
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Regulatory networks in neuro-

inflammatory disorders: Alzheimerôs 

disease and major depressive disorder
 

Word count: 23739 

 

 

 

 

 

 

 

Hanne Puype 
Student number: 01705055 

 

Supervisor(s): Prof. Dr. ir. Vanessa Vermeirssen 
 

A dissertation submitted to Ghent University in partial fulfilment of the requirements for the degree of 

Master of Science in Biomedical Sciences 

 

Academic year: 2021 ï 2022 

  



 

 
 

List of abbreviations  

AD    Alzheimerôs disease 

APP    Amyloid precursor protein 

ASD   Autism spectrum disorders 

ATAC-seq  Assay for Transposase-Accessible Chromatin using sequencing 

AUPR    Area under the precision-recall curve 

AUROC  Area under the Receiver Operating Curve  

Aɓ   ɓ-amyloid  

BBB   Blood-brain barrier  

BD   Bipolar disorder  

BDNF   Brain-derived neurotrophic factor 

CLR    Context Likelihood of Relatedness 

CNS   Central nervous system 

CRP    C-reactive protein  

DAMs   Disease-associated microglia 

DEGs   Differentially expressed genes  

GABA   ɔ-amino butyric acid 

GCD   Graphlet Correlation Distance  

GO   Gene Ontology 

GRN   Gene regulatory network 

GWAS   Genome-wide association studies 

KEGG   Kyoto Encyclopedia of Genes and Genomes 

MDD    Major depressive disorder 

MS   Multiple sclerosis 

PCA   Principal components analysis 

PCs    Principal components 

PD   Parkinsonôs disease 

PoLoBag  Polynomial Lasso Bagging 

PPI   Protein-protein interaction 

PSP    Progressive supranuclear palsy  

RNA-seq  RNA sequencing 

SCENIC  Single Cell rEgulatory Network Inference and Clustering 

scGRNom   Single-cell Gene Regulatory Network prediction from multi-omics 



 

 
 

scRNA-seq  Single-cell RNA sequencing  

SCZ   Schizophrenia 

snATAC-seq Single-nucleus Assay for Transposase-Accessible Chromatin using 

sequencing 

SNP   Single-nucleotide polymorphism/variant 

snRNA-seq  Single-nucleus RNA sequencing  

TF   Transcription factor 

TLR   Toll-like receptor  

TMM    Trimmed mean of M values 

t-SNE    t-distributed Stochastic Neighbor Embedding  

UMAP    Uniform Manifold Approximation and Projection 

WGCNA  Weighted Gene Co-expression Network Analysis 

  



 

 
 

TABLE OF CONTENTS 
Summary ................................................................................................................................................... 5 

Societal impact .......................................................................................................................................... 5 

1. Introduction ........................................................................................................................................... 6 

1.1 The brain in health and disease ...................................................................................................... 6 

1.2 Alzheimerôs disease ........................................................................................................................ 8 

1.3 Major depressive disorder ............................................................................................................. 10 

1.4 Bulk network inference .................................................................................................................. 11 

1.5 Single-cell network inference ........................................................................................................ 15 

1.6 Comparison of networks ............................................................................................................... 16 

1.7 Network inference on omics data from neuroinflammatory disorders .......................................... 16 

1.8 Aims of this masterôs dissertation ................................................................................................. 18 

2. Methods .............................................................................................................................................. 19 

2.1 Retrieval and preprocessing of data ............................................................................................. 19 

2.2 Bulk network inference methods ................................................................................................... 19 

2.3 Ensemble networks ....................................................................................................................... 20 

2.4 Functional characterization ........................................................................................................... 20 

2.5 Comparison of networks ............................................................................................................... 20 

2.6 Further characterization with single-cell RNA-seq data ................................................................ 21 

3. Results ................................................................................................................................................ 21 

3.1 Overview of the expression data ................................................................................................... 21 

3.2 Bulk networks inferred through different methodologies ............................................................... 22 

3.3 Analysis of method-specific networks ........................................................................................... 23 

3.4 Consensus regulatory programs for AD and MDD ....................................................................... 28 

3.4.1 Module generation with k-medoids ..................................................... 31 

3.4.2 Functional enrichment analysis ........................................................... 32 

3.5 Single-cell analysis ........................................................................................................................ 37 

3.5.1 Single-cell RNA-seq datasets and preprocessing .............................. 37 

3.5.2 Network inference with SCENIC ......................................................... 39 

3.5.3 Further analysis of the single-cell networks ........................................ 40 

4. Discussion ........................................................................................................................................... 43 

4.1 Future perspectives ....................................................................................................................... 48 

5. References .......................................................................................................................................... 49 

Addendum 1: poster ................................................................................................................................ 52 

Addendum 2: lab notebook ..................................................................................................................... 53 

Addendum 3: supplementary figures ...................................................................................................... 54 



  

5 
 

SUMMARY  
Major depressive disorder and Alzheimerôs disease are two prevalent and devastating 
disorders, which still lack effective treatment. Evidence is emerging that these two disorders 
are linked, with common pathophysiologies, such as neuroinflammation. In this masterôs 
dissertation, a systems biology approach was adopted to compare pathways and their 
regulators, affected in Alzheimerôs disease and major depressive disorder. Gene regulatory 
networks were inferred with GENIE3, CLR and Lemon-Tree, from which an ensemble network 
was retrieved. This was achieved with publicly available RNA sequencing datasets, for each 
disease. The different networks inferred by the methods were compared to each other, 
confirming a small overlap between distinct network inference methodologies. In addition, the 
two ensemble networks were compared to one another. There is approximately a ten percent 
overlap between the edges, and the networks have a similar morphology. Further, publicly 
available single-cell RNA sequencing data was used to infer gene regulatory networks for 
Alzheimerôs disease and depression, with SCENIC. With these results, it was possible to 
further characterize the cell types involved in the two diseases. Aberrations in immune 
pathways and microglial activation were found in both disorders, with several important 
regulators (IKZF1, IRF8, NFATC2, RUNX1, SPI1, and TAL1). All of these transcription factors 
have been implicated in Alzheimerôs disease before, while only TAL1 has been associated with 
depression hitherto. Moreover, mitochondrial and proteasome dysfunctions were discovered 
in both disorders. These results can be used to prioritize targets for future therapy.  

SOCIETAL IMPACT  
Alzheimerôs disease and major depressive disorder are two disorders that have a high impact 
on a large number of individuals, both those who are affected and their acquittances. Moreover, 
for Alzheimerôs disease there are only disease-arresting medications, while for depression, a 
large number of the medications only work for some patients. Hence, new medications for 
these disorders are urgently needed. In addition, with the high-demanding society and 
increasing aging population, these disorders are still increasing in prevalence. An important 
reason for the lack of treatment is because of the limited understanding of the pathophysiology 
and risk factors for both Alzheimerôs disease and depression. Thus, research is still needed to 
better understand these disorders. Moreover, an overlap of pathophysiology in different 
psychiatric and neurodegenerative disorders is emerging, indicating these disorders need to 
be studied together and not one disorder at a time. As such, a new target for the treatment of 
several diseases at a time might emerge. Thus, this research might influence the search for 
future medication and, as a consequence, the quality of life of patients suffering from 
Alzheimerôs disease, depression, or both.  
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1. INTRODUCTION  

1.1 The brain in health and disease  

It is becoming more evident that the immune system is involved in the functioning of the brain, 
both in health and disease. Both the cells in the brain and peripheral immune cells are 
implicated. Microglia are brain-residing macrophages and are crucial for the development and 
functioning of the brain1. They phagocyte, protect against microorganisms, and play a crucial 
role in tissue maintenance and brain injury. On the other hand, microglia can release pro-
inflammatory mediators, such as cytokines, causing neuronal damage2. Furthermore, these 
cytokines can damage the blood-brain barrier (BBB) and recruit pro-inflammatory immune 
cells, which exacerbates this neuroinflammation2. They can also exacerbate inflammation by 
interacting with astrocytes. Next to microglia, there are as well some other immune cells 
present within the central nervous system in physiological conditions, but only in the periphery3. 
More specifically, they are present in the blood vessels, in the meninges and at low levels in 
the cerebrospinal fluid. Next to microglia, the other glial cells are astrocytes and 
oligodendrocytes (see Figure 1). Oligodendrocytes develop and maintain the myelin sheath 
around neurons in the central nervous system. Astrocytes have numerous functions. They 
have fine processes that closely and dynamically enwrap synapses, neurons and blood 
vessels, and they help maintain the BBB4. Furthermore, astrocytes express a wide range of 
receptors that bind neurotransmitters and neuromodulators, and they can release 
gliotransmitters themselves. Hence, they monitor synaptic transmission and plasticity and are 
active players in information integration and processing4. These gliotransmitters also control 
metabolism, energy supply, development and inflammation. Hence, astrocytes have 
immunological functions as well. The different functions and characteristics of astrocytes are 
not constant, but depend on signals from neurons that actively coordinate and determine the 
molecular and functional properties of astrocytes4. Next to this, there are ependymal cells in 
the brain as well, which produce cerebrospinal fluid.  

