pathway of music

Music, as other sounds, is composed of waves which travel at a certain frequency
in time and space. Humans can register a remarkable range of frequencies, roughly
estimated from 20Hz to 20 kHz. With such amount of frequencies available, a complex
and effective processing needs to be carried out. In the human body, this is done in
two sequential steps: the ear, as a sensory organ, and the processing in the brain.
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1.1. The processing pathway of music

1.1.1 Processing in the ear

The auditory processing pathway of stimuli, such as speech and music, starts in the
ear. Three parts are distinguished: the outer, middle, and inner ear. The outer ear
has an external part, called the pinna. The pinna fulfills complex functions in the
journey of sound to the brain. It has a distinct shape, which plays an important
role in the directionality detection of sound. Moreover, the pinna guides the sound
wave into the auditory canal. At the end of this canal, the sound wave makes the
tympanic membrane oscillate, propagating the signal to the middle ear [2, 8].

In the middle ear, the sounds traveling via the tympanic membrane are amplified by
the ossicles: the malleus, incus and stapes. This amplification is needed because the
medium through which the sound waves travel changes: from air (outer and middle
ear) to fluid (inner ear). The third ossicle in the chain, the stapes, deforms the oval
window. This deformation propagates the amplified waves to the inner ear [2, 8].

Figure 1.1: Left: The structure of the ear. Adopted from [8]. Right: the basilar
membrane. Adopted from [19].

The inner ear is the site where the main processing of sounds takes place before their
journey to the brain. It is made up out of two large components. The first one, called
the labyrinth, is part of the vestibular system which controls a person’s balance. The
second component is the cochlea. The cochlea is a complex system of fluid filled
chambers, which are twisted into a form resembling a snail shell (Figure 1.1, left).
In between the chambers, a sensitive basilar membrane is found. This membrane
supports tissues with complex functions, such as the organ of Corti, which contains
hair cells that induce activation of the auditory nerve (Figure 1.1, right) [2, 19].

When a sound wave propagates from the oval window into the inner ear, the basilar
membrane deforms and oscillates at a particular site, dependent on the frequencies
present in the wave. High frequency sounds only deform the base of the basilar
membrane. Very low frequencies are registered up until its apex. The lower the
frequency, the higher the deformation on the basilar membrane appears [2]. This
phenomenon was famously discovered by G. von Békésy, who won the Nobel Prize
for medicine and physiology in 1961 for his research in audiology (Figure 1.2) [29].

3



1. Introduction

The local deformation is transferred to the organ of Corti, embedded on the basilar
membrane [19]. Its hair cells, also named auditory receptor cells, start to bend. A
chain of biochemical events is induced by this bending, leading to the release of
neurotransmitters. These neurotransmitters synaptically activate the first layer of
neurons in this pathway, the spiral ganglion cells, and thereby induce firing of the
auditory nerve [2, 40].

Figure 1.2: a) Frequency dependent deformation of an unfolded basilar membrane.
b) The basilar membrane as a filter bank. Adopted from [40], after G. von Békésy.

Because the deformation of the basilar membrane and the subsequent events happen
locally, the frequency dependency is also present further in the chain [2]. Research
by Rose, Hind, Anderson and Brugge [1] shows that a single neuron fiber in the
auditory nerve is also tuned to a certain characteristic frequency. The conclusion is
that frequencies have a certain tonotopy or fixed spatial separation on the basilar
membrane. This tonotopy is propagated to the auditory nerve, in distinct frequency
bins dependent on the activation of the hair cells. In other words, the basilar
membrane thus acts as a biological filter bank in the ear (Figure 1.2) [2].

1.1.2 Processing in the brain

After the first processing in the ear, the signal travels via the auditory nerve to the
brain. The auditory nerve is made up of the axons of spiral ganglion cells, which
possess a characteristic frequency and firing rate (measure of intensity). The nerve
fibers lead the signal to the next processing step in the pathway: the nuclei of the
brain stem (Figure 1.3, right) [2].

In these nuclei, more neural cell layers are added and complex connections are formed.
This leads to a gradually more diverse and nonlinear processing of the signal. As
an example, one can find cells that can detect specific frequency changes overtime.
A nucleus in the thalamus, called the superior olive, is the first to receive input
from both ears, leading to our ability to process sounds binaurally and derive sound
location information. Also, a substantial amount of feedback is present between the
brain cortex/nuclei and the nuclei/ear (hair cells) [2, 15]. It is exactly this growing
complexity and nonlinearity, ascending from the sensory organs, that makes a study
of brain such an advanced problem in research.
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1.1. The processing pathway of music

Figure 1.3: Left: Tonotopy in the auditory cortex. Adopted from [8]. Right:
Auditory pathway to the brain. Adopted from [15].

The medial geniculate nucleus (MGN) propagates the signal to the auditory regions
in the brain, located laterally on the head [15]. The primary and secondary auditory
cortex are areas in the brain that are closely related, but still not fully understood.
They play a primary role in handling frequency content, intensity, and binaural
information to form a neural response to other brain areas. In the primary auditory
cortex, we again see a certain tonotopic organization (Figure 1.3, left). Low frequen-
cies are found on the anterior part, while high frequencies (up to 20 kHz) are located
on the posterior part of the region [2, 8].

Figure 1.4: Active brain regions during music perception [42] [26].

In addition to the primary and secondary auditory cortex, a wide range of areas
work together to induce further neural responses (Figure 1.4). For example, the
hippocampus, which is a control center of memory in the brain, can link a musical
piece with past experiences. The motor cortex on the other hand is responsible for
movement (for example while playing an instrument). The auditory processing areas
also share regions with the visual system, which might explain why a person can
have visualizations while imagining music. The amygdala can induce and emotional
response while listening to a song [42].

5



1. Introduction

This complex collaboration between brain areas leads to interesting observations,
such as beat tracking, which are not fully uncovered yet from a computational point
of view. Music consists of a complex train of events, which mostly have a certain
periodicity. The brain extracts this periodical beat from songs, signaling a strong
tendency to tap or move to the music [39]. However, noticing this periodicity in
a song is a complex task, as it requires the brain to look through the temporal
structure of music and anticipate when the next beat will follow [39].

Previous research proposes that a certain musical entrainment is taking place in the
brain, in which oscillatory signals at the frequency of this beat are present along
the neural pathway, synchronizing brain waves to the beat of the song [39]. This
synchronization might also explain why music can bring up feelings of relaxation
or tension, as the beat frequency can be located in the same range used by these
processes. Meditation sounds are an example of the calming effect of music.

Additionally, research is conducted on the neural processing of different music
categories. Pop songs mostly have a regular beat and contain lyrics, which intertwine
the processing of music with speech understanding. On the other hand, a voice could
distract the listener from other musical properties. Therefore, purely instrumental
music could be seen as more suitable on some occasions, for example as background
music while studying. Studies using multiple music categories could shed more light
on possible differences with respect to their neural processing.

Furthermore, another interesting characteristic of the brain is its plasticity, in which
neural responses grow more complex or expand to larger brain areas due to for
example experience and training. In a more and more studies, the brain plasticity
with respect to musical training is investigated. In musicians, playing a song results
in more selective attention and concentration to instruments in comparison to non-
musicians, blocking irrelevant sounds and environmental cues [45]. One could then
pose the interesting question if this musical training has any effect on the study of
this neural processing with respect to non-musicians.

In a nutshell, the mentioned areas in Figure 1.4 are broad. It is still relatively
unknown which specific areas are activated and how they work together during these
complex processes [42]. Apart from that, it is also unclear how this processing might
change when imagining music. These questions are the main driving force for MIR
and MIIR research.

1.2 Recording brain responses

In MIR and MIIR research, recordings of the available brain responses can lead to
very useful insights. These recordings can be done via different modalities. The
two main approaches used in previous research, fMRI and EEG, each have their
advantages and drawbacks. What follows is a short summary of their workings, along
with a comparison with respect to their use in research.
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1.2. Recording brain responses

1.2.1 Functional magnetic resonance imaging (fMRI)
Medical imaging techniques, more specifically magnetic resonance imaging (MRI),
are a popular non-invasive way to visualize the brain. Its workings are based on
electromagnetism, i.e., the disturbance of the spin magnetic moments of protons
in the object to visualize [38]. A special application of this technique is functional
magnetic resonance imaging, which captures an image of the blood flow and oxygen
consumption in tissue via the protein hemoglobin. The two forms of hemoglobin
in the blood circulation, oxygenated and deoxygenated hemoglobin, have different
magnetic properties. When a brain area is active, a larger flow of oxygenated blood to
those regions is seen. This difference can be exploited in an MRI setting, comparing
images of activity to control images at rest [38].

The reason why fMRI is often used to capture brain responses, also for music
processing studies, can be seen in the following advantages. First, fMRI is a non-
invasive technique, which can be used in larger scale research. Moreover, its spatial
resolution is good, capturing subtle differences even in soft tissue (such as the brain)
which usually suffers from low contrast in other imaging techniques [30, 38].

There are also a few disadvantages to this technique. First, the presence of the
magnetic fields and gradients requires magnets and coils. This results in a machine
with large dimensions, which cannot be placed everywhere, and a high cost. Secondly,
the charged coils make a loud noise during imaging. This might not only be
cumbersome for the subject, but can also disturb the measurement of brain responses
or interfere with a musical stimulus. Moreover, acquiring an MR image has a long
duration, resulting in a relatively low temporal resolution [27].

1.2.2 Electroencephalogram (EEG)
With the upcoming BCI research, the EEG is making a steep incline as modality
to register brain responses in studies. It is also the recording modality used in this
work. The EEG technique uses a very different approach to quantify brain activity.
When neurons fire, electrical signals are passed which can be measured as potential
differences [32]. When electrodes are placed on the head of the subject, creating
measuring channels, these differences can be captured relative to a designated refer-
ence electrode. In practical settings, the electrodes are usually embedded in a cap
and spatially distributed according to the internationally recognized 10-20 system
(Figure 1.5). To maintain good electrical contact (low impedance), a gel is applied
between the electrodes and the scalp [32].

Due to its low relative cost and non-invasive nature, the EEG is a good candidate
for many practical applications and BCI research [31, 32]. Secondly, its temporal
resolution is good. The EEG electrodes can directly pick up event-related potentials
(ERP’s) as they occur in the brain. Besides, the EEG measurement produces time
series data for each electrode, which can be easier to handle in calculations in com-
parison to the large pool of data in an MR image. Moreover, the equipment is small
compared to fMRI and thus more generally applicable, especially in BCI set-ups [32].
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Figure 1.5: The 10-20 system with reference electrode locations [26].

A disadvantage of this technique is the relatively low signal-to-noise ratio present in
raw EEG measurements. The recorded brain responses also involve neural activity
from for example movement and eye blinking. Also surrounding electrical signals,
such as powerline noise (50-60Hz) could disturb the measurement [32]. To minimize
such disturbances in practical set-ups, the subject is therefore often sitting in a
shielded room and is asked to keep still while focusing on a certain mark [36]. It
is however never possible to fully prevent artifacts and noise during the recording.
Therefore, specialized preprocessing steps (Section 3.1) often need to be carried out
before the actual analysis to further minimize the influence of artifacts and noise on
the results.

Apart from these problems, the EEG modality also has a worse spatial resolution.
The electrodes pick up brain signals from every point beneath the placement area,
without knowledge of the exact origin of the signal [32]. This is a clear disadvantage in
comparison to fMRI, which focuses on specific points and their material composition
[30]. Moreover, this fuzzy spatial resolution does also mean that nearby electrodes
pick up similar signals. Also, this might pose some problems, for example in the
choice of reference electrode (Section 3.1.1) [20].

To alleviate both the problems regarding EEG and fMRI measurements, a combina-
tion of modalities is used [21], or sometimes also a magnetoencephalogram. Moreover,
in rare cases, electrodes can also be used in invasive techniques for the tracking of
neural responses. This can be done when an electrode mesh on the brain itself is
present, for example for patients who require neural monitoring and/or deep brain
stimulation [32]. These techniques are of course not readily available nor possible on
a large scale.
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1.3 Music processing in the literature
Now that a little light was shed on the processing pathway of music and its recording
procedures, how can this biological signaling chain be further explored in research?
First and foremost, this can be done by developing a model for this neural pathway.
We can design a set of calculations, which are holding certain assumptions, to mimic
the processing of music in the ear and brain [10, 5]. These calculations thus form the
bridging between the stimulus on the one hand and the corresponding brain response
on the other hand.

There are of course various ways to build this model. It should be noted that this
step highly dictates the final result, as it determines which assumptions are made on
the processing pathway. Apart from the model selection, also the input and output
representations are an important choice: they control which features of the stimulus
and brain response are accounted for in the model. In this following section, the most
predominant ways to build a model for music processing are given [5]. Afterwards,
we continue with a list of possible representations of the stimulus in studies, which
can be used in these models together with the recorded brain response.

1.3.1 Linear modeling

To linearize, or not to linearize. . .

As seen before, the neural pathway of music is a nonlinear process that forms complex
connections to many different areas in the brain. It would thus be a logical choice to
opt for a nonlinear technique to model this response, which can include the desired
high complexity [42]. For these kinds of problems, (recurrent) neural networks are
frequently used [5, 9]. However, as we will discuss in this section, the availability of
biomedical data is a bottleneck in these applications. In literature, a trend in the
use of linear techniques is therefore seen. This approximation has a few advantages
and disadvantages (Table 1.1).

