The in vivo quantification of iron deposition in the brain and its relation to pathological hallmarks of Alzheimer’s disease

Eva Wachtelaer
Persbericht

Hoe roest in de hersenen kan leiden tot de ziekte van Alzheimer

Neen hoor, in deze titel is geen beeldspraak gebruikt. Net zoals metaal, kunnen onze hersenen roesten. Dit leidt tot beschadiging van de hersenen en wordt ervan verdacht een belangrijke oorzaak van Alzheimer te zijn.

 

De ziekte van Alzheimer blijft een uitdaging voor hersenspecialisten over de hele wereld. Bij de patiënten van deze ziekte verdwijnen stukjes van hun hersenen, waardoor ze problemen krijgen met hun geheugen, taal, emoties en nog veel meer. Hoe deze ziekte ontstaat en precies in zijn werk gaat, blijft een mysterie. Als gevolg zijn er ook nog geen behandelingen beschikbaar. Dit is een groot probleem, aangezien elke vier seconden iemand Alzheimer krijgt en dit blijft toenemen!

Onderzoekers zijn volop bezig met het ontrafelen van de mysteries rond deze ziekte en zeer recent werd een interessante vondst gedaan. IJzer in de hersenen zou namelijk een belangrijke rol kunnen spelen bij het ontstaan van Alzheimer (Figuur 1).

image-20191005161339-4
Figuur 1. Figuratieve voorstelling van roest in de hersenen.

Hoe kan ijzer Alzheimer veroorzaken?

Iedereen kent ijzer als het veelvoorkomende metaal op Aarde. Het heeft uiteenlopende toepassingen, denk maar aan ijzeren schroeven, stalen bestek en het ijzer gebruikt om fietsen en auto’s te maken. IJzer komt hiernaast ook veel voor in het menselijk lichaam. Het speelt in het lichaam een belangrijke rol in onder andere het voorzien van organen van zuurstof en in de vorming van zenuwen. Deze laatste zijn belangrijk voor de communicatie tussen hersencellen onderling en met de rest van het lichaam.

Hoewel ijzer essentieel is voor ons lichaam, en specifieker, de hersenen, kan het ook enorme schade aanrichten. Het is namelijk belangrijk dat de hoeveelheid ijzer in de hersenen strikt gecontroleerd wordt.

In het geval van te weinig ijzer, kan het zijn belangrijke taken niet uitvoeren. Dit leidt onder andere tot zuurstoftekort in de hersencellen, waardoor deze afsterven. Daarnaast kunnen de zenuwen hun taken niet meer uitvoeren, waardoor de verschillende hersencellen niet meer kunnen samenwerken.
Een te hoge hoeveelheid aan ijzer in de hersenen is ook gevaarlijk. Het teveel aan ijzer werkt in op de hersencellen, waardoor deze uiteindelijk afsterven. Dit fenomeen kan vergeleken worden met het roesten van metaal. Hoewel de chemische reacties niet volledig overeenkomen, vereisen beide de aanwezigheid van zuurstof en water. Bij deze reacties worden hydroxide ionen geproduceerd die schade kunnen berokkenen aan zowel metaal als aan de hersenen. Het resultaat hiervan is het ontstaan van roest, met als gevolg verzwakking van het metaal/orgaan en uiteindelijk het optreden van gaten (Figuur 2).

Aangezien beide situaties leiden tot het afsterven van delen van de hersenen, kan ijzer een rol spelen in het ontstaan van Alzheimer. Net zoals het roesten van metalen, is dit een langzaam, maar rampzalig proces.

image-20191005161607-5
Figuur 2. Bij Alzheimer patiënten verdwijnen stukjes van de hersenen, waardoor gaten ontstaan.

Hoe kan ijzer in de hersenen gemeten worden?

De hoeveelheid ijzer in de hersenen meten is een volgende uitdaging voor onderzoekers. De meerderheid van de mensen heeft zijn bloed wel eens laten nakijken, waarbij de hoeveelheid ijzer ook nagekeken werd. De hoeveelheid ijzer in het bloed is echter niet gelijk aan de hoeveelheid in de hersenen. Bovendien wordt ijzer in het bloed heel gemakkelijk verzameld via een prikje in de arm,  maar zijn de hersenen moeilijker bereikbaar omdat deze door een stevige schedel omgeven worden.

De methode toegepast tijdens dit thesisonderzoek maakte gebruik van een beeldvormingstechniek, ‘magnetic resonance imaging’ of ‘MRI’ genoemd (Figuur 3). Deze techniek gebruikt een hersenscanner die opgebouwd is uit magneten die helpen bij het vormen van beelden van de hersenen. Aangezien ijzer magnetische eigenschappen bezit, is dit een ideale techniek om het ijzer in de hersenen in beeld te brengen. Deze techniek is zelfs zo gevoelig dat de concentratie van ijzer in de verschillende hersendelen gemeten kan worden!

image-20191005161724-6
Figuur 3. Voorstelling van een MRI-scanner. De patiënt gaat op de witte onderzoekstafel liggen, die hierna in de cilinder geschoven wordt.

Hoe verschilt ijzer bij Alzheimer patiënten?

Voor deze thesis zijn de MRI beelden van 180 mensen onderzocht, inclusief gezonde jongvolwassenen, gezonde bejaarden en bejaarden met Alzheimer. Bij het vergelijken van de ijzerwaarden tussen gezonde jongeren en ouderen, bleek dat de waarden afweken op hogere leeftijd. Deze afwijkingen zouden gelinkt kunnen worden aan de typische achteruitgang van het geheugen in gezonde ouderen.
Bij patiënten met Alzheimer waren de afwijkingen in ijzerwaarden nog veel opvallender. Zowel te lage als te hoge waarden werden teruggevonden. Dit bevestigt de veronderstelling dat beide kunnen bijdragen aan beschadiging van de hersenen.

Dé oplossing voor Alzheimer?

Jammer genoeg is er tot nu toe onvoldoende onderzoek verricht om zeker te zijn dat afwijkende ijzerwaarden Alzheimer veroorzaken. Niettemin moedigen de interessante resultaten onderzoekers aan om verder in te gaan op dit onderwerp.
Indien de rol van ijzer in de ziekte van Alzheimer bevestigd kan worden, opent dit nieuwe deuren voor mogelijke behandelingen van de ziekte. Bij te lage concentraties van ijzer kunnen simpelweg ijzersupplementen voorgeschreven worden voor de patiënt. Bij te hoge concentraties kunnen geneesmiddelen voorgeschreven worden die het ijzer uit het lichaam verwijderen, ijzer chelators genoemd. Beide geneesmiddelen zijn gemakkelijk toe te dienen en veroorzaken weinig tot geen bijwerkingen. Dit zou een fantastische doorbraak zijn voor de Alzheimer patiënten.

Conclusie

De ziekte van Alzheimer is een steeds vaker voorkomende ziekte die dodelijk is. Het ontstaan en verloop van de ziekte is nog steeds niet goed begrepen, waardoor er geen behandelingen beschikbaar zijn.
Afwijkende hoeveelheden van ijzer in de hersenen kunnen roest vormen, wat leidt tot het verlies van hersencellen en beschadiging van dit orgaan. Hierdoor kunnen symptomen zoals geheugenverlies ontstaan.