Figure 1. Overview of the cells in the central nervous system. Oligodendrocytes develop the myelin 
sheath, microglia have supportive and immunological functions and astrocytes have a pleiotropy of 
functions, such as maintaining the blood-brain barrier. (Adapted from Bavisotto et al.5) 

Neuroinflammation is a common characteristic in different neurodegenerative and 
neuropsychiatric disorders such as Alzheimerôs and Parkinsonôs disease, multiple sclerosis, 
schizophrenia, major depressive disorder, bipolar disorder and autism spectrum disorders1. 
Neuroinflammation is characterized by infiltrating leukocytes in the central nervous system 
(CNS) and activation of microglia3. Alzheimerôs and Parkinsonôs disease are the most and 
second most common neurodegenerative disorders. Alzheimerôs disease is characterized by 
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ɓ-amyloid plaques and hyperphosphorylated tau neurofibrillary tangles. However, it is 
becoming more obvious that microglia and neuroinflammation are key players in the 
pathogenesis6. Many risk genes are known for Alzheimerôs disease, with the majority 
preferentially expressed in microglia. Parkinsonôs disease is characterized by the death of 
dopaminergic neurons in the substantia nigra and by Lewy bodies, which are deposits of Ŭ-
synuclein7. Neuroinflammation and autoantibodies are also seen in Parkinsonôs patients. Major 
depressive disorder is characterized by decreased concentrations of serotonin, dopamine and 
noradrenaline in synaptic clefts8. Additionally, the hypothalamic-pituitary-adrenal axis is 
dysregulated in depression. Moreover, there is dysfunction of astrocytes and microglia, and 
neuroinflammation8. The etiology of schizophrenia is not yet well known, but it is seen that 
there is a strong genetic component9. Abnormalities in the development and differentiation of 
glial cells might contribute to the pathophysiology of schizophrenia. Immune activation of 
microglia during development might contribute to this deficit9. Bipolar disorder arises from 
genetic, environmental and epigenetic influences. Immunological alterations have been found 
regarding microglia, cytokines and T-cells10. Autism spectrum disorders are also caused by a 
combination of genetics, epigenetics and environmental factors11. They have a heterogeneous 
neurodevelopmental etiology. Immune system abnormalities are often seen in patients, next 
to other comorbidities12. Multiple sclerosis (MS) is a complex autoimmune disease. Polygenic 
risk and different environmental factors play an important role. In MS, the myelin sheath is 
attacked by immune cells, which results in damage to neurons and oligodendrocytes13. 
Additionally, microglial immune activation is seen. Next to autoreactive T-cells, pro-
inflammatory TH17 cells, regulatory T-cells and B-cells are as well involved1.  

In conclusion, different factors are shared by different disorders. Most are influenced by genetic 
and environmental factors. Microglia, astrocytes and oligodendrocytes all play a role and are 
as important as neurons. Autism and schizophrenia seem to have a neurodevelopmental 
basis. Moreover, both Parkinsonôs disease and MS have an autoimmune aspect. For some 
disorders, especially autism and schizophrenia, maternal immune activation also plays a 
role1,9. Despite being characterized by neuroinflammation, these shared pathophysiological 
mechanisms can result in entirely distinct disorders, indicating there are some specific 
processes as well (Figure 2).  

Figure 2. Common pathophysiological 
mechanisms of immune dysregulation in 
neuroinflammatory disorders and their distinct 
phenotypes emerging from this. (Adapted from 
Pape et al.1) 
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1.2 Alzheimerôs disease  

Alzheimerôs disease (AD) is the most prevalent 
cause of dementia14,15. It is mainly characterized 
by extracellular ɓ-amyloid (Aɓ) plaques and 
intracellular neurofibrillary tangles. ȸ-amyloid is a 
cleaved peptide of the protein amyloid precursor 
protein (APP). The amyloid cascade hypothesis 
(Figure 3) states that by the accumulation of Aɓ, 
through oligomers and amyloid fibrils, secondary 
events are induced, such as the 
hyperphosphorylation of tau, inflammation, 
excitotoxicity and oxidative stress14. Excitotoxicity 
is the overstimulation of excitatory neurons, 
resulting in toxicity in the post-synaptic neurons. 
This ultimately leads to neuronal loss and 
cognitive deficits. On the other hand, 
neurofibrillary tangles consist of 
hyperphosphorylated tau. Tau is a cytoskeletal 
protein and in its phosphorylated form, it can 
execute its function less efficiently. The protein 
mainly stabilizes microtubules and is involved in 
axonal transport and modulation of signaling 
pathways14. Hyperphosphorylated tau can lead to 
the impairment of signaling cascades, 
mitochondrial function and axonal transport. 
There is a clear link between tau accumulation 
and cognitive decline14. Even though mutations in 
APP and other genes associated with Aɓ 
disposition (PSEN1 and PSEN2) are seen in 
familial forms of AD, Aɓ disposition is not sufficient 
to cause AD as disposition is seen in healthy 
brains as well. Similarly, tau mutations alone do 
not cause AD14. However, there are many genes 
associated with a small increased risk to develop 
the disease15.  

Figure 3. An overview of the amyloid cascade hypothesis. Adapted from Lane et al.15. 

The accumulation of amyloid structures normally starts in the neocortex, before spreading to 
the allocortex1 and eventually to the cerebellum2. Neurofibrillary tangles start in the superficial 
layer of the transentorhinal cortex and entorhinal cortex14. Next, it spreads to the hippocampus, 
then into the temporal region, and to the remaining cortex. Furthermore, there is symmetrical 
medio-temporal atrophy. An overview of different brain regions can be found in Figure 4. 
Alongside Aɓ and tau and the associated consequences, loss of synaptic plasticity and 
synapses are also seen and lead to cognitive decline. In addition, there is BBB breakdown and 
vascular dysfunction14. One of the strongest risk genes for AD is the APOE gene. 
Apolipoprotein E is involved in lipid transport and metabolism, and in the transport of Aɓ from 
the brainôs extracellular matrix to the blood14. The APOEŮ4 allele results in the highest risk to 
develop AD, and lowers the age of onset, while the APOEŮ2 allele has a protective effect.  

It is now clear that microglia also have a considerable influence on AD6. Normal functioning 
microglia actually protect against the development of the disease6, as they are essential for 

 
1 The allocortex is small and includes the olfactory bulb, hippocampal formation, and entorhinal 
region16. 
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the clearance of ɓ-amyloid. Microglia eliminate synaptic connections with the help of 
complement. The complement system is normally involved in the innate immune system and 
excessive activation may induce neurodegeneration. It appears that complement acts 
downstream of Aɓ. Moreover, ɓ-amyloid aggregates can induce inflammation. Furthermore, 
complement activation seems to exacerbate tau pathology6. On the other hand, microglia can 
help spread neurofibrillary tangles from neuron to neuron. Disease-associated microglia 
(DAMs) have distinct transcriptional programs from homeostatic microglia. The expression of 
homeostatic genes is reduced, while the expression of neurodegenerative genes is induced6. 
DAMs localize to regions with Aɓ deposition17. TREM2 is an important pattern-recognition 
receptor, involved in microglial phagocytosis, chemotaxis, survival, proliferation and 
inflammatory response6,17. Microglia lacking TREM2 are not able to fulfill these functions, 
resulting in exacerbation of the disease. Moreover, the majority of identified risk genes for AD 
are preferentially or selectively expressed in microglia and some of the proteins of these genes 
also bind to TREM26. It is seen that the transition from homeostatic microglia to DAMs has an 
initial TREM2-independent phase and a secondary TREM2-dependent phase17. Further, it is 
seen that there is chronic inflammation in older brains and that they suffer from leaky BBB, 
resulting in the possible infiltration of immune cells2. Thus, aging is a risk factor by itself to 
develop AD. Besides the role of microglia, astrocytes are also implicated in AD. More 
specifically, there is astrogliosis. Activated microglia can induce a neurotoxic phenotype in 
astrocytes, leading to neurodegeneration18. This astrocyte subtype is induced by the secretion 
of IL-1Ŭ, TNFŬ and C1q, and cannot promote neuronal survival, outgrowth, synaptogenesis, 
and phagocytosis anymore, and induces the death of neurons and oligodendrocytes18. A large 
part of astrocytes in AD brains have this reactive phenotype, indicating they help drive 
neurodegeneration in the disease.  
 

 
Figure 4. An overview of brain regions mentioned throughout this masterôs dissertation. Created with 
BioRender. 

 
There is a difference in the prevalence of AD between men and women: two-thirds of patients 
are women, while one-third are men14. However, this is also driven by the longer life 
expectancy of women. Early symptoms of people with AD include mild cognitive impairment, 
with primary loss of episodic memory14,15. Next, topographical, language and multi-tasking 
difficulties arise14,15. Further in the disease progress, cognitive difficulties become more severe 
and widespread, ultimately interfering with activities of daily life. This is seen as dementia. In 
addition, changes in behavior, impaired mobility, hallucinations, and even seizures are 
possible15. In different neurodegenerative disorders, psychiatric comorbidities are also noticed. 
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In AD, for instance, depression and anxiety are frequently seen, next to sleep disturbances14,15. 
Moreover, aggression and psychosis are also observed, in later stages of AD15.  
 

1.3 Major depressive disorder  

Major depressive disorder (MDD) is a neuropsychiatric disorder. The disorder manifests itself 
in several symptoms such as a low mood, anhedonia, loss of interest, decreased energy, 
suicidal thoughts and aches8. The pathophysiology is still largely unknown, but there are both 
genetic and environmental influences. There is large phenotypic heterogeneity in patients with 
depression. Moreover, it is seen that there is a gender difference in experiencing the disease: 
women are twice as likely to endure MDD, with an earlier onset, longer duration and higher 
severity19.  