Table 1.1: Advantages of linear techniques w.r.t. nonlinear (neural) networks.

Linear techniques
Advantages Disadvantages
Interpretability Limited modeling capacity
Less training examples required
Smaller computational complexity
Less parameters (overfitting)

The first advantage of linear techniques is the interpretability of the coefficients [5].
The explanatory power of parameters in a neural network gets easily lost because of
the amount and complexity of connections. With a linear technique however, input
and output are linearly related in the form of parameters or weights. With these
weights, one can easily see a relative influence or importance.
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Moreover, there are also a couple of advantages with respect to the training of these
models. Neural networks tend to have many parameters, so a lot of examples and
time are required to optimally train these kinds of models [5]. These amounts of
training examples might not always be available, it is dependent on the number
of participating subjects and duration of testing in an experiment. In comparison,
with fewer parameters, linear techniques have a smaller computational complexity [5].

Besides that, overfitting (see later) is also a great risk for neural networks. This effect,
which can highly skew the perception of our results, is a point of attention for all
models and techniques. However, this risk gets larger when the number of parameters
in a model increases [5]. Neural networks thus usually require a substantial amount
of regularization in training to reduce this danger of overfitting.

An obvious drawback of linear techniques, is that this is only an approximation of
the real neural processing. Only a linear relationship between the brain responses
and stimuli can be incorporated, but more complex calculations are not included
[5]. At first glance, this seems like a very crude assumption. However, in literature,
interesting results are found with linear techniques, which suggests that its modeling
capacity might be large enough to capture the basic music processing information
and to describe a significant relation between a stimulus and its brain response. Some
of these results in music and speech literature will described further in this section.

Modelling the relation with linear techniques

In the previous subsection, it was seen that linear techniques have some significant
advantages over nonlinear techniques when it comes to the implementation of neural
processing models. Therefore, linear techniques will be used to define the musical
processing pathway in the remainder of this work. Once the appropriate calculation
technique is chosen, it is also necessary to think about the desired relation to model.
Before translating the musical processing pathway to calculations, this relation needs
to be carefully defined. The main approaches can be divided into three categories: en-
coding, decoding and ‘hybrid encoding-decoding’ techniques (see Figure 1.6) [16, 10].

Encoding approaches, also called forward modeling, provide a direct and intuitive
mimicking of the neural pathway [14]. In this strategy, a model tries to transform
a musical stimulus into its corresponding brain response. Linear regression is used
to model the encoding approach. This technique provides linear mapping weights
between the stimulus and brain response, which were learned from examples in a
training phase. When these weights a are applied to a new stimulus s(t− τ) (delayed
by a lag τ), an estimate of each channel j of the corresponding brain response b̂j(t)
can be calculated [10, 13]:

b̂j(t) =
∑
τ

s(t− τ)aj(τ). (1.1)

Decoding techniques or backward models take the opposite approach to look at the
mapping relation: these strategies try to transform the neural response of a song back
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to its original musical stimulus. Also in this approach, linear regression is used, but
in the opposite mapping direction. Fitted weights g, learned from previous training
data, can now be used to reconstruct a stimulus estimate ŝ(t) out of (often) time
lagged neural response channels bj(t) (with time lag τ) [10, 31, 41]:

ŝ(t) =
∑
j

∑
τ

bj(t− τ)gj(τ). (1.2)

As seen on Figure 1.6 on the left, these mapping transformations optimize a specific
objective function. The encoding or decoding weights are determined so that there
is a minimal error in the model. This means that in the training phase, weights
are chosen that lead to a maximal similarity (minimal error) between the real and
reconstructed stimulus or brain response in the training examples [3, 5]. Common
objective functions in these linear strategies are the minimalization of the mean
squared error (MMSE) or maximization of the Pearson correlation. Biesmans et. al.
[3] demonstrated that these approaches lead to equal results.

It is shown that the decoding approach is usually more reliable to define the neural
processing relation of music and speech than encoding approaches. This can be
explained by the following reason. When ascending the neural pathway starting from
the stimulus, the complexity and amount of information passing in neurons increases.
When these signals arrive in the brain, millions of other processes are active, besides
the musical encoding. They require activity in many of the same regions where the
response to music happens, leading to a brain recording that contains ‘additional
neural information’ with respect to the stimulus [44, 14].

When relating a stimulus to its brain response via the encoding strategy, this tech-
nique will thus always encounter the problem of ‘missing information’ with respect
to all other brain processes in the neural recording. The missing knowledge cannot
be recovered from the stimulus alone, usually leading to an influence on the eventual
outcome and significance of results. In decoding techniques on the other hand, it is
far more practical to learn which components in the neural response are important
for music processing, for example by a training phase for the weights of a linear
regression model, and to filter the unrelated data out of the brain response [44, 14].

A drawback of the decoding strategy is that the weights of the model cannot be
directly interpreted as an activation pattern in the brain related solely to the stimulus.
The filter weights, learned during training to minimize the mapping error, could
also exploit a part of the brain response that is not stimulus-related to optimize
its calculations. With encoding techniques on the other hand, weights are a di-
rect reflection of how and in which amounts a stimulus is represented in a brain
response channel [14]. This is the so-called temporal response function (TRF), which
can be seen as the transfer function between a stimulus signal and its neural output [9].
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Figure 1.6: Left: In forward modeling, the EEG is predicted from the stimulus,
while backward modeling, the stimulus is reconstructed from the EEG. Right: CCA
combines these techniques. (EEG and music drawing adopted from [28] and [6])

Apart from entirely mapping a stimulus to a brain response or vice versa, we could
also think of a combination between the two preceding strategies, a ‘hybrid encoding-
decoding strategy’ [16]. Canonical correlation analysis (CCA) is a common linear
technique to achieve this strategy in literature. Here, we transform both the stimulus
and brain response with linear weights gs,j and gb,j respectively (and time lags τ),
resulting in two new intermediate representations (ĉs(t) for the stimulus, ĉb(t) for the
brain response) that can be made maximally relatable, for example by maximizing
Pearson correlation [16, 10]:

ĉs(t) =
∑
τ

s(t− τ)gs,j(τ) ĉb(t) =
∑
j

∑
τ

bj(t− τ)gb,j(τ). (1.3)

Comparing these equations to the ones of encoding and decoding, it can be clearly
seen why this technique is sometimes called a ‘hybrid encoding-decoding strategy’
[16]. In literature, slight variations of the above equations can be found, for example
depending on the applied temporal filtering (lags τ) [10]. A schematic representation
of CCA is shown in Figure 1.6 on the right.

1.4 Representation of the musical stimulus
With the choice of a model, also comes the choice of the appropriate representation
of the stimulus, which accompanies the neural recordings in the model. In this
subsection, an overview of the most common stimulus representations is given.
A musical sound can be represented in various ways in research. Each of these
representations focuses on (the combination of) certain aspects of the song. With
the choice of representation, comes thus another choice: which parts of a stimulus
are relevant for the study in question? The representation of a stimulus can thereby
have a large impact on the final result. Since the field of music processing is still
relatively small, representational choices are often influenced by good results in the
larger neighboring domain of speech processing. A summary of the most predominant
choices is listed below.
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1.4.1 Envelope

An envelope signifies the overall, low frequency activity in a signal. The envelope can
be a good choice when high frequency changes do not provide the bulk of informa-
tion [32]. In speech processing, the envelope is a frequent choice of representation. O’
Sullivan et al. [31] showed that an attended speech envelope can be discerned from a
simultaneously played unattended envelope with a linear regression technique. This
type of study is called auditory attention detection (AAD). de Cheveigné et al. [10]
compared the results of linear regression and CCA techniques when decoding speech
envelopes. Ciccarelli et al. [9] also used the envelope as stimulus representation in
their comparison of linear and nonlinear techniques for speech decoding. Apart from
these examples, many more can be found in literature [13, 14, 43, 44].

A reason for this popularity in speech processing literature is the following. For
speech stimuli, the envelope follows a linear relation with an EEG measurement
(see later) between frequencies of roughly 1 and 10 Hz [31, 10]. This is of course an
interesting advantage when using linear techniques. In music processing studies, no
consensus on a frequency range is described. Some studies define a larger frequency
band than explained above. For example, Di Liberto et al. [11] use a range of
0.5-45 Hz in their research. On the contrary, the study of Schaefer et al. [33] defines
envelopes with filtered ranges from 1-14 Hz, resembling the values used in speech
processing. This divergence of ranges makes it an interesting open question for
research.

There are different ways to obtain the envelope of a signal. First, the absolute value
of the signal is a frequently used option. This calculation can be extended by using
a log or power law relation to accommodate for the nonlinear auditory processing [3].
Alternatively, the ‘mathematical envelope’ can be obtained by calculating the magni-
tude of a complex signal using the Hilbert transform. In this method, the stimulus is
seen as a modulating signal imposed onto a sine. Another calculation of the envelope
is found by squaring and low pass filtering the signal [31, 10, 3].

Besides, one could ask the question if these calculations should be carried out on
the raw or a processed version of the stimulus. In the latter case, a gammatone
filter bank is often used, dividing the raw stimulus into several frequency bins. An
advantage of adding this step to the calculations is its resemblance to the filtering
in the basilar membrane, taking the natural processing in the ear into account [3].
All these different methods were compared by Biesmans et al [3]. in a linear speech
processing set-up. In this study, the power law method used on the gammatone
filtered subbands of the stimulus performed best. This will therefore also be the
method used in this work for envelope extractions.

One last note on the envelope representations is the use of a variant in a music
processing study by Sturm et al. [37]. In this publication, power slope representations
are implemented, which are calculated as the differentiated envelopes of the stimuli.
This choice of input for the model is chosen based on its inclusion of rapid changes
in the intensity of the sound, possibly indicating note onsets.
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1.4.2 Spectrogram

The spectrogram, the magnitude of the short-time Fourier transform (STFT), is also
used as representation of a stimulus. Contrary to the envelope, the spectrogram in-
cludes both time and frequency information [32]. Cantisani et al. [7] implemented this
representation in a stimulus reconstruction (decoding) set-up using linear regression.
In comparison to the envelope, using a spectrogram as model in-/output has both its
advantages and disadvantages. One advantage is that the influence of both high and
low frequencies can be studied extensively. Also, the dual time-frequency information
can be exploited [32]. A drawback, however, is the increase in amount of model
parameters with this representation, which leads to a higher risk of overfitting.

1.4.3 Various combined features

Apart from these previously mentioned representations, a stimulus can also be defined
by a variety of its properties. Our brain records numerous features of a song, e.g.,
pitch, timbre, intensity. . . As mentioned before, the combination of these features
is what makes a certain song unique and recognizable. This is the reason why, in
practice, a wide combination of features is used.

Gang et al. [16] extracted 20 different features1 from stimuli, after which they
were combined using PCA. Finally, they were used in a CCA approach to relate
them to the brain responses of the same stimulus. Treder et al. [41] extracted
spatio-temporal features of all the electrodes in their EEG experiment over three
different time intervals. Afterwards, these features were used to train a classifier to
perform AAD on polyphonic music. In the study of Sturm et al. [37], 9 musical
properties were deduced from stimuli, exploring their relation to the ‘goodness of fit’
(Pearson correlation) of the implemented linear response-to-stimulus mapping.

1.5 Research questions

Now that we have seen the possible ways of setting up a linear model, along with the
ways to represent stimuli and record brain responses, it is time to think about what
we would like to achieve with this model. First and foremost, we pose the following
question:

‘Is it possible, using a linear decoding model, an EEG response and a stimulus enve-
lope, to find a good (i.e., ideally optimal) stimulus reconstruction for perception and
imagination experiments?’

If so,

• ‘Is it possible to discern between different musical stimuli based on the resulting
reconstructed envelopes (by implementing a classifier) in both perception and
imagination experiments?’

1e.g., zero-crossing rate for pitch, spectral flux for timbre. . .
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• ‘Are there any observed group effects within the results of the perception and
imagination experiments (musicians vs. non-musicians, song categories, imagi-
nation techniques. . .)?’

• ‘Are there any effects on the results when changing the filtering range of the
envelopes for the perception and imagination of music?’

In the next chapters, we will try to find the answers to these questions. First, the
used data sets and their properties will be discussed. Afterwards, an overview of the
preprocessing steps is given.

Then, a first version of our stimulus reconstruction model will be defined and the
obtained results will be discussed. Secondly, an extended version of this model will be
implemented, after which the effects on the results will be studied. In a final chapter,
different stimulus classification approaches will be discussed. All these analyses were
carried out using Matlab R2019b [22].
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Chapter 2

Data
In this study, two different prerecorded data sets are used. These data sets contain
EEG brain recordings of several subjects listening to/imagining a selected stimulus.
Each of these stimuli has a sampling frequency of 44.1 kHz. In the EEG experiments
in both data sets, 64+2 (mastoid) channels were recorded at 512 Hz.

The first set, published by Stober et al. [36], contains EEG recordings in both MIR
and MIIR settings. The second data set by Di Liberto et al. [12] contains only
recordings of subjects listening to a stimulus and can therefore only be used in a
MIR study. Apart from this, different song categories or musicality levels within
subjects are also included in both data collections, making them especially useful
in subsequent group analyses. In the next sections, a more detailed description of
the used data is given. The comparison between both data sets can be found in the
overview of Table A.2.