Door de veelbelovende resultaten en verscheidene behandelingsmogelijkheden zijn onderzoekers volop bezig de rol van ijzer in Alzheimer te bestuderen, in de hoop het mysterie van Alzheimer te kunnen ontrafelen.

Bibliografie

1.         2018 Alzheimer's disease facts and figures. Alzheimer's & Dementia, 2018. 14(3): p. 367-429.

2.         Peters, D.G., J.R. Connor, and M.D. Meadowcroft, The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer's disease: Two sides of the same coin. (1095-953X (Electronic)).

3.         Brookmeyer, R., et al., Forecasting the global burden of Alzheimer's disease. (1552-5279 (Electronic)).

4.         Hippius, H. and G. Neundörfer, The discovery of Alzheimer's disease. Dialogues in clinical neuroscience, 2003. 5(1): p. 101-108.

5.         Yang, G., et al., Huperzine A for Alzheimer's disease: a systematic review and meta-analysis of randomized clinical trials. (1932-6203 (Electronic)).

6.         Jessen, F., Subjective and objective cognitive decline at the pre-dementia stage of Alzheimer's disease. (1433-8491 (Electronic)).

7.         Hughes, T.F., M. Snitz Be Fau - Ganguli, and M. Ganguli, Should mild cognitive impairment be subtyped? (1473-6578 (Electronic)).

8.         Larner, A.J., Getting it wrong: the clinical misdiagnosis of Alzheimer's disease. International Journal of Clinical Practice, 2004. 58(11): p. 1092-1094.

9.         McKhann, G., et al., Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology, 1984. 34(7): p. 939-44.

10.        Jack, C.R., Jr., et al., NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease. Alzheimer's & dementia : the journal of the Alzheimer's Association, 2018. 14(4): p. 535-562.

11.        Jack, C.R., Jr., et al., A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology, 2016. 87(5): p. 539-547.

12.        Lane, D.J.R., S. Ayton, and A.I. Bush, Iron and Alzheimer's Disease: An Update on Emerging Mechanisms. (1875-8908 (Electronic)).

13.        Ashraf, A., M. Clark, and P.W. So, The Aging of Iron Man. (1663-4365 (Print)).

14.        Duck, K.A. and J.R. Connor, Iron uptake and transport across physiological barriers. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine, 2016. 29(4): p. 573-591.

15.        Masaldan, S., et al., Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration. (1873-4596 (Electronic)).

16.        Urrutia, P.J., N.P. Mena, and M.T. Nunez, The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol, 2014. 5: p. 38.

17.        Pauling, L., General Chemistry. Third ed. 1988, New York: Dover.

18.        Winter We Fau - Bazydlo, L.A.L., N.S. Bazydlo La Fau - Harris, and N.S. Harris, The molecular biology of human iron metabolism. (0007-5027 (Print)).

19.        Belaidi, A.A. and A.I. Bush, Iron neurochemistry in Alzheimer's disease and Parkinson's disease: targets for therapeutics. (1471-4159 (Electronic)).

20.        Dusek, P., M. Dezortova, and J. Wuerfel, Imaging of iron. Int Rev Neurobiol, 2013. 110: p. 195-239.

21.        Mackenzie, B. and M.D. Garrick, Iron Imports. II. Iron uptake at the apical membrane in the intestine. (0193-1857 (Print)).

22.        Adisetiyo, V., et al., In vivo assessment of age-related brain iron differences by magnetic field correlation imaging. Journal of magnetic resonance imaging : JMRI, 2012. 36(2): p. 322-331.

23.        Vymazal, J., J.W. Urgosik D Fau - Bulte, and J.W. Bulte, Differentiation between hemosiderin- and ferritin-bound brain iron using nuclear magnetic resonance and magnetic resonance imaging. (0145-5680 (Print)).

24.        Haacke, E.M., et al., Imaging iron stores in the brain using magnetic resonance imaging. (0730-725X (Print)).

25.        Singh, N., et al., Brain iron homeostasis: from molecular mechanisms to clinical significance and therapeutic opportunities. (1557-7716 (Electronic)).

26.        Griffiths, P.D. and A.R. Crossman, Distribution of iron in the basal ganglia and neocortex in postmortem tissue in Parkinson's disease and Alzheimer's disease. (1013-7424 (Print)).

27.        Drayer B Fau - Burger, P., et al., MRI of brain iron. (0361-803X (Print)).

28.        Abbott, N.J., et al., Structure and function of the blood-brain barrier. (1095-953X (Electronic)).

29.        McCarthy, R.C. and D.J. Kosman, Ferroportin and exocytoplasmic ferroxidase activity are required for brain microvascular endothelial cell iron efflux. (1083-351X (Electronic)).

30.        McCarthy, R.C. and D.J. Kosman, Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells. (1932-6203 (Electronic)).

31.        Simpson, I.A., et al., A novel model for brain iron uptake: introducing the concept of regulation. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2015. 35(1): p. 48-57.

32.        Skjorringe, T., et al., Divalent metal transporter 1 (DMT1) in the brain: implications for a role in iron transport at the blood-brain barrier, and neuronal and glial pathology. (1662-5099 (Print)).

33.        Institute of Medicine Panel on, M., in Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. 2001, National Academies Press (US)

Copyright 2001 by the National Academy of Sciences. All rights reserved.: Washington (DC).

34.        Hagemeier, J., et al., Effects of diet on brain iron levels among healthy individuals: an MRI pilot study. (1558-1497 (Electronic)).

35.        Youdim, M.B., Brain iron deficiency and excess; cognitive impairment and neurodegeneration with involvement of striatum and hippocampus. (1029-8428 (Print)).

36.        Agrawal, S., et al., Impact of high iron intake on cognition and neurodegeneration in humans and in animal models: a systematic review. Nutrition reviews, 2017. 75(6): p. 456-470.

37.        Mascitelli, L., M.R. Goldstein, and L.R. Zacharski, Iron, oxidative stress, and the mediterranean diet. Am J Med, 2014. 127(9): p. e49.

38.        Castro-Quezada, I., B. Román-Viñas, and L. Serra-Majem, The Mediterranean diet and nutritional adequacy: a review. Nutrients, 2014. 6(1): p. 231-248.

39.        Zacharski, L.R., G. Shamayeva, and B.K. Chow, Effect of controlled reduction of body iron stores on clinical outcomes in peripheral arterial disease. Am Heart J, 2011. 162(5): p. 949-957.e1.

40.        de Abreu-Silva, E., et al., Diet and Inflammation: Effects of Macronutrients and Dietary Patterns. Vol. 2. 2015. 7-13.

41.        Bach-Faig, A., et al., Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr, 2011. 14(12a): p. 2274-84.

42.        Willett, W.C., et al., Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr, 1995. 61(6 Suppl): p. 1402s-1406s.

43.        Sofi, F., et al., Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. Am J Clin Nutr, 2010. 92(5): p. 1189-96.