There are several hypotheses for the etiology of depression. The first one is the monoamine 
hypothesis. It states that depression is caused by decreased concentrations of the 
neurotransmitters serotonin, noradrenaline and dopamine in synaptic clefts8. These 
neurotransmitters are also called monoamines, hence the monoamine hypothesis. Nowadays 
this hypothesis is seen as an oversimplification of the pathogenesis and it cannot explain why 
there is a latency period in the response of antidepressants20.  Secondly, the neuroplasticity 
and neurogenesis hypotheses have their origin in the effect of stress on the hippocampus20. 
Stress activates the hypothalamic-pituitary-adrenal axis, which results in the secretion of 
glucocorticoids from the adrenal gland. When the levels of glucocorticoids are too high, there 
is negative feedback to the hippocampus to stop the secretion of glucocorticoids. However, in 
MDD, this negative feedback fails, resulting in atrophy of the hippocampus. The neuroplasticity 
and neurogenesis hypotheses agree up to this part, however, the neuroplasticity hypothesis 
states that glucocorticoids induce the atrophy of mature neurons in the hippocampus, while, 
on the other hand, the neurogenesis hypothesis states that there is a reduction of adult 
neurogenesis in the dentate gyrus of the hippocampus20. Both assumptions may be true and 
are interconnected. Noteworthy, depletion of noradrenaline and serotonin also reduces the 
proliferation of neural precursor cells in the dentate gyrus. Noradrenaline has a direct effect on 
proliferation, while serotonin affects neurogenesis in an indirect manner20.  

Next to these hypotheses, there are as well some disturbed pathways in the brain implicated 
in the pathophysiology of depression. The neurotransmitters glutamate and GABA (ɔ-amino 
butyric acid) are decreased in depressive patients8. Moreover, this can occur in specific brain 
regions. Astrocytes take up glutamate from the synaptic cleft and convert it into glutamine, 
which is then again transported to neurons. An increase in extracellular glutamate can be 
neurotoxic and is associated with inflammation and stress8. A reduction in the number of 
astrocytes can be caused by chronic stress and increases extracellular glutamate. Several 
studies support that in the case of MDD, there are significant reductions in the number and 
density of astrocytes in several brain regions4. Moreover, there is also astrocyte hypotrophy. 
Additionally, astrocytes promote adult hippocampal neurogenesis20. Another disturbed 
pathway is the catabolism of the amino acid tryptophan. Tryptophan is normally converted to 
serotonin. However, in depression, there is an increased conversion of tryptophan to 
kynurenine, which has pro-inflammatory effects21. Furthermore, brain-derived neurotrophic 
factor (BDNF) is an important factor in depression. Neurotrophins are important for the survival, 
growth, differentiation and plasticity of neurons8. Moreover, neurotrophic factors increase adult 
hippocampal neurogenesis20. proBDNF is its precursor protein, and this protein has several 
functions as well, which retrieve the opposite effect of BDNF. It is seen that the balance 
between proBDNF and BDNF is disturbed in MDD8.  

Next to the role of astrocytes, there is also mounting evidence for the implication of the immune 
system in depression8. Cytokines such as IL-1, IL-6 and TNF-Ŭ are overexpressed in the 
central nervous system and periphery of MDD patients. IL-1 and TNF-Ŭ lead to the activation 
of microglia and astrocytes, and activated microglia produce IL-6, which influences the process 
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of neuroprotection and neurodegeneration8. Activated microglia can lead to chronic 
inflammation. Moreover, levels of C-reactive protein (CRP) are higher in patients as well19. 
This protein is indicative of inflammation. Higher levels of T-cells and neutrophils are seen as 
well in the disorder19,22. Moreover, there is dysregulation in oxidative and nitrosative pathways, 
and mitochondrial dysfunction19. Increased cytokine levels and reactive oxygen species can 
lead to mitochondrial dysfunction22. Consequently, a neuroinflammation hypothesis is rising. It 
is seen that co-morbid MDD is prevalent in inflammatory conditions such as asthma, arthritis, 
Crohnôs disease, diabetes and obesity19,22. This triggers a sickness behavior, which has similar 
features as MDD, such as anhedonia and fatigue. However, as mentioned before, depression 
can be highly heterogeneous in different patients, and this is the case as well regarding 
neuroinflammation19, with higher inflammatory levels correlating with treatment resistance or a 
more severe phenotype22. An overview of different cells and molecules possibly implicated in 
depression can be seen in Figure 5.  

  

Figure 5. An overview of common alterations in the adaptive and innate immune system seen in patients 
with depression. Figure adapted from Drevets et al.22.  

1.4 Bulk network inference  

In systems biology, cellular systems are often represented by networks. Networks consist of 
nodes and edges. Nodes are biomolecules such as genes, transcripts or proteins. Edges are 
the associations between the nodes, such as co-expression, regulation or binding23. Different 
kinds of networks exist. Protein-protein interaction (PPI) networks, also called the interactome, 
consist of proteins and edges that represent physical binding. Co-expression networks consist 
of transcripts or genes that are expressed at a similar time and in a similar context. Gene 
regulatory networks (GRNs) consist of transcription factors and target genes. The edges 
represent the regulation of the target genes by transcription factors (TFs) (Figure 6). This can 
be either activation or inhibition. Furthermore, networks can be directed or undirected. In 
directed networks, there is a clear flow of information from one node to another, such as in 
GRNs. In undirected networks, on the other hand, there is no causality. This is the case in PPI 
networks and co-expression networks. The edges can also be weighted. This indicates that 
there is a certain confidence that the edge truly exists or it can indicate the strength of the 
relationship23. In unweighted networks, the edge is either present or not. Modules are 
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subnetworks consisting of highly related and densely connected nodes. In GRNs, these are 
mostly co-expressed genes, regulated by the same TFs.  

Figure 6. From transcription factor binding and activation of the expression of a target gene to a gene 
regulatory network. Adapted from Banf and Rhee24. 

GRNs are mostly inferred from transcriptome data. However, using transcriptome data alone 
has its limitations, especially for higher-order organisms. Other regulatory mechanisms are at 
play as well. This includes epigenetic modifications, post-translational modifications, protein 
interactions between different TFs and/or co-factors, non-coding RNA and enhancers. TFs 
need to be active, the transcriptional machinery needs to be active and chromatin needs to be 
accessible. Moreover, causal relationships cannot be defined based on transcriptome data 
alone24. Therefore, a multi-omics approach would be more feasible to infer a more accurate 
GRN, as additional layers of regulatory information, such as TF binding sites in the promotor 
of a possible target gene, are taken into account. However, little multi-omics data is available 
from the same individuals25. In addition, the inference of GRNs generally suffers from a high-
dimensionality problem. There are far more genes than samples, which results in different 
possible solutions for the same data24. There are some properties that eukaryotic GRNs have 
in common26. Mostly, TFs regulate different genes and genes are regulated by different TFs. 
Moreover, TFs are regulated by their own regulators, which in turn are regulated by their TFs. 
GRNs are also modular and scale-free, meaning there are many genes with few edges and 
few hubs. Modular networks consist of highly connected clusters of nodes, with few edges 
connecting the different clusters (Figure 7). 

 Figure 7. A modular network. Adapted from Blondel et al.27. 

It is commonly seen that transcriptional regulation and gene expression is altered in disease28. 
Network inference makes it thus possible to retrieve novel insights into disease mechanisms. 
There are several methods to infer GRNs, which are all based on different assumptions. 
Network inference can be done with correlation methods, information theory, Boolean network 
approaches, Bayesian network approaches, regression-based methods, differential-equation-
based methods, and multi-omics integration methods23,24. They have their advantages and 
limitations, and none of them are perfect. It is actually favorable to combine several 
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approaches, as they complement each other and give better results combined25,29. In 
correlation methods the correlations between the expression profiles of genes are calculated24. 
This can be done for instance with the Pearson or Spearman correlation coefficient. There is 
no directionality, as the retrieved networks are gene co-expression networks23,24. One popular 
method is Weighted Gene Co-expression Network Analysis or WGCNA.  

Information theory is based on mutual information. Mutual information can be defined as óthe 
amount by which the entropy of the joint distribution is reduced compared to the combined 
individual entropiesô23. For these methods, discretization is mostly needed. Here again, no 
directionality can be retrieved23. This method is however able to detect non-linear interactions. 
Examples of algorithms using this method are ARACNE, CLR30 and MRNET. CLR uses mutual 
information as a measure of similarity between expression profiles30. If the mutual information 
score between a regulator and a target gene is above a certain threshold, this is conceived as 
an association. CLR takes the network context into account, resulting in a better distinction 
between indirect and direct regulatory interactions. This is done by constructing a background 
normal distribution of the mutual information values for every gene pair30. Here it is not possible 
to specify the regulators beforehand. 

In Boolean network approaches, genes are assumed to be either active or inactive, which 
results in information loss24. Boolean networks consist of nodes, where each node has a 
Boolean function. These functions indicate direction from one or more nodes to another node. 
Thus, the state of a node (active or inactive) depends on the states of the other nodes. A 
Boolean function is found for each gene. Additionally, Boolean networks are time-dependent24. 
An overview of this approach can be seen in Figure 8. Bayesian network methods are based 
on conditional probabilities23,24. The resulting network is a directed acyclic graph structure. 
Firstly, the structure of the model is learned and then the parameters are learned24. It can 
capture non-linear relationships as well25. This method is computationally expensive and is 
thus hard to implement for large networks23. Differential equation methods are based on rate 
equations; they quantify the rate of change of the gene expression of one gene as a function 
of the expression profiles of the other genes24. Non-linear interactions can be detected. Here 
an example is NonLinearODEs. 

