Slimme cellen genezen diepe wonden.
Grote wonden vergen complexe behandelingen. Een onderzoeksteam van Plastische Chirurgen in het UZ-Leuven is erin geslaagd om diepe wonden te repareren met autologe (lichaamseigen) ‘smart tissue engineering’. Bij varkens is het een succes. Nu mensen nog.
Derdegraads brandwonden, uitgebreide verwondingen na verkeersongevallen of na een operatie vanwege kanker, de plastisch reconstructief chirurg wordt er dagelijks mee geconfronteerd. Vaak is een complexe chirurgische weefsel transplantatie nodig die op zich een oorzaak is van nieuwe verwonding daar waar het donor weefsel genomen werd. Maar wanneer zulke uitgebreide behandeling niet wordt uitgevoerd, zijn stugge littekens het gevolg en die leiden al te vaak tot forse bewegingsbeperking rond gewrichten en verminderde motivatie van de patiënt voor sociale reïntegratie na het ongeval.
Bij sommige erg complexe defecten, zoals zeer uitgebreide diepe brandwonden, is er zelfs geen echt degelijke oplossing. De sinds lang gebruikte huidgreffen zijn dun en vertegenwoordigen enkel de oppervlakkige laag van huid. De recent ontwikkelde ‘dermale’ kunsthuid, die de diepere laag van de huid vertegenwoordigt, kan dienen als een tapijtje waarop huidgreffen kunnen gelegd worden. Die kunstdermis is nog steeds dun en vermits ze samengesteld is uit bindweefsel van koeien of varkens,wordt ze geleidelijk afgebroken eens op een wonde geplaatst bij de mens.
Jan Vranckx van de Universiteit van Leuven promoveerde op een strategie die huiddefecten behandelt met “autologe (lichaamseigen),elastische,goed doorbloede huid van volledige dikte”. Autologe smart tissue engineering, heet deze strategie.
‘Smart tissue engineering’ start met het kweken van cellen uit de verschillende huidlagen en van lichaamseigen oorsprong. “Ook deze methode bestaat al 20 jaar maar heeft tot weinig geleid”, zegt Vranckx. Om deze cellen een volwaardige elastische huid te doen vormen is heel wat meer nodig. “ Zie de wonde als een constructie site; je hebt bouwmateriaal nodig, mankracht maar ook een coördinator, een architect. In de wondheling fungeren groei-eiwitten ,groeifactoren, als de coördinators. Deze eiwitten worden afgescheiden door alle cellen die iets in de helende wonde te betekenen hebben. Bij ziekte of na trauma is de aanmaak van die groeifactoren fors verminderd, hoewel ze net dan meest benodigd zijn.
Vranckx: “Die groeifactoren zijn erg belangrijk vanaf het prille begin van de wondheling, van de vorming van stolsel en nieuwe bloedvaatjes in de wonde tot het zacht en wit worden van het litteken. Die groeifactoren gebruiken om de wondheling te bevorderen is dus een logische stap”.
Helaas worden die groeifactoren snel afgebroken als je ze simpelweg in de wonde zou spuiten. Dit kan omzeild worden door de cellen zélf als miniproductie eenheden de eiwitten te laten aanmaken.
Vranckx:” Nadat we in het labo het DNA van de groeifactor naar keuze in de huidcellen hebben aangebracht wordt dit DNA in de cel zelf vertaald naar het groeifactor eiwit dat dan in de wonde wordt afgescheiden; niet éénmalig maar constant. De cellen vormen zich in de wonde als kleine fabriekjes van de groeifactoren.
Om deze strategie optimaal te laten verlopen, focust Vranckx op stam cellen van de huid.“Zulke cellen zijn in staat om op 4 weken tijd uit 10 cm2 zoveel cellen te produceren dat de ganse huid oppervlakte van de mens zou kunnen bedekt worden. Evengoed kunnen die cellen fungeren als dragers van die groeifactoren die in wondheling een groot verschil kunnen maken”.
Deze strategie leidde in een varkensmodel tot snelle heling met laag per laag goed doorbloed weefsel. “Deze doorbloeding is het grote verschil met eerder voorgestelde behandelingsmethoden door tissue engineering” zegt Vranckx. De fusie van tissue engineering technieken met gen therapie brengt ons een hele stap verder in die zoektocht naar tissue engineering van weefsels en zelfs organen.
Hoe lang het nog duurt alvorens we ‘lichaamseigen weefsel als ‘take away’ kunnen bestellen en gebruiken is onvoorspelbaar.