44.        Couto, E., et al., Mediterranean dietary pattern and cancer risk in the EPIC cohort. Br J Cancer, 2011. 104(9): p. 1493-9.

45.        Salas-Salvado, J., et al., Prevention of diabetes with Mediterranean diets: a subgroup analysis of a randomized trial. Ann Intern Med, 2014. 160(1): p. 1-10.

46.        Estruch, R., et al., Primary Prevention of Cardiovascular Disease with a Mediterranean Diet. New England Journal of Medicine, 2013. 368(14): p. 1279-1290.

47.        Mitrou, P.N., et al., Mediterranean dietary pattern and prediction of all-cause mortality in a US population: results from the NIH-AARP Diet and Health Study. Arch Intern Med, 2007. 167(22): p. 2461-8.

48.        Sofi, F., et al., Mediterranean diet and health. BioFactors, 2013. 39(4): p. 335-342.

49.        Dwork, A.J., Effects of diet and development upon the uptake and distribution of cerebral iron. Journal of the Neurological Sciences, 1995. 134: p. 45-51.

50.        Pinero, D.J., et al., Variations in dietary iron alter brain iron metabolism in developing rats. J Nutr, 2000. 130(2): p. 254-63.

51.        Kastman, E.K., et al., A Calorie-Restricted Diet Decreases Brain Iron Accumulation and Preserves Motor Performance in Old Rhesus Monkeys. The Journal of Neuroscience, 2012. 32: p. 11897-11904.

52.        Jellen, L.C., et al., Iron deficiency alters expression of dopamine-related genes in the ventral midbrain in mice. Neuroscience, 2013. 252: p. 13-23.

53.        Hagemeier, J., et al., Effect of Age on MRI Phase Behavior in the Subcortical Deep Gray Matter of Healthy Individuals. American Journal of Neuroradiology, 2013. 34: p. 2144-2151.

54.        Hirota, K., An intimate crosstalk between iron homeostasis and oxygen metabolism regulated by the hypoxia-inducible factors (HIFs). Free Radic Biol Med, 2019. 133: p. 118-129.

55.        Du, F., et al., Hepcidin Suppresses Brain Iron Accumulation by Downregulating Iron Transport Proteins in Iron-Overloaded Rats. (1559-1182 (Electronic)).

56.        McLean, E., et al., Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993-2005. (1368-9800 (Print)).

57.        Radlowski, E.C. and R.W. Johnson, Perinatal iron deficiency and neurocognitive development. Frontiers in human neuroscience, 2013. 7: p. 585-585.

58.        Jáuregui-Lobera, I., Iron deficiency and cognitive functions. Neuropsychiatric disease and treatment, 2014. 10: p. 2087-2095.

59.        Falkingham, M., et al., The effects of oral iron supplementation on cognition in older children and adults: a systematic review and meta-analysis. (1475-2891 (Electronic)).

60.        Gregory, A., Hayflick, S. Neurodegeneration with Brain Iron Accumulation Disorders Overview. 2013; Available from: https://www.ncbi.nlm.nih.gov/books/NBK121988/.

61.        Dusi, S., et al., Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation. Am J Hum Genet, 2014. 94(1): p. 11-22.

62.        Al-Semari, A. and S. Bohlega, Autosomal-recessive syndrome with alopecia, hypogonadism, progressive extra-pyramidal disorder, white matter disease, sensory neural deafness, diabetes mellitus, and low IGF1. Am J Med Genet A, 2007. 143a(2): p. 149-60.

63.        Yoshida, K., et al., A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans. Nat Genet, 1995. 9(3): p. 267-72.

64.        Curtis, A.R., et al., Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet, 2001. 28(4): p. 350-4.

65.        Schneider, S.A., et al., ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation. Mov Disord, 2010. 25(8): p. 979-84.

66.        Kruer, M.C., et al., Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Ann Neurol, 2010. 68(5): p. 611-8.

67.        Hogarth, P., et al., New NBIA subtype: genetic, clinical, pathologic, and radiographic features of MPAN. Neurology, 2013. 80(3): p. 268-75.

68.        Zhou, B., et al., A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet, 2001. 28(4): p. 345-9.

69.        Schild, H.H., MRI made easy. 1990, Berlin: Schering AG.

70.        Stryer, L., Chapter 7. Myoglobin and hemoglobin, in Biochemistry. 1988, W.H. Freeman: New York.

71.        Schenck, J.F., Magnetic resonance imaging of brain iron. Journal of the Neurological Sciences, 2003. 207(1): p. 99-102.

72.        Gutiérrez, L., et al., Quantitative magnetic analysis reveals ferritin-like iron as the most predominant iron-containing species in the murine Hfe-haemochromatosis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2012. 1822(7): p. 1147-1153.

73.        Pauling, L. and C.D. Coryell, The Magnetic Properties and Structure of Hemoglobin, Oxyhemoglobin and Carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A, 1936. 22(4): p. 210-6.

74.        Jensen, J.H. and R. Chandra, Strong field behavior of the NMR signal from magnetically heterogeneous tissues. Magn Reson Med, 2000. 43(2): p. 226-36.

75.        Yablonskiy, D.A. and E.M. Haacke, Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med, 1994. 32(6): p. 749-63.

76.        Langkammer, C., et al., Quantitative MR imaging of brain iron: a postmortem validation study. Radiology, 2010. 257(2): p. 455-62.

77.        The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging. Second ed. 2013: John Wiley & Sons.

78.        Marques, J.P., et al., On the origin of the MR image phase contrast: An in vivo MR microscopy study of the rat brain at 14.1 T. NeuroImage, 2009. 46(2): p. 345-352.

79.        Bradbury, M.W., Transport of iron in the blood-brain-cerebrospinal fluid system. J Neurochem, 1997. 69(2): p. 443-54.

80.        Chrichton, R., Inorganic Biochemistry of Iron Metabolism: From Molecular Mechanisms to Clinical Consequences. Second ed. 2001: John Wiley & Sons.

81.        Koenig, S.H., et al., Relaxometry of ferritin solutions and the influence of the Fe3+ core ions. Magnetic Resonance in Medicine, 1986. 3(5): p. 755-767.

82.        Vymazal, J., et al., T1 and T2 of ferritin solutions: Effect of loading factor. Magnetic Resonance in Medicine, 1996. 36(1): p. 61-65.

83.        Vymazal, J., et al., The relation between brain iron and NMR relaxation times: An in vitro study. Magnetic Resonance in Medicine, 1996. 35(1): p. 56-61.

84.        Wood, J.C., Impact of iron assessment by MRI. Hematology Am Soc Hematol Educ Program, 2011. 2011: p. 443-50.

85.        Bartzokis, G., et al., Gender and iron genes may modify associations between brain iron and memory in healthy aging. (1740-634X (Electronic)).

86.        Bartzokis, G., et al., Brain ferritin iron as a risk factor for age at onset in neurodegenerative diseases. (0077-8923 (Print)).

87.        Ghadery, C., et al., R2* mapping for brain iron: associations with cognition in normal aging. (1558-1497 (Electronic)).