 

Figure 8. General workflow of Boolean network approaches. Gene expression is binarized and the initial 
state is inferred. The states of the different genes are then optimized and a regulatory network is 
retrieved with for every gene a Boolean function. Adapted from Nguyen et al.31. 

Regression-based methods look at the inference of a network as a feature selection problem24. 
They find the most predictive subset of TFs for each target gene. Here, directed edges can be 
retrieved23. There are different approaches for implementing regression. This can be for 
instance linear regression, logistic regression or tree-based ensemble methods. Examples 
here are LASSO and GENIE332. GENIE3 is a tree-based ensemble method. It looks at the 
inferring problem as a feature selection problem: what are the genes that influence the 
expression profile of a specific target gene? As a result, a ranking of regulatory interactions for 
every gene is given32. Two different ensemble methods can be used with GENIE3: random 
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forests and extra-trees. Random forests and extra-trees are both ensemble methods based on 
decision trees. Different trees are grown and combined into one final tree. Bagging (bootstrap 
aggregation) is the method where deep decision trees are made, which are prone to overfitting 
and have a high variance. Moreover, in each iteration, only a part of the data (datapoints and 
features) is used to grow the tree. These iterations, or the forest of trees, are then averaged 
into the ensemble tree. The extra-trees method is based on random forests, however, in 
contrast to random forests, each tree is built from the original sample32. At each split, the tree 
is provided with a random sample of k features, without replacement32. Boosting, on the other 
hand, consists of growing weak learners, or shallow trees, into a strong ensemble. Shallow 
trees have a high bias. There are different methods on how to combine the different iterations 
into one final tree. GENIE3 can predict directionality, but only to some extent32. Other 
advantages are that there is no assumption about the nature of gene regulation, e.g. linear 
interactions, and the computation is relatively fast. Regulators can be specified when inferring 
the network. PoLoBag (Polynomial Lasso Bagging) is based on lasso regression and uses 
bagging as well33. In addition, polynomial features are incorporated to capture higher-order 
interactions (non-linear relationships).  

Multi-omics approaches can be based on one of the methods mentioned above. Instead of 
only using transcriptomic data to infer the networks, multi-omics methods also use other data. 
Some methods use epigenetic and TF binding site data, other interactomics or genomic 
variants data. Examples are Lemon-Tree34, MERLIN-P35 and PANDA/SPIDER. Lemon-Tree is 
a module network inference method34. It separates the learning of modules and the assignment 
of regulators to modules. It can integrate different types of omics data. To find the modules, 
clustering is done with a model-based Gibbs sampler algorithm34. Different clustering 
permutations can be executed and are then combined into a final consensus, using a graph 
clustering algorithm36. The edge weights are equal to the frequency of the pairs of genes 
belonging to the same cluster in the different permutations34. This is done because every 
cluster step can be slightly different. By then taking the genes that consistently cluster together, 
a more robust cluster solution can be retrieved36. Genes that are not assigned to any cluster, 
are omitted. Next, regulators are assigned to each cluster. This is done by fitting an ensemble 
of decision trees. These can be different kinds of regulators, both continuous or discrete34,36.  

MERLIN-P, or Modular regulatory network learning with per gene information plus prior 
network, is a method that learns per-gene regulatory programs, but concurrently the network 
is constrained by a probabilistic graphical model that takes into account the modular structure 
of the network26. Thus, two genes in the same module have similar, but not identical regulators. 
In contrast with Lemon-Tree, the learning of the module membership and the assignment of 
regulators to these modules are not decoupled. In a probabilistic graphical model, there are 
two main components: the graph structure and the parameters35. They use a dependency 
network, where the expression levels of genes are each predicted as a function of its regulators 
(i.e. regression). The algorithm iterates between two steps. In the first step, the graph structure 
is updated, taking the current assignment of modules into account. The second step updates 
the module assignment, taking into account the current graph structure35. It starts with initial 
modules and iterates until convergence. Moreover, it is possible to integrate expression data 
with other types of regulatory data as structure priors35. The algorithm can integrate different 
types of prior networks. The prior networks can be weighted and are subsequentially combined 
to determine the prior probability of each edge35. The integrative network construction is based 
on a Bayesian framework.  

Another multi-omics method that combines different methods to infer GRNs is KBoost37. It is a 
fast and scalable algorithm and uses kernel principal component analysis (PCA) regression, 
boosting and Bayesian model averaging. A prior network is included in the algorithm, which is 
based on ChIP-seq data. Different weights can be given to this prior network. For every gene 
a model is fit that predicts its expression, using the kernel PCA of the expression levels of a 
subset of TFs37. The boosting is implemented by fitting a new model to each gene expressionôs 
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residuals and selecting the TFs with the highest posterior probability per gene and then 
updating the predictions. Thus, in different iterations, different TFs are selected. With the 
Bayesian model averaging, different models are compared, and the probability that a TF 
regulates a gene is estimated. This model is then combined with the prior, and as output, the 
probability of each TF regulating each gene is given37.  

CLR and GENIE3 were both included in the benchmark study by Marbach et al. where they 
compared 35 different network inference methods29. This was done with the DREAM5 
challenge. This is a well-known GRN inference challenge where researchers can run their 
algorithms on benchmark datasets. Combining different methods gave as good or better 
results than the top-performing methods in their benchmark29. This was as well more robust 
than using only one method. The performance increased with applying more methods, and 
with increasing the diversity of the used methods.  

1.5 Single-cell network inference 

Single-cell data is increasingly being used to answer research questions. Predominantly 
single-cell RNA sequencing (scRNA-seq) and ATAC-seq (Assay for Transposase-Accessible 
Chromatin using sequencing) are performed, but other efforts are done as well, for example 
single-cell proteomics. Different cells in the same tissue have distinct functions and expression 
patterns. Thus, when doing bulk RNA sequencing (RNA-seq), for example, cell-specific signals 
are averaged and dominated by the bulk signals. When doing a single-cell analysis, cell-
specific signals are picked up. In the brain, it is a large advantage to analyze cell-specific 
signals, as not only do the different glial cells have separate functions, but different neurons 
have distinct functions as well. Another advantage is that fewer patients are needed, as every 
cell is now seen as an individual sample. This can alleviate the high-dimensionality problem. 
A disadvantage of single-cell data is the fact that the signals are not strong, as they only come 
from a single cell. However, the signal can be increased by pseudo-bulk analysis or the 
aggregation of the reads of several cells from the same cell type or state. Because of the 
inherently different kinds of data, new methods had to be developed to analyze scRNA-seq 
data, as the bulk methods are not always convenient to use. Hence, new methods for network 
inference have been developed specifically for single-cell data. Multi-omics integration is as 
well increasingly done with single-cell data. Some researchers have benchmarked the 
performance of different single-cell network inference methods. A first paper has benchmarked 
GRN inference algorithms from scRNA-seq data38. They compared GENIE3, PPCOR, LEAP, 
SCODE, PIDC, SINCERITIES, SCNS, GRNVBEM, SCRIBE, GRNBoost2, GRISLI and 
SINGE. They tested the different methods on simulated datasets from synthetic networks, 
datasets from curated Boolean models from the literature and five experimental scRNA-seq 
datasets38. The results were examined using the area under the precision-recall curve (AUPR), 
early precision (fraction of true positives in the top-k edges), stability of the results, by analysis 
of the network motifs, and scalability. PIDC, GENIE3 and GRNBoost2 were the top-performing 
algorithms38. A substantial number of methods had a performance close to a random predictor. 
Another benchmark paper compared the following GRN inference methods: Boolean 
Pseudotime, BTR, SCNS, Inference Snapshot, SCODE, SCOUP, Empirical Bayes, 
Information Measures, NLNET, SINCERA, SCENIC, LEAP, SINCERITIES, SCIMITAR, and 
SCINGE31. The researchers used stimulation data and studied the AUROC (Area Under 
Receiver Operating Curve) of the different methods with different numbers of genes and with 
different levels of sparsity. Overall, SCENIC has the highest accuracy in most simulation 
studies, while LEAP and NLNET are the fastest methods, and SCOUP is the most stable 
method31. Here again, some methods only performed as well as a random predictor.  

SCENIC (Single Cell rEgulatory Network Inference and Clustering) consists of a workflow in 
which the first step is to infer networks with GRNBoost2 or GENIE339. Next, modules are 
identified in which the TFôs binding motif is significantly enriched in the target genes, with 
RcisTarget. Lastly, AUCell scores the activity of these regulons in each cell, which is then 
binarized to be either active or inactive. Cell states are then predicted based on shared activity 
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between the cells. GRNBoost2 is based on GENIE3, but instead of using a bagging method, 
stochastic gradient boosting is used to train a strong model39. Stochastic gradient boosting 
indicates that at each iteration a randomly selected subsample of the data is used, increasing 
the accuracy of the model40. In gradient boosting, the current iteration is built using the error 
from the previous iteration. Thus, in contrast to random forests, the different iterations are not 
independent. 

Another upcoming, promising technology is spatial single-cell analysis. Here, the RNA in the 
cells is sequenced and this can subsequently be coupled back to its position in the sample. 
More and more cells can be sequenced with scRNA-seq and the resolution of spatial analysis 
is still increasing. The single-cell omics field is rapidly evolving. 