De euforie was nabij toen eind jaren ‘90 op een ‘naakt muismodel’ een mensen oor werd gegroeid. Door tissue engineering leek toen alles mogelijk. Dit oor was slechts een matrix in de vorm van een oorschelp, die onder de erg elastische en dunne huid van die muizensoort werd gehecht. Die matrix werd natuurlijk in korte tijd overwoekerd met littekenweefsel en bloedvaatjes en bij de muis niet afgestoten. Vranckx:“Zowel bij varken als mens komen we geen stap verder als het weefsel, aangemaakt door tissue engineering, niet goed doorbloed is en niet lichaamseigen. Met de huidige wereldwijde ambitie en motivatie in tissue engineering lijkt me nog een 10-tal jaar voor authentieke huid op bestelling rationeel.”
Tot dan je hand er zeker niet voor in het vuur steken.
References: zie bibliografie in 'scriptie' p7 en p171-178.
1. Vranckx JJ, B.Vandenhof.,D.Misselyn.,
N. Verhelle,O.Heymans
The gracilis free flap: more than a gracile flap for lower leg reconstructions.
J.Reconstructive Microsurgery 20,
36-41,2004.
2. Vandevoort M, Vranckx JJ fabre G.
Perforator Topography of the DIEP flap.
In: Mosby Yearbook of Plastic & Reconstructive Surgery 2004 ,p259, Ed. Miller S,Illinois.
3. JJ. Vranckx, P Delaere , F.C Wei,
B Van den hof.
Vascularised Fascia and Supra-Fascial Radialis Forearm Free Flaps in Head and Neck Reconstructions.”
Microsurgery, 20 (6), 290,2000.
4. Hunt JL.,Purdue GF.,Pownell P.,
Rohrich R.
Burns: acute burns,burn surgery and post-burn reconstruction.
Select.Read. Plast.Surg. 8: 1-37.,1997
5. Massagé P.,Vandenhof B.,Vranckx JJ.
Full face resurfacing of third degree burns with artificial dermis: barriers and opportunities.
J.Plast.Reconstr.Surg.59; S1-12,2006.
6. Andreadis ST.
Gene-modified tissue engineered skin: the next generation of skin substitutes. Adv.Biochem.Eng.Biotechnol.103;
241-2007.
7. Metcalfe A.,Ferguson M.
Harnessing wound healing and regeneration for tissue engineering.
Biochem.Soc.Trans. 33,413,2005
8. Hebda P.,Sandulache VC.
The biochemistry of epidermal healing.
In: The epidermis in wound healing. CRC Press Boca Raton 2004 EdsRovee DT, Maibach HI.
9. Singer A., Clark R.A.
Mechanisms of disease,
Cutaneous Wound Healing.
N.Engl.J.Med. 341,738,1999
10. Burke JF, Yannas IV, Quinby WC Jr,
Bondoc CC, Jung WK.
Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury.
Ann Surg. 194,413,1981
11. Sheridan RL.,Tompkins RG.
Skin substitutes in burns.
Burns 25, 97,1999
12. Yarlagadda PK.,Chandrasekharan M.,
Shyan JY.
Recent advances and current developments in tissue scaffolding. Biomed.Mater.Eng.15;159-77,2005.
13. Muschler GF.,Nakamotot C.,Griffith LG. Engineering principles of clinical cell- based tissue engineering.
J.Bone Joint Surg.Am.86;1541-58,2004.
14. Griffith LG.
Emerging design principles in biomaterials and scaffolds for tissue engineering.
Ann.NY.Acad.Sci. 961,83,2002
15. Rosso F., Marino G.,Giordano A.,
Barbarisi M.,Parmeggiani D.,,Barbarisi A.
Smart materials as scaffolds for tissue engineering.
J.Cell.Physiol. 203,465,2005
16. Rumalla V.K.,Borah G.L.
Cytokines,growth factors and Plastic Surgery.
Plast.Reconstr.Surg.108,719,2001
17. Vranckx JJ.,Vermeulen P.,Dickens S.
Smart Autologous Tissue Engineering: stem cells and growthfactors, scaffolds and genes.
J.Plast.reconstr.Surg.59;S1-12,2006.
18. Gambardella L.,Barrandon Y.
The multifaceted adult epidermal stem cell.
Curr.Opinion Cell Biol.15, 771,2003
19. Conrad C.,Huss R.
Adult stem cell lines in regenerative medicine and reconstructive surgery.
J.Surg.Research 124, 201,2005
20. Brown GL.,Nanney LB.
Enhancement of wound healing by topical treatment with epidermal growth factor.
N.Engl.J.Med.321,76,1989
21. Fu X.,Li X.,Cheng B.,Chen W.,Sheng Z. Engineered growth factors and cutaneous wound healing, success and possible questions in the past ten years.
Wound Rep.Reg 13,122,2005
22. Bennett N., Schultz P.
Growth factors and wound healing, biochemical properties of growth factors and their receptors. Am.J.Surg.165,728,1993
23. Vranckx JJ, Yao F.,Eriksson E.
Gene Transfer of Growth Factors for Wound Repair”.