88.        Hallgren B Fau - Sourander, P. and P. Sourander, The effect of age on the non-haemin iron in the human brain. (0022-3042 (Print)).

89.        Bartzokis, G., Alzheimer's disease as homeostatic responses to age-related myelin breakdown. (1558-1497 (Electronic)).

90.        Horowitz, M.P. and J.T. Greenamyre, Mitochondrial iron metabolism and its role in neurodegeneration. (1875-8908 (Electronic)).

91.        Zlokovic, B.V., Neurovascular mechanisms of Alzheimer's neurodegeneration. (0166-2236 (Print)).

92.        Connor, J.R. and S.L. Menzies, Relationship of iron to oligodendrocytes and myelination. (0894-1491 (Print)).

93.        Connor, J.R., et al., Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. (0360-4012 (Print)).

94.        Hebbrecht, G., W. Maenhaut, and J.D. Reuck, Brain trace elements and aging. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1999. 150(1): p. 208-213.

95.        Ramos, P., et al., Iron levels in the human brain: a post-mortem study of anatomical region differences and age-related changes. (1878-3252 (Electronic)).

96.        Magtanong, L. and S.J. Dixon, Ferroptosis and Brain Injury. (1421-9859 (Electronic)).

97.        Koedam, E.L., et al., Early-versus late-onset Alzheimer's disease: more than age alone. (1875-8908 (Electronic)).

98.        Mullan, M., et al., Age of onset in familial early onset Alzheimer's disease correlates with genetic aetiology. American Journal of Medical Genetics, 1993. 48(3): p. 129-130.

99.        Roth, G.M., et al., Premature aging in persons with Down syndrome: MR findings. (0195-6108 (Print)).

100.      Kehrer, J.P., The Haber-Weiss reaction and mechanisms of toxicity. (0300-483X (Print)).

101.      Tonnies, E. and E. Trushina, Oxidative Stress, Synaptic Dysfunction, and Alzheimer's Disease. J Alzheimers Dis, 2017. 57(4): p. 1105-1121.

102.      Jones, D.P., Redefining oxidative stress. Antioxid Redox Signal, 2006. 8(9-10): p. 1865-79.

103.      Keller, J.N., et al., Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology, 2005. 64(7): p. 1152-6.

104.      Perry, G., et al., Is oxidative damage the fundamental pathogenic mechanism of Alzheimer's and other neurodegenerative diseases? Free Radic Biol Med, 2002. 33(11): p. 1475-9.

105.      Markesbery, W.R. and J.M. Carney, Oxidative alterations in Alzheimer's disease. Brain Pathol, 1999. 9(1): p. 133-46.

106.      Markesbery, W.R., Oxidative stress hypothesis in Alzheimer's disease. Free Radic Biol Med, 1997. 23(1): p. 134-47.

107.      Sayre, L.M., M.A. Smith, and G. Perry, Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem, 2001. 8(7): p. 721-38.

108.      Lovell, M.A. and W.R. Markesbery, Oxidative damage in mild cognitive impairment and early Alzheimer's disease. J Neurosci Res, 2007. 85(14): p. 3036-40.

109.      Stockwell, B.R., et al., Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. (1097-4172 (Electronic)).

110.      Dixon, S.J., et al., Ferroptosis: an iron-dependent form of nonapoptotic cell death. (1097-4172 (Electronic)).

111.      Yagoda, N., et al., RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. (1476-4687 (Electronic)).

112.      Friedmann Angeli, J.P., et al., Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. (1476-4679 (Electronic)).

113.      Hambright, W.S., et al., Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. (2213-2317 (Electronic)).

114.      Zhu, X., et al., Oxidative stress signalling in Alzheimer's disease. Brain Res, 2004. 1000(1-2): p. 32-9.

115.      Nunomura, A., et al., Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol, 2001. 60(8): p. 759-67.

116.      Rinaldi, P., et al., Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer's disease. Neurobiol Aging, 2003. 24(7): p. 915-9.

117.      Szule, J.A., J.H. Jung, and U.J. McMahan, The structure and function of 'active zone material' at synapses. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 2015. 370(1672): p. 20140189.

118.      Jang, S.S. and H.J. Chung, Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity. Neural Plast, 2016. 2016: p. 7969272.

119.      Terry, R.D., et al., Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol, 1991. 30(4): p. 572-80.

120.      Robinson, J.L., et al., Perforant path synaptic loss correlates with cognitive impairment and Alzheimer's disease in the oldest-old. Brain, 2014. 137(Pt 9): p. 2578-87.

121.      DeKosky, S.T. and S.W. Scheff, Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann Neurol, 1990. 27(5): p. 457-64.

122.      Mattson, M.P. and R.J. Mark, Excitotoxicity and excitoprotection in vitro. Adv Neurol, 1996. 71: p. 1-30; discussion 30-5.

123.      Coyle, J.T. and P. Puttfarcken, Oxidative stress, glutamate, and neurodegenerative disorders. Science, 1993. 262(5134): p. 689-95.

124.      Piloni, N.E., et al., Acute iron overload and oxidative stress in brain. (1879-3185 (Electronic)).

125.      Koppenol, W.H., The Haber-Weiss cycle--70 years later. (1351-0002 (Print)).

126.      Aliaga, M., et al., Superoxide-dependent reduction of free Fe3+ and release of Fe2+ from ferritin by the physiologically-occurring Cu(I)–glutathione complex. Vol. 19. 2011. 534-41.

127.      Austin, S.A., A.V. Santhanam, and Z.S. Katusic, Endothelial nitric oxide modulates expression and processing of amyloid precursor protein. Circulation research, 2010. 107(12): p. 1498-1502.

128.      Kummer, M.P., et al., Nitration of tyrosine 10 critically enhances amyloid beta aggregation and plaque formation. (1097-4199 (Electronic)).

129.      Polidori, M.C., et al., Profiles of antioxidants in human plasma. Free Radic Biol Med, 2001. 30(5): p. 456-62.

130.      Rouault, T.A. and W.H. Tong, Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat Rev Mol Cell Biol, 2005. 6(4): p. 345-51.

131.      Petrat, F., H. de Groot, and U. Rauen, Subcellular distribution of chelatable iron: a laser scanning microscopic study in isolated hepatocytes and liver endothelial cells. The Biochemical journal, 2001. 356(Pt 1): p. 61-69.

132.      Su, K., D. Bourdette, and M. Forte, Mitochondrial dysfunction and neurodegeneration in multiple sclerosis. Front Physiol, 2013. 4: p. 169.

133.      Markesbery, W.R., The Role of Oxidative Stress in Alzheimer Disease. Archives of Neurology, 1999. 56(12): p. 1449-1452.

134.      Swerdlow, R.H., J.M. Burns, and S.M. Khan, The Alzheimer's disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta, 2014. 1842(8): p. 1219-31.

135.      Swerdlow, R.H., Mitochondria and Cell Bioenergetics: Increasingly Recognized Components and a Possible Etiologic Cause of Alzheimer's Disease. Antioxidants & Redox Signaling, 2012. 16(12): p. 1434-1455.