1.6 Comparison of networks 

Tantardini et al. have made an overview of different methods that can be used to compare 
networks41. Network characteristics are often used to get a broad overview of the topological 
nature of a network. Examples of network characteristics are the degree, correlation 
coefficient, density, diameter, edge and node betweenness, number of connected 
components, and distance. The average degree indicates the average of the edges each node 
has. The correlation coefficient is a measure of how well the neighbors of a node are connected 
to one another. It is the number of edges between the neighbors of a node divided by the total 
number of possible edges42. The density is the ratio between the edges in the network and the 
total number of possible edges. The diameter indicates the longest shortest path of the network 
between any two nodes. The average edge betweenness indicates the average of all paths 
that pass through a certain edge. Similarly, the node betweenness signifies the number of 
paths that pass through a certain node. This is also called the betweenness centrality42. 
Connected components are the number of components or subgraphs in which each pair of 
nodes is connected with each other via a path. Lastly, the average path length or distance42 is 
the average of all the path lengths between all the nodes in the network.  

GCD-11 was the best performing method amongst the undirected methods41. The method is 
based on graphlets, which are ósmall, connected, non-isomorphic subgraphs of large 
networksô41. Mostly, graphlets contain up to five nodes. Nodes in graphlets are called orbits, 
and each distinct orbit gets a number. In one graphlet, two or more orbits can be the same, i.e. 
there is no possible distinction between them. These are automorphism orbits. For instance, 
in a chain of three nodes, the two outer nodes are the same. The graphlets are numbered as 
well (G0 to G29 for up to five-node graphlets). Moreover, some orbits are redundant, which 
means that their count in the network can be derived from the counts of the other orbits43. GCD 
(Graphlet Correlation Distance) gives the highest accuracy with up to four-node graphlets43. 
This method has eleven non-redundant orbits, and is thus called GCD-11. For each node in 
the network, a graphlet degree vector is created43. This is a vector containing the count for 
each of the possible orbits, for this node. This is then combined into a matrix with the number 
of rows equal to the number of nodes in the network, and the number of columns equal to 
eleven (possible orbits). Next, the Spearmanôs correlation coefficient is calculated between all 
pairs of columns43. This results in a symmetrical 11x11 matrix, called the Graphlet Correlation 
Matrix. As such, each network can be represented as an 11x11 matrix. With these matrices, 
the distance can be computed between two networks. This is done by taking the Euclidean 
distance of the upper triangle values of the two Graphlet Correlation Matrices43. This distance 
is termed the Graphlet Correlation Distance. 

1.7 Network inference on omics data from neuroinflammatory disorders  

There is still a lot of research necessary to improve the inference of GRNs, but they are useful 
to generate biological hypotheses and prioritize follow-up experiments. It is important to keep 
in mind that GRNs need to be experimentally validated, as in silico methods are not sufficient 
to prove a certain regulatory pathway. Researchers have already conducted network inference 
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on neuroinflammatory disorders. Chew and Petretto2 have made an overview of transcriptional 
networks inferred from Alzheimerôs samples. They describe several papers where network 
inference was done of gene co-expression networks or GRNs with microarray, RNA-seq, 
scRNA-seq, and some multi-omics data. Probably the most used method until now to infer 
networks is WGCNA. However, with this method co-expression networks are retrieved, not 
GRNs. Moreover, many researchers only infer networks on differentially expressed genes. By 
doing this, a substantial part of the data, that might be interesting, is not used. In another paper, 
researchers have used WGCNA to look at the degree of overlap of transcriptional 
dysregulation between autism (ASD), depression, schizophrenia (SCZ), bipolar disorder (BD) 
and alcoholism44. They used microarray datasets and generated RNA-seq for three of the five 
disorders. They found the largest transcriptome correlation between SCZ and BD. Next to 
doing a differentially expressed genes analysis and WGCNA, they also looked at single 
nucleotide variants (SNPs). They found significant correlations between SNP-based genetic 
correlations between diseases on the one hand and their corresponding transcriptome overlap 
on the other hand44. This indicates that the gene expression changes are partly coupled to 
genetic variation.  

Another research group has implemented WGCNA as well, from samples of individuals with 
SCZ, ASD, Parkinsonôs Disease (PD), AD, BD, MDD, pathological aging, and progressive 
supranuclear palsy (PSP)45. They used bulk RNA-seq samples. The number of samples they 
used for each disorder was highly different; 906 for AD versus 29 for PD. They performed 
differential gene expression analysis. With the differentially expressed genes (DEGs), they 
executed gene enrichment analysis. Functions related to the immune response were the only 
recurring results among different disorders45. Here again, the largest overlap was between 
SCZ and BD. The researchers found different overlaps between conditions in different brain 
regions45. There was also a correlation between AD and ASD, and between AD and SCZ. With 
WGCNA, they found that neuronal modules were downregulated in AD, PD, ASD, SCZ, and 
BD. An oligodendrocyte module was upregulated in all conditions except for pathological aging 
and PSP. A microglia-associated module was upregulated in AD, PD, pathological aging, and 
autism. Moreover, it was enriched for genes involved in the immune response45. This is logical, 
as microglia are immune cells. An astrocyte module was upregulated in AD, PD, pathological 
aging, ASD, SCZ, and BD.  

A system-level analysis of different neurodegenerative disorders was executed in another 
paper46. They used microarray data from AD, PD, Huntingtonôs disease, SCZ, amyotrophic 
lateral sclerosis, and MS patients and control samples. The samples were taken from different 
brain regions for each disease. The number of samples they used was limited; around ten 
patients and ten control samples were used for every disease. They wanted to identify common 
pathways and factors involved in the development and progress of several neurodegenerative 
disorders46. They predicted the core GRNs in each disorder. Firstly, they identified DEGs 
between each disease and control samples. There were few common genes between 
diseases46. Next, they used the DEGs list to make PPI networks with the STRING database. 
Moreover, they used Enrichr to determine the TFs that regulate the DEGs. They constructed 
TF-gene networks and integrated data from STRING into these networks. Subsequently, they 
determined central genes and TFs and used these to construct the core GRNs. Gene Ontology 
(GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) were used for functional 
enrichment analysis. The largest overlap of DEGs was observed between Huntingtonôs and 
PD. After functional enrichment, they noticed that most genes were involved in cardiovascular 
and metabolic terms, followed by immune, neurological and pharmacogenomics terms46. 
ATF3, SOX2 and JUN were hub TFs for the DEGs of AD. UMPS and CDK1 were two hub 
DEGs in AD. SLC14A1 was found to be implicated in several diseases, both in this study and 
in other literature46. They found a large overlap in their genes and genes in literature, but they 
also found some genes that may be implicated in pathology, but have never been observed 
before.  
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Further, other researchers investigated several psychiatric and neurodegenerative disorders28, 
but did this in another manner than in the previous paper. They reconstructed a GRN for the 
human brain by integrating brain-specific DNase footprinting and TF-gene co-expression28. For 
the co-expression, they utilized microarray expression profiles from the Allen Human Brain 
Atlas. Both Pearson correlation and lasso regression was adopted for co-expression. Then 
they retrieved the DEGs from transcriptomic data (RNA-seq and microarray) from SCZ, BD, 
depression, AD and autism patients and controls28. Here, the samples were all retrieved from 
the prefrontal cortex. Next, they identified TFs whose target genes were enriched in these 
DEGs. Their goal was to predict key TFs that regulate transcriptomic changes in the disorders, 
as well as to look at disease-associated SNPs that disrupt regulator binding sites28. They found 
no key regulators for MDD and 78 for AD. Some key regulators were associated with genetic 
risk for the same disease. These were MEF2C, GLIS3, TFEB, and NR3C2 for AD28. Target 
genes of MEFC2 were enriched for neuron-specific genes. Moreover, they saw that neuronal 
networks were often downregulated, while microglial networks were upregulated in AD28.  

1.8 Aims of this masterôs dissertation  

The objective of this master dissertation is to find the distinct and common pathways between 
the neuroinflammatory disorders AD and MDD, and their regulators. AD can be seen as a 
representative of neurodegenerative disorders, while depression can be seen as a 
representative of psychiatric disorders. This has been done by inferring GRNs using different 
methodologies. For each method, the top 100 000 edges were retrieved. Using rank 
aggregation, an ensemble network per disorder was constructed from these networks. The 
ensemble networks of AD and MDD were compared to each other with different metrics, to 
see whether topologically similar networks were retrieved. Next, modules were constructed 
and functionally analyzed. In addition, single-cell RNA-seq data was used to infer GRNs with 
SCENIC and further characterize the cells that are implicated in the disorders, and to compare 
the two disorders. 

The host lab of Prof. dr. ir. Vanessa Vermeirssen (Lab for Computational Biology, Integromics 
and Gene Regulation (CBIGR)) aims to acquire a functional understanding of gene regulation 
and signaling at a systems level in complex diseases. The lab is internationally recognized in 
GRNs and multi-omics data integration; developing and applying high-throughput methods for 
experimental GRN mapping, and benchmarking, and data integration methods for 
computational GRN inference. The host lab has shown that different network inference 
methods reveal complementary aspects of the underlying GRNs, and that integrating different 
omics data provides a more accurate, multi-modal view of gene regulation47,48.  
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2. METHODS  

2.1 Retrieval and preprocessing of data  

Different criteria were taken into account when searching RNA-seq datasets. Firstly, the data 
had to originate from human post-mortem brain samples. Secondly, each dataset had to 
contain at least 20 samples and control samples had to be included as well. The samples may 
not have been enriched for certain cell types. The prefrontal cortex was the favored brain 
region, as a large amount of studies sample from the prefrontal cortex. Moreover, the prefrontal 
cortex has been implicated in several psychiatric, neurodevelopmental and neurodegenerative 
disorders28. Lastly, there needed to be a similar number of samples for each disorder.   