In: The Epidermis in Wound healing; 2004: 265- 283,Eds. D.Rovee, H.Maibach,
CRC Press, Boca Raton, Fl.USA.
24. Yang NS.,Burkholder J., Roberts B., Martinell B., Mc Cabe D.
In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment.
Proc.Natl.Acad.Sci.USA 87, 9568,1990.
25. Benn SI.,Whitsitt J.,Broadley K.,
Nanney L.,Perkins D.,He L.,Patel M., Morgan J,Swain W.,Davidson JM.
Particle mediated gene transfer with transforming growth factor beta1 cDNAs enhances wound repair in rat skin.
J.Clin.Invest. 98,2894,1996
26. Eriksson E., Yao F., Svensjo T.,Winkler
T., Slama J.,Macklin M., Andree C.,
mc Gregor M., Hinshaw V., Swain W.
In vivo gene transfer to skin by microseeding.
J.Surg.Res. 78, 85,1998
27. Andreadis ST.
Gene transfer to epidermal stem cells: implications for tissue engineering. Expert.
Opin.Biol.Ther. 4;783-800,2004.
28. Ehrenreich M.,Ruszczak Z.
Update on tissue-engineered biological dressings.
Tissue Eng.12; 2407-24,2006.
29. Wang HJ.,Pieper J.,Schotel R., vanBlitterswijk CA., Lamme EN.
Stimulation of skin repair is dependent on fibroblast source and presence of extracellular matrix.
Tissue Eng.10;1054-64,2004.
30. Naughton GK.,Mansbridge JN.
Human based tissue engineered implants for reconstructive surgery.
Clin.Pl.Surg.26, 579,1999
31. Yao F, Svensjo T, Winker T, Lu M,
Eriksson E.
Tetracycline repressor, tetR,rather than tetR-mamalian cell transcription fusion derivative, regulates inducible gene expression in mammalian cells.
Human Gene Therapy 9, 1939,1998.
32. Yao F.,Eriksson E.
A novel tetracycline-inducible viral replication switch.
Human Gene Therapy 10, 419,1999.
33. Sullivan T.P.,Eaglstein W.H.Davis SC., Mertz P.
The pig as a model for human wound healing.
Wound. Rep.Reg. 9; 66-76, 2001
34. Vardaxis N.J., Brans TA. Boon ME., Kreis RW., Marres LM.
Confocal laser scanning microscopy of porcine skin ; implications fro human wound healing studies.
J.Anat. 190; 601-11,199
35. Vranckx JJ, Yao F, Petrie N,
Augustinova H, Hoeller D, Visovatti S, Slama J, Eriksson E.
In vivo gene delivery of Ad-VEGF121 to full- thickness wounds in aged pigs results in high levels of VEGF expression but not in accelerated healing.
Wound Repair Regen. 2005; 13:51-60.
36. Vranckx JJ.,Hoeller D.,Petrie N.
Velander P., Theopold C.,,Eriksson E.,
Yao F.
Cell suspension cultures of allogenic keratinocytes are efficient carriers for ex vivo gene transfer and accelerate healing of full thickness skin wounds by overexpression of hEGF.
Accepted for publication in
Wound Rep.Reg 2007.
37. Vranckx JJ, Slama J, Preuss S,
Svensjö T, Visovatti S, Breuing K,
Bartlett R,
Pribaz J, Eriksson E.
Wet wound healing.
Plast Reconstr Surg 110(7), 1680, 2002.
38. Eriksson E.,Vranckx JJ.
Wet wound healing: from laboratory to patient to Gene therapy.
Am.J.Surg. 2004; 188:36-41.
39. Vranckx JJ., Steinstrasser L, Mohammadi-Tabrisi A., Jacobson F.,
Mittler D., Lehnhardt M., Langer S., Kuhnen C., Gatermann S., Steinau HU.,Eriksson E.
A novel titanium wound chamber for the study of wound infections in pigs.
Comp Med. 2006 Aug;56:279-85.
VJJ, SL : co-first authors.
40. Martin, P.
Wound healing--aiming for perfect skin regeneration.
Science 1997; 276: 75-81.
41. Steed D.L.
Modifying the wound healing response with exogenous growth factors.Clinics in Pl.Surg.25,397,1998
42. Robson MC.,Mustoe TA.,Hunt TK.
The future of recombinant growth factors in wound healing.
Am.J.Surg.176,80 S,1998
43. Yao F., Visovatti S., Johnson S.,Chen M.,
Slama J.,Wenger A.,Eriksson E
Age and Growth Factors in porcine full thickness wound healing.
Wound Rep.& Gen.9,371,2001
44. Rivard A., Fabre JE., Silver M., Chen D., Murohara T., Isner J.
Age dependent impairment of angiogenesis.