2.1 OpenMIIR data set - Stober et al.

In the OpenMIIR data set, published by Stober et al. [36], 12 well known stimuli
(Table A.1) are presented to 10 subjects. While listening to or imagining these
musical excerpts, EEG responses of the subjects are recorded. This happens in four
different conditions. The experiments for each condition are repeated five times [36]
per song and subject. In total, this leads to 10 subjects x 4 conditions x 12 stimuli x
5 trials = 2400 trials, or 60 per condition and subject. A visual scheme of this set-up
and the conditions can be seen in Figure 2.1.

Figure 2.1: Set-up in the OpenMIIR data set per subject. Adopted from [36].
17
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2.1.1 Conditions

MIR and MIIR studies require different listening and imagination conditions respec-
tively. When two or more of these conditions are present, comparative studies could
also be carried out. As shown in Figure 2.1, the four conditions in this data set
are [36]:

1. Stimulus perception, with a few seconds of cue clicks preceding the stimulus to
indicate the tempo;

2. Stimulus imagination, also preceded by cue clicks;
3. Stimulus imagination without cue clicks;
4. Stimulus imagination without cue clicks, but with a feedback questionnaire for

the self-assessment of each subject.

The last condition is also recorded separately from the previous three [36]. This leads
to an interesting question: might tempo information be retained from the previous
cases, i.e., is there an effect of training with an increasing number of trials?

2.1.2 Stimuli
As mentioned before, 12 stimuli are present in this data set. These stimuli can also
be classified into three groups. The first group (stimulus 1-4) contains songs with
lyrics. In the second set (stimulus 5-8), the same songs are presented, but here the
lyrics are removed. The third group (stimulus 9-12) involves musical pieces that are
purely instrumental [36].

2.1.3 Subjects
The EEG recordings of 10 subjects are present in this data set [36]. These subjects
will be denoted as P01-P10 further on in this work and can be divided according to
several criteria, as listed below.

Musical training might be a factor in the performance of MIR and MIIR methods.
Therefore, this data set introduces subjects with varying degrees of musical experience
(Table A.2). Eight of the ten subjects had formal musical training. Four of them
(P03-P05, P09) still regularly played at least one instrument, the other four subjects
(P01, P06-P08) did not play music anymore. The two remaining subjects (P02, P10)
were not musically trained [36].

A different way of categorizing these participants is the manner in which they imagine
songs. This can be different for a music with or without lyrics. For music with lyrics,
the data set allows to investigate the effects between two imagination techniques.
One half of the participants imagined themselves singing (P01, P02, P05-P07), while
the other half simply ‘heard’ the lyrics inside their heads (P03, P04, P08-P10) [36].

A parallel categorization can be made for imagining musical pieces without lyrics.
Half of the participants (P04, P05, P07, P09) had some kind of visualization within
these ‘wordless’ imagination experiments, half of them solely ‘heard’ the stimulus
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inside their heads (P01-P03, P06, P08, P10) [36]. As mentioned in the introduction,
these visualizations could arise because of shared brain regions between the visual
and musical pathways. With these divisions in the participants, one could investigate
if there is a difference in music imagination performance between these groups or if
these aspects play any role during stimulus perception.

2.2 Bach data set - Di Liberto et al.
In this second data set, published by Di Liberto et al. [12], 10 musical excerpts from
sonatas of J.S. Bach (Table A.1) are presented to 20 subjects. While listening to
these pieces, the EEG responses of the participants are recorded. Tests for each
stimulus are repeated three times [12, 11]. In total, this leads to 20 subjects x 1
condition x 10 stimuli x 3 trials = 600 trials.

2.2.1 Conditions
In this data set, there is only one condition: stimulus perception [12]. With this one
condition, this data set can thus only be used for MIR research. One extra thing
to note is the following: before listening to the stimulus, there are no cue clicks in
this data set. This means that no tempo information is given before the onset of the
musical pieces.

2.2.2 Stimuli
As mentioned before, 10 stimuli are present in this data set. All these stimuli are
purely instrumental, originally flute and violin pieces of J. S. Bach. in this data
set however, a part of the participants are expert pianists. To take into account
any influence regarding the knowledge of this specific instrument, Di Liberto et al.
[11, 12], changed the original instruments into piano tracks in their studies.

2.2.3 Subjects
The EEG recordings of 20 participants are present in this data set. These subjects
will be denoted as P01 - P20 further on in this work. These participants can be
divided by the following criterion. The first half of the participants (P01-P10) is not
musically trained. The second half (P11-P20) are expert pianists, which are listening
to stimuli with their preferred instrument [12]. If this difference within subjects has
an effect on the decoding performance can thus be investigated. Unfortunately, since
there are no imagination experiments, no information about visualizations is given
in this data set.
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Chapter 3

Preprocessing

The data described in the previous section cannot be directly implemented into our
model. First, the extraction of the desired envelope representation and the EEG
preprocessing need to be carried out. In this section, the details of these preprocessing
steps are discussed. In short, the EEG recordings go through the following steps:
re-referencing, artifact removal, filtering and resampling. For the stimuli, an envelope
extraction is followed by a filtering and resampling step.

Figure 3.1: Schematic of the preprocessing steps. (EEG and music drawing adopted
from [28] and [6] respectively)

3.1 Preprocessing of the EEG
3.1.1 Re-referencing
As mentioned before, the potential differences in an EEG are measured relative to a
reference, which can be one electrode or a combination of measuring points. This
reference, and thus also the relative measurements, can be freely chosen and changed
by subtracting it from all data. This re-referencing step can have a few advantages.

First, the original referencing might introduce noise into the data, if these noise
sources are not equally represented in the reference and other electrodes. This leads
to an overall worse performance in algorithms. Opting for a new reference which
captures this noise leads to a higher signal-to-noise ratio after subtraction. Secondly,
neighboring EEG channels measure similar potential differences. If the original
reference is positioned closely to the region of interest, a large part of the useful
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signal might be gone after subtraction. However, the relative potential difference in
the EEG is not changed by re-referencing, because the new reference is subtracted
from all channels in the same way [20, 32].

Two common references that are subtracted from all data are:
• the average of the two mastoid channels (Figure 1.5)
• the average signal over all channels

For comparability to the two original studies of the used data sets, the first method
is chosen in this work. In order to perform this re-referencing properly, the measure-
ments of mastoid channels need to be available for all subject. In the OpenMIIR
data set, these channels were not recorded for the first half of the participants due to
an oversight. For the second half, they were recorded [36]. Therefore, the standard
reference (common mode sense active electrode - CMS) of the EEG data acquisition
was kept. This CMS electrode is traditionally placed near Cz (Figure 1.5) at the
center of the head [4]. For the Bach data set, the mastoid channels were available
and the above re-referencing method could thus be carried out [11].

3.1.2 Artifact removal

To counteract any noise and artifacts that are left in the signal, an artifact removal
step is done. The method used for this is a multi-channel Wiener filter (MWF), via an
algorithm implemented by Somers et al. [35]. In this filter, the input EEG signal y(t)
is seen as a superposition of the clean EEG signal s(t) and the multi-channel artifact
n(t) [35]. With the assumption that these signals are zero-mean and uncorrelated,
also their covariance matrices (denoted as Σs and Σn respectively) have an additive
behavior [35]:

y(t) = s(t) + n(t)
Σy = Σs + Σn. (3.1)

The artifact signal n(t) can be approximated by a linear combination of the original
EEG channel matrix Y , with weight matrix W . This can be extended by adding
time lagged EEG channels, making it a spatio-temporal filter. When minimizing the
MMSE of the real artifact n(t) and the estimate n̂(t), this results in the following
equation (using that the signals are uncorrelated):

n̂(t) = W TY
MMSEnn̂=======⇒ W = Σ−1

y Σn. (3.2)

The covariance matrices of the original and clean EEG signal can be estimated by
indicating S clean parts (matrix Y s) and N artifacts (matrix Y n) in the original
input [35]. The artifact covariance matrix can then be estimated as the difference of
these two matrices (using a generalized eigenvalue decomposition approach):

Σ̂y = Y nY n

N
Σ̂s = Y sY s

S

Σ̂n = Σ̂y − Σ̂s. (3.3)
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This way, an estimate of the filter weights and artifact signal can be made as in (3.2),
after which n(t) is subtracted from the signal y(n) to obtain the clean EEG s(t).

In practice, a custom GUI was opened when running the algorithm, where broad
regions around visible artifacts (mostly eye blinks and movement artifacts) were
selected, clean areas remained unmarked. In the study of Somers et al. [35], it
was found that an overestimation of these artifact areas had a negligible effect in
comparison to an underestimation.

To calculate the filtering weights W out of these clean EEG and artifact pieces, a
spatio-temporal filter with a time delay up to 5 samples was used. These weights W
then construct the artifact estimate, which is subtracted from the original signal to
obtain a clean EEG output.

3.1.3 Filtering

As a next preprocessing step, it is time to choose which frequencies are most
descriptive for our algorithm’s purpose. As mentioned before, there is no clear
consensus on which filtering ranges are best for music processing. Therefore, two
different ranges are tested out:

• a bandpass filter from 1-10 Hz (as in speech processing)

• a bandpass filter from 1-30 Hz (as in the data set of Stober et al. [36])

Further analysis will show which of these two filtering ranges is the best for a certain
purpose (linear regression, further group analysis. . . ) within the two chosen datasets.

3.1.4 Resampling

Next, the EEG channels are downsampled to from their inital sampling frequency of
512Hz to 64Hz. This is mostly done for time and coding efficiency, while preserving
a perfectly reconstuctable EEG. The new sampling frequency of 64 Hz is also the
value chosen in the study of Stober et al. [36] and it was adopted here for two reasons.

First, this sampling frequency is high enough to avoid the main problem encountered
with this downsampling: aliasing. For a perfect reconstruction of a stimulus without
aliasing, we need a sampling frequency at least two times as high as the highest
frequency present in the signal (Nyquist criterion). This means that for a maximal
frequency at 10 Hz, a minimal sampling rate of 20 Hz needs to be chosen, for 30 Hz
a minimal sampling rate of 60 Hz.

Secondly, this frequency remains a divider of the old sampling frequency. This means
in this case that in the process of downsampling, 1 out of 4 samples of the original
EEG are taken instead of performing interpolation. This also benefits the accuracy
of the resampled EEG.
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3.2 Preprocessing of the stimulus
3.2.1 Envelope extraction

The chosen stimulus representation is the envelope, which will be calculated according
to the best functioning method in the study of Biesmans et al. [3], introduced in
Section 1.4. As in this study, a gammatone filter bank consisting of 15 filters is made.
This filterbank separates the original stimulus into 15 subbands, each with their own
center frequency. In the study of Biesmans et al. [3], which uses speech stimuli, these
center frequencies have a range between 150 Hz and 4 kHz. However, for our music
stimuli, center frequencies ranging from 1 Hz to 5 kHz seemed suitable, based on an
exploratory analysis of the power spectral density of the used stimuli.

Figure 3.2: The gammatone filterbank used in this process.

From these 15 stimulus subbands, the envelope was extracted using a power law
relation. For the corresponding exponent, the suggested value of 0.6 in the study of
Biesmans et al. [3] was implemented. After this power law step, the subbands ai(t)
are combined into one envelope signal s(t), with summation weights equal to unity.

s(t) =
15∑
i=1
|ai(t)|0.6 (3.4)

3.2.2 Filtering

After the envelope extraction step, the music envelopes are filtered to obtain the
desired range of frequencies. The bandpass filter used for this is traditionally the
same as for the EEG, which is a logical step with the subsequent decoding algorithm
in mind. The two bandpass filtering ranges are thus again defined as:

• 1-10 Hz (as in speech processing)

• 1-30 Hz (as in the data set of Stober et al. [36]).
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3.2.3 Resampling

For the last step in the preprocessing of the stimuli, resampling, the new sampling
frequency is the same as the EEG channels (from 44,1 kHz to 64 Hz). A thing to note
is that here, samples need to be interpolated to obtain the downsampled envelope,
since the new sampling frequency is not a divider of the old one. However, if we
attempted to find a frequency which holds this property for both the stimulus and
the EEG, we would be interested in the greatest common divider of 44,1 kHz and 512
Hz. This divider is equal to 4 Hz, which unfortunately does not fulfill the Nyquist
criterion. In this case, aliasing would thus occur.
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Chapter 4

Linear regression model

In this chapter, a stimulus reconstruction model is made with the preprocessed data.
We here adopt a linear model, resulting in set of decoder weights that relate the
EEG response to the stimulus. To decouple the training and test phase of this model,
cross-validation is implemented. Due to the risk of overfitting in the training phase,
ridge regression is included in this model. A second inner loop (apart from the outer
cross-validation loop) is introduced for the estimation of the optimal regularization
hyperparameter.

The calculation of the decoder weights in this double loop setting will be explained
in detail in this chapter (Figure 4.1), after which the obtained results are discussed.
Moreover, group effects within the results will be studied by means of linear mixed-
effects models for the perception and imagination experiments.