136.      Hirsch, E.C. and S. Hunot, Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet Neurol, 2009. 8(4): p. 382-97.

137.      Colton, C. and D.M. Wilcock, Assessing activation states in microglia. CNS Neurol Disord Drug Targets, 2010. 9(2): p. 174-91.

138.      Paradkar, P.N. and J.A. Roth, Nitric oxide transcriptionally down-regulates specific isoforms of divalent metal transporter (DMT1) via NF-kappaB. J Neurochem, 2006. 96(6): p. 1768-77.

139.      Urrutia, P., et al., Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem, 2013. 126(4): p. 541-9.

140.      Wang, J., et al., Pro-inflammatory cytokines modulate iron regulatory protein 1 expression and iron transportation through reactive oxygen/nitrogen species production in ventral mesencephalic neurons. Biochim Biophys Acta, 2013. 1832(5): p. 618-25.

141.      Djafarzadeh, S., et al., Toll-like receptor-3-induced mitochondrial dysfunction in cultured human hepatocytes. Mitochondrion, 2011. 11(1): p. 83-8.

142.      Xie, Z., C.J. Smith, and L.J. Van Eldik, Activated glia induce neuron death via MAP kinase signaling pathways involving JNK and p38. Glia, 2004. 45(2): p. 170-9.

143.      Lee, Y.W., W.H. Lee, and P.H. Kim, Oxidative mechanisms of IL-4-induced IL-6 expression in vascular endothelium. Cytokine, 2010. 49(1): p. 73-79.

144.      Shi, H.X., et al., Mitochondrial ubiquitin ligase MARCH5 promotes TLR7 signaling by attenuating TANK action. PLoS Pathog, 2011. 7(5): p. e1002057.

145.      Vina, J. and A. Lloret, Why women have more Alzheimer's disease than men: gender and mitochondrial toxicity of amyloid-beta peptide. J Alzheimers Dis, 2010. 20 Suppl 2: p. S527-33.

146.      De-Paula, V.J., et al., Alzheimer's disease. Subcell Biochem, 2012. 65: p. 329-52.

147.      Recuero, M., et al., Abeta production as consequence of cellular death of a human neuroblastoma overexpressing APP. FEBS Lett, 2004. 570(1-3): p. 114-8.

148.      Roberts, G.W., et al., Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer's disease. J Neurol Neurosurg Psychiatry, 1994. 57(4): p. 419-25.

149.      Huang, X., et al., Trace metal contamination initiates the apparent auto-aggregation, amyloidosis, and oligomerization of Alzheimer’s Aβ peptides. JBIC Journal of Biological Inorganic Chemistry, 2004. 9(8): p. 954-960.

150.      Liu, B., et al., Iron promotes the toxicity of amyloid beta peptide by impeding its ordered aggregation. J Biol Chem, 2011. 286(6): p. 4248-56.

151.      Mantyh, P.W., et al., Aluminum, Iron, and Zinc Ions Promote Aggregation of Physiological Concentrations of β-Amyloid Peptide. Journal of Neurochemistry, 1993. 61(3): p. 1171-1174.

152.      Schubert, D. and M. Chevion, The Role of Iron in Beta Amyloid Toxicity. Biochemical and Biophysical Research Communications, 1995. 216(2): p. 702-707.

153.      Everett, J., et al., Ferrous iron formation following the co-aggregation of ferric iron and the Alzheimer's disease peptide beta-amyloid (1-42). (1742-5662 (Electronic)).

154.      Gong, N.J., et al., Imaging beta amyloid aggregation and iron accumulation in Alzheimer's disease using quantitative susceptibility mapping MRI. Neuroimage, 2019. 191: p. 176-185.

155.      Telling, N.D., et al., Iron Biochemistry is Correlated with Amyloid Plaque Morphology in an Established Mouse Model of Alzheimer's Disease. Cell Chem Biol, 2017. 24(10): p. 1205-1215.e3.

156.      Liu, J.-L., et al., Iron and Alzheimer's Disease: From Pathogenesis to Therapeutic Implications. Frontiers in neuroscience, 2018. 12: p. 632-632.

157.      van Bergen, J.M., et al., Colocalization of cerebral iron with Amyloid beta in Mild Cognitive Impairment. (2045-2322 (Electronic)).

158.      Maynard, C.J., et al., Overexpression of Alzheimer's disease amyloid-beta opposes the age-dependent elevations of brain copper and iron. (0021-9258 (Print)).

159.      Rogers, J.T., et al., An iron-responsive element type II in the 5'-untranslated region of the Alzheimer's amyloid precursor protein transcript. (0021-9258 (Print)).

160.      Ward, R.J., et al., The role of iron in brain ageing and neurodegenerative disorders. The Lancet. Neurology, 2014. 13(10): p. 1045-1060.

161.      Kawahara, M., M. Kato-Negishi, and K. Tanaka, Cross talk between neurometals and amyloidogenic proteins at the synapse and the pathogenesis of neurodegenerative diseases. Metallomics, 2017. 9(6): p. 619-633.

162.      Duce, J.A., et al., Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by zinc in Alzheimer's disease. Cell, 2010. 142(6): p. 857-67.

163.      Ayton, S., S.A. James, and A.I. Bush, Nanoscale Imaging Reveals Big Role for Iron in Alzheimer's Disease. (2451-9448 (Electronic)).

164.      Telling, N.D., et al., Iron Biochemistry is Correlated with Amyloid Plaque Morphology in an Established Mouse Model of Alzheimer's Disease. (2451-9448 (Electronic)).

165.      Kruer, M.C., The neuropathology of neurodegeneration with brain iron accumulation. (2162-5514 (Electronic)).

166.      Kosik, K.S., The molecular and cellular biology of tau. Brain Pathol, 1993. 3(1): p. 39-43.

167.      Lindwall, G. and R.D. Cole, Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem, 1984. 259(8): p. 5301-5.

168.      Lei, P., et al., Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. (1546-170X (Electronic)).

169.      Wang, J.Z., I. Grundke-Iqbal, and K. Iqbal, Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci, 2007. 25(1): p. 59-68.

170.      Hanger, D.P., et al., The complex relationship between soluble and insoluble tau in tauopathies revealed by efficient dephosphorylation and specific antibodies. FEBS Letters, 2002. 531(3): p. 538-542.

171.      Rao, S.S. and P.A.J.F.i.m.n. Adlard, Untangling Tau and Iron: Exploring the Interaction Between Iron and Tau in Neurodegeneration. 2018. 11.

172.      Guo, J.L. and V.M. Lee, Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. (1083-351X (Electronic)).

173.      Munoz, P., et al., Effect of iron on the activation of the MAPK/ERK pathway in PC12 neuroblastoma cells. (0716-9760 (Print)).

174.      Jin Jung, K., et al., Oxidative stress induces inactivation of protein phosphatase 2A, promoting proinflammatory NF-kappaB in aged rat kidney. (1873-4596 (Electronic)).

175.      Bekris, L.M., et al., Genetics of Alzheimer disease. Journal of geriatric psychiatry and neurology, 2010. 23(4): p. 213-227.