Circulation 99: 111,1999
45. Ashcroft GS.,Horan MA.,Ferguson MWJ.
Aging alters the inflammatory and endothelial adhesion molecule profiles during human cutaneous wound healing.
Lab.Invest. 78 :47,1998
46. Khorramizadeh MR.,Tredget EE.,
Telasky C.,Shen Q.,Gharay A.
Aging differentially modulates the expression of collagen and collagenase in dermal fibroblasts.
Mol.Cell.Biochem. 194:99,1999
47. Davidson J.M.
Gene therapy of wounds. In: The epidermis
in wound healing.
CRC Press Boca Raton 2004. Eds: Rovee DT. Maibach HI.
48. Andree C., Swain W.F.,Page C.P,
Macklin MD.,Slama J.,Hatzis D.,
Eriksson E.
In vivo gene transfer and expression of human epidermal growth factor accelerates wound repair.
Proc.Natl.Acad.Sci.USA.91, 12188,1994.
49. Eming SA., Whitsitt JS., He L.,Krieg T., Morgan JR., Davidson JM.
Particle mediated gene transfer of PDGF isoforms promotes wound repair.
J.Invest.Dermatol. 112, 297,1999.
50. Liechty KW.,Sablick TJ.,Adzick NS., Cromblestone TM.Recombinant adenoviral mediated gene transfer in ischaemic impaired wound healing.
Wound RepReg.7,148,1999.
51. Morgan JR.,Eden CA.
Retroviral-mediated gene transfer into transplantable human epidermal cells.
Prog.Clin.Biolog.Res. 365, 417,1991.
52. Petrie N., Vranckx JJ., Hoeller D.,Yao F., Eriksson E.
Gene delivery of PDGF for wound healing therapy.
J Tissue Viability 15 :16-21,2005
53. Petrie N., Vranckx JJ,Yao F.,Hoeller D., Eriksson E.
Stable cell lines of PDGF-BB expressing fibroblasts impair wound healing in a porcine full thickness skin model.
Plastic Surgery Research Council ,
Las Vegas, NV, 2003.
54. Deodato B.,Arsic N.,Zentilin L. Recombinant AAV vector encoding human VEGF165 enhances wound healing.
Gene Ther.9: 777,2002.
55. Ailawadi M., Lee JM.,Lee S.,Hackett N., Crystal RG., Korst RJ.
Adenovirus vector-mediated transfer of the vacular endothelial growth factor cDNA to healing abdominal fascia enhances
vascularity and bursting strength in mice with normal and impaired wound healing.
Surgery 131,219,2002 2002
56. Gitay-Goren H.,Cohen T.,Tessler S., Soker S.,Gengrinovitch S.,Rockwell P., Klagsbrun M.,Levi BZ.,Neufeld G.
Selective binding of VEGF121 to one of the three VEGF receptors of vascular endothelial cells.
J.Biochem.271;5519-23,1996.
57. Losordo D., Vale P., Symes J.,
Gene Therapy for myocardial angiogenesis.
Circulation 1998; 98: 2000.
58. Gabel H.,Bitter-Suermann H.,
Henriksson C., Save-Soderbergh J.,
Lundholm K.,Brynger H.
Streptozotocin diabetes in juveline pigs.Evaulation of an experimental model.
Horm.Metab.Res.17,275,1985.
59. Nakamura Y.,Muguruma Y.,Yahata T., Miyatake H.,Sakai D.,Michida J.,Hotta T., Ando K.
Expression of CD90 on keratinocyte stem/progenitor cells.
Br.J.Dermatol.154,1062,2006.
60. Hengge U., Chan E.,Hampshire V.,
Foster RA., Vogel JC.
The derivation and characterization of Pig Keratinocyte cell lines that retain the ability to differentiate. J.Invest.Deramtol.106; 287-293,1996
61. Regauer S.,Compton C.
Cultured porcine epithelial grafts : an improved method.
J.Invest.Dermatol. 94; 230-234,1990.
62. Boyce ST., Ham RG.
Calcium regulated differentiation of normal human keratinocytes in chemically defined clonal cultures and serum-free serial cultures.
J.Invest.Dermatol. 81; 33-40, 1983.
63. Maciag T., Nemore RE., Weinstein R., Gilchcrest BA.
An endocrine approach to the control of epidermal growth: serum free cultivation of human keratinocytes.
Science 211; 1452-4, 1981
64. Rosdy M.,Pisani A.,Ortonne JP.
Production of basement membrane components by a reconstructed epidermis cultured in the absence of serum and dermal factors. Br.J.Dermatol.129 :227,1993.
65. Green H.,Kehinde O.,Thomas J.
Growth of cultures of human keratinocytes into multiple epithelia suitable for grafting. Proc.Natl.Acad.Sci.USA.76,5665,1979
66. Boucher F.,Poumay Y., Degen A.,
Paye M., Leloup R.