4.1 Stimulus reconstruction model
The decoder weights in this model are used to reconstruct a stimulus from an
EEG response (decoding approach) and are calculated via linear regression, similar
to [31, 44]. We consider a stimulus envelope s(t) and an EEG response r(t) =[
r1(t) · · · rN (t)

]T
, consisting of N channels. These channels can be linearly

combined using decoder weights g(t) =
[
g1(t) · · · gN (t)

]
to produce an estimate of

the stimulus envelope ŝ(t). To increase the model capacity, this relation is extended
to a spatio-temporal filter by introducing a range of time lags τ for each EEG channel.

ŝ(t) =
N∑
i=1

∑
τ

gi(τ)ri(t − τ) (4.1)

We choose time lags ranging from τ0 = 0 ms to τn = 250 ms, which has shown to
cover most of the neural processing of an audio stimulus [31]. At a sampling rate
of 64 Hz, this range thus spans 17 samples. However, in this decoding model, we
approach the neural processing pathway in the opposite sense. Envisioned on a
timescale, we try to decode an earlier stimulus out of a later response. Therefore, in
backward modeling, we need to induce a negative time lag in the spatio-temporal
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4. Linear regression model

filter to ensure the incorporation of relevant EEG events [31]. When reconstructing
T time samples of the stimulus, with time lags ranging from the above mentioned τ0
to τn, (4.1) generalizes to the following matrix formulation:

S = Rg with

R =



r1(τn) · · · r1(T ) 0 · · · · · · 0
r2(τn) · · · r2(T ) 0 · · · · · · 0

...
...

...
...

...
...

...
r1(τ0) · · · r1(T − 1) r1(T ) 0 · · · 0
r2(τ0) · · · r2(T − 1) r2(T ) 0 · · · 0

...
...

...
...

...
...

...



T

, g =



g1(τn)
g2(τn)

...
g1(τ0)
g2(τ0)

...


and S =



S(0)
S(1)
S(2)
S(3)
...

S(T )


(4.2)

The decoder weights g are optimized via the MMSE criterion, in which the mean
squared error between the stimulus and its reconstruction is minimized, leading to
(4.3) for a stimulus length of T samples [31, 44]:

g = arg min
g

(
T∑
0

(S−Rg)T (S−Rg))

⇒ g = (RTR)−1(RTS) = C−1
RRCRS. (4.3)

CRR and CRS are respectively the estimated autocorrelation matrix of the time-
lagged EEG channels and cross-correlation matrix between the time-lagged EEG and
the stimulus envelopes. After obtaining the decoder g, a reconstructed envelope can
be found via (4.2). However, there is a risk of overfitting in this optimization. This
effect gets larger when a lot of parameters need to be trained, i.e., when the number
of channels × time lags is large, while the amount of training data is limited.

In this problem, we encounter a high number of time-lagged EEG channels, while
only a small pool of training examples is usually available to calculate the decoder
g in research. This limited amount of data leads to badly estimated and low rank
correlation matrices in the inverse problem (4.3) [44], resulting in decoder weights
that produce an accurate reconstructed envelope for the used training examples,
however, by also giving attention to ‘irrelevant’ attributes in the model. This does
unfortunately not mean that the model works equally well for new, unseen data. In
other words, overfitting can lead to a biased interpretation of the results.

Therefore, ridge regression is often added to the estimation of the decoder (4.4). A
hyperparameter λ is introduced into the calculations, penalizing the square magnitude
of the decoder weights [44]. This drives weights down if they only marginally
contribute to the decoding process, but still deviate much from the zero value.
Unnecessary decoder weights are thus regulated towards a value close to zero, giving
attention to the real trends in the data and thereby reducing overfitting.

g = arg min
g

(
T∑
0

(S−Rg)T (S−Rg) + λgTg)

⇒ g = (RTR + λI)−1(RTS) = (CRR + λI)−1CRS (4.4)
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The two covariance matrices CRR and CRS in (4.4) can be estimated from the
available training data. However, the optimal value of the hyperparameter λ cannot
be directly deduced from envelope and EEG examples, it requires its own optimization
strategy. Optimizing this new hyperparameter thus introduces a trade-off between
an overall better stimulus reconstruction and time complexity.

4.2 Leave-one-song-out decoding algorithm
In this study, we explore if a song can be decoded when the model is trained on
every other song in the same perception/imagination condition. This is done for one
subject and condition at a time. For simplicity, we assume a perception condition
further on in this section. The available data then consists of 12 songs x 5 trials
= 60 unique trials per subject for the OpenMIIR data set or 10 songs x 3 trials =
30 trials for the Bach data set (Table 4.1). Each of these trials contains a stimulus
envelope and its EEG response.

The available data is used for training and testing of the model. To accurately
measure the performance of our stimulus reconstruction, we cannot train and test
the model on the same data, this would create biased results. The test and training
phases need to be decoupled. A cross-validation (CV) loop is therefore implemented,
which splits the available data into a test and training part in subsequent folds
(Figure 4.1). In this CV loop, we withhold the envelope and EEG trials of one song
per fold for testing and use the rest for model training. This results in five test trials
for the OpenMIIR data set per fold, or three for the Bach data set (Table 4.1).

For the training of a decoder without regularization (λ = 0), this CV loop is
the only division in the data that needs to be made. However, when including a
hyperparameter λ, this value also needs to be optimized. Since this optimization
is dependent on the used data, a second inner CV loop is foreseen, nested into the
outer one. This inner CV loop further divides the training data of the outer CV
loop into subfolds, splitting off the available trials for one other song for validation
(Table 4.1). In the next subsections, the calculations in this nested loop system will
be explained in detail. A schematic depiction of this can be found in Figure 4.1.

Table 4.1: Data in the outer and inner CV loops during the study of perception.

OpenMIIR data set

Total Outer loop Inner loop

5x12 trials → 5x1 trials (test)
→ 5x11 trials → 5x1 trials (validation)

→ 5x10 trials (training)

Bach data set

Total Outer loop Inner loop
3x10 trials → 3x1 trials (test)

→ 3x9 trials → 3x1 trials (validation)
→ 3x8 trials (training)
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4. Linear regression model

Figure 4.1: The model is trained and tested using two nested CV loops, where the
inner loop (below) is used to determine the regularization parameter, while the outer

loop (above) is used to test the optimized decoder.

4.2.1 Set-up of the outer CV loop
As a first step, all the available trials are standardized. This optional step makes sure
that all variables in the model (i.e., the time-lagged EEG channels) are treated on
the same scale. These calculations benefit the direct comparison of decoder weights
and the interpretability of the model. Afterwards, the outer CV loop is created,
splitting off one song per fold (Table 4.1) for testing. All other trials are training
data. When including regularization into our model (4.4), the training data will be
used in the following inner loop for hyperparameter optimization [44].

4.2.2 Inner CV loop - Hyperparameter optimization
As mentioned before, the optimal hyperparameter value λ cannot be deduced directly
from the data. Additional optimization is thus required, which takes the form of
a nested inner loop on the training data. For every new subfold in this nested
loop, we again split off one song (Table 4.1). All remaining trials are used to make
decoders with a range of possible hyperparameter values, which will be validated
against the newly separated song. The subdivisions in the data for this inner CV
loop will further be called ‘inner validation data’ and ‘inner training data’ respectively.
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4.2. Leave-one-song-out decoding algorithm

To make decoders with the inner training data (4.4), a few components need to
be determined: the covariance matrices CRR and CRS and the hyperparameter
value λ. For the hyperparameter, a range of values is used [44], which will each be
implemented in a separate decoder:

λ = 1.848n × 10−6 with n = [0, 50] (4.5)

Next, the CRR and CRS matrices for each inner training trial are estimated (4.4).
However, to include the information of all inner training trials into a more accurate
training of the decoders, a combination of these covariance matrices is made. This
combination can be done in two ways:

1. Keeping the N covariance matrices separate for every inner training trial,
calculating decoder weights for each and averaging the decoders in a final step.

g = 1
N

N∑
i=1

gi = 1
N

N∑
i=1

(CRRi
+ λI)−1CRSi

(4.6)

2. Averaging the N covariance matrices of all inner training trials as a first step,
after which one decoder is directly obtained. Equivalently, one can use a
concatenation of all inner training data instead of averaging [3].

C̄RR = 1
N

N∑
i=1

CRRi
and C̄RS = 1

N

N∑
i=1

CRSi

g = (C̄RR + λI)−1C̄RS (4.7)

In the research of Biesmans et al. [3], it was shown that the second approach leads to a
more accurate result than the first method. The matrices CRR and CRS in (4.6) are
estimated with only a limited amount of data (one trial of relatively short duration).
This leads to an ill-posed inverse problem and an inaccurate decoder [3]. However,
in (4.7), the information of multiple trials is combined in the training of one single
decoder, which produces much better results. The second approach will therefore
also be the used method.

After making one decoder for every hyperparameter in the range (4.5) per subfold,
these decoders are validated against the inner validation data. With each of these
decoders, we reconstruct an envelope out of every inner validation EEG trial (4.2).
Then, the Pearson correlation between the real inner validation envelope and these
reconstructed envelopes is calculated.

When this calculation of Pearson correlations between the real envelopes and obtained
reconstructions is continued for every subfold, the optimal hyperparameter can then
be deduced as the value which leads to the highest averaged Pearson correlation over
all subfolds.
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4. Linear regression model

4.2.3 Outer CV loop - Testing
Now that the optimal hyperparameter value λ is found, the full optimal decoder
still needs to be tested against the test data that was separated in the outer loop.
Therefore, the CRR and CRS matrices of all training data in the outer loop are
combined (4.7), with the optimal value for the hyperparameter λ. With this optimal
decoder, the EEG trials of the test data are mapped to their respective reconstructed
envelopes (4.2). Finally, by calculating the Pearson correlation between each recon-
structed and original envelope for each test fold, the performance of our algorithm is
quantified.

4.2.4 Statistical significance
Permutation test

To check the statistical significance of the Pearson correlations obtained during vali-
dation, a permutation test is performed for all subjects combined. The significance
level for our correlations is obtained as follows.

If an envelope is correlated with its reconstruction, ideally a high correlation would
be expected. However, if the indices of the reconstructed envelope are shuffled, we
would expect this value to be lower, since the relation in the data is broken up. The
correlation value in the second case is dependent on the performed permutation of
indices. If this random permutation is done many (for example 10000) times, we
can estimate the distribution of correlation values. From this distribution, the 97.5
percentile can be deduced, which can be used as the desired significance level (on an
α-level of 0.05). To see if our correlation is statistically significant, we then simply
need to compare its value to this 97.5 percentile [43].

In the discussion of the results, median Pearson correlations over the (five or three,
Table 4.1) available trials per song and subject will be used. The plotted significance
level will therefore also be deduced from the estimated distribution of these median
correlations for all subjects.

Wilcoxon signed rank test

To compare two results of for example different conditions, the Wilcoxon signed rank
test is used. In this nonparametric test, two groups of observations x and y are
compared by looking at the distribution of their difference. The null and alternative
hypotheses of this test (implemented as a one-sided test) are: [24]

H0 : Median(x− y) = 0
H1 : Median(x− y) > 0 (4.8)

When a certain significance level α is chosen (here, α = 0.05 will be used), the null
hypothesis can either be retained or rejected, based on the obtained the p-value.
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4.3 Results and discussion
The leave-one-song-out decoding algorithm was implemented on the two available
data sets, for both data filtering ranges in the preprocessing steps (1-10 Hz and 1-30
Hz). All conditions, i.e., perception or imagination, are tested separately.

For the perception case, a literal implementation of Section 4.2 was done, solely with
perception trials. This implementation follows exactly the division of test and training
data in Table 4.1 for both data sets. However, a slight variation was implemented
for imagination experiments. Here, the perception trials of the OpenMIIR data set
were used for training (Table 4.2), to avoid that possibly misaligned and distorted
imagination trials lead to an inaccurate decoder. This approach removes the explicit
need for a nested loop construction. Both CV loops can be decoupled, because they
each use different data. This leads to a single global decoder per subject, which can
be tested with each of the available imagination trials.

Table 4.2: Data in the outer and inner CV loops during the study of imagination.

OpenMIIR data set

Total ‘Outer loop’ ‘Inner loop’

2x5x12 trials → 5x12 trials (imagination, test)
→ 5x12 trials (perception) → 5x1 trials (validation)

→ 5x11 trials (training)

4.3.1 Results for the OpenMIIR data set (bandpass filter 1-10 Hz)

The resulting correlations for a bandpass filtering between 1-10 Hz are given in
Figure 4.2 and 4.3 for the perception (gray) and an imagination experiment (condition
2, red). Each of these displayed values is calculated as the median correlation over the
five trials belonging to the same song and subject. Also the median value per song is
depicted, along with its numerical value in the table on the right hand side of the
figure. The significance level of these correlations is calculated using a permutation
test. A further subdivision of the results per subject is given in Appendix B. The
overall median correlations and their variance can be seen in Table 4.3.

Table 4.3: Overall results for the OpenMIIR data set (bandpass filter 1-10 Hz).