The gene counts and metadata files of the different datasets were loaded into R (version 4.0.3). 
Different datasets of the same disease have been merged to make a compendium per disease. 
The edgeR package was used for preprocessing. Firstly, the features were filtered by only 
keeping the genes with more than one count in at least five samples. Then the trimmed mean 
of M values (TMM) normalization was done49. This method uses a weighted trimmed mean of 
the log expression ratios. For this, gene-wise log fold changes and óabsoluteô expression levels 
are used. A trimmed mean indicates the mean after removing the upper and lower x% of the 
data49. The weights account for the mean-variance dependency. TMM normalization assumes 
that most genes are not differentially expressed49. Next, the normalized counts were 
logarithmically transformed (prior count of one). Batch effects and outliers were detected with 
multidimensional scaling and hierarchical clustering. For merged datasets, a batch correction 
has been executed, with the removeBatchEffects function from edgeR. Subsequently, highly 
variable genes were selected. Next to the selection of highly variable genes, only protein-
coding genes were selected for further analysis. After the selection of the highly variable genes, 
regulators have been added again. Regulators indicate TFs that bind DNA and regulate the 
expression of their target genes. Lovering et al. have manually curated a list of human TFs, 
using several sources50. This list was used to define the regulators. It contains 1455 TFs in 
total. Lastly, scaling was done.  

2.2 Bulk network inference methods  

Two networks were made with every method, one with the AD dataset, and one with the MDD 
dataset. GENIE332 is implemented in the R package GENIE3. Random forest was used to infer 
the networks. The other parameters were set to default (number of regulators selected at each 
tree node: sqrt(total number of regulators); 1000 trees). CLR is implemented in the minet 
package in R (v.4.0.3)51. It is possible to use different estimators to calculate the mutual 
information. The empirical estimator was the default at the time the paper was written. 
However, they mention that this entropy estimator is biased. The Miller-Madow estimator 
reduces this bias, thus, this estimator was used to infer the networks. These estimators were 
designed to take discrete values. The equal frequency discretization was used for this51. 
Lemon-Tree is implemented in Java as a command-line program34. The latest version (v3.1.1) 
was used to infer the networks. The clustering was done for 100 permutations and there are a 
minimum of ten genes per module. Next, regulators are assigned to each cluster, which were 
TFs here, from the list from Lovering et al.50. MERLIN-P35 was tried as well. It is implemented 
as a command-line program, with code written in C and C++, available on their GitHub. For 
MERLIN-P a prior network is needed, hence, a weighted directed network from Marbach et 
al.52 has been utilized from the adult frontal lobe. They have constructed 394 cell- or tissue-
specific regulatory networks and made them freely available (syn4956655). This region was 
chosen, as the expression datasets are from the prefrontal cortex.  

PoLoBag33 is implemented in Python. A script must be run, where only the file names have to 
be changed, and if desired, different parameters can be changed as well. The default 
parameters were used, except the Lasso regularization parameter was changed to 0.2 instead 
of 0.1. KBoost37 is implemented in the R package KBoost and uses a prior network as well. 
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This prior network is included in the function KBoost_human_symbol, which was used for the 
network inference. In addition, TFs are defined beforehand, but another resource is used than 
the list from Lovering et al. VIPER infers the activity of proteins with the expression pattern of 
its target genes53. VIPER is implemented in the R package viper. In the first step, a prior 
network must be made, which the developers have made with ARACNE (R package minet), 
which was tried as well. In the next step, this prior network has to be changed to a regulon. 
Two groups of samples are compared to each other. Then enrichment of each regulon on the 
gene expression signature of these groups is calculated, using the analytic Rank-based 
Enrichment Analysis algorithm53. This enrichment is then compared to a null model to 
determine statistical significance.  

2.3 Ensemble networks 

From the different methods, an ensemble network was created. This was done by rank 
aggregation. Rank aggregation can be performed with different methods. In the paper from the 
benchmarking with the DREAM5 dataset29, they used average rank aggregation to make the 
ensemble networks. The TopKLists R (v.4.1.3) package was used with the Borda function for 
average rank aggregation, using the results from the different methods. Next, modules were 
retrieved with the Jaccard similarity index and k-medoids clustering. The overlap in the 
predicted regulators of all the genes was calculated using the Jaccard index. These indices 
were then used to allocate each gene to a module with k-medoids. The R package cluster was 
utilized for this, with the pam function. K-medoids clustering is more robust than k-means 
clustering as the median is used instead of the mean of the clusters. Hence, one gene is used 
as a representative of its cluster. In k-means/k-medoids, firstly, the k cluster centroids are 
randomly assigned. Then for every gene, the nearest centroid is calculated and the gene is 
assigned to this cluster. Next, the centroids are updated to be the average/median of the 
assigned cluster points. These steps are repeated until convergence. Further, the regulators 
were assigned to each cluster. A maximum of ten regulators was chosen to be allocated to 
each module. TFs were ordered by the number of genes they regulate in the module. In 
addition, the TFs had to regulate at least half of the genes in the module.  
 
The modules from the Lemon-Tree networks and the ensemble networks were visualized in 
Module Viewer47. Module Viewer is a Java program in which the expression of different 
modules can be visualized, together with its regulators and annotation data. Network 
visualizations were created with the igraph package in R or with Cytoscape54.  
 

2.4 Functional characterization  

Functional enrichment analysis was done with the enrichR package in R. The databases used 
for the enrichment of the Lemon-Tree modules were Gene Ontology Biological Process (2018), 
GO Molecular Function (2018) and KEGG (2019). For the functional enrichment analysis of 
the ensemble networks, the same databases were used as above, however, the most recent 
versions were used this time. These were from 2021. Moreover, some additional databases 
have been used as well: Reactome_2016 and WikiPathway_2021_Human.   
 

2.5 Comparison of networks  

The different networks retrieved from the different methods were compared with Venn 
diagrams and network characteristics. This was done with the BioVenn and igraph R (v.4.0.3) 
packages, respectively. For each disease, the networks were compared that were retrieved 
from the different methods. The igraph package was used as well for the network 
characteristics of the ensemble network. Here, the network characteristics were used to 
compare the ensemble networks of AD and MDD. Next to this, the ensemble networks were 
compared with distance measures. The first distance measure used was the Jaccard distance. 
The Jaccard similarity index is calculated as the intersection of the edges, divided by the union 
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of the edges41. The intersection indicates the common elements, while the union indicates the 
edges present in either of the two networks. The Jaccard distance is then calculated as one 
minus the similarity. Hence, this is a distance measure that gives a broad overview of the 
number of edges that are shared between two networks. Next to this, the GCD was used, more 
specifically, GCD-11. This was done by utilizing the Python scripts and the orca.exe from the 
authors. However, some changes had to be made to the Python scripts, probably because the 
scripts were written in an older Python version. The networks need to be in Leda format, which 
was done with the write_graph function from the igraph package in R. GCD11 is an undirected 
method. Hence, the óduplicatedô edges had to be omitted first (A-B versus B-A), which was 
done in R as well. In the first step, the Graphlet Degree Vector matrix is computed for each 
network. In the next step, the GCD is computed between the networks. 
 

2.6 Further characterization with single-cell RNA-seq data 

Next to using bulk RNA-seq datasets, scRNA-seq datasets were used as well. These had to 
be originating from post-mortem brain samples. Preferably, these had to be from the same 
region as the bulk datasets, i.e. the prefrontal cortex. Both neurons and glial cells had to be 
included, as all cells can be implicated in the pathology. Similarly as in the bulk datasets, 
control samples need to be included and there have to be a similar number of samples (cells) 
for each disorder. The publicly available files were preprocessed in R (v.4.0.3). The Seurat 
package was used for quality control, preprocessing and visualizations. Cells with too low or 
too high UMI (unique molecular identifier) counts were omitted. Too few counts are mostly due 
to empty droplets, while too many counts can indicate there were two cells in one droplet. Next 
to this, only protein-coding genes were selected. Subsequently, the dataset was logarithmically 
transformed (NormalizeData function) and the highly variable genes were selected. Next, the 
regulators were added again. Here again, the list of Lovering et al.50 was used. Lastly, scaling 
was executed to make plots (ScaleData function).  
 

To visualize the cells in a low-dimensional space, firstly PCA was done. This was done with 
fewer genes than the genes selected for further analysis with SCENIC. Next, the number of 
principal components (PCs) to keep was evaluated with an elbow plot. With the selected PCs, 
the cells were visualized with UMAP (Uniform Manifold Approximation and Projection) and t-
SNE (t-distributed Stochastic Neighbor Embedding) plots. Both methods are frequently used 
with single-cell datasets. UMAP is better able to keep the global structure of the dataset. This 
was done by running FindNeighbors, FindClusters, RunUMAP, and RunTSNE. Firstly, a K-
nearest neighbor graph is constructed, based on the Euclidian distance in the PCA space55. 
Next, modularity optimization techniques are used to cluster the cells55. This is done with the 
Louvain algorithm by default. 
 
In addition, SCENIC was used to infer GRNs from the single-cell data. SCENIC can be 
implemented in both R and Python. GRNBoost2 is faster than GENIE339 and can only be used 
in Python for inference. GENIE3 can be run in both Python and R. It was run by Joke 
Deschildre, a PhD student in the lab of Prof. Vermeirssen, as she has experience with this 
method. It was run in Python (pySCENIC). GRNBoost2 was used for the network inference, 
with the arboreto package.  

3. RESULTS  

3.1 Overview of the expression data  

A GitHub repository was made for the scripts executed in this masterôs dissertation (see 
Addendum 2). RNA-seq data were mostly retrieved from the NCBI Gene Expression Omnibus. 
GSE174367/syn22130832 contains bulk RNA-seq samples from 48 healthy controls and 47 
patients with AD56. The samples were taken from the prefrontal cortex. In addition, GSE101521 
and GSE80655 contain samples from 53 people with depression and 53 healthy controls. They 
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both contain samples from the dorsolateral prefrontal cortex. GSE101521 contains 30 samples 
of patients with MDD and 29 controls57. GSE80655 contains 23 samples from people with MDD 
and 24 control people58. An overview of the datasets can be seen in Table 1.  

Table 1. Overview of the bulk and single-cell datasets. 

Disorder Accession Data type Brain region Number of 
disease 
samples 

Number of 
control 
samples 

AD GSE174367 

syn22130832 

RNA-seq Prefrontal cortex 47 48 

MDD GSE101521 RNA-seq Dorsolateral 
prefrontal cortex 

30 29 

MDD GSE80655 RNA-seq Dorsolateral 
prefrontal cortex 

23 24 

Healthy  syn4956655 Prior 
network 

Frontal lobe   

AD GSE174367 

syn22130832 

snRNA-seq Prefrontal cortex 8 11 

MDD GSE144136 snRNA-seq Prefrontal cortex 17 19 

 

It is hard to find readily available multi-omics data of the same individuals. Up to today, there 
are still more microarray than RNA-seq datasets available. Subsequently, scRNA-seq datasets 
are even more sparse. Most available epigenetic data, such as ATAC-seq or DNase-seq, has 
been retrieved from healthy individuals and not patient samples. As such, multi-omics data 
were not found for AD and MDD.  
 
In the AD dataset, six outliers out of 95 samples were omitted. These consisted of four AD 
samples and two controls. Similarly, in the first MDD dataset, one outlier sample was deleted. 
This was a depressive sample. After the selection of highly variable genes and protein-coding 
genes, 9210 genes were left in the AD dataset and 8660 in the combined MDD dataset. 514 
regulators were added again to the Alzheimer dataset and 557 to the depression dataset. 
These TFs were expressed in the samples and the list of Lovering et al.50 was used to know 
which genes are seen as TFs. Even though these TFs are not highly variable over the different 
samples, they can still have an important function in the network, for instance by being 
constitutively active. This ultimately resulted in 9724 and 9217 genes in the AD and MDD 
dataset, respectively. There are a total of 1045 regulators in the AD dataset and 1101 in the 
MDD dataset.  
 

3.2 Bulk networks inferred through different methodologies  

Firstly, GENIE3 was used to infer the two networks, one for AD and one for MDD. The list of 
Lovering et al.50 was used to define the regulators. Here, a total of 10.121.643 edges were 
found in the AD network and 10.146.816 edges in the MDD network. Next, the edges were 
filtered to retrieve the top 100 000 edges, because too many edges are not feasible to work 
with. Moreover, these are the most significant edges. Next, CLR was used to again infer two 
networks. After inferring the networks with CLR, the edges were filtered to contain at least one 
regulator. If the edge was between the gene of a TF and a non-TF gene, then only the edge 
from the regulator to its target gene was kept. On the other hand, if an edge connects two TFs, 
then both edges were kept, as the direction is not known. Edges where the weight was zero, 
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were also omitted. Ultimately, this resulted in 5.592.222 regulatory edges in the AD network 
and 5.382.600 in the MDD network. Here the top 100 000 edges were selected as well for 
further analysis.  

In Lemon-Tree, the TF list of Lovering et al.50 was used again to define the regulators. The 
expression of these TFs in the Alzheimer and depression datasets was used as regulatory 
information. In the AD network, 155 modules were found, similar to the 156 modules found in 
the MDD network. The top one percent regulators were used to visualize the modules and their 
regulators with Module Viewer. Next, the modular output of Lemon-Tree was converted to an 
edge list, similar to those retrieved with GENIE3 and CLR. This was done by assigning each 
regulator to each target gene in the respective module. As a default in Lemon-Tree, the top 
one percent regulators are retrieved in the networks. However, when utilizing the top one 
percent regulators (687 for AD, 818 for MDD), there were only 45 161 edges in the AD network 
and 44 653 in the MDD network. Moreover, Lu et al. have dissected Lemon-Tree by assessing 
the network performance using different parameters and data59. In the paper, they recommend 
not using the top one percent regulators, which results in information loss, but to use at least 
the top 30%. As the top 100 000 edges were selected in the previous methods, this was done 
here as well. There were a total of 68 698 (AD) and 81 792 (MDD) regulators assigned to all 
modules. Lemon-Tree also assigns regulators randomly to modules. This can be used to 
compare these scores to the scores of the assigned regulators. However, as Lu et al. mention, 
this random list still has a reasonable performance59. When filtering with the highest random 
score (3.1 for AD and 3.2 for MDD), there were still less than 100 000 edges. As such, a score 
of 2.98 and 2.58 was used to filter the weight in respectively the networks of AD and MDD. 
There were some auto-regulatory edges in the network, because the expression of the 
regulators was used as well when retrieving the modules. As such, some regulators were 
assigned to the module and assigned as a regulator of the same module. Thus, these edges 
were deleted from the network, before selecting the top edges. The other networks have no 
auto-regulatory edges.  

MERLIN-P was tried as well. However, there was only one module made and as such, only 
one regulator was assigned to different target genes. The method was first executed without 
an initial module assignment. Subsequently, an initial module assignment was made with k-
medoids clustering with the R package cluster. The number of clusters was set to the number 
of clusters retrieved by Lemon-Tree (155 for AD, 156 for MDD). However, with the initial cluster 
assignment, the output of MERLIN-P was still not as desired, as it was the same as before. 
There were 5018 genes assigned to one module for AD and only 28 genes to one module for 
MDD. Perhaps the prior network and the datasets were too large for MELRIN-P.  

Next to the methods described above, PoLoBag, KBoost and VIPER were tried as well. 
PoLoBag was too computationally expensive; it was still running after 72 hours. VIPER is 
outdated, many people donôt get it running and there was uncertainty about the output. A prior 
network with ARACNE was made, but it was not possible to convert it to a regulon to use in 
VIPER. KBoost is a fast method. However, the number of retrieved edges was too little 
compared to the other methods. For AD there were 5425 edges inferred and for MDD 3551 
edges. Other possible methods to infer GRNs were either not feasible or were too similar to 
the already used methods. Some were not feasible due to not having enough data (e.g. 
epigenetic data), being implemented in MATLAB, or being too hard to implement e.g. because 
of not enough information provided about how to run the method.  

3.3 Analysis of method-specific networks  

The overlap between the networks retrieved by the different methods was investigated by 
making Venn diagrams of the edges. Next to this, Venn diagrams were made to see the overlap 
in the top 100 regulators of the different networks, for both disorders. These were the top 100 
regulators with the most óoutô edges (out-degree). The Venn diagrams were made with the R 
package BioVenn. As seen in the diagrams, there is not much overlap between the edges of 
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the different methods (Figure 9). There are as well some differences between the two 
disorders. It must be noted that the weights of the edges were not taken into account here. 
There is, however, a substantive overlap between the top 100 regulators (Figure 10). There 
are 45 top regulators in common for the AD networks and 40 for the MDD networks. These are 
170 total regulators of all methods for AD and 171 for MDD. Of these, there are 62 regulators 
in common between AD and MDD. To see whether there are any substantive differences 
between the number of nodes and the number of TFs for each network, these were as well 
verified. An overview of the values can be seen in Tables 2 and 3, for AD and MDD 
respectively. There are more regulators and fewer target genes in the MDD networks 
compared to the AD networks. This is because of the input expression data (see 3.1). Lemon-
Tree has a substantive lower number of nodes, due to the modular output. Not every regulator 
could be assigned to regulate a module and not every gene could be assigned to be part of a 
module.  

 

 

 

 

 

 

 

 

 

 

Figure 9. Venn diagrams of the overlap of the edges for the networks retrieved by CLR, GENIE3 and 
Lemon-Tree, for Alzheimerôs disease (left, AD) and depression (right, MDD).  

 

 

 

 

 

 

 

 

 

 

Figure 10. Venn diagrams of the top 100 regulators for each network retrieved by CLR, GENIE3 and 
Lemon-Tree, for Alzheimerôs disease (AD) and major depressive disorder (MDD).  
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Table 2. Overview of the number of nodes for the three Alzheimerôs disease networks.  

 CLR GENIE3 LEMON-TREE 

TOTAL NODES 9715 9384 8736 

TARGET GENES 9714 9340 8674 

TRANSCRIPTION FACTORS  1041 994 618 

 

Table 3. Overview of the number of nodes of the three networks for depression.  

 CLR GENIE3 LEMON-TREE 

TOTAL NODES 9183 8871 8012 

TARGET GENES 9182 8859 7934 

TRANSCRIPTION FACTORS  1101 1069 763 

 

Moreover, each network, for each disease, was inspected by topological measures. These 
were the average degree, correlation coefficient, density, diameter, edge betweenness, node 
betweenness, directed edge/node betweenness, connected components, and the (directed) 
average path length. In Tables 4 and 5, the values are indicated for each network 
characteristic, for Alzheimer's and depression, respectively. These network measures were 
calculated with the igraph package in R. The directed measures are similar to the undirected 
measures, with the only difference that only directed paths are considered. The diameter and 
edge betweenness were normalized for the number of nodes in the network.  

Table 4. Network characteristics of the three networks made by CLR, GENIE3 and Lemon-Tree of the 
Alzheimerôs disease dataset.  

Measure CLR GENIE3 Lemon-Tree 

Average degree  0,002119 0,002271 0,002621 

Clustering coefficient 0,063749 0,410084 0,438643 

Density 0,001060 0,001136 0,001310 

Node betweenness 10892,8 10813,3 8459,6 

Directed node betweenness 2432,6 2664,3 1462,2 

Edge betweenness 0,000231 0,000246 0,000222 

Directed edge betweenness 2.5782e-05 3,0266e-05 1,9165e-05 

Diameter 6 0,1358 7 

Connected components 1 1 1 

Average path length 3,2427 3,2393 2,9370 

Directed average path length 3,3395 4,7104 3,8552 
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Table 5. Network characteristics of the three networks made by CLR, GENIE3 and Lemon-Tree of the 
depression dataset.  

Measure CLR GENIE3 Lemon-Tree 

Average degree  0,002372 0,002542 0,003117 

Clustering coefficient 0,096489 0,355748 0,443298 

Density 0,001186 0,001271 0,001558 

Node betweenness 10828,6 10936,9 8200,1 

Directed node betweenness 2685,5 2877,3 1925,2 

Edge betweenness 0.000257 0,000278 0,000256 

Directed edge betweenness 3.1857e-05 3,6576e-05 3,0003e-05 

Diameter 6 0,1073 7 

Connected components 1 3 1 

Average path length 3,3587 3,3754 3,0472 

Directed average path length 3,4419 4,1439 3,8248 

 

Most values are similar. However, there is one striking difference, namely in the diameter. For 
CLR and Lemon-Tree, the diameter is two times six and seven, while for GENIE3, it is 0.1. 
Normally the diameter is an integer. This indicates that all nodes are connected in the GENIE3 
network. All the networks consist of one connected component, except for the MDD network 
of GENIE3. This is surprising, as here, the diameter is lower than one. The clustering 
coefficients of the CLR networks are lower than the networks of the other two methods. This 
indicates that the nodes are less clustered together in this network. The node and directed 
node betweenness are lower in the Lemon-Tree networks. These results again illustrate - next 
to the small overlap in edges - that different methods retrieve different networks. A 
representation of the networks can be seen in Supplementary figure S1 (Addendum 3), and 
the degree distribution for every network can be found in Supplementary figure S2.  

For Lemon-Tree, functional enrichment analysis was performed as well. This was most 
convenient with this method, as modules are already constructed by the algorithm. This was 
done with the enrichR package in R. The terms were filtered to have an adjusted p-value equal 
to or smaller than 0.05. Several modules were enriched for immunological functions in the 
Gene Ontology Biological Process terms. In particular, modules sixteen and fourteen from AD 
and MDD respectively were of interest, because of an extensive overlap. An overview of the 
terms can be seen in Figure 11. In module sixteen there are 153 genes, in module fourteen 
111, of which there are 68 in common. An overview of the gene expression of these modules 
can be seen in Addendum 3, Figures S3 and S4. There are eight (AD) (ATOH8, IKZF1, IRF8, 
NFATC2, RUNX1, RUNX2, TAL1, TCF3) and nine (MDD) (FOS, IKZF1, IRF8, MAF, RHOXF2, 
SPI1, TAL1, TFEC, ZNF551) regulators of these modules, with three shared regulators (IRF8, 
IKZF1, TAL1) (see Figure 12). All three are implicated in hematopoietic cell differentiation60. 
Moreover, IRF8 plays a regulatory role in immune cells and is involved in interferon response60. 
TAL1 is highly expressed in microglia61. IRF8 is implicated in microglial activation and 
neuroinflammation in AD mice models62. Several studies have found mutations that interrupt 
the binding of TAL1 in patients with AD61. Further, TAL1 was found to be implicated in MDD in 
two studies63,64, and according to DisGeNET, FOS has been implicated with depression as 
well65. Lastly, TCF3 and SPI1 have been associated with AD as well65. As mentioned in the 
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introduction, there are several cytokines overexpressed in depressive patients. In Figure 4, 
some of these cytokines are indicated. Moreover, neutrophils and T-cells have as well already 
been implicated in the disease22. Neutrophils have also been implicated in the pathology of 
AD66. ɓ-amyloid could be a possible chemoattractant and attract neutrophils and microglia to 
the deposits. Moreover, neutrophils secrete reactive oxygen species, which are harmful to the 
brain. 

 

 

 

 

 

 

 

 

 

Figure 11. Representation of the top twenty terms of functional enrichment analysis by Gene Ontology 
Biological Process of modules 16 (AD) and 14 (MDD), ordered by increasing p-value. The gene count 
is represented on the x-axis.  
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Figure 12. Representation of the 
regulators of modules 14 from the 
depression (MDD) network and 16 
from the Alzheimerôs disease (AD) 
network. IRF8, TAL1 and IKZF1 are 
common regulators. The nodes 
óADô and óMDDô represent the target 
genes in these modules. Created 
with Cytoscape.  

 

 

 

 

 

3.4 Consensus regulatory programs for AD and MDD 

The top 100 000 edges were retrieved from the average rank aggregation for the ensemble 
networks. Thereafter, the overlap in edges between the ensemble networks and the networks 
retrieved by each method was compared. The overlap between the ensemble network and the 
initial networks was around 50 000 edges each time. The largest overlap was found between 
the ensemble network and the networks retrieved by GENIE3, both for Alzheimer's (53029 
edges) and depression (58810). For depression, the overlap of the networks was each time 
higher, compared to the networks of AD. There are 1041 TFs and 9675 target genes 
generating a total of 9685 nodes in the ensemble AD network. In the ensemble MDD network, 
there are 1101 regulators, 9006 target genes and a total of 9021 nodes. Of these, there are 
7042 nodes in common between the AD and MDD networks. For the ensemble networks, the 
same network characteristics were calculated as before, with the igraph package. In Table 6, 
there is an overview of all the characteristics of the two ensemble networks. All values are 
similar to each other, and to the values of the different network inference methods. The directed 
node betweenness is somewhat higher in the ensemble networks, meaning there are on 
average more paths that pass through a node. The diameter of the ensemble MDD network is 
one path longer than the diameter of the AD network. Both ensemble networks consist of one 
connected component. All values are higher for the MDD network, except for the directed 
average path length. Of the top 100 regulators of the ensemble networks, there are 34 in 
common. These can be found in Supplementary table 1 (Addendum 3).  
 
In addition, the networks were compared with distance measures. Firstly, the Jaccard similarity 
index was calculated between the two networks. The similarity was low, i.e. 0.0554. The 
Jaccard distance is then calculated as one minus similarity, thus 0.9446. This indicates that 
there are few edges in common between the two networks. This was visualized as a Venn 
diagram, see Figure 13. There are only 10500 common edges. However, looking at the number 
of edges each network contained, this is about ten percent of the edges the networks have in 
common. To see where these common edges are situated in the two networks, histograms 
were made from the rank of these common edges in both networks (Figure 14). Most of the 
edges are situated in higher ranks, thus with higher confidence. The ranks are higher in the 
AD network, with about 3500 shared edges in the highest 10 000 ranks. In the MDD network, 
there are about 2900 shared edges in the highest 10 000 ranks.  
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Table 6. An overview of the network characteristics of the ensemble networks of Alzheimerôs disease 

(AD) and major depressive disorder (MDD).  

Measure Ensemble AD Ensemble MDD 

Average degree 0,002132 0,002458 

Clustering coefficient 0,313963 0,350065 

Density 0,001066 0,001229 

Node betweenness 10033,5 10182,4 

Directed node betweenness 2916,2 2955,6 

Edge betweenness 0,000214 0,000250 

Directed edge betweenness 3,1020e-05 3,6331e-05 

Diameter 6 7 

Connected components 1 1 

Average path length 3,0722 3,2577 

Directed average path length 3,9606 3,8846 

 

Figure 13. Venn diagram of the edges of the two 

ensemble networks of Alzheimerôs disease (AD) and 

depression (MDD). There are 10500 edges in common.  

 

 

 

 

 

Figure 14. Histograms of the rank of the shared edges (10500) between the two ensemble networks, 
from the Alzheimerôs disease network (left), and the depression network (right).  

Further, the GCD43 was calculated. The GCD between the AD and MDD ensemble networks 
was 1.063. This distance measure is not that informative, as only two networks are compared. 
It is more informative if more than two networks are compared between each other. Looking 
at supplemental Figure S843, a measure of around one is quite different, but not excessively 
different. Additionally, heatmaps were made with the Graphlet Correlation Matrixes. This was 
done by using the output of the first step (see methods) and calculating the Spearman 




















