Utilization of human cultured epidermal keratinocytes : irreversibility of the inhibition of proliferation induced in stored detached cultures.
Burns 17; 205-8, 1991.
67. Freshney RI.
Culture of animal cells.
4th ed. Ch.2. NewYork, Wiley-Liss. 2000
68. Park HS.,Kang HJ.,Kim Ch,Han ES.,
Han K., Kim TH.,Gin YJ.,Son YS.
Application of physical force is essential to enrich for epidermal stem cells in primary human keratinocyte isolation.
Tissue Eng.10,343,2004
69. Hybbinette S.,Bostrom M.,Lindberg K.
Enzymatic dissociation of keratinocytes from human skin biopsies for in vitro cell propagation.
Exp.dermatol.8,30,1999.
70. Meyer-Hoffert U.,Rogalski C.,Seifert S., Schmeling G.,Wingertszahn J.,Proksch E., Wiedow O.
Trypsin induces epidermal proliferation and inflammation in murine skin.
Exp.Dermatol.13,234,2004.
71. Green H.,Rheinwald JG.,Sun TT.
Properties of an epithelial cell type in culture: the epidermal keratinocyte and its dependence on products of the fibroblast.
Prog.Cln.Biol.Res.17,493,1977.
72. Boyce S.,Ham RG.
Calcium-regulated differentiation of normal epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J.Inv.dermatol.81,33,1983.
73. Thompson CH.,Rose BR. Cossaert YE.
Optimised growth of human epidermal cells in vitro without the use of a feeder layer or collagen substrate.Austr.J. Exp. Biol.Med.Sci. 63;147-156, 1985
74. Clark RAF.
Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin.
J Invest Dermatol, 94, 128S, 1990
75. Black AF.,Bouez C.,Perrier E.,
Schlotmann K.,Chapuis F.,Damour O. Optimization and characterization of an engineered human skin equivalent.
Tissue Eng.11,723, 2005
76. Mitsi M, Hong Z, Costello CE,
Nugent MA.
Heparin-mediated conformational changes in fibronectin expose vascular endothelial growth factor binding sites.
Biochemistry, 45, 10319, 2006
77. Navsaria HA., Myers SR.,Leigh IM., McKay IA.
Culturing skin in vitro for wound therapy.
Trends. Biotechnol. 13; 91, 1995
78. Cai S.,Fatherazi S.,Presland RB.,
Belton CM., Izutsu KT.
TRPC channel expression durin calcium- induced differentiation of human gingival keratinocytes.
J.Dermatol.Sci.40,21,2005.
79. Xie Z.,Singleton PA.,Bourguignon LY., Bikle DD.
Calcium-induced keratinocyte differentiation requires src-and fyn-mediated phosphatidylinositol 3-kinse-dependent activation of phospholipase C-gamma1.
Mol.Biol.Cell.16,3236,2005
80. Hennings H., Michael D., Cheng C., Steinert P., Holbrook K., Yuspa SH.
Calcium regulation of growth and differentiation of mouse epidermal cells in culture.
Cell 19; 245-254,1980
81. Wille JJ., Pittelkow MP., Shipley GD., Scott RE.
Integrated control of growth and differentiation of normal human prokeratinocytes cultured in serum-free medium: clonal analysis, growth kinetics and cell cycle studies.
J.Cell.Physiol. 121; 31-44,1984.
82. Kiefer K.,Clement J.,Garidel P.,
Peschka-Suss.
Transfection efficiency and cytotoxicity of non-viral gene transfer reagents in human smooth muscle and endothelial cells.
Pharma.Res.21,1009, 2004.
83. Thomas M.,Ge Q.,Lu JJ.,Chen J., Klibanov AM.
Cross-linked small polyethylenimines: while still non-toxic,deliver DNA efficiently to mammalian cells in vitro and in vivo.
Pharm.Res.22,373,2005.
84. Zellmer S.,Gaunitz F.,Salvetter J.,
Surovoy A.,Reissig D.,Gebhardt R.
Long-term expression of foreign genes in normal human epidermal keratinocytes after transfection with lipid/DNA complexes.
Histochem.Cell.Biol.115,41,2001.
85. Distler JHW.,Kurowska-Stolarska M., Micehl BA.,Gay RE,Gay S.,Distler O.
Nucleofection, a new ,highly efficient transfection method for primary keratinocytes.
Experim.Dermatol.14,315, 2005
86. Vogt PM, Thompson S, Andree C, Liu P.,
Breuing K, Hatzis D, Brown H,
Mulligan RC, Eriksson E.
Genetically modified keratinocytes transplanted to wounds reconstitute the epidermis.