Perception Imagination (2) Imagination (3) Imagination (4)

Overall median 0.09 3.3× 10−3 −2.7× 10−3 −1.2× 10−3

Variance 0.014 9.9× 10−3 11× 10−3 0.013

Stimulus perception
For the perception condition with a bandpass filtering between 1-10 Hz, the resulting
correlations can be seen in Figure 4.2 (gray). The overall median and variance of the
results can be found in Table 4.3. A few observations can be made from these results.
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The median values (gray filled ‘dots’) show that for all songs, at least half of the
median Pearson correlations ρ are significant. Looking at Appendix B, P06 and P10
are the best performing subjects (ρP06 = 0.1761, ρP10 = 0.1615) in this experiment,
P03 shows the lowest performance (ρP03 = 0.0182) and is the only subject that does
not meet the significance level for at least half of the songs.

Figure 4.2: In the case of perception, all the median correlations per song surpass
the significance level. For imagination, the contrary is true.

Secondly, there might be a trend visible when looking at song categories. Songs
8-12 seem to perform overall better in this algorithm than the other songs, largely
overlapping with the category of instrumental songs (9-12, Table A.1). Songs in the
categories ‘lyrics’ and ‘no lyrics’ seem to have slightly worse results, except for song
8. This observation will be statistically verified in Section 4.4.

Stimulus imagination: condition 2 (preceded by cue clicks)

The results for imagination experiment (2), preceded by cue clicks, can also be
viewed in Figure 4.2 (red) for a bandpass filtering between 1-10 Hz. The median
and variance of the correlations in this condition are far lower than for perception
(Table 4.3).

In these figures, the better performance of songs 8-12 during perception is not seen
during imagination and by looking at Appendix B, all subjects are scoring low. The
median values per song and per subject do not surpass the significance level. This
overall worse performance is confirmed by conducting a Wilcoxon signed rank test
on the median Pearson correlations of both conditions in Figure 4.2 (ρperc > ρimag2,
p < 10−15).
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A possible reason for this observation could be a distortion of the stimuli during
imagination. Tempo inconsistencies, for example, could influence these results. Song
features might appear at different time points in the original stimulus than in the
reconstruction, decreasing their correlation. While there are cue clicks present in this
experiment, which give a hint of the tempo beforehand, they are not played during
imagination. Therefore, this distortion is still highly likely to be present in the EEG
trials for testing.

Moreover, we are uncertain about the onset of the imagination trials. All EEG
trials are recorded starting from a certain point in time, but this instance does
not necessarily align with the actual onset of imagination. A strategy to find the
optimally reconstructed envelopes will be explained in the next chapter.

Stimulus imagination: condition 3 and 4 (without preceding cue clicks)
In the OpenMIIR data set, two imagination experiments without preceding cue clicks
were available (Section 2.1.1). The third experiment was recorded together with the
first two (Figure 2.1), the fourth experiment was conducted separately. The results
for these conditions can be seen in Figure 4.3. Their overall median correlation and
variance are given in Table 4.3.

We see similar result as for the previous imagination condition: the song medians
(filled ‘dots’) are all situated at lower values than the significance level, indicating
that more than half of the depicted correlations are not significant. For both
conditions, the results are much lower than for perception (Wilcoxon signed rank test,
ρperc > ρimag3, p < 10−16, ρperc > ρimag4, p < 10−15). For this, the above reasons
(condition 2) apply.

Figure 4.3: For the other two imagination experiments, the same conclusions as
for the second imagination condition can be drawn.
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All three imagination conditions have similar results: they produce significant
correlations for less than half of the subjects per song. This does also mean that, from
these observations, no significant difference could be found between the experiments
with and without preceding cue clicks (Wilcoxon signed rank test, p = 0.91 when
comparing ρimag2 to ρimag3, p = 0.82 when comparing ρimag2 to ρimag4).

In Section 2, it was mentioned that the fourth condition, recorded separately from
all other experiments, could be used to spot possible effects of song memorization
(i.e., subject training). Based on the observations and previously conducted tests,
there is no statistically significant training of subjects between experiments.

4.3.2 Results for the OpenMIIR data set (bandpass filter 1-30 Hz)

Similarly, the results for the data with bandpass filter between 1-30 Hz can be
analyzed. The overall median Pearson correlations for these conditions can be found
in Table 4.4. Both the overall median and variance of our results are lower compared
to those for a bandpass filtering between 1-10 Hz. From Appendix B, the same
observations can be made about the best/worst performing songs and subjects, but
with overall lower correlations than for the previous filtering range.

Table 4.4: Overall results for the OpenMIIR data set (bandpass filter 1-30 Hz)

Perception Imagination (2) Imagination (3) Imagination (4)

Overall median 0.08 −1.1× 10−3 −3× 10−3 −6.35× 10−4

Variance 0.011 8.3× 10−3 9.2× 10−3 0.01

A formal Wilcoxon signed rank test between the results of the two filtering ranges
gives us an important insight. When comparing the median correlations of the two
frequency ranges in the case of perception, a significant difference (p = 1.3× 10−5) is
found, rejecting the null hypothesis. In other words, the bandpass filtering between
1-10 Hz produces significantly better correlations than the filtering between 1-30 Hz.
For the three imagination conditions, this difference is not found. As in the previous
experiments, these imagination conditions produce low results.

This result suggests that the neural processing of music holds its most predominant
information in the same frequency range as for speech processing, namely the delta
(<4Hz), theta (4-8 Hz) and alpha (8-10 Hz) bands present in the EEG response [18].
The effect of filtering range will be investigated further as we extend our stimulus
reconstruction model in the next chapter.

4.3.3 Comparison to the original study of Stober et al. [36, 34]
In the original study of Stober et al. [36, 34], a direct implementation of the linear
model in the study of O’Sullivan et al. [31] was made, in the case of perception.
The average correlation value for trial-specific decoders was 0.11, with a very high
variance of 0.52. For this algorithm, no statistical significance of the correlations
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was found. After obtaining these results, an algorithm using neural networks was
proposed in the work of Stober et al. [36, 34].

In our study, the median value of 0.09 stays in line of this average correlation value.
Our variance is on the other hand much lower. A proposed reason for this outcome
given in the study of Stober et al. [34] was the instability of the decoder weights
induced by the use of short trials (of a few seconds, Table A.1). The decoders were
also highly dependent on the chosen time lags τ . While it is not literally mentioned
in the study, this proposed reason might subsume that a combination of decoders as
in Equation 4.6 was used, leading to an unstable decoder.

Moreover, the study of Stober et al. [34] does not include regularization into the
model, which will definitely influence the variance in the obtained results. As a
solution, dimension reduction with PCA was done to decrease overfitting, but the
amount of time lags included in the model was high (τ = 0 - 350 ms), leading to a
large amount of parameters for training.

4.3.4 Results for the Bach data set (bandpass filter 1-10 Hz)

The single perception condition in the Bach data set produces the results in Figure
4.4 on the left for a bandpass filtering between 1-10 Hz. Comparing these perception
results to the ones for the OpenMIIR data set (ρperc,O), we see that the Bach
data set (ρperc,B) has a significantly better performance (Wilcoxon rank sum test,
ρperc,B > ρperc,O, p < 10−9).

Figure 4.4: The results for the Bach data set for both filtering ranges show a
significance for more than half of the subjects per song.
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A reason for this could be the difference in song categories. By visual inspection of
the results in the OpenMIIR data set, it was seen that the instrumental songs seemed
to outperform the other two categories. The Bach data set contains only instrumental
music, which could influence the relative performance of the model. Moreover, trial
length could play a role in the difference between these results. Contrary to the
OpenMIIR data set, these stimuli each have a duration of a few minutes (Table A.1).
This incorporates more information into the training phase than short stimuli, hence
more accurately trained decoders.

4.3.5 Results for the Bach data set (bandpass filter 1-30 Hz)

The results for a bandpass range of 1-30 Hz are depicted in Figure 4.4 on the right. A
visual inspection of the results for both filtering ranges does not show an eye-catching
difference between these correlations, both preprocessing approaches present good
results. A Wilcoxon signed rank test between the median Pearson correlations of
both filtering ranges indicates no significant difference on an α = 0.05 level (p =
0.086).

4.3.6 Comparison to the original study of Di Liberto et al. [11, 12]

In the original study of Di Liberto et al. [11], similar values for the correlation were
found. In this study, larger filter ranges (0.5-45 Hz) and higher sampling rates are
used (128 Hz). Our results thus show a similar performance for smaller frequency
ranges (even only up to 10 Hz), thus achieving equal results while incorporating less
frequency information into our model.

Table 4.5: Overall results for the Bach data set

Bandpass 1-10 Hz Bandpass 1-30 Hz

Overall median 0.158 0.156
Variance 6.8× 10−3 6.6× 10−3

4.4 Investigating effects on groups within the data

In this section, we want to study possible effects within the correlation results. To
do this, one needs to consider the hierarchical structure of the used data sets, which
leads to many possible groupings. Trials belong to a certain subject and stimulus.
These songs can for example contain lyrics or be purely instrumental. Subjects can
be musically trained or not. All possible categorical groupings can be found in Table
A.2. One can then pose an interesting question: are there certain groups in the
available data which perform significantly better than others?

We will investigate these effects in the data using a linear mixed-effects model
(LME) [23]. Here, our obtained Pearson correlations ρ will be fitted using categorical
predictor variables, which each can have multiple grouping levels. This relation (4.9)
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is based upon two different types of variables: fixed and random effects. Fixed effects
(with design matrix X and fixed-effects vector β) globally reveal tendencies in the
observations and can be used to study trends in which we are interested. Random
effects (with design matrix Z and random-effects vector b) cause random variations
within the data, which are not explained by the fixed effects. The fitting error is
represented by ε, which is normally distributed with a variance σ2 [23].

ρ = Xβ +Zb+ ε ε = N (0, σ2) (4.9)

For the perception experiments in both data sets, possible variables of interest (fixed
effects) are song categories and musicality of the subjects. Since there are two ways
to describe musicality in the data sets (musical training and instrument practice,
Table A.2), both effects will be investigated. For the imagination experiments in the
OpenMIIR data set, it would additionally be interesting to investigate if different
techniques of imagining a song (how do they ‘hear’ the lyrics inside their heads,
possible visualizations) influence the results.

With these variables, several candidate models can be made. The optimal LME
model will be chosen by computing the Akaike criterion (AIC) for each and selecting
the model with the lowest value. Furthermore, plots of the residuals were made
to assert their normality assumption and homoscedasticity of the model. In the
next subsections, the contents of the best performing models for perception and
imagination will be discussed, along with their respective observations.

4.4.1 Results for the OpenMIIR dataset - Perception

For perception experiments, we find the best performing model in Table 4.6. This
model uses instrument practice to define the musicality of subjects. After computing
the Akaike criterion for all candidate models using the description ‘musical training’,
these models were suboptimal. This description of musicality also never showed
statistical significance between its grouping levels.

The perception LME model in Table 4.6 has the lowest AIC value of all candidate
models (AIC = -957.03). A formal comparison between the perception LME model
in Table 4.6 and its equivalent candidate model using ‘musical training’ shows that
the former is significantly better (Likelihood Ratio Test, DF1 = 7, AIC1 = -957.03,
DF2 = 8, AIC2 = -955.16, p = 0.049).

When fitting this LME model to our correlations of all subjects, it was found that
correlations are significantly higher for instrumental music than for other song
categories (estimated coefficient =0.0395, t=1.998, p=0.046), which confirms the
visual inspections we did in Figure 4.2. Furthermore, musician who are still playing
instruments have significantly worse (coefficient estimate=-0.0549, t=2.17, p=0.03)
correlations in comparison to subjects who never played an instrument or have stopped
(Section 5.5). For a preprocessing filter range of 1-30 Hz, the effect of instrument
practice persists, however, there is no significant effect found for instrumental music
(DF=595, t=1.6365 p=0.10226).
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4. Linear regression model

Table 4.6: Fixed and random effects for the perception and imagination experiments.
Fixed effects Random effects

Perception Musicality(2): Instrument practice Subject (Intercept)
Song category (only OpenMIIR data set) Song (Intercept)

Imagination Musicality(2): Instrument practice Subject (Intercept)
Visualizations Song (Intercept)
Imagination technique (lyrics)
Song category

4.4.2 Results for the OpenMIIR data set - Imagination

For the three imagination experiments in the OpenMIIR data set, the fixed effects
are extended with imagination techniques. Subjects were reported to have two types
of imagination approaches for both music with and without lyrics. For the former,
people either hear themselves singing or hear the lyrics inside their heads. For music
without lyrics, any presence of visualizations during imagination is also investigated
(Table 4.6).

By fitting this model on data of the three imagination experiments, no significant
effects were found. This result is not completely unexpected, since the median
correlations for these experiments (Figure 4.2 and Figure 4.3) are largely non-
significant.

4.4.3 Results for the Bach data set

In this data set, there is only one song category: instrumental music. This effect can
therefore not be tested by the model. This means that only one fixed effect is present
in the model for this data set: the instrument practice for a subject. By analogy
to the previous data set, an LME model is fitted where no significant influence
of instrument practice is found in the data (estimated coefficient =0.009, t=0.34,
p=0.73).

For a preprocessing filter range of 1-30 Hz, this outcome does not change. In the
original study of Di Liberto et al. [11], there was a significant effect of musicality
found with a bandpass filtering range of 1-45 Hz, but this could not be replicated
with the current set-up in this study.

40



Chapter 5

Inclusion of time shifts

Up to this point, trials are included in the reconstruction model, starting from their
onset, i.e., from the instance t = 0. By doing this, we assume that a noticeable
processing of a song could become visible at time t=0 in an EEG response. However,
as for example seen in the imagination experiments of Chapter 4, this does not
necessarily lead to an optimally reconstructed envelope.