176.      Conejero-Goldberg, C., et al., APOE2 enhances neuroprotection against Alzheimer's disease through multiple molecular mechanisms. (1476-5578 (Electronic)).

177.      Farrer, L.A., et al., Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. (0098-7484 (Print)).

178.      Huang, Y. and L. Mucke, Alzheimer mechanisms and therapeutic strategies. (1097-4172 (Electronic)).

179.      Kanekiyo, T., H. Xu, and G. Bu, ApoE and Abeta in Alzheimer's disease: accidental encounters or partners? (1097-4199 (Electronic)).

180.      Bush, A.I., et al., EVIDENCE FOR APOE PROTECTING AGAINST BRAIN IRON OVERLOAD. Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 2014. 10(4): p. P878.

181.      van Duijn, S., et al., Cortical Iron Reflects Severity of Alzheimer's Disease. Journal of Alzheimer's disease : JAD, 2017. 60(4): p. 1533-1545.

182.      Ayton, S.A.-O., N.A.-O. Faux, and A.A.-O. Bush, Ferritin levels in the cerebrospinal fluid predict Alzheimer's disease outcomes and are regulated by APOE. (2041-1723 (Electronic)).

183.      Nandar, W., et al., A mutation in the HFE gene is associated with altered brain iron profiles and increased oxidative stress in mice. (0006-3002 (Print)).

184.      Jamieson, S.E., et al., Candidate gene association study of solute carrier family 11a members 1 (SLC11A1) and 2 (SLC11A2) genes in Alzheimer's disease. (0304-3940 (Print)).

185.      Loeffler, D.A., et al., Transferrin and iron in normal, Alzheimer's disease, and Parkinson's disease brain regions. (0022-3042 (Print)).

186.      Mariani, S., et al., Effects of hemochromatosis and transferrin gene mutations on peripheral iron dyshomeostasis in mild cognitive impairment and Alzheimer's and Parkinson's diseases. (1663-4365 (Print)).

187.      Wang Ye Fau - Yue, D.X., X.C. Yue Dx Fau - Tang, and X.C. Tang, [Anti-cholinesterase activity of huperzine A]. (0253-9756 (Print)).

188.      Fu, L.M. and J.T. Li, A systematic review of single chinese herbs for Alzheimer's disease treatment. (1741-4288 (Electronic)).

189.      Rafii, M.S., et al., A phase II trial of huperzine A in mild to moderate Alzheimer disease. (1526-632X (Electronic)).

190.      Zhang, Z., et al., [Clinical efficacy and safety of huperzine Alpha in treatment of mild to moderate Alzheimer disease, a placebo-controlled, double-blind, randomized trial]. (0376-2491 (Print)).

191.      Liu Fugen, F.Y. and Z.J. Gao Zhixu, Double-blind control treatment of huperzine-A and placebo in 28 patients with Alzheimer disease. 药物流行病学杂志 (Chinese Journal of Pharmacoepidemiology), 1995. 4(4): p. 196-198.

192.      Huang, X.T., et al., Reducing iron in the brain: a novel pharmacologic mechanism of huperzine A in the treatment of Alzheimer's disease. (1558-1497 (Electronic)).

193.      Crapper McLachlan, D.R., et al., Intramuscular desferrioxamine in patients with Alzheimer's disease. (0140-6736 (Print)).

194.      Guo, C., et al., Deferoxamine inhibits iron induced hippocampal tau phosphorylation in the Alzheimer transgenic mouse brain. (1872-9754 (Electronic)).

195.      Guo, C., et al., Intranasal deferoxamine reverses iron-induced memory deficits and inhibits amyloidogenic APP processing in a transgenic mouse model of Alzheimer's disease. (1558-1497 (Electronic)).

196.      Prasanthi, J.R., et al., Deferiprone reduces amyloid-beta and tau phosphorylation levels but not reactive oxygen species generation in hippocampus of rabbits fed a cholesterol-enriched diet. (1875-8908 (Electronic)).

197.      Savory, J., et al., Reversal by desferrioxamine of tau protein aggregates following two days of treatment in aluminum-induced neurofibrillary degeneration in rabbit: implications for clinical trials in Alzheimer's disease. (0161-813X (Print)).

198.      Scarmeas, N., et al., Mediterranean diet, Alzheimer disease, and vascular mediation. Arch Neurol, 2006. 63(12): p. 1709-17.

199.      Scarmeas, N., et al., Mediterranean diet and mild cognitive impairment. Arch Neurol, 2009. 66(2): p. 216-25.

200.      Scarmeas, N., et al., Mediterranean diet and risk for Alzheimer's disease. Ann Neurol, 2006. 59(6): p. 912-21.

201.      Breteler, M.M., Vascular risk factors for Alzheimer's disease: an epidemiologic perspective. Neurobiol Aging, 2000. 21(2): p. 153-60.

202.      Lorgeril, M.d., et al., Mediterranean Diet, Traditional Risk Factors, and the Rate of Cardiovascular Complications After Myocardial Infarction. Circulation, 1999. 99(6): p. 779-785.

203.      Panagiotakos, D.B., et al., Status and management of hypertension in Greece: role of the adoption of a Mediterranean diet: the Attica study. J Hypertens, 2003. 21(8): p. 1483-9.

204.      Mecocci, P., Oxidative stress in mild cognitive impairment and Alzheimer disease: a continuum. J Alzheimers Dis, 2004. 6(2): p. 159-63.

205.      Alarcon de la Lastra, C., et al., Mediterranean diet and health: biological importance of olive oil. Curr Pharm Des, 2001. 7(10): p. 933-50.

206.      Cummings, J.L., Alzheimer's disease. N Engl J Med, 2004. 351(1): p. 56-67.

207.      Klein, A. and J. Tourville, 101 labeled brain images and a consistent human cortical labeling protocol. Front Neurosci, 2012. 6: p. 171.

208.      Pascoal, T.A., et al., In vivo quantification of neurofibrillary tangles with [(18)F]MK-6240. Alzheimers Res Ther, 2018. 10(1): p. 74.

209.      Cselenyi, Z., et al., Clinical validation of 18F-AZD4694, an amyloid-beta-specific PET radioligand. J Nucl Med, 2012. 53(3): p. 415-24.

210.      Hudson, H.M. and R.S. Larkin, Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging, 1994. 13(4): p. 601-9.

211.      Costes, N., et al., Motion correction of multi-frame PET data in neuroreceptor mapping: simulation based validation. Neuroimage, 2009. 47(4): p. 1496-505.

212.      Mazziotta, J., et al., A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 2001. 356(1412): p. 1293-1322.

213.      Pascoal, T.A., et al., Synergistic interaction between amyloid and tau predicts the progression to dementia. Alzheimers Dement, 2017. 13(6): p. 644-653.

214.      Pascoal, T.A., et al., Amyloid-β and hyperphosphorylated tau synergy drives metabolic decline in preclinical Alzheimer's disease. Molecular psychiatry, 2017. 22(2): p. 306-311.

215.      Tombaugh, T.N. and N.J. McIntyre, The mini-mental state examination: a comprehensive review. J Am Geriatr Soc, 1992. 40(9): p. 922-35.