Proc Natl Acad Sci USA, 91(20),
9307, 1994
87. Hefton, J. M., Madden, M. R., Finkelstein,
J. L., and Shires, G. T.
Grafting of burn patients with allografts of cultured epidermal cells.
Lancet 1983; 2: 428-430.
88. De Luca, M., Albanese, E., Bondanza, S., Megna, M., Ugozzoli, L., Molina, F., Cancedda, R., Santi, P. L., Bormioli, M., Stella, M., and et al.
Multicentre experience in the treatment of burns with autogenic and allogenic cultured epithelium, fresh or preserved in a frozen state.
Burns 1989; 15: 303-309.
89. Brown GL.,Nanney LB.,Griffen J.,
Cramer AB.,Yancey JM.,Curtsinger LJ., Holtzin L.,Schultz GS.,Jurkiewicz MJ., Lynch JB.
Enhancement of wound healing by topical treatment with epidermal growth factor.
N.Engl.J.Med.1989; 321: 76-80.
90. Falanga V., Eaglestein WH., Bucalo B., Katz MH.,Harris B.,Carson P.
Topical use of human recombinant epidermal growth factor in venous ulcers.
J.dermatol.Surg.Oncol.1992; 18: 604-6.
91. Snyder RJ.
Treatment of nonhealing ulcers with allografts.
Clin.dermatol. 23,388,2005.
92. Aubock J., Irschick E., Romani N., Kompatscher P.,Hopfl R.,Herold M.,
Schuler G.,Fritsch P.
Rejection, after a slightly prolonged survival time, of Langerhans cell-free allogenic cultured epidermis used for wound coverage in humans.
Transplantation 1988; 45: 730-737.
93. Rosenberg AS.
Cellular basis of skin allograft rejection: an in vivo model of immune-mediated tissue destruction.
Ann.Rev.Immunolog.1992; 10: 333-337
94. Morhenn VB.,Benike CJ.,Cox AJ.,
Charron DJ.,Engleman EG.
Cultured human epidermal cells do not synthesize HLA-DR.
J.Invest.Dermatol. 1982; 78; 32-36
95. Dierch A.,Chan SH.,Benoist C.,
Mathis D.
Graft rejection by T cells not restricted by conventional major histocompatibility complex molecules.
Eur.J.Immunol.1993; 23: 2725-28
96. Hunt JP.,Hunter CT.,Brownstein M., Hultman C.,deSerres S.,Bracey L.,
Frelinger J., Meyer A.
Host priming, not target antigen type, decides rejection rate in mice primed with MHC-II “knock-out” cultured keratinocytes.
J.Surg.Research 1998; 76: 32-36.
97. Thivolet J, Faure M, Demidem A,
Mauduit G.
Long-term survival and immunological tolerance of human epidermal allografts produced in culture.
Transplantation 1985; 42: 274-280.
98. Rouabhia M
Permanent skin replacement using chimeric cultured sheets comprising xenogeneic and syngeneic keratinocytes.
Transplantation 1996; 61: 1290-1300.
99. Hubbell JA.
Materials as morphogenetic guides in tissue engineering.
Curr. Opin. Biotechnol. 14,551,2003
100. Enoch S., SHaaba H.,Dunn KW. Informed consent should be obtained from patients to use products (skin substitutes) and dressings containing biological material.
J.Med.Ethics,31;2-6,2005
101. Clark RAF.
Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin.
J Invest Dermatol 94, 128S, 1990
102. Mitsi M, Hong Z, Costello CE,
Nugent MA.
Heparin-mediated conformational changes in fibronectin expose vascular endothelial growth factor binding sites.
Biochemistry 45(34), 10319, 2006
103. Bauer S.,Bauer RJ, Liu Z.,Chen H., Goldstein L.,Velazquez OC.
Vascular endothelial growth factor-C promotes vasculogenesis,angiogenesis, and collagen constrition in three-dimensional collagen gels.
J.Vasc.Surg. 41, 699,2005.
104. Carmeliet P.,Collen D.
Molecular analysis of blood vessel formation and disease.
The American Physiol.Soc. invited review,H2091,1997.
105. Dvorak HF.,Detmar M.,Claffey KP., Nagy JA.,van de water L.,Senger DR. Vascular permeability factor/vascular endothelial factor:an important mediator of angiogenesis in malignacy and inflammation.
Int.Arch.Allergy Immunol. 107:233,1995
106. Li B, Sharpe EE, Maupin AB,
Teleron AA, Pyle AL, Carmeliet P,
Young PP.
VEGF and PLGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization.
FASEB J 20(9), 1495, 2006
107. Ferrara N, Gerber HP, Lecouter J.µ
The biology of VEGF and its receptors.
Nat Med. 9, 669, 2003
108. Brown NJ., Smyth EA.,Cross SS.,
Reed MW.
Angiogenesis induction and regression in human surgical wounds.
Wound repair and Regen.2002;
10:245-51
109. Tonnesen MG.,Feng X.,Clark RA.
Angiogenesis in wound healing. J.Invest.Dermatol.Symp.Proc.2000;
5;40-6.
110. Rehman J, Li J, Orschell CM,
March KL.
Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and serete angiogenic growth factors.
Circulation, 107(8), 1164, 2003
111. Relou IA, Damen CA,
van der Schaft DW, Groenewegen G, Griffioen AW.
Effects of culture conditions on endothelial cell growth and responsiveness.
Tissue Cell, 30(5), 525, 1998
112. Cai J, Jiang WG, Ahmed A, Boulton M.
Vascular endothelial growth factor induced endothelial cell proliferation is regulated by interaction between VEGFR-2,SH-PTP1 and eNOS.
Microvasc. Res. 71, 20, 2006
113. Dardik R.,Inbal A.
Complex formation between tissue transgluaminase II (tTG) and vascular endothelial growth receptor 2 (VEGFR-2): proposed mECshanism for
modulation of endothelial cell response to VEGF.
Exp.Cell Res.312; 2006: 2973-2982.
114. Duan HX, Cheng LM, Jian W, Hu LS, Lu GX.
Angiogenic potential difference between two types of endothelial progenitor cells from human umbilical cord blood.
Cell Biol. Int., 30(12), 1018, 2006
115. Collen A., Hanemaaijer R., Lupu F., Quax PH.,van Lent N.,
Grimbergen J et al.
Membrane-type matrix metalloproteinase- mediated angiogenesis in a fibrin-collagen matrix.
Blood 2003; 101:1810-7.
116. Taraboletti G.,D’Ascenzo S., Borsotti P., Giavazzi R.,Pavan A.,Dolo V.
Shedding of the Matrix metalloproteinases MMP-2,MMP-9 and MT1-MMP as membrane vesicle-associated components by endothelial cells.
Am.J.Pathol.2002;160: 673-680.
117. Krengel S.,Alexander M.,Brinckmann J., Tronnier M.
MMP-2 ,TIMP-2 and MT1-MMP are differentially expressed in lesional skin of melanocytic nevi and their expression is modulated by UVB-light.
J.Cutan.Pathol.2002;29:390-6.
118. Tjwa M, Luttun A, Auterio M,
Carmeliet P.
VEGF and PLGF: two pleiotropic growth factors with distinct roles in development and hemeostasis.
Cell Tissue Res, 314, 5, 2003
119. Li B, Sharpe EE, Maupin AB,
Teleron AA, Pyle AL, Carmeliet P, Young PP.
VEGF and PLGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization.
FASEB J, 20(9), 1495, 2006
120. Gossen M, Bujard H.
Tight control of gene expression in mammalian cells by tetracycline-responsive promoters.
Natl. Acad. Sci. U.S.A., 89, 5547, 1992
121. Eppley B.,Woodell J.,Higgins J.
Platelet quantification and growth factor analysis from platelet rich plasma: implications for wound healing.
J.Plast Rec.Surg. 114,1502,2004
122. Ellis WC.,Cassidy LK.,Finney AS., Spiwak AJ.,Riley JB.
Thromboelastograph analysis of platelet gel formed with different thrombin concentrations.
J.Extra Corpor.Technol. 37,52,2005.
123. Vermeulen P., Dickens S., Vranckx JJ. Platelet-rich-plasma & keratinocytes enhance healing & deposition of fibronectin in a porcine full-thickness wound model. J.Plast.Reconstr.Aesth.Surg.A ,2007.
In print
124. Zechner W.,Tangl S.,Tepper G.,Furst G., Haas R.,Mailath G.,Watzek G.
Influence of platelet rich plasma on osseous healing of dental implants: a histologic and histomorphometric study in minipigs.
Int.J.Oral Maxillofac.Implants 16,15,2003.
125. Vranckx JJ., Segers K.,Vertriest R., Vermeulen P.,Massage P.,
Van Brussel M.
Vacuum assisted closure of complex wounds: sense and nonsense.
Submitted. Crit.Care Med.
126. Argenta LC.,Morykwas MJ.,
Marks MW., DeFranzo AJ.,Molnar JA., David LR.
Vacuum assisted closure: state of the clinic art.
Plast.Reconstr.Surg.117:127-42,2006
127. Morykwas MJ.,Simpson J.,Punger K., Argenta A.,Kremers L.,Argenta J.
Vacuum assisted closure: basic research and physiologic foundation.
Plast.Reconstr.Surg.117,121-26,2006.
128. Pribaz, JJ., Fine, N., Orgill, DP.
Flap prefabrication in the head and neck: A 10-year experience.
Plast. Reconstr. Surg. 103: 808, 1999.
129. Tanaka Y., Sung KC.,Tsutsumi A.,
Ohba S., Ueda K.,Morrison WA.
Tissue engineering skin flaps: which vascular carrier,arteriovenous shunt loops or arteriovenous bindle, has more potential for angiogenesis and tissue generation ?
Plast.Reconstr.Surg.112: 1626,2003.
130. Tark KC., Tuchler RE., Shaw WW.
Flap prefabrication: Effectiveness of different vascular carriers.
Ann. Plast. Surg. 37: 298, 1996.
131. Sato, Y. (Ed.).
Frontline of Angiogenesis: Mechanism, Pathology and Treatment.
Tokyo: Yodosha, 1999. Pp. 10-21.
132. Vittet, D., Buchou, T., Schweizer, A., Dejana, E., and Huber, P.
Targeted null-mutation in the vascular endothelial-cadherin gene impairs the organization of vascular-like structures in embryoid bodies.
Proc. Natl. Acad. Sci. U.S.A. 94:
6273, 1997
133. Tanaka, Y., Tajima, S., Tsutsumi, A., et al.
New matrix flap prefabricated by arteriovenous shunting and artificial skin dermis in rats: II. Effect of interpositional vein or artery grafts and bFGF on new tissue generation.
J. Jpn. Plast. Reconstr. Surg. 16:
679, 1996.
134. Zhu C.,Ying D.,Zhou D.,Mi J.,
Zhang W., Chang Q.,Li L.
Expression of TGF-beta1 in smooth muscle cells regulates endothelial progenitor cells migration and differentiation.
J Surg Res. 2005 May 15;125(2):151-6
135. Hudlicka, O., and Margaret, D. B. Physical forces and angiogenesis.
In G. M.Rubanyi (Ed.), Mechanoreception by the Vascular Wall.
Mount Kisco, N.Y.: Futura,1993.
Pp. 197-242.
136. Risau, W.
Mechanisms of angiogenesis.
Nature 386: 671, 1997.
137. Delaere P.,Vanderpoorten V.,
Vranckx JJ., Hierner R.
Laryngeal repair after resection of advanced cancer: an optimal reconstructive protocol.
Eur Arch Otorhinolaryngol.262:910,2005.
138. Vranckx JJ.,Segers K.,Vertriest R.,
Vermeulen P.,Wever C.
Tissue reconstruction after severe tissue destruction by meningococcal sepis. A story of glory and defeat.
Submitted to JPRAS 2007.
139. Lantieri LA.,Martin-Garcia N.,
Wechsler J., Mitrofanoff M.,
Raulo Y.,Baruch JP.
VEGF expression in expanded tissue : a possible mechanism of angiogenesis in tissue expansion.
Plast.Reconstr.Surg.101;392-8,1998.
140. Mitchell SL., Niklason LE.
Requirements for growing tissue engineered vascular grafts.
Cardiovasc.Pathol.2003; 12:59-64.
141. Kannan RY, Salacinski HJ, Sales K, Butler P, Seifalian AM.
The roles of tissue engineering and vascularisation in the development of micro-vascular networks.
Biomaterials. 2005;26:1857-75.
142. C. Kalka, H. Masuda, T. Takahashi, W.M. Kalka-Moll, M. Silver, M. Kearney,
T. Li, J.M. Isner and T. Asahara, Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization,
Proc Natl Acad Sci USA 2000;
97 :3422–3427.
143. Asahara T.,Murohata T.,Sullivan A., Silver M.,Vanderzee R.,Li T.,
Witzenbichler B., Schatterman G.,
Isner JM.
Isolation of putative progenitor endothelial cells for angiogenesis.
Science 1997; 275: 964-7.
144. Kaihara, J. Borenstein, R. Koka,
S. Lalan, E.R. Ochoa, M. Ravens,
H. Pien, B. Cunningham and J.P. Vacanti,
Silicon micromachining to tissue engineer branched vascular channels for liver fabrication,
Tissue Eng 2000; 6: 105–117.
145. Moldovan NI.,Ferrari M.,
Prospects for microtechnology and nanotechnology in bioengineering of replacement microvessels.
Arch Pathol Lab Med 2002;
126: 320–324.S.
146. Suh W.,Kim KL.,Kim JM.,Shin IS.,
Lee YS., Jang HS.,Lee JS.,Byun J.,
Choi JH.,Jeon ES.,Kim DK. Transplantation of EPCs accelerates dermal wound healing with increased recruitment of monocytes/macrophages and neovascularization.
Stem Cells 23,1571,2005.
147. Yoshimura K.,Shigeura T.,
Matsumoto D., Sato D.,Takaki Y.,
Aiba-Kojima E.,Sato K.,Inoue K.,
Nagase T., Koshima I.,Gonda K. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J.Cell.Physiol.208,64,2006.
148. Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery.
J.Oral Maxillofac.Surg.63,1006,2005