A new global parameter ν will be added to the model of Chapter 4, which incorporates
the possibility of an EEG response latency in our reconstruction model. This would
mean that a possible latency in response, because of an extensive neural processing,
is included. Moreover, in imagination experiments, a possible mismatch between
the trial onset and actual onset of imagination can be quantified. In this chapter,
an altered leave-one-song-out decoding approach, which includes this time shift
parameter ν, will be explained, along with a discussion of the results with respect to
the two data sets.

5.1 The importance of latency
When a stimulus is presented to a subject, signals ascend the neural pathway. The
processing of these signals in the ear and brain might result in a latency of the neural
response with respect to the stimulus presentation.

We consider an example EEG response, from which we want to reconstruct an
envelope via (4.2), along with a trained decoder. The spatio-temporal filtering, with
time lags τ , of our model then includes shifted versions of the EEG channels into
the stimulus reconstruction.

However, if a possible latency between the stimulus and EEG response is not fully
incorporated into the calculations, i.e., when this latency is larger than the maximal
time lag τn, the decoding approach of Chapter 4 does not lead to an optimally
reconstructed envelope. Calculations are then filled with noise and artifacts from
other brain processes, which are not related to musical activity. Moreover, for
imagination experiments, the exact onset of the imagined response is unknown. All
EEG trials are recorded starting from a certain point in time, but this instance does
not necessarily align with the actual onset of imagination.
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5. Inclusion of time shifts

For these reasons, a possible latency will be incorporated into an altered version of
the linear model of Chapter 4. To decouple this latency from the time lags τ of the
spatio-temporal filter, a new global parameter ν will be introduced [10]. In the next
section, this adapted version of the stimulus reconstruction will be discussed.

5.2 Adapted stimulus reconstruction model
For this linear model, we again consider a stimulus envelope s(t) and an EEG response
r(t) =

[
r1(t) · · · rN (t)

]T
, consisting of N channels. However, when reconstructing

a stimulus, not only a spatio-temporal filtering of the EEG response is done, also a
global time shift parameter ν is now introduced. The stimulus reconstruction with the
trained decoder weights g(t) =

[
g1(t) · · · gN (t)

]
from (4.1) and the reconstructed

envelope ŝ(t) now becomes:

ŝ(t) =
N∑
i=1

∑
τ

gi(τ)ri(t− τ + ν). (5.1)

When reconstructing T time samples of the stimulus, with time lags ranging from τ0
= 0 ms to τn = 250 ms and with a time shift ν, (5.1) generalizes to the following
matrix formulation:

S = Rg with

R =



r1(τn + ν) · · · r1(T + ν) 0 · · · · · · 0
r2(τn + ν) · · · r2(T + ν) 0 · · · · · · 0

...
...

...
...

...
...

...
r1(τ0 + ν) · · · r1(T − 1 + ν) r1(T + ν) 0 · · · 0
r2(τ0 + ν) · · · r2(T − 1 + ν) r2(T + ν) 0 · · · 0

...
...

...
...

...
...

...



T

,

g =



g1(τn)
g2(τn)

...
g1(τ0)
g2(τ0)

...


and S =



S(0)
S(1)
S(2)
S(3)
...

S(T )


. (5.2)

As can be seen in (5.2), no inclusion of the time shift is implemented in the decoder
weights g. This means that the decoder can be found in the same way as before (4.4),
using a time-lagged EEG matrix R that does not include a time shift ν.

However, in the leave-one-song-out decoding algorithm, a new parameter ν now
appears, which needs to be optimized. The adaptation of this algorithm and its
double loop mechanism will be discussed in the next section.
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5.3. Adapted leave-one-song-out decoding algorithm

5.3 Adapted leave-one-song-out decoding algorithm
In the adaptation of the leave-one-song-out decoding algorithm, a new type of
parameter needs to be optimized: the time shift ν, which incorporates the possibility
of a latency into the reconstruction model. For this parameter, a range of values
implemented, from which the optimal latency will be deduced.

In a study performed by de Cheveigné et al. [10], optimal time shifts ν of approx-
imately one second after the presentation of a speech stimulus were found. We
choose time shifts ranging from ν = 0 - 2 s for trials in the OpenMIIR data set,
which broadly incorporates the latency found in this study. At a sampling rate of 64
Hz, this range thus spans 129 samples. For the Bach data set, only one second of
additional EEG data is provided, which naturally forms the maximal time shift for
the implementation of the model. For the Bach data set, this range thus spans 65
samples.

The training of the decoder weights follows the same double loop implementation as
before. In the outer CV loop, the trials of one song are split off to use as test data,
all other songs will be used in the training phase. The same implementation of the in-
ner CV loop, without time shifts ν, then follows for the hyperparameter optimization.

However, the test phase will be altered slightly. Previously, we simply tested the
optimized decoder weights by reconstructing the envelopes of each test trial, after
which the Pearson correlation between these reconstructed envelopes and the real
song envelope was calculated. Now, the test EEG responses will be shifted over the
specified range for the parameter ν, testing the decoder weights on each of these
shifted trials. For every test example in the outer CV loop, a range of Pearson
correlations is thus obtained, one for each time shift. In comparison, the single
correlation per trial obtained in the approach of Chapter 4 is equal to the correlation
found for ν = 0 s.

Finally, the optimal time shift νopt per trial is found as the value linked to the highest
Pearson correlation in the obtained range. Note that the time shift is thus optimized
per individual trial, so that for each the reconstructed envelope is obtained, which
produces the maximal Pearson correlation with respect to the corresponding real
envelope.

5.4 Results and discussion
For the implementation of this adapted algorithm on the different perception and
imagination conditions, the same procedures as in Section 4.3 are followed.

For the perception experiments, only perception data is used for the entire decoding
process. For imagination experiments, perception data is again used for the training
of the decoder.
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5. Inclusion of time shifts

5.4.1 Results for the OpenMIIR data set

The resulting correlations for a bandpass filtering between 1-10 Hz are given in
Figure 5.1 for all four conditions in the OpenMIIR data set. The significance level
of these correlations is calculated using a permutation test. The overall median
correlations, their variance and median optimal time shift are given in Table 5.1.

Figure 5.1: Comparing these results with implemented time shift for the OpenMIIR
data set to the results of Chapter 4, a significant improvement in the decoding of

the stimuli is seen.
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5.4. Results and discussion

A visual inspection of the median Pearson correlations for all subjects per song learns
that the inclusion of the time shifts ν into the model adds a large improvement to
our decoding approach. All median Pearson correlations per song and subject are
significant. This is confirmed by a Wilcoxon signed rank test between the results
with and without time shift ν for the perception experiment (ρperc,ν > ρperc,ν=0,
p < 10−20). For the imagination experiments, similar conclusions can be drawn.

As can be seen on Figure 5.1, the perception experiment still outperforms the
imagination experiments in this set-up of the leave-one-song-out decoding algorithm.
For all imagination conditions, performing a Wilcoxon signed rank test confirms this
outperformance (p < 10−3 for all imagination experiments). Moreover, the fourth
imagination experiment might show signs of subject training, since this experiment
performs significantly better than the other two (ρimag4 > ρimag2, p = 0.02, ρimag4 >
ρimag3, p = 4× 10−3).

Furthermore, the median optimal time shift for the perception case in Table 5.1
closely matches the results found by de Cheveigné et al. (around one second). These
results thus indicate that the EEG response to a song maximally includes relevant
musical information approximately one second after the stimulus onset. Also for the
imagination experiments, an optimal time shift of approximately one second is found.
These values are however slightly higher than for the perception case, a possible
reason for this could be the varying onsets of imagination over all trials.

For the preprocessing filter range of 1-30 Hz, the results can be found in Appendix C.
Parallel to the model without time shifts, the filter range of 1-10 Hz leads to a
significantly better performance. This time however, this influence is seen for all four
perception and imagination conditions (Wilcoxon signed rank test, p < 10−10 for all
pairwise comparisons per condition).

Table 5.1: Overall results for the OpenMIIR data set (bandpass filter 1-10 Hz)

Perception Imagination (2) Imagination (3) Imagination (4)

Overall median 0.21 0.20 0.19 0.21
Variance 5.5× 10−3 3.3× 10−3 3.4× 10−3 3.7× 10−3

Median optimal time shift (s) 0.99 1.02 1.03 1

5.4.2 Results for the Bach data set

For the single perception case of the Bach data set (Table 5.2), similar conclusions
can be drawn. Also in this case, the inclusion of the time shift ν into the model
results in the significance of all median correlations. By visual inspection, no clear
difference in performance between both preprocessing filtering ranges can be seen in
Figure 5.2 (Wilcoxon signed rank test, p = 0.1).

In comparison to the OpenMIIR data set, the influence of the time shift seems slightly
lower on these stimuli. The overall median correlation has only increased slightly in
comparison to the model without time shift, but the variance has decreased.
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5. Inclusion of time shifts

For the perception experiment in this data set, the optimal time shift is often equal
to zero, resulting in a overall median result of 0 s (Table 5.2). These results thus seem
to indicate that the EEG response already contains relevant musical information
right after the stimulus onset. This observation is different from the OpenMIIR data
set, although the same algorithm was performed. This difference in outcome can
have many reasons, also practical (for example a slight skew in the onset annotations
of one data set).

Table 5.2: Overall results for the Bach data set

Bandpass 1-10 Hz Bandpass 1-30 Hz

Overall median 0.16 0.16
Variance 5× 10−3 5.7× 10−3

Median optimal time shift (s) 0 0

Figure 5.2: Comparing these results with implemented time shift for the Bac data
set to the results of Chapter 4, an improvement in the decoding of the stimuli is seen.

5.5 Investigating effects on groups within the data

Using these results with the optimal time shift ν, the LME models of Section 4.4 were
fitted for all perception and imagination experiments. In the next subsections, the
observations made from the best performing models in Table 4.6 will be discussed.

5.5.1 Results for the OpenMIIR data set - Perception

When fitting this LME model to our correlations of all subjects, there is no significant
effect for instrumental music (t=0.357, p=0.72), which is different from the case where
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5.6. Correlations in function of the time shift ν

the time shift ν = 0. Furthermore, the effect of instrument practice (Section 4.4) is
now just non-significant on a α = 0.05 level (estimate = -0.0234, t=-1.8395, p=0.06).
For a preprocessing filter range of 1-30 Hz, no significant effects were found.

5.5.2 Results for the OpenMIIR data set - Imagination

By fitting the model of Table 4.6 on the data of the three imagination experiments
for an optimal time shift ν, we obtain a significant effect for an imagination technique
in condition two and four of the data set. Subjects who ‘hear’ the lyrics inside their
head produce significantly better overall correlations (over all song categories) than
those who imagine themselves singing (condition 2: estimated coefficient = 0.011,
DF=593, t=2.29, p=0.022; condition 4: estimated coefficient = 0.010, DF=594,
t=2.01, p=0.044). For the third condition, no significant effects were found.

Moreover, a slight negative influence of instrument practice is found on the fitted
correlations (estimated coefficient =-0.012, DF=594, t=-2.28, p=.023) in the fourth
imagination condition, as was the case in the perception experiment of Section 4.4.
Musicians are known to have a different cortical activation pattern than non-musicians,
an example of brain plasticity. For example, it was previously discovered that
musicians, who regularly play on their instruments, actually show less activation of
their motor cortex during a simulation of instrument practice, because of a more
intense recruitment of a lower number of neurons [25]. Hypothetically, this difference
might also be registered in the EEG response, possibly leading to these lower results.
With a preprocessing filter range of 1-30 Hz, this influence of musicality persists for
the third and fourth imagination condition.

5.5.3 Results for the Bach data set

Also for the Bach data set, the model of Table 4.6 was built. However, for both
preprocessing filter ranges, no significant effects within the results were found.

5.6 Correlations in function of the time shift ν

Apart from discussing the results for an optimal time shift νopt, we can also investigate
the obtained correlations per subject over all time shifts ν in the chosen range. We
will therefore focus on the results for the filtering range with the best performance
(bandpass 1-10 Hz). The correlations in function of time shift ν for the OpenMIIR
data set can be seen in Figure 5.3 and Appendix C.3, for subject P01 (representative
for all subjects). The results for the first subject of the Bach data set are presented
in Figure 5.4.

In these figures, a periodical course can be observed: the reconstructed envelopes
seem to have a maximal and minimal correlation with their real envelope at distinct,
evenly spaced time points. The optimal time shift νopt corresponds to the highest
value of these local maxima (multicolored ‘dots’ in Figure 5.3 and Figure 5.4).
However, there exist other time shifts, at higher and lower values of ν, with similar
(but slightly lower) results for the correlation. This observation raises the question
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5. Inclusion of time shifts

Figure 5.3: When looking at the correlation in function of time shift for each of
the five reconstructed envelopes per song, seemingly periodical patterns arise in both

perception and imagination experiments.

if the time shifts ν actually need to be as large as the optimal shift νopt in our
stimulus reconstruction model to extract relevant musical information out of the
EEG responses. Can we achieve similar results for smaller time shifts (ν < νopt) for
the reconstruction of envelopes? In other words, the optimal time shift νopt is linked
to the highest correlation in Figure 5.3 and Figure 5.4, but does it also represent the
possible minimal latency before the EEG response?
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5.7. Musical periodicity

To gather more information about the periodical behavior of the correlations in
function of time shift ν, we first investigate if this periodicity has a link with beat
tracking (Section 1.1.2). Afterwards, we will try to estimate the minimal time shift
needed for each trial to cover a possible EEG response latency.

Figure 5.4: When looking at the correlation in function of time shift for each of
the three reconstructed envelopes per song, seemingly periodical patterns arise.

5.7 Musical periodicity
As mentioned in Section 1.1.2, music is known for its periodical structure in time.
This periodicity is represented via oscillatory signals in the brain, which facilitate
neural beat tracking. This phenomenon is also interesting to keep in mind while
dealing with our stimulus reconstruction model.

As visual study of Figure 5.3 and Figure 5.4 learns that the obtained correlations
in function of the time shift ν also seem to behave in a periodical manner for each
stimulus and subject. The correlation for each song seems to be maximal or minimal
at regular intervals of the time shift parameter ν. One could then ask the question if
such periodical behavior has a link with neural beat tracking, i.e., if the frequency
connected to this periodical behavior is similar to the tempo of the used stimuli.

To investigate this hypothesis, the autocorrelation of the results for each trial in
Figure 5.3 and Figure 5.4 is calculated. One example of this autocorrelation can be
seen in Figure 5.5, for subject P01 in the OpenMIIR data set. Here, we get a clear
view on the periodical behavior of these results. Distinct local maxima and minima
at regular time shift intervals are seen in this plot of the autocorrelation.
To extract the tempo out of this autocorrelation, the median time shift interval
between the subsequent peaks of the autocorrelation is calculated for every song.
The median tempo over all subjects is then compared to (i.e., correlated with) the
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5. Inclusion of time shifts

Figure 5.5: An example of autocorrelation of the results in Figure 5.3 sheds more
light on the periodical behavior of the results.

tempo of the used songs. Tempo information for all songs can be found in Table A.1.
The resulting median tempo estimates over all subjects and the real tempo of the
used songs for both data sets can be found in Tables 5.3 and 5.4.

For the OpenMIIR data set, Table 5.3 shows that a possible neural tracking of the
tempo might in fact be present in the results of Figure 5.3. This tempo tracking
can be confirmed by calculating the Pearson correlation (and its p-value via a t-test)
between the estimated and real tempo of all songs. For all conditions, except for the
fourth imagination experiment, the tempo estimates are thus significantly correlated
with the real tempo of the songs.

Table 5.3: Tempo estimates derived from the autocorrelation of the results of the
OpenMIIR data set in Figure 5.3 are correlated with the real tempo of the songs.

Tempo estimates (BPM)

Song Perception Imagination (2) Imagination (3) Imagination (4) Real tempo (BPM)

1 213.3 210.5 213.3 210.5 212
2 187.3 189.7 187.3 182.9 189
3 192.1 196.9 194.5 196.9 200
4 158.4 156.7 160 160 160
5 109 128 133.6 99.9 212
6 187.3 185.1 187.3 180.7 189
7 196.9 189.9 172.8 183.3 200
8 160 160 160 160 160
9 172.6 176.6 172.6 174.5 178
10 121.9 146.3 122 114.6 166
11 109.7 114.7 124 119.2 104
12 139.7 124 149.1 143.7 140

0.580 0.702 0.612 0.463 (correlation)
0.048 0.011 0.034 0.129 (p-values)
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5.8. Extracting a minimal EEG response latency

For the Bach data set (Table 5.4), very high tempo estimates are found. When
dividing these estimates by the real tempo, it is seen that they are (up to a few
hundredths) the two-, four- or six-fold of the real tempo. This suggests that beat
tracking is present for the stimuli in this data set, along with harmonics of the beat.

Table 5.4: Tempo estimates for the Bach data set are an X-fold of the real tempo.

Song Tempo estimates (BPM) Real tempo (BPM) X-fold (-)

1 404.21 100 4.04
2 404.21 100 4.04
3 144.91 70 2.07
4 320 80 4
5 192 47 4.09
6 512 125 4.09
7 295.82 50 5.92
8 480 120 4
9 247.74 - -
10 284.44 140 2.03

0.642 (correlation)
0.062 (p-value)

5.8 Extracting a minimal EEG response latency
From our observations made in Figure 5.3 and Figure 5.4, we will now try to extract
a possible minimal latency for the EEG response. At the optimal time shift νopt, we
assume that the stimulus reconstruction model is presented with relevant musical
information, since the maximal correlation is found in this point. In other words,
at this time instance, the minimal response latency should have been reached. The
same is then true for the following local maxima at higher time shifts, which have
somewhat lower correlation values. However, these similar, slightly lower correlation
values can also be found at lower time shifts than the optimal one.

Therefore, the local maxima at time shifts ν < νopt are investigated. By visual
inspection and a peak analysis, where a lower limit on the peak correlations (ρ >
0.3× ρopt) was imposed, the first local maxima respecting this lower limit showed
correlation values similar to the magnitude found for local maxima at and beyond
the optimal time shift.

This thus suggests that the EEG responses at these lower time shifts also carry
relevant musical information for our stimulus reconstruction model. These first local
maxima were used to create Figure 5.3 and Figure 5.4: the results for all trials per
song were overlaid while matching these local maxima on the figure.

For the Bach data set, the results in Table 5.2 are still applicable, only a slightly
higher variance of 7.5× 10−3 is seen. For the OpenMIIR data set, the overall results
for these first local maxima per condition and their corresponding time shifts ν
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5. Inclusion of time shifts

are presented in Table 5.5. The time shifts in the perception experiment are now
all lower than the previously found median value of 1 s. The three imagination
conditions also generally follow this rule, only a handful of exceptions exist where
this is not the case. The overall median time shift for the perception experiment
now also much more resembles the low value found for the Bach data set. For
the imagination experiments, this remains higher, possibly because of a mismatch
between the trial and imagination onsets. In Figure 5.6 and Appendix C, the median
Pearson correlations are presented for the perception and imagination experiments
in the OpenMIIR data set. All median correlations are significant, asserting that the
stimulus reconstruction model still works on relevant musical information.

Table 5.5: Overall results for the OpenMIIR data set (bandpass filter 1-10 Hz)

Perception Imagination (2) Imagination (3) Imagination (4)

Overall median 0.16 0.13 0.13 0.14
Variance 2.9× 10−3 1.2× 10−3 1.7× 10−3 1.9× 10−3

Median time shift(s) 0.06 0.20 0.19 0.20

Figure 5.6: In these figures for the estimated minimal time shift, all the median
correlations are significant (OpenMIIR data set).
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Chapter 6

Stimulus classification

In this chapter, we investigate if it is possible to discern between musical stimuli based
on their obtained reconstructed envelopes, for the reconstruction model with and
without time shifts ν. Different classifiers will therefore be made. We will implement a
global classifier, which will assign one song label out of all the available songs in a data
set to every reconstructed envelope. Afterwards, classifiers distinguishing between
two songs and song categories will be implemented. To address their performance,
the accuracy of each classifier will be calculated.

6.1 Implemented classification strategies
In this chapter, each of the classifiers label their instances based on a maximal corre-
lation strategy, which is carried out as follows. Each instance, i.e., a reconstructed
envelope of a certain subject, is correlated with each available real stimulus envelope
in the classification process. From the resulting Pearson correlations, the highest is
selected and the corresponding label of the real stimulus envelope is assigned to the
instance to classify.

The classification strategies, used in this study, are:
1. A global classifier, implemented per subject. This classifier assigns one label

out of all the possible (10 for the Bach data set or 12 for the OpenMIIR data
set) song labels to each reconstructed envelope of a subject.

2. A two-song classifier, to investigate the classification process of every possible
combination of two songs per data set. For each of these combinations, a
classifier per subject assigns one of the two available song labels to their
reconstructed envelopes.

3. A song category classifier, in which we try to classify reconstructed envelopes
based on song categories. This classification strategy is only possible for the
OpenMIIR data set, the Bach data set contains only instrumental music. In
this classifier, the same procedure as in the global classifier is carried out, but
only with three possible labels instead of 12.

For each of the classifiers, the accuracy is computed to investigate the classification
performance. To conclude if this accuracy is statistically significant, McNemar’s
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test [34, 5] is performed, in which we compare our obtained accuracy to the result
for a classifier which always predicts the majority class in the data. Since our two
data sets are perfectly balanced for every song (five trials per song and subject in
the OpenMIIR data set, three in the Bach data set), this majority class is taken to
be any of the available songs during classification.

6.2 Results and discussion

6.2.1 Results for the global classifier

For the global classifier, the obtained accuracy per subject is plotted in Figure 6.1
for all perception/imagination conditions (bandpass 1-10 Hz), without and with the
optimal time shift νopt of the stimulus reconstruction model in Chapter 5. In this
figure, the significant classification results are shaded with gray clusters per condition.

Figure 6.1: When looking at the results of both data sets, the improvement of
including a time shift ν = νopt into the model is clearly seen.

For the OpenMIIR data set, we see a significant improvement in the accuracy by
including the optimal time shift νopt into our stimulus reconstruction model. For the
Bach data set, including a time shift into the model increases the accuracy per subject,
but does not change the amount of statistically significant results. The classification
results for perception in this data set are also higher than for the OpenMIIR data set.
We also see a high number of perfect classifications (accuracy equal to one) for this
data set. In Chapter 4 and 5, this data set showed higher correlations with respect
to their real envelopes than the OpenMIIR data set. However, to obtain a good
classification of our reconstructed envelopes, their correlation with other stimulus
envelopes should also be lower, leading to a lower amount of misclassifications. In
Section 6.3, we inspect possible influences for the misclassification in this global
classifier.

For a preprocessing filter range of 1-30 Hz, the accuracy per subject shows similar
results (Figure D.1) for both data sets. One extra subject in the perception experiment
(without time shifts) of the OpenMIIR data set now reaches a significant accuracy.
However, generally, a slightly lower accuracy over all subjects is found for this filter
range.
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6.2.2 Results for the two-song classifier

For this classification strategy, we make subdivisions in the data for every possible
combination of two songs. The reconstructed envelopes per subdivision are then
labeled by a two-song classifier. The mean accuracy over all subdivisions is presented
in Figure 6.2, per condition (one ‘dot’ represents one subject). Comparing this to
Figure 6.1, the effect of studying two songs in a classifier instead of 12 is clearly
seen (higher accuracy). To test the combined performance of these classifiers, their
predictions for each reconstructed envelope were fused using majority voting, which
showed a significant performance of the ensemble classifier in all cases, also for the
1-30 Hz preprocessing filter range (Figure D.2).

Figure 6.2: Mean accuracy per subject for the two-song classifier.

6.2.3 Results for the song category classifier

Figure 6.3: The improvement of including a time shift ν = νopt into the stimulus
reconstruction model can also be seen for this classifier.

As mentioned before, this classifier can only be implemented for the OpenMIIR data
set. In Figure 6.3 (bandpass filter 1-10 Hz), we again see an improvement in accuracy
when time shifts νopt are included in the stimulus reconstruction model. As with the
global classifier, the imagination conditions, which produced non-significant results
for a time shift ν = 0, are now significant for all subjects. Also, for this classifier, no
significant influence between the two preprocessing filtering ranges was found.
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6.3 Misclassification by the global classifier
We investigate the misclassifications by the global classifier by computing the confu-
sion matrix for every studied condition over all subjects. When visually comparing
these misclassifications to the information about our stimuli (Table A.1), possible
interesting effects to study are the following. In the OpenMIIR data set, the same
songs with and without lyrics are present. Are these song pairs more mistaken for
each other by the global classifier than two other random songs? Moreover, we will
investigate the effect of tempo on the misclassification count. Are stimuli with a
similar tempo misclassified more than stimuli with diverging tempo’s?

To observe the effect of the lyrics/no lyrics song pairs in the OpenMIIR data set
per condition, the total misclassification count (i.e., the sum of misclassifications)
over these 4 stimulus pairs is compared to the total misclassification count of 4 other
randomly selected pairs of songs. We repeat the selection of random song pairs 10000
times, to get an estimate of the distribution of misclassification counts for a specific
condition. When the total misclassification count of the lyrics/no lyrics song pairs
exceeds the 97.5 percentile of this distribution, the effect of these song pairs is seen as
significant. This leads to a significant total misclassification count for the perception
experiment without time shifts (for filter range 1-10 Hz) and with time shifts (filter
range 1-30 Hz) in the OpenMIIR data set.

To investigate a possible influence of tempo difference, the total misclassification
count in function of tempo difference between song pairs is presented in Figure 6.4
for a filtering range from 1-10 Hz. For the OpenMIIR data set, no significant overall
trend in function of tempo difference is seen. The peak at 0 BPM of tempo difference
stands for the lyrics/no lyrics song pairs described above. For the Bach data set, a
clear, high peak at zero tempo difference is seen for both perception experiments
(with and without time shifts). Similar results are found for 1-30Hz filtering range.
The two different stimuli with the same tempo (Table A.1) in this data set are thus
mistaken for each other relatively often, while at a higher tempo difference, less
misclassification of stimuli takes place.