216.      Kochhann, R., et al., The Mini Mental State Examination: Review of cutoff points adjusted for schooling in a large Southern Brazilian sample. Dement Neuropsychol, 2010. 4(1): p. 35-41.

217.      Saykin, A.J., et al., Genetic studies of quantitative MCI and AD phenotypes in ADNI: Progress, opportunities, and plans. Alzheimers Dement, 2015. 11(7): p. 792-814.

218.      D. Storey, J., A Direct Approach to False Discovery Rates. Vol. 64. 2002. 479-498.

219.      Xu, X., Q. Wang, and M. Zhang, Age, gender, and hemispheric differences in iron deposition in the human brain: an in vivo MRI study. Neuroimage, 2008. 40(1): p. 35-42.

220.      Del C Valdés Hernández, M., et al., Brain iron deposits and lifespan cognitive ability. Age (Dordrecht, Netherlands), 2015. 37(5): p. 100-100.

221.      Rodrigue, K.M., et al., The role of hippocampal iron concentration and hippocampal volume in age-related differences in memory. Cereb Cortex, 2013. 23(7): p. 1533-41.

222.      Daugherty, A.M., E.M. Haacke, and N. Raz, Striatal iron content predicts its shrinkage and changes in verbal working memory after two years in healthy adults. J Neurosci, 2015. 35(17): p. 6731-43.

223.      van Es, A.C., et al., Caudate nucleus hypointensity in the elderly is associated with markers of neurodegeneration on MRI. Neurobiol Aging, 2008. 29(12): p. 1839-46.

224.      Sullivan, E.V., et al., Relevance of Iron Deposition in Deep Gray Matter Brain Structures to Cognitive and Motor Performance in Healthy Elderly Men and Women: Exploratory Findings. Brain Imaging Behav, 2009. 3(2): p. 167-175.

225.      Thompson, P.M. and N. Jahanshad, Ironing out neurodegeneration: is iron intake important during the teenage years? Expert Rev Neurother, 2012. 12(6): p. 629-31.

226.      Connor, J.R., et al., Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer's disease. J Neurosci Res, 1992. 31(2): p. 327-35.

227.      Steen, R.G., W.E. Reddick, and R.J. Ogg, More than meets the eye: significant regional heterogeneity in human cortical T1. Magn Reson Imaging, 2000. 18(4): p. 361-8.

228.      Supprian, T., et al., MRI T2 relaxation times of brain regions in schizophrenic patients and control subjects. Psychiatry Res, 1997. 75(3): p. 173-82.

229.      Tucker, D.M. and P.A. Williamson, Asymmetric neural control systems in human self-regulation. Psychol Rev, 1984. 91(2): p. 185-215.

230.      de la Fuente-Fernandez, R., et al., Nigrostriatal dopamine system and motor lateralization. Behav Brain Res, 2000. 112(1-2): p. 63-8.

231.      Glick, S.D., D.A. Ross, and L.B. Hough, Lateral asymmetry of neurotransmitters in human brain. Brain Res, 1982. 234(1): p. 53-63.

232.      Wagner, H.N., Jr., et al., Imaging dopamine receptors in the human brain by positron tomography. Science, 1983. 221(4617): p. 1264-6.

233.      Beard, J., Iron deficiency alters brain development and functioning. J Nutr, 2003. 133(5 Suppl 1): p. 1468s-72s.

234.      Faucheux, B.A., et al., Autoradiographic localization and density of [125I]ferrotransferrin binding sites in the basal ganglia of control subjects, patients with Parkinson's disease and MPTP-lesioned monkeys. Brain Res, 1995. 691(1-2): p. 115-24.

235.      Martorana, A. and G. Koch, "Is dopamine involved in Alzheimer's disease?". Frontiers in aging neuroscience, 2014. 6: p. 252-252.

236.      Perez, S.E., et al., Nigrostriatal dysfunction in familial Alzheimer's disease-linked APPswe/PS1DeltaE9 transgenic mice. J Neurosci, 2005. 25(44): p. 10220-9.

237.      Himeno, E., et al., Apomorphine treatment in Alzheimer mice promoting amyloid-beta degradation. Ann Neurol, 2011. 69(2): p. 248-56.

238.      Leskovjan, A.C., et al., Increased brain iron coincides with early plaque formation in a mouse model of Alzheimer's disease. Neuroimage, 2011. 55(1): p. 32-8.

239.      Ahmadi, S., et al., Electrochemical studies of tau protein-iron interactions—Potential implications for Alzheimer’s Disease. Electrochimica Acta, 2017. 236: p. 384-393.

240.      Ghadery, C., et al., R2* mapping for brain iron: associations with cognition in normal aging. Neurobiol Aging, 2015. 36(2): p. 925-32.

241.      Crutch, S.J., et al., Posterior cortical atrophy. The Lancet. Neurology, 2012. 11(2): p. 170-178.

242.      Formaglio, M., et al., In vivo demonstration of amyloid burden in posterior cortical atrophy: a case series with PET and CSF findings. J Neurol, 2011. 258(10): p. 1841-51.

243.      Kambe, T., et al., Posterior cortical atrophy with [11C] Pittsburgh compound B accumulation in the primary visual cortex. Vol. 257. 2009. 469-71.

244.      Ng, S.Y., et al., Evaluating atypical dementia syndromes using positron emission tomography with carbon 11 labeled Pittsburgh Compound B. Arch Neurol, 2007. 64(8): p. 1140-4.

245.      Tenovuo, O., et al., Posterior cortical atrophy: a rare form of dementia with in vivo evidence of amyloid-beta accumulation. J Alzheimers Dis, 2008. 15(3): p. 351-5.

246.      de Souza, L.C., et al., Similar amyloid-beta burden in posterior cortical atrophy and Alzheimer's disease. Brain, 2011. 134(Pt 7): p. 2036-43.

247.      Rosenbloom, M.H., et al., Distinct clinical and metabolic deficits in PCA and AD are not related to amyloid distribution. Neurology, 2011. 76(21): p. 1789-96.

248.      Day, G.S., et al., Tau-PET Binding Distinguishes Patients With Early-stage Posterior Cortical Atrophy From Amnestic Alzheimer Disease Dementia. Alzheimer disease and associated disorders, 2017. 31(2): p. 87-93.

249.      Mesulam, M.-M., Primary progressive aphasia. Annals of Neurology, 2001. 49(4): p. 425-432.

250.      Mesulam, M.M. and S. Weintraub, Spectrum of primary progressive aphasia. Baillieres Clin Neurol, 1992. 1(3): p. 583-609.

251.      Galton, C.J., et al., Atypical and typical presentations of Alzheimer's disease: a clinical, neuropsychological, neuroimaging and pathological study of 13 cases. Brain, 2000. 123 Pt 3: p. 484-98.

252.      Mesulam, M.M., et al., Apolipoprotein E genotypes in primary progressive aphasia. Neurology, 1997. 49(1): p. 51-5.