Figure 6.4: For the effect of tempo differences in general, there is no significant
trend in the misclassification count of the OpenMIIR data set. For the Bach data

set, a clear peak at zero tempo difference is seen.
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Chapter 7

Conclusions and future work

In this study, we decoded stimulus envelopes out of their corresponding EEG responses.
For this, we used a linear decoding algorithm, which was extended to incorporate
a possible EEG response latency. With the information obtained in the previous
chapters, our research questions can now be answered, based on the observed results.
Our general research question was the following:

‘Is it possible, using a linear decoding model, an EEG response and a stimulus
envelope, to find a good (i.e., ideally optimal) stimulus reconstruction for perception
and imagination experiments?’

The answer to this question is ‘yes’: it is possible to decode an EEG response
into a reconstructed envelope, which achieves a significant correlation with the real
envelope. However, the results obtained for each condition highly depend on the
designed model. For our stimulus reconstruction model of Chapter 4, varying results
were found over all studied experiments. For perception, in which subjects listen
to a fixed stimulus, significant results were found for this model. However, for the
imagination experiments, possible distortions due to tempo inconsistencies and a
mismatch between the trial and imagination onsets make it difficult for this model
to achieve good results.

For the extended stimulus reconstruction model with the inclusion of time shifts,
which made it possible to explicitly include these EEG response latencies, the results
vastly improved for all experiments. Even after extracting a minimal time shift
from our periodical course of correlations, the median Pearson correlations of all
experiments remained significant.

Next, we have shown that it is possible to discern between songs, based on the
correlation of their reconstructed envelopes with the real song envelopes. For these
classifiers however, the same conclusions can be drawn. For the model without time
shifts, only the perception experiment achieves a significant accuracy for a number
of subjects in the global and song category classifiers. When including time shifts
into our model, these classifiers have a vastly improved performance, also for the
imagination experiments in the OpenMIIR data set.
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7. Conclusions and future work

Moreover, a few effects within the obtained correlations were found, for both the
perception and imagination experiments. For the reconstruction model during
perception, without time shifts, significantly higher correlations were found for the
category of instrumental music than for the other categories. Multiple experiments,
with and without time shifts, also showed lower correlations for musicians who
regularly play an instrument in comparison to subjects with other levels of instrument
practice. Additionally, models for the imagination experiments with inclusion of time
shifts showed a significant effect for the used imagination technique: subjects who
‘hear’ the lyrics inside their heads produce significantly better results than those who
imagine themselves singing.

Lastly, the influence of the preprocessing filter range on the results of our models
was studied. In general, we found that the 1-10 Hz filtering range significantly
outperformed the 1-30 Hz range for the OpenMIIR data set. For the Bach data set,
generally no difference between the results for both filtering ranges is seen.

With this study in mind, one can think about possible future music processing
topics and problems which can be tackled. The workings of encoding and hybrid
‘encoding-decoding’ techniques can be tested on both perception and imagination
experiments. Our stimulus reconstruction model could also still be extended, by
for example including a response latency into the training of the decoder. Different
types of classifiers could be added to specialize on the classification of certain songs.
A further study on the found effects within our results can be conducted for both
perception and imagination experiments.

Moreover, as seen in Section 1.4, its was found that musical stimuli in perception
experiments could be discerned from each other in an auditory attention detection set-
up. Would it be possible to explicitly make such a functioning model for imagination
experiments as well? Every study about the perception and imagination of stimuli
teaches us more about the workings of the brain. Would it one day be possible to
reconstruct an imagined song at real-time, creating a ‘Shazam for the brain’?
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Appendix A

Data
A.1 Stimuli used in both datasets
Table A.1: Stimuli used in both datasets. For each, the duration, tempo and song

category is given.

OpenMIIR dataset (Stober et al.)[36]

Musical stimulus Duration (s) Tempo (BPM) Category

1 Chim chim cheree 13.3 212 Lyrics
2 Take me out to the ballgame 7.7 189
3 Jingle Bells 9.7 200
4 Mary had a little lamb 11.6 160

5 Chim chim cheree 13.5 212 No lyrics
6 Take me out to the ballgame 7.7 189
7 Jingle Bells 9.0 200
8 Mary had a little lamb 12.2 160

9 Emperor Waltz 8.3 178 Instrumental
10 Hedwig’s Theme (Harry Potter) 16.0 166
11 Imperial March (Starwars Theme) 9.2 104
12 Eine kleine Nachtmusik 6.9 140

Bach dataset (Di Liberto et al.)[12][17]

Musical stimulus Duration (s) Tempo (BPM) Category

1 Partita in A minor for Solo flute Allemande 160.9 100 Instrumental
2 Partita in A minor for Solo flute Courante 156.0 100
3 Partita in A minor for Solo flute Sarabande 122.2 70
4 Partita in A minor for Solo flute Bouree Anglaise 137.8 80
5 Partita No. 2 in D minor Allemande 167.7 47
6 Sonata No. 1 in G minor Presto 201.3 125
7 Partita No. 1 in B minor Allemanda 175.2 50
8 Partita No. 2 in D minor Gigue 184.2 120
9 Partita No. 3 in E major Loure 136.2 -
10 Partita No. 3 in E major Gavotte en Rondeau 180.1 140
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A. Data

A.2 Comparison between the datasets of this study.

Table A.2: Comparison between the datasets of this study.

OpenMIIR Bach
(Stober et al.)[36] (Di Liberto et al.)[12]

Subjects 10 20

Stimuli 12 10

Trials per unique setting 5 3

Conditions
Perception cued not cued
Imagination cued -

not cued (x2) -

Song categories
Lyrics 1-4 -
No lyrics 5-8 -
Instrumental 9-12 1-10

Musicality(1):
Musical training
Non-musicians 2 (P02, P10) 10 (P01-P10)
Musicians 8 (others) 10 (P11-P20)

Musicality(2):
Instrument practice
Current 4 (P03-P05, P09) 10 (P01-P10)
Past 4 (P01, P06-P08) -
Never 2 (P02, P10) 10 (P11-P20)

Imagination technique (lyrics)
Imagine themselves singing 5 (P01, P02, P05-P07) -
Hear the lyrics inside their heads 5 (P03, P04, P08-P10) -

Visualizations (no lyrics)
Yes 4 (P04, P05, P07, P09) -
No 6 (P01-P03, P06, P08, P10) -
Total amount of trials 2400 600
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Appendix B

Linear regression model:
Results
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B. Linear regression model: Results

B.1 Results OpenMIIR dataset: Bandpass 1-10 Hz
B.1.1 Stimulus perception

Figure B.1: A subdivision per subject shows the worst and best performing
participants.
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B.1. Results OpenMIIR dataset: Bandpass 1-10 Hz

B.1.2 Stimulus imagination (condition 2)

Figure B.2: A subdivision per subject shows an overall low performance.
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B. Linear regression model: Results

B.1.3 Stimulus imagination (condition 3)

Figure B.3: A subdivision per subject shows an overall low performance.
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B.1. Results OpenMIIR dataset: Bandpass 1-10 Hz

B.1.4 Stimulus imagination (condition 4)

Figure B.4: A subdivision per subject shows an overall low performance.
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B. Linear regression model: Results

B.2 Results OpenMIIR dataset: Bandpass 1-30 Hz

Figure B.5: The figures for this preprocessing filter range show overall slightly
lower median correlations, the previous range had a significantly better performance.
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B.2. Results OpenMIIR dataset: Bandpass 1-30 Hz

B.2.1 Stimulus perception

Figure B.6: A subdivision per subject shows the best and worst performing
participants.
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B. Linear regression model: Results

B.2.2 Stimulus imagination (condition 2)

Figure B.7: A subdivision per subject shows an overall low performance.
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B.2. Results OpenMIIR dataset: Bandpass 1-30 Hz

B.2.3 Stimulus imagination (condition 3)

Figure B.8: A subdivision per subject shows an overall low performance.
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B. Linear regression model: Results

B.2.4 Stimulus imagination (condition 4)

Figure B.9: A subdivision per subject shows an overall low performance.
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B.3. Results Bach dataset: Bandpass 1-10

B.3 Results Bach dataset: Bandpass 1-10

Figure B.10: A subdivision per subject shows the best and worst performing
participants.
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B. Linear regression model: Results

Figure B.11: A subdivision per subject shows the best and worst performing
participants.
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B.4. Results Bach dataset: Bandpass 1-30

B.4 Results Bach dataset: Bandpass 1-30

Figure B.12: A subdivision per subject shows the best and worst performing
participants.
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B. Linear regression model: Results

Figure B.13: A subdivision per subject shows the best and worst performing
participants.
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Appendix C

Including time shifts
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C. Including time shifts

Figure C.1: For the OpenMIIR data set, the filtering range between 1-30 Hz
performs significanty worse than the 1-10 Hz filter range.

Figure C.2: In these figures for the estimated minimal time shift during the last
two imagination experiments (OpenMIIR data set), all the median correlations are

significant.
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Figure C.3: When looking at the correlation in function of time shift for each of
the five reconstructed envelopes per song, seemingly periodical patterns arise in these

imagination experiments.
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Stimulus classification
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D. Stimulus classification

D.1 Global classifier

Table D.1: Results for the OpenMIIR data set (bandpass 1-10Hz).(* indicates a
significant result (α = 0.05))

Global classifier

Perception Imagination (2) Imagination (3) Imagination (4)

ν = 0 ν > 0 ν = 0 ν > 0 ν = 0 ν > 0 ν = 0 ν > 0

P01 0.250* 0.767* 0.467 0.633* 0.033 0.633* 0.067 0.683*
P02 0.167 0.717* 0.523 0.945 0.050 0.633* 0.050 0.617*
P03 0.117 0.650* 0.541 0.950 0.067 0.700* 0.150 0.683*
P04 0.267* 0.683* 0.483 0.949 0.130 0.617* 0.150 0.650*
P05 0.150 0.750* 0.497 0.952 0.117 0.617* 0.117 0.600*
P06 0.367* 0.767* 0.486 0.950 0.067 0.600* 0.133 0.700*
P07 0.150 0.583* 0.505 0.961 0.117 0.667* 0.150 0.667*
P08 0.350* 0.700* 0.482 0.583* 0.083 0.567* 0.050 0.617*
P09 0.150 0.650* 0.600 0.650* 0.033 0.483* 0.117 0.667*
P10 0.267* 0.667* 0.474 0.533* 0.050 0.567* 0.067 0.733*

Figure D.1: Results for the global classifier (bandpass filter 1-30 Hz)
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D.2. Two-song classifier

D.2 Two-song classifier

Table D.2: Mean accuracy for every subject for the two-song classifier (bandpass
1-10Hz).

Two-song classifier

Perception Imagination (2) Imagination (3) Imagination (4)

ν = 0 ν > 0 ν = 0 ν > 0 ν = 0 ν > 0 ν = 0 ν > 0

P01 0.7258 0.9697 0.4667 0.9454 0.4287 0.9530 0.5045 0.9560
P02 0.6121 0.9591 0.5227 0.9500 0.5318 0.9484 0.4667 0.9424
P03 0.6076 0.9545 0.5409 0.9485 0.5121 0.9545 0.5530 0.9621
P04 0.6757 0.9575 0.4833 0.952 0.4727 0.9363 0.5591 0.9484
P05 0.6893 0.9727 0.4969 0.9500 0.4879 0.9636 0.5273 0.9500
P06 0.8287 0.9757 0.4863 0.9606 0.5530 0.9484 0.5197 0.9590
P07 0.6727 0.9500 0.5045 0.9409 0.4970 0.9469 0.4803 0.9470
P08 0.8267 0.9575 0.4818 0.9455 0.4864 0.9530 0.4500 0.9424
P09 0.6409 0.9484 0.6000 0.9530 0.4439 0.9333 0.4500 0.9606
P10 0.8303 0.9621 0.4742 0.9545 0.4576 0.379 0.5151 0.9621

Figure D.2: Results for the two-song classifier (bandpass filter 1-30 Hz)
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D. Stimulus classification

D.3 Song category classifier

Table D.3: Mean accuracy for every subject for the two-song classifier (bandpass
1-10Hz).

Two-song classifier

Perception Imagination (2) Imagination (3) Imagination (4)

ν = 0 ν > 0 ν = 0 ν > 0 ν = 0 ν > 0 ν = 0 ν > 0

P01 0.5333 0.8667 0.4500 0.7333 0.2333 0.7667 0.3833 0.7833
P02 0.3833 0.8500 0.3333 0.7167 0.3833 0.8167 0.3500 0.700
P03 0.3667 0.7333 0.3167 0.7500 0.3333 0.7833 0.3333 0.8167
P04 0.4833 0.8000 0.2833 0.7333 0.3500 0.6667 0.3500 0.7833
P05 0.4500 0.8333 0.2500 0.7500 0.3333 0.73333 0.4000 0.6833
P06 0.5333 0.8000 0.3000 0.8167 0.2333 0.7000 0.3833 0.7667
P07 0.3833 0.7667 0.2500 0.6833 0.3667 0.7500 0.4667 0.7500
P08 0.5833 0.8333 0.2500 0.6667 0.4000 0.7000 0.3667 0.7167
P09 0.3500 0.7500 0.3833 0.8000 0.2167 0.5500 0.3667 0.7500
P10 0.5000 0.8167 0.2333 0.7000 0.3000 0.6667 0.3167 0.8000

Figure D.3: Results for the Song category classifier (bandpass filter 1-30 Hz)
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