253.      Kamman, R.L., et al., Nuclear magnetic resonance relaxation in experimental brain edema: Effects of water concentration, protein concentration, and temperature. Magnetic Resonance in Medicine, 1988. 6(3): p. 265-274.

254.      Curnes, J.T., et al., MR imaging of compact white matter pathways. American Journal of Neuroradiology, 1988. 9(6): p. 1061-1068.

255.      Schenck, J.F., The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Medical Physics, 1996. 23(6): p. 815-850.

256.      Vymazal, J., et al., Frequency dependence of MR relaxation times I. Paramagnetic ions. Journal of Magnetic Resonance Imaging, 1993. 3(4): p. 637-640.

257.      Vymazal, J., et al., T1 and T2 alterations in the brains of patients with hepatic cirrhosis. American Journal of Neuroradiology, 1996. 17(2): p. 333-336.

258.      Riederer, P., et al., Transition Metals, Ferritin, Glutathione, and Ascorbic Acid in Parkinsonian Brains. Journal of Neurochemistry, 1989. 52(2): p. 515-520.

259.      Casanova, M.F. and J.M. Araque, Mineralization of the basal ganglia: implications for neuropsychiatry, pathology and neuroimaging. Psychiatry Research, 2003. 121(1): p. 59-87.

260.      Wu, Z., et al., Identification of calcification with MRI using susceptibility-weighted imaging: a case study. Journal of magnetic resonance imaging : JMRI, 2009. 29(1): p. 177-182.

261.      Ong, W.Y. and B. Halliwell, Iron, atherosclerosis, and neurodegeneration: a key role for cholesterol in promoting iron-dependent oxidative damage? Ann N Y Acad Sci, 2004. 1012: p. 51-64.

262.      Whitwell, J.L., Voxel-Based Morphometry: An Automated Technique for Assessing Structural Changes in the Brain. The Journal of Neuroscience, 2009. 29: p. 9661-9664.

263.      Ogg, R.J., et al., The correlation between phase shifts in gradient-echo MR images and regional brain iron concentration. Magnetic Resonance Imaging, 1999. 17(8): p. 1141-1148.

264.      Reichenbach, J.R., et al., Theory and application of static field inhomogeneity effects in gradient-echo imaging. Journal of Magnetic Resonance Imaging, 1997. 7(2): p. 266-279.

265.      Chen, Z., et al., An optimised framework for reconstructing and processing MR phase images. NeuroImage, 2010. 49(2): p. 1289-1300.

266.      Gupta, R.K., et al., Differentiation of calcification from chronic hemorrhage with corrected gradient echo phase imaging. J Comput Assist Tomogr, 2001. 25(5): p. 698-704.

267.      Yamada, N., et al., Intracranial calcification on gradient-echo phase image: depiction of diamagnetic susceptibility. Radiology, 1996. 198(1): p. 171-178.

268.      de Rochefort, L., et al., Quantitative MR susceptibility mapping using piece-wise constant regularized inversion of the magnetic field. Magnetic Resonance in Medicine, 2008. 60(4): p. 1003-1009.

269.      Schweser, F., et al., Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: An approach to in vivo brain iron metabolism? NeuroImage, 2011. 54(4): p. 2789-2807.

270.      Shmueli, K., et al., Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magnetic Resonance in Medicine, 2009. 62(6): p. 1510-1522.

271.      Cheng, Y.-C.N., J. Neelavalli, and E.M. Haacke, Limitations of calculating field distributions and magnetic susceptibilities in MRI using a Fourier based method. Physics in medicine and biology, 2009. 54(5): p. 1169-1189.

272.      Reichenbach, J.R., The future of susceptibility contrast for assessment of anatomy and function. Neuroimage, 2012. 62(2): p. 1311-5.

273.      Beck, K.L., et al., Dietary determinants of and possible solutions to iron deficiency for young women living in industrialized countries: a review. Nutrients, 2014. 6(9): p. 3747-76.

274.      Cole, S.K., W.Z. Billewicz, and A.M. Thomson, Sources of variation in menstrual blood loss. J Obstet Gynaecol Br Commonw, 1971. 78(10): p. 933-9.

275.      Finch, C.A., et al., Ferrokinetics in man. Medicine (Baltimore), 1970. 49(1): p. 17-53.

276.      Green, R., et al., Body iron excretion in man: a collaborative study. Am J Med, 1968. 45(3): p. 336-53.

277.      Luo, X., et al., Modulation of Dcytb (Cybrd 1) expression and function by iron, dehydroascorbate and Hif-2alpha in cultured cells. Biochim Biophys Acta, 2014. 1840(1): p. 106-12.

278.      McKie, A.T., et al., An iron-regulated ferric reductase associated with the absorption of dietary iron. Science, 2001. 291(5509): p. 1755-9.

279.      Vlachodimitropoulou, E., R.J. Naftalin, and P.A. Sharp, Quercetin is a substrate for the transmembrane oxidoreductase Dcytb. Free Radic Biol Med, 2010. 48(10): p. 1366-9.

280.      Canonne-Hergaux, F., et al., Cellular and subcellular localization of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron. Blood, 1999. 93(12): p. 4406-17.

281.      Gunshin, H., et al., Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature, 1997. 388(6641): p. 482-8.

282.      Le Blanc, S., M.D. Garrick, and M. Arredondo, Heme carrier protein 1 transports heme and is involved in heme-Fe metabolism. Am J Physiol Cell Physiol, 2012. 302(12): p. C1780-5.

283.      Raffin, S.B., et al., Intestinal absorption of hemoglobin iron-heme cleavage by mucosal heme oxygenase. The Journal of clinical investigation, 1974. 54(6): p. 1344-1352.

284.      West, A.R. and P.S. Oates, Subcellular location of heme oxygenase 1 and 2 and divalent metal transporter 1 in relation to endocytotic markers during heme iron absorption. J Gastroenterol Hepatol, 2008. 23(1): p. 150-8.

285.      Williams, E.W. and W.A. Hemmings, Intestinal uptake and transport of proteins in the adult rat. Proc R Soc Lond B Biol Sci, 1978. 203(1151): p. 177-89.

286.      Donovan, A., et al., The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab, 2005. 1(3): p. 191-200.

287.      Han, O. and E.Y. Kim, Colocalization of ferroportin-1 with hephaestin on the basolateral membrane of human intestinal absorptive cells. J Cell Biochem, 2007. 101(4): p. 1000-10.

288.      Bedard, Y.C., P.H. Pinkerton, and G.T. Simon, Uptake of circulating iron by the duodenum of normal mice and mice with altered iron stores, including sex-linked anemia: high resolution radioautographic study. Lab Invest, 1976. 34(6): p. 611-5.

289.      Nemeth, E., et al., Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science, 2004. 306(5704): p. 2090-3.

290.      Vanoaica, L., et al., Intestinal ferritin H is required for an accurate control of iron absorption. Cell Metab, 2010. 12(3): p. 273-82.

Universiteit of Hogeschool
Neurosciences
Publicatiejaar
2019
Promotor(en)
Prof. Dr. Pedro Rosa-Neto and Prof. Dr. Sebastiaan Engelborghs
Kernwoorden
Share this on: